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Abstract

Two cell lines, SCC12F and SCC12B were derived from the same squamous cell 

carcinoma of the facial epidermis and shown to display different phenotypes. SCC12B is 

more resistant to the induction of terminal differentiation and also more tumorigenic than 

SCC12F. The aim of this thesis was to investigate any genetic differences between 

SCC12B and SCC12F that could be responsible for their different phenotypes and 

therefore possibly be an important genetic event in the progression of squamous cell 

carcinomas of the head and neck (SCC-HN).

Microsatellite analysis of SCC12B and SCC12F revealed no differences in loss of 

heterozygosity (LOH) at the loci investigated on chromosome 3p and 9 which have 

previously been reported to show frequent LOH in SCC-HN. No overexpression of 

cyclin D1 was observed in the two cell lines and others have reported the absence of any 

H-ras mutations or abnormalities in Rb-1. Analysis of the tumour suppressor gene p53 

however revealed different levels of the protein between the two cell lines. SCC12B was 

shown to express much higher levels of p53 protein than SCC12F. Sequencing of p53 

revealed a novel heterozygous mutation at codon 216, a T—>G transversion substituting 

a valine for a glycine. Interestingly, whilst the mutant allele was visible in both cell lines 

SCC12B appeared to express much more mutant p53 than SCC12F which mostly 

retained wild-type p53 expression. Dot blot analysis suggested that mutant p53 

expression in SCC12B was double that of SCC12F.

Investigations were then undertaken to investigate whether the variations in this 

mutant to wild-type gene dosage could explain the different abilities of SCC12F and 

SCC12B to undergo suspension induced terminal differentiation. A clone of SCC12F, 

clone 19, expressing low levels of p53 and therefore presumably expressing a more 

normal phenotype was used as a target for alterations in mutant p53 expression. The use 

of this clone had the advantage that it retained a related genetic background to SCC12F 

and SCC12B and therefore is a more relevant target cell for investigating the effects of 

increased mutant p53216 on terminal differentiation.
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The results in this thesis show that increasing the mutant p53216 dosage in clone 19 

decreased the cells ability to express involucrin and form comified envelopes and 

increased cell survival in response to suspension induced terminal maturation. An 

increase in tumorigenicity was however not observed.

Taken together these results therefore suggest that thej acquisition of a p53 

mutation is an early event in this SCC and its accumulation leads to a dramatic 

progression of this cancer. Inactivation of p53 appears to inhibit the cells ability to 

terminally differentiate and the possible roles of p53 in tumour progression are discussed.
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Chapter 1 

Introduction



1.1. Squamous cell carcinoma of the head and neck 
(SCC-HN).

Squamous cell carcinomas of the head and neck (SCC-HN) are still today a major 

cause of death in developing nations. It appears to be more frequent in India and SE 

Asia, comprising 40-50% of total malignancies (Pinborg, 1984), than in the West 

where it comprises only 5% of all malignancies (Million et al., 1989). Premalignant 

lesions which can progress to SCC-HN are papillomas, leukoplakias and erythroplakias 

although 50% of SCC tend to develop without the prior premalignant lesion. Tumours 

develop at a low frequency from leukoplakias (1-5%) but there is a higher probability of 

progression from erythroplakias (30-55%) and for this reason the erythroplakias are the 

only premalignant lesion that is surgically removed. Squamous cell carcinomas can 

develop into the more aggressive spindle cell carcinoma although these tend to be 

recurrent or metastatic tumours.

The aetiological risk factors of development of SCC-HN in India appears to be 

chewing tobacco (Jussawalla and Deshpande, 1971) whilst in the West cigarette 

smoking, the use of snuff and alcohol have proved to be the main causes (Wynder and 

Stellman, 1977). Although the epidemiology of SCC-HN has been studied, the genetic 

mechanisms that are involved in its progression are poorly understood.

1.1.1. Cultivation of SCC-HN cell lines.

Rheinwald and Green, 1975b, developed an efficient method for the cultivation of 

normal HEK’s as well as squamous cell carcinomas by growing them on a lethally 

irradiated 3T3 feeder layer. Several oral SCC cell lines have been established 

(Rheinwald and Beckett, 1981; Easty et al., 1981a&b; Rupniak <2/., 1985; Prim ed 

al., 1990; Tatake et al., 1990). However most of these lines (except Rheinwald and 

Beckett, 1981) were developed under suboptimal conditions in the absence of a feeder 

layer or cholera toxin rendering the selection of fitter variants or more aggressive 

phenotypes likely (Rheinwald and Beckett, 1981). Most were also derived from



recurrent or irradiated tumours; normal tissue from the same patient is not available for 

comparison and tumour stage has not been recorded. These cell lines therefore do not 

provide a good system in which to study the genetic changes that give rise to SCC-HN. 

Recently a more detailed collection of cell lines have been cultivated from both 

premalignant erythroplakias and SCC-HN at different stages of tumour progression 

(Edington et a l, 1994). These cell lines are currently being examined to highlight the 

phenotypic and genetic changes which occur during development and progression of 

SCC-HN.

Cell lines derived from premalignant erythroplakias retain many of the properties 

associated with cultured normal keratinocytes such as a requirement for high serum 

levels, hydrocortisone, cholera toxin, anchorage and an irradiated 3T3 feeder layer for 

optimal in vitro growth. (Edington et al, 1994). They also have a normal diploid 

karyotype, a limited lifespan ending in senescence and are non-tumorigenic. They differ 

from normal HEK’s in that they form poorly stratified cultures and also appear to be 

resistant to suspension-induced terminal differentiation and cell death (Edington et al, 

1994). These latter phenotypes are also characteristic of later stage SCC cultures 

(Parkinson et a l, 1983; Edington et al, 1994) and therefore resistance to terminal 

maturation appears to be a phenotype acquired early in SCC-HN development.

Cells from more advanced tumours possessed an altered morphology and all gave 

rise to immortal cell lines (Edington et al, 1994). This late development of in vitro 

immortality is also observed in colon cancer (Paraskeva et al., 1984) and melanoma 

(Mancianti and Herlyn, 1989). SCC cell lines also displayed an aneuploid karyotype and 

a reduced requirement for serum growth factors. The majority of cell lines from 

advanced SCC-HN formed tumours in nude mice and there appears to be a correlation 

between stage of tumour from which the cell line is derived and degree of tumorigenicity 

(Edington et al, 1994).
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1.1.2. SCC12B and SCC12F: A target system in which to study the 

affect of tumour suppressor genes in SCC progression.

SCC12B and SCC12F were originally derived from the same SCC tumour of the 

facial epidermis (SCC12) (Rheinwald and Beckett, 1981). This tumour was taken from a 

60 year old male kidney transplant recipient who had been treated with 

immunosuppressive drugs for the previous seven years. SCC12 was shown to be 

partially defective in its ability to undergo terminal differentiation in response to 

suspension culture. Compared to normal HEK, SCC 12 cells exhibited a reduced rate 

and extent of comified envelope formation. Only 40% of cells developed comified 

envelopes after five days in suspension compared to 80% of normal HEK’s (Rheinwald 

and Beckett, 1980). SCC12 also had a much longer survival half-life in suspension than 

normal keratinocytes. The colony forming ability of normal HEK after 24 hours in 

suspension is completely lost. SCC 12 cells showed a rapid decay during the first day 

followed by a stable retention of colony forming ability of the remaining cells (Rheinwald 

and Beckett, 1980). This sharp drop in survival was due to the presence of a non- 

tumorigenic fraction of cells in SCC12 that were also immortal in culture. SCC12 was 

therefore divided into two cell lines, one of which appeared to have a more malignant 

phenotype (SCC12B) than the other (SCC12F). These two cell lines therefore represent 

phenotypically distinct cell populations within the same tumour that are at different 

stages of tumour progression.

SCC12B and SCC12F have been shown to share common traits which is 

important evidence in support of their monoclonal origin. Both cell lines share identical 

rearrangements of the p-polymerase and EGF receptor (Weichselbaum et al., 1988) and 

do not express mutant ras (Clark et al., 1993). Cytogenetic analysis showed that both 

cell lines were triploid and had lost one copy of chromosomes 8,13, and 15 (Jaffe et al., 

1992).

Despite these similarities SCC12F and SCC12B differ in their tumorigenic 

potential and their ability to respond to terminal differentiation signals. SCC12B is 

highly tumorigenic (Parkinson et al., 1984) inducing tumours in all mice injected within

3



20 days (Jaffe et al., 1992). In comparison SCC12F is non-tumorigenic. SCC12B was 

much more resistant to the induction of terminal differentiation than SCC12F. SCC12B 

had a much longer survival half-life in suspension of 24 hours compared to that of 

SCC12F which showed loss of colony forming ability Tl/2 of 8.6 hours (Parkinson et 

al., 1983). Similar results were obtained when the cell lines were induced to terminally 

differentiate by exposure to PM A (Parkinson et al., 1983). Studies into the loss of 

colony forming ability in reponse to treatment with PMA showed that 70% of SCC12B 

cells were resistant to the effects of PMA compared to only 21% resistance of SCC12F 

cells. Consistent with this reduced ability to terminally differentiate, SCC12B had a 

lower degree of comified envelope inducibility (Rubin and Rice, 1986) and involucrin 

synthesis as compared to SCC12F (Jaffe et al., 1992). After exposure to lOOmM PMA 

for six days SCC12F showed a 10 fold increase in comified envelope formation over 

their controls whilst SCC12B only showed a three fold increase (Parkinson et al., 1983).

SCC12F can be converted towards a phenotype displayed by SCC12B by 

transfection with the Epstein Barr virus (EBV) latent membrane protein (LMP1) or Ha­

ras (Dawson et al., 1990). Both proteins were shown to impair the terminal 

differentiation of SCC12F but only Ha-ras gave rise to malignant transfectants.

Somatic cell hybrids generated by fusing SCC12F with SCC12B resulted in 

hybrids with a much lower tumorigenic potential than SCC12B suggesting that SCC12F 

has donated a tumour suppressor function to the hybrid (Jaffe et al., 1992).

Taken together these observations suggest that SCC12B was derived from a 

population of cells in the original tumour that had progressed further towards malignancy 

than the population from which SCC12F was derived. Comparisons of these two cell 

lines therefore provide an ideal system in which to investigate the genetic changes that 

occur in SCC-HN during tumour progression.

1.1.3. Terminal differentiation in keratinocytes : a good in vitro model

Normal HEK’s have been successfully cultured in the presence of a 3T3 feeder 

layer with an in vitro lifespan of more than 150 population doublings (Rheinwald and
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Green, 1975b). More efficient cell growth has been obtained by using a medium 

(DMEM) supplemented with 20% fetal bovine serum, hydrocortisone (Rheinwald and 

Green, 1975b), cholera toxin (Green, 1978) and EGF (Rheinwald and Green, 1977). By 

such a method each colony consists of keratinocytes forming a stratified squamous 

epithelium in which the dividing cells are confined to the lowest layer as in the epidermis 

in vivo.

A simplified diagram of the epidermis is shown in figure 1.1. The epidermis 

consists of several layers whose cells possess distinct properties. Cells in the lower basal 

layer are the only proliferating cells and as they mature they migrate up towards the 

surface of the skin losing their ability to multiply and begin to terminally differentiate. As 

the cells enter the spinous layer they increase in size (Rowden, 1975) and begin to 

synthesise involucrin (Watt and Green, 1981). As the cells enter the granular layer, they 

begin to destuct. The cytoplasmic organelles are eliminated (Lavker and Matoltsy, 1970) 

and their chromatin becomes marginated and clumped. The plasma membrane bcomes 

permeable to calcium and this influx activates an endogenous endonuclease which 

fragments the nuclear DNA into 200bp fragments- a hallmark of apoptosis (McCall and 

Cohen, 1991). Keratins of various types are present at all stages of differentiating 

keratinocytes (Sun and Green, 1978). The cells in the outer layers contain larger keratins 

than those of the inner layers (Fuchs and Green, 1980). The calcium influx activates the 

protein proflaggin to bundle keratin fibrils together (Fuchs and Byrne, 1994) and triggers 

the cross-linking of involucrin by a transglutaminase, ultimately forming an insoluble 

comified envelope (Sun and Green, 1976) surrounding a cytoplasm composed of mostly 

keratins. This comified layer acts as a mechanical waterproof barrier preventing damage 

to the underlying cells.

Studies have shown that loss of cellular contact with the basal lamina (Sun and 

Green, 1976) (perhaps by alterations in adhesion molecule expression) and alteration of 

cell shape are sufficient to trigger terminal differentiation (Watt et al., 1988). This 

response can be mimicked in vitro by suspending cells in methylcellulose which prevents 

cell to cell contact and the cells become unresponsive to mitogen stimulation. Basal cells 

mediate attachment to the basal lamina mostly via members of the integrin family
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receptors. Integrins are heterodimeric transmembrane proteins consisting of a  and (3 

subunits (Hynes, 1992). Different a  and |3 associations determine the ligand binding 

specificities of the integrin heterodimers for various extracellular matrix proteins 

including fibronectin, laminin and collagen. Alterations in ligand binding to the CC5P1 

fibronectin receptor has been implicated in epithelial cell proliferation and differentiation 

signalling. Terminal differentiation induced by suspension culture can be inhibited by 

immediate addition of fibronection (Adams and Watt, 1989) which binds to the integrin 

receptor and prevents negative growth signalling. However, any delay in this addition has 

no effect as the cells have already been committed to terminal differentiation and the 

ability of the receptor to bind fibronectin is decreased (Adams and Watt, 1990). 

Detachment of epithelial cells from extracellular matrix contacts or growth in suspension 

has also been shown to elicit an apoptotic response termed anoikis (Meredith et al.,

1993; Frisch and Francis, 1994). As well as being part of the terminal differentiation 

pathway this controlled cell death would also be important in preventing cells from 

becoming dislodged and inappropriately reattaching and thereby helps to maintain the 

polarity and organisation of the epithelium. The signalling pathway mediated by the 

integrin receptor is yet to be identified in detail but may be mediated via changes in 

cellular pH, calcium fluxes and tyrosine phosphorylation events (Meredith et al., 1993; 

reviewed in Juliano and Haskill, 1993).

In order to study terminal differentiation of keratinocytes in an in vitro situation it 

is important to establish to what extent these cultures resemble normal epidermis. They 

retain the fundamental characteristics in that they are stratified, with proliferation 

restricted to the lowest layer and cells undergoing terminal differentiation as they move 

upwards through the layers. However in culture morphology is poor compared to 

normal epidermis in that the basal cells tend to be flattened, no proper stratum comeum 

is formed and culture shed nucleated squames (Green, 1977). Proper comified and 

granular layers similar to those in vivo can be restored to cultures by depleting the 

culture medium of vitamin A which has been shown to suppress keratinocyte 

differentiation (Fuchs and Green, 1981). In vitro the spatial distribution of involucrin 

(Watt, 1983) and keratins (Kopan et al., 1987) are changed. In culture cells express only



small keratins, no large keratins are expressed in the outer layers (Fuchs and Green,

1980) and certain keratins are not seen at all (Sun and Green, 1978).

The complete in vivo differentiation program can best be seen in vitro by 

culturing the keratinocytes on collagen rafts (Kopan et al., 1987). Once confluent, the 

epithelium becomes raised above the medium and is only fed through the collagen and 

the ventral surface of the epithelium. It is thought that in this situation a vitamin A 

gradient is set up across the layers similar to an in vivo situation and therefore normal 

morphology and protein expressions are regained.

Keratinocytes grown in vitro are therefore a very good system in which to study 

the terminal differentiation programme. Cells grown in a monolayer show the majority 

of the characteristics of terminal differentiation. But this can be improved by growing 

cells on a raft culture or be induced by placing cells from the monolayer into suspension 

culture. Many markers of terminal differentiation are available for study using this 

system namely, involucrin synthesis; comified envelope formation; loss of colony forming 

ability, which is usually the first indicator of terminal differentiation as keratinocytes kept 

in suspension culture lose their ability to form colonies with a half-life of 3 hours 

(Rheinwald, 1980) and apoptosis.
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1.2. Carcinogenesis is a multistage process

It is clear from analysis of the phenotypes of tumours in experimental models that 

there are three distinct stages involved in tumour progression i.e. initiation, promotion 

and progression. It would therefore be surprising if only one genetic event was 

responsible for all stages and it is more likely that a number of genetic changes act in 

concert with each other to develop a malignant phenotype. Such a model for a 

multistage process was first proposed by Foulds in 1954 and only recently has 

technology made it possible to identify the molecular events involved in carcinogenesis.

Early evidence to support this multistep model came from the transformation of 

primary rat embryo fibroblasts (REF) with cooperating oncogenes. Transfection of both 

ras and myc into REF cells lead to their transformation (Land et al., 1983), but neither 

oncogene could act on its own. It was proposed that each step in the tumorigenic 

process reflects a mutation leading to the activation of one or more cellular oncogenes. 

The resulting oncogenes then work together to induce the full neoplastic phenotype.

Weinberg (1985) proposed that for full transformation to occur one oncogene 

should be nuclear and one cytoplasmic i.e. myc being the nuclear protein and ras the 

cytoplasmic one in the above experiment. It is now thought that the nuclear oncogene 

can be substituted by an inactivated tumour suppressor gene (reviewed by Weinberg, 

1989) and this has been confirmed by the ability of the tumour suppressor gene p53 to 

cooperate with ras in the transformation of REF cells in its mutant form (Eliyahu et al., 

1984; Parada et al., 1984), but suppress transformation in its wild-type form (Finlay et 

al., 1989; Eliyahu ef al., 1989).

Until recently the only tumorigenic mutations studied in detail were those that 

activated oncogenes. Oncogenes, which are mutant alleles of the wild-type genes proto­

oncogenes, have acquired novel or aberrant activities that promote malignancy. Their 

ability to function in a genetically dominant manner and the selective growth advantage 

that they confer have facilitated the identification of a long list of oncogenes e.g. src,fos, 

myc.
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More recent efforts have been made to identify tumour suppressor genes e.g.p53, 

Rb-1, CDKN2/pl6INK4. These tumour suppressor genes or anti-oncogenes normally act 

to inhibit growth and therefore are more difficult to identify. The inactivations of tumour 

suppressor genes by mutations was first observed by Knudson in 1971 from studies on 

familial retinoblastoma, who proposed that inactivation of both copies of the gene was 

required and this occurred by a ’two hit' mechanism. In inherited Rb, one mutant allele is 

inherited from the parent. A second mutation occurs in the other allele as an independent 

event in the offspring. In sporadic Rb, both mutations occur as two events in the same 

cell population. If a person has an initial recessive mutation in one copy of Rb, reduction 

to homozygosity can be obtained by several chromosomal mechanisms (Cavenee et al., 

1983). Firstly, mitotic nondisjunction with loss of the wild-type allele would result in 

hemizygosity at all loci on the chromosome. Mitotic nondisjunction with duplication of 

the mutant chromosome would result in homozygosity at all loci on the chromosome. 

Alternatively mitotic recombination may occur between chromosomal homologues, with 

a breakpoint between the tumour locus and the centromere which would result in 

heterozygosity at loci in the proximal region and homozygosity throughout the rest of 

the chromosome including the tumour locus. Additionally other genetic events such as 

gene conversions, deletions and mutations can also occur.

In line with the proposal that carcinogenesis is a multistep process, inactivation of 

one gene by the mechanisms previously described is not enough and additional events are 

required to move this homozygous defective cell towards full neoplasia. It has been 

proposed (Nowell, 1976) that neoplasms develop from a sequential selection of mutant 

subpopulations from a single cell origin. In such a model an initial genetic event will give 

a cell a growth advantage over its neighbours. This pre-neoplastic cell proliferates 

further and from time to time as a result of genetic instability in the expanding 

population, genetic variants acquiring other genetic events are produced. Nearly all 

these variants are eliminated because of metabolic disadvantage or immunologic 

destruction, but occasionally one has an additional advantage and becomes the precursor 

of the new predominant subpopulation. This sequential selection proceeds over time until 

a clone has arisen that has a full aneuploid malignant phenotype. Some genetic events
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are common among different tumours e.g. p53 mutations, but others are specific to that 

cell type.

It is well known that primary mouse fibroblasts grown in culture frequently 

produce immortalised clones of cells (Hermann and Rice, 1983). However the 

spontaneous immortalisation of human cells in culture is very rarely seen (Baden et al.,

1987). The interpretation of this observation maybe that fewer independent mutations 

are required in mice than in humans and therefore they become immortalised much more 

frequently.

Studies of cells from premalignant and malignant SCC-HN indicate that 

acquisition of an immortal phenotype in this cancer is normally a late event (Edington et 

al, 1994) and cell hybrid experiments have also shown that immortality was genetically 

recessive to senescence (Berry et al., 1994) thereby supporting the existence of tumour 

suppressor genes. These results therefore support the hypothesis that multiple genetic 

changes are required for HEK immortality. This is in line with a recent model of 

tumorigenicity proposed for colorectal cancer (Fearon and Vogelstein, 1990) in which at 

least four genetic alterations involving both tumour suppressor genes and oncogenes 

must occur befor the onset of tumour formation. Studies are currently being undertaken 

to identify these genetic events in SCC-HN and the results are discussed further in 

section 1.3.

Other evidence for the requirement of multiple mutations in carcinogenesis come 

from the study of transgenic mice. Transgenic mice have been bred that express c-myc at 

high levels in breast epithelial cells (Leder et al., 1986). Although these mice express a 

large amount of myc protein, they do not develop breast tumours until late in life. 

Therefore c-myc predisposes breast epithelial cells to become tumorigenic but this is 

delayed until other genetic mutations have accumulated. In much the same way, p53 

knockout mice are viable but do not develop tumours until they are six months old 

(Donehower et al., 1992). Again suggesting that a p53 mutation alone is not sufficient 

for malignancy. The latent period is increased in mice heterozygous for p53 

(Donehower et al., 1992) presumably because they have to also acquire loss of the p53 

wild-type allele.
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1.2.1. SV40 model of immortalisation (Ml and M2)

Normal human fibroblasts infected with SV40 virus show an extended lifespan in 

culture and after a period of crisis, immortal variants occasionally appear. It was shown 

by two independent groups that this effect was due to the expression of SV40 T antigen 

(Wright et al., 1989; Radna et al., 1989) and its continued expression was required for 

cells during the extended lifespan prior to crisis and following immortalisation. These 

results led to a proposal of a two stage model to explain this escape from senescence 

(Wright et al., 1989) figure 1.2. The first stage of this so called mortality mechanism, 

Ml, leads to senescence and it can be inactivated or bypassed by SV40 T antigen. This 

allows cells to continue proliferating until crisis occurs. Crisis is caused by the onset of 

stage two (M2) of this mortality mechanism. Rare inactivations of unknown genes in 

this stage give rise to immortal variants.

SV40 large T antigen has been shown to bind to both Rb-1 (De Caprio et al.,

1988) and p53 (Lane and Crawford, 1979; Linzer and Levine, 1979). By use of T 

antigen mutants it has been shown that the binding of p53 and Rb-1 is involved in the 

bypass of the Ml mechanism (Figure 1.2) and that both activities of the T antigen are 

required for proliferation (Shay et al., 1991). Furthermore adenovirus E1B and El A, or 

HPV E6 and E7 (each pair of which is known to bind to p53 and Rb-1 respectively) are 

able to replace T antigen functions and permit cell proliferation (Shay et al., 1991). This 

remarkable similarity between these viruses cannot be by chance and highlights the 

necessity of p53 and Rb-1 inactivation for continued cell proliferation and the bypass of 

Ml.

The genetic events that occur in order to overcome M2 are less well characterised. 

Recent experiments have implicated the necessity for reactivation of the enzyme 

telomerase in immortal cells. Telomerase activity is absent in somatic cells and is only 

normally found in germline cells (Allsopp et al., 1992) where its function is to maintain 

chromosome length (Greider et al., 1990). In human cells transfected with SV40, the 

telomeres continue to shorten as in a normal cell even though the cell now has an 

extended lifespan (Counter et al., 1992). When these cells pass through crisis telomere
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shortening is arrested and the cells have the potential to become immortal (figure 1.2). 

Telomerase has indeed been shown to be re-activated in ovarian carcinoma cells in vivo 

(Countered/., 1994).

Genes other than Rb-1 and p53 whose inactivation is essential for immortalisation 

are continually being discovered. The first step in their discovery is by identifying areas 

of frequent loss on chromosomes suggesting the presence of a frequently inactivated 

tumour suppressor gene (section 1.4.1.).

Somatic cell genetics have also shown that when fibroblasts immortalised by SV40 

virus are fused with normal fibroblasts, hybrids which senesce result (Pereira-Smith and 

Smith, 1981). These hybrids were shown to continue expression of SV40 T antigen in 

their nucleus. This is evidence for the presence of recessive tumour suppressor genes or 

senescence genes which are donated to the hybrid by the normal cells and which must 

also become inactivated for immortalisation to ensue. Micro-cell mediated chromosome 

transfer; where a chromosome induces a senescent phenotype when transferred into a cell 

line, is also currently being used to identify such genes.

Genes and chromosomal regions discovered to be important in immortalisation in 

SCC-HN are discussed further below and are fitted into the M1/M2 mechanism in figure 

1.2 .

1.3 The genetic analysis of immortalisation of human 
squamous cell carcinoma.

1.3.1. ras
Mutations in the ras gene at amino-acids 12 jor 61 produce a protein that binds 

GTP and is constantly signalling for cell growth. Mutations in all three family members 

N-ras, K-ras and more rarely H-ras have been detected at different frequencies in 

different cancer types. It also appears that cancers have a preference for activation of 

only one of the ras proteins, for example 50% of colorectal carcinomas and large 

adenomas harbour a K-ras mutation (Vogelstein et al., 1988). Experimental models 

have also shown that chemically induced mouse tumours exhibit H-ras mutations at an
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early stage and are thought to be the initiating event in carcinogenesis (Balmain et al., 

1984).

In SCC-HN conflicting results have been obtained as to whether ras mutations 

are an important step in carcinogenesis of this tumour type. In India 35% of SCC-HN 

were found to have H-ras mutations (Saranath et al., 1991). However the incidence of 

H-ras mutations in patients from the West were not detected (Clark et al., 1993) or 

detected at an extremely low rate (Sheng et al., 1990). This discrepancy may be 

explained by the exposure of the patients in India to different carcinogens (Chang et al.,

1991) or tumour promoters (Clark et al., 1993). Although this has yet to be tested, the 

chewing of betel quid in India is a common habit that does not exist in the West and this

1 may contain a carcinogen that causes ras mutations and gives these cells a 

selective advantage analagous to the mouse epidermal model (Clark et al., 1993). 

Therefore it appears that ras mutations are not a common genetic event in the initiation 

or progression of SCC-HN although it is clear that when they occur such mutations can 

give a selective advantage to keratinocytes in SCC.

1.3.2. Epidermal growth factor receptor (EGFr).

The EGFr binds the ligands epidermal growth factor (EGF) (Savage et al., 1972) 

and transforming growth factor-a (TGF-a) (DeLarco and Todaro, 1978) which 

activate the intracellular domain tyrosine kinase and promotes cellular growth. Studies 

have shown that the EGFr is frequently overexpressed in SCC-HN (Stanton et al., 1994; 

Weichselbaum et al., 1989; Cowley et al., 1984 and 1986; and Ozanne et al.,1986). 

Inhibition of ligand binding to the EGFr by specific antibodies prevents growth of SCC in 

culture (Masui et al., 1984) and therefore it has been suggested that overexpression of 

the EGFr may enable cells to respond to low levels of EGF and TGF-a and give them a 

selective growth advantage over their neighbours.
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1.3.3 Cyclin D1

The human CCNDl/cyclin D1 gene, also known as PRAD1, is found on 

chromosome llq l3  (D11S287) and has been identified as a G1 cyclin due to its 

induction in G1 by growth factor stimulation (Matsushime et al., 1991; Won et al.,

1992). There are three members of the D-type cyclins, Dl, D2 and D3 all of which have 

been shown to interact with Rb-1 (see section 1.4.2) (Dowdy et al., 1993; Kato et al.,

1993). The D type cyclins bind Rb-1 together with their catalytic partners cdk-4 or cdk- 

6 (Matsushime et al., 1994; Meyerson and Harlow, 1994) causinglRbphosphorylation 

and allow cells to enter S phase (Kato et al., 1993). These G1 cyclins are therefore 

putative proto-oncogenes as their overexpression would lead to deregulation of the cell 

cycle.

Deregulated expression of CCND1 was first identified in parathyroid adenomas 

(Arnold et al., 1989) by a translocation event that had fused the DNA from D11S287 to 

the 5' regulatory region of the parathyroid hormone resulting in a dramatic increase in 

cyclin Dl expression. Chromosomal translocations of llq l3  have also been identified in 

B-cell lymphomas and leukemias (Tsujimoto et al., 1985) and called BCL-1. CCND1 

has since been identified as the gene in this BCL-1 region (Rosenberg et al., 1991; 

Withers et al., 1991) and CCND1 mRNA has been shown to be overexpressed in B-cell 

lines carrying this translocation. The chromosomal region of llq l3  has also been shown 

to be amplified in a variety of human tumours (Lammie and Peters, 1991) such as breast 

cancer (Fantl et al., 1990), bladder cancer (Proctor et al., 1991), SCC of the lung 

(Berenson et al., 1990) and esophageal cancer (Jiang et al., 1992). The cyclin Dl gene 

is also amplified in SCC-HN (Jiang et al., 1992). A more recent study of the above 

SCC-HN cell lines (section 1.1.1.) has also shown a consistent increase in the level of 

cyclin Diexpression (Nickolic et al., submitted). This overexpression of cyclin Dl does 

not correlate with elevated levels of EGFr.

Cyclin Dl overexpression therefore appears to be an important event in 

progression of SCC-HN.
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1.4 Involvement of tumour suppressor genes in SCC-HN.

1.4.1. Identification of potential tumour suppressor genes by

amplification of microsatellites.

The use of microsatellite markers has become favoured over other methods for 

detecting loss of heterozygosity (LOH) on chromosomes e.g. restriction fragment length 

polymorphisms (RFLPs), because it is a faster method and as it is polymerase chain 

reaction (PCR) based it uses relatively small quantities of DNA. Microsatellite 

sequences are CA-GT repeats of unknown function. They are highly polymorphic in 

length and occur approximately every 30-60kb throughout the genome (Weber and May,

1989). Their frequency allows most regions of every chromosome to be examined in 

detail. They are inherited in a Mendelian fashion and therefore due to their differences in 

length, the paternal and maternal microsatellite sequences can be distinguished.

The sequences are amplified using PCR and are separated on a polyacrylamide 

gel. If the individual is heterozygous for a particular marker then both alleles will be seen 

(Weber and May, 1989). Any LOH can be identified by comparing amplified sequences 

from the tumour DNA with that from the same patients normal DNA. If however a 

patient is not heterozygous at a particular marker then only one allele will be seen and it 

is then impossible to identify any LOH. In this case the microsatellite is said to be 

uninformative and another has to be used. PCR allelotyping is not suitable for the 

detection of gene amplifications, small deletions or point mutation and therefore this 

method used in combination with one that does e.g comparative genomic hybridisation 

(Kallioniemi et al., 1992) would be more sensitive.

Although identification of LOH does not confirm the existence of a gene involved 

in malignancy, repeated LOHjat any locus in several different tumours is strong evidence 

supporting the involvement of loss of this gene in carcinogenesis. However a gene 

deletion could also be due to genomic instabilty and not an important genetic event in 

cancer. The comparison of various tumour stages and the identification of sequential 

events is more successful in identifying relevant genes. Identifying regions of LOH is not



sufficient to identify novel suppressor genes. These genes have to be cloned and their 

function and inactivation studied in more detail.

1.4.1.1. Identification of regions of LOH in SCC-HN

Loss of heterozygosity studies have been carried out on the above SCC-HN cell 

lines (Edington et al., 1994; Loughran et al., 1994 and by others) Frequent loss has 

been observed at chromosome 17pl3 (Edington et al., unpublished data) corresponding 

to the p53 gene and on further investigation nearly all immortal SCC-HN were found to 

have p53 missense mutations (Bums et al., 1993). The relevance of inactivation of p53 in 

the progression of SCC-HN is discussed further in section 1.4.3. and by the results in this 

thesis.

Frequent LOH have been shown on chromosome 9. LOH between markers 

D9S171 and D9S157 on 9p21 was identified in 100% of immortal SCC-HN cell lines 

(Loughran et al., 1994) but in none of the senescent cultures. Other reports have shown 

similar LOH at 9p21 in SCC-HN (Zhang et al., 1994; Van der Riet et al., 1994b;

Nawroz et al., 1994), melanoma (Holland et al., 1994), bladder cancer (Cairns et al., 

1993) and malignant mesotheliomas (Cheng et al., 1993). Further support for the 

importance of deletions in this region comes from experiments that introduce a normal 

chromosome 9 into mouse A9 cells by monochromosome transfer which showed that it 

was not tolerated without deletions between the markers IFN and D9S171 (Cuthbert et 

al., 1995).

Recently the Multiple Tumour Suppressor 1 (MTS-1) gene has been mapped to 

this region and found to encode the p l6INK4 gene (Kamb et al., 1994; Nobori et al., 

1994; Serrano et al., 1993). p l6INK4 is a specific inhibitor of cdk4 which is known to 

interact with cyclin D. Loss of p l6INK4 would therefore enhance the cyclin D-cdk4 

kinase activity. This complex is known to phosphorylate and inactivate Rb-1 (see section 

1.3.3) and therefore allow progression of the cell into S phase.

Frequent LOH has also been shown on chromosome 9q in SCC-HN. Several 

markers have shown high frequency of loss between 9q22.3-9q33 (between markers
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D9S127and GSN) (Loughran et a l,1994). Other studies have also shown similar loss on 

9q in SCC-HN (Ah-see et a l, 1994; Quinn et a l, 1994) and in basal cell carcinomas 

(Van der Riet et a l, 1994a) but as yet no gene has been identified.

Consistent losses have also been identified on chromosome 3 in immortal SCC- 

HN cultures (Loughran et a l, unpublished data) at 3p25-pter, 3p21 and 3pl3-14.

Similar losses have been reported in SCC-HN by others. Latif et a l, 1992 showed loss 

at 3pl4-3p26; Maestro et a l, 1993 showed loss mapping to 3p24-ter, 3p21,3 and 3pl4- 

cen and El-Naggar et a l, 1993 showed losses at 3p21 and 3p24 in SCC-HN. A putative 

tumour suppressor gene has been mapped to 3p21, namely the receptor protein-tyrosine 

phosphatase y (LaForgia et a l, 1991) which functions by controlling the levels of 

phosphorylation in the cell cycle. Loss of one allele has been shown in renal and lung 

carcinomas but further investigations are required to study whether its loss plays any part 

in SCC-HN. Interestingly, introduction of normal chromosome 3 by microcell-mediated 

chromosome transfer into an ovarian carcinoma cell line induced senescence and growth 

arrest as well as suppression of tumorigenicity (Rimessi et a l, 1994). Tumours induced 

by chromosome 3 monochromosomic hybrids consistently showed loss in two regions 

3p23-24.2 and 3p21.1-21.2. Taken together these results strongly suggest the presence 

of an as yet unidentified tumour suppressor gene on 3p that is inactivated in a variety of 

cancers including SCC-HN.

