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P r e f a c e

C hapter 1 contains an in troduction to gravitational waves. The astrophysical sources 

of gravitational waves are briefly considered in order to define the threshold sensitiv­

ity required for the detection gravitational of waves. The subject m atte r  is derived 

from current literature.

In C hapter 2 an overview of gravitational wave detectors is given. In particular, 

various types of laser interferometric detector are described in conjunction with the 

noise sources tha t  limit their sensitivity. This work is partty  obtained from current 

l i terature and is partly  composed by the author as an introduction to work that  is 

presented in subsequent chapters.

C hap ter  3 is a presentation of the sensitivity obtained by the Glasgow pro to type 

detector. All work on the Glasgow pro to type detector has been conducted with 

o ther members of the G ravita tional Waves Group. The d a ta  recording described in 

this chapter was conducted with H. Ward, D. Robertson, K. Skeldon and M. Casey.

In C hap ter 4 a dynamic model of a double pendulum  and resonances of the 

suspension wires is formulated. This is the work of the author. A model is also de­

scribed for the internal modes of a cylindrical test mass. This is the result of analysis 

by J. R. Hutchinson with revision by A. Gillespie and K. B lackburn (Caltech).

In C hap ter  5 a double pendulum  design is presented th a t  should allow improved 

sensitivity when used to suspend the test, masses of the Glasgow prototype. Active 

damping of the normal modes of the pendulum is considered. This is the application 

of the work presented in C hap ter  4.

C hap ter  6 contains a discussion of the control of a test mass by signals obtained 

from the interferometer ou tput.  This is applied to the operation of the Glasgow pro­

xiii



to type detector. This is the further application of the work presented in C hap ter  4.

In C hapter 7 the Brownian motion of the suspension components is evaluated. 

This is a significant limitation to the sensitivity of interferometric gravitational wave 

detectors. The work is reliant on the model formulated in C hapter  4 and was 

carried out with discussion with other members of the G ravita tional Waves Group, 

particularly J. E. Logan and J. Hough.

In Chapter 8 the techniques discussed in the preceding chapters are applied to 

the GEO 600 project. This is a large scale interferometer with a significant chance of 

detecting gravitational radiation. The project is the partnersh ip  of research groups 

from the University of Glasgow; the University of Wales (College of Cardiff); the 

Albert Einstein Insti tu te  in Potsdam; Hannover Universitat, and the Max-Planck- 

Institu te  fur Q uantenoptik  in Garching. The interferometer is being constructed 

near Hanover. The m ateria l presented is a review of the project followed by the 

design work carried out by the au thor in conjunction with the GEO 600 Suspension 

Group (which is led by N. Robertson).

Chapter 9 is a conclusion of the work presented.

Appendix A is a source listing of the ‘M A TLA B ’ routines developed to model 

the dynamics of the double pendulum .

Appendix B is a detailed derivation of Equation 4.8.
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S u m m a r y

This thesis is w ritten  for the threefold purpose of:-

1. A dvocating the use of double pendulums, in preference to single stage pen­

dulums, to suspend the test masses used in terrestrial interferometric gravita­

tional wave detectors.

2. Justifying the necessity of developing a comprehensive dynamic model of a 

double pendulum  suspension. This requires consideration of all six degrees of 

freedom (per mass) of the coupled system.

3. D em onstra ting  that  there is sufficient confidence in the modelling techniques 

to proceed to the design and construction of a double pendulum suspension 

for use in a full scale gravitational wave detector.

The au tho r  believes tha t  the use of double pendulum s to suspend the test masses of 

a terres tr ia l  interferometric gravitational wave detectors offers an accessible means 

of obtain ing the high sensitivity required to record gravita tional waves using such a 

detector. The following is a sum m ary of how this assertion is justified in the course 

of this thesis.

C hap te r  1 is an in troduction  to gravitation and the postulation of the existence 

of gravita tional waves. Poten tia l  sources and the expected signal strengths are dis­

cussed. This forms a guide to the sensitivity tha t  is required by a gravita tional wave 

detector.

An overview of the subject of gravita tional wave detectors is found in C hap ter  2. 

Various types of detector are described; these include: resonant mass detectors, laser 

interferom eters and also the proposed ESA space mission LISA. Noise sources that

xv
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limit the sensitivity to gravitational waves of interferometric detectors are introduced 

in this chapter and many are discussed later in this thesis.

C hapter  3 is a brief presentation of the noise floor of the Glasgow pro to type 

interferometric gravitational wave detector (measured on 6th March 96). The origin 

of the detector noise in different, frequency regions is discussed. It is shown tha t the 

the sensitivity of the detector could be improved at frequencies below 200 Hz by a 

more careful design of pendulum.

The formulation of a dynamic model of the pendulum  suspension is presented 

in Chapter 4. This describes how the normal mode frequencies and Q factors of the 

pendulum suspension can be obtained from the equations of motion. It also describes 

how a state-space model of the suspension can be formulated. State-space modelling 

techniques are used through out this thesis for assessing the transfer functions and 

servo control of the double pendulum s considered. It is noted th a t  a single stage 

pendulum is a special case of a double pendulum. Thus, the performance of a 

single stage pendulum can be analysed for comparison. This chapter also contains 

the formulation of models for the resonant modes of the suspension wires and the 

vibrational modes of the test mass itself.

In C hapter 5 the state-space model of the double pendulum  is used to analyse 

damping of the normal modes by an electronic servo. (Such control suppresses 

the resonant enhancement of noise sources.) This must be accomplished without 

introducing excess noise to the system. It is shown th a t  the frequency of the normal 

modes of the pendulum determine w hether this is possible. The need to achieve 

good damping puts constraints on the design of the pendulum . This necessitates a 

comprehensive model of a double pendulum. The results presented in this chapter 

are a validation of the design techniques employed.

The servo control required to obtain the ou tpu t signal from the interferom eter is 

discussed in C hapter 6. The requirements placed on feedback elements are analysed 

in conjunction with the level of seismic noise that they require to accom m odate. A 

split feedback topology is considered to assess the feasibility of using electrostatic 

ac tua tion  on the test mass instead of magnetic. The issues detailed in this chapter

| also place constraints on the pendulum  design.
I

| xv i
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A critical limit to the sensitivity of an interferometric gravitational wave de­

tectors is the Brownian motion of the test mass and suspension. C hap ter 7 is a 

comprehensive trea tm ent of this noise source as it arises in a double pendulum. 

Concluding remarks are m ade at the end of Sections 7.3, 7.4 and 7.5 instead of a 

general conclusion at the end of the chapter.

In C hap ter  8 double pendulum s are considered for the GEO 600 project.

C hap te r  9 forms a conclusion to the research presented in this thesis.

The numerical code used to generate the dynamic model of a double pendulum  

is listed in Appendix A. This has been w ritten  for the ‘M A T L A B ’ environment. To 

do the full state-space modelling of the pendulum  and servo electronics requires the 

‘Control Systems Toolbox’.

Appendix B is a detailed derivation of Equation 4.8.
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N  o t a t i o n

The following convention has been adopted in this work:-

a, Z, M athem atical variables are in italic typeface.

M Matrices are bold, upper-ca.se letters,

u Vectors are bold, lower-case letters,

i  Spectral noise amplitudes (in u n i t s / \ /H z )  have a hat.

f 2 Spectral power densities (in un its /H z)  are noise amplitudes squared.

/  denotes a frequency measured in cycles per second (Hz).

to denotes an angular frequency (in units r a d s - 1 ).
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Chapter 1

S o u r c e s  o f  G r a v i t a t i o n a l  W a v e s

‘I seem to be having tremendous difficulty with my lifestyle.1

A rthur Dent.

1.1 In tro d u ctio n

It has long been recognised that  gravitation is the weakest of the forces known to exist 

in the Universe. However, it is remarkable th a t  its influence is often the strongest felt 

in everyday life. The influence of gravitational waves, on the other hand, could not  

be said to be readily felt. Although envisaged as ripples on the fabric of  spacet ime , 

they are very small ripples. As will be seen, the most cataclysmic astrophvsical 

events produce strains at the E ar th  that  are of order a millionth of an atom nucleus 

over one metre. This seems impossibly small to measure yet many experimenters 

believe that  the detection of gravitational waves is bo th  possible and will yield useful 

information on the nature  and scale of the Universe.

The existence of gravita tional waves was first postu la ted  in the wake of Ein­

stein's formulation of General Relativity [1]. Further, they are predicted to have 

similar properties by other m odern theories of gravitation. In fact, the differences 

in the predictions of rival theories of gravitation will only be apparent in the signals 

produced in the strong fields associated with black holes. For the purpose of this 

discussion General Relativity will be assumed to be accurate.

1
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Figure 1.1: The Effect  o f  a Gravi tat ional  Wave on a Ring of  Test Masses.

It is observed tha t  there is only one sign of mass. This, together with the 

conservation of m om entum, restricts the emission of gravita tional waves to time 

variation of the quadrupole moment of a massive body. Thus, g ravita tional waves 

are quadrupole waves and have spin equal to 2. Similar to electromagnetic waves, 

they are transverse and propagate  at the speed of light. The effect of such a wave on a 

ring of test particles is shown in Figure 1.1. One period of the d isturbance is shown 

at intervals of one quarter of the period; the wave is propagating in a direction 

normal to the plane defined by the ring. The ring of test particles is essentially 

stretched along one axis while it is squashed in the orthogonal axis. The am plitude 

of the gravitational wave is characterised by the strain of space it produces. This is 

defined to be

h =
A L 
~2L

(1.1

where A L and L  are as shown in Figure 1.1. A second polarisation is possible where 

the axes are ro ta ted  through 45°. The amplitudes of these polarisations are denoted 

hjf. and h x respectively. Circular and elliptic polarisations of gravita tional waves 

are also possible. They are superpositions of /i+ and h x with an appropria te  phase 

relation between them. This is analogous to electromagnetic waves.

A ttem pts  to produce gravitational waves in the laboratory  yield only insignificant 

strain amplitudes. The detection of gravitational waves will rely on astrophysical 

sources where the am ount of mass and its velocity by far compensates for the ex tra  

distance to the source.
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1.2 S ou rces o f  G ra v ita tio n a l W aves

In this section a sum m ary of various expected sources will be given. This will be 

restricted to sources tha t  could potentially be detected using terrestrial g ravita tional 

wave detectors. The E ar th  provides an unstable environment for detecting small dis­

placements at frequencies below ~1 Hz. This is due to seismic disturbances and also 

pertu rba tions of the gravitational field caused by density fluctuations in the E a r th ’s 

atmosphere. Such effects mask the detection of gravitational waves. The m axim um  

frequency anticipated from sources is ~ 1 0 4 Hz [2]. The upper limit arises because 

in order for a source to strongly emit gravita tional waves it must be a collapsed 

object (e.g. a neutron star). A lower limit exists on the mass of such objects of 

about 1 M0 and hence there is an upper limit to the frequency of gravita tional wave 

emission. Thus, the criterion for detectable sources using terrestrial detectors is that 

the frequency of the emitted  gravitational waves lies between 1 Hz and 104 Hz.

1.2.1 Burst Sources 

Super novae

Supcrnovac events have, historically, been considered an im portan t source of gravi­

tational waves th a t  are accessible to terrestrial detectors. The strain am plitude , as 

measured on the E arth , tha t  is produced by such an event is given by [3]

where A E / M ^ c *  is the fraction of the stellar rest mass radiated as gravita tional 

waves; r is the distance from the Earth; /  is the dominant frequency of the radia tion  

and r  is the dura tion  of the burst. The values of these quantities vary depending on 

the exact conditions of the collapse. The emission of gravitational waves is dependent 

on asymmetries in the core collapse. Supernovae events can be classified as T ype  I 

or Type II.

In a Type I supernova the progenitor is a white dwarf star th a t  accretes m a t te r  -  

possibly from a binary companion -  causing nuclear detonation. This may produce 

a neutron star as a remnant. Since the process of accretion will im part  angular



m om entum  to the white dwarf, it is likely that the collapse to a neutron star will be 

highly non-axisymmetric. It is possible that the core will deform into a bar shape 

and, therefore, strongly emit gravitational radiation.

Type II supernovae occur when a sufficiently massive star (> 8 A / q  when initially 

formed) reaches the end of its life. At this point the nuclear fusion processes in the 

core fail to produce sufficient radiation pressure to balance the s ta r ’s self-gravity. 

G ravita tional collapse of the stellar core becomes inevitable and a neutron s tar (or 

pulsar)  is produced. If the initial stellar mass is large enough ( ~ 2 0 A / q ) the formation 

of a black hole is possible.

It is not known how asymmetric Type II collapses are. So far, only those which 

are almost spherically symmetric can be modelled in simulations. These, of course, 

do not produce as much gravitational radiation. However, m easurements by Lyne 

and Lorimer [4] conclude tha t  the mean pulsar velocity is about an order of m agni­

tude greater than the mean velocity of their progenitors, the OB stars. This strongly 

suggests that the collapse of the stellar core is highly non-axisymmetric and the pul­

sar receives a kick (possibly from neutrino emission in a preferred direction [5]). 

Clearly, such a supernovae event should be a more significant source of gravita tional 

waves.

The complementary detection of a supernova by gravitational waves, optical and 

neutrino emission would be very interesting. The speed of gravita tional waves could 

be confirmed to be the same as the speed of light to within 1 part  in 1012 if both 

signals occurred within a day. Some alternatives to General Relativity predict that 

gravitational waves are not propagated at the speed of light.

The rate of supernovae events is approximately one per hundred years per galaxy. 

The experimental aim is, therefore, to observe many galaxies. If the observation 

range can be extended to the Virgo Cluster (r s; 15 Mpc) then the event rate could 

be several per year. Each factor of 2 increase in detector sensitivity increases the 

event rate by a factor of 8. This is because the detectors are able to measure the 

am plitude of the gravita tional wave which varies as 1 / r  from the source.
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N eutron Star Coalescence

Several neutron star binary systems are currently known to exist. Such systems 

emit gravita tional energy causing their orbit to decay and, finally, the coalescence of 

the two objects. The lifetimes of the observed systems are, however, ~ 108 years to 

~ 1 0 10 years. This means that the expected event rate is low (perhaps 3 per year out 

to 100 Mpc). It has been suggested tha t neutron star binaries can be formed with 

much shorter lifetimes (perhaps ~ 107 years -  see Thorne [2] and references therein) 

but these are obviously less likely to be observed. If these do in fact exist then the

expected event rate is increased. The maximum rate is probably around 100 per

year out to 100 Mpc.

G ravita tional waves are em itted at twice the orbital frequency of the system. 

As the orbit decays, the orbital frequency increases resulting in a c h i r p  signal. In 

fact, only in the final stages does the frequency of the gravitational wave lie in 

the sensitivity band of terrestrial detectors. It is estim ated to take approximately 

1000 s for the frequency to sweep from 10 Hz up to ~1 kHz. During this time the

gravitational w'ave signal would have a very well determined waveform. This will

aid the identification of such signals in the presence of detector noise.

The gravita tional waves em itted from a binary source are determined by its chirp 

mass, M .  For two stars of masses M \  and M 2 , the chirp mass is

(A I 1 A!2 )*
M  = —— 1 (1. 3) 

(Ml + M2) s

and the strain am plitude is given by [3] (this is as modelled by the Newtonian point 

mass approxim ation)

/, =  2.6 x 1<T23 (  — \ 5 / ^ W l 0 0 M p c \
\ M ZJ  V100 Hz J  \  r  J

where f  is the frequency of gravitational waves emitted and r  is the distance from 

the Earth . As the signal sweeps up in frequency the time, r ,  spent near a par ticular 

frequency is (also given in [3])

f  f M , ^ \  I  / 1 0 0 H z \ l
- r 7-sU )  (— ) s (L5>
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Using m atched filters to search the detector ou tput for a chirp signal from a coalesc­

ing binary system the detector noise can effectively be suppressed by a factor of \ J t . 

A lthough the am plitude of the signal increases with frequency, it dwells longer at 

lower frequencies perm itting greater sensitivity to be obtained. For this reason it is 

desirable to obtain appropriate  sensitivity of a gravitational wave detector down to 

frequencies ~10  Hz. This greatly increases the detection ra te of coalescing systems.

Analysis of the waveform predicted in Equations 1.4 and 1.5 allows the distance 

to the source to be unambiguously determined. Thus, coalescing neutron star binary 

systems have the potential to determine accurately the distance scale of the universe. 

If such an event is recorded by several detectors sufficient information should be 

available to locate the source within a particular galaxy. Since the red shift of the 

galaxy can be measured, then H ubble’s constant can be determined. This m ethod 

should yield H ubble’s constant to an accuracy of better  than  1% [6].

The final stage of the coalescence is of particular interest. At some separation, the 

neutron stars will deform and begin to combine. The separation at which this occurs 

is dependent on the equation of state of neutron star material. The gravitational 

wave signal is the only means of obtaining information about this stage of neutron 

star binary evolution.

Recent results by Wilson and Mathews [7] suggest tha t  some coalescence events 

may induce instability in the individual neutron stars while they are still signifi­

cantly separated . The neutron stars could then collapse forming black holes prior 

to coalescence. This ought to increase the am plitude of the signal emitted. This 

is especially true of the final stage. There are concerns, however, tha t  higher or­

der corrections are, in fact, more significant and the well defined chirp signal does 

not simply depend upon the chirp mass but also upon the individual masses and 

their spins. More analysis of such systems is required to determine how accurate 

the New tonian approxim ation is. If the discrepancy is large then the event rate of 

detectable binary coalescences will be decreased (because the chirp signal is not as 

precisely known as was thought).



Black Hole Coalescence

Binary star systems may include a black hole as one or both  members. These are 

like neutron star systems in that  they decay via the emission of gravitational waves 

resulting in a signal which is qualitatively similar. However, due to the increased 

gravitational field involved, the precise form of the chirp signal is difficult to simulate 

numerically. Analysis of such signals would provide tests of General Relativity under 

strong field conditions. At this level, alternative theories of gravitation could be 

discriminated between.

1.2.2 Monochromatic Sources

Monochromatic sources emit a single frequency which is stable with time. This 

allows a detector to integrate the signal over a long period. The detector strain 

sensitivity (expressed in l / \ / H z )  can then be improved by a factor of >/r,nt, where 

r int. is the integration time. This assumes tha t  the detector noise is stochastic and 

stationary. Furthermore, searching for a known signal frequencj^ allows a suitable 

detector to operate in a narrow band mode centred on the signal; such operation 

may be able to obtain be t te r  sensitivity. It is also possible to verify the detection of 

such a source using a single detector. This is because the received signal will vary 

as the orientation of the detector varies relative to the source. In essence, the signal 

is modulated, both in amplitude and in frequency, by the ro tation  of the E ar th  and 

the orbit of the E arth  round the Sun.

N eutron Stars

A rotating  neutron star will emit gravitational waves if it is not precisely axisym- 

metric. This, in principle, will cause the ro tational rate to decrease with time. This 

is observed, however the energy loss is thought to be dom inated by electromagnetic 

interactions ra ther than  the emission of gravita tional waves. The spin down ra te 

can be used to put an upper limit to the level of gravita tional wave emission.

The ellipticity of a neutron star, e, can be defined as: one minus the ratio of the 

equatorial semi-minor and semi-major axes. The strain am plitude of gravitational



waves observed at the E ar th  from an elliptical neutron star is given by [8 ]

h % 6  x 1 0 _21e ( — -  )  ( 1 .6 )
V1 0 0  Hz J  \  r  J

where /  is the gravita tional wave frequency and r is the distance from the Earth. 

C urren t theories suggest th a t  e < 10- 3 .

Of particu lar  interest is the Crab pulsar. This is a particularly  close object 

(r ~  2kpc)  and so may be detectable. The gravita tional waves should have a 

frequency of about 60 Hz. The observed spin down rate places an upper limit on 

the ellipticity of 6  x 10- 4 . Zimmermann suggests a value between 3 x 1 0  6 and 

3 x 10~ 5 [9]. This leads to a expected strain am plitude of

h % 1 x 10~ 26 ( ------ ----- =-) . (1.7)
V I  x  1 0 ~ 5 J

If the signal were integrated over 10' s (4 months) a, detector would require a strain 

sensitivity at 60 Hz of h «  3 x 10~ 23 / \ /H z  in order to achieve a signal to noise ratio 

of unity (given e = 1 x  1 0 ~J ).

1.2.3 Stochastic Sources

The possibility of a cosmic background of gravitational waves exists. It is conven­

tional to express the strength  of this source in terms of the energy of gravitational 

waves in a frequency band A f  =  /  about a frequency /  normalised to the energy 

density required to close the universe. This fraction is denoted by flgW. The mean 

stain am plitude is then [3]

9 _ 24  f  Vow \  2 /1 0 0  Hz \  , 7—h« 2  x io 24 (^pr) y - j - } 1 (1 1
At frequencies of about 1 cycle per 10 years an upper limit of flgw ~  10- 7  has 

been established by observations of millisecond pulsars [10]. It would be of interest 

to place a similar constraint at frequencies accessible by terrestria l detectors. This 

would be difficult for one detector alone. A coincidence experiment between two 

independent detectors is much more sensitive if long integration times are used. 

T he grav ita tional wave signal is correlated between the detectors (assuming they 

are not separated  significantly compared to the wavelength of the radiation); the



noise inherent in the detectors would not be correlated. Thus, cross-correlation over 

a period of time should suppress the detector noise.

1.3 C on clu sion

The strain sensitivity of a viable detector should be at least ~  10_ 2 2 / n/ H z for 

some of the frequency band 1 Hz to 104  Hz. For detecting neutron star coalescences, 

frequencies below 100 Hz are the most critical.

Information from a single gravitational wave detector is of limited use. It is im­

possible to distinguish impulse events in the detector environment from burst sources 

of gravitational waves. Neither is it possible to measure both possible polarisations 

of the gravitational waves. Long term recording of monochromatic sources {e.g. 

pulsars) may be possible and is probably the only reasonable mode of operation. 

Although the chirp signal from a coalescing binary system is very characteristic, a 

high signal to noise ratio would be required to make a detection credible. The event 

rate for these sources is very uncertain.

It is far be tte r  to utilise an array of three or four detectors: position information 

of a source can be obtained by comparing the arrival times at each detector; there 

is far less ambiguity over the validity of a result if it is recorded by two or more 

detectors in a consistent manner, and (assuming the detectors are sensibly aligned) 

bo th  polarisations of the gravitational wave can be measured simultaneously.
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Chapter 2

G r a v i t a t i o n a l  W a v e  D e t e c t o r s

2.1 In tro d u ctio n

In this chapter an overview of gravitational wave detectors will be presented. A 

brief description of two types will be given: resonant mass detectors and laser in­

terferometers. Resonant mass detectors couple the energy carried by a gravitational 

wave into their acoustic resonances. Laser interferometers measure the strain of two 

orthogonal arms.

This thesis is concerned with the development of low noise suspensions of the 

test masses in terrestrial laser interferometers. The principal sources of noise that, 

limit the sensitivity of such detectors are introduced and quantitatively assessed. 

This discussion is applied to a detector with arm length ~ 1  km. In C hapter 1 it 

was noted tha t  a viable detector requires a strain sensitivity of ~ 1 0 - 2 2  / \ /H z .  This 

corresponds to a displacement sensitivity of ~ 1 0 - 1 9  m / \ /H z .  Since there are several 

noise sources, the contribution from any given source should be at least a factor 

of ~10 smaller than  this. Thus, the approxim ate specifications for a detector will 

be discussed with the aim of achieving a displacement noise of 10_2° m / \ /H z  (or 

less) from any one noise source. This wdll give a good indication of the technological 

challenge involved.

There are currently four projects tha t  aim to construct large scale interferomet- 

ric gravitational wave detectors of approximately this sensitivity goa.l. They are:
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GEO 600 [11] (British-German); LIGO [1 2 ] (USA); VIRGO [13] (French-Italian) 

and TAMA (Japan) .  These are due for completion from around 2001 onwards. A 

discussion of some aspects of the GEO 600 project is given in C hapter 8  and, at the 

end of this chapter, there is a comparison of the expected sensitivity to estimates 

for signal s trengths of gravitational waves from a variety of sources.

2.1.1 R esonant M ass D etectors

Resonant mass detectors were the first gravitational wave detectors developed (by 

Weber [14]). In their simplest form they are composed of a massive right circular 

cylinder. The longitudinal resonance of the cylinder can be thought of as two masses 

connected by a spring. The strain produced by a gravitational wave m odulates the 

proper length of the mass and excites this mode. This means that  the detector is 

most sensitive at frequencies about the resonance. Thus, such detectors are generally 

unsuited to detecting continuous m onochromatic sources unless the resonant mode 

is deliberately chosen to be at the same frequency as the gravitational wave. This 

approach has, in fact, been used by the Tokyo group where the resonant frequency of 

the mass is ~60  Hz to m atch the expected emission from the Crab pulsar (see [15]).

The mass must be isolated from external sources of noise. Isolation from seismic 

motion and acoustic pick-up is achieved by suspending the mass in a. vacuum. The 

main limit to sensitivity is then the Brownian motion of the atoms in the mass. 

T herm al excitation of the longitudinal mode generates a larger am plitude than  that 

produced by a gravita tional wave. However, it is only necessary to measure changes 

in the mode am plitude. The exchange of energy from atomic therm al motion to a 

resonant mode of the mass occurs on a time scale of order the relaxation time for 

that  mode. Thus, to detect burst sources, a short integration time for a measure­

ment is preferred. However, there is also noise associated with the sensing of the 

mode am plitude. A longer integration time would reduce the level of this noise. 

The optimal integration  time is such that  the contributions from therm al noise and 

sensor noise are equal. It is possible to reduce the therm al motion by reducing the 

tem pera tu re  of the mass -  to liquid helium tem pera tu res  or below.

In the absence of sensor noise, the sensitivity of a resonant mass detector to
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burst sources is shown in [8 ] to be

1 /  k s T r u  \  2

^  =  I  Q )  ™

where r f, is the duration of the burst; /o, m  and Q are the resonant frequency,

effective mass and Q factor of the longitudinal mode of the cylinder, and L is the 

length of the cylinder. For a bar of L = 3 m, /o =  1 kHz, m  = 1 tonne, Q =  107 

and T  — 4.2 K the expected strain sensitivity for millisecond bursts  (77, ~  0.001 sj

is 1 x 10~20. However, current sensors are not able to perform this well. The

E X PL O R E R  experiment reports long-term sensitivity of ~ 8  x 10- 1 9  to such pulses 

in [1 G ].

Recent work has tended towards a spherical mass [17] instead of a cylinder. It is 

then possible to obtain resonant modes at about 1 kHz but with a total mass many 

times that of the cylinder. This increases the coupling to the gravita tional wave. In 

fact, there are five resonant modes of a sphere with quadrupole moments. Each mode 

forms an independent detector. The combined ou tpu t of all modes produces infor­

mation about the polarisation and orientation of the incident gravita tional waves. 

(This assumes that a sufficient num ber of transducers are a ttached  to the mass to 

measure their vibrations.) Spherical masses offers an interesting continuation of the 

development of resonant mass detectors.

2.1.2 Interferometric Gravitational Wave D etectors

In Figure 1 . 1  the effect of a gravita tional wave on the shape of a ring of test particles 

is shown. The differential change of length in orthogonal directions means that  a 

Michelson interferometer is natura lly  suited to the detection of gravita tional waves. 

A Michelson interferometer is formed by a beam split ter  and two mirrors. The m ir­

rors are attached (or coated) on to test masses. A coherent source of light is split 

into two beams such tha t  each is reflected off a test masses. The beams are then 

recombined to form a p a t te rn  of interference fringes. A schematic diagram is shown 

in Figure 2.1. Differential motion of the test masses changes the interference p a t ­

tern. The sensed differential displacement of the masses due to a suitably polarised 

gravitational wave incident normal to the plane defined by the interferometer arms
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Figure 2.1: A Michelson  In ter ferometer .

is

( 2 . 2 )
7r f r t

where L is the length of each arm (defined as the distance from the beam splitter to

the test mass). r% is the transit time for the light to re turn  to the beamsplitter (i.e. 

Tt = 2 L Ic .), and f  is the frequency of the gravitational wave. For waves of random

The sine  factor in Equation 2.2 arises because the effect of the gravitational wave 

upon the light must be averaged over the transit  time of the arms. Clearly, if the 

period of the gravita tional wave is equal to the transit time, there is no net effect. It 

is also apparent from Equation 2.2 that the sensitivity of a detector increases with 

the length of the interferometer arms. The maximum sensitivity corresponds to an 

arm length of L — Agw/4 (where Agw is the wavelength of the gravitational wave). 

For a grav ita tional wave frequency of 1 kHz the detector arm length is optimised 

at 75 km. However, it is not practical to build an interferometer th a t  has arms of 

greater than  a, few kilometres (except, in space). Alternatively, it is possible to make 

the interferom eter more sensitive to displacement of the test masses by making the 

light traverse the arm length several times before the beams are recombined. This 

can be achieved, for example, with delay lines or Fabry-Perot cavities in the arms. 

Each case requires an extra, mirror in each arm located near the beamsplitter. Both 

of these schemes are shown in Figure 2 .2 .

In a delay line the laser beam is reflected several times between mirrors located 

at either end of the interferometer arm. The displacement sensitivity of an interfer-

polarisation and incidence the average sensitivity is reduced by a factor of \ /b.

13



\ /
/  ^  N-Pass Delay Line

Laser

/
Beam splitter^/ ^

~

—\ *

Photodiode

—1 End Mirror 
(Full Reflectivity)

Inboard Mirror 
(Partially Transmitting)

Laser

Fabry-Perot
Cavity

Beamsplitter

Photodiode

Figure 2.2: Examples  of Delay Line and Fabry-Perot Inter ferometers .

ometer incorporating  delay lines is increased by a factor N . ( N  is the num ber of 

double passes of the arm length; thus the transit time is also increased by a factor

N . )

A Fabry-Perot interferometer has an optical cavity in each arm. Servo control 

is used to m aintain  the cavities on resonance with the input light. In this s ta te  the 

displacement sensitivity is increased by

1T
N  (u) ) =  — :2.3:

7T \  1 -f- ILO T s

where J- is the finesse and r s is the storage time of the Fabry-Perot cavities. The 

frequency dependence arises because a Fabry-Perot, cavity integrates the signal over 

its storage time.

Displacement of a test mass produces a phase change

4tt
d> = — N(u>) x

A
(2.4)

of the interference fringe where (p is the phase change and A is the wavelength of 

light used to illuminate the interferometer. The interference fringe is examined by 

a photodiode located at the o u tpu t  of the interferometer. It is advantageous to use 

servo control of one test mass to m aintain  a dark fringe condition at the ou tput.  

This makes the interferometer less sensitive to fluctuations of the light intensity and 

optimises the signal-to-noise ratio when considering the shot noise on the detected 

light. Sensing of the interference fringe is achieved using rf  m odulation techniques 

at frequencies of several MHz (at these frequencies the intensity fluctuations of the 

laser power are shot noise limited).
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Figure 2.3: A Dual  Recycled In terferometer .

A significant limitation to the sensitivity of an interferometric detector is the 

shot noise on the laser light (see Section 2.2.4). To improve the shot noise limit 

to sensitivity of an interferometer more complex optical configurations are possible. 

The a.ddit.ion of a. mirror between the laser source and the beam splitter is known as 

power recycling [18]. A mirror placed between the beam splitter and the ou tpu t pho­

todetector produces signal recycling.  When both of these are implemented together 

this is known as dual recycling [19]. Figure 2.3 shows the layout of a dual recycled 

Michelson interferometer. Both the power and signal recycling mirrors are partially 

transm itting .

Displacement of a test mass, in effect, frequency modulates the light in the 

interferometer arm. This imposes m odulation sidebands on the carrier frequency 

(i.e. the laser frequency). W hen the output of the interferometer is locked to a 

dark fringe, light at the carrier frequency returns towards the laser. The power 

recycling mirror reflects this light back into the interferometer. The coupled optical 

system formed by the power recycling mirror and the two arms of the interferometer 

is analogous to a Fabry-Perot cavity (and is known as the power  recycling cavity).  

Thus, resonant build up of light power is achieved in the power recycling cavity if it 

is m aintained on resonance with the input laser light. Because more light power is 

stored in the interferometer, the shot noise limit to sensitivity is reduced.

If the in terferom eter is locked to a dark fringe for the carrier frequency this 

means tha t  the signal sidebands are emitted at the ou tput.  The presence of the
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signal recycling mirror makes a particular frequency of sideband resonant in the 

coupled cavity formed by the signal recycling mirror and the two arms (known as 

the signal  recycling cavity).  This gives resonant enhancement of the signal and 

allows the shot noise limit to displacement sensitivity to be improved at the expense 

of a reduction in the detector bandw idth . The quality factor of the tuned response 

and the frequency at which the signal is resonantly enhanced are determ ined by the 

reflectivity and the position of the signal recycling mirror respectively. The position 

of the signal recycling mirror must, therefore, be controlled to ensure tha t  the centre 

frequency of the tuned response does not vary with time.

The interferometer is sensitive to differential displacement of the test masses 

along the optical beam. A random  displacement of one test mass constitutes a noise 

source that  could mask the sensitivity of the interferometer to a signal produced by 

g ravita tional waves. It is therefore necessary tha t  the test masses have sufficiently 

low displacement noise. For example, they must be isolated from seismic and acous­

tic excitation. Section 2.2 contains a summary of the most im portan t sources of 

displacement noise of the test masses. Significantly, the E ar th  is not a sufficiently 

s table environment to achieve the required displacement noise at frequencies below 

~1 Hz. This is due to spurious changes in the local gravita tional field.

2.1.3 Spaceborne D etectors

To make m easurem ents at frequencies below Hz, it is necessary to locate the 

in terferom eter in space. This eliminates the problems of seismic noise and grav ita­

tional field per tu rba t ions  inherent to terrestrial detectors. It also permits su b s tan ­

tially longer arms to be used. There are, of course, significant technical difficulties 

involved in any space project.

LISA (Laser Interferometer Space A ntenna) is such a project. It proposes the 

location of three spacecraft in a helio-centric orbit at a distance of 1 AU from the sun 

(but lagging the E a r th  by 20°). The spacecraft would form an equilateral triangle 

where the length of each side would be 5 x 109 m. The frequencies of interest to 

LISA are much lower than those of terrestrial detectors. They range from 10~4 Hz 

up to 10- 1  Hz. The expected strain sensitivity of LISA should be ~ 1 0 - 2 1  / \ /H z  from
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Figure 2.4: Examp le  Single and Double Pendulums .

10~ 3 Hz to 10- 2  Hz.

LISA is currently being considered by ESA and NASA. However, there is no 

guarantee th a t  it will be launched. For further details of the LISA mission see [20].

2.2 N o ise  S ources in  T errestria l In terferom etr ic  G rav­

ita tio n a l W ave D e tec to r s

As is shown in Section 2.1.2, the test masses of an interferometric gravita tional wave 

detector require to have low displacement noise. To this end they are suspended as 

pendulum s. This affords a ttenua tion  of both seismic noise and therm al noise. In 

much of this thesis, a comparison is made between the properties of a single stage 

pendulum  and a double pendulum . Examples of these are illustrated in Figure 2.4. 

