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Summary

The c-myc gene plays a role in the aetiology of various cancers of humans and animals. 
Feline leukaemia virus has also been demonstrated to have oncogenic potential, and in 
approximately one third of tumours where FeLV is present aberrant expression of a myc 
gene occurs. This changed expression pattern is mainly due to FeLV transduction of the 
myc gene, but can also occur by insertional mutagenesis.

Until recently w-myc genes have been found to be virtually equivalent to c-myc, with few 
mutations in the coding sequence. This project focuses on a FeLV-transduced v-myc, 
termed T17-myc, which is exceptional in that it is highly mutated. Mutations include 
partial loss of a domain previously identified as crucial for transformation, as well as an 
insertion in the basic region (BR) sequence-specific DNA binding domain.

The aim of this work was to characterise the mutant oncogene at the biological and 
biochemical level, to discover whether various Myc functions could be dissociated using 
the mutant.

I have shown that the original mutations are maintained in secondary lymphomas which 
occurred rapidly after inoculation of the T 17 virus complex, arguing that the mutant is a 
relatively efficient oncogene. Despite its apparent in vivo efficiency, it was transformation 
defective in chick embryo fibroblasts, and was unable to induce apoptosis in the same 
cells. Chimaeric genes showed that the transformation and apoptosis defects were caused 
by the N-terminal mutation. However, the C-terminal BR mutation independently 
lowered transformation efficiency and growth rate, although the mutation did not prevent 
binding to DNA along with Max, either in vitro or in vivo.

Analysis of gene expression in the original T17 lymphoma-derived cell line showed that 
putative Myc regulated, and Myc regulating genes were expressed in the mutant Myc cell 
line, although the mutant Myc was able to interact with the transcriptional repressor p i07 
in vitro.

The data presented in this thesis are consistent with a model where mutations in the N- 
terminal domain of Myc abolish the negative growth effects of the myc gene, with 
relatively little consequence for its oncogenic function in T cells. Also consistent with 
these data is the ability of Myc to interact with cell type specific factors involved in 
transcription of Myc-regulated genes.
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1 Introduction

The myc gene was originally discovered as a transduced gene in avian mvelocvtomatosis 

virus MC29 (1-3). The gene comes from a family of cellular genes of which the best 

characterised are : c-myc, L-myc, and N-myc. The first to be discovered due to 

homology with v-myc (1) and the most intensively studied is c-myc, where "c" denotes 

cellular (4). L-myc was discovered in a small cell lung carcinoma (5), while N-myc was 

found as a c-myc related gene which was amplified in some neuroblastomas (6).

All three myc genes are composed of three exons. Exons two and three code for the 

major protein product, while exon one contains predominantly regulatory sequences 

necessary for the control of myc expression (7). There are two translational products of 

c-myc, the major 64kD form is initiated from an AUG codon in exon 2, while the minor 

67kD protein is initiated from a CUG codon at the 3’ end of exon 1 (8). Loss of the first 

exon has been shown to increase the oncogenic potential of all three myc homologues 

(9).

Both the myc RNA and protein products have short half lives, myc mRNA has been 

shown to have a half life of ~10 minutes (10), which could be dramatically extended by 

inhibition of protein synthesis in some cell lines, though not in others. This variability 

suggests that post transcriptional control of myc is mediated by different factors in 

different cell types (10). Both c-Myc translation products are phosphoproteins localised 

in the nucleus, with a short half life of -25 minutes (11).

Since the original discovery of myc, the gene has been implicated in a variety of cancers 

in both humans and animals and has been found to be deregulated by diverse 

mechanisms, such as proviral insertion, viral transduction or chromosomal translocation 

(Table 1.1). The last mechanism was noted first in Burkitt’s lymphoma, where the myc 

gene comes
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Table 1.1 Examples of tumour-specific alterations of c-myc in different species.

Alteration to c-myc Species Control by Tumour Type Reference
Retroviral Chicken ALV, REV Leukaemia, Lymphoma, (12)
Transduction Carcinoma

Cat FeLV T cell lymphoma (13)
Retroviral Insertion Chicken ALV, REV B cell lymphoma (14,15)

Mouse MuLV,MCF T cell lymphoma (16,17)
Cat FeLV t f  t t (18)
Rat MuLV i t  t t (19)

Other Insertion Mouse IAP Plasmacytoma (20)
Dog Retroposon Transmissible venereal 

tumour
(21)

Chromosomal Man IgH, IgL B cell lymphoma (22,23)
Translocation TCRa T cell lymphoma (24,25)

*3:8) Renal cell carcinoma (26)
Mouse IgH Plasmacytoma (23)
Rat IgH Immunocytoma (27)

Amplification Man DM, HSR Lung carcinoma (28)
DM, HSR Colon carcinoma (29)
DM Gastric carcinoma (30)
DM, HSR Myeloid leukaemia (31)
DM Glioblastoma (32)

Kev: ALV, avian leukosis virus; REV, reticuloendotheliosis virus; FeLV, feline 

leukaemia virus; MuLV, murine leukaemia virus; MCF, mink cell focus-forming virus; 

IAP, Intracistemal A-Particle element; TCRa, T cell receptor a  chain locus; IgH, 

immunoglobulin heavy chain locus; IgL, immunoglobulin k  or X light chain locus; DM, 

double minute chromosomes; HSR, homogeneously staining region.
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under the control of an immunoglobulin enhancer element (22,33). The most common 

translocation is t(8:14), where a reciprocal recombination occurs between the c-myc 

locus at band q24 on chromosome 8, and the immunoglobulin heavy chain locus at band 

q32 on chromosome 14 (23). Other than the translocation of c-myc to the 

immunoglobulin locus there is strong evidence that Epstein-Barr virus (EBV) plays 

some role in lymphomagenesis. In African children early EBV infection with a high 

multiplicity has been shown to correlate with lymphoma, indeed 97% of African Burkitt 

lymphoma cells have multiple copies of the EBV genome in them (33).

1.1 Biological Effects of c-myc

1.1.1 Tumours

Evidence that c-Myc is important for the normal function of cells comes from the 

association between the deregulation of c-myc and oncogenesis, with c-myc presenting a 

frequent target for activation in a variety of cancers (Table 1.1). From early work c-myc 

was suggested to act as an immortalising gene, in the same mould as E la and large T 

antigen (7), since each of these gene products can partially transform primary cells in 

culture without inducing a complete tumourigenic phenotype (7). Indeed secondary 

genetic events are required for in vitro systems which measure the ability of Myc to 

induce transformation (34), while early in vivo work on promyelocytic leukaemia and 

Burkitt's lymphoma demonstrated the need for cooperating oncogenes in human cancer 

(35). Studies involving a variety of human cancers confirmed that the c-myc gene was 

expressed in all tumour types tested and in almost all individual tumours (36). This may 

have been taken simply as evidence of an essential requirement for c-myc in cell division, 

but this seemed unlikely from the observation that c-myc expression was aberrant in 

71% of tumours compared to normal tissue from the same organ of each patient (36).

In a model system utilising exogenous c-myc expressed under the control of viral 

promoters in fibroblast cell lines, the fibroblasts were able to induce tumours when 

injected subcutaneously into nude mice, or syngeneic rats (37). In this experiment there
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was no marked alteration in cell morphology or anchorage independent growth of the 

cell lines overexpressing c-myc (37).

Another approach to investigating the biological significance of myc has been the use of 

transgenic technology. Two methods have been developed which allow either the direct 

targeting of the genetic lesion to a specific cell type, or the widespread overexpression in 

a variety of tissues.

Using cell type specific enhancers the first of these methods has been used to target myc 

expression to various tissues including; breast, utilising a mouse mammary tumour virus 

LTR (38); lymphoid, targeted using immunoglobulin heavy chain enhancer (E|x-myc) 

(39), as well as several other tissue types, e.g. liver, pancreas, heart, and lens (reviewed 

in (40)). With the result that deregulated myc has been demonstrated to be capable of 

promoting the development of cancer in each of these tissues. However, due to the time 

scale and percentage of animals affected it was concluded that deregulated myc alone 

was not sufficient to cause disease (38,39).

The second of these approaches demonstrated the ability of a c-myc gene, under the 

control of the MMTV LTR, to increase the incidence of a variety of tumours (41). 

Tumour types associated with this multi-tissue overexpression were o f ; mammary, 

testicular, mast cell, pre-B cell, B cell, and T cell origin (41). However, although 

various cell types developed tumours, these affected only 40% of animals at a mean age 

of 14 months (41), reinforcing the need for other genetic lesions which enable tumours 

to develop. Just as intriguing as the role played by myc in the various neoplasias, was 

the finding that the transgenic mice developed normally (41). Hence overexpression 

does not prevent normal development.

The realisation that deregulated myc is insufficient to cause cancers by itself led to other 

approaches, which utilised either double transgenic technology or retroviral infection to
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search for cooperating genetic events in the genesis of tumours. Even mice transgenic 

for both v-Ha-ros and c-myc develop clonal tumours, providing evidence that still more 

events are required to complete tumour development (42). However, this experiment 

demonstrated that these two oncogenes were synergistic rather than additive in their 

effects (42).

Although ras/myc mice displayed synergy in the genesis of tumours, the most dramatic 

example to date of a gene which can synergise with myc to promote oncogenesis, is 

pim-1. Mice carrying both transgenes succumbed to lymphoblastic leukaemia in utero 

(43). While bitransgenic mice carrying pim-1 and either N-, or L-myc also succumbed 

to lymphoid malignancies, these animals survived to a mean age of 36 and 94 days 

respectively, post parturition (44). Crossing of transgenic mouse strains is now used 

almost routinely, e.g. recent experiments showed that cyclin D1 (bcl-1) which is 

overexpressed in a variety of human tumours, cooperates with myc family members in 

lymphomagenesis (45,46). This finding, like much associated with myc, seems to 

contradict other work which suggested that highly expressed Myc is able to down- 

regulate cyclin D1 expression (47,48). However, such a control mechanism might have 

been lost as the cyclin D1 transgene is under the control of the immunoglobulin 

enhancer.

Infection with weakly oncogenic retroviruses can promote cancer by insertional 

mutagenesis, causing inappropriate activation of genes. Using mice transgenic for myc 

and infecting with a retrovirus, cooperating genes may then be cloned and characterised, 

and this process is termed proviral tagging (reviewed in (49)). This approach has 

proved to be very effective, leading to the discovery of several other genes involved in 

carcinogenesis. An early example was pim-1 (50), which codes for two primary 

translation products giving proteins with serine/threonine kinase activity (51). Other 

cooperating genes include bmi-1, a zinc finger protein (52,53), which has been shown
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to collaborate with myc when transgenic bmi-1 mice are mated with transgenic myc mice 

(54).

A technique related to transgenesis is the use of gene knock out, where the gene of 

interest is deleted in embryonic stem cells by homologous recombination, so affecting 

the germ line after reconstitution of embryos. By this means heterozygous and 

homozygous animals deleted for the gene of interest can be generated. This method has 

been used to generate mice which are null for c-myc (55). The resulting homozygous 

null progeny were found to begin development, but the mutation was lethal by 10.5 days 

of gestation, while heterozygous females showed reduced fertility with a high rate of 

embryonic resorbtion (55). The study also demonstrated that c-myc was dispensable for 

early - i.e. before 10.5 days gestation- cellular proliferation and differentiation, although 

necessary for normal embryonic development

One further approach has been developed which combines all the previous techniques to 

search for myc cooperating genes, this utilises transgenics, gene knock out and proviral 

tagging. By crossing E|x-myc mice with mice which are homozygous null for the pirn-1 

gene then infecting with a retrovirus, it was reasoned that insertional mutagenesis would 

occur at genes which act downstream or in parallel to pim-1 (56). This approach, allied 

to a PCR technique, identified pim-2, and has been proposed as a method whereby 

genes acting in a narrowly defined pathway can be identified by a method termed 

'complementation tagging1 (56).

1.1.2 Cell cycle progression

When fibroblasts are exposed to growth factors it has been estimated that as many as 

100 genes are rapidly induced in the initial response (57). These rapidly expressed genes 

are thought to be important mediators of mitogenesis. As c-myc is one of these 

immediate early genes, it is supposed that it has an important function in mediating the 

mitogenic response.
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This rapid response in c-myc induction has been demonstrated in B cells, T cells, and 

fibroblasts (58). By using lipopolysaccharide (LPS), concanavalin A (con A), and 

platelet derived growth factor (PDGF) on B, T, and fibroblast cells respectively, to 

induce mitosis, it was found that c-myc was rapidly transcribed with maximal levels of 

transcription at approximately 2 hours for lymphocytes and 3 hours for fibroblasts (58). 

Addition of cyclohexamide did not prevent c-myc RNA induction, hence transcription is 

not secondary to growth and must be mediated by preexisting factors. However, 

although c-myc RNA is rapidly induced when growth arrested cells are stimulated to 

divide, synthesis of both RNA (59) and protein remain constant throughout the cell 

cycle (60,61).

Further evidence for the importance of c-myc in the mitogenic response came from the 

use of an exogenous steroid responsive c-myc in 3T3 fibroblasts. When c-myc was 

induced by hydrocortisone in density arrested cells, in the presence of epidermal growth 

factor and absence of PDGF, cells entered the cell cycle as measured by ^H-thymidine 

uptake (62). Although growth was stimulated along with increased c-myc mRNA, it 

was found that growth was better when PDGF was used to stimulate c-myc expression, 

despite levels of mRNA being similar (62). This was reasoned to be due to factors other 

than c-myc which were not expressed in the absence of PDGF, however another 

explanation which fits with more recent observations on c-myc function, is that the cells 

entered apoptosis in the poor growth medium (63) (see section 1.1.4).

Rapid downregulation of c-myc accompanies removal of mitogenic stimulus or growth 

inhibition due to cell-cell contact, which has also been demonstrated to suppress the 

transformed phenotype of v-myc transformed quail muscle cells (64). This fits with the 

notion that abnormal expression of myc prevents the cell from leaving the cell cycling 

compartment, leading to aberrant growth of cells. And c-Myc has been demonstrated to 

have a direct role in proliferation by microinjection of c-Myc protein into nuclei, which 

stimulated DNA synthesis when platelet-poor plasma was present (65). Also antisense
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nucleotides targeted at c-myc were able to inhibit proliferation of human promyelocytic 

leukaemia HL-60 cells, in a dose dependent and sequence specific manner (66).

Recently a link has been shown to exist which helps to couple the PDGF stimulus to 

expression of c-myc. The non-receptor tyrosine kinase Src binds to the PDGF receptor 

through the Src-homology 2 domain (SH2). Once bound, Src is activated and can 

phosphorylate cellular proteins not directly phosphorylated by the PDGF receptor (67). 

Using a dominant negative Src, lacking kinase activity, it was shown that the PDGF 

signalling block, induced by the mutant Src, could be rescued by c-Myc, although Myc 

was unable to rescue a dominant negative Ras (68). Moreover, by using an interfering 

form of c-Myc it could be demonstrated that prevention of c-Myc function can inhibit 

DNA synthesis. Further evidence of the importance of the Src pathway was provided by 

microinjecting antibody which inhibits Src (also Fyn and Yes) and trying to detect c-myc 

mRNA by reverse transcription PCR. This experiment confirmed that SH2-containing 

kinases directly stimulate c-myc transcription as the cells microinjected with the anti-Src 

antibody had a much reduced level of transcription compared to cells injected with a 

control antibody (69).

1.1.3 Differentiation block

The ability of c-myc to act as a block to differentiation has been demonstrated in a 

variety of cell types, and a negative correlation exists between c-myc transcription and 

cellular differentiation (70). By using teratocarcinoma stem cells, which differentiate 

into nonproliferating endoderm by addition of retinoic acid and cyclic AMP 

(RA+cAMP), c-myc mRNA levels were 15 to 20 fold lower three days after addition of 

RA+cAMP (71). This striking reduction in c-myc mRNA correlated with terminal 

differentiation before proliferation had ceased (71).

Mouse erythroleukaemia (MEL) cells can be induced to differentiate by using DMSO, 

lowering c-myc mRNA levels within two hours, with recovery to normal levels after 24 

hours (72). Constitutive expression of c-myc by using vectors expressing the gene
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under the control of the SV40 early promoter, prevented MEL cells from differentiating 

when treated with DMSO (73). Using a similar SV40 driven construct, but with c-myc 

in the antisense orientation, differentiation of MEL cells was accelerated while Gj 

progression was inhibited (74).

It appears that the c-myc induced block to differentiation may be caused by preventing 

cells from entering a predifferentiation compartment in Gq/G^. A preadipocyte cell line 

(3T3-L1) expressing c-myc under the control of a Rous sarcoma virus promoter, was 

able to proceed through the cell cycle and growth arrested in Gq/Gi, as did non c-myc 

overexpressing 3T3-L1 cells. However, unlike normal cells, myc expressing cells could 

re-enter the cell cycle, and failed to terminally differentiate on addition of high 

concentrations of serum (75). The differentiation block was reversible when the same 

cells were induced to express c-myc antisense RNA from a methotrexate inducible gene. 

It is proposed that c-myc acts as a molecular switch directing cells either to terminal 

differentiation or continued proliferation (75).

However, as with other aspects of c-Myc function, any ability to block differentiation 

may be specific to a particular experimental design. Evidence comes from transgenic 

mice carrying either c-myc or L-myc under the control of the aA-crystallin promoter. In 

this system expression is targeted to the lens fibre compartment, and was used to show 

that continued expression of c-myc does not directly prevent differentiation of this cell 

type, although there was inappropriate cell cycle progression (76). In contrast, 

continuous expression of L-myc had a pronounced effect in preventing the expression of 

late-stage differentiation markers, however these cells could withdraw from the cell 

cycle (76).

1.1.4 Apoptosis

As recently as 1990 major cancer meetings viewed oncogenesis as a failure to prevent 

cellular proliferation (77), with the focus of research on oncoproteins directed at two 

principal modes of action, (i) regulation of gene expression, and (ii) the control of
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cellular proliferation (78). The review of the 1990 Origins of Human Cancer meeting 

held at Cold Spring Harbor, is also a good example of changing fashions in science:

"If this meeting had been held three years ago, it safe to predict that attention 

would have been overwhelmingly focused on oncogenes: mutant genes that promote 

abnormal cellular proliferation. However, it has become increasingly clear that other 

genetic elements, namely tumor (sic) suppresser genes, play a critical role in negatively 

regulating cellular proliferation" (77).

Although both tumour suppresser genes and oncogenes are studied in even more depth 

today, the focus of oncogenesis has shifted with a current upsurge of interest in 

programmed cell death, or apoptosis (for reviews see (79-83)).

Apoptosis is a well recognised phenomenon which occurs during embryogenesis as part 

of the modelling of tissues, as well as being required for tissue homeostasis, 

characterised by cytoplasmic blebbing, vesicularization, nuclear condensation, and DNA 

fragmentation (84). The concept of natural cell death as a means of tissue modelling 

was first developed in the middle of the nineteenth century, with the first clear 

morphological description in 1885 given the name 'chromatolysis', while this type of cell 

death was reported in breast cancer in 1892 (85). So although the term apoptosis may 

be a relatively recent epithet, the process was observed over 100 years ago.

Present day thinking on the role of oncogenes and tumour suppresser genes tends more 

and more to look at how a particular gene product can either promote or prevent 

apoptosis. Now cooperation between oncogenes is no longer viewed as promoting 

mitogenesis, rather genetic mechanisms which can inhibit apoptotic pathways are 

deemed to be at least as important (86,87). Much of this refocusing of cancer research 

has been stimulated by the finding that constitutive overexpression of myc can lead to 

apoptosis in certain circumstances, such as serum deprivation in fibroblasts, which 

would undergo growth arrest if excess myc was not available (63). In haematopoetic 

cells loss of IL-3 in myeloid cells leads to apoptosis when myc is ectopically expressed 

(88), and T-cells fail to undergo activation induced apoptosis when antisense myc
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oligonucleotides are present, the latter finding suggesting a role for myc in the negative 

selection of T-cells (89).

Further work has looked at cooperation between myc and other oncogenes and tumour 

suppresser genes. Foremost amongst these are bcl-2, which can prevent cell death and 

is localised on the inner mitochondrial membrane (90-92), and p53, a gene thought to be 

the most commonly mutated in human cancers (93). Initial work focused on 

cooperation between myc and bcl-2 in tumour induction (90,94), however the mode of 

this cooperation was soon under investigation.

Using a heat shock inducible myc in Chinese hamster ovary cells, it was demonstrated 

that a constitutively expressed bcl-2 increased cell viability compared to parental cell 

lines which underwent apoptosis (95). Also, a c-Myc-oestrogen receptor construct 

which is able to induce apoptosis in fibroblasts when (3-oestradiol is added to serum 

deprived fibroblasts, lacks this effect when bcl-2 is constitutively expressed (96).

Further, it was demonstrated that bcl-2 expression did not inhibit cellular proliferation, 

and therefore bcl-2 is a specific inhibitor of the myc induced apoptosis function (96).

This work helped to formulate the 'two signal' model in which c-Myc can provide the 

first signal leading either to cell cycle progression or apoptosis, while the second signal 

could be provided by, e.g. growth factors which inhibit apoptosis, allowing c-Myc to 

drive the cells into cell cycle (63,95).

Confirmation of the role played by c-Myc in the induction of apoptosis was achieved by 

the demonstration that heterodimerization was required. This was accomplished by the 

creation of leucine zipper mutants of Myc and Max which could dimerize efficiently with 

each other, but not with their wild type partners (97). Only coexpression of both Myc 

and Max mutants in the same cells caused apoptosis to occur on withdrawal of serum 

(97). The same approach demonstrated that the activation induced apoptosis of T-cell 

hybridomas was dependent on functional Myc heterodimers (98).
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With the finding that the tumour suppresser p53, in its wild type form, is required for c- 

Myc mediated apoptosis, a link between the transforming capacities of these two genes 

was established (99). Using a p-oestradiol-inducible c-Myc, it was found that wild type 

p53 was stabilised after addition of (3-oestradiol, cells then underwent apoptosis when 

deprived of serum and (3-oestradiol was present. However, apoptosis did not occur in 

cells lacking p53 (99). Further evidence for the role of p53 in apoptosis, comes from 

Burkitt's lymphoma cells which express mutant p53, and grow rapidly in culture. 

However, when the same cells expressed a temperature sensitive wild type p53 they 

showed a diminished growth potential at a temperature which was permissive for the 

exogenous p53 (100). This loss of growth potential was shown to be due to the 

induction of apoptosis in cells expressing p53 in its wild type conformation (100).

In contrast, although p53 seems to be required for in vitro Myc-induced apoptosis, it 

appears to be dispensable for apoptosis in vivo. Crossing of E|x-myc mice with p53 

heterozygotes led to a synergistic shortening of tumour latency, with most tumours 

losing their wild type p53 (101). But it was found that tissue sections of tumours from 

E\i-myc mice and E\i-myc mice lacking a wild type p53, displayed equivalent levels of 

apoptosis, suggesting that wild type p53 is not required for apoptosis in this system.

One problem with this study is that the apoptosis displayed within the tumour tissue may 

be regulated by factors other than Myc and p53, as p53 independent pathways exist 

(83).

1.2 The c-myc Gene in Feline T-cell Lymphomas

Viruses were implicated in the genesis of cancer long before the structure and life cycle 

of the transforming retroviruses was discovered. Ellerman and Bang in 1908 transmitted 

erythroleukaemia and myelogenous leukaemia by inoculating chickens with cell-free 

filtrates (12). And Rous in 1911, who gave his name to the Rous sarcoma virus (RSV),
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used cell-free extracts from chicken sarcomas to transmit the same disease to a normal 

animal (12). The discovery of feline leukaemia virus owed much to the same 

methodology. A virus was isolated from a cat with lymphosarcoma in a multi-cat 

household, where other animals had developed the disease, and demonstrated to be an 

exogenous retrovirus transmitted contagiously among cats (91,102).

