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SUMMARY

The ostrich (Struthio camelus) farming industry is growing rapidly in many 

countries. Although the ostrich is now established as a commercial species, 

there are still some significant gaps in our knowledge of the structure and 

function of this unique species. One such area where there appears to be 

little information available is on the morphology of the distal region of the 

pelvic limb. Morphological knowledge of this area is important as distal limb 

deformities appear to present a significant problem in the husbandry and 

management of these birds.

The objectives of the present study in an attempt to fill this gap, were two 

fold:

(i) To provide a detailed functional morphological account of the 

topographical anatomy of the distal region in the normal pelvic limb of the 

ostrich.

(ii) To use two diagnostic imaging techniques, ultrasonography and 

radiography, in the identification and characterisation of the structures 

studied in the first part of this study, as a basis for the examination of the 

clinical leg deformities such as rolled toes.

Chapter 1 provides information about ostriches in general, and a brief history 

of ostrich farming, as well as summarising available research work carried 

out in relation to the pelvic limb of the ostrich. There are very few studies that 

have been done to evaluate the morphology of the pelvic limb in the ostrich. 

While many uses of diagnostic ultrasound imaging techniques have been 

cited in other species, there is very little information on the use of this 

technique in ostriches. Various types of common limb abnormalities in 

ostriches have been described and defined.



Chapter 2 provides information about ultrasonography, covering various 

aspects of this imaging technique. The areas covered include the 

development of the technique, its physical principles, types of image display 

modes and an explanation of image interpretation and common terminology 

used in ultrasonography. Ultrasonographic image artefacts, their identity, 

and, where possible, ways of minimising them have been explained. These 

artefacts include reverberations, acoustic shadows, distant enhancement, 

reflection and refraction, comet-tail and electronic noise.

In Chapter 3, a detailed explanation of the materials and methods used in 

this study is given. Fresh cadaverous limbs were carefully skinned and 

muscles separated by blunt dissection along their connective tissue planes, 

during which their origins, form, course and insertions were recorded. These 

were then boiled out to obtain bony specimens. Eight different pre-selected 

levels of the limb at which cross-sectional and ultrasonographical 

examinations where carried out are illustrated diagrammatically.

Chapter 4 presents the results of the present study. These results were 

classified in five categories namely: osteology, arthrology, myology, 

ultrasonographical and descriptive topographical anatomy, and rolled toe 

pathological aspects. Interesting osteological findings included the very 

marked cranially-projecting medial cnemial crest and a greatly reduced 

lateral cnemial crest of the tibiotarsus. The supratendinal groove is partially 

ossified while a large single hypotarsal ridge, devoid of flexor canals, is 

displaced slightly medially with concomitant loss of the intercotylar 

prominence. A unique pattern in the course of tendons and ligaments, and a 

special morphology of the joints, has been reviewed and illustrated 

diagrammatically. The former form the digital check apparatus, a structure 

that has not been described before in the ostrich, while the intertarsal joint 

was found to have only one meniscus, the lateral meniscus, and paired



medial and lateral collateral ligaments. A total of 15 muscles were identified 

and it was interesting to note that despite the absence of the hallux (digit I), 

M. flexor hallucis longus was amongst the muscles present in the ostrich. A 

description of the normal topographic anatomy and ultrasonographic 

appearance of the tendons and ligaments has also been given. Cross- 

sectional ultrasonographic scans of normal ostrich tendons appear 

hyperechoic and compact, with a stippled echopattern, while longitudinal 

scanning images present a multiple closely-aligned highly echogenic pattern 

(fibrillar sonographic texture). In adult birds with rolled toes, in this study 

regarded as long-standing cases of rolled toes, there was partial ossification 

of extensor tendons, distal rotation of the tarsometatarsal bone, (as much as 

35 degrees), distal rotation the first phalanx of digit III (as much as 30 

degrees), and the formation of osteophytes. Most of these features in this 

study confirm the advanced morphological placement of the monophylectic 

origin of the superfamily Struthionoidea over the more primitive ratites.

The overall findings of these studies are interpreted and discussed in detail 

in Chapter 5. There is need for more of future work to explore the usefulness 

of ultrasound and causal factors of musculoskeletal disorders in ostriches. 

There is also need for study on the normal vasculature and innervation of the 

ostrich hind limb in order to ascertain whether or not any injuries or damage 

occurs to these structures as a result of conditions such as slipped tendon, 

or rolled toes in these birds.
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CHAPTER 1

INTRODUCTION AND REVIEW OF LITERATURE

1.1 GENERAL INTRODUCTION

Although ostriches (Struthio camelus) have been raised domestically in 

South Africa since the 1850s, it is only in recent years that ostrich farming 

has began to show a marked expansion in various countries around the 

world simply because the world demand for ostrich meat, leather, and 

feathers far exceeds current production levels (Odle, 1994). The resultant 

growth of the ostrich industry has, as might be expected, resulted in a 

demand for veterinary services including management programmes, and 

diagnostic, clinical and preventive medical programmes. As a result, 

veterinarians offering such services to ostrich producers need to have a 

basic understanding of ostrich anatomy and physiology.

General anatomy. The ostrich (Struthio camelus) belongs to the super 

order of flightless or running birds known scientifically as Ratitae which 

secondarily descended from flighted ancestors (Beddard, 1898; Sanft, 

1972 ). There are five families of living ratites (Webb etal., 1979).

(a) Ostrich (Struthionidae)

(b) Emu (Dromaiidae)

(c) Rheas (Rheidae)

(d) Cassawaries (Cassawaridae)

(e) Kiwis (Apterygidae)

Ostriches belong to:

Family: Struthionidae,

Genus: Struthio,

Species: camelus
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The major anatomical differences between ostriches (as representative of 

ratites) and carinate birds include rudimentary wings, a digestive system 

modified for grazing, and the loss of selected digits as an adaptation for 

running (Marshall, 1960, Webb et al., 1979). Mature ostriches may stand

2.4 to 2.8 m tall and can weigh up to 160 kg (Sanft, 1972). Males are 

basically black and white, females are brown. There are three recognised 

subspecies in the world, although some authors recognise four subspecies 

(Deeming, 1994) : the "red neck", the "blue neck", and a hybrid "African 

black". The "red neck" is the largest of the subspecies, originating in the 

northern regions of Africa. The male has a red neck, red legs, and a bald 

spot on the top of his head. The male also has a white ring of feathers on 

the neck where the long feather line ends (Cho et al., 1984). The "blue 

neck" originated from the middle of the southern part of the African 

continent, and the male exhibits blue pigmentation of the neck and legs. 

However, the beak and shins are red. It is intermediate in size, and its head 

is feathered on top. The "African black" is a term that has been assigned to 

the hybrid that is domestically raised in South Africa. It is the shortest of the 

subspecies and its body type is distinguished by shorter legs and a "boat

shaped" body compared to the "rounded" bodies of the other two 

subspecies. The male "African black" has a very dark blue to black 

pigmentation to the skin on the neck and legs, and again, a red beak and 

shin scales making it difficult to differentiate it from the blue subspecies by 

colour alone. The hens of all subspecies are brown and can only be 

differentiated by size and shape of the body.

All ostriches have a large flattened keelless sternum or breast bone, which 

resembles a raft (hence the name, ratites from the Latin word ratis, a raft). 

They also have several anatomical adaptations of the gastrointestinal tract 

that allows grazing with other ungulates in their native habitat. The ostrich
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has a large sac-like proventriculus with a defined area of secretory glands. 

The ventriculus (gizzard) is a large structure lying within the body cavity 

just caudal to the breast bone in the standing bird. Ostriches are hindgut 

fermenters and rely on microflora for digestion of their highly fibrous diet. 

The colon comprises 60 % of the length of the intestinal tract compared to 6 

% in the domestic chicken. The microflora of the intestinal tract is similar to 

that of the tract of grazing ruminants. Other important anatomical features 

include the location of the cutaneous ulnar veins on the ventral aspect of 

the wings and the medial metatarsal veins which are good venipuncture 

and catheterization sites in all ages. The ostrich may become sexually 

mature at 2 years of age although males often mature later than females. 

Indeed, while it is not uncommon for hens to begin laying at 2-3 years of 

age, males may take as long as 4-5 years to be functionally mature. In 

captivity, females may lay as many as 100 eggs in a season, although 20- 

40 are more common. Eggs are whitish in colour, weigh about 3 pounds 

(1000-1500 grams) and are generally laid every other day. Although 

mating may occur many times during the day, it is believed that a single 

mating may be effective for up to a week.

Ostriches are equipped with many advantageous features for their survival 

in the wild including excellent eye sight, large external ear canals, and 

heavily muscled legs. The principal muscles of the shank (gastrocnemius 

and digital flexors ) have almost three times the mass of corresponding 

muscles in the antelope (Alexander et al., 1979). As might be expected, 

kicking, which in the ostrich is forward, is the major means of defence 

although some birds have been reported to peck and bite when 

threatened.
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1.2 HISTORICAL REVIEW OF OSTRICH FARMING

Ratites are the oldest living birds on earth. Regarded with other birds as 

reptilian in origin, they are believed to have been separated from the main 

line of avian evolution since at least the Middle Cretaceous period, 80-90 

million years ago. Twenty to sixty million years ago, ostriches ranged the 

Mediterranean Sea area in the west, China in the east, and Mongolia in 

the north, migrating across Africa about a million years ago. Large ostrich 

herds roamed the Western Cape of Africa when the Dutch landed in the 

17th century. Egyptian cave art and other records trace the hunting, and 

perhaps farming, of ostriches to antiquity. The Arabs and Bushmen hunted 

the birds for sport, the Bushmen with poison arrows. Ostriches have 

traditionally been hunted in Namibia for sport, for diamonds (sometimes 

found in their gizzards), and because sheep and cattle farmers regard 

them as vermin for tearing down fences (Sanft, 1972).

Greek and Roman generals decorated their helmets with ostrich feathers. 

Egyptian pharaohs and their families bedecked themselves with Ostrich 

head-dresses and fans. The great liking of Elizabeth I of England and 

Marie Antoinette of France for ostrich feathers as fashion items created an 

international feather trade out of North Africa and Arabia, and later South 

Africa, that lasted until World War I. By the mid-19th century, the fashion 

industry had so devastated wild ostrich herds that ostrich farming was 

established, helped by the introduction into South Africa of wire fencing, 

the farming of alfalfa to feed the bird, and mechanical ostrich incubators. 

The industry boomed between 1900 and 1914. In 1913, ostrich plumes 

were the fourth largest South African export after gold, diamond, and wool 

(Smit, 1963). Ostrich plumes went out of style during World War I, partly as 

a result of the international campaign against the cruel trade. Ostrich 

farming lagged until 1945, when the government-supported Klein Karoo



Agricultural Co-operative was formed in South Africa (Deeming and Ayres,

1994). It added trade in meat and skin to that in feathers, building the 

world's first ostrich slaughterhouse in 1963-64. A leather tannery followed 

in 1969-70, and, in 1980-81, a new slaughterhouse was built to supply the 

demand for ostrich meat abroad. The South African government banned 

the exportation of fertile ostriches or eggs in 1988 in order to maintain their 

monopoly on the industry. This move prompted an effort by many countries 

to establish their own ostrich farms. However, with the fall of apartheid, 

South Africa is likely to open its market for ostrich exportation.

Although now well established as a commercial species in South Africa, 

Australia, USA, Canada and Israel, the ostrich has also recently begun to 

be farmed in the UK, with the first flock being established by Hangland 

Farm in 1990. There are now about three hundred ostrich farmers in the 

UK.

1.3 SCIENTIFIC REVIEW

The vast amount of anatomical detail and variety of form to be found in 

avian species has led to considerable diversity in avian anatomy. To date, 

although many descriptions of avian anatomy and nomenclature are 

readily available (Baumel, 1979; King and McLelland, 1984; McKitrick, 

1991) specific information on the ostrich is noticeably lacking. Most of this 

available information in the literature dealing with the anatomy of the 

ostrich was produced during the past two centuries. Indeed, one of the first 

presentations given to the Zoological Society of London was on the 

anatomy of the ostrich (Struthio camelus) and subsequent volumes of the 

Proceedings of the Society contain numerous anatomical and disease- 

related articles about ratites (Macalister, 1864; Haughton and Norman, 

1865). The latter described the musculature of the ostrich leg, a paper of
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direct relevance to this thesis. However, interpretation of these early 

references is often difficult, owing to the many variations and changes in 

nomenclature and interpretations that have occurred in the intervening 

years, a situation the International Committee on Avian Anatomical 

Nomenclature has made great progress in reviewing and stabilising 

recently (Baumel, 1979).

More recent studies on ratite anatomy include those of Cho et al., (1984) 

and Cracraft (1974). The latter described a number of osteological features 

of the pelvic limb of the ostrich and is work, therefore, of particular 

relevance to the present study. Other studies relevant to the present 

investigation include Fowler (1991) who has provided a brief account of 

the ostrich foot, and Pavaux and Lignereux (1995) who identified a 

tendinous-like M. fibularis brevis in their dissection of a pair of ostrich legs. 

Furthermore, descriptions of the muscles of the proximal part of the ostrich 

limb have been given in which two major muscle peculiarities were 

observed (Mallet, 1994), the presence of M. pectineus in the position 

occupied by M. ambiens in other birds, and the origin of M. ambiens from 

the lateral surface of the ilium.

Alexander et al., (1979) in their study of the mechanics of running of the 

ostrich noted that the principal muscles of the crural region of the ostrich 

are some three times the mass of the corresponding muscles of the 

antelope, although the comparatively smaller total fibre area of the longer 

individual muscle fibres in the ostrich exert slightly less force than in the 

antelope. On the mechanical aspects of the magnitude of the stresses 

which act in the bones, tendons and muscles of the leg an adult ostrich 

when running have been quantified (Alexander, 1985).

Although the use of diagnostic ultrasound imaging technique in most
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examinations of mammalian soft tissue structures is well established, its 

use in the field of avian studies has been surprisingly slow. In horses, 

diagnostic ultrasound has been shown to be an effective imaging modality 

to assess the morphology of tendons and ligaments (Hauser and 

Rantanen, 1983; Spaulding, 1984; Rantanen and Gaines, 1983; Rantanen, 

1982). Ultrasonographic imaging has proved highly popular because it is 

an easy, safe, and non-invasive method of musculoskeletal morphological 

evaluation (Cuesta et al., 1994). As a technique that has therefore excelled 

in the examination of the distal extremities of other species, it was thought 

that its use in the study of tendons and ligaments in ostriches would 

warrant investigation, in the hope that such a technique could play an 

important role in avian anatomical, pathological and clinical studies by 

helping to elucidate soft tissue structures and relationships in a non- 

invasive manner. The ability to perform and interpret an ultrasonographic 

examination requires a basic understanding of ultrasonography, an 

accurate knowledge of the involved topographical anatomy of the relevant 

region, and the development of the practical ability to perform a diagnostic 

examination.

The accumulation of such knowledge and experience in relation to the 

normal anatomical structures is imperative for the development of a basis 

for the examination and understanding of the musculoskeletal disorders of 

this region, such as clinical cases of rolled toes, deviated toes, turned or 

crooked legs, slipped tendons, and rotated tibiotarsus or tarsometatarsus 

(Gandini et al., 1986 ; Bezuidenhout et al., 1994; Kocan and Crawford, 

1994; Benzuidenhout and Burger, 1993; Guittin, 1986; Deeming and 

Ayres, 1994; Vorster, 1984; Van Heerden et al., 1983). Although there are 

no specific studies documenting the actual causes of most of these 

musculoskeletal disorders in ostriches (these pathological disorders are 

discussed later in Chapter 5), there are a number of aetiologies that have
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been attributed to as primary causes. These include improper incubation 

temperature (Hallam, 1992; Jensen et al., 1992; Anon, 1993), excessive 

incubator humidity (Anon, 1993), allowing chicks too much room to move 

around in the hatcher tray (Hallam, 1992; Anon, 1993), and a deficiency of 

riboflavin (vitamin B2) (Foggin and Honywill, 1992; Anon, 1993).

However, it is regrettable that most of the information about ratites is not 

collected in a single or readily available source. Such compilation would 

be useful for veterinarians who, when dealing with medical and surgical 

problems or propagation management of ratites, need to have a basic 

understanding of ratite anatomy to safely handle these birds and to 

understand how best to collect blood samples, administer medications, 

evaluate radiographs, perform surgery, and indeed distinguish between 

normal and abnormal tissue at necropsy (Fowler, 1991).

In this thesis an anatomical and diagnostic imaging study 

(ultrasonography), with accompanying pictures, radiographs and graphical 

presentations, of the normal distal pelvic limb of the ostrich (Struthio 

camelus) is defined and described. A gross anatomical study of pathologic 

specimens of one of the common distal hind limb disorders in ostriches, 

rolled toes, was also carried out.
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CHAPTER 2

ULTRASONOGRAPHY

2.1 DEVELOPMENT OF ULTRASOUND TECHNOLOGY

The first practical application of the pulse-echo production of ultrasound 

was patented in 1912 when Richardson devised apparatuses to detect 

submerged objects and potential hazards for fog-bound ships. Further 

development of this concept led to the invention of a device for the 

detection of submarines (during the second world war) (Winsberg and 

Cooperberg, 1982), a system which was further improved and named 

SONAR (Sound Navigation and Ranging). The application of this newly 

developed technology, over the next few years, then slowly extended into 

the medical field. In 1942, the use of ultrasound as a diagnostic aid was 

proposed (Cameron and Skofronick, 1979; Athey and McClendon, 1983) 

and, in 1947, “hyperphonograms” of the head were produced. Later, 

ultrasound was used to identify gallstones and foreign bodies by the 

acoustic shadows which they produced (Ludwig and Struthers, 1949) , and 

throughout the 1950’s reports of the identification of intracranial masses 

were published (Ballantine et al., 1950; Wild et al., 1950; Miyajima et al., 

1952). The use of ultrasonography to image the heart was proposed in 

1955 (Edler, 1955), and the structure of the eye in 1956. From then on, the 

use of ultrasound became an established technique in the clinician's 

armoury. In animals, the first application of ultrasound was as a technique 

for assessing carcass quality in pigs by the measurement of the back fat 

(Shirley etal., 1978)

These early techniques utilised a system now known as A-mode. A single 

beam of sound was interrogated along one dimension to give a one
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dimensional image. The location and amplitude of the returning echoes 

was displayed as a graph of amplitude against location relative to the 

origin. The first compound water bath scanner which produced two 

dimensional images was first described in 1958 (Howry, 1958). This 

system was based on the sequential analysis of an area with multiple 

sound beams. The location of each interface producing an echo was 

calculated and displayed on a visual display unit as a series of dots to 

describe a two-dimensional area of the body. This system was limited to 

experimental situations because it required total submersion of the subject 

in water (Shirley et a l, 1978). In order to avoid water immersion of the 

subject, in 1960, the first contact scanner, which used coupling gel, was 

developed in Glasgow (Brown, 1960). This apparatus was mainly used by 

gynaecologists to distinguish between cystic and solid lesions within the 

female reproductive tract (Donald and Brown, 1961). Since then, 

ultrasound has been a major diagnostic tool in medical studies.