A sum m ary  of noise sources in an interferometric detector is now given.

2.2.1 A coustic and Seismic N oise

Acoustic pick-up by the test masses is eliminated by housing the entire test mass 

suspension in a m odera te  vacuum. A higher vacuum is, in fact, required to reduce

17



fluctuations of the refractive index in the residual gas in the interferometer arms. 

This limits the sensitivity according to [3]

( 2 k B T P L  \  2 , n
x = 4/i — -------- (2.5)

\  7T C W  J

where P  is the partia l  pressure of the residual gas, c is the mean molecular velocity

{i.e. c = ^ S k g T / n m  and m  is the molecular mass), w is the beam radius and /? is 

the proportionality  constant between refractive index and partia l pressure of the gas. 

For Hydrogen, /3 ~  1.4 x 10- 9  but is a factor of ~10 greater for heavier molecules. 

A pressure of ~ 1 0 - 8  mbar for H2 and a partial pressure for all o ther gases a factor 

of 1 0  be t te r  is specified for the GEO 600 project.

The level of seismic motion is approximately (10_</ / 2) m / \ /H z  from 1 Hz up to 

~100 Hz in all three directions. This obviously depends on the location of the detec­

tor. Seismic motion of the ground requires to be filtered at measurement frequencies. 

The resonant behaviour of a pendulum system gives attenuation  of ground motion 

above its resonant frequencies. For a single pendulum  with resonant frequency /o 

the a t tenua tion  is by a factor of ( / q / / 2). The transfer function for a double p endu­

lum (above both  resonances of the coupled system) was shown by Morrison [21] to

■*0 V mi J  /*

where f \  and are resonant frequencies of the individual stages considered by 

themselves and m i and m 2 are the masses of the intermediate mass and test mass 

respectively. This is clearly be tte r  than  a single stage pendulum.

Typically, a double pendulum  may have \ / / i / 2  ~  1 Hz and m  1 % m 2 . This gives 

a t tenua tion  of seismic motion by a factor of 1.2 x 107 at 50 Hz. Further stages of 

filtering are required in addition to the action of the pendulum. Layers of rubber 

and m etal can be used: these are known as vibration isolat ion stacks.  They provide 

resonant filtering of high frequency motion in the same way as the pendulum.

The use of resonant mechanical systems to a t tenua te  high frequency motion 

leads to the enhancem ent of seismic motion at the resonant frequencies. For this 

reason the modes of the systems require to have low Q factors. For stacks this can
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be achieved by using lossy rubber elements; for the pendulum the modes can be 

dam ped by an electronic control servo.

2.2.2 Therm al Noise

Thermal motion of a test mass and its suspension is a limit to the displacement sen­

sitivity of an interferometer. There are three main sources of this form of excitation:

1 . pendulum  modes of the suspension;

2 . transverse modes of the suspension wires, and

3. internal (acoustic) modes of the test mass itself.

The power spectral density for the thermally excited displacement noise of a 

simple 1 -degree of freedom pendulum  is given by (adapted from [2 2 ])

^2 A k s T u j Q  < p ( l o )

■̂ pend 5~ (-■ 1 )
771 tiJ

where û o is the resonant frequency of the pendulum (typically ~1 Hz), m  is the mass 

of the test mass and <p(io) is the loss tangent of the mode (at the resonant frequency 

this is ( 1  I Q )  but see Section 4.6.2 for a full description of cHu?))- The loss tangent of 

the pendulum  mode is typically 1 0 0  times less than  the intrinsic loss tangent of the 

m aterial used for the suspension wires. This is because most of the potential energy 

in the system is stored by the gravita tional field and not by bending the suspension 

wires.

For a test mass of 10 kg and a pendulum  resonance of 0.6 Hz, a loss tangent of 

~ 1 0 - 8  (at 50 Hz) is required to achieve a displacement sensitivity of 10 - 2 0  m / \ /H z  at 

50 Hz. (If the loss tangent is assumed to be independent of frequency the pendulum  

mode would have a Q factor of IQ8).

Equation 2.7 also provides an estim ation of therm al noise arising from a double 

pendulum . The dom inant source of the thermal excitation comes from the lower 

stage pendulum  itself (i.e.  from the suspension wires) and is applied directly to 

the test mass. This means tha t  the therm al noise is effectively filtered by only one 

resonance of the double pendulum  response. Seismic noise, in contrast, is filtered
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by bo th  resonances. This is also true of therm al noise introduced at the upper 

pendulum  stage. It is therefore critical that  the final stage of the pendulum  exhibits 

good therm al noise properties; the specification can be relaxed for the upper stage. 

Good therm al noise properties can be achieved by using materials which have a very 

small loss tangent.  It follows tha t  the pendulum resonances have a high Q factor. 

This would resonantly enhance, for example, seismic noise and place unnecessary

dem ands on the dynamic range required by the ou tpu t sensor. The pendulum  modes,

therefore, require to be actively damped.

Since the suspension wires are made from low loss materials, their transverse 

modes also have a high Q factor (for steel wires this is ~ 105 ). Therm al excitation of 

these modes produces peaks in the detector noise spectrum. It would therefore be 

impossible to make observations at a frequency close to a wire resonance. However, 

since the Q factor is very high, the peak is very narrow and so only affects a small 

frequency band.

The displacement noise caused by thermally driven vibrations of the internal 

modes of one test mass is approximately given by

2 4 k s T  4>(uj )
=  - r - r  —  (2 -8 )

7T 3 pc OiWU!

where p, c and (b(u>) are the density, speed of sound and internal loss tangent of 

the test mass material; w is the radius of the Gaussian spot on the test mass and 

a  represents the coupling of the internal modes to the Gaussian mode of the laser 

beam. A typical value of a  is 0.4. The strong dependence of the level of therm al 

noise on the beam size was first noted by Gillespie [23].

All therm al noise issues axe discussed in greater detail in C hap ter  7.

2.2.3 Laser N oise

Laser light is used to perform the interferometry between the test masses of the grav­

ita tional wave detector. There are various routes by which noise can be introduced 

via the laser light. These include:

1 . frequency noise on the input light;
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2 . intensity noise on the input light;

3. sca tte red  light within the interferometer, and

4. laser beam  geometry fluctuations.

Since the two arms of the interferometer are not precisely matched in length, 

frequency per tu rba t ions  of the input light can limit the displacement sensitivity. 

This is described by

x = A L  -  (2.9)
v

where A L  is the difference in length of the interferometer arms and v is the frequency 

of the laser. W here v =  2.8 x Hz (A =  1064 nm) and A L =  0.1 m then the laser 

must be stable to v — 3 x H P 5 H z / \ /H z  in order to reach a displacement sensitivity 

of x = 1 0 ~ 20 m / V R z .

All currently proposed large scale detectors will use Nd:YAG solid-state lasers 

em itting  at a wavelength of 1064 nm. The inherent frequency noise of the light em it­

ted from a Nd:YAG laser (of a non-planar ring oscillator design) is ~2 x 102 Hz / n/ H z 

(between 100 Hz and 1 kHz) [24]. A loop gain of ~ 1 Q' is required in the frequency 

stabilisation servo. A two stage loop is normally required. In the first loop the laser 

is kicked to resonate in a short Fabry-Perot cavity. This stabilises the frequency 

enough to perm it the laser to then be locked to a higher finesse reference cavity (the 

second loop). Usually this comprises part of the interferometer itself (e.g. one arm 

of the in terferom eter or the power recycling cavity).

If the o u tpu t  of an interferometer is at a dark fringe the interferometer is in­

sensitive to intensity fluctuations of the light. A control servo is used to suppress 

motion away from the dark fringe, however, there will always be some offset. Ax, 

from the locking point. Intensity noise couples via this offset from the dark fringe 

position according to

where I  is the light intensity. A fraction of the laser power can be used as a reference 

for the light intensity. This allows the intensity to be stabilised to, at best, the shot 

noise in the reference. For a reference beam of ~ 3  m W , the intensity of the laser light
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can be stabilised to 1 part in ~ 107. A discussion of how intensity stabilisation can be 

implemented and other sources of noise that may limit the achievable stabilisation 

is found in [25]. To achieve a displacement sensitivity of x = 10~2 0 m /\ /H z  with 

this level of intensity stabilisation requires the rms  displacement offset from the 

dark fringe to be less than ~ 1 0 - 1 3 m. The displacement noise of the test masses is 

~ 1 0 - 6  m at 1 Hz (from seismic excitation) so the control servo requires a loop gain 

of at least 107. To achieve this loop gain with a fairly robust servo requires a unity 

gain bandw id th  of ~ 1  kHz. C hap ter  6  is a discussion of this locking servo.

Light scattered within the interferometer will limit the sensitivity of a detector 

if such light reaches the ou tput photodetector. A small amount of contam ination by 

scattered light (which has an arb itra ry  phase) will corrupt the interference pa tte rn  at 

the ou tpu t  of the interferometer. This may mask the displacement signal of the test 

masses if the scattered  light is m odulated. Such m odulation can arise via frequency 

noise on the input light (but the stability requirement above is usually good enough 

to prevent this) or if light is scattered from the inside of the vacuum system (this is 

almost certainly vibrating at acoustic frequencies). Baffles that  absorb light can be 

placed inside the pipes housing the arms of the interferometer. This helps prevents 

scattered light from reaching the ou tpu t photodetector.

Scattered light is a particular problem in an interferometer tha t  uses delay lines 

in its arms. The two mirrors tha t  comprise the delay line effectively form an optical 

cavity. Light sca tte red  from the mirrors can then build up in high-order resonant 

modes of this cavity. The build up of scattered light in this m anner is fatal to 

obtaining good sensitivity. This problem gets worse as the number of passes of the 

arms is increased. If only one double-pass of the arms is implemented then this 

problem can be avoided (as in the GEO 600 project), however, the displacement 

sensitivity is only increased by, at best, a factor of 2 .

Changes in the pointing of the laser beam ( beam j i t ter)  and changes in its d iam ­

eter (beam p u m pin g)  can limit the displacement sensitivity of an interferometer [2 0 ]. 

For example, angular misalignment of the beam splitter will cause beam ji tte r  to
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mask displacement of the test masses according to [26]

x =  4 a y  (2.11)

where y is the lateral displacement of the laser beam at the beam splitter and a  is 

the angular misalignment of the beamsplitter. Servo control of the beamsplitter can 

reduce a  to around 10- 7  rad. This means that  in order to achieve a displacement 

sensitivity of x = 10~2 0 m /\ /H z  the lateral beam position fluctuations must be less 

than y =  2.5 x 10~1 4 m / v /Hz at the beamsplitter. For a Nd:YAG laser the beam 

position fluctuations have been measured to be 2 x 10- 8 m /v / Hz (for a beam radius 

of 10 mm) [27]. Thus, suppression of position fluctuations by six orders of m agnitude 

are required. The use of single mode optical fibres or resonant optical cavities (known 

as modecleaners) should provide such suppression (see Rudiger et al [28] and Skeldon 

et al [26]).

2.2.4 Shot Noise

A fundamental limit to the sensitivity of an interferometer is the shot noise in the 

photocurrent produced at the ou tput.  The photocurrent detected at the ou tput of 

the interferometer is

I  = J  [1 + cosW)] (2.12)

where Iq is the maximum photocurren t (for a bright fringe condition) and <p is 

the relative phase of the two beams on recombination. The dark fringe condition 

corresponds to (p =  7r. It was noted above that  a servo locking the interferometer 

to the dark fringe still permits a small offset A<t> : 27T A<t> </>gw where <£gw 

is a typical signal amplitude. The offset from the dark fringe produces residual 

light power on the photodiode. The shot noise in this light is given by (noting that 

cos(7r +  A<i>) % A d 2/2 — 1 for small A o )

L o is e  =  =  A 0  (2.13)

where e is the electronic charge. The differential of Equation 2.12 gives the response 

at the output to a phase change between the recombined beams

4«nal =  - ^ A  4 * 6 .  (2.14)
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By equating the noise given in Equation 2.13 with the signal given in E quation 2.14 

the shot noise limit to displacement sensitivity is (also using Equation 2.4)

1 A [2e ,
x  =  —  a —  . (2.15)

N  (uj ) 4 t  y /o

The typical conversion factor of light power to photocurrent is «0 .4  A /W  for a 

wavelength of 1064 nm. At this wavelength current technology has realised laser 

powers of ~ 1 0 W . This allows the displacement sensitivity of a simple Michelson 

in terferom eter to be

_ 17 (  A \  / 1 0 W \ 2  /0 .4  A / W \ 2  / —
* = 2 5 *  10 ( — j  ( - V ~ )  m/,/HZ (216)

where P  is the laser power and 77 is the conversion efficiency of the photodiode. To 

achieve a displacement sensitivity of x  ~  10_ 2 0 m /\ /H z  advanced interferometric 

techniques are required. These include: Fabry-Perot interferometers, power recy­

cling and signal recycling.

The light power stored in a power recycled interferometer is increased by a factor 

( P r r / tt) where / p R  is the finesse of the power recycling cavity. The displacement 

sensitivity is, therefore, improved by the square root of the power enhancem ent. If 

the finesse of the power recycling cavity is ~ 1 0 ^, the shot noise limit to displacement 

sensitivity is improved by a factor of ~60. The finesse of the power recycling cavity is 

limited by absorption losses when the beam is transm it ted  through the beam split ter  

(or com pensation plate). In fact, absorption in the beam splitter causes local heating 

and forms a therm al lens. The s trength  of the therm al lens increases in proportion  

to the incident light. This effect limits the light tha t  can be stored in the power 

recycling cavity because the therm al lens becomes sufficiently strong to make the 

cavity non-resonant for the fundam ental Gaussian mode.

Signal recycling also gives an improvement of the shot noise limit to displacement 

sensitivity. For a Michelson interferometer (possibly including delay lines) the signal 

is resonantly  enhanced by a factor (adapted  from [29])

r t r oi - 1
IGsrI =  -— — —  1 +  r ars [t s r {u  -  wsr)] 2 (2.17)

1 -  rars L

where ra and rs are the am plitude reflectivities of the interferometer arm and the 

signal recycling mirror respectively; t s r  is the storage time of the signal recycling
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cavity; t s is the am plitude transmission of the signal recycling mirror, and w sr  is 

the frequency to which the signal recycling is tuned. (To include beamsplitter losses 

in Equation 2.17 see [29].) As the transmission of the signal recycling mirror is 

decreased the resonant enhancement of the signal sidebands is increased but the 

bandw id th  is reduced. This allows a signal recycled interferometer to operate in 

b roadband  or narrow band  modes. For mirror losses of 20 ppm, signal recycling 

factors of ~150 are possible. The reduction in the shot noise limit to sensitivity is 

by the signal recycling factor.

2.3  C o n clu sio n

The detection of gravita tional waves would appear possible using large scale in­

terferometric detectors. These will require advanced interferometer configurations. 

GEO 600 is such an interferometer. Its estim ated strain sensitivity is shown in Fig­

ure 2.5. This shows the contributions from a variety of noise sources discussed above. 

Shot noise and therm al noise represent fundam ental limits to the performance of the 

instrum ent. It is antic ipated  tha t  other noise sources can be reduced well below the 

to tal noise floor as shown {i.e. by at least a factor of 10). Seismic noise will, of 

course, dominate at low frequencies.

Figure 2.6 shows how this strain sensitivity compares with the expected signal 

s trengths as discussed in C hap ter 1 . As a stand alone instrum ent GEO 600 may be 

able to detect signals from pulsars if it is possible to suppress detector noise by using 

a long integration time. The upper limit for the Crab pulsar is certainly within the 

scope of GEO 600, however, the signal is likely to be much weaker than  this.

Since the signal from a supernova is by nature a burst,  it will require simultaneous 

detection by at least two detectors to conclude tha t  the signal is genuine. A lter­

natively, simultaneous optical verification may lend some support. Initial stages of 

other interferometers {e.g. LIGO and VIRGO ) should reach a similar strain sensi­

tivity to GEO 600 but with interferometer arms that are more than  five times longer. 

GEO 600 is able to com pete because it will implement a dual recycled interferometer. 

A network of up to four detectors should be available to do coincidence experiments.
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Figure 2.5: The es t imated strain sens i t iv i ty  of  GEO 600 is shown for  broadband signal  

recycling (the t rans miss ion  of the signal recycling mirror is taken as 0.1 giving a 

signal en h a n c e m e n t  of 20). The input  power was taken as 5 W  and a power  recycling 

fac tor  of  2000 is assumed possible. The ther ma l  noise from, the in ternal  modes is 

calculated ass um in g  (f(uj) =  2  x 1 0 ~ 7 and s truc tural  damping.

26



GE0600 Sensitivty Limit from Individual Noise Sources

 \ Crab Pulsar .
GEO60Q \ (UPPer MmW [ 

Strain Sensitivity \ 'T Supernova (at 15Mpc)

(200 Hz)

Neutron Star Coalescence 
(at 10 Mpc)

(1kHz)
-22

jkEilipticity: e=  1x10 ;
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Figure 2.6: The es t imates  fo r  source strengths are shown mult ipl ied by a fac tor  of  

1 / V E .  This accounts for  the degraded signal because the a l ignment  of  the interfer-  

om.eter is not, optim.al for  ipaves inc ident  from, all posi t ions in the sky. The pulsar  

signal has been mult ipl ied by 3 x 10^ to account for  an integration t ime  of 10" s. The 

strain sens i t iv i ty  of  GEO 600 is shown as in Figure 2.5.
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This offers a good chance of detecting gravitational waves.

The event ra te  for neutron s tar coalescence out to 10 Mpc is likely to be too low 

to make them a worthwhile source. Advanced designs for bo th  LIGO and VIRGO 

feature even higher strain sensitivity (by a factor of ~10) over a larger frequency 

range. It is likely th a t  this will be achieved using the advanced techniques th a t  will 

be pioneered by the GEO 600 project. Advanced detectors should be able to detect 

coalescing binaries at a sufficient ra te to record useful astrophysical information.
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C h apter 3 

N o i s e  S o u r c e s  in t h e  G l a s g o w  

P r o t o t y p e  D e t e c t o r

A Fundam ental  Law of Asym m etry exists and states:

‘Nothing is ever precisely symmetrical, therefore, the cross-coupling co­

efficients are always non-zero.’

(They are, however, pe rm itted  to be very close to zero.)

This Author.

3.1 In tr o d u ctio n

On the 6tJl March 1996, the Glasgow pro to type detector [30] was run for over an hour. 

During this time the interferometer signal was sampled and stored on computer. 

In this chapter, the displacement sensitivity obtained in this experiment will be 

presented. From analysis of the noise floor some limiting sources of noise will be 

identified and this will form the justification of work to improve the sensitivity of 

the detector.

The Glasgow pro to type  uses laser interferometry in the measurement of the 

differential length changes of two orthogonal Fabry-Perot cavities. The Fabry-Perot 

cavities are formed between mirrors coated on to the surfaces of four test masses 

each of which is suspended as a double pendulum . The effect of a gravita tional
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wave is to m odulate  the proper distance between the test masses in the two arms. 

Displacement, real or apparent, of any of the test masses constitutes a noise source 

th a t  limits the sensitivity of the detector to gravitational waves.

3 .2  T h e N o ise  F lo o r  o f  th e  G lasgow  P r o to ty p e

The da ta  taken during the hour-long experiment are a time record of the appar­

ent differential arm length fluctuations. It is more instructive to view this in the 

frequency domain. This is achieved by a Fourier transform. Figure 3.1 shows the 

Fourier transform of a short stretch of the recorded data. On the assumption that 

the measured displacement was not caused by gravitational radiation this is the 

noise floor of the Glasgow prototype. The estim ated levels of some individual noise 

sources are shown for comparison. The features marked with an ‘M 1 occur at har­

monics of the mains supply frequency. These are caused by pick-up in the electronics 

and produce either real or apparent motion of the test masses. Careful wiring can 

minimise these features. The single feature marked with a ;T ' occurs at the ro ta ­

tional frequency of the tu rbo  molecular pump used to keep the interferometer under 

vacuum. The spike is probably due to acoustic coupling through the vacuum system.

The entire recorded da ta  were Fourier analysed by Jones [31] to produce a very 

detailed spectrum  of the noise. This showed tha t  below ~200 Hz the noise contains 

considerable structure ; this is suggestive of mechanically generated noise (e.g. seis­

mic noise or geometry fluctuations of the laser beam). At frequencies above ~200 Hz 

the noise is smooth. This is may arise from either a single, dominant seismic cou­

pling or by a combination of, for example, shot noise or therm al noise. Some features 

present in this range are noted in Section 3.2.4.

It was also noted by Jones [31] th a t  the noise tended to increase during periods 

of lock. This is most readily explained by noise coupling through a time varying 

offset in the interferometer. The most obvious candidate  is the dc offset required to 

lock a Fabry-Perot cavity on resonance to the input light. Therm al expansion would 

tend to increase the offset required with locking time. The offset is, of course, reset 

when the in terferom eter is relocked and the sensitivity should be restored. This is
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G la sg o w  P rototype: A pparent D ifferen tia l Arm  L ength  F lu ctu ation s
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F i g u r e  3 . 1 :  The  sp ec t ra l  d e n s i t y  o f  the d i s p l a c e m e n t  no i s e  o f  the G la s g o w  p r o t o t y p e  

i n t e r f e r o m e t e r  is s h o w n .  ‘ M ’  are h a r m o n i c s  o f  the m a i n s  su pp l y .  ‘ T '  is the r o t a t i o n  

f r e q u e n c y  o f  the  turbo  m o l e c u l a r  v a c u u m  p u m p .  A t o t a l  o f  32 peaks (1 6  f u n d a m e n t a l  

a n d  16 s e c o n d  h a r m o n i c  p ea k s )  are p r e s e n t  in the spec t rum,  tha t  are p r od u ce d  by the  

t h e r m a l  m o t i o n  o f  the t r a n s v e r s e  m o d e s  o f  the s u s p e n s i o n  w ire s .  The f u n d a m e n t a l  

f r e q u e n c i e s  are d i s t r i b u t e d  a r o u n d  fOO Hz ( w i t h i n  ± 4 0  Hz).  A t y p i c a l  t h e r m a l  n o i s e  

peak  is s h o w n  at  fOO Hz and  80 0  Hz.  The  peak  he igh t  is c o r r ec t ed  because  the bin-  

w id t h  is l a r ger  th a n  the p ea k - w id th .
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observed.

3.2.1 Fundam ental N oise Limits

The shot noise limit to the displacement sensitivity of the Glasgow pro to type (or sim­

ilar detectors) is well understood. (For a discussion see [32] and references therein 

-  particularly  [33].) For values of cavity storage time and fringe visibility m ea­

sured at the time of the da ta  recording the shot noise limit was estimated to be

4.2 x 10~19m / \ /H z  at 1 kHz. Above the Fabry-Perot cavity linewidths the shot 

noise increases by one power of frequency. The linewidths of the cavities were ap­

proximately 2 kHz, thus the frequency dependence is not obvious from Figure 3.1.

At frequencies above ~500 Hz the measured displacement sensitivity is very close 

to the shot noise limit but distinctly higher. For example, at 1 kHz the displacement 

sensitivity is 5.8 x 10-19 in / \ /H z ;  the excess noise is therefore 4.0 x 10~~9 m /v/H z. 

This could arise from therm al motion of the internal modes of the test masses. 

Assuming that the form of internal friction is s tructura l  dam ping (i.e. <p(u>) is

constant with frequency), the excess noise corresponds to a loss tangent of o ( u  ) ss 3x 

10-6 (see the discussion concerning Equation 2.8). M easurements of the relaxation 

times of the longitudinal modes of the test masses (presented in C hap ter  7) indicate 

that, the intrinsic loss tangent of these test, masses is < 2 x 10- ^. To conclude that, the 

excess noise is due to therm al motion would be prem ature. It would be instructive 

to examine this noise source at frequencies below 500 Hz. This may help verify if 

the frequency dependence is proportional to
I

3.2.2 Seismic N oise

Figure 3.2 shows the displacement noise between 50 Hz and 250 Hz. This has been 

reproduced from the analysis carried out by Jones in [31]. (The y-axis has been scaled 

to show the displacement sensitivity of the interferometer.) There are features in 

this frequency range th a t  can be a t t r ib u ted  to resonances of the double pendulum  

suspension. A to ta l of eight peaks are marked for the vertical and roll modes. These 

are the modes in which the in term ediate  mass and test mass react against each
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Noise Floor o f  the Glasgow Prototype (50 Hz to 250 Hz)
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F i g u r e  3 . 2 :  D i s p l a c e m e n t  Norse, o f  the G la sg ow  P r o t o t y p e  ( L o w  F req uen cy ) .

o t h e r .  I t  i s  a p p a r e n t  t h a t  a n y  o f  t h e  p e n d u l u m  m o d e s  n o t  j u s t  t h e  l o n g i t u d i n a l  

m o d e s  -  c a n  c o u p l e  t o  t h e  s e n s e d  d i s p l a c e m e n t  o f  t h e  t e s t  m a s s .  O t h e r  f e a t u r e s  a r e  

p r e s e n t  i n  t h e  s p e c t r u m .  I t  i s  p r o b a b l e  t h a t  t h e s e  a r i s e  f r o m  m e c h a n i c a l  r e s o n a n c e s  

i n  t h e  v a c u u m  s y s t e m  t h a t  h o u s e s  t h e  i n t e r f e r o m e t e r .

L o n g i t u d i n a l  m o t i o n  o f  t h e  t e s t  m a s s  i s .  o f  c o u r s e ,  d i r e c t l y  s e n s e d  b y  t h e  i n t e r f e r ­

o m e t e r .  M o t i o n  i n  o t h e r  d e g r e e s  o f  f r e e d o m  i s  a l s o  s e n s e d  b u t  l e s s  d i r e c t l y .  S i d e w a y s  

m o t i o n  o f  t h e  t e s t  m a s s  i s  r o u g h l y  t h e  s a m e  a s  l o n g i t u d i n a l  m o t i o n  b u t ,  b e c a u s e  i t  

d o e s  n o t  c o u p l e  d i r e c t l y ,  i t  c a n n o t  b e  t h e  d o m i n a n t  n o i s e  s o u r c e .

T i l t  a n d  r o t a t i o n  o f  t h e  t e s t  m a s s  c o u p l e  i f  t h e  l a s e r  s p o t  i s  o f f s e t  f r o m  t h e  c e n t r e  

o f  t h e  t e s t  m a s s  f a c e .  R o t a t i o n a l  m o t i o n  i s  n o t  s t r o n g l y  c o u p l e d  t o  a n y  o t h e r  d e g r e e  

o f  f r e e d o m  s o  t h e  s p o t  i s  o p t i m a l l y  p o s i t i o n e d  w i t h  n o  l a t e r a l  o f f s e t .  T i l t  m o t i o n ,  

o n  t h e  o t h e r  h a n d ,  i s  s t r o n g l y  c o u p l e d  t o  t h e  l o n g i t u d i n a l  d e g r e e  o f  f r e e d o m .  T h e  

o p t i m a l  p o s i t i o n  o f  t h e  s p o t  i s  n o t  n e c e s s a r i l y  a t  t h e  f a c e  c e n t r e .  It w i l l  v a r y  i n  

h e i g h t  d e p e n d i n g  o n  t h e  s t r e n g t h  o f  c o u p l i n g .  T h i s  v a r i e s  f o r  d i f f e r e n t  d e s i g n s  o f
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pendulum .

Vertical motion of the suspension point can couple to sensed displacement in 

several ways. A cross-coupling factor. C v , can be used to describe the fraction of 

vertical motion of the test mass that  also appears as longitudinal motion (real or 

apparent).

If, when the side projection of the test mass suspension is considered, there are 

two wires visible (one to the front of the mass and one to the back), a difference in the 

spring constants of these wires couples vertical motion of the test mass to tilt. Thus, 

an offset in the spot height on the mirror face allows the cross-coupling of vertical 

seismic noise. This was analysed by McLaren [34] who gave the cross-coupling factor 

as
m V  d. 6 k

Cv = ------------- (3.1)
I y k

where m  and I y are the mass and tilt moment of inertia of the test mass; V  is the 

spot height with respect to the centre of mass: d is the separation of the wires, and 

( 6 k / k )  is the fractional difference of the wire spring constants. For the pendulum s 

used in the Glasgow prototype the suspension wires are equal in length to within a 

few millimetres. This matches the wire spring constants to ~ l9c. Taking V  as 1 mm 

gives Cy =  3 x 10- 4 .

Coupling of vertical seismic noise is also possible if the optical beam is not 

perpendicu lar to the gravitational field. This arises when the absolute heights of the 

masses are different at either end of the cavity. To align the cavity the masses must 

be tilted with respect to the gravitational field. A static tilt of the test mass gives 

a cross-coupling factor of
A 2

CV =  —  (3.2)

where A z  is the height separation and L the length of the cavity. For the p ro to type  

the vertical height difference may be up to 5 mm. This gives a cross-coupling factor 

of Cv < 5 x 10- 4 .

A similar effect occurs because the gravitational field is not parallel at bo th  ends 

of the cavity. This is unavoidable because the E ar th  is round and the gravita tional
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field spreads in a radial direction. This gives a cross-coupling factor of

cv = sfe (3'3)
where R e  is the radius of the E ar th  and L the length of the cavity. Over the 10 m 

arms of the Glasgow pro to type this effect is small, however, it becomes significant 

for gravita tional wave detectors with longer arms (e.g. a few kilometres).

If a s tatic force is applied to the test mass it will be offset from its equilibrium 

position. In this case, vertical motion of the suspension point produces real longitu­

dinal displacement of the test mass a t tenua ted  by the passive filtering afforded by 

the vertical resonances of the pendulum . The cross-coupling factor is

A x
C v  — - j -  (3.4)

where I is the length of the pendulum  (for a double pendulum  this is approximately 

the length of the second stage) and Ax is the offset from equilibrium. An offset 

from equilibrium position is required to lock the Fabry-Perot cavity on resonance 

to the input light. A typical offset will be a few cavity fringes. However, therm al 

expansion of the arms will give a time dependent offset up to the maximum range of 

the feedback ac tua tor.  If this is exceeded the servo will lose lock. The im portance 

of this coupling mechanism can be reduced by applying dc feedback to the cavity 

length at the interm ediate mass of the pendulum. The Glasgow pro to type has an 

ac tua to r  range of ‘20 /jm; this gives a maximum coupling factor of Cv =  1 x 10- 4 .

In order to measure the level of cross-coupling for the pendulums in the Glas­

gow pro to type, the level of seismic motion of the top plate at the upper vertical 

resonance of the double pendulum  (at 110 Hz) was estim ated by ex trapolation  from 

m easurem ents m ade up to 100 Hz. The vertical motion of the test mass was inferred 

from this estim ate by a knowledge of the transfer function of the double pendulum. 

The cross-coupling factor was then deduced from the observed displacement noise 

at the resonant frequency. The value obtained for C v  was between 3 x 10~4 and 

1.5 x 10 ~3. This value is consistent with the estimates given by the cross-coupling 

mechanisms described above. The vertical seismic noise shown in Figure 3.1 was 

calculated using Cv =  1 x 10~3.
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Roll about the optic axis can cross-couple to the sensed displacement of the test 

mass because there are asymmetries in the pendulum  construction. It is difficult to 

es tim ate the level of this coupling but it is not thought to be strong. However, roll 

motion is readily excited by tilting of the top plate.

3.2.3 Seismic Coupling via the A ctuator Coils

W hen the expected levels of shot noise and thermal noise are subtrac ted  from the 

spectrum  the excess noise between 200 Hz and 500 Hz is 3.6 x 10-18 m /  v/Hz at 300 Hz 

with a frequency dependence roughly proportional to l / / 4 (the power may vary by 

±0.5).

In Section 6.3.2 the coupling of vertical motion of the feedback coils used to 

control the position of the test mass is shown to be

x ss 50 x Ax £r (3.5)

where Ax is the dc offset of the test mass from the equilibrium point of the pendulum  

and zc is the vertical displacement of the feedback coils. A conservative es tim ate for 

zc is possible assuming that seismic motion of the ground obeys (10- 7 / / 2) i i i / \ /H z .  

The block in which the feedback coils were m ounted was isolated from the ground 

by four pieces of rubber. This gives a ttenua tion  of ground motion above its ver­

tical resonance (at « 2 0 H z )  with an ideal frequency dependence of / 2. W hen  this 

a t tenua tion  is combined with the na tu ra l  l / / 2 dependence of seismic m otion, the 

frequency dependence of vertical seismic motion of the feedback coils can be l / / 4. 

Using these assum ptions gives zc ~  5 x 10- 1 5 m / \ /H z  at 300 Hz. The estim ated  

displacement noise due to coupling of vertical seismic motion of the feedback coils 

is shown in Figure 3.1 for a value of Ax =  20 /im.

The value of Ax typically varies with the locking time from ~ 2 / /m  to 2 0 //m. 

This provides an explanation of why the noise floor of the detector changes over the 

locking time. However, the level of coupled seismic noise would be less than is shown 

in Figure 3.1. There are two reasons why the coupled noise may be under-estim ated:-

1. The isolation of the feedback coils’ mounting block is not ideal. The isolation 

afforded by the rubber pieces will be short-circuited via the electrical connec­
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tions to the feedback coils. The a ttenua tion  could be proportional to I / / 2  and 

the frequency dependence of the excess noise would still be compatible with 

observation. Such non-ideal performance would increase the apparent noise by 

a factor of 4.

2. The seismic motion of the detector environment may be greater than that 

assumed. This may arise either because the absolute level is higher or the 

frequency dependence generally observed below 100 Hz does not continue to 

higher frequency.

3.2.4 Other N oise Sources

There axe a num ber of narrow band features in the spectrum. In addition to har­

monics of the mains frequency and a single feature due to the tu rbo  pump, there are 

peaks that  correspond to the transverse modes of the suspension wires. 16 of these 

occur at the fundam ental  frequency and 16 at the second harmonic. In all cases the 

second harmonic is a factor of 2 higher in frequency than the fundamental.

A broad bulge (~20 Hz wide) is observed around 575 Hz. The origin of this is 

unknown.

Three very narrow peaks are observed in the displacement sensitivity. These 

occur at frequencies of approximately 480 Hz, 660 Hz and 675 Hz. It is unlikely that 

these are m onochrom atic  gravita tional wave signals but are instead probably due to 

pick-up tha t  is synchronous to the da ta  sampling clock.

3.3  C o n c lu sio n

At frequencies between 500 Hz and 1 kHz (and possibly above) estimated levels of 

shot noise and therm al noise are sufficient to explain the background noise floor of 

the detector.

The cross-coupling factor of vertical motion of the test mass to sensed displace­

ment is approxim ately  0.001. At this level of cross-coupling, vertical seismic noise 

limits the displacement sensitivity of the Glasgow pro to type at frequencies around 

100 Hz.
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The problem of cross-coupling leads to the following criteria on normal mode 

frequencies for a pendulum suspension. They are:-

1. At norm al mode frequencies, seismic motion is enhanced by the Q factor of the 

mode. The Q factors of the pendulum modes should be high and cross-coupled 

seismic motion will almost certainly dominate the displacement noise spectrum 

and thus prevent sensitivity to gravitational waves at these frequencies. The 

normal mode frequencies of the suspension should therefore be chosen, where 

possible, to lie outside the desired detection band of gravitational waves.