The majority of spontaneous lymphoid tumours which arise in the domestic cat are 

associated with feline leukaemia virus (FeLV) infection, with tumours falling into two 

major groups: mainly virus-positive T-cell lymphosarcomas, and alimentary B-cell 

lymphosarcomas, which are mainly virus-negative (13).

FeLV is an archetypal 'simple' retrovirus with three main open reading frames encoding 

gag, pol and env (103). The gag gene codes for internal antigens of the virus, pol codes 

for the reverse transcriptase, and env codes for the glycoproteins which are present in 

the envelope (Figure 1.1).

Although most of the work carried out on FeLV has concerned the development of 

neoplasias, the majority of cats actually die of other non-neoplastic degenerative 

disorders (Table 1.1, from (104)).

Table 1.2 Diseases induced by FeLV

Neoplastic Degenerative

T cell lymphosarcoma 

B cell lymphosarcoma 

Acute lymphoblastic leukaemia 

Myeloid leukaemia 

Multicentric fibrosarcomas

Immunosuppression 

Pure red cell aplasia 

Aplastic anaemia 

Osteosclerosis

Abortion and foetal resorbtion
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FeLV aetiology of lymphoid tumours is associated with myc in approximately 1/3 of 

field cases (13), where the virus affects myc in one of two ways. Either the virus can 

integrate near to cellular myc, so activating the gene via the viral LTRs (13), which 

appears to upregulate the gene only marginally, leading to the suggestion that upstream 

sequences regulating the normal feedback control of myc expression may be disrupted. 

Or, more commonly, the virus transduces the protein coding second and third exons of 

c-myc. This latter mechanism results in deletion of part of the viral genome 

(13,105,106), rendering the viruses replication incompetent
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Figure 1.1

Figure 1.1 Structure of FeLV. Protein nomenclature after Leis et al (107).
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However, although it is c-myc which is transduced by FeLV in lymphoid tumours, there 

is a different picture in fibrosarcomas. Listed in table 2 are a number of other genes 

transduced by FeLV, but these genes were found in fibrosarcomas, transduction of a 

cellular proto-oncogene by FeLV forms a feline sarcoma virus (FeSV) de novo (103). It 

seems that FeLV transduction of cellular genes is actually a very rare event as all the 

transduced genes listed have been found in field cases, and no in vitro nor in vivo 

experiment has been able to reproduce transduction any of these genes (108).

Table 1.3 Fibrosarcoma derived FeLV transduced host genes (adapted from (108)).

Isolate Host gene Gene Function
FeSV-HZ2 abl Non-receptor tyrosine kinase
FeSV-GA fes
FeSV-ST fes Non-receptor tyrosine kinase
FeSV-HZl fes
FeSV-GR fgr, actin Non-receptor tyrosine kinase
FeSV-TPl fgr
FeSV-SM fins Tyrosine kinase derived from
FeSV-HZ5 fins CSF-1 receptor
FeSV-HZ4 kit SCF receptor tyrosine kinase

Gene functions taken from (109).

CSF, colony stimulating factor, SCF, stem cell factor.

Intriguingly the T-cell tumours which arise through FeLV-myc viruses can usually be 

established in vitro without the requirement for exogenous interleukin-2. Allied to this 

is the late developmental stage of the tumours, which express both the a-, and the P- 

chains of the T-cell antigen receptor (110). However, it is not clear if tumours actually 

arise late in ontogeny, or whether the transformed phenotype occurs earlier in 

development and the cells continue to differentiate.
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It appears that retroviruses capture the cellular proto oncogene by recombining with 

cellular DNA. The original proposal was that the retrovirus integrates 5' to the cellular 

gene which gets transduced. Subsequently a deletion gives a viral-cellular gene fusion 

transcript, which can be spliced and packaged into a virion. A further recombination 

event between the chimaeric RNA and a full length viral RNA supplies the 3' end of the 

recombinant viral genome (111). Experimental evidence used defective proviruses 

which carried a transduced ras and only one LTR (intact), or a U3 deleted LTR. The 

intact 3* LTR is necessary for replication but not transcription (112), and so proviruses 

with the U3 deletion would only be able to recombine at the DNA level, rather than by 

RNA template switching. Therefore the finding that all the constructs transformed cells 

and produced identical RNAs, but only the replication competent single LTR produced 

infectious virus, when helper virus was available, points to recombination at the DNA 

level (113).

1.3 Structure and Deduced Function of c-Myc

The Myc protein is thought to be a transcription factor from the structural motifs which 

it shares with established transcription factors. These motifs are; a basic region of 

around 30 amino acids, followed by a helix loop helix and a leucine zipper domain, plus 

a transactivation domain at the N-terminus (7). The basic region confers sequence 

specific DNA binding to a 5'-CANNTG-3' "E box" motif, in the case of Myc the optimal 

sequence is 5'-CACGTG-3' (114). Helix loop helix and leucine zipper domains allow 

protein dimerization, this can be as homodimers or heterodimers, though Myc does not 

form homodimers under physiological conditions, but it does form a heterodimeric 

complex with another bHLH-Zip protein known as Max (115).
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1.3.1 Helix-Loop-Helix

The Helix-Loop-Helix motif consists of a -15 amino acid sequence giving an 

amphipathic alpha-helix, followed by a region of varied length, e.g. 9 amino acids in c- 

Myc and up to 28 amino acids in related Drosophila proteins (the "loop"), before 

another-15 residue helix (116,117). The HLH domain allows dimerization, and 

increases the affinity of DNA binding. However, binding to DNA is the main function of 

a highly basic region (BR) of up to 30 amino acids, which is rich in arginine and lysine 

(118). The basic region lies immediately N-terminal to the HLH and confers sequence 

specific DNA binding (7). With a recognition sequence which follows the pattern 5'- 

CANNTG-3', where N is any base, these bases are found in the target sequences of 

many other BR-HLH transcription factors that bind to the E box motif of transcriptional 

enhancers (7).

The BR-HLH proteins have various roles in development and differentiation, with 

controls exerted by heterodimer formation, e.g. The MyoD protein, which appears to be 

the primary signal for the differentiation of muscle cells, binds DNA greater than ten 

times more tightly when forming a heterodimer with a ubiquitously expressed E2A 

protein splice variant (119).

Amino acid sequence alignment of transcription factors shows that there are high 

degrees of homology (Fig. 1.2). Experiments have been conducted to ascertain the 

functional significance of these similarities, such as Fisher and Goding's work (120), 

where the basic region of c-Myc was substituted for the basic region of the yeast 

transactivator PHO 4, which recognises the same consensus motif as Myc, leading to 

transactivation of PHO 5. This provided proof that the primary amino acid sequence 

can be a good predictor of function.
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Fig. 13  bH-L-H domain of c-Myc

Although figure 1.2 shows residues proposed to make up the c-Myc BR-HLH domains, 

it should be noted that these domains do not have well defined boundaries. Therefore I 

have used several sources to construct this figure (116,121-123).

1.3.2 Leucine Zipper

Leucine zippers (LZ) were first identified by homology studies with a wide range of 

factors, including yeast GCN 4 and mammalian CAAT/enhancer binding protein 

(C/EBP), as well as the Fos and Jun proto oncogene products (124). Sequence 

homology showed there was, again, a stretch of approximately 30 amino acids, with a 

substantial net basic charge, immediately followed by a region containing, usually, four 

leucine residues positioned at intervals of seven amino acids. It was this latter region 

that has been termed the leucine zipper (124), and is proposed to be a coiled coil with 

two parallel a-helices (125). A coiled coil has a periodicity of 3.5 residues per helical
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turn, placing the heptad repeat of leucines on the same side of the molecule (118). High 

aqueous solubility of the GCN4 zipper region suggested that the hydrophobic side 

chains are shielded from solvent in a closely packed interface between the two helices 

(125). A leucine zipper protein can dimerize with other proteins containing the requisite 

leucine zipper motif. In fact to act as transcription factors these proteins must dimerize, 

either as parallel homodimers (e.g. JUN : JUN), or as heterodimers (e.g. FOS : JUN), 

via the leucine zipper (126).

The FOS and JUN proteins also illustrate the cooperative nature of dimerization. 

Although JUN : JUN homodimers can bind the AP-1 binding site ( FOS does not 

appear to form stable homodimers) the affinity is relatively low. However, it can be 

shown, using transcriptional transactivation assays, with reporter genes fused to AP-1 

binding sites that FOS and JUN act synergistically (126).

The suggested model of the zipper structure is again an amphipathic alpha-helix. 

Cytosine oxidation studies, nuclear magnetic resonance, and X-ray crystallography, have 

all provided evidence that the GCN 4 dimerization region can form a parallel coiled-coil 

structure (125,127). These studies led to the proposal that BR-LZ dimers are Y shaped 

complexes, with the leg of the Y denoting the LZ dimerization domain (Fig. 1.3). The 

arms of the Y represent the amino terminal basic regions, able to contact the specific 

recognition sites in the major groove of the DNA.
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Figure 1.3. Hypothetical BR-LZ dimer structure (127). This one dimensional 

representation cannot display the left-handed coiled-coil nature of two right-handed a- 

helices, which make up the zipper domain of each monomer (128).

Due to the conserved motifs present in c-Myc and its apparent inability to form 

homodimers (129), a search was made to find a heterodimeric partner of c-Myc. Using 

125i-iabelled BR-HLH-LZ c-Myc fusion proteins purified from bacteria to screen a 

complimentary DNA expression library, colonies were identified which encoded a small 

novel protein which was named Max (115). Both c-Myc and its heterodimeric partner 

Max contain a basic region followed by both an HLH and a LZ (115), although the LZ is 

not preceded by a basic region (figure 1.4). It has been shown that Max is an obligate 

partner enabling Myc to bind to DNA (130). Myc and Max also demonstrate a further 

level of transcriptional control, since the binding of Max to Myc, which is required for 

Myc binding to DNA, can be prevented by other factors, such as Mxi 1 and Mad family 

proteins (122,123,131). Mxi 1 and Mad,1,2,3 and 4 are also bHLH LZ proteins which 

form DNA sequence-specific binding complexes, in association with Max. 

Transactivation assays demonstrate that Mad and Mxi 1 can prevent Myc/Max mediated 

transcription, by sequestering Max, thereby preventing formation of Myc/Max 

heterodimers, and/or binding to Myc/Max target sites (122,123). However, this simple
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model of Mxil and Mad repression of Myc mediated transcription has recently been

called into question, with the discovery that isoforms of Mxil and Mad can interact with

a mammalian homologue of the yeast transcriptional repressor SIN3 (132,133).
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Region Helix 1

Leucine Zipper

1 1 1 1  
Helix 2 T T T T

NH,

COOH

COOH

Loop

DNA
Binding

Dimerization

M ax

Figure 1.4 Diagram depicting the heterodimeric Myc/Max pair. Adapted from (127)

1.3.3 Transactivation Domain

Protein activation domains are separable from their associated DNA-binding activities, 

and a single protein can have more than one activation domain, with any single domain 

spanning from 30 to 100 amino acids (134). The first defined activation domain of a 

eukaryotic transcription factor, was from the yeast factors GAL 4 and GCN 4.

Common features were the ability to form amphipathic alpha helices and a significant 

negative charge. GAL 4 has two separate acidic activation domains, which can activate 

transcription from reporter genes when linked to a heterologous DNA-binding domain 

(135). A correlation also exists between activation and negatively charged alpha-helical 

regions in the JUN transcription factor (136).

24



A second type of activation domain is that found in the Spl Zinc-fingered protein. 

Deletion analysis of Spl showed four separate regions involved in activation. The two 

most potent contain about 25% glutamine and few charged residues. Comparison with 

other transcription factors showed glutamine rich regions in, amongst others, 

Drosophila Zeste and Ultrabithorax; yeast Gal 11 and Hap 1; and in mammalian Oct-1, 

Jun, and AP-2 (134). Again activation domains appear to be somewhat interchangeable, 

since a glutamine-rich stretch of 145 amino acids from Drosophila antennapedia was 

able to partly substitute for the activation domain when linked to Spl Zinc fingers (137). 

Both glutamine rich and acidic domains are only similar to other like-proteins, by virtue 

of their glutamine content and their acidity, respectively, i.e. there is no obvious primary 

sequence homology (134).

A third kind of activation domain is proline-rich, e.g. in CTF/NF1, a domain containing 

up to 30% proline residues in the C-terminus. This domain activates transcription when 

linked to various DNA binding domains, including the Zinc fingers of Spl. Regions rich 

in proline have been recorded in other mammalian transcription factors, including AP-2 

and OCT-2 (134).

The N-terminal domain of c-Myc has been classed as a transactivation domain by 

analogy with homologous regions of established transcription factors. Approximately 

15% of the N-terminal 143 amino acids of Myc are acidic, while another 15% are made 

up of proline and glutamine. Moreover, this region of the N-terminus has been shown 

to be capable of activating transcription when linked to a heterologous promoter (138).

However, unlike homology between HLH and LZ domains, where there is a definite 

structure conferred by the primary amino acid sequence, transactivation domains appear 

less well defined (118,139). The common features include a net negative charge and 

possibly the ability to form a helical structure. Also pertinent is the observation that 

incorporation of proline, glycine, or serine can disrupt secondary structure, and these
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amino acids are highly represented in c-Myc, leading to the conclusion that the tertiary 

structure of c-Myc could contain several solvent accessible loops (140). These loops in 

the N-terminus of c-Myc would then be available for interaction with other proteins.

More evidence that Myc is a transcription factor comes from assays in yeast cells.

These are used as an in vivo system in which transactivation can be measured without 

the complication of endogenous Myc or Max interfering with the result This method 

was used to demonstrate that Myc and Max were required to activate transcription from 

a reporter plasmid containing LacZ (141). The same study showed that Max has a 

higher affinity for Myc than for itself.

1.4 Other Evidence That c-Myc is a Transcription Factor

The minor p67 form of cMyc is often absent from tumours due to loss of exon 1 

sequences, but is found to reach levels just as high as the p64 form when tissue culture 

cells reach high density (142). This phenomenon could be replicated by treatment of 

cells at low density with conditioned media from cells at high density. Amino acid 

deprivation, specifically methionine deprivation, was shown to be responsible for the 

control mechanism (142). It has been postulated that the two proteins possess distinct 

transcriptional activities, due to different abilities to activate transcription from a Rous 

sarcoma virus long terminal repeat (LTR) EFII enhancer element in COS cells (143). 

Whereas p67 Myc could initiate transcription from the EFII enhancer, the major p64 

form was unable to do so, although both forms were able to transactivate a canonical 

Myc/Max binding site (143). Evidence for functional similarity came from experiments 

where both p64 and p67 Myc could transform Rat-1 fibroblasts in conjunction with bcr- 

abl, and were able to activate transcription of a Myc/Max reporter construct to similar 

levels (144). The latter set of experiments gave rise to the hypothesis that the CUG
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translational initiation of myc is a mechanism whereby Myc is synthesised when AUG 

initiation is inhibited (144).

Recently there have been several reports of c-Myc interacting directly with elements of 

the transcriptional machinery, including the TATA binding protein (TBP) (145,146), a 

zinc finger protein called Yin-Yang-1 (YY1)(147), transcription factor II-I (TFII-I) 

(148), and the retinoblastoma gene product related gene p i07 (149).

1.4.1 TBP

The first of these proteins, TATA binding protein, is part of the general transcription 

machinery (transcription factor IID, TFIID) which binds to the sequence TATAAA, at 

a position -25 to -30 relative to the RNA transcription start site, and may be required for 

all RNA Polfl transcribed genes (150,151). Use of in vitro binding assays demonstrated 

that the N-terminal 204 amino acids of c-Myc could interact with TBP (146)), while 

immunoprecipitation was used to demonstrate that c-Myc was complexed with TBP in 

cell lysates (145,146).

1.4.2 YY1

Yin-Yang-1 (YY1) is a zinc finger protein (152) which has been reported both to 

repress and activate transcription (152-154). In the yeast two-hybrid system c-Myc 

could interact directly with YY1, and in vitro binding assays demonstrated that amino 

acids 250-439 of c-Myc mediated this binding most strongly (147). The same work 

demonstrated that c-Myc could both prevent the repression and activation of reporter 

constructs designed to test these YY1 functions (147).

Intriguingly YY1 has been reported to mediate transcription of c-myc itself. When YY1 

was expressed under the control of cytomegalovirus promoter and enhancer, a reporter
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plasmid containing the c-myc promoter linked to the luciferase gene was activated, but 

mutation of the YY1 zinc finger domain negated the activation (155). When the same 

YY1 expression plasmid was transfected into murine erythroleukaemia cells c-myc RNA 

levels were increased (155). These findings suggest a possible regulatory loop, where c- 

Myc negatively regulates its own transcription via YY1. This hypothesis could account 

for the observation that c-Myc can negatively autoregulate its own expression in a dose- 

dependent, and reversible way (156). The autoregulatory loop described did not involve 

a simple interaction between c-Myc and c-myc regulatory sequences (156), and other 

work has reinforced the idea that autosuppression works by an indirect route (157). 

These observations would be accounted for if YY1 were part of the loop. However, it 

is not clear if such a mechanism could account for the apparent silencing of the normal 

myc allele in Burkitt lymphomas and mouse plasmacytomas (23), or whether methylation 

of the untranslocated allele is the cause (158). Silencing of the normal c-myc allele(s) 

may well be outwith the direct control of c-Myc, as ectopic expression did not suppress 

endogenous c-myc expression of subconfluent cells in culture, although the cellular gene 

was shut off in tumours caused by these cells when injected into nude mice (37).

1.4.3 TFH-I

Transcription factor II-I is an initiation factor which activates core promoters through a 

sequence termed the initiator element (Inr) (159). The ability of c-Myc to interact with 

Thll-I has been demonstrated to inhibit transcription mediated by TFII-I in a dose 

dependent manner (148). This negative regulation by c-Myc was shown to require the 

HLH and LZ domains of c-Myc, whereas an extensive N-terminal deletion had no effect, 

and is mediated by c-Myc preventing TBP-TFH-I promoter complex formation (148). It 

is postulated that c-Myc inhibition of the Inr is the method by which c-Myc negatively 

regulates cyclin D1 gene expression (48).

28



1.4.4 pl07

pl07 bears homology to the retinoblastoma gene product pRB, especially in the 'pocket 

region1 which is critical for the association of adenovirus El A, and SV40 large T antigen 

with both pl07 and pRB (160). El A and large T mediate their effects on pl07 and pRB 

by dissociating complexes formed between the transcription factor E2F and pl07 or 

pRB (161). pl07 has been demonstrated to inhibit cellular proliferation, and can repress 

transcription via interaction with E2F (161). Direct interaction between c-Myc and 

p i07 has also been reported, in this case it is again the N-terminal of c-Myc which has 

been implicated as the site of interaction, suppressing c-Myc transcription of reporter 

constructs (149,162). Enforced expression of c-Myc can release cells from growth 

arrest induced by pl07 (162). Perhaps of greater importance, c-Myc mutants derived 

from Burkitt's lymphoma cells were not suppressed by pl07 in transactivation assays, 

although the Myc/pl07 association was still detected by immunoprecipitation (149). 

Together these data provide another direct link between c-Myc and transcriptional 

regulation within the nucleus.

1.5 Possible Target Genes Under the Direct Transcriptional Control of c-Myc

Although there is a great deal of evidence that c-Myc is a transcription factor, there is 

still a paucity of evidence on genes which are transactivated or transrepressed directly by 

c-Myc. However, there are several candidate genes, including; cad (163); ECA39 

(164); p53 (165); prothymosin-a (166); ornithine decarboxylase (167-169), and cyclin 

Dl. Both prothymosin-a and ornithine decarboxylase are dealt with as c-Myc target 

genes in chapter 8.

1.5.1 cad
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The carbamoyl-phosphate synthase (glutamine-hydrolysing)/aspartate 

carbamoyltransferase/dihydrooratase (cad) gene product is a trifunctional enzyme 

catalysing the first three steps in the de novo synthesis of pyrimidines. The enzymatic 

activity and mRNA of cad correlate with the proliferative state of the cell (163).

Nuclear proteins which bound to a 5-CCACGTGG-3' E-box sequence centred at +65 of 

the untranslated sequence of the cad gene in electrophoretic mobility shift assays 

(EMSA), were found to be inhibited by anti-Max antibodies (163). Mutation of the E- 

box motif abolished growth dependent transcription from a luciferase reporter construct, 

while expression of dominant negative mutants of c-Myc, lacking either a basic region or 

transactivation domain, inhibited cad transcription during Gj/S-phase induction (163)

1.5.2 ECA39

The ECA39 gene was identified as a target for Myc/Max regulation in a differential 

screen

of normal brain tissue and tissue from a c-myc transgenic mouse brain tumour (164). 

ECA39 is of unknown function and has a Myc/Max binding site 3' to the transcriptional 

start site, this sequence was found to bind a nuclear protein complex which included 

c-Myc. Transfection of c-myc was shown to block the normal downregulation of 

ECA39 which occurs as embryonic stem cells undergo differentiation (164).

1.5.3 p53

Initially a BR-HLH 5'-CANNTG-3' consensus motif at position +70 to +75 of the p53 

gene, was demonstrated as being responsible for the binding of nuclear proteins, and use 

of oligonucleotide competitors in an EMSA demonstrated that the actual sequence was 

5'-CACGTG-3' (170). Myc/Max translated in vitro were shown to bind to 

oligonucleotides with a sequence derived from the murine p53 gene in an EMSA(165). 

Cotransfection of c-myc and a reporter construct containing the E. coli chloramphenicol 

acetyltransferase gene linked to the p53 promoter region, stimulated transcription from
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the reporter plasmid, whereas no stimulation of transcription was detected from 

cotransfection with wild-type p53, MyoD, or puc 19. Furthermore, cotransfection of 

modified c-myc constructs which could not dimerize with Max or were unable to bind 

DNA did not stimulate transcription from the reporter plasmid (165).

1.5.4 Cyclin D1

Cyclin D l, like other cyclins, is a regulatory subunit of a cyclin-dependent protein kinase 

complex, and is normally expressed during the Gj interval of the cell cycle (171).

Cyclins act as positive regulators of cellular proliferation by linking growth factor 

mediated signals to the decision of a cell to enter the cell cycle (171). Constitutive 

expression or activation of c-Myc-ER chimaeras was found to repress cyclin Dl 

expression, although cyclins A and E were increased 8-fold and 3-fold respectively (47). 

Further work showed that amino acids 92 to 106 were necessary for the Myc-mediated 

repression, and that using an insertion mutant which fails to heterodimerise with Max in 

vitro* repression was unaffected. Hence heterodimerisation was not required for the 

repression of cyclin D l (48). However, the tendency of research on c-Myc to obfuscate 

was maintained with regulation of cyclin Dl, as use of the Myc-ER system has also been 

demonstrated to rapidly induce cyclin Dl expression within 30 minutes of the addition 

of oestrogen (172).

1.6 Aims of This Study

This project is centred on a particular v-myc gene transduced by feline leukaemia virus 

found in a field case of lymphosarcoma(173). The transduced v-myc was found to carry 

several novel mutations which suggested that it might provide a tool for dissecting the 

mechanisms of action of myc in the genesis of tumours.
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Chapter 2

Materials and Methods

2.1 Materials

Commonly used reagents and equipment are outlined below.

2.1.1 Chemicals and Enzymes

Chemicals were obtained from the Sigma chemical company, BDH chemicals, 

Boehringer Manheim, Pharmacia or Gibco BRL, except where otherwise stated. All 

chemicals were of Analar quality. Enzymes unless otherwise stated, were supplied by 

Gibco BRL along with appropriate buffers.