2.2 ULTRASONOGRAPHIC IMAGING

2.2.1 Physical principles of ultrasound. Ultrasound is the term 

applied to mechanical pressure waves transmitted as compressions and 

rarefactions through a medium (Ziskin, 1975; Herring and Bjornton, 1989; 

Thaler and Manor, 1990). These vibrations are not random, but orderly 

oscillatory pressure waves generated by an ultrasound transducer. The 

term ultrasound is applied when the frequency of the oscillations is higher 

than the upper range of human hearing, approximately 20,000 cycles per 

second (20 KHz). Frequency is defined as the number of times a wave is 

repeated (cycles) per second. One cycle per second is 1 hertz; 1000 and 1 

million cycles per second are 1 kilohertz (KHz) and 1 megahertz (MHz), 

respectively (Nyland and Mattoon, 1995). Frequencies in the range of 2 to 

10 MHz are commonly employed in diagnostic examinations. An
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ultrasound wave can be compared to a longitudinal wave having a wave

length, frequency and velocity. The wavelength (m) is the distance from two 

similar points on the given wave i.e. the distance that a wave travels during 

one cycle. The shorter the wavelength, the better the resolution. Frequency 

and wavelength are inversely related if the sound velocity within a medium 

remains constant. Since sound velocity is independent of frequency and 

nearly constant (1540 m/sec) in the body's soft tissues (Wells, 1969), 

selecting a higher frequency transducer will result in decreased 

wavelength of the emitted sound, providing better resolution. The 

relationship between velocity, frequency and wavelength can be 

summarised in the following equation:

 Velocity (m/sec) = Frequency (cycles/sec) x Wavelength (m)________

2.2.2 Tissue interactions with ultrasound. Ultrasound imaging is 

based on the pulse-echo principle. This means that sound is produced by 

the transducer in pulses rather than continuously (Nyland and Mattoon,

1995). Short bursts of ultrasound are emitted into the animal's body from 

the transducer element. These short bursts travel through the tissues at a 

constant speed until they meet a reflecting surface or tissue interface. At 

the tissue interface, a small proportion of the sound beam is reflected back, 

producing a returning pulse or echo to the transducer. The image is formed 

from the echoes returning to the transducer from the tissues after each 

pulse. Therefore, adequate time must be allowed for all echoes to return 

before the transducer is pulsed again. In fact, sound is transmitted less 

than 1% of the time while the transducer waits for the returning echoes 

more than 99% of the time (Miles, 1989). The strength of the reflected 

ultrasound beam depends on a number of factors but of primary 

importance are the abrupt change in sound velocity and density of the

11



media (acoustic impedance), the angle at which it meets the tissue 

boundaries, and the distance travelled

The product of the tissue's density and the sound velocity within the tissue 

is known as the tissue's acoustic impedance. Acoustic impedance is used 

to refer to the reflection or transmission characteristics of a tissue. Acoustic 

impedance can be defined by the following equation:

 Acoustic impedance (z) = Velocity (v) x Tissue density (p)_________

Thus, the acoustic impedance is determined by the density of the medium 

and the velocity of sound in that medium. The size of the echo (or intensity) 

is proportional to the difference between the acoustic impedance of the two 

tissues forming the reflecting interface. There are only small differences in 

acoustic impedance among a body's soft tissues (Wells, 1969). This is 

ideal for imaging purposes because only a small percentage of the sound 

beam is reflected at such interfaces, the majority of the beam being 

transmitted further into the tissues to provide for imaging of deeper 

structures.

However, bone and gas have a very high and low acoustic impedance 

respectively. Air is less dense and more compressible than soft tissue and 

transmits sound at a lower velocity. Bone, on the other hand, is more dense 

and less compressible than soft tissues and transmits sound at a higher 

velocity. Therefore, when a sound beam encounters a soft tissue-bone or 

soft tissue-gas interface, nearly all sound is reflected and little is available 

for imaging deeper structures. This effect represents a high acoustic 

impedance mismatch. Distal acoustic shadowing is produced deep to the 

bone or gas because little sound penetrates. Increasing output intensity 

will not improve penetration but merely increase artifacts such as
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reverberation echoes (Nyland and Mattoon, 1995). A higher-frequency 

transducer emits shorter wavelengths, and therefore correspondingly 

shorter pulses, than a lower frequency transducer. The relevance of this 

difference is explained below.

The rest of the sound beam continues through the deeper tissues 

generating an echo whenever a pulse reaches an interface between two 

tissues with different acoustic properties. The depth to which sound 

penetrates into soft tissues is directly related to the frequency employed. 

Higher-frequency sound waves are attenuated more than lower-frequency 

waves. This means that any attempt to improve resolution by increasing the 

frequency will invariably decrease penetration. The velocity of sound within 

each tissue and the tissue's density determine the percentage of the beam 

reflected or transmitted as it passes from one tissue to another.

2.2.3 Emission and reception of ultrasound. The production of 

ultrasonic frequencies is by the electrical stimulation of piezoelectric 

crystals housed within a transducer. The term piezo refers to the 

transformation of pressure to electricity (piezo, Greek for pressure). A 

material such as lead zirconate-titanate (PZT) which has piezoelectric 

properties can both transform sound energy to electricity and vice- versa 

(Goddard, 1995). An electrical current passing through a piezoelectric 

material deforms the internal structure of that material in such a way that a 

pressure change can be transmitted across the medium by causing the 

molecules composing the material to vibrate and thus propagate a sound 

wave. Similarly, a distortion and production of pressure changes in a 

piezoelectric material, by bombarding it with returning sound waves, will 

result in a change in electrical potential difference. Further, the amplitude 

of the sound produced by a piezoelectric material is directly proportional to 

the voltage applied to stimulate the material and conversely, the voltage
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produced is directly proportional to the amplitude of the sound which 

stimulates it. Consequently, piezoelectric materials have the ability to 

distinguish and describe different voltages and amplitudes (Shirley et al., 

1978; Bartrum and Crow, 1983; Powis and Powis, 1984). Because of the 

unique properties of these crystals, the transducer can emit and receive 

sound ( Cartee, 1980; Rantanen and Ewing, 1981). The transducer acts as 

a receiver 99% of the time (registering returning echoes between pulses of 

transmitted sound) and as a transmitter only 1% of the time (Miles, 1989). 

These principles are the basics of the use of ultrasound for diagnostic 

medical imaging.

2.3 IMAGE DISPLAY MODES

There are three visual modes of echo display in diagnostic ultrasound, two 

of which are used more frequently in clinical application in veterinary 

medicine. They are A-mode, B-mode, and M-mode.

2.3.1 A-mode (amplitude mode). This is the least frequently used and 

the simplest of the three modes, but still has special use for ophthalmic 

examinations and other applications requiring precise length or depth 

measurements (Nyland and Mattoon, 1995). Echosounding or sonar is the 

principle behind A (Amplitude) scanning. The returning ultrasound echoes 

are displayed as vertical spikes either on an oscilloscope or video monitor. 

The height or amplitude of each spike varies (is modulated) in proportion to 

the strength of the returning echo received by the system. All A-mode 

displays are standardised such that time, or distance, from the transducer 

is represented on the horizontal axis and amplitude, or echo strength, is 

shown on the vertical axis. The display is oriented as if the transducer is at 

the left edge of the horizontal axis. Therefore, the distance from the left 

margin of the display to an individual spike is directly proportional to the
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depth within the body of the corresponding tissue interface. Absence of 

returning signal from within a tissue infers the presence of fluid within that 

tissue. This form of ultrasound scanning was previously used in 

echoencephalography, but it has now been largely replaced by CT 

scanning (Herring and Bjornton, 1989).

2.3.2 B-mode (Brightness m odulation). This is a method of 

displaying echo information, not as vertical spikes, but on a display screen 

as dots whose brightness or grey scale is proportional to the amplitude of 

the returning echo and whose position corresponds to the depth at which 

the echo originated along a single line (representing the beam axis) from 

the transducer. B-mode is usually displayed with the transducer position 

located at the top of the screen and depth increasing to the bottom of the 

screen. The B-mode display is used in all two-dimensional ultrasound 

images, static or real. All modern ultrasound scans are produced with grey 

scale B-mode technique. In fact, "real time" scans (see below) are B-mode 

scans.

2.3.3 M-mode (Time motion). This method is used along with B-mode 

for echocardiographic evaluation of the heart. It is a method of tracing the 

movement of reflecting structures and relating such movement to time. M- 

mode tracings usually record depth on the vertical axis and time on the 

horizontal axis, and the image is oriented with the transducer at the top. 

The M-mode display is akin to B-mode in that echoes are registered as 

bright dots but only a single transducer line of sight is displayed. This line 

of sight is held stationary while the time base is moved to trace oscillations 

of the echo-producing structures. Because only one single line of sight is 

shown, only one dimension, distance, is indicated in M-mode displays. 

Hence, M-mode displays are one-dimensional.
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2.4 REAL-TIME ULTRASONOGRAPHY

Real-time refers to the ability to see motion on the displayed ultrasound 

image. The image is electronically or mechanically renewed at a regular 

interval which is fast enough to continuously image moving structures or to 

provide a clear, uninterrupted view as the transducer is moved over the 

surface of the body (Zwiebel, 1983; Herring and Bjornton,1989). The older 

static B-mode scanners, which displayed a simple frozen image, have 

been largely replaced by real-time scanners. Real-time images are in fact 

made up of successive static scans or frames, which are rapidly produced 

(written) and erased to exceed flicker fusion of the human eye. Real-time B- 

mode scanners display a moving grey-scale image of cross-sectional 

anatomy. This is accomplished by sweeping a thin, focused ultrasound 

beam across a triangular or rectangular field of view in an animal many 

times per second. Sound pulses are sent out and echoes received back 

sequentially along each B-mode line of the field until a complete sector or 

rectangular image is formed. Each line persists on the display monitor until 

it is renewed by a subsequent sweep of the beam. The beam may be 

steered mechanically or electronically through the field, with the frame rate 

(image renewal time) dependent on the depth displayed. The frame rate is 

slower for displaying deeper depths because more time is needed for the 

echoes to return to the transducer. Two basic types of real-time B-mode 

transducers are available: sector and linear-array.

2.4.1 Real-time transducers

Sector transducer. This real-time transducer is so named because the 

beam shape and resulting screen image are sector-shaped or triangular. 

This image may also be described as pie-, wedge-, or fan-shaped. The
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sector angles vary for different purposes. Sector scanners may be 

classified as either mechanical or electronic depending on the method 

used to sweep the beam through the sector field.

Linear-array transducer. The linear-array transducer is an electric scanner 

with multiple crystals arranged in a line within a bar-shaped scan head. 

The narrow beam is swept through a rectangular field by firing the 

transducer's crystals in order sequentially. There are no moving parts and 

therefore this type of transducer is very reliable, and also cheaper than a 

sector transducer.

2.5 IMAGE INTERPRETATION AND TERMINOLOGY

Ultrasound is a technique that images anatomy in any desired topographic 

plane. Therefore, a knowledge of the normal three-dimensional anatomy of 

the region to be scanned is important to recognise artifacts, interpret 

normal variations, and detect pathological changes (Nyland and Mattoon, 

1995). In general terms, any soft tissue in the body can be imaged 

provided that the sound wave can reach it unimpeded. Tissues which 

produce echoes are described as echogenic or echoic . The echoes are 

described as hyperechoic (increased), isoechoic (normal), hypoechoic 

(decreased), or anechoic (absent or dark) compared with the normal echo 

amplitude for the surrounding tissues (Park e ta l, 1981).

The ultrasonographic image is determined by the number and strength of 

the sound waves reflected by the body tissues. The amount of beam 

reflected back to the transducer is directly proportional to the change in 

acoustic impedance as the sound passes from one tissue to another. 

Acoustic impedance is the product of the material density and the velocity 

of sound propagation through the material. The absolute value of the 

acoustic impedance of any tissue is relatively unimportant because it is the
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magnitude of the difference in acoustic impedance at a tissue interface that 

determines the amount of beam reflection (Rantenen and Ewing, 1981; 

Herring and Bjorton, 1989; Thaler and Manor, 1990).

Although reflected sound is necessary to permit imaging, sound 

transmission beyond a particular interface is necessary to permit the 

deeper structures to reflect still-available sound for further imaging (Miles, 

1989). A large change in acoustic impedance, such as occurs at a soft 

tissue- air interface or soft tissue - bone interface, results in reflection of 

nearly all of the sound and leaves little sound available for imaging deeper 

structures. Bone and gas, therefore, severely compromise 

ultrasonographic examinations because they are nearly perfect reflectors 

(Wortman and Rantanen, 1986). The inability to penetrate gas or bone is a 

primary disadvantage of ultrasonography (Miles, 1989).

As an ultrasound wave travels through the body, its energy is progressively 

lost or attenuated. This attenuation is due to absorption, reflection and 

scattering of the sound energy (Shirley et al., 1978; Rantanen and Ewing, 

1981; Herring and Bjorton, 1989). The attenuation rate is directly 

proportional to the frequency of the sound wave. The depth of penetration 

of an ultrasound beam is frequently dependent on an attenuation rate of 

approximately 1 db/cm/MHz (Miles, 1989). For example, a 3.0 MHz sound 

beam would be attenuated at a rate of 3 db/cm, whereas a 7.5 MHz beam 

is attenuated at a rate of 7.5 db/cm. Thus , lower-frequency sound beams 

provide greater tissue penetration than higher- frequency beams (Wortman 

and Rantanen, 1986).

In order to overcome the progressive decrease in the intensity of the sound 

wave due to attenuation, ultrasonographic units are fitted with amplification 

systems so that tissues at varying depths could be compared. The depth or
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time-gain compensation function was developed whereby echoes from 

interfaces near the transducer are electronically suppressed, whereas the 

strength of echoes from more distance tissue interfaces is amplified in 

proportion to the degree of attenuation. This maintains a uniform echo 

intensity throughout the image (Powis and Powis, 1984; Bartrum and Crow,

1983).

Although frequency and depth of penetration are inversely related, 

frequency and resolution of the sound beam are directly proportional. Two 

types of resolution are particularly important in ultrasonography. Axial 

resolution of any ultrasonographic unit is the ability of the sound beam to 

differentiate two objects along the path of the beam. If the pulse width or 

wavelength of the sound beam is large, structures less than one pulse 

width apart are visualised as a single object. Therefore, the smaller the 

pulse width, the better the axial resolution. It therefore follows that 

equipment which utilises ultrasound with higher frequencies has inherently 

superior axial resolution (Bartrum and Crow, 1983; Powis and Powis,

1984)

The ability of the pulsed sound wave to delineate two objects that are side 

by side is called lateral (Azimuthal) resolution. Lateral resolution is 

principally determined by the size of transducer crystal. Smaller, higher- 

frequency crystals have better lateral resolution and are recommended for 

use in examining superficial tissues like tendons. On the other hand, low- 

frequency beams which provide greater tissue penetration, are necessary 

to visualise deeper structures adequately. Lateral resolution is dependent 

on the width of the beam, as two structures which are less than one beam 

width will be perceived as one.
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2.6 ULTRASOUND IMAGE INTERPRETATION AND ARTIFACTS

The image created during diagnostic ultrasonography is sometimes less 

than precise. This is essentially due to the sub-optimal interrelationship 

between operator, equipment and animal, and the physics involved in 

image production. However, the non-invasiveness, moderate cost, safety, 

and ability to evaluate tissue and organ structure far outweigh any possible 

disadvantage and have resulted in diagnostic ultrasound becoming a 

primary technique in veterinary medicine (Kirberger, 1995). However, 

ultrasonographic imaging artifacts are commonly encountered during 

routine ultrasonographic examinations and contribute to image 

inaccuracies. The International Dictionary of Medicine and Biology (Becker 

and Landau, 1986) defines an artifact as " any record or image obtained in 

the course of applying a medical diagnostic technique which is not 

representative of the structures under study but is adventitious". An artifact 

may be defined as any alteration in the ultrasound image which does not 

portray a true presentation of actual structures. Bartrum and Crow (1983) 

define an artifact on a B- mode, grey- scale ultrasound image as any dot 

appearing in the ultrasound image that does not correspond to a real echo 

in the animal's body. When evaluating the distal hind limbs of ostriches, 

acoustic artifacts result in added (not real), missing, improperly located, 

brightness, shape or size alterations. Artifact production results from the 

following equipment computer software assumptions: sound only travels in 

straight lines: echoes only originate from reflectors located along the 

transducer axis; the intensity of the returning echoes is directly related to 

the scattering strength of the imaged objects; distance is proportional to the 

round trip travel time of 1540 m/sec or 13 microseconds per centimetre 

depth (Kirberger, 1995). A working knowledge of acoustic artifacts is 

required to correctly interpret ultrasonograms. This optimises available
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information when evaluating tissue or organ structure and prevents 

incorrect diagnosis. Artifacts may be produced by electronic noise or 

interference, echo distortions caused by ultrasound-matter interactions, 

and technical imaging errors. Echo distortion caused by ultrasound-matter 

interactions occur more frequently than other artifacts. These consist of 

reverberations, shadowing, refractive and reflective zones and 

enhancement or through-transmission. All but reverberations also serve as 

diagnostic ultrasound signs.

2.6.1 Reverberations. Reverberating echoes are the most frequent and 

troublesome artifacts produced on ultrasound images. These are produced 

by a sound pulse bouncing back and forth between two interfaces with a 

large difference in acoustic impedance. They may also be produced 

between the transducer and the tissue interface such as the skin surface. 

Echoes returning to the transducer are reflected at its surface back into the 

body where they continue until they reach an interface and are again 

reflected back towards the transducer. The time lapses that occur between 

the second, third or fourth returning echoes places them at a greater depth 

in tissue on the recorded image. Only the initial recorded echoes are real: 

other reverberation echoes that appear deep in the tissue will be multiples 

of the original transducer interface echo and succeeding reverberation 

echoes will be smaller because of attenuation. Reverberation produces a 

series of parallel echoes. A similar process can also occur internally 

between two large interfaces in the body, thereby producing mirror images. 

Reverberation artifacts have been reported to be associated with muscular 

aponeuroses and with the interface between the stand-off pad and the 

skin. Not all reverberation is undesirable or possible to eliminate. It 

provides information about the acoustic impedance of an image surface. 

Reverberation can be avoided by reducing the power (voltage) and 

undertaking proper preparation of the area to be scanned, along with only
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light pressure of the scan head.

2.6.2 Acoustic shadows (Fig. 1.). Acoustic shadowing is the reduction 

in amplitude of reflected sound caused by reflectors that lie behind a 

strongly reflecting or attenuating structure (Kremkau, and Taylor, 1986; 

Kirberger, 1995). The zone deep to the reflecting or attenuating structure is 

anechoic. Shadowing may be produced by bone, gas or calculi. It is a 

diagnostic sign used to identify calculi. Bone and other mineralised 

structures cast an acoustic shadow because they reflect 20-30% and 

absorb most of the remaining sound beam (Sommer and Taylor, 1983). 

The acoustic shadow caused at a soft tissue-gas interface is often filled in 

by multiple small echoes due to reverberations, whilst that caused by a soft 

tissue-bone interface is relatively echo-free. Acoustic shadows may also be 

caused by refraction of the sound beam at the edge of rounded structures 

such as urinary bladder or liver edges. In the scanning of ostrich limbs, 

acoustic shadows due to reflection of the sound beam by heavily 

keratinised skin scales were common. In some areas with very thick 

keratinised skin, such as the intertarsal joint and those areas distal to the 

tarsometatarsus, it was not possible practically to scan them because there 

was complete reflection of the ultrasound beam.
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Figure 1. Longitudinal linear scan of the hind limb flexor tendons of the 

ostrich, demonstrating acoustic shadows (arrow heads) caused by heavily 

keratinised skin scales.
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2.6.3 Distant enhancement or through-transmission. As the sound 

beam passes through a relatively homogeneous medium, such as urine or 

bile, less attenuation takes place than in surrounding echogenic areas. 

When the sound beam strikes the far end of the medium, the echoes 

appear to be brighter than the surrounding structures. This is the 

confirmation of the presence of an anechoic structure such as the urinary 

bladder, gall bladder or a fluid-filled cyst.

2.6.4 Reflection and refraction. Acoustic shadowing zones may occur 

distal to the margins of a rounded structure containing material of lower 

acoustic velocity, such as fluid-filled cystic structures. The sound 

penetrating the edge of such a structure may be slightly reflected or 

refracted producing a linear anechoic zone deep to the cystic structure. 

Such zones are evidence of a cystic, fluid-filled structure and should not be 

mistaken for shadows produced by calculi, gas or bone.

2.6.5 Comet-taii. These are the least common artifacts. They are caused 

by a highly refractive interface, most commonly an air-fluid interface. A 

highly echogenic stream of reverberations trailing the original interface.

2.6.6 Electronic noise or interference. This is caused by random 

electron movements within the ultrasonographic unit and any surrounding 

electrical equipment which may produce electronic noise. These are 

superimposed on the image as low level echoes.

2.7  A SU M M A R Y OF SO M E TE R M S  USED IN 

ULTRASONOGRAPHY

Acoustic impedance: The resistance to passage of sound waves.
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Anechoic, anechogenic: Adjectives which describe an area on an 

ultrasonogram in which there are no echoes, producing a black region. 

Attenuation: The progressive loss of energy which occurs as a sound 

wave or microwave travels further away from its source.

Echoes: The reflections of sound energy which are produced when a 

sound wave passes from a medium of one acoustic impedance to a 

medium of another acoustic impedance.

Echogenicity: The level of brightness of echoes on an ultrasonogram. 

Echoic, echogenic: Adjectives which describe an area which produces 

echoes on an ultrasonogram producing a white or grey area.

Echolucent: An adjective which describes a material which contains no 

acoustic interfaces and consequently does not produce any echoes on an 

ultrasonogram.