2. It is desirable to specify that cross-coupled seismic noise does not exceed the 

longitudinal motion -  at least at frequencies other than normal modes of the 

suspension. The most significant cross-coupling arises from vertical motion of 

the suspension point. If the seismic excitation of the suspension point of a 

pendulum  is equal for longitudinal and vertical degrees of freedom then the 

following constraint applies

N  i  N

I I  <3-6>n - i  V n=1

where N  is the num ber of pendulum  stages; f \ n and /Ln are the normal mode 

frequencies of the pendulum  for the vertical and horizontal degrees of freedom 

respectively, and C \  is the cross-coupling factor. (This result comes directly 

from the transfer function of a resonant system and assumes that the ground 

motion imposes a fixed displacement disturbance at the suspension point of 

the p e n d u lu m .)

It is the assertion of this au thor that a pendulum design should be avoided tha t  

has normal mode frequencies within the detection band of interest to gravita tional 

waves. Further, all normal mode frequencies are preferred as low as possible. This 

ensures th a t  seismic motion is a t tenua ted  by the passive response of the pendulum  

by the m axim um  possible factor. To implement such a design strategy necessitates 

a complete model of the double pendulum  in all degrees of freedom.
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Chapter 4 

M o d e l  o f  T e s t  M a s s  S u s p e n s i o n

‘Every body continues in its state of rest, or of uniform motion in a 

s traight line, unless it is acted upon by a force.'

Isaac Newton, Philosophi<sNaturalis Pr incipia Matkemat ica .

4.1 In tro d u ctio n

The suspensions used in terrestrial interferometric gravitational wave detectors re­

quire to be carefully designed. Regard must be made to:

1. the isolation of seismic noise;

2. the level of therm al noise present;

3. active damping of the normal modes, and

4. active control of the test mass position.

To facilitate the design of a pendulum , its performance should be modelled. Because 

cross-coupling effects cannot be ignored, the pendulum model must consider all de­

grees of freedom. In particular, the model should allow the normal mode frequencies 

and the dynamic response of the system to be calculated. Therefore, the equations 

of motion

M X  =  K X  (4.1)
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must be obtained and solved. (M is the mass-inertia tensor and K is the spring 

m atrix .)

4 .2  C h o ice  o f  C oord in ates

The simplest choice of coordinates is to use three orthogonal translation coordinates 

and three ro ta tion  coordinates denoting rotation about the centre of mass associated 

with each transla tion  axis. This choice of coordinates diagonalises the mass-inertia 

tensor. The m atrix  elements are simply the suspended mass for the translation 

coordinates and the moments of inertia for the rotational coordinates.

The coordinates are defined as

longitudinal translation along the optic axis, 

yn sideways translation transverse to the optic axis,

vertical translation,

0n tilt about the y-ax is ,

6^  ro tation  about the vertical axis,

roll about the optic axis.

Notation:

x € {x ̂ , y^,, , 8 ^ , (t)^, }

Note tha t  it is the vertical direction that  defines the orientation of the coordinate 

axes and not  the alignment of the laser beam. Thus, it may be the case tha t  there is 

a (small) elevation angle between the z-axis and the optic axis. In Section 3,2.2 this 

is shown to give rise to cross-coupling of vertical motion into sensed displacement 

of the test mass.

The lower index, fi, refers to the pendulum stage. It shall be numbered from the 

top downwards. Thus n — 0 is the top plate from which the pendulum  is suspended 

and /i == 1 is the first pendulum  mass and so on. The static equilibrium position is 

taken to be the origin so that  each coordinate represents a small displacement.

Normally, a subset of the coordinates can be considered independently. For 

example, vertical motion can be considered independently but longitudinal and tilt

40



motion are strongly coupled. Using this strategy the complete description of the 

test mass suspension is greatly simplified.

4 .3  R e sto r in g  F orces

The pendulum  suspension has been modelled by considering only the restoring forces 

th a t  are produced by distortions in the suspension wires and by gravity. The mass at 

each stage is assumed to be rigid with the connecting wires acting as linear springs. 

The linear approxim ation is valid when the coordinate displacements are much less 

than  the lengths of the suspension wires. This is always the case in subsequent 

analysis. The top plate from which the suspension is hung is assumed to have a 

much greater mass than  the pendulum masses. This means that  it does not couple 

significantly to the pendu lum  dynamics and is not considered.

The spring m atrix , K , is obtained by considering how a small change in one 

coordinate per tu rbs  each spring with respect to extension, torsion, bending and 

with respect to the gravita tional potential. The action of the restoring force upon 

all the coordinates is then  calculated. In the following sections, the m agnitude of 

each spring mechanism is discussed and then an example of the m ethod  is given for 

longitudinal and tilt coordinates of a single pendulum.

4.3.1 Extension o f a W ire

W hen the tension of the suspension wire is significantly less than  the breaking load 

then the wire obeys Hooke’s law and acts as a linear spring

T  = - k  A / (4.2)

where A l  is the extension of the wire and T  is the wire tension. The value of the

spring constant k can be deduced from the materia l properties of the wire. For a 

wire of circular cross-section the spring constant is

Y  7rr2
k — (4.3)

where Y  is the Young’s modulus; r is the radius of the wire, and I the to tal length.
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The tension in the wire is deduced by equating its vertical component with the 

weight of all masses suspended by it. If there is more than one wire suspending a 

mass then the load is assumed to be equally distributed between the wires.

The m axim um  allowed load on a wire can be determined from the breaking stress 

of the wire m aterial.  Stress in the wire is defined as

Tension
Stress =  ---------------------------- ;—  (4.4)

Area of Cross-Section

and so has units of pressure. The breaking stress is a material property and repre­

sents the m axim um  extension possible before the wire breaks. For practical reasons 

the stress in the suspension wire should be significantly less than the breaking stress:

a. safety factor of three is considered to be adequate. This maintains the wire in the 

linear regime where Hooke's law applies.

4.3.2 Torsion o f a Wire

The model will assume that the suspension wires are rigidly fixed at each end and are 

not free to twist at their a t tachm ent point. A differential ro tation  can be produced 

in the wire by ro ta ting  the stages of the pendulum with respect to each other. The 

restoring torque for a differential ro tation. Ay, is given by

T == — k Ay . (4.5)

The torsional spring constant for a circular wire is dependent on the materia l p rop­

erties
7T7’4 T

k  -------------  (4.6)
41 (v  +  1) V

where v is Poisson’s ratio; Y, r and I are as previously defined.

4.3.3 Bending o f a W ire

A wire can be considered as a stiff beam under tension such that  it satisfies the 4th 

order differential equation [35]

d 2x d^x  d 2x
T a ? - Y I ar*  = p s W  (4-7)
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where T  is the the wire tension; I  is the cross-sectional moment; p is the density; 

S  is the cross-sectional area; x is the transverse displacement, and 2  is the position 

along the wire. (For a wire with circular cross-section I  = 7rr4/4.)

It is shown in Appendix B tha t  the energy stored in deforming the wire is given

by

b
E  = -  

4
2 X  2 +  ( a 2 +  /?2)  (2A2 -  2AI +  /2)  -  2I X  (a + 0)  +  4ai3 X( l  -  A) (4.8)

where the values X , a  and are defined in Figure 4.1. A is the produced when the 

ends of the wire are displaced horizontally with respect to each other, a  and i3 are 

produced when the clamping points are tilted. W hen the upper stage of a double 

pendulum  (or a single pendulum ) is considered, cv is taken to be zero since the top 

plate is not allowed to tilt. The constants A and b are defined to be

A

\ / Y I T
~ T r ~

The generalised restoring force on each coordinate is given by

F  - J Xx ~  no x  .

'4.9

(4.10.

(4.11)

4.3.4 Exam ple o f M odel

The equations of motion for the longitudinal and tilt degrees of freedom (i.e. x \  and 

6 \ ) are ob tained for a single pendulum . Figure 4.2 shows this pendulum.

The wire tension produces a force which acts along the length of the wire. When 

the mass is displaced horizontally the wire is no longer absolutely vertical so there 

is a component of the tension which acts horizontally as a restoring force. Thus,

FXl = - T  sin( (4.1!

and to first order approxim ation

F:
' T ' T f

— ri +
k  J. h .

01 (4.13;
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Figure 4.1: Bending  and Flexing of  a S t i f f  Bea m under  Tension.

Because the mass is suspended a. distance /, above the centre of mass, there is a 

couple into the tilt of the mass

r#, — T t  sin(e — 9 \ )

and again to first order

r*i
' T t

i h
x i  - •

(4.14)

(4.15)

It is apparent th a t  the suspension wire bends as the mass is displaced from its 

equilibrium position. From the definitions given in Figure 4.1 we can identify the 

bending param eters  as

X  - x \  — t 61

o = 0

d =  0i •

Thus the restoring force and torque from bending the wire is given by

fl

r*j = 0 i t +

Fxi -  ~ b \ x \  +  bi

h

2 0i

xi -  bi
2
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(4.16)

(4.17)

(4.18)

(4.19)

(4.20)



M ►

Figure 4.2: Longi tud inal  and Tilt  Degrees o f  Freedom fo r  Single Pendu lum.

The restoring forces have been deduced as a function of the coordinates of the 

suspended mass. Thus, the equations of motion are now determined for the two 

degrees of freedom considered. In m atrix  notation  this can be written

M X K

m i 0 ,ri

N

kx\Xi kXlB̂

l

O
1 h

X

x i

01

(4.2i;

The entries in the spring matrix , K , are the coefficients of the coordinates in the 

expressions for restoring force. For example: Fx \ =  kXlXlx \  + Because all

the restoring forces are independent of each other, these factors are all summed.

4 .4  N o rm a l M o d es o f  th e  T est M ass S u sp en sio n

Because there are six degrees of freedom per suspended mass, there will be six normal 

modes per mass. For example, a double pendulum will have precisely twelve normal 

modes. It is desirable to calculate the frequency of each normal mode of the test-
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mass suspension.

4.4.1 Eigenvalue and Eigenvector Extraction

A linear system is assumed. It follows that  the system executes simple harmonic 

motion, i.e.

X ( t )  =  Xoe~iu;< (4.22)

and, by differentiating,

X =  -u>2X (4.23)

such tha t  the equations of motion can be simplified to

K X  = - u 2M X  (4.24)

which is the generalised eigenvalue problem. Modified versions (to handle com­

plex matrices) of the EISPACK routines for the QZ algorithm [36] were used to 

extract numerically the generalised eigenvalues and generalised right eigenvectors. 

The eigenvalues yield the normal mode frequencies; the eigenvectors yield the rel­

ative translation  or ro tation of each degree of freedom associated with the mode. 

The routine d p 2 s s . m  in Appendix A performs this analysis.

4 .5  S ta te -sp a ce  M o d ellin g

W hen considering the dynamic response of multiple input and output systems the 

most appropria te  m ethod  to use is state-space modelling. This technique uses four 

matrices labelled A, B, C and D to describe a linear time invariant system. These 

are defined by the following system of equations

x =  A x  + Bu (4.25)

y = Cx + D u  (4.26)

where x is a column vector of the system states and y is a column vector containing 

the ou tpu ts  of the system.

Let s be the num ber of states of the system; m  the num ber of inputs, and n the 

num ber of ou tpu ts .  Then A is an s x s matrix; B is an s x m  matrix with each
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column representing a different input to the system; C is an n x s matrix with each 

row representing an ou tpu t,  and D  is an m x n matrix, u  is a column vector and 

has n elements all equal to one.

It is convenient to use the coordinates and their derivatives with time as the 

states of the system. Thus, the example of the single pendulum can be expressed

X A X

X I 0 0 1 0 X I

01 0 0 0 1 01

• n
l K

0 0 x i

.  .
0 0

. .  ^  .

(4.27

Since the M m atrix  is diagonal then its inverse exists and has elements equal to the 

reciprocal of mass and of the moments of inertia.

Normally, the inputs to the system are forces such as those produced by the 

action of a current carrying coil upon a magnet a ttached to the mass. A force input 

produces a change in q = Fq/ m q . So in the single pendulum example the B  m atrix 

for a force applied along the x-axis would be

x  B  u

j ’ l 0

0 1 0

Fix
X I mi

.  * 1  .
0

[1] ■
(4.28;

The ou tpu ts  are usually displacements as measured by a shadow sensor or by the 

in terferom etry used to detect motion of the test mass. The C m atrix  is, therefore, 

simple. For a sensor detecting motion along the x-axis of the single pendulum  the 

C m atrix  is

y c

[y] 1 0  0 0

X

xi

01

x i

01

(4.29;

47



The D m atrix  allows straight through connection of an input to the ou tput.  For

the pendulum  this is not required. Therefore, the D m atrix  has all elements equal

to zero.

It is possible to calculate numerically transfer functions between inputs and ou t­

puts  of the state-space system. To reduce the com putational load, the Hessenberg 

algorithm [37] was used. This involves identically transforming the state-space m a­

trices such th a t  A is transformed to upper Hessenberg form. The frequency response 

is then obtained by solving the system

G{uj) =  C(?'ujI -  A ) - 1 B +  D (4.30)

at a range of frequency points where the state-space matrices are, in fact, the trans­

formed matrices. The frequency response is useful for evaluating how well, for 

example, the system isolates seismic noise.

4 .6  F ric tio n a l L osses in  th e  S u sp en sio n  W ires

Clearly, there are frictional losses in distorting the suspension wires. This damps 

the motion of the pendulum  and a Q factor for the mechanical resonances can be 

defined. In C hap te r  7, the implications for thermal noise arising from the frictional 

losses will be discussed. A resonance peak could also affect the stability of servo 

systems involving the pendulum. The system would then oscillate which would 

be most undesirable. Servo systems involving the pendulum s are considered in 

C hapters  5 and 6. It is, therefore, im portan t to know how dam ped all the normal 

modes are.

4.6.1 V iscous Dam ping

W hen the frictional losses in the system are proportional to velocity this is known 

as viscous damping.  Such a resonant mechanical system can be described by the 

equation

Fq — rnq +  cq +  kq  (4.31)
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where F q is the input driving force and c is the coefficient of friction. If Fq varies 

harmonically {i.e. Fq = Foe~iu>t) then q also varies harmonically. This can be 

written

q = qoe~iuJi (4.32)

q = —iujqoe~lujt (4.33)

ij - -u>2qoe~lujt (4.34)

The response to the input force is given by

<20 1 (4-35;
F q k — m u :2, +• icu i

It is apparent tha t on resonance (when u’2 =  k / m )  the peak response is limited by 

the friction. In fact, the Q factor of the resonance is

u/'O m
Q = - —  (4.36;

c

where u.’o is the resonant frequency.

4.6.2 Com plex Spring Dam ping

The friction produced in a spring can be characterised by adding a small complex 

part to the Young's Modulus: Ycomp]ex = F[1 +  i<p(u:)]. The equation for such a 

dam ped  resonator is

Fq = m q  + k[ 1 -f i(p[uj)]q . (4.37)

The loss tangent,  <£(u>), can be any odd function of frequency. It represents a

phase lag between the applied force and the response of the spring. The response is

given by

—  = ----------- y -------- :—  • (4.38)
Fq k — m u 1 + ik(t>{u: )

This can be com pared to the case for viscous damping -  noting tha t  for <p{uj ) oc uc 

they are identical.

o(u>) may be constan t over a range of frequencies (but not all the way to zero 

frequency); this is known as s t ructural  damping.  The Q factor for this model is given 

by

Q = ~ • (4-39)
(piiOQ)
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4.6.3 Dam ping o f Norm al M odes

S truc tu ra l  dam ping is easily applied to the spring matrix, K , by adding a com ­

plex term to k, k, and b. The eigenvalue extraction is still possible, however, the

eigenvalues will now be complex. The harmonic motion of a coordinate is then

q(t)  =  (4.40)

=  ■ (4-41)

The e<rt term denotes a time dependence on the amplitude of the oscillation.

Since friction dissipates energy in the pendulum mode, the amplitude should decay

with time. In this case a must be negative.

The Q factor of the mode can then be deduced

u ;n

Q  =  - 7 T  ' ( 4 -4 2 )l a

Th ese differ from the intrinsic Q of the material because energy is stored in 

the gravita tional field which can be considered as conservative. Different modes 

store different, fractions of their energy in the gravitational field so each mode has a 

particu lar  Q factor.

It should be emphasised th a t  the Q factor of a mode only gives information about 

the loss at the normal mode frequency and by itself does not convey any information 

about the system losses away from the resonance.

4.6.4 Dam ping in State-space

The complex K m atrix  can be used in the state-space model to include the damping 

due to the losses in the suspension wires. This allows the correct calculation of 

transfer functions and is used to evaluate the level of therm al noise in the suspension 

(see C hapter  7).

However, for com putational reasons, a complex K m atrix  cannot be used when 

the system is used to analyse the effect of control servos upon the pendulum. In this 

case, if dam ping is desired, then it is possible to include viscous damping (i.e. the
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loss is p roportional to velocity). This can be seen in the system

/*i l
0 0 1 0

X I

01
= 0 0 0 1

01

x i
M - ' » e [ K ]  ^ S m [ K ]

X I

*1 . 01

(4.43)

where ujd is the frequency at which viscous damping and structura l  damping are 

equivalent. Normally, this would correspond to the frequency of a normal mode 

liable to affect the stability of a control servo. Thus, it is possible to check if the 

resonance peak gives rise to unstable unity gain points.

4 .7  T ran sverse M o d es o f  th e  S u sp en sio n  W ires

A wire under tension has a series of modes associated with its transverse vibrations. 

These are often referred to as violin modes  since they are analogous to the origin of 

sound produced by many stringed musical instrum ents {e.g. a violin). These modes 

are present in the wires suspending the pendulum masses. This section contains a 

derivation of their eigenmodes and the formulation of a state-space model to describe 

them. In order to m aintain good therm al noise properties (see Section 7.4), these 

modes will have high Q factors. (For steel wires the Q factor are expected to be 

~ 1 0 5.) This has implications to the global control of the interferometer (which is 

discussed in C hap ter  6).

The case of a v ibrating wire has been well studied in the history of Physics. 

Here, a simple model is presented to describe a wire whose ends are fixed securely 

to the in term ediate  mass and test mass. Since the pendulum  masses are very much 

greater than  the mass of the wire their amplitude is small compared to th a t  of the 

wire. The stiffness of the wire will be ignored. In this case, the transverse mode 

frequencies are given by

51



and the am plitude profile is described by

x n ( z )  =  A n sin
mr z

(4.45)

where n is the mode number; I is the length of the wire; T  is the wire tension; A 

is the linear density; A n is the am plitude and z is the position along the wire such 

tha t  0 < z < / (z =  0 corresponds to the intermediate mass). The wire tension acts 

along the length of the wire so the transverse force applied to the masses can be 

calculated from the amplitude profile. This is expressed in the equation

d x
rax™ = T

d z
(4.46)

i=0,l

where m  is either of the pendulum  masses and x m is its displacement. Considering 

harmonic motion of the system leads to x m — — w2.rm . The frequency of the normal 

mode can be substitu ted  here for u; to give (after cancellation) the coupling

.4
(4.47

where m w;rc is the mass of the wire ( m vvi r e  = A/). Typically, this coupling is ~  10~°. 

Because the amplitude of the pendulum  masses is small, most of the energy in the 

mode is associated with motion of the wire. Hence, the effective mass of the mode 

is given by 0.5 x m wir e . The factor of 0.5 arises because the square of the am plitude 

profile must be averaged over the length of the wire.

The eigenvector of n th transverse mode of the wire is

e =
mrmi

sin )

( _  m wire
' ' nnm,2

(4.48;

This is not an exact description of the wire profile; it clearly breaks down at the 

ends of the wire. This, however, should not introduce any significant error. Transfer 

functions involving the transverse modes of the suspension wires can be calculated 

from the state-space matrices

A  =
0

2fcri

1

2 kn 
rawireQn 7̂i

(4 .49)
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B =
m.

C

D

■ ' o u t p u t

0

" i n p u t

0

=  [0] .

(4.50)

(4.51)

(4.52)

where Q n is the Q factor of the mode (see Section 7.4 for estimations of this) and 

k n is the effective spring constant of the mode (k n = 0.5 x m wjreu;^). The entries in 

the B and C matrices depend upon where the input force is applied and where the 

displacement is sensed. In fact, e[Jiput and e ”utput are the corresponding elements of 

the eigenvector of the mode that determine how coupled the input and output are to 

the mode. In Section 6.5, the transfer function of force applied at the intermediate 

mass to displacement of the test mass is shown. In this case

" i n p u t rnrm \
(4.53)

" o u t p u t =  ( - 1 )
n m wire (4.54;

mrm2

Strictly, the pendulum  resonances and the transverse modes are in series. This 

means th a t  the phase lags by 180° above each resonance. The model, as presented, 

is actually a parallel model for simplicity. However, this is of no consequence because, 

in all the servos considered, it is the height of each resonant peak tha t determines 

the stability of the servo. This model of the transverse modes is included in the 

routine f b _ x l . m  in Appendix A to calculate the response of a double pendulum  to 

a force applied at the in term ediate  mass.

4 .8  In tern a l M o d es o f  th e  T est M ass

A model of the internal modes of the test mass is also required. This has two points 

of application:-

1. The therm al noise associated with these modes is a fundam ental  limit to the 

sensitivity of an interferometric gravita tional wave detector. This is fully dis­

cussed in C hap ter  7.
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2. They are excited by ac tua tion  to the test mass. This is discussed in Section 6.3.

Typically the test masses are solid right cylinders. A numerical technique to calculate 

the normal modes of such a cylinder was originally described by Hutchinson [38]. 

It was later developed by Gillespie and Rabb [23] to the application of test masses 

in gravita tional wave detectors. The numerical code employed by the au thor to 

obtain  the results presented in this thesis is a further refinement of this written by 

B lackburn (currently  at Caltech). The author is indebted to these people and the 

LIGO project for making this code available to model the test masses used in the 

Glasgow p ro to type  and proposed for the GEO 600 project.

A state-space model of the internal modes can be formulated in complete analogy 

to the model of the transverse modes of the suspension wires. A mode is completely 

specified if the resonant frequency, Q factor, effective mass and eigenfunction are 

known. The eigenfunction is merely the 3-dimensional vector field which describes 

the position per tu rba tions  of each point in the test mass. All these, except the Q 

factor, are calculated by the numerical model as described above. (The Q factors of 

the modes have been measured -  see Section 7.5).

The entries in the B and C matrices are now the values of the eigenfunction 

(of the n th mode) at the point where the input force is applied and where the 

displacement is sensed. In all cases the displacement of the test mass is sensed by 

the optical mode of the interferometer. Thus, the coupling factor to the sensed 

displacement is the integral of the eigenfunction with the Gaussian profile of the 

optical mode. It is clear tha t  modes tha t have a node at the centre of the end faces 

do not couple to the sensed displacement. Therefore, the internal modes considered 

have been restr ic ted  to the axisym m etric modes. Some of these modes (for the test 

masses used in the Glasgow pro to type) have been included in the routine fb_x2.m  

in A ppendix A to calculate the response of a pendulum  to a force applied at the test 

mass.

As will be seen in C hap ter 7, the internal modes of the test mass are required 

to have a high Q factor to avoid excess therm al noise. The Q factor should be 

determ ined  by the intrinsic m ateria l loss. For fused silica masses the internal modes
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are expected to have Q factors of between 5 x 105 and 5 x 106. However, this can 

be reduced by the a t tachm en t of magnets or wires to the test mass. M easurements 

of the Q factors for the test masses used in the Glasgow pro to type are presented in 

Table 7.3.

4 .9  C o n c lu sio n

A procedure for deriving the equations of motion of a test mass suspension has been 

described. Once the equations of motion have been obtained, the normal mode 

frequencies can be calculated. The Q factors of the modes follow by including the 

friction inherent in the distortions of the suspension wires. The equations of motion 

also allow the dynamic response of the system to be modelled using state-space 

techniques. This is required so tha t  servo control of the pendulum  can be modelled. 

These tools will be the basis for results obtained in the following chapters.
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C h ap ter  5

L o c a l  C o n t r o l  o f  T e s t  M a s s  

S u s p  e n s i o n

5.1 In tr o d u ctio n

The pendulum  suspension of the test mass is an intrinsically resonant system. It. 

therefore, resonantly enhances seismic noise. This places unnecessary demands on 

the dynamic range required by the interferometric sensing between the test masses. 

D amping of the pendulum  modes will reduce the rms  motion by a factor proportional 

to \ / Q  -  typically, this is by at least two orders of magnitude. This is a substantial 

reduction of the dynamic range requirements for the displacement sensing. Suppres­

sion of the resonant motion also makes the initial locking of the interferometer much 

easier. This is discussed in C hap ter  6. Damping of the tilt and ro tation modes of the 

suspension reduce excursions from the correct orientation of the test mass. Control 

of the test mass orientation and dam ping of mechanical resonances is known as local 

control  (i.e. local to the test mass as opposed to the interferometer as a whole).

If several stages are used in the pendulum  (e.g. a double pendulum ) then it is 

sufficient to control the motion of an interm ediate mass; the test mass is controlled 

as a result. However, to achieve good damping performance requires careful design 

of the pendulum .

The t rea tm en t of local control presented in this chapter is different from previous
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discussions of local control applied to double pendulum s {e.g. in [39]) because all 

six degrees of freedom have been considered. This has allowed a pendulum  design 

which realises lower frequency modes than before. This provides improved isolation 

of control noise (as well as other noise sources -  most notably seismic noise).

Each stage of the pendulum suspension has six degrees of freedom. Strictly, it 

is only required to damp the longitudinal, tilt and rotational modes. However, it 

is desirable to suppress any  motion of the test mass when feasible. In particular, 

sideways and, in some cases, vertical motion can also be dam ped. To this end several 

control channels are used. Each senses the displacement of a point and feeds back 

a suitable force to the same point in order to damp the pendulum modes. Careful 

choice of sensor position is required to adequately sense each normal mode. This 

is considered to be a more robust approach than techniques that perform algebraic 

operations on sensor readings and feedback signals. Given the im portance of local 

control as a foundation for all o ther interferometer control servos, it is strongly 

desired to make it as reliable as possible.

Significant effort has also been made to further reduce the noise imposed on the 

test mass by the local control servos. It is desired th a t  control noise should not 

compromise detector sensitivity above 100 Hz. This has resulted in assessing the 

performance of various servo filters in terms of the damping tha t  can be achieved 

versus the noise imposed on the test mass. The results of this analysis are presented 

in Section 5.5.1.

5.2  A c tiv e  D a m p in g  o f  N o rm a l M o d es

In this section an analytical description of a damping servo is presented. It is 

assumed th a t  a sensor detects the displacement of the pendulum  and an ac tua to r  

applies a feedback force.

If the frictional dam ping intrinsic to the pendulum  is ignored then the equation 

of motion of a mechanical mode can be written as

T m  =  rnq +  kq +  |G(ic)| et<P̂ q  (5.1)

where in and k are the generalised mass and generalised spring constant of the mode;
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|G(iu)| is the m agnitude of the feedback gain (in units of Force/Displacement) at 

a phase of <fr(u;) with respect to the generalised amplitude, q. The response of the 

system is

—  =  ------------------------ 1 ,  -------—  (5.2)
JFo [k +  |G| cos $] — mu;2 +  i |G| sin $

and the Q factor of the resonance given by

muj'n
Q =  ° (3-3)

|Cr| sin $

where u;o is the resonant frequency. It is clear th a t  damping is optimised for

sin $  =  1 (5.4)

$  =  +90°. (5.5)

This condition is equivalent to feeding back a force proportional to the velocity 

of the pendulum  mass. Thus, the servo filtering should differentiate the sensed 

displacement.

The resonant frequency of the dam ped system is given by

2 k + \ G \ cos $  /f. ^
u;0 — ------------------  (°-o)

m

so when the phase is not equal to +90° the action of the feedback causes a change 

in the resonant frequency.

The gain of the servo, G. is the electronic gain multiplied by the coupling of the 

sensor and ac tua to r  to the norm al mode. The sensor measures displacement, [e.g. 

the displacement . t i)  but this is not  a measurement of q. In fact,

— X n qm (5. /)

where X ™  is a transform ation  m atrix  formed from the eigenvectors of the system.

Similarly, the force applied by the actuator, F n , is not the generalised force, J-m •> 

bu t  is shown in [40] to be related according to

dxn
= Fn (5.8)

dQm

Following from E quation 5.7 the ac tua to r is coupled to the normal mode by the 

same coupling s treng th  as the displacement sensor.
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This analysis gives a theoretical calculation of the damping that  is possible by 

an electronic servo. It shows that the Q factor is inversely proportional to servo 

gain and that  the coupling of the sensors and actuators  to the normal modes is an 

im portan t  consideration.

5.3  P r o to ty p e  D esig n  o f  D o u b le  P en d u lu m  T est M ass  

S u sp en sio n

In this section, a redesigned double pendulum suspension for the test masses cur­

rently used in the Glasgow pro to type  is presented. The test masses have cylindrical 

geometry with d iam eter 127 mm and thickness 102 mm. Being composed of fused 

silica, they have a mass of 2.82 kg. The aim of redesigning the double pendulum  sus­

pension is to improve upon the existing design by Morrison (see [39] for a mechanical 

description of this). In particular, the following points are addressed:

1. The existing pendulum  has mechanical resonances at 110 Hz and 165 Hz. The 

redesign should not include resonant frequencies in the nominal frequency 

range of interest (i.e. above 100 Hz). Furtherm ore , the frequencies should 

be reduced as much as possible.

2. The pendulum  should have improved isolation of seismic noise in the vertical 

direction.

3. W here possible, the normal modes should lie within the bandw id th  of an ac­

tive dam ping servo (i.e. less than 5 Hz). This enables the resonance to be 

suppressed. This condition should definitely be applied to the longitudinal, 

tilt and ro ta tion  modes of the suspension. The existing pendulum  has a tilt 

mode at 54 Hz.

4. The in term ediate  mass should be approximately equal to the test mass. This 

leads to b e t te r  isolation of seismic noise (as shown by Equation 2.6). P rev i­

ously, the in term ediate  mass was lighter by more than a factor of 5.
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5. A point-to-point damping servo will be implemented as this is considered to be 

more robust. The existing servo performs algebraic operations on two sensors 

to generate an error signal. This is more prone to instability caused by cross­

coupling.

6. There should be no mechanical resonances in the pendulum  where they may 

cause the dam ping servo to be unstable. This occurs if the resonance peak 

produces ex tra  unity gain points where the phase of the damping servo is less 

than  -180°.

The most serious limitation  to the existing pendulum  is the tilt mode at 54 Hz. In 

this mode both  masses tilt out of phase. The most significant restoring force is the 

extension and compression of the wires. The mode is illustrated in Figure 5.1. It 

can be shown th a t  this system has an natura l  frequency given by (assuming that 

other effects can be ignored: e.g. bending of the wire)

4 = 2h ( t + i )  <3,9)

where k is the spring constant of the wire; 8 is half the separation of the wires on the 

in term ediate  mass and test mass (denoted by the subscripts T ' and '2' respectively), 

and I  is the moment of inertia of the intermediate mass and the test mass. The 

n a tu ra l  frequency of this system can be lowered by reducing the separation of the 

wires. For the test masses used in Glasgow prototype, a separation of 10 mm allows 

the upper tilt mode to be servo controlled. This must be in conjunction with an 

in term ediate  mass approxim ately  equal to the test mass whose dimensions are chosen 

to give preferentially high m oments of inertia to the tilt degree of freedom.

It is a design philosophy to damp electronically as many normal modes as pos­

sible. Since the sideways modes are approximately equal in frequency to the longi­

tud inal modes these would also be servo controlled.

It has been shown th a t  seismic isolation is critically required in the vertical 

direction (see C hap te r  3). This problem is best resolved by lowering the frequencies 

of the vertical modes of the double pendulum. This can be partly  achieved by 

reducing the cross-sectional area of the wires. A comprehensive solution is the
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Figure 5.1: Dif ferent ial  Tilt  Mode.

location of a soft vertical spring at the suspension point. It is then possible to reduce 

the frequency of the fundam ental vertical mode so tha t  it can be servo controlled. 

This is not considered here though such a spring is installed in the Glasgow prototype 

with the pendulum now presented.

Use of the model described in C hap ter 4 and consideration of the points above 

has led to the double pendulum design shown in Figure 5.2. The interm ediate mass 

is 100 mm x 40 mm x 76 mm in the x, y and z-axes respectively. This gives greater 

moments of inertia to the tilt and rotational degrees of freedom. The lower stage 

wires have a radius of 62 /rm; this corresponds to a tension of approximately one 

third of the breaking stress when the test mass is suspended.

A double pendulum to this design was constructed and the frequencies of the 

normal modes were measured. The predictions of the model together with the 

measurements are recorded in Table 5.1. Some discrepancies are to be expected 

because there are inevitable errors in the mechanical construction. In particular, 

the frequencies of the tilt modes are very sensitive to the accuracy of the mechanical 

construction. The lower frequency mode is sensitive to the height of the suspension 

point above the centre of mass on the interm ediate  mass; the upper mode is sensitive 

to the separation of the wires (as is shown by Equation 5.9). O ther mode frequencies 

are affected by the wire lengths and their spring constants; the clamps used to hold 

the wires also contribute some ex tra  mass.
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Normal Mode Model
Prediction

(Hz)

Experimental
Result
(Hz)

Longitudinal 0.709 0.700

Longitudinal 1.92 1.86

Tilt 0.856 0.82

Tilt 3.15 3.24

Sideways 0.724 0.718

Sideways 1.91 1.88

Rotation 0.553 0.556

Rotation 1.86 1.86

Roll 14.3 13.08

Roll 31.4 31.6

Vertical 10.8 10.2

Vertical 29.3 28.2

Table 5.1: The frequencies of the norm al  modes o f  the pendulum  were measured by 

t iming  a given number of  osci l lat ions of each mode. For modes with f requencies  

above a few Hertz  spectral analysis was performed on the ou tput  of a shadow sensor  

(as described in Section 5.4-2). The exper imenta l  error is indicated by the number  

of s igni f icant  figures quoted.
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The predictions for the normal mode frequencies are, however, sufficiently good 

to design double pendulum s that  conform to the philosophy detailed previously in 

this section. It should also be noted that the author has also measured the mode 

frequencies of the existing pendulum  and compared these to the model predictions. 

Agreement is also found to an equivalent s tandard . Because the two pendulums are 

fundam entally  different in design (most notably the mass of the intermediate mass), 

this is indicative of the validity of the model used to describe double pendulum s 

suitable for the suspension of test masses.

5.4  S en sors and  A ctu a to rs

The sensors and ac tua tors used to achieve local control for the pendulum described 

in Section 5.3 are now considered. Shadow sensors are used to measure the dis­

placement of the pendulum . The control forces are applied by current carrying coils 

acting upon magnets attached to the intermediate mass. Figure 5.3 shows the com­

ponent parts  of the sensor-actuator unit. The photodiode and LED fit inside the coil 

windings with electrical connections wired through the back of the coil former. This 

is a very compact assembly and ensures that  the feedback force is applied to the 

sensing point. The original design of the units is from the pro to type gravitational 

wave detector in Garching [41].