Further studies have recently shown that there is also LOH on chromosomes 

lq42, 6ql3-15,7q and 4q in SCC-HN, but not on the X chromosome (Loughran et a l,

In preparation). Interestingly, putative senescence genes have been proposed to reside 

on these chromosomes (chromosome 1, Sugawara et a l, 1990; chromosome 4, Ning et 

al, 1991; chromosome 6, Volz et a l, 1994; chromosome 7, Ogata et a l , 1993 and 

chromosome X, Wang et a l, 1992) but it is not yet clear if these genes are involved in 

SCC-HN.
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1.4.2. Rb-1

The functional inactivation of the retinoblastoma gene (RB-1) in many cancers 

suggests that it operates as a tumour suppressor gene and a negative regulator of cell 

growth (Weinberg et al., 1991). Rb-1 protein is highly regulated during the cell cycle by 

phosphorylation (Buchkovich et al., 1989; Chen et al., 1989). The underphosphorylated 

form of Rb-1 is present in early G1 and prevents progression into S phase by interaction 

with growth promoting proteins via its pocket domain e.g. E2F (Chellappan et al.,

1991). Rb-1 becomes hyperphosphoiylated by cyclin-cdk complexes such as cyclin E- 

cdk-2, or cyclin D-cdk4 (Kato et al., 1993) in mid to late G1 and remains 

phosphorylated until the cells exit mitosis. This hyperphosphorylation has been shown to 

release proteins bound in the pocket domain and thereby allow entry into S phase. 

DNA tumour virus oncoproteins i.e. SV40 large T antigen (Decaprio et al., 1988), 

adenovirus El A (Whyte et al., 1988) and human papilloma virus E7 (Dyson et al., 1989) 

all prevent the growth suppressive effect of Rb-1 by binding to the underphosphorylated 

form in early G1 and displacing the bound growth promoting proteins.

Loss of heterozygosity on 13q has been identified in 50% of SCC from the 

esophagous (Boynton et al., 1991; Huang et al.,1993). A high incidence of loss on 13q 

has also been identified in SCC-HN (Yoo et al., 1994). This loss did not correlate with 

absence of Rb-1 protein suggesting that the loss seen in these studies is associated with 

another as yet unknown tumour suppressor gene which lies distal to the RB-1 gene. The 

Rb-1 protein also appeared normal in the series of SCC-HN cell lines described in section 

1.1.1. (Edington et al., 1994) displaying normal phosphorylation patterns and nuclear 

expression (Nikolic et al., submitted). These cell lines were also shown not to be 

infected with HPV 16 or 18 and therefore Rb-1 has not been inactivated by the E7 

oncoprotein (Edington et al., 1994).

D-type cyclins have been shown to interact with Rb-1 protein (Dowdy et al., 

1993; Kato et al., 1993) and as described in section 1.3.3. cyclin Dl is overexpressed in 

SCC-HN. There has also been shown to be LOH as the p l6INK4 locus in SCC-HN 

(section 1.4.1.1.) and this inactivation of p l6INK4 protein indirectly promotes
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phosphorylation of RB-1 through continuous cyclin D activity. Therefore the functional 

inactivation of Rb-1 has not occurred through direct mutation of Rb-1 in SCC-HN but 

instead via overexpression of cyclin Dl and inactivation of p l6INK4.

1.4.3. p53

More mutations have been reported in the tumour suppressor gene p53 than in 

any other gene to date. Such mutations have arisen in a wide variety of cancers 

(reviewed by Caron de Fromentel and Soussi, 1992) and have outlined the importance of 

p53 inactivation in tumour progression.

1.4.3.1. p53 mutations in human cancer.

The most frequent method of p53 inactivation is by a missense mutation or 

deletion with concurrent loss of the remaining p53 allele. It has been shown that the 

wild-type p53 is phenotypically dominant to mutant p53 (Chen et al., 1990) highlighting 

the necessity for inactivation of both alleles before malignancy can proceed. This is 

however not always the case and rare heterozygous mutations, as reported in this thesis, 

have been reported. It is believed that in these situations the mutation has not lead to a 

functionally inactive p53 protein but to one that can override the effect of the wild-type 

allele and has also possibly gained a function giving the cell a selective advantage.

Conflicting evidence has implied that mutation of p53 is both an early and late 

event in tumorigenesis depending on the type of cancer studied. In colon cancer 75% of 

carcinomas show loss of chromosome 17p in the region of the p53 gene (Vogelstein et 

al., 1988) but such loss is relatively infrequent in adenomas. Similarly p53 mutations 

were found to be more common in carcinoma than adenoma (Baker et al., 1989).

Several groups have documented the occurrence of p53 mutations in astrocytomas. 

Ohgaki et al., 1993, reported that 3 of 11 low grade astrocytomas harboured p53 

mutations and a similar rate was also documented in grade II and El tumours (Von 

Deimling et al., 1992). In another study one group of tumours showed that pairs of low
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grade and recurrent tumours contained the same p53 mutation (Sidransky et al., 1992). 

However another group of tumours in the same study showed that while at first 

appearance, progression to high grade was associated with a de novo p53 mutation, 

closer analysis revealed that a subpopulation of cells were present in the low grade 

tumour containing this same mutation, | therefore supporting the idea that progression is 

associated with a clonal expansion of cells that have acquired a p53 mutation giving them 

a selective growth advantage. A third low grade tumour was shown to have a small 

population of cells with a heterozygous mutation and progression to a higher grade 

occurred by acquiring a different p53 mutation in the second allele. P53 mutations 

therefore seem to occur as both early and late events in astrocytomas.

Chronic myelogenous leukemia (CML) is a myeloproliferative disorder which 

progresses from an initial long chronic phase to an accelerated phase, eventually leading 

to a blast crisis when acute leukemia supervenes. In CML the p53 gene is not 

inactivated by a single point mutation as described in the previous cancers; instead a high 

occurrence of gross structural changes, rearrangements or deletions have been reported 

to occur in the late blastic phase (Feinstein et al., 1991; Ahuja et al., 1991 and Kelman et 

al., 1989).

Some types of cancer arise because of obvious aetiological contributions from 

exogenous as well as endogenous mutagens. In hepatocellular carcinomas (HCC) for 

example, hepatitis B and aflatoxin Bl, a potent liver carcinogen, are well known risk 

factors. Murakami et al., 1991, found that p53 mutations were only present in advanced 

HCC. Studies also identified a mutational hotspot at codon 249, a G—>T transversion 

shown to be caused by exposure to aflatoxin Bl (Hollstein et al., 1991).

P53 mutations have been shown to occur as relatively early steps in non-small 

cell lung cancer (NSCLC) with G—»T transversion also being a common event (Suzuki et 

al., 1992). This mutation has been shown to correlate with exposure to carcinogens in 

tobacco such as benzopyrene (Hollstein et al., 1991).

This thesis is concerned with the role that p53 mutations play in the progression 

of squamous cell carcinomas of the head and neck (SCCHN) and it has become clear 

from a variety of studies that this is a very common event. Work in our group has shown
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that 33% of our human squamous cell carcinomas (SCC) and 50% of our cell lines 

derived from SCC overexpressed p53 protein. 80% of these cell lines were found to 

harbour p53 mutations (Bums et al., 1993) and the remainder fail to express a normal 

level of p53 protein (Edington et al., 1995) In this study we could not detect a 

correlation between tumour stage, p53 mutation or treatment history. Our group has 

also shown that p53 mutations detected in primary SCC of the tongue are also detected 

in the corresponding lymph node metastases indicating that keratinocytes harbouring 

these p53 mutations possess a selective advantage throughout SCC progression. Other 

studies showed similar results to ours (Gusterson et al., 1991) and slightly higher cases 

of elevated p53 expression were reported by Field et a/.,(l 991) and Maestro et al.,(1992) 

of 67% and 60% respectively. In the case of SCC of the upper aerodigestive tract 

mutations were commonly G—>A transitions or G—»T transversions consistent with the 

known mutational spectra produced by cigarrette smoke (Bums et al., 1993; Maestro et 

al., 1992 and Sakai et al., 1992). SCC of the epidermis have also been reported to have 

a high incidence of p53 mutations (Brash et al., 1991; Pierceall et al., 1991 and Moles et 

al., 1993). Mutations in these SCC were commonly CC—»TT double base changes 

suggesting UV light to be the aetiological risk factor.

Inactivation of p53 not only occurs by genetic mutations but also by the 

interaction of viral oncoproteins. SV40 large T antigen, Adenovirus E1B and human 

papilloma vims (HPV) E6 oncoproteins have all been shown to sequester p53. The 

DNA of certain HPV types including HPV 16,18, 31, 33 and 39 is found in 85% of 

cervical carcinomas (Riou et al., 1990). These viruses are considered to be high risk 

because of their association with cancer and high grade intra-epithelial lesions. Low risk 

HPV types e.g. HPV 6 and 11 have a similar tissue specificity, yet a lower affinity for 

p53 and are associated primarily with benign lesions that are low risk for malignant 

progression. In primary HPV positive cervical carcinomas, the p53 gene is wild-type 

(Wrede et al., 1991). E6 forms a protein complex with p53 and targets it for ubiquitin- 

mediated degradation (Scheffner et al, 1990). In HPV negative tumours p53 mutations 

are frequent (Srivistava et al., 1992a; Crook et al., 1992, and Kaebling et al., 1992) and 

these tumours are associated with poor prognosis.
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Families have been discovered with inherited autosomal dominant p53 mutations. 

This has been termed the Li-Fraumeni syndrome (LFS) after its discoverers (Li et al., 

1988) and families are defined as containing an individual (the proband) with a sarcoma 

diagnosed before 45 years, a first degree relative with cancer before 45 and with an 

additional first or second degree relative with cancer before 45 or a sarcoma at any age. 

LFS patients display diverse tumour types such as soft tissue sarcomas, breast 

carcinoma, brain tumours, osteosarcoma, leukemia and adrenocortical carcinoma. Such 

tumours develop at an unusually early age and multiple primary tumours are common.

Germline p53 mutations were first reported by Malkin et al., 1990, all of which 

occurred in exon 7 and were located between codons 245-258. More recently this 

region has been extended (Law et al., 1991; Malkin et al., 1992; Birch et al., 1994.) and 

a hotspot for mutation has emerged at codon 248. P53 is found in a heterozygous state 

in the normal cells of an LFS individual (Malkin et al., 1990; Srivistava et al., 1990 and 

1992b) and the same mutant allele is retained in tumours with loss of the wild-type allele. 

This finding supports the two hit hypothesis for tumour progression (Knudson et al., 

1971) in that the loss of p53 heterozygosity constitutes the “second hit” in tumours 

arising in LFS individuals. Mutant p53 protein and RNA is expressed at a low level in 

normal fibroblasts from family members (Malkin et al., 1990; Srivistava et al., 1992b) 

and does not exert a trans-dominant effect on the wild-type p53 present (Milner and 

Medcalf, 1991) stressing the need for loss of wild-type p53 during tumour progression. 

Indeed the murine P53245 mutant (corresponding to human P53248 hotspot mutant) has 

been shown to retain most of the properties of wild-type p53 but was found to be 

transcriptionally inactive (Hao et al., 1993) suggesting LFS mutations may be loss of 

function mutants.

It is also important to note that when normal fibroblasts from LFS individuals are 

placed in culture they develop changes in morphology, anchorage independant growth, 

chromosome abnormalities and escape senescence (Bischoff et al., 1990a) suggesting 

that the cells are prone to spontaneous mutations that predispose them to 

immortalisation. As with LFS fibroblasts, fibroblasts from p53 null mice when placed in
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culture also overcome senesence and become immortal (Harvey et al., 1993; Tsukada et 

a l, 1993).

Kemp et al., 1993 used p53 null and heterozygous mice to study the initiation, 

promotion and progression of carcinogenesis in vivo and to attempt to answer the 

question of whether p53 inactivation is an early, or initiating event in tumour 

development or a later event inducing progression. In this study mice treated with the 

chemical carcinogen DMBA followed by repeated treatments of the tumour promoter 

TPA developed well-differentiated benign skin papillomas. A proportion of such 

papillomas developed into SCC and further progression lead to a highly invasive spindle 

cell carcinoma. It was observed that papilloma yield was similar in wild-type and 

heterozygous mice but reduced in p53 null mice. In contrast, the rate of progression to 

carcinoma was increased in the null and heterozygous mice compared with the wild-type 

mice. The appearance of carcinomas in the heterozygous mice was associated with the 

loss of the wild-type allele. Therefore the loss of p53 does not increase the incidence or 

shorten the latency of appearance of papillomas but it does appear to greatly enhance the 

malignant progression. In this system then, p53 inactivation does not appear to act as an 

initiation event in carcinogenesis but allows the cells to progress towards a more 

malignant phenotype.

Asking the same question in a human in vivo study however suggested that p53 

mutations were an early and maybe an initiating event (Nees et al., 1993). This study 

identified p53 overexpression at epithelial sites distant from the primary SCC-HN tumour 

in cancer patients. Such overexpression was not due to a normal response to DNA 

damage and correlated with a p53 mutation, an increased proliferation rate and a 

dedifferentiated phenotype. Furthermore different p53 mutations were detected at 

different tumor-distant sites suggesting not a monoclonal but a multifocal polyclonal 

process occurs in SCC-HN development. These results strongly suggest that p53 

inactivation maybe an early event in carcinogenesis and these cellular changes remain 

inconspicuous until other genetic events have accumulated either from genetic instability 

or by exposure to a carcinogen such as alcohol in the oral cavity. These conclusions are 

in contrast to the findings using the mouse model described above. In this system H-ras
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mutations have been identified as an initiating event (Balmain et al., 1984) and as 

discussed in section 1.3.1. this has little relevance to SCC-HN except in the presence of a 

tumour promoter (Clark et al, 1993). It would be interesting to ascertain whether the 

timing of a p53 mutation is dependent on the presence or absence of a tumour promoter 

and therefore whether in the above mouse model a p53 mutation has occurred earlier but 

lies dormant until other genetic events induced by exposure to the tumour promoter have 

occurred

As the progression to malignancy is a multistep pathway involving the activation 

of oncogenes and inactivation of tumour suppressor genes, it appears to not be important 

when p53 is inactivated, as this appears to be different depending on the system studied.

It does however appear that its inactivation by whatever means is essential if 

carcinogenesis is to proceed.

1.4.3.2. Structure of p53.

The human p53 gene is found on chromosome 17pl3.1 (McBride et al., 1986) 

and this region is commonly deleted in tumours (Baker et al., 1989, Nigro et al., 1989) 

illustrating another mechanism for p53 inactivation. The gene is large (20kb in length) 

and is comprised of eleven exons, the first of which is non-coding and separated from 

the rest by a large intron (lOkb). The p53 gene has been conserved through evolution 

and comparison of sequences from man, rat, mouse, frog, chicken and bony fish has 

identified five highly conserved domains (Soussi et al., 1990) among amino acid residues 

13-19,117-142,171-181, 234-258 and 270-286 (I-V illustrated in figure 1.3). A 

comprehensive study of mutations found in various tumour types, as discussed in the 

previous section, has shown that the majority of p53 mutations occur in four of these 

conserved regions (II-V) indicating that these areas must be important functional areas of 

the p53 protein (Caron de Fromentel and Soussi, 1992). Several amino acid hotspots for 

mutations have also been identified as shown in figure 1.3.
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The amino-terminal region of p53 (residues 1-73) when fused to Gal 4 DNA 

binding domains has been shown to activate the transcription of a reporter construct in 

vitro (Farmer et al., 1992) and in mammalian cells (Fields and Jang, 1990; Raycroft et 

al., 1990; Kern et al.,1992). Various p53 mutants however were shown to be 

transcriptionally inactive or temperature sensitive in this assay (Raycroft 1991., Unger et 

al., 1992) suggesting that they are loss of function mutants or conformationally altered.

The central region of the p53 protein is very hydrophobic and proteolytic 

digestion of p53 has revealed a protease resistant fragment (residues 102-292) which is 

capable of binding DNA (Bargonetti et al., 1993; Pavletich et al., 1993). This DNA 

binding has been shown to be sequence specific and p53 consensus binding sites have 

been identified by a variety of groups. Bargonetti et al., 1991, first showed that p53 

recognises a GC-rich domain (gggCGG) near the origin of SV40 DNA replication. 

Another binding site was identified (Kern et al., 1991) in the ribosomal gene cluster 

(RGC) sequence (TGCCTTGCCTggactTGCCTggcctTGCCT) and binding was 

shown to be disrupted by guanine methylation (capitals represent essential nucleotides 

for p53 binding). A palindromic p53 binding sequence (ggaCaTGcccgggCATGtc) was 

isolated (Funk et al., 1992) by amplification of DNA bound to p53. By a similar method 

a different consensus binding site for p53 has been established (El-Deiry et al., 1992) 

consisting of two copies of a 10 bp motif PuPuPuC(A/T)(T/A)GPyPyPy separated by 

0-13 base pairs. The heterogeneity of these binding sequences outlines the complex 

nature by which p53 binds DNA in a sequence specific manner and hinders the finding of 

genes activated specifically by p53 (discussed further later).

The p53 protein has been shown to form homotetramers (Stenger et a l, 1992; 

Friedman et al.,1993). The region involved in this oligomerization (see figure 1.3) has 

been identified as an amphipathic alpha helix followed by a stretch of basic amino-acids 

at the carboxy-terminus of the protein (Sturzbecher et al., 1992). Use of the yeast two 

hybrid system showed that the smallest region in this fragment sufficient for 

oligomerisation is amino-acids 331-393 (Iwabuchi et al., 1993) and this has recently been 

shortened to residues 319-360 (Sakamoto et al., 1994). A 3D analysis of this 

oligomerisation domain (residues 319-360) by NMR spectroscopy (Clore et al., 1994)
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showed that it formed a symmetric tetramer made up of a dimer of dimers. Each 

monomeric unit contains a (3 strand and an a  helix. Each subunit interacts with another 

subunit such that the helices and [3 strands are antiparallel.

The carboxy terminal region of p53 (residues 330-393) which is highly basic 

appears to be involved in non-specific DNA binding (Pavletich et al., 1993; Wang et al., 

1993) and together with the oligomerization domain this region may facilitate the correct 

binding to DNA.

The conformation of p53 appears to be disrupted by metal chelating agents 

(Pavletich et al., 1993), an organic mercurial reagent which targets cysteinyl residues and 

low concentrations of soft metals such as mercury or cadmium (Hainaut and Milner,

1993) suggesting that metal ions, most probably zinc, bind to cysteinyl residues 

stabilizing the tertiary structure.

Recent determination of the 3D structure of p53 has helped understand how the 

above functional domains of p53 spatially fits together and has interestingly identified the 

physical relevance of the hotspot mutations discussed previously (see figure 1.4). The 

crystal structure of a complex containing the core domain of human p53 and a DNA 

binding site (El-Deiiy et al., 1992) has been determined by Cho et al., 1994. The core 

domain structure (see figure 1.4) consists of a |3 sandwich that serves as a scaffold for 

two large loops and a loop sheet helix motif (LSH) The two loops (L2 and L3) are 

indeed held together in part by a tetrahedrally coordinated zinc atom, the ligands for 

which are Cys176, His179 on L2 and Cys238, Cys242 on L3. It has been revealed that the 

structures involved directly in DNA binding correspond to the conserved regions of the 

core domain and contain the mutational hotspots. The LI loop and (3 hairpin that 

follows it correspond to conserved region II (residues 117-142) and the H2 helix motif 

corresponds to region V (residues 270-286). These two structures make contacts with 

the major groove of the DNA (figure 1.4). Minor groove contacts in the AT rich region 

of the binding site are made by L3 which corresponds to conserved region IV (residues 

234-258). L2 at the end of the f3 sandwich does not directly interact with DNA but is 

involved in extensive interactions with L3 and it coincides with region III (residues 163- 

195). Mutations are most frequent in L3 (30% of mutations in tumours), the LSH motif
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(25%) and L2 (17%). Six hotspot mutations are known Arg248, Arg273, Arg175, Gly245, 

Arg249, Arg282 and two of these Arg248 and Arg273 which have the highest mutational rate 

directly contact the DNA The other four residues appear to play a critical role stabilizing 

the structure of the DNA binding surface of p53. The |3 sandwich is not a frequent target 

for mutation but some are found in the hydrophobic core closest to the DNA binding 

surface.

The conformation of the p53 protein can be identified by a variety of antibodies. 

PAb 1620 recognises the wild-type p53 protein whilst PAb240 recognises a so called 

"mutant" form of p53 and these are frequently used in immunocytochemical assays to 

detect mutant p53. The epitope for PAb240 (residues 212-217) (Stephen and Lane,

1992) has been shown in this crystal structure to lie in the hydrophobic core and is 

therefore inaccessible to an antibody. In order for the antibody to bind, the protein has 

to unfold and therefore this antibody recognises more a denatured form of p53 than a 

"mutant" form. Two classes of mutant have been identified by this study. Class I (e.g. 

Arg273) mutants which do not bind hsc70 are PAb240‘/1620+, yield a stable core upon 

proteolytic digestion and fail to bind DNA but still transactivate reporter constructs 

(Zhang et al.,1993; Chen et al., 1993). Class II mutants (e.g.Arg175) which are unfolded 

are PAb240+/1620", bind hsc70, are highly sensitive to proteolysis and do not 

transactivate.

The p53 protein is a nuclear protein and three nuclear localisation signals are 

clustered at the carboxy terminus (Shaulsky et al., 1990) as shown in figure 1.3. NLSI is 

the major nuclear localisation signal and is conserved between species. NLSII and III are 

less effective singularly and efficient nuclear localisation requires all three signals.

The p53 protein is extensively post-transcriptionally modified, mostly by 

phosphorylation. This enables the cell to control p53's many possible roles. Most 

known phosphorylation sites are at the N-terminus (see figure 1.3) where DNA-PK 

(double-stranded DNA activated protein kinase) phosphorylates human p53 at serines 15 

and 37 and mouse p53 at serines 4 and 15 (Lees-Miller et al., 1992) and 7, 9,18 and 37 

(Wang et al., 1992). Mutation of Ser-15 to Ala has been shown to partially block the 

ability of p53 to arrest cell cycle progression at Gl/S and also leads to stabilisation of the
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protein. Therefore phosphorylation at this site may contribute to the activation of p53 as 

a growth suppressor (Fiscella et al., 1993). Casein kinase I (CKI) has also been shown 

to phosphorylate the N-terminal region at serines 4, 6 and 9 in mouse p53 (Milne et al., 

1992a). A DNA repair-defective mutation in Saccharomyces cervisiae is linked to a 

protein kinase similar to CKI offering support for a link between DNA damage, p53 and 

phosphorylation (discussed in section I.4.3.6.). A third kinase, MAP (mitogen-activated 

protein) kinase has been shown to phosphorylate mouse p53 at threonine 73 and 86 

(Milne et al., 1994). It has been shown that MAP kinase can be activated by exposure of 

cells to UV radiation, possibly suggesting that regulation of gene transcription following 

UV damage may be mediated through the MAP kinase pathway.

The C-terminal DNA binding domain is phosphorylated in vitro at Ser-315 in 

humans and at the corresponding Ser-309 in mice by both the cyclin A and cyclin B 

associated forms of p34cc*c2 (Bischoff et al., 1990b; Sturzbecher et al., 1990) suggesting 

that p53 is regulated by cell cycle progression. Indeed p53 is known to become highly 

phosphorylated upon entry into S phase suggesting that/in facta Gl/S cyclin dependant 

kinase (which has as yet not been identified) may actually be the kinase that 

phosphorylates p53 in vivo. P53 is known to be a substrate for two isoforms of Protein 

kinase C (PKCII and HI) but as yet no sites have been defined although they are thought 

to lie within the C-terminal regulatory domain. Casein kinase II (CKII) targets many 

nuclear proteins involved in growth regulation e.g. jun, myc, max and also the 

transforming proteins of the DNA tumour viruses Adenovirus El A, HPV E7 and SV40 

large T antigen. It is constitutively active but also stimulated by growth factors and is 

therefore an important player in regulating growth. CKH has been shown to 

phosphorylate mouse p53 at Ser-389 and human p53 at Ser-392 (Meek et al, 1990). 

Binding by CKII and coincident phosphorylation activates the specific DNA binding 

function of p53 (see figurel.3). Hupp et al., 1992 has shown that this activation can be 

mimicked by other agents including deletion of the C-terminal 30 amino-acids, and by 

binding of dnaK (the bacterial homologue of hsp70) or the monoclonal antibody 

PAb421. It is thought that these interactions may cause a conformational shift in the C- 

terminus of p53 thereby exposing and activating a cryptic DNA binding activity.
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Mutation of this CKII phosphorylation site in mouse (Milne et al., 1992b) abolishes the 

growth suppressor activity of p53 in SV3T3 cells. However, apparently contradictory 

results showed that mutation of Ser-392 on human p53 produced a mutant that was 

indistinguishable from wild-type p53 (Fiscella et al., 1994) concluding that 

phosphorylation of Ser-392 was not necessary for wild-type functions in vivo. A 

possible explanation for this difference maybe that mouse and human p53 differ in their 

phosphorylation requirements and proper regulation may only occur on the appropriate 

cellular background. One other possible function of p53 not yet investigated maybe to 

target the CKII protein to specific intracellular locations. Phosphorylation may then 

release the enzyme after p53 has bound to specific DNA sites.

1.4.3.3. Wild-type p53 is anti-proliferative.

Early experiments showed that in conjunction with activated c-Ha-ras, wild-type 

p53 could transform early passage rodent cells (Eliyahu et al., 1984, Jenkins et al., 1984 

and Parada et al., 1984). However as more cDNA clones were sequenced it became 

apparent that these experiments were carried out using mutant p53’s. Wild-type p53 

was unable to cooperate with ras and furtherm ore wild-type p53 actually inhibited the 

transformation induced by other oncogenes and ras (Eliyahu et al., 1989 and Hinds et 

al., 1989). Introduction of wild-type p53 into colon (Baker et al., 1990) and bone 

tumour cell lines (Chen et al., 1990 and Diller et al., 1990) confirmed that 

overexpression of wild-type p53 was antiproliferative. When a wild-type p53 under the 

control of an inducible promoter was expressed in a human glioblastoma cell line 

expressing an endogenous mutant p53, the cells were induced to growth arrest in G1 

(Mercer et al., 1990). These experiments were elegantly confirmed by using a mouse 

temperature sensitive p53 (p53 vall35) which behaves as a mutant at 37.5-39.5°C and as 

a wild-type at 32°C. Rat embryo fibroblasts were found to be transformed by this 

mutant and an activated ras gene at 37°C, but were growth arrested in G1 when shifted 

to 32°C (Michalovitz et al., 1990; Ginsberg et al., 1991; Martinez et al., 1991). P53
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was therefore termed as negative regulator of cell growth and classed as a tumour 

suppressor gene.

Both p53 mRNA and protein levels are low in normal mouse 3T3 fibroblasts 

growth arrested in GO by serum starvation (Reich et al., 1984), or in G1 by isoleucine 

depletion (Steinmeyer et al., 1990), in resting diploid fibroblasts (Mercer et al., 1984) 

and in resting peripheral T lymphocytes (Calbretta et al., 1986). When cells are 

stimulated to enter the cell cycle the level of p53 mRNA and rate of protein synthesis 

increases reaching a peak near the Gl/S boundary just before the onset of DNA 

replication. Normal p53 protein has a short half-life of 5-20 minutes but this is 

dependent on the cell type’for example the p53 protein in normal human keratinocytes 

has a half-life of 3-5 hours (Hubbert et al., 1992 and Delmolino et al., 1993). Many p53 

mutations give rise to a highly stable protein with an increased half life. This stabilised 

protein,unlike the rapidly turned over wild-type form,can be detected by 

immunohistochemical techniques and this is frequently used as an early and easy 

indicator for the presence of a mutation.

As well as its antiproliferative function many investigators believe that p53 can 

also promote growth. It is believed that these opposing functions can be achieved by 

alternating conformations of the p53 protein (Reviewed by Milner 1994 and Ullrich et 

al., 1992). It has been observed that p53 can adopt at least three different forms as 

determined by antibody reactivity. One form suppresses cell growth and maintains 

quiescence, a second form activates and promotes cell proliferation whilst a third form 

allows ongoing cell proliferation (see figure 1.5) and acts as a sensor ready to switch in 

response to positive or negative growth regulatory signals.

As described in the previous section modification of the carboxy terminus of p53 

has been shown to be a negative regulator for DNA binding (Hupp et al., 1992). The 

carboxy terminus was shown to be important during growth suppression by its loss of 

reactivity with the antibody PAb421 (Ullrich et al., 1992) which recognises an epitope at 

the carboxy terminus. This loss of reactivity was accompanied by increased 

phosphorylation possibly by CKII. When cultured in serum free medium quiescent 

primary lymphocytes continually synthesize the p53 421-  form (Milner et al., 1984).
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When these cells were exposed to mitogens there was a conformational switch in 

synthesis from 421" to 421+reactive forms of p53 (figure 1.5). Evidence for the 

requirement of p53 during mitogenic activation came form early experiments which are 

frequently overlooked. The micro-injection of anti-p53 antibodies (PAbl22) into nuclei 

of serum starved fibroblasts, early (2-3 hours) after re-stimulation with serum, prevented 

the entry of the cells into S phase (Mercer et al., 1982). Injection any later and cell cycle 

progression was not interrupted. The epitope for the antibody PAbl22 overlaps with 

that of PAb421 and therefore this experiment recognises the presence of the 421+ form.

Therefore as shown in figure 1.5 p53 421" is functional in cell growth 

suppression and in the maintenance of quiescence. On mitogenic stimulation p53 

switches to a 421+ form which plays a positive role in the early cell growth response. 

(Step 1). There is also conformation switching of p53 recognised by a different antibody 

PAbl620. The form of wild-type p53 most commonly detected in proliferating cells is 

the 421+/1620+ and this form is called the sensor form awaiting modification in order to 

promote or suppress growth. The above form associated with mitogenic commitment is 

indistinguishable from the conformation 421+/1620" which promotes cell growth. In 

order to function as a suppressor the sensor form looses 421 reactivity and is 

phosphorylated at its carboxy terminus (step 3) 421"/1620+. This 1620+ conformation is 

a prerequisite for DNA binding. Stabilisation of p53 in the sensor form is believed to be 

dependant on the presence of metal ions (Hainaut and Milner, 1993). Oxidizing and 

chelating agents reversibly disrupt the tertiary structure in favour of the promoter form 

1620" (step 2b). Recovery to the sensor form is energy dependant and may require the 

interaction with hsc70 and reducing agents (step 2a).

Heat shock proteins are a ubiquitous group of proteins often present at low levels 

in normal cells. Upon physiological stress, the synthesis of these proteins is dramatically 

increased. Hsc 70 (74kDa) was first shown to bind to mutant but not wild-type p53 

(Hinds et al., 1987). Hsc 70 complexes with dimers and possibly monomers of p53 and 

requires the terminal 28 amino-acids of p53 for this interaction. Using the temperature 

sensitive mutant p53va1135, Hainaut and Milner, 1992 showed that hsc70 binds to the 

1620" conformation and is released when p53 is induced to re-fold into the 1620+
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conformation. This observation implies that hsc 70 is involved in regulation of p53 

conformation and its ultimate function.

1.4.3.4. Molecular properties of p53 mutants.

Unlike wild-type p53, mutant p53 has lost its growth suppressive properties. 

(Baker et al., 1990; Chen et a l, 1990; Frebourg et al., 1992). Studies have shown that 

several mutants have lost this normal p53 function by their inability to' transactivate _ 

genes either by losing their capacity to bind sequence specific DNA (Bargonetti et al., 

1992; Zhang et al., 1993) or by loss of their transcriptional activity (Raycroft et al., 

1991; Scharer and Iggo, 1992). However, mutational analysis has shown that not all 

p53 mutants are purely loss of function mutants. Several tumours have been shown to 

carry heterozygous p53 mutations and in these cases it has been proposed that the 

mutant p53 inactivates the wild-type function in a trans-dominant negative fashion. In 

contrast to wild-type p53, mutant p53-^^ when transfected into primary rat embryo 

fibroblasts can cooperate with ras to cause transformation of the cells in culture (Hinds 

et al., 1990; Slingerland et al., 1993) and this has also been shown for other p53 

mutants (Finlay et al., 1988; Halevy et al., 1990). In order to achieve this the mutant 

p53 must be able to inactivate the endogenous wild-type p53. Sun et al., 1993 showed 

that the dominant negative effect of mutant p53 is dosage dependant. Wild-type and 

mutant pSS^^SO were cotransfected into Saos-2 cells and tested for their ability to 

transactivate a reporter construct. As more mutant p53 was transcribed the level of 

transcription decreased and complete inhibition was achieved at a ratio of one wild-type 

to three mutant p53 molecules. This dose-dependant dominant negative effect was also 

seen for loss of growth suppression. Expressing the same mutant p53 into JB6 

promotion resistant P'cells that contained endogenous wild-type p53, promoted growth 

of cells in soft agar in the presence of TP A (Sun et al., 1993). This dominance of the 

mutant p53 over the endogenous wild-type p53 was also shown to be dose-dependant. 

Further studies have shown that this effect is only seen in situations where mutant and 

wild-type p53 proteins are co-translated and does not occur simply by mixing (Milner
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and Metcalf, 1991). Other dominant negative mutants identified are p53ser151} 

p53lle247j p53pro273

Wild-type p53 is known to exist as homotetramers and it has been proposed that 

mutant p53 acts in this dominant negative fashion by either forming mutant 

homotetramers or wild-type/mutant heterotetramers with one, two or three mutant p53 

molecules. Such complexes are thought to have a lower affinity for DNA binding or 

adopt a conformation with reduced transcriptional activity. This dominant-negative 

inhibition of wild-type p53 increases as more mutant p53's form the tetramer. Recently 

the in vivo existence of dominant negative mutant p53's has been questioned. In the 

above transfection experiments mutant p53 is expressed at much higher levels than the 

endogenous wild-type p53 and therefore may not be physiologically relevant. Frebourg 

et al., 1994 elegantly used a bicistronic vector to co-express equal amounts of wild-type 

and several different mutant p53's into Saos-2 cells. It was shown in this case that 

mutant p53 did not inhibit the transcriptional or growth suppressive activities of wild- 

type p53.

When mutant p53 alleles are introduced into non-tumorigenic cell lines such as 

the LI 2 Abelson murine leukemia virus p53 nonproducer cell line, the tumorigenic 

potential of these cells is enhanced (Wolf et al., 1984). In such cases the mutant p53 has 

not acted in a dominant negative manner and therefore seems to have gained a function. 

The ability of mutants to gain a function was confirmed using the murine fibroblast (10)3 

cell line which is devoid of endogenous wild-type p53 (Dittmer et al., 1993).