Grey scafe: An adjective which describes the form of ultrasonographic 

imaging which utilises a range of shades of brightness of white dots to 

denote the amplitude of the returning echoes.

Hyperechoic, hyperechogenic: Adjectives which describe an area on an 

ultrasonogram in which there is a high level of echo production, producing 

a white region.

Hypoechoic, hypoechogenic: Adjectives which describe an area on an 

ultrasonogram in which there is a low level of echoes, producing a grey 

area.

interface: A boundary between a tissue of one acoustic impedance and a 

tissue of another acoustic impedance, at which an echo is produced. 

Piezoelectric: An adjective which describes a material which can convert 

pressure to electrical energy, and vice versa.

Real-time image: A continuously updated, moving image.

Reverberation: Used to describe both the situation where, and the artifacts 

which result from, ultrasound bouncing repeatedly between two structures. 

Specular echoes: The form of echoes which are produced by an
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ultrasound beam which is not perpendicular to the tissue interface. 

Time-gain compensation: A control on the ultrasonographic unit which 

determines the amount of amplification which is applied to overcome the 

attenuating effects of distance.

Transducer: That part of an ultrasonographic unit which emits and receives 

ultrasound.

Ultrasonogram: An image produced by ultrasonographic means.
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CHAPTER 3

MATERIALS AND METHODS

3.1 GROSS DISSECTIONS

In the first part of this study, gross dissections were carried out on 14 (seven 

pairs) cadaverous pelvic limbs of commercially-raised clinically normal 

ostriches (young and adult birds). The limbs were carefully skinned and 

muscles separated by blunt dissections along the connective tissue planes. 

Their origins, form, course and insertions were examined and recorded. 

Tendons, ligaments and joints were also examined. Finally, the bony 

specimens were thoroughly cleaned of any soft tissue remnants, before 

being wrapped in a stockinet and cooked (100 °C ) in a water boiler until such 

a time that all the cartilage, tendons and other soft tissues were completely 

detached. Washing of the bones was then carried out under running water 

over a sieve to avoid loosing tiny bony elements. Slow drying (2-3 days) at 

room temperature concluded the process before the actual examination of 

individual bones.

3.2 ULTRASONOGRAPHIC ANATOMY AND CROSS-SECTIONS

The second part of this study involved an ultrasonographic examination 

correlated with a cross-sectional study of two fresh cadaverous limbs from a 

normal adult ostrich. Eight 5 cm. wide transverse bands, located just 

proximal to the intertarsal joint down to the level of the metatarsophalangeal 

joint, were identified on each limb for use as standardised sites for the 

examination of the cross-sectional anatomy of limb structures (Fig. 2)
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Figure 2. A diagram of the distal region of the pelvic limb in Struthio 

camelus, denoting the eight levels at which cross sections were made.
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3.2.1 Equipment selection

Scanner and Transducer selection: High resolution real-time  

ultrasonographic machines were preferred for evaluation of soft tissue 

structures in the distal pelvic limb of the ostrich. These allow rapid 

identification of the structures of interest and accurate determination of the 

optimal scanning planes. High frequency transducers are recommended 

because the imaging involves superficially situated tendons and ligaments. 

Generally, a 7.5 MHz transducer is used in evaluation of structures of up to 4 

cm in depth and the ostrich's tendons and ligaments fall within this range. In 

order to permit maximal resolution of these target tissues, the use of a 7.5 

MHz or higher frequency transducer was necessary. High-frequency 

transducers are associated with spatial and contrast resolution; however, 

one of the disadvantages of high-frequency probes lies in their limited depth 

of penetration (increased attenuation) and narrow field of view (Fornage, 

1986).

The linear-array transducer is advantageous for imaging superficial 

structures such as tendons and ligaments because it gives less near-field 

artifact (less distorted image in the very near field i.e. depths of less than 2 

cm), and produces a clearer tendon and ligament fibre pattern. Linear-array 

probes also have beams perpendicular to the superficial structures making it 

possible to have an increased field of view. In comparison, sector scanners 

have a smaller field of view in the near field, and the beam is oriented 

obliquely in relation to the skin and longitudinally oriented tendons (Fornage 

and Rifkin, 1988; Harcke etal., 1988).

Stand-off system: The convex shape of the plantar tarsometatarsal region 

made it extremely difficult to achieve adequate contact between the face of 

the ultrasonographic transducer and the skin surface. Poor contact with the
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skin leads to unsatisfactory visualisation of the superficial tendons and 

ligaments. The use of the stand-off pad provides good acoustic coupling 

between a linear-array ultrasonographic transducer and the ostrich's skin. 

Furthermore, by increasing the distance between the probe and the region of 

interest, the stand-off places the tendons and ligaments in the optimal focal 

zone of the transducer. Stand-off pads have similar acoustic properties to 

those of animal tissues, and are made of a gelatinous mixture of oil and 

viscoelastic synthetic polymer (Fyke et al., 1979; Fornage, 1989). They are 

flexible and adequately contour to irregular scanning surfaces. One common 

artifact produced by a stand-off pad is the production of linear artifacts within 

the regions of the image resulting from the fixed nature of the piezoelectric 

crystals in the transducer, sending sound beams onto the stand-off housing 

or stand-off margins (Pharr and Nyland, 1984). This artifact was noted, but 

did not interfere with image interpretation as the tissues of interest were 

located superficial to the artifactual echo.

In this study, diagnostic ultrasonography was carried out using a Toshiba, 

CAPASEE, diagnostic scanner and a 7.5 MHz linear-array transducer (Fig. 

3). All images were recorded on a SONY super VHS video cassette for later 

printing and analysis. Attempts to scan the dorsal (i.e. "extensor") surface of 

the distal pelvic limb, and the plantar region distal to the 

metatarsophalangeal joint (sites 7 and 8), were unsuccessful due to high 

contours and/or thick, heavily keratinised epithelial skin covering these 

surfaces. Therefore, only four out of the eight levels could be successfully 

scanned.
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Figure 3. The ultrasound diagnostic scanner, (Toshiba, CAPASEE), Tokyo, 

Japan.   ____________________ _ _ _
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3.2.2 Ultrasonographic examination of the ostrich distal pelvic limb.

Preparation: Adequate preparation of the bird was essential for imaging 

tendinous and ligamentous structures with diagnostic ultrasound. Image 

quality is mainly affected by the quantity of the scales and the air trapped 

between the scales Both attenuate the ultrasound beam. The plantar 

tarsometatarsal region between the intertarsal joint and the 

metatarsophalangeal joint was thoroughly cleaned using a soft brush, and 

then scanned using an echolucent stand-off pad and aqueous contact gel to 

improve contact between the scanning transducer and the skin. The best 

image was obtained by scanning the areas with minimal amounts of thick 

scales. The maintenance of adequate amounts of gel is essential for good 

image quality, and frequent reapplications may be necessary to provide an 

air-free interface between the skin and the transducer.

Orientation of the beam : Two ultrasonographic examinations were 

performed within each 5 cm. zone; one paraxial (longitudinal), to observe the 

normal alignment of the ligament fibres, and the other transverse, (in the 

middle of each zone) to obtain transverse morphological relationships and 

dimensions. When scanning the distal pelvic limb of the ostrich, the 

orientation of the ultrasound beam is important for reliable and comparative 

examination of anatomic structures. Tendons and ligaments are very 

sensitive to angulation in ultrasonographic imaging; they are more echogenic 

where fibres are perpendicular to the ultrasound beam.

Tension/relaxation: Hypoechoic artifacts can be obtained when the tendon or 

ligaments being examined are not under traction. Their relaxation induces 

bending of fibres at the insertion sites and the collagen fibre bundles 

producing artefactual sound waves in the intervening regions. This induces
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typical hypoechoic artifacts that impede correct imaging. A study done by 

Nicoll et al., (1993), demonstrated that significant reduction in mean grey

scale was obtained when the flexor tendons were relaxed. This phenomenon 

can be observed in the flexor tendons in ostriches if the examination is 

performed in a non-weight bearing position of the limb. To avoid this artifact 

in cadaverous specimens, weights were tied to each limb to ensure that 

tendons and ligaments were tensed at imaging. After scanning, each 

stretched limb was then frozen and sectioned transversely at all the 

previously marked and scanned levels. Cut-surface photographs of the 

frozen sections were taken to compare with the scanning prints from the 

same sites, in order to identify and characterise the ultrasonographic 

appearance of the various anatomical structures in these regions of the 

pelvic limb.
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CHAPTER 4

RESULTS

4.1 OSTEOLOGY

Bone carries out several important functions. It provides a mechanical 

support for the body and is involved in the maintenance of mineral 

balance. It also has a protective function, reducing the potential for 

mechanical harm to delicate systems within it (bone marrow in long bones) 

and to internal organs. But it is also a dynamic structure, being jointed and 

providing a framework on which muscles can act to allow motion. Forces 

are applied to bone at the sites of attachment of ligaments and tendons, or 

through the joints. Bone is a living tissue and its post-natal development 

and growth-modelling process represents extensions of force interactions. 

As bone increases in length and size, its shape must be continually 

remodelled to maintain a form appropriate to its biomechanical function. 

Therefore, bone deformity is dependent upon the degree of the stress and 

the number of loading cycles a bone may undergo during this growing 

period.

4.1.1 Tibiotarsus (Fig. 4). The tibiotarsus articulates proximally with the 

femur and distally with the tarsometatarsus. In cross-section, the shaft is 

three- sided in the proximal third, and oval in the middle and distal thirds of 

its length. The lateral part bears a well-defined ridge, the fibula crest, to 

which the fibula is strongly attached by fibrous connective tissue. Smooth 

areas above and below the crest form, with the fibula, the proximal and 

distal interosseus spaces. The distal interosseus space is less prominent in 

older birds where the spine of the fibula is closely attached to the body of 

the tibiotarsus by strong connective tissue. Examination of an additional
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museum specimen showed that, in very old birds, the two bones fuse 

completely in this area. Also lying on the lateral aspect of this bone is a 

nutrient foramen with a vascular groove leading into it.

The proximal extremity is large and roughly three sided. The articular 

surface (Fig. 5) consists of a medial part, Facies articularis medialis, 

hemispherical in outline, and a much smaller, oval lateral part, Facies 

articuiaris lateralis, situated on the caudal margin of the extremity. Cranial 

to, and between, these articular surfaces is a depression, the Fossa  

retrocristales. A deep popliteal notch (on the caudal margin of the 

extremity) separates the lateral and medial parts of the articular surface. A 

very prominent tibial eminence projects cranially between these articular 

surfaces, curving slightly lateral and subsiding rapidly as it travels distally 

(Fig. 4). It carries two cnemial crests, Crista cnemialis medialis and Crista 

cnemialis lateralis.; the latter is greatly reduced and knob-like compared 

with its enormously developed counterpart. The articular surface of the 

distal extremity presents the large ridge-like Condylus medialis and 

Condylus lateralis, the bulk of these condyles lying cranial to the shaft. The 

Epicondylus medialis (medial epicondyle) is enlarged and plate-like with 

both deep Depressio epicondylaris lateralis and medialis (ligamental pits). 

The Epicondylus lateralis is absent. Cranially, the two condyles are 

separated by a deep Incisura intercondylaris which strongly undercuts the 

proximal portions of the condyles, making them more nearly horizontal and 

less V-shaped. In the ostrich, a vestigial supratendinal bridge (Pons 

supratendinous) is represented by a reduced bony spicule.

4.1.2 Fibula (Fig. 4). The fibula is a reduced long bone located along the 

lateral border of the tibiotarsus. The large, flat proximal extremity, Caput 

fibularis, rises slightly above the level of the articular surface of the 

tibiotarsus, continuing distally into the shaft, which is generally flattened
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except for a small oval area over the proximal interosseous space. Below 

the level of the proximal interosseous space lies a prominent Tuberculum 

m. iliofibularis followed by a long Spina fibulae. The distal extremity is 

pointed and usually located at the distal part of the tibiotarsus.

4.1.3 Tarsometatarsus (Fig. 4). Proximally, the shaft is triangular in 

cross-sectional outline with a deep dorsal concave groove on its dorsal 

surface and a convex plantar surface. The concave groove gradually fades 

out towards the distal third of the shaft. Generally the shaft has muscular 

impressions in this region. The proximal articular surface (Fig. 5) consists 

of two concave areas, the Cotyla lateralis and Cotyla medialis , poorly 

separated due to a reduced Eminentia intercondylaris . A broad centrally 

located prominence, the hypotarsus, is found extending distally along the 

shaft on the plantar aspect, its plantar surface being marked by two vertical 

grooves, the Fossae parahypotarsalis lateralis and medialis. These 

grooves are occupied by tendons of the digital flexor muscles. Two large 

interosseous foramina pierce the proximal region of the shaft on either side 

of the hypotarsus, clearly separating the more distally fused metatarsal 

bones II, III (lying centrally) and IV.

At the distal extremity, the reduction in the number of digits from the typical 

avian condition of four to two is indicated by the presence of two trochleae. 

Trochlea metatarsi III is the larger and has two very deep F o v ea e  

ligamenta collateralia on each side of the condyles. The medial condyle of 

this trochlea extends a short distance proximally onto the dorsal surface of 

the shaft. The condyles are separated by a shallow Sulcus intercondylaris. 

Trochlea metatarsi IV  is smaller and slightly oblique to the digital axis, with 

condyles of unequal size and extent, and relatively shallow Foveae  

ligamenta collateralis on either side. The two trochleae are separated by 

an Incisura intertrochlearis. A vestigial process representing Trochlea
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metatarsi II is found on the medial extremity of the tarsometatarsus. Fusion 

lines can be seen running proximally up the shaft of the tarsometarsal 

bone, back to the early identifiable proximal section of metatarsal bone II 

(Fig. 4).

4.1.4 Phalanges (Fig. 6). The ostrich has two cranially-directed digits, 

Digiti III and IV. As in other birds, the larger Digitus III has four phalanges 

and Digitus IV  has five. The terminal (ungual) phalanx of Digitus IV  is the 

least-developed phalanx and is seen as a minute, round bone. Therefore 

the descriptions that follow will not apply to this phalanx unless otherwise 

stated. The proximal phalanx of each toe is the longest. The succeeding 

phalanges of each digit become progressively shorter. Each phalanx is a 

long bone with a shaft and two extremities of which the proximal is larger. 

The dorsal surface is smooth and strongly convex transversely. The plantar 

surface is flattened and slightly concave along its longitudinal axis. Each 

phalanx has a concave proximal articular surface (facet) and a convex 

distal articular facet devoid of any ridge. Axial and abaxial tubercles are 

present adjacent to these articular facets. Distal tubercles of the 

succeeding phalanges, after phalanx I of each digit, are seen as well- 

developed, laterally-flattened extensions above which are the Foveae  

ligamenta collateralia. The terminal or ungual phalanx on Digitus III has 

special characteristics. It has a proximal base and a claw-like distal 

projection. The base represents a rather extensive articular surface with 

two tubercles, one below and one above. The dorsal tubercle (Tuberculum 

extensorium) is the site for the attachment of the digital extensor muscles, 

whilst the ventral tubercle (Tuberculum flexorium) acts as the site for the 

attachment of the digital flexor muscles. The cranially-projecting ungual 

process is conical in shape, narrow in width with a dorsal convexity and 

two lateral grooves. The surface is rough and porous and in the fresh state 

covered by the corium for the strong claw.

37



Figure 4. Cranial (1) and caudal aspects (2) of the 
tibiotarsus and tarsometatarsus of Struthio camelus. 
The fibula is shown in (1).

1. Spina fibulae
2. Tuberculum m. iliofibularis
3. Caput fibularis
4. Crista cnemialis medialis
5. Nutrient foramen
6. Condylus lateralis
7. Condylus medialis
8. Incisura intercondylaris
9. Dorsal anterior groove
10. Trochlea tarsometatarsi IV
11. Trochlea tarsometatarsi III
12. Incisura intertrochlearis
13. Depressio epicondylaris medialis
14. Popliteal notch
15. Epicondylus medialis
16. Fusion lines
17. Hypotarsus____________________
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Figure 5. Proximal articular surfaces of tibiotarsus (1) 

and tarsometatarsus (2) of Struthio camelus.

1. Facies articularis lateralis

2. Fossa retrocristales

3. Facies articularis medialis

4. Eminentia intercondylaris

5. Cotyla lateralis

6. Fossa parahypotarsalis lateralis

7. Fossa parahypotarsalis medialis

8. Cotyla medialis_______________

Insert figure of proximal articular surface of the 

tarsometarsus to show the portions and connections 

of lateral meniscal cartilage.

1. Ligamentum meniscotibiale

2. Ligamentum meniscotarsometatarsale, pars cranialis

3. Ligamentum meniscotarsometatarsale, pars caudalis
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Figure 6. Axioplantar (A) and dorsal aspects (B) 
of the phalanges of the third (a) and fourth (b) digits 
of Struthio camelus.

1. Proximal articular surface

2. Distal articular surface

3. Condylus abaxialis

4. Condylus axialis

5. Tuberculum flexorium

6. Tuberculum extensorium

7. Apex phalangis

8. Ungual process

9. Claw

10. Tuberculum abaxialis

11. Tuberculum axialis

12. Fovea ligamentum collateralium axialis digiti IV

13. Fovea ligamentum collateralium axialis digiti III
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4.2 ARTHROLOGY

The skeleton is made up of many individual bones and the sites where 

these bones meet are called joints (arthroses) or articulations. Joints are 

concerned with differential growth, transmission of forces and movement. 

The basic classification of joints, as laid out by Dyce et a l, (1987) is 

indicated in Fig. 7, showing both classes and naming systems.

Joints
(Arthroses)

/ \
Solid Joints 1 Cavitated Joints
(Synarthroses) (Diarthroses)

Fibrous Joints

I \
I [cartilagenous

I
Joints Synovial Joints

Figure 7. Basic classification of joints.

4.2.1 Tibiotarso-tarsometatarsal (Intertarsal) joint (Figs. 8, and 9).

This diarthrodial joint is equivalent to the hock joint of mammals since the 

tarsal bones fuse with the adjacept tibia and the metatarsus. The gross 

anatomy of this joint consists of opposing, congruent articular cartilage 

between which lies a relatively small laterally-situated cartilaginous 

meniscus. It is enclosed by a loose joint capsule which pouches cranially. 

A prominent Cartilago tibialis is located on the plantar surface. The

44



tendons of the digital flexor muscles occupy canals in this cartilage. Medial 

and lateral collateral ligaments secure the stability of this joint medially and 

laterally respectively. The insertion tendon of M. tibialis cranialis passes 

over the cranial part of this joint before inserting on the dorsal proximal 

tarsometatarsus, while the tendon of M. extensor digitorum longus also 

passes over the cranial aspect of this joint on its distal course down to the 

digits. As well as flexing it, these tendons support the cranial aspect of this 

joint.

The meniscus is a relatively small C-shaped cartilaginous disc located 

laterally in the intertarsal joint space. It is wedge-shaped in transverse 

section and its thick convex peripheral border is connected to the joint 

capsule by a fibrous attachment. It is held in position by a number of 

ligaments that have not been described or named before. Such 

connections are to the tibiotarsus by a relatively small, centrally situated 

Ligamentum meniscotibiale, and to the tarsometatarsus by a wide, 

substantial cranial part (pars cranialis), and a slightly narrower caudal part 

(pars caudal is) of the Ligamentum meniscotarsometatarsale (Insert, Fig. 5)

The Ligamentum collateral laterale can be divided into long (pars longa) 

and short (pars brevis.) pars The Ligamentum co llateral laterale pars 

longa is the longer, smaller and more centrally located of the two parts, and 

originates from the Depressio epicondylaris lateralis of the tibiotarsus. 

From this discrete origin, this ligament passes superficial to the tendon of 

M. fibularis longus tendon that can be found transversing this joint. It 

extends distally as a fibrous band before inserting on the proximal lateral 

tarsometatarsal area. The fibres of this ligament are oriented longitudinally 

and maintain a relatively constant width. Loose connective tissue joins the 

ligament to the joint capsule; attachments were not noticed between the 

Ligamentum collateral laterale, pars longa and the lateral meniscus. By
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moving the joint it can be seen that the Ligamentum co llatera l laterale, 

pars longa gets tensed during flexion and relaxes slightly during extension, 

of the joint.