5.4.1 Control Noise

The term control  noise  refers to displacement of the test mass produced by the 

combination of sensor noise and ac tua to r noise. The ac tua to r noise should arise only 

from the final coil driver and will be independent of the electronic gain. Shadow 

sensor noise, on the other hand, will depend upon the electronic gain. As the 

electronic gain is increased, control noise will remain constant until shadow sensor 

noise dominates. Thereafter, control noise increases with gain. The noise inputs are 

shown in relation to the servo in Figure 5.4. The damping filters allow for ad justm ent 

of the electronic gain.
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Figure 5.5: L E D  In tens i ty  Profile.

5.4.2 Shadow Sensors

A shadow sensor consists of an LED illuminating a photodiode. An opaque flag 

a t tached  to the mass partially obscures the light beam. Thus, the photocurrent 

produced varies with the displacement of the pendulum.

GaAlAs Infrared Em itting  Diodes (OP240SLB) were used in the shadow sensors. 

Their peak emission is at 875nm, The photodiodes were silicon planar (SFH 206) 

diodes. These have an infra-red filter that admits only a band of wavelengths centred 

at 950 nm -  this is adequately matched to the LED emission. The photosensitive 

area is 2.71 mm in length. For a flag half way between the LED and photodiode the 

sensor range is half this dimension.

Figure 5.5 shows the intensity profile of the LED illumination. The response of 

the sensor is given by this intensity profile. It is, therefore, a function of the flag 

position. Over the range of the sensor (%1.35mm), there is a 20% variation in the 

sensor response if the photodiode is centred at the brightest part.

Variation of the LED illumination is indistinguishable from displacement of the 

pendu lum  mass and, hence, represents a noise source to the sensor. It is, therefore, 

essential to stabilise the intensity of the LED. This can be achieved by stabilising the 

current passed through the LED. This does not fix the absolute intensity (which can 

vary if the LED efficiency is effected by tem peratu re  changes or ageing), however, 

at frequencies of interest to gravita tional wave detection the intensity is expected
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to be stable. Figure 5.6 shows the circuit used to do this. The L E D ’s for several 

sensors were wired in series for convenience. Essentially, the current through the 

100 Q resistor is stabilised by the op-amp. This is the current drawn through the 

L E D ’s (except for a small leakage current through the FET gate).

The preset resistor is adjusted to give approximately 20 mA current in the L E D ’s. 

From m an u fac tu re r’s da ta  this current should result in a decrease in brightness of 

12% over 100,000 hours of operation.

The intensity noise produced by the LED cannot be reduced below the shot 

noise in the detected  photocurrent. For an LED current of 20 mA the maximum 

photo current was about 25 f iA.  If the flag obscures half the light produced by the 

LED then the sensor noise due to shot noise in the light is given by

.f -  1 x 10~10 ( -----  \  / 2 5 g A . y  m / ^  (5>10)
\1 .35  m m /  V 7max /

where ,f is the sensor noise; R  is the sensor range, and Imax is the maximum pho­

tocurren t detected. Shot noise has a white spectral d istribution but is filtered by the 

dam ping  servo. The differentiation required to generate a dam ping signal increases 

the noise at higher frequency. However, the damping signal is only required at the
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pendulum  resonances. At a higher frequency the differentiation can be ended and 

low-pass filters added. The response of the pendulum  also attenuates  noise above 

its norm al mode frequencies.

5.4.3 Coil-M agnet A ctuators

The feedback force is produced by passing a current, through a coil of wire to act on 

a m agnet a ttached  to the pendulum  mass. Two possible configurations of drive to 

the coils are now considered: either by controlling the current passed through the 

coil, or by controlling the voltage across the coil. Figure 5.7 show's idealised versions 

of the two possibilities.

In selecting betwreen these possibilities the following points are critical:

1. the current noise in the coil should not cause excessive control noise at fre­

quencies of interest;

2. the power dissipated in the coil must not cause heating, and

3. coupling of seismic motion of the coil should not compromise the isolation of 

the pendulum .

In practice, the coils are located inside the vacuum system at some distance from 

the drive amplifier. This introduces stray capacitance in the connecting cables and, 

of course, the coil has its own self capacitance. These practicalities make it very 

difficult to stabilise the circuit where the coil is in the feedback path  of the drive
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Figure 5.8: A Practical  Voltage-Controlled Coil Driver.

amplifier. One solution is to put resistance in series with the coil at the ou tput and 

inverting input of the op-arnp to isolate stray capacitance. However, this reduces 

the dynamic range of the driver.

It is more robust to drive the coil with a voltage source. In this case the current 

is determ ined by the coil’s own resistance. The circuit for a practical coil driver is 

shown in Figure 5.8. Driving both  ends of the coil has the advantage tha t  the ends 

are im pedance m atched so common mode pick up should not drive current through 

the coil. It also forms a differential receiver for the drive signal. This permits 

the coil drivers to be situated externally from the filter electronics. This has two 

advantages: the coil driver dissipates significant power and therefore requires heat 

sinking; the coil driver can be located close to the vacuum tank which will reduce 

stray capacitance effects. (If the signal were not differentially received the circuit 

would be susceptible to substantial ground current flowing in the connecting cable. 

Since a long cable would have appreciable impedance this would produce coupling 

between channels.)

The 39 D resistors prevent the ou tpu t of the op-amp being short-circuited at high 

frequency by the cable capacity. The effective input noise of this circuit is es tim ated  

to be 4.2 nV /'s /H z. The voltage noise across the coil was measured and the noise 

associated with the m easurem ent subtrac ted . This was then referred back to the
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Effective Input Y'oltage Noise in Coil Driver Circuit
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Figure 5.9: Effective Inp ut  Noise m  Coil Dr iver  Circuit.

input of the circuit. The spectrum of input voltage noise is shown in Figure 5.9. 

The voltage noise was very close to the measurement noise and this has resulted in 

gaps in the spectrum  caused by the subtraction. The measurement demonstrates 

th a t  the effective input noise is in accordance with the noise estimate.

The source impedance of this circuit is the series resistance of the coil and 2 x 3912 

giving a to tal of 33012.

The coil used to apply the feedback was wound from 0.1 mm diameter enamelled 

copper wire. The coil has an inner radius of 10 mm and an outer radius of 14 mm. 

The length of the coil was 6 mm. This amounts to 1600 turns  of wire. Such a coil 

will be considered as N  current loops at the midpoint of radius and length. It is 

antic ipated  th a t  this approxim ation should not greatly affect the estimations of coil 

performance. (More detailed work has been done by Mackenzie [42] which considers 

the finite size of the coil. The results obtained are not significantly different from 

the simpler analysis presented.)

Sintered NdFeB magnets with dimensions 10 mm diameter by 3 mm thick were 

used. They can be considered as a magnetic dipole, p, which experiences a force
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Force per Ampere vs Coil-Magnet Separation
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Figure 5.10: Variation of Force with Separat ion of Coil and Magnet .  

along the axis of the coil. This is given by

d B x
F T =  p — -  (5.11'

dx

where B x is the axial magnetic field produced by the coil and x is the distance along 

the axis from the coil. For a coil with N  turns, and radius a the magnetic field is 

given by
u0I N a 2

B r  =  ... „ (5.12)
2(a? + ,r  ̂) 2

where (.iq is the permeability of space and I  is the current in the coil. The applied 

force is, therefore, proportional to the current and is a function of the coil-magnet 

separation. Figure 5.10 shows this variation; the optimal separation is where the 

response is maximised. This occurs when x — a/2 .
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5.4.4 Seismic M otion o f the Coils

Using a current carrying coil to act on a magnet allows (seismic) motion of the coils 

to be coupled to the pendulum  mass. The electromagnetic coupling of coil motion

assumes th a t  since the suspension point and coil holders are rigidly connected, the 

same seismic motion is present at both. For a double pendulum  the mechanical 

coupling of motion of the suspension point to force at the interm ediate mass is given

where m  is the total suspended mass and l\ is the length of the upper stage. There 

are two mechanisms by which coil motion can couple to the pendulum; these are 

now discussed.

where Fx is the effective force noise applied to the pendulum  and xcoii is the seismic 

motion of the coil. B x should be calculated for the maximum current flowing in 

the coil. For the coil-magnet separation tha t  gives peak response this coupling is 

precisely zero. O perating close to this point ensures th a t  coupling of motion of the 

coils is much less than the mechanical coupling.

Relative motion of the coil and m agnet induces a current in the coil. This, in 

turn , applies a force to the magnet. (This is similar to damping of the pendulum 

caused by current induced in a nearby coil. This has been discussed by Logan in [43] 

from which Equation 5.16 was obtained.) According to F araday ’s Law, the induced

should not exceed the mechanical coupling of motion of the sxispension point. This

by

(5.13)

W hen a static force is applied to the pendulum non-linearity of the force with 

coil-magnet separation couples motion of the coil. This can be seen by taking the 

differential of Equation 5.11

(5.14)

where d> is the magnetic flux cutting the coil due to the magnet; this is given by

(5.15)

(5.16)
2(x2 - f a 2 ) 2

72



The induced current depends upon the source impedance, R , of the circuit used 

to drive the coil. Expressing this in terms of Fourier noise components (so that 

•7 coil =  ^^coil) then
f. deb u)

I  =  — = -------- — £Coil . (5.17)
R  dx R

The force applied to the magnet is then calculated as in Equation 5.11. This coupling 

is frequency dependent and will exceed the mechanical coupling above frequencies 

given by

m g R

h

2 (a 2 +  .r2) r 2
(5.18)

3/uoN a2 px

For the coils considered this frequency is 10 kHz (when x = a /2 ) .  Thus, this coupling 

should not compromise the mechanical isolation at frequencies of interest.

In this discussion it has been assumed that  the seismically induced motion of the 

coils is the same as that of the suspension point. This may not be the case if the 

m ounts for the coils have mechanical resonances. The s tructure holding the coils 

was, therefore, made very stiff so tha t  mechanical resonances would occur at high 

frequencies where the filtering action of the pendulum  is greater.

5.5  L o n g itu d in a l M o d es  o f  th e  D o u b le  P en d u lu m

A double pendulum  will have two modes associated with the longitudinal axis {i.e. 

along the optical axis). These are the most critical modes of the suspension because 

they couple directly to the ou tpu t of the detector. Figure 5.11 shows what these 

modes typically look like. For the lower frequency mode both masses move in phase 

with the ratio of amplitudes given approximately by the ratio of distances from the 

suspension point. The higher frequency mode has both masses moving out of phase. 

Typically, the ratio of am plitudes is inversely proportional to the ratio of masses. 

This means th a t  the in term ediate  mass exhibits equal or greater motion. Tilting  of 

the masses is ignored in this discussion.

From Equation  5.3 it is clear th a t  the damping gets be tte r  as the servo gain is 

increased. Eventually, the system goes unstable when the phase at the upper unity 

gain point is less than  —180°.
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Figure 5.11: Longi tud inal  Modes of  a Double Pendulum.

It is difficult to effect adequate damping of both  mechanical resonances with 

feedback to the in term ediate  mass only. The principal problem is to achieve sufficient 

gain at the lower resonance. The gain is intrinsically greater for the higher frequency 

mode because:

1. generation of the damping signal requires a high-pass filter {i.e. to differentiate 

the displacement m easurem ent), and

2. sensing and feeding back at the intermediate mass gives more efficient coupling 

between x and q for the higher frequency mode.

5.5.1 D am ping  and  C ontro l Noise

It is desirable to find a servo scheme which produces good damping of the modes 

w ithout adding excessive control noise. It should be observed that while the servo 

gain is u n im portan t  in itself tire control noise imposed on the test mass is crucial. 

As discussed in Section 5.4.1, control noise is a function of electronic gain. The 

perform ance of dam ping servos on the double pendulum  detailed in Section 5.3 were 

analysed using s ta te-spare  techniques. The damping achieved by the servo can be
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calculated from the poles of the closed loop state-space system. Control noise was 

also calculated using the pendulum  model. The following paragraphs refer to parts  

of Figure 5.12.

The simplest servo filter is differentiation to a frequency well above the highest 

norm al mode as is shown in (i) in which the differentiation is s topped at 12 Hz. In 

all schemes there must be low-pass filters to reduce shadow sensor noise at high fre­

quencies. These will to some extent reduce the phase margin of the servo. However, 

if resonant pole filters are used, the phase lag occurs in a narrow region near the 

resonance. These are represented in (iv) which comprises a single-pole, low-pass fil­

ter at 12 Hz; a resonant filter is at 15 Hz with a Q factor of 3, and a second resonant 

filter is at 18 Hz with a Q factor of 4. These frequencies are chosen to give adequate 

phase margin for damping pendulum  modes up to 3 Hz (e.g. the upper tilt mode of 

the pendulum  considered).

A transitional filter can be used to produce a flat response between the lower 

and upper longitudinal modes. This is shown in (ii); the flat region extends from

0.7 Hz to 2 Hz. The ratio of the gain at the upper normal mode to the lower normal 

mode is then reduced. A greater degree of damping should be possible for the lower 

mode while the upper mode remains stable. This is partially true, however, the 

phase of the dam ping signal at the lower normal mode is not at its optimal value of 

-(-90°. This can be restored by additional differentiation below the lower resonance 

(as shown in (iii)). The steepened region extends from 0.1 Hz up to 0,7 Hz -  both 

filters stopping together give +90° phase lead at the breakpoint.

For the three different filter schemes discussed the dam ped normal mode Q fac­

tors are p lo tted  against the level of control noise imposed on the test mass at 100 Hz. 

This is shown in Figure 5.13. Only the Q factor of the lower longitudinal mode is 

p lo tted  for simplicity. The upper mode is always be tte r  dam ped except close to the 

end of the curves (the points labelled ‘x ’) where the servo becomes unstable. It is 

clear from these graphs that the scheme shown in (iii) is far superior to the others 

because it achieves very good dam ping with minimal increase in control noise over 

the coil driver noise. The control noise, as estimated, is more than  two orders of 

m agnitude  less th an  th a t  im plemented by Morrison [39]. It is not thought th a t  this
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Figure 5.12: Part  ( i) shows simple di f ferent iat ion of  the di sp lacement  signal (up to 

12 Hz):  a f lat  region is introduced in part (ii) between the lower and upper longitu-  

dinal  modes ,  and in part (iii) an addi t ional  transi t ional  d i f f erent iator gives op t imal  

phase at the lower mode.  The low-pass fi l ters sho wn in part  (iv) are used with all the 

di f feren t ia t ion  schemes  to a t tenuate  high f requency noise introduced by the sensor.
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Damped Q factor versus Control Noise
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Figure 5.13: Damped Q fac tor  as a Funct ion of  Imposed  Control  Noise.

development will improve the sensitivity of the Glasgow pro to type detector since 

o ther noise sources dominate above this level, (as is noted in Chapter  3).

5.5.2 Dam ping as a Function of Gain

It is useful to profile the Q factor of the mode as a function of the servo gain. 

This ensures tha t  the required damping can be obtained over a sufficient range of 

gain to make the servo practical. It is anticipated that the servo gain may change 

significantly over long periods of operation. For example, the L E D ’s will burn-out 

producing progressively less illumination with time. The gain is also dependent on 

the position of the pendulum  mass because the response of the sensor is not uniform 

and the ac tua tion  s trength  varies with the coil-magnet separation.

Figure 5.14 shows the electronic circuit used for the damping servo. The design 

is the realisation of Figure 5.12 parts  (iii) and (iv). The circuit has three monitor 

points labelled DC, AC and MON. The SEND and R E T  terminals make allowance 

for interfacing with an au tom ated  gain control. In fact, a m anual po ten tiom eter was
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used. The SLOW and FAST inputs allow dc and ac signals to be added to the coils. 

The se could control the orientation of the mass or provide feedback to the position 

of the test mass. The SLOW input is added before the noise attenuation  filters and 

is strongly a t tenua ted  above 12 Hz. The FAST input is added afterwards but is 

a t tenua ted  by a factor of 10 to preserve the low noise properties of the ou tput.  The 

output,  OUT, goes to the input of the coil driver circuit shown in Figure 5.8.

The pendulum was dam ped by all control channels except the longitudinal servo. 

The Q factor of the resonance was then measured by applying an impulse to the test 

mass and the recording the ringdown of the pendulum  (as measured by the shadow 

sensor on the intermediate mass). The ringdown was then fitted to a exponentially 

decaying sinusoidal wave to extract the Q factor and the frequency of the pendulum 

mode.

With the longitudinal servo gain set to zero the Q factor of the pendulum  is 

determined by the damping due to coupling to other degrees of freedom (mainly to 

tilt). As the servo gain is increased the ringdown becomes shorter until the servo 

becomes unstable. For several values of servo gain the Q factor was measured. 

Corrections were made for the damping observed for zero gain. The results are 

shown in Figure 5.15 and are compared to the damping predicted by the state-space 

model of the system. The x-axis is normalised to the maximum gain of the circuit 

shown in Figure 5.14. The error in the fitted Q factors is «6%> (this is obtained 

from analysis of the fit). However, the data  does not contain a pure ringdown of 

the longitudinal mode but has some coupling of other modes. This means tha t  the 

fitting function does not accurately describe the da ta  so the results are further prone 

to error. In some cases two ringdowns were fitted to the same da ta  which produced 

better  results. By fitting the da ta  over different intervals and noting the spread in 

results the error in Q factor is estim ated to be about 10%.

From this graph it is evident tha t  there is a factor of four over which the gain 

can vary without a serious degradation in performance. For a normalised gain of 

x0.5 the open loop gain is shown in Figure 5.16 and the closed loop gain shown 

in Figure 5.17. At this gain setting the Q factor of the lower longitudinal mode is 

about 6. From Equation 5.3 the Q factor is estim ated to be 4.6.
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Q-factor versus Servo Gain
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Figure 5.15: The Q fac tor  predicted by the state-space 'modelling is indicated by the 

solid line and is compared, to measu rem en ts  of the Q fac to r  of  the damped pendulum  

which are plotted as x 's. The gain axis is normal ised to the m a x i m u m  gain of  the 

circuit.
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Figure 5.18: Inputs  to the Local Control  Servo.

5.6 S tep  R esp o n se  o f  D a m p ed  P en d u lu m

A standard  m ethod of assessing the performance of a servo system is to look at the 

response to a dc step. The step was applied to the slow input  of the local controls (see 

Figure 5.18). This is a dc coupled input which is strongly filtered at high frequencies 

(starting at 12 Hz). This diagnostic reflects the real operation of aligning the test 

mass to the rest of the interferometer.

Figures 5.19, 5.20 and 5.21 show the calculated step responses for longitudinal, 

rotation and tilt degrees of freedom of the double pendulum  described in Section 5.3. 

Also shown are the residuals, i.e. the error between the measured response and 

the calculated response. These are small compared with the dc step size. The 

tilt response exhibits the largest residual. This is because the tilt modes are very 

sensitive to the a ttachm ent heights of wires with respect to the centre of mass. 

However, the difference does not indicate a poorly dam ped system.

5.T C on clu sion

A double pendulum has been designed to suspend the test masses currently used 

on the Glasgow prototype. The normal mode frequencies predicted by the dynamic 

model have been compared to those measured on a real set up. The agreement is 

found to be good. This gives confidence that the dynamic model is accurate.

State-space modelling of the test mass suspensions has allowed the performance 

of damping servos to be analysed. Model predictions and experimental results are 

in good agreement. This gives confidence that the design of test mass suspensions
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Figure 5.19: Step Response of Double P endu lu m  (Longitudinal) .
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Figure 5.20: Step Response  of Double P e n d u lu m  (Rota t ion) .

83



Step  R e sp o n se  - T ilt Input

0.5

0.5 2.5 3.5 4.5

0.2

oaZ

- 0.2
0.5 2.5 

Time (s)
4.53.5

Figure 5.21: Step Response of Double Pen d u lu m  (Ti l t ) .

is aided by use of these techniques.

The practical considerations of local control have been addressed and solutions 

dem onstra ted  by their im plementation on a real double pendulum suspension.

The advantages of using a double pendulum  suspension over a single stage pen­

dulum are partially evident from this chapter. A double pendulum  allows control 

forces to be applied at the intermediate mass and thus control noise is filtered by 

the additional pendulum  stage. The disadvantage of a double pendulum is the com­

plexity of an additional six mechanical, modes which require consideration in the 

design.
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Chapter 6

G l o b a l  C o n t r o l  o f  an  

I n t e r f e r o m  e t e r

. . due to a terrible miscalculation of scale the entire battle  fleet was 

accidentally swallowed by a small dog.’

The Hitch-Hiker’s Guide to the Galaxy.

6.1 In tro d u ctio n

It is advantageous to operate highly sensitive interferometers at a dark fringe at the 

oirtput port. (This means that the interferometer is less sensitive to fluctuations of 

the input light intensity.) In this case, a differential change in the arm lengths shifts 

the interference fringe and light is em itted at the ou tpu t.  Thus, servo control of the 

position of at least one test mass is required to m ain ta in  the dark fringe condition.

In this chapter, the feedback used to servo the position of a test mass will be 

discussed. The discussion will refer to the Glasgow pro to type detector bu t the 

issues are similar for all interferometric gravitational wave detectors irrespective of 

how the output signal is obtained. The Glasgow pro to type  detector is comprised 

of two orthogonal Fabry-Perot. cavities. A Fabry-Perot cavity is a basic form of 

interferometer in tha t  it interferes the input light with light that has been stored 

in the cavity for many successive bounces. The Glasgow p ro to type  uses one cavity
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as the frequency reference for the input light. Feedback is, therefore, applied to 

the laser frequency in order to lock the light to the cavity. The second cavity is 

servoed to follow the input light. Thus, the feedback applied to the second cavity is 

p roportional to the differential arm length change.

T he ou tpu ts  from the cavities are not  optically recombined (as they would be 

in a Michelson interferometer) but are, instead, electronically recombined. Recom­

bination of the signal from both arms gives cancellation of frequency noise on the 

input light.

Locking a Fabry-Perot cavity to a dark fringe on the reflected light (the reflected 

light constitutes the ou tpu t)  is equivalent to maintaining the resonance condition for 

a standing wave between the two mirrors. Thus, the laser frequency is held at a free 

spectral range of the cavity or vice versa. The locking signal is obtained for both 

cavities using rf  reflection fringe locking [44], It should be noted that the response of 

a Fabry-Perot cavity to frequency excursions from its free spectral range introduces 

a single pole low-pass filter at a frequency corresponding to its linewidth. For the 

Glasgow pro to type this is %2 kHz.

The largest changes to the arm lengths are caused by thermal expansion. How­

ever, therm al expansion of the interferometer arms occurs only on time scales which 

are much longer than the period of the pendulum suspensions of the test masses. As 

such, the effects of thermal expansion are independent of the pendulum dynamics 

and, in this chapter, will not be discussed.

The range required by feedback actuators is therefore determined by the level 

of seismic noise. It is assumed th a t  cross-coupling from other degrees of freedom 

does not exceed longitudinal motion of the test mass. This assumption follows from 

the design criteria s tated  in C hapter  3. The pendulum  on which the actuation 

will be considered is that described in Section 5.3. In Section 6.5 an estimation is 

made of the actuation range required to lock an optical cavity where the mirrors are 

suspended as double pendulums. A comparison is made for feedback applied to the 

test mass only and for feedback applied to bo th  the interm ediate  mass and the test 

mass.

The control servo will reduce the offset from the locking point by its loop gain.
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The rms  offset from the locking point must be kept small. This is because:

1. an offset from the dark fringe allows intensity noise on the laser light to couple 

to the ou tput signal, and

2. the fringe detection is non-linear; large excursions from the locking point may 

allow non-linear mixing of signals into the detection band.

In Section 2.2.3 it is shown tha t  a loop gain of at least ~ 10 ' (at ~1 Hz) is required 

to prevent intensity noise coupling to the output.

6.2 Seism ic E x c ita tio n

Seismic motion of the ground is often approximately described by (from 1 Hz to 

100 Hz) [3]
10-7 /—

x g  =  ~ J 2 ~  m / v H z  . ( 6 . 1)

Obviously, this depends on the proximity of sources of ground disturbance {e.g. 

roads and motors). The Glasgow pro to type is located within a building where there 

is a high level of activity. Because the interferometer does not sit directly on the 

foundations, the resonant s tructure  of the building causes large bulges in the seismic 

noise spectrum. In particular, the floor is observed to resonate at around 70 Hz. 

Thus, the seismic environment is far from optimal.

Ground vibrations must be filtered in order to measure the very small displace­

ments caused by gravitational waves. This is part, of the reason why the test mass is 

suspended as a pendulum. The transfer function of displacement of the suspension 

point to that of the test mass is shown in Figure 6.1 for a single pendulum  of length

0.5 m. This is compared to the transfer function for a double pendulum  with an 

mass ecpial to the test mass inserted at the midpoint of the suspension wire. Using 

such a two stage- pendulum gives much greater isolation from ground vibrations at 

frequencies above the resonant modes. It is partly for this reason tha t  double pendu­

lums have been developed and installed in the Glasgow pro to type  and are proposed 

for the GEO 600 project (see C hap ter  8).
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m e n t  of  the Test Mass for  a Single and Double Pendu lum.



Additional filtering of seismic motion is achieved by using vibration isolation  

stacks. These are blocks of metal separated by pieces of soft rubber. They provide 

resonant passive isolation of ground vibrations in a similar m anner to the pendulum. 

The isolation stacks used in the Glasgow pro to type are described by McLaren in [45].

6,3 F eedback  to  th e  T est M ass

In this section, the means of maintaining the dark fringe condition of an interfer­

ometer is discussed in terms of applying a corrective force directly to the test mass. 

It is critical that the implementation of feedback does not impose noise on to the

test mass that would limit the detec tor’s sensitivity to gravitational waves. Thus,

the feedback force must be applied with a. sufficiently low-noise drive. W hen the 

feedback signal is measured after control noise has been added, there is some sup­

pression of the noise by the loop gain. This can be seen by considering the schematic 

control loop in Figure 6.2. The feedback applied is given by

.ffb = f G H  + h H  (6.2)

where e is the error point; n is the noise added by the servo; G and H  are the

transfer functions of the servo: G  before the noise is added and H  after the noise is

added. The error point is given by

e =  x - e G H - n H  (6.3)
x — n H

e =    (6.4)
1 +  G H

where x is the displacement of the test mass from other noise sources. W hen E qua­

tions 6.2 and 6.4 are combined this gives the feedback signal to be

G H  ~ H  / ^Xfh =  x ----------------h ------------  . (6.5)
1 +  G H  1 +  G H  '

This shows that the noise introduced by the servo is suppressed by the loop

gain. It is also seen tha t ,  assuming G H  1, the feedback signal is an accurate 

representation of the disturbance of the test mass. It is im portan t th a t  there are no 

noise sources after the feedback signal has been measured as these are unaffected by 

the servo.
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Figure 6.2: Generic Servo Control  Loop.

6.3.1 Response o f the Test Mass

The test mass is suspended as the second stage of a double pendulum . The response 

of the test mass to a force applied directly to it can be calculated using the state- 

space model of the suspension described in C hap ter  4. Essentially, the resultant 

displacement is filtered by the lower longitudinal mode of the suspension. This gives 

two poles of filtering on the feedback signal. Thus, some differentiation of the error 

signal will be required to make a stable servo control loop.

In any mechanical system it is desirable to collocate the feedback actuation and 

the sensing point. It is difficult to apply this principle to the control of the test 

masses because optical sensing is used. The reflective face of the test mass cannot 

be obscured by mechanical components of the ac tuator.  For this reason the test mass 

in the Glasgow prototype is controlled by feedback forces applied to the back face 

of the test mass. Because the actuation and sensing are not collocated, the elastic 

properties of the intervening material are much more im portan t  in the response 

of the test mass. The elastic properties of the test mass are characterised by its 

internal modes of vibration (a discussion of internal modes is given in Section 4.8). 

In particular, the eigenfunction of the longi tudinal  mode (which has a frequency of 

25.5kHz) is symmetrical around the centre of the test mass [i.e. the centre cross- 

section of the cylinder is a node). Thus, opposite faces move in anti-phase giving 

a phase lag of —180° between the applied force and the response of the reflective
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face. This corresponds to the phase lag introduced by the propagation time of a. 

compression wave through the test mass. The modes of the pendulum  and the 

internal modes have been modelled as parallel paths. In this model the peak height 

is correct although the phase at the resonance may not be. This is acceptable since 

the only im portant information is the phase at the unity gain point. The internal 

modes limit the unity gain point of the control servo to well below the first mode of 

the test mass. At this frequency the response is dominated by the pendulum  modes.

In fact, there are many internal modes of the test mass. The numerical modelling 

of the test masses noted in Section 4.8 enables the eigenfunctions of the internal 

modes to be calculated. This permits the internal modes to be included in the 

transfer function of force applied at the back face of the test mass to the sensed 

displacement. Such a. state-space model is generated by the routine fb _ x 2 .m  in 

Appendix A. Figure 6.3 shows the modelled transfer function.
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Figure 6.4 shows a comparison of the measured and modelled transfer functions 

of the test mass at frequencies of the first few internal modes. The measurement was 

made by correlating the interferometer error point with a sine wave added to the 

feedback signal. The sine wave was swept in frequency over the range shown. The 

modelled transfer function uses measurements for Q factors of the internal modes 

(see Table 7.3), all other da ta  is the result of numerical analysis.

The filtering electronics of the locking servo includes two transitional differentia­

tors. One counters the roll-off of the Fabry-Perot cavity to make the response flat 

up to 10 kHz. A second acts between 700 Hz and 10 kHz to provide phase margin at 

the unity gain point which occurs at kHz. The low frequency gain is increased by 

a transitional integrator from ~28 Hz to 280 Hz. This achieves a loop gain of ~ 1 0 ' 

at 1 Hz.

Precautions must be taken to ensure that  the resonant peaks do not cause the 

loop gain to return above unity gain. (This would cause the servo to be unstable 

since the phase cannot be greater than —180° at both  unity gain points on either 

side of the resonance.) Because the internal modes have a Q factor of up to 5 x 10°, 

the most appropriate m ethod  of suppressing the gain is to use notch filters tuned to 

their resonant frequencies.

The height of a resonant peak is determined by the Q factor and the coupling 

of the ac tua tor to the mode. It is possible to minimise the coupling strength  by 

applying the feedback at a node, however this is difficult to realise for all modes 

simultaneously. In principle, feedback could be applied at the outer edge of the 

front face of the test mass but this provides no advantage with respect to coupling 

to the internal modes of the test mass. A family of modes known as drum  modes have 

circular nodes at some radius on the face of a cylinder; these reflect the propagation 

time of a shear wave across the face of the test mass.

In the absence of more direct feedback, the bandw idth  of the servo is limited 

to a few kHz. This makes the acquisition of lock difficult; this is discussed in 

Section 6.4. It also means that the loop gain of the servo is still relatively small at 

frequencies of interest to gravitational wave detection. Thus, the feedback signal is 

not a true representation of the displacement of the test masses. M easurements of
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Transfer Function of Internal Modes of Test Mass
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Figure 6.4: The top graph shows the experimental ly obtained transfer fu nc t io n  of

the internal  modes of a test mass used in the Glasgov) prototype detector.  This 

can be compared with the bottom graph which is the response predicted by the model  

described in Section \ .8 .  The modelled response is valid up to zz80kHz.
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the feedback signal must be calibrated to deduce the displacement measured by the 

interferometer. This is discussed by Morrison in [46].

6.3.2 A ctuators

Three coil-magnet ac tuators  are used to control the longitudinal position of the test 

mass. These are wired in series and therefore the same current is passed through 

each coil. The coils have 500 turns of 0.2 mm diameter enamelled copper wire giving 

a total series resistance of all three coils is 68.5 fh The windings are 6 mm long and 

have an average diameter of 12 mm. The coils were m ounted on a plate which was 

isolated from ground motion by four pieces of rubber. The vertical resonance of the 

coil mounting-block on these rubber pieces was about 20 Hz.

M otion of the test mass (and hence the m agnets attached to the test mass) 

induces Eddy currents in the ac tua tor coils. This is a loss to the pendulum and will 

produce thermal noise in the same m anner as friction in the suspension wires. The 

loss tangent for this form of damping is

lo (  d.(f)\ ^
<*(W) =  2n ( ~7~ ) (6‘6 )mLCQil \ d x  J

where m is the test mass, u;o is the pendulum frequency, R  is the source impedance 

of the coil driver and <? is the magnetic flux through the coil ((d<f>/d.v) is identical to 

the force per unit current between the coil and magnet). The resultant displacement 

noise can be estimated from Equation 2.7. To achieve a sensitivity of ~ 1 0 -19 m/v^Hz 

(at 100 Hz) requires a source impedance of >1 Mfh Of the coil driver circuits con­

sidered in Section 5.4.3 only the current controlled configuration can present a high 

source impedance and drive sufficient current through the coils. The coil driver is 

of this type.

The coupling of coil motion to the measured displacement of the test mass is 

different from that described in Section 5.4.4. This is because the servo bandw idth  

extends over the m easurem ent bandw idth  and therefore the action of the servo loop 

must be considered. The displacement of the test masses is obtained by measuring 

the feedback signal applied to lock the Fabry-Perot cavity. However, it is the voltage 

at the o u tpu t  of the coil driver that is, in fact, recorded. Therefore, a change in the
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separation of the coils and magnets (i.e. seismic motion of the coils) changes the 

actuation strength at a point in the control loop after the feedback signal has been 

measured. This is shown in Figure 6.5. At frequencies where the servo loop gain is 

high, the measured feedback signal, x m, is given by

x m =  — (6.7)
r i

where x is the differential displacement of the test masses and H is the actuation 

strength. The effect of varying the actuation strength  is shown by taking the differ­

ential of Equation 6.7

*X ro = = _ i i 2 m  (6‘8)

The rm..‘t displacement of the test mass is likely to be dominated by the dc. component 

required to lock cavity away from the equilibrium point of the pendulum; this is 

denoted by Ax. Substitu ting  Equation 6.7 into Equation 6.8 leads to

Ax ( d U \

* = 1T  K d T J  (<3 9)

where H is the actuation strength and ry is the displacement of the actuation 

coils. ( d H / d x c ) can be evaluated from the coil-magnet interaction described in 

Sections 5.4.3 and 5.4.4. However, it is inevitable that  vertical motion of the coils 

will exceed their longitudinal motion. Using Maxwell’s Equation, divB =  0, and 

a simplified coil-magnet geometry the variation of the actuation strength along the 

z-axis is estimated to be
<9H <9H

(6 ' 10)o z c d x c

For the feedback coils considered (<9H/chrc)/H  has a value of up to ±50 m -1 for an 

offset of up to 1m m  from the optimal separation of the coil and magnet.

The Fabry-Perot cavity will virtually always be locked with an offset from the 

equilibrium point of the pendulum . This is because the distance between the two 

test masses must be an integer number of half-wavelengths of the laser light. Fur­

thermore, the cavity is more likely to acquire lock when the velocity of the test mass 

is a minimum; this occurs at the extrem a of any pendulum  motion. Once lock has 

been acquired, the cavity may drift further due to therm al expansion. The maxi­

mum value of Ax is equal to the dc range of the actuators: i.e. 20 ^m. The allowed
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Figure 6.5: Servo Control  Loop with Variable Actuator .

displacement of the reaction coils is. therefore, only 1000 times larger than that of 

the test masses themselves.

