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SUMMARY

Neuroblastoma is a paediatric tumour prone to early and widespread dissemination. 
At present the majority of older patients with metastatic disease are destined to die 

from their malignancy despite recent advances in chemotherapy and the fact that it is 
a radiosensitive tumour. New therapeutic approaches are therefore urgently sought. 

One agent which has shown promise is meta-iodobenzylguanidine (MIBG). MIBG 

is a noradrenaline analogue which is specifically taken up by sympathetically 

innervated tissues and tumours derived from these. Radiolabelled MIBG has been 
successfully used to image tumours of neural crest origin such as neuroblastoma. In 
combination with conventional therapy modalities 131I labelled MIBG is now being 

used to treat neuroblastoma patients. The results of these studies are encouraging 
and suggest that [131I]MIBG will become an established part of the therapeutic 
regimen for late stage neuroblastoma patients. It is therefore essential that it is used 
to its optimal effect.

The work contained in this thesis is an investigation of experimental strategies 
aimed at improving the use of radiolabelled MIBG. Using in vitro and in vivo 
models of neuroblastoma a number of factors have been investigated.

It is predicted that the use of no-carrier-added [131I]MIBG, rather than conventional 
low specific activity preparation will result in an enhanced therapeutic ratio because 
of different transport processes in neuroblastoma compared with most normal 
tissues. No-carrier-added [131I]MIBG was synthesised and its stability, uptake and 
biodistribution investigated. Results revealed that the preparation was stable at 

radioactive concentrations up to 25MBq / ml. The no-carrier-added preparation 
behaved identically to conventional [131I]MIBG prepared by iodide exchange with 
respect to uptake in cultured neuroblastoma cells. The accumulation of no-carrier- 
added [131I]MIBG was significantly greater in tumour, adrenal, heart, and skin of 

tumour bearing mice than that of the conventional therapy preparation of 
[131I]MIBG. These data indicate that there may be clinical advantages in the use of 

no-carrier-added [131I]MIBG rather than conventional [131I]MIBG.

As the ability of neuroblastoma cells to actively accumulate MIBG is crucial to the 
success of this therapy, the effect of chemotherapeutic agents on this uptake 
capacity needs to be investigated. Initial experiments examined the effect of cisplatin



pretreatment on the neuroblastoma cell line SK-N-BE(2c). After treating these cells 
with therapeutically relevant concentrations of cisplatin (2 and 20 pM), a stimulation 

in uptake of [131I]MIBG was observed. Reverse transcription-polymerase chain 
reaction analysis demonstrated that this effect was due to increased expression of 

the noradrenaline transporter. These results suggest that appropriate scheduling of 
cisplatin and [131I]MIBG may lead to an increase in tumour uptake of this 

radiopharmaceutical with consequent increases in radiation dose to the tumour.

Currently MIBG therapy consists of administration of the beta emitting 1311 labelled 
conjugate. However, the emission properties of this radioisotope are predicted to be 

non-ideal for the treatment of micrometastatic disease. The potential of Auger 
electron emitting radioiodine conjugates of benzylguanidine to treat micrometastases 
was therefore investigated. Three MIBG species, labelled with 123I- 125I- and 13ll, 
were synthesised and their in vitro toxicity compared in neuroblastoma cell 
monolayers, and small and large spheroids. The Auger electron emitting conjugates 
( [123I]MIBG and [125I]MIBG) were highly toxic to monolayers and small 
spheroids whilst the beta emitting conjugate, [131I]MIBG, was relatively 
ineffective. In contrast, the Auger electron emitters were ineffective in the treatment 
of larger spheroids whilst the beta emitter showed greater efficacy. These findings 
suggest that short range emitters would be well suited to the treatment of circulating 
tumour cells or small clumps whilst beta emitters would be superior in the treatment 
of subclinical metastases or macroscopic tumours. The data provide support for a 
clinical strategy of combinations (’cocktails') of radioconjugates in targeted 
radiotherapy.

To validate the results of laboratory studies a suitable in vivo model, which 
provides a realistic reflection of the disease under investigation, is required. Studies 
were undertaken to develop a murine metastatic model of neuroblastoma by 
inoculating nude mice with human neuroblastoma cells and then tracking the fate of 

these cells using a PCR based assay. Preliminary results demonstrated the 
feasibility of the approach and indicate that human neuroblastoma cells spread to a 
variety of organs.

The findings presented in this thesis suggest that a number of strategies have the 

potential to enhance the therapeutic efficacy of MIBG targeted radiotherapy. The 

future availability of a suitable murine model of metastatic neuroblastoma should 
allow the merits of these strategies to be tested in vivo.

xiv



CHAPTER 1 

NEUROBLASTOMA
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1.1 Embryology

Neuroblastoma arises in cells of the sympathetic nervous system derived from 
the embryonic neural crest. In the developing embryo, these sympathagonia 

cells migrate from the neural crest in a ventral direction. Initially they form 
the sympathetic trunk in the thoracic region. They then migrate past the dorsal 

aorta towards the heart, lung, digestive tract and urogenital tract and form the 
visceral sympathetic ganglia. From these they travel to the paraganglia which 

are scattered in the retroperitoneal region along the aorta, and to the adrenal 

medulla. It is from these sympathagonia cells that tumours of the sympathetic 
nervous system arise (Figure 1.1). The sympathogon differentiates into 

sympathoblasts, the cells of origin of neuroblastoma, the more mature forms, 
ganglioneuroblastoma and ganglioneuroma and the chromaffin or non
chromaffin paraganglionic cells (phaeochromocytes), the progenitors of 

phaeochromocytoma.
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Figure 1.1 Cellular origins of neuroblastoma

NEUROBLASTOMA

CD sympathogon

GANGLIONEUROBLASTOMA

GANGLIONEUROMA

sympathoblast ganglion cell

phaeochromocyte

(Adapted from Jones and Campbell, 1976)

As figure 1.1 indicates, undifferentiated neuroblastomas have the ability to
mature into fully differentiated, benign ganglioneuromas. Intermediate in their
degree of differentiation are the ganglioneuroblastomas.

\

The embryonic nature of neuroblastoma is indicated by their occurrence early 

in life. In fact there is a report of the tumour's being present in a foetus in 
utero - metabolites from the tumour crossed the placenta to cause symptoms 
in the mother ( Joute et al., 1970). In such cases the tumour can be well 

established and even disseminated at birth. Neuroblastoma cells have also 

been detected at autopsy in infants dying of unrelated illnesses (Beckwith and
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Perrin, 1963; Guin eta l., 1969). The latter observation is 14 to 40 times more 

common than the reported incidence of post natal neuroblastomas, which 
implies that many cases of these in situ neuroblastomas arrest and regress 
completely and spontaneously. Further evidence in support of these 
conclusions comes from mass screening programmes in infants designed to try 

to improve prognosis by early detection. The results of such studies indicate 

that the tumour is over diagnosed which implies that more cases of the disease 
are diagnosed than would ever manifest themselves clinically (Treuner and 

Schiolling, 1995).

1.2 Epidemiology

In children aged between 0 and 14 years, leukaemia, lymphoma and brain 
tumours are the most common forms of cancer, followed by neuroblastoma 
with an annual incidence of around 7 per million population in Britain. The 
incidence of neuroblastoma is highest during the first year of life, with a rate 
of around 30 per million population in Great Britain. This number decreases 
with increasing age: 20 at 1 year, 18 at 2 years, 13 at 3 years and 9 per million 

at 4 years of age. Indeed more than half of all cases are diagnosed before the 
third year of life. Cumulative incidence over the first 15 years of life is about 
110 per million (Stiller, 1993). The male to female ratio is 1.2:1 and the white 
to black ratio is 3:2.

1.3 Location

1.3.1 Primary tumour

Neuroblastomas can arise anywhere in the sympathetic nervous system:- this 
is illustrated by comparing the anatomical location of tissues which belong to 
the sympathetic nervous system with the sites at which neuroblastomas have 

been found (Figures 1.2A + 1.2B).
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Figure 1.2A Anatomical location of the sympathetic nervous system

Figure 1.2B Localisation of neuroblastomas

(Adapted from Voute etui ,  1986)



In the majority of patients the primary tumour occurs in the retroperitoneal 
area (-70% ) of which 35% are in the adrenal glands. Other sites include the 

pelvis (5%) and thorax (15%) (Voute etal., 1986).

1.3.2 Metastases

Local invasion and extensive infiltration are highly characteristic of 
neuroblastoma. Large blood vessels often become surrounded and compressed 

although they are rarely invaded. In addition the tumour has a strong tendency 
to metastasise by lymphatic and haematologic routes. The most common 
blood bome sites are bone marrow, bone and liver. Spread to bone marrow 

occurs early relative to other childhood tumours. In bone, metastases can 
present as a single destructive lesion or as a diffuse infiltration of the growing 
ends of long bones. Liver metastases most frequently occur in infants under 
two years of age and can be spherical, irregular masses causing nodules on the 
liver or can infiltrate throughout the liver causing the organ to be massively 
enlarged.

1.4 Prognosis

The outlook for patients with neuroblastoma is influenced by a number of 
factors. The most significant is age, with younger infants having a 
significantly better outlook. Recent figures for children diagnosed in Britain 

between 1983 and 1985 quote a 77% five year survival for children under 1 
year of age. This falls sharply with increasing age: 39% for those aged one, 
28% for those aged two and from three to nine years less than 25% (Stiller and 
Bunch, 1990). Disease stage is the next most important prognostic factor. 
Those with low stage disease ( 1, 2 and 4S) usually do well. However, for 
those with advanced stage 3 or stage 4 disease long term survival rates are 

poor. A number of molecular and genetic features also correlate with 
prognosis (see section 1.5).
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1.5 Genetic abnormalities in neuroblastoma

Neuroblastoma is a biologically and clinically complex disease. With the 
development of sensitive molecular techniques a variety of genetic and 
molecular changes have been detected many of which show a correlation with 

disease stage. A brief summary of the main features is given below.

1.5.1 DNA ploidy

Cytogenetic analysis of tumour cells has demonstrated that chromosomal 
status correlates with prognosis. In a German review study DNA aneuploidy 
was found in 60% of cases. In good risk groups this was a more common 

feature - for stage 1-3 disease 73%, and for stage 4S 60%. In contrast in 
patients with stage 4 disease the occurrence of aneuploidy was much lower 
(31%) (Christiansen et al., 1995). The picture is slightly complicated by the 
age of the patient. In infants, tumours which are hyperdiploid or near triploid 
can have whole chromosome gains without any structural rearrangement in 
which case prognosis is more favourable. However, in older children 
hyperdiploid tumours often have translocations and deletions which correlate 
with an unfavourable outcome (Look et al., 1991).

1.5.2 N-myc amplification

N-myc is a proto-oncogene which is expressed by neuronal cell types during 
embryogenesis and by a number of neoplasms of neuroectodermal origin. If 
deregulated it can participate in tumourogenesis. Amplification of N-myc is 
found in approximately 25 - 30% of neuroblastomas. The amplified sequence 
occurs either as extrachromosomal double minutes or as homogeneously 
staining regions on different chromosomes. N-myc has been mapped to the 

short arm of chromosome 2 (Schwab et al., 1983) and it has been 
demonstrated that a large region from 2p24 becomes amplified. The N-myc 

gene itself is approximately 7kb in length while the amplified unit can range 
from lOOkb to over 1Mb in length. A number of studies have investigated the
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prognostic significance of amplification and have demonstrated that there is a 
strong correlation between amplification and poor clinical outcome (Seeger et 
al., 1985; Brodeur and Fong, 1989; Look et al., 1991). However, the situation 

is complicated by recent data which indicates that there are patients with 
amplification of N-m yc  who do respond to treatment (De Bemardi et al., 
1995). It has been postulated that this is because the amplicon in which N-myc 

resides contains additional genes whose over-expression may affect response 
to treatment. A possible candidate is the DDX1 gene which is frequently 
found to be co-amplified with N-myc  in both neuroblastoma cell lines and 

tumour samples (Squire et al., 1995; George et a l, 1996).

The majority of neuorblastoma tumours showing N-myc amplification have 
high levels of N-myc expression at the RNA and protein levels (Bartram and 
Berthold, 1987; Slave et al., 1990). However, elevated expression can also be 
detected in non-amplified tumours in which case the increase is not associated 
with a poor prognosis (Seeger et al., 1988; Nisen et al., 1988). It has been 
suggested that expression levels have to reach a critical threshold level in 
order to confer an unfavourable outcome: in non-amplified tumours this 
threshold is not reached whereas with amplified tumours, expression levels 
greatly exceed the required level.