Introduction of p53 mutants 143ala, 175his, 248trp and 273his increased the 

tumorigenicity of this cell line and furthermore these mutants were shown to stimulate 

expression from the enhancer promoter region of the MDR gene. These mutant p53's 

therefore appear to not only have lost their wild-type p53 properties but have also gained 

a function enabling them to support cellular growth in the absence of endogenous wild- 

type p53. The p53 mutants 175his and 273his when co-transfected with wild-type p53 

were unable to bind to a p53 specific DNA binding region suggesting that these mutants 

have inactivated the wild-type p53 activity in a dominant negative manner (Bargonetti et 

al., 1992). In the same experiment the Li-Fraumeni mutant p53^^trP was unable to
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inactivate the wild-type p53 protein and the complex displayed nearly wild-type levels of 

DNA binding. Other assays showed the same mutant had lost its growth suppressive 

property (Frebourg et al., 1992) and was unable to activate transcription (Scharer and 

Iggo, 1992). This mutant is expressed in a heterozygous state in the normal cells of Li- 

fraumeni patients (Malkin et al., 1990) and is tolerated because it cannot abolish wild- 

type p53 activity in a dominant negative manner (Milner and Metcalf, 1991). Instead this 

mutant appears to predispose the cell to transformation by selecting for loss of the wild- 

type p53 allele and acquiring a gain of function (Dittmer et al., 1993) that acts to 

promote transformation in the absence of the wild-type p53 allele.

These observations suggest that the phenotype of mutant p53 is variable 

depending on the particular mutation and several mechanisms have been identified by 

which each mutant p53 can overcome the wild-type p53 properties and promote 

transformation.

1.4.3.5. Molecular functions of wild-type p53

How p53 actually exerts its anti-proliferative effect is currently being investigated 

in a huge number of laboratories. Two hypotheses have been suggested. The first 

implicating a direct interaction of p53 on the DNA replication machinery and therefore 

having a direct effect on the cells DNA replication. The second suggests that p53 may 

also/ or alternatively regulate directly the expression of other genes involved in negative 

growth regulation or generally by interacting with transcription factors.

Co-transfection of p53 and plasmids with the SV40 origin of replication into T 

antigen expressing Cosl cells inhibited the replication of these plasmids (Braithwaite et 

al., 1987; Friedman et al., 1990). In vitro experiments have shown that murine wild- 

type p53 can block the binding of DNA polymerase a  to the large T antigen (Gannon 

and Lane, 1987) and also inhibit its helicase activity (Wang et al., 1989) whereas mutant 

p53 could do neither. Therefore from these experiments it could be envisaged that p53 

may directly affect the assembly and function of DNA replication complexes during S
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phase. This inhibition was, however,shown to require equimolar concentrations of large 

T and p53. In a situation (in vivo) where large T antigen is in an excess to wild-type p53 

(i.e. primary rhesus kidney cells), it was found that wild-type p53 exerted no inhibitory 

effect on SV40 DNA replication as compared to a mutant p53 that was deficient in 

binding large T antigen (Von der Weth and Deppert, 1993) Therefore in an in vitro 

system where wild-type p53 is not at physiological concentrations, SV40 DNA 

replication is probably inhibited by the complexing of all the T antigen to p53, a situation 

never encountered in vivo. Also when cells expressing a temperature-sensitive mutant 

p53 were released from the temperature block they continued to the next cycle rather 

than stopping in S phase even when wild-type p53 was expressed (Martinez et al., 1991). 

If p53 interacts with DNA polymerase it would be expected to act more like a DNA 

synthesis inhibitor (e.g. aphicolin) which when added to cells, abruptly arrests them in S 

phase (Mercer etal., 1991).

More recently p53 has been shown to physically interact with and inhibit a 

cellular DNA replication factor, the ssDNA binding protein complex, RPA (Dutta et al.,

1993). RPA is the first cellular factor recruited to the initiation complex and its ability to 

bind to ssDNA is essential for the unwinding of DNA at the origin of replication. 

Interaction of p53 with RPA inhibits the ability of RPA to bind to ssDNA in vitro. 

However mutant p53 has also been shown to bind and abolish RPA binding to ssDNA 

and the in vivo relevance of this has yet to be investigated.

The structure of the p53 protein as discussed above has all the hallmarks of a 

transcription factor. The p53 protein has been shown to regulate the transcription of a 

variety of genes containing p53 responsive elements. The promoter for the hsc70 

protein, shown above to regulate the conformation of p53, is repressed by wild-type p53 

(1620+ form) therefore providing a feedback loop whereby hsc70 is only expressed when 

the 1620" form is more abundant. It is believed that this repression may occur via direct 

interaction of p53 with CBF, the CCAAT binding factor (Agoff et al., 1993). Wild-type 

p53 has also been shown to repress the promoters of c-fos (Kley et al., 1992), IL-6, (3- 

actin and MHC (Santhanam et al., 1991) in vitro. As no sequence specific p53 binding
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sites have been identified in any of these genes, repression by wild-type p53 may be 

mediated by its ability to bind to TBP, the TATA box binding subunit of the RNA 

polymerase II general initiation factor TFTID (Truant et al., 1993; Chen et al., 1993; 

Mack et al., 1993). However, only monomeric p53 has been shown to bind to I TBP 

although most of p53 in vivo exists as tetramers and this interaction is relatively weak. It 

is possible that what is observed is a consequence of p53 overexpression and has little 

relevance in vivo. It may in factbe that overexpression of p53 in these systems 

sequesters TBP therefore preventing its use in any specific transcription and a general 

downregulation in transcription is seen as a consequence. The fact, however}that p53 

binds TBP at all is consistent with its role as a transcriptional activator as it has been 

suggested that this association is a general characteristic of transactivators (Truant et al.,

1993).

Several other target genes for p53 have been identified by the presence of a p53 

specific DNA binding site. One such gene GADD45 (see below) has a p53 responsive 

element located in its third intron and has been shown to be induced by wild-type p53 

(Kastan et al., 1992). Another genomic p53 responsive element has been identified in 

the murine muscle-specific creatine kinase (MCK) gene (Weintraub et al., 1991). This 

element has been shown to closely match the consensus binding site for p53 (El-Deiry et 

al., 1992) and is activated in vitro by wild-type but not mutant p53. A p53 responsive 

element has also been identified in the first intron of the gene Thy 1. The biological 

relevance of p53 regulation of these two genes, MCK and Thy 1, is not yet clear but it is 

of interest to note that both genes are expressed in differentiation pathways (MCK in 

muscle differentiation and Thy 1 in T lymphocytes and the brain) and may highlight a 

possible role for p53 in differentiation (see section I.4.3.8.).

1.4.3.6. p53 recognises DNA damage.

Studies now indicate that p53 may play a role in the cellular response to DNA- 

damaging agents that specifically induce strand breaks such as actinomycin D, X-rays 

and y-irradiation. Irradiation of cells rapidly increases the levels of p53 (Maltzman and
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Cyzyk, 1984; Kastan et al., 1991a; Kuerbitz et al., 1992) and initiates a G1 arrest 

(figure 1.6). This growth aiTest may allow cells time to undergo necessary repair to 

damaged DNA before proceeding to DNA synthesis. Failure to repair damaged DNA 

may result in point mutations or deletions being incorporated into the genome during 

DNA replication and division. Cells lacking wild-type p53 or expressing mutant p53 do 

not undergo radiation induced G1 arrest (Kastan et al., 1991a; Kuerbitz et al., 1992) 

nor do cells immortalised with the HPV16 E6 oncoprotein (Kessis et al., 1993). The 

mechanism by which wild-type p53 causes G1 arrest may be by its DNA binding activity 

as this has been shown to increase in response to even very low levels of radiation (Price 

and Calderwood, 1993; Lu and Lane, 1993). One such target for p53 is the GADD45 

gene (growth arrest and DNA damage inducible protein) which is turned on in cells 

exposed to stresses that cause DNA damage (figure 1.6). The cell's ability to turn on this 

protein is dependant on the presence of wild-type p53 (Kastan et al., 1992). GADD45 

has been shown to bind to PCNA (proliferating cell nuclear antigen) which is a necessary 

component of the DNA replication machinery (Smith et al., 1994). PCNA is also needed 

for the re-synthesis of DNA after damaged portions are removed by the cells nucleotide 

excision repair system. Removal of GADD45 decreases this excision repair.

The ability of wild-type p53 to apparently monitor genome integrity may be a 

mechanism by which cells prevent gene amplifications. Whilst undetectable in normal 

diploid fibroblasts, gene amplification occurs at a high frequency in transformed cells 

(10'3-10"5). This ability to amplify is a recessive genetic trait (Tlsty et al., 1992) 

suggesting normal cells contain gene/s that modulate the ability to amplify. By using the 

resistance to the drug PALA, via the amplification of the CAD gene, to measure gene 

amplification, it has been shown that cells lacking endogenous p53 show detectable 

levels of gene amplification (10"5-10"4) and fail to arrest in G1 (Livingstone et al., 1992; 

Yin et al., 1992). In contrast, cells homozygous for wild-type p53 or LFS cells 

heterozygous for p53 showed no gene amplification and arrested in the presence of 

PALA. Transfection of wild-type p53 into tumour cells containing mutant p53 restored 

G1 arrest and reduced the frequency of gene amplifications (Yin et al., 1992). Although 

some human tumorigenic cells show detectable gene amplification despite the presence
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of wild-type p53 these observations suggest that p53 can prevent cells becoming 

aneuploid by monitoring and preventing gene amplifications.

The upregulation of p53 in response to DNA damage, the subsequent growth 

arrest and activation of the DNA repair machinery by p53 seems to therefore be an 

important safety step in preventing the cells from accummulating genetic alterations 

which would result in mutations, aneuploidy and the progression of malignant clones 

(figure 1.6). If the DNA damage is too severe for the cell to repair, it has been 

suggested that p53 may trigger cell suicide (see below).

1.4.3.7. The control of apoptotic cell death by p53.

Initial experiments to study the effect of overexpression of wild-type p53 failed 

due to loss of viability of the cell caused by p53. Experiments where p53 was 

conditionally expressed under an inducible promoter, or was temperature sensitive,proved 

to be more successful and in certain cell types showed p53 to be involved in controlled 

cell death or apoptosis rather than a reversible growth arrest. Myeloid leukaemic Ml 

cells transfected with the temperature sensitive p53^^ lost viability rapidly at 32°C 

when the protein is in the wild-type form (Yonish-Rouach etal., 1991). This process of 

cell death had the hallmarks of apoptosis, such as chromatin condensation, nuclear 

fragmentation and DNA laddering. Overexpression of wild-type p53 was also shown to 

elicit apoptosis in other cell types. Wild-type p53 was transfected into the human colon 

derived cell line EB under the control of the metallothionein promoter (Shaw et al., 

1992). Upon induction of wild-type p53 with ZnCl2 , the cells developed morphological 

features of apoptosis. This cell line was also used to form tumours in nude mice which 

underwent regression upon induction of wild-type p53. These regressing tumours 

showed features of apoptosis occurring in vivo. However these studies only 

demonstrated p53 linked apoptosis in arteficial situations where wild-type p53 is forcibly 

overexpressed . The development of p53 null mice showed direct evidence that p53 was 

involved in any real apoptotic process. Although the viability and normal development 

of p53 deficient mice indicated that p53 is not essential for apoptotic processes during
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development. A closer examination of thymocytes from such mice showed that they are 

resistant to the induction of apoptosis by radiation unlike normal controls (Lowe et al., 

1993a; Clarke et al., 1993). |This agreed with the observations in the previous section that 

p53 is required for a response to DNA damage whether it is growth arrest or apoptosis.

There are also other pathways that induce apoptosis completely independantly of 

p53.*for example Ml cells will undergo apoptosis without any functional p53 upon serum 

starvation (Yonish-Rouach et al., 1993) and thymocytes from p53 null mice undergo 

normal apoptosis in response to glucocorticoids and dexamethasone (Lowe et al., 1993a; 

Clarke ef al., 1993).

Signals other than DNA damage have been suggested to trigger p53-dependant 

apoptosis, namely the withdrawal of survival factors from the cells enviroment and also 

cellular response to viral infection. The IL-3 dependent murine lymphoma cell line DA-1 

which expresses wild-type p53 dies rapidly upon withdrawal of IL-3 (Gottlieb et al.,

1994). However when these cells were infected with retroviruses expressing either a p53 

miniprotein encompassing the C-terminus of the protein only, or the p53135 temperature- 

sensitive mutant (both of which act on the wild-type p53 in a dominant-negative 

manner), the cells showed extended survival without IL-3. Also excess wild-type p53 

activity failed to elicit apoptosis as long as IL-3 was present. Wild-type p53 was also 

required for apoptosis on withdrawal of haemopoietic growth factors from AML blasts.

In the presence of antisense p53 oligonucleotides)however) apoptosis was suppressed 

despite the absence of growth factors (Zhu et al., 1994). These findings therefore 

suggest that p53 plays a role in mediating the dependence of cells on hematopoietic 

survival factors at least. However, unlike the p53 response to DNA-damage, the 

upregulation of p53 is probably not the trigger for apoptosis on survival factor 

withdrawal as excess wild-type p53 activity failed to elicit any apoptotic response as long 

as IL-3 was available (Gottlieb et al., 1994). It is probably more likely that the presence 

of p53 provides the necessary pathway for the apoptotic response and loss of this activity 

allows cell survival without the appropriate survival factors signals facilitating the 

survival of neoplastic cell clones.
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Apoptotic death in response to viral infection would be an effective host defense 

mechanism for early protection against an infection. Infection of rodent fibroblasts with 

adenovirus El A protein causes the cells to upregulate p53 in response and to lose 

viability by apoptosis (Lowe et al., 1993b). The virus however appears to counteract 

this defense by expressing another early protein E1B. E1B binds and inactivates p53 

thereby preventing p53-dependant death of the infected cell. The expression of a 

dominant-negative mutant p53 inhibits this El A-mediated cell death by blocking the 

action of wild-type p53 (Debbas et al., 1993). In the same way as adenoviruses other 

viruses have evolved mechanisms for inactivating p53 i.e. HPV E6 and SV40 large T 

antigen all bind and inactivate p53 thereby aiding cellular transformation by the virus.

1.4.3.8. Does p53 play a role in normal cellular differentiation ?

In vitro and in vivo experiments have suggested that wild-type p53 plays an 

important role in normal development and in several differentiation pathways. The 

investigation of the normal function of p53 is complicated by the fact that p53 is 

expressed at low levels in the cell and is obviously tightly regulated. The expression of 

wild-type p53 from an exogenous promoter leads to high levels of p53 and tends to 

result in either growth arrest or apoptosis as described in the previous sections.

However, when p53 was transfected into a p53 non-producer early pre-B cell line (L12), 

stable cell lines were produced (Shaulsky et al., 1991) in which the effects of p53 could 

be studied. These cell lines showed an altered cell cycle in which more cells were found 

in the G0/G1 phase. When injected into syngeneic mice they induced a lower incidence 

of tumours which were less aggressive than the parental controls. Interestingly, the cell 

lines had also appeared to progress to a more differentiated phenotype with expression of 

the cytoplasmic immunoglobulin \i heavy chain and increased levels of the B cell specific 

surface marker B220. A separate study showed that treatment of a pre-B cell line that 

had retained expression of wild-type p53 (70Z/3) with a differentiation agent such as 

LPS resulted in the expression of the rearranged x light chain gene. This differentiation 

step was preceded by increased expression of p53 (Aloni-Grinstein et al., 1993).
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Furthermore' introduction of mutant p53 interfered with this differentiation process. It can 

be concluded from these findings that wild-type p53 is involved in the normal maturation 

and differentiation of pre-B cells. This was further substantiated by showing increased 

transcription from a CAT gene driven by a p53 promoter upon differentiation of the 

70Z/3 cell line. Furthermore, wild-type p53 was shown to transactivate the promoter 

control sequences of the x light chain gene (Aloni-Grinstein et al., 1993).

Other investigators have shown a similar involvement of p53 in differentiation. 

Induced differentiation of ML-1 cells showed increased levels of p53. Low levels of p53 

protein were also detected in the nonproliferative mature lymphoid, granulocytic and 

monocytic cell lineages but not in the more immature proliferating counterparts (Kastan 

et al., 1991b). An acute phase CML cell line (K562) was induced to express 50 fold 

more haemoglobin upon transfection with wild-type p53 (Feinstein et al., 1992).

Infection of primary human foreskin keratinocytes with a retrovirus encoding wild-type 

p53 induced premature cell flattening and increased involucrin expression, a marker of 

terminal differentiation, although other differentiation proteins were not affected 

(Woodworth etal., 1993).

Taken together all these experiments suggest that p53 plays a vital role in the 

decision to embark on a terminal differentiation programme. It is interesting to note that 

the B cell differentiation pathway involves several events of DNA rearrangements.

During this process it is likely that repair to the DNA will be required due to strand 

breakage and faulty pairing of DNA fragments. This provides a connection to the 

observation that p53 is required for repair to DNA damage, (as discussed above) and it is 

likely that the trigger for p53 intervention is identical in both cases.

Very little is known of the function of p53 during development. The viability of 

mice null for p53 suggests that p53 is redundant in this process and is only required for 

repair later in life. However such p53 null mice develop tumours by the age of six 

months and the most frequent are of a lymphoma type (Donehower et al., 1992; Jacks et 

al., 1994). As pointed out above development of the lymphoid lineage involves gene 

rearrangements and further supports the role for p53 in this development pathway.
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In order to examine the normal expression pattern of p53 during development, 

transgenic mice were used that carried a construct in which p53 promoter sequences in 

amplified copy number regulated the expression of the CAT gene. Such mice were 

found to express CAT activity predominantly in the testes (Almon et al., 1993). In situ 

hybridization indicated that the p53 gene is expressed during spermatogenesis and is 

confined to the tetraploid primary spermatocytes at the meiotic pachytene stage during 

the first round of spermatogenesis (Schwartz et al., 1993). Primary spermatocytes 

double their DNA contents immediately after the last mitotic division and embark on a 

long meiotic prophase before two further meiotic divisions of the tetraploid 

spermatocytes generates four haploid spermatids. The pachytene stage is the longest 

meiotic phase which involves cell replication not coupled with DNA duplication. The 

expression of p53 at this stage and the observations that p53 can arrest DNA replication 

(discussed above) suggests that p53 functions in spermatogenesis by halting DNA 

replication and allowing successful meiosis which involves pairing of chromosomes, 

recombination and repair of DNA to be completed. The conclusion that p53 plays a role 

in halting DNA replication and allowing DNA repair is further substantiated by the 

observation that transgenic mice carrying the multiple p53 promoter CAT transgenes, 

exhibit the giant cell degenerative syndrome (Rotter et al., 1993). These giant cells arise 

due to the inability of tetraploid spermatocytes to undergo meiosis generating haploid 

sperm cells. Instead these cells undergo additional DNA replications giving rise to 

multinucleated giant cells. Such cells are shown to have a reduction in the endogenous 

level of p53 brought about by a squelching effect whereby the extra promoter binding 

sites lead to reduced activity and therefore the pachytene stage which requires p53 

malfunctions. P53 null mice however do not develop such giant cells and it is generally 

assumed that in the case of jmice null for p53 and also other vital genes, for example 

Myo-D (Rudnicki et al., 1992), which appear to develop normally, that these pathways 

have become functionally redundant and other parallel pathways are utilised.

Investigations into the functions of p53 in normal development and differentiation 

have uncovered an interesting connection between the already established roles of p53 in 

inhibition of DNA replication and DNA repair triggered by strand breaks. It is therefore
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likely that p53 plays an important role in many cellular pathways in which such events are 

vital.

1.4.2.9. Identification of p53 associated proteins.

The MDM-2 gene was originally identified by virtue of its amplification in a 

spontaneously transformed derivative of mouse BalB/c cells (3T3DM) (Fakharzadeh et 

al., 1991) and was found to bind to p53 in rat cells transfected with p53 (Hinds et al., 

1990; Momand et al., 1992). Human MDM-2 was also found to bind to both wild-type 

and mutant human p53 in vitro. The human MDM-2 gene was localised to chromosome 

12ql3-14 and this gene was amplified in over a third of sarcomas studied (Oliner et al.,

1992) offering another mechanism by which the cell can overcome p53 regulated growth 

control.

MDM-2 is a putative transcription factor and has been shown to inhibit the 

transactivating abililty of p53 (Momand et al., 1992) by binding to a region coinciding 

with the N-terminal p53 acidic activation domain (Oliner et al., 1993; Picksley et al.,

1994). The MDM-2 protein has a short half-life of approximately 20 minutes and is 

localised to the nucleus. In resting cells stimulated with serum, MDM-2 levels and 

MDM-2/p53 levels increase in late G1 (Olson et al., 1993) and as MDM-2 negatively 

regulates p53, the binding of MDM-2 and p53 may signal entry into S phase.

Irradiation of mammalian cells with UV light, as discussed previously, results in a 

dose dependant accumulation of p53 within 2 hours. There is also a dramatic increase in 

p53 specific transcriptional transactivation activity and an increase in expression of 

MDM-2 (Perry et al., 1993). However this UV stimulated MDM-2 expression does not 

directly correlate with the level of stimulated p53 protein. MDM-2 induction is 

delayed, occurring along with the recovery of normal rates of DNA synthesis presumably 

after DNA repair, whereas p53 levels rise immediately. Cells in which p53 is mutated or 

deleted have been shown not to respond to UV light by increasing their expression of 

MDM-2 (Price et al., 1994). Wild-type p53 has been shown to bind sequence 

specifically to DNA residing downstream of exon 1 on the MDM-2 gene and activates
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transcription (Juven et al., 1993). Taken together these experiments suggest that MDM- 

2 is part of a p53 negative feedback loop as shown in figure 1.6. On exposure to UV 

irradiation, p53 protein levels increase and the cell becomes arrested in Gl. Once the 

DNA damage is repaired p53 stimulates expression of MDM-2 which in turn binds and 

inactivates p53 allowing the cells to continue into S phase.

Activation of MDM-2 by p53 involves the promoter (P2) located within the first 

intron of the murine MDM-2 gene This promoter gives rise to distinct transcripts which 

lack the entire first exon and a few nucleotides from the second exon of murine MDM-2 

(Barak et al, 1994). P2 activation is strongly dependant on p53 both in vitro and in vivo. 

In comparisorijthe transcription from the upstream, constitutive MDM-2 promoter (PI) 

is only mildly, if at all, induced by wild-type p53. The sequence of these two MDM-2 

transcripts varies in their 5' non-coding regions but suggests that they should encode 

identical products. Howeveqin vitro translation gives rise to distinct proteins varying in 

their p53 binding abilities. This therefore implies that p53>through activation of an 

alternative promoter^an potentially modulate the amount and nature of the MDM-2 

proteins.

MDM-2 may not modulate p53 function merely by binding to p53. Otto et al., 

1993, showed that after expression of wild-type p53 into Meth A tumour cells a few cells 

survived that expressed wild-type p53. These cells were also shown to overexpress 

MDM-2 mRNA and protein but the majority of MDM-2 and p53 were not in a complex 

together. A possible explanation yet to be substantiated is that MDM-2 as a 

transcription factor itself may regulate the transcription of other growth promoting or 

p53 inhibiting genes.

In an effort to identify wild-type p53 responsive genes one has recently been identified 

independantly by a number of groups. El-Deiry et al., 1993 described a wild-type p53 

induced gene, wild-type p53 activated fragment (WAF-1). WAF-1 was shown to be 

induced by wild-type but not mutant p53 and can itself suppress tumour cell growth in 

culture. The gene is localised on chromosome 6p21.2 and encodes a 21kDa protein with 

a structure suggesting it to be a potential transcription factor. At the same time an
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identical 21kDa protein, CIP-1 was identified when looking for potential cdk2 regulators 

(Harper et al, 1993) and also published by other investigators as p21 (Xiong et al.,

1993). CIP-l/p21 was shown to be a potent tight-binding inhibitor of cdks and inhibits 

the phosphorylation of Rb by cyclin A-cdk2, cyclin E-cdk2, cyclin Dl-cdk4 and cyclin 

D2-cdk4 complexes (figure 1.6). CIP-l/p21 mRNA is ubiquitously expressed in all adult 

human tissues and levels do not appear to vary throughout the cell cycle. In cells lacking 

functional p53, CIP-l/p21 is absent from cyclin-cdk complexes and mRNA levels in 

fibroblasts derived from null p53 mice showed 50 fold lower levels than normal embryo 

fibroblastSpagreeing with other groups that this protein is regulated by the p53 pathway. 

Rapid induction of CIP-l/p21 has been shown to occur by treating a variety of cells with 

differentiating agents such as TPA, IL-6 and G-CSF (Steinman et al., 1994). 

Differentiating cells have a prolonged G1 arrest and Rb is hypophosphorylated 

suggesting that such agents may function by inducing p21 expression which causes 

growth arrest in response to p53 and inhibits the cyclin-cdk complexes from 

phosphorylating Rb and progression of the cell cycle.

This same protein was identified by two other groups whilst looking for a 

melanoma differentiating gene (mda-6) (Jiang et al., 1994) and as an inhibitor of DNA 

synthesis expressed at high levels in senescent non-dividing human cells (SDI) (Johnson 

et al., 1994). Mda-6 was shown to be induced in terminally differentiating human 

melanoma cells and also in HL60 cells within 1-3 hours of treatment with TPA, retinoic 

acid or DMSO.

As HL60 cells and other cells shown to induce p21 on differentiation are null for 

p53, and p53 levels are low in senecent cells^t has been suggested that there are possibly 

two kinetic profiles for the induction of mda-6/SDI/p21/CIP-l/WAF-l. The first is p53 

dependant occurring early enough to cause cell cycle arrest. The second method is 

independant of p53 and may occur during the normal course of terminal differentiation.

51



1.5. Aims

The initial aim of this thesis was to identify the genetic differences between cell 

lines SCC12B and SCC12F which could be responsible for their different phenotypes. 

Such genetic alterations could ultimately be important in the progression of squamous 

cell carcinomas of the head and neck. A novel heterozygous p53 mutation at codon 216, 

substituting a glycine for a valine, was detected in SCC12B and SCC12F. On closer 

examination, the two cell lines appear to express different mutant and wild-type p53 

gene dosages. The p53^16 mutant protein was characterised at a biological and 

molecular level to distinguish any different properties from wild-type protein.

The subsequent aims of this thesis were then to study the affect of this mutant 

p53 on keratinocyte terminal differentiation by expressing the mutant in a clone of 

SCC12F that expressed little endogenous p53 protein in order to assess directly whether 

it could affect the progression of SCC12F to the less differentiated and more tumorigenic 

phenotype displayed by SCC12B.
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Chapter 2 

Materials and Methods



2.1. MATERIALS

2.1.1. Tissue Culture

Cell Lines
Saos
Swiss 3T3 feeders 
3T3 Ml Neo Beatson Institute, R9 stocks. Produced by 

infection of Lesch-Nyhan human diploid 
fibroblast strain 5-BR with the amphotropic 
retrovirus pmos'3 neo (Berry et al, 1994) 
Rheinwald and Beckett, 1981 
Rheinwald and Beckett, 1981 
Rheinwald and Beckett, 1981 
Dr. D. Lane.
Beatson Institute, R9 stocks.
Dr. E.K. Parkinson.

ATCC HTB 
ATCC CCL92

SCC12F.AC3
SCC12B 
SCC4 
SVK14 
HFF 9 
BICR3

Aldrich Chemical Company, U.K.
Methylcellulose
Poly (2-hydroxyethylmethacrylate) (Polyhaem A) 

Beatson Institute Central Services.

Becton Dickinson U.K. Ltd.
Sterile plastic flasks and plates

Boehringer-Mannheim, Germany
DOTAP lipofection reagent

BDH Analar, U.K.
High vacuum silicone grease

Clonetics, U.S.A.
Bovine pituitary extract

Amphotericin B
Penicillin
Streptomycin
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Costar Corporation, U.S.A.
Transwells

Flow Laboratories, U.K.
Mycoplasma removal agent 
Donor calf serum

Gibco Europe Life Technologies Ltd., U.K.
Dulbecco's modified Eagles medium
Epidermal growth factor (recombinant)
Fetal calf serum
Glutamine
G418 Sulphate
Keratinocyte SFM
Sodium bicarbonate
Sodium pyruvate

Harlan Olac Ltd., U.K.
MF-1 NuNu mice

Hughes and Hughes Ltd., U.K.
Histomount

Nitta Gelatin Inc., Japan.
Cellmatrix

Nunc, Denmark.
Cryotubes
Chamber slides (glass and permanox)

Sigma Chemical Company Ltd., U.K.
Cholera toxin 
Hydrocortisone 
Rhodamine B

Surgipath Medical Industries Inc., U.S.A.
Eosin
Harris' Haematoxylin 
Scotts tap water
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Unipath Ltd., U.K.
Phosphate buffered saline (PBS)

Worthington Biochemical Company, U.K.
Trypsin

2.1.2. Immunocytochemistry 

Antibodies
p53 antibodies PAbl620, PAb421, PAb240, CM-1 were a gift from Prof. D. Lane when 
stated. p53 antibodies PAbl801, PAbl620, PAb240 were obtained from Oncogene 
Science when stated.
Rabbit anti-involucrin antibody was a gift from Dr. F. Watt.

BDH Analar, U.K.
Aquamount
Formaldehyde

Chance Propper Ltd., U.K.
Coverslips

Sigma Chemical Company Ltd., U.K.
Acrydine Orange 
Bovine serum albumin fraction V 
Diaminobenzine tablets 
Hydrogen peroxide 
Tween 80

Vector Laboratories, U.K.
Alkaline phosphate substrate kit 1 (red)
Vectastain ABC peroxidase and phosphatase kits 
Vectashield mountant for fluorescence staining
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2.1.3. Protein Biochemistry

Antibodies
Cyclin D antibody 287-3 was a gift from Dr. G. Peters. 
p53 antibodies as above.

Amersham International pic., U.K.
Anti rabbit Ig, horseradish peroxidase linked F(ab')2 fragment (from donkey) 
Anti mouse Ig, horseradish peroxidase linked whole ab (from sheep)
ECL western detection agent
Rainbow colour markers (14,300-200,000 Da)

BDH, Analar, U.K.
40% Acrylogel 3 solution (Acrylamide 29.1: 0.9 N N’Methylene 
bisacrylamide) used for protein gels.
Ammonium peroxodisulphate (APS)

Bio-rad Laboratories Ltd., U.K.
Protein Assay DC

Oncogene Science Inc., U.S.A.
Protein G plus agarose
p53 antibodys PAbl801, PAbl620 and PAb240 used when stated.

Millipore Corporation, U.S.A.
Immobolin P nitrocellulose

Sigma chemical Company Ltd., U.K.
Aprotinin 
Bromophenol blue 
(3-mercaptoethanol 
Hydrogen peroxide 
Leupeptin
Nonidet P-40 (NP40)
Phenylmethylsulfonyl fluoride (PMSF)
Ponceau's solution 
Sodium Fluoride
TEMED (N,N,N' ,N'-tetramethylethylenediamine)
Xylene cyanol
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2.1.4. Molecular Biology

Vectors
pCMV-Neo, pC53-SN3 and pC53-SCX3 were all a kind gift from 
Dr. B. Vogelstein.

Aldrich Chemical Company, U.K.
Ammonium chloride 
Potassium carbonate

Amersham International PLC, U.K.
35SdCTPaS 400Ci/mmol 
a  32P dCTP 3000Ci/mmol 
7 32PdATP 
Hybond nylon filter

Beatson Institute Central services
L-Broth

Beta Laboratories, U.K.
Yeast Extract

Bethesda Research Laboratories, U.S.A.
LMP agarose
d> X 174 Hae Ill-digested DNA
Agarose
Protease K
lkb Ladder

BDH Analar, U.K.
Acetone
Butan-l-ol
Chloroform
Repelcote silicone treatment 
Sodium dodecyl sulphate (SDS)
Sodium dihydrogen phosphate

Bibby-Sterilin Ltd., U.K.
Sterilin bacteriological plates
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Bio 101, Inc., U.K.
Geneclean 2® kit

Biolabs, New England, U.S.A.

Bio-rad Laboratories Ltd., U.K.
Muta-gene® M13 In vitro mutagenesis kit, version 2

Boehringer-Mannheim, Germany.
Caesium chloride 
DNAse-free RNAse
IPTG (Isopropyl-[3- D- thiogalactopyranosid)
Protease K 
Tris-HCL 
Tris base
Xgal (5-bromo-4-chloro-3-indolyl-p-D galactopyranosid)

Cinna/Biotecx Laboratories Inc., U.S.A.
RNAzolB

Cruachem Ltd., U.S.A.
Oligonucleotide purification cartridges 
Triethylamine Acetate (TEAA)
Trifluoroacetic acid (TFA)

DIFCO Laboratories, U.S.A.
Agar
Bactotryptone
Bactoagar

Dynal Ltd., U.K.
Dynabeads® M-280 Streptavidin 
Dynal MPC®

Eastman Kodak Company, U.S.A.
X-OMATAR X-ray film 
X-OMAT S X-ray film 
DUP1 duplicating
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Flowgen Instruments Ltd., U.K.
Nusieve® agarose

Fluka Chemika-Biochemika AG, Switzerland
Tetramethyl ammonium chloride (TMAC)

Fisons Scientific Equipment, U.K.
Acetic acid 
EDTA (sodium salt)
Isopropanol 
Magnesium sulphate 
Methanol 
Sodium acetate 
Sodium chloride 
Sodium citrate 
Sodium hydroxide 
Urea

Gibco Europe Life Technologies Ltd., U.K.
E.coli DH5a competent cells 
Bam HI 
Eco R1
T4 DNA ligase

James Burrough Ltd., U.K.
Ethanol

Lab-Scan Ltd., Ireland, U.K.
Acetonitrile

Northumbria Biologicals Ltd., U.K.
Alkaline phosphatase 
Pvull
T4 polynucleotide kinase 
Xba 1

Perkin-Elmer Cetus, U.S.A.
GeneAmp® DNA PCR kit 
GeneAmp® RNA PCR kit
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GeneAmp® thin walled reaction tubes 
AmpliTaq DNA polymerase

Pharmacia AB, Sweden
Ficoll 400
Sephadex G-25 NICK columns 
dNTP set

Rathburn Chemicals Ltd., U.K.
Phenol

Severn Biotech Ltd., U.K.
30% (w/v) acrylamide : 0.8% bisacrylamide

Sigma Chemical Company, U.K.
Ampicillin
Ammonium chloride
Bovine serum albumin (fraction V)
Chloramphenicol
Ethidium Bromide
Lysozyme
Polyvinylpyrrolidone
Thiamine

Technical Photo Systems, U.K.
Fuji RX medical X-ray film

United States Biochemical Corporation, U.S.A.
Sequenase® version 2 kit

Whatman International Ltd., U.K.
Whatman 3MM filter paper
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2.1.5. Cytogenetics.

BDH, Analar, U.K.
Methanol

Boehringer-Mannheim, Germany.
Sheep antidigoxigenin antibody

Jackson Immunoresearch Lab. Inc., U.S.A.
FTTC conjugated donkey anti-sheep antibody.