If the displacement sensitivity required by proposed large scale gravitational 

wave detectors (.r ~  10~l9 m / V h ?, -  see C hapter  2) is to be achieved, the feedback 

ac tua to rs  will need to be isolated from seismic motion. In particular, isolation of 

vertical seismic motion is required. In Section 3.2.2 it is observed that cross-coupling 

of vertical motion of the test masses is by a factor of order 1 x 10- 3 . The allowed 

vertical motion of the test masses and ac tua tor coils are therefore approximately 

equal. The coils could be m ounted on a reaction mass and suspended in a similar 

m anner to the test masses.

6 .4  A cq u is it io n  o f  Lock

An interferometric gravitational wave detector can only make high sensitivity mea­

surements of changes in the differential arm length when it is in a locked state. This 

locked s ta te  can be lost on account of one of a num ber of events. For example:

1. therm al expansion exceeds the dc range of the servo actuators;

2. seismic disturbances, and

3. mode-hopping of the laser.
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It is critical that the time taken to re-acquire lock is not a significant fraction of the 

typical length of time during which da ta  can be taken.

The most problematic step is the acquisition of lock of the second Fabry-Perot 

cavity to laser light which has already been stabilised to the orthogonal cavity. The 

test masses which form the ends of the optical cavity are seismically excited and 

are observed to swing through the resonance condition about 5 times every second. 

The difficulty arises because the locking signal is only meaningful when the cavity 

is close to resonance. It is more often the case that the test masses swing through 

resonance without lock being acquired. The time taken to lock the cavity could be 

reduced if the relative velocity of the test masses could be reduced.

By observing the fringes produced as the cavity moves through the resonance 

condition, it is possible to deduce the velocity and direction of the motion. The light 

intensity reflected from the input mirror initially drops because light is adm itted  to 

the cavity. W hen the cavity moves away from resonance, the stored light leaks out 

and interferes with the input light to give a train of fringes that decay to the static 

level. The rate of decay of the fringe am plitude is a measure of the losses in the 

cavity; the frequency of the ringing is proportional to the relative velocity of the test 

masses. An analogous fringe is also observed on the dem odulated  signal used in the 

rf  reflection fringe locking technique except that this signal allows the direction of 

the cavity length change to be determined from the polarity of the fringe.

Using CMOS logic, the dc and rf  fringes are analysed to yield a pulse which is 

applied to one test mass to reduce its velocity relative to the other mass. The logic 

circuit which does this is shown in Figure 6.6. The fringe damping signal is added 

into the error point of the rf  reflection locking servo. Once lock has been acquired 

the fringe damping servo is disconnected to avoid adding any noise to the feedback. 

Use of these fringes to aid acquisition of a suspended mass, Fabry-Perot cavity has 

also been made by Camp et al [47] on the Caltech p ro to type  detector.

O peration of the circuit shown in Figure 6.6 is now discussed. The light intensity 

is ac coupled and a com parator used to detect the zero-crossings caused by the 

ringing after the cavity has moved through the resonance condition. The ringing of 

the intensity signal is used to generate monost.able pulses. The num ber of pulses
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Fringe Damping 
ON
(s)

Fringe Damping 
OFF

(s)

Average Time 12.5 > 64

Shortest Time 1.8 15.1

Longest Time 40.9 > 121

Table 6.1: Acquisi t ion T imes.

in the duration of a fringe is proportional to the velocity of the mass. The zero- 

crossings of the light intensity correspond with extreme values of the rf  fringes the 

sign of which determines the direction of the cavity length change. A D-type flip-flop 

samples the rf  fringe at positive to negative crossings on the dc fringe. This signal 

is then correlated with the monostable pulses (using the NOR gates) to control the 

analogue switches. The analogue switches give either positive or negative pulses to 

the final output buffer. The impulse applied to the test mass is proportional to the 

number of monostable pulses and, hence, it is also proportional to the test mass 

velocity. This ensures that the relative motion of the test masses is damped.

The times taken for the Fabry-Perot cavity to lock to the stabilised input light 

was recorded with and without the fringe damping. A summary of the locking times 

is presented in Table 6.1. As can be seen, this m ethod  of reducing the velocity of 

the test mass allows the Fabry-Perot cavity to be locked in a significantly shorter 

time.

The action of the fringe damping servo can be assessed by observing the number 

of impulses applied in each direction to the test mass. The servo is observed to be 

very effective at reducing the length excursions of the cavity to of order one fringe 

but the acquisition of lock by the analogue servo is still problematic. As the length 

of the cavity approaches the dark fringe condition the analogue servo acts to pull one 

test mass towards the locking point. This increases the rate of change of the cavity 

length. Thus, the test mass overshoots the locking point and it is only then th a t  the 

servo acts to slow the test mass down. However, the impulse im parted  by the servo 

approximately cancels yielding no net result. Acquisition of lock must rely upon the

99



cavity naturally coming close to the locking point irrespective of the servo action. 

The author proposes tha t  be tte r  performance may be possible if the analogue servo 

is triggered to switch ‘on’ when the cavity length is precisely at the dark fringe. 

If the lock is not acquired, the servo can be re-primed for the next fringe. In this 

approach the servo only ever acts to reduce the rate of change of cavity length.

6.5 F eedback  to  th e  In term ed ia te  M ass

The application of feedback has been considered in terms of the action of current 

carrying coils upon magnets attached to the test mass. It is undesirable to attach 

magnets to the test mass since they are observed to introduce significant mechanical 

loss and are a potential source of thermal noise (see C hapter  7). An alternative 

possibility is to use the dielectric property  of the test mass material. A dielectric 

material is polarised and a t trac ted  by an electric field. Therefore, a fluctuating 

electric field generated near the test mass can be used to apply a feedback force. 

This is the principle of the electrostatic drive. Such drives are discussed in [48]. One 

possible type of electrostatic drive comprises two interlaced ‘com bs’ -  see Figure 6.7. 

These could be deposited on a glass plate and positioned ~1 mm behind the test 

mass. As one electrode is charged with respect to the other, the fringe field produces 

a force on the test mass.

This electrostatic drive is limited in one respect’, it has a significantly reduced 

range compared to a coil-magnet actuator. (The range is limited by the maximum 

voltage that is practical to use.) It is possible to reduce the ac tuation range required 

by the test mass drive if the larger, low-frequency length changes of the cavity are 

corrected by feedback actuation to the interm ediate mass of the double pendulum. 

The feasibility of such a feedback topology is now discussed. It is assumed tha t  the 

feedback to the test mass is by some electrostatic drive while feedback can be applied 

to the intermediate mass by a coil-magnet actuator. The range of the coil-magnet 

ac tua tor will be assumed to be adequate. The schematic control servo is shown in 

Figure 6.8.

Feedback to the interm ediate  mass suffers from similar problems as feedback
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Figure 6.7: The electrodes of a possible electrostatic drive arc shown. The width

of the strips is 'w' and they are separated by ' s ’. It is anticipated that 's' will be 

approx imate ly  equal to the separation of the electrodes and the test mass.

Seism ic N oise

m.  x

Cavity
Response

Servo Filter to 
Intermediate Mass

Servo Filter 
to Test M ass

Double Pendulum

Figure 6.8: Servo with Split  Feedback Topology.
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applied to the back face of the test mass: namely that  the elastic properties of 

the intervening material limit the bandw idth  tha t  can be achieved. The actuation 

applied at the intermediate mass must propagate down the suspension wires to 

the test mass. Thus, the transfer function has resonant peaks associated with the 

transverse modes of the suspension wires (these are discussed in Section 4.7). The 

transfer function for force applied at the intermediate mass to test mass displacement 

is shown in Figure 6.9. (This is the result of the state-space model produced by 

fb _ x l .m  in Appendix A.) The Q factors of the transverse modes are calculated 

assuming the internal friction of the wire is described by a s truc tu ra l  damping term 

and thermoelastic damping (see Section 7.4.1).

To reduce the range required by the test mass ac tuator,  the open loop servo gain 

of the pa th  to the interm ediate  mass must be greater where the displacement noise 

is largest. The response of the test mass to a force applied at the interm ediate mass
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falls off at the rate of l / / 4 above both pendulum normal modes. This compares to 

a fall-off of l / / 2 for feedback applied to the test mass. Thus, the cross-over from 

feedback dominated by ac tuation at the interm ediate  mass to feedback dominated 

by actuation at the test mass should naturally occur above the upper longitudinal 

mode of the double pendulum. The higher this frequency can be pushed, the greater 

the reduction in range required by the ac tua tor to the test mass.

The frequency of the cross-over is limited by the transverse resonances of the 

suspension wires. (This is completely analogous to the internal modes limiting the 

bandw id th  of feedback to the test mass.) It is not possible to dam p these resonances 

since this would inevitably increase their thermal noise contribution (see Section 7.4). 

Electronic filters can be used to suppress the peaks in the transfer function caused 

by these modes. Using such an approach, a cross-over at 30 Hz is considered possible 

where the fundamental transverse modes occur at ~400 Hz and the suspension wires 

are made from steel and consequently have Q factors ~2 x 105). The open loop gain 

for both feedback paths is shown in Figure 6.11. The unity gain point is nominally 

2 kHz.

The filtering considered in the servo model was as follows: a transitional dif­

ferentiator was used to f la t ten  the response of the optical cavity up to 10 kHz. To 

make the unity gain point stable requires a further transitional differentiator acting 

between 700 Hz and 5 kHz.

This, in itself, is stable and sufficient to lock the cavity with the proviso that the 

ac tu a to r  has a large enough range. W hen the feedback to the in term ediate mass is 

implemented it is not necessary to dc couple the feedback to the test mass. Clearly, 

it is very desirable to ac couple this at as high a frequency as possible in order 

to minimise the feedback signal produced in response to seismic noise. To achieve 

good a t tenuation  at ~1 Hz while maximising the phase margin at the cross-over, a 

resonant high-pass filter peaking at 5 Hz with a Q factor of 3 was considered.

In the feedback p a th  to the intermediate mass, a transitional differentiator is 

required to give phase margin at the cross-over frequency. This acts between 10 Hz 

and 80 Hz. A ttenuation must be included at the transverse mode frequencies. This 

can be be efficiently achieved by using Scultety filters. These have a transfer func-
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Transfer Function of a Scultety Filter.

Frequency (Hz)

Figure 6.10: Transfer Funct ion  of a Scul tety Filter: Reso na n t  Peak at 150 Hz, Q 

fac tor of 3; Notch Tuned to Transverse Mode Frequency 366 Hz.

tion as shown in Figure 6.10. The resonant peak is placed at a frequency between 

the cross-over and the transverse mode frequency. The Q factor of the peak is cho­

sen so that  it does not re turn  above the feedback gain to the test mass. The notch 

associated with the filter should be tuned to the transverse mode frequencies. The 

filters considered had peaks at 150 Hz and 200 Hz with Q factors of 3 and 4 respec­

tively. They also give high frequency suppression by a factor of (/notch//peak)2- A-n 

additional passive filter acts from 200 Hz. A total a t tenua tion  of greater than 3600 

is required at the first resonance and 530 at the second. This is mostly achieved 

using the notch of the Scultety filter. Here an a t tenua tion  of 2000 is assumed from 

the notch alone. In practice, this may reqtrire more filtering.

It is assumed that the dominant source of displacement of the test masses is 

seismic motion of the suspension point in the horizontal direction. V ibrations of 

the ground are assumed to be flat with frequency below 1 Hz and to vary as l / / 2
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above 1 Hz. (Only frequencies up to 100 Hz will be considered.) Seismic motion of 

the ground is filtered by the seismic isolation stacks. For the four layer stacks used 

in the Glasgow prototype the horizontal frequencies are 2.0 Hz, 9.0 Hz, 16.5 Hz and 

20.5 Hz. These frequencies and the transmissibility of the stacks were predicted and 

verified by McLaren [45].

The double pendulum is also considered to be dam ped by the local control servos 

as described in C hapter 5. The longitudinal modes have Q factors of 6 and 2 for the 

lower and upper frequency modes respectively.

The servo was modelled using sta.te-space techniques. This allowed the calcu­

lation of the closed loop response of the servo to a force input at the in term ediate  

mass. Displacement of the suspension point produces a force at the interm ediate  

mass given by

— T ~  “̂0 ( 6 . 1 1 )
‘1

where Ti  is the tension in the upper wire and /j is its length. The relevant transfer 

functions are the ratios of feedback force at each ac tua to r  to input force. These can 

be multiplied by an estimate of the input force from seismic motion of the suspension 

point to give the spectral density of feedback force required. W hen only horizontal 

seismic motion is considered the frequency spectrum  of feedback required is shown 

in Figure G.12. Results for a split feedback topology are compared to the ac tua tion  

required for a simple servo acting on the test mass only.

The rrris value can be calculated by integrating the power spectral density over 

frequency axis and taking the square root of the answer. The integration is limited 

from 0.1 Hz up to 100 Hz since the contribution outside this band  was negligible. The 

rms  values of feedback force required are presented in Table 6.2. The results include 

a factor of 2 to account for all four suspended test, masses of the Glasgow pro to type  

and a safety factor of 10 to give headroom for statistically large excursions or impulse 

events. The value shown for feedback solely to the test mass can be compared to 

the maximum force available using the present system of three coils and magnets; 

this is ~1.6 x 10-3 N.

As can be seen from the results, application of feedback to the in term ediate  mass
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Feedback Actuator rms  Force
(N)

Intermediate Mass 
and 

Test Mass

1.1 x 10-3 

4.6 x 10-7

Test Mass only 1.0 x 10-3

Table 6.2: Feedback Range Requirements .
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reduces the range required by a factor of about 2000 for the conditions stated  above. 

In practice, cross-coupling of vertical motion is significant in the displacement noise 

of the test masses. It is estimated that vertical cross-coupling exceeds the horizontal 

motion at frequencies above ~ 7  Hz (given that the levels of ground motion in the 

horizontal and vertical degrees of freedom are equal). However, at 7 Hz the seismic 

excitation is an order of m agnitude below the peak value at 2 Hz (corresponding to 

the first horizontal resonance of the isolation stack). Furthermore, ground motion is 

expected to be less at higher frequencies. The author suggests tha t  cross-coupling 

effects would, at worst, increase the range requirements by a factor of ~2. This 

contribution would mainly arise from resonant enhancement of ground motion by 

the first vertical resonance of the isolation stack.

6.6 C on clu sion

The range required by feedback elements to lock a suspended mass, Fabry-Perot 

cavity is determined by the level of seismic excitation of the suspension point. Pas­

sive seismic isolation stacks can resonantly enhance this level at low frequency and 

increase the range requirements: they should therefore be well damped. Active

suppression of seismic motion could also be used to reduce the ac tua to r  range.

Vertical motion of a coil-magnet feedback ac tua to r  is shown to give a significant 

coupling of seismic noise to the test mass. The feedback ac tua to r should be isolated 

in a similar m anner to the test masses, for example: a suspension incorporating a 

low frequency vertical spring.

It has been shown th a t  a split feedback topology can substantially  reduce the 

range requirement of the actuation direct to the test mass. This implements low 

frequency feedback to the in term ediate mass. The double pendulum  suspension is 

ideally suited to this feedback topology. This is a considerable advantage of a double 

pendulum  compared to an equivalent single stage pendulum.
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Chapter 7

T h e r m a l  N o i s e

7.1 In tro d u ctio n

In [49] Calien and Wei ton obtain a relationship, “between the generalized resistance 

and the fluctuations of the generalized forces in linear dissipative systems.” This 

relationship is known as the f luctuat ion-d iss ipa t ion  theorem. The test mass suspen­

sion is, ideally, a linear system. This is true when sufficiently small per turbations are 

considered so that the suspension materials do not exceed their yield stress. In this 

case, the suspension wires can be considered as linear springs and provide restoring 

forces proportional to the displacement of the test mass or in term ediate  mass. Dis­

sipation is present in the system because friction is associated with perturbations 

of the linear springs (i.e. the suspension wires). The suspension is, therefore, sub­

ject to fluctuations in the generalised forces associated svith the linear springs (e.g. 

fluctuations in the wire tension). F luctuations in the generalised forces, Fth, are 

described by

Fth -  y J ^ k s T R i u )  (7.1)

where kg is B o ltzm ann’s constant and T  is the absolute tem perature . The depen­

dence on tem pera tu re  leads to this form of noise being termed thermal  noise.  It can 

be interpreted as a manifestation of the therm al motion of the constituent atoms of 

the suspension. R(u>) is the generalised resistance of the linear spring and is the real
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Figure 7.1: Ideal Spring Damped by Viscous Dash Pot.

part of its impedance. For a mechanical system the impedance is defined as

Applied Force
Z U ’)mech =  ----- — --------------;—  • (7.2)

Resultant "Velocity

There are three sources of thermally driven fluctuations that are relevant to the 

suspension of a test mass:

1. the modes of the pendulum;

2. the transverse modes of the suspension wires, and

3. the internal modes of the test mass.

Each of these can produce sufficient motion of the test mass to limit the sensitivity of 

an interferometric gravitational wave detector at frequencies of interest. Therefore, 

it is desirable to estimate the level of thermal noise produced in each case. This 

allows the optimisation of the suspension in terms of configuration and choice of 

materials.

7.2 In tern a l F riction

A dissipative linear spring (such as the wires of the test mass suspension) can be 

represented by an ideal spring in parallel with a dash pot (see Figure 7.1). The 

mass, m, moves only up or down without tilting. The dash pot produces a viscous
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f o r c e  p r o p o r t i o n a l  t o  t h e  v e l o c i t y  o f  t h e  m a s s .  T h u s ,  t h e  e q u a t i o n  o f  m o t i o n  i s

F : =  in :  +  r z  +  k z  . ( 7 . 3 )

\ \  h e n  h a r m o n i c  m o t i o n  i s  a s s u m e d  t h e  m e c h a n i c a l  i m p e d a n c e  i s

F -  — m u u ~ f jl.'c z k z  _
^ o i i e o h  =  . =  : ( < • ■ ! )r Iju :

a n d  h e n c e  t h e  m e c h a n i c a l  r e s i s t a n c e  i s

■ ^ m e c h  =  ^ f [ ^ m e c h ]  —  f  • ( t . o )

T h i s  d e t e r m i n e s  t h e  m a g n i t u d e  o f  t h e  f o r c e  f l u c t u a t i o n s  i n  t h e  s p r i n g ,  a s  g i v e n  b y  

E q u a t i o n  7 . 1 .  T h e  s p e c t r a l  f o r m  o f  t h e  d i s p l a c e m e n t  n o i s e  o f  t h e  m a s s  c a n  b e  

o b t a i n e d  f r o m  t h e  f r e q u e n c y  r e s p o n s e  o f  t h e  s y s t e m  ( g i v e n  i n  E q u a t i o n  4 . 3 5 ) .

F o r  m a n y  m a t e r i a l s  t h e  i n t e r n a l  f r i c t i o n  i s  n o t  v i s c o u s  i n  f o r m .  I t  i s  a  u s e f u l  

g e n e r a l i s a t i o n  t o  d e s c r i b e  d a m p i n g  i n  t e r m s  o f  a  l o s s  t a n g e n t .  o(^'  ) .  s u c h  t h a t  H o o k e  s  

l a w  b e c o m e s  F r  =  — / > ' [ !  +  io{ . c) } . r .  S e c t i o n  4 . 6 . 2  c o n t a i n s  a  d i s c u s s i o n  o n  t h i s  

c h a r a c t e r i s a t i o n .  T h e  m e c h a n i c a l  r e s i s t a n c e  o f  s u c h  a  s p r i n g  i s  t h e n  e x p r e s s e d  b y

ko{ a,’)
R U )  - 7 . 6 )
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Figure 7.3: A n Ideal Spring Damped by a Re laxat ion Process.

For the case where 6(<jo) oc lo this is equivalent to viscous clamping.

In many materials the loss tangent is observed to be constant over a wide range 

of frequencies relevant to the detection of gravitational waves [50]. This is known as 

s truc tural  damping.  When the loss tangent is constant with frequency the fluctua­

tions in the generalised forces have a \ / \ / ^ o  dependence. The spectral forms of the 

displacement noise for viscous and s tructura l damping of identical resonant systems 

are shown in Figure 7.2. Clearly, when the resonant frequency is above the fre­

quency band of interest the noise due to s tructura l damping is greater than that due 

to viscous damping. Conversely, when the resonance is below the frequency band of 

interest the noise is reduced. An estimation of the therm al noise in a system requires 

a knowledge of the frequency dependence of o ( l o ).

The characterisation of internal friction by 0(u?) becomes more im portan t when 

considering losses that arise from relaxation processes. The dam ping of an ideal 

spring by a relaxation process is represented in Figure 7.3. (The system of a spring 

and dash pot in series is called a Maxwell unit.) The relaxation process has a 

corresponding characteristic time t =  c \ / k \ .  Essentially, on a time scale shorter 

than r the dash pot does not respond, however, on a time scale longer than  r  the 

dash pot is able to respond and relaxes the series spring. The loss tangent produced 

by such a, damping mechanism is

LOT
£>{l o ) = A i . i

1  +  u j 2 t 2

where A is the relaxation strength  (with A =  k ' i / k ) .  This has the form of a Debye
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Figure 7.4: Relaxat ion Processes of an Ideal Spring.

peak with characteristic frequency 1 /2 Trr (Hz).

One way in which the loss tangent can be constant with frequency is tha t  several 

relaxation processes with different relaxation times are present. Such a system is

loss tangent to become arbitrarily uniform over a selected frequency band.

7.2.1 Therm oelastic Damping

An example of a relaxation process is heat flow. In a thin wire this produces ther­

moelast ic damping.  When a wire is bent one side is in compression and a rise in 

tem pera tu re  is produced. The other side is extended and, consequently, the tem per­

ature is decreased. Therefore, a tem perature  gradient exists across the wire. On long 

time scales heat flows to equalise the tem perature . This is an irreversible process 

which produces a loss to the system since the therm al energy is no longer available 

to drive the restoring force. The characteristic time scale of this relaxation process 

was shown by Zener [51] to be

where d is the diameter of the wire: p is the density; c^eat is the specific heat capacity.

shown in Figure 7.4. Considering an arbitrary  number of Maxwell units allows the

r  =  <.37 x 10 2 d Pc heat (7.8)

and ac is the thermal conductivity of the material. The factor of 7.37 x 10 2 arises 

from considering a wire of circular geometry. Zener also showed that the relaxation
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s trength  is
Y a 2T

A -  --------  (7.9)
c heat

where Y  is the Young's Modulus; a  is the coefficient of thermal expansion, and T  

is the absolute tem perature. In the case of steel suspension wires the loss tangent 

can be modelled as the sum of a. s tructura l dam ping term and the thermoelastic. 

dam ping term obtained from Equation 7.7 [52]. The m agnitude of the structural 

dam ping term has been measured to be approximately 5 x 10-4 (by the author: see 

Figure 7.12 and also by Kovalik [52]).

The thermoelastic damping mechanism applies to deformations of the suspension 

wires where compression and expansion occur simultaneously. This is produced when 

the wire is bent. For extension and torsion of the wire, no tem peratu re  gradient is 

generated so no heat is able to flow.

The model of thermoelastic damping, as proposed, is unlikely to hold for wires 

under very high tension. In this case, the bending length is very short. This allows 

significant heat to flow along the wire into the clamp holding the end. Results 

from Saulson et al [53] suggest that this is indeed the case. Preliminary modelling 

suggests that the thermoelastic damping peak is broadened to higher frequency but 

the maximum loss is reduced. This is because heat flow into the clamp occurs on a 

shorter time scale than across the wire but with a comparable relaxation strength.

7.3  T h erm al N o ise  in  a P en d u lu m

In Section 4.3 the restoring forces due to deformations of the suspension wires are 

discussed. Each of these is subject to internal friction and, therefore, results in 

fluctuations of the restoring force. To estim ate the thermal noise due to the modes 

of the test mass suspension these fluctuations are propagated  through the suspension 

to the sensed displacement of the test mass. This is possible using the state-space 

model of the pendulum described in Section 4.5.

It is easy to see that  dissipation in a wire has associated fluctuations in tension. 

This is the most straight forward realisation of the fluctuation-dissipation theorem 

applied to mechanical systems. There are also torques applied to the pendulum
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Figure 7.5: T herm al  Noise Inputs  for  each Suspens ion  Wire (ex tens ion and torsion).

masses associated with loss produced by torsion of the suspension wires. Both of 

these mechanisms are i l lustrated in Figure 7.5.

Much harder to obtain (but extremely im portan t)  are the forces applied to the 

pendulum  that arise from losses associated with bending the wires. The energy 

stored in bending the wire is described by the bend at the top, the bend at the 

bo ttom  and the horizontal displacement of the ends of the wire. These are the 

bending param eters  X , a  and 3 defined in Section 4.3.3. Equation 4.8 expresses the 

energy in terms of these coordinates. The existence of cross-terms in this expression 

shows tha t the coordinates A, a and 3 are not orthogonal. The change of variables

q  =  7] -  (

=  v +  C

X  = £ + It1

allows the elastic energy to be expressed as

£ ( £ , C) -  b
2/-2

(7.10)

(7.11)

(7.12)

(7.13)

where L 2 =  /2 — 4A/ + 4X2 ss I2. It is clear tha t  £ and (  are orthogonal. This allows 

the thermal fluctuations of their generalised forces to be applied as uncorrelated
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Figure 7.6: Th erm al  Noise Inputs  fo r  each Suspension Wire (bending).

noise sources. Figure 7.6 shows the generalised forces associated with £ and (. The 

transfer functions of the applied forces to sensed displacement noise are calculated 

using the state-space model of the pendulum. This allows the thermal noise to be 

es tim ated  given a knowledge of the loss tangent, <p{uo). Because bending of the wires 

occurs, the thermoelastic effect should be included when calculating

7.3.1 Analysis of a Single Pendulum

In this section the dependence of therm al noise on the dynamics of a single pen­

dulum will be investigated. There are two main param eters  that  can vary in such 

a system: the height above the centre of mass at which the suspension wires are 

a ttached, and the height at which the displacement of the test mass is measured by 

the interferometer.

A fused silica cube of dimensions 100 mm x 100 mm x 100 mm was used to 

represent a suspended test mass. This can be suspended by two wires attached  to 

the sides of the mass. The height at which the wires are attached  can be varied.
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Figure 7.7: Q fac tor  of  Pen d u lu m  Modes Agains t  the Height  of  the Break-of f  Point .

The length of the suspension wires is also varied so tha t  the distance between the 

suspension point and the centre of mass is kept constant. Longitudinal motion 

and tilt of the mass are strongly coupled in this configuration. Since there are two 

degrees of freedom, the coupled system has two normal modes. The restoring force 

for the longitudinal degree of freedom is mainly due to the gravitational field. Thus, 

the loss associated with longitudinal motion is small. In contrast, tilting the mass 

is a lossy motion because much of the restoring force is produced by bending the 

suspension wires. The dynamics of this system can be solved and the Q factors of 

the normal modes calculated for a variety of a t tachm en t heights. It is also useful to 

compare this to the two coupled modes associated with sideways motion and roll. 

The Q factors for all these modes are plotted in Figure 7.7.

The frequency of the tilt mode increases as the point of a ttachm ent is raised. This 

is because the gravitational restoring force increases in strength. For an attachm ent 

height of about 5m m  above the centre of mass, the frequencies of the longitudinal 

and tilt modes are almost identical. At this point the coupling between the degrees
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of freedom is strongest. In fact, the phase of tilt motion to longitudinal motion is 

reversed above and below this point. The highest Q factor is always associated with 

the greatest longitudinal motion.

For sideways motion, the mass is constrained by the wires to move purely in 

translation without coupling to roll motion. Thus, bending must occur at the top 

and bottom  of the wire. Longitudinal motion is not subject to this constraint since 

the mass is essentially free to tilt. Thus, bending is only produced at the top of the 

wire. It is reasonable to expect that this should incur only half the loss compared 

to sideways motion. The longitudinal mode, therefore, has an inherently higher Q 

factor than  the sideways mode. The graph shows that the longitudinal mode (when 

the tilt coupling is strong -  i.e. at an a ttachm ent height of 0.05 m) has a Q factor 

precisely double that of the sideways mode (when the wires are attached at the 

centre of mass).

The pendulum  thermal noise was calculated for different a t tachm ent heights and 

for different, spot heights on the mirror. The results are shown in Figure 7.S. The 

height of attachm ent has a small effect: the therm al noise gets marginally worse 

at higher a ttachm ent points. The spot height on the mirror produces the greatest 

effect. It is evident that there is a minimum in the sensed displacement for a spot 

height %5 mm below the centre of mass. If thermal noise from the pendulum were 

the dominant limiting noise source in the detector then positioning the spot at this 

minimum would be advantageous. However, the advantage is typically small and an 

offset in spot height can couple seismic noise (see Section 3.2.2). Further, it should 

be noted that  the spot cannot be located close to the edge of the mirror because a 

significant fraction of the spot intensity would then miss the mirror. A safety margin 

of at least 3 beam radii should be allowed.

7.3.2 Suspension Topology of a D ouble Pendulum

There are several possible topologies for suspending a test mass as a double pendu­

lum. It is im portan t to permit the orientation (both  tilt and ro ta tion) of the test 

mass to be controlled by forces applied at the interm ediate  stage. Figure 7.9 shows 

two possibilities which allow this. The essential difference is th a t  if four wires are
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Figure 7.9: Configurat ions for Suspending  a Test Mass.

used on the lower stage, the attachm ent points can be close to the level of the centre 

of mass; if two wires are used then it is only possible to attach them to the top of 

the mass. It is an im portan t  issue to resolve the advantages and disadvantages of 

both  these techniques. For a gravita tional wave detector where sensitivity at low 

frequencies (down to ~ 1 0 H z  -  see C hap ter  1) is desired the therm al noise arising 

from the pendulum  modes of the test mass suspension is a critical noise source.

The pendulum  therm al noise is now considered for possible test mass suspensions 

for the GEO 600 project. This requires the construction of a test mass suspension 

that allows good sensitivity above 50 Hz. Four possibilities are compared: the sus­

pension with two or four wires (as illustrated in Figure 7.9) using in each case either 

steel wires or fused silica fibres. The therm al noise is calculated for each of these 

cases as a function of the spot height on the test mass. The results are shown in 

Figure 7.10.

The cross sectional area was chosen so th a t  the test mass loaded the wires to
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Thermal Noise as a Function of Spot Height.

2 Wires, Steel.

4 Wires, Steel.

-20
2 Wires, Fused Silica.

a .

4 Wires, Fused Silica.

-0 .0 4 -0 .03-0 .0 5 - 0.02 - 0.01 0.02 0 .03 0 .0 40 0 .050.01
Spot Height on Mirror (m).

Figure 7.10: T he rm al  Noise in Double Pendu lu m Suspensions.

approximately one third of their breaking stress. For steel this was 7.5 x 108 Pa; for 

fused silica, fibres a stress of 2.7 x 108 Pa was assumed. The loss tangent for fused 

silica fibres was assumed to be 2 x 10~' -  certainly a Q factor of 3.5 x 106 has been 

measured for fused silica ribbons by Rowan. Twyford and Hough, here at Glasgow. 

The loss tangent for steel was taken to be 5 x 10 (from m easurem ents presented 

in Section 7.4.2).

The intrinsic loss of fused silica is smaller than  th a t  of steel by approxim ately 

three orders of magnitude. This means that the therm al noise should be about 30 

times less for fused silica suspensions. This is, to some extent, offset by the need to 

use fused silica fibres of greater diameter. However, the predicted level of therm al 

noise for fused silica is substantially less than tha t  for steel.

The difference between a two wire and four wire topology is more subtle. By 

analysing the energy stored in bending a stiff wire (see Equation 4.8) the loss is 

introduced by the param eter
V y i t



where Y  is the Young’s Modulus. I  is the moment of cross-section of the wire. T  is 

the applied tension and I is the wire length. If the wires are to be maintained at 

the same fraction of their breaking stress then the to tal cross sectional area should 

remain constant. Taking into account the dependence of I  upon the radius and T  

upon the num ber of wires, the loss for all wires varies as 1 / V N  where N  is the 

num ber of wires. Thus, the therm al noise should be factor of V'2 greater for the 

two wire case compared to th a t  for four wires. Further, the to tal length of the 

pendulum s is fixed. This means that  the wire length is shorter when two wires are 

used because they must be attached to the top of the test mass. For the pendulums 

considered this further increases the therm al noise for the two wire suspension by 

factor of V 2 compared with using four wires. (This point is significant because the 

test mass radius is comparable to the length of the suspension wires. This is the 

case in all reasonable suspensions.)

It is evident that the topology of the test mass suspension affects the level of 

therm al noise expected from the pendulum modes. A four wire suspension is seen to 

be b e t te r  than  a two wire suspension. However, technical issues are more likely to 

dominate the decision. For example, optical contacting of fused silica fibres to the 

test, mass is more reliable when the joint is subject to tension ra ther than shear [54]. 

A joint in tension requires the attachm ent to be to the top of the test mass, thus, 

favouring a two wire suspension.

One advantage of a two wire suspension is th a t  there are half the num ber of 

transverse modes of the suspension wires. The transverse modes of the suspension 

wires are discussed in Section 4.7.

7.3.3 Conclusion

The therm al noise associated with the pendulum modes has been modelled using 

thermally driven fluctuations of the wire stress. These are then propagated  through 

the test mass suspension using the state-space model. The resultant displacement 

noise has been calculated for single and double pendulum s for different wire topolo­

gies in order to optimise the pendulum  design for low therm al noise. The most 

significant factor is the height on the test mass at which the in terferometry is con­
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ducted. Calculations indicate the existence of a minimum of thermal noise; typically 

this is just below the centre of mass.

7.4 T ransverse M o d es o f  th e  S u sp en sio n  W ire

The therm al motion of the transverse modes of the suspensions wires is now con-

to specify the minimum Q factor that must be a tta ined  so that  the off-resonance 

therm al noise does not limit the sensitivity of a gravitational wave detector.

A model describing these modes is presented in Section 4.7. Although vibrations 

of the wires couple weakly to the test masses it is still a significant source of displace­

ment noise. To calculate the displacement noise produced by therm al vibrations of 

the suspension wires fluctuations in the generalised force (as in Equation 7.1) are 

applied to the system. Then the generalised amplitude, ,4n , is (adapted from [22])

where ujn is the resonant frequency, o n {u>) is the loss tangent and rnn is the effective

0.5 x r??wjre (this was noted in Section 4.7). The displacement of the test mass is

where m 2 is the test mass. This reflects the to ta l  from one suspension wire. T y p ­

ically. there are two or four wires per test mass and two or four test masses in the 

interferometer. The frequency of the fundam ental transverse inode varies for each 

suspension wire resulting in a number of peaks in the displacement noise spectrum.

sidered. An estimate of the resulting displacement noise is made. This is required

;2 b T
n ~ (7.15)

mass all refer to the n1*1 mode. The effective mass of all the transverse modes is

related to the generalised am plitude by Equation 4.47. This enables the sensitivity 

limit of the interferometer to be estimated: this should be summed for all modes

though only the first few have a significant contribution [55]. The therm al noise 

power due to the transverse modes is thus given by

(7.16)

The off-resonance level should be added for all the wires present in the in terferom­

eter.
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This analysis considers the therm al noise from each transverse mode to be un­

correlated. This is equivalent to saying that the loss is d istributed uniformly in the

wire and is not localised to a particular defect in the suspension (e.g. friction in the

clamps holding the wire ends).

