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SUMMARY

C urrent practice for designing and dimensioning local exhaust hoods is largely 

based on  em pirical values and rules of thum b. Efforts to m odel the contam inant 

m ovem ent process have attracted  increasing interest in recent years. This kind of 

modelling work was previously scarcely feasible because it needs large com putational 

resources. However, rapid im provem ents in the perform ance and availability of 

personal com puters have m ade the modelling of contam inant m ovem ent a practical 

reality.

Local exhaust hoods are used to protect workers from  hazardous materials. 

Increasing emphasis on health  and safety m eans that hood perform ance is becoming 

m ore im portant. At the same tim e economic pressures m ake over design less 

acceptable. An accurate m odel to show if particles a re  captured should result in 

better protection and m ore economic local exhaust hood design.

A review of the developm ent of exhaust hood design from  the pioneering 

work of Dalla Valle in (1930) is followed by an exam ination of the behavior of 

airborne particles. T he objectives of the present study are then  defined as the 

developm ent of com puter program s to predict particle trajectories and suitable for 

use on a personal com puter and the validation of these program s by com parison 

with experim ental trajectories.

Six models for air flow fields outside exhaust hoods are presented, discussed 

and evaluated. They describe flow fields outside circular and rectangular flanged 

exhaust hoods in ideal stagnant air locations. Two models fo r flow into circular 

flanged hoods are  selected for further work on the basis of probable validity, ease 

of com putation and scope for experim ental validation.



Cross draughts are identified as having a significant effect on  the  flow fields. 

T hese are incorporated  into the models by superim position (vectorial addition).

T he m otion of particles in the resultant flow fields is then  calculated taking into

account the effects of gravity, buoyancy, drag force and inertia.

T he program  was w ritten in BASIC and calculates the  positions and velocities

of a particle a t specific tim e intervals and can be used for testing capture of

particles under d ifferent conditions. T he program  is interactive and enables users 

to define and  change conditions. Exhaust hood configuration and flow, particle

size, density, initial position and velocity are the variable param eters.

Soap bubbles were used to sim ulate airborne particles in a wind tunnel fitted 

with a circular exhaust. A  com bination of constant and stroboscopic lighting

enabled bubble trace photographs with tim e marks to be obtained. This enabled a 

quantitive com parison to be m ade between corresponding calculated and

experim ental trajectories. M easurem ents from  the photographs also allowed

individual bubble diam eters and densities to be obtained. These were used when

predicting the tra jecto ry  of that bubble.

T he m ajo r difficulty for designers in using the program  developed is in

estim ating appropria te  cross draughts. F urther work is suggested in this area while

the need for in site testing is em phasized.
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CH A PTER  1 LITERA TU RE REVIEW

1.1 IN TROD UCTIO N

Ventilation may be defined as control of the environm ental contam inants by 

using air flow. Ventilation is not a new  idea in hum an life. It has been used 

for centuries and on this subject G oodfellow (l) reported  th a t the Egyptians have 

used ventilation since im memorial time.

T he two m ain types of industrial ventilation are general ventilation sometimes 

called dilution ventilation and local exhaust ventilation. G eneral ventilation can be 

defined as blowing and removing air in the workplace in o rder to reduce the 

concentration of contam inants in the whole area of the w orkplace. Local exhaust 

ventilation may be defined as a system of removing contam inated air from  a 

specific processing operation. A simple local exhaust consists of a hood connected 

by ducting to a fan exhausting to outside the building. T he hood may be defined 

as the inlet of a local exhaust system.

Local exhaust hoods have different shapes, such as circular, elliptic, quadratic, 

rectangular or slo t-shaped. T he hoods can be divided into th ree  types, enclosures, 

recieving hoods, and capture hoods as shown on Figure 1.1. Enclosures 

surround the point of emission or contam inant generation, e ither com pletely or 

partially. Booths and laboratory fume hoods are exam ples of partial enclosures. 

Enclosures require the lowest exhaust ra te  of the th ree hood types.

Recieving hoods are those hoods which use some characteristic of the process 

to help air contam inants flow into the hood. Canopies are com m on types of 

recieving hoods. Canopy hoods are located directly above ho t processes. They 

recieve contam inated air which rises into the hood due to buoyancy.

1



C apture hoods differ from  enclosures in that they must cap tu re contam inants 

being generated at a point outside the hood itself and from  recieving hoods in that 

they m ust capture contam inants w ithout the  aid of supplem ental forces. C apture 

hoods are sensitive to external conditions, especially cross-drafts which m ay reduce 

the hood capture efficiency. O f the th ree  hood types, capture hoods are  the  m ost 

com m only used. T hey are used when process requirem ents will no t perm it the 

obstruction of an  enclosure. C apture hoods also require the m ost air to  control a 

given process, making optim ization of th e ir perform ance an econom ic necessity. 

Slot hoods and side draft hoods are com m on types of capture hoods.

T he hoods may be flanged o r unflanged as shown on F igure 1.2 . Flanged 

hoods are better because they elim inate a ir flow from  ineffective zones where no 

contam inants exist. Increasing the hood effectiveness in this m anner will usually 

reduce air requirem ents.

Air flow and particle m ovem ent in ducts, fans and filtration are relatively well 

developed. T he hood m ay be considered the m ost im portant p art in the  local 

exhaust system. If the hood fails to cap ture the contam inants th e  efficiency of the 

system is meaningless as the m ain aim  of a local exhaust system is to cap ture the 

contam inants produced in fron t of the hood.

T he design of industrial ventilation has been neglected for a long tim e. T he 

curren t design procedure for exhaust hoods is based on the selection of a proper 

capture o r design velocity followed by the use of an  equation to  pred ic t the  actual 

velocity at the point of release as a function of hood air flow and distance along 

the hood centerline. T he capture velocity is defined by the A m erican C onference 

of G overnm ental Industrial Hygienists (2), as the velocity at any point in fron t of 

the hood necessary to overcom e opposing currents and capture the contam inated 

air by causing it to flow into the hood. In this procedure the effect of 

c ross-d raft is no t quantified and this is one of the problem s which m ay face the
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design engineer in choosing the p roper capture velocity. T he curren t increased 

dem and to improve the workplace environm ent, m eans that m ore accurate 

techniques are required to solve the com plex ventilation problem s which are faced 

by industry.

T he objective of this research was to develop, and validate experim entally, a 

model for predicting particle m ovem ent into flanged circular local exhaust hoods. 

T he research pro ject was divided into two steps:

1) D evelopm ent of a theoretical m odel for predicting particle m ovem ent into a 

flanged circular hood in the presence of cross-drafts.

2) Validation of the theoretical m odel by com paring the theoretical particle 

trajectories with experim ental trajectories.

1.2 REVIEW  O F LOCAL EXHAUST H O O D  DESIGN

T he design of local exhaust hoods has been neglected for a long tim e. Dalla 

V alle’s(3) doctoral thesis in 1930 and Silverm an’s(7) doctoral thesis in 1943 were 

the first work to predict air velocity irl front of local exhaust hoods. H em on in 

his book (plant and process ventilation,1963)(8) discussed the production and the 

m otion of airborne contam inants using em pirical equations to design local hoods. 

F letcher(9,10) in 1977 developed em pirical equations to predict a ir velocity in front 

of unflanged round, square, rectangular, and slot hoods. G a rr iso n (ll-1 3 )  in 1977 

to 1983 conducted m any experim ents and developed em pirical equations to predict 

air velocity in front of flanged and unflanged round ,square, rectangular, and slot 

hoods. T he em pirical models developed by Dalla Valle, Silverm an, F letcher, and 

G arrison are shown in A ppendix A. These models predict the centerline velocity 

as a function of hood shape, air flow into the hood, distance of the source from 

the hood, and the hood area. T he air flow necessary to obtain the desired 

capture velocity is calculated by using one of these models. T he latter models 

developed by F letcher and G arrison can be considered as refinm ents to the work
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done by Dalla Valle and Silverman.

Bender(14) in 1979 developed a m odel technique to exam ine the perform ance 

of large industrial canopy fum e hoods and the effect of cross-d rafts on  capturing 

the contam inants, and concluded that cross-d raft is a very im portant factor which 

must be considered in designing canopy hoods.

H einsohn, Johnson  and Davis(15) in 1982 have exam ined the use of CAD 

system design for ventilation. This design has been used for designing a grinding 

booth for large castings, and they reported  that there is good agreem ent between 

theoretical and experim ental results.

M asood(16) in 1983 exam ined the param eters which will affect the  capture of 

dust by hoods and found that the capture velocity is dependen t on particle size, 

density, emission velocity, direction of emission, size of the emission source and 

the hood geom etry, the em pirical models developed by M asood are shown in 

section 1.6 in this chapter. Stewart(26) in 1985 exam ined existing guidelines for 

designing exhaust hoods. After discussing the design of canopies for cold and hot 

processes, he concluded that the heat released from  hot sources must be considered 

in designing canopy hoods.

Flynn and E llenbecker(17-19) in 1987; C onroy and Ellenbecker(20) in 1988; 

Conroy et al(21) in 1988 have used models to predict air flow into flanged circular 

and flanged rectangular slot hoods. These models can be used to quantify the 

effect of cross-d rafts on hood air flow patterns and capture efficiency and are 

based on analytical solutions to L aplace's equation for frictionless, incom pressible, 

and irrotational fluid flow. Alenius(22) in 1986 used num erical models to predict 

air flow into flanged circular, rectangular, and rectangular slot hoods. Alenius's 

models used num erical m ethods to solve L aplace's equation for frictionless, 

incom pressible, and irrotational fluid flow. T he theoretical models developed by
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Flynn and Ellenbecker, and Alenius are shown in chap ter 3.

W hen contam inant sources cover a considerable a rea  o r are subject to

cross-drafts, the em pirically predicted centerline velocity will no t give an  accurate 

prediction of hood perform ance. Velocity contours in fron t o f hoods are  elliptical 

in shape and an  adequate capture velocity on the centerline a t the edge of area

source will result in lower, and perhaps inadequate velocities a t the corners of the 

source.

A m ore quantitative index of hood perform ance is cap ture efficiency. Capture 

efficiency may be defined as the ratio between the contam inants captured by the 

hood to the generated contam inants. E llenbecker e t al(23) in 1983 have shown 

capture efficiency to be a function of hood air flow, hood area and geom etry, 

distance from  the hood, and the cross-d raft velocity.

Theoretical models to predict the air flow in front of hoods would be very 

helpful for design engineers. These models must be exam ined experim entaly in 

the presence of cross-drafts before they are used in design applications. Existing

em pirical models are easier to use but they only predict the hood centerline 

velocity and they are valid to a certain  limit. Most em pirical models do not

quantify the effect of cross-d raft on hood design while it should be easy to 

quantify the effect of cross-d raft on hood design given suitable theoretical models. 

C ross-draft is a very im portant factor which m ust be considered in designing 

hoods.

1.3 SOURCES O F  CONTAM INANTS

C ontam inants in a workplace can be found as solid particles or in form  of 

vapours and gases. T he two main m echanisms by which dust can be generated 

are pulvation and condensation. Pulvation is the prim e m echanism  of dust
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generation in materials handling. Pulvation is a word coined by H em on(8 ) and is 

defined as a non-m olecular mechanical process whereby dust becomes suspended in 

air from  a previous state of rest. Clouds of dust are form ed as the result of two 

events in sequence. Firstly a m echanical or pneum atic action which projects 

particles into the air, and secondly air currents transport the dust particles from 

the place of generation.

T he W arren Spring Laboratory(24) in Stevenage, U .K . introduced the 

pulvation equation for the aerodynam ic seperation of particles from  bulk materials. 

Consider a mass of particles subjected to an air stream  from  beneath  in such a 

way that some of the top layers of particles becom e airborne. A particle in the 

top layer leaves the subtrate when the air velocity is such that the aerodynam ic 

drag force on the particle overcom es the particle weight and the force o f cohesion

of the particle to those in the the layer beneath.

A e r o d y n a m i c  Dr a g  > P a r t i c l e  + F o r c e  o f  C o h e s i o n  o f

F o r c e  on P a r t i c l e  We i gh t  P a r t i c l e  t o  P ow der B u l k

T he pulvation process produces different sizes of airborne particles. T he large 

particles do not rem ain airborne for as long as small ones. These large particles 

have been term ed inertials by H em on(8 ). Exam ples of dust generation are

grinding and handling of dry powder materials.

1.4 HAZARDS O F AIR CONTAMINANTS

H azards of air contam inants in a workplace can be divided into two types; 

health  hazards and hazards of fires and explosions. O ne of the greatest reasons 

for studying aerosol behavior is its relation to health . It is known that small

particles contribute to respiratory disease. T he contam inants en ter the hum an body 

through the respiratory system. W hen these contam inants are breathed into the
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respiratory system and retained in the body, they may cause d ifferent diseases. 

T he link between disorders of the hum an body and specific contam inants has been 

difficult to recognise in most cases. However diseases of pneum oconiosis, 

em phesym a, and lung cancer represent classes of results from  suspected chemical 

assaults. Viral and bacteriological links of infections have been established with 

influenza, bronchitis, pneum onia, and tuberculosis. Specific concentrations of 

contam inants are flam m able or explosive.

1.5 T H E  PROBLEMS O F DESIGNING LOCAL EXHAUST HOO DS

T he curren t design procedure for exhaust hoods as described in the Am erican 

Conference of G overnm ental Industrial Hygienists (Industrial Ventilation M anual) as 

shown in Figure 1.3 is based on the selection of a p roper capture velocity

dependent on the release velocity of the contam inants, the m agnitude of disturbing

air currents and the toxicity of the contam inants. T he hood is then designed to 

produce this velocity at the point of release using an equation to predict velocity 

as a function of hood air flow, geom etry and distance along the hood centerline.

DallaValle(3), S ilverm an(4-7), G arriso n (ll ,13), and F letcher(9 ,10) have 

presented em pirical m odels(Appendix A) for centerline velocity as a function of 

hood shape, air flow into the hood, distance of the source from  the hood, and the 

hood area. T he air flow necessary to obtain the desired capture velocity is 

calculated by using one of these models. H em on(8 ) describes the dust generation 

process as a kind of pulvation where particles are ejected  from  a mass of m aterial 

and defines the null point for a particular particle as the point where it expends 

its energy and is then at the m ercy of local air currents, the position of the null

point can be determ ined by eye or by using a dust lam p. T he capture of the

dust cloud can be determ ined by ensuring that the air flow at the null point is 

directed towards the hood. Table 1.1 shows the capture velocities recom m ended 

by Hem on. A similar approach to th a t of Hem on is used by Alden and Kane(25)
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and ACGIH (2), and their capture velocities are given in Table 1.2. F or exam ple 

H em on recom m ended capture velocity of 0.3m /sec in case of contam inants released 

with practically no velocity into quiet air while the recom m ended capture velocity 

given by Alden and Kane is 0.5m /sec.

It can be seen that the latter capture velocities and volume exhaust rates are 

m uch higher than those recom m ended by H em on in Table 1 .1 . These differences 

highlight the difficulties facing the design engineer to select a suitable capture 

velocity especially when energy considerations require that exhaust rates should be 

kept as low as possible. T he difficulty with H em on 's approach is the difficulty of 

determ ining the null point, it is also difficult to judge what is m eant by 

"m oderately draughty" or "very draughty", "low toxicity" and "high toxicity". T he 

recom m ended capture velocities for hoods given in Table 1.2 are also found in the 

Am erican Society of H eating, Refrigerating and A ir-C onditioning Engineers 

Handbook(27) and the C hartered Institute of Building Services Engineers G uide(28)

The procedure of the A m erican C onference of G overnm ental Industrial 

Hygienists is very difficult to apply. In this procedure the release velocity of the 

contam inants is not quantified and the effect of cross-d raft is not quantified even 

though cross-draft is a very im portant factor which must be considered in the 

design of exhaust hoods especially for particles sm aller than  1 0  m icron in d iam eter. 

The selection of the capture velocity is also dependent on o ther factors such as 

contam inant toxicity, contam inant production, and hood size. None of these 

factors are quantified.

M asood(16) has reported  on results from  an experim ental program  to study 

the param eters which affect the capture of dust by hoods. These param eters are, 

size of the particles to be captured, density of the m aterial, emission velocity, 

direction of the emission, size of the emission source and the hood geom etry.
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T he relationship obtained for unflanged square hood is given as:

• ( v cf/ v j ) 2 ( v t/ v j)  = 11-7943 e x p (3.065 X /L) (1.1)

where

Vcf is the capture velocity a t the face of the hood.

Vj is the emission velocity.

X is the distance m easured from  the hood face.

L is the hood length.

Vt is the term inal settling velocity of the particle.

Masood reported  that a reduction of 37% in the capture velocity at the face 

of the hood is obtained by the flanged hood over the unflanged hood when the

ratio between the distance of the release point from  the face of the hood, to the

hood length is between 0.25 and 1.25. T he experim ental program  of M asood d id  

not consider the effect of cross-d raft on hood design.

T he concept of flanged and unflanged is not well quantified. Fletcher(lO ) has 

shown that the optim um  flange width is the square root of the hood area beyond 

which there is little further increase in velocity. Although the centerline velocity 

for a flanged hood may be m ore than 2 0 % greater than for unflanged hood of 

the same dimensions the m ajor advantage of a flanged hood that air is being 

pulled from  the effective zone of the hood. Relationships betw een the width of 

the flange and the volume of exhaust air are not quantified.

T he concept of capture efficiency is a good way to quantify hood 

perform ance. C apture efficiency is the fraction of contam inant generated which is 

captured directly by the hood. This concept gives a d irect indication if the 

contam inant in front of the hood are captured or not, and the m ain aim of the 

hood is to capture the contam inants produced in front of it. In practice it may
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easy to determ ine the captured contam inants, but on the o th er hand  it is difficult 

to determ ine the generated contam inants with sufficient accuracy.

1 .6  MODELLING METHODS FOR AIR FLOW IN FRONT OF LOCAL 

EXHAUST HOODS

M odelling air flow in front of local exhaust hoods can  be divided into two 

types, experim ental m ethods and theoretical m ethods. In experim ental m ethods 

em pirical equations of air flow in front of local exhaust hoods can be developed 

by doing a series of m easurem ents of the param eters which influence the 

m ovem ent of air in front of these hoods. In theoretical m ethods, the approach 

can be achieved either by solving N avier-Stokes equation o r by using potential flow 

theory for frictionless, incom pressible, and irrotational fluid flow. These m ethods 

are examined in detail in chapter 3 of this thesis.

1.7 REFERENCES

1. Goodfellow, H .D .: Advanced design of ventilation systems for contam inant 

control. Im print-A m sterdam  O xford C l985.

2. Industrial V entilation- A M anual of Recom m ended Practice, 17th ed. Am erican 

C onference of G overnm ental Industrial Hygienists, C om m ittee on Industrial 

V entilation, Lansing, MI (1982).

3. DallaValle, J .M .: Studies in the Design of Local Exhaust Hoods. Doctoral 

Thesis, H arvard University (1930).

4. Silverman, L . : Fundam ental Factors in the Design of Lateral Exhaust Hoods for 

Industrial Tanks. T he Journal of Ind. Hyg. and Tox. 23(5):187-226 (1941).

10



5. Silverman, L . : Centerline Velocity Characteristics of Round Openings U nder

Suction. The Journal of Ind. Hyg. and Tox. 24(9):259-266 (1942).

6 . Silverman, L . : Velocity Characteristics of N arrow  Exhaust Slots. T he Journal

of Ind. Hyg. and Tox. 24(9):267-276 (1942).

7. Silverman, L .: Fundam ental Factors in the Design of Exhaust Hoods. Doctoral

Thesis, H arvard University (1943).

8 . H em eon, W .C .L .: P lant and Process V entilation, Industrial Press Inc ., New

York, N .Y.(1963).

9. F letcher, B .: C enterline Velocity Characteristics of R ectangular U nflanged Hoods 

and Slots U nder Suction. A nn. Occup. Hyg. 20:141-146 (1977).

10. F letcher, B .: Effect of Flanges on the Velocity in F ron t of E xhaust Ventilation 

Hoods. Ann. Occup. Hyg. 21:265-269 (1978).

11. G arrison, R .P .: Nozzle Perform ance and Design for High Velocity/Low Volume 

Exhaust Ventilation. D octoral Thesis, University of M ichigan (1977).

12. G arrison, R .P .: C enterline Velocity G radient for Plain and Flanged Local 

Exhaust Inlets. Am. Ind. Hyg. Assoc. J .  42(10):739-746 (1981).

13. G arrison, R .P .: Velocity Calculation for Local Exhaust In lets-E m pirica l Design 

Equations. Am. Ind. Hyg. Assoc. J .  44(12):937-940 (1983).

14. Bender, M .: Fum e Hoods, O pen  Canopy Type -  T heir Ability to Capture 

Pollutants in Various Environm ents. Am. Ind. Hyg. Assoc. J .  40(2):118-127 

(1979).

11



15. H einsohn, R .J . ,  Johnson , D . and J .W . Davis: G rinding Booth for Large 

Casting. Am. Ind. Hyg. Assoc. J .  45(8):587-595 (1982).

16. M asood, T .:  T he C apture of Dust by Hoods, Dust and M aterial Handling, 

R eport No. 13, W arren Spring Laboratory, Stevenage, U .K . (June  1983).

17. Flynn, M .R. and M .J. E llenbecker: The Potential Flow Solution for A ir Flow 

into a Flanged C ircular H ood. Am. Ind. Hyg. Assoc. J .  46(6):318-322 (1985).

18. Flynn, M .R . and M .J . Ellenbecker: C apture Efficiency of Flanged Circular 

Exhaust Hoods. A nn. O ccup. Hyg. 30(4):497-513 (1986).

19. Flynn, M .R. and M. J .  E llenbecker: Em pirical Validation of Theoretical 

Velocity Fields into Flanged C ircular Hoods. Am. Ind. Hyg. Assoc. J .

48(4):380-389 (1987).

20. Conroy, L. and M. E llenbecker: C apture Efficiency of Flanged Slot Hoods

under the Infuence of a U niform  Crossdraft, Doctoral Thesis, H arvard School of 

Puplic H ealth, Boston (1988).

21. Conroy, L ., M. Ellenbecker, and M. Flynn: Prediction and M easurem ent of

Velocity into Flanged Slot Hoods. Am. Ind. Hyg. Assoc. J .  49(5):226-234 (1988).

22. Alenius, S .: Calculation of air velocities outside exhaust openings with flange. 

M ethod and results. U ndersokningsraport 1986:5. Arbetarskydsstyrelsen, FTV 

Solna, Sweden (1986).

23. E llenbecker, M .J ., R .E . Gem pel, and W .A. Burgess: C apture Efficiency of

Local Exhaust V entilation Systems. Am. Ind. Hyg. Assoc. J .  44(10)*.752-755 

(1983)

12



24. M ufitt, P .G .: M aterials Properties and Dustiness, R eport N o .l ,  Dust and 

M aterials Handling Research Project, W arren Spring Laboratory, Stevenage, U .K . 

(O ct. 1980).

25. A lden, J .L . and J .M . Kane: Design of Industrial V entilation Systems. 

Industrial Press Inc.,N ew  York, N.Y. (1982).

26. Stew art, L .J .:  Design Guidelines for Exhaust Hoods, Technical Note TN  3/85, 

Building Services Research and Inform ation Association, U .K . (1985).

27. A m erican Society of Heating, Refrigerating and A ir-C onditioning Engineers, 

Inc .: ASHRAE HANDBOOK, H eating, Ventilation, and A ir-C onditioning 

Applications, U .S .A . (1991).

28. T he C hartered  Institution of Building Services Engineers: CIBSE G U ID E, 

Volume B, Instalation and Equipm ent D ata, U .K. (1986).

13



C H A PTER  2 AEROSOL BEHAVIOR IN AIR

2.1 IN TROD UCTION

An aerosol can be defined as solid or liquid particles suspended in a gas. 

These airborne particles vary greatly in their ability to affect not only visibility and 

clim ate but also our health  and quality of life. Aerosols are  tw o-phase systems, 

com prising both the particles and gas in which they are  suspended. It is 

im portant to understand the properties of aerosols. Aerosol properties influence 

the production, and transport of atm ospheric particulate pollutants. T he 

m easurem ent and control of particulate pollutants in the occupational and general 

environm ents require applications of this knowledge.

Aerosol technology grew in im portance because of an  increased environm ental

concern for the health effects arising from  air pollution in com m unity and 

occupational environm ents. It has become an im portant tool in understanding the 

effect we have on our environm ent and the im pact of th a t environm ent on us. 

Aerosol technology is used in the fields of industrial hygiene, a ir pollution control, 

inhalation toxicology, atm ospheric physics and chem istry, and radiological health .

2.2 AEROSOL CONCENTRATIO N

T he most commonly m easured aerosol p roperty , and the most im portan t one

from  the standpoint of health and environm ental effects is mass concentration, the

mass of particulate m atter in a unit volume of aerosol. Com m on units are  g /m 3, 

and m g /m 3.

A nother com m on m easure of concentration is num ber concentration, the 

num ber of particles per unit volume of aerosol. Com mon units are n u m b er/m 3. 

Unlike gaseous contam inants, volume ratio or mass ratio in parts per m illion(ppm )
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are not used for aerosols because two phases are involved and aerosol 

concentrations are num erically very low when expressed in this way. Figure 2.1 

shows the extrem ely wide range(from  0 .0 0 1  to 1 0 0 0  g /m 3) of aerosol concentration 

that one encounters in practice.

2.3 DRAG FO RCE

T he m otion of particles is affected by the inertia of the particle and 

aerodynam ic drag. W hen a particle moves through air the viscosity of the air 

produces a force on the particle in the opposite direction to the relative velocity. 

The drag force on a spherefF^) given by Stokes's Law is for Reynolds 

num ber < < 1  , but for different values o f Reynolds num ber the drag force is given 

by H einsohn(l) as:

Fd  -  -  Cd J  V  5  <v  -  u > IV -  Ul ( 2 .1 )

where

U is the air velocity.

V is the particle velocity.

is the drag force factor.

C is the Cunningham  slip correction factor.

(C is dependent of the particle size and on the m ean

free path of the molecules form ing the air), 

p is the air density.

Ap is projected particle area, perpendicular to the direction of relative m otion to 

the air.

(V -U )= V r is the magnitude of the particle velocity (relative to the air).

|V - U | is the particle velocity vector (relative to the air).
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T he drag force factor is dependent on the particle Reynolds num ber. Figure 

2 .2  shows the relationship between the drag force factor for a sphere and the 

Reynolds num ber. It is com m on practice to divide Figure 2.2 into th ree  flow 

regim es:

24S to k e s  f l o w  r e g i m e :  Re < 1 , Cd =
K 6

3
A l l e n  f l o w  r e g i m e :  1 < Re < 10 , Cd = v a r i a b l e

N e w t o n i a n  f l o w  r e g i m e :  1 0 3 <  Re < 1 0 5 , Cd = 0 . 4

I n  I n d u s t r i a l  v e n t i l a t i o n ,  t h e  p a r t i c l e  m o t i o n  i s  i n

A l l e n  f l o w  r e g i m e .  The r e l a t i o n s h i p  b e t w e e n  t h e  d r a g  

c o e f f i c i e n t  a n d  R e y n o l d s  num ber f o r  0 < Re < 1 0 5 i s  g i v e n  

b y  H e i n s o h n ( l )  by  t h e  f o l l o w i n g  e q u a t i o n  w i t h  a n  a c c u r a c y  

o f  1 0 % a s ,

24 6
C d " 0 - 4  + § 5 -  + --------------------   ( 2 . 2 )

( 1 + Re )

T he particle Reynolds num ber for spherical particles is defined as:

p Dp (V -  U)
R e --------------------------  ( 2 . 3 )

For particles moving in motionless air, the relative velocity is the particle 

velocity.

T he Cunningham  slip correction factor for a particle is a correction  for the 

surrounding air not being a truly hom ogeneous but a m ixture of moving individual 

molecules. This correction is large if the particle size does not essentially exceed 

the m ean free path of the molecules forming the  air(0.06 m icron a t norm al
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pressure and temperature).

T he Cunningham  slip correction factor is given by Jenning(2) as:

\ r 0 . 5 5  Dd I

c = 1 +
2 . 5 1 4  + 0 . 8  e xp

r

X
( 2 . 4 )

X i s  t h e  m ean f r e e  p a t h  o f  t h e  m o l e c u l e s  f o r m i n g  t h e  a i r .

2.4 PARTICLE M OTIO N

T he m otion of a particle in air is influenced by a gravity force, a drag force, 

and a buoyancy force. T he particle m otion can be described by N ew ton 's Law of 

m otion. T he acceleration of a particle is proportional to the sum of the 

influencing forces divided by the mass of the particle. T he  acceleration vector is 

the second differentiation of the particle location vector w ith respect to time. 