2.1.2 Radiochemicals

Supplied by Amersham UK Ltd., except (y-^P) ATP which was supplied by ICN Flow 

Biomedicals.

2.1.3 Media and Antibiotics

L-broth : 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) sodium chloride in 

ddH20 autoclaved and stored at room temperature. Ampicillin was used at a 

concentration of 50jig/ml as required.

L-agar: as for L-broth, but also containing 1.5% (w/v) agar, again ampicillin was added 

to a concentration of 50|ig/ml as required.

2.1.4 Cloning Vectors

pCR II: lacZ+, ampR+, fcanR*, plasmid designed for the specific cloning of PCR 

products, by making use of the non-template dependent addition of a single 

deoxyadenosine to the 3'-ends of duplex DNA molecules catalysed by Taq polymerase 

(Invitrogen).

35



pSFCV-LE sa+: ampR+ containing the LTR's and gag gene from the avian 

erythroblastosis virus ( pol and env are deleted) and the neo resistance gene, used to 

transfect primary chick cells (174).

pGEX: ampR+ pBr322-derived plasmid which carries part of the Schistosoma mansoni 

Glutathione S-transferase (GST) gene (175).

pMA132 P4: ampR+ yeast vector containing the sequence for the transactivation 

domain of PH04 controlled by the PGK promoter (176).

pRS314: ampR+ yeast vector allows transcription directed by a GAL promoter (176).

pV44.Lex.Bgl II: ampR+ GAL inducible yeast vector with sequence for the LexA DNA 

binding domain downstream of a CYC promoter (177).

pKV701: amp+R yeast vector giving induction from a GAL10 promoter (120).

2.1.5 Bacterial Strains

E. coli DH5a: F', <J)80d/acZAM15, endAl, recAl, hsdRll (r^f, mK+)» supE44, thi-l, 

deoR, gyrA96, relAl, (AlacZYA-argF), U169, X~. (Supplied as competent cells by Life 

Technologies Inc., GIBCO BRL.)

E. coli INVaF: endAl, recAl, hsdR l7(j\ m+^), supE44, X~, thi-l, gyr A, rel A l, 

<{)80/flcZAM 15A(/acZYA-argF), deoR+, F  (Supplied as competent cells by Invitrogen, 

with the TA cloning kit.)

2.1.6 Eukaryotic Cells
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Chick Embrvo Fibroblasts: these cells were derived from 10 day old chick embryos, and 

were the kind gift of Dr. D.H. Crouch and Mr. Billy Clark, of the Beatson Institute for 

Cancer Research.

3201: suspension cells derived from a feline lymphosarcoma. These cells are FeLV 

negative but have a germ line rearrangement of c-myc (178)

£422: feline T-cell line which contains an FeLV transduced full length c-myc, 

established from a lymphosarcoma of a kitten inoculated with the second passage of the 

Rickard strain of FeLV (179).

T17: cell line derived from the original tumour, containing both transduced c-myc and 

transduced T-cell receptor P-chain, as well as helper virus (173).

AH927: a feline fibroblast cell line, derived from a feline embryo culture which 

underwent spontaneous transformation (180).

2.1.7 Yeast Strains (Saccharomyces cerevisiae)

Y704: a , ade2-1, trpl-1, azrt7-100, leu2-3, leu2-112, his3-11,15, ura3,pho4:HIS3 

(120).

2.1.8 Stock Solutions

Ammonium persulphate: 10% W:V stock solution, freshly made as required.

Ampicillin (500X): 25mg/ml in ddH20. Filtered through 0.22fim filter, aliquoted and 

stored at -20°C.
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Bradford's Reagent (1XL O.lmg/ml Coomassie Blue G, 1:20 V:V 95% EtOH, 1:10 

V:V Orthophosphoric acid in ddP^O. Stored in dark glass at room temperature.

Denaturation Buffer: 1.5M NaCl, 0.5M NaOH in dcffl^O. Stored at room temperature.

Denhardt's Solution (50XV 1% Bovine Serum Albumin (BSA), 1% Ficoll, 1% polyvinyl 

pyrollidone in ddt^O. Aliquoted and stored at -20°C.

DNA Size Markers: Phi(<{))X 174 RF DNA digested with HaeRl. Lambda (A.) DNA 

digested with Hindlll. Both used at l|ig/10pl

Ethidium Bromide: lOmg/ml stock in ddH20, working concentration 0.5|ig/ml. Stored 

in the dark at room temperature.

Gel Loading Buffer:

1) For DNA gels (10X): 50% glycerol, 0.5% bromophenol blue, 0.5% xylene cyanol, in 

IX TBE. Stored at room temperature.

2) For protein gels (sample buffer): 62.55mM Tris.HCl pH6.8, 20% glycerol, 2% SDS, 

5% p-mercaptoethanol, 0.05% bromophenol blue, in ddP^O. Stored at 4°C.

3) For RNA gels: 50% Formamide, 2.2M Formaldehyde, IX MOPS, in ddK^O. Made 

fresh as required.

MOPS Buffer (10XL 200mM MOPS pH7.0, 50mM potasium acetate, lOmM EDTA. 

Stored in a light-proof container at 4°C.

Neutralisation Buffer: 1.5M NaCl, 0.5M Tris. HC1 pH8.0 in ddH20. Stored at room 

temperature.
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Oligonucleotides: Oligonucleotides were synthesised on an Applied Biosystems 3818A 

Automated DNA Synthesiser (operated by Mr. T. McPherson, Glasgow University, 

Veterinary Pathology). DNA was removed from columns by using 2ml of ammonia and 

deprotected by heating overnight at 55°C. Ammonia was removed under vacuum and 

the resulting DNA pellet was resuspended in TE pH8 at ljig/M-l, and stored at -20°C.

Polyacrylamide Solution With Urea (8%k 39.9g acrylamide, 2.1g bis-acrylamide, 

220.5g urea, 52.5ml 10X TBE, in a total of 525ml ddF^O. Mixed, filtered (0.45pm) 

and stored in dark glass at 4°C. 50ml of stock solution containing 100|il of 10% 

ammonium persulphate and 50|il temed was used for each sequencing gel.

Polyacrylamide (30%): Stock solution containing 29.2% acrylamide and 0.8% bis- 

acrylamide in dark glass and stored at 4°C, supplied by Scotlab.

Phosphate Buffered Saline (PBS): lOOmM NaCl, 80mM , 80mM di-sodium hydrogen 

orthophosphate, 20mM sodium dihydrogen orthophosphate, adjusted to pH7.5. 

Autoclaved and stored at 4°C.

Pre-Hvbridisation Buffer: For nylon membrane (Amersham, Hybond-N): 4X Denhard's, 

4X SSC, 50% Dextran sulphate, 25% Formamide, 0.08% SDS, in ddl^O. Stored at 

-20°C. 100-300Jig/ml of denatured salmon sperm DNA was added before use.

Salmon Sperm DNA: lOmg/ml stock in dcffl^O, denatured by boiling for 10 minutes 

and cooled slowly on ice. Aliquoted and stored at -20°C.

SSC (20X): 3M NaCl, 0.3M Sodium citrate in ddF^O. Made to pH7.0 using NaOH, 

and stored at room temperature.
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SSPE f20X^1 3.6M NaCl, 0.2M NaH2P04, 0.02M EDTA in ddH20. Made to pH8.3 

using NaOH.

SOC: 2% Bacto-tryptone, 0.5% yeast extract, lOmM NaCl, 2.5mM KC1 in ddH20. 

Autoclaved and stored at 4°C. Added before use with sterile technique; lOmM MgCl2, 

lOmM MgS04,20mM Glucose.

Tris buffered saline (TBS'): 20mM Tris, 137mM NaCl, pH to 7.6 with HC1.

TEA (lOX^: 400mM Tris.HCl pH8.15, 200mM sodium acetate, 200mM Sodium 

Chloride, 20mM EDTA. Stored at room temperature.

TE: lOmM Tris.HCl, ImM EDTA, pH as required. Autoclaved and stored at room 

temperature.

TBE (IPX'): 0.9M Tris.HCl, 0.9M Boric acid, 25mM EDTA pH8.3. Stored at room 

temperature.

Versene (1X1: PBS containing ImM EDTA and 1:100 V:V phenol red. Autoclaved 

and stored at room temperature.

Western Immunoblot Transfer Buffer (semi-drv electro-blotting): 48mM Tris, 39mM 

Glycine, 0.01% SDS, 20% MeOH.

X-Gal (S-bromo^-chloro-S-indolvl-p-galactoside") (lOOOX'): 20% W:V in 

dimethylformamide (DMF). Stored in aliquots protected from light at -20°C.

2.2 Methods

2.2.1 Agarose Gel Electrophoresis
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Gels containing from 0.5-1.5% agarose W:V in IX TBE or IX TEA were used to 

separate and analyse DNA molecules (181). 50, 100 or 200ml gels were poured in 

perspex tanks and wells were cast using appropriate combs. Gel loading buffer was 

added to samples at a final concentration of IX, samples were then electrophoresed in 

IX TBE/TEA at 5V/cm. When TEA gels were used the buffer was changed frequently 

to prevent buffer exhaustion. Known concentrations of DNA size markers were run 

alongside the samples in order to gauge both product size and yield of DNA.

Subsequent to running, gels were stained for at least 30 minutes in IX TBE/TEA with 

0.5|ig/ml ethidium bromide, then viewed on a short wave UV transilluminator. 

Photography, when required, was by means of a Polaroid camera.

2.2.1.2 DNA Purification From Agarose Gels

Highly purified DNA was obtained from agarose gels by using the 'Gene Clean' method 

(Bio 101; supplied by Stratech Scientific Ltd.).

2.2.2 Cell Culture

Feline suspension cells derived from lymphosarcomas (3201, F422, and T17) were 

grown in plastic flasks (Nunc, Lab Tek), at 37°C in an atmosphere of 5% CO2 . Cells 

were subcultured every 3 to 4 days and maintained at a density between 5 x 10^ and 1.5 

x 10^ cells/ml. Growth medium consisted of RPMI-1640 supplemented with 10% foetal 

calf serum (FCS), 2mM glutamine, lOOunits/ml penicillin, and lOpg/ml streptomycin (all 

Gibco, UK).

Primary avian fibroblasts were cultured maintained in Dulbecco's Modified Eagle's 

Medium (DMEM), supplemented with antibiotics as for RPMI. However, the growth 

supplements added were 5% newborn calf serum and 1% chick serum plus 10% tryptose 

phosphate (all GIBCO, UK). Chick serum was heated at 55°C for two hours before 

use, inactivating any retroviruses present in the serum.
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2.2.3 Electrophoretic Mobility Shift Assay (EMSA)

The electrophoretic mobility shift assay is a simple, rapid and sensitive method for 

detecting sequence-specific DNA binding proteins. This assay can also be used for 

quantitative determination of the affinity, association rate constants, dissociation rate 

constants and binding specificity of DNA binding proteins (182). Briefly, an end 

labelled DNA probe with a consensus binding site is mixed with protein, either crude or 

fractionated nuclear extract, or as in this case with recombinant protein. The 

protein/DNA mixture is then subjected to electrophoresis through a non-denaturing 

polyacrylamide gel, which is then dried and autoradiographed. Discrete bands are 

detectable where protein-bound DNA complexes are present in the gel.

The electrophoretic mobility shift assay was carried out according to published 

protocols (182). Reaction volumes were 20|il consisting of xp.1 protein, 4}il of 5X 

binding buffer, 2|il 32p probe, l|il of poly dl/dC @ l|ig/|il, and xjil of water. 5X 

binding buffer consists of: lOOmM Hepes pH 7.2; 250mM KC1; 15mM MgCl; 5mM 

EDTA; 40% glycerol; 125ng/ml sheared calf thymus DNA. DTT was added to the 5X 

binding buffer to a final concentration of ImM just prior to use. Reaction volumes were 

as stated with protein added at 30ng per reaction for Max and 300ng per reaction for 

Myc, as the quantity of intact Myc was so low in the eluate.

Reactions were run on a 6% polyacrylamide gel in IX TBE and electrophoresed at 200 

volts. Gels were subsequently dried and exposed to X-ray film (Kodak) overnight, with 

longer exposures times if required.

2.2.3.4 Annealing and End Labelling of Oligonucleotides Used in EMSA

Oligonucleotides used in the EMSA were double stranded, and therefore the single 

stranded synthetic oligos had to be annealed. This was achieved by resuspending 10|!g 

of each oligo in a total volume of 200|il of TE buffer, giving 20|ig of double stranded
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DNA. The DNA was then heated to 95°C, and allowed to cool to room temperature 

naturally.

End labelling of oligos with 32p was achieved by using T4 polynucleotide kinase, as set 

out in 22.1.2 with 200ng of oligo end labelled per reaction. The 20p.l reaction was 

purified on a *Nick Column' to remove enzyme and unincorporated radiolabelled ATP. 

Sequences of oligos used in EMSA were:-

CM1 sense strand 5'-CCC CCA CCA CGT GGT GCC TGA-3'

P2 sense strand 5'-GAT CCT TGG CAC TCA CGT GGG ACT AGC AG-3'

The consensus Myc/Max binding site is underlined on each oligo.

2.2.4 Hybridisation analysis of DNA, RNA and proteins

2.2.4.1 DNA and RNA hybridisation

Southern Blot Transfer of DNA: This was carried out essentially as described by 

Southern (183). Briefly, DNA samples were electrophoresed and subsequently the gel 

was submerged in denaturation buffer for 30 minutes, followed by submersion in 

neutralisation for 30 minutes. The gel was rinsed in 20X SSC and DNA was then 

transferred onto Hybond-N nylon membrane by blotting overnight using 20X SSC. The 

membrane was rinsed briefly with 20X SSC and DNA was crosslinked to the membrane 

using a UV crosslinker.

Northern Blot Transfer of RNA: This procedure was the same as for the DNA transfer, 

except that denaturation and neutralisation steps were unnecessary. However, transfer 

was continued for longer as this improves transfer of larger RNA molecules (181).
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Hybridisation Procedure: Standard high stringency conditions for analysis of feline 

nucleic acids with probes of feline origin were, pre-hybridisation >2hours in 10ml of 

prehybridisation buffer, radioactive probe was added at 1x10^ counts/ml (1-5 ng/ml), 

hybridise overnight at 42°C. The hybridisation was carried out in bottles constructed 

for the procedure and placed in an oven designed to turn the bottles (Hybaid, UK). In 

the morning membranes were rinsed several times in 2X SSC, then given 3 x 20 minute 

washes in 0.1X SSC/0.5% SDS at 60°C. Membranes were then sealed in polythene, 

while still moist, and exposed to X-ray film (Kodak).

2.2.4.2 Hybridisation of proteins for western immunoblot analysis

Protein samples were electrophoresed through a denaturing polyacrylamide gel 

containing SDS and transferred onto PVDF membrane (Immobilon-P, Millipore), using 

a semi-dry electro blotter (Bio Rad) running at 15 volts for 30 minutes. Before transfer 

gels were equilibrated in transfer buffer for 10 minutes. After transfer, membranes were 

blocked for 30 minutes at room temperature in IX TBS-T (TBS with 0.1% Tween-20), 

10% w/v Marvel, and 20% serum derived from the animal which the secondary antibody 

was raised in. Following blocking the membrane was rinsed and washed 4X for 5 

minutes in IX TBST with 2% w/v Marvel, after which the primary antibody was 

applied, at an appropriate concentration, in blocking solution with 5% Marvel instead of 

10%. The primary antibody was left for 1 hour, with rapid shaking, at room 

temperature, followed by the same rinsing procedure as above. Secondary antibody was 

applied following the same protocol as the primary antibody, washes were extended to 

4X 10 minutes and Marvel was excluded from the final washes. Finally membranes 

were developed either by the enhanced chemiluminescence method (Amersham) or by a 

colourimetric assay. For colourimetric assays, membranes were submerged in substrate 

buffer (0.1M Tris; 0.1M NaCl; 5mM MgCl2; pH To 9.5) with colour reagent (16mg 

nitrobluetetrazolium; 8mg 5-bromo-4-chloro-3-indolylphosphate; in 50 ml of substrate

44



buffer), until colour had developed, then membranes were rinsed with dH^O to stop the 

reaction.

2.2.5 Bacterial Transformation

2.2.5.1 Ligation of DNA Molecules

Ligations were carried out according to the manufacturers' protocols supplied with T4 

DNA ligase and 5X reaction buffer (GIBCO, BRL, Ltd.). Generally, 50ng of vector 

DNA and a 3-10 fold molar excess of insert DNA were ligated in a volume of 20pl 

Ligations were carried out overnight in a 14°C water bath.

22.5.2 Bacterial Transformation

lp.1 (containing 0.5-5ng of DNA) of a 1/5 dilution of a ligation mix was added to 20fil of 

competent bacterial cells, which were then incubated on ice for 30 minutes. Cells were 

subsequently heat shocked at 42°C for 45 seconds and returned to ice for two minutes. 

90|il of SOC medium was then added to the cells, which were then incubated, with 

shaking, for one hour (184). Cells were then plated on to L-agar plates containing 

ampicillin (50|il ml) and if colour selection was required X-gal was included. These 

plates were then incubated overnight at 37°C.

22.5.3 Identification of Recombinants

For transformation using lacZ complementation, white colonies were picked from plates 

containing X-gal, and grown. When lacZ function was already disabled several colonies 

were picked and grown. In either case picked colonies were grown overnight in 10ml of 

L-broth at 37°C with shaking and subjected to small-scale plasmid purification.
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2.2.5A  Preparation of Plasmid DNA

2.2.5.4.1 Small Scale Prep

Sequencing grade plasmid was rapidly purified from 1.5ml of overnight culture by using 

the Wizard1 miniprep procedure (Promega). Recombinants were identified by restriction 

digestion of 2-4|il of the purified DNA solution. When recombinants were identified a 

small amount of the remaining overnight growth was saved by storage in 25% glycerol 

at -70°C.

2.2.5.4.2 Large scale prep

Bulk preparation of plasmid DNA was by the alkaline lysis procedure given in Maniatis 

et al (181), with final plasmid preparation by centrifugation through CsCl/ethidium 

bromide gradient

2.2.6 Polymerase chain reaction (PCR)

The polymerase chain reaction allows the rapid amplification of selected regions of DNA 

from small amounts of starting template DNA (185). The Perkin Elmer Cetus 

GeneAmp Kit (supplied by USB, Cambridge Bioscience) was used according to the 

manufacturer's instructions. This kit utilises a recombinant Thermus aquaticus (Taq) 

DNA polymerase which is stable at high temperatures, allowing cyclical high 

temperature denaturation of template DNA, followed by polymerisation starting from 

primers targeted to specific regions of the template DNA at lower temperatures. 

Standard reaction conditions were, depending on the template lOng to ljig of template 

DNA in a 50p.l reaction mixture containing lOmM Tris.HCl pH8.3, 50mM KC1,1.5mM 

MgCl2,100p.M of each nucleotide and l|ig of each primer and overlaid with 25p.l of
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mineral oil. A typical cycling reaction was; denaturation at 94°C for 1 minute; annealing 

at 55°C for 45 seconds; polymerisation at 72°C for 1 minute. Cycling was carried out 

in 0.5ml reaction tubes in a programmable thermal cycler (Hybaid U.K.). An excellent 

introduction to this subject can be found in PCR: A Practical Approach (186).

2.2.7 Preparation of radiolabelled DNA fragments

2.2.7.1 Nick Translation

DNA inserts for use as hybridisation probes were gel-purified from their vectors and 

radioactively labelled using a kit (Amersham), containing the necessary enzymes 

(DNasel and DNA polymerasel) and buffers.

Generally, lOOng of DNA was radiolabelled using 50fiCi (1.85 Mbq) of radioactive 

dCTP in a final volume of 50|il. Unincorporated nucleotides were removed by gel- 

filtration through Sephadex G50 beads ('Nick Column', Pharmacia), and labelled 

fragments were eluted in 400p.1 of TE buffer. The specific activity of the labelled DNA 

was calculated (usually 1-3 x 10  ̂cpm/|ig), and the appropriate amount was used 

immediately as hybridisation probe.

2,2.12 End-Labelling of Oligonucleotides

200ng of double-stranded oligonucleotides were kinase labelled in a 20fil volume using 

15 units of T4 polynucleotide kinase and 12pmol (y^^P)-ATP, with the appropriate 

forward reaction buffer. The reaction was incubated for 30 minutes at 37°C, 

unincorporated label was removed by the 'Nick Column' method.

2.2.8 Sequencing of DNA
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DNA sequencing was carried out using a Li-Cor model 4000 DNA sequencer. This 

type of sequencing relies on reading an infrared label which is incorporated into the 

DNA during sequencing reactions (187). Very long sequence runs are possible using 

this machine, with readouts ranging from 500bp up to 900bp.

Sequencing reactions were carried out using a cycle sequencing protocol included with a 

purpose designed long-read kit, supplied by Epicentre Technologies. Cycle sequencing 

is based on the chain termination method of Sanger (188), but uses a thermostable DNA 

polymerase to give multiple rounds of high temperature DNA synthesis. Briefly, a 17jxl 

reaction consisting of 500ng to ljig of plasmid DNA, 2pmol of IR-labelled primer, 2.5|il 

10 x sequencing buffer, lp.1 SequiTherm thermostable DNA polymerase, and ddE^O 

tol7|il, was split into 4 x 4jil aliquots in 0.5ml PCR tubes and 2jil of the appropriate 

termination mix was added. Subsequently 10-15JJ.1 of mineral oil was overlaid on the 

reaction, and reactions were denatured for 5 minutes at 95°C then passed through 30 

cycles with 95°C for 30 seconds, 60°C for 30 seconds, and 70°C for 1 minute. After 

cycling, 4pl of stop solution was added to each reaction and the reactions were stored 

on ice in the dark before use. It was found that reactions remained viable for up to two 

weeks after cycling, if the reactions were stored at -20°C.

Commonly used IR-labelled primers are shown below.

Universal primers

M13(-29) forward primer 5’-CAC GAC GTT GTA AAA CGA C-3'

Reverse primer 5-GGA TAA CAA TTT CAC ACA GG-3'

GST-fusion construct primers

5’ pGex primer 5'-GGG CTG GCA AGC CAC GTT TGG TG-3'
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3' pGex primer 5'-CCG GGA GCT GCA TGT GTC AGA GG-3’

2.2.9 Primary Chick Cell Assays

2.2.9.1 Production of pSFCV-LE sa+/myc Vectors

To facilitate cloning of the c-, and v-myc genes into the replication defective pSFCV-LE 

sa+ vector (174), polymerase chain reactions were carried out, using primer sequences 

which included restriction enzyme sites to allow directional cloning of the reaction 

products into the vector. Amplification of full length myc sequences used the plasmid 

clones T17M (189) and pBam8 (190) as templates. Primer sequences were as follows:-

Q-myc forward primer 5’-GCG ACA AGC TTG GAA AAC CCG CAG GCT GCC-3'

c-myc reverse primer 5’-GCG ACG AAT TCC CAG TTC CTC CCT CTA ATA GG-3'

v-myc forward primer 5'-GCG ACA AGC TTC AAG AAG AGA TCC AGA GAC-3’

v-myc reverse primer 5’-GCG ACG AAT TCC AGA GCC CTC CCT CTA ATA GG-3’

Forward primer sequences were designed to hybridise upstream of the ATG start site, 

while the reverse primers were directed to sites downstream of the TAA stop codon. 

Restriction sites are underlined and correspond to Hindlll and EcoRI on the forward 

and reverse primers respectively. PCR reactions were as previously described in 2.2.6. 