The reasons for the correlation between N -m yc  amplification and poor 
outcome are not clear. One explanation is that amplification confers resistance 
to therapy. Studies in neuroblastoma cell lines have demonstrated a correlation 
between N-myc copy number and resistance to cisplatin and etoposide 
(Livingstone et al., 1994, 1997). Resistance to some therapeutic agents has 

been shown to be due to a decrease in the frequency of apoptosis (Segal- 

Bendirdjian et al., 1995; Russell et al., 1995). This is likely to be the result of 
mutations in one or more of the genes responsible for apoptosis and it is 
postulated that these in turn have an effect on the amplification of N-myc. An 

alternative theory is based on recent evidence which indicates that the N-myc 
protein may be a transcription factor (Wenzel and Schwab, 1995). Increased
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levels of N-myc protein could result in enhanced transcription of genes which 
confer resistance or enhance DNA repair.

1.5.3 Deletions to the short arm of chromosome 1

Another prominent genetic alteration observed in neuroblastoma is deletion of 
the short arm of chromosome 1. Restriction fragment length polymorphism 

(RFLP) analysis has shown that the deleted region varies in size but a 

consensus section lies between lp36.1 to lp36.3. It is thought that this region 
harbours a tumour suppressor gene or genes, the loss of which allows the 

development or progression of neuroblastoma. Deletions are detected in 30- 
40% of neuroblastoma cases (Brodeur, 1995). The prognostic significance of 
this is unclear as a recent study has shown that lp  deletion alone was not 
associated with poor outcome (Gehring et al., 1995). In combination with N- 
myc amplification however, survival chances are significantly decreased. 
Another potential tumour suppresser gene is implicated by studies on 
chromosome 14. These have detected allelic loss of 14q in 25-50% of 
neuroblastomas (Suzuki e ta l,  1989).

1.5.4 CD44 expression

The cell surface glycoprotein CD44 is believed to be involved in cell-cell 
interactions and cell matrix adhesion (eg Miyake et a l, 1990) and is expressed 
in a wide variety of haemopoetic and non-haemopoetic tissues. Numerous 
isoforms and splice variants have been characterised which show altered 
function: particularly higher metastatic properties. Its expression in 
neuroblastom a tum ours and cell lines has been investigated  by 
immunofluorescence (Gross e ta l ,  1995) which indicates that expression 

could be detected in most tumours in the stage 1-3 categories and all stage 4S 
tumours. Expression in stage 4 tumours was however confined to a small 

subset. These results are supported by studies by Combaret et al (1995) who 
found CD44 expression in all the neuroblastomas with favourable prognosis 

(stages 1, 2 or 4S) but in only half of those with advanced stage disease
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(stage 3 or 4). These results indicate that the absence of CD44 expression is a 

sign of tumour aggressiveness.

1.5.5 Bcl-2 expression

Bcl-2 is an oncogene thought to contribute to malignancy by inhibiting 

apoptosis. It is expressed in approximately a third of neuroblastomas, and over 
expressed in poorly differentiated tumours (Castle et a l ,  1993). These 
investigators found a significant correlation between expression and poor 

prognosis. Others however report its expression in a variety of tumour types, 
apparently independent of tumour stage (Mazzocco et al., 1996).

Several investigators have speculated that its expression may contribute to 
clinical drug resistance by inhibiting chemotherapy-induced apoptosis. In the 
aforementioned study of the neuroblastomas obtained from patients after 
chemotherapy, more than 80% had Bcl-2 expression (Castle et al., 1993). In 
addition to Bcl-2 expression the related proteins Bcl-X and BAX have also 
been shown to increase in tumour samples post chemotherapy (Dominici et 
a l ,  1996). In vitro transfection experiments provide direct evidence for the 
role of Bcl-2 in drug resistance (Dole et a l,  1994). Clones expressing high 
levels were resistant to cisplatin- and etoposide-induced apoptosis.

1.5.6 TRKA expression

The neurotrophins are a family of genes involved in the growth and 
differentiation of neural cells. Members of this family and their receptors have 

been implicated in the development of neuroblastoma (Brodeur, 1995). One of 
the best characterised members is nerve growth factor (NGF) whose action is 
mediated by the tyrosine kinase receptor TRKA. The level of expression of 

TRKA in neuroblastomas is significantly correlated with clinical outcome 
(Nakagawara et a l ,  1993; Kogner et a l ,  1993). Early stage tumours (1 ,2  and 

4S) had high levels of TRKA expression and patient survival in this group 
over five years was 86%. In contrast aggressive tumours had little or no
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expression and cumulative 5 year survival was only 14%. It is speculated that 
the NGF/TRKA interaction is involved in maturation, which in patients, may 
be capable of stimulating neuroblastomas to regress or differentiate.

In summary, a number of genetic and molecular alterations have been detected 

in neuroblastoma. Many of these may have significant implications for patient 
prognosis. At present, N-myc  amplification is probably the most valuable 
marker of tumour stage. Nevertheless, as larger patient series are investigated, 

the role of the other markers described will become apparent. In the future 
such a wide panel of markers should allow a more accurate classification of 
tumours, giving the clinician a better indication of the aggressiveness of the 

disease and therefore the ability to administer more appropriate therapeutic 
regimens.

1.6 Clinical Presentation

Patients with neuroblastoma can present with a variety of clinical symptoms. 
In mothers pregnant with tumour-bearing foetuses, symptoms are already 
apparent. These include hypertension, palpitations and eclampsia. These arise 
because of increased levels of catecholamines. In infants, the signs include 
distention of the abdomen, enlargment of the liver, prolongation of neonatal 
jaundice and subcutaneous tumours. In older children symptoms tend to 
depend on the primary and metastatic sites. In some, the presenting feature is 
bone pain which arises due to cranial or skeletal metastases. In others the 
presence of lymph node metastases are the first sign. If the primary tumour is 
in the thorax, patients can suffer coughing and dyspnoea. Primaries arising in 
the pelvic region cause difficulties at micturition or defecation. Other more 
general signs include weight loss, anorexia, diarrhoea, diabetes insipidus, 

hyperthyroidism and hyperhidrosis.
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1.7 Diagnosis

The criteria for confirming a diagnosis of neuroblastoma have been agreed 

internationally (Broduer etal., 1988). These are either :

1) Histological evidence from conventionally stained sections of tumour 
tissue accompanied by increased urine or serum catecholamines or 

metabolites
or

2) Presence of tumour cells in the bone marrow and increased urine and 
serum catecholamines and metabolites.

In common with cells from the sympathetic nervous system, these tumours 
synthesise and secrete a variety of catecholamines including adrenaline, 
noradrenaline and dopamine. Catabolism of these compounds leads to the 
production of several metabolites including vanillyl mandelic acid (VMA) and 
homovanillic acid (HVA). Measurement of the levels of VMA, HVA and 
dopamine present in urine and serum, confirm a histo-pathological diagnosis. 
Around 92 % of patients with positive biopsies have raised levels of these 
compounds. Supporting evidence comes from genetic analysis of tumour 
tissue. The presence of lp  deletions and / or N-myc amplification are 
characteristic of neuroblastoma (see sections 1.5.2 and 1.5.3).

1.7.1 Assessment of disease

The extent of disease can be assessed using magnetic resonance imaging 
(MRI) and computerised tomography (CT) scans which give information 

about the size and location of the primary tumour and large metastases. In 

addition MIBG scintigraphy is now recommended (see section 3.7.1). Bone 
marrow infiltration is detected by examining stained sections. Typical features 

of involvement include clumps of tumours cells, synctia, rosettes and 
cytoplasmic/stromal fragments (Reid, 1994). Results from these investigations 

give a comprehensive picture of the disease and allow an accurate
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classification of stage. This is crucial in determining the appropriate 
therapeutic strategy.

1.7.2 Staging systems

Reliable staging systems enable optimisation of therapy and allow different 

treatment centres to compare clinical results and formulate more effective 
treatment strategies. Over the years various systems have been used by 
different countries. In 1988, a consensus was reached and an international 
system was adopted. This was updated and modified in 1993 and is described 

below (Brodeur etal., 1993).
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Stage 1

Stage 2A

Stage 2B

Stage 3

Stage 4

Stage 4S

Localised tumour with complete gross excision, with or 

without microscopic residual disease; representative 

ipsilateral lymph nodes negative for tumour 
microscopically (nodes attached to and removed with 

the primary tumour may be positive).

Localised tumour with incomplete gross excision; 
representative ipsilateral nonadherent lymph nodes negative 
for tumour microscopically.

Localised tumour with or without complete gross excision, 
with ipsilateral non adherent lymph nodes positive for tumour. 

Enlarged contralateral lymph nodes must be negative 
microscopically.

Unresectable unilateral tumour infiltrating across the midline, 
with or without regional lymph node involvement; or localised 
unilateral tumour with contralateral regional lymph node 
involvement; or midline tumour with bilateral extension by 
infiltration (unresectable) or by lymph node involvement.

Any primary tumour with dissemination to distant lymph 
nodes, bone, bone marrow, liver, skin and/or other organs 

(except as defined for stage 4s).

Localised primary tumour as defined for stage 1 or 2A or 2B 

with dissemination limited to skin, liver, and/or bone marrow 

(limited to infants < 1 year of age)
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Treatment of neuroblastoma depends on the severity and stage of the disease. 
For those presenting with localised stage 1 or 2A tumours, surgical resection 

is sufficient. Stage 2B and selected stage 3 patients can also be successfully 
treated with surgery followed, in some cases, by mild chemotherapy. More 

advanced disease requires a more complex multimodal approach. A brief 

description of the various treatments employed is given below.

1.8 Treatment

1.8.1 Chemotherapy

For aggressive stage 3 and stage 4 patients intensive chemotherapy is required. 

Regimens generally include a variety of agents combined to try to circumvent 
drug resistance. Commonly employed agents include cyclophosphamide, 
doxorubicin, vincristine, adriamycin, cisplatin and etoposide. Initial responses 
to such protocols are usually good and objective remissions are often observed 
(Pinkerton et al., 1990; De Bernardi et al., 1992; Niethammer and 
Handgretinger, 1995). Unfortunately these are rarely sustained and the long 
term results in these patients remain poor. It appears that neuroblastoma cells 
can become refractory to chemotherapeutic agents by induction of the 
multidrug resistant phenotype. Some studies on the expression of the MDR1 
gene, which encodes the P-glycoprotein multidrug efflux pump, have reported 
overexpression of MDR1 transcripts in neuroblastom a tumours post 
chemotherapy (Bourhis et al., 1989; Goldstien et al., 1990). However, these 
results are controversial. Normal tissues such as adrenal and kidney express 
high levels of MDR1 (Cordon-cardo et al., 1990), and it has been suggested 
that the levels seen in neuroblastomas could be artificially high due to the 
presence of contaminating normal tissues (Favrot et al., 1991). More recent 
investigations have examined expression of an additional resistance gene, 

multidrug-resistance-associated protein (MRP) (Bordow etal., 1994; Norris et 
al.,, 1996). These have demonstrated a correlation between over expression 
and poor outcome.
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1.8.2 Radiotherapy

Neuroblastoma is a radiosensitive tumour (Deacon et al., 1985) and its role in 
the treatment of stage 3 and 4 patients is well established. Localised 
radiotherapy is often used after incomplete surgery to irradiate the primary site 

and nearby lymph nodes. It is also used in combination with chemotherapy in 
cases where the primary tumour is inoperable. Sufficient reductions in tumour 

size may allow subsequent surgery. In addition to its curative role, it can also 

be useful for the palliation of bone pain . In stage 4S patients, radiotherapy 
has been used to stimulate regression of the tumour (Gaze, 1993). Radiation 

can also be delivered systemically to tumour sites by targeted radiotherapy 
(see chapter 2). MIBG is a noradrenaline analogue which is selectively 

accumulated by neural crest derived tumours like neuroblastoma (Weiland et 
al., 1980). Conjugated to 1311 it has shown considerable therapeutic promise 
(Hoefnagel, 1994). The diagnostic and therapeutic use of MIBG is discussed 
in detail in chapter 3. Other potential targeting agents include radiolabelled 
antibodies directed against cell surface markers present on neuroblastoma cells 
(see section 2.2.1).

1.8.3 Biological approaches

Numerous in vitro studies have shown that a variety of biological factors and 
chemical agents including retinoic acid, can induce differentiation of 
neuroblastoma cells (Lovat et al., 1994). Clinical trials indicate that retinoic 
acid may be of value in some patients (Smith et al., 1992; Villablanca et al., 
1995). Immunotherapeutic approaches using the cytokines interferon-p and 
interferon-y, have also been investigated clinically. The philosophy behind 

these approaches is that, by administering such agents, neuroblastoma cells 

can be stimulated to express cell surface antigens which will be recognised 
and subsequently destroyed by the patient's own immune system. They may 
also have anti-proliferative actions in vivo. Clinical results with such agents 
have however been disappointing (Evans et al., 1989). Studies with 

lymphokine-activated killer (LAK) cells combined with the infusion of the
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lymphokine interleukin 2 (IL-2), have also been investigated (Negrier et al., 
1991). Unfortunately the side effects proved to be unacceptable. Several 

antibody-based strategies have also been evaluated using murine and 
humanised antibodies directed against the disialoganglioside GD2 (Cheung et 
a l ,  1994; Handgretinger et al., 1995), and have shown some clinical 

responses in patients.