Therefore it is possible to describe the motion of the partic le as a particle 

trajectory  with the locations as a function of the tim e elapsed. T he  m otion of a 

particle through air can be considered to uneffected by o ther particles and not to 

affect the air velocity field if the num ber of particles per unit volume of air is 

less than  a certain  value as given by Hinds(3), (the average distance between 

particles should be a t least 10 times the particle d iam eter). In industrial 

ventilation the particle concentration is hundreds o f times less than  this. The 

m otion of a single spherical particle can be expressed as:

M ass X A c c e l e r a t i o n  = D rag  F o r c e  + G r a v i t y  F o rc e

+ B uo y an cy  F o rc e
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U s in g  e q u a t i o n  ( 2 . 1 )  f o r  t h e  d r a g  f o r c e  g i v e s

T Dpi dV
P p  -  

d t

c d P'

2 C

x  Dp l
( V - U ) l V - U l  -

X Dpi

L 6
P n g  +

» Dpi
P g ( 2 . 5 )

2.4.1 Particle M otion In moving Air

If we consider a spherical particle moving through a two dim ensional air 

stream  in which the air velocity(U) is variable as shown in Figure 2.3, then  the 

particle acceleration m otion can be expressed as:

dV
a t  -  -  J g I1 - fr ] - [l-g*] hrid (v - U) |V - UlP P ‘

( 2 . 6 )

where the relative velocity (V -U ) is

(V  -  U ) = i ( V x -  U x ) + j ( V v -  U v )

-  i Vrx + j Vry (2.7)

w h e re

Vr x  i s  th e  p a r t i c l e  r e l a t i v e  v e l o c i t y  i n  h o r i z o n t a l  

d i r e c t  i o n .

Vr y i s  t h e  p a r t i c l e  r e l a t i v e  v e l o c i t y  i n  v e r t i c a l  

d i  r e c t  i o n .
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,V -  U| -  [ + V^y ] ( 2 . 8 )

where i and j are nodal coordinates.

E quation (2.6) can be expressed in differential way as:

dVy r -  3 C 
d t “  [ 4 c d ] [' P Pn  d J  V rx [ V rx  + V ry ] ( 2 - 9)p p

d V y P ‘ 

Pp ■

' 3 c d ' ' P
vs

d t . 4 C . • Pp Dp-
r y v r x  + Vr y

( 2 . 1 0 )

The R e y n o l d s  num ber c a n  be e x p r e s s e d  a s

[ + Vry  ] ^
Re = p Dp ------------------------- ( 2 . 1 1 )

If the motion of the particles is beyond the Stokes region, equations (2.9) and 

(2 .1 0 ) have to be s o l v e d  num erically to calculate the particle velocity and 

trajectory . In  order to solve equations (2.9) and (2.10) num erically by writing 

them  as:

dV.
d t

X = A Vx + B ( 2 . 1 2 )

dV,
d t = A Vy + D ( 2 . 1 3 )

wh e r e

-  -  [4 £ 1  h h dp p -
(Vx -  u x)  + (Vx " u y) ( 2 . 1 4 )
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B A Ux ( 2 . 1 5 )

D -  -  A U y  -  g  [ l  -  ] ( 2 . 1 6 )

T he equations can be solved num erically by com puting the  partic le velocity and 

location at the end of a small interval of tim e 6 t. T he velocity and location will 

be com puted a t the end of the first interval, t i =5 t .  If the velocity and location 

are known at t i  as initial values, the velocity and location can be com puted at

the second time interval t 2= t i + 5 t. T he process can be repeated  until the particle

travels some prescribed distance o r some prescribed tim e. T he R unge-K utta 

m ethod (Appendix B) can be used.
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CHAPTER 3 MODELLING AIR FLOW FIELDS IN 

FRONT OF LOCAL EXHAUST HOODS

3.1 M ODELLING M ETHODS

Modeling air flow in front of local exhaust hoods can be divided into two 

types Experim ental m ethods and theoretical m ethods. In  experim ental m ethods 

em pirical equations describing the air flow in fron t of local exhaust hoods can be 

developed by doing a series of m easurem ents to quantify the  param eters which 

influence the m ovem ent of air in fron t of these hoods. In  theoretical methods, 

the approach can be either by solving N avier-S tokes and continuity  equations or by 

using potential flow theory for frictionless, incom pressible, and irro tational fluid 

flow. Prandtl and T ie tjen s(l) reported  that specific air flow fields may, in 

principle, be determ ined by solving the N avier-Stokes and continuity equations. 

Rhyming(2) suggested that in practice there is no analytical solution to 

N avier-Stokes equations, and num erical procedures must be applied. Some G eneral 

Fluid Dynamics C om puter Codes for developing num erical solutions exist, such as 

F luent, Phoenics and T each-3D . T hese program s require knowledge of fluid 

m echanics, need a long tim e to com pute the com plicated equations used and the 

results are very sensitive to how the boundary conditions a re  defined. Potential 

flow theory was used in this thesis to m odel air flow in fron t of local exhaust 

hoods.

In modelling air flow in front of local exhaust hoods, B aturin, Dalla Valle, 

Engels and W illert, and Garrison (3 ,4 ,5 ,6 ) reported  th a t the air flow fields 

generated by simple exhaust hoods of the same design m ay be assumed to have 

flow similarity. T herefore one m odel of the air flow field o f an  exhaust hood of 

a specific shape is sufficient regardless of the opening size o r air flow rate . So 

the flow field modelling problem  is simplified by assuming flow similarity for 

exhaust openings of the same geom etrical design.
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3.2 PO TEN TIA L FLO W  TH EO RY  AND T H E  N A V IER -STO K ES EQ U A T IO N  

O F M O TIO N

T he continuity equation for steady state, incom pressible fluid flow states that 

the divergence of the velocity is zero :

V.\^ -  0 ( 3 . 1 )

where

i s  th e  v e l o c i t y .

V. is the divergence of a vector.

If the flow is also irro tational and the viscosity is to be considered zero the result 

is Laplace's equation :

V2$  = 0 ( 3 . 2 )

where

2
V i s  t h e  L a p l a c i a n  v e c t o r .

$  is the scalar velocity-potential function.

Analysis of Laplace's equation is well developed by W hite (7) and is term ed 

potential theory.

In potential flow the velocity a t any point is the gradient o f velocity-potential 

function :

<t> = $ ( 3 . 3 )
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where V is the gradient of a scalar.

In potential flow the fluid is considered incom pressible and frictionless; i.e .,n o  

shear forces were assumed to exist between fluid elem ents. This assum ption holds 

well on fluids with low viscosity in m any cases of practical im portance but not in 

all. It is particulary poor in describing flow phenom ena in the vicinity of solid 

bodies. The m otion of incompressible viscous fluid is well described by the 

N avier-Stokes equation :

where

g is the acceleration due to gravity.

P is the the fluid pressure,

p is the fluid density.

\l is the fluid dynamic viscosity.

Equation 3.4 was developed by Prandtl and T ietjens from  N ew ton 's fundam ental 

law of m echanics :

T he fundam ental difference between velocity-potential and N avier-Stokes 

equation for fluid is the friction term  ( p J p )  V 2 V. M athem atically speaking, this 

point is very im portant, since the velocity-potential equation contains only the  first 

derivative of velocity while the N avier-Stokes equation contains the second 

derivative of velocity in the friction term . In o ther words, this equation is of 

higher order. T he need for a h igher-o rder equation can also be explained on 

physical grounds by consideration of the boundary conditions which must be 

fulfilled at the interface betw een the viscous fluid and a solid body. The 

Navier-Stokes equation, the continuity equation, and the boundary conditions are 

necessary and sufficient to determ ine com pletely the m otion of a viscous fluid. 

T he m athem atical difficulties involved in solving N avier-S tokes equation have

( 3 . 4 )

Mass X Acceleration Force
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encouraged the use of the potential flow theory to describe the m otion of fluid 

because it is easier to use m athem atically.

It should be noted here that the friction term  of the N avier-S tokes equation 

will not play an im portant part where potential flow can be assum ed. This is true 

in practice for fluids of low viscosity (water, air) som e distance away from  the 

edges of fixed boundaries. Air is viscous and com pressible but there are many 

industrial situations in which air behaves as if its viscosity is negligible and its 

density and tem perature are constant. T he region in the  vicinity upstream  of the 

exhaust hood (but not a t the hood face), is a region w here these conditions occur.

3 .3  ANALYTICAL MODELS FOR AIR FLOW FIELDS INTO CIRCULAR

FLANGED EXHAUST HOODS

Theoretical models of the three-d im ensional velocity field into a flanged 

circular hood have been developed by Flynn and E llenbecker(8 ), E llenbecker et 

al(9), and Jansson(lO).

T he three models of air flow into flanged circular hoods developed by Flynn 

and E llenbecker are described below. T hey  were exam ined by the sam e authors 

and a final m odel with em pirical modifications was selected which is also 

described.

D ue to the axial symmetry, the cylindrical coordinate system (r,0 ,z) will be 

used, w here:

z is the axial distance along the hood centerline perpendicular to the hood face 

(T he z-coord inate  is directed from  the exhaust opening cen tre  point and outwards), 

r is the radial distance perpendicular to z-ax is in any direction (The r-coord inate  

axis is directed from  the centreline of the opening, perpendicular to it and 

outwards) as shown in Figure 3.1.
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0 is the angle that the r position vector makes with the  reference base pIane(0 =O, 

180).

3.3.1 M odel 1

T he strict potential flow model (Model 1) of a flanged circular hood states 

that the total theoretical velocity(Vy) a t any point ( r ,0 ,z )  is:

VT 1 -  / ( V r i ) 2+ <Vz 1 ) 2 ( 3 . 5 )

where

Vr  is the theoretical radial velocity.

is the theoretical axial(Z) velocity, 

and there is no rotation about the hood centreline.

The num eric subscripts used with the velocities re fer to the m odel being used. 

In this model,

VR1 “  "
( a  + r ) y 2  + ( r  -  a ) 7 l

( y l  + y 2 ) y l y 2  y /(y l + y 2 ) 2 -  4 a '

( 3 . 6 )

VZ1 =
-  Q Z

2 2

ir y l  y 2  J  ( y l  + y 2 )  -  4a

( 3 . 7 )

y l  = \ f z 2 +  ( a  + r )  2 ( 3 . 8 )

y 2  -  ) f z 2+  ( a  -  r ) 2 ( 3 . 9 )

where

Q is the hood flow, 

a is the hood radius.
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F or any m eridian plain the points (+a,0) and (_a,0 ) can be selected as foci on the 

r axis (see Figure 3.2). F or any point P (r,z) the distance from  - a  to P is y l ,  

and the distance from  +a to P is y 2 .  T he theoretical tangential velocity is zero 

for all models, the angle (0 ) that the velocity vector m akes with the hood 

centerline (z-axis) is :

@ =  t a n  1 

3.3 .2  M odel 2

VR1
VZ 1

( 3 . 1 0 )

An alternative model was developed based on exam inations of Dalla Valle's 

em pirical results and on theoretical modifications to the strict potential flow 

solution. The modified potential flow solution (M odel 2) gives the total theoretical 

velocity a t any point ( r ,0 ,z) as :

VT2  ^ 3 Q ‘-------—  (3.11)
2 x a 2 [ 3 - 2  e 2]

T he quantity e is called the eccentricity and it is the ratio  of the hood 

diam eter to the sum of the distances from  the edges of the hood to any point in 

front of the hood and is given as :

« -  y l ^ y l  ( 3 - 12)

Model 2 predicts a different value for the velocity vector (as shown in the 

next page), but the direction is still given by (|5) in equation 3.10. T herefore the 

velocities are given as :

vr 2 -----  VT2 ( s i n  0)  ( 3 . 1 3 )

VZ2 = “ ^T2 ( c o s  0)  ( 3 . 1 4 )

Model 1 and 2 derivations are found in reference (11).
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3.3.3 Model 3

T he third m odel is based on the fact that the total velocity a t any  point must 

equal the flow (Q) divided by the surface area inside the contour on  which the 

point lies. T he contours according to (M odel 2) are half oblate ellipsoids (for the 

confocal ellipsoids that are the equipotential surfaces the gradient is no t constant a 

long a given surface, the gradient becomes steeper near the flange. This 

difference in gradient is negligible far from  the hood w here th e  equipotential 

surfaces are nearly spheres, close to the hood face this difference is im portant) 

with surface areas (Ag) of :

T he direction o f the velocity vector is predicted by equation 3.10, and the 

com ponent velocities are given as :

1 -  e ( 3 . 1 5 )

where :

ac = —  e ( 3 . 1 6 )

( 3 . 1 7 )

T he total theoretical velocity is given as :

( 3 . 1 8 )

VR3 -----  VT3 ( s i n  0) ( 3 . 1 9 )

^Z3 = “ VT3 ( c o s  0 ) ( 3 . 2 0 )
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3.3.4 The Final Model

The first two models have particular singularities o r  inconsistencies. An 

inconsistent model is one that is not exact m athem atically, while a singularity in a 

model refers to a region where unrealistic fluid behavior occurs. M odel 1, the

potential flow solution is a consistent but singular model. A t the edges of the

hood face (r=a,z=0 ), the predicted velocities are infinite, while a t the  cen te r of the 

hood face(r=0,z=0), the theoretical velocity is Q/27ra2 o r half the  average face 

velocity. T he neglect of frictional forces by the potential theory  and  the boundary

condition of constant potential a t the hood face lead to these singularities which

limit the utility of Model 1 near the hood face.

Model 2 is inconsistent, the velocity field does not in tegrate to give the

specified flow of Q . This can be shown by solving equation 10 for velocity a t the

hood face (e=l ) .  T he result is that the theoretical average face velocity is 

3 Q /(2 ira2 ) or 87% of the actual average face velocity. This iconsistency is the 

result of approxim ations in the derivation of the m odel; these approxim ations 

enable im provem ent over M odel 1 in the ability to predict velocities, but create

inconsistent Model 2. This inconsistency leads to em pirical m odification in the 

final model. M odel 3 is neither singular nor inconsistent, bu t it suffers from 

com plicated m athem atics.

Experim ents were conducted by Flynn and E llenbecker to m easure velocities in 

front of different flanged circular hoods. T he results show th a t M odel 2 and 3 

are m uch better in predicting the velocities than  M odel 1. F u rth er analysis of

com ponent velocities indicated that both Model 2 and 3 would require em pirical

modifications to their predicted velocities. M odel 2 was selected as the best model

because it was nearly as good as M odel 3 a t prediction and was easier to use

mathem atically. T he analysis o f com ponent velocities in M odel 2 indicated that

the radial velocity increased m ore rapidly than predicted as e->l (as the hood face
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was approached). A radial correction factor (Cr ) was determ ined which, when 

m ultiplied by the predicted radial velocity would m ore accurately reflect the true 

radial velocity, the factor (Cr) is given as :

Cr  = 2 .6  e 1 8  + 0 . 8 5 3  ( 3 . 2 1 )

In addition, the theoretical axial velocities were adjusted by m ultiplying the 

experim entally calculated slope by 0.9. By adding both em pirical corrections to

M odel 2, the final model is obtained :

i
VT -  [vR2+ vz 2] (3.22)

Vr -  Cr VR2 (3.23)

vz = 0.9 vz2 (3.24)

T he direction of the velocity vector in the final model is also predicted by 

equation 3.10.

T he final model is in good agreem ent with previous investigations. In the 

1930s, Dalla Valle(12) used em pirical correlations to establish the centerline velocity 

gradient into a flanged circular hood :

100 -  Y ------------------------- ^ ---------- ,-----------r. ( 3 . 2 5 )
1 +  - 3 . 5 ( l o g  X -  l o g  X 0 )

l o g  xo = -  0 . 6 2 4  + 1 . 0 9  ( l o g  d)  ( 3 . 2 6 )

where :

d is the the hood diam eter in inches, 

x is the centerline distance from  the hood face in inches.

Y is the percentage of the hood face velocity.
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Equations 3.25 and 3.26 are Dalla Valle,s exact form ula th a t is usually 

approxim ated by :

vc i  — 2 r  <3' 27)
0 . 7 5  (10  x + ira )

where :

x is the centerline distance in feet.

Vci is the centerline velocity at x in feet/m in.

Figure 3.3 shows the centerline predictions of the final m odel vs. Dalla V alle's 

exact form ula. T he two essentially are identical. Dalla V alle 's  work has been 

confirm ed by Pruzner(13) and again by F letcher(14). T he only serious challenge 

cam e from  Silverman(15) who did not agree with the m ethod D alla Valle used to 

calibrate the m odified p itot tube used in his m easurem ents. Silverm an used 

therm om eters approxim ately 0.5 inch long; in effect this size of sensor measures 

an integrated velocity and is not a good approxim ation of a po int velocity. In 

fact, close to the face of a 2  inch hood, it represents a substantial portion of the 

hood area and may significantly perturb  the flow field.

3.3 .5  Jansson 's Model

A nother m odel was developed by Jansson (10) m ay be classified as a 

sem i-em pirical potential flow solution. T he basis of the m odel is a potential flow 

solution for constant potential in the inlet plane. T he flanges are assumed to be 

infinite. The resulting equal potential surfaces, constitute a family of surfaces of 

half oblate spheroids(rotated ellipses). An assum ption th a t the velocity is 

perpendicular to the spheroid surfaces together with the continuity  equation leads 

to the model presented. T he absolute value o f the air velocity is

determ ined by setting the velocity times the spheroid surface area equal to the air 

flow rate . T he value of the air velocity is calculated from  the ellipse 

eccentricity(e), which in turn  is a function of the coordinates in space. The
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description is tw o-dim ensional and the third dim ension is obtained by a rotation 

about the Z -ax is (see Figure 3.4).

T he m odel is presented as non-d im ensional descriptions. The 

non-dim ensional air velocity in the inlet plane becom es equal to 1 and it is 

perpendicular to the plane. N on-dim ensional velocities are  obtained by dividing 

any velocity by the opening m ean face velocity(U o), (U o=exhaust opening flow 

rate/opening area). T he expression for the non-d im ensional velocity value, U ',  is 

given by :

U'= e / 1 + 1 -  e 
2 e Ln U

Uo ( 3 . 2 8 )

wh e r e

I z ' 2 + ( r ' +  0 . 5 ) 2 + / z ' 2 + ( r '  -  0 . 5 ) 2 ( 3 . 2 9 )

r ' ( 3 . 3 0 )

Ln is the natural logarithm  function.

N on-dim ensional distances for circular hoods are obtained by dividing by the hood 

diam eter, this is denoted by '.

T he individual velocity com ponents are given by :

U* = -  U' c o s  (3 z

I T  U' s i n  (3r

( 3 . 3 1 )

( 3 . 3 2 )

U'  = U' c o s  7  x r  '

U’ = IT s i n  7  
y r  '

( 3 . 3 3 )

( 3 . 3 4 )
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w here

0  = a t a n  [ ( 1  -  c 2 ) r ' / z ‘ ] ( 3 . 3 5 )

y  = a t a n  ( y ' / x '  ) ( 3 . 3 6 )

atan is the arcus tangent function.

3 .4  ANALYTICAL MODEL FOR AIR FLOW FIELDS OF RECTANGULAR 

FLANGED EXHAUST HOODS

A model for air flow fields of a rectangular flanged exhaust hood has been 

developed by Tyaglo and Shepleve(16), and then presented in a non-dim ensional 

form  by Jansson(lO).

The expressions for the non-dim ensional velocities are  :

U' = —  Lnx 2 i r

1 . 2  . 2  . 2 1 . 2  . 2  . 2I k  k k k / * * k k
J z  +  X  +  Y + Y l/Z + X + Y + Yv + -  + V +

+ -----  Ln
2 2 2 * * * *

Z + X + Y + Y + + + / 2 2 2 * *  * *
Z + X + Y + Y

( 3 . 3 7 )

y  2 ir
Ln

I k 2 k 2 k 2 k / k 2 k 2 k 2 k
y Z + Y + X + X_ j z  +  Y+ + X_ + X_

*

I
. 2  , 2  . 2k k v: v

Z + Y + X + X 
+ + / 2 2 2* *  *  *

Z + Y + X + X

( 3 . 3 8 )
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Uf = z
a t a n

+
* * 

X Y

* 2 * 2 * 2 
Z + X+ + Y+

-  a t a n

+ Y

-  a t a n

* * 
X Y +

* * 
X Y

+ a t a n

k I k 2 k 2 k 2
+ X+ + Y_

* / k 2 k 2 k
I VZ + X + Y

( 3 . 3 9 )

U' = J  U'  2+ U1 2 + U' V x y 2
U
Uo ( 3 . 4 0 )

wh e r e

* *
X+ -  X + 0 .5 y w / L

* * 
X -  X

k k
Y+ = Y +

.5 f w / L

0 . 5  ^ L/W

/
Y_ = Y -  0 . 5  V L/W

( 3 . 4 1 )

( 3 . 4 2 )

( 3 . 4 3 )

( 3 . 4 4 )

W is the opening width in X -direction.

L is the opening length in Y -direction.

N on-dim ensional distances for rectangular hoods are obtained by dividing by the

square root of the hood area, this is denoted by *. N on-dim ensional velocities

are obtained by dividing any velocity by the opening m ean face velocity (Uo),

(Uo=exhaust opening flow rate/opening area).

3 .5  A NUMERICAL METHOD TO CALCULATE AIR FLOW FIELDS 

OUTSIDE ARBITRARILY SHAPED FLANGED EXHAUST OPENINGS

T he air velocity potential of a point sink is given by Alenius(17), as

<fr(b) = k Q /b
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where

K = 1 /4 -n- for a free (spherical), and K = 1 /2t  for a flanged (half sphere) point 

sink.

b is the distance from  the point sink to the point where the poten tial is 3>(b).

A real exhaust opening is not a point but covers an area. T he  velocity potential 

a t a point outside a flanged exhaust opening with infinite flanges m ay be 

calculated by integrating the potential from  infinitesimal po in t sinks covering the 

exhaust opening. For a flanged opening the distance from  each infinitesim al point 

sink to the point where is to be calculated can be defined. T he  flanges must 

be large enough to prevent air being sucked in from  the  region behined the 

flanges. F letcher(18), has shown that centreline velocities a re  unaffected by flange 

widths larger than the square root of the exhaust opening area. However, 

velocities in o ther regions than on the centreline have no t been exam ined. A 

flange width lim itation will limit the size of the region in which the  flanged 

opening model is valid.

T he air velocity outside a flanged exhaust opening is given by Alenius as

U(X) = I T  g ra d
U ( d s )  ds 1

»
g r a d U ( d s )  ds

«. — 2 ttb ( x , d s )  . . b ( x , d s )  .

( 3 . 4 6 )

where

grad is the gradient operator (5 /Sx  , 5 /5y , 5 /5z  in cartesian coordinates).

U(X) is the air velocity vector a t the point X.

U(ds) is the air velocity vector of the area elem ent with the area vector ds.

U(ds) ds is the flow rate through the area elem ent ds.

ds is the area vector of the infinitesimal area elem ent considered to be a point

sink.
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s is the area defined by the exhaust hood.

b(X,ds) is the distance from  the point X to the 

infinitesim al sink ds.

Flanged exhaust openings are usually plane and the a ir velocity in the opening 

may be assumed to be perpendicular to the opening plane. If the air velocity is 

to be considered constant in the opening, then

U(ds) (ds/ds) is constant and equation 3.46 can be simplified to

U(X) = Uo 1
g r a d

. b ( x , d s )  .
ds ( 3 . 4 7 )

wh e r e  Uo i s  t h e  o p e n i n g  m ean f a c e  v e l o c i t y .

Equation 3.47 can be used to predict the air velocity in fron t of circular and 

rectangular flanged openings.

3 .6  A NUMERICAL METHOD TO CALCULATE AIR FLOW FIELDS 

OUTSIDE A CIRCULAR FLANGED EXHAUST OPENING

For a circular exhaust opening the air velocity field has a rotational 

sym m etry, so only two coordinates are needed to describe the air velocity field. 

T he r-coo rd inate  axis is directed from  the centreline of the opening, perpendicular 

to it and outwards. T he z-coord inate  is directed from  the exhaust opening centre 

point and outwards. These directions make both the air velocity com ponents 

negative. T he air velocity com ponents along the coordinates r  and z are  given by 

Alenius (17) as
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Ur ( r , z )  -  fR f  * <r  ^  * ” <«> ) , d a  d£
$ =  0 0 = 0  r  2 , 2 , c. 2 , ~  U /  \1Iz + r  + £ + 2 r £ c o s ( c 0 |

( 3 . 4 8 )

U z ( r , z)  _ ^ 2  | R f  ----------------------   da «
?  =  0 0 = 0  r 2 2 y  2 «  v . . 1  'Iz  + r  + £ + 2 r £ c o s ( c 0 j

( 3 . 4 9 )  

where

r is the perpendicular distance to the axis of symmetry, 

z is the perpendicular distance to the opening surface (or flange).

R  is the radius of the exhaust opening.

$, o  are  polar coordinates in the opening plane (z=0). W ith these coordinates 

ds= do  d$ and

b ( x ,  d s )  = [ z 2 + r 2 + % 2 + 2 r  $ c o s ( o )  j .

T he integrals are elliptical and num erical m ethods have to  be used to  solve the 

equations for a point, (r,z). Alenius found R om berg 's m ethod is suitable for 

solving these equations because it has a fast convergence in evaluating the  integrals 

and evaluates the calculated value accurately.

3 .7  A NUMERICAL METHOD TO CALCULATE AIR FLOW FIELDS 

OUTSIDE A RECTANGULAR FLANGED EXHAUST OPENING

In case of a rectangular flanged exhaust opening the air velocity is 

th ree-d im ensional and three coordinates are needed to describe the air velocity 

field. T he th ree coordinates can be chosen as follows: F rom  the cen ter of the 

opening along its width (x), along its length (y), and directed from  the exhaust 

opening and outwards (z). T he air velocity com ponents a re  given by Alenius as

36



w/ 2  L/ 2  y
Ux ( x , y , Z) - ~  f I   — ------------------- ^ 7 ^ ^

* - w / 2  , , - L / *  ( x _t ) 1 +  ( y _) ) ) 2+ z , j

( 3 . 5 0 )

U y ( x , y , x ) - ~  f 7  } 7    ^ d ,  d f
4 _ . w / a  „ - L / 2 | ( x _ n 2 +  ( y _ ? ) 2 +  Z 2J

( 3 . 5 1 )

I T  W /  2  L /  2

Uz ( x , y , z ) - ~  J | ----------- ------------------- 5------------------J7  d ,  d |
$ = - W / 2  r j = - L /  2 [ ,  V X 2 , .  N 2 2 "1' [ ( X - O  + ( y - 77) + z  J

( 3 . 5 2 )  

where

x is the distance from  the centreline along the opening width,

y is the distance from  the centreline along the opening length,

z is the distance from  the opening plane.

W is the opening width.

L is the opening length.

£, rj are cartesian coordinates in the opening plane (z=0). W ith these coordinates 

ds = dr )  d$ and

i
b ( x , d s )  = [ ( x  -  o 2 + ( y  -  y ) 2 + z 2 ]

Equations 51, 52, 53 can be solved using the sam e num erical m ethod as the 

equations for circular exhaust openings.
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3.8 INFLUEN CE O F CRO SS-D RAFTS O N  H O O D  PERFORM A NCE

T he air m ovem ent around a local exhaust is controlled not only by the 

exhaust itself but also by other mechanisms. O ne type of air m ovem ent in an 

environm ent, in which the local exhaust is placed, can be approxim ated with a 

cross-d raft near the exhaust. Such an air m otion around a local exhaust normally 

decreases the capture of contam inants. T he particles o r gases are often 

transported  away from  the exhaust opening. T he most im portant lim itation of the 

capture velocity m ethod of quantifying hood perform ance is its failure to  account 

for the effects of cross-drafts. In the com plete absence of cross-drafts, any 

exhaust hood will capture all contam inants given off within its area of influence. 

It is the action of cross-drafts and other air motions in the workplace that 

degrade the perform ance of exhaust hoods and m ake their design particulary 

difficult. For each operation being exhausted, a capture velocity must be selected 

to overcom e the action of expected extraneous air flow patterns and direct the 

resultant velocity into the exhaust hood. Until considerably m ore work is done to 

quantify the effect of cross-drafts on hood capture efficiency, the selection of 

capture velocities sufficient to overcom e extraneous air flows will rem ain an  art 

ra ther than a science. Recent work done by Conroy(19); Conroy etal(20); Flynn 

and E llenbecker(8 ); E llenbecker etal(9); Alenius and Jansson(21) has resulted in 

models that can be used to quantify the effect of cross-drafts on hood air flow 

patterns and capture efficiency. To sim ulate a situation w here two or m ore air 

velocity fields are involved it is necessary to com bine the calculated air velocities. 

T he air velocities can be added vectorially a t the point where the resulting air 

velocity is to be calculated. This operation to com bine airflows was used by Flynn 

and Ellenbecker, and they reported experim ental results which confirm ed th a t the 

concept of vector addition applies to the com bined hood and cross-d raft flows.

Alenius and Jansson suggested that the operation to com bine airflows is 

physically not correct in general but may give a good approxim ation o f the
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resulting air velocity. All air velocities must be com bined in the  sam e coordinate

system. To do that, all air fields have to be transform ed into a global coordinate

system before they are superim posed (added).

T he linearity of L aplace's equation allows the addition of poten tials, enabling 

the construction o f m ore com plex flows. So it is possible to add cross-d rafts to 

potential functions, while it is not possible to use the addition o r superposition 

with Stokes equation because it does not follow L aplace's equation.

3.9 DISCUSSION AND CONCLUSIONS

Six analytical and num erical models for air flow fields o f circular and 

rectangular flanged exhaust openings have been presented. T he m odels all used 

potential flow theory  for frictionless, incom pressible, and irro tational fluid flow. 

T he final m odel developed by Flynn and E llenbecker, and the  non-d im ensional 

m odel developed by Jansson were selected for prediction of partic le trajectories 

and com parison with experim ental trajectories. These two m odels are  analytical

and they do not require long com puting time. Flynn and E llenbecker described

the final model as the best m odel to calculate the air distribution around a

circular flanged hood. T he num erical model developed by Alenius to calculate air

flow fields outside a circular flanged hood was not used in the com puter program  

because it used com plicated equations. Rectangular hoods were not used in the 

experim ents because there was not enough tim e to do experim ents on them . 