Oncor Inc., U.S.A.
Chromosome 17 centromere probe (aCHAD 9) 
p53 DNA probe (P5106-DIG)

Sigma Chemical Company, U.K.
Acetic acid
Demecolcine (cat no. D7385)

Streck Lab. Inc., U.S.A.
Streck tissue fixative.
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2.2. Methods

2.2.1. Tissue culture

2.2.1.1. Culture of Swiss mouse 3T3 feeder cells

Swiss 3T3 fibroblast cells were grown in Dulbecco's modified Eagle's medium 

(DMEM) containing 10% (v/v) donor calf serum, 0.23% sodium bicarbonate, |2mM 

glutamine, 37.5pg/ml penicillin and jlOjig/ml streptomycin. Cells were seeded at 

104/9cm dish, incubated in a moist atmosphere at 37°C and gassed with air containing 

5% (v/v) CC>2. Medium was changed on day 11 and cells used for feeders on day 14.

For use as feeders, cells were trypsinized with 0.1% (w/v) trypsin in phosphate 

buffered saline (PBS, 0.14M NaCl, 27mM KC1, lOmM Na2HP04,15mM K2HP04) and 

resuspended in fresh growth medium. Cells were then lethally irradiated by exposure to 

60Gy of y- irradiation from a 60Co source. This prevents further cell divisions. The cells 

were then either used immediately or stored for up to 48 hours at 4°C without loss of 

feeding capacity. Feeder cells are usually plated at a density of 1x106/ 9cm dish.

Feeder cells were removed from keratinocyte cultures as required by vigorously 

washing the dish with 0.02% (w/v) EDTA in PBS, followed by rinsing with PBS.

2.2.1.2 Derivation and culture of Human Epidermal Keratinocytes 

(HEK)

Normal HEKs were prepared from new-born human foreskins obtained from 

Yorkhill hospital, Glasgow. The tissue was washed in PBS, cut into thin strips and 

trypsinized overnight at 4°C using 0.125% (w/v) trypsin, 0.01% EDTA in PBS. 

Epidermal cells were separated from mesenchyme by scraping a scalpel along the 

epidermal layer. Cells were centrifuged at lOOOrpm for 5 minutes and resuspended as a 

single cell suspension in growth medium.
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HEKs were grown in serum-free Keratinocyte-SFM supplemented with bovine 

pituitary extract (50pg/ml) and recombinant epidermal growth factor (5ng/ml) which 

stimulates migration of the growing keratinocytes out of the centre of the colonies 

(Barrandon and Green, 1987) and has also been shown to increase the culture lifetime of 

epidermal cells (Rheinwald and Green, 1977).

Alternatively, HEKs were grown in serum-containing medium in the presence of a 

3T3 layer as described above. The 3T3 layer is necessary for keratinocytes to initiate 

colony formation (Rheinwald and Green, 1975a). The medium consists of DMEM 

supplemented with 20% (v/v) foetal calf serum, 0.3% (w/v) sodium bicarbonate, 2mM 

glutamine, 37.5pg/ml penicillin, lOpg/ml streptomycin, 0.4pg/ml hydrocortisone and 

lOng/ml cholera toxin. Hydrocortisone is required to make colony morphology more 

orderly and maintains an increased proliferation rate (Rheinwald and Green, 1975b). 

Cholera toxin, by raising cyclic AMP levels, seems to oppose the tendency of 

keratinocytes to increase in size (Green, 1978) and may therefore oppose the onset of 

terminal differentiation (Sun and Green, 1976).

Squamous cell carcinoma (SCC) cell lines were also grown on a 3T3 feeder layer 

in the above medium supplemented with 10% foetal calf serum and without cholera 

toxin. Epidermal growth factor and cholera toxin which are potent mitogens for normal 

keratinocytes, can be inhibitory to SCC. The medium was changed every 3-4 days.

All cells were incubated in a moist atmosphere at 37°C and gassed with air 

containing 5% (v/v) CO2.

Cells were passaged by firstly removing the feeder layer and rinsing with PBS. The 

cells were removed from flasks or plates with trypsin (0.1% (w/v) trypsin, 0.01% (w/v) 

EDTA in PBS). Trypsin was inactivated by adding ten volumes of serum-containing 

medium and removed by centrifugation at lOOOrpm for 5 minutes at room temperature. 

The supernatant was removed and cells resuspended in fresh growth medium and 

replated as required.

Stocks of all cells were kept frozen in liquid nitrogen. Cells trypsinized as above 

were resuspended at a concentration of 106 cells/ml in ice-cold medium containing 10% 

serum (above) plus 10% (v/v) dimethyl sulphoxide (DMSO). Care was taken to ensure
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all solutions were ice-cold as DMSO is toxic to cells at room temperature. Cells were 

aliquoted into cryotubes and the ampoules wrapped in cotton wool and placed in a 

plastic box. Cells were frozen slowly, firstly at -20°C for 30 minutes and then at -70°C 

overnight. Cells were then stored in liquid nitrogen. The cotton wool insulation ensures 

gradual cooling of the cells and therefore increases the viability of the cells on thawing.

Cells were thawed by transferring the ampoule directly from liquid nitrogen to 

water at 37°C. Once thawed cells were added to a large volume of pre-warmed growth 

medium, centrifuged, resuspended in fresh growth medium and plated onto an irradiated 

feeder layer.

2.2.1.3. Growth of keratinocytes on raft cultures

Collagen gel type I (rat tail, pH3 acetate) was prepared by adding 20mM Hepes, 

5mM NaOH, lx SF12 medium2mMglutamine and 0.2% (w/v) sodium bicarbonate . The 

gel was seeded with 3x105 3T3 fibroblasts/ml, mixed well, trying to avoid air bubbles 

and 2mls were placed into transwell inserts (3.0pm pore membrane). The gel was 

incubated at 37°C for 30 minutes, then overlaid and underlaid with growth medium and 

incubated for a further 24 hours. The growth medium was changed and the gel seeded 

with lxlO6 keratinocytes/well. The cells were grown submerged for at least 24 hours at 

37°C in a humid incubator. The wells were then transferred to a sterile beaker and 

underlaid with growth medium. Any medium above the confluent keratinocytes was 

removed, the rafts were covered and cells grown for a further 14 days. Cryostat sections 

of the raft cultures were prepared by Dr. I Macmillan (Veterinary department, Glasgow 

University).

2.2.1.4 Transfection of cells.

Keratinocytes were plated on an irradiated feeder layer at 2xl05/5cm dish and 

incubated at 37°C until cells were 80% confluent. 30pl DOTAP (lmg/ml) was diluted to 

lOOpl with HBS (20mM Hepes, 150mM NaCl pH7.4). This was mixed with an
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equivolume of DNA (5pg) in HBS and incubated at room temperature for 10 minutes. 

This lipofection mixture was added to 5mls fresh growth medium containing serum, 

placed on the cells and incubated overnight at 37°C. The medium was replaced with 

fresh growth medium and cells incubated again overnight. The cells were trypsinized as 

described above and plated at low density on neomycin resistant feeders (3T3 Ml Neo). 

The cells were incubated until small colonies were visible and then selected with 

400ug/ml G418. Resistant colonies were visible within 14 days.

Single resistant colonies were marked using a microscope ring marker attachment. 

The medium was aspirated and feeders gently removed as described above. Cloning 

rings were lightly greased and placed over the marked colonies. Pre-warmed 

trypsin/EDTA was gently dropped into the cloning rings and incubated for 10 minutes. 

Using a pasteur pipette, medium was added to the trypsin and gently mixed to resuspend 

the cells. The trypsin/medium mixture was transferred to pre-warmed medium and spun 

at lOOOrpm. The cells were resuspended and plated onto a fresh feeder layer. Cells were 

kept under selection until checked for the required protein expression. Prior to any 

further experiment transfectants were removed from selection, washed thoroughly with 

PBS and grown without selection for at least a week.

Saos cells were grown in growth medium supplemented with 10% serum without a 

feeder layer. They were transfected as described above using 30pl DOTAP and lOpg 

DNA. Cells were trypsinised 24 hours after transfection and plated at 4xl05cells / 10cm 

dish. The cells were incubated at 37°C for 2 days and then selected with 500pg/ml 

G418. Resistant colonies were visible after 21 days. Single colonies from each 

transfection were ring cloned and checked for protein expression as described above. In 

order to analyse the growth suppressive function of some p53 mutants whole plates of 

transformed cells were selected and stained for p53 expression as described in section

2.2.2.I.
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2.2.1.5 Growth of keratinocytes in suspension culture.

Keratinocytes can be induced to terminally differentiate in vitro by culturing them 

in methylcellulose. This prevents cell to cell contact, causes the cells to round up and 

become unresponsive to mitogen stimulation (Green, 1977).

Methylcellulose (1.3% w/v) was dissolved in unsupplemented medium (DMEM 

containing ImM sodium pyruvate, 0.3% (w/v) sodium bicarbonate, pH7.2) pre-heated 

to 60°C. Once cooled to room temperature 10% (v/v) fetal calf serum, 37.5pg/ml 

penicillin, 1 Ojig/ml streptomyciii2mM glutamine and 0.4pg/ml hydrocortisone were 

added and stirred for 30 minutes at room temperature and at 4°C overnight. This was 

then centrifuged at 15000g at 4°C for 30 minutes. The supernatant was decanted into 

fresh, sterile bottles and frozen at -20°C.

Sterilin bacteriological dishes were treated with polyhaem A to prevent cells from 

attaching to the dish. Polyhaem A (10% in 95% ethanol) was diluted to a working stock 

of 0.4% in acetone (50%), 95% ethanol (50%) and used to wash dishes which were then 

air-dried. Before use dishes were rinsed in DMEM.

Cells were seeded at either 2x106 /5cm dish (high density) or 3x105 /5cm dish (low 

density) without feeders and were incubated at 37°C for four days. Cells were 

trypsinised and diluted to lx l06/ml. 1 part cell suspension was mixed with 9 parts pre­

warmed methylcellulose (final cell concentration was 105/ml methylcellulose). Cells 

were suspended in methylcellulose evenly taking care not to produce air bubbles. The 

cell suspension was then pipetted into polyhaem A coated petri dishes and incubated for 

the required length of time in a humid incubator at 37°C.

Cells were recovered from methylcellulose by washing the cells and methylcellulose 

off the plates with cold PBS. The mixture was diluted 20 fold with PBS and centrifuged 

at 2000rpm for 10 minutes. The supernatant was aspirated off, the cells were re-washed 

in PBS and counted.
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2.2.1.6 Comified envelope formation assay.

Comified envelopes are formed as keratinocytes terminally differentiate (Sun and 

Green, 1976). Cells were induced to differentiate by placing them in suspension culture 

as described above for up to 5 days. Cells were removed from the methylcellulose and 

diluted to 3xl05/ml in 5% SDS. Cells were solubilised by adding 1% p-mercaptoethanol 

and boiling for 5 minutes. Comified envelopes were visualised and counted on a 

haemacytometer under a light microscope. Each count was an average of 16 large 

squares on a haemacytometer xl04/ml. Experiments were carried out at least in triplicate 

for each cell line.

2.2.1.7 Cloning efficiency.

Cells were induced to differentiate by placing them in suspension culture as 

described above for up to 24 hours. Cells were removed from the methylcellulose and 

counted. Cells that had not been placed in suspension culture were plated at 500 cells/ 

T25 on an irradiated feeder layer. Cells removed from the methylcellulose after 24 hours 

were plated on an irradiated feeder layer at 103/T25. Cells were incubated at 37°C until 

colonies were large but still individual (approximately 20 days). Cells were then washed 

in PBS and fixed in 10% formalin (10% formaldehyde in PBS) for 30 minutes in a 

fumehood. The formalin was removed and the cells stained with 1% (w/v) rhodamine B 

for 30 minutes. The cells were then washed, air-dried and the colonies counted by eye. 

Cells from each time point were plated onto feeders in duplicate for each experiment. 

Experiments were repeated at least in triplicate for each cell line. Colony counts are 

given per 500 cells plated.

2.2.1.8 Tumorigenicity in nude mice.

Cells were removed from selection and expanded at identical cell densities. The 

cells were then trypsinised and washed twice in serum-free DMEM. 5x106 and 1.6xl06
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cells were resuspended in 200pl serum-free DMEM and subcutaneously injected into the 

left or right flank respectively of four week old nude mice (MF1 NuNu mice). Three 

mice were used per cell line tested. Mice were examined by animal house staff weekly, 

for tumour presence and the tumour volumes were recorded. A progressively growing 

tumour which remained for 3 months was scored as positive. After this time or when the 

tumour became 1cm3 the mice were sacrificed and cryostat sections prepared from the 

tumour.

2.2.1.9. Haematoxylin and Eosin staining

Cells or tissue sections where counterstained with haematoxylin, which stains the 

nucleus blue and eosin, which stains the cytoplasm pink, to enhance cellular morphology 

for examination and photography.

Tissue sections were fixed twice in 100% ethanol, once in 70% ethanol, then 

placed in water. Individual cells were either trypsinised or removed from suspension 

culture, washed in PBS and resuspended in 100% ethanol. Cells were then dropped onto 

glass slides and air-dried. The slides were placed into 100% ethanol, then 70% ethanol, 

followed by water.

Slides were placed in Harris' Haematoxylin for 10 seconds, washed in running tap 

water and developed in Scott's tap water until the nucleus was sufficiently dyed. The 

intensity of the stain can be adjusted by washing in 1% HC1 in 70% ethanol. The slides 

were washed in tap water and dipped briefly in Eosin stain followed by further washing 

in tap water. Once the required dye intensities had been achieved the cells were 

dehydrated once in 70% ethanol, twice in 100% ethanol, then cleared in xylene and 

mounted in histomount.

2.2.1.10. Aery dine orange staining

Nuclear DNA was stained with acrydine orange. Cells were removed from 

methylcellulose and stained with 5pg/ml acrydine orange in PBS for 10 minutes. Cells
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were pelleted, resuspended in H2O and air-dried onto slides. Cells were mounted in anti­

fade medium (Vectashield) and sealed with nail varnish. Nuclear staining was visualised 

under a narrow band FITC filter in fluorescent light. Cells were photographed using 400 

ASA daylight film, pushed to 1600 on camera and developed twice in initial developing 

solution.

2.2.2. Immunocytochemistiy

2.2.2.1 p53 staining

Cells were seeded in an 8 well chamber slide at 104cells and 2x104 3T3 feeders per 

well. Cells were incubated in a humid incubator at 37°C until 60% confluent.

The plastic wells were removed from the slides taking care to retain the plastic 

gasket which defines the boundaries between wells. The slides were then washed briefly 

in PBS and drained. The cells were fixed for 20 minutes in -20°C methanol on ice and 

air-dried for 40 minutes or until completely dry.

Normal horse blocking serum (1:10 dilution in 0.1% BSA in PBS, pH7.6) from the 

mouse vectastain peroxidase kit was added to each well and the slide incubated in a 

humidified box at room temperature for 20 minutes. The slides were drained and lOOpl 

diluted p53 antibody added to each well. PAb 1801 (Banks et al, 1986) which 

recognises the wild-type conformation of p53 was used at a final concentration of lp  

g/ml. PAb 240 (Gannon et al, 1990) which recognises the mutant conformation of p53 

was used at a final concentration of 3pg/ml. The slides were then incubated for 1 hour in 

a humidified box. Excess antibody was removed by washing in a high salt buffer (0.15M 

Nacl, 0.05% Tween 80 in PBS, pH7.6) for 30 minutes, changing the buffer every 10 

minutes. The secondary antibody, anti-mouse IgG biotinylated antibody, was diluted 

1:200 in 0.1% BSA/PBS buffer and lOOpl added to each well. The slides were again 

incubated in a humidified box for 1 hour at room temperature and then washed as above. 

The biotinylated antibody was detected using a complex between avidin and a further 

biotinylated enzyme (ABC reagent). This complex is formed at least 30 minutes before
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required. One drop (50pl) of reagent A (Avidin) and one drop reagent B (Biotinylated 

enzyme) was added to 5mls 0.1% BSA/PBS and lOOpl added to each well. The slides 

were incubated for another hour in a humidified box and again washed as before. The 

substrate diaminobenzene was dissolve in PBS (0.6mg/ml) containing 0.06% H202  and 

added to each slide, in the dark, for 7.5 minutes or until a brown stain was visible. The 

slides were then washed in water, mounted in aquamount and sealed with nail varnish.

The cells were photographed with panotomic X film under phase contrast or bright 

field with a green filter.

2 2 2 2  Involucrin staining

Cells were either grown on chamber slides as above or cells pre-washed in PBS 

were air-dried onto slides. Cells were fixed in -20°C methanol on ice for 20 minutes and 

then air-dried. Goat blocking serum from the rabbit alkaline phosphatase Vectastain kit 

was diluted 1:10 in 0.1% BSA/PBS and added to the cells for 25 minutes in a humidified 

chamber at room temperature. The excess blocking serum was removed and the rabbit 

anti-involucrin antibody (diluted 1:5000) added to the cells overnight in a humidified box 

at 4°C. The slides were then washed in NaCl/PBS/Tween as above for 30 minutes. The 

slides were drained and the goat anti-rabbit secondary antibody from the kit (diluted 

1:200) was added for 1 hour at room temperature. The slides were again washed and 

drained. The ABC reagent diluted as above was added for 1 hour in a humidified box 

and then the excess removed by washing in NaCl/PBS/Tween buffer as before. The 

alkaline phosphatase substrate kit I (red) was used to visualise antibody reactivity. 

Reagent 1, 2 and 3 were mixed in equal amounts, as directed, in lOOmM Tris-HCL 

pH8.2. This was added to the cells for 5 minutes or until the required staining intensity 

was achieved. Slides were washed in water, mounted in aquamount and sealed with nail 

varnish.

Cells were photographed with colour slide film under phase contrast or bright field 

optics.
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2.2.3. Protein Biochemistry

2.2.3.1 Western Blot

a) p53

Cells were trypsinised when 50% confluent and washed twice in PBS. lx l06 cells 

were lysed in 100pi ice cold lysis buffer (1% NP40, 20mM Tris, 2mM EDTA, lOOmM 

Nacl, pH8.0) containing protease inhibitors (0.01% PMSF, lpg/ml Aprotinin, ljxg/ml 

Leupeptin, 5mM NaF). Note, sodium orthovanadate has been shown to alter the 

conformation of p53 (Landesman et al, 1994) and was therefore not used in the lysis 

buffer. Cells were lysed on ice for 30 minutes and then centrifuged for 15 minutes at 

4°C. The supernatant was transferred to a fresh eppendorf tube. The protein 

concentration was determined using the Bio-rad DC protein assay. SDS-sample buffer 

(50mM Tris, pH6 .8 , 10% glycerol, 2.5% SDS, 0.1% bromophenol blue) and 2.5% 

(3-mercaptoethanol were added to 50 or 250ug protein and boiled at 100°C for 30 

minutes. The samples were centrifuged briefly and run on a 10% SDS-polyacrylamide 

gel along with rainbow markers as described in section 2.2.3.2.

The protein was transferred onto Immobilin-P nitrocellulose filter, also described in 

section 2.2.3.2. After washing briefly in TBS (lOmM Tris, 150mM Nacl, pH8.0), the 

filter was stained for 5 minutes in Ponceau's stain, then de-stained for 5 minutes in 5% 

(v/v) acetic acid to check for consistency of protein transfer and loading. The filter was 

rinsed again in TBS and blocked overnight at 4°C in TBS-T (0.1% Tween 20 in TBS) 

containing 5% Marvel (milk fat) and 0.025% sodium azide.

The filter was incubated with the primary p53 mouse monoclonal antibody 

PAbl801 (lpg/ml in TBS-T plus 5% Marvel, Oncogene science) for 2 hours at 4°C, 

then washed 3 times, each for 15 minutes in TBS-T plus marvel. The secondary 

antibody, anti-mouse Ig horse-radish peroxidase linked whole antibody, was incubated 

with the filter at a 1:5000 dilution in TBS-T/Marvel for 20 minutes. The filter was again 

washed as above and rinsed twice more in TBS for 15 minutes each. The antibody was
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detected by immersing the filter in ECL detection reagent for 1 minute, wrapping in 

SaranWrap and exposing it to Kodak X-Omat fast film for up to a minute.

b) Cyclin D.

Semi-confluent dishes of cells were washed twice with PBS and the cells lysed by 

adding 1ml ice-cold lysis buffer (50mM Tris pH7.4,150mM NaCl, 20mM EDTA, 0.5% 

NP40) containing protease inhibitors (ImM PMSF, 25pg/ml leupeptin, 25pg/ml 

aprotinin, ImM benzamidine, 10p,g/ml trypsin inhibitor, ImM sodium fluoride) to each 

dish for 30 minutes on ice. The cells were scraped from the dish and centrifuged for 5 

minutes at 4°C. The supernatant was removed to a fresh eppendorf tube. The protein 

concentration was measured using the Bio-rad DC protein assay kit. 30pg protein was 

run on a 10% SDS-polyacrylamide gel and blotted onto immobilin-P nitrocellulose as 

described in section 2.2.3.2. The filter was washed briefly in PBS-T (PBS plus 0.1% 

Tween 80) and the protein visualised in Ponceaus’ stain as described above. The filter 

was blocked in PBS-T plus 5% marvel overnight. The primary antibody, rabbit 

polyclonal cyclin-D (287-3), was added to the filter at 1:500 dilution in PBS-T/Marvel 

for 3 hours at 4°C, then the filter was washed three times in PBS-T/Marvel each for 15 

minutes. The secondary antibody, anti-rabbit Ig, horseradish peroxidase linked F(ab')2 

fragment, was diluted 1:3000 and added to the filter for 1 hour at room temperature.

The filter was again washed as before and rinsed in PBS-T for 15 minutes. The filter was 

immersed in ECL detection reagent for 1 minute, wrapped in SaranWrap and exposed to 

Kodak X-Omat film for up to 1 minute.

2.2.3.2. SDS-polyacrylamide gel electrophoresis and blotting.

10% SDS-polyacrylamide gel (10% acrylogel, 375mM Tris, pH 8.8, 0.1% SDS, 

0.1% ammonium persulphate, 0.03% TEMED) was poured between gel plates, covered 

with H2 0 -saturated butan-2-ol, and allowed to polymerise for 1 hour. The gel front was 

washed with H20  and blotted dry. The stacking gel (4.8% Acrylogel, 125mM Tris,
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pH6 .8 , 0.1% SDS, 0.1% ammonium persulphate, 0.03% TEMED) was poured on top of 

the resolving gel, a comb inserted and allowed to polymerise. Due to the difference in 

pH between the stacking and resolving gel, the stacking gel should only be poured up to 

1 hour before use to minimise merging of the pH's. The gel was run at 30mA in running 

buffer (25mM Tris, 19ImM glycine, 3.5mM SDS) for 3-4 hours.

The gel was carefully removed from the glass plates, discarding the resolving gel and 

soaked in transfer buffer (25mM Tris, pH8.3,191mM glycine, 20% (v/v) methanol) for 

30 minutes. The protein was transferred in the above buffer onto immobilin-P 

nitrocellulose using a bio-rad wet trans-blot apparatus run at 30 volts overnight.

2.2.3.3. Immunoprecipitaton of p53.

Semi-confluent plates of cells were washed twice in PBS and 1ml ice-cold lysis 

buffer (150mM NaCl, 50mM Tris, pH8.0, 5mM EDTA, 1% NP40) containing protease 

inhibitors (ImM PMSF, 5mM sodium fluoride, lpg/ml aprotinin, lpg/ml leupeptin) was 

added to each dish for 30 minutes on ice. The cells were scraped from the dish, 

centrifuged for 30 minutes and the supernatant transferred to a fresh eppendorf. The 

protein concentration was measured using the Bio-rad DC protein assay kit. 20pl 

protein G plus agarose beads were added to the lysate and rotamixed for 40 minutes at 4 

°C. The supernatant was removed and split equally between antibodies used, lul 

antibody (either DO-1, PAbl620 or PAb240 all a kind gift from Dr. D. Lane) was 

incubated with the cell lysate overnight at 4°C. 20pl protein G agarose beads were 

added and the samples rotamixed for 40 minutes at 4°C. After brief centrifugation, the 

supernatant was removed and the beads washed 3 times with ice-cold lysis buffer taking 

care to remove all the buffer. The beads were resuspended in 20pi sample buffer (50mM 

Tris, pH6.8, 10% glycerol, 2.5% SDS, 0.1% bromophenol blue) and 2.5% (3- 

mercaptoethanol and boiled for 10 minutes at 100°C. Samples were run on a 10% SDS- 

polyacrylamide gel as described above. The protein was transferred onto Immobilin-P 

nitrocellulose and probed as described in the western protocol (section 2.2.3.1a.) using 

the rabbit polyclonal p53 antibody CM-1 (1:250 dilution, a gift from Dr.D.Lane) as the
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primary antibody and anti-rabbit Ig, horseradish peroxidase linked whole antibody 

(1:5000 dilution) as the secondary antibody.

2.2.4. Molecular Biology

2.2 A.I. Preparation of genomic DNA from SCC cell lines.

DNA was prepared using the salting out method as described by Miller et al, 1988. 

Cells were lysed in 3ml lysis buffer (lOmM Tris-HCl, 400mM NaCl, 2mM EDTA, 

pH8.0) and digested overnight at 37°C with 0.2ml 10% (w/v) SDS and 0.5ml protease K 

solution (lmg protease K in 1% SDS, 2mM EDTA). After digestion 1ml saturated NaCl 

(approximately 6M) was added and the tube shaken vigorously for 15 seconds, followed 

by centrifugation at 3000g for 5 minutes to pellet the protein. The DNA was 

precipitated from the supernatant with 2 volumes of room temperature absolute ethanol. 

The DNA strands were spooled out on a glass pipette, air-dried and dissolved in 100-200 

pi TE (lOmM Tris-HCl, 0.2mM EDTA, pH7.5). DNA concentrations were determined 

by measuring absorbance at 260nm and using the conversion of 1 OD unit at 260nm is 

equivalent to a concentration of 50pg/ml. The absorbance ratios 260nm/280nm should 

be 1.8-2.0 showing good deproteinization of the DNA sample. Genomic DNA was 

stored at 4°C.

2.2.4.2. Preparation of RNA from SCC cell lines.

Cells were lysed directly in the culture dish by the addition of RNAzol B 

(lml/3.5cm dish). The RNA was solubilized by passing the lysate a few times through 

the pipette. 0 .2ml chloroform was added per 2ml lysate, the tubes were covered with 

parafilm, vigorously shaken for 15 seconds then incubated on ice for 5 minutes. The 

samples were centrifuged at 12,000g, 4°C for 15 minutes after which the upper 

colourless aqueous phase was transferred to a fresh tube and an equal volume of 

isopropanol added. The samples were stored at 4°C for 15 minutes and the RNA

74



precipitate pelleted by centrifugation at 12,000g, 4°C, for 15 minutes. The RNA pellet 

was washed once with 1ml 75% ethanol by vortexing and centrifugation at 7,500g, 4°C, 

for 8 minutes. The RNA was re-dissolved in 200-300pl diethylpyrocarbonate (DEPC) 

treated RNase-free H2O. The RNA was re-precipitated by adding 1/10 volume 3M 

NaAc, pH5.2 and 2 volumes ethanol for 1 hour at -20°C. Note, all solutions and tubes 

should be pre-treated with DEPC to prevent RNase contamination. The RNA 

concentration was determined by measuring the absorbance at 260nm and using the 

conversion of 1 OD unit being equivalent to 40pg/ml. RNA was stored in aliquots at 

-70°C.

2.2.4.3. Minipreps of plasmid DNA

Small amounts of plasmid DNA were prepared using the alkaline lysis method as 

described by Maniatis et al, 1989.

Single colonies of bacteria carrying the required plasmid were picked using a sterile 

toothpick and grown in 2ml L-Broth (1% w/v bactotryptone, 0.5% w/v yeast extract, 

NaCl) containing antibiotic (50pg/ml ampicillin or 30pg/ml chloramphenicol) at 37°C in 

a shaking incubator. Bacteria were pelleted from 1.5ml of overnight culture by brief 

microcentrifugation and resuspended in lOOpl lysozyme solution (50mM glucose, 25mM 

Tris-HCl, pH8.0, lOmM EDTA containing 2mg/ml lysozyme) for 5 minutes. 200pl 

freshly made solution 2 was added (0.2M NaOH, 1% w/v SDS), mixed gently and left at 

room temperature for 5 minutes. 150pl ice-cold 3M KAc pH 4.8 was then added, mixed 

thoroughly and stored on ice for 5 minutes. The precipitated cell debris was pelleted by 

microcentrifugation for 2 minutes and the supernatant removed to a fresh eppendorf 

tube. The nucleic acids were precipitated by adding 2 volumes of cold ethanol to the 

supernatant, standing for 5 minutes at room temperature and microcentrifugation for 10 

minutes. The pellet was washed in 1ml -20°C 70% ethanol, microcentrifuged for 5 

minutes and all ethanol removed using a drawn out pippette. The pellet was air-dried 

and dissolved in 20pl TE containing DNase-free RNase A (20pg/ml) and incubated at 

37°C for 30 minutes. The DNA solution was made up to 200pl with TE, extracted with
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an equal volume of phenol/chloroform (1:1) and re-precipitated with 1/10 volume 3M 

NaAc pH 5.0 and 2 volumes ethanol at -70°C for 1 hour. The DNA was pelleted by 

microcentrifugation, washed in 70% ethanol and dissolved in 20pl TE. Plasmid DNA 

was stored at -20°C.

2.2.4.4. Large scale preparation of plasmid DNA

10 ml overnight culture was transferred to 500ml L broth containing antibiotic 

(50pg/ml ampicillin) and shaken at 37°C overnight.

If the plasmid requires amplification then the culture was grown at 37°C until the 

absorbance at 600nm reached 0.4-0.6. Chloramphenicol was then added (170pg/ml) and 

the culture shaken at 37°C for a further 16-20 hours.

Cells were pelleted from the overnight culture at 5000rpm, 4°C for 10 minutes, 

rinsed with 50mM Tris-HCl pH 8.0 and resuspended in 25ml lysozyme solution (25mM 

Tris-HCl pH 8.0, lOmM EDTA, 50mM glucose containing 5mg/ml lysozyme) for 30 

minutes at room temperature. 40 ml solution 2 (0.2M NaOH, 1% SDS) was added, 

mixed well and placed on ice for 15 minutes. 20 ml 3M KAc pH4.8 was then added, 

mixed by inversion and left on ice for another 15 minutes. The flocculates were 

centrifuged at 10,810g for 5 minutes at 0°C. The supernatant was filtered through gauze 

and the DNA precipitated by adding 0.6 volumes of -20°C isopropanol and immediately 

centrifuged at 10,810g, room temperature for 5 minutes. After discarding the 

supernatant, the pellet was left to drain for 10 minutes and then resuspended in 5ml TE, 

pH8.0.

Plasmid DNA was purified on a CsCl gradient. 7.5g CsCl was dissolved in the 5ml 

DNA solution and 5mg ethidium bromide added. The refractory index was adjusted to 

1.3860-1.3900 with TE pH 8.0. The CsCl solution was balanced in oakridge tubes and 

centrifuged in a sorvall ultracentrifuge (rotor T1270) at 146,600g for 40 hours at 20°C.

The plasmid band was removed from the gradient using a syringe with a 19 gauge 

needle and extracted with an equal volume water-saturated isobutanol until all the 

ethidium bromide had been removed. The DNA was precipitated by adding an equal
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volume H20  and 2 volumes room temperature ethanol and standing at room temperature 

for 15 minutes. The DNA was pelleted in glass corex tubes by centrifugation at ll,950g, 

4°C for 15 minutes. The pellet was resuspended in 1ml deionised water and 

reprecipitated with 0.1 volumes 3M NaOAc pH 5.0 and 2 volumes ethanol at -20°C for 1 

hour. DNA which was used for transfection of cells in culture was purified further by 

phenol/chloroform extraction before precipitation. The DNA was pelleted as above, 

rinsed with 70% ethanol, freeze-dried and dissolved in TE. The DNA concentration was 

measured as described in section 2.2.4.1.

2.2.4.5. Restriction enzyme digestion of DNA.

Plasmid DNA was incubated with 5-10 units enzyme/pg DNA in a buffered 

solution as specified and supplied by the manufacturer for 1-2 hours at 37°C. The 

digestion fragments were analysed by agarose gel electrophoresis as described below.

2.2.4.6. Agarose gel electrophoresis.

Flat bed electrophoresis apparatus from Pharmacia was used. Agarose gels (0.7%- 

4% (w/v) agarose) were cast in lxTAE buffer (40mM Tris base, 16mM acetic acid,

ImM EDTA, pH8.0) containing 0.5pg/ml ethidium bromide. Low melting point agarose 

was used in order to isolate and purify required DNA restriction fragments. 4% Nusieve 

agarose gels were used for greater separation of PCR products. Stop and dye buffer 

(0.45% (w/v) bromophenol blue, 1% (w/v) SDS, lOOmM EDTA, 2.5% w/v Ficoll 400 in 

TE) was added to each sample. The gel was submerged in lxTAE buffer containing 

0.5pg/ml ethidium bromide, the samples were loaded into each well along with an 

appropriate size marker (i.e. either 0X174 Hae-III digested DNA or 1Kb ladder) and 

run at 100V for 30-60 minutes. The separated DNA was visualised by illumination with 

short wave (312nm) UV light and photographed through a red filter using polaroid type 

57 high speed film or using an Appligene Imager.
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2.2.4.7. Isolation of specific restriction fragments from digested 

DNA
a) Using a low melting point agarose gel and Geneclean 2® kit

Digested DNA was run on a low melting agarose gel at 4°C as described above. 

The required DNA fragment was excised from the gel and the agarose block containing 

the fragment was weighed and volume calculated (lg = 1ml). 2.5 volumes of 6M Nal 

was added and the agarose melted at 55°C for 5 minutes. 5pl glassmilk®, a suspension 

of silica matrix in water which binds single and double-stranded DNA without binding 

contaminants, was added for every 5pg or less DNA. The mixture was vortexed and left 

on ice for 5 minutes to allow binding. The glassmilk was pelleted by brief centrifugation 

and washed 3 times by mixing with 300pl NEW wash (a Tris and EDTA-buffered 

solution of NaCl, ethanol and water), pelleting the glass milk and removing the 

supernatant. Finally half the desired volume of TE was added to the cleaned pellet and 

heated to 55°C for 2 minutes. The glassmilk was pelleted and the TE containing DNA 

was removed to a fresh eppendorf. This was repeated to elute all the DNA.

b) Directly from an agarose gel using filter paper.

The restricted DNA was run on a 1-2% agarose gel as described in section 2.2.4.6. 

An incision was made just below the required DNA fragment in the gel. Filter paper was 

backed with dialysis tubing and cut to the size of the incision. This was placed carefully 

into the gel with the filter paper nearest the DNA fragment and the capillary tubing 

facing away. The gel was re-submerged into the buffer and run until the DNA fragment 

was collected on the filter paper. The capillary tubing prevents the DNA from running 

straight through the filter paper. The filter paper was then removed from the gel and 

placed in an eppendorf with a hole in the bottom standing in another eppendorf tube.