1.8.4 Megatherapy

Despite the above treatment approaches the outlook for stage 4 patients over 
the age of 1 year remains dism al. Although it is estimated that around 60% of 
patients will achieve a complete remission, more than half will subsequently 
relapse. Long term survival rates are less than 20%. For these patients more 

intensive megatherapy approaches have been adopted. The principle of this 
strategy is to sterilise residual disease present in patients who are in apparent 
remission. If these tumour cells can be killed, relapse should be avoided and 
the patient cured. Protocols have involved the use of escalated doses of 
chemotherapy, in some cases accompanied by total body irradiation. More 
recently [131I]MIBG has also been incorporated (see section 3.7.2). Bone 
marrow transplant may be included to circumvent the myelosuppression that 
such treatments induce (Pole et a l,  1991; Kremens et al., 1994). These new 
regimens are considered a welcome advance on standard megatherapy 
protocols since they are more rationally designed and based on convincing 
scientific evidence (Pritchard, 1995).

In conclusion, despite the seriousness of the disease there are indications that 
the treatment of neuroblastoma is improving. The overall cure rate for all 
stages and all ages is around 50% (Novakovic, 1994). Even for those patients 
in the worst prognostic groups (ie stage 4, > one year at diagnosis) intensive 

treatment schedules offer a realistic chance of survival. The challenge lies in 
effectively combining the range of promising treatments in a regimen that 

maximises clinical effect.
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CHAPTER 2 

TARGETED RADIOTHERAPY
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2.1 Introduction

Radiation remains one of the most effective ways of treating cancer. Sufficient 

doses can often be locally delivered to tumour volumes to induce regression 

and cure, but may be limited by normal tissue tolerance. However, 
disseminated disease can not be adequately treated in this way without causing 
lethal damage to normal tissues. A potential means of circumventing these 

two problems, inability to treat metastatic disease and normal tissue tolerance, 
is to devise a more selective means of delivering the radiation. Herein lies the 
concept of targeted radiotherapy: by conjugating radionuclides to appropriate 

carrier molecules which are selectively accumulated by tumour cells, 
systemically administered radiation is restricted to malignant deposits while 
normal, non-target tissues are spared.

2.2 Targeting vehicles

To be successful, targeted approaches need to employ suitably specific 
targeting vehicles. Such vehicles exploit unique properties of the tumour: 
metabolic, molecular or biological features which are peculiar to the malignant 
cells. Over the years, a range of agents have been used. Arguably the most 
simple and effective example of targeted radiotherapy is the administration of 
radioactive iodine for the treatment of thyroid carcinoma. No carrier vehicle is 
actually required since the thyroid gland naturally sequesters iodine. Similarly 
[89Sr]-strontium is used for the palliation of metastatic bone pain since it is 
metabolised in the body like calcium, being taken up and retained in 
metabolically active bone (Lewington et al., 1991; Lewington, 1996). 
However these examples are the exception to the rule. In most cases the 
radionuclide needs to be conjugated to an appropriate carrier molecule in order 

to ensure precise tumour delivery. Several carriers are currently being 
investigated.
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2.2.1 Antibodies

The ability to produce monoclonal antibodies was the major breakthrough 

which revolutionised the field of radioim m unotherapy. By fusing 
lymphocytes, isolated from a host animal exposed to tumour cells, with 

myeloma cells, hybridomas are produced. Those producing the antibody of 
desired isotype and specificity can be selected and the cell population 

expanded to produce large quantities of a single antibody molecule (Kohler 
and Milstein, 1975). It was originally thought that unconjugated monoclonal 
antibodies could produce antitumour effects by stimulating the patient's own 

immune system. The response rates however have been low and of short 
duration. Results were improved by conjugating chemotherapy agents and 
toxins to them but these strategies encountered problems with drug resistance 
and non-uniform expression of the tum our antigen. Conjugation of 

radioisotopes circumvents these problems because, by choosing an appropriate 
radionuclide with a sufficient path length, adjacent tumour cells can be killed 
by crossfire regardless of whether or not they express the target antigen. In 
addition, their effectiveness is not compromised by drug resistance 
mechanisms. Antibodies labelled with 1311 or 90Y have been used to treat a 
number of malignancies including glioma and ovarian cancer. Responses have 
been variable (Riva et al., 1995; Stewart et al., 1989).

Their most successful application is in the treatment of haematopoetic cancers 
(eg Applebaum et al., 1992; Schwartz et al., 1991). Leukaemias and 
lymphomas are particularly good candidates for a number of reasons: they are 
radiosensitive, they have well defined surface antigens against which a large 
number of monoclonal antibodies have been raised and the cells are likely to 
be more accessible to antibody than they are in solid tumours, where lack of 
penetration is liable to adversely effect outcome. In addition, because the 

majority of these patients are immunosuppressed, they are less likely to 
produce human anti-mouse antibodies (HAMA). The most impressive results 

have been obtained in B-cell lymphomas where significant response rates and
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prolonged remissions have been achieved (Kaminski etal., 1993; Knox, 1995; 
Press et al., 1993, 1995).

Two monoclonal antibodies, UJ13A and 3F8, have been used to treat 
neuroblastoma. UJ13A is directed against the neural cell adhesion molecule 

whose expression is limited to tissues of neuroectodermal origin. In vitro 

studies have demonstrated that it has a high affinity for a variety of tumour 
cells including neuroblastoma and retinoblastoma (Allan et al., 1983). 
Laboratory studies w ith UJ13A dem onstrated its efficacy against 

neuroblastoma spheroids (Walker et al., 1988) and xenografts (Jones et al., 
1985). However results in the clinic have been less impressive (Kemshead et 
al., 1987). Patients developed immune reactions to the murine antibody which 
meant it was rapidly cleared before adequate tumour accumulation could 
occur. Another m onoclonal antibody 3F8 has been used to treat 
neuroblastoma, both in its unconjugated form (see section 1.8.3) and 
radiolabelled with 13l l. Results in a group of heavily pretreated patients 
produced two partial responses (Cheung etal., 1991).

2.2.2 Steroid hormones and growth factors

Several tumours have been shown to be hormone responsive. Breast, ovarian 
and endometrial cancers all express high levels of oestrogen receptors (ER). 
This means that they have the potential to be specifically targeted with 
radiolabelled oestrogens. In vitro studies have confirmed that ER positive cell 
lines are preferentially killed by 1231 and 1251 labelled oestrogens (De Sombre 
et al., 1992; Beckmann etal., 1993). Steroid hormones are good candidates 
for labelling with Auger electron emitting radionuclides (see section 2.4.1), 

since upon binding their receptors they are transported to the nucleus where 
they bind to hormone responsive elements of target genes. This results in the 

sterilisation only of receptor-positive cells because Auger electrons have an 
effective range of a few nanometres. Growth factors could also be useful 
targeting agents. Enhanced expression of the epidermal growth factor receptor
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(EGFR) has been detected on several tumour types including glioblastoma 

(Schober et al., 1995) and squamous cell carcinoma, which has led to studies 
with radiolabelled epidermal growth factor (EGF) (Capala and Carlsson, 1991; 
Sjostrom et al., 1997) and transforming growth factor-alpha (TGF-a), both 

ligands of the EGFR (Carlsson et al., 1994).

2.2.3 Thymidine analogues and oligonucleotides

Iododeoxyuridine (IUdR) and bromodeoxyuridine are analogues of the DNA 
precursor thymidine. They are incorporated into DNA during the S-phase of 

the cell cycle and consequently offer a means of selectively targeting 
proliferating cells. It is thought that they could be of use in the treatment of 
tumours such as glioma, where rapidly dividing tumour cells are surrounded 
by non-proliferating normal brain cells. A large number of in vitro studies 
have confirmed the toxicity of Auger electron emitter labelled IUdR (eg 
Makrigiorgos et al., 1989). Consequently much work now centres on ways of 
confining its administration to the tumour site, thus avoiding distant rapidly 
dividing tissues, and on ways of protracting administration to achieve optimal 
uptake by malignant cells (Kassis et al., 1990).

Oligonucleotides provide a potential means of targeting specific sequences 
within the DNA. A number of tumours have characteristic genetic 
abnorm alities such as am plification of particular genes or specific 
chromosomal translocations (eg McDonnell et al., 1993; Brodeur and Fong, 
1989) which are potential targets. Oligonucleotides which form collinear 
triplexes with DNA can be conjugated to Auger electron em itting 
radionuclides to provide a potent means of inactivating genes or sterilising 
cells. At present, work in this field is concerned with confirming the 

specificity of triplex formation and ensuring effective delivery to the nuclei of 
target cells (O'Donoghue, 1996; Wang etal., 1995).
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2.2.4 Metabolic targets

Another means of targeting radiation is to exploit metabolic features of the 
tum our cells. Examples of this include the use of methylene blue, a 

phenothiazine derivative, to treat malignant melanoma. Pigmented melanoma 
cells contain an abundance of melanin. This can be exploited therapeutically 

by employing radiolabelled compounds such as thioamides and phenothiazines 
which have a high binding affinity for melanin. Selective localisation occurs 

because they are incorporated in to cells in proportion to their melanin content. 
Several in vivo studies have investigated the potential of methylene blue, . 
Radiolabelled with either 125I or 211 At, inhibition of tumour growth and 

prevention of metastatic spread have been oberved (Link et al, 1989; Link and 
Carpenter, 1990; Link et al., 1996). Subsequent scintigraphy studies with 123I 

and 1311 labelled material in patients with pigmented melanomas indicated a 
favourable biodistribution (Link et al ., 1996). Precursors of the melanin 
molecule could be another means of targeting malignant melanoma cells 
(Skellern e t a l , 1995).

The best characterised and currently most clinically useful example of a 
metabolic approach, is the use of meta-iodobenzylguanidine (MIBG) to target 
tumours of neuroectodermal origin. This noradrenaline analogue exploits the 
active uptake pathway for noradrenaline present in neuroendocrine tissues. 

This m echanism  is p reserved  in m ost neurob lastom as and 
phaeochromocytomas, thus allowing radiolabelled MIBG to be used for 
diagnostic scintigraphy and therapy of these tumours. Targeted therapy with 
MIBG is discussed in detail in chapter 3.
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2.3 Choice of radionuclide

The second requirement for a successful targeted radiopharmaceutical is 
choice of the appropriate radionuclide. Some candidate radionuclides and their 
properties are listed in table 2.1 :
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Selection is influenced by a number of factors including chemistry of 

conjugation, physical half life, availability, and the range of the emitted 
particles. It is desirable to have straightforward chemistry which allows the 
targeting agent to be rapidly and stably labelled. Physical half life of the 

isotope is also important. Ideally it should match the biological half life of the 
labelled pharmaceutical to ensure maximum dose delivery. Whilst it is their 

particulate emissions which are of benefit therapeutically, the presence of 
gamma emissions can be advantageous since it allows scintigraphy to be 

performed (eg with 123I or 131I). Using tracer doses of the intended 
radiopharm aceutical and serial quantitative gamma cam era imaging, 
information about the precise biodistribution of the targeting agent and 

estimates of tumour dose can be obtained. Particle range is particularly 
significant for a number of reasons which are discussed below.

2.4 Particle Range

Decay particle range is a critical feature of targeted radiotherapy. Choice is 
effected by 3 criteria: the subcellular fate of the targeting vehicle, the size of 
the targeted tumour deposit, and the heterogeneity of uptake of the targeting 
vehicle.

2.4.1 Subcellular location of targeting molecule

As discussed in Section 2.2, a number of potential targeting vehicles are 
currently under investigation. While the goal is delivery of radiation to the 
DNA of target cells, the optimal combination of radionuclide and delivery 
vehicle depends on the site of intracellular concentration. For those molecules 
which reach the nucleus of cells, Auger electron emitters are appropriate 
possibilities. These atoms decay by electron capture and internal conversion 
which results in the emission of extremely densely ionising radiation of very 

short range. As a result they are highly toxic to cells provided they are located 
within the nucleus. If they are located in the cytoplasm or on the cell 
membrane, toxicity is negligible (Kassis et al., 1987). They are therefore very
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effective conjugates for vehicles which are capable of reaching the nucleus 
and binding, or being incorporated into, DNA (sections 2.2.2 and 2.2.3). In 

contrast, those vehicles which remain cytoplasmic or membrane bound, should 
be combined with a radionuclide with longer path length decay particles. P 

emitting radionuclides are therefore more appropriate conjugates of antibodies 
which remain bound to the surface of target cells, and molecules such as 

MIBG which are located in the cytoplasm (Gaze et al., 1991; Clerc et al., 
1993).