Flynn and E llenbecker's final m odel makes use of all th ree m odels they discussed. 

T he sequence of calculations they recom m ended is

1) Calculate radial and axial velocities using m odel 1 (Equations 3.6 & 3.7)

2) Calculate angle (|3) that the velocity vector makes with the  hood centerline 

(z-ax is), (Equation 3.10)

3) Calculate the to tal theoretical velocity using m odel 2 (Equation 3.11)

4) Calculate radial and axial velocities using m odel 2 (Equations 3.13 & 3.14)

5) Apply em pirical corrections to calculate radial and axial velocities using 

(Equations 3.23 & 3.24)
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C H A PTER  4

A C O M PU TER  PROGRAM  TO  CALCULATE AND V ISUA LIZE PA RTICLE 

M OVEM ENT INTO A FLANGED CIRCULAR LO CAL EXHA UST H O O D

4.1 PARTICLE M OTIO N

T he m otion of a particle in air is influenced by a gravity force, a drag force, 

and a buoyancy force of the surrounding air. T he particle can be described by 

N ew ton's law of m otion. T he acceleration of a particle is dependent on the sum 

of the forces acting on it divided by the mass of the particle.

MASS X ACCELERATION -  DRAG FORCE + GRAVITY FORCE

+ BUOYANCY FORCE

A spherical particle moving through a two dim ensional air flow was discussed 

in C H A PTER  2, and the general m otion of a particle is described by differential 

equations (2.9) and (2.10). Therefore it is possible to describe the m otion of the 

particle as a particle trajectory  with the locations as a function o f the time

elapsed. The force of gravity is constant and directed vertically downwards. The 

force of buoyancy is directed upwards. T he drag force is directed towards the 

particle (relative to the air)direction of m otion. T he drag force will generally

change direction cotinuously along the particle trajectory . Analytical solutions to 

equations (2.9) and (2.10) are not possible and num erical solutions have to be 

applied. In order to solve these equations num erically, they have been rew ritten 

as in equations (2.12 -  2.16). T he equations can be solved num erically by 

com puting the particle velocity and location at the end of a sm all interval of time 

6 t. T he velocity and location will be com puted a t the end of the first interval,

t i = 5 t. If the velocity and location are known at t i  as initial values, the velocity

and location can be com puted at the second time interval t 2= t i+ 5 t. T he process 

can be repeated until the particle travels some prescribed distance o r some
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prescribed time. T he Rung Kutta M ethod (Appendix B) can be used.

4.2 AIR FLOW  FIELDS O F  A CIRCULAR FLA NG ED  EXHA UST H O O D

Analytical models of air flow fields of a circular flanged exhaust hood have 

been discussed in C H A PT ER  3. These models used poten tial flow theory for 

frictionless, incom pressible, and irrotational fluid flow. In  these m odels the air 

velocity in the horizontal and vertical direction can be calculated a t any point in 

front of the hood. T he final model developed by Flynn and E llenbecker, and the 

non-dim ensional model developed by Jansson are selected to be used on the

com puter program  to calculate and visualize particle m otion into a flanged circular

hood. T he final m odel equations used in the program  are  (3 .5 -3 .9 , 3 .11 -3 .14 , 

3 .23-3 .24). Jansson 's m odel equations used in the program  are (3 .28 -3 .3 6 ).

4.3 CRO SS-DRA FTS

T he air m ovem ent around a local exhaust is controlled not only by the 

exhaust itself but also by o ther mechanisms. O ne type o f a ir m ovem ent in an 

environm ent, in which the local exhaust is placed, can be approxim ated with a 

cross-d raft near the exhaust. Such an air m otion around a local exhaust norm ally 

decreases the capture of contam inants. T he effect o f c ross-d rafts  on the 

m ovem ent of a particle is going to be included in the com puter program . T he

cross-d raft is perpendicular to the hood centerline.

4.4 COM BINATION O F TW O  O R  M O RE VELOCITY FIELDS

To simulate a situation where two or m ore air velocity fields are  involved it 

is necessary to com bine the air velocities in some way.
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To com bine two or m ore air velocity fields the air velocities a t a point can 

be added vectorially to give the resulting air velocity a t th a t point. T he 

com bination of air flows may give a good approxim ation of the resulting air 

velocity. T he com bination of air flows outside the exhaust hood m ay be justified 

by considering the the flow as a near potential flow. All air velocities m ust be 

com bined in the same coordinate system. To do th a t all used fields (exhaust, 

cross-drafts) are transform ed into a global coordinate system  before they are 

superim posed (added).

4.5 C O M PU TER  PRO CED U R E

Procedures for calculating air velocities outside a flanged circular hood, and

particle trajectories in air flow have been described. T o calculate particle 

trajectories outside a flanged circular hood two com puter procedures have been 

developed in the language Basic. In order to calculate coordinate points along a 

particle trajectory , the user provides the following data: air pressure and

tem perature, hood diam eter and flow ra te , cross-d raft velocity, particle starting 

point and velocity, particle diam eter and density and calculation tim e step. The

air flow field param eters are  needed for calculating the air velocity a t the particle

locations along the trajectory . E ither the final m odel developed by Flynn and 

E llenbecker (the first and the second program ) or Jan sso n 's  m odel (the third 

program ) can be used to calculate the air velocities outside the hood. The

cross-draft velocities and the air flow velocities outside the hood are added 

vectorially to calculate the  combined air velocities in vertical and horizontal 

directions. T he program s also calculate: particle relative velocity, Reynolds 

num ber, drag force coefficient, drag force, gravity force and buoyancy force. At

the end of time step, the program s calculate new  values o f particle velocities and

location. The location of the particle can be seen on the screen. T he process of 

com puting the velocity and location of the particle can be repeated until the

particle reaches some prescribed position (the particle reach the x-axis). If the
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distance of the particle from  the y-axis when it reaches the x -ax is is less than the

radius of the hood, then  the particle will be captured by the hood. If the

particle is not captured by the hood, the user can change the input data and see

if the particle is captured o r not. Using the program  in this way it is possible

theoretically to design an exhaust able to capture contam inants under defined 

conditions. A flowchart of the com puter program  is shown on Figure 4.1 , and a 

listing in APPENDIX C.
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CHAPTER 5 EXPERIMENTAL WORK ON THE MOVEMENTS OF 

PARTICLES INTO A FLANGED CIRCULAR HOOD

5.1 INTRO D U CTIO N

Flow visualization is an im portant tool in experim ental aerodynam ic research. 

It can give directly the details of com plex flow patterns which otherwise must be

found indirectly through tedious point by point m easurem ents. T he m ethods for

flow visualization have im proved little over the past several decades despite the 

progresses in experim ental techniques. Smoke is the m ost com m only used flow 

tracer. T he individual smoke particles follow the air m otion because they are

extrem ely small, but they must be concentrated to be visible, and also there is a 

problem  of diffusion.

Soap bubbles as aerodynam ic flow tracers have been used since the b irth  of 

aviation as m entioned by Lock (1) in 1928. In 1961 Johnson (2) generated small 

bubbles with a concentric arrangem ent of two fine tubes and exam ined the flow in 

a cylindrical vortex tube . In 1971 H ale, Stowell and Ordw ay (3) of SAGE 

A ction, Inc. puplished a paper on the developem ent of an  integrated system for 

flow visualization in air using neutrally buoyant helium  filled soap bubbles. W ith 

their arrangem ent bubbles could be produced a t rates up to 500/sec in air at 

velocities up to 65m/sec. T he National Institute of Agricultural Engineering (4) in 

U .K . conducted several experim ents to study the characteristics of soap bubbles.

In these experim ents, the ra te  and diam eters of bubbles produced were determ ined 

by m eans of high speed cine photography. In 1989 Kic (5) used soap bubbles to

visualize the air flow for designing and assessment of ventilation systems in 

livestock barns.

O ur investigation utilised bubbles as particles to test a com puter model for 

calculating particle trajectories outside a flanged circular local exhaust hood. This
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is som ewhat different to their use to visualize air flows as described above. The 

experim ental results are in good agreem ent with the model results. T he m ethod 

used is simple and easy, not expensive.

5.2 EXPERIM ENTAL EQ UIPM EN T

Refering to Figure 5.1, air is blown by the centrifugal fan  1, through the 

perforated  gauze flow equaliser 2  (make the air flow in the tunnel uniform ), into 

the wind tunnel 6 . T he air velocity in the wind tunnel is regulated by changing 

the speed of the fan, and is m easured by using a hotwire anem om eter. The 

bubbles form ed by the bubble generator 3 are carried by the air in the wind 

tunnel and some of them  may be caught by the exhaust hood 9. T he ra te of 

flow in the duct 10 can be calculated easily by using the orifice plate 11. The 

light from  the m otor car fog lamps 7, and the stroboscope 8  illum inate the 

bubbles. Photographs are taken by a conventional cam era. T im e exposures show 

the trajectories of individual bubbles. Figure 5.2 is a sketch of a short length of 

a bubble trajectory  and the photograph in Figure 5.11shows the trajecto ry  of a bubble 

captured by the hood. T he continuous lines are produced by reflections on the 

bubble surface of light from  the lamps shining upwards. T he pairs of dots are 

reflections of the stroboscope flashes.

T he dimensions of the wind tunnel are 400cm long, 43cm  high and 65cm 

wide. T he bottom  and front face of the tunnel are plexiglas while the top and 

back face are wood painted black. All o ther surfaces were painted black to 

m inim ize reflections and maximize bubble visibility. T he flanged exhaust hood was 

fixed on the center of the top side of the tunnel a t 180cm away from  the bubble 

generator. T he lighting arrangem ent was achieved by having two sources of light. 

T he first source consists of four 50 watt m otor car fog lam ps. These lamps were 

put inside black wooden boxes, an opening 5cm in width along the box is made 

on the center of the top side of the box to allow a flat beam  of light to pass to
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the tunnel. T he box was put under the tunnel and the light is d irected  upwards

to illum inate the vertical plane along the center line of the tunnel. An other

sheet of black wood with one centim eter wide slot along its cen te r is pu t on the

bottom  side of the tunnel to reduce the illum inated area in the tunnel. The

second source of light is the stroboscope which produces flashes a t tim e intervals.

This stroboscope is put inside the tunnel 120cm dow nstream  from  the  exhaust hood

and flashes in the horizontal direction. T he flashes from  the stroboscope, the

light from  the m otor car fog lamps and the Cam era are m utually perpindicular.
*

Photographs were taken with m edium  speed black and white film  using a 

PRAKTICA Super TL  C am era. * ( i s o  125/22° )

5.3 A BUBBLE G EN E R A TO R

A bubble generator is a device for producing soap film bubbles. T h e  bubbles 

are form ed by extruding a tubular film from  an annular orfice, the  film breaking 

up into bubbles many of which last several m inutes and have term inal velocities 

low enough to enable them  to be used in visualization of the air m ovem ent. The 

device shown on the diagram  of Figure 5.3 was taken from  th e  N ational Institute 

of Agriculture E n g ineering^) and it consists of a cham ber C into which the bubble 

blowing liquid is run via the feed tube F . An air tube A  passes through the 

cham ber and term inates in the nozzle N. T he end die D is dim ensioned so as to

leave a narrow  annular gap between the outside of the Nozzle and the die. The

fine thread  on the inlet end of the air tube enables it to be positioned relative to 

the end die and locked in position by the Locknut L against the  end of the liquid

cham ber. Size and num ber of bubbles produced by this generato r were large

which m ake it difficult to get good photographs for individual bubbles.

A local m ade bubble generator was developed during the research. Figure

5.4 shows this generator. It consists of a plastic tube B jo ined with a circular flat 

plastic plate C which has four small holes, an o ther plastic tube N is fixed a t the
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top of plate C. Tube B is for com pressed air and tube N for bubble liquid. 

T he bubbles are form ed when the com pressed air breaks up the film  liquid a t 

holes. This bubble generator was used in the experim ents because it produces 

very small bubbles.

5.4 BUBBLE G EN ERA TO R  LIQUID

Hyamine 2389 is the registered trade nam e for the liquid which is used to 

produce bubbles by the generator. H yam ine consists o f 40 percen t m ethyle 

dodecyl benzyl trim ethyl am m onium  chloride, 1 0  percen t m ethyle dodecyl xylylene 

bis (trim ethyl am m onium  chloride) and 50 percent w ater. This liquid is safe to 

use for producing bubbles but it becomes dangerous if it is used for drink.

5.5 BUBBLE PARAM ETERS

T he param eters which influence the m ovem ent of any particle are particle 

d iam eter, density and velocity. If these param eters can be determ ined for an 

individual bubble, it will be possible to calculate the tra jecto ry  of th a t bubble. In 

our experim ents we succeeded in calculating the diam eter, density, and velocity of 

individual bubbles from  photographs taken of these bubbles.

The techniques for measuring bubble param eters is achieved by putting a grid 

inside the tunnel at the center of the exhaust hood. This grid is used as a 

reference for m easuring bubble param eters. T he distance of the C am era from  the 

grid is kept constant when the photographs are taken and the enlarger kept a t a 

fixed position when the photographs are printed. T he  scale factor is then  known 

and constant. T he bubble diam eter can be m easured from  the photograph by 

using a traversing microscope with cross line sighting. D istances between 

consecutive flashes are proportional to bubble velocities. At a large enough 

distance from  both the bubble generator and the hood, it is safe to assume that
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the bubble is moving in the horizontal direction a t a velocity equal to  the  cross 

wind velocity and moving in the vertical direction a t a velocity equal to the 

settling velocity of that bubble. T he cross wind velocity can be m easured by 

hotwire anem om eter. T he vertical and horizontal distances betw een c o n s e c u t i v e  

flashes are m easured directly from the photograph and the bubble settling velocity 

can be calculated. T he density of the bubble can be calculated from  the bubble 

settling velocity.

5.5.1 Bubble D iam eter

O ne of the m ain difficulties of using bubbles as particles is the  difficulty of 

determ ining individual bubble diam eter. T he National Institute of Agriculture 

Engineering (4) in U .K  conducted experim ents to m easure bubbles diam eters, but 

in these experim ents the average diam eter of groups of bubbles was determ ined. 

The illum ination arrangem ent which is shown on Figure 5.1, enables the diam eter 

of individual bubbles to be ascertained.

W hen the stroboscope flashes two pin points of light are recorded  on the film 

in the cam era as it is shown on the photograph in Figure 5.11. T hese are the 

reflections on the front and rear surfaces of the bubble. Ideal, i.e  stroboscope 

and cam era at infinite distances from bubble, light paths are shown in Figure 5.5. 

From  this figure it can be seen that the bubble d iam eter is equal to V~ 2~X the 

distance between the two reflections.

T he procedure used to scale distances as recorded on the photographic prints 

up to full size is described later in Table 5.1. T he distance betw een sim ultaneous 

reflections on photographs was m easured using a traversing m icroscope with cross 

line sighting . A  m icrom eter moved the microscope from  one sighting to its

partn er, the difference between the m icrom eter readings being the distance between 

the images of the reflections.
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5.5.2 Bubble Velocity

It is safe to assume that at some distance from  the bubble generato r and the 

exhaust hood that the bubble is moving in a horizon tal direction with a velocity 

equal to the cross wind velocity and in the vertical d irection  with a velocity equal

to the settling velocity. These velocities can be m easured from  the photograph,

far away from  the exhaust hood, the effect of the exhaust hood is very small and

can be neglected. At that distance the initial bubble velocity in X and Y

direction is equal to the cross wind and the settling velocity. F rom  Figure 5.6

s e t t l i n g  v e l o c i t y
t  a n a  = ------------------------------------

c r o s s  w i n d  v e l o c i t y

m e a s u re d  d i s t a n c e  i n  v e r t i c a l  d i r e c t i o n

m e a s u r e d  d i s t a n c e  i n  h o r i z o n t a l  d i r e c t i o n

T he cross wind velocity is known (m easured by hotw ire anem om eter) and is equal 

to bubble velocity in horizontal direction. Distances betw een consecutive flashes

are bubble velocities. T he vertical and horizontal distances betw een consecutive 

flashes are m easured directly from  the photograph, then  the  bubble settling velocity 

is calculated. T he errors from  assuming at some distance from  the bubble 

generator and the exhaust hood that the bubble is moving in the horizontal

direction a t a velocity equal to cross wind velocity and in  the  vertical direction at 

a velocity equal to settling velocity are very small and can be neglected.

5.5.3 Bubble Density

T he bubbles produced by the bubble generator are  about 1.8 m eter away 

from  the exhaust hood, the air velocity from  the bubble generator is less than 

6 m /sec, the diam eters of bubbles form ed are between (2 - 8 )m m , so it is safe to
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assume at some distance from  the bubble generator and the exhaust hood that the 

bubble is moving in the horizontal direction a t a velocity equal to the cross wind 

velocity and moving in moving in the vertical direction at a  velocity equal to the 

settling velocity of that bubble. T he settling velocity for a bubble can determ ined 

as described above.

T he settling velocity occurs when,

Drag Force + Buoyancy Force = Gravitional Force 

but drag force F d ,

Fd -  4 "  p Cd  Ap V2

F o r  a  s p h e r i c a l  p a r t i c l e

( 5 . 1 )

X Dr

AP

a n d

Fd -  4 -  P Cd t  D2 V2

s o  t h a t

p Cd x D2 V2 +
r *  D p  i

L 6
P s  =

x d;
Pn g ( 5 . 2 )

s i m p l i f y i n g  a n d  r e a r r a n g i n g

p c d r
Dr

( P D “ P ) S

a n d

4 Dp g 

3 P Cd
( P D  -  P ) ( 5 . 2 )

I f  we assu m e th e  f l o w  i s  i n  A l l e n  r e g i o n ,  i n  t h i s  r e g i o n  

t h e  d r a g  f o r c e  c o e f f i c i e n t  i s  g i v e n  b y  B u s n a i n a  ( 6 ) a s
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Cd
24 f o r 1 < Re < 400 ( 5 . 3 )

Re 0 . 6 4 6

The R e y n o l d s  num ber R e, i s  e q u a l  t o

Vt Dp p
( 5 . 4 )Re

where

p is the air density.

/r is the air dynamic viscosity.

Vt is the bubble term inal velocity.

g is the acceleration due to gravity.

Dp is the bubble diam eter.

P p  is the bubble density.

Ap is the projected bubble area.

T he density of the bubble can be determ ined from  equation(5.2), as the diam eter

and the settling velocity are measured from  the photograph.

5 .5.4 Bubble Position

T he initial bubble position far away from  the exhaust hood while it moves in 

the horizontal direction with a velocity equal to the cross wind velocity and in the 

vertical direction with a velocity equal to the settling velocity can be m easured 

from  the photograph. The bubble position at any tim e can  also be m easured

from  the photograph.

5 .5.5 Bubble T rajectory

T he bubble position on the bubble trajectory  a t any tim e can be m easured

from  the photograph by knowing the num ber of flashes p er second which is

produced by the stroboscope.
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5 .6  COMPARISON BETWEEN THEORETICAL AND 

EXPERIMENTAL TRAJECTORY

T he com puter model developed through the research can calculate the position 

of a particle on the trajectory  at any tim e in fron t o f a flanged circular local 

exhaust hood. From  a photograph, the trajectory  for a bubble is known, so the 

theoretical trajectory  for a bubble with same diam eter, density and velocity from  

the sam e position can be calculated.

T he erro r at time tj between two points on the experim ental and calculated 

tra jecto ry  is Ej , as shown on Figure 5.7,

Ei -  i -  Kj ) 2 + ( Yj _ y i  ) 2 ( 5 . 5 )

where

Xj is calculated distance from y-axis at tj. 

xj is experim ental distance from y—axis at t[.

Yj is calculated distance from x-axis at Vv  

yj is experim ental distance from x—axis a t t-v

The mean e r r o r  E,  i s

E = — i—  ( 5 . 6 )

The s t a n d a r d  e r r o r  o f  d e v i a t i o n  S,  i s

( E.  -  E ) 2

S -  ,/ ---------------------    ( 5 . 7 )

w h e re  n i s  th e  num ber o f  e r r o r  v a l u e s .

T r a j e c t o r i e s  w i t h  s m a l l e s t  v a l u e s  o f  E a n d  S a r e  t h e  b e s t  

f i t .
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5.7 PH O TO G R A PH IC  M EASUREM ENTS AND ERRORS

For m easuring the bubble position, d iam eter and velocity from  the

photographs, a grid (71.4 X 40.8)cm  was put inside the tunnel a t the cen ter of

the exhaust hood a t 50 cm  from  the cam era. T he  grid was divided to squares

(5.1 X 5.1 )cm , this grid was used as a reference for m easuring the bubble 

position, diam eter and velocity from  the photographs. F igure 5.12 shows the 

photograph of this grid.

5.7.1 G rid E rro r

Figure 5.8 shows the  actual dim ensions(direct m easured dim ensions) of the

grid in X and Y directions. During dividing the grid into squares, the squares 

may be not equal.

T he actual grid length in x — direction is

5.1 X 8  + 5.05 X 6  = 71.1 cm

T he theoretical grid length in x — direction is

5.1 X 14 = 71.4 cm

T he percentage erro r m easurem ent in x — direction

t h e o r e t i c a l  g r i d  l e n g t h  -  a c t u a l  g r i d  l e n g t h  
t h e o r e t i c a l  g r i d  l e n g t h

Zl:i - ,7M _  0 . 4 2 %
7 1 . 4

The a c t u a l  g r i d  l e n g t h  i n  y — d i r e c t i o n  i s  

5 . 1 X 6  + 5 . 0 5  X 2 -  4 0 . 7  cm 

The t h e o r e t i c a l  g r i d  l e n g t h  i n  y  — d i r e c t i o n  i s  

5 . 1 X 8  = 4 0 . 8  cm

The p e r c e n t a g e  e r r o r  me a s u r e m e n t  i n  y  — d i r e c t i o n

t h e o r e t i c a l  g r i d  l e n g t h  -  a c t u a l  g r i d  l e n g t h  
t h e o r e t i c a l  g r i d  l e n g t h
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4 0 - 8  -  4 0 . 7  _
4 0 . 8  u - D

5.7 .2  Parallax E rro r

T he width of the light coming from  the m otor car fog lam ps is 8  cm , the 

streak of bubbles which we will get from  the photograph will be a t distance 

between (46-54) cm  from  the cam era as shown on Figure 5.9.

The maximum p e r c e n t a g e  o f  P a r a l l a x  E r r o r

_  T h e o r e t i c a l  c a m e r a  d i s t a n c e  -  A c t u a l  c a m e ra  d i s t a n c e  
T h e o r e t i c a l  c a m e r a  d i s t a n c e

T he percentage of parallax erro r in photographs can be reduced either by reducing 

the light width which is coming from  the m otor car fog lam ps o r by puting the 

cam era a t further distance from  the center of the hood. T he cross-w ind velocity 

in the wind tunnel is m easured by hotwire anem om eter and it is m ade the basis 

for considering if there is parallax erro r or not. T here is no parallax erro r if this 

velocity is equal to the bubble velocity m easured from  the photograph.

5 . 7 . 3  E r r o r s  From C o n s i d e r i n g  The S t r o b o s c o p e  And The 

C am era As A P o i n t  S o u r c e  And A p o i n t  S i n k

At ideal situation we assumed that the stroboscope and the cam era are far 

away from  the bubble, so in this case all beams of light falling from  the 

stroboscope on the bubble will be parallel and also all beam s of light reflecting 

from  the bubble and falling on the cam era will be parallel.
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At actual situation as shown on Figure 5.10, the stroboscope was pu t a t 1.2 

m eter from  the bubble and the cam era was put a t  0.5 m eter from  the  bubble, in 

this case beams of light falling from  the stroboscope on the bubble will no t be 

parallel, also beams of light reflecting from  the bubble and falling on  the  cam era 

will no t be parallel. A t ideal situation the m easured distance CB is equal AB, 

while a t actual situation the m easured distance CK,is

CK = CB -  KB

KB = AB X tan  a

P e r c e n t a g e  o f  E r r o r

_  I d e a l  m e a s u r e d  d i s t a n c e  -  A c t u a l  m e a s u r e d  d i s t a n c e  
I d e a l  m e a s u r e d  d i s t a n c e

CB -  CK KB AB X t a n  ot
CB CB CB "  t a n  01

If the maximum bubble diam eter is assumed to  be 8  m m , in the  case of 

considering a  as the angle between the beam  light reflecting from  th e  bubble

surface to the cam era and the bubble cen ter, in this situation

t a n  a  = = 0 . 0 0 8

p e r c e n t a g e  o f  e r r o r  -  t a n  a  = 0 . 0 0 8  %

This erro r is negligable, also the angle betw een the light falling from  the 

stroboscope on the surface of the bubble and the  bubble cen te r will be smaller 

than  o t and the erro r is negligable also.

5.8 EXTRACT FLOW  M EASUREM ENT

T he flow rate m easurem ent in the exhaust duct 10, as shown on  Figure 5.1 

was m ade according to British Standard Code B .S. 1042 by using an  orifice plate 

with D and D /2 tappings. T he diam eter o f the orifice plate is 10.7 cm  and the
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diam eter of the plastic duct is 15 cm. A straight duct for two m eters upstream  

of the orifice plate and one m eter downstream  from  it was used to m easure the

flow ra te  in the duct. T he expected accuracy o f m easurem ent o f an  orifice and

m anom eter is about 1 %  .

5 .9 EX PERIM EN TAL PRO CED U RE

A  series of experim ents were perform ed to  test the theoretical com puter

models. A 15 cm  circular flanged hood diam eter with face velocities equal to 3

and 2 m /sec were used. T he cross wind velocity in the tunnel was betw een 0.53 

and 1 m /sec, the stroboscope was set up to produce 2 0  flashes/sec, the cam era 

was pu t in front of the tunnel a t 50 cm  from  the cen ter o f the tunnel, the 

cam era exposure was put on one second, and the bubble generator was pu t a t the 

cen ter of the tunnel a t 1.8 m eter from  the  exhaust hood. F igure 5.1 shows the 

experim ental equipm ent. T he experim ental procedure can be described as follows:

1) T u rn  on the exhaust fan 13 and m easure the flow ra te  in the  exhaust duct 10

using an  orifice plate 1 1 .

2) T u rn  off the exhaust fan 13.

3) T u rn  on the blowing fan 1 and m easure the velocity in the  wind tunnel using a

hotw ire anem om eter.

4) T u rn  on the exhaust fan W hile the blowing fan is on.

5) T urn  on  the stroboscope and the m otor car fog lamps.

6 ) T u rn  on the bubble generator.

7) Photograph the bubbles while they are moving into the exhaust hood.

8 ) T u rn  off the exhaust fan 13 and change the velocity in the  tunnel.

9) T urn  on the exhaust fan 13 and photograph the bubbles while they are moving

into the  exhaust hood.

10) Put the grid in the cen ter of the exhaust hood and photograph  it.
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T he velocity a t the face of the hood can be changed and the  experim ental 

procedure can be repeated when the velocity in  the  tunnel is set a t different 

values.

5.10 RESULTS

Experim entaly m easured x and y values w ere com pared with values predicted 

from  two theoretical com puter models. T he  m ean e rro r E , and the  standard  error 

of deviation S were determ ined for d ifferent trajectories. T rajectories with smallest

values of E  and S are the best fit. Table 5.1 displays the values of E , S, x, and

y for th irteen  experim ental and theoretical trajectories. Table 5 .2  shows 

com parison between the m ean erro r and the standard  e rro r of deviation for these 

two models. In Tables 5.1 and 5.2 there are seven trajectories w ithout correction 

(no parallax erro r), and six trajectories with correction (corrected due to parallax 

erro r). It is clear from  Table 5.2 that m odel 1 is b e tte r than  m odel 2. A 

m ultiple regression between hood face velocity, cross wind velocity, bubble diam eter 

and m ean erro r indicated th a t the value of the m ultiple correlation  coefficient is

very low, which m eans a bad fit (insignificant relation) betw een hood face velocity,

cross wind velocity, bubble diam eter and m ean erro r.

5.11 DISCUSSION

T he com puter program  developed used two different m odels to  calculate the 

distribution of air round a circular flanged hood. M odel 1, the final model 

developed by Flynn and E llenbecker (7) used an  approxim ate solution with 

equipotential surfaces coincident with equal velocity surfaces. This m odel seems to 

give the best estim ates of velocity as suggested by the authors because it includes 

correction for frictional forces near the hood face and the  assum ed constant 

potential a t the hood face. Model 2 developed by Jansson (8 ) is a sem i-em pirical 

potential flow solution, the model uses surfaces of oblate spheroids (ro ta ted  ellipse)

59



for describing surfaces of equal air velocity. T h e  m agnitude of the air velocity is 

calculated from  the ellipse eccentricity, which in turn  is a function of the 

coordinates in space. This model is not as good as m odel 1 because this m odel 

assumed the velocity to be constant over the  inlet plane and vena contracta  effect 

in the opening is not considered.
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C H A PTE R  6  DISCUSSION AND CONCLUSION

6.1 DISCUSSION

T he curren t practices for designing local exhaust hoods are  largely based on 

coarse rules and on personal experience. In m ost design schemes em pirical 

equations are used to calculate contam inant capture velocity a t the hood centerline. 

T he present work describes a theoretical model to pred ic t partic le m ovem ent into a 

flanged circular exhaust hood and explains a m ethod to  com pare theoretical 

trajectories with experim ental trajectories by using soap bubbles.