7.4.1 Loss Associated with Transverse M odes

When a wire is tensioned by the loading of a pendulum  mass, the loss of the trans­

verse modes are less than the intrinsic loss of the material. Effectively, most of the 

energy is again stored in the gravitational field and only a small am ount is stored in 

the deformation of the wire. It has been shown by Gonzalez and Saulson [56] that 

the loss tangent of the n t*1 mode is given by

2 /  (/7tt)2 \
O ji ( «*; ) — ~  I 1 +  I 0 ( i C  )mat  ( /  .1 / )

where a is defined in Section 4.3.3 and I is the length of the wire. ^ ) raat 1S the

intrinsic loss of the material. Because a transverse mode involves bending of the

wire, therm oelastic damping will contribute to this loss tangent. For a steel wire 

tensioned at a third of its breaking stress the enhancem ent of the mode Q factor 

over the intrinsic material Q is

Enhancement =  2 x 102 ( --------- ( — - — ^ (7.18)
\0 .37  m /  V r )

where r is the wire radius. The enhancement is also a function of the mode number, 

ft, but the effect is small for the first few modes and has been om itted  for clarity. 

The mode frequency is given by

/  0.37 m \
f n =  480 x  n ---------   (Hz) . (7.19)

These are normalised to the dimensions of the wires used to suspend the test masses 

of the Glasgow prototype. Although the wires in the Glasgow suspension are not 

quite at this tension it is evident that the transverse modes occur within the fre­

quency band of interest to gravitational wave detection. This causes , peaks in the 

displacement noise spectrum  (as shown in Figure 7.11). This is unavoidable. How­

ever, if the modes have high Q factors then each resonance will effect only a very 

narrow frequency band.
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Figure 7.11: Therm,al Noise f ro m Transverse Modes in the Glasgow Prototype.

7.4.2 M easurements of Q factor of Transverse M odes

The Q factors of the wires used in the Glasgow pro to type  have been m easured in situ. 

They can be easily excited by applying a sinusoidal force at the interm ediate  mass of 

the suspension and observing the displacement of the test mass interferometrically. 

The Q factor can be measured by switching off the excitation drive and recording 

the ringdown of the mode.

The wires used in the test mass suspensions are steel and have a radius of 89 //m. 

At the in term ediate  mass the ends were clamped between two pieces of Aluminium. 

The wires run under the test mass and bars made from fused silica are used to define 

a break-off point. Small grooves were filed in the break-off bars to prevent the wires 

moving freely. The tension in the wire can be deduced (from Equation  4.44) by a. 

measurement of the transverse mode frequency. Since all the properties of the wires 

are known, the expected enhancement of the Q factor can be estim ated.

The results from the suspensions used in the Glasgow p ro to type  are shown in
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Figure 7.12: Th e x '$ indicate pendulum modes involving ex tens ion of the suspens ion  

wires. These are not  subject to thermoelast ic damping  and, thus, are a measure of  

the structured damping term.. The solid, line shows the expected. Q fac tor  that, would, 

be measured for  a mode subject to structural  damping  and thermoelast ic damping.  

This assumes a structural  damping  term that limits the Q fac tor  to 2000. The 

o's are results for the transverse modes. These have been divided by the expected 

e n h anc em en t  fac tor  to obtain the intr insic mater ia l  loss.

Figure 7.12. The points marked with x ’s are for pendulum  modes. These produce 

almost pure extension of the wire and are not subject to thermoelastic damping. 

Thus, they are a measurement of the s tructura l  damping term of the wire material. 

The solid line marks the Q factors expected when the loss in steel consists of a 

s tructura l  damping term and the thermoelastic damping. Points marked with ’o's 

are the fundamental transverse modes. The measured Q factors have been divided 

by the expected enhancement due to tension to estim ate the materia l loss. The 

transverse modes are subject to thermoelastic damping.
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7.4.3 Conclusion

The results for the transverse modes are a factor of less than is predicted by the 

model of loss in steel. This indicates that additional losses are present in the system. 

Mostly likely, friction associated with the break-off of the wires from the test mass 

is contributing to the loss.

From measurements on the Glasgow prototype detector, it has been shown that 

the Q factor of a. wire is significantly increased when the gravitational field stores 

most of the energy.

7.5 In ternal M od es o f  th e  T est M ass

The interferometer is sensitive to phase shift in the light reflected from the test mass. 

The phase shift is a measure of the integrated displacement of the test mass face 

weighted by the Gaussian profile of the optical mode. Apparent displacement {i.e. 

without translation of the centre of mass) can arise if the test mass face distorts in 

such a way to produce net motion of the area sensed by the optical mode. Such 

distortion is characterised by a set of normal modes -  known as in ternal  modes.  The 

internal modes arc excited by the Brownian motion of the atoms in the test mass 

to produce a limitation to the sensitivity of an interferometric gravitational wave 

detector.

In this section the thermal noise from internal modes in the test masses used in 

the Glasgow prototype detector will be estimated. These test masses are made from 

fused silica and have cylindrical geometry with a super-m irror coated on one of the 

end faces. The dimensions are 63.5 mm in radius by 101.6 mm thick. A to tal of four 

mirrors form two orthogonal Fabrv-Perot cavities. Two of the mirrors are flat and 

two have a 15 m radius of curvature. The radius of the optical mode is 1.08 mm 

on the flat mirror and 1.87 mm on the curved mirror. Both curved mirrors have 

magnets attached to the rear face: one is required so th a t  feedback can be applied 

to the test mass (as is discussed in Chapter 6): the other is used to calibrate the 

detector output. An estimate for the thermal noise sensed by the interferometer 

should include contributions from all masses. These are added in quadrature .
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To make the interferometer less sensitive to tilt or rotation of the test mass the 

optical mode is centred on the mirror face. Obviously, some of the internal modes 

have a node at this point and. therefore, do not couple strongly to the interferometer 

signal. (Any coupling relies on asymmetries in the test mass or misalignment from 

the face centre.) Thus, to estimate the therm al noise only the axisymmetric modes 

need to be included. It is assumed that coupling of other modes will be offset by 

reduced coupling of axisymmetric modes.

It is sufficient to describe an internal mode by its resonant frequency, effective 

mass and profile of face distortion. The effective mass is best normalised to the 

actual mass. For a given spot size, the coupling factor between the optical mode 

and the internal mode can be calculated from the profile of face distortion. This 

can be incorporated with the effective mass to give an empirical factor, a n . that 

characterises the coupling of the internal mode to the optical mode. Modes for 

which this factor is smaller contribute more to the therm al noise. In principle, each 

mode will also have a unique loss tangent, <pn (u!)\ however, this will be assumed to 

be universal for the test mass material in the frequency range of interest for the 

detection of gravitational waves. The loss associated with each mode will be further 

discussed in Section 7.5.4.

The equipartition theorem states that  each normal mode has an energy of 7>kgT 

associated with its thermal motion. This allows the displacement noise from each 

mode to be calculated. The thermal noise power is then given by [23]

4k b T
= £m t   ___ a n uj m

(7.20)
i^'n ~  Lj2)2 +

where u,'n are the internal mode frequencies and (j>n {u)  are the frequency dependent 

loss tangents associated with each mode. The resonant frequencies of the internal 

modes are, by design, above the frequency band of interest for detecting gravita tional 

waves. Equation 7.20 can then be simplified for u; <C u;n to give (also from [23])

4k b T  4>n {
in t =  17-21)
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7.5.1 Elastic Equations

The internal modes of a cylindrical mass have been analysed by Hutchinson [38]. He 

describes how to solve the elastic equations of a. cylinder in free space. These bo u n d ­

ary conditions are almost identical to those of a cylindrical test mass suspended by 

thin wires. Gillespie and Raab [23] have recently adapted  H utchinson’s work to the 

study of test masses for use in gravitational wave detectors. Their conclusions are 

now discussed and applied to the test masses of the Glasgow prototype.

It can be seen from Equation 7.21 that  the contribution to therm al noise power 

from a mode is inversely proportional to the square of its resonant frequency. How­

ever, Gillespie and Raab found that some higher order modes have a concentration 

of motion at the centre of the test mass face and, therefore, strongly couple to the 

optical mode. Thus, the value of a n can be sufficiently small so that the mode is 

still significant. In fact, they suggest that o/n varies as l/u>n . If the optical mode is 

centred on the mirror face then only the axisymmetric modes need to be considered. 

In this case, the mode density (in frequency space) varies linearly with u;n . W hen 

all these factors are taken into account, the modes in equal frequency intervals con­

tribute equally to the therm al noise power. Thus, the total thermal noise power 

rises linearly with the maximum resonant frequency of internal mode considered.

It is only when the acoustic wavelength is of order the spot diameter that  the 

internal modes become decoupled from the optical mode. This happens because 

the distortions are averaged out over the area sensed by the optical mode. The 

frequency, / max, up to which internal modes should be considered is given by

/ m a x  =  ~~~ ( 7 . 2 2 )
2 w

where w is the spot radius and c is the velocity of sound in the test mass material.  

The internal modes are, in fact, a combination of compression waves and shear 

waves. The two mechanisms have different propagation velocities; these are given 

in [57] as

f y  (i -  v) x
c c o m p  — \ j 77~7 7T~r ( 7 . 2 3 )V P (1 +  u){ 1 -  2v)
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where Y  is the Young’s modulus, p is the density and v is Poisson’s ratio for the test 

mass material. For the purposes of the thermal noise estimate an average of these 

two numbers should suffice. For fused silica this is about 4.8 x 103 m s- 1 . For the 

test masses used in the Glasgow pro to type all modes with resonant frequencies up 

to ~ 3  MH z contribute to the internal thermal noise.

The total thermal noise can be estimated by multiplying the therm al noise from 

the first mode by the ratio of the maximum frequency, / max, and frequency of the 

lowest mode. The frequency of the lowest internal mode of the test mass is given 

approximately by
c

/ m i n  ~  TT ( 7 - 2 5 )
I d

where d is the thickness of the test mass. For a cylinder whose radius is equal to 

the thickness (and hence the volume, V  = n d 3) the total thermal noise from all 

contributing modes is then, after some substitution, given by

7T 3 p c ^  U’u-’

where is a typical value of 1 /a  for the fundam ental modes. Results from

numerical analysis suggest a value of ~  2.5. This corresponds to a  =  0.4. Table 7.1 

shows calculated values of a for the first few modes of the test masses used in the 

Glasgow prototype detector. These are cross-checked with results from finite element 

analysis.

7.5.2 Finite Element Analysis

In order to verify the mode shapes produced by solutions of the elastic equations, 

the internal modes were calculated using finite element techniques. The test mass 

is divided into many elements whose coupled dynamics can be solved. The edges 

of these elements define a mesh with nodes located at their corners. Finite element 

analysis produces the amplitude of the position pertu rba tions  of the nodes and so 

describe the dynamics of each mode. A limitation of this m ethod  is tha t only those 

modes which are adequately sampled by the mesh can be calculated.



Mode Description Finite Element Elastic Equations

Asymmetric Drum 0.474 0.555

Longitudinal 0.363 0.368

Symmetric Drum 0.719 0.647

Expansion 1.755 2.85

2nc* Asymmetric Drum 0.223 0.175

Table 7.1: Calculation o f Coupling Factors fo r  In te rnal  Modes.

A mesh for the test masses of the Glasgow pro to type was generated and then 

analysed using Aba.qus 5.2 (courtesy of The D epartm ent of Mechanical Engineering. 

Glasgow University). The mesh consisted of 768 elements; each was about 1.65 cm 3. 

This was adequate for verifying the fundamental modes and also the first high order 

mode which exhibited large motion at the face centre. Since the spot size was small 

compared to the mesh size, the coupling between the internal mode and the optical 

mode was taken as the amplitude of node at the centre of the test mass face.

The values of <yn calculated by both methods are compared for the first five 

a.xisymmetric modes in Table 7.1. Figure 7.13 shows some of the mode shapes 

obtained.

As can be seen, the values for q „ are similar for both  methods. In particular, the 

value obtained for the 2nc* Asymmetric Drum Mode indicates tha t  this high-order 

mode is significant in its contribution to thermal noise. It was not possible to verify 

modes of higher frequency than this using the mesh described above because the 

element size was too large. To use a finer mesh would require increased computing 

capacity tha t  was not readily available.

It is also useful to compare the resonant frequencies of the internal modes pre­

dicted by the numerical techniques with m easurements of the test masses. These are 

shown in Table 7.2. The measured frequencies are for test masses without magnets 

attached. These differ by less than 0.1% between the two test masses.

The calculated frequencies are accurate to within 2-3%: of the measured values. 

This gives confidence th a t  the calculation of the mode dynamics and hence the values 

of o,n are also sufficiently accurate to allow the therm al noise to be estimated.
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Mode Description Measured
Frequency

(Hz)

Finite
Element

(Hz)

Elastic
Equations

(Hz)

Asymmetric Drum 

Longitudinal 

Symmetric Drum 

Expansion

2nd Asymmetric Drum

23748

25520

28649

32040

36249

23003

24678

26597

31477

34240

23992

25784

28972

32582

36640

Table 7.2: Resona nt  Fre.que.nc.ieA of  In ternal  Modes.

7.5.3 Thermal Noise Estim ate o f Prototype

The therm al noise from internal modes of the test masses is estim ated for the Glas­

gow pro to type detector. The loss tangent. &n {uj). is taken to be identical for each 

mode and constant with f r e q u e n c y .  The loss function cannot be greater than 2 x 1 0 ~ 6 

since internal mode Q factors of 5 x 10° have been measured in the p ro to type  test 

masses (both  by the author and by Wood [58]). In fact, Wood measured a Q fac­

tor of 9.1 x 10° but with only a single wire suspension. For the purposes of this 

estimation, the loss tangent is assumed to be 2 x 10“6.

Using m easurements of resonant frequencies and values of a n taken from Ta­

ble 7.1 (an average of both columns was used) the therm al noise power was calcu­

lated for the first five axisyinnietric modes. This is then multiplied by a factor of 

/m a x / / - 5  where is the resonant frequency of the fifth axisymmetric mode. This 

factor takes into account the contributions from all other modes whose resonant 

frequencies are less than the cut-off frequency /m ax- This must be done separately 

for both mirrors comprising the Fabry-Perot cavity because the spot size is different, 

on each mirror. Since there are two cavities, the therm al noise power should be 

doubled. The displacement noise measured by the interferometer is the square root 

of the therm al noise power.

At 1 kHz the therm al noise from the internal modes is estim ated to be 4.0 x 

10-19 m / \ /H z .  The observed noise floor of the detector is expected to be a combi­

nation of therm al noise from internal modes and shot noise at this frequency. The
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shot noise level was estim ated to be 4.2 x 10~19 m / \ /H z  at 1 kHz. Combining these 

in quadra tu re  gives an total estimation of the detector noise floor at 1 kHz to be 

5.8 x 10~19 m / \ /H z .  The noise floor is observed to be 5.8 x 10~19 m / \ /H z .  This is 

consistent with the estim ated thermal noise.

7.5.4 Discussion o f Internal Loss in the Test M asses

On the assumption that  the observed noise at around 1 kHz in the Glasgow prototype 

detector is a combination of shot noise and internal therm al noise, the loss tangent 

due to the internal friction of the test masses is approximately 2 x 10- 6 . However, 

m easurem ents of the Q factor of internal modes (at frequencies of > 30 kHz) in bulk 

fused silica imply that the intrinsic loss is an order of m agnitude less than this (see 

Gillespie [59]).

The restoring force is generated purely by distortion of the test mass itself and 

therefore the loss associated with each mode should be the intrinsic material loss. 

In general, the internal losses should not be assumed to be homogenous throughout 

the test mass. For example, there may be effects associated with the surface of the 

test mass. The most significant inhomogeneity is the attachm ent of magnets and 

wires. This can introduce additional losses to the test mass.

Logan [60] showed that there is coupling of the internal modes to the transverse 

modes of the suspension wires. The results show the variation in Q factor of an 

internal mode as the wire length (and hence the transverse mode frequency) is 

varied. The Q factor is decreased when the transverse mode frequency is matched 

to the internal mode. However, modelling of this coupling showed tha t  the thermal 

noise was only increased at the transverse mode frequencies. (In fact, more thermal 

noise is associated with motion of the centre of mass than  with coupling through 

the internal modes.) Away from the transverse mode frequencies the thermal noise 

from the internal modes only arises from the intrinsic loss of the test mass material.

The m agnets attached to the test mass are a source of significant loss. This is 

readily seen by comparing the Q factors of internal modes for the masses tha t  have 

magnets attached  with those that  do not. Table 7.3 shows experimental m easure­

ments for all the masses. Both the end masses have m agnets attached.
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Mode Description Inboard
Prim ary

Inboard
Secondary

End
Secondary

End
Prim ary

(1)

End
Prim ary

(2)

Asymmetric Drum 230000 62000 74000 36000 184000

Longitudinal 540000 440000 220000 38000 430000

Symmetric Drum 110000 120000 44000 15000 78000

Expansion 170000 120000 50000 2600 106000

2nd Asymmetric Drum 35000 260000 730 2100 246000

47 kHz 100000 100000 20000 14000 48000

48 kHz 280000 340000 13000 27000 51000

56 kHz 110000 120000 9900 33000 46000

58 kHz 140000 190000 20000 9200 17500

59 kHz 540000 320000 17000 29000 275000

Table 7.3: The measured Q factors  of internal  modes of  the test  masses  used in the 

Glasgow prototype detector.  Ne ither  o f the Inboard masses have magnets  attached 

but both End  masses do. The c.olum,ns End Secondary and End P rim ary  (1) contain  

measur emen ts  with magnets  3m m  thick by 10 mm diameter  glued directly to the 

test mass face.  End Prim ary (2) contains m easur em en ts  obtained when a smal ler  

magnet  1m m  thick by 3 mm diameter  was attached via a fused silica s tand-o ff  I m m  

in d iameter  and 3 mm long. Repet i t ion of the m,easurements indicated that the error  

in the Q fac tors  is about 3%: for Q fac tors  below ~2000 the error is as much  as 

1 0 %.
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If the loss implied by the Q factors presented in Table 7.3 were constant with 

frequency this would give rise to a therm al noise limit well in excess of the current 

observed sensitivity. The extremely low Q factor measured for the 2nd Asymmetric 

Drum Mode of the secondary end mass (Q = 730) would be responsible alone for the 

observed noise floor at 1 kHz. Since other modes would also significantly contribute 

then the loss at the resonant frequency cannot indicate the loss at lower frequencies.

The magnets can be considered to be resonantly coupled to the test mass as 

is shown in Figure 7.14. The internal mode is represented by a mass on a lossless 

spring. The magnet is coupled to the test mass by a lossy spring. It is clear that 

there are two coupled modes of the system both  of which are dam ped by the lossy 

spring. However, the therm al driving force should be applied as a fluctuation in the 

restoring force of the lossy spring. At low frequencies this results mostly in motion 

of the magnet. A coupling factor is required to take into account the am plitude of 

motion at the point where the magnet is attached. If the point of a t tachm ent is a 

node then neither the loss nor thermal motion associated with the magnet can couple 

to the internal mode. This mechanism explains how the Q factor of a resonance can 

be reduced without increase in the thermal noise away from the resonant frequency 

-  specifically in the region of interest to gravitational wave detection. However, it 

is still possible that the attachm ent of magnets is responsible for the excess loss 

suggested by the measured noise. A m ethod  of a ttaching the magnets to the test 

mass that reduces their coupling is now considered.

Initially, the magnets used on the test masses of the Glasgow pro to type  were 

10 mm in diameter by 3 mm thick. The whole area of one face was glued to the test 

mass. This means that distortion of the face couples strongly to distortion of the 

magnet and causes a significant loss to the internal mode. Another source of loss is 

the glue joint that fixes the magnet to the mass.

It is desirable to reduce the contact area between the magnet and the test mass 

and also the amount of glue required. This was achieved by attaching the magnets 

using stand-offs (as was implemented by Gillespie on the Caltech p ro to type  [61]). 

Both a ttachm ent techniques are compared in Figure 7.15. The stand-off is a piece 

of fused silica rod 1m m  in d iameter and 3 mm long. This reduces the contact area
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Figure 7.14: Resona nt  Coupling of  Magn et  to an In ter na l  Mode of the Test Mass.

between the test mass and the magnet by a factor of 100. This should reduce the 

coupling of the magnet to the internal modes of the test mass and also reduce the 

amount of glue used in the attachm ent.  Smaller m agnets (3 mm in diameter by 

1m m  thick) are now used. This further the reduces the coupling of therm al motion 

because there is less mass to react against -  a factor of 33 less. The improvement in 

measured Q factor for the internal modes of this mass can be seen by comparing the 

last two columns in Table 7.3. For all modes measured, the Q factor was increased; 

for some modes the Q factor is as much as 100 times better.

Another source of friction are the wire loops tha t  are passed underneath  the test 

mass to hold its weight. The cylindrical surface of the test mass has a ground finish. 

It is thought that this could cause friction with the wire loops and thus reduce the 

Q factor. This could explain why internal mode Q factors are reduced even for the 

Inboard masses which do not have magnets attached.

The Q factors measured for the test masses of the Glasgow pro to type can be 

compared for the case of a single loop suspension (recorded by Wood [58]) with a 

suspension using two wire loops (as presented in Table 7.3). The highest. Q factor 

attained was almost a factor of 2 higher for the single loop case. (In both  cases the
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Figure 7.15: A t t a c h m e n t  of Magnets  to the Test Mass.

highest Q factor was measured for the longitudinal mode making this a reasonable 

com parison .)

It is also to be noted that the fused silica masses with which Gillespie [59] 

measured internal mode Q factors consistently in excess of 5 x 10*' had their sides 

polished. This is expected to reduce the friction with the wire loops.

7.5.5 C onclusion

The Q factors have been measured for some of the internal modes tha t  contribute 

significantly to the thermal noise of the detector. This cannot give a true indication 

of the loss at frequencies about 1 kHz since the noise floor of the detector would be 

much higher. Thus, the reduction in Q factor of the internal modes is explained in 

terms of resonant coupling of the magnets. In this model the therm al noise is not 

increased at lower frequencies. This, however, does not mean that the a ttachm ent 

of magnets does not cause an increase in the loss of the test materia l at lower 

frequencies, merely that it is not at a level to explain the low Q factors that have been 

measured. It is. therefore, still justified to pursue techniques of attaching the magnet 

that  reduce the effect on the test mass. Another possibility for applying feedback 

to the mass is to use an electrostatic drive. This uses the dielectric properties of 

the test mass in an electric field. If has the advantage that it does not require any 

attachm ents  to the test mass which could introduce frictional loss and cause excess 

thermal noise.

10mm
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There is some suggestion tha t  the internal Q factors could be limited by friction 

with the wire loops used to hold the masses. This seems to be reduced if the 

cylindrical surface of the mass is polished instead of being left with a ground finish. 

Elimination of the wire loops would definitely remove any frictional loss associated 

with them. To achieve this, a ttachm ent techniques such as optical contacting or 

spot welding could used to manufacture a monolithic suspension. These are being 

actively researched (at time of writing) by Rowan et al [62] here at Glasgow and 

also by Traeger [63] at the Universitat Hannover.
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Chapter 8 

G E O  6 0 0

'The LORD said, "If as one people speaking the same language they have 

begun to do this, then nothing they plan to do will be impossible for 

them .'1'

Genesis xi.6.

8.1 O verv iew  o f  th e  G EO  600 P r o jec t

GEO 600 is a joint British-Germ an project to build a high sensitivity interferome­

ter for detecting and observing gravitational waves. Figure 8.1 shows a schematic 

diagram of the optical configuration that is currently proposed. GEO 600 will be a 

dual recycled Michelson-type interferometer with a double-pass folded delay line in 

each arm.

The source of the laser light will be a non-planar ring oscillator laser emitting at 

1064 nm -  the near infra-red. This will be used as the m aster for a more powerful, 

injection-locked laser that  will produce between 5 and 10 W atts  of single mode and 

single frequency light. Both these lasers will be pum ped by laser diodes.

A small am ount of light will be split-off from the main beam to lock the laser to 

a rigid reference cavity. This is done to increase the frequency stability of the laser 

which aids the acquisition of the interferometer locking servos when only a limited 

bandw idth  is available. The cavity will be made from a low therm al expansion ma-
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terial thereby also providing a stable dc reference for the laser. The reference cavity 

requires to be isolated from seismic and acoustic vibrations. An optical fibre may 

also be placed between the laser and the cavity to reduce fluctuations in the beam 

pointing: in this way the fibre acts like a modecleaner. These measures will ensure 

that  the laser light available to the interferometer will be stable to approximately 

1 x 1 0 ~ 3 H z / > / H z [65] .

High finesse Fabry-Perot cavities will be used as modecleaners to reduce the 

geometry per turbations of the laser beam that illuminates the interferometer. This 

type of modecleaner is described by Skeldon et al [26]. Such a cavity will also filter 

int ensity noise and frequency noise of the laser light [28]. Two such mo decleaning 

cavities are required in order to achieve the sensitivity goal of GEO 600. They are 

located between the laser and the interferometer. Each will be a three mirror ring 

cavity of approximately 8 metres in length and will be rf  reflection fringe locked to 

the input laser light. All mirrors in the modecleaners will be suspended so that 

they are isolated from ground vibrations. This is analogous to the suspension of 

the test masses but, as will be seen, the allowed displacement noise is four orders of 

m agnitude higher. Section 8.2 details the suspensions that  will be used.

After the light has passed through the modecleaner cavities it will be rf  reflec­

tion fringe locked to the power recycling cavity of the interferometer: this is the 

m aster frequency reference of the interferometer at signal frequencies. At low fre­

quencies, the seismic excitation of the pendulum modes of the mirror suspensions 

would impose large frequency excursions on the laser. The rigid cavity used to pre­

stabilise the laser is a superior low frequency reference. Thus, at low frequencies, the 

power recycling cavity should be locked to the input light but with a very limited 

bandw idth . This requires actuation to the power recycling mirror or, alternatively, 

common mode to the lengths of the arms. The cross-over from one regime to the 

other is expected to be <10 Hz.

The output of the interferometer will be maintained at a dark fringe. This will 

be achieved by servoing the differential length of the interferometer arms. Thus, 

feedback ac tuation is required to at least one test mass. The ac tua tion  force could 

be produced by current carrying coils acting on magnets or by an electrostatic drive.
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An electrostatic drive is preferred because it should maintain  high Q factors of the 

test mass internal modes (and maintain therm al noise properties). A suitable elec­

trostatic  drive is, however, still to be experimentally realised. In either eventuality, 

seismic motion of the ac tua to r  can couple to the test mass and could cause excess 

displacement noise. Thus, the ac tua to r will be m ounted on a reaction mass which 

will also be suspended as a pendulum thereby isolating the ac tua to r  from seismic 

motion.

The error signal corresponding to a differential change in length of the arms 

will be obtained by the technique of external m o du la t ion1. This involves combining 

an auxiliary reflection from the interferometer (e.g. from the opposite face of the 

beam splitter) with the ou tput fringe. This is shown in Figure 8.1. This detection 

process will also utilise rf  m odulation techniques; see [64] for a discussion of this 

topic.

The position of the signal recycling mirror requires to be controlled in order to

] T h e  use of  ex tern a l  m o d u la t io n  for G K O  600  is cu rren t ly  u n d er  review.

143



maintain the resonant tuning of the signal sideband enhancement. It is likely that  

Schnupp modulation [66, 67] will be used to do this. (Schnupp m odulation may also 

be used to extract the ou tpu t signal of the interferometer.)

Due to distortions of the optics used in the interferometer (particularly therm al 

distortion of the beamsplitter [68]), light can be scattered  from the fundam ental 

Gaussian mode into higher-order modes. These are not resonant in the system and 

therefore can be emitted from the output.  Such light does not contain information 

about the displacement of the test masses but will increase the shot noise if it were 

detected by the ou tput photodetectors. Thus, the ou tpu t  beams will be passed 

through a further modecleaning cavity to reject this light. A short rigid ring cavity 

is likely to be used for this.

8.2 GEO 600 M o d ec lea n er  M irror S u sp en sio n

The suspensions detailed in this section have been designed to meet the requirements 

for the GEO 600 modecleaners and, by default, they are also good enough to be used 

for beam directing optics. For simplicity, the same design and specification will be 

used for all such mirrors.

The displacement noise specification arises because motion of the mirrors imposes 

frequency noise on the laser light via Doppler shifting. For mirrors forming a Fabry- 

Perot cavity [i.e. the modecleaner mirrors), the frequency noise imposed on the 

light is given by
v J- OJX
-  =   (8 .1 )
v n c

where v is the frequency of the laser; JF is the modecleaner cavity finesse; x is the 

displacement noise of the mirror and c is the speed of light. The factor, ( jF / t t ), is the 

average number of round trips of the modecleaner cavity before light is t ransm itted .  

The finesse of the modecleaner cavities will be ~2 x 103.

The level of pre-stabilisation of the laser frequency should not be compromised by 

the motion of the mirrors. For a laser frequency stabilised to about 1 x 10-3 Hz/v/Hz 

the displacement noise of each mirror (there are six in total) should be less than 

2 x 10~15m / \ /H z  which should apply at all frequencies above 50 Hz. This is much
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less stringent than  the requirement for the suspension of the test masses.

Because the length of the modecleaner will be servoed to the laser frequency, 

the displacement noise of the mirrors will be suppressed by the loop gain. It is 

more appropriate  to view this suppression as an added safety margin ra ther than a 

necessity for operation.

Using the pendulum  modelling techniques described in C hapters  4, 5 and 6 a 

design for the modecleaner mirror suspensions was found which adequately met the 

design requirements. This is now presented.

The mirrors tha t  comprise the modecleaner have dimensions 100 mm diameter 

by 50 mm thick. They are m anufactured from fused silica and have a mass of 0.86 kg. 

In order to achieve good damping of the double pendulum  the in termediate mass is 

approximately equal to this (0.80 kg). It is necessary to make the intermediate mass 

from Aluminium (or other low density metal) to make it a suitable size. The dimen­

sions are 70 mm x 50m m  x 85mm. The length (70m m ) is constrained because a 

reaction mass will be suspended behind one mirror in each modecleaner to provide 

feedback to the cavity length. The separation of the mirror and the reaction mass 

should be sufficient (but not greatly larger than required) for a coil-magnet actuator. 

The separation will be approximately 25 mm. It is intended that  the reaction mass 

will be suspended by an identical pendulum.

A diagram showing the pendulum is shown in Figure 8.3. The total height 

available determines the pendulum  length of 800 mm from the top plate to the. 

beam axis. Table 8.1 lists the normal mode frequencies predicted by the dp 2 s s .m  

routine in Appendix A.

Modelling of the local control servos indicates th a t  the longitudinal, sideways, 

rotation and tilt modes can be actively damped with relative ease. The vertical and 

roll modes will be left undam ped. These modes all have a Q factor determ ined by 

the internal friction of the wire material. It is im portan t tha t  the level of cross­

coupling to these modes does not produce an unstable unity gain point in the local 

control servo. To avoid sensing vertical motion directly when dam ping tilt motion, 

sensing of tilt motion will be done on the longitudinal face of the interm ediate  mass. 

Normally, this is avoided because it adds noise directly into longitudinal motion

145



300mm

Intermediate Mass: 
Aluminium

Tilt
&

Longitudinal

Separation 4mm

Sideways 
-  & 
Rotation

500mm

Mirror: 
Fused Silica

Side View Front View

Figure 8.3: GEO 600 Modecleaner Suspens ion  Design.
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Normal Mode Frequency

(Hz)

Longitudinal 0.60

Longitudinal 1.54

Tilt 0.89

Tilt 2.05

Sideways 0.60

Sideways 1.54

Rotation 0.70

Rotation 1.88

Roll 17.1

Roll 38.1

Vertical 13.0

Vertical 33.1

Table 8.1: Norm al  Mode, Frequencies of  Modecleaner Suspension.

of the pendulum. However, it is acceptable here because the displacement noise 

specification for the modecleaner mirrors is greater than tha t  required by the test 

masses.

The modecleaner cavity must be locked to the input laser light. This requires 

actuation on one of the mirrors to provide feedback to the length of the cavity. A 

coil-magnet ac tua to r will be used to apply a force to one of the modecleaner mirrors. 

The coils will be mounted on an Aluminium mass suspended behind the selected 

mirror. Figure 8.4 shows this arrangement. The bandw id th  of this servo will be 

limited by the internal acoustic modes of the modecleaner mirror. The lowest mode 

expected to be around *24 kHz and will have a fairly high Q factor. This is essentially 

the same problem as was discussed in Section 6.3.
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8.3  G EO  600 T est M ass S u sp en sion

The currently proposed GEO 600 test masses will be made from fused silica, have a 

d iam eter of 240 mm and thickness of 140 mm. This gives a total mass of 13.9 kg to 

be suspended. In order to reduce thermal noise from the pendulum  modes, the test 

mass could be suspended by fused silica fibres from the in termediate mass. To avoid 

friction occurring at joints, it is proposed to construct a monolithic suspension. The 

suspension fibres would probably be attached to the top of the test mass either by 

a welded joint or by optically contacting. A monolithic suspension could allow Q 

factors for the longitudinal pendulum  modes to be ~ 108.

To facilitate the use of a split feedback topology (see Section 6.5), it is desirable 

to ensure that there are no normal modes of the suspension close to the proposed 

cross-over frequency between feedback applied at the interm ediate stage and that 

applied directly to the test mass. Therefore, the frequency range from 20 Hz to 80 Hz 

should be clear of modes.

In the next section, a preliminary design will be presented dem onstrating  that  

a suspension topology is possible where the normal mode frequencies are all within 

the bandw idth  of local control servos. An exception to this is the upper vertical 

mode.

8.3.1 Preliminary Design of Test Mass Suspension

Figure 8.5 shows the preliminary design. The interm ediate mass is 14.2 kg. It has 

been chosen to have dimensions of 100 mm x 120 mm x 150 mm in the x, y and 

2-axes respectively. The 2 dimension is chosen to be greatest to give larger moments 

of inertia for tilt and roll degrees of freedom. These modes are typically higher in 

frequency than those involving rotation around the vertical axis.

The upper-stage wires are tensioned to approximately one third  of their expected 

breaking stress. The breaking stress of steel is 2-3 GPa. W ith  a to ta l load of 28.1 kg 

the required radius for two wires is 240 ^m. The stress is 760 M Pa and the frequency 

of the fundam ental transverse mode is 518 Hz.

The lower-stage wires are also tensioned close to one third of their breaking
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stress. The breaking stress for fused silica has been measured here at Glasgow [69] 

to be 800 MPa. A value equal to or greater than this is implied by an experiment 

reported by Braginski et al [70]. To suspend a test mass of 13.9 kg on two fibres 

requires the fibre radius to be at least ~280 fj.m. For this value, the stress is 270 MPa 

and the fundamental transverse mode is at 576 Hz.