2.4.2 Microdosimetry and target size

Particle range has very important dosimetric implications for the curability of 
tumours. M athematical modelling studies, which assume homogeneous 
radiolabelling of the tumour cell population, predict that tumour deposits 
which have dimensions smaller than the range of the emitted particle will be 
underdosed because the majority of the decay energy will be deposited outside 
the tumour (Humm, 1986). See figure 2.1.
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Figure 2.1 Energy absorption in large and small tumours

When tumour diameter exceeds path length the majority of 
the energy will be absorbed within the micrometastases (A). 
Where the path length is greater than the diameter of the 
tumour a large proportion of the energy is depostited 
outside the micrometastases (B).

Therefore, for any given radionuclide there is an optimal tumour size for cure 
(Wheldon etal., 1991; O'Donoghue et al., 1995). In clinical terms this means 
that microtumours and metastases below the optimal size of the administered 
radionuclide will effectively be resistant to therapy and could therefore be sites 
of disease recurrence.

2.4.3 Heterogeneity of uptake

Targeting strategies rely on the expression by tumour cells of specific 
molecules. Ideally, all the malignant cells of a tumour will express sufficient 

levels to allow uniform distribution of the targeted radionuclide. This ideal is 

seldom achieved because some tumour cells may express low levels of target 
so that some regions of tumour will be underdosed. In addition there may be
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limited penetration of the agent into solid tumours which will also contribute 
to the uneven distribution of energy deposition. Using long range p emitters, 

the problem can be overcome by crossfire: cells which themselves do not take 

up the drug will be irradiated by emissions from neighbouring targeted cells. 

However as the range of the particle emissions decreases this crossfire effect 
diminishes. With an alpha particle emitter like 211 At, which has a mean path 
length of 60 pm, limited crossfire can occur, killing five or six adjacent cells. 

With an Auger electron emitter like 125I the crossfire effect is non-existent 
(Figure 2.2).
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Figure 2.2 Relationship between particle range and the crossfire effect
Paler cells indicate those which have been sterilised
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The limitations imposed by the size dependent aspect of targeted approaches 
and the problems of heterogeneous distribution of targeting agents mean that 

targeted radiotherapy alone is unlikely to be curative. Modelling studies 
predict that its optimal use will be in combined therapy approaches which 

incorporate agents unaffected by these problems (O'Donoghue, 1991; Amin et 
al., 1993; Wheldon et a l ,  1993). Such approaches are currently under 

investigation for the treatment of neuroblastoma where [131I]MIBG is being 
administered in conjunction with total body irradiation and melphalan, 

followed by bone marrow transplantation or in conjunction with multiagent 
chemotherapy and stem cell rescue (see section 3.7.2).

2.5 Linear Energy Transfer

Another important feature of a given radionuclide is the quality of the 
radiations emitted. In contrast to diagnostic radionuclides, which are generally 
y-emitters, the ideal therapeutic radionuclides are those that have higher linear 

transfer energy (LET). Linear energy transfer represents the average energy 
(measured in kiloelectron volts) locally imparted to a medium by radiation in 
traversing 1pm along its path or track (Hall, 1994). It is a useful quantity since 

it provides a means of indicating the therapeutic potential of different types of 
radiation. Radiations with low LET are less effective because energy 
exchanges with matter are widely spaced. An example is the p particles 

emitted by 1311: each particle has only a small probability of releasing enough 
energy along its track to produce DNA breaks. In contrast high LET radiations 
are densely ionising along particle tracks which means they are much more 
efficient in the production of DNA breaks. For these reasons, high LET 
rad iations are desirab le for targeted  rad io therapy approaches.
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2.6 Radiobiology of targeted radiotherapy

2.6.1 Ionising Radiation

Ionising radiation is radiation which has sufficient energy to eject one or more 

orbital electrons from the atom or molecule in which it is absorbed. Ionising 

radiation results in the release of large amounts of energy within a localised 
area and can be classified into 2 types: electromagnetic or particulate. 

Examples of electromagnetic radiation include X-rays which are produced 
extranuclearly, and y-rays which are produced intranuclearly when unstable 

isotopes decay. Such radiations are indirectly ionising: that is they themselves 
do not produce chemical damage but when absorbed into the material through 
which they pass they give up their energy to produce fast-moving charged 
particles which in turn may cause damage. It is particulate radiations which 
are relevant to targeted radiotherapy. Examples include electrons, protons, a-  

particles, neutrons and heavily charged ions. As long as they have sufficient 
kinetic energy they will directly disrupt the atomic structure of the absorber 
they are passing through causing chemical and biological changes.

The biological effects of radiation primarily occur as a result of damage to 
DNA, generally accepted to be the critical target. The actions of radiation can 
be considered to be direct when the target itself is ionised or excited, leading 
to biological damage. Alternatively they may be indirect, in which case the 
radiation interacts with other atoms or molecules in the cell to produce free 
radicals which in turn diffuse and cause damage to critical targets (Figure 2.3).
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Figure 2.3 Direct and indirect actions of radiation
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2.6.2 DNA Damage after radiation

When cells are irradiated, breaks in the DNA backbone occur. If these are 

single strand breaks they pose few problems for the cell since they can be 

readily repaired using the opposite strand as a template. Where breaks occur in 
both strands, but are well separated, repair can again occur relatively easily 

since the cell treats them as two independent breaks. However, where the 
breaks in the two strands are opposite each other, or are separated by only a 

few base pairs, a double strand break may result. As there is no intact template 
for their repair, these double strand breaks may be misrepaired, disrupting the 
structure of the chromosome. Densely ionising radiations produce a wide 
variety of complex lesions, including base damage, as well as double strand 
breaks. This multiple damage occurs over a relatively short distance in the 
DNA molecule and is much more difficult for the cell to repair. It is for these 
reasons that alpha and Auger electron emitters are suitable isotopes for 
targeted radiotherapy.

2.6.3 Radiobiological features

The five R's of radiobiology which characterise conventional radiotherapy: 
repair, repopulation, redistribution, reoxygenation and radiosensitivity, are 
generally applicable to targeted strategies.

Dose rates in targeted radiotherapy vary considerably, rising for the first 24- 
48 hours as the tumour accumulates radiopharmaceutical and then falling off 
as the drug is subsequently cleared from the body and isotopic decay occurs. 
Since average dose rates are generally low targeted cells have the potential to 
repair damage and thus survive treatment. This is not so significant for high 
LET radiations, which cause more irreparable damage, but could dramatically 
affect treatment outcome for low LET radiation.

When tumour cells are treated with any cytotoxic agent (including radiation), 

those cells which survive treatment can be triggered to divide faster than
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before: a process known as repopulation. This is particularly important in 
fractionation schedules, where it allows normal tissues to recover, assuming 

there is enough time between doses. But if the delay is too long, repopulation 
will also occur in the tumour. In targeted therapy the majority of the dose is 

delivered in the first week of treatment, therefore repopulation is not thought 
to be important (Wheldon, 1994). Redistribution can allow cells, initially at an 

insensitive phase in the cell cycle, to reassort into more susceptible parts of the 

cycle. It is postulated that as the dose rate falls, this would result in an inverse 
dose-rate effect : the dose rate is so low that cells blocked in G2 of the cell 
cycle are released and can proceed into sensitive phases of the cycle again 
(Wheldon, 1994).

Reoxygenation is not thought to be important in targeted approaches because 
the therapy duration is not thought to be long enough to allow reoxygenation 
o f tumours. However some in vivo studies which combined hypoxic 
radiosensitisers with radiolabelled anitbobodies have demonstrated enhanced 
anit-tumour effects (Langmuir and Mendonca, 1992; Wilder et al., 1994).

The effect of radiosensitivity will depend on the type of tumour being treated: 
within the clinic, tumours exhibit a range of sensitivities towards radiation. 
Melanomas and glioblastomas generally respond poorly to radiotherapy, 
while lymphomas and neuroblastomas are typically radioresponsive. The most 
common tumours, squamous cell carcinomas and adenocarcinomas, fall 
between these two extremes.
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CHAPTER 3 

META-IODOBENZYLGUANIDINE (MIBG)
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3.1 Historical Background

Meta-iodobenzylguanidine (MIBG) was the result of a long search to develop 

agents which could be used to image the adrenal medulla . Initial studies using 

carbon-14 (14C) labelled catecholamines and their precursors demonstrated 

that such compounds could be concentrated by the adrenal medulla in animals 

(M orales et al., 1967) and subsequently  in neuroblastom a and 
phaeochromocytoma tumours in humans. Unfortunately these compounds 
could not be radio-iodinated and were therefore unsuitable for scintigraphic 

imaging (Ice et al., 1975). Subsequent research then involved the evaluation of 
iodinated bretylium analogues, iododopamine and a large number of 
aralkylguanidines (Korn et al., 1977). Of these agents, the most promising 
was the aralkylguanidine iodobenzylguanidine which was used to successfully 

image the adrenal medulla of a dog (Wieland et al., 1980). The meta-iodo 
isomer was more stable than the ortho- and para-isomers in terms of in vivo 
deiodination and was used to positively locate human phaeochromocytomas 
in 1981 (Sisson et al., 1981). Since then it has been used for the imaging of a 
number of neural crest tumours including neuroblastomas, carcinoid tumours 
and medullary thyroid carcinomas. It is now also employed in the therapy of 
neuroblastoma.

3.2 Structure

MIBG is composed of a ring structure and a guanadinium side group 
analogous to the adrenergic neurone blockers guanethidine and bretylium 
(Figure 3.1).
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Figure 3.1 Chemical structure of related adrenergic neurone blockers 
and MIBG
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The compound is highly polar and does not pass through the blood brain 
barrier.

3.3 Synthesis and radiolabelling

Commercial production of MIBG involves the synthesis of the non
radiolabelled drug followed by radio-iodination. Unlabelled material is 
produced by mixing meta-iodobenzylamine hydrochloride with cyanimide and 
then heating at 100°C for 4 hours. Addition of potassium bicarbonate 

precipitates MIBG-bicarbonate which is then dissolved in hot sulphuric acid. 
As this cools crystals, of MIBG sulphate form (Weiland et al., 1980).

Several radiolabelling procedures have been developed all of which involve 
exchange reactions, where stable iodine is substituted for radioiodine.
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Methods vary in terms of the reagents used to facilitate exchange - ammonium 
sulphate and Cu1+and Cu2+ ions have all been used (eg Eisenhut et al., 1985; 
Doremalen et al., 1985; Franceschini et al., 1991). Cu1+-catalysed reactions 

are now the method of choice because a better radiochemical yield is obtained, 
the material has a higher specific activity, and the reaction time is shorter.

3.4 In vitro Studies

3.4.1 Cellular Uptake

In cells of the sympathetic nervous system noradrenaline is synthesised and 
stored as a complex with ATP and protein (chromagranin) in chromaffin 
storage granules. In response to nervous stimulation these vesicles fuse with 
the plasma membrane and release noradrenaline into the synaptic cleft, where 
it mediates its effects through post synaptic cx and P adreno-receptors. 

Signalling is terminated by recapturing released noradrenaline in an active 
process sometimes referred to as Uptake-1. This occurs via a transporter 
protein located in the presynaptic membrane. This specific uptake mechanism 
occurs only in neuronal tissues and tumours derived from these, and has a 
number of characteristic features: it is temperature dependent, it requires 
sodium and chloride ions, it is sensitive to ouabain (a Na+ / K+ -ATPase 
inhibitor), it is energy dependent ( absence of glucose or the presence of 
metabolic inhibitors such as 2-deoxy-D-glucose or sodium azide reduces 
uptake) and it is sensitive to com petitive inhib itors such as 
desmethylimipramine and cocaine (Tobes et a l, 1985; Gasnier et al., 1986) 
(Figure 3.3).
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Figure 3.2 Mechanisms governing MIBG uptake
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MIBG utilises this transporter to gain entry to neuroectodermal tumours. The 

transporter has a high affinity for MIBG and saturates at concentrations o f  

around 1 pM  (Smets et al., 1989). A second non-specific mechanism exists 

which has a much lower affinity  for noradrenaline and M IBG. Unlike 

transporter mediated uptake the process is energy independent, shows no 

ouabain sensitivity and does not saturate at MIBG concentrations up to 5 mM 

(Jaques et al., 1984). This process occurs in normal as well as malignant 

tissues and is sometimes referred to as uptake-2.

3.4.2 The noradrenaline transporter

The noradrenaline transporter is responsible for the active uptake of MIBG by 

neuroblastom a cells. The saturability and specificity o f  this m echanism  has 

been characterised by studies involving com petitive  and non-com petitive  

inhibitors o f  M IBG accum ulation. Recently the m olecular aspects of this 

transporter have been investigated. The human transporter has been cloned and
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the organisation and sequence of the coding region established (Pacholczyk et 
a l., 1991; Porzgen et al., 1995). Analysis of the cDNA sequence predicts a 
protein of 617 amino acids with 12-13 hydrophobic regions thought to 

correspond to 12 membrane spanning domains. Subsequent studies with 

polyclonal antibodies directed against hydrophilic peptide sequences confirm 
the proposed topology (Bruss et al., 1995) (see Figure 3.3).