T he m otion of gaseous and vapor contam inants is affected  by the velocity 

field of the air through which they move. T he m otion o f particle contam inants 

on  the o ther hand is also affected by the inertia of the partic le and aerodynam ic 

drag. If the average distance between particles is a t least 10 times the particle 

diam eter, it is safe to assume that particles move through the carrier gas 

independently of each o ther and that the particles do no t influence the gas velocity 

field. F or m ost problem s in air pollution and industrial ventilation the  average 

distance between particles is hundreds of times larger than this. So the m otion of 

carrier gas is independent of the m otion of particles. To describe the m otion o f 

an  aerosol, one m ust first com pute the velocity field o f the carrier gas and then  

com pute the m otion of the particle.

M odelling air flow in front of local exhaust hoods can be achieved either by 

experim ental or theoretical m ethods. In experim ental m ethods em pirical equations 

describing air flow in fron t of local exhaust hoods can be developed by doing a 

series of m easurem ents to quantify the param eters which influence the m ovem ent 

of air in front of these hoods. In theoretical m ethods, the approach can be e ither 

by solving N avier-Stokes and continuity equations o r by using potential flow theory  

for frictionless, incom pressible, and irrotational fluid flow. T he m athem atical
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difficulties involved in solving Navier-Stokes equations have encouraged th e  use of 

the potential flow theory to describe the m otion of fluid because it is easier to use 

m athem atically.

In the present work m ore com plex flow configurations can  be approxim ately 

m odelled by superposing several flow fields. Superpositioning is attractive because 

it is a simple technique to model m ore com plex configurations. It was first

suggested m ore than 40 years ago by Dalla V a lle (l) , but application was hard

without com puters. Alenius and Jansson(2) suggested th a t it  is physically incorrect 

but m ay be justified by the near potential flow behavior o f exhaust hood flow. 

A nother m ethod to m odel complex flow configurations is to  solve N avier-S tokes

equations using general fluid dynamics program s. W ith th e  lim ited storage 

capablities of small com puters this does no t seem  possible a t p resen t on  personal 

com puters. T he use of general fluid dynamics com puter program s, requires

extensive com puting facilities, extensive experience of the  program s and knowledge 

of fluid dynamics. This situation is changing and fluid dynam ics program s for 

P C 's are  now becoming available.

T he  com puter program s developed to calculate partic le tra jec to ry  in fron t o f a 

flanged circular exhaust hood used potential flow theory  and the superposition

technique to calculate the air distribution around the  hood, the program s are

w ritten in basic and are easy to run on a personal com puter.

Soap bubbles have been used to produce experim ental trajectories. This is 

believed to be the first time that soap bubbles have been  used as particles. In 

the past soap bubbles have been used only for visualizing air m ovem ent, and the

bubble density was assumed equal to that of air. T h e  lighting technique used in

the experim ents increased the inform ation contained in  bubble trace photographs. 

This m ade it possible to calculate the diam eter and density of individual bubbles. 

Some very small bubbles, may be 1 mm in diam eter o r less, were produced in
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these experim ents but the simple photographic facilities which were available did 

no t allow taking clear photographs of these bubbles. M ore elaborate cam eras 

would enable sm aller bubbles to  be photographed over a wider field of view.

T he present technique of using soap bubbles to  sim ulate particles could be 

used successfully to validate theoretical models describing particle m ovem ent in air. 

A lthough the bubble sizes are  m uch larger and densities lower than  the particles 

found in industrial applications, this will not reduce the validity of using bubbles as 

particles because the m ovem ent of bubbles and particles are  governed by the same 

laws of m otion. Drag forces are affected by size and shape and it is possible that 

these a re  less accurately described.

T he  accuracy needed for modelling contam inant m ovem ent into local exhaust 

hoods m ay be argued. D ata on validation of contam inant m ovem ent into local 

exhaust hoods is rare. Besides what has been presented here, Alenius and Jansson 

have developed a com puter program  to predict particle m ovem ent into local 

exhaust hoods and they reported  that there is a good agreem ent between 

theoretical and experim ental trajectories for particles moving into flanged circular 

hoods. It is quite difficult to com pare the present m odel for predicting particles 

m ovem ent into local exhaust hoods with models developed in the past. In the 

past em pirical models were used to calculate the cap ture velocity a t the hood 

cen te r line necessary to direct the particles into the hood. In these models 

n either the particle release velocity nor the cross wind velocity are quantified. In 

the p resen t m odel, the particle release velocity and the cross wind velocity are 

quantified, and it is possible to predict the particle m ovem ent at any point in 

fron t of the hood as well as along the centerline.

A  good agreem ent was found betw een theoretical predictions and actual 

partic le m ovem ent for particles moving into a flanged circular local exhaust hood. 

T he results indicated that values of the m ean erro r and the standard error of 

deviation for theoretical and experim ental trajectories are small. T he effect of
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these errors are very small in case of using the program  for design processes.

Particle m ovem ent in air is governed by well known physical processes. 

T herefore straight forward modelling ought to give correc t descriptions. Real 

industrial local exhaust hoods are d ifferent from  the  ideal shapes of the m odels, 

the disturbances from  the surrounding of an  exhaust m ust be taken into account. 

Surfaces, moving objects, air m ovem ent and particle sources create com plex 

disturbances. Failure in predicting actual particle m ovem ent m ay be due to failure 

in describing the actual flow fields and particle sources in real industrial processes 

ra th er than  errors in the modelling.

T he presented m odelling m ethod could be used for o ther shapes of local 

exhaust hoods and theoretical trajectories can be com pared easily with experim ental 

trajectories by using soap bubble m ethod described earlier. T he  m odel may seem  

very limited in its application. However, it could be a useful tool for industrial 

hygienists and design engineers in predicting particle m ovem ent for similar 

situations.

T he work reported  here was conducted in the laboratory  under controlled 

conditions. T he greatest lim itation on the use of the m odel is the variation of 

industrial cross-drafts. Field validation of the m odel, bo th  for larger flanged 

circular exhaust hoods and for less steady cross-drafts is necessary.

6.2 CONCLUSION

T he m ain objectives of this research were to develop and validate a m odel 

for predicting the m ovem ent of particles into a flanged circular exhaust hood in 

the presence of a uniform  cross-draft. T he m odel was developed in two stages, 

each of which could im prove the developm ent of local exhaust ventilation design.
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T he first stage of the research was the developm ent of a m odel to  predict 

the velocity of a particle in front of a flanged circular exhaust hood. W ith this 

m odel the particle velocity a t any point in front of a flanged circular hood can be 

predicted. U ntil now the basis for m ost exhaust hood designs have been em pirical 

m odels for centerline velocity. Em pirical models are  no t necessarily valid outside 

of the range of conditions for which they were developed, while a theoretical 

m odel can be used for conditions o ther than  those tested with m ore confidence 

than  the em pirical models currently used. T he developed m odel is im portant not 

only because it can be used to predict the particle velocity a t any point but also 

because it is a theoretical model developed from  a solution to  Laplace’s equation 

and N ew ton's second law of m otion.

C ross-drafts can be added vectorially to the local exhaust a ir velocity field 

generated by the hood. T he superposition technique seems to  work well outside 

local exhaust hoods.

T he second stage of the research was the developm ent of an  experim ental 

m ethod to test the theoretical model. In this m ethod, soap bubbles were used to 

sim ulate particles. As well as the usual bubble trajectories, tim e exposure 

photographs showed the position of bubbles at discrete tim e intervals and enabled 

the bubble diam eter and density to be deduced.

T h e  m odel has been validated for one hood size, several hood face velocities, 

and several cross-draft velocities. A  good agreem ent was found between 

theoretical prediction and experim ental bubble trajectories m oving into a flanged 

circular hood. T he face velocities and cross-d raft velocities used are typical of 

industrial situations but the experim ental hood was sm aller than  those typically 

found in industrial settings. The experim ental apparatus lim ited the size o f the

hood which could be used.
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T h e  developed m odel is an im provem ent over the cu rren t design technique for 

local exhausts in that it provides a quantitative index of hood perform ance, i.e, 

cap tu re efficiency, ra ther than  a wide range index, such as contro l o r capture 

velocity. T he effects of cross-drafts are also quantified replacing the qualitative 

descriptions used previously. T he designer can use the m odel by choosing different 

release points from  the particle source and run  the program  to see if the released 

particles are captured by the hood. If some of the released particles are  not 

cap tu red , the designer m ay have to increase the hood flow ra te  o r the hood size 

until all released particles are captured.

T h e  m odel was developed using cross-drafts which were uniform  in direction 

and  m agnitude. C ross-drafts in industrial situations are unlikely to be uniform  

over a long tim e period such as several hours o r even m inutes. T he greatest 

lim itation on the use of the model is the variation of industrial cross-d rafts. The 

cross-d rafts  m ay have a distribution of magnitudes and directions. If these 

param eters can be quantified, they could be very useful for hood design engineers. 

D esigners will have to take care in using the model. C ross-d rafts should be 

m easured around the area where the exhaust hood is going to be installed in order 

to include this value in the com puter program  to calculate the required flow rate 

to capture the contam inants. T he exhaust system will have to be tested after 

installing and when in use.

Validation of the m odel in the field is im portant in o rder to determ ine the 

accuracy when scaled up to larger hoods as well as to determ ine the effects of 

w orker activity on the efficiency of local exhaust hoods. F u rth er research is also 

required  to validate the m odel on different sizes and densities of particles.

T h e  developed model for predicting the m ovem ent of a particle into a flanged 

circular hood has been program m ed in basic. T he program  takes 2 -5  m inutes to 

run  on  a standard personal com puter. T he program  calculates the location of a
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partic le  a t selected tim e intervals.

T he im portance of local exhaust hoods is to p ro tect workers from  hazardous 

m aterials. An accurate model for capturing particles should result in m ore 

effective protection and econom ic local exhaust hood design.
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TABLE 1.1
Hemeon' s Recommended Capture V e l o c i t i e s  ( r e f *8)

Draught
C h a r a c t e r i s  t i c s

Lower S a f e t y  F a c t o r  H i g h e r  S a f e t y  F a c t o r
( N o n - t o x i c  d u s t s  or  t o x i c  ( T o x i c  d u s t s ,  l a r g e  e m i s s i o n
at  s m a l l  e m i s s i o n  r a t e s )  r a t e s  o f  n o n - t o x i c  d u s t s )

C o n t r o l l i n g  v e l o c i t i e s  a t  f a r t h e s t  n u l l  p o i n t  
fpm (n s " 1 )

D r a u gh t l e s s  

Modera t e ly  Draug'nt ly
( 0 .

70 -  SO fpm

fp:

40 -  50 fpm
( 0 . 2  -  0 . 2 5  ra s " 1 )

50 -  60 fpm
( 0 . 2 5  -  0 . 3 0  n s " 1 )

Very D raughty
( 0 . 3 6  -  0 . 4 1  ra s**1 )

50 — 60 fpm 
( 0 . 2 5  -  0 . 3 0  n s " 1 )

60 -  70 fpm 
( 0 . 3 0  -  0 . 3 6  q s " 1 )

75 -  100 fpm 
( 0 . 3 8  -  0 . 5 1  a  s*"1 )

TA3LE 1.2

Recommended C ap tu re  V e l o c i t i e s  -  ACGIH ( r e f . 2) and A ld en  and Kane ( r e f .  2 5 )

C o n d i t i o n  o f  D i s p e r s i o n  o f  
Con taminant

Examples C a p tu re
V e l o c i t y ,

- 1 m s 1

R e l e a s e d  w i t h  p r a c t i c a l l y  no 
v e l o c i t y  i n t o  q u i e t  a i r .

E v a p o r a t i o n  from t a n k s ;  d e g r e a s i n g ,  
e t c .

0 . 2 5 - 0 . 5

R e l e a s e d  a t  low v e l o c i t y  i n t o  
m o d e r a t e l y  s t i l l  a i r .

Spray  b o o t h s ;  i n t e r m i t t e n t  con
t a i n e r  f i l l i n g ;  l o w  s p e e d  c o n v e y o r  
t r a n s f e r s ;  w e l d i n g ;  p l a t i n g ;  
p i c k l i n g .

0 . 5 - 1 . 0

A c t i v e  g e n e r a t i o n  i n t o  zone o f  
r a p id  a i r  mot io n

Spray  p a i n t i n g  i n  s h a l l o w  b o o t h s ;  
b a r r e l  f i l l i n g ;  c o n v e y o r  l o a d i n g ;  
c r u s h e r s

1 . 0 - 2 .

R e l e a s e d  a t  h i g h  i n i t i a l  v e l o c i t y  
i n t o  zone  o f  v e r y  ra p id  a i r  
m o t i o n .

G r i n d i n g ;  a b r a s i v e  b l a s t i n g ;  
t u m b l i n g .

2 . 5 - 1 0

In ea c h  c a t e g o r y  a b o v e ,  a range  o f  c a p t u r e  v e l o c i t y  i s  shown.  The p r o p e r  
c h o i c e  o f  v a l u e s  depen ds  on s e v e r a l  f a c t o r s :

Lower End o f  Range

1.  Roon a i r  c u r r e n t s  min im al  or  
f a v o u r a b l e  t o  c a p t u r e .

2 .  C o n ta m in a n ts  o f  low t o x i c i t y  or  o f  
n u i s a n c e  v a l u e  o n l y .

3 .  I n t e r m i t t e n t ,  low p r o d u c t i o n .
4 .  Large hood -  l a r g e  a i r  mass in  m o t i o n .

Upper End o f  Range

1 .  D i s t u r b i n g  room a i r  c u r r e n t s .
2 .  C o n ta m in a n ts  o f  h i g h  t o x i c i t y .
3 .  High p r o d u c t i o n ,  h e a v y  u s e .
4 .  Smal l  hood -  l o c a l  c o n t r o l  o n l y .
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TABLE 5 . 1

C o m p a r i s o n  b e t w e e n  e x p e r i m e n t a l  a n d  t h e o r e t i c a l  t r a j e c t o r i e s  
f o r  t w o  m o d e l s .
P h o t o g r a p h  1 b u b b l e  N 0 ( 1 )
D = 0 . 1 5  M Q = . 0 5 2 9 3 0 5  M 3 / S  V c  = 0 . 5 5  M / S( a n e m o )• = 3 . 6 4 3  

= 1 . 2 2 9
mm V t =  

KG/M3 V b .
= 0 . 0 0 9  M / S  
h = 0 . 5 5  M / S

V c  = 0 . 5 5 6  ( p h o t o ) M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

4 1 . 8 4 - 1 3 . 1 0 4 1 . 8 4 - 1 3 . 1 0 4 1 . 8 4 - 1 3 . 1 0
3 9 . 0 6 - 1 3 . 1 5 3 9 . 1 0 - 1 3 . 0 9 3 8 . 4 4 - 1 2 . 8 7
3 6 . 1 6 - 1 3 . 2 3 3 6 . 2 8 - 1 3 . 0 5 3 4 . 7 0 - 1 2 . 5 0
3 3 . 1 2 - 1 3 . 2 7 3 3 . 4 3 - 1 3 . 0 0 3 0 . 8 4 - 1 2 . 0 7
3 0 . 2 0 - 1 3 . 2 7 3 0 . 5 5 - 1 2 . 9 2 2 6 . 8 8 - 1 1 . 5 4
2 7 . 1 0 - 1 3 . 2 3 2 7 . 6 3 - 1 2 . 8 2 2 2 . 7 9 - 1 0 . 9 0
2 3 . 9 6 - 1 3 . 1 2 2 4 . 6 6 - 1 2 . 6 7 1 8 . 5 5 - 1 0 . 0 7
2 0 . 8 6 - 1 2 . 9 5 2 1 .  63 - 1 2 . 4 7 1 4 . 1 3 - 8 . 9 6
1 7 . 6 0 - 1 2 . 6 2 1 8 . 5 3 - 1 2 . 1 8 9 . 5 4 - 7 . 3 7
1 4 . 2 5 - 1 2 . 1 0 1 5 . 3 3 - 1 1 . 7 6 5 . 0 2 - 4 . 9 2
1 0 . 9 0 - 1 1 . 3 3 1 2 . 0 1 - 1 1 . 1 2 1 . 3 4 - 1 . 5 7
7 . 4 5 - 9 . 9 2 8 . 5 4 - 1 0 . 0 9 - 0 . 1 - 0 . 1
3 . 8 3 - 7 . 5 1 4 . 9 6 - 8 . 3 3
0 . 4 8 - 2 . 4 3 1 . 4 3 - 4 . 9 4

M = 0 . 9 2  
S = 0 . 6 3

M = 6 . 8  
S = 4 . 3 3
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TABLE 5 . 1  C o n t i n u e d  
P h o t o g r a p h  1 b u b b l e  N O ( 2 )D = . 1 5  M Q = 0 . 0 5 2 9 3 0 5  M 3 / S  V c  = 0 . 5 5  M / S( a n e m o )D b = 5 . 1 1 7  mm V t = 0 . 0 4 5  M/ S  V c  = 0 . 5 6 2  M / S( p h o t o )R b = l . 3 4 9  KG/M3 V b . h = 0 . 5 5  M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y4 2 . 8 7 - 1 6 . 2 0 4 2 . 8 7 - 1 6 . 2 0 4 2 . 8 7 - 1 6 . 2 0

4 0 . 0 6 - 1 6 . 4 3 4 0 . 1 6 - 1 6 . 3 7 3 9 . 6 8 - 1 6 . 1 5
3 7 .  0 0 - 1 6 . 5 8 3 7 . 3 8 - 1 6 . 5 0 3 6 . 0 9 - 1 5 . 9 2
3 4 . 2 5 - 1 6 . 8 1 3 4 . 5 6 - 1 6 . 6 2 3 2 . 3 8 - 1 5 . 6 2
3 1 . 2 8 - 1 6 . 9 2 3 1 . 7 2 - 1 6 . 7 2 2 8 . 5 7 - 1 5 . 2 2
2 8 . 5 4 - 1 7 . 1 8 2 8 . 8 5 - 1 6 . 9 7 2 4 . 6 8 - 1 4 . 7 2
2 5 . 6 1 - 1 7 . 2 8 2 5 . 9 6 - 1 6 . 8 2 2 0 . 7 0 - 1 4 . 0 6
2 3 . 0 3 - 1 7 . 3 2 2 3 . 0 3 - 1 6 . 8 2 1 6 . 6 2 - 1 3 . 1 8
2 0 . 1 7 - 1 7 . 1 9 2 0 . 0 7 - 1 6 . 7 5 1 2 . 4 7 - 1 2 . 0 1
1 7 . 2 9 - 1 7 . 0 8 1 7 . 0 7 - 1 6 . 6 1 8 . 3 0 - 1 0 . 4 1
1 4 . 4 2 - 1 6 . 7 4 1 4 . 0 3 - 1 6 . 3 6 4 . 2 7 - 8 . 2 0
1 1 . 7 0 - 1 6 . 5 3 1 0 . 9 7 - 1 5 . 9 7 0 . 7 - 5 . 2 7
9 . 0 4 - 1 5 . 9 7 7 . 8 9 - 1 5 . 3 9 - 2 . 3 - 1 . 9 1
6 . 4 5 - 1 5 . 1 8 4 . 8 4 - 1 4 . 9 5 - 4 . 4 6 - 0 . 2
3 . 6 7 - 1 4 . 1 7 1 . 8 6 - 1 3 . 5 0
1 . 2 3 - 1 2 . 9 2 - 0 . 9 - 1 2 . 0 9

- 0 . 9 5 - 1 1 . 2 3 - 3 . 5 1 - 1 0 . 3 2
- 2 . 8 0 - 9 . 0 5 - 5 . 6 7 - 8 . 1 9
- 4 . 0 0 - 5 . 7 9 - 7 . 2 5 - 5 . 6 4
- 3 . 7 3 - 0 . 5 7 - 7 . 7 8 - 2 . 5 1

M = 1 . 3 6  M = 8 . 5 4S = 1 . 2 1  S = 6 . 1 0
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  2 b u b b l e  N 0 (1 )

D = . 1 5  M Q = . 0 5 2 9 3 0 5  M 3 / S  V c  = 0 . 6 7  M / S( a n e m o )D b = 2 . 9 7 2  MM V t = 0 . 0 3 2 6  M / S  V c  = 0 . 7 4  M / S( p h o t o )R b = l . 4 3 6  KG/M3 V b . h = 0 . 6 7  M / S
MEASUREMENTS MODEL 1 MODEL 2

X Y X Y X Y
4 0 . 8 0 - 1 4 . 3 9 4 0 . 8 0 - 1 4 . 3 9 4 0 . 8 0 - 1 4 . 3 9
3 7 . 0 8 - 1 4 . 5 7 3 7 . 4 6 - 1 4 . 4 9 3 6 . 7 7 - 1 4 . 2 1
3 3 . 5 2 - 1 4 . 5 5 3 4 . 0 5 - 1 4 . 5 5 3 2 . 4 1 - 1 3 . 8 7
3 0 . 1 4 - 1 4 . 5 6 3 0 . 6 0 - 1 4 . 5 8 2 7 . 9 4 - 1 3 . 4 4
2 6 . 1 8 - 1 4 . 5 1 2 7 . 1 - 1 4 . 5 8 2 3 . 3 5 - 1 2 . 8 6
2 2 . 6 4 - 1 4 . 4 1 2 3 . 5 6 - 1 4 . 5 3 1 8 . 6 3 - 1 2 . 0 7
1 9 .  0 2 - 1 4 . 1 8 1 9 . 9 7 - 1 4 . 4 0 1 3  . 7 9 - 1 0 . 9 5
1 5 . 3 0 - 1 3 . 7 5 1 6 . 3 - 1 4 . 1 4 8 . 8 7 - 9 . 3 0
1 1 .  6 4 - 1 3 . 1 8 1 2 . 5 5 - 1 3 . 7 0 4 . 1 5 - 6 . 8 4
7 . 6 8 - 1 2 . 4 2 8 . 7 4 - 1 2 . 9 7 1 . 6 - 3  . 5 3
4 . 0 4 - 1 0 . 8 3 4 . 9 3 - 1 1 . 8 0 - 3 . 2 3 - 0 . 3
0 . 3 6 - 8 . 3 7 1 . 2 5 - 9 . 9 6

- 2 . 5 5 - 3 . 9 4 - 2 . 0 2 - 7 . 1 4

M = 1 . 1 5 M = 6 . 0 2
S = 0 . 7 3 S = 3 . 9 3
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  3 b u b b l e  N 0 (1 )

D = 0 . 1 5  M Q = 0 . 0 5 2 9 3 0 5  M 3 / S
D b = 4 . 4 2  6 MM V t = 0 . 0 2 2  M/ S
R b = l . 2 7 3  KG/M3 V b . h = 0 . 6 7  M / S

MEASUREMENTS MODEL 1

V c  = 0 . 6 7  M / S( a n e m o )V c  = 0 . 6 9 6  M/ S( p h o t o )

MODEL 2
X Y X Y X Y

4 3 . 0 5 - 1 0 . 6 6 4 3 . 0 5 - 1 0 . 6 6 4 3 . 0 5 - 1 0 . 6 6
3 9 . 5 7 - 1 0 . 7 7 3 9 . 7 5 - 1 0 . 7 2 3 9 . 1 6 - 1 0 . 5 5
3 5 . 9 3 - 1 0 . 8 8 3 6 . 3 6 - 1 0 . 7 6 3 4 . 8 6 - 1 0 . 3 2
3 2  . 2 8 - 1 0 . 9 2 3 2 . 9 3 - 1 0 . 7 8 3 0 . 4 1 - 1 0 . 0 1
2 8 . 8 0 - 1 1 . 0 6 2 9 . 4 5 - 1 0 . 7 8 2 5 . 8 1 - 9 .  6 1
2 5 . 1 6 - 1 1 . 1 0 2 5 . 9 1 - 1 0 . 7 4 2 1 . 0 5 - 9 . 0 7
2 1 . 5 5 - 1 0 . 9 4 2 2 . 3 1 - 1 0 . 6 4 1 6 . 0 9 - 8 . 2 9
1 7 . 7 3 - 1 0 . 7 9 1 8 . 6 - 1 0 . 4 5 1 0 . 8 9 - 7 . 0 9
1 3 . 5 6 - 1 0 . 2 0 1 4 . 7 6 - 1 0 . 1 0 5 . 6 3 - 5 . 0 4
9 . 2 6 - 9 . 2 9 1 0 . 7 2 - 9 . 4 3 1 . 1 5 - 1 .  8 9
4 . 8 6 - 7 . 1 7 6 . 4 6 - 8 . 1 0 - 1 . 4 9 0 . 2
0 . 3 6 - 1 . 9 7 2 . 1 2 - 5 . 2 1

M = l . 1 5 M= 5 . 3 5

S = 0 . 9 1 S = 3 . 5 7
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  4 b u b b l e  N 0 ( 1 )

D = 0 . 1 5  M Q = 0 . 0 5 2 9 3 0 5  M 3 / S  V c  = 0 . 9 2  M / S( a n e m o )D b = 4 . 4 1  MM V t = 0 . 0 4  M/ S  V c  = 0 . 9 8  M / S( p h o t o )R b = l . 3 6  KG/M3 V b . h = 0 . 9 2  M / S
MEASUREMENTS MODEL 1 MODEL 2

X Y X Y X Y
3 9 . 7 2 - 1 1 . 1 2 3 9 . 7 2 - 1 1 . 1 2 3 9 . 7 2 - 1 1 . 1 2
3 4 . 8 2 - 1 1 . 3 3 3 5 . 1 9 - 1 1 . 2 5 3 4 . 8 5 - 1 1 . 0 4
2 9  . 8 6 - 1 1 . 5 6 3 0 . 5 6 - 1 1 . 3 5 2 8 . 9 8 - 1 0 . 7 9
2 5 . 0 4 - 1 1 . 6 0 2 5 . 8 5 - 1 1 . 4 0 2 3 . 1 7 - 1 0 . 3 9
2 0 . 1 7 - 1 1 . 4 8 2 1 . 0 5 - 1 1 . 3 7 1 7 . 1 5 - 9 . 7 4
1 5 . 3 0 - 1 1 . 0 9 1 6 . 1 3 - 1 1 . 2 1 1 0 . 9 3 - 8 . 6 3
1 0 . 2 0 - 1 0 . 4 2 1 1 . 0 3 - 1 0 . 7 5 4 . 7 2 - 6 .  6 3
4 . 9 8 - 8 . 4 7 5 . 7 7 - 9 . 6 7 - 0 .  6 0 - 3 . 5 1
0 . 1 2 - 4 . 2 9 0 .  6 0 - 7 . 4 1 - 5 . 4 5 - 0 . 2 0

M = 1 . 1 4

S = 0 . 8 2

M = 4 . 1 3

S = 2 . 5 4
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  5 b u b b l e  N 0 ( 1 )

D = 0 . 1 5  M Q = 0 . 0 3 6 3 8 6 4  M 3 / S  V c  = 0 . 5 3  M / S( a n e m o )D b = 3 . 6 4 3  MM V t = 0 . 0 7 7  M / S  V c  = 0 . 4 6 4  M / S( p h o t o )R b = l . 7 4  KG/M3 V b . h = 0 . 5 3  M / S
MEASUREMENTS MODEL 1 MODEL 2

X Y X Y X Y
4 1 . 6 1 - 1 1 . 0 0 4 1 . 6 1 - 1 1 . 0 0 4 1 . 6 1 - 1 1 . 0 0
3 9 . 2 9 - 1 1 . 3 4 3 8 . 9 9 - 1 1 . 3 4 3 8 . 5 9 - 1 1 . 2 0
3 6 . 4 8 - 1 1 . 5 6 3 6 . 3 1 - 1 1 . 6 5 3 5 . 2 9 - 1 1 . 3 2
3 4 . 0 1 - 1 1 . 7 8 3 3 . 6 1 - 1 1 . 9 6 3 1 . 9 0 - 1 1 . 3 9
3 1 . 0 5 - 1 2 . 0 1 3 0 . 8 9 - 1 2 . 2 6 2 8 . 4 4 - 1 1 . 4 0
2 8 . 4 9 - 1 2 . 1 9 2 8 . 1 5 - 1 2 . 5 3 2 4 . 9 3 - 1 1 . 3 4
2 5 . 7 2 - 1 2 . 3 5 2 5 . 3 8 - 1 2 . 7 8 2 1 . 3 4 - 1 1 . 1 7
2 3  . 1 6 - 1 2 . 4 6 2 2 . 5 7 - 1 2 . 9 9 1 7 . 6 8 - 1 0 . 8 7
2 0 . 3 0 - 1 2 . 6 0 1 9 . 7 3 - 1 3 . 1 4 1 3 . 9 5 - 1 0 . 3 6
1 7 . 5 3 - 1 2 . 5 0 1 6 . 8 5 - 1 3 . 2 3 1 0 . 1 9 - 9 . 5 7
1 4  . 6 0 - 1 2 . 4 4 1 3 . 9 2 - 1 3 . 2 2 6 . 5 0 - 8  . 3 9
1 1 . 8 4 - 1 2 . 2 4 1 0 . 9 6 - 1 3 . 0 7 3 . 0 4 - 6 . 7 5
8 . 9 1 - 1 1 . 6 7 7 . 9 8 - 1 2 . 7 4 0 . 0 3 - 4 . 7 2
6 .  0 4 - 1 0 . 7 6 5 . 0 3 - 1 2 . 1 7 - 2 . 6 9 - 2 . 5 8
3 . 2 3 - 9 . 4 4 2 . 1 5 - 1 1 . 3 2 - 5 . 4 9 - 0 . 6
0 . 6 - 7 . 4 2 - 0 . 5 - 1 0 . 1 7