PCR products were initially cloned into the pCRII vector and sequenced before 

subsequent subcloning into the pSFCV-LE sa+ vector. Apart from coding for the neo 

gene, the
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vector contains a splice acceptor site upstream of the cloning site, allowing expression 

of the inserted genes from subgenomic mRNAs. Once the myc genes were subcloned 

into the pSFCV-LE vectors large scale plasmid preparations were prepared by alkaline 

lysis followed by caesium chloride density centrifugation.

2.2.9.2 Construction of pSFCV-LE:c/v- and v/c-myc Chimaeras

Rather than construct completely new vectors for this set of experiments, the original 

pSFCV-LE/myc vectors were modified. This was achieved by digestion of l(ig of each 

vector with the restriction enzymes Hindlll and Bfrl ( an isoschisomer of Afl I I ).

| Hindin cuts at the original 5' cloning site, while Bfrl cuts at 889bp after the "A" of ATG

| in c-myc and 667bp after the "A" of ATG in T17-myc. The restriction digests werei
I electrophoresed on a 1.2% TAE agarose gel beside undigested plasmids, after staining 

with ethidium bromide and visualisation with UV, the various fragments were excised
!

from the gel using sterile scalpels. DNA fragments were recovered from the agarose 

slices by use of the "Gene Clean" method. Subsequent quantification of recovered DNA 

was estimated by comparison with known standards, after running an aliquot on a 1.2% 

TAE agarose gel, and visualisation as before. Digested and purified N-terminal DNA 

fragments were then ligated into the appropriate digested vectors, and ligations were 

used to transform DH5a bacteria. Bacterial colonies were tested by plasmid mini prep 

of DNA and double restriction digestion with Hindin and EcoRI, followed by gel 

electrophoresis of the digests. One bacterial colony containing each chimaera was 

grown as a bulk preparation of plasmid DNA, and plasmid was prepared by caesium 

chloride density centrifugation (Section 2.2.5.4.2). To confirm that plasmids contained 

the expected chimaeric construct, each recombinant plasmid was partially sequenced.
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2.2.9.3 Transfection and Drug Selection of Primary Chick Cells

Primary chick cells were plated at a density of 2x10^ cells per 25cm^ tissue culture flask 

and cultured as described in section 2.2.2. Transfection was by the calcium phosphate 

method (191,192) using a kit supplied by Stratagene. 10|ig of each construct was 

transfected along with 4|ig of the replication competent avian retroviral vector RCAN 

(193), thus allowing limited viral spread. After transfection, cells were grown to 

confluence and then split 1:2 into fresh medium containing lmg/ml G418. Cells were 

kept in this initial selection for 8 to 10 days after which time non-transfected control 

cells had died and colonies of drug resistant cells had begun to grow up in the 

transfected flasks. Drug resistant cells were then used to assay the effects of the myc 

constructs on growth rate and anchorage independence parameters, as well as apoptosis 

under low serum conditions.

2.2.9.4 Growth Rate Assay

Cells were plated at a density of 10  ̂per 35mm diameter tissue culture dish and grown 

for 24,48,72, or 96 hours. Three dishes of each type of transfected cells were used for 

each time point, with a mean count calculated from the three dishes. After the requisite 

time interval the dishes were washed twice in versene and the cells were removed using 

lml of trypsin/versene, each dish of cells was then counted using a haemocytometer.

22.9,5 Growth in Soft Agar

Drug selected cells were assayed for their ability to grow in a semi-solid medium 

consisting of a base layer of 0.6% agar with cells suspended at 2.5x10^ or 5x10^ cells
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per ml of 0.3% agar, in a 75mm diameter tissue culture dish. Cells were then incubated 

in a humidified incubator and fed with 1ml of complete medium once per week.

2.2.9.6 Western Blot Detection of Myc in Chick Embryo Fibroblasts

Although cells used in the experiments had been subjected to drug selection, western 

blot immunodetection was undertaken to confirm that the cells were expressing Myc

proteins of the expected size. The protocol for this was as previously described in

2.2.4.2 and 3.2.4, using a 12.5% SDS-PAGE gel.

S 22.9.1 Apoptosis Analysis by Terminal Transferase labelling and FACS Counting

!I
| For a quantitative measure of cells which entered apoptosis, upon serum deprivation,!| __
j cells were labelled with biotin-16-dUTP which is incorporated into single stranded DNA
t
! ends by the enzyme terminal deoxyribonucleotidyl transferase (TdT). Cells which have
ii
I multiple strand breaks can then be visualised by the addition of avidin-FITC, as the
|
avidin binds to biotin and the fluorescent label FITC can be detected by laser excitation 

at the correct wavelength (194).

Ij
Transfected cells were split and grown until between 30% and 50% confluent, as high 

densities can inhibit Myc-induced apoptosis (279), at which point all cells were rinsed 

with serum free medium, and cells were then incubated in media in the presence 

(controls) or absence of serum. These cells were then grown for 15 hours under normal 

growth conditions. The assay was carried out by removing and storing the media from 

all flasks and combining with cells which were still adherent at the end of the 15 hour 

time period. Each batch of cells was fixed by suspension in 1% paraformaldehyde/PBS 

pH7.4 for 15 minutes at 4°C, followed by washing with PBS. The cells were then 

resuspended in 50pl of TdT staining buffer (0.1M Na cacodylate pH7, ImM C0 CI2 , 

O.lmM DTT, 0.05mg/ml BSA), plus 0.5nmoles of biotin-16-dUTP and 10 units
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terminal transferase, per reaction. Reactions were then incubated for 1 hour at 37°C. 

After incubation cells were washed in PBS then resuspended in lOOp.1 of staining buffer 

(4 x SSC, 0.1% Triton-X, 5% w/v marvel and 2.5 Jig/ml FITC-avididn ), and incubated 

for 30 minutes at room temperature, in the dark. Finally, cells were washed in 

PBS/0.1% Triton-X, before being subjected to analysis on a Coulter Epics ELITE flow 

cytometer.

2.2.10 GST-fusion proteins

2.2.10.1 Max Expression as a GST Fusion Protein

The feline max gene was amplified by the PCR using primers which included a BamHI 

restriction site in the 5’ primer and an EcoRI restriction site in the 3' primer. The 

restriction sites allow directional in-frame cloning of the PCR fragments into the pGex 

2T vector (175), after restriction digestion of gel purified PCR fragments. 

Oligonucleotide sequences are as follows:-

5* Primer 5'-GCA GGA TCC ATG AGC GAT AAC GAT GAC ATC G-3’

3* Primer 5’-GCA GAA TTC GGA ATT CGG CTT GGC TTA GCT G-3’

The BamHI and EcoRI restriction sites are underlined on the 5’ and 3’ primers 

respectively.

After ligation into the pGex2T vector and transformation of DH5a bacteria, colonies of 

bacteria which contained plasmid with insert, as shown by plasmid mini-prep followed 

by restriction digestion with BamHI and EcoRI and gel electrophoresis, were assayed 

for their ability to express the heterologous protein. Initially small scale protein prep 

analysis were carried out by inoculating 10ml of L-broth with the relevant colonies, 

these were grown overnight with aeration in a shaking incubator at 37°C. The next 

morning 2ml of fresh L-broth was inoculated with 200pl of the overnight growth, this

53



was grown for another 2.5 hours under the same conditions as the overnight culture. 

After this further period of growth, cultures were induced to produce the heterologous 

protein by addition of 0.1 mmol/1 isopropyl p-D thiogalactoside (IPTG) and grown for a 

further 2 hours. Following induction 1.5ml of each culture was pelleted in a 1.5ml 

eppendorf tube, and resuspended in 200|il of sample buffer, this was then boiled for 5 

minutes and an aliquot was run on a 10% SDS-PAGE denaturing gel alongside a similar 

aliquot from uninduced bacteria.

When productive colonies were identified, large scale protein preparations were carried 

out as described in (175,195). Briefly, 100ml of L-broth was grown overnight with 

bacteria containing the pGex-Max construct, then diluted 1:10 with L-broth 

supplemented with 5g/l glucose and grown until the A^qq was between 0.5 and 2.0. 

Protein induction was then initiated by addition of IPTG to a final concentration of 

0.1 mmol/1. The culture was then grown for a further 2 hours after which the bacteria 

were harvested by centrifugation at 8000g for 15 minutes. Bacterial pellets were 

resuspended in 0.01 x initial volume of Tris buffered saline (TBS) containing protease 

inhibitors (20 mmol/1 benzamidine, 0.1 mmol/1 phenyl methyl sulphonyl fluoride (PMSF) 

and 50 mmol/1 EDTA). The resulting suspension was then sonicated on ice for three 15 

second periods using a lOOw ultrasonic disintegrator ( Fisons, Crawley, England) and 

the lysed bacterial preparation was centrifuged at 1800g for 30 minutes and the 

supernatant retained. At this stage it was possible to store the supernatant overnight at - 

20°C without significant loss of fusion protein. The supernatant was then incubated at 

room temperature with pre-swollen glutathione-agarose beads, with gentle agitation for 

20 minutes. This slurry was then spun down and washed repeatedly with TBS until the 

optical density at 280nm had returned to that of TBS. Recombinant protein was then 

eluted from the beads by washing with TBS containing 10mmol/l reduced glutathione. 

Yield of recombinant protein was estimated by the method of Bradford (1865) and/or 

optical density at 280 nm, with O.D. 1 = 0.5 mg/ml of protein. Purified protein was 

subjected to SDS-PAGE denaturing electrophoresis on a 10% gel, followed by
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Coomassie blue staining. As can be seen from figure 6.2 GST-Max is a relatively stable 

construct.

2.2.10.2 Expression of Recombinant GST-Myc BR-HLH-LZ

For the GST-Myc constructs the C-terminal 115 amino acids of c-Myc and 116 amino 

acids of T17-Myc were cloned in-frame into pGex 2T. These were then expressed and 

purified as in 6.2.2. Again DNA inserts was generated by the PCR, primer sequences 

were :-

5’-GCG ACG GAT CCG CTA AGT TGG ACA GTG GCA GG-3*

5'-GCG ACG AAT TCC CAG TTC CTC CCT CTA ATA GG-3’

C-myc 5' and 3' primers with BamHI and EcoRI restriction sites underlined,

5'-GCG ACG GAT CCG CTA AGT TGG GCA GTG GCA GG-3'

5’-GCG ACG AAT TCC AGA GCC CTC CCT CTA ATA GG-3’

Til-myc  5’ and 3’ primers, again restriction sites are underlined, also shown in bold type 

are changes in the T17 sequence. Purified recombinant protein was run on a 10% SDS- 

PAGE denaturing gel, however the GST-Myc proteins proved to be unstable as can be 

seen from figure 6.1.

2.2.10.3 Construction of GST-Myc N-terminal Proteins

Myc N-terminal fusion proteins were constructed by the PCR using primers which 

encode a BamHI site in the 5’ primer and an EcoRI site in the 3’ primer. PCR reactions 

were carried out as described in materials and methods. Primer sequences were:-
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5' primer 5-GAC GGA TCC ATG CCC CTC AAC GTC AGC-3’

3' primer 5’-GAC GAA TTC TCT TCC TCA GAG TCG CTG-3’

These gave fusion products consisting of 254 amino acids of c-Myc and 180 amino acids 

of T17-Myc.

2.2.10.4 Western Immunoblot of GST-Myc Fusion Proteins

To ensure that the GST-Myc proteins were being correctly expressed, western 

immunoblot analysis was carried out on purified proteins. The antibody used to detect 

Myc was the rabbit polyclonal Ab2736 used at 1:1000, and the secondary antibody was 

a mouse anti-rabbit monoclonal conjugated to alkaline phosphatase, used at 1:3000 

(Promega Cat. No. 53731 ).
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Chapter 3 Analysis of transduced myc genes in secondary tumours induced by the

T17 virus complex

3.1 Introduction

The T17 myc mutant was discovered as a gene transduced by FeLV, in a field case of 

feline lymphomasarcoma. Also found in the same cancer was a FeLV transduced T-cell 

receptor p-chain gene (173). The myc containing provirus was cloned from an EcoRI- 

digested DNA library of T17 tumour DNA in AJEMBL4 and subcloned into pUC18 

(189). Figure 3.1 shows the clone T17M containing the entire provirus of 

approximately 7.5kb, together with cellular sequences flanking the provirus. Sequencing 

of the provirus showed that the transduced myc gene accounted for 1146 base pairs, 

replacing bases 5,719 - 7,568 of FeLV. Figure 3.1 also shows the open reading frames 

of the transduced cellular insert

ESB p 111 1 K K

1Kb
P
LTR

P S  H S2 K BHE 
-* -1----- ^ n 7 M  (in p U C l8)

PP P Sm
LTR

■ c  gag-poi I Myd M

PstlPstl

LTRFeLV pol env

S. A.
600 bp

Figure 3.1

Figure 3.1 Map of the T17 myc clone.

Vertical lines in the lower part of this figure denote 
'stop' in the three possible reading frames.
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The sequence data leads to a predicted T17 myc product which has a -1 shift relative to 

the FeLV pol reading frame which terminates in the transduced gene. The ATG of T17 

v-myc is 68 base pairs downstream of the consensus splice acceptor for the FeLV env 

gene, suggesting that expression of the T17 Myc protein will be as a discrete product 

from a subgenomic spliced mRNA. As only 3 base pairs from exon one of the cellular 

gene remain, the T17 mutant does not encode the higher molecular weight exon-1 

initiated gene product (196), while previous work using an exon 1 probe had shown that 

no c-myc RNA was detectable in these cells (18).

Sequence analysis also gave the rather unexpected finding that the coding sequence 

contained a large bipartite deletion in the N-terminal coding region. These deletions of 

141 and 81 base pairs flank 8 base pairs which differ from c-myc by a single base 

change. The whole effect is to delete 74 amino acids and introduce two codon changes, 

while retaining the correct reading frame for the rest of myc. Further mutations are 

found in the C-terminal coding region with an A to G transition at position 983 

(numbering from A of ATG in c-myc) changing asp328 to glycine. More intriguing is a 

three base insertion (TCG) which converts leu362 to phenylalanine-arginine, disturbing 

the conserved helical configuration of the sequence specific DNA binding domain which 

interacts with the consensus CACGTG motif (114)!, this domain is the basic region (BR),

Infection of cats with supernatant from a cell line derived from the original T17 tumour, 

resulted in tumours being generated in the newly infected animals. The genesis of these 

new tumours had a time scale only marginally slower than tumours which are generated 

from infection with other FeLV isolates containing full-length tranduced myc gene 

(197). However, it was possible that the rapid onset of tumours in these animals was 

due to the action of the replication competent component of the T17 virus complex, 

and/or the rcr-containing virus. To ascertain whether the T17 mutant was merely an 

aberration thrown up in the original field case, or whether it is of biological significance, 

the secondary tumours were subjected to an in-depth analysis.
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The first step was to examine the secondary tumours by Southern blot, to ask whether 

the myc containing virus was present in the secondary tumours. This question was 

further extended to ask whether any transduced myc allele was of the original highly 

mutated form including the gross deletions and the mutated basic region. The latter 

question was approached by using a polymerase chain reaction method, followed by 

sequence analysis. Previous work had shown that w-myc mRNA was detectable in T17 

tumour cells using a myc probe, while a first intron probe failed to detect any c-myc 

mRNA (18). To discover whether a truncated protein was expressed western blot 

analysis was undertaken.

3.2 Methods

3.2.1 Restriction digestion of tumour DNA and Southern blot analysis

DNA had previously been isolated from the tumours J49/1, J49/2 and J53/2, by Mrs. A. 

Terry (197), and it was this material which was used for analysis. Digests of 20|ig total 

DNA, were carried out using the restriction enzyme Hindin in suitable volumes. 

Digests were reduced in volume to approximately 50|il and electrophoresed on a 0.8% 

TAE agarose gel The procedure for transfer onto the nylon membrane was as 

previously described (Section 2.2.4.1).

3.2.2 Polymerase chain reaction analysis of tumours

Polymerase chain reactions were carried out on tumour DNA with primers designed to 

anneal to the 5’ end of myc, while a 3' primer was designed to hybridise with a sequence 

present in the env gene of FeLV. Thus polymerisation of nucleotides would only occur
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if a FeLV provirus was present and contained a transduced myc gene The 3' env primer 

enabled the detection of possibly any transduced myc as the primer sequence is just 

downstream of an FeLV env sequence which acts as a splice acceptor for myc (198). 

Primer sequences are shown below.

5’ primer (myc) 5'-ATG CCC CTC AAC GTC AGC-3'

3’ primer (env) 5'-CGG TGT GAT CCG CAT AGA AGC-3'

These primers were used in reactions which contained lOOpmol of each primer with lp.g 

of total DNA derived from the tumours, each reaction was supplemented with 10% 

DMSO. The DMSO was required only for PCR of the N-terminal portion of myc which 

is rich in G and C nucleotides, and may act by inhibiting the forming of secondary 

structures which stop the polymerase from making full-length nucleotide chains.

3.2.3 Cloning and sequencing of PCR products

Blunt end cloning of PCR products was problematic, until it was realised that the 

thermostable polymerase added an extra adenine residue to the 3' end of nucleotide 

chains which were synthesized. This problem has been overcome by the use of cloning 

vectors which carry a 3' thymidine residue overhang, hence the use for this work of the 

pCRH vector which has proved to be very efficient in cloning PCR fragments. A further 

advantage is that the vector contains sites for the M13 forward and reverse sequencing 

primers. Thus, sequencing of cloned products was carried out directly on colonies 

carrying the correct sized insert as demonstrated by small scale plasmid purification, 

followed by restriction digest with EcoRI and gel electrophoresis. Sequence data was 

generated by use of the aforementioned M l3 forward and reverse primers, however 

these primers were labelled with an infra red dye and sequencing was performed using a 

LiCor 4000 automated sequencer (187). In order to ensure reliable sequence data 

internal IR-labelled primers were also the sequences of these primers being:-
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Forward

Reverse

5'-GGA CTC TCT GCT CTC CTC-3' 

5-GAG GAG AGC AGA GAG TCC-3’

3.2.4 Western blot analysis of the T17 cell line

Cultured thymocyte cell lines were harvested at the appropriate cell numbers and 

washed with PBS. Cells were then lysed in sample buffer containing the protease 

inhibitors leupeptin, aprotinin and PMSF. The cell lysates were then electrophoresed on 

a 12.5% SDS-PAGE gel and hybridised as previously described (Section 2.2.4.2) to 

PVDF membrane. The blot was probed using a monoclonal antibody raised against the 

carboxy terminus of c-Myc at a dilution of 1:1000 (gift of Dr. K. Moelling, Lausanne). 

Proteins were subsequently visualised by the enhanced chemiluminescence method.

3.3 Results

3.3.1 Hybridisation analysis of secondary tumours induced by the T17 virus 

complex

Southern blot hybridisation analysis confirmed that there were novel myc alleles present 

in the tumours J49/1, J49/2 and J53/2. As can be seen from figure 3.2 each of the 

tumours contains a transduced myc gene, provides evidence that virus in the supernatant 

of T17 cells can transmit a myc gene with oncogenic properties. To iterate, we might 

expect that a defective feline leukaemia virus, which requires a helper virus, would be 

lost if the transduced gene had no role to play in the genesis of a tumour, as there should 

be no selection pressure to retain a defective vims.

If proviral integration itself was a major factor in the tumour initiation, which has been 

noted in several different systems, we would expect that a particular genetic locus would 

be targeted by the provirus (199). What is clear from this Southern blot is that the 

provirus has integrated at a different locus in each of the host genomes, making it
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unlikely that the tumours have arisen as a result of proviral integration leading to 

deregulation of a particular cellular gene, and allied to other cooperating event(s).

3.3.2 PCR of secondary tumours

From Figure 3.3 the size of the transduced myc genes can be determined and shown to 

be in the same size range as the original T17 myc, that is at ~1200bp. Tumours J49/1, 

J49/2 and J53/2, also demonstrate that no other larger band is present, which is in the 

size range of the F422 cell line derived PCR band this being equivalent to a full length 

transduced myc allele. Thus, the PCR reaction products demonstrate that no 

recombination has occurred between v-myc and c-myc to repair the deletions of the 

transduced myc genes in any of these tumours.

3.3.3 Sequences of myc in secondary tumours

To ascertain whether those PCR products which were generated contained the same 

mutations as the original mutant, clones of each product were sequenced. Results of the 

sequencing confirmed that the gross mutations were indeed present, in the same form as 

the original transduced gene. An alignment of the mutant sequences with c-myc is given 

(Figures 3.5 and 3.6) which shows in detail where the mutations occur.

3.3.4 Western blot protein detection in T17 cell line

Detection of the truncated protein in figure 3.4 confirms that the transduced mutant is 

expressed as a subgenomic RNA which is efficiently translated into the predicted size of 

polypeptide. The seemingly large quantity of protein product is more likely to be a due
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to the stability of the protein, than any inherent ability of the virus to transcribe greater 

numbers of genomic viral RNA copies than other myc containing virusesj, although other 

possibilities, such as more stable mRNA, cannot be excluded as the explanation for the excess 

of the mutant protein.
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Figure 3.2

Southern blot analysis of secondary tumours induced by the T17 virus complex.

M, markers (X); C, control DNA; F422, DNA from cell line containing a full length v- 

myc, J49/1, J49/2, J53/2, secondary tumour DNA; T17, DNA from the original 

lymphoma derived cell line.
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Figure 3.3

Polymerase chain reaction analysis of tumour DNA from secondary tumours.

M, markers ($); negative control reaction; J49/1, J49/2, J53/2, secondary tumour 

DNA reactions; F422, full length transduced v-myc; T17, original lymphoma derived 

T17 \-m yc  DNA.
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Figure 3.4

Western immunoblot of Myc expressing cell lines. Cell numbers are given beneath each 

lane.

The 3201 cell line also shows the slower mobility PI promoter derived protein moiety.

4x1054x105 -5_ 7 5 10
104



3.4 Discussion

The results in this chapter support the hypothesis that the T17 myc mutant does have 

oncogenic potential: firstly, by the finding that a virus containing a transduced a myc 

gene has integrated into the genome of tumour tissue of infected cats; secondly, 

sequence analysis of these secondary tumours reveals that mutations present in the 

original T17 myc mutant have been retained in the secondary tumours; thirdly, the 

protein product of the transduced allele is present at extremely high concentrations, 

which exceed by greater than one order of magnitude those concentrations found in cell 

lines which contain either a full-length transduced allele, or have a germ line 

rearrangement of myc.

This evidence strongly supports the hypothesis that the myc containing virus has 

oncogenic potential, rather than a model in which tumours arise as a stochastic event 

due to proviral integration. If the latter case were true then one might expect that the 

virus containing the transduced T-cell receptor (TCR) would integrate with the same 

frequency into cells. However, this does not appear to happen as no trace of the TCR 

was found in the secondary tumours, although it was shown that the TCR-containing 

virus was present in the inoculum (197). Also germane is the fact that the virus 

inoculum contains competent helper virus. Therefore, any defective virus is likely to be 

selected against as it requires replication competent helper virus to propagate, unless 

there is selective pressure to maintain the defective virus due to some advantage 

conferred on the infected cells, e.g. an inability to leave the cell cycle, or preventing cells 

from entering the differentiation programme.

The idea of a selective advantage being conferred by the mutant is supported by 

previously published work with transformation defective v-myc genes. In these in vivo 

studies deletion mutants of the avian MC29 myc containing virus which were partially 

transformation defective, were rapidly repaired by recombination with c-myc to yield
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fully transforming genes (200). The hypothesis that a deficient viral oncogene would be 

repaired is further supported by work on transformation defective avian sarcoma vims.

In this system it was found that vims containing v-src mutants induced tumours after a 

short delay, and examination of the v-src again showed that recombination event(s) had 

occurred with the cellular equivalent, restoring the full length gene sequence (201). 