The tubes were briefly centrifuged to elute the DNA. 30pl TE was added to the filter 

paper, allowed to stand for a few minutes and the centrifuged again. The DNA solution 

collected in the bottom eppendorf tube was made up to 80pl with TE and was either
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collapsed for double-stranded sequencing as described in section 2.2.4.12 or ethanol 

precipitated.

2.2.4.8. Ligation of DNA fragments.

Vector DNA was digested as described in section 2.2.4.5. The DNA fragment to 

be inserted was also digested as above and then isolated by gel electrophoresis as 

described in section 2.2.4.7.

To prevent the vector DNA from ligating back to itself without an insert it was 

firstly dephosphorylated. The vector DNA was digested with the required enzyme as 

directed by the manufacturer and an aliquot removed to check that digestion was 

complete. The reaction mixture was adjusted by adding dephosphorylation buffer 

(50mM Tris-HCl, O.lmM EDTA, pH 8.5) and 1 unit alkaline phosphatase. This was 

incubated at 37°C for 1 hour, after which the reaction was stopped by adding 50mM 

EDTA pH8.0 followed by phenol/chloroform extraction. The DNA was re-precipitated 

by adding 0.5x volume 7.5M NH4AC and 2x volume ethanol at -70°C for 30 minutes. 

The DNA precipitate was microcentrifuged for 10 minutes, washed with 70% ethanol 

and redisssolved in TE.

The insert was ligated to the dephosphorylated vector (lOOng) at a ratio 3:1 

respectively. The vector and insert DNA were incubated together in a reaction 

containing 50mM Tris-HCl pH 7.6, lOmM MgCl2, ImM ATP, ImM DTT, 5% (w/v) 

polyethylene glycol-8000 and 1 unit T4 DNA ligase at 4°C overnight.

2.2A.9. Transformation of competent bacterial cells

Ligation mixtures were firstly diluted 5 fold and l|_il of this (containing l-10ng of 

ligated DNA) was added to 20pl DH5a competent cells in chilled microcentrifuge tubes, 

shaken gently and placed on ice for 30 minutes. The cells were heat shocked by placing 

in a 42°C waterbath for 40 seconds and then placed directly on ice. 80pl SOC medium 

(2% (w/v) bactotryptone, 0.5% (w/v) yeast extract, lOmM NaCl, 2.5mM KC1, lOmM
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MgC^, lOmM MgS0 4 , 20mM glucose) was added to the cells and shaken at 225 rpm 

for 1 hour at 37°C. All the cells were spread onto an L-Broth agar plate (15g Bacto- 

Agar/litre L-Broth) containing antibiotic and incubated overnight at 37°C. Plasmid DNA 

was prepared from transformed colonies as deescribed in section 2.2.43.

2.2.4.10. Oligonucleotide synthesis and purification.

Oligonucleotides were either ordered from Research genetics or synthesised on an 

Applied Biosystems 381A DNA Synthesiser or 392 DNA/RNA Synthesiser using the 

manufacturers protocols and Cruachem reagents. Primers from Research Genetics 

arrived ready for use at 20pM in TE pH8.0. Other primers were synthesised with or 

without trityl group protection. All these primers were firstly deprotected by incubating 

overnight at 55°C.

"Trityl on" primers were detritylated using an Applied Biosystems oligonucleotide 

purification cartridge. 5ml acetonitrile was passed through the column to waste at a rate 

of 1 drop/sec using a syringe. This was followed by 5ml 2M triethylammonium acetate. 

The deprotected oligonucleotide ammonia solution was diluted with an equal volume of 

distilled water and passed through the column the same way. The eluate was collected 

and passed through a second time. The cartridge was then flushed through with 5ml 

10% (v/v) ammonia and 10ml distilled water. The oligonucleotide was detritylated while 

bound to the support by passing 2.5ml 2% (v/v) trifluoroacetic acid through the column, 

allowing it to stand for 5 minutes and repeating. The cartridge was then flushed with 

10ml distilled water. The oligonucleotide was eluted drop-by-drop with 3ml 20% (v/v) 

acetonitrile, freeze-dried overnight and dissolved in 250ml TE pH8.0. Primer 

concentration was determined by measuring absorbance at 260nm and using the 

conversion that lQD260nm is equivalent to 24pg/ml. Primers were stored at -20°C.

"Trityl off" primers were either stored after deprotection in ammonia at -20°C and 

purified as needed, or kept at 4°C and deprotected and purified as needed. The primers 

were purified by desalting them by precipitation with butan-l-ol. 1ml butan-l-ol was 

added per 150pl primer solution and microcentrifuged at 13,000g for 20 minutes at room
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temperature. Excess butanol was removed by centrifugation under vacuum and the 

primer dissolved in 150pl TE pH8.0. Primer concentrations were calculated as above.

2.2.4.11. Polymerase chain reaction (PCR)

a) Amplification from RNA.

Firstly cDNA was synthesised from RNA by reverse transcription using the Perkin- 

Elmer Cetus RNA PCR kit. The reaction was carried out in a final volume of 20pl 

comprising of 5mM MgCl2, lx  PCR kit buffer II (50mM KC1, lOmM Tris-HCl), ImM of 

each of dATP, dGTP, dTTP, dCTP, 1 unit RNase inhibitor, < lpg RNA, 2.5pM random 

hexamers and 2.5 units reverse transcriptase. This was incubated at room temperature 

for 10 minutes allowing the extension of the hexameric primers by reverse transcriptase. 

All samples were placed in the thermocycler and further incubated at 42°C for 15 

minutes, 99°C for 5 minutes and soaked at 4°C for 5 minutes.The cDNA was then 

amplified by using specific primers as detailed in table 1. The above reaction volume was 

increased to lOOpl by adding 2mM MgC^, lx kit PCR buffer II, 0.15pM of each of the 

upstream and downstream p53 primers (detailed in table 1 and figure 2.1) and 2.5 units 

Taq polymerase. Amplification proceeded for 35 cycles of 95°C for 30 seconds and 

60°C for 30 seconds plus a 1 second extension per cycle followed by a final extension at 

60°C for 7 minutes using the Perkin-Elmer cetus 9600 thermocycler. The samples were 

then analysed by agarose gel electrophoresis as described in section 2.2.4.6 to ensure 

correct amplification.

b) Amplification of DNA.

All reagents were provided in the Perkin-Elmer Cetus DNA PCR kit. Primer 

sequences are detailed in table 2 .

The reaction mixture comprising of 200pM of each dATP, dCTP, dTTP, and 

dGTP, buffer J (50mM Tris pH 9.0,50mM KC1,1.5mM MgCl2, 0.01% gelatin),
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0.15pM of each primer and 200ng DNA, was aliquoted into GeneAmp PCR reaction 

tubes in a final volume of lOOpl. The tubes were placed into the PCR machine (Perkin- 

Elmer Cetus type 9600) and heated to 94°C for 5 minutes to inactivate DNases and 

ensure all DNA duplexes were melted. The samples were cooled to 85°C and 2.5 units 

Taq polymerase (a thermolabile DNA polymerase from Thermus aquaticus) was added. 

The DNA was then amplified (using Perkin-Elmer cetus 9600 thermocycler) for 35 

cycles at 94°C for 30 seconds, 55°C for 1 minute, to allow the primers to anneal to the 

template DNA, followed by 72°C for 1 minute, to allow extension of the amplimer 

sequences. After completion of the cycles, the reaction was incubated at 72°C for a 

further 7 minutes to ensure full extension and then cooled to 4°C. 5pi of each sample 

was analysed by agarose gel electrophoresis (as described in section 2.2.4.6.) to check 

the correct product was amplified.

c) PCR of DNA containing microsatellite sequences.

Amplification of all microsatellite sequences were carried out the same way and not 

as specified in the original reference. Primers used are described further in table 3.

Reactions were carried out in 25 pi final volumes containing 40ng DNA, lOmM 

Tris-HCl pH8.3, 50mM KC1,1.5mM MgCl2, 0.001% (w/v) gelatin, 10% (v/v) DMSO, 

140ng of each amplimer, 200pM of each of dATP, dTTP, dGTP, dCTP, and lp l  a (32P) 

dCTP (diluted 1:30). This was heated to 94°C for 5 minutes then cooled to 85°C before

2.5 units Taq polymerase was added. Each reaction tube was placed in the thermocycler 

(Perkin-Elmer Cetus 9600) and subjected to 6 cycles of 94°C for 30 seconds, 60°C for 

30 seconds, followed by 28 cycles of 94°C for 30 seconds, 55°C for 30 seconds and 

72°C for 30 seconds. Extensions were completed by incubating finally at 72°C for 7 

minutes and then cooling to 4°C.

5pl of each reaction was analysed by electrophoresis as described in section 

2.2.4.6. on a nusieve agarose gel to check the product size.

Loss of heterozygosity at microsatellite positions were analysed by polyacrylamide 

gel electrophoresis as described in section 2.2.4.13.
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Table 3

Microsatellite primers

Chromosome 9

Primer Primer position Reference
D9S 156 9p23-p22 Weissenbach et al, 1992
D9S 157 9p23-p22 Weissenbach et al, 1992
D9S 199 9p23 Graw and Kwiathowski, 1993
D9S 168 9p23-p22 Weissenbach et al, 1992
D9S 162 9p21 Weissenbach et al, 1992
Interferon a 9p21 Weissenbach et al, 1992
D9S 171 9p21 Weissenbach et al, 1992
D9S 55 9pll-pl2 Sharma etal, 1991
D9S 127 9q31 Lyallefa/, 1992
D9S 109 9q31 Furlong et al, 1992
D9S 116 9q31-q34 Kwiatkowski and Gusella, 1992
GSN 9q33 Kwiatkowski et al, 1993
ABL 9q34.1 Kwiatkowski, 1991
D9S 66 9q34-qter Kwiatkowski et al, 1992

Chromosome 3

Primer Primer position Reference
D3S 1038 
D3S 1478 
D3S 1076 
D3S 1067 
D3S 1477

3p26.1-p25.2
3p21.3-p21.2
3p21.2-p21.1
3p21.1-pl4.3
3pl4

Joneses/, 1992
Human genome mapping project
Jones et al, 1992
Jones et al, 1992
Human genome mapping project
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2.2.4.12. Sequencing.

a) Sample preparation from PCR reaction.

Amplification of DNA or cDNA was carried out as described in section 2.2.4.11. 

using a biotinylated "downstream primer" as detailed in tables 1 and 2

For each PCR reaction 20pl (200pg) of washed Dynabeads M-280 Streptavidin® 

was used. The beads were pre-washed by placing 20pi beads (lOpg/pl) into an 

eppendorf and placing in a Dynal Magnetic Particle Concentrator (MPC). The beads are 

collected on one side of the tube and the supernatant removed. The beads were 

resuspended in 20pl TES (lOmM Tris-HCl pH8.0, ImM EDTA, lOOmM NaCl), placed 

in the MCP and the supernatant again removed. The beads were finally resuspended in 

40pl TES to a final concentration 5pg/pl. The prewashed beads were added to an equal 

volume of PCR reaction and incubated for 15 minutes keeping the beads resuspended. 

The tube was placed in the MCP and the supernatant removed. lOOpl 0.15M NaOH was 

added, the beads resuspended and left at room temperature for 5-10 minutes. This 

converted the DNA to single-stranded form, the biotinylated strand being held onto the 

beads and the unbiotinylated strand was removed by placing the tube in the MCP and 

removing the NaOH solution (the unbiotinylated strand could be ethanol precipitated 

from this and used directly for sequencing). The beads were washed once with lOOpl 

TES, once with lOOpl H2O and resuspended in 7pi H2O for use in the sequencing 

reaction as outlined below.

b) Preparation of double-stranded plasmid DNA for sequencing.

Supercoiled DNA was separated from open-circular and linear DNA, RNA and 

other contaminants by separation on and purification from a 1% agarose gel as described 

in section 2.2.4.7b. The DNA spun from the filter paper was made up to 80pl with TE, 

denatured by adding 200mM NaOH, 0.2mM EDTA for 5 minutes at room temperature 

and precipitated by adding 0.5x volume 4M NH4AC and 2x volume ethanol at -20°C
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overnight. The DNA precipitate was microcentrifuged for 10 minutes, washed with 70% 

ethanol, dried and redissolved in 7pl H2O ready for sequencing as described below.

c) Sequencing reaction.

Sequencing was carried out essentially as described in the Sequenase® kit supplied 

by United State Biochemicals. 7pi DNA prepared as above was added to a solution 

containing 40mM Tris-HCl pH7.5, 20mM MgCl2,50mM NaCl and 20ng primer 

(detailed in table 4). The primer was annealed by incubation at 65°C for 2 minutes and 

slowly cooling to room temperature. The annealed DNA was labelled by adding lpl 

DTT (0.1M), lpl labeling mix (diluted 5 fold) and 0.5pCi (35S) dATP. 2pl Sequenase® 

version 2 enzyme (diluted 8 fold) was added to the mixture and incubated at room 

temperature for 5 minutes. 3.5pl of this labelling reaction was added to each termination 

mixture (2.5pl) pre-heated to 37°C and incubated at 37°C for a further 5 minutes. The 

reactions were stopped by adding 4pl stop solution. The samples were heated to 75°C 

for 2 minutes immediately prior to loading onto a polyacrylamide gel as described in 

section 2.2.4.13.

2.2.4.13. Polyacrylamide gel electrophoresis,

a) Analysis of amplified microsatellite PCR samples.

Polyacrylamide gels were used to separate radiolabelled amplified DNAs differing 

in size by approximately 4-20 base-pairs. 5-11% polyacrylamide gels (ratio 30% 

acrylamide : 0.8% bisacrylamide) were cast in lx TBE (90mM Tris, 90mM boric acid, 

2mM EDTA) buffer and polymerised with 420ptl APS and 42pl TEMED. The gel was 

poured between glass plates, pre-treated with repelcote, separated by 0.4mm spacers and 

a comb was inserted. After polymerisation the gel was placed in a vertical tank 

(Flowgen) with each end submerged in a reservoir of lxTBE.
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DNA samples (5ptl) were loaded into each well in loading buffer (30% glycerol, 

0.25% bromophenol blue, 0.25% xylene cyanol) and run at 25W until the bromophenol 

blue dye (lower dye front) reached the bottom of the gel. Gels were of a percentage 

such that the microsatellite band ran halfway between the bromophenol blue and xylene 

cyanol bands in order to achieve maximum separation. The gel was then removed from 

the apparatus and transferred onto Whatman 3MM paper. It was covered in SaranWrap 

and exposed to Kodak X-OMAT S or X-OMAT AR film with intensifying screens at -70 

°C.

Loss of heterozygosity (LOH) was scored by comparing the number of allele bands 

between cell lines (SCC12B, SCC12F and swiss 3T3 fibroblast). Where two bands were 

clearly visible a cell line was marked as informative. If one of these bands has been lost 

in another cell line then this was regarded as LOH. If all the cell lines showed only one 

band then these were scored as either uninformative or loss in all cell lines.

Microsatellite analysis at each locus was repeated at least twice.

b) Analysis of sequencing reactions.

Sequencing reactions were analysed by denaturing gel electrophoresis. An 8% 

polyacrylamide gel (ratio acrylamide to bisacrylamide 29.1:0.9) in TBE containing 50% 

(w/v) urea was polymerised with 0.04% APS and 0.05% TEMED between gel plates 

pretreated with repelcote. The gel was then placed in a vertical apparatus (Flowgen) 

with both ends submerged in lxTBE buffer. Samples were heated to 75°C for 2 minutes 

and loaded onto the gel using a sharks-tooth comb. The gel was run at 40W for 

approximately 3 hours. The gel was transferred onto 3MM Whatman paper, covered 

with SaranWrap and dried at 80°C for 2 hours. The gel was exposed directly onto 

Kodak X-OMAT AR or S film at room temperature. Autoradiographs were read from 

the bottom (51 end of DNA) upwards.
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2.2.4.14. Dot Blot analysis

DNA or cDNA was amplified by PCR as above and serial dilutions of each sample 

made. 20pl of diluted DNA was denatured by adding lOOpl 0.4M NaOH, 25mM EDTA 

and heating to 95°C for 2 minutes. The samples were then placed on ice and lOOpl lOx 

SSC (1.5M NaCl, 0.15M sodium citrate pH7.0) was added. The Hybond nylon filter 

was moistened in 20x SSC (3M NaCl, 0.3M sodium citrate, pH 7.0) and fitted into a dot 

blot manifold attached to a vacuum. Each denatured DNA solution was added to the 

appropriate well followed by lOOpl lOx SSC and allowed to dry under a vacuum for a 

further 10 minutes. The filter was removed from the manifold and allowed to dry 

overnight.

Oligonucleotides (synthesised as described in section 2.2.4.10) specific to either 

wild-type (5 ’ ACATAGTGTGGTGGTGCCCT 3’) or the 216 p53 mutant 

(5’ ACATAGTGGGGTGGTGCCCT 3’) were labelled with y 32P dATP. lOOng of each 

oligonucleotide was incubated with 50mM Tris-HCl pH7.5, lOmM MgC^, 5mM DTT, 

O.lmM spermidine, O.lmM EDTA, 50pCi y 32P dATP and 20 units T4 polynucleotide 

kinase for 45 minutes at 37°C. The labelled probe was purified on a sephadex G-25 nick 

column. Prior to use the column was washed with 1ml TE and the probe added and 

eluted in the second volume of 400pl TE added to the column. Radioisotope 

incorporation in the probe was measured using a scintillation counter.

The filter was cut into strips and crosslinked on a UV lightbox, DNA side down, 

for 5 minutes and the other side for 1 minute. The filters were pre-hybridised in 

hybridisation buffer containing 5x SSPE (0.75M NaCl, 44mM NaH2P0 4 , 5mM EDTA), 

5x Denhardts solution (0.1% (w/v) ficoll 400, 0.1% (w/v) polyvinylpyrrolidone, 0.1% 

(w/v) BSA), 0.5% SDS, and lOOmM sodium pyrophosphate pH 7.5, for 1-2 hours at 

37°C. 5xl06 cpm/ml of labelled probe was incubated with the filter in hybridisation 

buffer for at least 2 hours at 37°C. The filters were then washed in 6x SSC twice, each 

time for 10 minutes at room temperature. Non-specifically bound probe was removed by 

washing the filters at exactly 61°C in 3M tetramethylammonium chloride (TMAC),

50mM Tris, pH 8.0, 2mM EDTA and 0.1% SDS for 20 minutes. This removed any
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oligonucleotide mismatched by even 1 base pair. Monitoring the filter whilst washing 

ensured adequate washing. The filters were then washed again in 6x SSC at room 

temperature for 10 minutes, sealed in plastic and autoradiographed at -70°C for 2-16 

hours. Each dot blot was repeated at least twice.

2.2.4.15. Oligonucleotide site-directed mutagenesis

Mutagenesis was carried out as described in the Muta-gene® M l3 mutagenesis kit 

from Bio-rad and outlined briefly below. All bacterial strains and vector DNAs were 

supplied in the kit. Oligonucleotides were synthesised as described in section 2.2.4.10. 

and are detailed in table 5.

a) Cloning of DNA into Ml 3 vector

Wild-type p53 was removed from the vector pC53-SN3 by a Bam HI digest and 

was inserted into the Bam HI site in the vector M13mpl8 as described in sections

2.2.4.5 to 2.2.4.8.

b) Preparation of competent MV1190 cells and transformation with 

M13mpl8/p53

E.coli MVI190 is unable to utilise lactose or biosynthesis proline. The F  plasmid 

carries the proline synthesis gene and a truncated (3-galactosidase gene which can be 

complimented by a fragment coded for by M13 phage. If this fragment in M13 is intact 

(i.e. no insert) then cells carrying this phage will produce blue plaques in the presence of 

the inducer IPTG and the dye indicator x-gal. If DNA (to be mutated) has been 

successfully inserted into M l3 then colourless plaques will result. The F  plasmid 

necessary for pili formation via which M13 phage enters the cell is selected for as it 

allows growth in the absence of proline.
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MVI190 cells were streaked onto a glucose-minimal plate (77mM KH2P04, 

25mM K2HP04, 8mM NaCl, 19mM NH4Cl,lmM MgS04.7H20, 0.001% thiamine, 

0.2% glucose, 1.5% bactoagar) and grown at 37°C until colonies appear. This selects 

for cells containing the F  plasmid. A colony was used to inoculate 10 ml L broth and 

grown overnight. 250ml L broth was inoculated with enough overnight culture to give 

an OD60o 0-1 and grown to an OD 0.8-0.9. The cells were then pelleted at 5000 rpm for 

5 minutes at 4°C and resuspended in 50ml ice-cold lOOmM MgCl2 and left on ice for 30 

minutes. The cells were again pelleted and resuspended gently in 10ml ice-cold lOOmM 

CaCl2. A further 100ml CaCl2 was added and incubated on ice for 30-90 minutes. The 

cells were pelleted and resuspended in 12.5ml 85mM CaCl2, 15 % glycerol. The cells 

were aliquoted into 0.5mls and frozen in a dry ice/ethanol bath and kept at -70°C.

0.3ml competent MVI190 cells were transformed with 1-1 Ong ligation mixture on 

ice for 30-90 minutes. The cells were heat shocked at 42°C for 3 minutes and returned 

to ice. 10 or 50pl of transformed cells were added to 0.3 ml MV1190 overnight culture. 

50pl 2% X-gal and 20pl lOOmM IPTG were added to 2.5ml molten top agar (medium 

containing 0.7% bactoagar). This was cooled, added to the cells and immediately poured 

onto H agar plates (1% bactotryptone, 8mM NaCl, 1.5% bactoagar). The top agar was 

allowed to solidify and inverted overnight at 37°C. Clear plaques were picked and 

placed into 1ml TE and kept at 4°C.

Stocks of recombinant phage were prepared as described in Maniatis et al, 1989. 

Briefly, 50pl of MVI190 overnight culture was added to 2ml L broth. lOOpl of phage 

suspension was added and incubated for 5-6 hours at 37°C. 1ml was pelleted at 12,000g 

for 5 minutes and the supernatant containing the phage was stored at 4°C. The 

remaining culture was used to make a DNA miniprep from phage infected cells as 

described in Maniatis et al, 1989 and the presence of a correct insert verified by digestion 

as described in section 2.2.4.5.
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c) Titering phage.

The above M13 phage was titered on MV1190 cells. A colony of MV1190 cells 

was picked from a glucose minimal plate and used to inoculate 20ml L broth. This was 

grown overnight at 37°C. 3ml molten top agar was aliquoted into sterile tubes and kept 

at 55°C. The above phage stock was diluted in 4 serial, 100-fold dilutions in L broth. 

0.2ml of the MV1190 overnight culture was then added to lOOpl of the last 3 dilutions 

and incubated at room temperature for 5 minutes. One tube of top agar was mixed with 

each phage/culture mix and poured immediately onto an L broth agar plate. This was 

allowed to harden and then incubated at 37°C overnight. The number of plaques per 

plate were counted and the titer calculated using the formula:

titer = (no. plaques x 10 x dilution factor) pfu/ml.

d) Growth of Uracil-containing phage.

E.coli CJ236 has a dut-1, ung-1 phenotype which results in occasional uracils 

being substituted for thymine in all DNA synthesised in the bacterium. The F  plasmid 

which enables pili formation and phage infection was selected for by growing in the 

presence of chloramphenicol.

50ml 2xYT (1.6% bactotryptone, 1% yeast extract, 8mM NaCl) medium plus 

30pg/ml chloramphenicol was inoculated with 1ml CJ236 overnight culture and grown 

until ODgoo was 0.3 which corresponds to 1x10s cfu/ml. The titered phage was added 

to a multiplicity of infection of 0.2 and the culture further incubated at 37°C for 4-6 

hours. The cells were pelleted at 17,000g for 15 minutes. 150pg RNase A was added to 

the supernatant, containing the uracil containing phage, and incubated at room 

temperature for 30 minutes. 0.25x volume of 3.5M Nt^Ac, 20% PEG 8000 was added 

to the supernatant and held on ice for 30 minutes. The precipitate was collected by 

centrifugation at 17,000g for 15 minutes at 4°C. The pellet was drained and resuspended 

in 200pl high salt buffer (300mM NaCl, lOOmM Tris pH8.0, ImM EDTA). This was
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incubated for 30 minutes on ice, centrifuged briefly and the supernatant stored at 4°C. 

The efficiency of infection of the phage on CJ236 cells was calculated by titering the 

uracil-containing phage stock on CJ236 and MV1190 as described in part c) of this 

section. As uracil-containing phage are inactive on MVI190, the titer on MVI190 was 

104 or less lower than that on GJ236 cells indicating successful uracil incorporation into 

the M13 phage DNA.

Single-stranded DNA was extracted from the phage by phenol/chloroform 

extraction and precipitation with O.lx volume 7.8M NH4AC and 2.5x volume ethanol at 

-70°C for 30 minutes.The DNA was pelleted by centrifugation, washed and re-dissolved 

in TE.

e) Synthesis of mutant strand.

The oligonucleotide containing the required mutation was firstly phosphorylated by 

incubating 200pmol oligonucleotide with lOOmM Tris pH 8.0, 0.2M MgCl2, 0.1M DTT, 

ImM ATP, 4.5 units T4 polynucleotide kinase and incubating at 37°C for 45 minutes. 

The reaction was stopped by heating to 65°C for 10 minutes.

2-3pmol oligonucleotide was annealed to 200ng uracil-containing DNA in 20mM 

Tris-HCl pH7.4,2mM MgC^, and 50mM NaCl. The reaction was heated at 70°C for 5 

minutes, cooled slowly to 30°C, then placed on ice.

The complementary DNA strand was synthesised by adding 0.4mM of each of 

dATP, dTTP, dCTP, dGTP, 0.75mM ATP, 17.5mM Tris-HCl pH7.4, 3.75mM MgCl2, 

21.5mM DTT, 2-5 units T4 DNA ligase and 0.5 units T7 DNA polymerase to the above 

and leaving on ice for a further 5 minutes. The reaction was continued at 25°C for 5 

minutes followed by 37°C for 30 minutes and stopped by adding 90pl lOmM Tris pH8.0, 

lOmM EDTA and freezing.

The mutant phage DNA was then transformed into MVI190 (which will only 

replicate the non-uracil containing template i.e. mutant sequence) as described in part 

b) of this section. Single-stranded DNA was prepared as in part d) and sequenced as 

described in section 2.2.4.12. to identify phage carrying the required mutation.
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2.2.5. Cytogenetics

2.2.5.1. Preparation of metaphase chromosome spreads from human 

SCC for FISH

Glass slides were pre-soaked in a solution of 3% conc. HC1 in 70% methanol:

30% H2O for a minimum of 1 hour but not more than 24 hours. Slides were then rinsed 

in distilled water and stored at 4°C until required.

0.03pg/ml colcemid was added to 50% confluent monolayers of SCC cell lines in 

5cm dishes and incubated for 2.5-3 hours. The cells were then trypsinised and pelleted at 

lOOOrpm for 5 minutes. The pellet was flicked up and 1.5ml hypotonic solution (0.075M 

KC1 pre-warmed to 37°C) was added drop-wise, using a pasteur pipette, with constant 

agitation. A further 5ml was added, the tube inverted and incubated at 37°C for 18 to 20 

minutes. The swelling was stopped by adding 10 drops of freshly prepared Camoy’s 

fixative (3:1 methanol: glacial acetic acid), inverting to mix and pelleting the cells as 

above. The pellet was again gently flicked up and resuspended in 1.5ml freshly prepared 

fixative with constant agitation to prevent clumping. A further 5ml fixative was added, 

mixed by inverting and incubated at room temperature for 10 minutes. The cells were 

again pelleted and resuspended in fixative as above and incubated for 30 minutes at room 

temperature. The cells were pelleted and resuspended in sufficient fixative to give 

correct density for dropping slides.

50(0.1 aliquots of the above metaphase preparations were dropped onto the prepared 

drained slides. The slides were allowed to air dry before checking the spreads.

Slides used for FISH analysis were aged for 1-2 weeks before use. This was found 

to lower background.

2.2.5.2. Fluorescence In situ hybridisation (FISH).

The slides carrying the chromosome spreads were fixed in freshly prepared 

Camoy’s fixative for 1 hour and rinsed in 2x SSC. They were then treated with

95



lOOpg/ml RNase in 2x SSC for 1 hour at 37°C and rinsed in 2x SSC. Protein was 

digested by incubating the slides in 0.01% pepsin in 0.01 M HC1 for 10 minutes at 37°C, 

then rinsed in PBS. The spreads were fixed again by placing in Streck tissue fixative for 

10 minutes at room temperature. The slides were then rinsed in PBS and dehydrated 

twice in 70% ethanol for 2 minutes and twice in 100% ethanol for 2 minutes and allowed 

to air dry.

The chromosomes were denatured on the slides in 70% formamide in 2x SSC at 70 

°C for 5 minutes. The slides were then washed in a large volume of 70% ethanol and 

dehydrated in 70% ethanol and 100% ethanol as before.

The p53 cosmid probe (p5106-DIG) was denatured immediately before use, at 37° 

C for 5 minutes. The chromosome 17 centromere probe (aCHAD 9) was diluted 1:25 

and denatured at 70°C for 5 minutes. 10pl of each probe was dropped onto the spreads 

and covered with a coverslip. Cowgum was used to seal around the edges of each 

coverslip and the slides were placed in a dark, humidified box at 37°C overnight.

The coverslips were removed in 2x SSC and the slides washed twice in 50% 

formamide, lx SSC at 42°C for 20 minutes. The slides were then washed in 2xSSC at 

42°C for 20 minutes. The probe was detected by firstly blocking in PN-TB (0.1M 

NaH2PC>4, 0.1M Na2HPC>4, 0.05% Tween) buffer for 15 minutes at room temperature. 

lOOpl primary antibody (sheep anti-digoxigenin, diluted 1:200 in PN-TB) was placed 

onto each slide and covered with parafilm. The slides were incubated for 1 hour, in the 

dark, at room temperature. The slides were then washed for 10 minutes in PN-TB at 

room temperature. The secondary antibody, F1TC conjugated donkey anti-sheep, was 

diluted 1:500 in PN-TB and lOOpl placed on each slide as described above. The slides 

were again incubated for 1 hour at room temperature in the dark. The slides were finally 

washed in PN-TB for 20 minutes at room temperature, dehydrated in 70% and 100% 

ethanol as before and mounted in antifade medium (Vectashield).

Hybridisations were analysed using a Biorad confocal microscope MRC600 with a 

krypton argon laser.
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Chapter 3

Genetic analysis of SCC12B and SCC12F



3.1. Characterisation of SCC12F and SCC12B.

SCC12B and SCC12F were originally derived from the same tumour but appear to 

differ in their ability to terminally differentiate and undergo controlled cell death when 

detached from the culture dish and also differ in their degree of tumorigenicity as 

discussed in section 1.1.2. The two cell lines were therefore analysed for genetic 

differences in order to try and explain their different phenotypes.

3.1.1. Chromosome 9.

Microsatellite analysis was carried out on both arms of chromosome 9 using a wide 

range of primers as detailed in table 3 (section 2.2.4.11). These microsatellites were 

investigated in SCC12F and SCC12B as they have previously been reported to show a 

high degree of LOH in SCC-HN (Loughran et al., 1994; Edington et al., 1995). There is 

also an 84% chance of LOH at 9p21 in both lines based on the fact that the chance of all 

six microsatellites in this region being non-informative is less than 16% (Loughran et al., 

1994; Latif etal., 1992).

Loss of heterozygosity (LOH) at a certain locus is usually scored by comparing the 

number of allele bands between tumour DNA and normal DNA from the same individual. 

In this case normal DNA was not available for analysis but it was sufficient to compare 

SCC12F with SCC12B to highlight any differences in LOH between the two cell lines. 

Examples of PCR of microsatellite allele bands GSN and D9S157 are illustrated in figure 

3.1 and the complete data is summarised in figure 3.2. Clones 19 is a single cell clone of 

SCC12F (see section 5.1.1 for further details). Swiss 3T3 fibroblast DNA was included 

as a control in order to eliminate any microsatellite amplification due to contamination of 

the cell line DNA with feeder DNA. No microsatellite amplification from the 3T3 DNA 

was observed at any loci. Where two bands were visible in all cell lines, this was marked 

as informative and no loss of heterozygosity. If one allele band had disappeared but was 

clearly visible in the other cell lines then this was recorded as loss of heterozygosity. If 

only one band was apparent in all cell lines then these were scored as either
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Figure 3.1

Microsatellite analysis of chromosome 9

Microsatellite amplification at two loci, GSN (top) and D9S157 (bottom) on 
chromosome 9 are shown for examples. The remaining microsatellite data is summarised 
in figure 3.2.

Cell lines SCC12B, SCC12F and two clones of SCC12F clone 19 and clone 24 are 
compared. 3T3 DNA was incorporated to eliminate the possibility of contamination 
from feeder cells. No microsatellite amplification from 3T3 DNA was observed at any 
loci.

GSN (top) Amplified microsatellite DNA was electrophoresed on a 9% polyacrylamide 
gel and the product size was approximately 89-117bp. The microsatellite band is shown 
by the lower arrow and the shadow band above.

D9S157 (bottom) Amplified microsatellite DNA was electrophoresed on a 10% gel and 
the product size was 133-157bp. The microsatellite and shadow bands are again shown 
by the arrows.

Both loci show amplification of only one allele band in all four lanes.
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noninformative or loss in all cases but as no normal DNA was available to make 

comparisons this result was inconclusive. Results are expressed as amplification of one 

allele or two alleles (figure 3.2) and SCC12F, SCC12B and clone 19 were compared.

The "shadow" bands (shown by the arrows on figure 3.1) appearing at larger 

increments are common in PCR of microsatellites. It is unclear as to what they 

represent or how they can be eliminated, but it has been suggested that where there is a 

vast excess of primers, the shadows are caused by amplified, partially denatured product 

with extra primer bound at the denatured ends (D.Black, personal communication).

As summarised in figure 3.2, no differences in the amplification of microsatellites 

investigated on chromosome 9 between SCC12B, SCC12F and clones 19 was apparent.

3.1.2. Chromosome 3p

Microsatellite analysis was also carried out on the short arm of chromosome 3 

using the primers as detailed in table 3 (section 2.2.4.11). These loci have previously 

been shown to exhibit a high degree of LOH in SCC-HN (Latif et a l , 1992; Edington et 

al., 1995) and therefore were good candidates on which to find differences in LOH in 

SCC12B and SCC12F.

An illustration of amplified microsatellite allele bands obtained from primers 

D31067 and D31038 are shown in figure 3.3 and the complete micosatellite data for 

chromosome 3p is reported in figure 3.4. Results were scored as for chromosome 9 

described in section 3.1.1.

No differences in the microsatellite amplification pattern on the short arm of 

chromosome 3 were observed between SCC12B, SCC12F and clones 19.

3.1.3. Cyclin D1

Cyclin D1 protein levels were compared between SCC12B, SCC12F and clone 19 

by western analysis. Results are shown in figure 3.5. BICR 6 was used as a positive 

control as it has been shown to overexpress cyclin D1 ( Nikolic et al, submitted for
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Figure 3.3.