Both suspension points of the double pendulum are independently sprung in the 

vertical direction. Two pre-stressed cantilever leaf-springs are proposed. The size 

of the leaf-springs will be chosen to make the lower vertical mode < 3 Hz. Because 

both suspension points are sprung independently, the roll modes are also reduced 

in frequency. The separation of the upper wires is chosen so that  the frequency 

of the roll mode is able to be electronically damped. This separation is 60 mm. 

Furthermore, by using two wires to suspend the test mass, the roll mode in which 

the intermediate mass and the test mass rotate  in anti-phase relies on the bending 

of the wires as a restoring force. Thus, it is also at a low frequency.

The separation of the lower wires is 10 mm. This was chosen so that the differ­

ential tilt mode would occur at a low frequency. It is estimated by Equation 5.9 to 

be 1.7 Hz. In fact, because restoring forces other than extension of the wires are also 

significant, the frequency will be slightly higher.

For a lower stage length of about 0.5 m it is not possible to reduce the upper 

vertical mode to much less than about 10 Hz. This is restricted because the suspen­

sion wires must have a sufficiently large cross-sectional area, to support the weight 

of the test mass. For a fused silica suspension the minimum possible frequency is 

higher than this because the breaking stress of fused silica is much less than that  of 

steel. Concerns that the fibres may deteriorate over long periods of time (i.e.  several 

years) may mean that, the allowed stress should be reduced. This would have the 

consequence of raising frequency of the upper vertical mode.

The predicted normal mode frequencies of this suspension design are listed in 

Table 8.2 (these are results of the d p 2 s s . m  routine in Appendix A). These meets 

the design requirements as described above.
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Normal Mode Frequency

(Hz)

Longitudinal 0.595

Longitudinal 1.48

Tilt 3.0

Tilt 3.4

Sideways 0.607

Sideways 1.47

Rotation 0.067

Rotation 0.863

Roll 2.4

Roll 3.6

Vertical 2.74

Vertical 20.6

Table 8.2: N orm al  Mode Frequencies of Test Mass Suspension.

8.3.2 Local Control

Following the discussion and results in Section 5.5, a local control servo for damping 

the modes of the GEO 600 test mass suspensions has been devised. This assumes 

that  shadow sensors and coil-magnet actuators similar to those considered previously 

will be used. The displacement signal would be filtered by

1. An RC high-pass filter; the low-cut occurs at 0.7 Hz.

2. A transitional differentiator that acts between 0.2 Hz and 0.7 Hz.

3. A second transitional differentiator th a t  acts between 1.5 Hz and 10 Hz.

4. Low-pass filtering to a t tenua te  control noise above 12 Hz (see below).

The noise specification for GEO GOO extends down to 50 Hz. This makes it more 

difficult to attenuate  the noise introduced by the local control servo than  the case 

studied in Section 5.5.1. It is possible to use add more low-pass filters to give
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Peak
Frequency

(Hz)

Q factor Notch
Frequency

(Hz)

15 3 50

18 4 70

24 5 100

Table 8.3: Scul tety Filters for  A t te n u a t i o n  of  Control  Noise.

steeper filtering but greater a ttenuation  can be achieved by adding notches at sig­

nal frequencies to suppress sensor noise. A series of Scultety filters (suggested by 

Schilling [71]) is ideal for this. Noise a ttenua tion  filters consisting of three Scultety 

filters (which are detailed in Table S.3) and a simple RC low-pa,ss filter were found 

to be adequate. The low-pass filter introduces a pole at 12 Hz. This passive filter is 

required as the final element of the local control channel to a ttenua te  the electronic 

noise from preceding active filters. It is followed only by the current driver for the 

coil.

The damping predicted for the two longitudinal modes of the proposed GEO 600 

test mass suspension is shown in Figure 8.6. This is plotted against the control noise 

(at 50 Hz) introduced by the damping servo. Damping that  reduces the Q factor of 

the fundam ental longitudinal mode to ~4  is predicted to give rise to control noise of 

5 x 10"21 m / v/H z". This assumes that  the noise performances of the shadow sensors 

and coil-magnet ac tuators are the same as those described in Section 5.4. These 

have a sensor noise corresponding to 1 x 10 10m / \ /H z  and an ac tua to r noise of 

1.5 x 10-11 N / \ /H z .  This is for a dc range of 40 f im  for the longitudinal actuator. In 

fact., the sensors being developed for GEO 600 may be quieter than  this, however, 

the ac tua tor noise is difficult to reduce without reducing the range. Figure 8.7 shows 

a comparison of the displacement noise arising from sensor noise and ac tua tor noise 

as a function of frequency (with the servo gain set to give minimum Q factor for the 

fundam ental longitudinal mode). The noise contributions are approximately equal 

at around 50 Hz.
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Modelling of the damping for the proposed GEO 600 test mass suspension indi­

cates all other modes will have a sufficiently dam ped Q factor with the exception 

of the upper vertical mode. This is problematic. Its frequency is predicted to be 

at ~20 Hz, however, the servo gain is not a t tenua ted  significantly below unity gain 

at this frequency. It is difficult to achieve adequate damping of the tilt and vertical 

degrees of freedom without making the servo unstable at the upper vertical mode.

There are several possible solutions to this:-

1. The frequency of the upper vertical mode can be increased. This may be 

required if the allowed stress in fused silica fibres is lower than 270 MPa. In 

this case the fibre diameters will have to be increased and this raises the 

frequency of the upper vertical mode. At higher frequency the servo gain is 

reduced.

2. The servo gain is not greatly a ttenua ted  because the noise a ttenuation  filters 

have a peaked response from 15 Hz to 24 Hz. This could be lowered by changing 

the filters used to a t tenua te  control noise. Since the tilt and vertical degrees 

of freedom do not couple directly to the sensed displacement noise, there may 

be some scope for this approach.

3. The mode could be passively dam ped by coupling vertical motion at ~20  Hz 

to a dam ped passive resonator mounted on the in term ediate  mass. The servo 

gain can then be increased in proportion to the reduction in Q factor of the

mode. This has the advantage that it would actually damp the upper vertical

mode, thus, seismic noise would not be enhanced at this frequency to the same 

extent as if the mode were left undam ped.

The au thor  favours Point 3 as the preferred course of action. Further develop­

ment of this technique is required.

8.4 C on c lu s ion

An overview of the GEO 600 project has been presented. The GEO 600 interferom­

eter will incorporate the advanced interferometric techniques of power recycling and
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signal recycling on a large scale detector.

The GEO 600 project requires two mo decleaners to suppress beam jitter  and 

beam pum ping of the input laser light. The modecleaners will be formed from three 

mirror ring cavities; the mirrors will be suspended to isolate them from seismic 

noise. The suspension of the modecleaner optics has been discussed and a design 

presented. This is currently being tested here in Glasgow by Plissi and Torrie. The 

displacement noise specification for these optics is ~2 x 10-15 m / \ /H z .

A preliminary design for the test mass suspensions has also been presented. The 

displacement noise of the test masses requires to be at most ~  1 x 10"20m / \ /H z .  

Local control has been considered for this design and the estim ated control noise 

should not compromise the sensitivity. There still remains the issue of how to handle 

the upper vertical mode of the suspension. Experim ental tests are required to see if 

resonant damping can be used in this case.

Construction of the GEO 600 interferometer began in September 1995 and is due 

for completion around 2000.
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Chapter 9

C o n c l u s i o n

‘But I still haven't found what Fm looking for. . . '

Bono.

9.1 R e v ie w

The design and construction of low displacement noise suspensions for the test 

masses of terrestrial gravitational interferometric detectors is far from a trivial task. 

The suspension design must:

1. provide isolation of seismic noise (both longitudinal and cross-coupled);

2. facilitate active damping of the normal modes;

3. facilitate position control of the test mass for locking the interferometer, and

4. be compatible with the low-loss properties required to minimise thermal noise.

The advantages of a double pendulum system (compared to a single stage pendulum ) 

have been reported: superior seismic isolation; isolation of control noise imposed by 

the active damping servo, and the possibility of applying positional feedback at the 

interm ediate stage to reduce the ac tua tor range required at the test mass. W ith 

reduced range requirements, an electrostatic ac tua to r  becomes more practical. This 

would remove the need for the attachm ent of m agnets to the test masses and could
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improve the thermal noise limit. (In the event tha t  an electrostatic drive is not 

practical, the reduced range would allow very much smaller m agnets to be used. 

This would also address the therm al noise issue.)

The double pendulum system is more complex than  a single stage pendulum . To 

the a u th o r ’s knowledge, this is the only disadvantage of a two-stage system. This 

complexity required the development of a comprehensive model of the pendulum  

dynamics. The problem of cross-coupling between degrees of freedom necessitated 

this model to consider the dynamics of all six degrees of freedom per pendulum  mass. 

Using this model, it was possible to ensure tha t  a pendulum  design was am enable to 

servo control (both damping and position control). Models of the internal dynamics 

of the suspension wires and the test mass itself have also been utilised.

The results presented in C hapter 5 dem onstra te  tha t  the model predictions are 

in good agreement with the experimental results. This gives confidence tha t  the 

modelling techniques are sufficiently accurate to permit the design work for the 

GEO 600 project. Indeed, in C hapter 8 designs are presented for suspending the 

optics of GEO 600. This interferometer, in collaboration with o ther detectors, could 

mark the birth  of a new era of astronomy and astrophysics. The au thor  recognises 

this volume is a mere fraction of the travail involved in verifying Einstein 's  work and 

unveiling the hidden workings of our Universe.

9.2 A  F in a l Q u e s t io n . ..

It may be asked, '‘Why not use three stages - a triple pendu lum ?” Indeed, th a t  too 

is possible. This approach is similar to the Virgo design of super-a t tenua to r .  The 

au thor observes the following points:-

1. Further pendulum stages do not reduce therm al noise or shot noise. These 

noise sources are expected to limit the sensitivity at most signal frequencies 

{e.g. above 50 Hz in GEO 600).

2. More pendulum stages do reduce seismic noise. Therefore, the detection band 

could be extended to lower frequencies. This is on the condition th a t  the
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normal mode frequencies of the suspension are below the desired sensitivity 

band. The coupled mode frequencies of a many-stage system must be kept low 

and they must be well damped.

3. Therm al noise from the pendulum modes of the suspension are likely to become 

the limiting noise source at these lower frequencies.

The author surmises that there is some advantage to increasing the number of pen­

dulum stages and indeed notes that the top-plate of the GEO 600 suspensions will 

be suspended [72]. This reduces the a ttenuation required of the isolation stacks. 

Active suppression of seismic noise is another potential development. In this case, 

seismic noise would not be resonantly enhanced at low-frequency (about 1 Hz) but 

could, in fact, be reduced. This is highly desiicible.
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A ppendix A

M A T L A B  T o o l b o x

A . l  d p 2 ss .m  

Syntax

[fre q ,i M K LT .iM K S R , iM K R ,i M K V ] = dp 2 ss (dp j iam e ,  sw it ches)

Inputs :  d p_ n a m e source file for double pendulum parameters.
s w i t c h e s  ‘e’ report results of eigensystem analysis.

‘ v ’  i n c l u d e  v e r t i c a l  s p r i n g .

O u t p u t s :  freq normal mode frequencies (Hz).
iM K spring matrices for state-space analysis.

F u n c t io n s  cal led by dp2ss .m:

• assign.m

• constant.m

Purpose

The function re turns the normal mode frequencies of the double pendulum  param- 

ctcriscd by the file dp_ name.  The frequencies are complex numbers. The complex 

part signifies the inherent damping of the mode by friction included in the suspension 

wires. Also re turned  are the spring matrices used in the eigenvalue analysis. These 

can be used in state-space models of the pendulum  to further assess its performance.
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A lgorithm

The restoring forces included in this model axe the gravitational field as well as the 

extension, torsion and bending of the suspension wires. Extension and torsion of 

the wires is fairly straight forward. To obtain the effects of bending, the wire is 

modelled as a stiff beam under tension -  this is a fourth order differential equation.

The dynamics are obtained for four (reasonably) independent systems: longitu­

dinal and tilt; sideways and roll: ro tation, and vertical.

The inclusion of a vertical spring in the model effectively places two independent 

springs at the suspension point of the upper wires. The springs are considered to 

be rigid in all degrees of freedom except vertical translation. Thus, the vertical and 

roll modes are reduced in frequency. The internal dynamics of such a spring are not 

assessed -- extra modes may result in practice.

Source Code

function [freq,iMKLT,iMKSR,iMKR,iMKV] = dp2ss(dp_name,switches) 
'/. [freq, iMKLT, iMKSR, iMKR, iMKV] = dp2ss(dp_name,switches)
*/.
'/.freq returns the complex frequencies of modes
'/. in the order Long+Tilt; Side+Roll; Rotataion and Vertical
'/.iMKLT inv(M)*K matrix for Long+Tilt
‘/.iMKSR inv(M)*K matrix for Side+Roll
‘/.iMKR inv(M)*K matrix for  Rot
‘/.iMKV
V

inv(M)*K matrix for Vert
/•
'/.dp_name name of function whit assigns the pendulum parameters
‘/.switches 'e' report eigenvalues and eigenvectors on screen.
'/. ’v' include so ft  v e r t ic a l  spring.

'/.Stuart Killbourn (March ’96)

'/.global variables defined in 'constant.m' 

global g 

constant;

‘/.global variables defined in  dp_name

global modeld 
global ml I lx  Ily  I lz
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global m2 I2x I2y I2z 
global FibresU FibresL 
global Qu Q1 Yu Y1 PRu PR1 
global Ru R1 lu  12 
global t s d e l ta l  delta2 h 
global etaO eta lu  e t a l l  eta2

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

'/.assign pendulum parameters corresponding to dp_name

i f  (assign(dp.name) == 1) 
error = 1; 
return

end

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

'/.default input

i f  ( e x i s t ( ’sw itches’) ~= 1) 
switches = *e s ’ ;

end

'/.Calculated parameters
'/.these are various lengths and angles that are defined by the pendulum 
'/.wire spacing and attachment points .

N1 = (eta lu  - etaO);
N2 = (eta2 - e t a l l ) ;

D2 = (delta2 - d e l t a l ) ;
U2 = sqrt(N2~2 + D2~2);

nu = a s in ( N l / lu ) ;
zeta = asin(N 2/12);
omega = asin(U 2/12);

vl = cos(nu)*lu;
v2 = cos(omega)*12;

J = sqrt(v2~2 + N2~2);
L = sqrt(v2~2 + D2'"2) ;

D = s q r t (d e l ta l '2  + s “2 ) ;
H = sqrt(delta2~2 + h"2);

epn = a sin(D 2/12);
psi = a s in ( s /D ) ;
lam = a sin (h /H );

'/.total v e r t ic a l  height of pendulum to t e s t  mass centre 
V ertical = v l  + t  + s + v2 + h;
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’/,wire tension
Tu = (ml + m2)*g/(FibresU*cos(nu));
T1 = m2*g/(FibresL*cos(omega));

‘/.moment of wire cro ss -sec t io n  
Ixu = pi*Ru~4/4;
Ix l = p i*R l“4/4;

‘/,spring constant of wire
ku = (1 + i/Qu)*Yu*pi*Ru~2/lu;
kl = (1 + i/Ql)*Y l*pi*Rl“2/12;

‘/.torsional constant of wire
kappaU = (1 + i/Qu)*pi*Ru'‘4*Yu/(4*(PRu+l)*lu) ;
kappaL = (1 + i/qi)*pi*Rl~4*Yl/(4*(PRl+l)*12);

‘/.bending parameter: beta
bu = (1 + i/Qu)*sqrt(Yu*Ixu*Tu);
bl = (1 + i /Q l)* sq r t (Y l* Ix l* T l) ;

‘/ . (1 /ch a ra cter is t ic  bending length) 
au = sqrt(Tu/(Yu*Ixu));
al = s q r t (T l / (Y l* I x l ) ) ;

i f  (max(switches == ’v ’ ) == 1)
’/.include v e r t ic a l  spring at upper suspension point (frequency ~2Hz)

f p r i n t f ( l , ’V ertica l Spring Included at Suspension P o in t s . \n ’ );

ks = (ml + m2)*(2*pi*2)~2*(l + i /Q u );
ku = l / ( l / k u  + 1 /k s ) ;

end

'/.Longitudinal and T i l t  Modes (xl > x l; x2 > x2; th e ta l  > t l ;  theta2 > t2)
'/.static tension  in upper wire

kxlxl = -l*Tu/lu;
k x lt l = Tu*t/lu;
k t lx l = Tu*t/lu;
k t l t l = -l*T u*t*(l  + t / l u ) ;

KTuTL = FibresU * [ kxlxl 0 k x l t l  0
0 0 0 0
k t lx l  0 k t l t l  0
0 0 0 0 ] ;

'/.static tension  in lower wire

164



kxl = -l*v2;
kx2 = v2;
kt 1 = -1 * (v2*s + D 2*d elta l);
kt2 = -l*(v2*h - D2*delta2);

kkxl = v2 ;
kkx2 = -l*v2;
kkt 1 = (v2*s + D2*deltal);
kkt2 = (v2*h - D2*delta2);

k = [ kxl kx2 k t l  kt2 ] . ’ ;
kk - [ kkxl kkx2 kktl kkt2 ];

k t l t l - (v2*s + D 2*d elta l);
kt2t2 - (v2*h - D2*delta2);

kkk = - l* (T l /1 2 )* d ia g ( [ 0 ,0 ,k t l t l , k t 2 t 2 ] ,0);

KT1TL = (F ibresL)*((T l/(12~3))*(k  * kk) + kkk);

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

‘/.extension in lower wire

kxl = D2;
kx2 = -1*D2;
k tl = - l* (v 2 * d e lta l  -  D2*s);
kt2 = (v2*delta2 + D2*h);

kkxl = -1+D2;
kkx2 = D2;
kktl = (v2*deltal - D2*s);
kkt 2 = -1 * (v2*delta2 + D2*h);

k = [ kxl kx2 k t l  kt2 ] . » ;
kk = [ kkxl kkx2 kktl kkt2 ] ;

KklTL = (FibresL)* (k l/12~2)* (k * k k);

'/.bending of upper wire

kxlx l = -1;
k x lt l  = (t  + l u / 2 ) ;
k t lx l  = (t  + l u / 2 ) ;
k t l t l  = — 1*(t~2 + l/(au~2) + (lu~2)/2  -  lu /au  + t* lu ) ;

KbuTL = (bu/(lu~2))*FibresU * [ kxlxl 0 k x l t l  0
0 0 0 0
k t lx l  0 k t l t l  0
0 0 0 0 ];

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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'/bending of lower wires

ce = cos(ep n);

kxl = - l * c e ;
kx2 = c e ;
k t l = -l*(D*sin(psi+epn) + 12/2);
kt2 = -1 * (H*sin(lam-epn) + 12/2);

kkxl = ce ;
kkx2 = -l*ce ;
kktl = (D*sin(psi+epn) + 12/2);
kkt 2 — (H*sin(lam-epn) + 12/2);

k = [ kxl kx2 k t l  kt2 ] . J;
kk = [ kkxl kkx2 kktl kkt2 ];

k t l t l = ( 1 /al~2) + (12*2/4) - (1 2 /a l);
kt l t2 = (12 /a l)  - ( l /a l* 2 )  - (12*2/4);
k t2 t l = k t lt2 ;
kt2t2 = k t l t l ;

kkk = [ 0  0 0
0 0 0 0
0 0 k t l t l  k t l t2
0 0 k t2 t1 kt2t2 ];

KblTL = (FibresL)* (bu/12~2)* ( (k * kk) - kkk);

%************************************************************************** 
’/.forming the system of d i f f e r e n t ia l  equations to be solved

MLT = diag(Cral m2 I ly  I2y ] ) ;

KLT = (KTuTL + KklTL + KT1TL + KbuTL + KblTL);

iMKLT = inv(MLT) * KLT;

[VectLT, EigLT] = eig(-iMKLT,eye(4 ));

FreqLT = sqrt(diag(EigLT)) / (2 * p i) ;
QmodeLT = 0 . 5*real(FreqLT). /imag(FreqLT);

’/.Sideways and Roll Modes (yl > y l;  y2 > y2; p s i l  > p i; psi2 > p2)
’/ .s ta t ic  tension  in upper wire

kyly l = -vl*2;
kylpl = v l* (v l* t  - Nl*etalu);
kplyl = v l* (v l* t  - N l*etalu);
kplpl = - l* lu ~ 2 * (v l* t  - Nl*etalu) - (v l*t - Nl*etalu)~2;
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KTuSR = (FibresU*Tu/lu~3) * [ kylyl 0 kylpl 0
0 0 0 0
kplyl 0 kplpl 0
0 0 0 0 ] ;

"/.extension of the upper wires

kyly l = -1*N1~2;
kylpl = Nl*(t*Nl + e t a lu * v l ) ;
kplyl = Nl*(t*Nl + e ta lu * v l ) ;
kplpl = - l* (t* N l + etalu*vl)~2;

KkuSR = FibresU*(ku/lu~2) * [ kyly l 0 kylpl 0
0 0 0 0
kplyl 0 kplpl 0
0 0 0 0 ] ;

"/,bending of upper wires

kylyl = - l* co s (n u )"2;
kylpl = -1 * (etalu*sin(nu) - t*cos(nu) - ( l u / 2 ) ) *cos(nu);
kplyl = -1 * (etalu*sin(nu) - t*cos(nu) - ( lu /2 ) )* c o s (n u ) ;
kplpl = - l* ( ( l /a u ~ 2 )  + (lu~2/2) - (lu /au) + ( t* c o s (n u . ..
) - 2*etalu*sin(nu) + lu)*t*cos(nu) + (etalu*sin(nu) - lu )* eta lu * s in (n u ));

KbuSR = FibresU*(bu/lu‘ 2) * [ kylyl 0 kylpl 0
0 0 0 0
kplyl 0 kplpl 0
0 0 0 0 ] ;

"/.static tension  in lower wire

kyl = -l*v2;
ky2 = v 2 ;
kpl = - l* (v 2 * s  + N 2 * e ta l l ) ;
kp2 = -1 * (v2*h - N2*eta2);

kkyl = v2 ;
kky2 = - l * v 2 ;
kkpl = (v2*s + N 2 * e ta l l ) ;
kkp2 = (v2*h - N2*eta2);

k = [ kyl ky2 kpl kp2 ] . ’ ;
kk = [ kkyl kky2 kkpl kkp2 ] ;

kplpl = (v2*s + N 2 * e ta l l ) ;
kp2p2 = (v2*h - N2*eta2);

kkk = - 1 * ( T l / 1 2 ) * d ia g ( [ 0 , 0 ,kp lp l,kp2p2] , 0 ) ;
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KT1SR = (FibresL)*((Tl/12~3)*(k * kk) + kkk);

’/.extension of lower wire

kyl = N2;
ky2 = -1*N2;
kpl = - l* (v 2 * e ta l l  “ N2*s);
kp2 = (v2*eta2 + N2*h);

kkyl = -1*N2;
kky2 = N2;
kkpl = (v 2 * e ta l l  - N2*s);
kkp2 = -1 * (v2*eta2 + N2*h);

k = [ kyl ky2 kpl kp2 ] . ’ ;
kk = [k k y l  kky2 kkpl kkp2 ];

KklSR = (FibresL)*(kl/12~2)*(k * k k );

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

'/.bending of lower wires

cz = c o s ( z e ta ) ;
sz = s i n ( z e t a ) ;

kyl = - l * c z ;
ky2 = c z ;
kpl = - l* (s* c z  + e t a l l* s z  + (1 2 /2 ));
kp2 = -1 * (h*cz - eta2*sz + (12 /2 ));

kkyl = c z ;
kky2 = - l * c z ;
kkpl = (s*cz + e t a l l* s z  + (12 /2 ));
kkp2 = (h*cz - eta2*sz + (12 /2 ));

k = [ kyl ky2 kpl kp2 ] . » ;
kk ~ [ kkyl kky2 kkpl kkp2 ] ;

kplpl = ( 1 / al~2) + (12“2/4) - (1 2 /a l) ;
kplp2 = (1 2 /a l)  - ( l / a l - 2 )  - (12“2 / 4 ) ;
kp2pl = kplp2;
kp2p2 — kplpl;

kkk = [ 0  0 0
0 0 0 0
0 0 kplpl kplp2
0 0 kp2pl kp2p2 ];

KblSR = (FibresL)*(bu/12~2)*((k * kk) - kkk);
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'/.forming the system of d i f f e r e n t ia l  equations to be solved  

MSR = diag([ml m2 I lx  I2x]);

KSR = (KTuSR + KkuSR + KbuSR + KT1SR + KklSR + KblSR);

iMKSR = inv(MSR) * KSR;

[VectSR, EigSR] = eig(-iMKSR,eye(4));

FreqSR = sqrt(diag(EigSR)) / (2 * p i) ;
QmodeSR = 0 . 5*real(FreqSR). /imag(FreqSR);

%************************************************************************** 
'/.Rotational Modes (phil > f l ;  phi2 > f2)
'/.reaction against upper wires

KTuR = -1 * (FibresU*Tu*etaO*etalu/lu) * [ 1 0
0 0 ];

'/.torsion of upper wires

KRuR = -l*FibresU*kappaU * [ 1 0
0 0 ] ;

'/.bending of the upper wires

KXuR = -l*FibresU*(bu/lu~2)*etalu~2 * [ 1 0
0 0 ] ;

'/.reaction against lower wires

k f l f l  = -1* (Tl/12) * (e ta l l* e ta 2  + d e lta l*d e lta2  -  d e l ta l~ 2 * . . .  
(1 -(L /12)~2)-  e t a l l * ( 1 - ( J /12 )~ 2));
k f I f 2 = (T l/12~3)*(J~2*eta2*eta ll + L~2*delta l*delta2);
k f2 f l  = (T l/12~3)*(J''2*eta2*etall + L ~2*delta l*delta2);
kf2f2 = -1* (Tl/12) * (e ta 2 * e ta l l  + d e lta l*d e lta2  - delta2~2*. . .
(1—(L/12)~2) - eta2*( 1 - ( J /1 2 )"2));

KT1R = FibresL * [ k f l f l  k f l f2
k f 2 f1 k f2 f2 ];

'/.extension of lower wires

k f l f l  = - l* (k l/12~2)*(D 2~2*eta ll~2  + N2"2*deltal~2);
k f I f 2 = (k l /1 2 “2)*(D2~2*eta2*etall + N 2~2*deltal*delta2);
k f2 f1 = (k l/12~2)*(D2~2*eta2*etall + N 2~2*deltal*delta2);
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kf 2f 2 = -1 * (kl/12~2)*(D2~2*eta2~2 + N2~2*delta2~2);

KklR = FibresL * [ k f l f l  k f l f2
kf 2f 1 kf 2f 2 ] ;

*/,bending of the lower wires

k f l f l  = - l* (d e l ta l~ 2  + e t a l l “2);
k f l f2  = e ta l l* e ta 2  + d e l ta l* d e lta 2 ;
k f2 f l  = e ta l l* e ta 2  + d e l ta l* d e lta 2 ;
kf2f2 = - l* (d e lta2~2  + eta2~2);

KX1R = FibresL*(bl/12~2) * [ k f l f l  k f l f2
kf 2f 1 kf 2f 2 ] ;

'/.torsion of the lower wires

KR1R = -l*FibresL*kappaL * [ 1 -1
-1 1 ];

'/.solving the eigenvalue problem to extract the mode frequencies  

MR = d ia g ( [ I lz  I2z]);

KR = KTuR + KT1R + KklR + KRuR + KR1R + KXuR + KX1R;

iMKR = inv(MR) * KR;

[VectR, EigR] = eig(-iMKR,eye(2));

FreqR = sqrt(diag(EigR)) / (2 * p i ) ;
QmodeR = 0 . 5*real(FreqR). /imag(FreqR);

'/.Vertical Modes (z l  > 1; z2 > 2)
'/.extension of upper wire

KkuV = -l*FibresU*ku*cos(nu)~2 * [ 1 0
0 0 ] ;

'/.extension of lower wires

KklV = -l*FibresL*kl*cos(omega)“2 * [ 1 -1
-1 1 ];

‘y ' * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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'/.solving the eigenvalue problem to extract the mode frequencies

MV = diag([ml m2]);

KV = KkuV + KklV;

iMKV = inv(MV) * KV;

[VectV,EigV] = eig(-iMKV,eye(2));

FreqV = sq r t(d ia g (E ig V )) / (2 * p i);
QmodeV = 0 . 5*real(FreqV). /imag(FreqV);

y************************************************************************** 
'/.output vector

freq = [ FreqLT 
FreqSR 
FreqR 
FreqV ];

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

'/.print r e su lt s  on screen -  eigenvalues and eigenvectors

i f  (max(switches == ’e ’ ) == 1)

f p r i n t f ( 1 , ’\ n ’);
f p r i n t f (1, ’Modes of Double Pendulum\n’ );  
f p r i n t f (1 ,modeld); 
f p r i n t f ( 1 , ’\ n ’ );
fp r in t f  ( 1 , ’V ertica l Height of Pendulum (to mirror centre) */,6.3f m .\n’ . . .  
.V e r t ic a l ) ;

XI = real(VectLTCl,1:4))
X2 = real(VectLT(2,1 :4 ))
T1 = real(VectLT(3,1:4))
T2 = real(VectLT(4 ,1 :4 ) )

f p r i n t f ( 1 , ’ \ n ’ ) ;
f p r i n t f ( 1 Longitudinal and T i l t \ n ’);
fp r in t f  ( 1 , ’Freq \ t \ t  '/.-7.3f \ t  */,-7.3f \ t  '/.-7.3f \ t  '/.-7.3f \ t  (Hz) \ n ’ . . . 
.FreqLT);
fp r in t f  (1, ’Q \ t \ t  '/,7.1f \ t  '/.7.1f \ t  '/.7.1f \ t  '/,7.1f \ t  (xlOOO) \ n ’ . . . 
.QmodeLT/1000);
fp r in t f  ( 1 , ’XI \ t \ t  */,7. 4f \ t  '/.7.4f \ t  '/.7.4f \ t  '/,7.4f \ t  (m) \ n ’ ,Xl);
fp r in t f  (1, ’X2 \ t \ t  */,7.4f \ t  '/.7.4f \ t  */,7.4f \ t  */,7.4f \ t  (m) \ n ’ ,X2);
fp r in t f  ( 1 , ’T1 \ t \ t  '/,7.4f \ t  '/.7.4f \ t  '/.7.4f \ t  '/,7.4f \ t  (rad) \ n ’ ,T l);
fp r in t f  (1, ’T2 \ t \ t  ’/.7.4f \ t  '/,7.4f \ t  7,7.4f \ t  7.7.4f \ t  (rad) \ n ’ ,T2) ;

Yl = rea l(V ectSR (l,1 :4 ) ) ;
Y2 = real(VectSR(2,1 :4 ) ) ;
PI = real(VectSR(3,1 :4 ) ) ;
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P2 = real(VectSR(4,1 :4 ));

f p r i n t f ( 1 , ’\ n ’ );
f p r i n t f ( 1 , ’Sideways and R o l l \n ’ );
fp r in t f  (1, ’Freq \ t \ t  #/ .-7 .3f  \ t  ’/ .-7 .3 f  \ t  ‘/ .-7 .3f \ t  y,-7.3f \ t  (Hz) \ n ’ . . .  
, FreqSR);
fp r in t f  (1, ’Q \ t \ t  ’/.7.1f \ t  #/,7.1f \ t  '/,7.1f \ t  '/.7.1f \ t  (xlOOO) \ n ’ . . .
, QmodeSR/1000);
fp r in t f  (1, ’ Yl \ t \ t  */,7.4f \ t  */.7.4f \ t  '/.7.4f \ t  */,7.4f \ t  (m) \ n ’ ,Y1);
fp r in t f  (1, }Y2 \ t \ t  y„7.4f \ t  */,7.4f \ t  y.7.4f \ t  */.7.4f \ t  (m) \n \Y 2 ) ;
fp r in t f  ( 1 , ’PI \ t \ t  */,7.4f \ t  y,7.4f \ t  */.7.4f \ t  y,7.4f \ t  (rad) \ n ’ ,P l) ;
fp r in t f  (1, ’P2 \ t \ t  */,7.4f \ t  y,7.4f \ t  y,7.4f \ t  */,7.4f \ t  (rad) \ n \ n ’ ,P2);

FI = rea l(V ec tR (l ,1 :2 ) ) ;
F2 = rea l(V ectR (2 ,1 :2 ));

f p r i n t f ( 1 , ’Rotational Modes\n’ );
fp r in t f  ( 1 , ’Freq \ t \ t  '/,-7.3f \ t  °/,-7.3f \ t  (Hz) \ n ’ , FreqR); 
fp r in t f  ( 1 , ’Q \ t \ t  y,7.1f \ t  '/,7.1f \ t  (xlOOO) \ n ’ ,QmodeR/1000); 
fp r in t f  ( 1 , ’FI \ t \ t  */.7.4f \ t  */.7.4f \ t  (rad) \ n ’ ,F l);
fp r in t f  ( 1 , ’F2 \ t \ t  '/,7.4f \ t  y,7.4f \ t  (rad) \ n \n ’ ,F2);

Z1 = rea l(V ectV (l ,1 :2 ) ) ;
Z2 = real(VectV(2,1 :2 ) ) ;

f p r i n t f ( 1 , ’V ertica l Modes\n’ );
fp r in t f  ( 1 , ’Freq \ t \ t  y,-7.3f \ t  ’/,-7 .3f \ t  (Hz) \ n ’ , FreqV); 
fp r in t f  ( 1 , ’Q \ t \ t  '/,7.1f \ t  */,7.1f \ t  (xlOOO) \ n ’ ,QraodeV/1000); 
f p r i n t f ( 1 , ’Z1 \ t \ t  */,7.4f \ t  8/,7.4f \ t  (m) \ n ’ ,Zl);
f p r i n t f ( 1 , ’Z2 \ t \ t  '/,7.4f \ t  '/,7.4f \ t  (m) \ n \ n ’ ,Z2);

end

return
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A .2 a ss ig n .m

Syntax

[error] =  assign(name)

Inputs :  n a m e  source file for pendulum parameters.

O u t p u t s :  error Error flag.

F u n c t io n s  cal led  by as s ign .m:

• dp_g6_mc.m

• dp_new.ni

• dp_prot.m

Purpose

This program simply calls the file in which the param eters defining the pendulum 

are defined (i.e. d p_?????.m or sp_?????).  These are set as global variables.

If the global variable a ss igned  is set to a value of T' then the param eter file is

not called - this prevents the param eters being reset each time certain functions are

called.

Source Code
function [error] = assign(name)
'/.[error] = assign  (name)
'/.
'/.error error f la g
'/.name name of pendulum f i l e
*/.
'/.Stuart Killbourn (June ’96)

global assigned

i f  (assigned == 1) 
return

end

error = 0;

len  = length(name);
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i f  (len  > 8)
fp r in t f  ( 1 , ’name too longXn');
error = 1;
return

end

while (length(name) < 8)
name = [name, ’ ’] ;

end

'/.This i s  the l i s t  of a l l  pendulum filenames (8 characters long)

i f  (name == ’ dp_new ’ )
dp_new;

e l s e i f  (name == 'dp.prot }) 
dp_prot;

e l s e i f  (name == ’dp_g6_mcJ) 
dp_g6_mc;

e ls e

end

return

f p r i n t f ( 1 , ’No pendulum f i l e  found\n’ ) 
error = 1;
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A .3 c o n sta n t .m

Syntax

[] =  constantQ

There are no inputs or ou tpu ts  to this function.