The Ligamentum collaterale laterale, pars brevis is shorter, cranially 

located and bigger in size. It originates from a depressed roughened area, 

Depressio epicondylaris lateralis, of the tibiotarsus just distal to the point of 

origin of the Ligamentum collaterale laterale, pars longa. This ligament 

runs distally to insert on the proximal lateral surface of the tarsometatarsus. 

The fibres of this ligament are oriented longitudinally with a slightly wider 

distal end. It is also attached to the joint capsule by loose connective 

tissue. The Ligamentum collaterale laterale, pars brevis was seen to get 

tensed during extension of the joint, relaxing slightly during flexion.

Another fibrous band, thinner and longer than either of the collateral 

ligaments and having its origin from the proximal part of the lateral 

tibiotarsal condyle, crosses the joint with the superficial part of the lateral 

collateral ligament to insert on the plantar surface of the tarsometatarsus. It 

has been suggested that this band is a remnant of M. fibularis brevis 

(Pavaux and Lignereux, 1995). It is tensed when the joint is extended and 

relaxed when flexed.

The Ligamentum collaterale mediale is also divided into Ligamentum  

collaterale mediale, pars longa and brevis. Unlike the Ligam entum  

collaterale laterale, this ligament has a wider and thicker pars longa, while 

pars brevis is narrower and thinner. The Ligamentum collaterale mediale, 

pars longa, is the largest of all the collateral ligaments, arising from the 

medial tibiotarsal condyle and crossing the intertarsal joint to insert on an 

extensive rectangular area of the medial proximal surface of the 

tarsometatarsus. As it passes distally, it is attached to the joint capsule by
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loose connective tissue. The fibres of the ligament are longitudinally 

oriented and maintain a relatively uniform width. It is tense intermittently 

between full extension and flexion of the intertarsal joint.

The Ligamentum collaterale mediale, pars brevis is shorter and narrower. It 

originates from the enlarged Epicondylaris medialis of the tibiotarsus and 

runs distally to insert on the medial proximal part of the tarsometatarsus. It 

is tensed when the joint is extended. The Ligamentum collaterale mediale 

is better developed compared to the Ligamentum collaterale laterale.
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Figure 8. Diagrammatic presentation of the medial (A) 
and lateral (B) aspects of the intertarsal joint of Struthio 
camelus, with accompanying cross-sections around this 

joint.

1. Tibiotarsus
2. Tendon of M. flexor digitorum longus
3. Tendon of M. flexor hallucis longus
4. Tendon of M. flexor perforatus digiti IV
5. Tendon of M. flexor perforatus digiti III
6. Tendon of M flexor perforans et perforatus digiti III
7. Tendon of M. gastrocnemius
8. Tendon of M. fibularis longus

a. Flexor tendon bundle comprising 2, 3, 4, 5 and 6
b. Cartilago tibialis
c. Lateral meniscus
d. Joint capsule

(i) Ligamentum collaterale laterale, pars longa
(ii) Ligamentum collaterale laterale, pars brevis
(iii) Ligamentum collaterale mediale, pars brevis
(iv) Ligamentum collaterale mediale, pars longa
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Figure 9. Paraxial section (1) and cranial aspect (2) of 

the intertarsal joint of Struthio camelus

1. Tendon of M. gastrocnemius

2. Tendon of M. flexor perforatus digiti III

3. Tendon of M. flexor perforatus digiti IV

4. Tendon of M. flexor perforans et perforatus

digiti III

5. Cartilago tibialis

6. Tendon of M. flexor hallucis longus

7. Tendon of M. extensor digitorum longus

8. Tendon of M. fibularis longus

9. Tendon of M. cranialis tibialis

10. M. extensor proprius digiti III 

TB= Tibiotarsus

TM= Tarsometatarsus 

RET= Retinaculum extensorium tibiotarsi 

N ote : Canals in the tibial cartilage and the 

splitting (*) of the tendon of M. cranialis tibialis 

before its insertion.
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4.2.2 Metatarsophalangeal joints (Fig. 10). The two diarthrodial 

metatarsophalangeal joints, located between the tarsometatarsal trochlear 

surface and the proximal phalanx of each digit, exhibit a number of 

characteristic features. A lateral and medial supporting collateral ligament 

is associated with each joint. The joint capsule is continuous on its plantar 

surface with a very substantial Ligamentum plantaris , whilst the thin, 

relatively insubstantial dorsal part of the joint capsule is loosely connected 

to the digital extensor tendons.

A thick, dense fibrocartilaginous Ligamentum plantaris forms the plantar 

wall across each metatarsophalangeal joint. It is firmly attached to the base 

of the proximal phalanx and the laterally-placed collateral ligaments. Its 

plantar surface exhibits a deep sulcus through which the digital flexor 

tendons run, these tendons being restrained within the sulcus by a fibrous 

sheath ( Vaginae fibrosae) , arising as a continuation of the Ligamentum  

plantaris, that stretches across the sulcus. Its deep surface, forming part of 

the plantar wall of each metatarsophalangeal joint, is adapted in a general 

way to the plantar surface of each trochlea. A rounded vertical ridge 

divides the articular surface of the Ligamentum plantare into two parts, to 

fit into the corresponding groove on the trochlea; this deepens the socket of 

reception for the head of the trochlea. The Ligamentum plantaris over the 

metatarsophalangeal joint of digit III differs from that of digit IV in that it is 

significantly more developed and detaches single axial and abaxial 

ligamentous bands which are attached to the base of the distal end of the 

proximal phalanx. The Ligamenta plantare are connected loosely to the 

underlying flexor tendon bundles by a small muscle, M. lumbricalis. At the 

interphalangeal joints these ligaments originate from the distal plantar 

aspect of a proximal phalanx and cross the interphalangeal joint to insert 

on the proximal plantar aspect of the following distal phalanx.
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4.2.3 Interphalangeal joints (Fig. 10). There are three diarthrodial 

joints within digit III and four for digit IV although, on digit IV, only three 

joints are distinguishable because of the minute nature of the last phalanx. 

The first interphalangeal joint on each digit is the largest and best 

developed with succeeding joints becoming progressively smaller and less 

developed. Each joint consists of a joint capsule, two collateral ligaments, 

and a Ligam entum  plantaris.. Ligamenta plantare are located at all 

interphalangeal joints, with the exception of the terminal interphalangeal 

joint of the fourth digit. The joint capsule is connected on its plantar surface 

with the substantial Ligamentum plantaris. The dorsal part of the joint 

capsule is thin and connected to the digital extensor tendons. The 

presence of Ligamentum plantaris, joint capsules and collateral ligaments 

coupled with very narrow articular surfaces on the heads of the adjacent 

phalanges, gives the interphalangeal joints a limited range of motion.



Figure 10. Paraxial section showing the metatarsophalangeal and 
interphalangeal joints of the third digit of Struthio camelus.

1. Tendon of M. flexor perforatus digiti III
2. Tendon of M. flexor perforans et

perforatus digiti III
3. Tendon of M. flexor digitorum longus

4. M. lumbricalis
5. Digital cushion
6. Joint capsule

TM= Tarsometatarsus 
LP= Ligamentum plantaris
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4.3 M USCULATURE

4.3.1 Superficial layer (Fig. 11)

M. gastrocnem ius . This is the largest and most superficial muscle on 

the caudal aspect of the crus and consists of three distinct parts, pars 

externa, pars intermedia and pars interna. Pars externa lies on the lateral 

surface of the crus, arises by a thick tendon from the lateral surface of the 

lateral condyle of the femur, and is in contact cranially with the belly of M. 

fibularis longus. Pars intermedia, the smallest of the three parts, lies 

deeper in the caudoproximal crural musculature, arising by fleshy fibres 

from the medial condyle of the femur. Pars interna, the largest of the three 

parts, lies on the medial surface of the crural region and has a broad fleshy 

and tendinous attachment from the medial surface of Crista cnemialis of 

the tibiotarsus. The inserting tendons of these three parts fuse near the 

distal end of the crural region to form a common tendon of insertion, the 

Tendo Achilles . This tendon passes over the caudal surface of the 

Cartilago tibialis where the two become tightly bound together. It then 

broadens before inserting onto the hypotarsus and the medioplantar and 

lateroplantar surfaces of the proximal tarsometatarsus, where it forms a 

sheath covering the digital flexor tendon bundles.

M. fibularis longus. This is a superficial broad flat muscle which lies on 

the craniolateral surface of the crural region. The belly is large, extending 

along the proximal three quarters of the tibiotarsus before tapering distally 

into its tendon of insertion. It almost conceals from view the deeper 

muscles on the craniolateral surface of the crural region. The muscle has a 

broad tendinous superficial origin from the tibiotarsus, originating along the 

cranial border of Crista cnemialis medialis, and then curves distally, onto 

the belly of M. flexor perforans et perforatus digiti III. As in most birds, the 

long flat tendon of insertion passes distally and bifurcates near the distal
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end of the tibiotarsus. A long thin branch passes distally across the lateral 

surface of the intertarsal joint (Articulatio intertarsalis) to insert upon the 

insertion tendon of M. flexor perforatus digiti III in the proximal half of the 

tarsometatarsal region. The shorter branch inserts on the proximal end of 

the Cartilago tibialis.
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Figure 11. Lateral view of the superficial muscle layer of the distal pelvic 

limb of Struthio camelus.

1. Fascia of M. iliotibialis lateralis
2. M. femorotibialis medius
3. M. gastrocnemius (pars externa)
4. M. flexor perforans et perforatus digiti III
5. M. fibularis longus
6. M. tibialis cranialis 
RET=Retinaculum extensorium tibiotarsi 
CT= Cartilago tibialis__________________
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4.3.2 Deep layer (Fig. 12)

M. flexor perforans et perforatus digiti I I I . The belly of this bipinnate 

muscle lies within the proximal half of the lateral crus, cranial to Mm. flexor 

perforatus digiti IV  and flexor perforatus digiti III. The muscle arises by 

fleshy fibres from Crista cnemialis lateralis and from the ligamentous 

material covering the head of the fibula. There is also a tendinous 

connection with the proximocranial edge of M. flexor perforatus digiti IV, 

and a fine aponeurotic connection to the inserting tendon of M. ambiens. 

The tendon of M. flexor perforans et perforatus digiti III travels distally 

along the lateral surface of the tibiotarsus, superficial to the tendons of 

insertion of Mm. flexor perforatus digiti III and flexor perforatus digiti IV, to 

continue across the distocaudal surface of the tibiotarsus, down through a 

common canal in the Cartilago tibialis (this canal also carries inserting 

tendons of Mm. flexor perforatus digiti III and flexor perforatus digiti IV), 

and through the Fossa parahypotarsalis lateralis before descending down 

the plantar surface of the tarsometatarsus.

When nearing the distal end of the tarsometatarsus the inserting tendon 

becomes connected by a short vinculum (Vinculum tendinum flexorum) to 

the tendon of insertion of M. flexor perforatus digiti III. Like other flexor 

tendons in this area, it increases in size and travels through a deep sulcus 

in the plantar ligament located on the plantar aspect of the 

metatarsophalangeal joint of the third digit. While running through this 

sulcus it is topographically deep to the tendon of insertion of M. flexor 

perforatus digiti III and superficial to the tendon of insertion of M. flexor 

digitorum longus; here all three superficial flexor tendons are ensheathed 

by the fibrous sheath (Vaginae fibrosae) that stretches across the sulcus. 

The combined tendon bundle runs on the plantar aspect of the third digit, 

inserting in a systematic manner as shown in Fig. 15.

The inserting tendon perforates the inserting tendon of M. flexor perforatus
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digiti III near the proximoplantar end of phalanx I of digit III, then bifurcates 

and is itself perforated by the inserting tendon of M. flexor digitorum longus 

in the proximoplantar half of phalanx II. The axial and abaxial branches 

insert upon the axioplantar and abaxioplantar surfaces, respectively, of the 

Ligamentum plantaris which lies on the plantar aspect of the second 

interphalangeal joint.

M. tibialis cranialis. This large muscle of the craniolateral crus lies 

deep to M. fibularis longus, and consists of two closely apposed heads of 

origin, a small caudolateral Caput femorale and a larger craniomedial 

Caput tibiale. Caput femorale arises by a long thick tendon from Fovea 

tendinis m. tibialis cranialis on the distal craniolateral aspect of the femur 

whilst Caput tibiale arises by fleshy fibres from the craniolateral edge of 

Crista cnemialis medialis. At a point approximately two-thirds the way 

distally down the tibiotarsus, the two heads fuse and give rise to a tendon 

of insertion. This stout tendon of insertion passes distally under an oblique 

fibrous loop, Retinaculum extensorium tibiotarsi, to broaden over the 

Incisura intercondylaris, and cross over the cranial surface of the intertarsal 

joint to insert on Tuberositas m. tibialis cranialis on the proximodorsal 

surface of the tarsometatarsus, with two short tendons, one slightly ̂ cranial 

to the other. Retinaculum extensorium tibiotarsi (Fig. 9) is a stout 

ligamentous loop that extends between the distal craniolateral and 

craniomedial surfaces of the tibiotarsus, just proximal to and roughly 

parallel with the smaller Pons supratendineus.

M. flexor perforatus digiti IV .  This small muscle is located in the 

crural region between the muscle bellies of Mm. flexor perforans et 

perforatus digiti III and flexor perforatus digiti III. It originates from medial 

and lateral heads, which are separated by the insertion tendon of M. 

iliofibularis. The caudodistal surface of each head consists of a tendinous

59



sheet. These sheets fuse near the midpoint of the tibiotarsus, and taper 

distally to form a flat tendon of insertion which immediately becomes 

ensheathed by the tendon of insertion of M. flexor perforates digiti III.

The medial head arises by fleshy fibres from the popliteal notch and the 

lateral head by tendinous fibres from Condylus lateralis femoris and an 

additional small fleshy slip from the inserting tendon of M. ambiens. The 

tendon of insertion remains ensheathed through the common canal in 

Cartilago tibialis, and through the Fossa parahypotarsalis lateralis, before 

separating again in the proximal tarsometatarsal region. It then descends 

as a free tendon along the plantar surface of the tarsometatarsus, along 

with other flexor tendons, down to the digits. After this separation, the 

tendon of M. flexor perforates digiti III is joined by a branch of the tendon 

of insertion of M. fibularis long us.

At the level of the metatarsophalangeal joint of digit IV, this tendon, like 

other flexor tendons in this area,increases in size to ensheath the small 

tendon of insertion of M. flexor digitorum longus (branch to the fourth digit). 

The two tendons run through a deep sulcus in the Ligamentum plantaris 

located across this joint, ensheathed by a fibrous sheath stretching across 

the sulcus in a similar manner to that of digit III. The inserting tendon 

continues its plantar course before giving off axial and abaxial branches 

over the proximoplantar end of phalanges I and II of digit four, before 

bifurcating and being perforated by the inserting tendon of M. flexor 

digitorum longus

M. flexor perforates digiti I I I . This large muscle of the caudal crural 

region consists of two widely separated bellies, femoral and distal. The 

femoral belly arises by a short tendon from the proximocaudal 

intercondylar region of the femur, distal to the origin of the medial head of
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M. flexor perforatus digiti IV. The distal belly arises by a fleshy attachment 

from the inserting tendon of M. ambiens, and by a long tendon from the 

ligamentous material covering the head of the fibula. The bulky femoral 

belly extends distally along the proximal three quarters of the mediocaudal 

crus. The smaller distal belly lies deep in the laterocaudal crus, medial to 

the lateral head of M. flexor perforatus digiti IV. The laterocaudal surface of 

the distal belly is indented by the inserting tendon of M. flexor perforatus 

digiti IV.

Distally, each belly continues as a short tendon; these join to form the large 

tendon of insertion. This inserting tendon passes distally, ensheathing the 

inserting tendon of M. flexor perforatus digiti IV, through the common canal 

in Cartilago tibialis (Fig. 18) and through the Fossa parahypotarsalis 

lateralis , before separating from the inserting tendon of M. flexor perforatus 

digiti IV. After this separation, the tendon of M. flexor perforatus digiti III is 

joined by a branch of the tendon of insertion of M. fibularis longus in the 

proximal tarsometatarsal region (Fig. 13), after which it continues distally 

along the plantar surface of the tarsometatarsus before getting connected 

by a short vinculum to the tendon of M. flexor perforans et perforatus digiti 

III in the distoplantar third of the tarsometatarsus. It increases in size, and 

together with the other flexor tendons to the third digit, runs through a deep 

sulcus in the L igamentum p lan ta r is  located across the 

metatarsophalangeal joint, where it is ensheathed by the fibrous flexor 

sheaths that stretch across the sulcus. The insertion tendon then bifurcates 

and is perforated by the inserting tendons of M. flexor perforans et 

perforatus digiti III and M. flexor digitorum longus near the proximoplantar 

end of phalanx I of digit III, the lateral and medial branches of the tendon 

then attaching to the lateroplantar and medioplantar surfaces respectively 

of the Ligamentum plantaris lying plantar to the first interphalangeal joint 

of digit III.
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Figure 12. Lateral view of the deeper muscle layer of the distal pelvic 

limb of Struthio camelus. Mm. gastrocnemius and fibularis longus have 

been removed.

1. M. flexor perforatus digiti III
2. M. flexor perforatus digiti IV
3. M. tibialis cranialis

4. M. flexor perforans et perforatus digiti III

CT= Cartilago tibialis
RET= Retinaculum extensorium tibiotarsi
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4.3.3 Deepest layer (Fig. 14)

M. extensor digitorum  longus. The bipinnate elongated belly of this 

muscle lies deep to M. tibialis cranialis and is the deepest muscle on the 

cranial surface of the crus. This muscle has an extensive fleshy origin, 

deep to the belly and origin of M. tibialis cranialis, from the lateral surface 

of Crista cnemialis medialis and the distal end of Crista cnemialis lateralis. 

The tendon of insertion takes a distal course, deep to the tendon of M. 

tibialis cranialis, under the Retinaculum extensorium tibiotarsi and Pons 

supratendineus. It continues through the Incisura intercondylaris and 

crosses the intertarsal joint cranially, to continue distally along the cranial 

surface of the tarsometatarsus. In the distal tarsometatarsal region the 

tendon of M. extensor digitorum longus bifurcates. The bigger branch runs 

distally over the dorsal surface of digit III to insert via laxial, abaxial and 

dorsal bands onto the first phalanx.

The smaller branch continues in the direction of the fourth digit but 

bifurcates again before passing over the first phalanx; one resultant branch 

continues distally to insert on all the phalanges of the fourth digit, while the 

other branch crosses over to the third digit where it has strong attachments 

dorsally to the second, third and fourth phalanges, but has a primary 

insertion on the fourth phalanx of the third digit.

M . flexor digitorum lo n g u s . The flat bipinnate belly of this deep muscle 

lies on the proximal three-quarters of the caudal surface of the tibiotarsus, 

deep to M. flexor perforatus digiti III and at the same level as the small 

fusiform belly of M. flexor hallucis longus. Proximally the belly consists of 

two closely apposed small heads, a lateral head arising by fleshy fibres 

from the caudal surface of the head and proximal shaft of the fibula, and a 

smaller medial head arising by fleshy fibres from the proximocaudal region
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of the shaft of the tibiotarsus. The fleshy origin of the muscle extends 

distally to the midpoint of the caudal surface of the tibiotarsus.

The tendon of insertion that arises from the tapering muscle belly passes 

distally, along the crus, deep to tendon of insertion of M. flexor hallucis 

longus,  through a separate medial canal in the Cartilago tibialis. It 

continues distally as the only tendon that runs through the Fossa  

parahypotarsalis medialis, where it remains covered by the broad sheath 

of the inserting tendon of M. gastrocnemius. It continues along the plantar 

aspect of the tarsometatarsus, to fuse with the inserting tendon of M. flexor 

hallucis longus in the proximal tarsometatarsal region. The resulting 

common tendon continues its plantar course distally, along with other 

flexor tendons, towards the two digits.

Near the distal end of the tarsometatarsus, this common tendon of insertion 

bifurcates to send a branch to each digit. The branches to these digits 

perforate the appropriate long digital flexor tendons, as previously 

described, and then each branch continues distally along the plantar 

surface of the appropriate digit. A short fibro-elastic slip passes from the 

branch to digit III to attach to the proximoplantar surface of the Ligamentum 

plantaris of the second interphalangeal joint. Each main branch continues 

distally and bifurcates before inserting upon the proximoplantar surface of 

the ungual phalanx (phalanx distalis).