- 1 . 5 7 - 4 . 0 1 - 3 . 0 1 - 8 . 7

M = 1 . 2 6 M = 6 . 8 4
S = 1 . 1 9 S = 3 . 9 3
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  6 b u b b l e  N 0 (1 )

Q = 0 . 0 3 6 3 8 6 4  M 3 / S  
V t = 0 . 0 1 4  M/ S  
V b . h = 0 . 5 3  M/ S

D = 0 . 1 5  M 
D b = 5 . 1 7 7  MM 
R b = 1 . 2 2  3 KG/M3

MEASUREMENTS 
X Y

4 2 . 4 2 - 9 . 2 4
3 9 . 7 5 - 9 . 1 7
3 6 . 9 7 - 9 . 1 7
3 4 . 1 9 - 9 . 0 6
3 1 . 3 6 - 9 . 0 6
2 8 . 5 2 - 9 . 0 2
2 5 . 5 0 - 8 . 9 5
2 2 . 5 8 - 8 . 7 5
1 9 . 4 7 - 8 . 5 7
1 6 . 3 4 - 8  . 2 3
1 2 . 8 6 - 7 . 7 0
9 . 2 6 - 6 . 9 5
5 . 3 4 - 4 . 8 6

MODEL 1  
X Y

4 2 . 4 2 - 9 . 2 4
3 9 . 8 3 - 9 . 1 9
3 7 . 1 8 - 9 . 1 7
3 4 . 5 1 - 9 . 1 5
3 1 . 8 0 - 9 . 1 3
2 9 . 0 7 - 9 . 1 0
2 6 . 3 1 - 9 . 0 5
2 3 . 5 0 - 8 . 9 8
2 0 .  63 - 8 . 8 7
1 7 .  6 9 - 8 . 7 0
1 4 . 6 4 - 8 . 4 3
1 1 . 4 5 - 7 . 9 7
8 . 0 7 - 7 . 1 5

M = 1 . 1 5

S = 0 . 9 9

V c  = 0 . 5 3  M/ S( a n e m o )V c  = 0 . 5 3 4  M / S( p h o t o )

MODEL 2
X Y

4 2 . 4 2 - 9 . 2 4
3 9 . 4 7 - 9 . 1 2
3 6 . 2 3 - 8 . 9 6
3 2 . 8 8 - 8 . 7 7
2 9 . 4 5 - 8 . 5 5
2 5 . 9 3 - 8 . 2 9
2 2 . 3 2 - 7 . 9 5
1 8 . 6 0 - 7 . 5 2
1 4 . 7 4 - 6 . 9 4
1 0 . 7 3 - 6 . 1 1
6 . 6 6 - 4 . 8 1
2 . 9 4 - 2 . 8 1

■ 0 . 0 8 - 0 . 6 1

M=3 . 8 8

S = 2 . 4 2
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  7 b u b b l e  N 0 (1 )

D = 0 . 1 5  M Q = 0 . 0 5 2 9 3 0 5  M 3 / S
D b = 7 . 8 4  6 MM V t = 0 . 0 7 1  M / S
R b = l . 3  3 7  KG/M3 V b . h = 0 . 9 2  M / S

MEASUREMENTS MODEL 1

V c  = 0 . 9 2  M/ S( a n e m o )V c  = 1 . 0 1 2  M/ S( p h o t o )

MODEL 2
X Y X Y X Y

4 3  . 0 6 - 1 1 . 7 2 4 3 . 0 6 - 1 1 . 7 2 4 3 . 0 6 - 1 1 . 7 2
3 8 . 0 0 - 1 2 . 1 1 3 8 . 5 9 - 1 2 . 0 3 3 8 . 2 4 - 1 1 . 9 0
3 2 . 8 9 - 1 2 . 4 6 3 4 . 0 4 - 1 2 . 3 0 3 2 . 9 8 - 1 1 . 9 0
2 7 . 9 - 1 2 . 8 0 2 9 . 4 3 - 1 2 . 5 4 2 7 . 4 7 - 1 1 . 7 7
2 2 . 6 9 - 1 2 . 9 8 2 4 . 7 6 - 1 2 . 7 3 2 1 . 7 7 - 1 1 . 5 0
1 7 . 3 7 - 1 3 . 0 4 2 0 . 0 2 - 1 2 . 8 6 1 5 . 8 9 - 1 0 . 9 7
1 1 . 8 7 - 1 2 . 8 0 1 5 . 1 8 - 1 2 . 8 6 9 . 8 6 - 1 0 . 0 3
6 . 4 0 - 1 2 . 1 9 1 0 . 2 3 - 1 2 . 6 3 3 . 8 9 - 8 . 3 9
0 . 9 0 - 1 0 . 8 1 5 . 2 2 - 1 2 . 0 1 - 1 . 5 5 - 5 . 8 8

- 3 . 9 1 - 8 . 5 9 0 .  3 0 - 1 0 . 8 4 - 6 . 7 0 - 2 . 8 7
- 7 . 4 1 - 5 . 5 6 - 4 . 3 1 - 9 . 0 5 - 1 2 . 8 7 - 0 . 3 0

M=2 . 9 1 M=3 . 3 7

S = 1 . 4 5 S = 2 . 4 1
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  7 b u b b l e  N 0 (1 )

C o r r e c t i o n  t o  V b . h  f o r  e x t r a c t  i s  a b o u t  +  0 . 0 4  M / S  
P a r a l l a x  E r r o r  5 . 1 %
C o r r e c t e d  V a l u e s
D b = 7 . 4 4 5  MM V t = 0 . 0 7 4  M / S  V c  = 0 . 9 6  M / S( p h o t o )R b = l . 3  5 8  KG/M3 V b . h = 0 . 9 6  M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

4 0 . 8 6 - 1 1 . 1 2 4 0 . 8 6 - 1 1 . 1 2 4 0 . 8 6 - 1 1 . 1 2
3 6 .  0 6 - 1 1 . 4 9 3 6 . 2 4 - 1 1 . 4 4 3 5 . 2 6 - 1 0 . 7 6
3 1 . 2 1 - 1 1 . 8 2 3 1 . 6 1 - 1 1 . 7 2 2 9 . 5 1 - 1 0 . 3 1
2 6 . 4 8 - 1 2 . 1 5 2 6 . 9 4 - 1 1 . 9 7 2 3 . 5 7 - 9 . 6 8
2 1 . 5 3 - 1 2 . 3 2 2 2 . 2 1 - 1 2 . 1 4 1 7 . 3 8 - 8 . 7 8
1 6 . 4 8 - 1 2 . 3 7 1 7 . 3 9 - 1 2 . 2 2 1 0 . 9 2 - 7 . 2 8
1 1 . 2 6 - 1 2 . 1 5 1 2 . 4 5 - 1 2 . 1 1 4 . 6 8 - 4 . 5 4
6 .  0 7 - 1 1 . 5 7 7 . 4 0 - 1 1 . 6 6 - 0 . 1 0 - 1 . 1 8
0 . 8 5 - 1 0 . 2 6 2 . 3 4 - 1 0 . 6 3 - 2 . 3 8 - 0 . 1 0

- 3 . 7 1 - 8 . 1 5 - 2 . 4 5 - 8 . 8 5
- 7 . 0 3 - 5 . 2 7 - 6 . 6 0 - 6 . 3 9

M= 0 . 9 3 M=6 . 6 1

S = 0 . 4 4 S = 3 . 8 3
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  8 b u b b l e  N 0 (1 )

D = 0 . 1 5  M Q = 0 . 0 5 2 9 3 0 5  M 3 / S
D b = 2 . 9  0 8  MM V t = 0 . 0 2 7 6  M / S
R b = 1 . 3 9 5  KG/M3 V b . h = 0 . 6 7  M / S

MEASUREMENTS MODEL 1

V c  = 0 . 6 7  M/ S( a n e m o )V c  = 0 . 7 6 7  M / S( p h o t o )

MODEL 2
X Y X Y X Y

3 8 . 8 3 - 1 3 . 6 7 3 8 . 8 3 - 1 3 . 6 7 3 8 . 8 3 - 1 3 . 6 7
3 5 .  0 0 - 1 3 . 8 3 3 5 . 4 8 - 1 3 . 7 3 3 4 . 7 5 - 1 3 . 4 3
3 1 . 1 3 - 1 3 . 6 1 3 2 . 0 4 - 1 3 . 7 6 3 0 . 3 3 - 1 3 . 0 5
2 7 . 4 0 - 1 3 . 5 4 2 8 . 5 6 - 1 3 . 7 5 2 5 . 7 8 - 1 2 . 5 5
2 3  . 4 8 - 1 3 . 4 5 2 5 . 0 3 - 1 3 . 7 0 2 1 , 1 0 - 1 1 . 8 8
1 9  . 6 4 - 1 3 . 0 7 2 1 . 4 4 - 1 3 . 5 8 1 6 . 2 8 - 1 0 . 9 4
1 5 . 5 3 - 1 2 . 6 4 1 7 . 7 7 - 1 3 . 3 6 1 1 . 3 2 - 9 . 5 8
1 1 . 7 2 - 1 2 . 1 2 1 4 . 0 1 - 1 2 . 9 7 6 . 3 7 - 7 . 5 2
8 . 3 0 - 1 0 . 9 9 1 0 . 1 6 - 1 2 . 3 0 1 . 9 3 - 4 . 4 8
3 . 4 0 - 8 . 8 8 6 . 2 4 - 1 1 . 1 6 - 1 . 6 1 - 1 .  0 7

- 0 . 3 6 - 5 . 2 2 2 . 3 9 - 9 . 2 7 - 3 . 2 6 0 . 1 0

M=2 . 1 5 M=4 . 6 6

S = 1 . 2 4 S = 3 . 0 2
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  8 b u b b l e  N 0 (1 )

C o r r e c t i o n  t o  V b . h  f o r  e x t r a c t  i s  a b o u t  +  0 . 0 4  M / S  
P a r a l l a x  E r r o r  7 . 4 %
C o r r e c t e d  V a l u e s

= 2 . 6 9 3  
i = 1 . 4 4 8

MM V t =  
KG/M3 V b .

= 0 . 0 3  M/ S  
h = 0 . 7 1  M / S

V c  = 0 . 7 1  ( p h o t o ) M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

3 5 . 9 6 - 1 2 . 6 5 3 5 . 9 6 - 1 2 . 6 5 3 5 . 9 6 - 1 2 . 6 5
3 2  . 4 1 - 1 2 . 8 0 3 2 . 5 1 - 1 2 . 7 2 3 1 . 7 4 - 1 2 . 3 9
2 8 . 8 2 - 1 2 . 6 0 2 9 . 0 3 - 1 2 . 7 3 2 7 . 2 2 - 1 1 . 9 7
2 5 .  3 7 - 1 2 . 5 3 2 2 . 4 9 - 1 2 . 7 0 2 2 . 5 5 - 1 1 . 3 9
2 1 . 7 4 - 1 2 . 4 6 2 1 . 8 8 - 1 2 . 6 1 1 7 . 7 2 - 1 0 . 5 8
1 8 . 1 8 - 1 2 . 1 0 1 8 . 1 9 - 1 2 . 4 1 1 2  . 7 3 - 9 .  3 9
1 4 . 3 8 - 1 1 . 7 0 1 4 . 3 9 - 1 2 . 0 4 7 .  6 6 - 7 . 5 6
1 0 . 8 5 - 1 1 . 2 2 1 0 . 4 7 - 1 1 . 3 6 2 . 9 7 - 4 . 7 1
7 . 6 8 - 1 0 . 1 8 6 . 4 4 - 1 0 . 1 5 - 0 . 7 0 - 1 . 3 1
3 . 1 5 - 8 . 2 2 2 . 4 4 - 7 . 9 3 - 2 . 3 7 0 . 0 0

■ 0 . 3 3 - 4 . 8 3 - 1 . 0 7 - 3 . 5 5

M = 0 . 5 2 M=6 . 2 5

S = 0 . 4 4  S = 3 . 8 2
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  9 b u b b l e  N 0 ( 1 )

D = 0 . 1 5  M Q = 0 . 0 3 6 3 8 6 4  M 3 / S
D b = 4 . 7 6 2  MM V t = 0 . 0 3  5 M/ S
R b = l . 3 2  KG/M3 V b . h = 0 . 7 3  M/ S

MEASUREMENTS MODEL 1

V c  = 0 . 7 3  M/( a n e m o )V c  = 0 . 8 3 6  M/ S( p h o t o )

MODEL 2
X Y X Y X Y

4 1 .  6 1 - 1 2 . 1 0 4 1 . 6 1 - 1 2 . 1 0 4 1 .  6 1 - 1 2 . 1 0
3 7 . 4 3 - 1 1 . 9 0 3 7 . 9 9 - 1 2 . 0 4 3 7 . 7 0 - 1 1 . 9 5
3 3 . 2 7 - 1 1 . 8 3 3 4 . 3 6 - 1 2 . 1 1 3 3 . 4 8 - 1 1 . 8 2
2 8  . 9 4 - 1 1 . 8 0 3 0 . 7 0 - 1 2 . 1 9 2 9 . 1 4 - 1 1 . 6 5
2 4  . 6 9 - 1 1 . 7 8 2 7 . 0 0 - 1 2 . 2 6 2 4 , 7 0 - 1 1 . 4 0
2 0 . 2 8 - 1 1 . 6 5 2 3 . 2 6 - 1 2 . 2 9 2 0 . 1 7 - 1 1 . 0 3
1 5 . 8 7 - 1 1 . 4 7 1 9 . 4 7 - 1 2 . 2 7 1 5 . 5 5 - 1 0 . 4 9
1 1 . 5 3 - 1 1 . 2 2 1 5 . 6 1 - 1 2 . 1 5 1 0 . 8 4 - 9 . 6 6
7 . 1 6 - 1 0 . 4 2 1 1 . 6 8 - 1 1 . 8 8 6 . 1 7 - 8 . 3 9
2 . 7 5 - 9 . 2 2 7 .  6 8 - 1 1 . 3 6 1 . 7 9 - 6 . 5 7

- 1 . 2 1 - 7 . 3 0 3 . 6 9 - 1 0 . 4 5 - 2  . 0 9 - 4 . 3 4
- 4 . 1 2 - 4 . 0 5 - 0 . 1 - 9 . 0 2 - 5 . 9 6 - 2 . 0 1

M=3 . 5 5 M = 1 . 4

S = 1 . 8 5 S = l .  1
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  9 b u b b l e  N 0 ( 1 )

C o r r e c t i o n  t o  V b . h f o r  e x t r a c t i s  a b o u t + 0 . 0 3  M / S
P a r a l l a x E r r o r  9%
C o r r e c t e d  V a l u e s
D b = 4 . 3 3 3  
R b = l . 3 5 6

MM V t  
KG/M3 Vb

= 0 . 0 3 8  M / S  
. h = 0 . 7 6  M / S

V c  = 0 . 7 6  ( p h o t o ) M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

3 7 . 8 6 “ 1 1 . 0 1 3 7 . 8 6 - 1 1 . 0 1 3 7 . 8 6 - 1 1 . 0 1
3 4 . 0 6 - 1 0 . 8 2 3 4 . 2 0 - 1 1 . 1 5 3 3 . 8 1 - 1 1 . 0 0
3 0 . 2 7 - 1 0 . 7 6 3 0 . 5 2 - 1 1 . 2 7 2 9 . 4 8 - 1 0 . 8 7
2 6 . 3 3 - 1 0 . 7 3 2 6 . 8 1 - 1 1 . 3 5 2 5 .  0 3 - 1 0 . 6 6
2 2 . 4 6 - 1 0 . 7 2 2 3 . 0 6 - 1 1 . 4 0 2 0 . 4 8 - 1 0 . 3 4
1 8 . 4 5 - 1 0 . 6 0 1 9 . 2 4 - 1 1 . 3 9 1 5 . 8 1 - 9 . 8 3
1 4 . 4 4 - 1 0 . 4 3 1 5 . 3 5 - 1 1 . 2 7 1 1 .  0 6 - 9 . 0 4
1 0 . 4 9 - 1 0 . 2 1 1 1 . 3 7 - 1 0 . 9 8 6 . 3 2 - 7 . 7 8
6 . 5 1 - 9 . 4 8 7 . 3 0 - 1 0 . 3 7 1 . 9 0 - 5 . 9 1
2 . 5 0 - 8 . 3 9 3 . 2 4 - 9 . 2 6 - 1 . 9 5 - 3  . 6 4

- 1 . 1 0 - 6 . 6 4 - 0 . 6 0 - 7 . 4 6 - 5 . 7 6 - 1 . 3 6
- 3 . 7 5 - 3  . 68 - 3 . 9 2 - 4 . 7 7 - 9 . 0 0 0 . 0 0

M= 0 . 9 5 M=3 . 7 6

S = 0 . 2 7  S = 2 . 3  6
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  10  b u b b l e  N 0 (1 )

D = 0 . 1 5  M Q = 0 . 0 3 6 3 8 6 4  M 3 / S  V c  = 0 . 7 3  M/( a n e m o )D b = 2 . 4 9 2  MM V t = 0 . 0 3 7  M / S  V c  = 0 . 7 8 8  M/ S( p h o t o )R b = l . 5 7  KG/M3 V b . h = 0 . 7 3  M / S
MEASUREMENTS MODEL 1 MODEL 2

X Y X Y X Y
4 0 . 8 0 - 9 . 8 0 4 0 . 8 0 - 9 . 8 0 4 0 . 8 0 - 9 . 8 0
3 6 . 8 5 - 1 0 . 0 0 3 7 . 1 9 - 9 . 9 4 3 6 . 6 8 - 9 . 7 9
3 2 . 5 5 - 1 0 . 0 8 3 3 . 5 3 - 1 0 . 0 6 3 2 . 3 2 - 9 . 7 1
2 8 . 7 5 - 1 0 . 2 0 2 9 . 8 3 - 1 0 . 1 7 2 7 . 8 7 - 9 . 5 7
2 4 . 9 2 - 1 0 . 2 0 2 6 . 0 9 - 1 0 . 2 4 2 3 . 3 1 - 9 . 3 3
2 0 . 8 6 - 1 0 . 1 0 2 2 . 2 9 - 1 0 . 2 7 1 8 . 6 4 - 8 . 9 5
1 6 . 8 0 - 9 . 9 7 1 8 . 4 1 - 1 0 . 2 3 1 3  . 8 3 - 8 . 3 3
1 2 . 5 4 - 9 . 5 2 1 4 . 4 3 - 1 0 . 0 4 8 . 9 3 - 7 . 2 9
8 . 0 9 - 8 . 5 0 1 0 . 3 1 - 9 . 6 0 4 . 2 3 - 5 . 5 8
3 . 8 8 - 6 .  6 0 6 . 0 9 - 8 . 6 5 1 . 8 6 - 3  . 3 1

■ 0 . 1 2 - 2  . 5 5 1 . 9 4 - 6 . 7 8 - 3 . 4 4 - 1 . 1 2

M = 1 . 8 7

S = 1 . 1 9

M=2 . 6

S = 1 . 5 4
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  10 b u b b l e  N O ( l)

C o r r e c t i o n  t o  V b . h  f o r  e x t r a c t  i s  a b o u t  +  0 . 0 3  M / S  
P a r a l l a x  E r r o r  3 . 7 %
C o r r e c t e d  V a l u e s

= 2  . 3 9 9  
' = 1 . 6 4 4

MM V t =  
KG/M3 V b .

= 0 . 0 4  M / S  
h = 0 . 7 6  M / S

V c  = 0 . 7 6  ( p h o t o ) M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

3 9 . 2 9 - 9 . 4 3 3 9 . 2 9 - 9 . 4 3 3 9 . 2 9 - 9 . 4 3
3 5 . 4 8 - 9 . 6 3 3 5 . 6 3 - 9 . 5 8 3 5 . 1 1 - 9 . 4 3
3 1 . 3 4 - 9 . 7 0 3 1 . 9 5 - 9 . 7 2 3 0 . 7 2 - 9 . 3 5
2 7 . 6 8 - 9 . 8 2 2 8 . 2 3 - 9 . 8 3 2 6 . 2 2 - 9 . 2 1
2 4 . 0 0 - 9 . 8 2 2 4 . 4 7 - 9 . 9 1 2 1 . 6 2 - 8 . 9 5
2 0 . 0 8 - 9 . 7 2 2 0 . 6 3 - 9 . 9 3 1 6 . 8 8 - 8 . 5 2
1 6 . 1 8 - 9 . 6 0 1 6 . 7 0 - 9 . 8 5 1 2 . 0 1 - 7 . 8 0
1 2  . 0 7 - 9 . 1 6 1 2 . 6 4 - 9 . 5 9 7 . 1 1 - 6 . 5 5
7 . 7 9 - 8 . 1 8 8 . 4 4 • 8 . 9 6 2 . 6 1 - 4 . 5 7
3 . 7 3 - 6 . 3 5 4 . 1 7 ■ 7 . 6 0 - 1 . 1 8 - 2 . 2 8

■ 0 . 1 1 - 2 . 4 5 0 . 1 0 ■ 4 . 9 6 - 4 . 8 0 - 0 . 3 0

M = 0 . 8 4

S = 0 . 6 2

M = 3 . 6 6

S = 2 . 1 4
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  11  b u b b l e  N 0 ( 1 )

D = 0 . 1 5  M Q—0 . 0 3 6 3 8 6 4  M 3 / S  V c  = 1 . 0 0  M / S( a n e m o )D b = 2 . 9 5 1  MM V t = 0 . 0 4 1 6  M / S  V c  = 1 . 1 0  M / S( p h o t o )R b = l . 5 3 2  KG/M3 V b . h = 1 . 0 0  M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

3 9 .  2 4 - 7 . 4 5 3 9 . 2 4 - 7 . 4 5 3 9 . 2 4 - 7 . 4 5
3 3 . 7 3 - 7 . 6 8 3 4 . 3 3 - 7 . 6 2 3 3  . 8 2 - 7 . 4 9
2 8 . 1 7 - 7 . 7 5 2 9 . 3 4 - 7 . 7 6 2 8 . 0 9 - 7 . 4 5
2 2 . 3 0 - 8 . 0 5 2 4 . 2 7 - 7 . 8 7 2 2 . 2 0 - 7 . 3 1
1 6 . 1 1 - 8 . 1 8 1 9 . 1 0 - 7 . 9 0 1 6 . 1 2 - 6 . 9 8
9 . 7 3 - 8 . 1 2 1 3 . 7 5 - 7 . 7 8 9 . 8 4 - 6 . 2 5
3 . 5 2 - 7 . 2 8 8 . 1 1 - 7 . 1 7 3 . 7 0 - 4 . 6 5

- 2 . 4 3 - 4 . 9 8 2 . 3 4 - 5 . 2 2 - 1 . 5 7 - 2 . 4 0
- 6 . 2 2 - 0 . 2 3 - 2 . 5 8 - 0 . 5 0 - 6 . 5 7 - 0 . 3 0

M = 2 . 9 7

S = 1 . 4 7

M = 1 . 2 5

S = 0 . 9 7
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  11  b u b b l e  N 0 (1 )

C o r r e c t i o n  t o  V b . h  f o r  e x t r a c t  i s  a b o u t  +  0 . 0 3  M / S  
P a r a l l a x  E r r o r  6 . 4 %
C o r r e c t e d  V a l u e s

)b=2 . 7  6 2  
L b = l . 5 7 5

MM V t =  
KG/M3 V b .

= 0 . 0 4 2  M / S  
h = l . 0 3  M/ S

V c  = 1 . 0 3  ( p h o t o ) M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

3 6 . 7 2 - 6 . 9 7 3 6 . 7 2 - 6 . 9 7 3 6 . 9 7 - 6 . 9 7
3 1 . 5 7 - 7 . 1 8 3 1 . 7 4 - 7 . 1 4 3 1 . 2 1 - 7 . 0 0
2 6 . 3 6 - 7 . 2 5 2 6 . 7 1 - 7 . 2 7 2 5 . 4 0 - 6 . 9 3
2 0 . 8 7 - 7 . 5 3 2 1 . 5 9 - 7 . 3 6 1 9 . 4 1 - 6 . 7 4
1 5 . 0 8 - 7 . 6 5 1 6 . 3 2 - 7 . 3 3 1 3 . 2 0 - 6 . 2 9
9 . 1 1 - 7 . 6 0 1 0 . 7 8 - 7 . 0 2 6 . 8 4 - 5 . 2 2
3 . 2 9 - 6 . 8 2 4 . 9 0 - 5 . 7 3 1 . 0 9 - 3 . 1 7

- 2 . 2 7 - 4 . 6 6 - 0 . 7 0 - 1 . 8 9 - 3 . 9 0 - 1 . 0 2
- 5 . 8 2 - 0 . 2 1 - 2 . 9 7 - 0 . 1 - 6 . 3 8 - 0 . 1 0

M = 1 . 5 3

S = 1 . 0 3

M = 2 . 1 8

S = 1 . 4 2
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TABLE 5 . 1 C o n t i n u e d
P h o t o g r a p h 1 2  b u b b l e  :NO ( 1 )
D = 0 . 1 5  M 
D b = 4 . 4 1 0  
R b = l . 3 2  :

Q = 0 .
MM V t = 0  

KG/M3 V b . h

0 3 6 3 8 6 4  M 3 / S  V c  = 1 . 0 0( a n e m o ). 0 3 2  M / S  VC = 1 . 0 6 8( p h o t o )= 1 . 0 0  M / S

M / S
M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

4 2 . 4 2 - 1 0 . 9 3 4 2 . 4 2 - 1 0 . 9 3 4 2 . 4 2 - 1 0 . 9 3
3 7 . 0 8 - 1 1 . 1 0 3 7 . 5 5 - 1 1 . 0 5 3 7 . 1 7 - 1 0 . 9 3
3 1 . 7 5 - 1 1 . 2 2 3 2 . 6 2 - 1 1 . 1 5 3 1 . 6 1 - 1 0 . 8 1
2 6 . 5 8 - 1 1 . 1 5 2 7 . 6 4 - 1 1 . 2 2 2 5 . 9 1 - 1 0 . 6 1
2 1 . 3 2 - 1 0 . 9 9 2 2 . 6 1 - 1 1 . 2 4 2 0 . 0 8 - 1 0 . 2 8
1 6 . 2 3 - 1 0 . 5 3 1 7 . 4 9 - 1 1 . 1 9 1 4 . 1 2 - 9 . 7 2
1 1 .  0 7 - 9 . 8 6 1 2 . 2 5 - 1 0 . 9 7 8 . 0 8 - 8 . 7 4
5 . 8 8 - 8 . 5 4 6 . 9 1 - 1 0 . 3 9 2 . 2 7 - 7  . 0 8
0 . 6 0 - 6 . 2 6 1 . 5 9 - 9 . 2 1 - 2  . 9 4 - 4 . 8 8

- 3  . 6 0 - 2 . 2 0 - 3 . 3 3 - 7 . 2 9 - 8 . 3 8 - 2 . 6 1

M==1 . 8 9 M= 2 . 1 8

S = 1 . 5 3 S = 1 . 5 6
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TABLE 5 . 1  C o n t i n u e d

P h o t o g r a p h  12 b u b b l e  N 0 ( 1 )

C o r r e c t i o n  t o  V b . h  f o r  e x t r a c t  i s  a b o u t  +  0 . 0 3  M / S  
P a r a l l a x  E r r o r  3 . 5 %
C o r r e c t e d  V a l u e s
D b = 4 . 2 5 5  MM V t = 0 . 0 3 4  M / S  V c  = 1 . 0 3  M / S( p h o t o )R b = l . 3 3 8  KG/M3 V b . h = 1 . 0 3  M / S

MEASUREMENTS MODEL 1 MODEL 2
X Y X Y X Y

4 0 .  9 3 - 1 0 . 5 4 4 0 . 9 3 - 1 0 . 5 4 4 0 . 9 3 - 1 0 . 5 4
3 7 . 7 8 - 1 0 . 7 1 3 5 . 9 8 - 1 0 . 6 7 3 5 . 6 1 - 1 0 . 5 4
3 0 .  6 3 - 1 0 . 8 2 3 1 . 0 2 - 1 0 . 7 7 3 0 . 0 0 - 1 0 . 4 3
2 5 . 6 4 - 1 0 . 7 5 2 6 . 0 2 - 1 0 . 8 4 2 4 . 2 5 - 1 0 . 2 1
2 0 . 5 7 - 1 0 . 6 0 2 0 . 9 5 - 1 0 . 8 6 1 8 . 3 7 - 9 . 8 4
1 5 .  6 5 - 1 0 . 1 6 1 5 . 7 8 - 1 0 . 7 7 1 2 . 3 5 - 9 . 1 8
1 0 .  6 7 - 9 . 5 1 1 0 . 4 9 - 1 0 . 4 6 6 . 3 1 - 8 . 0 3
5 .  6 7 - 8 . 2 4 5 .  0 9 - 9 . 6 8 0 . 6 0 - 6 . 1 6
0 . 5 8 - 6 . 0 4 - 0 . 1 0 - 8 . 1 4 - 4 . 4 8 - 3 . 8 7
3 . 4 7 - 2 . 1 2 - 4 . 8 3 - 5 . 7 9 - 1 0 . 2 6 - 1 . 7 6