Microsatellite analysis of chromosome 3

Microsatellite amplification at two loci, D3S1067 (top) andD3S1038 (bottom), on 
chromosome 3 are shown for examples. The remaining data is summarised in figure 3.4

Cell lines SCC12B, SCC12F and two clones of SCC12F clone 19 and clone 24 are 
compared. 3T3 DNA was incorporated to eliminate the possibility of contamination 
from feeder cells. No microsatellite amplification from 3T3 DNA was observed at any 
loci.

D3S1067 (top) Amplified microsatellite DNA was electrophoresed on a 10% 
polyacrylamide gel and the product size was approximately 95bp. The microsatellite and 
shadow band are shown by the arrows.
This microsatellite showed amplification of only one allele band in all four cell lines.

D3S1038 (bottom) Amplified microsatellite DNA was electrophoresed on a 10% 
polyacrylamide gel and the product size was approximately 115bp. The microsatellite 
and shadow bands are shown by the arrows.
All cell lines were heterozygous at this microsatellite showing amplification of both allele 
bands in all four cell lines.
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Figure 3.3 Microsatellite analysis of chromosome 3
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publication). Human cyclin D1 was seen as a band at approximately 34kDa and a 

mouse specific peptide was seen as a faint band approximately lOOkDa. This lOOkDa 

band was used as an indicator of the extent of contamination of mouse 3T3 feeders in the 

protein extract, and as can be seen from the western this contamination was very low.

The western blot shows that there is no difference in the levels of cyclin D1 protein 

expression between cell lines SCC12B, SCC12F and clone 19.

3.2 Analysis of p53 in SCC12B and SCC12F

1 The p53 tumour suppressor gene is frequently mutated m a wide variety ot cancers 

(discussed in section 1.4.3.1.) and has been shown to be important in the progression of 

tumours in the oral cavity (Gusterson et al., 1991; Bums et al., 1993; Bums et al., 1994a 

and b). It is therefore of interest to analyse and compare the p53 status in SCC12F and 

SCC12B in order to assess the role that p53 plays in the progression of this particular 

tumour.

The level of p53 protein is very low in normal cells due to its short half-life and is 

therefore difficult to detect by conventional protein detection methods such as western 

blotting and immunoprecipitation. Mutation of p53 however leads to a highly stabilised 

protein with a much increased half-life that is readily detected by these methods. The 

detection of high levels of p53 is therefore used as an early indication that the protein 

may have acquired a mutation and indeed in SCC-HN overexpression of the protein has 

been shown to always correlate with a p53 missense mutation or an in-frame deletion 

(Bums etal., 1993; Bums etal., 1994b).

3.2.1. p53 protein levels

p53 protein levels were analysed in SCC12B, SCC12F and single-cell clones of 

SCC12F clone 19 and clone 24 as shown in figure 3.6. SCC4 was used as a positive 

control as it has been shown to have a stabilised p53 protein and a point mutation at 

codon 151 (Bums etal., 1993). HFF9 cells (human foetal fibroblasts) express wild-type

103



< —  lOOkDa

< — 34kDa

F ig u r e  3 .5  W e s te r n  blot a n a ly s is  o f  C y c lin  D1 in S C C  cell lines

50ug of protein extracts were electrophoresed through a 107c denaturing 
polyacrylamide gel and blotted, as described in materials and methods.
The rabbit polyclonal antibody (287-3) was used at a 1:500 dilution.
BICR 6 cell line overexpresses human p34 cyclin D1 and wasused as a positive 
control. Arrows point to a murine specific peptide ~ lOOkD and the 
cyclin D1 specific 34kD protein.

F i g u r e  3 .6  W e s t e r n  b lo t  a n a l y s i s  o f  p 5 3  in  S C C  c e l l  l in e s

250ug of protein extracts were electrophoresed through a 107c denaturing 
polyacrylamide gel.as described in materials and methods. The antibody PAbl 801 
was used at a final concentration of lug/ml. SCC4 expresses mutant p53 containing 
a mutation at codon 151. HFF9 cells express wild-type p53 which can 
hardly be detected. Arrow points to p53 protein.



p53 therefore giving a very faint p53 signal in this assay. This cell line also enabled the 

p53 protein band to be identified as the lower of the two bands shown in figure 3.6 

migrating at approximately 53kDa and often seen as a doublet (Harlow et al, 1985).

Interestingly, SCC12B appears to have very high levels of p53 compared with 

SCC12F. Clones of SCC12F have variable levels of p53 protein (see also figure 5.1) and 

clone 19 was used as a target cell in subsequent experiments (see section 5.1.).

3.2.2 Identification of a p53 mutation in SCCI2B and SCC12F

Detection of high levels of p53 protein indicates the presence of a stabilised p53 

protein and suggests the possibility of a p53 mutation. SCC12B and SCC12F appear to 

have different levels of p53 protein (as shown in the above section) and were therefore 

sequenced for a p53 mutation. Total RNA was reverse transcribed into cDNA and 

various fragments of p53 were amplified by PCR using the p53 specific primers which 

are detailed in table 1. The location of the PCR primers and also the sequencing primers 

within the p53 cDNA are illustrated in figure 2.1. The complete coding sequence, 

codons 1-393 of p53 cDNA was sequenced in both cell lines. SCC12B was found to 

contain a novel p53 mutation at codon 216, a T—»G transversion causing a valine to be 

substituted for a glycine, as shown in figure 3.7. Interestingly, the mutation appears to 

be a heterozygous one with the wild-type p53 allele unusually still being expressed. 

SCC12F expresses much less p53 protein (figure 3.6) and accordingly appears to express 

very little p53216 mutant transcript as shown by the very faint additional G base 

highlighted by the arrow on the sequence in figure 3.7. SCC12F appears to mostly 

express the wild-type p53 allele. The normal wild-type sequence at codon 216 from 

BICR 3 (which has been shown to have an alternative mutation at codon 282 (Bums et 

al, 1993) is shown in figure 3.7 for comparison.

Exon 6 amplified DNA from both cell lines was sequenced directly with primer 6U 

(table 2) and identical results were obtained as from RNA |

Whilst searching for a mutation in p53 a polymorphism was identified at codon 72 

exchanging a proline for an arginine in both cell lines. Differences in the sequence of
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codon 72 have been observed by other investigators analysing cDNA and genomic DNA 

from various sources (Buchman et al, 1988; Lamb and Crawford, 1986). This amino acid 

change has been shown to cause a difference in protein mobility on SDS-polyaciylamide 

gels. It is a fairly frequent polymorphism and both forms of p53 have been shown to be 

functional. The presence of this polymorphism in both cell lines is further proof that 

SCC12F and SCC12B originated from the same tumour.

3.2.3. p53 gene dosage in SCC12F and SCC12B

Both western blot analysis and sequencing of p53 as shown previously, showed 

that SCC12F and SCC12B express different dosages of wild-type and mutant p53216 

protein. The dosage of each were quantified further by dot blot analysis probing both 

cDNA amplified with primers K and G and DNA amplified with 6U and 6D. Equal 

amounts of amplified cDNA or DNA (as judged by agarose gel electrophoresis) were 

used for each cell line and 2 fold dilutions were added to the filter vertically. Normal 

human keratinocytes (HEK) was used as a control for background hybridisation.

The cDNA dot blot is shown in figure 3.8a. The density of each spot was 

measured by molecular dynamics laser densitometry using PDI image analysis software 

and is summarised in figure 3.8b. The dot blot confirms that SCC12B expresses more 

mutant p53 transcript than SCC12F and the PDI measurements suggests that there is a 

two fold difference if the density of each spot at varying dilutions are compared between 

the two cell lines. The background hybridisation is very low as shown by the lack of 

hybridisation of the mutant probe to HEK cDNA.

The blot probed with the wild-type oligonucleotide shows that SCC12F and 

SCC12B appear to express lower levels of wild-type p53 than HEK cells. This is not 

surprising in the case of SCC12B which has been shown to express mutant and wild-type 

sequences and it is therefore likely that the level of wild-type p53 would be lower than in 

normal HEK cells. However sequence analysis suggests that SCC12F expresses mostly 

wild-type DNA and RNA. The difference in the wild-type spot intensities on the cDNA 

dot blot in figure 3.8 and also on the DNA dot blot in figure 3.9 between SCC12F and
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Figure 3.8a

cDNA dot blot analysis

Total RNA from HEK, SCC12B and SCC12F was reverse transcribed and amplified 
by PCR using primers K—»G. Equal amounts of DNA were hybridised to each filter 
with two fold serial dilutions added vertically. Either wild-type p53 (right) or p53216 
mutant (left) oligonucleotide was used as a probe and any non-specific binding was 
removed by washing in TMAC at 61 °C as described in section 2.2.4.14.

Figure 3.8b

Densitometry measurements

The density of each spot in the dot blots in figure 3.8a above were measured by 
molecular dynamics laser densitometry using PDI image analysis software. Each 
measurement illustrated in the table corresponds to the dot in the identical position on 
the blots in figure 3.8a. Density is measured in pixel density units (ODxMM2) which 
is a function of spot intensity and the number of pixels covered. Only those dots that 
can be seen by eye are included in the tables.
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Figure 3.8a
216cDNA dot blot probed with wild-type or p53 mutant oligonucleotides.

216
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Figure 3.8b Densitometry measurements
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Figure 3.9a

DNA dot blot analysis

Exon 6 of p53 DNA was amplified using primers 6U and 6D from HEK, SCC12B, 
SCC12F and a clone of SCC12F, clone 19. Equal amounts of DNA were hybridised 
to each filter with two fold serial dilutions added vertically. Either wild-type p53 
(left) or p53216 mutant (right) oligonucleotide was used as a probe and any non­
specific binding was removed by washing in TMAC at 61°C as described in section 
2.2.4.14.

Figure 3.9b

Densitometry measurements

The density of each spot in the dot blots in figure 3.9a above were measured by 
molecular dynamics laser densitometry using PDI image analysis software. Each 
measurement in the tables corresponds to the dot in the identical position on the blots 
in figure 3.9a. Density is measured in pixel density units (ODxMM2) which is a 
function of spot intensity and the number of pixels covered. Only those dots that 
could be seen by eye are included in the tables.
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Figure 3.9a
216

DiNA dot blot probed with wild-type or p53 mutant oligonucleotide.
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HEK are therefore hard to explain. It may be that SCC12F does have less wild-type 

sequence as a result of aneuploidy or it may be simply that HEK DNA and RNA is more 

easily and cleanly amplified than tumour DNA. More importantly,comparison of the 

hybridisation of the wild-type probe to SCC12F and SCC12B (figure 3.8a) suggests that 

SCC12F may have a two fold increase of wild-type transcript as compared to SCC12B. 

This was repeated and the results confirmed.

The dot blot was repeated using DNA as shown in figure 3.9a and the density 

measurements summarised in figure 3.9b. Although this blot was difficult to reproduce 

identically, it does again show that SCC12B contains more mutant p53 than SCC12F. 

The blot probed with wild-type p53 oligonucleotide does not indicate any difference 

between the level of wild-type p53 in the two cell lines unlike the cDNA dot blot in 

figure 3.8a. It does however show that a single cell clone of SCC12F, clone 19, contains 

more wild-type p53 than SCC12B and SCC12F. Hybridisation of the p53216 mutant p53 

oligonucleotide to DNA from each cell line confirms that SCC12B also contains more 

mutant p53 DNA than any other cell line.

Dot blot analysis of SCC12F and SCC12B at both the DNA and RNA levels 

together with the sequencing data has shown therefore that SCC12B expresses more 

mutant p53216 than SCC12F, and the densitometry measurements suggest this to be by a 

2:1 ratio respectively. Also SCC12F and clones of SCC12F may express more wild-type 

p53 than SCC12B.
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3.2.4. Analysis of chromosome 17 number in SCC12F and SCC12B by

fluorescent in situ hybridisation (FISH).

Taken together the analysis of p53 by western blot, sequencing and dot blot in 

SCC12B and SCC12F have indicated a difference in the wild-type to mutant p53216 

dosage between the two cell lines. It is therefore important to establish the number of 

p53 genes and as the p53 gene maps to chromosome 17pl3.1, the number of copies of 

chromosome 17 in these two cell lines, so that a clearer picture of the p53 status in these 

two cell lines can be established.

The number of chromosome 17 copies in SCC12F, SCC12B and clone 19 was 

analysed by FISH using a chromosome 17 centromere probe as shown in figure 3.10. 

Fluorescence was analysed on a Bio-rad MRC-600 laser scanning confocal microscope 

equipped with a krypton/argon ion laser. Hybridisations of the probe were visualised 

with FITC (pseudocoloured green) using 488/568nm line excitation and dual channel 

522 and 585nm emission filters.

Metaphase chromosomes from normal human blood lymphocytes were used as 

a control for hybridisation frequency. Two signals were visualised on most normal 

chromosome spreads as shown in figure 3.10 and an average hybridisation frequency (i.e. 

average number of signals / spread) of 1.93 was achieved. In comparison, three signals 

were observed on the metaphase spreads of clone 19, SCC12B and SCC12F as indicated 

by the arrows. These signals were localised to the centre of each chromosome and only 

one signal was obtained per chromosome as expected with a centromeric probe. The 

hybridisation frequencies for each cell line ranged between 2.9 and 3.1. and no gross 

structural rearrangements of chromosome 17 was observed.

Clone 19, SCC12B and SCC12F therefore all carry three copies of chromosome

17.
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Figure 3.10 FISH analysis of chromosome 17

Lymphocytes Clone 19

' - ' T V

V &

SCC12B SCC12F

Chromosome 17 number was analysed in Clone 19. SCC12B andSCC12F using the 
centromeric probe alpha-CHAD 9. Metaphase spreads are shown for each cell line. 
Chromosomes are counter stained red and the hybridisations are shown in green.



3.2.5. Analysis of p53 gene amplification in SCC12F and SCC12B by

fluorescent in situ hybridisation (FISH).

As the p53 gene is located on chromosome 17p and we have observed an 

amplification of chromosome 17 in clone 19, SCC12F and SCC12B as well as a 

difference in the mutant to wild-type p53 gene dosage it was of interest to analyse the 

p53 gene copy number in these cell lines and to see if this correlates with the numbers of 

chromosome 17

FISH was carried out as described in section 2.2.5. and the fluorescence was 

observed as described in section 3.2.4. Metaphase spreads from normal human 

lymphocytes were again used as a control and as shown in figure 3.11. As expected four 

signals were observed, one on each chromatid consistant with the presence of two copies 

of the p53 gene. The observed hybridisation frequency was again 1.9. Six signals were 

however visualised on each metaphase spread from Clone 19, SCC12F and SCC12B as 

shown in figure 3.11. The hybridisation frequency ranged from 2.8-3.0 for each cell line. 

Two signals were visualised per chromosome and these were located at the ends of the 

short arms of the chromosomes consistent with the position of the p53 gene.

Therefore clone 19, SCC12F and SCC12B all carry three copies of the p53 

gene and although double hybridisations were not carried out it is assumed that as there 

are also three copies of chromosome 17 that each p53 gene lies on a the short arm of 

chromosome l7andhas not been translocated to another chromosome.
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Figure 3.11 Detection of p53 gene copies by FISH.

Lymphocytes Clone 19

. 3 R y %

SCC12B SCC12F

p53 copy number was analysed in clone 19. SCC12F and SCC12B using the p53 
probe p 5 106-DIG. Metaphase spreads are shown for each cell line. 
Chromosomes are counterstained red. and p53 hybridisations green.



Chapter 4 

Characterisation of p53216 mutant.



2164.1 Characterisation of the p53 Val —>Gly mutant.

4.1.1. Synthesis of recombinant p5 3 mutants.

p53 mutants, p53216 val—>gly and P53248 arg -»trp were synthesised using the 

Biorad M13 mutagenesis kit as described in section 2.2.4.15. Wild-type p53 removed 

from the vector pC53-SN3 was used as the template and was placed into M13mpl8 for 

mutagenesis. Once synthesised each p53 mutant was completely sequenced to check 

that only the required mutation had been incorporated. To further ensure any phenotype 

produced by the p53216 mutant was actually due to the acquisition of this mutation alone 

and not by some other spontaneous mutation which frequently occurs in culture, two 

p53216 mutant clones were selected and used in subsequent experiments, namely 216 (1) 

and 216 (2). The mutants were returned to the pCMV-Neo-Bam vector where the p53 

cDNA is under the transcriptional control of the cytomegalovirus (CMV) promoter 

enhancer and the neomycin resistance gene is under the control of the simian virus 40 

(SV40) promoter enhancer.

2164.1.2. Loss of growth suppressive function of p53 mutant.

The introduction of wild-type p53 into a cell causes the arrest of cellular 

proliferation in G1 ( Baker et al., 1990; Casey et al., 1991; Diller et al., 1990; Mercer et 

al., 1990). Indeed as discussed in section I.4.3.6., one of the known functions of wild- 

type p53 is to induce a G1 arrest after DNA damage to allow the cell to undergo any 

necessary repair before proceeding further through the cell cycle. Escape from this cell 

cycle checkpoint is an important step in the progression of oncogenesis, and many 

different types of tumours have been shown to inactivate p53 by acquiring a p53 

mutation in one allele followed by loss of the other wild-type p53 allele during the 

progression of the cancer. In order to investigate whether the p53216 mutant observed in 

SCC12B is an important player in the progression of this tumour it is important to
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Figure 4.1 Expression o f p53 m utant constructs in Saos-2 cells

Saos-2 cells were transfected with p53~16 val— gly (a and b). wild-type 
p53 (c and d) and CMV vector alone (e and f) and stained with PAblSOl 
to show p53 expression pattern. Phase contrast (left) and green filter (right) 
photographs are shown. Arrows indicate nuclear staining in b. and 
cytoplasmic staining in d.
Bar = lOum —



establish that this mutant has lost its ability to suppress cell growth and is not a silent 

mutation or a polymorphism.

Saos-2 is a human osteosarcoma cell line with no endogenous p53 due to the 

deletion of both p53 alleles. Previous experiments have shown that Saos-2 cells cannot 

tolerate the expression of wild-type p53 (Diller et tf/,1990) and other investigators 

(Frebourg et al, 1992; Chen et al, 1990) have used Saos-2 cells to reveal various 

properties of p53 mutants. This therefore provided an ideal target on which to test the
p i  /:

growth suppressive ability of the p53 mutant. It also allowed the expression of p53 

from the CMV promoter to be analysed before its use in subsequent experiments.

The p53216 val—>gly mutant was transfected into Saos-2 cells along with 

p53248arg-»trp, p53143ala—m l  mutant (pC53-SCX3), wild-type p53 (pC53-SN3) and 

the vector containing no p53 insert (pCMV-Neo) as described in section 2.2.1.4.

Phase contrast photographs of the expression of each p53 protein in Saos-2 cells 

is shown in figure 4.1. Figure 4.1a shows the expression of p53216 protein. This mutant 

protein is expressed at high levels in the nucleus of the cells as shown by the arrows. 

Visualising the staining through a green filter enhances this nuclear expression pattern as 

shown in figure 4.1b. Expression of p53248 and p53148 were identical to figure 4.1a and 

b (data not shown). No p53 protein expression was seen in cells transfected with vector 

alone ( figure 4.1e and f) as expected. Slight background staining appears when 

visualised through a green filter (figure 4.If). Few colonies were expected from cells 

transfected with wild-type p53 due to its growth suppressive properties (see also figure 

4.2). Those that arose mostly showed abnormal expression of the p53 protein in the 

cytoplasm (figure 4.1c) which is seen clearer in the photograph taken with a green filter 

(4.Id) and identified as cytoplasmic by comparison with the nuclear pattern seen in figure 

4.1b. The ability of these colonies to survive the expression of wild-type p53 and its 

abnormal cytoplasmic expression suggests that the protein is inactive and although the 

protein in these cells was not sequenced it is likely that they have accummulated a 

mutation which has prevented nuclear targetting.
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Figure 4.2

Expression of various p53 mutants in Saos-2 cells.

□  % cytoplasmic staining 
■  % nuclear staining

2 1 6 ( 1 )  2 4 8  143 w ild -ty p e  vec to r

p53 construct

Various p53 constructs were transfected into Saos-2 cells as described in methods 
section 2.2.1.4. Transfected cells were plated at 4xl05 cells /10cm dish.
Colonies were selected with 500ug/ml G418 and were visible within 3 weeks.
The percentage of total cells plated that gave rise to resistant colonies for each 
construct was 216(1) 0.4%; 248 0.6%; 143 0.9%; wild-type 0.3% 
and vector 0.6%.
Whole plates were stained for p53 expression using PAbl801.
Positively stained cells were counted under a light microscope for p53 expression 
and it was noted whether this expression was the usual nuclear pattern or whether 
expression was mostly cytoplasmic, indicating a non-functional protein. 
p53 constructs used were : 216 gly - val, 248 arg - trp, 143 ala - val or wild-type 
p53 inserted into the pCMV-Neo vector or vector alone.



Saos-2 colonies positive for p53 staining were counted in each transfection and 

the positionof the protein expression, either nuclear or cytoplasmic, was noted. Results 

are shown in the graph in figure 4.2. 66-70% of Saos-2 cells transfected with either the 

p53216, p53248 or p53143 mutants tolerated the expression of the mutant p53 protein and 

this expression was almost entirely nuclear (shown by the solid shading in figure 4.2). In 

comparison only 11% of the Saos-2 cells transfected expressed wild-type p53 and of 

these, 8% expressed the p53 protein abnormally in their cytoplasm. This therefore shows 

that the p53216 mutant identified in SCC12B as well as has P53248 and p53143 mutants 

have lost their growth suppressive properties and cells are able to tolerate the expression 

of these mutant proteins. The p53216 mutant therefore actively contributes to the 

oncogenic phenotype of SCC12B by preventing the cells from growth arresting.

4.1.3. Saturation density of Saos-2 cells expressing mutant p53 .

As determined in the previous section, the mutant p53216 val-»gly mutant has 

lost its ability to suppress cellular growth. It is not clear from this however whether this 

mutant has purely lost its wild-type function or whether it can also promote growth on 

an oncogenic background. Several groups have shown that some p53 mutants have 

gained a function (Dittmer et al, 1993 and Chen et al, 1990) enabling them to promote 

the oncogenic phenotype of the cell.

Saos-2 cells transfected with either p53216 ,p53248 or p53143 mutants were 

seeded at a density of lx l 0^ cells/5cm dish. Cells were trypsinised in duplicate at 

various time points and cell numbers recorded as shown in figure 4.3. The experiment 

was repeated twice, and both experiments are illustrated (figure 4.3 a and b). Each cell 

line expressing mutant p53 showed no difference in cell growth when compared to Saos- 

2 cells expressing the vector alone.|In fact Saos-2 parental cells showed a slightly higher 

growth rate (figure 4.3b) than the cell lines expressing the mutant p53 constructs but this 

was probably due to G418 selection procedures. Therefore none of the p53 mutants 

tested, including p53216, increased the saturation density or gave a growth advantage to 

the parental Saos-2 cells.
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Figure 4.3.

Saturation density of Saos-2 cells expressing mutant 
p53 constructs.

a)
1 .00E + 07  T

fc 1.00E + 06  -JOB3e
u  1.00E + 05  --

1.00E + 04

0  1 2 3 4  5 6  7 8 9 10 11 12 13 14 15 16 17 18 19 2 0  21 2 2  23  2 4  25

Days
—B—CMV3 — CMV4 — A — 248 -H— 143 —• —216

b)
1.0 0 E + 0 7  T

ih 1.0 0 E + 0 6  - - <o jo

c
U  1.00E + 05  -

1 .00E + 04  -

0  1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  21 22  23  2 4  25

Days

— Saos ~~*-CMV4 - * - 2 4 8  —I— 143 —• —216

Saos-2 cells were transfected with p53 mutants 216 val -> gly, 143 ala -> val,
248 arg trp or vector alone (CMV4). Equal numbers (1x10s) were seeded 
into a 5cm dish and removed and counted at the times indicated. Each cell 
count is the mean number from duplicate plates.



It seems therefore that the p53216 mutant present in SCC12B and SCC12F 

contributes to tumour progression by losing its wild-type growth suppressive properties. 

It does not however seem to have gained an oncogenic function and does not give the 

cells in which it is expressed an increased growth advantage over neighbouring cells at 

least in Saos-2 cells.

4.1.3. Conformation of the p53 mutant.

The p53 protein in SCC12B and SCC12F was immunoprecipitated using various

antibodies as shown in figure 4.4. PAbl620 (Milner et al, 1987) recognises an epitope

mapping towards the N-terminus and reacts with p53 in a wild-type conformation only.

The antibody PAb240 (Garmon et al, 1990; Stephen and Lane, 1992) recognises the

epitope between amino acids 212-217 within the hydrophobic core of the protein. It

therefore only complexes with p53 in a denatured or "mutant" conformation. DO-1

(Vojtesek et al, 1992) is a monoclonal antibody that reacts with all varieties of p53.

SVK14 is an SV40 transformed keratinocyte cell line where the wild-type p53 is bound

and stabilised by the SV40 large T antigen and is therefore readily detectable.. This cell

line was used as a control as the p53 protein is precipitated by PAbl620 but not by

PAb240. SCC4 has a p53 mutation at codon 151 (Bums et al., 1993) which produces a

stabilised p53 protein that reacts with PAb240 but not PAbl620.

SCC12B expresses a large amount of p53 protein as already shown by western

analysis (figure 3.6) and confirmed by the amount of protein shown to immunoprecipitate

with DO-1 (figure 4.4). All the p53 protein expressed in SCC12B appears to react with

PAbl620 and not with PAb240. Figure 4.4 also confirms that SCC12F has less p53

protein than SCC12B as shown by comparing the quantity of protein bound to DO-1.

The small amount of protein detected in SCC12F is also only reactive with PAbl620 and
216not PAb240. This therefore suggests that the p53 mutant protein has a wild-type 

conformation. This is unusual as most p53 mutants have a PAb240 reactivity and it 

prevents any further analysis of the relative dosages of wild-type and mutant p53 protein 

expressed in the two cell lines by immunoprecipitation.
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Figure 4.4 Immunoprecipitation of p53 from SCC12B and SCC12F

  SCC12B   S C C 12F----- 1

p53 antibody

* < -----  p53

IsG

SVK14 SCC4

p53 antibody

< -----  p53

< —  IgG

lOOug pre-cleared protein extract from each ceU line was incubated overnight at -V C w ith p53 
antibody as labelled. The antibody/protein complex was pelleted with protein G plus agarose 
beads, washed and eleetrophoresed by SDS-PAGE on a 12l7i gel. p53 protein was transferred 
onto immobilin P nitrocellulose and detected using p53 rabbit antibody CM-1 (1:250 dilution) 
and anti-rabbit Ig HRP antibody (1:5000). The filter was immersed in ECL reagent and the 
film exposed for 1 minute.
DO-1 recognises both mutant and wild-type p53. PAM620 recognises only wild-tvpe and 
PAb240 recognises only mutant p53.



Chapter 5

The effect of increased mutant p532l6 dosage 
keratinocyte differentiation



5.1. Expression of p53216 mutant in clone 19

5.1.1. Derivation of the target cell line, clone 19.

In order to analyse the effect of increasing the mutant to wild-type p53 gene 

dosage on malignant phenotype an appropriate target cell was needed. Whilst analysing 

the p53 protein levels in SCC12F and SCC12B it was noticed that expression in SCC12F 

appeared to be heterogeneous. Single cell clones were isolated from this cell line and 

examined for their p53 protein expression level as shown in figure 5.1. As this blot 

shows, different clones express varying levels of p53 protein. BICR3 was used as a 

positive control as it has been shown to have a p53 mutation at codon 282 resulting in a 

highly stable p53 protein (Bums et al, 1993).

A clone expressing low levels of p53 protein (clone 19), as shown in figure 5.1 

and also in figure 3.6 was chosen as a target cell in which to alter the wild-type to mutant 

p53216 gene dosage. Due to the very low level of p53 protein in this clone it presumably 

expresses very little stabilised mutant p53 protein and therefore has a more normal p53 

phenotype than SCC12B. This was confirmed by DNA dot blot analysis in figure 3.9 

where clone 19 appears to have more wild-type p53 DNA than SCC12B.

Immunoprecipitation analysis of p53 protein was carried out on clone 19 as 

shown in figure 5.2. No p53 protein signal was seen after the usual 30 second exposure 

to ECL agreeing with the above observation that clone 19 has very low levels of p53 

protein. However if the film was left in contact with the blot for 20 minutes (figure 5.2) 

which completely overexposed signals from the control cell lines, a signal was obtained 

with the DO-1 antibody and PAbl620 but not with PAb240. This confirmed the 

observation that the p53 protein in clone 19 of SCC12F as with SCC12B has a wild- 

type, PAbl620 reactive conformation. It therefore cannot be revealed by this method 

whether the protein in clone 19 has a wild-type or mutant sequence but it is more likely 

that the protein is wild-type as it is not stabilised and is present at very low levels in the 

cell requiring a long exposure time to be visible unlike the highly stabilised mutant p53 

protein in SCC12B.



Figure  5.1

P 5 3  p r o t e i n  l e v e l s  in  s i n g l e  c e l l  c l o n e s  o f  S C C 1 2 F

  Clones of SCC12 F ----------------

9*— O'- i/-, cn — -t
^  —  —  —  — r-i

p53

Single cell clones of SCC12F were isolated. 2>0ug protein extract 
from each clone was eleetrophoresed through a 127c denaturing polyacrylamide 
gel. as described in materials and methods. p53 protein was detected with 
the antibody PAbl 801 at a Final concentration of lug/ml.
BICR3 was a positive control for p53 expression.



Figure 5.2 Im m unoprecip ita tion  of p53 protein in clone 19

 Clone 19------- 1 r  SVK14"n

c l  — tN

n  O
p53 antibody

30 sec 
exposure

p53

Clone 19_______

p53 antibody
r  i

20 min 
exposure

p53

lOOug pre-cleared protein extract from each cell line was incubated at 4°C with 
p53 antibody as labelled. The antibody/protein complex was pelleted with protein 
G plus agarose beads, washed and electrophoresed by SDS-PAGE through a 
12$ gel. Protein was transferred onto immobilin P nitrocellulose and detected 
using p53 rabbit antibody CM-H 1:250 dilution) and anti-rabbit Ig HRP antibody 
(1:5000 dilution). The filter was immersed in ECL reagent and the film exposed for 
30 seconds (top) or 20 minutes (bottom).
DO-1 antibody binds to both wild-type and mutant forms of p53. PAb 1620 binds only 
to wild-type p53 and PAb240 binds only to mutant p53..



Although clone 19 expresses low levels of p53 protein, it still appears to contain 

three copies of the p53 gene as detected with FISH analysis (see figure3.11, section 

3.2.5.) and three copies of chromosome 17 (figure 3.10, section 3.2.4) identical to 

SCC12B and SCC12F. It therefore does not appear to be the number of p53 gene 

copies that differs between each cell line, but the dosages of mutant to wild-type p53 

genes.

Clone 19 therefore is a more relevant target cell in which to manipulate the 

dosages of wild-type and mutant p53 than a null p53 cell as it retains a related genetic 

background to SCC12B and the effects of increased mutant p53216 protein on malignant 

phenotype in this cancer will be easier to interpret .

5.1.2. Introduction of mutant p53216 into clone 19.

p53216 val—>gly mutant was synthesised as described in section 2.2.4.15 and 

4.1.1. In order to ensure no other spontaneous mutations arise in culture giving spurious 

results, two p53216 mutants were used in the following experiments, namely 216(1) and 

216(2).

Wild-type and mutant DNA was transfected into clone 19 as described in section 

2.2.1.4. Resistant colonies were picked, expanded and stained for p53 expression. No 

resistant colonies overexpressing p53 were obtained from cells transfected with wild-type 

p53. Large numbers of colonies were obtained by transfection of clone 19 with 216(1) 

and 216(2), 14 resistant colonies arose from lxlO6 transfected cells and 12 colonies from 

7.5x105 cells respectively. Fewer resistant colonies were obtained from the vector alone, 

6 colonies from 1.5xl06 transfected cells.

High levels of p53 protein expression was obtained from the expression vector as 

shown by western analysis in figure 5.3. Two transfectants 19 216(2) 3 and 19 216(1) B 

are shown as examples. Transfectant 19 216(2) 3 shows a similar p5 3 expression level
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Figure 5.3

L e v e l s  o f  p 5 3  p r o t e i n  in  t r a n s f e c t a n t s  o f  c l o n e  19  e x p r e s s i n g  
C M V - p 5 3 216

50ug protein extract from each cell line was eleetrophoresed through 
a 12Vc denaturing polyacrylamide gel. as described in materials and methods. 
P53 protein was detected with the antibody PAb 1801 at a final concentration 
of lug/ml.

19 (216)1 B and 19 (216)2 3 were produced from clone 19 transfected with 
mutant p53 216(1) or 216(2) respectively.

19 CMV8. CMV12 and C M V 13 are clone 19 transfected with CMV vector 
alone.
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(data not shown). No stabilised p53 protein was shown as expected in three clones 

transfected with the vector only (19 CMV8,19 CMV12 and 19 CMV13).

The conformation of the mutant p53216 was analysed in the transfectants by 

immunoprecipitation (figure 5.4) to compare it with that analysed in SCC12B and 

SCC12F (figure 4.4, section 4.1.3). Large amounts of p53 protein in the two 

transfectants 19 216(1) B (figure 5.4) and 19 216(2) 3 (data not shown) react with 

antibody DO-1 that recognises both wild-type and mutant conformations. The majority 

of this mutant p53 protein is reactive with PAbl620 as is the p53 protein in SCC12B and 

SCC12F. However there appears to also be some reactivity with PAb240 (which reacts 

with only p53 in a mutant conformation) in the transfectants which was not apparent in 

SCC12B, SCC12F or clone 19 (figures 4.4 and 5.2). This reactivity in clone 19 

transfectants may be due to the high levels of mutant p53216 expression resulting in some 

becoming denatured during the experiment. The same controls were used as before, 

SVK14 containing SV40 large T antigen bound wild-type p53 and SCC4 containing 

mutant p53151 (Bums et al., 1993). There also appears to be some cross-reactivity with 

PAb240 in the control SVK14. This reactivity of normally PAbl620 reactive p53 with 

PAb240 may be due to slight degradation of the protein in cases where it is at extremely 

high levels in the cell or perhaps slightly different conditions which vary between 

experiments may lead to a low level of protein denaturation.

To analyse the cellular expression of the p53216 mutant in transfected cell lines, 

cells were seeded onto chamber slides and stained for p53 with PAbl801 as described in 

section 2.2.2.1. and shown in figure 5.5. The position of the staining was enhanced by 

using a green filter (figure 5.5 right) and can be seen to be nuclear in 19 216 (2) 3 (a and 

b) and 19 216 (1) B (c and d). Only slight p53 staining was visible in 19 CMVI3 

expressing the vector alone as expected.