Figure 3.3 Schematic representation of the noradrenaline transporter

(Adapted from Pacholczyk et al., 1991)

Darker circles represent amino acid sequences homologous 

with the GABA transporter. Glycosilation sites and charged 

residues are also denoted.
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The protein is 55-58kDa and is heavily glycosylated - a feature essential for its 
function (Melikian et al., 1994). It is a member of a family of structurally 
related Na+ and Cl" dependant neurotransmitter transporters (Bruss et al., 
1993). Expression of the transporter has been examined in a number of 
neuroblastoma cell lines using RT-PCR and shown to correlate directly with 

the ability to accumulate MIBG (Mairs et al., 1994; Lode et al., 1995).

3.4.3 MIBG uptake in cell lines

Pharmacological studies of MIBG uptake have demonstrated that it can be 
inhibited by monoamines such as dopamine and serotonin (Lashford et al.,
1991). This has led to the suggestion that MIBG may be promiscuous with 
respect to receptor binding (Lode et al., 1995). Studies on MIBG uptake in 
platelets support this idea since fluvoxamine, a specific inhibitor of serotonin 
transport, was capable of inhibiting MIBG accumulation (Rutgers et al.,
1993). However studies of noradrenaline transporter expression levels in 
neuroblastoma cell lines and lines transfected with the cDNA encoding the 
various transporters contradict this. In an elegant study of the mechanism of 
MIBG uptake, DNA sequences encoding the human noradrenaline transporter 
(hNET), the bovine dopamine transporter (bDAT) and the rat serotonin 
transporter (r5HTT) were expressed in HeLa cell lines ordinarily negative for 
these transporters. Only transfectants expressing the hNET were capable of 
actively accumulating MIBG. This uptake was blocked by noradrenaline and 
by the uptake-1 inhibitors desmethylim ipramine and paroxetine. No 
significant uptake was detected in lines expressing bDAT or r5HTT 
(Glowniak et al., 1993). In addition, expression of the dopamine and serotonin 

transporters could not be detected in neuroblastoma cell lines (Lode et a l, 
1995). The above studies support the idea that MIBG active uptake in 
neuroblastoma cells occurs solely via the noradrenaline transporter, and is 

completely independent of the dopamine and serotonin transporters. 
Dopamine and serotonin are merely capable of competitive inhibition of the 

noradrenaline transporter by virtue of their structural sim ilarities to 
noradrenaline.
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3.4.4 Storage

In normal adrenal medulla cells, incorporated MIBG, like noradrenaline, is 
transported into storage vesicles via an energy dependent mono-amine 

transporter in the vesicular membrane. Reserpine, an inhibitor of this transport 
mechanism, causes a rapid depletion of MIBG from phaeochromocytoma cells 

indicating that storage in these cells is granular. In contrast neuroblastoma 

cells are insensitive to the effects of reserpine demonstrating that storage in 
these cells and tumours is predominantly extragranular (Smets et al., 1989). 

Histological examinations of storage granules present in neuroblastoma SK-N- 
SH cells and phaeochromocytoma PC 12 cells confirm that low numbers are 
present in neuroblastoma cells (Smets et al., 1990). Supporting evidence for 
these storage differences comes from the effects of a variety of 
pharmacological agents (Table.3.1)

Table 3.1 Effect of pharmacological agents on MIBG retention
(Adapted from Wafelman, 1994)

% of stored MIBG depleted 
(compared to controls)

Agent PC-12 SK-N-SH

Reserpine 77% 15%

Imipramine 2 2 % 82%

Acetylcholine (ACh) 1 2 % 3%

Potassium (K+) 23% 4%

ACh or (K+) + nifedipine 0 % 0 %

Abscence of vesicular accumulation has also been observed in other 

neuroblastoma cell lines (Mairs et al., 1991; Lashford et a l ,  1991). 
Acetylcholine and potassium, which induce exocytosis from vesicles, cause
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depletion of MIBG from phaeochrom ocytom a cells but not from 
neuroblastoma cells. This process requires calcium ions, which explains why 
calcium  channel blockers such as nifedipine inhibit depletion from 

phaeochromocytoma cells. Such drugs have been shown to prolong MIBG 
retention in phaeochromocytoma tumours and it was suggested that they may 

do likewise in neuroblastoma (Blake et a l ,  1988). However in vitro studies 
demonstrated that nifedipine had no effect and verapamil only a mild effect on 

MIBG retention at concentrations which would be cardiotoxic in vivo (Mairs 
et al., 1991). In conclusion these studies confirm an extragranular fate for 

MIBG in neuroblastoma cells. Rather than vesicular storage of MIBG, 
neuroblastoma cells maintain intracellular levels by rapid reuptake of 
diffusing drug, since inhibitors of the transport process (eg imipramine) cause 
a dramatic depletion of cellular levels.

3.5 Cytotoxicity

3.5.1 Unlabelled MIBG

The objective of the administration of MIBG is to deliver radiation selectively 
to neuroectodermal tumour sites. Toxic effects on tumour cells are the result 
of the decay of radioactive conjugates. Some investigators have suggested that 
unlabelled MIBG itself could also be toxic to cells. At drug concentrations of 
7-70 pM growth inhibition has been reported in a variety of cell lines both 

neural and non-neuronal. Antitumour effects have also been observed in 
tumour bearing animals (Smets et a l ,  1988). This toxicity is believed to be 
caused by inhibition of mitochondrial respiration at complex I (Loesberg et 
a l ,  1991) although additional cellular processes may also be involved 

(Cornelissen et a l ,  1995). However it is unlikely that these effects make an 
appreciable contribution to the anti-tumour effect of MIBG in vivo. Peak 
plasma concentrations in patients undergoing [13 1I]MIBG are around 0.1 pM 

(Ehinger et al., 1987) and even allowing for locally elevated concentrations in 
tumours it is unlikely that they will reach the high molar levels required to 
achieve anti-proliferative effects.
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3.5.2 Radiolabelled MIBG

The toxicity of radio-iodinated MIBG has been demonstrated in a number of 

in vitro systems. Bruchelt et al (1988) showed that uptake-competent SK-N- 
SH cells were killed in a dose dependent manner by [13 11]MIBG , while in 

SK-N-LO cells which lack the noradrenaline transporter, no appreciable 

toxicity was apparent. Similar results were obtained using [1 25I] labelled 
material. A similar study by Guerreau et al (1990) demonstrated that 
[12 5I]MIBG treatment reduced colony formation to less than 60% of controls 

in SK-N-SH cells at concentrations greater than 150 kBq / ml. Investigations 
using m ulticellular spheroids have demonstrated that treatm ent with 
[13 1I]MIBG inhibits regrowth of neuroblastoma spheroids (Gaze et al., 1992; 
Weber etal., 1992)

3.6 In vivo studies

3.6.1 Animal models of neuroblastoma

In vivo  studies w ith [ 1 3 1I]MIBG require reproducible m odels of 
neuroblastoma. Several such models of disease have been reported using a 
variety of neuroblastoma cell lines: Senekowitsch et al (1989) obtained solid 
tumours by simple subcutaneous injection of SK-N-SH cells into nude mice. 
Rutgers e ta l  (1991) inoculated mice intrasplenically with SK-N-SH to induce 
tumour growth on the liver and spleen. Tumour fragments from these sites 

were then implanted subcutaneously and could subsequently be serially 
passaged. This technique has been employed to establish xenografts from SK- 

N-BE(2c) cells (Gaze et a l., 1994). One non-murine neuroblastoma xenograft 
model has been reported (Nilsson et al., 1993). Subcutaneous injection of SH- 
SY5Y cells into athymic rats produced rapidly growing tum ours.
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3.6.2 Biodistribution and treatment

It is encouraging that these various models all give similar results in terms of 
MIBG distribution.

Senekowitsch et al (1989) found that uptake capacity by subcutaneous 

xenografts was maximal at 6  hours post injection. Other sympathetically 

innervated sites such as heart also showed high levels of uptake. Using 

activities of 185 MBq per mouse tumour cure was achieved.

Rutgers et al found maximal uptake occurring in tumours and in the adrenal 

glands - the natural targets for MIBG. Therapy experiments using 30 - 50 
MBq of [1 3 1 I]MIBG demonstrated large variations in tumour uptake and 
retention between animals, however a positive correlation was established 
between estimated radiation absorbed dose and tumour response. SK-N- 
BE(2c) xenografts were found to behave similarly in terms of uptake and 
retention (Gaze et al., 1994). Comprehensive biodistribution data indicated 
that maximal accumulation of [13 1I]MIBG in adrenal glands and in tumours 
occurred at 24 hours. In normal tissues there was a biphasic clearance. As in 
the other studies attempts to conduct therapy experiments with this xenograft 
model were hampered by the huge variation in uptake between animals, 
consequently no real correlation between administered dose and tumour 
response was observed. However growth delay could be detected at high 
activities (105 MBq per mouse). Biodistribution studies with [12 3I]MIBG in 
xenografts in athymic rats revealed a similar pattern to that observed in murine 
models (Nilsson etal., 1993).

3.7 Clinical use of MIBG

3.7.1 Diagnostic Scintigraphy

Radiolabelled MIBG has been used for diagnostic imaging since 1980 and 
now has a firmly established role in the clinical investigation of a variety of
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neuroendocrine tumours. Imaging can be carried out using either [1 3 1I] or 
[1 23I] labelled MIBG: f13 1 1]-labelled material protocols typically involve the 
administration of 18.5-37 MBq, with imaging at 24, 48 and 72 hours post 

injection. Where the label is [1 2 3I] much larger activities can be administered 
since the absorbed radiation dose per MBq is much lower than for [1 3 1 I]. 

Generally 185-370 MBq can be injected and images obtained at 24 and 48 

hours. There has been debate about which isotope is superior. [1 2 3 I] has a 
higher photon flux and a 159keV photon, features which enhance the quality 

of images and allow SPECT studies to be performed. However tumour 
detection rates appear to be similar for both (Lynn et a l ,  1985; Sinon et al., 
1992; Gelfand etal., 1994).

MIBG imaging for neuroblastoma is highly sensitive and specific. A 
multicentre review of more than 700 scans quotes an overall sensitivity of 
92% and a specificity of nearly 100% (Hoefnagel, 1994). It has proved 
particularly effective in detecting tumour deposits in bone and bone marrow 
where infiltration can be diffuse and difficult to confirm histologically 
(Schulkin e ta l ,  1992; Osmanagaoglue etal., 1993).

In addition to confirming diagnosis, the scan also provides information about 
MIBG clearance and dosimetry which can be used to calculate the therapeutic 
dose appropriate to individual patients. There have been some discrepancies 
however between diagnostic predictions of MIBG accumulation and actual 
tumour uptake as measured by counting of radioactivity in tumours surgically 
excised following radiolabelled MIBG administration (Moyes et a l ,  1989). 
Alternative methods of estimating uptake have therefore been investigated. 
RT-PCR analysis of noradrenaline transporter expression could be a viable 
alternative. By determining levels of expression in tumour biopsy samples it 
may be possible to obtain accurate estimations of uptake (Mairs et al., 1994). 

O ther neuroendocrine  tum ours can be im aged w ith  M IBG. 
Phaeochromocytomas arise in chromaffin cells and tend to affect adults rather 

than children. Invariably the tumour is located on the adrenal medulla and the 
patient presents with clinical symptoms which arise because of the excessive
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catecholamines which the tumours secrete. While most tumours are benign, on 
rare occasions they can be malignant. MIBG scintigraphy has been shown to 

accurately locate the majority of phaeochromocytomas with an overall 
sensitivity of 8 6 % and specificity of 97% (Campeau et al., 1991). Other 
tumours which can be imaged with MIBG include carcinoids, medullary 

thyroid carcinomas, ganglioneuromas and paraganglioma.

MIBG can also be used for cardiac imaging. Unlike noradrenaline, MIBG is 

not metabolised by monoamine oxidase or catechol-o-methyltransferase. In 
addition, MIBG release from non-neuronal stores is rapid. Therefore the 
localised distribution of adrenergic nerve elements can be visualised. The 
stability of MIBG and its rapid loss from non-target sites allows its use in the 

assessment of adrenergic neurone function in the heart. Lower cardiac uptake 
is observed in conditions where noradrenaline content and/or uptake is 
reduced, such as myocardial infarction and congestive heart failure (eg 
Glowniak et al., 1989; Merlet et al., 1992; Shakespeare et al., 1993). Several 
studies have also used MIBG to monitor the effects of the cytotoxic 
antibiotics on heart function. The anthracyclines are an important group of 
chemotherapy agents which have a wide spectrum of anti-tumour activity. 
However an unfortunate side effect of their repeated administration is 
significant cardiotoxicity. The degree of injury shows wide variation between 
individuals which makes appropriate dose scheduling difficult. MIBG 
scintigraphy provides a sensitive means of monitoring cardiac damage in 
patients during and after anthracycline therapy (Wakasugi etal., 1993; Valdes 
Olmos etal., 1995).