M = l . 1 8 M=3 . 4

S = l . 1 4 S = 2 . 2
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TABLE 5 . 1  C o n t i n u e d  
D=HOOD DIAMETER I N  METER.
Q=HOOD SUCTION VOLUME I N  M 3 / S .
Db=BUBBLE DIAMETER I N  MM.
Rb=BUBBLE DENS I TY I N  KG/M3 .
Vt = B U B B L E  S ETLI NG VELOCITY I N  M / S .
V c  =CROS S - WI ND VELOCITY ( M / S )  I N  HORIZONTAL DI RECTI ON( a n e i t i o )

MEASURED BY AN ANEMOMETER.
V c  =CROS S - WI ND VELOCITY ( M / S )  I N  HORI ZONTAL DI RECTI ON( p h o t o )

MEASURED FROM A PHOTOGRAPH.
V b . h=VELOCI TY OF A BUBBLE ( M / S )  I N  HORIZONTAL DI R E C T I O N .  
X=BUBBLE LOCATION I N  THE X - D I R E C T I O N  I N  CENTIMETER.  
Y=BUBBLE LOCATION I N  THE Y - D I R E C T I O N  I N  CENTIMETER.
MODEL 1 =  F I N A L  MODEL DEVELOPED BY FLYNN AND ELLENBECKER.
MODEL 2 =  J A N S S O N ’ S MODEL.
M=MEAN ERROR; S=STANDARD ERROR OF D E VI AT I ON .
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TABLE 5 . 2

RESULTS OF COMPARING TRAJECTORIES FOR TWO MODELS AND THE EFFECT  
OF PARALLAX ERROR

RESULTS RESULTS
WITHOUT CORRECTION WITH CORRECTION

NO V f V c Db Ml S I M2 S2 Db Ml S I M2 S2
1 3 0 . 5 5 3 6 4 3 0 . 9 2 0 . 6 3 6 . 8 4 . 3 3
2 3 0 . 5 5 5 1 1 7 1 . 3 6 1 . 2 1 8 . 5 4 6 . 1
3 3 0 . 6 7 2 9 7 2 1 . 1 5 0 . 7 3 6 . 0 2 3 . 9 3
4 3 0 .  6 7 4 4 2 6 1 . 1 5 0 . 9 1 5 . 3 5 3 . 5 7
5 3 0 . 9 2 4 4 1 0 1 . 1 4 0 . 8 2 4 . 1 3 2 . 5 4
6 2 0 . 5 3 3 6 4 3 1 . 2 6 1 . 1 9 6 . 4 8 3 . 9 3
7 2 0 . 5 3 5 1 7 7 1 . 1 5 0 . 9 9 3 . 8 8 2 . 4 2
8 3 0 . 9 2 7 8 4 6 2 . 9 1 1 . 4 5 3 . 3 7 2 . 4 1 7 4 4 5 0 . 9 3 0 . 4 4 6 . 6 1 3 . 8 3
9 3 0 .  6 7 2 9 0 8 2 . 1 5 1 . 2 4 4 . 6 6 3 . 0 2 2 6 9 3 0 . 5 2 0 . 4 4 6 . 2 5 3 . 8 2
1 0 2 0 . 7 3 4 7 6 2 3 . 5 5 1 . 8 5 1 . 4 0 1 . 1 0 4 3 3 3 0 . 9 5 0 . 2 7 3 . 7 6 2 . 3 6
1 1 2 0 . 7 3 2 4 9 2 1 . 8 7 1 . 1 9 2 . 6 0 1 . 5 4 2 3 9 9 0 . 8 4 0 .  6 2 3 . 6 6 2 . 1 4
12 2 1 . 0 0 2 9 5 1 2 . 9 7 1 . 4 7 1 . 2 5 0 . 9 7 2 7 6 2 1 . 5 3 1 .  0 3 2 . 1 8 1 . 4 2
13 2 1 . 0 0 4 4 1 0 1 . 8 9 1 . 3 3 2 . 1 8 1 . 5 6 4 2 5 5 1 . 1 8 1 . 1 4 3 . 4 0 2 . 2 0

Vf=HOOD FACE VELOCITY I N  M / S ; V c = C R O S S - WI N D  VELOCITY I N  M / S ; 
Db=BUBBLE DIAMETER I N  MICRON ; M=MEAN ERROR?
S=STANDARD ERROR OF DE VI AT I ON;
WITHOUT CORRECTION=NO PARALLAX ERROR;
WITH CORRECTION=CORRECTION DUE TO PARALLAX ERROR?
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E n c lo s u r e  T ype — L a b o r a t o r y  Hood

C anopy

A

Hot S o u rc e

R e c i e v i n g  T ype — C anopy  Hood

S o u r c e

C a p t u r i n g  T ype — S i d e  D r a f t  Hood

F i g .  1 . 1  T y p e s  o f  Hoods  
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F l a n g e d  Hood

U n f l a n g e d  Hood

F i g .  1 . 2  F l a n g e d  a n d  U n f l a n g e d  Hood

9 2
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PREDICTED

VELOCITY  ̂ CAPTURE NO

VELOCITY

YES

FINALISE DESIGN

MODIFY

DESIGN

TOXICITY DISTURBING

AIR CURRENTS

CAPTURE VELOCITY

RELEASE VELOCITYY

PREDICTED

VELOCITY

TRIAL DESIGN

FIG. 1 . 3  DESIGN PROCEDURE FOR EXHAUST HOODS
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•ARTICLE TRAJECTORY

XlR ST R E A M L IN E

Fig. 2.3 Panicle trajectory in moving air.

F i g .  3 .1  C o o r d i n a t e  s y s t e m  f o r  a  f l a n g e d  c i r c u l a r  h o o d .  

9 5



Fi
na

l 
M

od
el

 P
re

di
ct

io
n 

in 
FP

M
 

(T
ho

us
an

ds
)

i

P (r ,z )

—c

Fig. 3.2 

flanged circular hood.
• heoretical potential lines and streamlines for a

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0  o

(Thousanas) 
DallaVaMe's Exact Velocity in FPMDallaValle'
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Fig. 3.4 C o o r d i n a t e  s v s t e n i  a n d  n o t a t i o n s  
f o r  c i r c u l a r  o p e n i n g s

97



IKPUT DATA

PRESSURE (P )

TD<P CULTURE (T )

PARTICLE DENSITY (R P)

PARTICLE DIAVETER (DP)

TIKE STEP (DT)

HOOD DIAMETER (D)

WOOD n .C *  (0 )

CROSS-DRAFT (VC)

IN ITIA L PARTICLE LOCATION (X .Y )

IN ITIA L PARTICLE VELOCITY (U .V )

CALCULATE:
AIR VELOCITY HORIZONTALLY (UA) 

AT (X .Y )

AIR VELOCITY VERTICALLY <VA) 

AT (X .Y )

CALCULATE:

RELATIVE VELOCITY (VR) 

MNOLCS NIXEER (RE) 

EKAC COEFT1Cl D>T (CO)

CALCULATE:

ORAC TORCE 

CRAVITY TORCE 

SOCTANCT FORCE

CALCULATE:

xcw  v a lu es  o f  f a r t ic l e  v e l o c it y

V  AND.V

CALCULATE:

NET VALUES OF PARTICLE LOCATION

X AVD Y

f

PRINT

D P.X .Y

( STOP 1

n c .  A .i  c txpno t  procrav  floa-chart
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Fig. 5.1 S k e t c h  O f t h e  e x p e r i m e n t a l  e q u i p m e n t
1 .  V a r i a b l e  s p e e d  c e n t r i f u g a l  f a n
2 .  P e r f o r a t e d  g a u z e  f l o w  e o u l i s e r
3 .  B u b b l e  g e n e r a t o r
4 .  C o m p r e s s e d  a i r  h o s e
5 .  L i c r u i d  h o s e
6 .  W in d  t u n n e l

8 .  S t r o b o s c o p e
9 .  E x h a u s t  h o o d
1 0 .  A i r  d u c t
1 1 .  O r i f i c e  p l a t e
1 2 .  D a m p e r
1 3 .  C e n t r i f u g a l  f a n

7 .  M o t o r  c a r  f o g  l a m p s
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Fig. 5.2 S k e t c h  o f  a  b u b b l e  t r a j e c t o r y

l i q u i d  t u b e )

B ( a i r  t u b e

4 P i n  h o l e s

o  - o

C ( p l a s t i c  p l a t e ) "

Fig. 5.4 L o c a l  m a d e  b u b b l e  g e n e r a t o r
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B u b b l e

S t r o b o s c o p e

M e a s u r e d  d i s t a n c e

b e t w e e n

C am era

F i g .  5 . 5  R e f l e c t i o n  o f  l i g h t  beams f a l l i n g  o n  

t h e  b u b b l e  f ro m  t h e  s t r o b o s c o p e

F i g .  5 . 6  B u b b le  v e l o c i t y  i n  v e r t i c a l  a n d  

h o r i z o n t a l  d i r e c t i o n

T h e o r e t i c a l  t r a j e c t o r y

E x p e r i m e n t a l  t r a j e c t o r y

F i g .  5 . 7  E x p e r i m e n t a l  a n d  t h e o r e t i c a l  t r a j e c t o r y
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Fig. 5.S The actual grid dimensions

Camera

so cm

C i r c u l a r  h o o d
T h e  l i g h t e d  r e g i o n  w h e r e  t h e  b u b b l e
c a n  b e  s e e n  f r o m  t h e  p h o t o g r a p h

Fig. 5.9 The range of bubbles distance from Lhe camera
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B u b b 1e

F i g .  5 . 1 0  The s t r o b o s c o p e  an d  the  c a m e r a  a s  

a  p o i n t  s o u r c e  an d  a p o i in t  s i n k



F i g u r e  5 . 1 1  A t r a j e c t o r y  o f  b u b b l e  c a p t u r e d  by t h e  hood

F i g u r e  5 . 1 2  P h o t o g r a p h  o f  t h e  g r i d  u s e d  i n  t h e  e x p e r i m e n t s

1 0 5



APPENDIX A: EXHAUST HOOD CENTERLINE VELOCITY MODELS

A p p l i c a b l e  Range E q u a t i o n E q u a t i o n  Number

DALLAVALLE

° < 5  < "

FLETCHER

0 < 5  < "

GARRISON 

0 < X < 0 . 5

0 . 5  < £  < 1 . 5

DALLAVALLE

0 < 5  < ”

GARRISON 

0 < ^  < 0 . 5

0 . 5  < ^  < 1 . 5

R ound H oods ,  U n f l a n g e d

V_
Vf

V _
Vf

1 2 . 7 (X/D) + 1

1 0 . 9 (X /D ) + 1

yp = 1 . 1 ( 0 . 0 6 ) X/D

- 1 . 7

h  -  °-°8 m
R ound H oods ,  F l a n g e d

V_
Vf

1

9 . 6 (X/D) + 0 . 7 5

^  = 1 .1  ( 0 . 0 7 ) X/D

- 1 . 6

( 1 )

( 2 )

(3 )

(4)

(5 )

( 6 ) 

(7 )

DALLAVALLE

0 <  - < 0 0  
a

FLETCHER

0  <  — < 0 0  
a

GARRISON

0 < -  < 0 . 5  a

0 . 5  < -  < 1 .5  a

S q u a r e  H oods ,  U n f l a n g e d ( s i d e = a )

V_
Vf

1 0 (X /a )  + 1

V_
Vf

1

8 . 6 ( X /a )  + 0 .9 3

^  = 1 .0 7  ( 0 . 0 9 ) X /a

- 1  . 7

( 8 )

(9 )

( 10 ) 

( 11 )

DALLAVALLE

0 <  — <  00 
a

GARRISON

0 < -  < 0 . 5  a

S q u a re  H oods ,  F l a n g e d

V______________ 1__________

V f 7 . 5 ( X / a ) 2 + 0 .7 5

= 1 . 0 7  ( 0 . 1 1 ) X / a
V f

( 12 )

( 1 3 )
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APPENDIX A: ( C o n t i n u e d )

App1 i c a b 1e Range E q u a t  i on E q u a t i o n  Number

GARRISON

0 . 5  < -  < 1 .5  a

S q u a re  H oods ,  F l a n g e d

? ? - » ■ «  [ - 4 - 1

- 1 . 6

(1 4 )

DALLAVALLE

0 < w < »

FLETCHER

R e c t a n g u l a r  H oods ,  U n f l a n g e d  

( 0 . 2  < W/L < 1 )

V _
V f

10(X /WL ) + 1
(1 5 )

0 < X < W
1

V f
8 .5 8  a  + 0 .9 3

(1 6 )

At W/L = 0 . 2 5

a  = m(WL)

- 0

0  =  0. 2
(WL)

1 / 3

GARRISON 

At W/L = 0 . 5 :

0  <  £  < 0 . 5 = 1 . 0 7 ( 0 . 1 4 ) X/W
V f

(1 7 )

0 . 5  < 1 .0 m
- 1  . 2

( IB)

l - °  < TT7 < 2 - ° V f -  ° - 1 8  [4 - ]

- 1 . 7

(1 9 )

0 < £ <  0 . 5 = 1 . 0 7 ( 0 . 1 8 ) X/W
V f

( 20 )

0 . 5  < g  < 1 .0
- 1 . 0

( 2 1 )

1 . 0  < £  < 2 . 5 V? -  0 .23  m
- 1 . 5

Vf (22)
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APPENDIX A: ( C o n t i n u e d )

A p p l i c a b l e  Range E q u a t i o n E q u a t i o n  Number

D A LL A V A L LE

R e c t a n g u l a r  H oods ,  F l a n g e d

V _
V f

1

7 . 5  X /WL
(2 3 )

GARRISON 

F o r  W/L = 0 . 5

° < W < 0 - 5
= 1 . 0 7 ( 0 . 1 7 ) X/W

V f
( 2 4 )

0 . 5  < £  < 1 .0 m
- i . i

(2 5 )

1 . 0  < £  < 2 . 0
v_
V f

=  0 . 2 1 m
- 1 . 6

(2 6 )

F o r  W/L = 0 . 2 5 :

0 < ® <  0 . 5
V
V f

= 1 . 0 7 ( 0 . 2 2 ) X/W
(2 7 )

0 . 5  < £  <  1 .0 v? - 0 27 Hr-]
- 0 . 9

( 2 8 )

1 .0  < £  < 3 . 0
V _
V f

- 1 . 4

(2 9 )

SILVERMAN

0 < w < “

S l o t  H oods ,  U n f l a n g e d

- 1 . 0

(3 0 )

GARRISON

0 < g  < 0 . 5 ^  = 1 . 0 7 ( 0 . 1 9 ) X/W 
v s

(3 1 )

0 . 5  < £  <  1 . 0 m
- 1 . 0

(3 2 )

1 . 0  < 5  < 3 . 5
- 1 . 2

( 3 3 )
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APPENDIX A: ( C o n t i n u e d )

A p p l i c a b l e  Range E q u a t i o n E q u a t i o n  Number

FLETCHER

0  <  w < “
1

s  8 . 5 8  a  + 0 .9 3  

- ( 3

a  =
(WL) 

(3 = 0 . 2

i
w

(WL)

1 / 3

(3 4 )

SILVERMAN

0  <  £ <  »

S l o t  H oods ,  F l a n g e d

- 1 . 0

(3 6 )

GARRISON

0  <  9  <  ° . s -  1 . 0 7 ( 0 . 2 2 ) X/W
v s

(3 7 )

0 . 5  < £  < 1 .0 - 0 29 Hr]
- 0 . 8

(3 8 )

V
-  0 . 2 9 Hr] (3 9 )

* E m p i r i c a l  c o e f f i c i e n t  w e re  c a l c u l a t e d  o n l y  a t  W/L = 0 . 5  

a n d  W /L=0.2 5 .

ref. Burgess, W .A ., M .J .  Ellenbecker and R.D. Treitman: Ventilation for Control 

of the Work Environment. Wiley — Interscience Publication, New York (1989).
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APPENDI X B. ( Heinsohn ( r e f  . 4 )  i n  CH APTER 2 )

Runge-Kutta Methods for Solving  
First-order Differential Equations

Suppose one wants to find the value of the continuous function C/(f) at 
arbitrary values of t where the function satisfied the nonlinear differential 
equation,

^  =  £M(l) +  3 ( 0  (A-12.1)

and the quantities A  and  B  are known analytical functions o f /. A ssum e th a t  the
initial value of U ( 0) is known, i.e.

C/(r0) =  U (  0) =  known (A-12.2)

Express the function U Q )  as a T aylor series,

c  .2
V ( t  -r 8 t )  =  U { t )  *F U ‘( t )  8 t  4- U " ( t )  ~  +  . . . (A-12.3)

W here the function U ( j )  and its derivatives U ' ( t )  and f/" (0  a re  evaluated at time
f and 8 t  is a small increm ent of time. Eliminate the second, third, and all higher
order derivatives and replace the first derivative by Eq. A-12.1

U { t  +  8 t )  =  U ( j )  +  8 i [ U { t )  A { i )  +  5 ( 0 ]  (A-12.4)

Since dropping the higher-order derivatives introduces erro r ,  replace U ( t ) inside 
the brackets on the right-hand side by the average value of the  function between 
( 0  and (r +  S i ) ,

V(t  +  Si) =  C/(r) +  S t [ A ( 0 ^ ^ p i ^ i  +  B ( o ]  (A-12.S)
R earrange and obtain

{ t / « [ l  +  ( y ) A ( o ]  +  S f B ( o }
U(t  +  S i ) - - - - - - - - - - -

M(i) -  1 -  ( f )  A(i) (A-12.6)

1 1 0



To obtain the value o f  U  at the end of a time period rn, tha t  is, U ( t n ) ,  begin by 
evaluating Eq. A-12.6 at

Now evaluate Eq. A-12.6 at t 2 but use £ 7 ^ ) ,  A ^ ) ,  and B ( t x)  on  the  right 
hand-side o f Eq. A-12.6,

T he quantity 8 t  is th e  time step; its magnitude is selected by the  user. T he  value 
should be small such that

F o u r t h - o r d e r  R u n g e - K u t t a  M e t h o d
M ore accuracy can b e  obtained using R u n g e-K u tta  m ethods  of higher order 
(196). In such methods estimates are made at intermediate values between t  and 
t  +  S t .  A  commonly used expression is the Runge-K utta  fourth-order m ethod. 
Begin by expressing the  differential equation as,

It  will be presumed th a t  the value of U  is known at the initial time q, th a t  is

t x ^ t Q +  S t

U(<|) = M('o)

(A-12.7)

[ 2 -  h  +  S t

M (r.)

(A-12.8)

Repeat the process until you have computed U ( t n )

‘ n -  t n - 1  +  5r (A-12.9)

(A-12.10)

(A-12.11)

is given by

(A-12.12)

(A -12.13)

1 1 1



t/m - y 1 + 8,[*  + & + & + &] (A-12.14)

w here the functions /j, f l t  f 2 , and f 3 are given by

/i = /('i.U|) (A-12.15)

h = f| + Y  (A-12.16)

y, = ^  + ( f ) / i  (A-12.17)

A = /('!. C/,) (A-12.18)

U2=U, + ( y ) a (A-12.19)

A=/(A.<A) (A-12.20)

y, = y, + (5()/j (A-12.21)

/2 = q + 5r (A-12.22)

/3 = /(':. ^3) (A-12.23)

Simultaneous Ordinary Differential Equations
If one is asked to solve a simultaneous set of ordinary differential equations of the 
form

<? z .O

d o
i ........... z * 0

- J t  =  K p * z, /) (A-12.24)

Equations A-12.14 to A-12.23 can also be used. Each  intermediate functions f lf 
f t *  f t *  8 1 * i t *  i t '*  anc* so on involves intermediate values of time t x and t 2 and 
intermediate values of the variables. Since there are several independent vari
ables, each variable has intermediate values noted by subscripts 1, 2, and 3. Thus
before  intermediate function f x, g x  h x are computed, users will have to
com pute p Xi q x> r l f . . . ,  z x . Similarly p 2t  q 2 t r 2 t . . .  , z 2 will have to computed 
before  the functions f 2, g 2 > • • • > h2 are found. Lastly, p 3 , q 3 , r3, . . . ,  z 3 will have 
to be  computed before functions / 3, q 3 , . . . ,  h 3 are found.
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A P P E N D IX  C C o m p u t e r  P r o g r a m s  t o  C a l c u l a t  a n d  V i s u a l i z e
P a r t i c l e s  M o v e m e n t  i n t o  a  F l a n g e d  C i r c u l a r  L o c a l
E x h a u s t  H o o d

INTRODUCTION
T h i s  a p p e n d i x  p r o v i d e s  t h e  c o m p u t e r  p r o g r a m s  d e v e l o p e d  

t h r o u g h o u t  t h e  r e s e a r c h  p r o j e c t .  T h e  a p p e n d i x  i s  d i v i d e d  
i n t o  t w o  p a r t s ,  o n e  f o r  c a l c u l a t i n g  t h e  p a r t i c l e  
t r a j e c t o r i e s  a n d  t h e  o t h e r  o n e  f o r  p l o t t i n g  i t  i n  f r o n t  o f  a  
f l a n g e d  c i r c u l a r  h o o d .

T h e  f i r s t  p a r t  l i s t s  t h r e e  p r o g r a m s  t o  c a l c u l a t e
p a r t i c l e  t r a j e c t o r i e s  i n  f r o n t  o f  a  f l a n g e d  c i r c u l a r  h o o d .
T h e  f i r s t  a n d  s e c o n d  p r o g r a m  u s e d  t h e  f i n a l  m o d e l  d e v e l o p e d  
b y  F l y n n  a n d  E l l e n b e c k e r  t o  c a l c u l a t e  t h e  a i r  d i s t r i b u t i o n  
a r o u n d  t h e  h o o d .  I n  t h e  f i r s t  p r o g r a m  t h e  f a c e  o f  t h e
f l a n g e d  h o o d  i s  h o r i z o n t a l  a n d  t h e  h o o d  f a c e  i s  o v e r  t h e
r e l e a s e d  p a r t i c l e s ,  w h i l e  i n  t h e  s e c o n d  p r o g r a m  t h e  f a c e  o f  
t h e  f l a n g e d  h o o d  i s  v e r t i c a l .  T h e  t h i r d  p r o g r a m  u s e d  u s e d  
t h e  n o n - d i m e n s i o n a l  m o d e l  d e v e l o p e d  b y  J a n s s o n  t o  c a l c u l a t e  
t h e  a i r  d i s t r i b u t i o n  a r o u n d  t h e  h o o d ,  t h e  f a c e  o f  t h e
f l a n g e d  h o o d  i s  h o r i z o n t a l  a n d  t h e  h o o d  f a c e  i s  o v e r  t h e
r e l e a s e d  p a r t i c l e s .

T h e  s e c o n d  p a r t  l i s t s  t h r e e  p r o g r a m s  t o  p l o t  p a r t i c l e  
t r a j e c t o r i e s  i n  f r o n t  o f  a  f l a n g e d  c i r c u l a r  h o o d .  T h e  f i r s t  
a n d  s e c o n d  p r o g r a m  u s e d  t h e  f i n a l  m o d e l  d e v e l o p e d  b y  F l y n n  
a n d  E l l e n b e c k e r  t o  c a l c u l a t e  t h e  a i r  d i s t r i b u t i o n  a r o u n d  t h e  
h o o d .  I n  t h e  f i r s t  p r o g r a m  t h e  f a c e  o f  t h e  f l a n g e d  h o o d  i s  
h o r i z o n t a l ,  a n d  t h e  h o o d  f a c e  i s  o v e r  t h e  r e l e a s e d  
p a r t i c l e s ,  w h i l e  i n  t h e  s e c o n d  p r o g r a m  t h e  f a c e  o f  t h e  h o o d  
i s  v e r t i c a l .  T h e  t h i r d  p r o g r a m  u s e d  t h e  n o n - d i m e n s i o n a l
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m o d e l  d e v e l o p e d  b y  J a n s s o n  t o  c a l c u l a t e  t h e  a i r  d i s t r i b u t i o n  
a r o u n d  t h e  h o o d ,  t h e  f a c e  o f  t h e  f l a n g e d  h o o d  i s  h o r i z o n t a l  
a n d  t h e  h o o d  f a c e  i s  o v e r  t h e  r e l e a s e d  p a r t i c l e s .
PART 1
F I R S T  PROGRAM
1 0  REM F I L E  NAME- - - - - - - - - - - - CAPTURE- - - - - - - - - - - - - - - - - - - - - - - - - - -
2 0 REM PROGRAM COMPUTES PARTICLE TRAJECTORIES I N  FRONT

OF A CIRCULAR FLANGED HOOD.
3 0 REM THE FACE OF THE FLANGED HOOD I S  HORIZONTAL AND

THE PARTICLES ARE RELEASED I N  FRONT OF THE HOOD
(THE HOOD FACE I S  OVER THE RELEASED P A R T I C L E S ) .

4 0 REM THE VALUE OF Y I S  NEGATIVE I N  THE IN PU T  DATA Y ( - )  .
5 0  REM L IN E S  9 0 - 2 2 0  ARE IN PU T STATEMENTS FOR VALUES

PROVIDED BY THE U S E R .
6 0  REM V A R IA B LE S: RA I S  THE A I R  DENSITY I N  ( K G / M 3 ) .

MU I S  THE A I R  V IS C O S IT Y  I N  (KG/M S ) .
RE I S  THE REYNOLDS NUMBER.

7 0 REM V A R IA B LE S: U F ,V F  ARE PARTICLE VELOCITY AT END OF
TIME STE P I N  ( M / S ) .
X ,Y  ARE PARTICLE LOCATION AT END OF TIME  
STEP I N  ( M ) .
T I , D T  ARE ELAPSED TIME AND TIME STE PS
I N  ( S ) .

8 0 REM V A R IA B LE S: RP I S  THE PARTICLE DENSITY I N  ( K G / M 3 ) .
DP I S  THE PARTICLE DIAMETER I N  (M IC R O N ).
P I S  THE A I R  PRESSURE I N  (A T M ).
T I S  THE A I R  TEMPERATURE I N  ( K ) .
D I S  THE HOOD DIAMETER I N  ( M ) .
Q I S  THE HOOD FLOW I N  ( M 3 / S ) .
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VC I S  THE CROSSDRAFT VELOCITY I N  ( M / S ) .
V I S  THE PARTICLE VELOCITY I N  VERTICAL  
DIRECTION I N  ( M / S ) .
U I S  THE PARTICLE VELOCITY I N  HORIZONTAL  
D IRECTION I N  ( M / S ) .

9 0  IN P U T  " A IR  PRESSURE I N  (A T M )= " ;P
1 0 0  IN PU T  "A IR  TEMPERATURE I N  ( K ) = " ; T
1 1 0  IN PU T  "PARTICLE DENSITY I N  (K G /M 3 ) = " ; R P
1 2 0  IN P U T  "TIME STEP I N  (S E C O N D S )= " ; DT
1 3 0  IN PU T  "PARTICLE DIAMETER I N  (MICROMETERS)= " ? DP
1 4 0  IN PU T  "HOOD DIAMETER I N  ( M ) = " ; D
1 5 0  IN PU T  "HOOD FLOW I N  ( M 3 / S ) = " ? Q
1 6 0  REM THE CROSSDRAFT I S  I N  HORIZONTAL D IR E C T IO N .
1 7 0  IN PU T  "CROSSDRAFT VELOCITY I N  ( M / S ) = " ; V C
1 8  0 REM IN PU T I N I T I A L  PARTICLE LOCATION AND V ELOC ITY .
1 9 0  IN PU T  " I N I T I A L  PARTICLE DISTANCE FROM Y -A X I S  I N  ( M ) = " ; X
2 0 0  IN PU T  " I N I T I A L  PARTICLE DISTANCE FROM X - A X I S  I N  ( M ) = " ; Y
2 1 0  IN PU T  " I N I T I A L  PARTICLE VELOCITY I N  VERTICAL D IRECTIO N

I N  ( M / S ) = " ; V
2 2  0 IN PU T  " I N I T I A L  PARTICLE VELOCITY I N  HORIZONTAL DIRECTION  

I N  ( M / S ) = " ;U
2 3 0  P R IN T  "DP (MICROMETER) X (M) - Y (M) "
2 4 0  P R IN T  " - - - - - - - - - - - - - -     11
2 5 0  REM K I S  A COUNTER.
2 6 0  K =0
2 7 0  R A = P * 1 0 0 / ( . 2 8 7 * T )
2 8 0  M U = ( 1 3 . 5 5 4  +  . 6 7 3 8 * T  -  ( 3 . 8 0 8 * T * T / 1 0 0 0 0 )  +  ( 1 . 1 8 3 * T * T * T /  
1 0 0 0 0 0 0 0 ) ) / 1 0 0 0 0 0 0 0
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2 9 0  T I = 0

3 0 0  REM A I S  THE RA D IU S OF THE HOOD.

3 1 0  A = D /2

3 2 0  P I = 3 . 1 4 1 5 9 2 7

3 3 0  REM L IN E S  3 4 0 - 5 5 0  CALCULATES THE V E L O C IT Y  I N  FRONT OF 

A C IR C U LA R  FLANGED HOOD A CCORDING TO THE F I N A L  MODEL 

DEVELOPED BY FLYNN AND ELLEN B EC K ER .

3 4 0  GAMMA1=SQR( YA2 + ( A + X ) A2 )

3 5 0  GAMMA2=SQR( YA2 + ( A - X ) A2 )

3 6 0  REM ECC I S  THE E C C E N T R IC IT Y .