M. flexor hallucis longus. This is one of the muscles that lie on the 

caudal surface of the crus. It is a relatively small-bellied fusiform muscle 

lying caudal to M. flexor digitorum longus and having a fleshy origin from 

the intercondyloid area of the femur. The small belly tapers into a flat 

tendon of insertion which runs distally along the distal half of the large 

muscle belly of M. flexor digitorum longus. Its tendon of insertion passes
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distally through a separate lateral canal in Cartilago tibialis (Fig.18) and 

then through the Fossa parahypotarsalis lateralis. After passing through 

this groove, the tendon takes a diagonal course from lateral to medial, to 

fuse with the tendon of M. flexor digitorum longus in the proximal 

tarsometatarsal region.

M. extensor proprius digiti III (Fig. 9 and 14). This tiny muscle arises 

from the dorsal surface of the proximal quarter of the tarsometatarsus. Its 

fleshy fibres originate from between the two short tendons of insertion of M. 

tibialis cranialis, with additional small tendinous fibres originating from the 

fibrous joint capsule of the intertarsal joint. The small muscle belly is 

restricted to the proximal quarter of the tarsometatarsus. The slender 

tendon of insertion runs distally alongside the tendon of M. extensor 

digitorum longus, before following the latter’s branch to the third digit. It 

passes dorsally over the first phalanx, sends minor fibrous attachments to 

the dorsal surfaces of the first three phalanges, then fans out dorsally to its 

main point of insertion on the proximal end of the fourth phalanx.

M. adductor digiti IV  (Fig. 14). This very small muscle is composed of 

two muscle bellies situated on the plantolateral surface of the 

tarsometatarsus. The proximal belly is located deep to the flexor tendon 

bundle, just distal to the intertarsal joint; the distal belly is located in the 

distal third of the tarsometatarsus. It has fleshy points of origin and insertion 

within this region of the tarsometatarsus with both muscle bellies being 

connected by a fibrous aponeurotic sheet.

M. extensor brevis digiti IV  (Fig. 14). This very small muscle has a 

fleshy origin from the distal third of the dorsolateral surface of the 

tarsometatarsus. The tendon of insertion passes through a bony canal 

(Canalis interosseus tendineus) between the Trochleae metatarsi III and
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IV  to insert on the axial surface of the base of the proximal phalanx of digiti 

IV.

M. extensor brevis digiti Hi. This is a tiny, poorly-developed fan

shaped muscle located on the distal quarter of the dorsal surface of the 

tarsometatarsus, deep to the tendon of insertion of M. extensor digitorum 

longus. It originates from tendinous fibres arising from the distodorsal 

quarter of the tarsometatarsus, near the Trochlea metatarsi III. A broad flat 

tendon of insertion is incorporated into the Capsula articularis of the 

metatarsophalangeal joint of digit III, whilst a few other tendinous fibres 

can be seen to insert upon the proximal dorsal surface of the first phalanx 

of digit III.

M  lumbricalis (Fig. 10). This muscle is situated dorsal (deep) to the 

bifurcation of the inserting tendon of M. flexor digitorum longus. The muscle 

originates over a short distance by means of fleshy fibres arising directly 

from the dorsal surface of the inserting tendon of M. flexor digitorum 

longus. These fibres run distally towards digits III and IV, to insert directly 

upon the proximal region of the Ligamentum plantaris across the 

metatarsophalangeal joints of both digits.

M. popliteus. This is a very small, deep-lying muscle situated on the 

proximal end of the caudal surface of the tibiotarsus, deep to the proximal 

portion of the belly of M. flexor hallucis longus. It is represented primarily by 

an aponeurotic sheet carrying only a few grossly visible muscle fibres 

running between the proximal tip of the fibula and the tibiotarsus. Given its 

small size, it can easily be missed in dissection.

Digital check apparatus. A special, apparently previously undescribed 

group of ligaments is located on the plantar aspect of the foot. These
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ligaments form a network originating from the Pulvinus metatarsalis and 

spreading out in a radiating pattern as shown in Fig. 15. This network is 

composed of the Ligamentum abaxiale digiti Hi and Ligamentum axiale 

digiti III, Ligamentum axiale digiti IV, a reduced Ligamentum abaxiale digiti 

IV, and Ligamentum interdigitale digiti III et IV  in the Tela interdigitalis 

connection between the two digits. Because such a network of ligaments 

does not appear to have been described before, it seemed appropriate to 

refer to it as the digital check apparatus and assign names to its 

component parts, as noted above.

L
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Figure 13. Lateral aspect of the tarsometatarsal region of S tru th io  

camelus showing various tendons.

1. Tendon of M. flexor perforans et perforatus
digiti III

2. Tendon of M. flexor perforatus digiti IV
3. Tendon of M. flexor perforatus digiti III
4. Tendon of M. fibularis longus
5. Co-joined tendons of Mm. flexor hallucis

longus and M. flexor digitorum longus.
6. Tendons of Mm. extensor digitorum longus

and extensor proprius digiti III.

CT= Cartilago tibialis
Note: The joining of 3 and 4._________________
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Figure 14. Dorsoabaxia! view of Struthio camelus foot (1) and 

crural region (2) showing deepest muscles, tendons and 

ligaments.

1. M. extensor digitorum longus

1a. Tendon of M. extensor digitorum longus

2. M. extensor proprius digiti III

3. M. extensor brevis digiti IV

4. M. extensor brevis digiti III

5 Plantar ligament of metatarsophalangeal 

joint

6. Tendon of M. flexor perforatus digiti IV

7. M. flexor digitorum longus

7a. Tendon of M. flexor digitorum longus

8. Tendon of M. flexor perforatus digiti III

9. Tendon of M. flexor perforans et perforatus

digiti III

10 Ligamentous band from plantar ligament of 

metatarsophalangeal joint

11. Interphalangeal plantar ligaments

12. M. femorotibialis

13. M. iliofibularis

14. Loop of M. biceps femoris

15. M. flexor hallucis longus

T= Tibiotarsus

TM= Tarsometatarsus

CT= Cartilago tibialis

RET= Retinaculum extensorium tibiotarsi
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Figure 15. Plantar aspect of Struthio cam elus  foot with the digital 
cushions removed to show the pattern of insertion of flexor tendons and the 
digital check apparatus._____________________

1. Plantar ligament of metatarsophalangeal
joint

2. Plantar ligament of interphalangeal joint
3. Tendon of M. flexor perforatus digiti III
4. Tendon of M. flexor perforans et perforatus

digiti III
5. Tendon of M. flexor perforatus digiti IV
6. Tendon of M. flexor digitorum longus
7. Pulvinus metatarsalis*
8. Ligamentum abaxiale digiti III*
9. Ligamentum axiale digiti III*
10. Ligamentum abaxiale digiti IV*
11. Ligamentum axiale digiti IV*

9

12. Ligamentum interdigitale digiti III et IV*
* These structures comprise the digital check 
apparatus._________________________________
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4.4  N O R M A L U L T R A S O N O G R A P H IC  AND D E S C R IP T IV E  

TOPOGRAPHIC ANATOMY OF THE DISTAL PELVIC LIMB OF 

THE OSTRICH

A thorough knowledge of the normal gross topographical anatomy of the 

muscular, tendinous and ligamentous structures of the distal pelvic limb of 

the ostrich is essential for the interpretation of ultrasonographs of this 

region. In the ostrich each tendinous or ligamentous structure being 

observed had its own characteristic appearance which changed from 

origin to inserion. In this study, such structures were identified and 

described at each of the eight referral sites noted in Chapter 3.

The ultrasonographic anatomy of normal tendon is reviewed first because 

tendons constitute the bulk of the soft tissues in the distal pelvic limb of the 

ostrich and their echogenicity is based on their histologic structure. 

Furthermore, the common problems of ostrich legs appear to be tendon- 

related. Reference is also made to mammalian tendon studies, as these 

have received considerably more attention than their ostrich counterparts, 

and there appears to be a basic similarity in the structure and function of 

most vertebrate tendons.

Generally, tendons are composed of thick, closely packed parallel bundles 

of longitudinally-oriented submicroscopic collagen fibrils (Evans and 

Barbenel, 1975; Dyson, 1994). Fibroblasts (tenoblasts) are arranged in 

long parallel rows in the spaces between the collagenous bundles. The 

aggregation of collagen fibrils within a tendon or ligament is variable, but it 

is reasonable to consider the principal unit of tendon structure to be the 

coherent bundle of collagen fibrils lying between the fibroblasts (Elliot, 

1965; Evans and Barbenel, 1975). These primary bundles group into
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secondary bundles or fascicles, and these, in turn, are aggregated into 

larger tertiary tendon bundles. Tendon fibroblasts do not contribute 

clinically to tendon strength, but their viability is of paramount importance to 

the maintainance of this strength. Tendon, being a dynamic structure, is 

capable of renewing its collagen; as fibrils are broken down, the fibroblasts 

replace them.

There are a number of physical factors that affect the ultrasonographic 

appearance of tendons. The amount of sound wave reflected back to a 

transducer is an individual characteristic of each type of tissue, and is 

related not only to its acoustic impedance but also to the physical 

organisation of the tissue. The acoustic impedance of a tissue is 

determined in part by the density of the tissue. In tendon, tissue density is 

directly related to collagen content. The ultrasonographic effect of the small 

percentage of glycosaminoglycans present in tendon and ligament has yet 

to be evaluated. Studies carried out on bovine flexor tendons show that the 

quantity and type of glycoprotein present varies according to tendon site, 

with slightly higher concentrations being found in regions of increased 

pressure (for example at joints) and slightly lower concentrations being 

found in regions undergoing increased tensional stresses (Vogel and 

Heinegard, 1985). It is to be expected, therefore, that the ultrasonographic 

appearance of any particular tendon will be affected by the tissue density 

(i.e collagen concentration) of that particular tendon.

Tendon echogenicity will also vary markedly with the settings of the various 

image parameters on the ultrasound machine and it is therefore important 

to establish a relatively stable or constant set of image acquisition settings 

in order to reduce the amount of image variability originating from 

fluctuating machine settings.

73



Tendon echogenicity will also vary slightly in normal conditions based on 

the individual characteristics of the tendon. These include the size, its 

depth, the type of tissue surrounding the tendon normally, and any 

pathological conditions in the surrounding tissues. Ultrasonographic 

appearance of tendon varies markedly with the angle of image acquisition,

i.e. the echogenicity of tendon is very angle-dependent, a characteristic 

known as anisotrophy (Crass et al., 1988). An accurate cross-sectional 

image of normal tendon can only be obtained with the transducer held 

perpendicular to the longitudinal axis of the tendon fibres. Similarly, a 

longitudinal scan will only produce an accurate image when the transducer 

is oriented in parallel with the longitudinal axis of the tendon fibres. When 

imaged at obligue angles, the ultrasound image of tendon will have a 

variable degree of artifactually-decreased echogenicity, ranging from near 

normal to an image that is anechoic (Fornage, 1987; Crass et al., 1988).

In cross-section, the ultrasonographic image of ostrich tendon is normally 

composed of a highly echogenic, compact, stippled echopattern (Fig. 16). 

This sonographic appearance reflects the compact longitudinal orientation 

of the collagen fibre bundles. A longitudinal evaluation shows an image of 

the linear organisation of the tendon fibres. Multiple closely-aligned, highly 

echogenic lines, parallel to the longitudinal axis of the tendon, are seen. 

This appearance is typically described as a "fibrillar" ultrasonographic 

texture (Fornage and Rifkin, 1988; Kaplan etal., 1990). The peritendinous 

sheath appears as a thin highly echogenic line surrounding the tendon.
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Figure 16. Normal ultrasonographic appearance of ostrich tendons. 

Transverse (1) and longitudinal (2) scans. Note the highly echogenic, 

compact, stippled echopattern, and fibrillar appearance, of the tendons (*) 

in transverse and longitudinal scans respectively.
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Level 1 (Fig. 17)

Cross-sectional anatomy. The distal hindlimb muscles and their 

topographical relationships were identified as shown in Fig. 7. The 

muscles identified included the three heads of M. gastrocnemius, M. 

extensor digitorum iongus, the /wo heads of M. tibialis cranialis, M. fibularis 

longus, M. flexor perforans et perforatus digiti III, M. flexor perforatus digiti 

IV, M. flexor perforatus digiti III, M. flexor hallucis longus and M. flexor 

digitorum longus.

Utrasonographic appearance. Due to the presence of feathers in this 

region, ultrasonographic scanning was unsuccessful at this level.
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Figure 17. Frozen transverse section of the distal pelvic limb of Struthio 
camelus. This section corresponds to Level 1 in Fig. 2.

1a. M. gastrocnemius (pars interna)
1b. M. gastrocnemius (pars intermedia) 
1c. M. gastrocnemius (pars externa)
2. M. extensor digitorum longus 

3a. M. tibialis cranialis (caput tibiale)
3b. M. tibialis cranialis (caput femorale)
4. M. fibularis longus
5. M. flexor perforans et perforatus digiti III
6. M. Flexor perforatus digiti IV
7. M. flexor perforatus digiti III
8. M. flexor hallucis longus
9. M. flexor digitorum longus
10. Feathered skin

T= Tibiotarsus 
F= Fibula
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Level 2

Cross-sectional anatomy (Fig. 18). The tibial cartilage is pierced by 

three flexor tendon canals. In adult birds, the largest and measures 

approximately 2 cm in a medial-to-lateral direction and 1 cm in a plantar-to- 

dorsal direction and contains the tendons of insertion of Mm. flexor 

perforatus digiti III, flexor perforatus digiti IV  and flexor perforans et 

perforatus digiti III. The crescent-shaped tendon of flexor perforatus digiti III 

is the largest and surrounds the tendons of Mm. flexor perforatus digiti IV  

(totally) and flexor perforans et perforatus digiti HI (partially). The inserting 

tendon of M. flexor digitorum longus passes through the more medially- 

located canal which measures, in adult birds, approximately 0.6 cm and

0.4 cm across its long and short axes respectively. It is the second largest 

flexor canal in the tibial cartilage. The third and the smallest of the three 

canals is located more centrally. It carries the small tendon of M. flexor 

hallucis longus and measures approximately 0.4 cm and 0.2 cm in its long 

and short axes. Tendo Achilles is seen on the plantar aspect of the 

intertarsal joint as a thick, half moon-shaped collagenous structure. There 

is a very strong fibrous connection between the Tendo Achilles and the 

tibial cartilage, formed by a homogenous intermingling of the fibres of the 

two anatomical structures. This connection is so strong that the two can be 

considered to act as a single functional unit. Laterally and medially, the two 

collateral ligaments can be seen. The medial collateral ligament is better 

developed (bigger) and deeply undercuts the proximal tarsometatarsus at 

its insertion. The small muscle belly of M. extensor proprius digiti III is 

located between the two cranially-placed insertion tendons of M. tibialis 

cranialis themselves located deep to the tendon of M. extensor digitorum 

longus.

Ultrasonographic appearance. Due to the curved surface contour of
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the limb and the highly keratinised callosities in this region, it was 

impossible to get adequate contact or penetration to permit the limb to be 

successfully examined ultrasonographically at this level.
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Figure 18. Frozen transverse section of the distal pelvic limb of Struthio 

camelus . The section corresponds to Level 2 in Fig.2

1. Tendon of M. tibialis cranialis
2. M. extensor proprius digiti III
3. Tendon of M. extensor digitorum longus
4. Ligamentum co lla te ra l mediale, pars longa
5. Ligamentum co lla te ra l laterale, pars longa
6. Tendon of M. flexor digitorum longus
7. Tendon of M. flexor hallucis longus
8. Tendon of M. flexor perforatus digiti III
9. Tendon of M. flexor perforatus digiti IV
10. Tendon of M. flexor perforans et perforatus

digiti III
11. Tendo Achilles
12. Cartilago tibialis

TM= Tarsometatarsus

Note the strong fibrous connection between the 
tendon o f M. gastrocnemius and the Cartilago 
tibialis
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Level 3

Cross-sectional anatomy (Fig. 19A). Here the hypotarsus separates 

the flexor tendons into a medial and a lateral group, with only the tendon of 

M. flexor digitorum longus taking a medial course while the rest of the 

flexor tendons run lateral to the hypotarsus. The tendon of M. flexor 

perforatus digiti III still completely surrounds the tendon of M. perforatus 

digiti IV  while the tendon of M. flexor perforans et perforatus digiti III now 

lies superficial to the tendon of M. flexor perforatus digiti I I I . The sizes and 

shapes of these three tendons remain relatively constant as in the previous 

level.

The long and slender branch of the tendon of M. peroneous longus joins 

the flexor group of tendons in this region. Transversely, this tendon is 

ovoid, with an average diameter of 0.4 cm in adult birds, and it is the most 

laterally situated tendon here. The tendon of M. flexor hallucis longus 

narrows to become a narrow comma-shaped tendon situated deep to the 

rest of the flexor tendons lying lateral to the hypotarsus. Medially only the 

tendon of M. flexor digitorum longus , in close proximity with the medial 

metatarsal vein, is found and its overall size does not increase much, 

although its shape now becomes more ovoid when compared to level 2. 

The Ligamentum co lla te ra l mediate can still be seen at this level 

attaching medially on the tarsometatarsus.

At this level the Tendo Achilles plays an important role as a flexor sheath. 

As well as inserting onto the hypotarsus, it sends two strong collagenous 

sheaths, lateral and medial to the hypotarsus, to envelope and hold down 

the flexor tendon bundles, before attaching also onto the medial and lateral 

surfaces of the tarsometatarsus.
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Dorsally, the tendon of M. extensor digitorum longus is seen lying close to 

the small muscle belly of M. extensor proprius digiti III. Its shape changes 

from a flat tendon (Level 2) to a more ovoid tendon with the longer 

diameter averaging 0.5 cm in adult birds. The dorsal metatarsal vein is also 

seen lying on the dorsal surface close to M. extensor proprius digiti III.

U ltra so n o g rap h ic  appearance (Fig. 19B). Although plantar 

longitudinal scans at this level were unsuccesful due to the scattering 

effects of the ultrasound waves by the highly reflective surface of the 

hypotarsus in this region, transverse scans could be carried out 

successfully. These plantar transverse ultrasonographic scans correlated 

well with the gross cross-sectional specimen. The tendons appeared as 

structures exhibiting a markedly echogenic, compact, stippled echopattern. 

The interfaces of the densely packed collagen fibre bundles were difficult 

to differentiate as there was a homogenous echogenicity within the tendon 

bundle. However, partly due to its position, the tendon of M. flexor 

digitorum longus could be easily identified as a separate echogenic 

structure on the medial aspect of the hypotarsus.
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Figure 19. A frozen transverse section (A) and 

a corresponding transverse ultrasound scan (B) 

of the distal pelvic limb of Struthio camelus at 

Level 3 in Fig. 2

1 Tendon of M. extensor digitorum longus

2. Ligamentum collateral mediale, pars longa

3. Tendon of M. flexor digitorum longus

4. Flexor sheath of flexor tendon bundle

5. Tendon of M. flexor perforans et perforatus digiti III

6. Tendon of M. flexor perforatus digiti IV

7. Tendon of M. flexor perforatus digiti III

8. Tendon of M. fibularis longus

9. Tendon of M. hallucis longus

10. M. extensor proprius digiti III

11. Medial metatarsal vein

HP = Hypotarsus 

SOP= Stand-off pad

TR transducer position_________________________
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S O P  = S T f l t l D - O F F  P O D
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Level 4

Cross-sectional anatomy (Fig. 20). A number of topographic changes 

take place at this level. Firstly, the tendon of M. flexor digitorum longus 

joins the rest of the flexor tendons to form one flexor tendon bundle 

surrounded by a very strong flexor sheath attaching to the medial and 

lateral tarsometatarsal surfaces. The size and shape of the tendon of M. 

flexor digitorum longus remains fairly constant and it is the most deeply 

situated tendon medially. Secondly, the tendon fo M. flexor hallucis longus 

changes shape from being comma-shaped (level 3) to ovoid with an 

average long diameter of 0.3 cm in adult birds. It is the most deeply and 

more centrally located tendon in the bundle. Furthermore, the tendon of M. 

flexor perforatus digiti III no longer surrounds the tendon of M. flexor 

perforatus digiti IV, but instead fuses with the tendon of M. fibularis longus 

to form a somewhat rectangular-shaped tendon measuring 0.4 cm to 0.7 

cm along its long axis and 0.2 to 0.4 cm in its short axis. The superficial 

layer at this level consists of two ovoid tendons of Mm. flexor perforatus 

digiti IV (more on the lateral side) and flexor perforans et perforatus digiti III 

(more on the medial side). These two tendons are approximately of the 

same size (0.3 cm in long diameter) and are tightly apposed to the deeper- 

lying tendon of M. flexor perforatus digiti I I I . Medially, the medial metatarsal 

vein and artery can be seen while dorsally the tendon of M. extensor 

digitorum longus and the small muscle belly of M. extensor proprius digiti III 

still remain as the main anatomical features.