When visualised under the microscope the majority of the transfected cells (figure 

55 a-d) stained for p53 protein. However where the cells differentiated to produce foci 

in culture the staining appeared to be more suprabasal. As the basal cells are the only 

proliferating cells in the epidermis, it would be expected that an increase in mutant p53 

would only have an effect if expressed in these cells and not later when the cells have
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Figure 5.5 Clone 19 transfected with p53 ",6 mutant constructs.

Clone 19 was transfected with p53“16 mutant constructs and stained 
for p53 protein using PAbl801 as described in materials and methods. 
Phase constrast (left) and green filter (right) photographs are shown. 
Clone 19 216(2) 3 is shown in a and b, clone 19 216(1) B in c and d. 
and vector alone 19 CMV 13 in e and f.
Arrows show expression of p53 protein. Bar =10um



Figure 5.6 Raft cu lture o f clone 19 216(1) B stained  with 
haem atoxylin  and eosin.

•granular layer

collagen matrix

Clone 19 216(1 )B was grown on a raft culture and stained with 
haematoxylin and eosin to show stratification, as described in materials 
and methods. Cellular layers are as shown.
Bar = lOum s

Figure 5.7 Raft culture of clone 19 216( 1 )B stained for p53 protein.

Clone 19 216( 1 )B was grown on a raft culture and stained for p53 protein 
with PAM 801 (a and b) as described in materials and methods. P53 protein 
is expressed in all layers of the raft culture as indicated by the arrows.
Clone 19 CMV 13 showed no p53 protein expression as expected (c and d). 
Phase contrast (left) and green filter (right) photographs are shown.
Bar = lOum ■



already been committed to terminal differentiation. In order to check the spatial 

expression from the CMV vector, cells were grown on raft cultures (Kopan et al., 1987) 

either completely submerged in medium or only fed from the bottom of the raft.

Cryostat sections of each raft culture were stained with haematoxylin and eosin to 

enhance cellular morphology (figure 5.6) and show stratification. The raft sections were 

also stained with involucrin and staining was restricted to the suprabasal layers as 

expected! The basal cells were present and remained unstained As

shown in figure 5.7 when stained with the p53 antibody PAbl801 the expression of p53 

protein from the CMV promoter appears to be in all layers of the raft culture and not 

confined to the upper layers as first thought. The CMV promoter was therefore suitable 

to drive the expression of mutant p53216 protein to all layers of the stratified 

keratinocyte cultures.
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5.2. The effect of p53216 mutant dosage on the progression of 
S C C .

5.2.1. Morphology of cell lines.

Phase contrast photographs of each cell line used in experiments described in this 

thesis are shown in figure 5.8. HEK cells showed the normal polygonal shaped cells and 

were grown in serum containing medium in the presence of 3T3 feeders as described in 

section 2.1.1. Similar culture conditions were used for all other cell lines, i.e. DMEM 

supplemented with 10% serum and hydrocortisone. Clone 19, a low expressing p53 

clone of SCC12F, grew very slowly in these culture conditions. Optimal conditions in 

which to grow this cell line were not defined and culture conditions were kept identical 

to other cell lines for control purposes. Like HEK cells, clone 19 preferred to be kept at 

a high cell density, losing cloning efficiency if the cells were extensively split. Clone 19 

also maintained the characteristic cobblestone morphology of normal keratinocytes as did 

SCC12F (figure 5.8 B and D). The morphology of SCC12F and SCC12B have been 

previously described elsewhere (Dawson et al., 1990; Jaffe et al., 1992). SCC12B 

appear much flatter than SCC12F (figure 5.8C) or clone 19 and appeared to have an 

increased growth rate. SCC12B is able to grow in the presence of reduced serum (Jaffe 

et al., 1992 and data not shown). 19 CMV 13 and 19 CMV8 (G and H), clones of clone 

19 expressing the CMV vector alone showed no obvious differences from clone 19. 

Clones transfected with mutant p53216 (19 216(1) B and 19 216(2) 3 figure 5.8 E and F) 

however yielded cell lines that showed increased growth rates and reduced iserum 

dependence i . Both of these cell lines also appeared to have more

compact cell growth and seemed to be less contact inhibited than other cells.
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5.2.2. Expression of involucrin.

Involucrin expression was analysed on all the cell lines shown in figure 5.8 after 

suspension culture for 0 and 3 days (as described in section 2.2.1.5 and section 2.2.2.2). 

Cell density was controlled for by growing cells at both high density (2xl06cells/5cm 

dish) and low density (3x105 cells /5cm dish) before being placed in suspension culture.

Figure 5.9 shows the staining pattern of normal HEK cells expressing involucrin 

after 3 days in suspension. All other cell lines showed a similar staining pattern (data not 

shown) in the proportion of cells that stained (figure 5.10 and 5.11). It has previously 

been reported that involucrin expression correlates with cell size (Watt and Green,

1981), the larger cells being more differentiated and therefore expressing more involucrin 

protein (as discussed in section 1.1.3). The large dark red cells highlighted by the arrows 

were scored positive and any other cells were scored negative for involucrin expression.

After culturing at high density 37% of normal HEK's expressed involucrin and 

this increased to 64% after 3 days in suspension culture (figure 5.10a and b). A similar 

trend was followed by all other cell lines. A slightly lower 20-30% of these cells 

expressed involucrin at day 0, and this increased to 50-60% after day 3. 19 CMV13 

appeared to have a much higher involucrin expression after day 3 but this was based on 

only one experiment (hence the absence of a standard deviation value).

No affect on involucrin expression was therefore apparent when the mutant 

p53216 levels were increased and these cells were grown at high density.

An affect became clearer when the cell lines were grown at lower density before 

being placed in suspension (figure 5.11a and b). 5-28% of cells in all cell lines expressed 

involucrin at day 0. Involucrin expression then increased in most cell lines after 3 days in 

suspension (figure 5.11b). The largest increase was in clone 19 where expression 

increased from 14% to 57%. Control cell lines 19 CMV8 and 19 CMV13 showed a 

similar increase. However, cell lines 19 216(1) B and 19 216(2) 3 showed only a very 

slight increase (-3%) in involucrin expression after 3 days in suspension culture
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Figure 5.9

Phase contrast photograph shows involucrin staining of HEK cells 
3 days after suspension culture. All other cell lines showed a similar 
staining pattern and the proportion of cells stained are shown in 
figure 5.10 and 5.11. The dark red cells (examples are highlighted 
by the arrows) were scored as positive.

Bar = lOuM ■
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Figure 5.10

Involucrin expression in cells induced to differentiation by suspension 
culture.

High density

Cells were seeded at 2xl06/5cm dish and cultured for 4 days. Cells were then 
trypsinised and either stained for involucrin immediately (day 0) or placed in 
suspension culture at 105 cells/ml for 3 days. These cells were washed from 
methylcellulose and then stained for involucrin.
Cells were scored positive or negative and expressed as a percentage of the total cells 
counted.
Experiments were repeated 2-4 times and the average value for each cell line was 
calculated and plotted as shown ± standard deviation
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Figure 5.11

Involucrin expression in cells induced to differentiation by suspension 
culture.

Low density

Cells were seeded at 3xl05/5cm dish and cultured for 4 days. Cells were then 
trypsinised and either stained for involucrin immediately (day 0) or placed in 
suspension culture at 105 cells/ml for 3 days. These cells were washed from 
methylcellulose and then stained for involucrin.
Cells were scored positive or negative and expressed as a percentage of the total cells 
counted.
Experiments were repeated 2-4 times and the average value for each cell line 
calculated and plotted as shown ±.standard deviation, 
n/a means not counted due to contamination.
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Therefore, increasing the levels of mutant p53216 protein in clone 191 appears to 

inhibit the ability of these cells to express involucrin in response to suspension induced 

terminal differentiation, if these cells are cultured at low density.

5.2.3. Resistance of cell lines to suspension induced cell death.

The colony forming efficiency of each cell line was measured without being 

placed in suspension culture (day 0) and after 24 hours in suspension culture (24 hours) 

as described in section 2.2.1.7. Cell density was controlled for by plating cells at both 

high density (2xl06cells/5cm dish) and low density (3x105 cells /5cm dish) before being 

placed in suspension culture. The resistance of cells to suspension induced cell death 

was plotted for each cell line (figure 5.12 and 5.13) and this was expressed as the number 

of colonies formed after 24 hours in suspension as a percentage of the number of 

colonies obtained at day 0. Cloning efficiencies without suspension culture are given in 

the corresponding figure legends and are expressd as a percentage of the total cells 

plated.

The survival of clone 19, SCC12F and SCC12B were compared to 19 (216)1 B 

as shown in figure 5.12. At both low and high density clone 19 and SCC12F had a much 

lower colony forming efficiency than SCC12B and 19 (216)1 B. SCC12B still retained a 

40% colony survival after 24 hours in suspension culture, a similar figure as obtained by 

Parkinson et al, 1983. The cloning efficiencies of SCC12F and SCC12B were much 

lower than clone 19 and 19 (216)1 B as shown by the percentage number of colonies at 

day 0 as detailed in figure 5.12 legend. This was probably due to the fact that the 

SCC12B and SCC12F cells used were of a much lower pass than the other two cell lines 

and this could also explain the larger standard deviation for values obtained from 

SCC12B.

SCC12F, clone 19, and two clones of 19 expressing the vector alone (19 CMV13 

and 19 CMV8) had similar survival patterns and their survival was lower than 19 

(216)1 B and 19 (216)2 3 (figure 5.13). At high density, colony survival ranged from 

with between 41% (19 CMV8) to 18% (SCC12F). At lower density similar results were
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Figure 5.12

Colony survival after suspension induced cell death. 

Experiment 1

Cells were seeded at either 2xl06/5cm dish (high density) or 3xl05/5cm dish (low 
density) and incubated for 4 days. Cells were then either plated at 500 cells /T25 flask 
or placed in suspension culture for 24 hours. These cells were then washed from the 
methylcellulose and plated at 103/T25 flask. Cells were incubated at 37°C until 
colonies were easily visible and then stained with 1% rhodamine and counted.
Colony numbers were recorded per 500 cells plated.
Experiments were repeated at least 3 times and the average number of colonies per 
time point for each cell line recorded
Percentage colony survival is plotted for each cell line i.e. the number of colonies 
counted after 24 hours in methylcellulose as a percentage of the number of colonies 
counted without suspension culture (day 0), ± standard deviation.

Colony survival at day 0 recorded as a percentage of total cells plated for each cell 
line are:

High density
Clone 19 19.9%, SCC12F 9.1%, SCC12B 5%, 19 (216)1 B 29.6%

Low density
Clone 19 33.2%, SCC12F 8.5%, SCC12B 10.8%, 19(216)1 B 26.4%

145



Fi
gu

re
 

5.
12

[BAIAJtlS XlIOJOD % 9§B J3A V

[BAIAjnS Xu0{03 % 3§B J3A V



obtained with a survival range form 48% (19 CMV8) to 24% (clone 19). As expected 

normal HEK cells had very low resistance to suspension induced cell death with very few 

colonies being formed after 24 hours in suspension.

The cell lines expressing large amounts of mutant p53 (19 (216)1 B and 19 

(216)2 3) were shown to have aj higher resistance to suspension induced cell death 

(figure 5.12 and 5.13). Also colonies arose from these cell lines more quickly than other 

cell lines and appeared larger and healthier. Colonies were often stained upto five days 

before any other cell line to prevent the colonies merging. At high density 49% and 61% 

colonies survived after 24 hours respectively. At low density this survival increased to 

73% and 70% respectively.

These results therefore suggest that 19 (216)1 B and 19 (216)2 3, which express 

high levels of mutant p53216, have a higher colony forming ability and therefore a greater 

resistance to suspension induced cell death than cell lines that have lower levels of 

mutant p53. This resistance is enhanced by growing the cells at lower density where 

survival is approximately double that of the other cell lines.
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Figure 5.13

Colony survival after suspension induced cell death.

Cells were seeded at either 2xl06/5cm dish (high density) or 3xl05/5cm dish (low 
density) and incubated for 4 days. Cells were then either plated at 500 cells /T25 flask 
or placed in suspension culture for 24 hours. These cells were then washed from the 
methylcellulose and plated at 103/T25 flask. Cells were incubated at 37°C until 
colonies were easily visible and then stained with 1% rhodamine and counted.
Colony numbers were recorded per 500 cells plated.
Experiments were repeated at least 3 times and the average number of colonies per 
time point for each cell line recorded
Percentage colony survival is plotted for each cell line i.e. the number of colonies 
counted after 24 hours in methylcellulose as a percentage of the number of colonies 
counted without suspension culture (day 0), ± standard deviation.

Colony survival at day 0 recorded as a percentage of total cells plated for each cell 
line are:

High density
HEK 8.2%, Clone 19 41.6%, 19 CMV8 38.1%, 19 CMVI3 51.5%,
SCC12F 37%, 19 (216)1 B 47%, 19 (216)2, 3 50.7%.

Low density
HEK 2.3%, Clone 19 47.1%, 19 CMV8 45.4%, 19 CMV13 73.9%,
SCC12F 36.8%, 19 (216)1 B 46.2%, 19 (216)2,3 58.3%.
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5.2.4. Formation of comified envelopes.

Comified envelopes are first visible in cells of the granular layer (Sun and Green, 

1976). Such comified envelopes are formed as the cells become permeable to trypan 

blue (Green, 1977) by the crosslinking of several proteins by the calcium dependent 

cellular enzyme transglutaminase (Rice and Green, 1979). Comified envelopes can easily 

be isolated by their insolublility to detergents and reducing agents (Sim and Green,

1976). HEK cells can be induced to terminally differentiate byjculturingthem in 

methylcellulose. Such cells have been shown to form insoluble comified envelopes 

almost immediately and 50% of these cells form comified envelopes by day 5 (Green,

1977).

The ability of SCC12F, SCC12B, clone 19 and clone 19 transfected with high 

levels of mutant p53216 to form envelopes was investigated. Comified envelopes were 

counted after cells had been cultured in methylcellulose for 5 days as described in section 

2.2.1.6. Cell density was controlled for by plating cells at both high density 

(2xl06cells/5cm dish) and low density (3x105 cells /5cm dish) before being placed in 

suspension culture.

Envelopes were obtained by their resistance to treatment with 5% SDS/1% [3 

mercaptoethanol and boiling at 100°C and an example of their appearance is shown in 

figure 5.14, one of many being highlighted by an arrow. They are often very large 

rounded and transparent structures and can be seen by focussing through several planes 

using the phase contrast of a light microscope. Electron micrograph studies of the 

envelope have previously been reported (Green, 1977).

SCC12B and 19 (216)1 B develop very few comified envelopes after 5 days in 

suspension culture (figure 5.15) when grown at both high and low density. SCC12F 

develops slightly more envelopes but still very few relative to clone 19.

This is again shown in figure 5.16 where SCC12B, 19 (216)1 B, 19 (216)2 3 and 

19 (216)2 1 which all express large amounts of mutant p53216 are deficient in forming 

comified envelopes after 5 days in suspension culture. These cell lines appear to form 

slightly higher numbers of envelopes when grown at high density than at low density
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(figure 5.16) but in comparison to controls these numbers are still very low. In this 

experiment too, clone 19, SCC12F and 19 CMV8 and 19 CMV13 which express the 

vector alone, all develop higher numbers of comified envelopes than the cell lines 

expressing more mutant p53 but lower numbers than normal cells. Their ability to form 

envelopes was also higher when grown at high density than when grown at a lower 

density. Normal HEK cells, as expected, develop large numbers of envelopes after 

suspension induced terminal differentiation (figure 5.16).
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Figure 5.14

Phase contrast photograph showing the structure of comified envelopes 
obtained from HEK cells 5 days after suspension culture. One of many 
is highlighted by the arrow. Numbers of comified envelopes formed 
in each cell line are shown in figure 5.15 and 5.16.

Bar = lOuM "  —
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Figure 5.15

Comified envelope formation after suspension culture. 

Experiment 1

Cells were seeded at either 2xl06/5cm dish (high density) or 3xl05/5cm dish (low 
density) and incubated for 4 days at 37°C. Cells were then suspended in 
methylcellulose at 105/ml for 5 days . Cells were then washed and resuspended at 
3xl05/ml in 5% SDS/1% |3 mercaptoethanol and solubilised by boiling for 5 minutes. 
Comified envelopes were counted using a haemocytometer under a light microscope. 
Numbers are plotted per 104/ml and are the average values obtained from at least 4 
experiments. Standard deviations ± are also plotted

Percentage of cells which had formed comified envelopes at day 0 before suspension 
culture are:

High density

Clone 19 0.2%, SCC12F 0.33%, SCC12B 0.33%, 19 (216)1 B 0.67%.

Low density

Clone 19 0.9%, SCC12F 0.67%, SCC12B 0.1%, 19 (216)1 B 0.2%.
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Figure 5.16

Comified envelope formation induced by suspension culture. 

Experiment 2

Cells were seeded at either 2xl06/5cm dish (high density) or 3xl05/5cm dish (low 
density) and incubated for 4 days at 37°C. Cells were then suspended in 
methylcellulose at 105/ml for 5 days . Cells were then washed and resuspended at 
3xl05/ml in 5% SDS/ 1% |3 mercaptoethanol and solubilised by boiling for 5 minutes. 
Comified envelopes were counted using a haemocytometer under a light microscope. 
Numbers are plotted per 104/ml and are the average values obtained from at least 4 
experiments. Standard deviations ± are also plotted

Percentage of cells which had formed comified envelopes at day 0 before suspension 
culture are:

High density

HEK 2.3%, Clone 19 1.3%, 19 CMV8 0.67%, 19 CMV13 1.3%,
SCC12F 1%, SCC12B 1%, 19 (216)1 B 1.3%, 19(216)2 3 1%.

Low density

HEK 1.3%, Clone 19 0.67%, 19 CMV8 0.33%, 19 CMV13 0.33%, 
19CMV12 0.33%, SCC12F 0, SCC12B 0.33%, 19 (216)1 B 0.33%, 
19 (216)2 3 0.33%, 19 (216)2 1 0.33%.
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5.2.5. Morphology of cells after suspension culture.

Cells after 0,1, 3 and 5 days in suspension were stained withj acridine orange 

which binds to DNA, highlighting the position and size of the nucleus. Photographs 

showing the nuclear morphology after 24 hours and 5 days in suspension of clone 19 and 

19 216 (1) B are shown in figure 5.17. SCC12F and clone 19 cells transfected with the 

CMV vector alone showed a similar pattern as for clone 19 (figure 5.17 a and b). Other 

cell lines expressing high levels of mutant p53 (19 216(2) 3 and SCC12B) showed a 

similar staining as for 19 216(1) B (figure 5.17 c and d). As part of the terminal 

differentiation pathway keratinocytes have been shown to degrade their nuclear DNA in 

a manner characteristic of apoptosis (McCall and Cohen, 1991; Meredith et al. , 1993) 

and sometimes termed anoikis (Frisch and Francis, 1994). Nuclear digestion does not 

occur until a few days after the cells have become permeable and formed a comified 

envelope (Green, 1977) in the upper granular layer. Squames are often released from 

stratified colonies into the medium before their nuclei have been digested. It has 

previously been reported that 35% of HEK cells cultured in methylcellulose for 5 days 

have lost their nucleus (Green, 1977). The chromatin becomes condensed and 

marginated as can be seen in clone 19 figure 5.17b. During these morphological changes 

the DNA is fragmented into 200bp units by a calcium dependent endonuclease (McCall 

and Cohen, 1991) which can be visualised as a DNA ladder on an agarose gel (Meredith 

et al., 1993; Frisch and Francis, 1994). Cell lines expressing high levels of mutant p53 

(19 216(1) B) did not show any nuclear shrinking after 5 days in suspension (figure 

5.17d). No nuclear shrinking was apparent in other clones expressing mutant p53 either 

(data not shown). From these preliminary results it appears therefore that mutant p53 

has inhibited the ability of cells to destroy their nucleus, another feature of the terminal 

differentiation pathway.
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Figure 5.17 Acrydine orange staining of ceils after suspension culture

X

'

Clone 19

t *

24 hrs 5 days

19 216 (1) B

24 hrs 5 days

Clone 19 (a and b) and 19 216 (1) B (c and d) were placed in suspension  
culture for 24 hours (a and c) or 5 days (b and d). Cells were then stained  
with acrydine orange lOug/ml as described in materials and m ethods.  
Photographs show  exam ples of the typical m orphology o f these cells 
at the time points indicated.
Arrows shows nuclear condensation.

Bar = lOuM



5.2.6. Tumorigenicity of cell lines in nude mice.

Tumorigenicity data from two separate experiments are shown in figure 5.18 and 

5.19. Cells were injected at two different doses, 5xl06 or 1.6xl06 / mice in either flank 

of four week old nude mice The lower dose rarely gave rise to tumours, but tumours 

were formed from some cell lines when the larger cell dose was administered. Cysts 

were commonly formed immediately after injection but these slowly regressed.

SCC12F and clone 19 did not give rise to persistent tumours in either 

experiment. Mice injected with higher doses of both cell lines developed slowly 

regressing tumours and by the end of both experiments these had completely regressed in 

SCC12F and only one small cyst remained from the injection of clone 19.

Control cell lines, 19 CMV8 and 19 CMV13 expressing the CMV vector alone, 

produced a similar result to clone 19. No persistent tumours were produced by these cell 

lines (figure 5.19).

Contradictory to published results (Parkinson et al., 1984; Jaffe et al. , 1992) in 

our hands SCC12B did not form persistent tumours (figure 5.18). A relatively large 

tumour developed 2 weeks after the injection of 5xl06 cells/mouse but this slowly 

regressed throughout the period of the experiment.

Similarly cell lines 19 216(1) B and 19 216(2) 3, both expressing high levels of mutant 

p53216 protein showed a low tumorigenic potential. 19 216(2) 3 was totally non- 

tumorigenic at both cell doses and in both experiments. 19 216(1) B however was 

tumorigenic but only when injected at 5 xlO6 cells/mouse. This cell line produced large 

cysts at the beginning of each experiment at both doses but throughout the duration of 

the experiment these slowly regressed. Only one tumour remained in one of each of the 

the three mice (figure 5.18 and 5.19) reaching our criteria for tumorigenicity i.e. a 

tumour remaining on the mouse for 3 months and reaching 1cm3 in size. The tumour 

from 19 216 (1) B reached 1cm3 in both experiments with a latent period of 63-66 days. 

A third clone, (19 216 (1) 2) overexpressing mutant p53216 was also tested once for 

tumorigenicity and was found to be non-tumorigenic|
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Figure 5.18 
Tumorigenicity of cell lines injected into nude mice.

Experiment 1

Time after injection
Cell line 2 weeks 4.5 weeks 8 weeks 9.5 weeks 11.5 weeks 19 weeks
SCC12F

5x106 cells 4x4mm
(3/3)

3x3mm
(3/3)

2x2mm
(3/3)

lxlmm
(3/3)

2x2mm 
(3x3) (0/3)

1.6x10^ cells
(0/3) (0/3) (0/3) (0/3) (0/3) (0/3)

Clone 19
5x106 cells 4x4mm

(3/3)
2x2mm,

(3/3)
1x1 mm 

(3/3)
3x3mm

(1/3)
3x3mm

(1/3)
2x2mm

(1/3)
1.6xl06 cells

(0/3) (0/3) (0/3) (0/3) (0/3) (0/3)
SCC12B

5xl06 cells 5x5 mm 
(3/3)

4x4mm
(3/3)

3x3mm
(3/3)

3 x3mm 
(3/3)

4x4mm
(3/3)

2x2mm
(1/3)

1.6xl06 cells
(0/3)

2x2mm 
(1/3)

lx l mm 
(1/3) (0/3) (0/3) (0/3)

19 216(1) B
5x106 cells 5x5mm

(3/3)
5x6mm 

(2/3)
9x10 mm 

(3/3)
10x10 mm 
*  (2/3)

11x13mm 
(2/3)

12x14mm
(1/3)

1.6xl06 cells 2x2mm 
(2/3)

3x3 mm 
(1/3)

lx l mm 
(3/3) (0/3)

2x2mm 
(2/3) (0/3)

19 216(2) 3
5x106 cells 5 x5mm 

(3/3)
4x4mm 

(1/3) (0/3) (0/3) (0/3) (0/3)
1.6xl06 cells

(0/3) (0/3) (0/3) (0/3) (0/3) (0/3)

5x106 and 1.6xl06 cells were injected subcutaneously into the right or left flank 
respectively of four week old nude mice.
Size of tumour is shown in italics and measured in mm
A total of three mice was used per cell line. Numbers of mice with tumours are shown in 
parentheses.
*  Latent period of tumour where tumour reached 1cm3 was 66 days after injection.



Figure 5.19 
Tumorigenicity of cell lines injected into nude mice.

Experiment 2

Time after injection
Cell line 1.5 weeks 3weeks 10.5weeks
Clonel9

5xl06 cells 2x2mm
(3/3)

2x2mm
(3/3)

2x2mm
(1/3)

1.6xl06 cells 2x2mm
(3/3)

lx l mm 
(2/3) (0/3)

19 CMV8
5xl06 cells 2x2mm

(3/3)
2x2mm

(3/3) (0/3)
1.6xl06 cells

(0/3) (0/3) (0/3)
19 CMV13
5xl06 cells 4x4mm

(3/3)
2x2mm 

(3/3) (0/3)
1.6xl06 cells

(0/3) (0/3) (0/3)
19 216(1) B
5xl06 cells 6x6 mm 

(3/3)
Ixlmm

(2/3)
10x10mm

*(1/3)
1.6xl06 cells 4x4mm 

(2/3)
6x6 mm 

(2/3) (0/3)
19 216(2) 3
5xl06 cells 2x2mm 

(3/3)
4x4mm 

(2/3) (0/3)
1.6xl06 cells 2x2mm

(3/3)
2x2mm

(2/3) (0/3)

5x106 and 1.6xl06 cells were injected subcutaneously into the right or left flank 
respectively of four week old nude mice.
Size of tumour is shown in italics and measured in mm
A total of three mice was used per cell line. Numbers of mice with tumours are shown in 
parentheses.
*  Latent period of tumour where tumour reached 1cm3 was 63 days after injection.
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Chapter 6 

Discussion



6.1 Genetic differences between SCC12B and SCC12F.

SCC12B and SCC12F represent two distinct cell populations within a single 

tumour (SCC12) at different stages of malignant progression (Rheinwald and Beckett, 

1981). As outlined in section 1.1.2. SCC12B is more tumorigenic and more resistant to 

terminal differentiation signals than the sister cell line SCC12F. Somatic cell hybrids 

derived by fusing SCC12B with SCC12F showed a much lower tumorigenic phenotype 

than the parental SCC12B cell line (Jaffe et al, 1992). This suggests that the malignant 

phenotype is recessive and SCC12F was able to donate a suppressor function to the 

hybrid. It was therefore reasonable to assume that SCC12F possessed a gene or genes, 

possibly a tumour suppressor gene, that had become inactivated in SCC12B preventing it 

either directly or indirectly from responding normally to terminal differentiation signals 

and aiding its progression to malignancy.

Several known genes or loci known to be important in SCC-HN development 

were compared between SCC12F and SCC12B in the hope of finding a genetic 

difference that could be responsible for their different phenotypes.

Comparison of cyclin D1 protein levels in SCC12B and SCC12F showed no 

noticeable difference between the two cell lines (section 3.1.3) and very little 

overexpression of the protein was observed when compared with other SCC cell lines. 

Also transfection of cyclin D1 into SCC12F did not increase its tumorigenic potential 

(M.Nikolic, personal communication). These observations suggest that although cyclin 

D1 amplification is frequently observed in a variety of tumours including SCC-HN (Jiang 

et al., 1992, Nikolic et al., submitted) it does not play an important role in the 

progression of this particular SCC-HN cancer.

Analysis of microsatellite sequences on chromosomes 9 and 3p did not reveal any 

differences in LOH between SCC12B and SCC12F either. These two chromosomes 

were chosen for analysis over any other as there is currently more data linking loci on 

these chromosomes with SCC development (section 1.4.1.1). Chromosome 3p has been 

shown to have frequent loss of heterozygosity in SCC-HN (Edington et al., 1995; and 

unpublished data). Previous analysis of chromosome 9 in SCC-HN has shown there to
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be an 84% chance of LOH at 9p21 in SCC-HN (Loughran et al., 1994). The majority of 

microsatellites used only showed amplification of one allele band in both cell lines. This 

was marked as non-informative, but as no normal DNA from the patient was available 

for comparison a loss could have occurred at that locus in both cell lines, possibly 

highlighting the position of a gene whose inactivation plays an important and early role in 

the development of this SCC. The data however does not answer the initial question by 

revealing any candidates on chromosomes 9 or 3p that could be responsible for the 

different phenotypes of these two cell lines.

On analysing the p53 tumor suppressor protein levels in SCC12B and SCC12F a 

difference in expression levels was observed. SCC12B appeared to express much higher 

levels of p53 protein than SCC12F (figure 3.6). Single clones of SCC12F could also be 

isolated that had varying levels of p53 protein supporting the hypothesis that SCC12F 

progression towards the more malignant phenotype seen in SCC12B is accompanied by 

the expression of high levels of p53 protein. Wild-type p53 has a relatively short half-life 

but this becomes increased when the protein is stabilised by a mutation. SCC12B was 

indeed found to express a novel p53 mutation at codon 216, a T-»G transversion, 

substituting a valine for a glycine (figure 3.7). Interestingly, the mutation appears to be a 

heterozygous one with the wild-type allele being retained. This is rare as the wild-type 

affect of p53 is dominant as shown by the induction of growth arrest by expressing wild- 

type p53 into cell lines carrying endogenous mutant p53 (Mercer et al., 1990; Baker et 

al., 1990; Casey et al., 1991) and usually both alleles are mutated as the cancer 

progresses for example in Li-Fraumeni patients (Srivistava et al., 1992b).

In line with the low level of p53 protein expression, little mutant protein was 

detected in SCC12F which appears to express mostly the wild-type allele (figure 3.7). 

This suggests that accumulation of this p53 mutation occurs later in the progression of 

this SCC. Although this particular mutation is novel and lies outside a conserved domain 

where most mutations are observed (figure 1.3), other mutations at this codon have been 

reported (Caron de Fromentel and Soussi, 1992) and therefore this part of the protein is 

a relevant site for mutagenesis.
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Codon 216 is positioned in the hydrophobic core of the p53 protein and is not 

involved directly in DNA binding (Clore et al., 1994). This region coincides with the 

epitope recognised by PAb240 (residues 212-217) (Stephen and Lane, 1992). This 

epitope however is cryptic and the protein has to be denatured or this region of the 

protein unfolded in order for the antibody to bind. This mutant p53 is unusual in that it 

is not recognised by PAb240 in immunoprecipitation experiments (figure 4.4). At first 

glance this may not be surprising as the mutation at codon 216 may disrupt the epitope 

and prevent the antibody from binding. Another mutation in a Burkitts lymphoma cell 

line (Farrell et al., 1991) was identified in the PAb240 epitope region at codon 213 

substituting an arginine for a glutamine. This mutation was also a heterozygous one and 

the protein had also lost reactivity with PAb240 presumably due to the disruption of the
p i  f i

epitope. However the p53 mutant protein is still reactive with the antibody PAbl620 

which recognises the wild-type conformation suggesting that the mutation has not 

unfolded the protein and the PAb240 epitope is not revealed. Glycine and valine amino- 

acids are very similar in that they both have aliphathic side chains and are non-polar 

although glycine is less hydrophobic than valine. Glycine has a small side chain of a 

single hydrogen whilst valine is slightly more bulky with two methyl groups but this 

substitution would have few constraining effects on the protein. Immunoprecipitation 

studies suggest that a substitution of a glycine for a valine in this region does not alter 

the protein conformation and the mutant is a class I type as discussed in section 1.4.3.2. 

However, if this were a silent mutation then the protein would be expected to behave as 

a wild-type protein. This is clearly not the case as the protein is stabilised like most 

mutants and when transfected into Saos-2 cells (Frebourg et al., 1992) the mutant 

protein has lost its ability to suppress cellular growth (section 4.1.2). This mutation,then, 

whilst it has no effect on protein conformation, it does inactivate the growth suppressor 

function of p53.

Preliminary studies suggest that this mutant p53216 protein has not gained any 

non wild-type functions. Saos-2 cells expressing the mutant p53 do not show an increase 

in saturation density (section 4.1.3) (Chen et al., 1990) and therefore the mutant does 

not appear to promote an oncogenic phenotype by giving the cells a selective growth
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advantage. However additional transcriptional and DNA binding properties of the 

mutant cannot be ruled out and require further analysis (Bargonetti et a l , 1992; Scharer 

andlggo, 1992; Dittmer etal., 1993)

As both SCC12B and SCC12F have retained expression of the wild-type p53 it is 

possible that the difference in their phenotypes may be due to the dosage effects of the 

mutant p53 protein. Both cell lines were found to contain three copies of chromosome 

17 and three copies of the p53 gene confirming the karyotype carried out by Jaffe et al, 

1992, showing that both cell lines were triploid. Although double hybridisations were 

not carried out it can be concluded from these results that all three p53 genes lie on a 

chromosome 17 and the position of the signal (figure 3.11) indicates each gene lies on 

the short arm as expected. Dot blot analysis of the mutant and wild-type gene dosages in 

the two cell lines confirmed that SCC12B expressed much more, perhaps double the 

amount of mutant p53 DNA and RNA than SCC12F (section 3.2.3). Conversely, 

SCC12F and a clone of SCC12F (clone 19) were shown to express more wild-type p53 

than SCC12B. In conjunction with the known p53 copy number in both cell lines I 

suggest that SCC12B carries two mutant and one wild-type p53 genes and SCC12F and 

clones of SCC12F carry two wild-type and one mutant p53 genes. A third chromosome 

17 was acquired by both cell lines probably by chromosomal duplication or uneven 

segregation during mitosis and suggests that development of aneuploidy in this tumour is 

an early event. The acquirement of a second p53 mutation by SCC12F during 

progression towards SCC12B is unlikely to occur by a second independent point 

mutation as the probability that the same mutation would be acquired is very small. 

However gaining a second identical mutation could occur by non-disjunction at mitosis 

leading to a loss of one of the wild-type chromosomes, followed by duplication of the 

mutant chromosome, or alternatively by mitotic recombination between a mutant 

chromosome and a wild-type one.