3 7 0  E C C = ( 2 * A ) / ( GAMMA1+GAMMA2)

3 8 0  E C C 2 = E C C A2

3 9 0  T 1 = A + X

4 0 0  T 2 = X - A

4 1 0  T3=GAMMA1+GAMMA2

4 2 0  T4=GAMMA1*GAMMA2

4 3 0  T 5 = 4 * A A2

4 4 0  T 6 = S Q R ( T 3 A2 - T 5 )

4 5 0  T 7 = - Q / P I

4 6 0  T 8 = (T 1 * G A M M A 2 )+ (T2*GAMMA1)

4 7 0  T 9 = T 3 * T 4 * T 6  

4 8 0  V R 1 = ( T 8 / T 9 ) * T 7  

4 9 0  V Z 1 = ( T 7 * Y ) / ( T 4 * T 6 )

5 0 0  V 1 = S Q R (V R 1 A2 + V Z 1 A2 )

5 1 0  V T F = ( Q * E C C 2 * S Q R ( 3 ) ) / ( 2 * P I * A A2 * S Q R ( 3 - 2 * E C C 2 ) )

5 2 0  V R 2 = ( V R 1 / V 1 ) * V T F  

5 3 0  V Z = . 9 * ( ( V Z 1 / V 1 ) * V T F )

5 4 0  VA=VZ

5 5 0  V R T O T = ( 2 . 6 * E C C A1 8 + . 8 5 3 ) *V R2+V C
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5 6 0  UA=VRTOT 

5 7 0  T I = T I + D T

5 8 0  REM CALCULATE: R E L A T IV E  V E L O C IT Y  (VR)

REYNOLDS NUMBER (R E )

DRAG C O E F F I C I E N T  (CD)

5 9  0 V R = S Q R ( ( U - U A ) * ( U - U A ) + ( V - V A ) * (V -V A )

6 0 0  R E = R A * D P * V R / ( M U * 1 0 0 0 0 0 0 )

6 1 0  C D = ( 2 4 / R E  A0 . 6 4 6 )

6 2  0 REM LAM I S  THE MEAN FR E E  PATH FOR A I R  I N  (M I C R O N ) .

6 3 0  L A M = .0 6 6 7

6 4 0  REM C I S  THE S L I P  FACTOR ALSO CALLED THE CUNNINGHAM 

CORRECTIO N  FACTOR.

6 5 0  C = l + ( L A M / D P ) * ( 2 . 5 1 4 + . 8 * E X P ( - . 5 5 * D P / L A M ) )

6 6 0  REM CALCULATE P A R T IC L E  V E L O C IT Y  AND P O S I T I O N  AT END OF 

T IM E  S T E P .

CALCULATE A 1 , B ,A N D  D1 I N  RUNGE-KUTTA METHOD.

6 7  0 F = R A /R P

6 9 0  A 1 = - . 7 5 * C D * V R * R A / ( R P * D P * C / 1 0 0 0 0 0 0 )

7 0 0  B = -A 1 * U A

7 1 0  REM G I S  THE EARTH GRAVITY A C CELERATIO N  F I E L D  I N  ( M / S 2 )  

7 2 0  G = 9 . 8  

7 3 0  N = l - F

7 4 0  D 1 = - ( A 1 * V A ) - G * N

7 5 0  U F = ( U * ( l + A l * D T / 2 ) + B * D T ) / ( l - A l * D T / 2 )

7 8 0  V F = ( V * ( l + A l * D T / 2 ) + D 1 * D T ) / ( l - A l * D T / 2 )

7 9 0  REM P R I N T  X AND Y EVERY 2 5  IT E R A T IO N S  

8 0 0  K =K + 1

8 1 0  I F  K = 2 5  GOTO 8 8 0
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8 2  0 REM CALCULATE NEW VALUES OF X AND Y AND R E S E T  I N I T I A L

VALUES OF U AND V .

8 3  0 X = X + D T * ( U F + U ) / 2  

8 4 0  Y = Y + D T * ( V F + V ) / 2  

8 5 0  U =U F

8  6 0  V =V F 

8 7 0  GOTO 3 4 0  

8 8 0  P R I N T  D P , X , Y  

8 9 0  K = 0

9 0 0  REM CALCULATE THE P A R T IC L E  LO CA TIO N WHEN THE P A R T IC L E  

I S  VERY NEAR TO X - A X I S  I N  ORDER TO F IN D  THE D IST A N C E  

OF THE P A R T IC L E  FROM Y - A X I S .

9 1 0  I F  Y > = - . 0 0 3  OR X < = - 5 * D  THEN GOTO 9 3 0  

9 2 0  GOTO 3 4 0  

9 3  0 P R I N T

9 4 0  REM I F  THE VALUE OF X I S  L E S S  THAN THE R A D IU S  OF THE 

HOOD THEN THE P A R T IC L E  W IL L  BE CAPTU RED .

9 5 0  END 

PART 1

SECOND PROGRAM

1 0  REM F I L E  NAME--------------------CAPTURE--------------------------------------------------------------

2 0 REM PROGRAM COMPUTES P A R T IC L E  T R A J E C T O R IE S  I N  FRONT

OF A C IR C U L A R  FLANGED HOOD.

3 0 REM THE FACE OF THE FLANGED HOOD I S  V E R T IC A L  AND

THE P A R T IC L E S  ARE R ELEA SED I N  FRONT O F THE HOOD.

5 0  REM L IN E S  9 0 - 2 2 0  ARE IN P U T  STATEMENTS FO R VALUES

PR O V ID E D  BY THE U S E R .

6 0  REM V A R IA B L E S :  RA I S  THE A I R  D E N S IT Y  I N  ( K G /M 3 ) .

MU I S  THE A I R  V I S C O S I T Y  I N  (K G /M  S ) .
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RE I S  THE REYNOLDS NUMBER.

7 0  REM V A R IA B L E S :  U F ,V F  ARE P A R T IC L E  V E L O C IT Y  AT END OF

T IM E  S T E P  I N  ( M / S ) .

X ,Y  ARE P A R T IC L E  L O C A TIO N  AT END OF TIM E 

S T E P  I N  ( M ) .

T I , DT ARE E L A PSE D  T IM E  AND T IM E  S T E P S

I N  ( S ) .

8 0  REM V A R IA B L E S :  R P  I S  THE P A R T IC L E  D E N S IT Y  I N  ( K G / M 3 ) .

DP I S  THE P A R T IC L E  D IA M ETER  I N  ( M I C R O N ) .

P  I S  THE A I R  P R E S S U R E  I N  ( A T M ) .

D I S  THE HOOD DIA M ETER I N  ( M ) .

T I S  THE A I R  TEMPERATURE I N  (K ) .

Q I S  THE HOOD FLOW I N  ( M 3 / S ) .

VC I S  THE CROSSDRAFT V E L O C IT Y  I N  ( M / S ) .

V I S  THE P A R T IC L E  V E L O C IT Y  I N  V E R T IC A L  

D IR E C T IO N  I N  ( M / S ) .

U I S  THE P A R T IC L E  V E L O C IT Y  I N  HORIZO N TAL 

D IR E C T IO N  I N  ( M / S ) .

9 0 IN P U T  " A I R  PR E SSU R E  I N  (A T M )= » ; P

1 0 0  IN P U T  " A I R  TEMPERATURE I N  ( K ) = " ; T

1 1 0  IN P U T  " P A R T IC L E  D E N S IT Y  I N  ( K G / M 3 ) = " ; R P

1 2 0  IN P U T  " T IM E  S T E P  I N  (S E C O N D S )= " ? DT

1 3 0  IN P U T  " P A R T IC L E  DIA M ETER I N  (M IC R O M E T E R S )= " ; DP

1 4 0  IN P U T  "HOOD DIAM ETER I N  ( M ) = » ; D

1 5 0  IN P U T  "HOOD FLOW I N  ( M 3 / S ) = " ; Q

1 7 0  IN P U T  "C R O SSD R A FT V E L O C IT Y  I N  V E R T IC A L  D IR E C T IO N  I N  

( M / S ) = " ? VC

1 8 0  REM IN P U T  I N I T I A L  P A R T IC L E  LO C A TIO N  AND V E L O C IT Y .

1 9 0  IN P U T  " I N I T I A L  P A R T IC L E  D IS T A N C E  FROM Y - A X I S  I N  ( M ) = " ; X
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2 0 0  IN P U T  " I N I T I A L  PARTICLE DISTANCE FROM X - A X I S  I N  ( M ) = " ; Y  
2 1 0  IN P U T  " I N I T I A L  PARTICLE VELOCITY I N  VERTICAL D IRECTIO N  

I N  ( M / S ) = " ;V
2 2  0 IN P U T  " I N I T I A L  PARTICLE VELOCITY I N  HORIZONTAL DIRECTION

I N  ( M / S ) = " ;U
2 3  0 P R IN T  "DP (MICROMETER) X (M) Y (M) »
2 4 0  P R IN T  " - - - - - - - - - - - - - -     »
2 5 0  REM K I S  A COUNTER.
2 6 0  K =0
2 7 0  R A = P * 1 0 0 / ( . 2 8 7 * T )
2 8 0  M U =( 1 3 . 5 5 4  + . 6 7 3 8 * T  -  ( 3 . 8 0 8 * T * T / 1 0 0 0 0 )  +  ( 1 . 1 8 3 * T * T * T /  
1 0 0 0 0 0 0 0 ) ) / 1 0 0 0 0 0 0 0  
2 9 0  T I = 0
3 0 0  REM A I S  THE RADIUS OF THE HOOD.
3 1 0  A = D /2
3 2 0  P I = 3 . 1 4 1 5 9 2 7
3 3  0 REM L IN E S  3 4  0 - 5 5 0  CALCULATES THE VELOCITY I N  FRONT OF 

A CIRCULAR FLANGED HOOD A CCORDING TO THE F IN A L  MODEL 
DEVELOPED BY FLYNN AND ELLENBECKER.

3 4 0  GAMMA1=SQR(XA2 + ( A + Y ) A2 )
3 5 0  GAMMA2=SQR(XA2 + ( A - Y ) A2 )
3 6 0  REM ECC I S  THE EC C E N T R IC IT Y .
3 7  0 E C C = ( 2 * A ) / ( GAMMA1+GAMMA2)
3 8 0  ECC2=ECCA2
3 9 0  T 1=A + Y
4 0 0  T 2 = Y - A
4 1 0  T3=GAMMA1+GAMMA2
4 2  0 T4=GAMMA1*GAMMA2
4 3 0  T 5= 4*A A2

1 2 0



4 4 0  T6=SQ R (T3A2 -T 5 )

4 5 0  T 7 = - Q / P I
4 6 0  T 8 = (T 1 * G A M M A 2 )+ (T2*GAMMA1)
4 7 0  T 9 = T 3 * T 4 * T 6  
4 8 0  V R 1 = ( T 8 / T 9 ) *T 7  
4 9 0  V Z 1 = ( T 7 * X ) / ( T 4 * T 6 )
5 0 0  V 1 = S Q R (V R 1 A2 + V Z 1 A2 )
5 1 0  V T F = (Q * E C C 2 * S Q R ( 3 ) ) / ( 2 * P I * A A2 * S Q R ( 3 - 2 * E C C 2 ) )
5 2 0  V R 2 = ( V R 1 / V 1 ) * V T F  
5 3 0  V Z = . 9 * ( ( V Z 1 / V 1 ) * V T F )
5 4 0  UA=VZ
5 5 0  V R T O T =( 2 . 6*E C C A1 8 + . 8 5 3 ) *VR2 +  VC 
5 6 0  VA=VRTOT 
5 7 0  T I = T I + D T
5 8  0 REM CALCULATE: RELATIVE VELOCITY (VR)

REYNOLDS NUMBER (RE)
DRAG C O E FFIC IEN T (CD)

5 9  0 V R = S Q R ( ( U - U A ) * ( U - U A ) + ( V - V A ) * (V -V A )
6 0 0  R E = R A * D P * V R /( M U * 1 0 0 0 0 0 0 )
6 1 0  C D = ( 2 4 / R E  A0 . 6 4 6 )
6 2 0  REM LAM I S  THE MEAN FREE PATH FOR A IR  I N  (M IC R O N ).
6 3 0  L A M = .0 6 6 7
6 4 0  REM C I S  THE S L I P  FACTOR ALSO CALLED THE CUNNINGHAM 

CORRECTION FACTOR.
6 5 0  C = l + ( L A M / D P ) * ( 2 . 5 1 4 + . 8 * E X P ( - . 5 5 * D P /L A M ) )
6 6 0  REM CALCULATE PARTICLE VELOCITY AND P O S IT IO N  AT END OF 

TIME S T E P .
CALCULATE A l , B , A N D  D1 I N  RUNGE-KUTTA METHOD.

670  F=RA/RP
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6 9 0  A l = - . 7 5 * C D * V R * R A / ( R P * D P * C / 1 0 0 0 0 0 0 )
7 0 0  B = -A 1 * U A
7 1 0  REM G I S  THE EARTH GRAVITY ACCELERATION F IE L D  I N  ( M /S 2 )  
7 2 0  G = 9 . 8  
7 3 0  N = l - F
7 4 0  D 1 = - ( A 1 * V A ) - G * N
7 5 0  U F = ( U * ( l + A l * D T / 2 ) + B * D T ) / ( l - A l * D T / 2 )
7 8  0 V F = ( V * ( l + A l * D T / 2 ) + D 1 * D T ) / ( l - A l * D T / 2 )
7 9  0 REM PR IN T  X AND Y EVERY 2 5  ITER ATIO NS  
8 0 0  K =K+1
8 1 0  I F  K = 2 5  GOTO 8 8 0
8 2 0  REM CALCULATE NEW VALUES OF X AND Y AND RESET I N I T I A L  

VALUES OF U AND V .
8 3 0  X = X + D T * ( U F + U ) /2  
8 4 0  Y = Y + D T * ( V F + V ) /2  
8 5 0  U=UF  
8 6 0  V=VF  
8 7 0  GOTO 3 4 0  
8 8 0  P R IN T  D P , X ,Y  
8 9 0  K =0
9 0 0  REM CALCULATE THE PARTICLE LOCATION WHEN THE PARTICLE

I S  VERY NEAR TO Y -A X I S  I N  ORDER TO F IN D  THE DISTANCE  
OF THE PARTICLE FROM X - A X I S .

9 1 0  I F  X <= . 0 0 3  GOTO 9 3 0  
9 2 0  GOTO 3 4 0  
9 3 0  P R IN T
9 4 0  REM I F  THE VALUE OF Y I S  L ESS THAN THE R A D IU S OF THE 

HOOD THEN THE PARTICLE WILL BE CAPTURED.
9 5 0  END
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PART 1
TH IR D PROGRAM
10 REM FILE NAME------------------CAPTURE--------------------------------------------------------

2 0 REM PROGRAM COMPUTES PARTICLE TRAJECTORIES I N  FRONT
OF A CIRCULAR FLANGED HOOD.

3 0 REM THE FACE OF THE FLANGED HOOD I S  HORIZONTAL AND THE
PA R TIC LES ARE RELEASED I N  FRONT OF THE HOOD
(THE HOOD FACE I S  OVER THE RELEASED P A R T I C L E S ) .

4 0 REM THE VALUE OF Y I S  NEGATIVE I N  THE IN PU T  DATA Y ( - )  .
5 0  REM L IN E S  9 0 - 2 2 0  ARE IN PU T  STATEMENTS FOR VALUES

PROVIDED BY THE U S E R .
6 0  REM V A R IA B LE S: RA I S  THE A I R  DENSITY I N  ( K G / M 3 ) .

MU I S  THE A I R  V IS C O S IT Y  I N  (KG/M S ) .
RE I S  THR REYNOLDS NUMBER.

7 0  REM V A R IA B LE S: U F , V F ,  WF ARE PARTICLE VELOCITY AT END OF
TIME STE P I N  ( M / S ) .
X ,Y  ARE PARTICLE LOCATION AT END OF TIME  
STEP I N  ( M ) .
T I , D T  ARE ELAPSED TIME AND TIME STE P S
I N  ( S ) .

8 0 REM V A R IA B LE S: RP I S  THE PARTICLE D EN SITY  I N  ( K G / M 3 ) .
DP I S  THE PARTICLE DIAMETER I N  (M IC R O N ).
P I S  THE A I R  PRESSURE I N  (A T M ).
T I S  THE A I R  TEMPERATURE I N  ( K ) .
D I S  THE HOOD DIAMETER I N  ( M ) .
Q I S  THE HOOD FLOW I N  ( M 3 / S ) .
VC I S  THE CROSSDRAFT VELOCITY I N  ( M / S ) .
V I S  THE PARTICLE VELOCITY I N  VERTICAL

DIRECTIO N I N  ( M / S ) .
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U I S  THE PARTICLE VELOCITY I N  HORIZONTAL  
DIR EC TIO N  I N  ( M / S ) .

9 0 IN P U T  " A IR  PRESSURE I N  (A T M )= " ;P
1 0 0  IN PU T  " A IR  TEMPERATURE I N  ( K ) = " ; T
1 1 0  IN P U T  "PARTICLE D EN SITY  I N  (K G /M 3 ) = " ; R P
1 2 0  IN P U T  "TIME STE P I N  (S E C O N D S )= " ; DT
1 3 0  IN P U T  "PARTICLE DIAMETER I N  (MICROMETERS)=  " ; DP
1 4  0 IN P U T  "HOOD DIAMETER I N  ( M ) = " ; D
1 5 0  IN P U T  "HOOD FLOW I N  ( M 3 / S ) = " ; Q
1 6 0  REM THE CROSSDRAFT I S  I N  HORIZONTAL D IR E C T IO N .
1 7 0  IN PU T  "CROSSDRAFT VELOCITY I N  ( M / S ) = " ; V C
1 8  0 REM IN PU T  I N I T I A L  PARTICLE LOCATION AND V E L O C IT Y .
1 9 0  IN PU T  " I N I T I A L  PARTICLE DISTANCE FROM Y - A X I S  I N  (M )= " ? X
2 0 0  IN P U T  " I N I T I A L  PARTICLE DISTANCE FROM X - A X I S  I N  (M )= " ;
2 1 0  IN PU T  " I N I T I A L  PARTICLE VELOCITY I N  V E R T IC A L  D IR EC TIO N

I N  ( M / S ) = " ;V
2 2 0  IN PU T  " I N I T I A L  PARTICLE VELOCITY I N  HORIZONTAL D IRECTIO N  

I N  ( M / S ) = " ;U  
2 2 5  Z=0
2 3  0 P R IN T  "DP (MICROMETER) X (M) Y (M) "
2 4 0  P R IN T  " - - - - - - - - - - - - - - - - - -     "
2 5 0  REM K I S  A COUNTER.
2 6 0  K=0
2 7 0  R A = P * 1 0 0 / ( . 2 8 7 * T )
2 8 0  M U=( 1 3 . 5 5 4  +  . 6 7 3 8 * T  -  ( 3 . 8 0 8 * T * T / 1 0 0 0 0 )  +
( 1 . 1 8 3 * T * T * T / 1 0 0 0 0 0 0 0 ) ) / 1 0 0 0 0 0 0 0  
2 9 0  T I = 0
3 0 0  REM A I S  THE AREA OF THE HOOD I N  ( M 2 ) .
3 1 0  P I = 3 . 1 4 1 5 9 2 7
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3 2 0  A = P I * ( DA2 ) / 4
3 3 0  REM UO I S  THE HOOD FACE VELOCITY IN ( M / S ) .

3 4  0 U O = Q /A
3 5 0  REM X I , Y 1 , AND Z 1 ARE NON-DIM ENSIONAL D IS T A N C E .
3 6 0  X 1 = X /D  
3 7 0  Y 1 = Y /D  
3 8 0  Z 1 = Z /D  
3 9 0  R = S Q R (X 1 A2 + Z 1 A2 )
4 0 0  T 1 = S Q R ( Y 1 A2 + ( . 5 + R ) A2 )
4 2 0  T 2 = S Q R ( Y l A2 + ( . 5 - R ) A2 )
4 3  0 REM ECC I S  THE ECCENTRICITY  
4 4 0  E C C = 1 / ( T 1 + T 2 )
4 5 0  T 3= E C C A2 
4 6 0  T 4 = l - T 3  
4 7 0  T 5 = T 4 / 2 * E C C  
4 8 0  T 6 = l + T 5  
4 9 0  T 7 = 1 + E C C  
5 0 0  T 8 = 1 - E C C  
5 1 0  T 9 = T 7 / T 8
5 1 5  REM UU I S  THE NON-DIMENSIONAL VELOCITY MAGNITUDE.  
5 2 0  U U = T 3 / ( T 6 * L O G ( T 9 ) )
5 3 0  B E T A = A T N (T 4 * R /Y 1 )
5 4 0  GAMMA=ATN( Z 1 / X 1 )
5 5 0  U U Y =-U U *C O S(B E T A )
5 6 0  U U R = -U U * S IN (B E T A )
5 7 0  UUX=UUR*COS(GAMMA)
5 8 0  UUZ=UUR*SIN(GAMMA)
5 8 5  REM UY I S  THE VELOCITY I N  VERTICAL D IR E C T IO N .
5 9 0  UY=-UUY*UO
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5 9 5  REM UX I S  THE VELOCITY IN HORIZONTAL DIRECTION.

6 0 0  UX=UUX*UO+VC
6 2  0 VA=UY
6 3  0 UA=UX  
6 5 0  T I = T I + D T
6 6 0  REM CALCULATE: RELATIVE VELOCITY (VR)

REYNOLDS NUMBER (RE)
DRAG C O E FFIC IE N T  (CD)

6 7 0  V R = S Q R ( ( U - U A ) * ( U - U A ) + ( V - V A ) * ( V - V A ) )
6 8 0  R E = R A * D P * V R /( M U * 1 0 0 0 0 0 0 )
6 9 0  C D = ( 2 4 / R E A0 . 6 4 6 )
7 0 0  REM LAM I S  THE MEAN FREE PATH FOR A I R  I N  (M IC R O N ).
7 1 0  L A M = .0 6 6 7
7 2  0 REM C I S  THE S L I P  FACTOR ALSO CALLED THE CUNNINGHAM

CORRECTION FACTOR.
7 3  0 C = l + ( L A M / D P ) * ( 2 . 5 1 4 + . 8 * E X P ( - . 5 5 * D P / L A M ) )
7 4 0  REM CALCULATE PARTICLE VELOCITY AND P O S IT IO N  AT END OF 

TIME S T E P .
CALCULATE A 1 ,B ,A N D  D1 I N  RUNGE-KUTTA METHOD.

7 5 0  F = R A /R P
7 7 0  A l = - . 7 5 * C D * V R * R A / ( R P * D P * C / 1 0 0 0 0 0 0 )
7 8  0 B = -A 1 * U A
7 9 0  REM G I S  THE EARTH GRAVITY ACCELERATION F IE L D  I N  ( M / S 2 ) .  
8 0 0  G = 9 . 8  
8 1 0  N = l - F
8 2 0  D l = - ( A 1 * V A ) - G * N
8 3  0 U F = ( U * ( l + A l * D T / 2 )  +  B * D T ) / ( l - A l * D T / 2 )
8 4 0  V F = ( V * ( l + A l * D T / 2 )  +  D 1 * D T ) / ( l - A l * D T / 2 )
8 6 0  REM PR IN T  X AND Y EVERY 2 5  IT E R A T IO N S .
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8 7 0  K =K+1
8 8 0  I F  K = 2 5  GO TO 9 7 0
8 9  0 REM CALCULATE NEW VALUES OF X AND Y AND RESET I N I T I A L  

VALUES OF U AND V .
9 0 0  X = X + D T * ( U F + U ) / 2  
9 1 0  Y = Y + D T * ( V F + V ) / 2  
9 3  0 U=UF  
9 4 0  V=VF  
9 6 0  GOTO 3 6 0  
9 7 0  P R IN T  D P , X , Y 
9 8 0  K =0
9 9 0  REM CALCULATE THE PARTICLE LOCATION WHEN THE PARTICLE

I S  VERY NEAR TO X - A X I S  I N  ORDER TO F IN D  THE DISTANCE  
OF THE PARTICLE FROM Y - A X I S .

1 0 0 0  I F  Y > = - . 0 0 3  OR X < = - 5 * D  THEN GOTO 1 2 0 0  
1 1 0 0  GOTO 3 6 0
12  0 0  PR IN T
1 3  0 0  REM I F  THE VALUE OF X I S  LESS THAN THE RAD IUS OF THE

HOOD THEN THE PARTICLE WILL BE CAPTURED.
1 4  0 0  END
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PART 2
F I R S T  PROGRAM
10 REM FILE NAME------------------ CAPTURE--------------------------------------------------------

2 0 REM PROGRAM PLOTS PARTICLE TRAJECTORIES I N  FRONT OF
A CIRCULAR FLANGED HOOD.

3 0 REM THE FACE OF THE FLANGED HOOD I S  HORIZONTAL AND THE
PA R TIC LES ARE RELEASED I N  FRONT OF THE HOOD 
(THE HOOD FACE I S  OVER THE RELEASED P A R T I C L E S ) .

4 0 REM THE VALUE OF Y I S  NEGATIVE I N  THE IN PU T  DATA Y ( - )  . 
5 0  REM L IN E S  9 0 - 2 2 0  ARE IN PU T  STATEMENTS FOR VALUES

PROVIDED BY THE U S E R .
6 0  REM V A R IA B L E S: RA I S  THE A I R  DENSITY I N  ( K G / M 3 ) .

MU I S  THE A I R  V IS C O S IT Y  I N  (KG/M S ) .
RE I S  THE REYNOLDS NUMBER.

7 0  REM V A R IA B L E S: U F ,V F  ARE PARTICLE VELOCITY AT END OF
TIME STEP I N  ( M / S ) .
X ,Y  ARE PARTICLE LOCATION AT END OF TIME 
ST E P  I N  ( M ) .
T I , D T  ARE ELAPSED TIME AND TIME STE PS  
I N  ( S ) .

8 0  REM V A R IA B L E S: RP I S  THE PARTICLE D E N SITY  I N  ( K G / M 3 ) .
DP I S  THE PARTICLE DIAMETER I N  (M IC R O N ).
P I S  THE A I R  PRESSURE I N  (A T M ).
T I S  THE A I R  TEMPERATURE I N  ( K ) .
D I S  THE HOOD DIAMETER I N  ( M ) .
Q I S  THE HOOD FLOW I N  ( M 3 / S ) .
VC I S  THE CROSS-DRAFT VELOCITY I N  ( M / S ) .
V I S  THE PARTICLE VELOCITY I N  VER TIC A L  
D IR EC TIO N  I N  ( M / S ) .
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U I S  THE PARTICLE VELOCITY I N  HORIZONTAL 
DIR E C T IO N  I N  ( M / S ) .

9 0  IN P U T  " A IR  PRESSURE I N  (A T M )= " ? P
1 0 0  IN P U T  " A IR  TEMPERATURE I N  ( K ) = " ; T
1 1 0  IN P U T  "PARTICLE D E N SITY  I N  (K G /M 3 ) = " ; R P
1 2 0  IN P U T  "TIME S T E P  I N  (S E C O N D S )= " ; DT
1 3  0 IN P U T  "PARTICLE DIAMETER I N  (M ICRO N)= " ; DP
1 4 0  IN P U T  "HOOD DIAMETER I N  ( M ) = " ; D
1 5 0  IN P U T  "HOOD FLOW I N  ( M 3 / S ) = » ; Q
1 6 0  REM THE C RO SS-DRAFT I S  I N  HORIZONTAL D IR E C T IO N .
1 7 0  IN P U T  "C R O SS-D R A FT VELOCITY I N  ( M / S ) = " ; V C
1 8 0  REM IN P U T  I N I T I A L  PARTICLE LOCATION AND V E L O C ITY .
1 9 0  IN P U T  " I N I T I A L  PARTICLE DISTANCE FROM Y - A X I S  I N  (M ) = " ; X
2 0 0  IN P U T  " I N I T I A L  PARTICLE DISTANCE FROM X - A X I S  I N  ( M ) = " ;Y
2 1 0  IN P U T  " I N I T I A L  PARTICLE VELOCITY I N  VER TIC A L DIRECTION

I N  ( M / S ) = " ;V
2 2  0 IN P U T  " I N I T I A L  PARTICLE VELOCITY I N  HORIZONTAL DIRECTION  

I N  ( M / S ) = " ;U  
2 3 0  DIM P ( 3 0 0 0 , 2 )
2 4  0 COUNT=0
2 5 0  REM THE I  LOOP PERFORMS THE VELOCITY CALCULATIONS  

ACCORDING TO THE F IN A L  MODEL DEVELOPED BY FLYNN AND 
ELLENBECKER,AND GENERATES THE PO IN T S TO BE PLOTTED.