3.7.2 MIBG Therapy

Following the demonstration of its use for the specific and sensitive detection 

of tumours the potential of MIBG to deliver therapeutic doses of radiation was 
evaluated.
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Initially therapeutic administration was limited to neuroblastoma patients with 
progressive, chemotherapy-resistant disease. Encouraging results were 

obtained with an overall response rate of 35% (Hoefnagel et al., 1994). 
[1 3 1I]MIBG has subsequently been employed in many centres at an earlier 
stage in therapy either as first line treatment or in combination with other 

treatment modalities. Treatment generally involves the administration of 3 to 
11 GBq of [1 3 1 I]MIBG (specific activity - l.IG B q  / mg) which is injected 

intravenously over 1 to 4 hours. Prior to administration a full drug history is 
taken from the patient since a number of commonly prescribed agents and 

over-the-counter medicines can interfere with MIBG uptake (Solanki et al.,
1992). To protect the thyroid gland patients are given oral potassium iodide to 
competitively block uptake of free [131I].

Treatment is usually well tolerated although some patients experience mild 
nausea and vomiting (Sisson et al., 1988). This may be as a result of the 
binding of MIBG to noradrenaline receptors in the emesis-controlling region 
of the brain since noradrenaline levels have been implicated in the nausea and 
vomiting experienced by patients undergoing chemotherapy (Fredrikson et al.,
1994). The most significant side effect is thrombocytopenia which can be 
severe and long lasting. There is debate about how this condition arises. It is 
possible that it is caused by crossfire irradiation of stem cells or 
megakaryocytes from adjacent tumour sites within the bone marrow which 
have actively accumulated [1 3 1I]MIBG (Gelfand, 1993). If this is the case then 
a correlation between bone marrow involvement and the degree of 
thrombocytopenia would be expected. However such a relationship has not 
been clearly identified (Hoefnagel and Lewington, 1994) and indeed marrow 
suppression has been reported in patients who showed no bone marrow 

involvement (Garaventa et al., 1991). An alternative explanation is that 
toxicity arises directly in platelets themselves, or more likely their nucleated 
precursors the megakaryocytes. In vitro studies have shown that human 

platelets are capable of actively accumulating MIBG via the serotonin 
transporter (Rutgers et al., 1993) although this finding is controversial since 
transfection studies involving the rat serotonin transporter demonstrated no
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MIBG accumulation (Glowniak et a l, 1993) (see section 3.4.3). A third more 
plausible explanation is that the acute myelosuppression is a manifestation of 
previous treatments since it is often most severe in intensively pretreated 

patients (Sisson etal, 1988; Mastrangelo etal., 1995).

"De novo" administration of [1 3 1I]MIBG to patients prior to surgery and 

chemotherapy has been pioneered in Amsterdam with an impressive response 
rate of 69% (De Kraker et al., 1995). This approach was adopted because 

previous experience had demonstrated that [13 1I]MIBG had been most 
effective in patients with a large tumour burden at the time of treatment. In 
addition to its antitumour effects MIBG treatment was also capable of 
significantly reducing pain. Another novel approach which has been 
evaluated by the Amsterdam group is the combination of [1 3 1 I]MIBG with 
hyperbaric oxygen treatment. This approach is based on the well known 
observation that the availability of molecular oxygen can enhance the effects 
of radiation (Gray et al., 1953). Treatments which are capable of increasing 
tumour oxygenation are therefore predicted to enhance radiosensitivity. 
Clinical approaches to decrease tumour hypoxia have included the use of 
hypoxic cell sensitizers and hyperbaric oxygen. In this study patients were 
given therapeutic doses of [13 1I]MIBG, and were then placed in a hyperbaric 
chamber for up to 5 days. Preliminary results with stage 4 patients indicate 
moderately higher survival rates compared to [1 3 1 I]MIBG treatment alone 
(Voute etal., 1995).

Other studies have investigated the integration of [1 3 1I]MIBG into combined 
therapy approaches. There are theoretical grounds for combining MIBG with 
additional therapies which are unaffected by the same size constraints as 
[13 1I]MIBG (section 2.4.3). A pilot study in Glasgow combined [1 3 1I]MIBG 
with total body irradiation and high dose mephalan to treat small 

micrometastases (predicted to be underdosed by [1 3 1 I] labelled MIBG alone) 
and localised external beam radiotherapy for larger measurable deposits. The 

clinical experience demonstrated the feasibility of such an approach, although 
further assessment is needed to confirm its efficacy (Gaze et al., 1995)
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M astrangelo and colleagues have described the use of cisplatin and 
[1 3 1I]MIBG in stage IV patients (Mastrangelo et al., 1995). Cisplatin was 

chosen because of its low haematological toxicity and its purported synergy 
with radiation (Douple et al., 1985; Dewit, 1987). Encouraging results were 

obtained in a group of heavily pretreated, relapsed patients and ongoing work 
is now investigating the combination in earlier stages of disease.

Administration of therapeutic doses of [1 3 1I]MIBG have also proved 

efficacious in the treatment of phaeochromocytomas, carcinoids and medullary 
thyroid carcinomas with objective responses of 56%, 16% and 32% 
respectively (Hoefnagel, 1994). As with neuroblastoma patients [1 3 1I]MIBG is 
also very effective in relieving bone pain caused by skeletal metastases.
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CHAPTER 4 

AIMS OF THIS STUDY



Clinical experience with [1 3 1 I]MIBG has demonstrated its therapeutic 
effectiveness and it is now confirmed as a valuable addition to the armoury of 
agents employed to treat neuroblastoma. Nonetheless it has become clear that 

[131I]MIBG therapy alone is unlikely to be curative. The aims of this study 
were therefore to identify ways in which its use could be enhanced. To this 

end, research has focused on four lines of investigation:

4.1 No-carrier-added MIBG

A potential means of improving results with [1 31I]MIBG is to investigate ways 
of enhancing tumour uptake of the drug. This problem can be addressed 
chemically, by improving the synthesis and radiolabelling procedures used to 

produce MIBG. As indicated in section 3.3, currently available material is 

produced by iodide exchange, an inefficient process which results in a product 
unavoidably contaminated with cold carrier molecules. As these will compete 
with radiolabelled MIBG for tumour sites of active uptake, high molar 
amounts of drug are required to deliver a therapy dose. This situation is non
ideal since it reduces the therapeutic ratio and increases radiation damage to 
non-target tissues. Alternative radiolabelling procedures have now been 
developed which result in production of carrier free [1 3 1I]MIBG. In chapter 5 
the synthesis and evaluation of this preparation in in vitro and in vivo models 
of neuroblastoma is described.

4.2 Modulation of MIBG uptake

As described in section 3.7.2, several centres have adopted the use of MIBG 
targeted radiotherapy in combination with more firmly established treatment 
modalities. However experimental demonstration of beneficial combinations is 

lacking and the effect upon MIBG uptake of the earlier delivery of 

chemotherapeutic agents has not been established. Initial studies to address 
this issue are described in chapter 6  where the effect of cisplatin pretreatment 

on MIBG uptake capacity of neuroblastoma cells in vitro is investigated.
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4.3 Alternative radiohaloconjugates of MIBG

Due to the dissipation of substantial amounts of long range p-decay energy 

outwith the targeted tumour, MIBG labelled with 13ll is expected to be less 
effective for the treatment of neuroblastoma deposits of submillimetre 

dimensions than of larger tumours (section 2.4). The use of alternative 
radiolabels which emit particles with a shorter range, may be more appropriate 

for targeting neuroblastoma micrometastases. In chapter 7, the toxic potential 
of two Auger electron emitting conjugates of MIBG, [1 2 3 I]MIBG and 

[125I]MIBG, are compared with [1 31I]MIBG in neuroblastoma cell monolayers 
and spheroids which are used as an in vitro model of micrometastases.

4.4 Development of an in vivo model of neuroblastom a

To adequately investigate the effectiveness of individual therapies, and to 
develop ways in which these treatments can be optimally combined, a realistic 
in vivo model of metastatic neuroblastoma is required. To establish such a 
model, groups of nude mice have been inoculated with neuroblastoma cells 
and monitored for the appearance of disease using RT-PCR based 
methodology. The results of this approach are reported in chapter 8 .
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CHAPTER 5 

NO-CARRIER-ADDED MIBG
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5.1 Introduction

5.1.1 The requirement for no-carrier-added MIBG

The principles governing the development of no-carrier-added (n.c.a) MIBG are 

related to the kinetics of its uptake and the manner in which currently available 

MIBG is synthesised.

As described in section 3.4.1, uptake of MIBG occurs via two mechanisms: a 

specific, high affinity, saturable mechanism mediated via the noradrenaline 
transporter and responsible for active MIBG accumulation by neuroendocrine 
tumours and a second, non-specific mechanism, passive diffusion. This 
accounts for uptake in most normal non-target tissues, with the exception of 

sympathetically innervated organs such as the heart and the adrenal glands. 
Because of these mechanisms the molar concentration of MIBG critically affects 
its distribution. At low MIBG concentrations the specific mechanism 
predominates (Mairs et al., 1991). Drug accumulation is therefore limited to 
those sites expressing the noradrenaline transporter. As the molar concentration 
increases however, this mechanism saturates and an increasing proportion of the 
drug is accumulated by passive diffusion - so that normal, non-target sites take 
up more radiolabelled drug. Therefore it is postulated that one way of confining 
radiolabelled MIBG to tumour tissues is to administer it at the lowest possible 
chemical concentration.

Unfortunately currently available [ l3 1 I]MIBG preparations are non-ideal. 
Because the radiolabelling process involves the exchange of stable iodine for 
radioiodine (section 3.3) the final product is inevitably contaminated with an 
excess of unlabelled carrier MIBG molecules. This inefficient synthesis results 

in an estimated ratio of radiolabelled to non-radiolabelled MIBG molecules of 
only 1 in 2000. Therefore unnecessarily high molar concentrations of the drug 

are administered. Unlabelled MIBG molecules compete with radiolabelled ones 

for uptake sites, lowering the delivery of radioactivity to the tumour and 

increasing the radiation dose to non-target organs. This hypothesis is supported
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by the observations of Mock and Tuli (1988), who found that at high loading 

doses the absolute cardiac uptake of [ 1 2 3I]MIBG in rats declined as specific 
activity decreased, and the results of Bruchelt et al (1988), who showed that 

greater toxicity to SK-N-SH neuroblastoma cells was obtained with high 
specific activity [ l3 lI]MIBG (0.74 - l . l  GBq / mg) than with low specific 

activity [1 3 lI]MIBG (7.4 - 11.1 MBq / mg). Therefore a synthetic route other 

than iodide exchange is required which will generate a carrier-free product. This 
should enhance the differential between target and non-target uptake, increasing 
tumour dose while sparing normal tissues.

5.1.2 No-carrier-added synthesis of MIBG

Several chemical methods have been described for the production of n.c.a 

MIBG. Although they differ mechanistically they have in common the 
production of a reactive precursor of the MIBG molecule which can be quickly 
and efficiently radiolabelled in a single step.

Mairs et al (1994) employed a novel synthetic route to produce MIBG via the 
meta-diazo derivative of benzylguanidine. Meta-aminobenzylguanidine was 
synthesised by refluxing meta-nitrobenzylamine in the presence of cyanamide. 
This was then reacted with sodium nitrite to form a highly reactive meta-diazo 
derivative. When iodide ions were added to this precursor, site specific 
iodination occurred to form MIBG. Although successful in producing carrier 
free product, the efficiency of the reaction was poor and the radiochemical yield 
was only 13.4%.

Vaidyanathan and Zalutsky (1993) employed silicon chemistry which has been 

utilised for the radiohalogenation of a variety of compounds (eg Wilbur et al., 
1982). Using 3-bromotoluene as a starting compound they produced 3- 

trimethylsilylbenzylguanidine (TMS-BG). The C-Si bond is susceptible to 
electrophilic cleavage which allows iododesilylation to occur in the presence of 

an appropriate oxidant, such as N-chlorosuccinimide (Figure 5.1).
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Figure 5.1 Synthesis of [13,I]MIBG by the iododesilylation of 
3-methylsiIybenzylguanidine

NH

CH-,—  NH—  C,

NH

SiMe

Nal31I, N-chlorosuccinamide

NH

NH

l3lI

By performing the reaction in trifluroacetic acid , at room temperature, yields of 
85-90% were obtained. Since the iododesylation process gives greater 
radiochemical yield it is the favoured route for producing n.c.a MIBG.