The presence of both mutant and wild-type p53 in a neoplastic cell suggests that 

the mutant has inactivated the wild-type protein in a dominant-negative manner. Usually 

a dominant-negative protein would bind and also sequester the wild-type protein (Milner 

and Medcalf, 1991). In this case the p53216 mutant retains reactivity with the PAbl620
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and therefore it is difficult to ascertain how much of the immunoprecipitated protein is 

wild-type. Heterozygous mutations are a characteristic of the Li-Fraumeni syndrome but 

the normal cells rarely accumulate p53 protein when the mutation is in this heterozygous 

state (Bhatia et al., 1993; Srivistava et al., 1992b). When the wild-type p53 is lost 

during tumour progression the mutant protein then accumulates. Therefore stabilisation 

of p53 protein in the presence of a heterozygous mutation as in SCC12B signifies that 

the mutation is dominant. The higher levels of mutant p53 in SCC12B as compared to 

SCC12F suggests that the dose of the mutant in relation to the wild-type protein is 

critical in the phenotype displayed. This thesis shows that increasing the levels of mutant 

p53 in a clone of SCC12F (clone 19) did yield a phenotype similar to SCC12B 

(discussed further in the next section). The p53 mutant therefore shows a dose- 

dependant dominance over the endogenous wild-type p53, SCC12F and SCC12B being 

two examples of the phenotype gained at different mutant doses. It is postulated that as 

the mutant dose increases then the heterotetramers formed with the wild-type protein 

contain more mutant p53 molecules and therefore may reduce the wild-type proteins 

affinity to DNA and transcriptional activity. Sim et al. 1993 showed that to completely 

suppress cell growth by the wild-type p53 a ratio of 3 mutant to 1 wild-type molecule in 

the tetramer was needed. This therefore explains why SCC12B requires such a large 

expression of mutant p53 to express a neoplastic phenotype and why the mutant is 

inactive in displaying such a phenotype at smaller doses as in SCC12F. It has yet to be 

clarified if the mutant has itself additional activities once it has sequestered any wild-type 

p53 function.

6.2 Increased mutant p53216 blocks the ability of SCC12F to 

terminally differentiate.

In order to analyse the effect that mutant p53 dosage has on the cells ability to
f \terminally differentiate p53 was overexpressed in a clone of SCC12F, clone 19. Only 

small amounts of p53 protein were detected in this clone (figure 5.1) and hence it 

presumably expressed very little mutant p53 protein. This clone therefore represented a
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more normal phenotype than SCC12B yet still retained a related genetic background on 

which to manipulate the mutant p53 gene dosage. The use of normal keratinocytes as a 

target would have been hindered by their short lifespan in culture and the use of null or 

normal keratinocytes would not have taken into account any initiating event that had 

occurred prior to the acquisition of this mutant p53 which perhaps acts in concert with 

the mutant to yield the phenotype displayed by SCC12B. The use of clone 19 therefore 

is a very appropriate and relevant target cell for investigating the influence of genetic 

events on the progression of this SCC-HN.

The growth and morphology of the cell lines used in this thesis displayed subtle but 

important differences. Clone 19, a low expressing p53 clone of SCC12F, grew very 

slowly in the culture conditions used i.e. 10% serum. They also preferred to be kept at 

quite a high cell density, losing cloning efficiency if the cells were split harshly. The 

culture conditions for this cell line were not optimised but kept identical to the other cell 

lines for a standard throughout all the experiments. Clone 19 also maintained the 

characteristic cobble stone morphology of normal keratinocytes as did SCC12F (figure 

5.8). SCC12B however appeared much flatter and exhibited a slightly faster growth 

rate. As previously reported they were able to grow in the presence of reduced serum 

(Jaffe et al., 1992). Similarly transfection of clone 19 with mutant p53216 yielded cell 

lines that showed increased growth rates and reduced serum dependence

These cell lines (19 216(1)B and 19 216 (2) 3) also showed more compact cell 

growth and seemed to be less contact inhibited (figure 5.8). These observations 

therefore indicate a correlation between p53 mutant protein levels and morphological 

changes.

Analysis of the ability of the mutant p53 transfectants (19 216(1)B and 19 216 (2) 

3) to respond to suspension induced terminal differentiation revealed two independent 

signals which could influence the decision of the cell to differentiate. One signal 

appeared to be caused by mutant p53 which prevented or blocked the transfectants from 

differentiating, the second signal came from cellular crowding which stimulated the cells 

to differentiate and sometimes masked the inhibitory effect of mutant p53.
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If the cells were grown at high density before being placed in suspension no 

obvious effect of increased mutant p53 levels on involucrin synthesis was observed over 

the controls (figure 5.10). However if the cells were grown at a much lower density, 

reducing the extent of cellular contacts before being placed in suspension, a marked 

effect was observed in the ability of the cells to express involucrin (figure 5.11).

Cultured at low density, 19 216(1)B and 19 216 (2) 3 appeared to be blocked in their 

ability to express involucrin. The level of expression after three days in suspension was 

half that of the same cells grown at much higher density. At low density the expression 

of involucrin does not increase from day 0 to day 3 in these two cell lines compared to 

controls (figure 5.11). These results indicate that mutant p53 may prevent the ability 

of cells to express involucrin but this effect can be overridden by the effects of increased 

cellular crowding which stimulate involucrin expression. This stimulation of 

differentiation by crowding is also shown by comparing the extent of involucrin 

expression at day 0 in the low and high density experiments. Cells grown at low density 

(figure 5.11a) tend to express much less involucrin than those grown at higher density 

(figure 5.10a) suggesting that a stimulus induced by crowding is switching on 

differentiation in these cell lines even before thay are placed in suspension culture. It has 

been shown by others that the area of contact with the substratum and hence cell shape 

regulates proliferation and terminal differentiation of HEKs in culture (Watt et al., 1988). 

When spreading is restricted as in the case of cells cultured at high density, and hence the 

cells become slightly rounded, involucrin expression was stimulated and DNA synthesis 

inhibited (Watt et al., 1988). This effect of high density cultures is mimicked by 

suspension culture i.e. reducing contact with the substratum and forcing cells to alter 

their shape. The signalling pathway by which cells undergo terminal differentiation in 

response to cell density is not clear but is proposed to be mediated by receptors 

expressed on the keratinocyte cell surface. The two major classes of adhesive receptors 

expressed by keratinocytes are integrins (Hynes 1992) which mediate adhesion to the 

extracellular matrix (discussed in more detail in the next section), and cadherins which 

mediate cell-cell adhesion (Geiger and Ayalon, 1992). Integrin binding to the 

extracellular matrix has been implicated in cell signalling maintaining cell proliferation



(Adams and Watt, 1989). On commitment to terminal differentiation the ability of 

integrin receptors to bind ligand decreases (Adams and Watt, 1990) due to modulation 

of the receptors on the cell surface (Hotchin and Watt, 1992) and eventually expression 

of the integrin receptor is completely lost. The major cadherins expressed on 

keratinocytes are P cadherin (confined to the basal cells) and E cadherin and cell-cell 

adhesion mediated by these receptors in calcium dependent (Takeichi, 1991). Recent 

experiments have shown that in low calcium medium keratinocytes co-express integrins 

and terminal differentiation markers e.g. involucrin. On increasing the levels of calcium 

cells stratify and integrins are lost from the cell surface (Hodivala and Watt, 1994). 

Furthermore antibodies to P and E cadherin inhibited calcium induced stratification and 

loss of integrins (Hodivala and Watt, 1994). Therefore not only does decreased contact 

with the substratum and alteration of cell shape induce terminal differentiation of 

keratinocytes but also cell to cell adhesion mediated by cadherin interactions stimulates 

loss of integrin expression which is known to occur during terminal differentiation 

(Adams and Watt, 1989 and 1990).

Plating cells at high density may therefore have already committed or sensitised 

cells to any further differentiation stimulus and hence higher levels of involucrin are 

expressed after suspension culture in the high density experiment. It is clear however
p i  r

from the low density experiments that mutant p53 has an inhibitory effect on the 

production of involucrin but this inhibition can be overridden by a pathway independent 

of p53.

Increasing mutant p53 also had an inhibitory effect on the production of another 

marker of terminal differentiation, comified envelope formation. All cell lines expressing 

high levels of p53216 mutant i.e. 19 216(1)B, 19 216 (2) 3, 19 216 (2) 1 and SCC12B 

are unable to form comified envelopes after 5 days in suspension unlike all the controls 

(figure 5.15 and 5.16). This inability to form envelopes is observed when the cells are 

grown at both high density and low density. However at high density the numbers of 

envelopes counted were higher in all cell lines compared to low density experiments 

suggesting again that cellular crowding increases the proportion of terminally
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differentiating cells as discussed above. The differentiation signal exerted by cellular

crowding does not appear to have such a strong effect on comified envelope formation
fy \ f \as it does on involucrin synthesis. The inhibitory effect of mutant p53 on envelope 

formation can still be observed even when the cells are grown at high density before 

being placed in suspension. The difference in stimulation of both markers by cellular 

crowding is surprising as involucrin is the precursor protein of the envelope and 

therefore it would be expected that both would be expressed to the same degree in 

response to such a signal. However it is known that involucrin mRNA is expressed early 

in the basal compartment (Watt and Green, 1981) unlike the comified envelope which is 

formed much later in the granular layer (Sun and Green, 1976). As cells leave the basal 

layer, moving into the granular layer they become permeable (Green, 1977) and an 

insoluble comified envelope forms beneath the plasma membrane (Sun and Green, 1976). 

This envelope forms from the cross-linking of several proteins by the cellular enzyme 

transglutaminase (Rice and Green, 1977). One such precursor of the envelope is the 

soluble protein involucrin (Rice and Green, 1979; Watt and Green, 1981) which as 

previously discussed, is synthesised early in differentiation. Other membrane proteins 

however are also thought to be incorporated into the envelope (Simon and Green, 1984). 

Cells prevented from making contact with other cells by incubating them in semi-solid 

medium can also undergo differentiation developing detergent insoluble envelopes 

(Green, 1977) it therefore seems that cell to cell contact is not required for this aspect of 

terminal differentiation. Others have also shown that protein synthesis is also not 

required and inhibitors of protein synthesis actually stimulate envelope formation (Rice 

and Green, 1978) therefore the majority of cells at any time must have sufficient 

transglutaminase and precursor proteins to form envelopes. Transglutaminase activity 

has been identified in HEK cells (Goldsmith and Martin, 1975) and protein crosslinking 

can be induced by treatment with agents which affect cell membrane permeability and 

increase cellular calcium levels (Rice and Green, 1979). It is unclear whether the source 

of calcium increase that activates the transglutaminase is extracellular or intracellular but 

it is likely to come from the degradation of organelles such as mitochondria which 

release calcium into the cell, as cells incubated in calcium-free medium will ultimately



form cross-linked envelopes (Rice and Green, 1978). Studies of transglutaminase in 

SCC12B and SCC12F have shown that SCC12B has as much as a 50 fold decrease in 

total transglutaminase activity than SCC12F (Rubin and Rice, 1986) therefore explaining 

the incompetence of SCC12B in forming envelopes. It would be of interest to establish 

whether transglutaminase activity has also decreased in the transfectants of clone 19 

expressing high levels of mutant p53 or whether a separate event has caused a decrease 

in enzyme activity in SCC12B. iPhorbal ester tumour promoter TPA treatment of 

cultured keratinocytes has been shown to accelerate the appearance of keratins (Steinert 

and Yuspa, 1978), induce synthesis of epidermal transglutaminase (Yuspa, 1980) and 

increase the formation of comified envelopes (Reiners and Slaga, 1983). The method of 

stimulation of terminal differentiation by TPA is unknown and is independent of the 

hyperplasia caused by such agents but it may be due to an increase in protein synthesis. 

The results discussed above show that involucrin synthesis is stimulated by cell to cell 

contact but formation of envelopes is not affected to the same extent. This is likely to be 

due to the early synthesis of involucrin in the proliferative basal cells, whilst envelopes 

are not formed until intracellular calcium levels rise much later when cells are 

metabolically inactive and already committed to terminal differentiation.

Analysis of the cell morphology and DNA content during suspension showed slight 

nuclear shrinking and margination after five days in suspension in clone 19 but not in 

cells expressing high levels of mutant p53 (figure 5.17). This is in agreement with other 

data in this thesis showing terminal differentiation to be inhibited in cell lines with high 

levels of mutant p53. Degradation of the nucleus in an apoptotic manner also termed 

anoikis is part of the normal terminal differentiation pathway in keratinocytes (McCall 

and Cohen, 1991; Meredith et al., 1993; Frisch and Francis, 1994). As comified 

envelopes are formed the cells become permeable and calcium levels increase, the 

nucleus is digested some days later. 50% of HEK cells cultured in methylcellulose have 

lost their nucleus by day 8 (Green, 1977). A component of serum, plasminogen, has 

been shown to be essential for nuclear degradation and HEK cells are believed to contain 

an activator of this enzyme (Green, 1977) Nuclear degradation in keratinocytes is
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caused by a calcium dependent endonuclease which cleaves DNA into 200bp fragments 

which when run on an agarose gel displays a ladder pattern, a hallmark of apoptosis 

(McCall and Cohen, 1991). Preliminary results here show that increased levels of mutant 

p53 appears to prevent nuclear margination and elimination but more detailed analysis of 

DNA laddering and endonuclease activity needs to be carried out to clarify the affect of 

mutant p53 on apoptosis.

Results in this thesis j suggest that increased levels of mutant p53216 enables the 

cells to overcome suspension induced cell death (section 5.2.3.). The cloning efficiencies 

of the transfected cell lines 19 216(1)B and 19 216 (2) 3 were much higher after 

suspension in methylcellulose for 24 hours than the controls that express low levels of 

mutant p53 (figure 5.12 and figure 5.13). The colonies that were obtained from these 

cell lines appeared much bigger and stronger and were often fixed for counting before 

confluence three to four days before any other cell line. The control cell lines expressing 

the vector alone, 19 CMV 8 and 19 CMV 13 also showed a high survival rate relative to 

the original clone 19. It is unlikely that the CMV promoter or the neomycin gene 

conveyed any resistance to suspension induced cell death. It is more likely that during 

the G418 selection, there is an unconscious bias towards cloning larger colonies that 

often represent fitter cells. These control cell lines still showed a lower survival rate than 

cell lines expressing high levels of mutant p53. Cellular density also had a slight effect on 

the extent of survival as it did for conified envelope formation and involucrin synthesis 

described above. In cell lines 19 216(1)B and 19 216 (2) 3 survival dropped from 73% 

and 71% at low density, to 49% and 61% at higher density respectively. Once again 

cells have already started to differentiate in response to cellular crowding giving a lower 

survival rate after suspension culture compared to lower density cultures but the survival 

phenotype given by increased mutant p53 appears to be dominant to this signal and the 

cells expressing this mutant p53 are resistant to suspension induced cell death.

I These results indicate that an increase in mutant p53216 in clone 19 prevents 

the cells from responding to terminal differentiation signals when placed in suspension 

culture. These experiments therefore show that the different dosages of mutant p53 in
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SCC12F and SCC12B are responsible for the difference between the two cell lines in 

their ability to differentiate. Increasing the level of mutant p53 dosage in a clone of 

SCC12F, clone 19, produces a phenotype more like that of SCC12B with respect to 

terminal differentiation, and this is therefore an event that happens in the progression of 

this SCC.

The tumorigenicity of each cell line in nude mice was not as convincing as the 

terminal differentiation data (figure 5.18 and figure 5.19). In our hands SCC12B was 

not as tumorigenic as reported by others (Parkinson et al, 1984; Jaffe et al, 1992) this 

maybe due to the use of different mice or the more stringent criteria used in this thesis 

which required the tumour to remain for 3 months and reach a size of 1cm3. Relatively 

large tumours were visible after injection of the higher dose of SCC12B after only 2 

weeks but these regressed slowly in all mice. The lower injection dose (1.6 x 106 cells 

/site) appeared to be less affective at inducing tumours. In accordance with published 

results SCC 12F, clone 19 and clone 19 expressing vector alone all induced large cysts 

which regressed in all but 1 animal where it remained at a very small size (figure 5.18 and 

5.19). The tumorigenic potential of cell lines expressing large amounts of mutant p53216 

appeared to be clonal. 19 216(2) 3 did not induce tumours at any dose in either 

experiment nor did a second clone 19 216(2) 1 . 19 216(1) B

developed large tumours at the higher injection dose in all mice after only 8 weeks 

(figure 5.18). However these regressed and two tumours 1cm3 were noted with a latent 

period of 66 days. The mice were kept alive and one of these tumours regressed further 

leaving only one remaining 19 weeks post-injection. This latent period is much longer 

than that published for SCC12B (Jaffe et al, 1992). This data therefore shows that in 

our mice increasing the levels of mutant p53 does not increase the tumorigenic potential 

of a cell line. Only one clone (19 216(1) B) was slightly tumorigenic but this could not 

really be explained by the increase in mutant p53216 levels alone since 19 216(2) 3 was 

not tumorigenic. No correlation between degree of resistance to suspension induced 

terminal differentiation and tumorigenicity was apparent when comparing 19 216(1) B 

with 19 216(2) 3. Interestingly, this data has shown that resistant to terminal
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differentiation and tumorigenicity are separate events and cell lines can be resistant to 

terminal differentiation but not necessarily tumorigenic. It therefore appears that 

tumorigenicity depends on individual clones and increasing the levels of mutant p53 

alone is not sufficient to increase the tumorigenicity of the cell line. It may be that a 

slightly more tumorigenic phenotype was displayed by clone 19 216(1) B due to the 

presence of another unknown genetic event that acts in concert with the increase in 

mutant p53 giving a more tumorigenic phenotype.

Loss of the ability to respond to terminal differentiation signals, increased 

proliferation and loss of cloning efficiency are usually early events in the development of 

SCC-HN (Edington et al., 1995). SCC12F displays a more normal phenotype than 

SCC12B (Parkinson et al., 1983; Jaffe et al., 1992 and results in this thesis) and may 

have acquired only a few genetic events leading it a short way along the line to 

carcinogenesis. The results in this thesis show that a p53 mutation is acquired relatively 

early in the progression of this cancer as at least one mutant allele is present in both 

SCC12F and SCC12B. The rate limiting step in the progression of SCC12F to SCC12B 

therefore appears to be the accumulation of mutant p53 normally by the complete loss of 

the wild-type allele, but in this case by the loss of one of two wild-type alleles. This 

event dramatically changes the phenotype of SCC12F by further reducing its ability to 

respond to terminal differentiation and increasing its cloning efficiency after suspension 

culture. However a p53 mutation alone is not sufficient to affect the tumorigenic 

potential of the cell line and therefore another later event is required perhaps gained 

through genetic instability due to the loss of p53.

Interestingly, investigators have shown that expressing the latent membrane protein 

(LMP-1) from the Epstein-Barr virus (EBV) in SCC12F also inhibits its ability to 

terminally differentiate (Dawson et al., 1990). The transfectants were unable to form 

comified envelopes in response to treatment with the calcium ionophore A23187, nor 

were they able to express involucrin. Expression of LMP-1 in another human 

keratinocytes cell line (Rhek-1) was also shown to block differentiation and predisposes 

these cells to a more neoplastic phenotype (Zheng et al., 1994). LMP-1 expression in
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rodent cell transformation assays resembled those produced by activated ras, therefore 

SCC12F was also transfected by a H-ras oncogene (Dawson et al., 1990). This 

produced a similar effect as LMP-1 with respect to differentiation. These experiments 

also showed the the LMP-1 trasnsfected SCC12F cells^mlike the highly malignant ras 

transfectants;produced tumours in nude mice only rarely and after a long latency period. 

H-ras has previously been shown not to be activated in SCC12F or SCC12B (Clark et 

al., 1993) and therefore in these experiments it may bypass the need for a p53 mutation 

in order to produce a tumorigenic phenotype. LMP-1 is a transmembrane protein with 

unknown function. Another EBV protein, EBNA5, has been shown to interact with p53 

and Rb-1 (Szekely et al., 1993) and it is therefore unlikely that the results obtained by 

transfection of SCC12F described above resemble those in this thesis by the ability of 

LMP-1 to inactivate p53 directly. Although LMP-1 is not a tyrosine kinase it still may 

act in a signalling pathway similar to integrin signalling promoting cellular proliferation 

and inhibiting p53 mediated differentiation as described in the next section.

6.3 A possible role for p53 in terminal differentiation of human 

epidermal keratinocytes.

The results in this thesis show that an increase in mutant p53 or conversely a 

decrease in active wild-type p53 prevent keratinocytes from responding to suspension 

induced terminal differentiation signals. The involvement of p53 in the control of 

terminal differentiation of keratinocytes is perhaps not surprising. Numerous 

investigators have shown that p53 is involved in the differentiation of many cell types 

(details in section I.4.3.8.). Interestingly, the differentiation pathways in such cell types 

involves DNA strand breaks followed by repair, for example B cell differentiation 

involves several DNA rearrangement events and therefore this step in differentiation may 

require the activities of p53 to halt cell cycle and repair DNA after rearrangements have 

occurred. During the differentiation of keratinocytes DNA fragmentation occurs in the 

upper granular layers as the cells degrade their nucleus by apoptosis (McCall and Cohen,

1991). It is very unlikely that this DNA damage triggers p53 activity as the only
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proliferating cells in the epithelium are in the basal layer and cells of the granular layer 

would be unable to synthesis p53 protein in response to such DNA fragmentation. It is 

more likely that the actions of p53 enables the cell to withdraw from the cell cycle and 

stop DNA replication as they migrate from the basal membrane. Recent experiments 

have shown that anchorage independent cells grown in suspension arrest in G1 

(Guadagno et al, 1993) which is a known action of p53. This thesis shows that mutation 

in p53 prevents terminal differentiation and would suggest therefore that upon 

withdrawal from the cell cycle wild-type p53 would stimulate the onset of terminal 

differentiation via an unknown pathway. Events so far shown to trigger p53 action are 

those that induce DNA damage, specifically strand breaks e.g. irradiation, actinomycin D 

and restriction enzymes. A trigger that activates p53 in keratinocyte terminal 

differentiation has not yet been identified but recent experiments show that when 

epithelial cells are prevented from contacting the basement membrane they undergo 

terminal differentiation (Watt et al, 1983) and an apoptotic-like phenomenon which has 

been termed anoikis (Meredith et al, 1993; Frisch and Francis, 1994). The basal surface 

of epithelial cells adheres to the basal lamina mostly via members of the integrin family 

receptors (Adams and Watt, 1991). Integrins are heterodimeric transmembrane proteins 

consisting of a  and (3 subunits (Hynes, 1992). Diversity in the integrin family is achieved 

by dimerisation between different subunits and each member binds to a different 

extracellular matrix protein such as fibronectin, collagens, laminin, nidogen and 

vitronectin and they also associate with cytoskeletal proteins such as actin. Integrins 

have been shown to translate external cues into signals that affect cytoskeletal 

organisation, cell shape and motility as well as cell-cell adhesion, cell migration and 

stratification. Recent evidence suggests that integrins mediate anchorage independent 

growth and are able to trigger terminal differentiation. More specifically the fibronectin 

integrin receptor asPjhas been shown to directly affect the cells ability to undergo 

terminal differentiation (Adams and Watt, 1989). Terminal differentiation can be 

inhibited in cells grown in suspension by the immediate addition of fibronectin (Adams 

and Watt, 1989). A delay in the exposure to fibronectin has no effect as the cells have 

already been committed to terminal differentiation, the ability of the receptor to bind



fibronectin is decreased (Adams and Watt, 1990) and the receptor is gradually lost from 

the cell surface. Binding of fibronectin to its receptor during adhesion to the basement 

membrane signals the clustering and retention of receptors into focal contacts and 

polymerisation of actin filaments providing a positive stimulus for cell adhesion and 

spreading. This ligand binding also sends a second signal independent of clustering that 

inhibits terminal differentiation. Integrin signalling is thought to be mediated via changes 

in cellular pH, calcium fluxes and phosphorylation events. Treatment of cells with an 

anti-integrin antibody or fibronectin increases the tyrosine phosphorylation of proteins in 

the cell (Juliano and Haskill, 1993). One such protein has been identified as FAK (focal 

adhesion kinase) which is also a substrate for c-src proteins. The phosphorylation of this 

protein along with others is thought to promote cell growth and inhibit terminal 

differentiation and anoikis. Detachment of epithelial and endothelial cells but not 

fibroblasts from extracellular matrix contacts has been shown to elicit anoikis (Meredith 

et al, 1993; Frisch and Francis, 1994). In vivo such a response would prevent detached 

cells from becoming inappropriately re-attached and helps maintain the stratification and 

polarity of the epithelia. Meredith et al, 1993 has shown that the addition of sodium 

orthovanidate which is an inhibitor of tyrosine phosphatases, to cells in suspension blocks 

programmed cell death therefore suggesting that apoptosis is triggered by signals from 

integrins via tyrosine phosphorylation. Apoptosis in these cells can be inhibited by the 

addition of anti-integrin antibodies (Meredith et al, 1993), scatter factor or transfection 

with bcl-2 (Frisch and Francis, 1994)). Interestingly, bcl-2 is expressed in the basal layer 

of the skin but not in other layers suggesting that this may be an in vivo mechanism for 

preventing apoptosis (Hockenbury et al, 1991). P53 has been shown to promote 

apoptosis (discussed in section 1.4.3.7.) and results in this thesis also shows its 

inactivation prevents terminal differentiation. It is therefore possible that p53 may 

respond to integrin signalling when cells lose contact with the extracellular matrix, 

arresting cells in G1 and triggering terminal maturation which includes apoptosis as the 

cells migrate towards the outer epithelial layers. Activation of p53 via an integrin 

pathway has not yet been proved but it is clear that p53 is able to promote apoptosis and 

this thesis shows it to play an important role in keratinocyte differentiation. Whether p53



acts directly by controlling the expression of specific differentiation proteins e.g. 

involucrin or transglutaminase or whether it acts indirectly by establishing an irreversible 

commitment to terminal differentiation via withdrawal from the cell cycle is not clear and 

further experiments are required to define further the involvement of p53 in keratinocyte 

terminal maturation

6.4. Wild-type p53 prevents the expression of an oncogenic phenotype.

Mice null for p53 are viable and exhibit normal development (Donehower et al.,

1992) making it hard to establish a role for wild-type p53 in normal differentiation 

pathways unless some form of redundancy has taken place in these mice which is difficult 

to prove. Wild-type p53 has been shown to induce growth inhibition (Kastan et al., 

1991a; Kuerbitz et al., 1992) and apoptosis (Yonish-Rouach et al., 1991) in response to 

DNA damage preventing the accumulation of mutations and gene amplifications that are 

associated with malignancy. For this reason there appears to be an immense pressure for 

the loss of wild-type p53 and indeed the majority of tumours have acquired a mutation in 

a p53 allele with the concurrent loss of the remaining allele. An alternative model for the 

involvement of mutant p53216 in the progression of the SCC-HN cancer dicussed in this 

thesis may be that its accumulation allows the expression of an oncogenic phenotype i.e. 

either an activated oncogene or an inactivated tumour suppressor gene which in turn 

blocks terminal differentiaion. The presence of wild-type p53 would normally prevent 

the expression of such a phenotype by inducing growth arrest or terminal differentiation. 

The expression of adenovirus El A (known to bind Rb-1) in untransformed cells leads to 

the nuclear stabilization of wild-type p53 and loss of viability of these cells by apoptosis 

(Lowe and Ruley, 1993b). Levels of p53 protein reverted to normal in cells that had lost 

El A expression. Similarly deregulated c-myc expression induces apoptosis in low serum 

conditions (Evan et al., 1992). E1B which is known to bind to p53 was shown to 

protect cells form this toxic effect of E1A suggesting the role for E1B in viral infection is 

to counter cellular responses to El A oncogene transformation (Lowe and Ruley, 1993b). 

The stabilization of p53 in these cells appears to guard cells against unscheduled
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proliferation induced by El A and p53 induced apoptosis may play a natural defense 

against tumour progression in vivo. The use of embryonic fibroblasts from p53 null mice 

highlighted the role of p53 in the suppression of oncogenic transformation. The absence 

of wild-type p53 enhances cell growth and survival in the presence of El A (Lowe et al., 

1994). Cells heterozygous for p53 when transfected with El A formed almost as many 

colonies as did null fibroblasts and displayed an intermediate resistance to apoptosis.

This dose-dependent suppression of oncogene transformation by p53 suggests that 

mutations leading to the partial loss of p53 (for example SCC12F) allows the outgrowth 

of cells that have completely lost wild-type p53 activity (such as SCC12B) and therefore 

can no longer suppress the oncogenic phenotype of the cell. In such a way the 

accumulation of a p53 mutation allows the progession of a tumour which was initiated by 

oncogenic events. Studies of tumour formation in null and heterozygous mice showed 

that loss of wild-type p53 is not an initiating event and does not give rise to an increased 

number of papillomas. It does however appear to enhance the rate of malignant 

progression (Kemp et al., 1993). The progresssion rate was also greater in heterozygous 

mice as compared to normals and was associated with the loss of the remaining wild-type 

allele (Kemp et al., 1993; Harvey et al., 1993b). Interestingly, this study also shows that 

the carcinomas from p53 null and heterozygous mice were markedly undifferentiated in 

comparison with wild-type carcinomas (Kemp et al., 1993). Similarly papillomas from 

the null mice also showed a similar undifferentiated phenotype compared to wild-type 

and showed areas of conversion to early stage carcinomas. Therefore not only does the 

inactivation of p53 increase the rate from benign to malignant conversion, it also 

influences the degree of differentiation and malignancy of a tumour. These results 

suggest that loss of wild-type p53 whilst not initiating allows the expression of oncogenic 

events that occur in multistep carcinogenesis which promotes malignant progression and 

dedifferentiation.

This thesis therefore shows that the accumulation of mutant p53216 is responsible 

for the progression of SCC12F to SCC12B. The increased levels of this mutant p53 may 

promote a more malignant phenotype in vivo by either one of the above mechanisms.
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Either by the direct inhibition of terminal differentiation induced by signalling from 

integrin receptors or indirectly by allowing the expression of an oncogene which intum 

blocks terminal differentiation and promotes proliferation.

The acquisition of mutant p53, whilst not an initiating event in carcinogenesis as 

previously discussed, appears to be an early event in the development of SCC-HN. In 

SCC12, a p53 mutation has occurred at an early stage in SCC12F before a more 

malignant phenotype has developed. There is intense pressure for this cancer to lose any 

active wild-type p53 in order for it to progress (SCC12B). A study of the epithelia at 

distant sites from the primary tumour in SCC-HN (Nees et al., 1993) showed that 

although these biopsies were histologically inconspicuous they contained high levels of 

p53 protein. This increased level of protein was not due to a response to DNA damage 

but was associated with a p53 mutation and an increase in cellular proliferation as shown 

by an increase in histone H3 mRNA. Whatsmore different tumour distant sites from the 

same biopsy expressed different p53 mutations suggesting the development of multiple 

primary tumours frequently seen in head and neck cancer patients is a multifocal 

polyclonal process. Cells that showed high levels of p53 also showed a dedifferentiated 

phenotype by the presence of high levels of cytokeratin 8 and 18 which are consistently 

detected in squamous cell carcinomas. Similar conclusions were drawn from the 

discovery of early p53 mutations in cases of Bowens disease (Campbell et a l , 1993) a 

pre-invasive lesion which shows a significant rate of progression to invasive SCC. 

Therefore taken together results from this thesis and and others (Nees et al., 1993; 

Campbell et al., 1993) suggest that the role of p53 mutation in SCC of the skin and head 

and neck are different from that seen in colonic cancer where a mutation rarely precedes 

invasion (Baker et al., 1989). On the contrary results here show that in vivo SCC12F 

acquired a p53 mutation early in its development which gave it a slight growth advantage 

and a delay in the response to terminal differentiation caused by rounding and cellular 

contact in the basal cells as compared to normal cells. This increased proliferation 

allowed other genetic events to occur in this cancer which were suppressed by the 

presence of the remaining wild-type p53. There was then increased pressure for the cells
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to lose wild-type p53 by the accumulation of more mutant p53 which resulted in a 

dramatic progression of cells to a more malignant phenotype (SCC12B).

6.5. Future prospects.

Experiments are currently underway to show that the inhibition of terminal 

differentiation shown in this thesis is directly dependent on the presence of mutant 

p53216 and not by any other effect of suspension culture. The mutant p53 is being 

expressed under the inducible metallothionein promoter in clone 19 and the experiments 

are being repeated in the presence and absence of mutant p53 expression. It is also 

important to establish whether it is the knockout of wild-type p53 activities by increased 

expression of the mutant or a novel function gained by the mutant protein that blocks 

suspension induced terminal differentiation. Experiments are planned whereby the 

activities of endogenous wild-type p53 protein in clone 19 can be inhibited either by 

HPV infection, transfection with antisense RNA or transfection with the C terminal 

fragment of p53 that acts by oligomerising with the wild-type protein and prevents its 

action. It will be interesting to see if the removal of wild-type activities from clone 19 

are sufficient to inhibit terminal differentiation and if so this would provide evidence to 

suggest that the mutant p53216 was acting in a dose-dependent dominant negative 

manner. If knocking out wild-type p53 is not sufficient to obtain the results shown in 

this thesis then it would suggest that the mutant had gained a property that interfered 

with terminal differentiation.

Further molecular analysis of the mutant p53216 would be interesting so as to 

understand how the mutation affects the protein. Analysis of its DNA binding and 

transcriptional activities using a CAT construct would show if it has retained any wild- 

type p53 characteristics. Also analysis of whether the mutant can knockout wild-type 

p53 transactivation of a reporter construct in vitro and whether such an activity is 

dependent on mutant dosage as seen in vivo in SCC12F and SCC12B would highlight
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whether the mutant acts in a dominant negative manner to prevent wild-type activites and 

inhibit terminal differentiation.

The experiments in this thesis did not investigate the extent to which each cell line 

can undergo apoptosis. As p53 has been implicated in controlling this process and 

keratinocytes have been shown to induce an apoptotic-like process when cells become 

detached from the substratum or are grown in suspension (McCall and Cohen.,1991; 

Meredith et al., 1993; Frisch and Francis, 1994), it would be of interest to study the 

effect of increased mutant p53 on this process. DNA laddering is technically quite 

difficult to show in some cell lines (Wyllie, 1980). Other markers of apoptosis such as 

protein crosslinking due to the activation of intracellular transglutaminases, detergent 

solubility of degraded DNA, and the expression of the apoptotis specific gene TRPM-2 

by northern analysis (Meredith et al., 1993) could be studied.

If the inability of the cells to respond to suspension induced terminal differentiation 

was due purely to the inactivation of wild-type p53 it would be interesting to establish 

just how wild-type p53 would normally trigger the differentiation pathway.

Identification of p53 consensus binding sites in promoters of epithelial differentiation 

proteins such as involucrin, keratins or transglutaminase, similar to that found in the 

muscle differentiation gene MCK promoter enhancer (Weintraub et al., 1991), would 

suggest a direct involvement of p53 in terminal differentiation of keratinocytes. If a 

positive involvement was identified it would be interesting to see how this pathway has 

become redundant in cells without wild-type p53 such as p53 knockout mice which 

clearly display normal development and differentiation of the epidermis. If p53 played a 

more indirect role by switching the commitment to terminal differentiation on, 

comparisons of the proportion of cells able to arrest in G1 during suspension culture or 

removal from the basement membrane in cell lines with high and low doses of mutant 

p53 would highlight a pathway for p53 involvement.

A closer examination of the relationship between integrin signalling and p53 

activation is required in order to support the model described above which proposes 

terminal maturation of keratinocytes is triggered by release of ligand from the integrin 

receptor and mediated by p53. Little is known of the pathways involved in integrin-
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mediated signalling either growth promoting or those involved in anoikis. Investigation 

of such pathways and any implication of p53 involvement could highlight an exciting new 

role for wild-type p53 in the terminal maturation of keratinocytes.
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