Ultrasonographic appearance. Both transverse (Fig. 21A) and 

longitudinal (Fig. 21B) scans were successful at this level. In transverse 

scans, all the normal tendons appeared homogenous and highly 

echogenic. However, due to the tight apposition of the tendons of Mm.
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flexor perforatus digiti III, flexor perforatus digiti IV, flexor perforans et 

perforatus digiti III, and flexor digitorum longus, individual tendon margins 

for these four tendons were indistinctly defined. On the other hand, the 

tendon margins of the deeply located M. flexor hallucis longus were mostly 

easily recognised due to the fact that this tendon appears very hypoechoic 

when compared with other tendons (Fig. 21). This hypoechogenicity is 

brought about as a result of the transverse course this tendon takes in this 

area before joining the tendon of M. flexor digitorum longus. This displaces 

the fibres from an orientation perpendicular to the ultrasound beam, 

resulting in this unavoidable hypoechoic artifact just before the highly 

echogenic line representing the tarsometatarsus. Plantar longitudinal 

scans revealed tendons that lie within the longitudinal scanning plane; 

such tendons include those of Mm. flexor perforans et perforatus digiti III, 

flexor perforatus digiti III and flexor hallucis longus. These three have a 

typical fibrillar ultrasonographic echotexture in that they appear as highly 

hyperechoic structures within which are multiple closely-aligned, highly 

echogenic parallel lines. The peritendinous sheath appears as a highly 

echogenic line surrounding each tendon. The tendons of Mm. flexor 

digitorum longus and flexor perforatus digiti IV  are not demostrated in the 

presented longitudinal scan. However, shifting the position of the scanning 

head medially and then laterally from the central plantar position reveals 

that these structures have the same ultrasonographic appearance as the 

other tendons.

86



Figure 20. Frozen transverse section of the distal pelvic limb of Struthio 

camelus corresponding to Level 4 in Fig. 2

1. Tendon of M. flexor perforans et perforatus digiti III

2. Tendon of M. flexor perforatus digiti III

3. Tendon of M. flexor hallucis longus

4. Tendon of M. flexor digitorum longus

5. Tendon of M. flexor perforatus digiti IV

6. Tendon of M. extensor digitorum longus

7. M. extensor proprius digiti III

8. Medial metatarsal vein

9. Flexor sheath

TM =Tarsometatarsus

TR =Transducer position_________________________
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Figure 21. Transverse (A) and longitudinal (B) 

ultrasound scans of the distal pelvic limb of Struthio 

camelus corresponding to Level 4 in Fig. 2.

Note the hypoechogenic artifactual appearance 

of the tendon of M  flexor hallucis longus in 

a transverse scan.

1. Tendon of M. flexor perforans et

perforatus digiti III

2. Tendon of M. flexor perforatus digiti III

3. Tendon of M flexor hallucis longus

4. Tendon of M. flexor digitorum longus

TM = Tarsometatarsus
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Level 5

C ross-sectional anatom y (Fig. 22). As the flexor tendon bundle 

approaches the metatarsophalangeal joint, there is an increase in the 

space between the tendon bundle and the tarsometatarsus. This space is 

occupied by metatarsal blood vessels and nerves supplying the foot. The 

tendons of Mm. flexor hallucis longus and flexor digitorum longus join to 

form a single tendon. This conjoined tendon is seen to lie on a deeper 

level to the tendons of Mm. flexor perforans et perforatus digiti III, flexor 

perforatus digiti IV, and flexor perforatus digiti III, and all the tendons are 

tightly bound together by a surrounding flexor sheath with minimal 

amounts of separating connective tissue between individual tendons. A 

tiny muscle belly representing part of the origin of M. adductor digiti IV  can 

be seen lying on the plantolateral aspect of the distal tarsometatarsus. 

Dorsally, the large tendon of M. extensor digitorum longus and the smaller 

tendon of M. extensor proprius digiti III can be seen running close to one 

another. The overall sizes of all these tendons do not vary significantly from 

level 4.

U ltrasonograph ic  appearance. Both transverse (Fig. 23A) and 

longitudinal (Fig. 23B) ultrasound scans were taken. In the transverse 

images the flexor tendon bundle appeared homogenous and highly 

echogenic. Due to the tight binding of the flexor sheath and the presence of 

minimal amounts of connective tissue separating the tendons in the 

bundle, individual tendon boundary visualization (resolution) was poor.

Deep to the flexor tendon bundle lay an anechoic area representing the 

region occupied by blood vessels, nerves and a small muscle belly of M. 

adductor digiti IV. The deepest linear hyperechoic line represents an echo 

from the tarsometatarsus.
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Central longitudinal ultrasound scans clearly showed the two tendons of 

Mm. flexor perforatus digiti III (after joining with the tendon of M. fibularis 

longus) and flexor digitorum longus (after joining with the tendon of M. 

flexor hallucis longus), the latter seen lying at a deeper level to the former. 

These appeared as hyperechoic structures with internal, closely-aligned, 

echogenic parallel lines. The peritendinous sheath appeared as a highly 

echogenic line bordering each tendon. Other tendons were out of the 

central axial view and could only be brought into view after shifting the 

transducer laterally and medially.
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Figure 22. Frozen transverse section of the distal pelvic limb 

cam elus  corresponding to Level 5 in Fig. 2. Note the tight 

these tendons, with very little connective tissue between them.

1. Tendon of M. flexor perforans et perforatus
digiti III

2. Tendon of M. flexor perforatus digiti IV
3. Tendon of M. flexor perforatus digiti III
4. Tendon of M. flexor digitorum longus
5. M. adductor digiti IV

6. Tendon of M. extensor digitorum longus
7. M. extensor proprius digiti III

MVA = Medial metatarsal vein and artery 
TR =Transducer position____________________

of Struthio 

binding of

92



Figure 23. Transverse (A) and longitudinal (B) ultrasound scans of the 
distal pelvic limb of Struthio camelus corresponding to Level 5 in Fig. 2

1. Tendon of M. flexor perforatus digiti III TM =Tarsometarsus
2. Tendon of flexor digitorum longus
3. Flexor tendon bundle
4. Anechoic area with blood vessels and nerves
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Level 6

Cross-sectional anatomy (Fig. 24A). There are a number of noticeable 

anatomic changes that take place in this zone. Generally, there is an 

increase in the size and shape of all the tendons which now take their new 

courses to their respective digits for insertion. The thick crescent-shaped 

fibrocartilagenous plantar ligaments across the two metatarsophalangeal 

joints also appear in this zone. Due to the enormous disparity in the size of 

the two digits, it is not surprising that the plantar ligament across the 

metatarsophalangeal joint for digit III is better developed compared to its 

counterpart associated with digit IV. Lateral and medial collateral ligaments 

associated with this joint are also seen fused with abaxial and axial 

extensions of the plantar ligaments on both digits. The tendon of M. flexor 

digitorum longus splits into two branches, one to each of the digits. The 

branch to digit III is ovoid and lies deep to the tendons of Mm. flexor 

perforatus digiti III and flexor perforans et perforatus digiti HI, while the 

smaller round branch to the fourth digit lies deep to the tendon of M. flexor 

perforatus digiti IV. The tendon of M. flexor perforatus digiti IV  has 

increased in size and changed shape to a round tendon. Like other 

tendons in this zone, the three flexor tendons of the third digit i.e. the 

tendons of Mm. flexor digitorum longus (deep), flexor perforans et 

perforatus digiti III (intermediate) and flexor perforatus digiti III (superficial) 

increase in size and run through a deep sulcus in the plantar ligament 

while being ensheathed by a strong fibrous flexor sheath, the Vaginae 

fibrosae which is an extension of the plantar ligament. The tendons of Mm. 

flexor perforans et perforatus digiti III and flexor perforatus digiti III are 

comma-shaped, whilst the tendon fo M. flexor digitorum longus is oval in 

shape. Traces of muscle fibres of small M. extensor brevis digiti IV  are seen 

inserting on the axial aspect of the proximal phalanx of the fourth digit.
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Ultrasonographic appearance (Fig. 24B) Only transverse ultrasound 

scans could be carried out at this level. Longitudinal scans were successful 

for two main reasons. Firstly, the flexor tendons send branches to their 

respective digits, resulting in a considerable space between the two 

bundles of tendons and making it practically impossible to have one 

central longitudinal scanning plane. Secondly, the concave curvature of 

the foot surface at this level made it impossible to obtain adequate contact 

between the foot surface and the microconvex linear transducer. This 

leaves a transverse scan as the only ideal way of imaging this area, and 

even with transverse scans it is difficult to direct the beam at 90 degrees to 

most tendons at one time. This occasionally results in false 

hypoechogenicity in some tendons. Due to the foregoing reasons, there is 

poor resolution between the anatomic structures of the fourth digit.

Tendons that were clearly imaged on the third digit include the tendons of 

Mm. flexor perforatus digiti ill, flexor perforans et perforatus digiti III and 

flexor digitorum longus. They appeared as half-moon shaped, closely 

opposed, echogenic structures with highly echogenic margins and 

relatively lower internal echogenicity. Due to its deep location, the plantar 

ligament appears as a relatively less echogenic structure deep to the 

tendons. The tendon of M. flexor perforatus digiti IV  was seen as a 

hyperechoic structure, whilst the tendon of M. flexor digitorum longus to the 

fourth digit turned out to be too small to be imaged and distinguished 

separately.
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Figure 24. Frozen transverse section (A) and 
a corresponding transverse ultrasound scan (B) 
of the distal pelvic limb of Struthio camelus.
The point corresponds to Level 6 of Fig. 2

1. Tendon of M. flexor digitorum longus
2. Tendon of M. flexor perforatus digiti IV
3. Tendon of M. flexor perforatus digiti III
4. Tendon of M. flexor perforans et perforatus digiti III
5. Plantar ligament of metatarsophalangeal joint
6. Tendon of M. extensor digitorum longus
7. Tendon of M. extensor proprius digiti III
8. M. adductor digiti IV
9. Vaginae fibrosae

TM= Tarsometatarsus
TR ^Transducer position_________________________
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Level 7

Cross-sectional anatomy (Fig. 25A). On the third digit the tendon of M. 

flexor perforatus digiti III can be seen to split into its axial and abaxiai 

branches ready to insert on the abaxioplantar and axioplantar surfaces of 

the first interphalangeal plantar ligament, whilst the tendons of Mm. flexor 

perforans et perforatus digiti III and flexor digitorum longus continue with 

their distal phalangeal course. These latter two tendons are crescent

shaped with that of M. flexor digitorum longus lying deeper to the tendon of 

M. flexor perforans et perforatus digiti III. Dorsal metatarsal vein and artery 

lie between the two trochleae. Tendons of Mm. flexor perforatus digiti IV  

and flexor digitorum longus (the latter, tiny) are the main structures 

observed on the plantar aspect of digit IV.

Level 8

Cross-sectional anatomy (Fig. 25B). Some of the main features seen 

here include the bilobed digital cushion and the abaxiai and axial digital 

ligaments of this digit which are seen above the digital cushion. The 

tendon of M. flexor perforans et perforatus digiti III divides into its axial and 

abaxiai branches before inserting onto the axial and abaxiai aspects of the 

second interphalangeal joint. The tendon of M. flexor digitorum longus 

continues with its distal phalangeal course.

Simmilar structures in the fourth digit are too small to be readily visualised 

in such a gross cross-sectional study.
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Figure 25. Frozen transverse sections of the distal 

pelvic limb (digits) of Struthio camelus. (A) represents 

Level 7 whilst (B) represents Level 8 in Fig.2

1. Tendon of M. flexor digitorum longus

2. Tendon of M. flexor perforatus digiti IV

3. Tendon of M. flexor perforatus digiti III

4. Tendon of M. flexor perforans et perforatus digiti III

5. Tendon of M. extensor digitorum longus

6. Plantar ligament of metatarsophalangeal joint

7. Ugamentum collateral and joint capsule

8. Digital cushion

9. Ugamentum abaxiale digiti III

10. Ugamentum axiale digiti III____________________
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4.5 PATHOLOGICAL STUDY RESULTS

The seven pairs of deformed limbs were divided into two groups; the 

immature (young birds) birds and the mature birds (aged 2 years and 

above). The common findings were categorised according to the groups. In 

both groups, a clear pattern of lateral rolling or curling of the third digit, with 

the claw pointing medially, emerged in all specimens with rolled toes.

Immature group. These had slight oedema in the subcutaneous tissues 

of the distal pelvic limb with the larger muscle groups (extensor and flexor 

muscles) appearing reddish, although there was no evidence of 

inflammation, regeneration or repair. Gross abnormalities in tendons and 

ligaments were confirned to the foot, being seen only in areas around and 

distal to the metatarsophalangeal joints; no gross lesions were observed 

proximal to the metatarsophalangeal joints. The most frequent findings 

were of stretched and partially or completely ruptured flexor tendons, and 

of laxity of the collateral ligaments of the interphalangeal joints resulting, in 

most specimens, in the subluxation and loss of congruency of these joints. 

Conversely, the articular cartilage and plantar ligaments associated with 

these joints were still intact with no signs of either erosion or degeneration. 

The bony components (tibiotarsus, tarsometatarsus and phalanges) as 

well as the intertarsal and metatarsophalangeal joints, were normal.

Radiological findings (Fig. 26). The radiographic appearance of the 

intertarsal joint required careful consideration. In young or immature ratites, 

the radiographs gave an impression of osseous epiphyses contrary to the 

normal cartilaginous epiphyses usually seen in the long bones in all birds. 

What appear to be osseous epiphyses are, in fact, the proximal row of 

tarsal bones fusing with the tibia and the distal row fusing with the
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metatarsus.

Dorsoplantar radiographs showed no significant abnormal findings but the 

lateral radiographs revealed a lateral rotation of the phalanges about the 

long axis of the digit, with the first interphalangeal joint acting as the major 

centre of rotation. Such a rotation usually involves the third digit; the fourth 

digit is similarly affected, but follows prior involvement of the third digit. This 

rotation changes the orientation of individual phalanges in relation to one 

another and is observed radiographically as a loss of symmetry in each 

one of these phalanges when compared with those of the normal limbs. 

There were no significant differences in bone opacity between normal and 

abnormal limbs. The metatarsophalangeal joints remained stable in these 

immature cases.
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Figure 26. Lateral radiograph of the distal left pelvic limbs of 48 day-old 
ostrich chicks. Rolled(A) and normal third digit (B). The rotation in A is seen 

as a loss of symmetry of the phalanges. Arrow heads indicate tarsal bones 
fusing to the tibia and metatarsus.
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Mature group. As in the case of the immature group, no significant 

abnormal changes were seen in tendons and ligaments in the area 

proximal to the metatarsophalangeal joint however. Signs of degeneration 

of soft tissues were invariably observed around the metatarsophalangeal 

joint. Here, the flexor sheath had ruptured and degenerated in a few places 

(Fig. 27). As a result of this, the flexor sheath was unable to restrain the 

bundle of flexor tendons. The topographical relationships of these tendons 

were seen to present a distrupted appearance (compare Figs. 22 and 27). 

The area between the flexor tendon bundle and the distal tarsometatarsus 

initially occupied by blood vessels (Fig. 27) was now occupied by a mass 

of fibrous tissue that compressed and pushed the blood vessels medially. 

Other pathological changes included the loss of congruency between the 

deep surfaces of the plantar ligaments and their corresponding grooves on 

the trochleae due to the massive deposition of fibrous connective tissue in 

this area. This served to remove the sockets of reception for the heads of 

the trochleae, leading to very restricted movements of the 

metarsophalangeal joints. Although generally thickened, the joint capsule 

showed areas of degeneration and had ruptured in several places, 

allowing the leakage of synovial fluid into the surrounding tissues. Lateral 

collateral ligaments across the metatarsophalangeal joints had avulsed 

from their proximal (trochlea) attachments and partially degenerated. While 

running through the flexor groove of the plantar ligaments, the flexor 

tendons regained their normal topographical relationships, although their 

individual strength appeared to be reduced due to some fibre rupture and 

degeneration within them. Both extensor tendons increased in size and 

underwent ossification close to their points of osteophytic attachment 

(Fig. 28). Osteophytes or abnormal bony outgrowths were commonly 

observed at the sites of ligamentous or tendinous attachments. Regardless 

of all the pathological changes in this area, the metatarsophalangeal joint 

remained reasonably stabilised by the remaining plantar ligaments.
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Osteophytes or bony spurs were also observed growing between the 

trochleae. They are produced by the resulting abnormal tendinous or 

ligamentous traction.

Within the digits, there was a widespread degeneration of flexor tendons, 

plantar and collateral ligaments, and joints, accompanied by massive 

fibrous tissue deposition in the areas of digital pressure (Fig. 28), resulting 

from the shift in the pressure surface from the normal plantar surface (with 

digital cushion pads) to the lateral surface in line with phalangeal rotation. 

The degeneration of the major joint restraints resulted in subluxation and 

loss of joint congruity in all the interphalangeal joints. The articular 

surfaces of these joints became grossly disrupted, with subsequent 

cartilage loss and abnormal surface contouring. Marginal osteophytes 

were formed at points of tendon attachments on the dorsal, axial and 

abaxiai sides of the phalanges, remodelling the tuberculum extensorium 

into exhibiting sharp, cranially-projecting tuberculum extensorium. No 

osteophytes were observed at the plantar (flexor) tendon attachments on 

the phalanges.
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Figure 27. Frozen transverse section of the distal pelvic limb of an adult 

Struthio camelus with a rotated toe, corresponding to Level 5 in Fig. 2.

1. Ruptured flexor sheath

2. Medial metatarsal vein and artery

3. Aggregated fibrous tissue

4. Tendon of M. flexor perforatus digiti III

5. Tendon of M. flexor perforatus digiti IV

6. Tendon of M. flexor perforans et perforatus digiti III

7. Tendon of M. flexor digitorum longus

8. M. adductor digiti IV_____________________________________________
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Figure 28. Frozen transverse section of the distal pelvic limb of an adult 

Struthio camelus with a rotated toe, taken at Level 7 in Fig. 2 (compare 

with Fig. 25A)

1. Tendon of M. flexor perforatus digiti III
2. Tendon of M. flexor perforans et perforatus digiti III
3. Tendon of M. flexor digitorum longus
4. Tendon of M. flexor perforatus digiti IV
5. Ossified tendon of M. extensor digitorum longus
6. Plantar ligament of metatarsophalangeal joint

7. Aggregated fibrous tissue
8. Digital blood vessels

Note the displacem ent of the plantar ligament of the 
metatarsophalangeal joint of digit IV________________________
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Radiological findings : The abaxio-axial view showed an increase in 

radiopacity on the distal axial and abaxiai aspects of the phalanges, 

indicating the locations of the marginal osteophytes. The tuberculum  

extensorium of the phalanges were remodelled and appeared as sharp 

cranially-pointing spurs (Fig. 29). Dorsoplantar views revealed a general 

increase in the joint spaces, a slight loss of congruity in the 

metatarsophalangeal joints, and a luxation of the interphalangeal joints 

coupled with a lateral rotation of the toes, with the first, and most severely 

affected, interphalangeal joint acting as the centre of rotation (Fig. 31). 

There were no significant differences in bone opacity between the normal 

and abnormal specimens.

Preliminary estimates of bone torsion in both the tarsometatarsus and first 

phalanx were made by comparing the angle of deviation between the 

transverse axis of the proximal articular surface (taken as the standard 

reference point) with that of the distal articular surface. These revealed a 

common abaxiai rotation in each of the two bones (Fig. 30). The most 

severely rotated tarsometatarsus had a distal abaxiai rotation of 

approximately 30 degrees (as measured with a protractor), whilst the first 

phalanx of digit III was the most severely rotated with an abaxiai rotation of 

approximately 35 degrees.