5.1.3 Laboratory studies with n.c.a MIBG

Having synthesised n.c.a [I3 1 I]MIBG, Vaidyanathan and Zalutsky (1993) 
carried out preliminary studies to determine uptake and biodistribution of the 
novel preparation. In vitro binding studies in SK-N-SH neuroblastoma cells 

demonstrated that uptake of n.c.a drug remained constant over a 2 -log activity 

range, while that of conventional [ l3 lI]MIBG prepared by exchange methods 

decreased by a factor of seven. In vivo biodistribution studies in mice allowed 

an assessment of n.c.a uptake in normal tissues. Sympathetically innervated
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tissues showed significantly higher uptake of n.c.a material. An indication of 

the potential therapeutic benefit of n.c.a [ l3 l I]MIBG was obtained by 
calculating the target to non-target ratio of drug accumulation. Using the 

adrenals as a target tissue and the liver as an example of a non-target tissue, the 
ratio of uptake 24 hours after injection was 7.54 for the exchange preparation 

and 28 for n.c.a [ l3 lI]MIBG.

5.1.4 Aims of this study

The results of preliminary investigations of n.c.a [I3 1 I]MIBG are encouraging 

and lend support to the hypothesis that the molar mass of drug present does 
effect the uptake and biodistribution of MIBG. The aims of this study were to 
carry out a more detailed evaluation of the n.c.a preparation to determine its 
therapeutic potential. Experiments were undertaken to examine its radiochemical 
stability, uptake, and biodistribution in mice bearing neuroblastoma xenografts.
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5.2 Materials and Methods

5.2.1 Synthesis of n.c.a MIBG

Chemicals were purchased from Aldrich Chemical Company (Dorset, UK). 

HPLC grade solvents were obtained from Rathburn C hem icals 

(Peebleshire,UK). Carrier free l3 1 I-NaI was purchased from Amersham 
International (Buckinghamshire,UK). The precursor, TMS-BG, was kindly 

provided by Dr Vaidyananthan (Department of Radiology, Duke University), 
n.c.a MIBG was synthesised by iododesilyation of TMS-BG according to the 
previously published method (Vaidyanathan et al., 1993; Mairs et al., 1994). 
Peracetic acid, the oxidising agent, was prepared by mixing 130 pi of 30% (v/v) 
H2O2 with 50 pi of glacial acetic acid. This was kept at room temperature for 2 
hours prior to use. 0.1 mg of TMS-BG was dissolved in 40 pi of trifluroacetic 
acid to give a final concentration of 10 nmol / pi. This was added to a Wheaton 

Reactivial (Pierce, Cambridge) containing the desired activity of [ l3 1 I]-NaI, 
followed by 20 p.1 of peracetic acid. The vial was capped, the contents mixed 

gently and then left at room temperature for 5 minutes. The MIBG product was 
then purified by Reverse Phase HPLC using a Waters Bondapak C l 8  column 
(10 pm, 3.9 mm x 100 mm) with H2O: tetrahydrofuran: triethylamine: H3 PO4  

(96.5:2.0:1.0:0.5 v/v/v/v) solvent system at a flow rate of 3ml / minute using a 
Waters 600E pump, with Waters 490 UV detection and a sodium iodide 
radiodetector. Tetrahydrofuran was removed from the HPLC fraction containing 
the [ 1 3 l I]MIBG with a stream of nitrogen for 15 minutes. The remaining 
solution was desalted using a C18 Sep-Pak (Waters, Millipore). After loading 
the sample, the Sep-Pak was washed with 2 x 5 ml water and 2 x 500 pi of 5 
mM sodium acetate (pH 4.5). The [l3 1 I]MIBG was then eluted with 250 pi 

aliquots of methanol. The methanol was removed with a stream of nitrogen and 
the activity reconstituted in PBS. HPLC was used to estimate the specific 

activity of the n.c.a preparation. Using MIBG standards the limit of detection 

corresponded to a specific activity of approximately 3 x 1016 Bq / mol. As a 
cold MIBG trace could not be detected during synthesis, the specific activity of 

n.c.a [ l3 lI]MIBG was estimated to be at least 3 x 1016 Bq / mol. This is at least
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100 times higher than that of conventional exchange prepared l l3 1 I]MIBG 
(specific activity3 x 10i 4  Bq / mol).

5.2.2 Stability of n.c.a l 1 3 ,I]MIBG

N.c.a MIBG was synthesised as detailed above. To determine the free iodine 

content, samples were analysed by reverse phase HPLC, using the solvent 
system described above but with a Waters analytical C-18 Nova-pak column 
(3.9 x 150 m m ) at a flow rate of lml / min. Under these conditions Rf values 

for free [ 13 *1] and [1 3 1 I]M1BG were 1.5 minutes and 5.5 minutes respectively. 
Data were collected and analysed using Waters baseline software. To determine 
the effect of storage temperature, samples were stored at room temperature and 
frozen at -20°C. To investigate the effect of radioactive concentration, the level 
of free iodine in 25 MBq / ml and 100 MBq / ml samples were compared.

5.2.3 Cell Culture

The human neuroblastoma cell line SK-N-BE(2c) was used for these studies. 
This established cell line was originally derived from the bone marrow of a 
patient with progressive neuroblastoma following treatment with radiotherapy 
and chemotherapy (Beidler et al., 1978) and has a high capacity for uptake of 
MIBG (Mairs et al., 1994).

Cells were grown in a 5% CO2 atmosphere at 37°C in RPMI-1640 medium 

supplemented with 10% fetal calf serum, penicillin/streptomycin (100 IU /m l), 
amphotericin B (2 pg / ml) and glutamine (200 mM). All media and 

supplements were obtained from Gibco (Paisley, UK). Flasks were subcultured 
every 5-7 days when the monolayers became confluent.

5.2.4 Effect of inhibitors on n.c.a 11311 |MIBG uptake

SK-N-BE(2c) cells were seeded in 6 -well plates at an initial density of 2.5 x 105  

cells per well and incubated for 48 hours. RPMI Medium was then removed,
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replaced by 2.5 ml of fresh medium containing the desired inhibitor: 
desmethylimipramine, imipramine, amitriptyline, dopamine, serotonin or 
noradrenaline (Sigma, Poole, Dorset) at the appropriate concentration, and the 

cells incubated for 30 minutes. Medium was then removed, replaced by 2.5 mis 
fresh medium containing inhibitor plus n.c.a [ 1 3 lI)MIBG and uptake measured 
over 2  hours. Medium was then removed, the cells washed with PBS, and 
radioactivity extracted by 2 aliquots of 10% (w/v) trichloroacetic acid (Aldrich, 
UK). Activities of extracts were then counted in an automated gamma well 
counter (Canberra Packard, Berkshire, UK). The level of uptake was expressed 
as a percentage of control cells incubated in the absence of inhibitor.

5.2.5 Biodistribution of [ 1 3 II1MIBG in mice bearing neuroblastoma xenografts

All animal work was carried out in accordance with the UK Coordinating 
Committeefor Cancer Research guidelines on experimental neoplasia in animals 
under the authority of a project licence granted by the Home Office under the 
Animals (Scientific Procedures) Act, 1986.

5.2.5.1 Establishment of neuroblastoma xenografts

Six week old female athymic nude mice of strain MF1 nu/nu (Harlan Olac, 
Bicester, UK) were used for these studies. Xenografts were established 
according to the technique described by Rutgers et al (1991). SK-N-BE (2c) 
cells were cultured as described in section 5.2.3. Prior to intrasplenic injection 
(ISl) cells were trypsinised, counted and resuspended in sterile PBS and stored 
at 4°C until use. Under sterile conditions mice were anaesthetised using 
hypnorm / hynovel (Janssen Animal Health, Kent). An incision was made 
through the skin and peritoneum and the spleen partly exposed. Approximately 
3 x K/ 1 SK-N-BE (2c) cells in 200ul PBS were injected slowly into the upper 
pole of the spleen. Peritoneum and skin were then sealed with histoacryl tissue 

adhesive (Davis and Geek, Hampshire) and the wound sealed with 9 mm 
autoclip wound clips. Following a latent period of 3-12 weeks, hepatic and 
splenic tumours developed at which point mice were sacrificed and the tumours
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removed. Tumour fragments of 2-3mm in diameter were then implanted 
subcutaneously in the subcostal flank of 6  to 8  week old mice. Subcutaneous 

xenografts developed in 2-3 weeks and could be serially passaged into fresh 
animals. Mice were used for pharmacokinetic and biodistribution experiments 2- 
3 weeks after implantation when subcutaneous tumours had grown to 5 - 10 

mm in diameter.

5.2.5.2 Biodistribution studies

Groups of 7 tumour bearing mice were used for each timepoint. The distribution 
of n.c.a [13,IJMIBG (specific activity> 0.11 TBq / mg) was compared with 
that of commercial therapy [ 1 3 1 I|MIBG (ex-[1 3 1 I]MIBG) prepared by 
conventional exchange methods (specific activity > 1.1 GBq / mg). Mice were 
injected intraperitoneally with 5 MBq of the appropriate preparation. The precise 
activity administered to each mouse was measured using a Curiementor-2 
ionisation chamber radionuclide meter (Radiation Components, Bracknell, UK). 
At the appropriate time after [L31IJMIBG administration (1, 16, 24, 48 or 72 
hours), mice were sacrificed. Samples of blood, tumour, heart, lung, adrenal 
glands, kidney, spleen, skin, thyroid gland and skeletal muscle were excised 
and carefully dissected from fat or connective tissue. These were then placed in 
screw-capped Eppendorf tubes and weighed. The radioactivity present in the 
tissue samples was then determined by counting in an automated gamma well 
counter. The counts from each sample (in cpms) were converted to absolute 
activities (MBq) by comparison with the measurements obtained from a series 
of standards of known activity. The concentration of radiopharmaceutical in 
each organ and the tumour was expressed as the percent of the injected dose per 
gram of tissue. Correction was made for the radioactive decay which had 
occurred since the time of injection.
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5.3 Results

5.3.1 Stability of n.c.a [ l3 , I]MIBG

Sample HPLC elution profiles of n.c.a [ 1 3 1I]MIBG dissolved in PBS at a 

concentration of 20.7 MBq / ml and stored at -20°C are shown in Figure 5.2.
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The major radioactive peak eluted with a retention time identical to that of an 
authentic cold MIBG sample. The minor radioactive peak, which was apparent 

after 48 hours, eluted close to the void volume of the column. This is assumed 

to be free 1311, since the retention time matched that of [,3II]-Nal. These results 

indicate that the major radiochemical impurity is free 1311. No other 

radiolabelled breakdown product was detected.
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5.3.1 I The effect of storage temperature

A comparison of  the rates of  deiodination of  [ 1 ^11JMIBG stored at -20°C and 

20°C is shown in Figure 5.3.

F igure  5.3 Effect of storage tem pera tu re  on the stability  of n.c.a 

[ 13111MIB G
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n.c.a [ l3ll ]MIBG was reconstitued in PBS to a radioactive 

concentration of  20.7 MBq / ml before storage at -20°C and 

20°C. Data presented are the means and standard deviations 

of  three determinations.

Stability was enhanced by maintaining the preparation at -2(>’C. After 12 hours 

there was a statistically significant (P < 0.05) difference in the percentage of  free 

1 ; i l present in the samples stored at 20°C compared with frozen material. By
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thirty six hours after synthesis, the percentage of free iodide was no greater than 

5% in frozen material while levels in excess of 8% were detected in material 

stored at 20°C.
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5.3.1.2 The effect of radioactivity concentration

To determine the effect of  radioactivity concentration on deiodination, the 

percentage of  free 1311 was monitored in two solutions of  n.c.a [ 131I]M1BG, 25 

MBq / ml and lOOMBq / ml. over 48 hours. The results are shown in Figure

5.4.

F igure  5.4 Effect of radioactive concen tra tion  on the stab ility  of 

n.c.a [13111M IB G
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100 M B q /m l

25 M B q /m l
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n.c.a f 1311 jMIBG was reconstituted in PBS to the desired 

radioactive concentration and stored at -20°C. Data presented 

are  the m eans  and s ta nda rd  de v ia t io n s  o f  three 

determinations.
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Activity concentration had a marked effect on the stability of the n.c.a material. 

At 4 hours after synthesis the percentage free 13‘I in the 25 MBq / ml solution 
was 2% compared with 1% for the 100 MBq / ml solution. At all storage times 

after 4 hours, the level of free iodide in the 100 MBq / ml samples was 

significantly higher (P < 0.01) than that present in the lower concentration 

material.
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5.3.2 Effect of  uptake-1 inhibitors on the accumulation of  n.c.a [ 1311JMIBG 

by SK-N-BE(2c) cells

The effect of inhibitors on active MIBG uptake are shown in Figure 5.5.