(Intriguingly the previous two examples suggest that v-onc genes might undergo 

recombination with cellular equivalents, at a relatively high frequency.) Thus we would 

expect that any deficiency in the T17 mutant would be repaired by recombination, 

leading to full length transduced myc sequences being present in the secondary tumours.

However, the most striking feature of the T17 myc mutant is the large bipartite in-frame 

deletion in the N-terminal coding sequence. Previous work using N-terminal deletion 

mutants all concluded that this region is important for fibroblast transformation. 

Examples of this include the study of Heaney (202), while Stone et al showed that 

deletion of amino acids 105-143 appeared to be essential for myc-ras co-transformation 

of rat embryo fibroblasts (REF), and other deletion mutants including D41-53, D55-92 

and D93-103 also had a significant effect (203). This assay also revealed that amino 

acids 3-38 contain a region important for activity (ibid.) and this is intact in the T17 

mutant.

The very high levels of T17 Myc protein are without precedent. This level of Myc 

protein is most likely explained by an increase in the stability of the protein. Myc protein 

normally has a short half life of 15-20 minutes in cells (11), however 24 of the 74 

deleted amino acid residues have been postulated to be important markers of proteins 

with a short half life, this is known as the PEST hypothesis (204), an acronym utilising 

the single letter code of the amino acids involved, viz. proline, glutamic acid, serine and 

threonine, which are abundant in domains of many proteins with a short half life. Also 

included in these deleted sequences are two phosphorylation sites which can modulate 

Myc function, by either potentiating (205,206) or suppressing (207) Myc transformation
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and transactivation. However, these seemingly irreconcilable results may be due to the 

systems employed, or due to the nearby phosphorylation sites ( Thr 58 and Ser 62) 

having differing functions, as mutation of Thr 58 to alanine was able to increase focus 

formation, while mutation of Ser 62 decreased transformation in the same assay (208).

With the findings detailed in this chapter it was decided to assay the effects of the T17 

myc mutant in an established myc transformation assay.



1 cccgcaggctgccgcgaL gcccctcaacgtcagcttcgccaacaggaact 50 
II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I II I I 

1 cccgcaggctgccgcga tgcccctca a cg tca g cttcg cca a ca g g a a ct 50

51 a tg a cc tcg a c ta cg a c tcg g tg ca g c cc ta tttc ta c tg cg a cg a g g a g  100 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II II I II I I I I I I I 

51 a tg a cc tcg a c ta cg a c tcg g tg ca g c cc ta tttc ta c tg cg a cg a g g a g  100

101 gagaacttctaccagcagcagcagcagagcgagctgcagccgccggcgcc 150 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I 

101 gagaacttctaccagcagcagcagcagagcgagctgcagccgccggcgcc 150

151 cagcga g g a ta tc tg g a a g a a a ttcg a g ctg ctg ccca ccccg ccg ctg t 200 
I I I I I I I I I I

151 cagcgaggat..........................................................................................  160

201 ccc c g a g c c g c c g c tc g g g g c tc tg c tc g c c c tc c ta c g tc g c c ttc g c g  250

251 tcc ttc tccccccg g g g g g a cg a cg a cg g cg g cg g cg g ca g cttttcca c  300

301 ggccgaccagttggagatggtgaccgagctgctgggaggagacatggtga  
I I I  1 1 1 1

.g cca a cca ............................................................................................

350

161 168

351 atcaga g cttca tc tg cg a cccg g a cg a cg a g a ccttca tca a a a a ca tc
1 II 1 1 1 II 1 1

400

169 178

401 a tca tcca g g a c tg ca tg tg g a g cg g cttc tcg g ccg ccg cca a g ctcg t  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 
a tca tcca g g a c tg ca tg tg g a g cg g cttc tcg g ccg ccg cca a g ctcg t

450

17 9 228

451 ctcggagaagctggcctcctaccaggctgcgcgcaaagacagcggcagcc  
1 1 1 1 1 1 11 1 111111 111 1 1 1 1 1 1 1 II 1 1 1 1 1111 111111 1 1 1 1 1 1 1 1 
ctcggagaagctggcctcctaccaggctgtgcgcaaagacagcggcagcc

500

2 2 9 278

501 cgagccccgcccgcg g g cccg g a g g ctg cccca cctcca g cttg ta cc tg  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
cgagccccgcccgcggg cccg g a g g ctg cccca cctcca g cttg ta cc tg

550

2 7 9 328

501 ca g g a cc tg a ccg ccg c cg cc tcc g a g tg c a tcg a cccc tccg tg g tc tt
i i I i I i i i i i i i i i i i i i i i i i i I i i i i i i i i i i i ii i i i i i i i i i i i i i

600

32 9
1 I I  I I  I I  1 1 1 I I  1 1 I I  I I  I I  I I  I I  1 1 1 1 I I  1 1 1 1 I I  I I  1 1 I I  I I  1 I I  1 I I
c a g g a cc tg a ccg ccg c cg cc tcc g a g tg c a tcg a cccc tccg tg g tc tt 378

601 cccc ta cccg ctca a cg a ca g ca g ctcg ccca a g ccctg cg cc tcccccg
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

650

379
1 1 1 I I  1 1 1 1 1 1 I I  1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1)  1 1 I I  1
ccccta cccg ctca a cg a ca g ca g ctcg ccca a g ccctg cg cc tcccccg 428

651 a ctcca cca cc ttc tccccC T tcctcg g a ctctc tg ctc tcc tcg g cg g a g  
l l l l l l 1 l I I I I I I I i I I I i I I I i i i i i i i i i i i i i i i i i i i i i i i i i i i

700

429
i i i i i i i  i i i i i i  m  i i i  i i  i i i  i i  i i  m  i m  i i  i i  i i  i m  i m  i i  i i  m  
actccC T C caccttc tcccca tcctcggactctctgctc tcctcggcggag 478

70 1 tcctccccgcgggccagccccgagcccctggcgctccacgaggagacacc  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 
tcctccccgcgggccagccccgagcccctggcgctccacgaggagacacc

750

479 528
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751 gcccaccaccagcagcgactctgaggaagaacaagaggaagaagaagaaa  
I I 1111111 111111I I 111111111111 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1

800

529 gcccaccaccagcagcgactctgaggaagaacaagaggaagaagaagaaa 578

801 ttg a tg tcg tttc tg tg g a g a a a a g g ca g ccccctg cca a a a g g tcg g a a  
111111111 111111111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 
ttg a tg tcg tttc tg tg g a g a a a a g g ca g ccccctg cca a a a g g tcg g a a

850

579 628

851 tcgggg tca ccctc tg ccg g a g g cca ca g ca a a cctcctca ca g cccg ct
i i i t  i i i I i i i i i t i i i i i i I  I I i i i I i I  I I I I I l l i i I I I I I I I l l l II

900

629
1 1 M 1 II 1 t 11 M 11 i 1 M II 11 1 M 1 11 M 11 M 1 1 II 1 II 11 Ii 1 1 II
tcgggg tca ccctc tg ccg g a g g cca ca g ca a a cctcctca ca g cccg ct 678

901 g g tcctta a gagatgccacg tgcccacccaccagcacaa ttacgcagcgc  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
g g tcctta a gagatgccacg tgcccacccaccagcacaa ttacgcagcgc

950

679 728

951 ccccctccactaggaaggactacccagccgccaagagggctaagttggac  
I I 1111 1111 II 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 I II 1 1 II 1 1 1 1 II II 1 1 1 1 1

1000

729 ccccctccactaggaaggactacccagccgccaagagggctaagttgggc 778

1001 agtggcagggtcctgaaacagatcagcaacaaccgcaaatgtatcagccc  
1 11111 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1050

779 agtggcagggtcctgaaacagatcagcaacaaccgcaaatgtatcagccc 828

1051 caggtcttcggacacggaggagaacgacaagaggcggacgcacaacgtct 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1100

829 caggtcttcggacacggaggagaacgacaagaggcggacgcacaacgtct 878

1101 t . . .ggaacgccagaggagaaacgagctgaaacggagcttttttgccctg  
1 1 1 1 1 1 1 1111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 11111111 
ttcg g g a a cg ccagaggagaaacgagctgaaacggagcttttttgccc tg

1147

879 928

1148 cgcgaccagatcccagagttggaaaacaacgaaaaggcccccaaggtggt 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1

1197

929 cgcgaccagatcccagagttggaaaacaacgaaaaggcccccaaggtggt 978

1198 g a tccttaaaaaggccaccgcg taca tcctg tccg tccaagcaggggagc  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
ga tccttaaaaaggccaccgcg taca tcctg tccg tccaagcaggggagc

1247

979 1028

1248 aaaagctcatttcggaaaaggacctgttgaggaagcgacgagaacagttg  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
aaaagctcatttcggaaaaggacctgttgaggaagcgacgagaacagttg

1297

1029 1078

1298 a a a ca ca a a c ttg a a ca g cta a g g a a ctc ttg tg ca ta a g tcca cc ta tt  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
a a a ca ca a a c ttg a a ca g cta a g g a a ctc ttg tg ca ta a g tcca cc ta tt

1347

1079 1128

1348 agagggagg 1356 
i l I I I i I i I

1129 

Figure 3.5

1 1 1 1 1 1 1 II
agagggagg 1137

Alignment of T17 w-myc (bottom) with c-myc (198). The ATG start site and the TAA 

stop of the open reading frames are underlined. Also underlined is the region where
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internal forward and reverse IR-labelled primers were designed to anneal to. Numbering 

of the sequence is arbitrary.
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34 Q Q Q Q S E L Q P P A P S E D I W K K F  
C-Myc 101

AGCAGCAGCAGAGCGAGCTGCAGCCGCCGGCGCCCAGCGAGGATATCTGGAAGAAATTCG
T17-Myc ....................................................................................................

Q Q Q Q S E L Q P P A P S E D - - - - -

* ★
54 E L L P T P P L S P S R R S G L C S P  S 

C-Myc 161
AGCTGCTGCCCACCCCGCCGCTGTCCCCGCGCCGCCGCTCGGGGCTCTGCTCGCCCTCCT

T17-Myc

74 Y V A F A S F S P R G D D D G G G G S F  
C-Myc 221

ACGTCGCCTTCGCGTCCTTCTCCCCCCGGGGGGACGACGACGGCGGCGGCGGCAGCTTTT
T17-Myc

94 S T A D Q L E M V T E L L G G D M V N Q  
C-Myc 281

CCACGGCCGACCAGTTGGAGATGGTGACCGAGCTGCTGGGAGGAGACATGGTGAATCAGA 
T17-Myc . . . A . . . .

- - A N H -  - - - - - - - - - - - - - -

114 S F I C D P D D E T F  I K N I  I I Q D C  
c-Myc 341

GCTTCATCTGCGACCCGGACGACGAGACCTTCATCAAAAACATCATCATCCAGGACTGCA
T17-Myc

K N I I I Q D C

NLS
320 P A A K R A K L D S G  

C-Myc 968 CCAGCCGCCAAGAGGGCTAAGTTGGACAGTGGC
T17-Myc ....................................................... G...............

P A A K R A K L G S G

B asic Region________________|____H elix

355 K R R T H N V L - E R Q R R N E L K R  
c-Myc 1063 AAGAGGCGGACGCACAACGTCTT GGAACGCCAGAGGAGAAACCAGCTGAAACGG
T17 -Myc .....................................   TCG.......................................................

K R R T H N V F R E R Q R R N E L K R

Figure 3.6 DNA sequence and protein translation of T17-Myc mutations. 

Phosphorylation sites are marked *. NLS, nuclear localization signal.
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Chapter 4: Dissociation of the transforming and apoptosis functions of T17 myc in

a primary chick cell assay

4.1 Introduction

Transformation assays are frequently used to ascribe oncogenic potential to a particular 

gene product, or to a particular type of mutant gene product (203). However, one 

limitation of most systems involved is that they often require cells already primed for 

susceptibility to transformation. Assays which have been used to assess the 

transforming potential of myc often employ this initial ’’hit" technique, with the ras gene 

being a frequent target for the first genetic lesion (209). Land et al used the ras gene as 

a cooperating gene in transformation to demonstrate that c-myc could transform cells as 

efficiently as v-myc (34). However, this experiment utilised a c-myc derived from a 

mouse plasmacytoma which was modified to remove the immunoglobulin gene (34), 

therefore this myc may well have been mutated. The first demonstration that a normal c- 

myc was able to cause transformation was given by Martin et al (210) using quail 

embryo fibroblasts. To gauge the potential of the T17 mutant to cause transformation in 

an in vitro system, the chick embryo fibroblast (CEF) assay was employed. This assay 

was chosen as primary avian cells are sensitive to transformation by deregulated Myc, 

without the requirement of a cooperating gene such as ras (210).

To enable the expression of the feline myc genes to take place in avian cells, a retroviral 

vector containing the LTR regions of the avian erythroblastosis virus was used (174). 

This vector also contains the neomycin resistance gene, allowing transfected cells to be 

selected using the drug G418 (neomycin). Figure 4.1 is a graphical representation of 

how the vectors were constructed. Following transfection with the vectors and 

subsequent drug resistance selection, cells were assayed for growth rate and their ability 

to grow in an anchorage independent manner, the latter probably being the best measure 

of transformation.
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One of the most intriguing facets of the myc gene is its apparent dichotomous ability to 

promote either cellular immortalisation or cell death. Much of the early work on myc 

focused on the ability to promote cell survival and enhance transformation, but in recent 

years there have been numerous studies investigating the ability of myc to promote 

programmed cell death or apoptosis. This latter function has been shown to occur when 

fibroblasts and myeloid cells which overexpress Myc are depleted of growth and or 

survival factors (63,88). Evidence also exists of a role for Myc in the mechanism of 

apoptosis in T-cells, via the T-cell receptor (TCR), where immature thymocytes and 

hybridomas can be induced to undergo apoptosis when stimulated through the TCR. 

However, the apoptosis pathway can be prevented by myc antisense oligonucleotides, 

whereas oligonucleotides with the same base content but in random order had no effect. 

Prevention of apoptosis was achieved without interfering with other cellular functions, 

including cytokine production (89). Further work demonstrated the need for functional 

Myc/Max heterodimers in the induction of apoptosis by Myc (97,98).

A detailed methodology of the techniques used in the chick embryo fibroblast assays is 

given in section 2.2.8.
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Construction of pSFCV-LEjmyc Vectors

Hindlll
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Figure 4.1

Diagrammatic representation of how the myc-containing retroviral vectors were 

constructed and used.
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4.2 Results

4.2.1 Growth curves of transfected CEF cells

Post G418 selection cells were assayed as described (Section 2.2.8.4), from the graph 

(Figure 4.2) it is immediately clear that the T17 Myc cells grow at the same rate as the 

control cells. However, c-Myc transfected cells have a substantially increased growth
|

rate in comparison to control cells. At 24 hours after the beginning of the experiment no 

| cell type had more cells per dish than the original number plated, this was most likely

! due to cells dying after trypsinisation of the starting culture before plating. The

differential growth rate manifested itself after 48 hours, by which time the c-Myc 

expressing cells were noticeably more dense than either control cells or T17-Myc 

expressing cells.

4.2.2 Transfected CEF cells produce the exogenous Myc protein

Western immunoblot analysis confirmed that the CEF cells express the Myc protein from 

the retroviral constructs as shown in figure 4.3. Therefore, effects on cell growth, 

transformation and apoptosis can be attributed to the exogenous Myc protein. High 

levels of T17 Myc protein, previously shown to be a feature of the T17 tumour cell line, 

were again noticeable in the chick cells as a stable product at approximately 50kD.
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Growth Curves of pSFCV-LE/myc Transfected 
CEF Cells
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Figure 4.2

Control cells in this assay were CEF cells which had been transfected with vector alone 

and selected with G418. By the end of the culture period c-Myc producing cells were 

generally confluent in the 35mm dishes, while in all experiments the control and T17 

Myc cells had substantial space for further growth.
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4.2.3 Overexpression of feline cMyc, but not T17 Myc, transforms CEF cells

Markers of cellular transformation induced by Myc in CEFs include an increased growth 

rate and altered cellular morphology (211). However, anchorage independent growth of 

adherent cells is a more readily quantifiable measure of transformation. Hence growth in 

soft agar is recognised as an indicator of a cell having achieved a transformed phenotype 

(34). Results of this assay are shown in figure 4.4, which confirms that the rapidly 

growing, cMyc producing cells, are also the only cells to be transformed in this assay.

4.2.4 Feline cMyc, but not T17 Myc, induces apoptosis under culture conditions of 

low serum

Deprivation of serum caused cMyc producing cells to undergo apoptosis, whereas the 

T17 Myc expressing cells were not susceptible to an increase in this type of cell death. 

From figure 4.5 it can be seen that the T17 Myc cells did not display any increase in 

apoptosis above the control cells. Control gating on this figure was carried out on the 

serum positive cells of each cell population. The control for background fluorescence 

was to put cells through the same biotin-dUTP labelling protocol as the cells shown, 

however, control cells were not incubated with terminal transferase. The R1 gate 

denotes the cell population which do not display fluorescence above background. Gate 

R2 shows cells which have incorporated biotin-dUTP into DNA strand breaks, the 

percentage of cells in R2 of each cell population is given on the figure.
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Figure 4.3 Western immunoblot of transfected CEF cells.

CEF, cells transfected with vector alone.

This Figure demonstrates that excess Myc is present in the appropriate cells, and that the 

T17 transfected cells contain a higher mobility protein of ~50kD.
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Anchorage Independent Growth in Soft Agar
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Figure 4.4 Growth in soft agar transformation assay of transfected CEF cells 

(Magnification X I00).

This Figure demonstrates that only the c-Myc expressing cells are capable of growth in 

soft agar.
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Figure 4.5

A poptosis analysis by terminal transferase labelling o f  D N A  strand breaks. R1 denotes 

ce lls  not undergoing apoptosis, R2 is the percentage o f  cells incorporating biotin-dUTP.
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4.3 Discussion

Overexpression of Myc usually correlates with a loss of growth control, leading to 

transformation of the affected cells. Indeed this occurs with feline c-Myc in the CEF 

assay, while the T17 Myc protein does not have any discernible effect, even though 

there is a large amount of the mutant protein present in the cells. These data suggest 

that T17 Myc might not be functional in chick embryo fibroblasts, i.e. although present, 

the protein cannot interact with other parts of the transcriptional machinery. However, 

this does not seem likely, as the mutant maintains the ability to interact with Max and 

bind to the consensus E-box motif (chapter 6). It seems more likely that the T17 mutant 

permits the normal growth of CEF to take place despite high concentrations of the 

protein which can complex with Max. This finding suggests that the regions deleted in 

the N-terminus are required for the increase in growth rate and apoptosis functions, but 

are dispensable for the normal cycling of these CEF cells. Otherwise we would expect a 

slower increase in cell number than the control cells. Thus the presence of the deletion 

mutant is not deleterious to the normal cycling of these cells. Indeed a transformation 

defective deletion mutant lacking amino acids 91-137 of MC29 v-Myc has been shown 

to prevent transformation when cells are superinfected with wild type MC29 virus (212).

The first demonstration that mutant myc genes could affect different cell types in 

different ways, came from work on the MC29 y-myc. Early observations of the MC29 

transformed quail fibroblast cell line, Q10, noted that smaller gag gene-related products 

were synthesized after prolonged periods in culture (213). Three spontaneously 

occurring mutants were isolated, 10A, IOC and 10H, which synthesized fusion products 

of MWs 100,000, 95,000 and 90,000 respectively. These mutants were found to be 

competent to transform CEF cells, but had a much reduced ability to transform 

macrophages (213). Restriction enzyme mapping of 10A, 10C and 10H, showed that 

they contained overlapping deletions of 200,400, and 600 base pairs respectively, which 

mapped to a region around a Cla I site near the middle of the myc sequence (214).
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Later work focused on defining regions of v-Myc which are important for the 

transforming potential in different cell types. Using deletion mutants created by 

restriction digest of plasmids containing the MC29 genome, several clones were 

identified with changed transformation specificities (202). Deletion of most of the gag 

sequence was shown to have no effect on the ability of a mutant to cause transformation 

of either fibroblasts or bone marrow cells, but mutation of the myc sequence resulted in 

changed growth parameters. Mutants with deletions between amino acids 200-300, had 

lost the ability to transform bone marrow cells, but retained the ability to cause 

transformation of fibroblasts (202) (Table 4.1).

Other work which created deletions at the N-terminal of the myc coding sequence found 

a different set of results. In this work it was again found that deletion of the gag 

sequences did not affect transformation capacity (212). However, deletion of the myc 

sequences covering those lost in the N-terminal domain of T17-Myc allowed 

transformation of macrophages, but greatly reduced the ability of the mutants to 

transform fibroblasts (212) (Table 4.1). Also notable is that a mutant with deletion of 

amino acids 1-42, which are retained in T17-Myc, was initially presumed to be 

transformation defective in culture, until cells were plated in soft agar, where large 

macrophage colonies were formed (212).

These data indicate that cell type specificity is likely to play a substantial role in the 

ability of any mutant Myc to transform. The inability of the T17-Myc mutant to 

transform CEF cells is consistent with the data from the MC29 deletion mutants 

covering the equivalent domain of Myc.

However, factors other than cell type specificity may be involved, as the same cell types 

from different species have been shown to differ in sensitivity to transformation by 

mutant \~myc genes. Again, deletion mutants were used to demonstrate the effect. 

Deletion of as few as 11 amino acids from middle of v-Myc prevented transformation of
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chicken bone marrow cells and peripheral blood macrophages, whereas deletion of up to 

200 amino acids covering the same region still allowed efficient transformation of quail 

macrophages (215). The same mutants could induce short-latency tumours in newborn 

and one week old Japanese quail, with a similar efficiency to wild type MC29. Further, 

restriction digests and Southern analysis of tumour material showed that recombination 

between v- and c-myc had not occurred, as restriction patterns of tumour DNA showed 

smaller fragments in the mutant induced tumours compared to wild type MC29 induced 

tumours (215). Thus, both cell type specific factors and/or species specific factors may 

be important when trying to measure the transforming capability of c-Myc.

These findings prompted the question, "can chimaeric myc retrovirus constructs 

dissociate differences in function between the N-, and C-terminal mutations?" This 

question is addressed in chapter 5.
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Table 4.1 Ability of avian v-myc mutants to cause growth in soft agar. It should be 

noted that the studies from which this table has been compiled (from (202,212)) 

included other mutants, including insertion mutants, which are not referred to, but 

which support the conclusions drawn.

Deletion 

(amino acids)

Fibroblast growth 

in soft agar

Macrophage growth 

in soft agar

1-42 +++

43-57 ++

58-84 ++

85-90 -/+ +

91-137 _

138-245 ++

220-239 + .

239-249 +

220-279 +

205-288 + -

Table 4.1
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Chapter 5: A chimaeric Myc which allows transformation and apoptosis does not

increase growth rate

5.1 Introduction

The lack of a discernible phenotype for T17 Myc in the CEF assay prompted the 

question as to whether any phenotype might be observable, if the N-terminal and C- 

terminal mutations were separated and used in the CEF assay. Therefore, to further 

characterise what role the T17 Myc mutations might play in cellular growth and 

transformation, chimaeric myc constructs were used in the same CEF assays outlined in 

the previous chapter. The chimaeras consist of 296 amino acids from the c-Myc N- 

terminus fused to the v-Myc C-terminal 144 amino acids, and the equivalent 222 amino 

acids from the v-Myc N-terminus fused to c-Myc C-terminal 143 amino acids. These 

constructs are called c/v-Myc and v/c-Myc respectively. The methods used to construct 

the chimaeric genes used in this set of experiments are described in chapter 2.2.8.