108



Figure 29. Tarsometatarsus and phalanges from an adult ostrich with a 

rotated tarsometatarsus and rolled toes. Arrow heads show areas of 

osteophyte form ation. Note the abaxiai rotation of the dista l 

tarsometatarsus (A) and the first phalanx of digit III (B), and the 

remodelling of the tuberculum extensorium into sharp spurs (curved 

arrows).
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Figure 30. Normal (A) and rotated (B) tarsometatarsus and first phalanx 

of an adult ostrich. Note the angle of abaxial rotation of the distal parts of 

the bones from an affected limb.
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Figure 31. Dorsoplantar radiograph of rotated (A) and normal (B) toes 

of two different adult ostriches. Note the increase in the joint spaces 

(arrows) and the lateral rotation of the toe, centred on the first 

interphalangeal joint, in the affected bird. The metatarsophalangeal joint 

remains stable, whilst the first phalanx is seen to have rotated abaxially. 

(arrow heads).
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CHAPTER 5

DISCUSSION
5.1 OSTEOLOGY

Phylogenetic aspects of distal pelvic limb osteology in the 

ostrich. A number of the osteological features of the pelvic limb of the 

Ostrich described in this study confirm those described by Cracraft (1974), 

who considered them to represent both a major morphological 

advancement over more primitive ratites [such as the extant tinamous 

(Tinamidae) and kiwis (Apterygidae) ] and a strong argument for the 

monophyletic origin of the super family Struthionoidea. Such features 

include the greatly enlarged Crista cnemialis medialis of the tibiotarsus, the 

development of the Epicondylus medialis tibialis, the deepening and 

lengthening of the cranial tarsometatarsal groove, and the development of 

the centrally located hypotarsus with its plantar surface being marked by 

the Fossae parahypotarsaiis lateralis and medialis. In addition, certain 

osteological features noted in this study are, as Cracraft (1974) suggested, 

indicative of the closer lineal relationship within the Struthionoidea, 

between the ostriches (Struthionidae) and rheas (Rheidae) rather than 

between these families and the emus (Dromaiidae) and cassowaries 

(Casuariidae). Such features include the flattened and caudally-prominent 

raised lateral condyle of the tibiotarsus, the very pronounced lateromedial 

constriction of the cnemial crest bases, the very marked cranial and very 

slightly proximal projection of the Crista cnemialis medialis, the great 

reduction to a knob like process of the Crista cnemialis lateralis ; the 

incomplete ossification (in the ostrich) of the supratendinal bridge (it is still 

present, but very poorly developed in rheas), and the lateral displacement 

of a single large, long hypotarsal ridge, with the concomitant loss of the 

intercotylar prominence.
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Cnemial crests. The characteristically enlarged Crista cnemialis 

medialis and the smaller knob-like Crista cnemialis lateralis represent a 

functional osteological feature peculiar to the ostrich. The former provides 

Mm. gastrocnemius pars interna, tibialis cranialis, fibularis longus and 

extensor digitorum longus with a much wider area of origin, thereby 

increasing the forces generated on flexing the intertarsal joint. This unique 

development of the crests is possibly related to the ostrich's propensity for 

fast running and strong forward kicking ability. Diving birds such as auks 

and cormorants have a similar adaptation of the cnemial crests in the 

tibiotarsus, although in these cases both crests are enlarged for the 

attachment of similar muscles which provide for a powerful underwater 

forward stroke during swimming (Raikow, 1970; Owre, 1967; Wilcox, 1952). 

Pons supratendineus (supratendinal bridge). This bridge, which 

appears to represent another important functional osteological feature, is 

located at the cranial distal extremity of the tibiotarsus and does not ossify 

completely in the ostrich. In other avian species such a bridge is primarily a 

tendinous structure in young birds but ossifies in the adult to form a 

complete bony bridge (Baumel, 1979). As noted in the results, in the ostrich 

it has tendinous and osseus components even in mature birds. The slight 

flexibility exhibited by the more extensive tendinous component would 

appear to be a design that allows for a slight extension of the bridge 

whenever subjected to the tensile forces exerted by the substantial tendon 

of M. cranialis tibialis , the latter passing under this bridge before its 

insertion on the proximal dorsal surface of the tarsometatarsus. It is 

reasonable to assume a similar construction of this bridge in diving birds, 

which have been observed to have some similar adaptations with the 

ostrich in the hind limb, although this does not not yet appear to have been 

studied.

Phalanges. Phalanges are relatively small bony structures in the ostrich 

but serve a very important role as final points of insertion for tendons of
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muscles of the distal pelvic limb transmitting muscle forces down the limb. 

In order to fulfil this role, individual phalanges in the ostrich have 

developed lateral extensions, Tuberculae medialis and lateralis on their 

distal proximities, to provide wider and more stable areas of insertion for 

the tendons onto the phalanges. Although digit III is composed of four 

phalanges, this study has clearly shown the presence of a terminal (fifth) 

phalanx within digit IV contrary to an earlier report by Fowler (1991 ) who 

noted only four phalanges in this digit. This fifth phalanx is poorly 

developed and seen as a minute round bone, easily overlooked during 

routine dissections. Careful examination, either by dissection or by 

radiography, however, would confirm its presence, an important point to be 

observed as it is in danger of being widely considered that the ostrich is the 

only bird to possess a fourth digit composed of four phalanges only 

(Fowler, 1991)

5.2 DISTAL PELVIC LIMB MUSCULATURE

Generally the muscles, tendons and ligaments in this part of the pelvic limb 

are well developed, as might be expected given that the ostrich depends 

heavily on the pelvic limb for survival and to support body weights of as 

much as 160 kg (Sanft, 1972; Mallet, 1994). Indeed, Alexander et al. 

(1979) have noted that the principal muscles of the crural region in the 

ostrich are some three times the mass (assessed as a percentage of body 

weight) of the corresponding muscles of the antelope, although the 

comparatively longer individual muscle fibres in the ostrich exert slightly 

less force than in the antelope. A total of fifteen muscles were identified in 

this study while the following muscles, generally found in birds (Getty, 

1975; Van Berge, 1979), were absent; M. plantaris, M. extensor hallucis 

longus, M. extensor hallucis brevis, M. flexor hallucis brevis, M. abductor 

digit II, M. flexor phalangis secundi digiti III, M. abductor digiti IV  and M.
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fibularis brevis. This reduction in the total number of muscles is basically 

due to the absence of digits I and II in the ostrich.

M. cranialis tibialis. Like most muscles of the pelvic limb in the ostrich, 

this muscle is well developed. Its stout tendon of insertion appears to differ 

morphologically from that in other avian species in that it increases in size 

substantially as it crosses the cranial aspect of the intertarsal joint before 

splitting into two short tendons at its point of insertion on the 

tarsometatarsus. The small M. extensor proprius digiti III originates 

between these two tendons. It appears reasonable to assume that these 

two insertion points give this muscle, a major flexor of the intertarsal joint, a 

broader and more stable insertion point, while the enlarged segment of the 

tendon across the intertarsal joint helps to stabilise this joint cranially.

M. flexor hallucis longus. It is surprising to note the presence of this 

muscle despite the absence of the hallux (digit I) in the ostrich. The 

relationship between the tendon of this muscle and that of M. flexor 

digitorum longus , the tendons of the two muscles joining in the proximal 

tarsometarsal region, was noted in birds by Gadow (1896), who described 

and listed eight different configurations or groups for these conjoined 

tendons. Berger (1960) greatly extended these observations into other 

avian species and also described the existence of the eight groups of 

conjoined tendons in birds. These groups are customarily known as the 

Gadow tendon distribution pattern types. In this study however, it has been 

shown that the ostrich does not fit into any of the established Gadow 

patterns, due to the absence of the hallux. It is now necessary, therefore, to 

include an additional ninth pattern to represent this species. This pattern 

would show complete fusion of these two tendons with the resultant 

conjoined flexor tendon inserting only onto the present third and fourth 

digits.

M. fibularis brevis. The present study failed to confirm the presence of 

M. fibularis brevis in the ostrich leg, and therefore could not support the
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assertions of Pavaux and Lignereux (1995) concerning the presence of 

this muscle. Although the present study demonstrated a very small, 

relatively insubstantial ligamentous structure laterally transversing the 

intertarsal joint and occupying the site at which M. fibularis brevis would be 

expected to be found, no evidence for the presence of muscle tissue in this 

structure could be seen on gross examination. It therefore seemed 

apparent that this structure was incapable of undertaking any type of 

muscular activity and it must surely be dubious to list it as M. fibularis 

brevis, a functional muscle, as Pavaux and Lignereux appear to have 

done. On the other hand, Berger (1960) reported the absence of M. 

fibularis brevis in ratites generally, except for Apteryx, and made no 

mention of the remnant of this muscle in the ostrich. The author's views 

about this ligamentous structure is that it is, based on its position and 

orientation, probably a functionless remnant of M. fibularis brevis.

5.3 FUNCTIONAL MORPHOLOGY

The ostrich limbs would be very inadequate and ineffectual structures for 

withstanding gravitational forces if their ability to sustain, balance and 

transmit the stresses of the body weight was not supplied by their various 

components (bones, cartilage, ligaments and tendons).

5.3.1 Joint stability

In birds such as ostriches with long legs, a reduced number of toes 

(decreased area of the foot surface) and relatively short toes, the 

tibiotarsus and tarsometatarsus must be nearly equal in length in order for 

the centre of gravity to remain over the toes while the bird is settling on the 

ground or getting up (Storer, 1960). In addition to this, the pelvic limb joints 

must be fairly stable. The stability created by these joints will ensure the 

provision of a strong support and good platform by the leg and feet 

respectively. The stability of these joints depends on the various structures
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that make up each joint, as well as the associated muscular mechanisms, 

coupled with forces such as stresses of body weight. Any failure in any of 

the joint architectural components, normal muscle mechanisms or inability 

to stabilise the stresses of body weight on the feet (base) is likely to result 

in a malformation or instability of these joints e.g. rolled toes in young birds. 

Contraction of extensor and flexor muscles to tighten their tendons and 

binding of the joints by ligaments and joint capsules all contribute towards 

normal stable joints.

Stabilizing features of the intertarsal joint. The medial deviation of 

each intertarsal joint ("knocked-kneed" design) results in the unequal 

distribution of gravitational and locomotory forces over this joint. In order to 

counteract these forces, a number of specialised features were observed, 

including the more substantial development of Ligamentum col I ate rale 

mediale (pars lortga and brevis). This is located on the longer, medial, and 

convex curvature of this joint and could therefore be expected to receive 

more tensile stresses compared with the less developed Ligamentum  

collateral laterale located on the shorter, lateral concave curvature. The 

lateral aspect of this joint, however, could be expected to receive a higher 

compressional force compared with the medial aspect; the presence of the 

single observed lateral meniscus could therefore act to absorb these 

compressional forces (and thus prevent excessive wear) between the two 

opposing joint surfaces. In addition to these primary joint restraints, the 

stability of this joint may be assisted on its plantar aspect by Cartilago 

tibialis together with the flexor tendon bundle in a very organised manner 

so as to offer maximum functional stability to this joint. This is achieved by 

means of the strength of the observed fibrous connection between 

Cartilago tibialis and the overlying tendon of M. gastrocnemius. The 

resultant integrated arrangement of these structures achieves a united 

stabilising functional unit on the plantar aspect of this joint such that, in 

ostriches, cases of "slipped gastrocnemius" tendon (pers. obs.) involve all
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the above mentioned structures being displaced from the plantar aspect of 

this joint as a unit, and not just the gastrocnemius tendon itself, as seen in 

other avian species, especially domestic fowl.

S ta b iliz in g  fe a tu re s  of th e  m e ta ta rs o p h a la n g e a l and  

in te r p h a la n g e a l Jo in t. During walking or running, the 

metatarsophalangeal joint is raised on and off the ground. Alexander 

(1985), in his investigation of stresses acting in the ostrich leg, found that 

with a minimum duty factor (the fraction of the duration of the stride for 

which the feet are on the ground ) of 0.29, a peak force of 2.7 times body 

weight acted on the foot of the ostrich. Most of this force is transmitted 

through the metatarsophalangeal joint down the digits to act vertically half 

way along the principal toe. Given the role played by these joints in the 

distribution of such vertical forces, it follows that any change in the stability 

of the joints could be expected to alter the load distribution on the foot as a 

whole and therefore a number of strong anatomical features are needed to 

contribute to the much-needed stability of these joints. Two strong 

collateral ligaments on either side of each joint and a joint capsule 

reinforced on the plantar aspect by a thick fibrocartilaginous Ligamentum 

plantaris carefully check common modes of joint displacement such as 

distal distention, adduction-abduction and axial rotation.

5.3.2 Tendons and ligaments as functional units

Tendons form a link between the muscles generating tensile force and 

their points of attachment to the skeleton, and may stabilize one or more 

joints in their course. In order to make efficient structures that transfer 

muscle forces, tendons need to act as a functional unit and also need to 

store elastic energy. In order for tendons to function as a unit, they are 

tightly bound together by strong sheaths and retinacula that keep them 

close to the skeletal plane so that they maintain a relatively constant 

moment arm rather than bow stringing across the joints. This is clearly
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demonstrated when observing the arrangement and disposition of the 

digital flexor tendon bundles in the ostrich in the present study. Alexander 

(1985) showed that there were substantial savings of elastic energy by 

stretched tendons in a running ostrich. In the ostrich there is a decrease in 

postural stability as a result of a reduction in the surface area in contact 

with the ground as expressed in the number and length of toes, with only 

the large toe carrying most of the body's weight (Marshall, 1960). In order 

to fulfil the mechanical requirements of a supporting base the ostrich hind 

limb has a non-yielding resistance to the downward force of gravity. This is 

represented by the hardness or solidity of supporting structures which 

combine the properties of non-compressibility and cohesion (ligaments, 

tendons and bones). Therefore the function of weight-bearing in the hind 

limb ligaments or tendons cannot be disassociated from that of its bones; 

they are cohesive elements of the segmented hind limb framework.

Storage of elastic energy. The solidity of bone tissue for transmission 

of invisible mechanical force and the high tensile strength and elasticity of 

the foot ligaments and tendons (especially those of the flexor muscles) 

represent specialised qualities. The elasticity of tendons in the legs and 

feet of many terrestrial animals provides an important mechanism for 

saving substantial quantities of muscular energy during locomotion 

(Shadwick, 1990; Alexander, 1984.). Ostriches resemble cursorial 

mammals in relation to the maximum stresses normally imposed on the 

component tissues of their legs and the importance of tendon elasticity for 

running (Alexander, 1985 ). The body is decelerated as the foot lands on 

the ground, causing kinetic and potential energy to be stored transiently as 

strain energy in tendons and muscles that are stretched by the impact 

forces (Shadwick, 1990 ). Elastic recoil, primarily by the tendons, converts 

most of the stored energy back to kinetic and potential energy as the foot 

leaves the ground (Alexander, 1983 ).The kinetic and potential energies of 

a biped fluctuate as it runs, and have minimum values in each step as the
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centre of mass passes over the supporting foot. The elasticity of tendons 

reduces the energy costs of running by storing elastic strain energy during 

the minima, so that less energy is lost and has to be replaced by muscular 

work (Alexander et al., 1979).

L igam entum  p la n ta ris . The Ligam entum  plantaris  across the 

tarsometatarsophalangeal joint is the thickest and, as well as inserting on 

the proximal base of the first phalanx, also sends two strong ligamentous 

bands to the base of the distal end of the same phalanx. These 

ligamentous extensions of the Ligamentum plantaris as observed in this 

study do not appear to have been described in any bird before. Nordin and 

Frankel (1981), however, have reported the presence of similar plantar 

plate extensions, which they referred to as the checkrein ligaments, in the 

human finger. In the ostrich some of the likely functions of the Ligamentum 

plantaris are to limit hyperextention of the metatarsophalangeal joint and 

hold in place the flexor tendon bundle. Although some authors have 

reported the presence of Ligamentum plantaris in different species of birds 

such as the domestic pigeon, (Columba livia), (Cracraft, 1971) and 

American coot (Fufica americana), (Rosser etai., 1982); it does not appear 

to have been noted in the ostrich before.

Digital check apparatus. The specialised group of ligaments found on 

the plantar aspect of the ostrich's foot in the present study, referred to as 

the digital check apparatus, does not appear to have been described in 

birds previously. The ligaments comprising this check apparatus , that is 

Ligamenta abaxiale and axiale digiti III, Ligamenta abaxiale and axiale 

digiti IV  and Ligamentum interdigitale digiti III et IV, all have the same origin 

from the Pulvinus metatarsalis. The position in each digit of Ligamenta 

abaxiale and axiale suggest that they are involved in the stabilisation of the 

joints over which they run, whilst the Ligamentum interdigitale digiti III et IV  

would seem to be ideally situated to prevent hyper-abduction (separation) 

of digits III and IV in relation to one another. In all other birds the Pulvinus
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metatarsalis, located at the distal end of the tarsometatarsus and the bases 

of the digits, only serves as a pad to withstand compression (Cane and 

Spearman, 1967; Baumel, 1979). It also appears to play an additional role 

in the ostrich, being a strong point of origin for the ligaments that form this 

digital check apparatus. This check apparatus seen in the ostrich appears 

to be functionally comparable to the interdigital ligaments found in the 

bovine foot (Getty, 1975; Dyce etal., 1987)

5.4 ULTRASONOGRAPHY IN THE EXAMINATION OF THE 

OSTRICH LIMB.

Ultrasound has been used in humans and other animals such as horses to 

examine and diagnose a wide range of musculoskeletal disorders, 

including tendons and ligaments damage (Rantanen, 1982; Fornage, 

1989; Fornage and Rifkin, 1988; Crass et a!., 1988; Denoix, 1994). It has 

the prime advantage of being non-invasive when compared to other 

imaging modalities and it is relatively inexpensive when compared to 

magnetic resonance imaging.

However, the technique does possess a number of drawbacks of which the 

operator must be aware and these have already been reviewed in the 

opening chapter of this thesis. In the present study the boundaries between 

normal tendons, especially in transverse scans, could not be consistently 

visualised. This was probably due to the tight binding of the tendons by the 

flexor sheath that surrounds them, the very limited amounts of connective 

tissue separating them creating inter-tendinous spaces too small to be 

visualised. The use of a higher frequency transducer, such as a 10 MHz, 

could possibly facilitate individual visualisation of the tendon boundaries 

by improving the resolution. Nevertheless, by correlating obtained 

ultrasonograms with the topographical information derived from the cross

121



sectional anatomy of the limbs at predetermined levels, it was possible to 

recognize and characterize the ultrasonographic appearance of the 

tendons in the distal region of the pelvic limb.

In all the limbs that were scanned, the normal flexor tendons appeared 

similar to those visualised in other animals such as horses and humans in 

being homogenous and echogenic (Rantanen, 1982; Fornage; 1989, 

Fornage and Rifkin, 1988; Crass et ah, 1988; Kaplan et al., 1990). The 

tendons were most echogenic when they were at 90 degrees to the 

transducer interface. When the ultrasound beam was oriented obliquely to 

the tendons a false hypoechogenicity was visualised, as was the case with 

the tendon of insertion of M. flexor hallucis longus at level 4. Directing the 

beam at 90 degrees to all the tendons at one time was difficult, particularly 

at level 6 where the tendons had branched to their respective digits, giving 

a wide area between the two tendon bundles. This resulted in one group of 

tendons being more echogenic than the other at any one given scanning 

position. In young birds with smaller tendons there was absolutely no 

resolution obtained in either transverse and longitudinal scans. As a result, 

in these birds normal tendons appeared as one hyperechoic bundle with 

no individual tendon separations.

Ultrasonography of the distal pelvic limb in the ostrich may prove to be a 

useful clinical application to non-invasively evaluate potential limb 

disorders. Used in conjunction with radiography, ultrasound can provide 

additional information in examining the ostrich hind limb.