No functions are called by co n s ta n t .m .

Purpose

This program defines some physical constants used by many functions. These are 

set as global variables.

If the global variable a ss ig n ed  is set to a value of ‘1’ then the constants are 

not redefined -  this prevents the values being reset each time certain functions are 

called.

Source Code
function constant
'/.Universal constants - a l l  programs should reference th i s .
’/.
'/.Stuart Killbourn (June 96) 

global assigned  

i f  (assigned == 1)

end

f p r i n t f ( 1 , ’Universal Constants Assigned\n’);  

global g kB T

'/.Universal Constants

return

kB
T

g = 9.81;
= 1 .381e-23; 
= 300;

'/.gravitational f i e l d  strength (N/kg) 
'/.Boltzmann’s constant (J/K)
'/.ambient temperature (K)

return
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A .4 p rop s.m

Syntax

[rho.Y,Q,PR,th_exp,th_cond,cp,BS] =  props(material)

Inputs : mater ia l name of material.

O u t p u t s : rho density (kg m ~3).

Y Young’s Modulus (N m ~ 2).

Q structura l damping Q factor.

P R Possion’s ratio.

th  _exp coefficient of therm al expansion (K _ 1 ).

th_cond thermal conductivity (W m _1 K - 1 ).

cp specific heat capacity (J kg-1 K _ 1 ).

BS breaking stress (Pa).

No functions are called by props .m.

Purpose

This file returns the mechanical properties of various materials suita

mass suspension. More can be added by following the p a t te rn  of

m a ter ia l s  and prop_vals.

Source Code
function [rho,YJQ,PR,th_exp,th_cond,cp,BS] = props(material)
'/.material name of material
'/.rho density (kg/nT3)
'/,Y Young’s Modulus (N/nT2)
*/,Q Structural Damping Q
’/.PR P ossion’s Ratio
°/»th_exp C o -e ff ic ien t  of thermal expansion (1/K)
'/.th_cond Thermal conductivity (W/m.K)
*/,cp S p ec if ic  Heat Capacity (J/kg.K)
°/0BS Breaking Stress (Pa)
'/.
'/.Stuart Killbourn (October ’ 96 )

'/.allowed names of materials - pad out with spaces to make as long as the 
'/.longest these  are in the same order in which they appear in the d e f in i t io n  
'/.of ’prop_vals’ below.
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materials = [ ’s t e e l  
’5thou 
’7thou 
’aluminium 
’f u s e d . s i l i c a  
’ sapphire 
’ s i l i c o n  
’ BK7 ];

’/ . l i s t  of properties for materials - ’ 1 ’ i s  a dummy for unknown info  

prop_vals = [

‘/.rho Y Q PR th.exp th_cond cp BS

7870 2. OOell 2000 0.29 11.8e-6 80.2 449 3e9 '/.steel

7900 1 .65ell 2000 0.29 11.8e-6 60 449 2e9 '/,5thou

7900 1 .7 2 e ll 2000 0.29 11.8e-6 60 449 2e9 '/,7thou

2700 1 2e5 1 1 1 1 1 '/.aluminium

2202 7el0 le6 0.16 5. le -7 1.38 772 8e8 '/.fused s i l i c a

3980 3 .4 e l l 1 .8e8 1 8.4e-6 25 418.4 2e9 */,sapphire

2320 l e l l 3e7 1 2 . 33e-6 148 715.46 8e8 '/.silicon

2510 1 3000 1 1 1 1 1 '/.BK7

] ;

’/ .s tee l  the big rubber b ib le
*/,5thou as s t e e l  and experiment
*/,7thou as s t e e l  and experiment
’/.aluminium Q from Jenny’s th e s is
'/.fused s i l i c a  s h e i l a ’s GE0600 report
’/.sapphire s h e i l a ’ s GE0600 report
’/ .s i l icon  s h e i l a ’s GE0600 report
’/.BK7 Q from Saulson (private communication)

while (length(m aterial) < s iz e (m a te r ia ls )*[0 1 ] ’ ) 
material = [m a ter ia l , ’ ’];

end

for j = 1: ( s iz e (m a te r ia l s )* [1 0 ] ’ )
i f  (m in (m ater ia ls(j , : )  == material) == 1) 

rho = p rop _va ls(j ,1);
Y = prop_vals(j ,2);
Q = p ro p _ v a ls ( j ,3);
PR = prop_vals(j ,4);
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th_exp = prop_vals(j ,5);  
th_cond = prop _va ls(j ,6);  
cp = p rop _va ls( j ,7 );
BS = prop_vals(j ,8 );

end
end

i f  ( e x i s t ( 'rho’ ) ~= 1)
f p r i n t f ( 1 , [ ’ (props.m) Material name not recognised: ’ .m a ter ia l , ’\ n ’] );

end

return
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A .5 dp  n ew .m

Syntax

[] =  dp_new()

There are no inputs or ou tpu ts  to this function.

F u n c t io n s  cal led by dp_new .m :

• props.m

Purpose

This file sets param eters  that  describe the design of pendulum detailed in Section 5.3. 

These are set as global variables.

Source Code
function dp_new
*/,list of parameter assignments for low frequency double pendulum 

'/,Stuart Killbourn (June 96)

f p r i n t f ( l , ’Parameters for New Prototype Pendulum Assigned\n’ );

‘/.global variables defined in th is  program

global modeld
global ml I lx  I ly  I lz
global m2 I2x I2y I2z
global ix iy  iz
global tx  tr
global FibresU FibresL
global matU matL matl matT
global Qu Q1 Yu Y1 PRu PR1
global Ru R1 lu  12
global t s d e l ta l  delta2 h
global etaO eta lu  e t a l l  eta2
global offV offH z2dn
global 1c lc.name lc .g a in

%**************************************************************************
'/,Glasgow Prototype Pendulum 
‘/.With low frequency modes

modeld = ’Glasgow Prototype - 1996’ ;

ix  = 0.100; */,dimensions of intermediate mass
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iy  = 0 .0 4 1 ;
iz  = 0.076;

matl = ’s t e e l ’ ;

rhol = props(raatl);

ml = rhoI*ix*iy*iz; '/,intermediate mass

I lx  = ml*(iy~2+iz~2)/12; '/.moment of in e r t ia  (sideways t i l t )
I ly  = ml*(iz~2+ix~2)/12; '/.moment of in e r t ia  (long itud ina l t i l t )
I l z  = ml*(iy~2+ix~2)/12; ‘/.moment of in e r t ia  (rotation)

tx  = 0.1016; '/.dimensions of t e s t  mass
t r  = 0.0635;

matT = ’f u s e d . s i l i c a ’ ;

rhoT = props(matT);

m2 = rhoT*pi*tr~2*tx; '/.calculation of mass and moment of in e r t ia

I2x = m2*( t r ~ 2 /2 ) ; '/.moment of in e r t ia  (sideways t i l t )
I2y = m2*(tr~2/4+tx~2/12); '/.moment of in e r t ia  (long itud ina l t i l t )
I2z = m2*(tr'‘2/4+tx~2/12) ; '/.moment of in e r t ia  (rotation)

FibresU = 2; ’/.number of upper wires
FibresL = 4; '/.number of lower wires

matU = ’7thou’ ;
matL = ’5thou’ ;

[rho,Yu,Qu,PRu] = props(matU);
[rho, Y1, Q1,PR1] = props(matL);

Ru = 89e-6; '/.wire rad ii
R1 = 62e-6;

lu  = 0.1995; '/.upper wire length
12 = 0.3700; '/.lower wire lengths

'/.parameters in x - axis

d e l ta l  = 0.005; '/.half separation of wires at intermediate mass
delta2 = 0.005; '/.half separation of wires at t e s t  mass

’/,parameters in y - axis

etaO = iy /2  + 0.003; '/.half separation of wires at top p la te
e ta lu  = iy /2  + 0.003; '/.half separation of wires at intermediate mass
e t a l l  = iy /2  + 0.003;
eta2 = tr  + 0.005; '/.half separation of wires at t e s t  mass
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‘/■parameters in z -  axis

= 0.003; 
= 0 . 0 0 0 ; 
= 0 . 0 0 1 ;

'/.height of upper wire at im (above cm) 
'/.height of lower wire at im (below cm) 
'/.height of wire at t e s t  mass (above cm)

'/,x-coupling fa c to rs

of fV 
o ff  H 
z2dn

= 0 . 0 0 1 ; 

= 0 . 0 0 1 ; 

= l e - 3 ;

'/.vertical o f f s e t  of spot on mirror (above cm) 
'/.horizontal o f f s e t  of spot on mirror 
’/,x-coupling from v e r t ic a l  to displacement noise

'/.local control damping parameters

xc = 0.000; '/.cross-coupling le v e l  in lo ca l  control sensor/actuato

tdx = 0.045 */,distance from v e r t ic a l axis  to t i l t coil/magnet
tdz = 0.000 ’/.vertical o f f se t of t i l t coil/magnet (above cm)
ldz = 0.000 '/.vertical o f f se t of long coil/magnet (above cm)
sdx = 0.045 '/.distance from v e r t ic a l plane to sideways coil/magnet
sdz = 0.000 '/.height of sideways coil/magnet (above cm)

'/. X y Z t i l t rot r o l l

lc  = [ 1 xc xc ldz xc xc '/.long
xc xc 1 tdx xc xc '/.tilt & vert
xc xc 1 -tdx xc xc 5 it i l t  & vert
xc 1 xc xc sdx sdz '/.side & rot
xc - 1 xc xc sdx -sdz '/.side & rot
0 0 0 0 0 0 ] > '/.roll

lc_name = [ 3 7 7 7 7 1 ] ; '/.local.??

lc_gain = [ 0.5 0.0008 0.0008 0.063 0.063 0 ];
'/.normalised gain

return
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A .6 d p_p rot.m

Syntax

[] =  dp_pro t()

There are no inputs or outputs  to this function.

F u n c t io n s  ca lled  by dp_prot.m :

• props.m

Purpose

This file sets param eters  tha t  describe the double pendulum  designed by Euan Mor­

rison (as detailed in [39]). These are set as global variables.

Source Code
function dp_prot
‘/ . l i s t  of parameter assignments for Euan's pendulum 
'/.
'/.Stuart Killbourn (June 95)

f p r i n t f ( l , ’Parameters for Glasgow Prototype Pendulum (Old) Assigned\n’ );

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

'/.global variab les  defined in th is  program

global modeld
global ml I lx  I ly  I l z
global m2 I2x I2y I2z
global ix  iy  iz
global tx  tr
global FibresU FibresL
global matU matL matl matT
global Qu Q1 Yu Y1 PRu PR1
global Ru R1 lu  12
global t  s d e l ta l  delta2  h
global etaO e ta lu  e t a l l  eta2
global offV offH z2dn
global l c  lc_name lc_gain

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

'/.Glasgow Prototype Pendulum 
'/.With low frequency modes

modeld = ’Glasgow Prototype - Euan's O riginal’ ;

ix  = 0.088; ’/.dimensions of intermediate mass
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iy  = 0.080;
iz  = 0.025;

matl = ’aluminium';

rhol = props(matl);

ml = rhoI*ix*iy*iz; ’/.intermediate mass

I lx  = ml*(iy~2+iz~2)/12; ’/.moment of in e r t ia  (sideways t i l t )
I ly  = ml*(iz~2+ix'‘2)/12; ’/.moment of in e r t ia  (longitudinal t i l t )
I l z  = ml*(iy~2+ix~2)/12; ’/.moment of in e r t ia  (rotation)

tx = 0.1016; ’/.dimensions of t e s t  mass
tr  = 0.0635;

matT = ’f u s e d . s i l i c a ’ ;

rhoT = props(matT);

m2 = rhoT*pi*tr~2*tx; ’/,ca lcu la tion  of mass and moment of in e r t ia

I2x = m2*( t r ~ 2 /2 ) ; ’/.moment of in e r t ia  (sideways t i l t )
I2y = m2*(tr~2/4+tx~2/12); ’/.moment of in e r t ia  ( long itud ina l t i l t )
I2z = m2*(tr~2/4+tx"'2/12); ’/,moment of in e r t ia  (rotation)

FibresU = 2; ’/.number of upper wires
FibresL = 4; ’/.number of lower wires

matU = ’s t e e l ’ ;
matL = ’7thou’ ;

[rho,Yu,Qu,PRu] = props(matU);
[rho, Y1,Q1,PR1] = props(matL);

Ru = 127e-6; ’/.wire rad ii
R1 = 89e-6;

lu = 0 .1 2 ;  ’/,upper wire length
12 = 0 .2 4 ;  ’/,lower wire lengths

’/.parameters in x - axis

d e l ta l  = 0.025; ’/.half separation of wires at intermediate mass
delta2 = 0.025; ’/.half separation of wires at t e s t  mass

’/.parameters in y - axis

etaO = iy /2 ;  ’/.half separation of wires at top p la te
eta lu  = iy /2 ;  ’/.half separation of wires at intermediate mass
e t a l l  = iy /2 ;
eta2 = tr ;  ’/.half separation of wires at t e s t  mass
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*/,parameters in z -  axis

=  0 . 0 0 0  

=  0 . 0 1 2  
=  0 . 0 0 1

*/,x-coupling factors

offV 
o ff  H 
z2dn

= 0 . 0 0 1 ; 
= 0 . 0 0 1 ; 
= le-3;

'/.height of upper wire at im (above cm) 
'/.height of lower wire at im (below cm) 
'/.height of wire at t e s t  mass (above cm)

'/.vertical o f f s e t  of spot on mirror (above cm)
*/,horizontal o f f s e t  of spot on mirror 
'/,x-coupling from v e r t ic a l  to displacement noise

‘/.local control damping parameters

xc

tdx
ldz
ldy
sdx
sdz

= 0.001; '/.cross-coupling le v e l  in lo ca l  control sensor/actuators

0.030
0 . 000
0.030
0.030
0 . 000

'/.distance from v e r t ic a l  axis  to t i l t  coil/magnet 
'/.vertical o f f s e t  of long coil/magnet (above cm) 
'/.horizontal o f f s e t  of long coil/magnet 
'/.distance from v e r t ic a l  plane to sideways coil/magnet  
'/.height of sideways coil/magnet (above cm)

'/.

l c = [

X y z t i l t ro t r o l l

1 xc xc ldz ldy xc '/.long
xc xc 1 tdx xc xc '/ . t i l t  & v e r t
xc xc 1 -td x xc xc '/ . t i l t  & v e r t
xc 1 xc xc sdx sdz '/.side Sc ro t
xc -1 xc xc sdx -sdz '/.side Sc ro t
0 0 0 0 0 0 ] ; '/.ro ll

= [ 6 6 6 6 6 -1 ] ; '/.lo ca l.? ?

= [ 0 0 0 0 0 0 ] ;
'/.normalised gain

return
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A .7 dp_g6_m c.m

Syntax

[] =  dp_g6_mc()

There are no inputs or ou tpu ts  to this function.

F u n c t io n s  called by dp_g6_mc.m :

• props.m

Purpose

This file sets param eters  that  describe the double pendulum designed to suspend 

the modecleaner mirrors for the GEO 600 project (as detailed in Section 8.2). These 

are set as global variables.

Source Code
function dp_g6_mc
'/.list of parameter assignments for  the GE0600 modecleaner suspension 

'/.Stuart Killbourn (September 96)

f p r i n t f ( 1 Parameters for GE0600 Modecleaner Pendulum Assigned\n’ );

******* I********************************* I********* **)((*** *******
'/.global variab les  defined in th is  program

global modeld
global ml I lx  I ly  I lz
global m2 I2x I2y I2z
global ix  iy  iz
global tx  t r
global FibresU FibresL
global matU matL matl matT
global Qu qi Yu Y1 PRu PR1
global Ru R1 lu  12
global t  s d e l ta l  delta2 h
global etaO eta lu  e t a l l  eta2
global offV offH z2dn
global l c  lc_name lc_gain

'/.GE0600 modecleaner and crude optics  suspension  

modeld = ’GE0600 Modecleaner Pendulum’ ;

ix  = 0.070; '/.dimensions of intermediate mass
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iy  = 0.050;
iz  = 0.085;

matl = ’ aluminiumJ;

rhol = props(matl);

ml = rh o I* ix * iy * iz ; ‘/.intermediate mass

I lx  = ml*(iy~2+iz~2)/12; ’/.moment of in e r t ia  (sideways t i l t )
I ly  = m l*(iz~2+ix“2)/12; */,moment of in e r t ia  ( longitudinal t i l t )
I l z  = m l*(iy~2+ix~2)/12; ‘/.moment of in e r t ia  (rotation)

tx = 0.050; ‘/.dimensions of t e s t  mass
t r  = 0.050;

matT = ’f u s e d . s i l i c a ’ ;

rhoT = props(matT);

m2 = rhoT*pi*tr~2*tx; ‘/.calculation  of mass and moment of in e r t ia

I2x = m2*( t r ~ 2 /2 ) ; ‘/.moment of in e r t ia  (sideways t i l t )
I2y = m2*(tr~2 /4+ tx~2 /12 ); ‘/.moment of in e r t ia  (longitud inal t i l t )
I2z = m2*(tr~2 /4+ tx~2 /12 ); ‘/.moment of in e r t ia  (rotation)

FibresU = 2; ’/.number of upper wires
FibresL = 4; ’/,number of lower wires

matU = ’5thou’ ;
matL = ’ 5thouJ;

[rho, Yu,Qu,PRu] = props(matU);
[rho,Y1,Q1,PR1] = props(matL);

Ru = 62e-6; ‘/.wire rad ii
R1 = 50e-6; ‘/.4thou

lu = 0.300; */,upper wire length
12 = 0.500; ‘/.lower wire lengths

‘/.parameters in x - axis

d e l ta l  = 0.002; ‘/.half separation of wires at intermediate mass
delta2 = 0.002; ‘/.half separation of wires at t e s t  mass

‘/.parameters in y - axis

etaO = iy /2  + 0.003; ’/.half separation of wires at top p la te
eta lu  = iy /2  + 0.003; ’/.half separation of wires at intermediate mass
e t a l l  = iy /2  + 0.003;
eta2 = t r  + 0.002; ‘/.half separation of wires at t e s t  mass
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’/.parameters in z - axis

=  0 . 0 0 0  

=  0 . 0 1 1  
=  0 .0 0 2

'/,x-coupling fac tors

offV = 0.001;
offH = 0.001;
z2dn = le -3 ;

'/,height of upper wire at im (above cm)
#/,height of lower wire at im (below cm) 
'/.height of wire at t e s t  mass (above cm)

y.vertical o f f s e t  of spot on mirror (above cm) 
'/.horizontal o f f s e t  of spot on mirror 
'/,x-coupling from v e r t ic a l  to displacement noise

’/.local control damping parameters

xc = 0.001 '/.cross -coupling le v e l  in lo ca l  control sensor/actuato

tdz = 0.0375; '/.vertical o f f s e t  of t i l t  coil/magnet (above cm)
ldz = 0.000; '/.vertical o f f s e t  of long coil/magnet (above cm)
sdx = 0.030; '/.distance from v e r t ic a l  plane to sideways coil/magnet
sdz = 0.000; '/.height of sideways coil/magnet (above cm)

'/. x y z t i l t rot r o l l

lc  = [ 1 xc xc -tdz xc xc '/.long
1 xc xc tdz xc xc '/.tilt & vert
0 0 0 0 0 0 '/.tilt & vert
xc 1 xc xc sdx sdz '/.side & rot
xc -1 xc xc sdx -sdz '/.side & rot
0 0 0 0 0 0 J ; '/.roll

lc_name = [ 5 5 -1 5 5 - l  ] ; '/.local.??

lc_gain = [ 0.05 0. 06 0 0.063 0.063 0 ]
'/.normalised gain

return
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Syntax

[a,b,c,d] =  fb_xl()

There are no inputs to this function.

O u t p u t s :  a state-space matrix, 
s tate-spare matrix, 
state-space matrix, 
state-space matrix.

b
c
d

F u n c t io n s  called by fb _ x l .m :

•  assign

• constant.m

• dp jiew .m

• dp2ss.m

• loss.m

Purpose

This function re turns the state-space matrices which characterise the response of a 

double pendulum  suspension to forces applied at the intermediate mass.

Algorithm

The state-space models for the pendulum  (described in Section 5.3) and the trans­

verse modes of the suspension wires are combined in a parallel p a th  configuration. 

The pendulum  model is obtained from the function dp2ss .m ; the model for the 

transverse modes is found in Section 4.7. The Q factors of the transverse modes 

are determ ined by a structura l  damping term and a thermoelastic damping term. 

These are calculated from d a ta  defined in pro p s .m .  The Q factors are enhanced 

according to E quation 7.17 to account for the wire tension.
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Source Code
function [a ,b }c,d] = fb_xl
’/.model of transfer  function of double pendulum 
'/.force at intermediate mass to t e s t  mass displacement 
'/.includes transverse modes of suspension wires

dp_name = ’dp_new’ ;

'/.global variab les  defined in ’constant’ 

global g

constant; '/.assign universal constants

%************************************************************************** 
'/.global variab les  defined in dp_name

global modeld 
global ml I lx  I ly  I l z  
global m2 I2x I2y I2z 
global FibresU FibresL 
global matU matL matl matT 
global Qu Q1 Yu Y1 PRu PR1 
global Ru R1 lu 12 
global t s d e l ta l  delta2 h 
global etaO eta lu  e t a l l  eta2 
global offV offH z2dn 
global l c  lc.name lc .g a in

assign(dp_name);

g lobal fv

'/.transverse modes of the wires

mds = 5; '/.number of transverse modes included
n = l inspace(l ,m ds,m ds);

[rho,Yl] = props(matL);

N2 = (eta2 - e t a l l ) ;
D2 = (delta2 - d e l t a l ) ;
U2 = sqrt(N2~2 + D2~2);
omega = a s in (U 2 /12 );

T1 = m2*g/(FibresL*cos(omega)); '/.lower wire tension

Ix = pi*Rl~4/4; '/.moment of cross sec t ion
al = s q r t (T l / (Y l* I x ) ) ; '/.bending length
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lambda = rho*pi*R.l~2;
mwire = lambda*12;

fv  = (1 / (2 * 1 2 ) )*sqrt(Tl/lambda).*n;
wv = 2*pi*fv;

phi_w = loss(dp_nam e,fv ,JI t  ’ ); '/,material lo s s
Q = 1 . / (p h i_ w .* ( (2 / (a l* 1 2 ) )* ( l  + (n * p i) . ~2 /(2*al*12)) ) ) ;
'/,enhanced Q factor

kv = (mwire/2)*wv. “2.*(1  + i . / (Q .* w v ));

m = (rawire/2) * ones(l,mds);
M = diag(m);

K = -1 * d ia g (k v );

invMK = inv(M) * K;

on = ones(1 ,mds);
ze = ze ro s (1 ,mds);

c l  = (mwire. / (n*pi*ml));
c2 = -1 * (mwire. /(n*pi*m2)) .* ( - l ) .~ n ;

inputM = [ on l ./m  ] ’ ;

av = [ zeros(mds) eye(mds)
real(invMK) imag(invMK) ];

bv = inputM .* [ ze c l  ] ’ ;

cv = [ c2 ze ];

dv = [0] ;

'/.pendulum model ( longitudinal)

[ff,iMKLT] = dp2ss(dp_name,’ ’ );

diMKLT = 50000*diag(diag(imag(iMKLT(l: 2 ,1 : 2 ) ) ) ) ;

Fdamp = 1;

ML = [ 1 1 1/ml l/m2 ] ’ ;

AL = [ zeros(2) eye(2)
r e a l ( iMKLT(1 :2 ,1 :2 ) )  diMKLT/(2*pi*Fdamp) ];

Bxl = ML.*[ 0 0 1 0 ] ’ ;
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Cxi = [ 0 1 0 0 ] ;

DL = z e r o s (s iz e (C x l)*[1 0 ] ’ , s iz e (B x l)* [0  1 ] ' ) ;

‘/.whole thing

[a ,b ,c ,d ]  = parallel(AL,Bxl,C xi,DL,av, b v ,c v ,d v ) ; 

return
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A .9 fb_x2.m

Syntax

[a,b,c,d] =  fb_x2()

There are no inputs  or ou tpu ts  to this function.

O u t p u ts :  a state-space matrix. 
st,ate-spa,ce ma.trix. 
state-space matrix, 
state-space matrix.

b
c
d

F u n c t i o n s  called by fb_x2.m:

• assign, m

• constant

• dp_new.m

• dp2ss.m

• loss.m

Purpose

This function re turns the state-space matrices which characterise the response of a 

double pendulum  suspension to forces applied at the test mass. The internal modes 

are specific to the test masses used in the Glasgow pro to type detector.

Algorithm

The state-space models for the pendulum  (described in Section 5.3) and the internal 

modes of the test masses are combined in a parallel path  configuration. (The trans­

verse modes of the suspension wires can also be included -  the model is as detailed 

for f b _ x l .m . )  The pendulum  model is obtained from the function d p2 ss .m .  The 

model for the internal modes is described in Section 4.8 and the da ta  refers to the 

test masses used in the Glasgow prototype.
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Source Code
function [a,b,c>d] = fb_x2
'/.model of transfer  function of pendulum with 
'/.internal modes (and v io l in  modes - optional)

dp.name = ’dp.new’ ;

y £ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

'/.global variables defined in ’constant’ 

global g

constant; ’/.assign universal constants

% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

'/.global variables defined in dp.name

global modeld 
global ml I lx  I ly  I lz  
global m2 I2x I2y I2z 
global FibresU FibresL 
global matU matL matl matT 
global qu Q1 Yu Y1 PRu PR1 
global Ru R1 lu 12 
global t s d e l ta l  delta2 h 
global etaO eta lu  e t a l l  eta2 
global offV offH z2dn 
global l c  lc_name lc .g a in

global fO fv

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . * * * * * * * * * * * * * * * * * * * * * * *  

'/.transverse modes of the wires

mds = 5;
n = linspace(l ,m ds,m ds);

[rho.Yl] = props(matL);

N2 = (eta2 - e t a l l ) ;
D2 = (delta2 - d e l t a l ) ;
U2 = sqrt(N2~2 + D2~2) ;
omega = as in(U 2/12);

T1 = m2*g/(FibresL*cos(omega)); '/.lower wire tension

Ix = p i*R l~4/4; '/.moment of cross sec tion
al = s q r t (T l / (Y l* I x ) ) ; '/.bending length
lambda = rho*pi*Rl~2;
mwire = lambda*12;
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fv
wv

= (1 /(2 * 1 2 )) *sqrt(Tl/lambda). *n; 
= 2*pi*fv;

phi_w = loss(dp_name,fv, ’I t }); '/.material lo s s
Q = 1 . / (p h i_ w .* ( (2 / (a l* 1 2 ) )* ( l  + (n*pi) . '"2/(2*al*12) ) ) ) ;
'/.enhanced Q factor

kv = (mwire/2)*wv.~2.*(1 + i . / (Q .*w v));

m = (mwire/2) * ones(l,mds);
M = diag(m);

K = -1 * d iag (kv);

invMK = inv(M) * K;

on = ones(1 ,mds);
ze = ze ro s (1 ,mds);

c l  = (mwire. / (n*pi*ml));
c2 = - i  * (mwire. / (n*pi*m2)) .* ( - l ) .~ n ;

inputM = [ 

av = [ zeros(mds) 
real(invMK)

eye(mds) 
imag(invMK) ];

bv

dv

= inputM .* [ ze 

= [ c2 ze

= CO];

c2

] ;

'/.input parameters 
'/.
'/,f0 resonant frequencies
'/,Q Q fac tors  (as measured)
'/.alpha e f f e c t iv e  mass c o e f f ic ie n t
'/.couple c:oupling strength of magnet to internal mode

fO = [ 23619 25509 28568 32000 36274 46812 47615 ];
Q = [ 74000 220000 44000 50000 730 20000 13000 ];
alpha = [ 0.55 0.36 0.72 2.5 0.19 0.32 0.055 ];
couple = [ -0.044 0.635 -0.153 0.872 -0.106 0.448 -0.102 ];

f l = [ 55840 57302 59585 64439 69195 74732 75670 79846]
Q1 = C 9900 20000 17000 15000 9600 7700 19000 5000 ]
alphal = [ 0.192 0.489 0.046 0.708 0.112 0.080 0.077 0.034]
couplel = C -0.579 -0.313 -0.104 0.266 -0.112 -0.270 -0.094 0.049]
'/.some more modes that can be included
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i f  1

fO = [ fO f l  ]
Q = [ Q Qi ]
alpha = [ alpha alphal ]
couple = [ couple couplel ]

end

’/.pendulum model (long itud ina l)

[ff.iMKLT] = dp2ss(dp_narae,’ ’ );

diMKLT = 50000*diag(diag(imag(iMKLT(l: 2 ,1 : 2 ) ) ) ) ;

Fdamp = 1;

ML = [ 1 1 1/ml l/m2 ] > ;

AL = [ zeros(2) eye(2)
real(iMKLT(l:2 ,1 :2 ))  diMKLT/(2*pi*Fdamp) ];

Bx2 = ML.* [  0 0 0 1 ]»;

Cx2 = [ 0 1 0 0 ] ;

DL = ze ro s (s ize (C x 2 )* [1 0] *  , s ize(B x2)*[0 1 ] ’ );

'/.internal modes

m2 = 2 . 8 2 ;

m = alpha*m2;
ki = m .* (2*p i* f0 ) . "2.*(1 + i  . /(Q*2*pi. * f0 ) );
M = diag(m );

K = -1 * d ia g ( k i ) ;

invMK = inv(M) * K;

on = o n e s ( l , s i z e (K )* [ l  0 ] ’ );
ze = z e r o s ( l , s ize (K )* [1 0 ] ’ ) ;

inputM = [ on l ./m  ] ’ ;

a i = [ z e ro s (s ize (K )) eye(size(K ))
real(invMK) imag(invMK) ];

bi = inputM .* [ ze -couple ] ’ ;
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c i  = [ on ze ] ;

di = [0];

'/.whole thing

[a ,b ,c ,d ]  = p a ra l le l (A L ,B x 2 ,C x 2 ,D L ,a i ,b i ,c i ,d i) ;

'/, [a ,b ,c ,d ]  = p a r a l le l  (a, b , c , d, av, bv, cv, dv) ;
'/.these are the v io l in  modes - but r e a l ly  they make l i t t l e
'/.difference to the transfer  function of feedback to the 
'/.test mass - I think i t ' s  okay to omit them - unless they
'/.really have a very high Q fac tor  (fused s i l i c a ? )  .

return

196



Appendix B 

D e r i v a t i o n  o f  E q u a t i o n  4 .8

A static solution is required for Equation 4.7, tha t  is:

d 2x d 4x
T ^ ~ Y I J ?  = 0 - t B1)

This should give a valid description of the suspension wire dynamics at frequencies 

well below their transverse modes. A general solution for x ( z )  is

x ( z )  = A  + B z - \ - C e ^  + D e  * (B.2)

where A, B , C  and D  are determined by the boundary  conditions and A is the

characteristic bending length of the wire (obtained by substitiition of the general

solution into Equation B.l):

[y i
A -  \ /   . (B.3)V T

For wires tensioned close to their breaking stress, typically A <  I.

The elastic energy stored in the wire is given by [56]

i  r> ( d 2.
= d 0 Y I { a IE  = I Y I  | dz  (B -4 )

where
d 2x  C z D  x

=  + ?  '  (B-0)

so the energy stored depends only on the param eters  C  and D  in Equation B.*2.

The boundary conditions at the wire ends are:

t (0 )  = x \  (B.6)
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z ( - 0  =  x  2

x ;(0) = —a

x ' ( - l )  =  - f 3

where 2 =  0 is the top of the wire; z  = —I is the bottom , and x'  is 

derivative of x with respect to z. Substitu tion  of the boundary  conditions 

general solution give

xi =  A  + C  +  D

x-2 =  A  — B l  A  Ce  x +  D e ^

C D
— a = B  +  — — —

A A
C _ i  D  1

— 3  = B  + —  e  ̂ — —  e * .
A A

Equations B.10 and B . l l  combine to eliminate A:

x \  -  X2 = B l  + C ( l  -  + D  ( l  -  eA'j .

Using Equation B.12 to eliminate B  in Equation B.14 gives

I 1 \  f  I L
■r l — x 2 +  o / = C ^ l — — — e * J  + .D ^1 +  — — U

L . LHowever, since //A 1 then e* l / X  and certainly e * 1. Also e

Therefore, Equation B.15 simplifies to

xi — x-2 +  a I =  C  ^1 — — ̂  — D e  * .

Combining Equations B.12 and B.13 to eliminate B  gives

D  /  l \  C /  _ i \
t t - / ? = - ( l - e A ) - - ( l - e  a)

which can also be simplified, giving

C -  A(/3 -  a )  -  De a .

Substitu tion  of Equation B.18 into Equation B.16 leads to

D  — 2^ e a — xi — X2 +  oA +  3(1 — A)
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(B.7)

(B.8)

(B.9)

the first 

into the

(B.10)

( B. l l )

(B.12)

(B.13)

(B.14)

(B.15) 

<C 1.

(B.16) 

(B.17) 

(B.18) 

(B.19)



and since //A 2, Equation B.19 becomes

A r , _ iD = — [ t i  -  x 2 +  a-A +  0(1 -  A)] e a (B.20)

Using Equation B.18 with Equation B.16 but this time to eliminate D  gives (and 

again using //A 2)

C  =  — [x2 — ^ 1 “  ce(l — A) — 0 \ \  . :b . 2 i

Having obtained expressions for C  and D  in terms of the coordinates of the wire 

ends, the elastic energy stored in the wire is deduced from Equation B.4. First, the 

variables 7  and S defined as

so that

7  -  x 2 ~  x l ~  a  (I -  A) -  ,3 A

b — x x — x 2 +  cv A +  ,3 (/ — A)

O x 1 r £. _ i_ ^ e l  +  4e Je »

The square of Equation B.24 is

( d ^ V  _  1

I d : 2 ) ~  A2 12
7 *2e a + '2~f be a +  b*c a e a

2 _ 21

and the elastic energy expressed by (from Equation B.4)

1 1 
E  = - Y I

2 A2 / 2

O A 2 Z   j[_

7  - e  a + 2~f6e a - e  a1 9  / 9

z — —I 

z  — 0

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

Keeping only the dom inant terms (since e a 1 ), Equation B.26 becomes

b

dien

E  =

b =

-  b‘

V y i t

(B.27

(B.28)

Replacing 7  and £ with their definitions; pu tt ing  X  = X2 — £ 1 , and gathering like 

terms gives 

b
E  = -  

4
2 X 2 +  ( a 2 +  3 2) ( 2 A2 -  2 AI +  /2) -  2 l X ( a  +  3)  +  Aa0X  (I -  A) (B.29) 

which is Equation 4.8 as presented in C hapter  4.
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