5.2 Results

5.2.1 Both N- and C-terminal domains of T17-Myc are deficient in growth rate 

enhancement of CEF cells

Analysis of the growth curves shown in figure 5.1 demonstrates that neither chimaeric 

Myc construct had any effect on the growth rate of transfected cells, in comparison to 

control cells transfected with the vector alone. Several repeats of the growth rate 

experiment failed to show an increased growth rate of CEF cells, with both chimaeras 

having the same growth curve as the vector control cells. Thus, the C-terminal basic 

region mutation confers a change in the growth rate phenotype in comparison to the 

wild type c-Myc as shown in figure 4.2.
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5.2.2 Western blot analysis confirms that exogenous Myc is present

Figure 5.2 demonstrates that the exogenous Myc protein is in fact present in the cells 

transfected with the viral constructs carrying the chimaeric myc genes. This figure 

further shows that Myc proteins present are of the expected molecular weights for the 

chimaeric translation products, i.e. -62 kD for c/v-Myc and -50 kD for v/c-Myc. 

Therefore, an inability to increase the growth rate of CEF cells is not due to a failure of 

the retroviral constructs to drive expression.

5.2.3 A c/v-myc chimaera transforms CEF cells

The ability to grow in soft agar has previously been described (4.3.3) as a means of 

demonstrating the transformed phenotype. Use of the chimaeric constructs 

demonstrates that the N-terminal region of the feline Myc protein is required for 

transformation as measured by anchorage independent growth in soft agar (Figure 5.3). 

The number of colonies which grew out in this assay was consistently lower for c/v-Myc 

than for intact c-Myc in the same assay, giving approximately 10% of the number of 

colonies of c-Myc transfected cells. This must be due to the basic region mutation 

present in the chimaeric protein, which also accounts for the lower growth rate.

5.2.4 Analysis of apoptosis in c/v-, and v/c-Myc chimaera expressing CEF cells 

deprived of serum

As demonstrated in Figure 5.4 only the c/v-Myc chimaera induced apoptosis when CEF 

cells were deprived of serum. Although there was a smaller number of cells undergoing 

apoptosis with the c/v-Myc chimaera compared to the native c-Myc ( figure 4.5), this 

result is consistent with the slower growth rate of the chimaera expressing cells.
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Figure 5.2 Western immunoblot of transfected CEF cells.

This figure demonstrates that the chimaeric proteins are expressed.

96



Anchorage Independent Growth in Soft Agar
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Figure 5.3 Growth in soft agar transformation assay of CEF cells transfected with the 

Myc chimaeras. Magnification X I00 for chimaeras, X40 for control cells.

Only the c/v-Myc chimaera gave growth in soft agar. Although the colony displayed is 

larger than c-Myc colonies in Figure 4.4, this is likely to be due to a lack of growth 

factors for the c-Myc colonies compared to chimaeric colonies, which gave far fewer 

colonies per experiment.
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Figure 5.4 Apoptosis analysis by terminal transferase labelling of strand breaks. R1 

denotes cells not undergoing apoptosis, while R2 gives the percentage of cells 

incorporating biotin-dUTP above background, i.e. undergoing apoptosis.
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53  Discussion

The ability of a chimaeric Myc, containing a basic region mutation, to induce apoptosis 

on serum deprivation, and to transform cells while failing to increase growth rate is a 

novel finding. Although other groups have demonstrated the requirement for an intact 

N-terminal domain in transformation and apoptosis assays (63,203), no basic region 

mutants have come to light which display this failure to increase growth rate. Several 

experiments carried out by myself and Dr. D. Crouch confirmed that this finding is 

repeatable. This result does not contradict the findings of the last chapter but does show 

that the failure to increase growth rate in CEF cells may be due to both the N-, and C- 

terminal mutations, especially as the v/c-Myc chimaera also failed to increase growth 

rates of transfected cells. What is suggested by the work in this chapter is that differing 

functions which Myc can play a role in, transformation, apoptosis, and growth rate, may 

be activated by different gene products under the control of Myc. It is unlikely that the 

observed effects are caused by the Asp-329 to Gly substitution which borders the 

peptide sequence PAAKRAKLD this being equivalent to the human c-Myc nuclear 

location signal (PAAKRVKLD) (282), as deletion of this region of v-Myc did not 

diminish its transforming activity (283).

Previous mutational analysis of the C-terminal domain which disrupted the BR-HLH-LZ 

domains of Myc had proven to be incompatible with a transforming phenotype 

(202,211,212). However, although the ability to dissociate growth rate from 

transformation is novel, other C-terminal mutations which can affect Myc function have 

been described. One such avian Myc mutant carries a deletion of the C-terminal 7 amino 

acids (c-MycA7) (211), while another avian mutant - termed S90.9 - has a 9 amino acid 

deletion at the C-terminal (216). Both mutations result in the loss of one of the heptad 

repeat leucine residues. The transforming phenotype of these mutants has been shown 

to be intermediate between the wild type c-Myc, and leucine zipper deletion mutants 

which displayed no change in phenotype from control cells (211,216). Although the
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mutants displayed increased growth rate and loss of density inhibition, there was an 

impaired ability to grow in soft agar. Although the S90.9 mutant appeared to be only 

partially effective at transforming avian fibroblasts, this mutant showed no defect in its 

ability to transform avian macrophages (216), thus demonstrating that the ability of a 

mutant v-Myc to transform a particular cell type is not necessarily a good indicator as to 

its ability to transform other cell types.

Later work using the c-MycA7 mutant further characterised the phenotype as being 

unable to suppress expression of tnyoD and related muscle differentiation specific genes, 

although c-Myc could suppress the same genes when overexpressed (217). Although 

the effects attributed to c-MycA7 have been purported to show that Myc can affect gene 

transcription via a Max-independent pathway, it has not been excluded that the effects 

described are due to differing levels of effective Myc/Max complexes, especially as the 

c-MycA7 mutant was only half as active as c-Myc in a Max-dependent transcription 

assay in yeast (176).

The results from this chapter and the previous chapter are summarised in table 5.1.

These results indicate that the BR mutation! (p.60) is worthy of further study in isolation. 

Therefore in an endeavour to attribute special characteristics to the BR mutation, studies 

described in chapter 6 were undertaken to investigate the biochemistry of the T17-Myc 

BR mutation.

Myc construct Growth rate 

increase

Growth in 

soft agar

Induction of 

apoptosis

c-Myc + + +

T17-Myc

c/v-Myc +/- +

v/c-Myc _
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Chapter 6 Heterodimerisation With Max and Transcription in Yeast are not

Detectably Affected by the T17 Basic Region Mutation

6.1 Introduction

In order to investigate the ability of the basic region mutation to interfere with 

Myc/Max heterodimerisation and DNA binding, the C-terminal 115 amino acids of c- 

Myc and 116 amino acids of T17-Myc were expressed as glutathione-S-transferase 

(GST) fusion proteins (175). Expression of proteins of interest as GST fusion proteins 

allows rapid purification of the desired protein by binding to S-linked glutathione 

agarose beads and subsequent washing to get rid of contaminants, before elution from 

the beads with reduced glutathione. These fusion proteins were then used with GST- 

Max fusion proteins in electrophoretic mobility shift assays (EMSA). The EMSA or 'gel 

shift' is an in vitro method of determining whether proteins can bind to radioactively 

labelled oligonucleotide DNA (182). To exclude species differences in the Max protein 

as a source of anomalous results, cDNA clones of the feline max and max9 transcripts 

were isolated and sequenced (218). Subsequently feline max was expressed as a GST 

fusion construct for use in the EMSA.

A yeast assay was also employed, to gauge what effect the BR mutation would have on 

transcription in a reporter system which required Myc/Max heterodimerisation (141). In 

this assay the BR-HLH-LZ of Myc is linked to the yeast PH04 transactivation domain. 

The yeast transcription factor PH04 contains a BR-HLH motif which recognises the 

same CACGTG consensus binding motif as Myc (120). In the case of PH04 the target 

gene is known to be the acid phosphatase PH05, which is positively regulated by PH04 

(219). Indeed the basic region of c-Myc and PH04 are interchangeable with no 

apparent loss in specificity (120). However, this assay completely removes the PH04 

BR-HLH and replaces it with the Myc BR-HLH-LZ which activates the reporter 

construct only in conjunction with Max (176). Therefore using a reporter construct,
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which contains the PH04 target upstream activating site (UAS) from the in vivo target 

PH05 linked to LacZ, allows quantitative as well as qualitative data to be collected 

(176), thus allowing a direct comparison to be made between the c-Myc and T17-Myc 

BR-HLH-LZ domains.

6.2 Materials and Methods

6.2.1 Cloning and sequencing of the feline max and max9 transcripts

The high degree of homology amongst previously published max sequences (115,220) 

allowed primers to be designed for sequences which are identical in human and mouse, 

primer sequences are :-

5'-GGA AAT GAG CGA TAA CGA TG-3'

5'-GGC TTA GCT GGC CTC CAT CC-3'

5' and 31 ends respectively.

3.5pg of total RNA isolated from normal feline thymus using the RNazol method 

( Biogenesis ), was subjected to first strand cDNA synthesis using a commercial kit 

( Pharmacia ) and including 175pmol of the 3' primer. 160pmol of the 5' primer was 

added to the reaction for the subsequent polymerase chain reaction step. The conditions 

for the 30 cycles of PCR reaction were denaturation at 94°C for one minute, annealing 

at 55°C for one minute and elongation at 72°C for one minute. Two reaction products 

of approximately 490bp and 460bp were observed, when the reactions were subjected 

to gel electrophoresis on a 6% polyacrylamide gel ( Scotlab ). These fragments were 

cloned into the PCR cloning vector pCR II using the TA kit ( Stratagene ). Each clone 

was identified by restriction enzyme digest using EcoRI, followed by analysis on a 6% 

polyacrylamide gel. Clones carrying inserts of each size were sequenced on both strands 

using a long read Sequitherm cycle sequencing kit ( Epicentre Technologies ), with an 

infrared labelled M13 forward or M13 reverse primer ( Li-Cor) and sequenced on a Li- 

Cor model 4000 automated sequencer.
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Feline max was expressed as a glutathione-S-transferase (GST) fusion construct 

(Section 2.2.10.1) and used along with GST-BR-HLH-LZ fusion proteins (Section 

2.2.10.2) in electrophoretic mobility shift assays (EMSA) as detailed in Section 2.2.3.

6.2.2 Construction of PH04-Myc chimaeras and p-galactosidase assays

The PCR was used to generate C-terminal BR-HLH-LZ fragments of c-myc and 

T17-myc, containing the restriction sites Xhol and Clal at the 5' and 3' ends respectively. 

These restriction sites allow in-frame directional cloning of the digested products into 

the vector pTZ which contains the transactivation domain sequence for PH04. 

Following ligation into pTZ the PH04-myc construct is excised using Bam HI and this 

sequence is subcloned into a unique Bgl II site in the yeast expression plasmid pMA132-

a. The orientation of the construct was checked by double digestion with Xho I and 

Bam HI, as the subcloning of the Bam HI fragment from pTZ into the Bgl II site of 

pMA132-a destroys both the Bam HI and the Bgl II sites, the only Bam HI site which 

cuts, is a site in pMA132-a which is 3' to the insert. Thus constructs in the correct 

orientation were smaller, i.e.~1200bp as opposed to ~1500bp. The pMA132-a plasmid 

contains the promoter sequence of the yeast phosphoglycerol kinase gene which gives 

high levels of transcription (176). Also encoded by this plasmid is the tryptophan 

resistance gene.

The primer sequences used to generate the myc portion of the constructs were:- 

5’ Primer 5'-CAG ACCTCGAGG AGA ACG ACA AG-3'

3' Primer 5’-CTGGATCGATCCTCC CTCTAATAG GTG G-3'

The Xho I and Cla I sites are underlined on the 5' and 3' primers respectively. These 

primers generated 273 bp (276 for T17) of myc coding sequence, including the stop 

codon. The 3* primer overlapped the end of the coding sequence allowing the myc stop 

codon to terminate translation of the chimaeric protein.
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Human max and max9 cDNAs had previously been cloned into the Bgl II site of the |x 

plasmid pKV701 downstream of the inducible GAL 10 promoter by Dr. Goding's group 

(176), and sub-cloned, together with the GAL 10 promoter, into the plasmid pRS314, 

for use in this assay.

The yeast strain used in the assay was Y704 which lacks endogenous PH04 activity 

(120), and was transformed and assayed for p-galactosidase activity by Dr. Goding 

using the vectors I had constructed. Briefly, transformed yeast were selected on yeast 

glucose minimal agar plates supplemented with appropriate amino acids. Colonies were 

picked into 6 ml of fresh glucose minimal medium and grown until they reached 

stationary phase, then cultures were centrifuged and pellets resuspended in 1 ml of 

galactose minimal medium and 100 pi used to inoculate 6 ml of fresh galactose minimal 

medium. Following 24 hours induction, cells were harvested, washed once in water, 

resuspended in 100 pi of 0.1M Tris pH 7.5,0.05% Triton X-100, and frozen on dry ice. 

Subsequently 30pl aliqouts were assayed for p-galactosidase activity. Units were 

calculated using the formula A420/A600 X 1000/CVt where A420 is the absorbance at 

420nm, A^oo is the density is the density of the cell suspension of 6ml of galactose 

medium, V is final volume of cells used in ml (0.030) and t is time of reaction in minutes 

(176). Figure 6.1 is an illustration of the constructs used in this assay.
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63 Results

63.1 Feline Max is identical to human Max at the amino acid level

Figure 6.2 shows the nucleotide sequence of feline max with the predicted single letter 

amino acid code above the triplet codons. From this figure it can be seen that the 

larger transcript encodes a peptide of 160 amino acids, while the shorter transcript 

lacks 9 of these codons. The feline max DNA sequence shows 98% identity to that of 

human and 95% to mouse. The feline and human proteins are identical while Myn is 

98% related at the amino acid level (115,220).

This sequence data appears in the GSDB, DDBJ, EMBL and NCBI nucleotide sequence 

databases with the following accession number, D37786.

6.3.2 Analysis of recombinant GST-fusion proteins

Coomassie blue staining of a SDS-PAGE gel with GST-agarose purified proteins 

demonstrates that the purified GST-Max protein construct is very stable (Figure 6.3). In 

contrast, the same gel demonstrates that GST-BR-HLH-LZ recombinant proteins are 

unstable, with approximately 90% of the purified protein being degraded (Figure 6.3). 

However, western immunoblot analysis (Section 2.2.10.4) of the GST-BR-HLH-LZ 

protein demonstrates that the expressed proteins are correctly translated (Figure 6.4). 

Several methods were tried in an effort to produce a more stable GST-Myc construct, 

including IPTG induction for less time, induction at a lower temperature than 37°C, and 

various protease inhibitors, however, no better preparations were obtained.

63.3 The GST-T17 Myc C-terminal construct, in cooperation with GST-Max, 

efficiently alters the mobility of oligonucleotides containing the consensus 

CACGTG motif in an EMSA
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The CM1 oligo was based on that used by Blackwell et al to show that the consensus 

binding site for Myc is CACGTG (114). Gel retardation of the CM1 oligo by the GST- 

T17 Myc proved to be every bit as efficient as that by GST-cMyc, as demonstrated in 

Figure 6.5. Two specific retardation bands are present due to BR-HLH-LZ portions of 

protein, which are not attached to GST being present in the binding reaction. However, 

other lines of evidence have led to the conclusion that bases flanking the core six bases 

can affect the binding of Myc/Max to DNA (221-223). Therefore, it was felt that the 

use of a probe which had previously been shown to discriminate between proteins which 

recognise the same core CACGTG motif, due to bases outwith the core, should also be 

used in the EMSA. Hence the P2 probe (223) was chosen in an attempt to detect 

potential differences in binding between the mutant and the wild type basic regions.

From Figure 6.6 it is clear that there is no gross difference in the binding of the two Myc 

constructs to the P2 Probe. To look at possible differences in the avidity of the two 

Myc proteins for the CM1 oligo, radioactively labelled CM1 was competed out using 

unlabelled 'cold' P2 oligo. Again no significant difference was evident, see Figure 6.7. 

Thus the T17-Myc basic region does not appear to be detrimental to in vitro binding of 

oligonucleotides containing the consensus Myc/Max E-box motif.

63.4 The T17 C-terminal domain in conjunction with Max, transactivates a 

reporter gene construct in yeast

The ability of the T17 C-terminus basic region HLH-LZ domains to dimerize with Max 

and to bind a consensus motif containing the core CACGTG was confirmed by the yeast 

assay. This assay demonstrated that the basic region mutation does not prevent 

transactivation from a reporter construct, indeed the T17 mutant maintains the ability to 

recognise the reporter and activates transcription as efficiently as the wild type, see 

Figure 6.8.

109



M S D N D D I E V E S D E E
ATG AGC GAT AAC GAT GAC ATC GAG GTG GAG AGC GAC GAA GAG

5 ' - g g a a a t g a g e g a t a a c g a t g - 3 '

P R F Q S A A D K R A H H N
CGG AGG ITT C AA TCT GCG GCT GAC AAA CGG GCT CAT CAT AAC

H T
M G G C T

L E R K R R D H I K D S F H
CTG GAA CGA AAA CGT AGG GAC CAC ATC AAA GAC AGC TTT CAC

L R D S V P S L Q G E K A S
TTG CGG GAC TCG GTC CCA TCA CTC CAA GGA GAG AAG GCA TCC

H A
M A

A Q I L D K A T E Y I Q Y M
GCC CAA ATC CTA GAC AAA GCC ACA GAG TAT ATC CAG TAT ATG

H
M A

R K N H T H Q Q D I D D L K
AGG AAA AAC CAC ACA CAC CAG CAA GAT ATC GAT GAC CTC AAG
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M A

Figure 6.2 cDNA sequence of feline max.
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Figure 6.2. showing the feline max nucleotide coding sequence with single letter amino 

acid code above. Lower case lettering denotes primer sequences. The difference 

between the feline Max and feline Max9 transcripts is underlined. Bases beneath codons 

denote the base changes between feline Max and Max (H), and between feline Max and 

Myn (M). Amino acids 2, 11, 140,142 and 144 are casein kinase II phosphorylation 

sites, which can affect DNA binding of Max homo- and Myc/Max heterodimers 

(Bousset K.(224), Sollenberger K.G. et al (225) and references therein ).
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Figure 6.3 Coomassie blue stained SDS-PAGE gel showing glutathione-agarose bead 

purified recombinant GST-C-terminal Myc and GST-Max proteins.

M, markers; UNB, unbound proteins; ELU1, first eluate from GST-agarose beads; 

ELU2, second eluate from GST-agarose beads.

This gel demonstrates the relative instability of the GST-Myc constructs compared to 

GST-Max recombinant, as the large bands at ~28kD in the Myc lanes correspond to 

GST alone.
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Western Blot of C-Terminal Fusion Proteins

M GST Max Max9 cMyc T17 M
kD
4 9 .5  —

2 7 .5  —

1 8 . 5 — m -  '* * *

Figure 6.4 Western immunoblot of purified recombinant proteins, using an anti-Myc 

rabbit polyclonal antiserum.

M, markers.

This figure further demonstrates that the primary antibody does not cross-react with 

GST or GST-Max.
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Figure 6.5 EMSA with radiolabelled CM1 oligonucleotide.

Molar ratios of unlabelled competitor oligonucleotide are given above lanes where 

competitor has been added.

'A1, specific band competed with unlabelled CM1 

'B', specific band competed with unlabelled CM1 

'C', free oligonucleotide

114



Figure 6.6 EMSA with radiolabelled P2 probe

Molar excess of unlabelled P2 probe is given above lanes where unlabelled competitor 

has been added.

'A', non-specific binding ( see reference 115)

'B', specific binding 

'C', free oligonucleotide
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Figure 6.7 Radiolabelled CM1 oligonucleotide, competed with unlabelled P2 

oligonucleotide.

Molar excess of unlabelled competitor oligonucleotide is given above lanes where 

competitor has been added.

'A', competed band 

'B', free oligonucleotide
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Figure 6.8 This figure demonstrates that there is no defect in the ability of the T17 

mutant C-terminal in binding to a reporter construct in yeast. The Figure was 

constructed by averaging the results from two separate experiments.
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6.4 Discussion

The mutation at the heart of the T17-Myc basic region might have been expected to alter 

either the specificity or the avidity of the mutant Myc for its consensus motif. However, 

previous work has shown that replacement of the equivalent residue, with arginine, in the 

human N-Myc protein led to the mutant having a broad capacity to bind to several targets, 

other than the CACGTG consensus (226). This, though interesting, is unlikely to be quite 

the same for the T17 mutant, as the mutant also has an insertion of a large hydrophobic 

phenylalanine residue. Another finding of interest is that the leucine which has been 

replaced in the T17 mutant appears to be necessary to prevent binding to oligonucleotides 

containing the mutated target sequence 5-CATATG-3' (226). However, I could find no 

evidence that GST-T 17/Max could bind to an oligo with this core sequence (not shown).

Other research which suggested that bases outside the canonical 5'-CACGTG-3' consensus 

motif could affect protein-DNA specificity has also been taken into account (221-223). 

However, no evidence could be found that the T17-Myc mutant reacted any differently 

from c-Myc in EMS A experiments designed to detect changed specificity.

Figure 6.9 showing a graph of the densitometry results from the EMS A with the CM1 

oligo, demonstrates that the avidity of the T17-Myc BR is directly comparable to the avidity 

of the c-Myc BR. Therefore, the failure of the c/v-Myc chimaera to increase growth rate, 

and the reduced capacity to cause anchorage independent growth, are unlikely to stem from 

an inability to bind DNA. Nor does it seem likely that differential on/off kinetics of protein- 

DNA interactions can account for these changes, as both the affinity and avidity appear to 

be unchanged for the mutant, thus the mode of action of the T17-Myc C-terminal mutation 

must be at a more subtle level.
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Figure 6.9 This graph was constructed using the densitometry results obtained by 

densitometry of both specific bands of the CM1 oligonucleotide gel (Figure 6.5) with a Bio- 

Rad model GS-670 densitometer. In order that like was compared to like, the relative 

percentage of GST-cMyc or GST-T17Myc was plotted, obtained by totalling the results for 

all the bands of each protein and dividing by the individual lane.

Further evidence that the T17-Myc BR is as effective as the c-Myc BR in binding DNA 

when heterodimerised with Max comes from the yeast transactivation assay (figure 6.8). 

This makes it seem improbable that the observed effects in the CEF assays are due to any 

defect in DNA binding. Unlike the effects described for the c-MycA7 mutant which has a 

reduced capacity to suppress myoD expression and cause fibroblast transformation, but 

allows transformation of myoblasts (211,217), and only gives half the level of c-Myc/Max

119



transcription in the same yeast assay as used in this study (176). This makes it seem more 

likely that the observed deficiencies of the T17-Myc mutant and the c-MycA7 mutant are 

not due to the same mode of action. From the data available the c-MycA7 mutant most 

likely exerts its changed ability to cause transformation due to different kinetics required to 

transform fibroblasts, where a 50% drop in Myc mediated transcription permits the 

transformation of myoblasts, but is non-permissive for the transformation of fibroblasts, 

whereas the T17-Myc mutant appears to be acting in an even more subtle manner. One 

possible mechanism which could account for the changed transforming abilities of the 

chimaera carrying the basic region mutation, is that there is an altered ability to bend native 

DNA. This rather speculative argument is dealt with more fully in the final discussion 

(chapter 9).
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Chapter 7 The N-terminal domain of T17-Myc shows limited ability to activate

transcription in a yeast assay and can bind to pl07 in vitro

7.1 Introduction

The N-terminal portion of Myc has been reported to carry a transcriptional activation 

function (138), and has also been shown to associate with the retinoblastoma protein Rb 

(227) and the related protein pl07 (149). However, where the latter work was able to 

demonstrate Myc binding to pl07 under physiological conditions, there was no detectable 

binding to Rb under the same conditions (149).