5.5 GROSS PATHOLOGICAL OBSERVATIONS ON ROLLED 
TOES IN THE OSTRICH

In a cursorial bird like the ostrich, the legs are required to carry a large total 

body weight (adult males weighing upto 160 Kgs), the centre of gravity of
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the bird falling between the two hind limbs. The stresses imposed upon the 

legs, therefore, could, in both posture and locomotion terms, be expected 

to play a significant role in the modelling of the component bones and 

joints of each limb. Indeed, studies done in humans revealed that body 

weight and body mass index were directly related to bone and joint 

problems (Anderson and Felson, 1988). It is not unexpected, therefore, to 

find that limb problems are relatively common in growing and adult 

ostriches (Flieg, 1973; Gandini et a!., 1986; Guittin, 1986). Such limb 

problems have been known and documented for many years in domestic 

poultry (Riddell, 1975; Duff and Thorp, 1985; Duff and Thorp, 1985), having 

first been described in turkey poults (Laursen-Jones, 1968)

Causes of leg problem s in the  ostrich . The aetiology of 

musculoskeletal disorders in ostriches seems to be multifactorial. Although 

not documented, a strong genetic predisposition was suspected following 

a review of records from large American ostrich farms (producing more 

than 100 chicks annually) in which leg deformities such as tibiotarsal 

and/or tarsometatarsal rotation, and curled or rolled toes, were traced back 

to one or two hens (Hicks-Alldredge, 1995). The inherited component of 

the musculoskeletal disorders in ostriches is still not clear and is an 

important area for further investigation especially as such a relationship 

has been established in some mammalian species such as the horse 

(Owen, 1975). However, improper incubation temperature (Hallam, 1992; 

Jensen et a/., 1992; Anon, 1993), excessive incubator humidity (Anon, 

1993), allowing chicks too much room to move around after hatching 

(Hallam, 1992; Anon, 1993), improper nutrition and housing (Wallach, 

1970; Flieg, 1973; Guittin, 1986), and very high protein diets (Gandini etal., 

1986) have all been suggested as contributing variables to the disease 

process.

In the latter case, Gandini et at., (1986) studied the effect of different diets
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on the growth of 8-10-day-old ostrich chicks over a period of eight weeks. 

The diets were isocaloric (2,700 kcal/kg), but contained 14,16,18 or 20%  

protein. Data on average body weight per chick, weight gain, and feed/gain 

are presented in Appendix 2. Their results indicated that leg problems 

were highest in chicks that were on 20% protein. This study indicated that 

increases in the protein content in excess of 16% in ostrich chick rations is 

not only expensive but increases the chances of exacerbating leg 

deformities.

Calcium and phosphorus levels also appear to play a role in such 

disorders. After Van Heerden et aL, (1985) and Levy et al., (1989) 

established normal serum-phosphorus and calcium levels for ostriches of 

various ages and under varying management systems, Benzuidenhout et 

al. (1994) established that although the serum phosphorus and calcium 

levels of both affected and normal birds were within the normal range, 

bone calcium and phosphorus in chicks with leg deformities was 

significantly (p<0.05) lower. This was not unexpected as blood calcium and 

phosphorus levels are inevitably maintained at the cost of other tissues. 

Gandini et al.-, (1986) also found that pathological conditions such as rolled 

toes and rotation of the tibiotarsus and tarsometatarsus, produced in young 

ostrich chicks at 6-7 weeks of age by dietary control experiments, could be 

improved after the adminstration of calcium borogluconate. All these 

results indicate that dietary, and not serum calcium and phosphorus levels, 

cause the majority of limb abnormalities in ostriches. Further investigation 

into those factors responsible for producing poor calcium and phosphorus 

incorporation into bone (mineralization) in affected birds would be of great 

benefit. To date, these factors remain unknown.

The rolled toe condition.

Rolled toes are common among ostrich chicks. It is a condition unlikely to
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be related to riboflavin deficiency, which produces the similar curly toe 

paralysis in chicken flocks (Nairin and Watson, 1972), as in ostriches rolled 

toes are usually a problem associated with individual birds rather than the 

flock (Austic and Scott, 1991). As the ostrich chick grows, the malalignment 

of the toe will induce a lateral or medial vector force in the entire leg and, if 

not corrected in time results in other abnormalities such as tibiotarsal 

and/or tarsometatarsal rotation or slipped gastrocnemius tendon (Hicks- 

Alldredge, 1995). In the latter case, the gastrocnemius tendon does not 

completely slip off its position across the plantar surface of the intertarsal 

joint, as it does in other avian species such as broiler chickens (Craig, 

1967), but involves simply a combined rotation of the fixed gastrocnemius 

tendon and tibial cartilage about their fixed distal tarsometatarsal 

attachment.

Effect on joints. In this study, gross examination of rolled toe specimens 

examined grossly revealed a complete breakdown of the first 

interphalangeal joint with subsequent medial deviation and degeneration 

of the other interphalangeal joints. The metatarsophalangeal joint 

remained relatively stable in all the specimens examined, giving a clear 

image of the high level of susceptibility to deformity of the interphalangeal 

joints compared to the metatarsophalangeal joint. Part of the explanation 

for this disparity in joint reaction and subsquent breakdown may lie in the 

study done by Alexander et al., (1979) into the running mechanics of the 

ostrich. They found that, in order to maintain vertical stability during 

locomotion, a maximum force of 2.7 times body weight, is applied in the 

middle of the contact period of the foot with the ground, as the centre of 

mass of the bird passes over the foot. The vertical force imposed at this 

time was estimated as nmg/4B , where mg is the weight of the bird and B is 

the duty factor (duty factor is the fraction of the duration of the stride for 

which each foot is on the ground). They also estimated the point of 

application of this force on the foot using Muybridge's (1957) photographs
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of an ostrich running, the latter indicating that the metatarsophalangeal 

joint is raised off the ground during the contact period but the first 

interphalangeal joint and the part of the toe distal to it remain on the 

ground (Alexander et al., 1979) during running. The applied force was 

found to be centred in the middle of the area of ground contact, falling more 

towards the first rather than the second interphalangeal joint of the third 

digit. The force acting through the smaller fourth digit was regarded as 

negligible considering the great difference in size and ground contact each 

toe makes with the ground. It appears, therefore, that the two 

interphalangeal joints of the third digit are subjected to the majority of this 

highly tensile vertical force and its resultant stresses, which could therefore 

be expected to make them more susceptible to deformation.

The observed breakdown of these joints in all the long-standing cases of 

rolled toes were characterised by degenerative joint disease-like changes. 

These included degeneration, subluxation or luxation, and instability or 

joint incongruence accompanied by marginal (periarticular) osteophyte 

formation at or near the junctional zone where the articular cartilage, 

periosteum, ligaments or tendons of insertions and the joint capsule 

merge. Following the stretching or tearing of the insertions of either the 

joint capsule or the ligaments or tendons, osteophytes may develop as the 

damaged fibrous tissue undergoes chondrification and endochondral 

ossification (Marshall, 1969; Doige, 1988; Resnick and Niwayama, 1983; 

Resnick and Niwayama, 1988). When mature, such osteophytes are 

composed of dense trabecular bone that is continuous with the underlying 

bone. Their growth is not continuous, but once formed osteophytes persist 

as multiple periarticular spurs of bone that may cause joint enlargement 

(Doige, 1988). In the present study, in long-standing cases of rolled toes in 

ostrich, bony spurs or osteophytes could have resulted from abnormal 

ligamentous and tendinous traction at points of insertion (Rodan and 

Rodan, 1983; Doige, 1988 ). It was interesting to note, therefore, that the
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undamaged extensor tendons did, as ought to be expected, result in 

osteophyte formation.

Degeneration of joints is seen by some workers as a disorder of 

mechanical origin that may be caused by overuse or incorrect use of the 

joint and by repeated failure of the force attenuating mechanisms (Olsson, 

1978; Peyron, 1986; Jayo, et al., 1987). Various syndromes of 

degenerative joint disease occur in other mammals and some are given 

specific names. In horses, ring-bone refers to degenerative joint disease of 

the interphalangeal joints. Bone spavin refers to degenerative joint disease 

of the intertarsal or tarsometatarsal joints (Mcllwraith, 1982). In all these 

syndromes, the formation of periarticular osteophytes is prominent and 

frequently leads to bony ankylosis of the affected joint.

Joint laxity of the interphalangeal joints was a common feature observed in 

all the early stage (young) specimens, although without accompanying 

degenerative changes at this time. Joint laxity (often self correcting) is also 

common in new-born foals and is attributed to the laxity of the collateral 

ligaments of major joints of the limb (Doige, 1988). In calves with 

osteogenesis imperfecta, joint laxity is associated with defective synthesis 

of collagen and with hypoplasia of tendons and ligaments (Termine et al., 

1984). Many different theories regarding its aetiopathogenesis have been 

advanced over the years but most of them agree that it is a biomechanical 

disease in which there is an imbalance between muscle mass and tendon 

growth and strength leading to joint laxity (instability) and eventually, to 

degenerative joint disease (Riser, 1975; Brandt, 1981). In the ostrich, 

where there is concentration of the applied vertical forces on the reduced 

foot/surface contact area due to the decrease in the number of toes, joint 

instability could be excessively exacerbated, often leading to the 

development of rolled toe.

Effects on tendons. Tendons like other biological materials exhibit 

viscoelastic behaviour when loaded continuously or intermittently. Under
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constant load, the tendon will elongate immediately (elastic response) and 

continue to creep or elongate slowly (Goldstein et al., 1987). It has been 

hypothesised that under dynamically varying forces creep could occur and 

cumulative strain could develop in the tendon. If this cumulative strain 

exceeds a given threshold, then an inflammatory response may develop 

(Goldstein, 1981). Abrahams (1967) observed permanent deformation in 

horse flexor tendon when strained beyond 2-3%. In the ostrich this has yet 

to be determined.

When the force magnitude or load intensity on the hind limb is no longer 

stable, as in the case of rolled toes in ostrich, the tendons will be the first to 

fail in their roles as force transmitters before other musculoskeletal 

components fail or remodel to suit their new functions. A failure to adapt to 

dynamically varying forces (excessive bodyweight) may give four possible 

results. There may be permanent deformation as a result of mechanical 

microfailure, the tendon or ligament may fray due to mechanical wear, 

there may be shearing and/or rupture of the synovium, or the nutrition and 

innervation of the tendon may be greatly compromised (Goldstein, 1981). 

The reasons for this failure can be partially explained in terms of origin, 

composition and load-induced changes in collagen fibril populations in 

tendons. Tendons originate from mesenchymal cells that condense and 

differentiate into fibroblasts, which produce collagen, ground substance 

and enzymes characteristic of this tissue (Kastelic, and Baer, 1978). The 

metabolic activity of tendon fibroblasts, along with the composition and 

morphology of the tendon, have been shown to vary considerably with age 

and location in response to alterations in force application (Fitton-Jackson, 

1956; Parry and Craig, 1977; Curwin et al., 1988). Studies done in White 

Leghorn chickens (Curwin et al., 1994) indicated that tendon length 

increases fast in young birds but that there is a mismatch in the growth 

rates of tendon and muscle at 4-8 weeks of age, with tendon growth 

lagging behind muscle growth. Although tendons develop autonomously
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(Kieny and Chevallier, 1979), they also respond to increased loading by 

changing size and composition (Amiel and Kleiner, 1988). Muscle growth, 

which increases force production, may also stimulate subsequent tendon 

growth as long as the growth rate difference between the two structures is 

not too large. Such growth rates may differ in the early critical periods, 

although both might appear similar over larger time periods (Curwin et al., 

1994). In ostrich chicks such an early period of disproportionate muscle 

and tendon growth may be critical because it could result in an increase in 

the stress (force per unit area) on the young tendon, and thus make the 

tendons mechanically vulnerable to failure. If such a situation were to arise, 

the tendons (especially the weight-bearing flexor tendons) would remain 

stretched (resulting in a rolled toe) while slowly re-establishing the 

hydroxypyridinium cross-links which are directly related to the strength of a 

tendon (Amiel and Kleiner, 1988). These biomechanical characteristics of 

young tendons partially explain an important observation made in ostrich 

chicks by Deeming (pers. comm., 1995) in which he indicated that, out of 

those ostrich chicks that suffer from rolled toes early in their lives, below the 

age of 4 weeks, most will resolve this condition themselfs, although 

approximately a third will then experience a recurrence at 6-8 weeks of 

age. The reccurence may be due to failure by some of the chicks to re

establish adequate hydroxypyridinium cross-links to sustain the increasing 

body weight forces.

All examined specimens of rolled toes in both immature and mature birds 

showed marked tendon stretching, rupture and/or degeneration, mainly 

confined to the distal extremities of the foot with little or no pathological 

tendon lesions being observed proximal to the metatarsophalangeal joint. 

Part of the possible explanation for these observations may lie in the work 

of Viidik (1979) and Curwin et al., (1994). The former showed that in 

mammalian tendons, the density of collagen in tendon, as represented by 

hydroxyproline concentration, directly related to tendon strength, increased
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with age (Viidik, 1979) while Curwin et al., (1994) further investigated this 

parameter in chickens by studying the concentration of hydroxyproline in 

different regions of the tendon. They found out that the distal digital regions 

of avian tendons tend to have lower hydroxyproline concentrations in 

growing birds, making them weaker and therefore more vulnerable to 

mechanical failures. It could be inferred, therefore, that the tendons of 

young growing ostrich chicks may contain lower hydroxyproline 

concentrations in their distal extremities, leading to the observed 

pathologies in the present study. This area would therefore be worthy of 

future investigation.

Tendon ossification. Extensor tendon ossification was observed in two 

adult birds exhibiting rolled toes. Previous studies have indicated a 

relationship between such tendon ossification and the vascular supply to 

the tendon (Rothman and Parke, 1965; Rothman and Rubin, 1967), 

observations supported by the work of Johnson (1960) who demonstrated 

that tendon calcification in the turkey started at sites of maximal tension, at 

points midway between the longitudinal vessels supplying the tendon, and 

concluded that it was areas of relative hypovascularity that would be 

predisposed to calcification. Rothman and Parke (1965) have provided 

strong statistical evidence supporting just such a relationship between 

hypovascularised areas and tendon ossification by means of degenerative 

calcification, events which appear to be initiated as a result of localised 

ischaemia, subsequently leading to cellular damage and release of 

lysozymes, thus altering the matrix of the tendons in such a way as to 

render them liable to calcification (Rothman and Rubin, 1967). As already 

noted (Johnson, 1960) such degenerative ossification of hypovascularised 

tendons only occur in tendons subjected to significant tensile stress. An 

investigation into the vascular supply to the tendons of the distal pelvic limb 

of the ostrich would significantly contribute to an understanding of the 

extensor tendon ossification seen in the present study.
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Effects on bones. Most hind limb abnormalities in ostrich chicks almost 

always start with an initial abnormality of the toe. As the chick grows, the 

mislalignment of the toe will induce a lateral or medial vector force in the 

entire leg which,if not corrected in time, will result in other abnormalities 

such as tibiotarsal and/or tarsometatarsal rotation (observed in this study), 

or "slipped gastrocnemius" tendon. In young and growing birds bone is 

continually remodelled to maintain a form appropriate to its biomechanical 

function. While most work in animals has focused on the hormonal and 

biochemical factors that influence skeletal growth, mechanical factors also 

play an important role in growth and modelling of bone. (Bertram and 

Biewener, 1988). Frequently referred to as "functional adaptation", the 

remodelling response of bone to changes in physical usage has had a 

long history, initiated by Wolff (1892) who noted that the maintenance and 

transformation of skeletal form is greatly influenced by the mechanical 

forces acting on a bone during its use. It is now accepted that bone growth 

remodelling reflects a complex interplay of not only genetic, hormonal and 

biochemical factors (Raisz and Bingham, 1972; Hall, 1982; Rodan and 

Rodan, 1983), but mechanical factors as well. In the present study, adult 

specimens of rolled toes demonstrated the remodelling and functional 

adaptation of the distal tarsometatarsus and first phalanx of digit III. This 

could have been initiated by the laxity of the interphalangeal joints, 

resulting in rolled toe and a subsquent change in the direction of 

mechanical forces exerted by the flexor tendon bundle onto the bones, 

resulting, with time, in a functional remodelling of these bones as seen in 

the present study.

Vascular involvement. Vascular involvement or entrapment following a 

rolled toe cannot be ruled out. In rolled toes, blood vessels were frequently 

found to be compressed by the accumulated fibrous tissue which acts as a 

pad to the usually abaxially-rolled toe. This could be expected to exert 

significant compression force on the entrapped segment of the blood

131



vessels during walking, and their lumina may be partially or intermittently 

occluded. Such obliteration of blood vessels at this level would probably 

lead to hypo vascularity of the digital flexor tendons resulting in ischaemia 

and subsequent cellular damage, release of lysozymes, and tendon 

degeneration. Such flexor tendon degeneration was a common feature in 

adult cases of rolled toes in the current study. It is therefore essential that 

the condition be corrected as early as possible, prior to significant vascular 

damage. There is, however, need for more study on such vascular 

involvement associated with rolled toes in ostriches.

Treatment of rolled toes. Treatment of rolled toes should be initiated 

soon after recognition of the problem. The younger the bird, the faster the 

response to therapy, because stretched tendons become less responsive 

with time. Two categories of treatment modalities have been reported but 

one has to wait until the bird is at least two weeks old before attempting to 

correct these rolled toes by the conservative non-invasive treatment of 

splinting, younger birds being too susceptible to stress to attempt such a 

remedy (Kocan and Crawford, 1994). Out of newly-hatched ostrich chicks 

noted with rolled toes, a third will show a reappearance of signs at about 6- 

8 weeks of age (Deeming, pers. comm., 1995). In this latter group 

correction by taping or splinting is now difficult due to the greater forces 

required for the realigment of the toes. As a result a second method of 

treatment, developed in Australia, utilizes a hinged external fixation device 

involving invasive surgery (Poulton and De Garis, 1994).

5.6 FUTURE W ORK AND CONCLUSION.

Clinical evaluation and treatment of abnormal distal pelvic limb conditions 

affecting the ostrich requires detailed knowledge of the morphological 

characteristics of this region. Indeed, this investigation of the normal 

anatomy of the distal pelvic limb of the ostrich was designed to be used as
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a baseline for future comparison studies of abnormal conditions affecting 

the lower limb. Although the use of diagnostic ultrasound imaging 

techniques in the examination of mammalian soft tissue structures is well 

established, their use in the field of avian studies is still in its infancy. The 

results of this study indicate that ultrasound can be used to image the 

normal ostrich flexor tendons. The ultrasonographic appearance of the 

normal ostrich flexor tendons had similarities to those previously reported 

in other animals. Such techniques, with their ability to distinguish 

anatomical textures and dimensions as a result of characteristic differences 

in acoustic impedance at tissue interfaces, have an extremely useful role to 

play in ostrich anatomical, pathological and clinical studies by helping to 

elucidate soft tissue structures and relationships in a non-invasive manner. 

Used in conjunction with conventional radiography, it would allow a more 

complete assessment of lower limb abnormalities to be made, any change 

in texture, size or spatial orientation being readily determined. Future work 

in this area should be done to study the usefulness of ultrasound in 

diagnosing various hind limb abnormalities, and muscle and tendon 

defects.

To date, relatively little information is available on the causal factors of 

musculoskeletal disorders in the ostrich, such as that of rolled toes 

examined in the present study. The real causes of these disoders are 

complex and multifactorial, and need further investigation. One area for 

future research could be the establishment of normal mineral values in 

serum, bone, and other tissues (e.g. liver) in ostriches at various ages and 

stages of growth, in order to accumulate baseline values for those areas 

where ostrich farming is undertaken. Other fields that may benefit from 

investigation are the effect of age, sex, breeding season and genetics on 

the absorption and metabolism of the various minerals involved in bone 

formation. Values for optimal body weights in birds of selected
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predetermined age groups would also be of value in trying to prevent 

excessive weight problems leading to musculoskeletal abnormalities such 

as rolled toes seen in this study. There is also a need for study on the 

normal vasculature and innervation of the ostrich hind limb in order to 

ascertain their role in both normal and abnormal situations, in the 

development or exacerbation of hind limb disorders.
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APPENDICES



Pork Lamb Beef Turkey Chicken Ostrich

Calories 275 205 240 135 140 96.9

Protein gm 24 22 21 25 27 22

Fat gm 19 13 15 3 3 2

Sat Fat gm 7 5.6 6.4 0.9 0.9 0

Mon-U gm 8.8 4.9 6.9 0.5 1.1 0

Pol-U gm 2.2 0.8 0.6 0.7 0.7 0

Chlstrl gm 84 78 77 59 73 53

Carboh gm 0 0 0 0 0 2.1

Calc mg 3 8 9 16 13 5.2

Appendix 1. Ostrich meat comparison based on a 3 oz serving.

From "Nutritive Value of Foods" U.S.D.A., Home and Garden Bulletin number 

72 and AMSI Quality Testing Laboratory report, 1989._______________________
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CP, % B/Weights, g W/Gain, g F/intake, g Feed/gain

14 6,350 5,438 11,912 2.19

16 9,400 8,440 14,563 1.72

18 9,580 8,754 14,468 1.65

20 10,010 9,134 15,453 1.69

Appendix 2. Performance of ostrich chicks on diets containing four 

levels of protein for eight weeks.__________________________________
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I
i
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