2 6 0  FOR 1 = 1  TO 3 0 0 0  
2 7 0  R A = P * 1 0 0 / ( . 2 8 7 * T )
2 8 0  M U =( 1 3 . 5 5 4  + . 6 7 3 8 * T  -  ( 3 . 8 0 8 * T * T / 1 0 0 0 0 )  +  ( 1 . 1 8 3 * T * T * T /  
1 0 0 0 0 0 0 0 ) ) / 1 0 0 0 0 0 0 0  

2 9 0  T I = 0
3 0 0  REM A I S  THE R A D IU S OF THE HOOD.
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3 1 0

3 2 0

3 3 0

3 4 0

3 5 0

3 6 0

3 7 0

3 8 0

3 9 0

4 0 0

4 1 0

4 2 0

4 3 0

4 4 0

4 5 0

4 6 0

4 7 0

4 8 0

4 9 0

5 0 0

5 1 0

5 2 0

5 3 0

5 4 0

5 5 0

5 6 0

5 7 0

A =D /2

P I = 3 . 1 4 1 5 9 2 7
REM L IN E S  3 4 0 - 5 5 0  CALCULATES THE VELOCITY I N  FRONT OF 
A CIRCULAR FLANGED HOOD A CCORDING TO THE F IN A L  MODEL 
DEVELOPED BY FLYNN AND ELLENBECKER. 
GAMMA1=SQR(YA2 + ( A + X ) a 2 )
GAMMA2=SQR( YA2 + ( A - X ) A2 )
REM ECC I S  THE EC C E N T R IC IT Y .
E C C = ( 2  * A ) / ( GAMMA1+GAMMA2)
ECC2=ECCA2
T 1= A + X
T 2 = X - A
T3=GAMMA1+GAMMA2
T4=GAMMA1*GAMMA2
T 5 = 4 * A A2
T 6 = S Q R ( T 3 A2 - T 5 )
T 7 = - Q / P I
T 8= (T 1*G A M M A 2) + (T2*GAMMA1)
T 9 = T 3  * T 4 * T 6  
V R 1 = ( T 8 / T 9 ) *T 7  
V Z 1 = ( T 7 * Y ) / ( T 4 * T 6 )
V 1 = S Q R (V R 1 A2 + V Z 1 A2 )
V T F = ( Q * E C C 2 * S Q R ( 3 ) ) / ( 2 * P I * A A2 * S Q R ( 3 - 2 * E C C 2 ) )
V R 2 = ( V R 1 / V 1 ) * V T F  
V Z = . 9 * ( ( V Z 1 / V 1 ) * V T F )
VA=VZ
V R T O T =( 2 . 6*E C C A1 8 + . 8 5 3 ) *VR2+VC
UA=VRTOT
T I = T I + D T
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5 8 0  REM CALCULATE: RELATIVE VELOCITY (VR)

REYNOLDS NUMBER (RE)
DRAG C O E FFIC IE N T  (CD)

5 9 0  V R = S Q R ( ( U - U A ) * ( U - U A ) + ( V - V A ) * (V -V A )
6 0 0  R E = R A * D P * V R / ( M U * 1 0 0 0 0 0 0 )
6 1 0  C D = ( 2 4 / R E A0 . 6 4 6 )
6 2  0 REM LAM I S  THE MEAN FREE PATH FOR A I R  I N  (M IC R O N ).
6 3 0  L A M = .0 6 6 7
6 4  0 REM C I S  THE S L I P  FACTOR ALSO CALLED THE CUNNINGHAM 

CORRECTION FACTOR.
6 5 0  C = l + ( L A M / D P ) * ( 2 . 5 1 4 + . 8 * E X P ( - . 5 5 * D P / L A M ) )
6 6 0  REM CALCULATE PARTICLE VELOCITY AND P O S IT IO N  AT END OF 

TIME S T E P .
CALCULATE A 1 , B ,A N D  D1 I N  RUNGE-KUTTA METHOD.

6 7 0  F = R A /R P
6 9 0  A 1 = - . 7 5 * C D * V R * R A / ( R P * D P * C / 1 0 0 0 0 0 0 )
7 0 0  B = -A 1 * U A
7 1 0  REM G I S  THE EARTH GRAVITY ACCELERATION F IE L D  I N  ( M /S 2 )  
7 2 0  G = 9 . 8  
7 3 0  N = l - F
7 4 0  D l = - ( A 1 * V A ) - G * N
7 5 0  U F = ( U * ( l + A l * D T / 2 ) + B * D T ) / ( l - A l * D T / 2 )
7 8  0 V F = ( V * ( l + A l * D T / 2 ) + D 1 * D T ) / ( l - A l * D T / 2 )
7 9 0  REM CALCULATE NEW VALUES OF X AND Y AND RESET I N I T I A L  

VALUES OF U AND V .
8 0 0  X = X + D T * ( U F + U ) /2  
8 1 0  Y = Y + D T * ( V F + V ) /2
8 2  0 U=UF
8 3  0 V=VF
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8 4 0  P ( I , 1 ) = X  
8 5 0  P ( I , 2 ) = Y
8 6 0  REM CALCULATE THE PARTICLE LOCATION WHEN THE PARTICLE

I S  VERY NEAR TO X -A X I S  I N  ORDER TO F IN D  THE DISTANCE  
OF THE PARTICLE FROM Y - A X I S .

8 7 0  I F  Y > = - . 0 0 3  OR X < = - 5 * D  THEN 1 = 3 0 0 0  ELSE C O U N T = I+ l  
8 8 0  NEXT I
8 9 0  REM L IN E S  9 0 0 - 9 6 0  GENERATE THE HOOD,FLANGE AND 
C E N T E R L IN E .
9 0 0  SCREEN 1
9 1 0  WINDOW ( - . 5 3 , - . 3 6 ) - ( . 5 3 , . 3 6 )
9 2 0  L IN E  ( A , 0 ) - ( . 3 3 , 0 )
9 3 0  L IN E  ( A , 0 ) - ( A , . 0 2 )
9 4 0  L IN E  ( 0 , , 0 2 ) - ( 0 , - . 3 3 )
9 5 0  L IN E  ( - A , 0 ) - ( - . 3 3 , 0 )
9 6 0  L IN E  ( - A , 0 ) - ( - A , . 0 2 )
9 7 0  REM THE J  LOOP PLOTS THE PO IN TS GENERATED I N  THE I  LOOP. 
9 8  0 FOR J = 1  TO COUNT 
9 9 0  S = P ( J , 1 )
1 0 0 0  H = P ( J , 2 )
1 0 1 0  P S E T ( S , H)
1 0 2 0  NEXT J  
1 0 3  0 KEY OFF
1 0 4 0  LOCATE 8 , 1  : P R IN T 11 D = H ; D ;  " (M) " ?
1 0 5 0  LOCATE 9 , 1  : P R IN T 11 Q=" ; Q; 11 ( M 3 /S )  11 ?
1 0 6 0  LOCATE 1 0 , 1  : P R IN T " V C = n ; V C ; " ( M / S ) » ;
1 0 7 0  LOCATE 1 1 , 1  : P R IN T " D P = ,f ?D P ; 11 (M ICRO.M) " ?
1 0 8 0  A $ = I N K E Y $ : I F  A $= " C "  THEN 1 1 0 0  ELSE 1 0 9 0  
1 0 9 0  I F  A $ = " X M THEN 1 1 1 0
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1 1 0 0  LPR IN T  C H R $( 1 2 )
1 1 1 0  END

PART 2
SECOND PROGRAM
1 0  REM F IL E  NAME- - - - - - - - - - CAPTURE- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 0  REM PROGRAM PLOTS PARTICLE TRAJECTORIES I N  FRONT OF 

A CIRCULAR FLANGED HOOD.
3 0 REM THE FACE OF THE FLANGED HOOD I S  VERTICAL AND THE 

PARTICLES ARE RELEASED I N  FRONT OF THE HOOD.
5 0  REM L IN E S  9 0 - 2 2 0  ARE IN PU T  STATEMENTS FOR VALUES

PROVIDED BY THE U S E R .
6 0  REM V A R IA B LE S: RA I S  THE A I R  D EN SITY  I N  ( K G / M 3 ) .

MU I S  THE A I R  V IS C O S IT Y  I N  (KG/M S ) .
RE I S  THE REYNOLDS NUMBER.

7 0  REM V A R IA B LE S: U F ,V F  ARE PARTICLE VELOCITY AT END OF
TIME STEP I N  ( M / S ) .
X ,Y  ARE PARTICLE LOCATION AT END OF TIME  
STE P I N  ( M ) .
T I , D T  ARE ELAPSED TIME AND TIME STE PS
I N  ( S ) .

8 0  REM V A R IA B LE S: RP I S  THE PARTICLE D ENSITY I N  ( K G / M 3 ) .
DP I S  THE PARTICLE DIAMETER I N  (M IC R O N ).
P I S  THE A I R  PRESSURE I N  (A T M ).
T I S  THE A I R  TEMPERATURE I N  ( K ) .
D I S  THE HOOD DIAMETER I N  ( M ) .
Q I S  THE HOOD FLOW I N  ( M 3 / S ) .
VC I S  THE C RO SS-DRAFT VELOCITY I N  ( M / S ) .
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V I S  THE PARTICLE VELOCITY I N  VERTICAL  
DIRECTIO N I N  ( M / S ) .
U I S  THE PARTICLE VELOCITY I N  HORIZONTAL  
D IRECTIO N I N  ( M / S ) .

9 0 IN P U T  " A IR  PRESSURE I N  (A T M )= " ? P
1 0 0  IN P U T  " A IR  TEMPERATURE I N  ( K ) = " ; T
1 1 0  IN P U T  "PARTICLE D EN SITY  I N  ( K G /M 3 ) = " ; R P
1 2  0 IN P U T  "TIME STE P I N  (S E C O N D S )= " ; DT
1 3 0  IN P U T  "PARTICLE DIAMETER I N  (M IC R O N )= " ; DP
1 4 0  IN P U T  "HOOD DIAMETER I N  ( M ) = " ; D
1 5 0  IN P U T  "HOOD FLOW I N  ( M 3 / S ) = " ; Q
1 6 0  REM THE CROSS-DRAFT I S  I N  VERTICAL D IR E C T IO N .
1 7 0  IN P U T  "C RO SS-D RAFT VELOCITY I N  ( M / S ) = " ; V C
1 8 0  REM IN PU T I N I T I A L  PARTICLE LOCATION AND V ELO C ITY .
1 9 0  IN P U T  " I N I T I A L  PARTICLE DISTANCE FROM Y -A X I S  I N  ( M ) = " ; X
2 0 0  IN P U T  " I N I T I A L  PARTICLE DISTANCE FROM X -A X I S  I N  ( M ) = " ; Y
2 1 0  IN P U T  " I N I T I A L  PARTICLE VELOCITY I N  V ERTICAL DIR EC TIO N

I N  ( M / S ) =  " ;V
2 2  0 IN P U T  " I N I T I A L  PARTICLE VELOCITY I N  HORIZONTAL D IRECTIO N  

I N  ( M / S ) = " ;U  
2 3 0  DIM P (3  0 0 0 , 2 )
2 4 0  COUNT=0
2 5 0  REM THE I  LOOP PERFORMS THE VELOCITY CALCULATIONS  

ACCORDING TO THE F IN A L  MODEL DEVELOPED BY FLYNN AND 
ELLENBECKER,AND GENERATES THE PO IN T S TO BE PLOTTED.

2 6 0  FOR 1 = 1  TO 3 0 0 0  
2 7 0  R A = P * 1 0 0 / ( . 2 8 7 * T )
2 8 0  M U =( 1 3 . 5 5 4  +  . 6 7 3 8 * T  -  ( 3 . 8 0 8 * T * T / 1 0 0 0 0 )  +  ( 1 . 1 8 3 * T * T * T /  
1 0 0 0 0 0 0 0 ) ) / 1 0 0 0 0 0 0 0

134



2 9 0  T I = 0
3 0 0  REM A I S  THE RAD IUS OF THE HOOD.
3 1 0  A = D /2
3 2 0  P I = 3 . 1 4 1 5 9 2 7
3 3 0  REM L IN E S  3 4 0 - 5 5 0  CALCULATES THE VELOCITY I N  FRONT OF 

A CIRCULAR FLANGED HOOD A CCORDING TO THE F IN A L  MODEL 
DEVELOPED BY FLYNN AND ELLENBECKER.

3 4 0  GAMMA1=SQR(XA2 + ( A + Y ) A2 )
3 5 0  GAMMA2=SQR(XA2 + ( A - Y ) A2 )
3 6 0  REM ECC I S  THE E C C E N T R IC IT Y .
3 7 0  E C C = ( 2 * A ) / ( GAMMA1+GAMMA2)
3 8 0  EC C 2=EC C A2
3 9 0  T 1=A + Y
4 0 0  T 2 = Y - A
4 1 0  T3=GAMMA1+GAMMA2
4 2  0 T4=GAMMA1*GAMMA2
4 3 0  T 5 = 4 * A A2
4 4 0  T 6 = S Q R ( T 3 A2 - T 5 )
4 5 0  T 7 = - Q / P I
4 6 0  T 8=(T 1*G A M M A 2) + (T2*GAMMA1)
4 7 0  T 9 = T 3 * T 4 * T 6  
4 8 0  V R 1 = ( T 8 / T 9 ) * T 7  
4 9 0  V Z 1 = ( T 7 * X ) / ( T 4 * T 6 )
5 0 0  V 1 = S Q R (V R 1 A2 + V Z 1 A2 )
5 1 0  V T F = ( Q * E C C 2 * S Q R ( 3 ) ) / ( 2 * P I * A A2 * S Q R ( 3 - 2 * E C C 2 ) )
5 2 0  V R 2 = ( V R 1 / V 1 ) * V T F  
5 3 0  V Z = . 9 * ( ( V Z 1 / V 1 ) * V T F )
5 4 0  UA=VZ
5 5 0  VRTOT=( 2 . 6*ECCA1 8 + . 8 5 3 ) *VR2 + VC
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5 6 0  VA=VRTOT 
5 7 0  T I = T I + D T
5 8 0  REM CALCULATE: RELATIVE VELOCITY (VR)

REYNOLDS NUMBER (RE)
DRAG C O E FFIC IE N T  (CD)

5 9  0 V R = SQ R ( ( U - U A ) * ( U - U A ) + ( V - V A ) * (V -V A )
6 0 0  R E = R A * D P * V R /( M U * 1 0 0 0 0 0 0 )
6 1 0  C D = ( 2 4 / R E A0 . 6 4 6 )
6 2  0 REM LAM I S  THE MEAN FREE PATH FOR A I R  I N  (M IC R O N ).
6 3 0  LAM=. 0 6 6 7
6 4  0 REM C I S  THE S L I P  FACTOR ALSO CALLED THE CUNNINGHAM 

CORRECTION FACTOR.
6 5 0  C = l + ( L A M / D P ) * ( 2 . 5 1 4 + . 8 * E X P ( - . 5 5 * D P / L A M ) )
6 6 0  REM CALCULATE PARTICLE VELOCITY AND P O S IT IO N  AT END OF 

TIME S T E P .
CALCULATE A l , B , A N D  D1 I N  RUNGE-KUTTA METHOD.

6 7 0  F = R A / R P

6 9 0  A l = - . 7 5 * C D * V R * R A / ( R P * D P * C / 1 0 0 0 0 0 0 )
7 0 0  B = -A 1 * U A
7 1 0  REM G I S  THE EARTH GRAVITY ACCELERATION F IE L D  I N  ( M /S 2 )  
7 2 0  G = 9 . 8  
7 3 0  N = l - F
7 4 0  D 1 = - ( A 1 * V A ) - G * N
7 5 0  U F = ( U * ( l + A l * D T / 2 ) + B * D T ) / ( l - A l * D T / 2 )
7 8 0  V F = ( V * ( l + A l * D T / 2 ) + D 1 * D T ) / ( l - A l * D T / 2 )
7 9 0  REM CALCULATE NEW VALUES OF X AND Y AND RESET I N I T I A L  

VALUES OF U AND V .
8 0 0  X = X + D T * ( U F + U ) /2  
8 1 0  Y = Y + D T * ( V F + V ) /2
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8 2  0 U=UF
8 3  0 V=VF  
8 4 0  P ( I , 1 ) = X  
8 5 0  P ( 1 , 2 ) =Y
8 6 0  REM CALCULATE THE PARTICLE LOCATION WHEN THE PARTICLE

I S  VERY NEAR TO Y - A X I S  I N  ORDER TO F IN D  THE DISTANCE  
OF THE PARTICLE FROM X - A X I S .

8 7 0  I F  X <= . 0 0 3  OR Y < = - 5 * D  THEN 1 = 3 0 0 0  ELSE C O U N T = I+ l  
8 8 0  NEXT I
8 9 0  REM L IN E S  9 0 0 - 9 6 0  GENERATE THE HOOD,FLANGE AND 
C EN TER LIN E.
9 0 0  SCREEN 1
9 1 0  WINDOW ( - . 5 3 , - . 3 6 ) —( . 5 3 , . 3 6 )
9 2 0  L IN E  ( A , 0 ) - ( . 3 3 , 0 )
9 3 0  L IN E  ( A , 0 ) - ( A , . 0 2 )
9 4 0  L IN E  ( 0 , . 0 2 ) —( 0 , —. 3 3 )
9 5 0  L IN E  ( - A , 0 ) - ( - . 3 3 , 0 )
9 6 0  L IN E  ( - A , 0 ) - ( - A , . 0 2 )
9 7 0  REM THE J  LOOP PLOTS THE PO IN TS GENERATED I N  THE I  LOOP. 
9 8  0 FOR J = 1  TO COUNT 
9 9 0  S = P ( J , 1 )
1 0 0 0  H = P ( J , 2 )
1 0 1 0  P S E T ( S , H)
1 0 2  0 NEXT J
1 0 3  0 KEY OFF
1 0 4 0  LOCATE 8 , 1  : P R IN T " D=" ; D ; " ( M ) 11 ;
1 0 5 0  LOCATE 9 , 1  : P R I N T " Q = " ;Q ; " ( M 3 / S ) " ;
1 0 6 0  LOCATE 1 0 , 1  : PRINT"VCH =" ?V C H ;11 ( M /S )  » ;
1 0 7 0  LOCATE 1 1 , 1  : PR IN T"V C V =" ?V C V ;11 ( M /S )  "
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1 0 8 0  LOCATE 1 2 , 1  : P R I N T n DP=" ;D P ;  " (M ICRO.M ) 11;
1 0 9 0  A $ = I N K E Y $ : I F  A $ = " C "  THEN 1 1 1 0  ELSE 1 1 0 0  
1 1 0 0  I F  A $ = " X "  THEN 1 1 2 0  
1 1 1 0  L PR IN T C H R $ ( 1 2 )
1 1 2 0  END

PART 2
THIRD PROGRAM
1 0  REM F IL E  NAME- - - - - - - - - - CAPTURE- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 0  REM PROGRAM PLOTS PARTICLE TRAJECTO RIES I N  FRONT OF 

A CIRCULAR FLANGED HOOD.
3 0 REM THE FACE OF THE FLANGED HOOD I S  HORIZONTAL AND THE 

PA R TIC LES ARE RELEASED I N  FRONT OF THE HOOD
(THE HOOD FACE I S  OVER THE RELEASED P A R T I C L E S ) .

4 0  REM THE VALUE OF Y I S  NEGATIVE I N  THE IN P U T  DATA Y ( - )  .
5 0  REM L IN E S  9 0 - 2 2 0  ARE IN PU T  STATEMENTS FOR VALUES

PROVIDED BY THE U S E R .
6 0  REM V A R IA B L E S: RA I S  THE A I R  DEN SITY  I N  ( K G / M 3 ) .

MU I S  THE A I R  V IS C O S IT Y  I N  (KG/M S ) .
RE I S  THE REYNOLDS NUMBER.

7 0 REM V A R IA B L E S: U F ,V F  ARE PARTICLE VELOCITY AT END OF
TIME STEP I N  ( M / S ) .
X AND Y ARE PARTICLE LOCATION AT END OF
TIME STEP I N  ( M ) .
T I , D T  ARE ELAPSED TIME AND TIME STEPS
I N  ( S ) .

8 0  REM V A R IA B L E S: RP I S  THE PARTICLE D E N SITY  I N  ( K G / M 3 ) .
DP I S  THE PARTICLE DIAMETER I N  (M IC R O N ).
P  I S  THE A I R  PRESSURE I N  ( A T M ) .

138



T I S  THE A I R  TEMPERATURE I N  ( K ) .
D I S  THE HOOD DIAMETER I N  ( M ) .
Q I S  THE HOOD FLOW I N  ( M 3 / S ) .
VC I S  THE CROSSDRAFT VELOCITY I N  ( M / S ) .
V I S  THE PARTICLE VELOCITY I N  VERTICAL  
DIR EC TIO N  I N  ( M / S ) .
U I S  THE PARTICLE VELOCITY I N  HORIZONTAL  
D IRECTIO N I N  ( M / S ) .

9 0  IN P U T  " A IR  PRESSURE I N  (A T M ) = » ; P
1 0 0  IN PU T  " A IR  TEMPERATURE I N  ( K ) = " ; T
1 1 0  IN PU T  "PARTICLE D EN SITY  I N  (K G /M 3 ) = " ; R P
1 2 0  IN PU T  "TIME ST E P  I N  (S E C O N D S )= " ; DT
1 3 0  IN P U T  "PARTICLE DIAMETER I N  (M ICRO N)= " ; DP
1 4  0 IN PU T  "HOOD DIAMETER I N  ( M ) = " ; D
1 5 0  IN PU T  "HOOD FLOW I N  ( M 3 / S ) = " ; Q
1 6 0  REM THE CROSSDRAFT I S  I N  HORIZONTAL D IR E C T IO N .
1 7 0  IN PU T  "CROSSDRAFT VELOCITY IN  ( M /S ) = " ? V C
1 8 0  REM IN PU T  I N I T I A L  PARTICLE LOCATION AND V E L O C IT Y .
1 9 0  IN PU T  " I N I T I A L  PARTICLE DISTANCE FROM Y - A X I S  I N  ( M ) = " ; X
2 0 0  IN PU T  " I N I T I A L  PARTICLE DISTANCE FROM X - A X I S  I N  ( M ) = " ; Y
2 1 0  IN PU T  " I N I T I A L  PARTICLE VELOCITY I N  VER TIC A L D IRECTIO N

I N  ( M / S ) = " ;V
2 2  0 IN P U T  " I N I T I A L  PARTICLE VELOCITY I N  HORIZONTAL DIRECTION  

I N  ( M / S ) = " ;U  
2 2 5  Z = 0
2 3 0  DIM P ( 3 0 0 0 , 2 )
2 4 0  COUNT=0
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2 5 0  REM THE I  LOOP PERFORMS THE VELOCITY CALCULATIONS

ACCORDING TO THE NON-DIMENSIONAL MODEL DEVELOPED BY 
JA N S S O N , AND GENERATES THE PO IN T S TO BE PLOTTED.

2 6 0  FOR 1 = 1  TO 3 0 0 0  
2 7 0  R A = P * 1 0 0 / ( . 2 8 7 * T )
2 8 0  M U=( 1 3 . 5 5 4  +  . 6 7 3 8 * T  -  ( 3 . 8 0 8 * T * T / 1 0 0 0 0 )  +  ( 1 . 1 8 3 * T * T * T /  
10000000))/10000000 
2 9 0  T I = 0
3 0 0  REM A I S  THE AREA OF THE HOOD I N  ( M 2 ) .
3 1 0  A = P I * ( D A2 ) / 4  
3 2 0  P I = 3 . 1 4 1 5 9 2 7
3 1 5  REM UO I S  THE HOOD FACE VELOCITY I N  ( M / S ) .
3 3  0 REM L IN E S  3 4 0 - 6 0 0  CALCULATES THE VELOCITY I N  FRONT OF 

A CIRCULAR FLANGED HOOD A CCORDING TO JA N SSO N  MODEL.
3 4 0  U O =Q /A
3 5 0  REM X I ,  Y l ,  AND Z1 ARE NON-DIM ENSIONAL D IS T A N C E .
3 6 0  X 1 = X /D  
3 7 0  Y 1 = Y /D  
3 8 0  Z 1 = Z /D  
3 9 0  R = S Q R (X 1 A2 + Z 1 A2 )
4 0 0  T 1 = S Q R ( Y 1 A2 + ( . 5 + R ) A2 )
4 1 0  T 2 = S Q R ( Y 1 A2 + ( . 5 - R ) A2 )
4 2  0 REM ECC I S  THE E C C E N TR IC ITY .
4 3 0  E C C = 1 / ( T 1 + T 2 )
4 4 0  T 3=E C C A2 
4 5 0  T 4 = l - T 3  
4 6 0  T 5 = T 4 / 2 * E C C  
4 7 0  T 6 = l + T 5  
4 8 0  T 7 = 1 + E C C
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4 9 0  T 8 = 1 - E C C  
5 0 0  T 9 = T 7 / T 8
5 0 5  REM UU I S  THE NON-DIMENSIONAL VELOCITY MAGNITUDE.

5 1 0  U U = T 3 / ( T 6 * L O G ( T 9 ) )
5 2  0 B E T A = A T N (T 4 * R /Y 1 )
5 3  0 GAMMA=ATN( Z 1 / X 1 )
5 4 0  U U Y = -U U *C O S (B E T A )
5 5 0  U U R = -U U * S I N (B E T A )
5 6 0  UUX=UUR*COS(GAMMA)
5 7 0  UUZ=UUR*SIN(GAMMA)
5 7 5  REM UY I S  THE VELOCITY I N  VERTICAL D IR E C T IO N .
5 8 0  U Y=-UUY *UO
5 8 5  REM UX I S  THE VELOCITY I N  HORIZONTAL D IR E C T IO N .
5 9 0  UX=UUX*UO+VC  
6 1 0  VA=UY  
6 2  0 UA=UX
6 4 0  REM CALCULATE: RELATIVE VELOCITY (VR)

REYNOLDS NUMBER (RE)
DRAG C O E FFIC IEN T (CD)

6 5 0  V R = S Q R ( ( U - U A ) * ( U - U A ) + ( V - V A ) * ( V - V A ) )
6 6 0  R E = R A * D P * V R / ( M U * 1 0 0 0 0 0 0 )
6 7 0  C D = ( 2 4 / R E A0 . 6 4 6 )
6 8  0 REM LAM I S  THE MEAN FREE PATH FOR A I R  I N  (MICRON) . 
6 9 0  L A M = .0 6 6 7
7 0 0  REM C I S  THE S L I P  FACTOR ALSO CALLED THE CUNNINGHAM 

CORRECTION FACTOR.
7 1 0  C = l + ( L A M / D P ) * ( 2 . 5 1 4 + . 8 * E X P ( - . 5 5 * D P / L A M ) )
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7 2 0  REM CALCULATE PARTICLE VELOCITY AND P O S IT IO N  AT END OF 
TIME S T E P .
CALCULATE A l , B , A N D  D1 I N  RUNGE-KUTTA METHOD.

7 3  0 F = R A /R P
7 5 0  A l = - . 7 5 * C D * V R * R A / ( R P * D P * C / 1 0 0 0 0 0 0 )
7 6 0  B = -A 1 * U A
7 7 0  REM G I S  THE EARTH GRAVITY ACCELERATION F IE L D  I N  ( M /S 2 )  
7 8 0  G = 9 . 8  
7 9 0  N = l - F
8 0 0  D 1 = - ( A 1 * V A ) - G * N
8 1 0  U F =  (U *  ( l + A l * D T / 2 ) +B *D T ) /  ( l - A l * D T / 2  )
8 2 0  V F =  (V *  ( l + A l * D T / 2  ) + D 1 * D T ) /  ( l - A l * D T / 2 )
8 3  0 REM CALCULATE NEW VALUES OF X AND Y AND RESET I N I T I A L  

VALUES OF U AND V .
8 4 0  X = X + D T * ( U F + U ) /2
8 5 0  Y = Y + D T * ( V F + V ) / 2
8 6 0  U=UF
8 7 0  V=V
8 8 0  P ( I , 1 ) = X
8 9 0  P ( 1 , 2 ) =Y
9 0 0  REM CALCULATE THE PARTICLE LOCATION WHEN THE PARTICLE

I S  VERY NEAR TO X - A X I S  I N  ORDER TO F IN D  THE DISTANCE  
OF THE PARTICLE FROM Y - A X I S .

9 1 0  I F  Y > = - . 0 0 3  OR X < = - 5 * D  THEN 1 = 3 0 0 0  ELSE C O U N T = I+ l  
9 2 0  NEXT I
9 3 0  REM L IN E S  9 4 0 - 1 0 0 0  GENERATE THE HOOD,FLANGE AND 

C E N T E R L IN E .
9 4 0  SCREEN 1
9 5 0  WINDOW ( - . 5 3 , - . 3 6 ) - ( . 5 3 , . 3 6 )
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9 6 0  LINE ( A , 0 ) - ( . 3 3 , 0 )

9 7 0  L IN E  ( A , 0 ) - ( A ,  . 0 2 )
9 8 0  L IN E  ( 0 , . 0 2 ) - ( 0 , - . 3 3 )
9 9 0  L IN E  ( - A , 0 ) - ( - . 3 3 , 0 )
1 0 0 0  L IN E  ( - A , 0 ) - ( - A , . 0 2 )
1 0 1 0  REM THE J  LOOP PLOTS THE PO IN TS GENERATED I N  THE I  

LOOPE.
1 0 2  0 FOR J = 1  TO COUNT 
1 0 3 0  S = P ( J , 1 )
1 0 4 0  H = P ( J , 2 )
1 0 5 0  P S E T ( S , H)
1 0 6 0  NEXT J  
1 0 7 0  KEY OFF
1 0 8 0  LOCATE 8 , 1  : P R I N T " D = " ; D ; " (M)" ?
1 0 9 0  LOCATE 9 , 1  : P R I N T " Q = " ;Q ? " ( M 3 / S ) " ;
1 1 0 0  LOCATE 1 0 , 1  : P R I N T " V C = " ;V C ;" ( M / S ) " ;
1 1 1 0  LOCATE 1 1 , 1  : P R I N T " D P = " ; D P ? " (M I C R O .M )" ;
1 1 2 0  A $ = I N K E Y $ : I F  A $ = " C "  THEN 1 1 4 0  ELSE 1 1 3 0  
1 1 3 0  I F  A $ = " X "  THEN 1 1 4 0  
1 1 4  0 LPR IN T  C H R $( 1 2 )
1 1 5 0  END

GLASnG^lT '
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