Although a great deal of effort has gone into identifying possible functional domains of 

Myc, most theories have been extrapolations based on similarity between Myc and known 

transcription factors. The N-terminal domain was suspected to act as a transcriptional 

activation domain, from the high numbers of acidic, proline, and glutamine residues which 

are common in known transcription factor activation domains (134). This observation led 

to the functional analysis of portions of the Myc N-terminal domain fused to various DNA 

binding domains, such as the bacterial LexA DNA binding domain (227), and the yeast 

transcription factor GAL4 DNA binding domain (138). These studies confirmed that the 

Myc domain would transactivate a reporter construct containing the appropriate target 

binding site (138,227). To test the ability of the T17-Myc N-terminus to activate 

transcription in such an assay, the DNA encoding the N-terminal 267 amino acids of feline 

c-myc and 193 amino acids of T17-myc, were cloned into the inducible yeast expression 

vector pV44, giving fusion products with the DNA binding domain of LexA (see Figure 

7.1).
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As a further test of the capacity of the T17-Myc N-terminal domain to interact with other 

proteins, GST-Myc constructs were produced using the codons for the N-terminal 254, and 

180 amino acids of c-, and T-17 Myc respectively. The protein products were tested for 

their ability to interact with pl07 in an in vitro binding assay. This experiment utilised a 

linked transcription-translation protocol, to produce in vitro translated pl07 from a partial 

clone of the human pl07 cDNA (160). The rationale for investigating potential binding to 

pl07 comes from evidence that pl07 is able to down modulate Myc-mediated 

transactivation from a reporter construct (227). There is also evidence suggesting that c- 

Myc mutants derived from lymphomas can resist suppression by p i07 (228).

A human pl07 gene cDNA clone was also subcloned into the yeast inducible vector 

pKV701 (177) to investigate the possibility that pl07 could suppress Myc activated 

transcription in the yeast system.

7.2 Materials and methods

7.2.1 Construction of yeast vectors and p-galactosidase assay

Plasmids containing the myc N-terminal coding sequences were made by the PCR using 

primers encoding a BamHI site at the 51 end and a Clal site at the 3’ end (underlined). See 

figure 7.1. Also encoded by the 3' primer is an in-frame stop codon ( shown in bold), as 

the construct fuses the N-terminus of Myc to the C-terminus of LexA. Primer sequences 

are as follows:-

5* primer 5’-GAC GGA TCC ATG CCC CTC AAC GTC AGC-3’

3* primer 5-CGC ATC GAT TTA CAC AGA AAC GAC ATC AAT TTC-3'
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The human p i07 cDNA clone was digested with BamHl and the p i07 fragment purified 

from a 0.9% TAE agarose gel. pKV701 was digested with Bgl II and treated with 

phosphatase. Gel purified p i07 was then ligated into pKV701 as described in chapter 2, 

and bacteria were transformed with the ligation mix. Clones were subsequently identified 

by mini-prep of plasmid DNA and restriction digest with Clal. Clones with pl07 in the 

correct orientation produced bands of 5.5kb and 4.7kb, whereas the incorrect orientation 

gave bands of 5.5kb, 2.8kb, and 2.0kb. Large scale plasmid DNA preps were made of 

appropriate plasmids.

7.2.2 Construction of GST-Myc N-terminal proteins

Myc N-terminal fusion proteins were constructed by the PCR using primers which encode a 

BamHl site in the 5' primer and an EcoRl site in the 3* primer. PCR reactions were carried 

out as described in materials and methods. Primer sequences were:-

5' primer 5-GAC GGA TCC ATG CCC CTC AAC GTC AGC-3’

3' primer 5-GAC GAA TTC TCT TCC TCA GAG TCG CTG-3'

These gave fusion products consisting of 254 amino acids of c-Myc and 180 amino acids of 

T17-Myc.

7.2.3 in-vitro translation of pl07

l|ig  of the human p i07 clone (160) was in vitro translated using a linked transcription- 

translation protocol with the TnT coupled wheat germ extract system (Promega). This 

system allows simple incorporation of -^^S-labelled methionine (Amersham. Cat. No. 

SJ1015), or other amino acids, into translated proteins and includes specific RNA 

polymerase. For the purpose of transcribing pl07, the T3 polymerase was required.
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7.2.4 Western immunoblot of GST-Myc

Western immunoblot of N-terminal Myc-GST was carried out essentially as previously 

described in section 6.2.4.

7.2.5 in vitro Myc-pl07 binding assay

This procedure was adapted from previously published work using in vitro translated 

proteins binding to GST-fusion protein (229). Before binding assays were carried out the in 

vitro translated p i07 protein was pre-cleared of non-specific binding moieties, by incubation 

with glutathione-agarose beads. These beads were then spun out by centrifugation in 1.5ml 

eppendorf tubes, at 2000rpm in a microfuge, and the supernatant retained for use in binding 

reactions.

Myc-GST was initially eluted from glutathione-agarose beads then dialysed overnight 

against 1M TRIS pH7.5. Dialysed Myc-GST was then concentrated and equivalent 

amounts of protein were rebound to fresh glutathione-agarose beads, the re-bound fusion 

protein was made into a slurry at 1:1 with binding buffer (20mM Tris; 150mM NaCl; 0.2% 

Triton-X). 50jxl of the slurry was incubated with 25pl of the cleared in vitro translation 

reaction at 4°C for 20 minutes, with occasional gentle agitation.

Following incubation reactions were washed four times with 300-500fil of binding buffer. 

Beads were then concentrated by centrifugation at 2000rpm in a microfuge, bound proteins 

were then eluted by boiling the beads in 25|il of loading buffer. Eluted protein was loaded 

directly onto a 10% SDS-PAGE gel and electrophoresed, the gel was then fixed by
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submerging in destain for 15 minutes. The gel was then dried and exposed overnight, or 

longer, to Kodak X-ray film.



N-terminal Myc/Lex A Fusion Construct

V44ER.Lex.Bgl II 

Based on pRS314

~600bp-

Sst1

----------------------- 650bp-------

BamHl DNA Binding CYC termination

TRP+

Myc N-terminus

GAL UAS-CYC promote: Lex A

EcoRI Clal

c-Myc = 267 amino acids 
T17-Myc = 193 amino acids

Reporter Construct

CYC lacZ

Figure 7.1 Myc N-terminal transactivation constructs used in yeast assays.
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7.3 Results

7.3.1 The feline c-Myc N-terminal domain transactivates in a yeast assay, whereas 

the T17-Myc N-terminus shows limited activity in the same assay

The results of using the T17-Myc N-terminus in a yeast transcriptional activation assay are 

demonstrated in Figure 7.2. This figure shows that there is activation of the reporter 

construct, suggesting that the T17-Myc N-terminus is not transcriptionally redundant. 

Confirmation that the fusion constructs were translated correctly is provided by western 

immunoblot of yeast cultures, using a rabbit polyclonal anti-Myc serum (Figure 7.3). This 

figure also indicates that the T17-Myc N-terminus may well be more stable in yeast, as 

equivalent cell numbers show greater levels of v-Myc protein.

7.3.2 pl07 was not detected in cells carrying the expression plasmid

Use of the inducible pl07 plasmid failed to show any effect on transcription mediated by the 

c-Myc N-terminus (not shown). However, this seems likely to be due to some failure in 

getting expression of p i07 from the expression vector, as western immunoblot of induced 

cells using an anti-pl07 antibody (gift of Dr. L. Allen, Department of Biochemistry, 

University of Glasgow) did not detect the protein, despite the vector having mapped 

correctly by restriction enzyme analysis.

7.3.3 Western immunoblot of GST-Myc constructs

To ensure that the bacterially produced GST fusion proteins were correctly translated, 

western immunobloting was carried out on glutathione-agarose purified protein. The result 

of this experiment demonstrates that the recombinant Myc protein constructs used for the
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Myc-pl07 binding experiments are valid translations of the Myc protein, see Figure 7.4.

The protein products obtained, consistently showed a ratio of at least 2.5:1, of T17 to c- 

Myc in the yield obtained from a given volume of bacterial culture. However, it is not clear 

whether this was a reflection of an increase in stability of this portion of Myc in bacterial 

cells, or whether plasmid copy number in the clones selected played a role.

7.3.4 The T17-Myc N-terminal domain can bind to pl07 in vitro

As there are still few known elements of the transcriptional machinery which interact 

directly with Myc (other than Max), p i07 is a promising candidate as a modulator of Myc 

function (149,162). Therefore, any possible interaction with T17-Myc could provide 

valuable insights into the method of action of the T17-Myc mutant in leukaemogenesis.

The rather surprising result of this set of experiments is that the T17-Myc N-terminus is 

capable of interacting with 107 in vitro (Figure 7.5).
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galactosidase assay was carried out as detailed in Section 6.2.2).

Figure 7.2 LexA-Myc-N-terminal fusion p-galactosidase assay in yeast
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Figure 7.3 Western immunoblot of yeast cultures using an anti-Myc rabbit polyclonal 

antiserum, demonstrating that the fusion constructs are translated correctly. Equivalent 

numbers of yeast cells have been run in each lane, except c-Myc 1.75 where 1.75 times the 

number of cells were used.
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Western Immunoblot of GST-Myc N-terminal Fusion Proteins
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Figure 7.4 Western immunoblot of GST-Myc N-terminal fusion proteins
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Figure 7.5 in vitro binding assay with GST-Myc N-terminal proteins and in vitro translated 
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Two bands are visible in the Myc lanes, these correspond to a molecular weight of ~100kD 

and ~80kD, both bands are large enough to contain the pocket domain which mediates 

binding to other proteins (160).
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7.4 Discussion

The finding that the T17-Myc N-terminus can activate transcription in a yeast assay, albeit 

at a reduced level, is perhaps surprising, as this domain conferred no apparent phenotype in 

the CEF assays (Chapters 4 and 5). This yeast assay demonstrates that the T17-Myc 

mutant does have activity other than DNA binding in association with Max. Further 

evidence of activity is that the N-terminus retains the ability to interact with p i07 in vitro.

A great deal of work has focused on the abilty of the N-terminus of Myc to promote 

transcription. Allied to the transcription work has been the desire to understand how 

mutations in the N-terminus can suppress or enhance the ability of Myc to cause 

transformation. Recently there have been several reports that mutations in the coding 

region of c-myc occur at a high incidence in B cell lymphomas of both humans (230,231) 

and mice (232). Many of the reported mutations have been shown to affect the second 

exon of c-myc (230,233,234). Close examination of these reports show that a large 

percentage of reported mutations are within the regions deleted in the T17-myc mutant. In 

one report detailing 30 Burkitt's lymphomas carrying c-myc mutations, 23 of the lymphomas 

had c-myc mutations within the regions deleted in T17-myc (232), while in other reports 

50% (230), and 76% (234) of cases had mutations in the same region.

Further evidence that these mutations could be important was demonstrated by use of 

GAL4/c-Myc fusion proteins. Fusion constructs were shown to decrease activity two to 

five fold, from a luciferase reporter plasmid when mutations found in the lymphoma-derived 

Myc proteins were present (234). The mutations used also included replacement of Thr-58 

and Ser-62 with aspartic acid to mimic constitutive phosphorylation, but these also led to 

reduced reporter construct activity compared to a wild type Myc (234). This finding is in 

opposition to the idea that phosphorylation of these sites activates transcription (207,235).

135



Phosphorylation leading to transactivation by a GAL4/c-Myc chimaera has been shown to 

be cell cycle regulated, with increased activity at the S to G2  transition (235). One proposal 

is that phosphorylation of the transactivation domain activates genes involved in cell cycle 

progression. Loss of phosphorylation sites would free cells from this control (234). These 

data suggest that an increase in transcriptional activation may not be the method by which 

Myc acts in transformation of lymphocytes, and this may help to explain the conundrum of 

T17-myc.

The ability of a fusion protein to bind other proteins in vitro is not always a good indicator 

of in vivo interaction. The original observation that c-Myc could interact with pRb was 

made using a GST-Myc N-terminal fusion construct which bound to pRb present in cell 

lysates (236). However, further work with a fusion construct using the N-terminal 210 

amino acids of c-Myc to screen a cDNA library from a B cell lymphoma cell line, identified 

pl07 as a candidate N-terminal binding partner (149). Analysis of immunoprecipitates of 

Myc were shown to contain p i07, and immunoprecipitates of pl07 were found to contain 

Myc, but no Myc-pRb interactions could be detected by immunoprecipitation (149).

Further, it was reported that amino acids 41 to 103 of Myc were important for 

transcriptional suppression by p i07, and from this it was concluded that this was the region 

to which p i07 binds (149). Nevertheless, the data from the in vitro binding assays shows 

that T17-Myc is capable of interacting with pl07, while Max does not, further the evidence 

given that amino acids 41 to 103 of Myc mediate binding is at present circumstantial. These 

results demonstrate that T17-Myc does have the ability to interact, at least in vitro, with 

some members of the transcriptional control machinery.

Together with the data showing that B cell mutants have a reduced capacity to activate 

transcription, these results suggests that T17-Myc is not unique in its inability to activate 

transcription, although it may perhaps be unique in the size of deletions carried. Therefore,
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the mode of action of T17-Myc in transformation may mimic that of mutated Myc in 

Burkitt's lymphomas, where reduced transactivation has been proposed to provide a growth 

advantage (234). What is also interesting is that transcriptional activation which can be 

measured from lymphoma derived mutants, is refractory to pl07 induced suppression (228). 

One could hypothesise that amino acids 41 to 103 of Myc are important for pl07-mediated 

transcriptional repression (149), not because they directly interact with pl07, but rather 

because they interact with some additional protein required for transcriptional repression by 

pl07. Such an hypothesis would account for the ability of T17-Myc and other lymphoma- 

derived Myc mutants to associate with p i07 (149).

The data also suggest the possibility of a threshold effect, whereby lymphocytes could be 

sensitive to a lower level of Myc mediated transcription than fibroblasts. Yet another 

possibility is that lymphocyte-specific factors, which are not available in the systems used to 

detect Myc mediated transcription, play a role in transcription in lymphocytes. This latter 

hypothesis certainly seems probable when one tries to account for the differing abilities of 

various Myc mutants to transform different cell types (see Table 4.1).
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Chapter 8 Transcription of putative Myc regulated and Myc regulating genes in

feline leukaemic cell lines

8.1 Introduction

Although there have been many claims in the literature of genes which are regulated by c- 

Myc, there is still a paucity of firm evidence for direct effects. However, at least two genes 

have been shown to be upregulated in response to Myc induction, viz. ornithine 

decarboxylase (169,237) and prothymosin-a (166,238), while two other BR-HLH-LZ 

proteins, known as Mad (123) and Mxil (122), have been suggested to modulate the 

activity of c-Myc via interaction with Max.

Ornithine decarboxylase (ODC) is the first and rate limiting enzyme in the polyamine 

biosynthesis pathway, and has been shown to be required for entry into and progression 

through the cell cycle (239). ODC is activated as an "early" gene in Gl, however this 

activation is after induction of "immediate-early" genes such as fo s ju n  and myc (240).

There is now a growing body of evidence that ODC is transcriptionally activated by c-Myc 

(167,237). Evidence to this effect includes the use of conditionally active c-Myc-oestrogen 

receptor constructs, which when transfected into cells show an increase of ODC mRNA and 

enzymatic activity, dependent on addition of oestrodiol (168). Other work used constructs 

utilising ODC promoter regions linked to a heterologous reporter gene and showed that c- 

Myc could transactivate these constructs, without necessarily binding to Max, as expression 

was reported with mutants which carried deletions or point mutations in the LZ domain 

(169). This latter finding suggested that c-Myc could regulate transcription via interaction 

with other proteins in the absence of Max, but has since been contradicted by another 

group, who suggested that the heterodimer Max is indeed required for activation of the
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ODC gene (241). One study focused on CACGTG motifs at -491 to -474 to the 

transcription start site as the activity regulating site (167), while other work led to the 

conclusion that the c-Myc binding site(s) is actually situated in the first intron of the ODC 

gene (169,241). Therefore, although the balance of evidence favours a c-Myc/Max binding 

site in the first intron of the ODC gene, there is still debate as to the mechanism of c-Myc 

regulation.

Another putative c-Myc regulated gene is prothymosin-a, but unlike ODC, the function of 

the prothymosin-a gene product is unknown. Originally presumed to be a thymus specific 

hormone, the prothymosin-a gene product is now known to be widely distributed in 

different cell types, and to have an apparent nuclear localisation (242). It is also possible 

that prothymosin-a plays a role in cell division, as antisense oligomers to prothymosin-a 

can inhibit myeloma cell division (243), while degradation of the intracellular oligomers 

accompanied a resumption of cell division. Evidence for a direct role in transcription by c- 

Myc came initially from subtractive hybridisation using oestrogen stimulated cells 

expressing an oestrogen receptor-Myc chimaeric protein. This experiment showed the 

cDNA of prothymosin-a to be over-represented after stimulation of cells with oestrogen 

(166). Further, albeit circumstantial, evidence for an involvement of c-Myc in 

transcriptional upregulation of prothymosin-a, came also from a subtractive hybridisation 

experiment. However, in this latter experiment subtraction was carried out with normal 

human mucosa and human colon cancer, and screening of the resulting cDNA library. This 

study showed that there was a statistically significant correlation between the levels of c- 

myc RNA and the levels of prothymosin-a RNA (238). Again, as with ODC, Myc/Max 

heterodimers appear to act as enhancers by binding to the CACGTG motif within the first 

intron of the prothymosin-a gene (244).
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The study of transcriptional regulation by c-Myc has yielded conflicting results, and the 

addition of the Mad and Mxil genes further complicated the picture (122,123). Both of 

these proteins are thought to downregulate Myc activation via heterodimerization with 

Max. The proposed mechanism of negative regulation is that these novel proteins sequester 

Max which is required by Myc for binding to the Myc/Max recognition sequence and hence 

they compete with transcriptionally active Myc-Max heterodimers for target binding sites 

(122,123).

To examine possible correlations between the levels of c-Myc and T17-Myc proteins 

and the transcription of ODC and prothymosin-a, northern blot analysis was carried out on 

feline lymphoma cell lines which overexpress Myc. Further northern blot analysis was 

undertaken to estimate levels of the mad and mxil transcripts, as well as max, in an attempt 

to find differences between the T17 cell line and the c-Myc expressing cell lines which might 

help explain the mode of action of the T17-Myc mutant.

8.2 Materials and Methods

8.2.1 Myc expressing feline leukaemic cell lines (RNA extraction)

Cell lines used in this experiment were the feline c-Myc expressing cell line 3201 which 

expresses an abnormal allele (178), v-Myc expressing F422 and T17, as well as the control 

fibroblast line AH927. Total RNA was extracted using the RNazol method (Biogenesis), 

and northern blot analysis was carried out as described in Materials and Methods 2.2.4.1

8.2.2 Cloning and sequencing of the feline prothymosin-a cDNA

To probe for the prothymosin-a transcript, the cDNA for the coding sequence of the feline 

homologue was first cloned. This was achieved by designing primers which conformed to 

conserved sequences, between human, rat, and mouse transcripts (245-247). These primer 

sequences were:-
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5' Primer 5-CGG CGT GCC CCA CCA TG-3'

3' Primer 5’-GCT GTC TAG TCA TCC TC-3’

3.5pg of total RNA isolated from normal feline thymus using the RNazol method 

(Biogenesis), was subjected to first strand cDNA synthesis using a commercial kit 

(Pharmacia) and including 175pmol of the 3' primer. 160pmol of the 5* primer was added to 

the reaction for the subsequent polymerase chain reaction step. The conditions for the 30 

cycles of PCR reaction were denaturation at 94°C for one minute, annealing at 55°C for 

one minute and elongation at 72°C for one minute. A major reaction product of 

approximately 350bp was observed, when the reactions were subjected to gel 

electrophoresis on a 6% polyacrylamide gel. These fragments were cloned into the PCR 

cloning vector pCR II using the TA kit (Stratagene). Each clone was identified by 

restriction enzyme digest using EcoRI, followed by analysis on a 6% polyacrylamide gel. 

Four clones carrying an insert of the correct size were sequenced on both strands using a 

long read Sequitherm cycle sequencing kit (Epicentre Technologies), with an infrared 

labelled M l3 forward or M13 reverse primer (Li-Cor) and sequenced on a Li-Cor model 

4000 automated sequencer. One clone showed a single base change compared to the other 

three, which could have been due to a misincorporation by the Taq DNA polymerase.

8.2.3 Preparation of probes and northern blot analysis

Probes used in this set of experiments were; the human ODC cDNA (248), feline specific 

prothymosin-a (see above); feline specific max probe (see 6.2.1); human mad cDNA (123); 

and the human mxil cDNA (122). These probes were labelled with 32p by use of the 

random prime kit (Boehringer). Northern analysis was carried out as detailed in 2.2.4.1.
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8.3 Results

8.3.1 ODC expression in Myc overexpressing cells compared to a control fibroblast 

cell line

Densitometry carried out on the X-ray photographic film of the northern blots showed that 

there is a small increase in the quantity of ODC mRNA in the Myc expressing cell lines
I

compared to the GAPDH standard (Figure 8.1). Although there was no dramatic increase 

| in the levels of mRNA, there was certainly no obvious deficit in the T17 cell line.

83,2 Prothymosin-a expression in Myc Overexpressing Cell Lines, Compared to a 

control fibroblast cell line

Comparison of the levels of GAPDH and prothymosin-a mRNA show a markedly high
|

1 level in the Myc expressing cell lines compared to the control cell line (Figure 8.2). Again 

the T17 cell line had high levels of transcripts, indeed the T17 cell line produced detectably 

more mRNA than either the other v-Myc F422, or the rearranged c-Myc 3201 cells. The 

sequence of the feline prothymosin cDNA coding sequence is given in figure 8.3.



1 ATGTCAGACGCGGCCGTGGACACCAGCTCCGAGATCACCACCAAGGACTT 5 0

5 1  AAAGGAGAAGAAGGAAGTTGTGGAGGAGGCGGAGAATGGAAGAGACGCCC 1 0 0

1 0 1  CTGCTAATGGGAACGCTAATGAGGAAAATGGGGAGCAGGAGGCTGACAAT 1 5 0

1 5 1  GAGGTAGATGAAGAAGAGGAAGAAGGGGGAGAGGAAGAAGAGGAGGAGGA 2 0 0

201 GGAAGGTGATGGGGAGGAAGAGGATGGAGACGAAGATGAGGAGGCTGAGG 250

2 5 1  CAGCTACGGGCAAACGGGCAGCTGAAGATGATGAGGATGACGATGTCGAC 3 0 0

3 0 1  ACCAAGAAGCAGAAGACCGACGAGGATGACTAG 3 3 3

Figure 8.3 cDNA sequence of the feline prothymosin-a gene coding region.

The feline coding sequence shows 94% similarity to the equivalent human coding sequence.
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8.3.3 Max expression in feline lymphoma cells

Levels of max have previously been shown to be similar in quiescent, mitogen induced or 

cycling cells (249). This is borne out in the comparison of max mRNA levels in the Myc 

expressing cell lines which was found to be at similar levels to the control cell line (Figure 

8.4).

8.3.4 Mad transcripts are detectable in all cell lines

Transcripts of the mad gene were detected in all the cell lines tested. Figure 8.5 

demonstrates that the feline transcripts of this gene are in the same size range (~4kb) as 

those detected for the human gene (250). Again levels of this gene transcript appeared to 

be at a rather constant level in the cell lines tested. However, this figure also demonstrates 

that the detected transcripts appear to be degraded, and therefore may be unstable. 

Alternatively this could be due to use of a cross-species probe which does not hybridise well 

with the feline transcript, as the control GAPDH probe gives a more well defined band, thus 

degraded RNA seems like a less likely explanation.

8.3.5 Mxil transcripts are detectable in all cell lines tested

Figure 8.6 demonstrates that transcripts encoding mxil, the second of the Max binding 

partners, are also detectable in the four cell lines. Again, the feline RNA transcript is in the 

same size range as the human form (2.8 kb) (250). However, the transcript detected gives a 

more defined band in comparison to the mad transcript. Thus, although the myc gene in 

these cell lines is abnormal, the ability of the cells to produce, at least at the mRNA level, 

elements to control Myc function have not been affected. However, this conclusion does
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not cover the possibility that Myc regulation is affected by factors other than Mad and Mxil 

interaction with Max (122,123).
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8.4 Discussion

Although c-Myc has many of the characteristics of a transcription factor, including its BR- 

HLH-LZ domain, its acidic and its glutamine rich domains, the number of genes shown to 

be directly affected by Myc remains small. This is despite the large number of studies on 

Myc as revealed in the publication of 3300 papers which contain the term Myc in their title 

or abstract, during the period 1990-1994 (251). This provided the rationale for my analysis 

of ornithine decarboxylase and prothymosin-a gene expression in the feline leukaemic cell 

lines overexpressing Myc, as ODC and prothymosin-a, which as previously discussed, are 

two of the most likely candidates for direct Myc regulation. In this study no deficit in 

transcription of these genes was found in the T17 cell line. This is despite the lowered 

transcriptional activity demonstrated by the T17-Myc N-terminal in the yeast assay when 

linked to the LexA DNA binding domain (chapter 7), and the lack of a discernible 

phenotype in the chick embryo fibroblast transformation assay chimaera when linked to the 

normal c-Myc C-terminus (chapter 5). However, this result does not exclude the possibility 

that T17-Myc is able to interact via its N-terminal domain with either T-cell specific 

transcription factors, or other developmental stage-specific transcription factors not present 

in the assays used. Indeed the fact that the T17 cell line shows greater levels of 

prothymosin-a transcripts than any of the other cell lines, argues that cell type specific 

factors may be important.

Another obvious explanation is that the T17-Myc protein is an inactive protein, and that the 

ODC and prothymosin-a genes are transcriptionally regulated by factors other than Myc 

and Max. However, one problem with this argument is that there is no apparent reason why 

deregulation of c-Myc should lead to a rise in the transcription of these two genes.

Although it could be argued that the effects are not related and one is not a direct result of 

the other, the evidence for a direct interaction by Myc and Max in regulating these genes is
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relatively good. For example, disruption of the Myc/Max binding site on reporter 

constructs of these two genes prevents the activation of the reporter genes (241,244). One 

other possibility is that the role Myc plays in the transcription of these genes is somewhat 

redundant, and transcription can continue in the absence of Myc.

Another intriguing aspect of ODC is that this enzyme appears to be involved in Myc 

induced apoptosis (252). Using interleukin-3 (IL-3) dependent murine myeloid 32D.3 cells, 

and overexpressing c-Myc, it was shown that levels of ODC could be increased, but that 

these cells then died by apoptosis on withdrawal of IL-3. It was also shown that 

overexpression of ODC and subsequent withdrawal of IL-3 led to the same phenomenon, in 

a manner dependent on the level of ODC, but this could be blocked by the irreversible ODC 

enzyme inhibitor a-difluoromethylomithine (DEMO). Further to these findings it was 

found that rates of death in c-Myc 32D.3 clones were reduced on withdrawal of IL-3 but 

only in the presence of DEMO. These findings suggest a link between a gene putatively 

under the direct transcriptional control of Myc, and the apparent ability of Myc to induce 

apoptosis under some circumstances (63,88,89).

Lately, further evidence has been reported as to how Myc/Max regulation of prothymosin-a 

and ODC takes place (253). This work has tracked the Myc/Max binding site for the 

prothymosin-a and ODC genes to the first intron for both genes. However, according to 

the results of this group, transcriptional activation of Myc/Max is under the negative control 

of the AP-2 transcription factor (254,255), the binding site for which was found to be 

contained in regions of extended sequence homology not accounted for by the known 

Myc/Max E-box motif, within the first intron of both genes (253).

The AP-2 binding sites were found to overlap the Myc/Max binding sites, as shown by 

DNase I footprint analysis. Negative regulation of Myc/Max was detected by two methods.
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Firstly, the AP-2 protein was able to compete more efficiently for binding sites than 

Myc/Max, and so displace pre-bound Myc/Max in an EMSA. Also, transient transfection 

assays with reporter constructs activated using the putative Myc/Max-AP-1 binding sites to 

transactivate the reporter, showed suppression of the reporter in a dose-dependent manner 

when a CMV-AP-2 expression plasmid was cotransfected. Secondly, it could be 

demonstrated that the C-terminus of AP-2 interacted with the BR-HLH-LZ of Myc without 

preventing Max association, but inhibited Myc/Max binding to DNA (253).

The ability of the BR-HLH-LZ proteins Max, Mad and Mxil, to control Myc function is a 

topic of current interest. Overexpression of Max has been demonstrated to reduce the 

incidence of Myc induced tumours in transgenic mice (256). However, this inhibition of 

Myc function might have no real physiological relevance, as no reports exist of Max being 

highly expressed naturally in a manner suggestive of a role preventing tumour development. 

Although if this mechanism was feasible in a natural context one would presume that we 

would not necessarily know about it, as tumours would not arise, and the mechanism could 

only be discovered by looking at the gene regulation in healthy animals. Further, there have 

been no reports in the literature where disruption of max has been detected in tumours. 

Indeed work by myself and Dr. C. Tsatsanis using the feline max gene to screen a large 

number of feline tumour DNAs could not detect any changes in the germ line configuration 

of the tumours tested (not shown). Another more intriguing feature of Max, is the 9 codon 

splice variant which seems to be invariant across species (115,218,220). The extra 9 amino 

acids coded for by the Max 9 protein would logically have some function due to the 

invariance across species. It is certainly plausible that this variant allows interactions to 

take place between other members of the transcriptional machinery not available to the 

other splice variant, in much the same way as residues 105-114 of SV40 large T antigen 

allow interaction with p i07 (257,258). Other max mRNAs have been reported to exist, 

which would result in truncated forms of Max protein if translated (249,259,260).
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However, only one, dMax, has been demonstrated to exist in the protein form in vivo, and 

has been found complexed with Myc in immunoprecipitates from cell lysates (261). This 

deleted form lacks the basic region, helix 1 and the loop, and although able to complex with 

Myc the resulting Myc/dMax complexes did not bind to oligonucleotides, containing the 

requisite E-box, in an EMSA. Further, dMax has been shown to repress transcription from 

a CAT reporter construct in a dose-dependent manner (261).

Further evidence that Myc/Max play a role in transcription of ODC comes from the 

demonstration that overexpression of Mxil can downmodulate an ODC reporter construct, 

and also decreased endogenous ODC expression by up to 90% in proliferating cells (262). 

However, suppression of reporter constructs and endogenous ODC never reached 100%, 

leading to the suggestion that Myc/Max upregulate transcription of this gene, but are not 

required for basal transcription.

Evidence has come to light recently that there is a second splice variant of Mxil, which 

encodes a short amino terminal alpha helical domain (263). This stretch of amino acids is 

responsible for suppressing Myc activity by recruiting a putative transcriptional repressor 

which bears structural homology to the yeast transcriptional repressor SIN3 (132). Mad 

has also been demonstrated to bind to the SIN3 repressor. Furthermore it has been 

demonstrated that there are two main forms of the mammalian homologue, mSin3A and 

mSin3B, with a further 9 amino acid splice variant of the mSin3A gene (mSin3A9) (133). It 

is postulated that the mammalian Sin3 proteins act as transcriptional repressors by tethering 

Mad-Max complexes to DNA in a ternary complex (132,133).

In conclusion, the popular idea that Myc regulated transcription is repressed by an excess 

Mad/Max or Mxil/Max appears too simplistic. This initial hypothesis stemmed from the 

finding that mxil and mad mRNA and protein levels increased as those of myc decreased in
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various cell types during terminal differentiation (122, 123,250, 284). It now appears that 

different forms of Mxil, termed strong repressor and weak repressor, serve different 

functions, with the weakly repressing form attenuating the strong repressor by competing 

for target sequences and / or accessory proteins via the shared carboxy-terminal (132), 

while the same may, or may not, hold true for Mad.
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Chapter 9 General Discussion

9.1 Evolution of the T17 myc sequence

The work carried out for this thesis sheds further light on the complex picture of the 

mechanism of action of c-myc, since the Til-m yc  mutant retains oncogenic potential in 

vivo, but seems incapable of reproducing many of the parameters associated with oncogenes 

when assayed in vitro. These observations contradict the previously held assumption that 

the coding sequences of the second and third exons are always intact in tumours (33). 

Moreover, the impaired ability of the mutant to activate transcription does not appear to be 

a bar to oncogenic potential, but is consistent with several recent studies which suggest that 

N-terminal coding sequence mutations of c-myc are common in tumours (231,232,234). 

Figure 9.1 demonstrates properties of Myc proteins. The functional domain TA1 (138) is 

equivalent to the region maintained in T17-Myc, and is likely to be responsible for the 

transcriptional activation measured in the yeast assay (Chapter 7).

One of the most intriguing aspects of the T17 myc gene is how such a complex set of 

mutations evolved. The question arises whether the deletions at the N-terminus or the 

insertion at the C-terminus occurred first. Indeed it is possible that the bipartite deletion 

was a temporally two-step process, rather than both deletions occurring in the transduced 

gene during a single replication cycle. Another possibility, is that the bipartite deletion 

arose as a large single deletion, with a subsequent recombination event leading to the 

sequence regaining the 8 bases separating the deletions. The problem posed is whether the 

N-, or the C-terminal mutations have independent effects on the transformation of 

lymphocytes, or whether both mutated domains were necessary for the genesis of tumours. 

As outlined above, mutations in the N-terminal domain seem to be prevalent in lymphomas, 

suggesting that the N-terminal mutations may be the first, and most important. In this
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model the first step would be loss of transcriptional activity from the N-terminus, leading to, 

e.g. a growth advantage, such as viral propagation in non-lymphoid cells where the 

transduced gene would not induce apoptosis. Alternatively prevention of differentiation of 

cells containing the transduced gene is another possibility. In either case the C-terminal 

mutation would evolve later as an adjunct. As the C-terminal mutation removes the 

increased growth rate and inhibits growth in soft agar in CEF cells (Chapter 5), it seems 

likely that this mutation may augment the loss of transcriptional activity caused by the N- 

terminal mutations.

However, the fact that mutations in the N-terminal of Myc occur at high frequency in 

lymphomas does not discount the possibility that the C-terminal mutation arose first. An 

alternative model then presents itself, where titration of Max without transcription is the 

important first step to transformation of lymphocytes. In this scenario the evolution of the 

N-terminal mutations could help in transformation by making the protein product of the 

transduced gene more stable, thereby making more mutant Myc available for complexing 

with Max.
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Figure 9.1 Properties of Myc proteins.

Legend: this figure shows the location of mutations in T17-Myc (stippled boxes are 

deletions), with vertical lines denoting point mutations found in Burkitt's lymphomas (230- 

232), the height of each line is proportional to the number of mutations found at that 

location. Deletions affecting transformation or autosuppression are taken from references 

(203, 208) [A], (212) [B] and (281) [C], Deletions affecting different cell types are shown 

in boxes with A followed by the amino acids deleted (from table 4.1 references (202,212)).

9.2 C-terminal mutation

Perhaps one of the most puzzling features of the T17-Myc mutant is that the basic region 

L>FR mutation does not prevent binding to the consensus 5'-CACGTG-3' motif (chapter

6). By using computer models which depict the putative helical wheel structure (GCG, 

Wisconsin, Helical Wheel'), the basic region is predicted to be disrupted (figure 9.2). 

However, the histidine residue which is proposed to make direct contact with the thymine 

methyl group at the heart of the 5 -CACGTG-3' motif (264) is in the same relative position. 

Loss of the hydrophobic leucine may be tolerated by replacement with a hydrophobic 

phenylalanine at the same point in the helical wheel. Thus it may well be that the disruption 

of the rest of the helical wheel structure does not significantly affect the ability of the 

protein to bind its DNA motif. This hypothesis however, does not account for the 

dissociation of transformation and growth rate parameters by the BR mutation as described 

in chapter 5. This is unlikely to be a property specific to the feline Myc, as the same result 

was found when this mutation was introduced into the chicken c-myc gene (265). 

Therefore, it is possible that the basic region mutation is able to either target a specific 

subset of Myc regulated genes, or prevent targeting of certain gene(s).

163



[ j = H ydrophobic

DU K R

cMyc

T17Myc

Figure 9.2 Helical wheel structure o f c-, and v-Myc basic regions.

DNA Contact

DNA Contact

164



Another possibility is that site specific binding to DNA is necessary but not sufficient to 

trigger transcription. It has been demonstrated that proteins binding to DNA can induce a 

bend in the DNA by asymmetric phosphate neutralisation (266). Indeed binding of Jun:Jun 

homodimers bends DNA towards the minor groove, whereas Fos: Jun heterodimers, binding 

to the same site, bend DNA towards the major groove (267). Thus control of transcription 

may well depend to some extent on the direction and/or magnitude of bending of DNA. 

Regulation of transcription might be brought about by one of a number of mechanisms, such 

as; bringing distantly bound transcription factors close together to facilitate DNA-looping; 

mediation of interactions between transcription factors and the general transcription 

machinery, where the DNA is wrapped around the protein complex; energy stored in a 

protein-induced bend used to favour formation of an open transcription complex or 

dissociate RNA polymerase in the transition from initiation to elongation (268). While the 

T17-Myc protein retains the ability to bind DNA it may have altered potential to induce 

DNA bending due to the basic region mutation, and this could account for the lack of 

growth rate acceleration observed in the c/v-Myc chimaera in chapter 5.

Such an hypothesis would also take into account the change of leucine to phenyalanine, if 

the hydrophobic leucine is shown to intercalate into the DNA. It is becoming clear that 

intercalation of DNA by hydrophobic residues of transcription factors can lead to ’kinking' 

in the DNA (269). Two types of intercalation have been recognised: partial and complete. 

Partial intercalation requires that the intruding side chain unstacks two adjacent base pairs, 

but does not itself stack in the space left in the helix. Complete side chain intercalation 

leads to the hydrophobic side chain being stacked over a base pair in its entirety (269). Side 

chain intercalating proteins do not display any particular structural motif, with regards to 

their DNA binding surface and no simple method exists of predicting if a particular residue 

will intercalate.

165



T17-Myc N D K R R T H N V  FR E R Q R R

CAT N D K R R T H N V  L E R Q R R

HUMAN N V K R R T H N V  L E R Q R R

MOUSE N D K R R T H N V  L E R Q R R

CHICKEN N D K R R T H N V  L E R Q R R

RAT N D K R R T H N V  L E R Q R R

XENOPUS I N D K R K T H N V L  E R Q R R

XENOPUS II N D K R R T H N V  L E R Q R R

TROUT Y D K R R T H N V  L E R Q R R

Figure showing the basic region of c-Myc proteins from different species.
The invariant hydrophobic leucine is shown in bold type, with the phenylalanine residue in 
the equivalent position of the T17-Myc protein also shown in bold.

Figure 9.3
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However, the fact that Myc family proteins maintain the leucine residue across species 

(270) (Figure 9.3), argues strongly that this residue has an important function which could 

well be DNA intercalation. Thus, we might expect that the phenylalanine residue of the 

T17-Myc basic region will induce a 'kink1 different from that induced by the c-Myc leucine. 

This differential DNA bending hypothesis should be testable using the techniques set out in 

Strauss and Maher (266).

9.3 N-terminal mutations

Early work on transcriptional regulation by c-Myc suggested that transcription could be 

either activated or repressed by c-Myc (271). Furthermore the ability to repress 

transcription from the mouse metallothionein promoter was lost when 138 amino acids 

(between 40 and 178) were deleted from exon 2 of c-Myc, although activation from the 

heat shock protein 70 promoter was maintained (271). Thus transcriptional repression by c- 

Myc might be the mechanism by which the T17-Myc mutant exerts its oncogenic effect

More recent evidence has suggested that repression of thrombospondin 1 might be mediated 

by c-Myc (272). Thrombospondin 1 is a secreted glycoprotein known to inhibit tumour 

neovascularization, therefore its repression by Myc is suggested to be a further link between 

Myc and neoplasia (272).

The fact remains, however, that despite a very large research effort there is little evidence 

that c-Myc is directly responsible for the transcription or repression of significant number of 

genes. Certainly there is little evidence to support the notion that those genes mooted as 

direct transcriptional targets are responsible for the pleiotropic effects ascribed to c-Myc, 

i.e. cell cycle control, differentiation, oncogenicity and apoptosis. Therefore it may be that
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our concepts of c-Myc function are wrong. It may be that c-Myc does not act as a 

transcription factor in the conventional sense, whereby a specific gene is activated or 

repressed, rather it may have some, as yet, undefined function. What function might 

c-Myc possess that could account for the observed effects? One possibility is that the 

Myc/Max dimer acts by tethering components of the transcriptional machinery to target 

genes allowing transcription factor complexes to accumulate. This mechanism may be like 

an enhancer function which is not required for basal transcription of target genes, but allows 

rapid upregulation/downregulation of a variety of genes when c-Myc is activated. This 

might account for the lack of obvious target genes directly transcribed by c-Myc, which 

seems strange for a protein which has such an apparently central role in the viability of an 

individual cell, and consequently the whole organism.

One of the least prosaic descriptions of c-Myc was as a "citadel of incomprehensibility" 

(129). In many respects this description still applies, for although a great deal of knowledge 

has accrued on Myc interactions with other proteins in binding DNA, and how transcription 

from Myc reporter constructs can be suppressed by Mad family, Mxil, and SIN3 proteins, 

the mechanism by which Myc actually exerts its oncogenic effects is still unknown. The 

evidence is exceedingly strong that Myc is a transcription factor, but exacdy which genes 

are positively and/or negatively regulated remains uncertain. Even a gene such as 

prothymosin-a which has strong supporting experimental evidence for direct transcriptional 

control by Myc/Max (166), is not universally agreed to be a target for Myc regulation, and 

the assertion that Myc contributes to prothymosin transcription has been challenged (273). 

Hence the difficulty in determining the role which the T17Myc protein plays in oncogenesis.

9.4 The problem of defining the role of c-Myc

The problem of defining the actual function of c-Myc is unresolved. To this end I would 

like to suggest an alternative strategy for investigation of c-Myc function using yeast

168



artificial chromosomes (YAC). Yeast artificial chromosomes were originally developed for 

research into the structure and behaviour of eukaryotic chromosomes, e.g. during meiosis, 

and for use in cloning very large genes including introns (274). A complete human DNA 

library can be constructed with 60,000 clones (assuming 150 kb fragments), as opposed to 

>2.5x10^ clones in the bacterial vector with the greatest capacity, the cosmid.

I suggest that the YAC system could be used to assist in identifying genes which are 

transcriptionally regulated by Myc/Max. The problem is one of conflicting results from 

experiments on Myc-regulated genes, e.g. prothymosin-a and cyclin D1 where one group 

finds regulation (166,172) but this is refuted, or the opposite kind of regulation is found by 

other workers (48,273). The problem may be that reporter plasmids do not adequately 

reproduce the complexity of chromatin in eukaryotic cells. The main structural problem 

which eukaryotic transcription factors have to contend with is the nucleosome. This 

structure consists of an octamer of two of each of the nucleosomal histones; H2A, H2B,

H3, and H4. H3 and H4 form the inner core and are among the most highly conserved of all 

proteins. 146bp of DNA is wrapped 1.8 times round the octamer, and a further histone,

HI, binds across the entry and exit points of the DNA from the core (275). Nucleosomes 

are dynamic structures which appear to be removed from promoter and enhancer elements 

before, or concurrent with in vivo gene activation (276). Replication-independent 

nucleosome disruption has been found in the yeast PH05 promoter, where the PH04 

activator disrupts four nucleosomes covering the PH05 promoter (277). PH04 recognises 

the same core 5'-CACGTG-3' DNA consensus motif that is bound by Myc/Max (120). 

While this is not proof that c-Myc has the same property, it does suggest the possibility.

The complexity of a eukaryotic chromosome is not readily matched by a transfected 

reporter construct, especially if it remains episomal. Even a stably integrated reporter gene 

construct may give anomalous results. To select viable clones, the integration process must
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give a fully functional selectable marker gene, such as G418 resistance, or the cells die. 

However, there is no selection pressure to keep the reporter gene, or its promoter region, 

intact. This leads to the problem that the reporter gene assay may give a definite positive 

result, but a negative result is not definitive. Other than nucleosome displacement, the 

possible importance of DNA bending in transcriptional control (268) is another aspect 

unlikely to play the same role in transcription from reporter constructs. Thus my proposal 

is twofold. Firstly, large pieces of DNA containing putative targets of Myc/Max could be 

cloned in their entirety into YACs and transcription could be measured from induced 

Myc/Max proteins (141), without interference from endogenous Myc or Max. In this 

system northern blot analysis, or RNase protection, of the induced cells would be 

undertaken to look for mRNA transcripts from the gene of interest, rather than induction of 

a reporter such as p-galactosidase. As the chromosomal locations of some proposed target 

genes are known it may be possible to identify and obtain YACs for this purpose.

The second part of the proposal is, however, more difficult. This would consist of using a 

human genomic DNA library cloned into YACs, which would be introduced into yeast 

containing inducible c-myc and max constructs. Subtractive hybridisation of uninduced 

from induced cells, could then be used to search for genes transactivated by Myc/Max.

Such an approach, although difficult, could prove very fruitful as genes which may be basaly 

transcribed in mammalian cells, but upregulated by Myc/Max, would hopefully not be 

transcribed in yeast. Despite the obvious drawback that genes downregulated by Myc 

would not be detected, this procedure could at least be used to screen for positively 

regulated genes.

Either of the two proposed methods would, in principle, provide a novel test of Myc/Max 

mediated transcription. Although yeast chromatin is not exactly equivalent to its
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mammalian counterpart, e.g. yeast does not appear to have histone HI (150), it could 

provide a more sensitive method to examine Myc/Max transcription than reporter plasmids.

As outlined in chapter 7, loss of transcriptional activation may be the means by which 

constitutively activated Myc in Burkitt's lymphomas allows escape from cell cycle control, 

with mutations occurring frequently in the Myc N-terminal domain of these cancers 

(230,232-234). This region has also been demonstrated to be glycosylated with O-linked 

A-acetylglucosamine (278). The significance of glycosylation has not been determined, but 

it appears to have some relationship to protein phosphorylation, and other transcription 

factors, such as Fos and Jun, also carry O-GlcNAc moieties (278). Figure 9.1 outlines the 

T17-Myc mutations as well as regions shown to be important for transformation of different 

cell types, and proposed transcriptional activation domains.

9.5 Summary

In summary, the T17-Myc mutant is far from completely understood. Several lines of 

investigation are open to further study. These include defining its in vivo oncogenic 

properties more precisely, in a more easily controlled system such as a mouse model. To 

this end Til-m yc  and feline c-myc have been cloned into murine retroviral vectors, and in 

vivo experiments will yield further information on the transforming potential of the mutant 

Another avenue of research would be the use the avian retroviral constructs described in 

this thesis to ascertain the abilty of the T17, and chimaeric Myc constructs to transform 

avian bone marrow cells (202,212,216). Further experiments should also be carried out to 

investigate the unique stability of the T17-Myc protein, while in vitro DNA binding assays 

may determine whether the T17-Myc basic region has an altered ability to bend or kink 

DNA. Finally, it may also prove fruitful to construct retroviral vectors containing separated
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N-terminal deletions to ascertain whether both parts of the deletion are required for 

oncogenicity.
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