F igure  5.5 * ■ •• • • n ()f up take of n.c.a [ I31I]M IBG  by
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5.3.3 Biodistribution of  n.c.a [ ,31I]MIBG

The in vivo biodistribution of n.c.a [1311]MIBG was compared with commercial 

therapy [131I]MIBG (ex-[13lI]MIBG) in nude mice bearing SK-N-BE(2c) 

xenografts. Mice were sacrificed at various time points after intraperitoneal 
injection, and the radioactivity measured in tissues of interest. The results are 

shown in Tables 5.1 and 5.2, and Figures 5.6 to 5.10.
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Figure 5.6 Biodistribution of  n.c .a[131IJMIBG and e \ | 13111M I BG

at 1 hour
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Biodistribution o f  n.c.a [Di i jM IB G ■  ) and 
ex- [ DiI]MIBG (■).  Data points represent the 
means and standard deviations of  7 determinations.
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Figure 5.7 Biodistribution of n .c .a l1-'11 jMIBG and e x | 13111IVII BG

at 16 hours
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Biodistribution of  n.c.a [D i l jM lB G  ( ■  ) and 
ex- [Di | ]M IBG (■).  Data points represent the 
means and standard deviations of 7 determinations.
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Figure 5.8 Biodistribution of n.e .a[1 IJMIBG and e x | 131I | M I B G

at 24 hours
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means and standard deviations of  7 determinations.
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Figure 5.9 Biodistribution of n .c .a |1311 |MIBG and e x [ 1311 1M I BG

at 48 hours
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means and standard deviations of  7 determinations.
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Figure 5.10 Biodistribution of n.c.a [ ,31I|1V1IBG and

e x - [ 131I |MIBG at 72 hours
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Biodistribution of  n.c.a [ l31I]MIBG ( ■  ) and 
ex- f • 3111MIBG (■).  Data points represent the 
means and standard deviations of 7 determinations.

Significantly higher uptake of  radioactivity adminis tered in the form of  n.c.a 

MIBG was observed in tumour al all time points except 72 hours (P < 0 . 0 1 at I 

and 48 hours; P < 0 . 0 0 1 at 16 and 24 hours). Substantial increases in uptake
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were also observed in the heart (P < 0.05 at lhour; P < 0.01 at 24 and 48 hours 
and P < 0.001 at 16 hours) and the adrenal glands (P < 0.05 at 1 hour; P < 
0.001 at 16, 24 and 48 hours). Slightly higher levels were also observed in skin 

at 16 and 24 hours (P < 0.05), and in muscle at 8 and 16 hours (P < 0.05).

As described in section 5.1.3 the ratio of target-to-non-target accumulation 

provides a measure of the therapeutic index of targeted radiotherapy. The ratios 

between tumour and liver, a representative non-target tissue, were calculated 
and are shown in Figure 5.11.
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Figure 5.11 T um our to liver radioactiv ity  uptake ratios of n.c.a 
f 13111MIBG and ex-[ ,3 iI |M IBG  over 72 hours
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Tumour to liver uptake ratios at indicated times after 
the administration o f  n.c.a [ | 3 | 1|MIBG ( ■  ) and 
ex- [•311]MIBG (B).as  means and standard 
deviations

At all time points except 72 hours the ratio obtained after the administration of 

n.c.a [ 1311]MIBG was greater than that obtained with e x - [ l3ll]MIBG.
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5.4 D iscussion

5.4.1 Stability of n.c.a [131I)MIBG

Dissociation of 1311 from MIBG must be limited to ensure that maximum 
radiation reaches the tumour and to prevent uptake of free radioactive iodine by 

the thyroid gland. The effects of storage temperature and radioactive 
concentration on deiodination were determined. Stability was significantly 

improved by freezing, in agreement with published data on the stability of 
exchange preparations of MIBG (Wafelman et al., 1994). It is thought that the 
predominant mechanism affecting stability of radiopharmaceuticals in solution is 

secondary radiolysis (Spinks and Woods, 1990). That is a large proportion of 
the decay energy generates free radicals which can attack labelled molecules and 
cause decomposition. Free radical generation can be minimised by cooling or by 
the addition of free radical scavengers such as ascorbic acid and gentisic acid, 
and the preservative benzyl alcohol (Wafelman et al., 1994). Addition of such 
compounds could be a potential means of limiting deiodination of n.c.a 

[ ,3 ,I]MIBG.

The second factor investigated was the effect of radioactivity concentration. In 
all of the in vitro and in vivo studies described here the concentration of the 
n.c.a material was 20.7MBq / ml. However if n.c.a MIBG is to be used 
clinically then the administered concentrations will be significantly higher. The 
the rate of deiodination was therefore compared at concentrations of 25 and 
lOOMBq / m l. At 25MBq / ml, free iodine was negligible up to 24 hours after 
synthesis, but at lOOMBq / ml there was appreciable free iodine within the first 
6 hours. This appears to be a direct result of the increased specific acitvity since 
studies using conventional exchange preparations, which do not have stabilisers 
added, do not contain significantly different levels of free iodine at radioactive 
concentrations of 37, 58 and 77 MBq / ml (Wafelmann et al., 1993). These 
results could have serious implications for the eventual clinical use of the drug 

since in current clinical practice commercial [131I]MIBG is discarded if free 
[ 13 'I | is greater than 5% at the time of administration By this criterion the n.c.a
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material would have to be administered immediately after synthesis or at lower 

concentrations.

5.4.2 Effect of inhibitors on n.c.a l 131I]MIBG uptake in SK-N-BE(2c) cells

Competition studies demonstrated that the uptake of n.c.a [131I]MIBG was 

reduced in a dose-dependent manner by noradrenaline and inhibitors of 
noradrenaline transport. These results indicate that n.c.a MIBG enters 
neuroblastoma cells by virtue of the noradrenaline transporter. This conclusion 
is confirmed by the order of inhibition potency which was identical to that 
observed for the inhibition of uptake of noradrenaline into SK-N-SH cells 
(Richards and Salee, 1986) and in HeLa cells transfected with noradrenaline 
transporter cDNA (Pacholczyk et a l 1991). This order is also consistent with 
the results of low specific activity [131I1MIBG uptake inhibition studies using a 
range of competitors of varying affinity for the noradrenaline transporter 
(Lashford etcd., 1991).

5.4.3 Biodistribution of n.c.a [13‘I1MIBG in mice bearing neuroblastoma 
xenografts

To determine whether n.c.a MIBG offered an advantage in terms of in vivo 
distribution, uptake in mice bearing SK-N-BE(2c) xenografts was compared 
with that of conventional radiolabelled MIBG prepared by exchange methods.

There was no significant difference in the degree of uptake of radioactivity by 
the thyroid gland indicating that in vivo deiodination was similar for both 
preparations. The time-dependent distribution profiles observed in most other 
non-sympathetically innervated tissues were also similar for both preparations: 
accumulation levels were generally comparable for both types of MIBG and 
there was a biphasic clearance from normal, non-target sites (ie a rapid initial 
decline in levels over the first 16 hours followed by a slower decrease over the 
remaining 56 hours).
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In sympathetically innervated tissues, however, there were considerable 

differences between the two types of MIBG. Both the heart and the adrenal 
glands took up significantly higher amounts of the n.c.a preparation. This is 
consistent with previous biodistribution studies in non-tumour bearing mice 
(Vaidyanathan etal., 1993), although the amounts noted in the latter study were 

much higher ( 3.39 % ID / g tissue for heart and 24.14 % ID / g for the 
adrenals). High uptake in these organs, particularly the heart, could be 

problematic for therapeutic application of n.c.a material. Agents which could 
selectively block such uptake would therefore be useful. The granular uptake 
inhibitor reserpine has been shown to reduce cardiac and adrenal uptake of 
MIBG in dogs (Weilandetal., 1981; Shapiro etal., 1984), while numerous in 
vitro studies have shown that it has no effect on levels of MIBG in 
neuroblastoma cells (Smets etal., 1989; Lashford et al., 1991; Montaldo et a l.,
1991). However its use clinically is limited because of serious and irreversible 
side effects. A related compound with similar mode of action but less severe 
side effects is tetrabenazine. In vivo studies confirmed that in non-tumour 
bearing mice treated with 40 mg / kg of tetrabenazine, cardiac uptake of n.c.a 
l l23IJMIBG was significantly reduced and lower levels were observed in the 
adrenal gland (Vaidyanathan et al., 1994). Further experiments are needed to 
determine whether this effect can be repeated in tumour bearing mice, at 
concentrations of the inhibitor which do not adversely effect tumour uptake.

Another potential means of protecting non-target organs could be to administer 
unlabelled MIBG prior to injection of [131I]MIBG. The concept of predosing is 
based on the pharmacokinetic behaviour of MIBG in vivo : studies in both 
animals and human patients have shown that MIBG undergoes rapid clearance 
from the plasma into tissues (Ehinger et al, 1987; Lashford et al, 1988) and it 
has been suggested that this extensive translocation could be the result of non
specific tissue binding. It is postulated that these non-specific sites could be 
blocked by predosing with unlabelled MIBG molecules, reducing non-target 
uptake. In vivo studies using nude mice bearing neuroblastoma xenografts 
suggested that elevated doses of unlabelled MIBG, administered prior to 

radiolabelled [131IjMIBG (specific activity 1.5 GBq / mg) , were an effective
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way of reducing uptake of radioactive MIBG in normal tissues. Crucially this 

normal tissue advantage could be obtained without adversely affecting tumour 
uptake (Rutgers et al 1994). Preliminary experiments to determine whether pre

dosing could protect non-target tissues from n.c.a [ l3lI]MIBG demonstrated 

that uptake was lowered in several non-target sites including the heart. However 

this advantage was offset by significant decreases in tumour uptake.

The most encouraging results of the present studies are the improved levels of 
tumour uptake. At all time points, except 72 hours, tumour accumulation was 
significantly higher with n.c.a-[,31I]MIBG than ex-[l3lI]MIBG. At 24 hours, 
the point at which maximal tumour accumulation occurs, this represented a 3- 

fold enhancement in uptake of the radiopharmaceutical. Consequently the target 
to non-target ratio was also improved: n.c.a [ l31I]MIBG produced a 2-fold 
increase in the tumour to liver ratio. These results are consistent with the 
hypothesis that maximal discrimination between tumour and normal uptake is 
achieved by administering high specific activity MIBG.

Using the data obtained from the murine biodistribution studies it is possible to 
estimate the therapeutic advantage resulting from the use of n.c.a [131I]MIBG 
instead of ex-[l3 lI]MIBG in human neuroblastoma patients. The ratio of 
absorbed radiation dose per unit of injected activity for tumour and normal 
organs between n.c.a [131I]MIBG and ex -[l3 ,I]MIBG was calculated. The 
results indicate that for the same injected activity the predicted tumour absorbed 
dose is approximately 2.3 fold higher with the n.c.a compared with the 
exchange preparation (Mairs et al., 1995). The data on the biodistribution of 
n.c.a [ l3 lI]MIBG and ex-[1311]MIBG were obtained using SK-N-BE(2c) 
neuroblastoma xenografts. This cell line was chosen because it had been 

previously shown to grow successfully as xenografts in nude mice and because 

of its known capacity for MIBG accumulation (Gaze et al., 1994).

Further confirmation of the advantage of n.c.a MIBG requires the evaluation of 
its distribution in other in vivo neuroblastoma models. Two such studies have 

been reported and the findings are compared in Table 5.3
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Using xenografts established from the cell line SH-SY-5Y, tumour 
accumulation of n.c.a MIBG was found to be approximately double that of ex- 

MIBG at 24 hours resulting in a 2.5 fold increase in the tumour to liver ratio. In 

contrast with SK-N-SH xenografts there was no significant difference in the 
tumour accumulation levels with n.c.a and ex-MIBG.

The reasons for the discrepancy with SK-N-SH xenografts are not clear since 
previous work has demonstrated that both cell lines behave similarly in terms of 

MIBG kinetics: the in vitro uptake of MIBG by this cell line is comparable to 
that of SK-N-BE(2c) (Mairs et al., 1994) and in vivo biodistribution studies 
with conventional exchange MIBG demonstrated no significant differences in 

accumulation between SK-N-SH and SK-N-BE(2c) xenografts (Gaze et al., 
1994). As Table 5.3 indicates there were a number of differences in the way the 
experiments were conducted. Differences in the route of administration have 
been shown to alter the biodistribution of MIBG (Rutgers et al., 1996) and 
paired experiments injecting 1311 labelled drug intravenously and 1251 labelled 
material intraperitoneally did demonstrate slight, though not significant, 
differences in tumour uptake between the two injection sites (Vaidyanathan et 
al., 1996).

Another factor which may affect the biodistribution of MIBG is the presence of 
circulating catecholamines. Elevated levels could saturate uptake sites on the 
tumour which would obscure any differences between high and low specific 
activity [ 13II]MIBG. It is possible that there are significant inter-strain 
variations in circulating catecholamine levels which could adversely effect 
MIBG biodistribution. A related consideration is the influence of the xenografts 
themselves on catecholamine levels. In vitro measurements of catecholamine 
secretion by fluorescence demonstrated that neither SK-N-SH nor SK-N- 

BE(2c) cells exhibited any appreciable fluorescence (Tomayko et al., 1988). 
However in vivo it has been reported that SK-N-BE(2c) xenografts show low 

levels of fluorescence while SK-N-SH tumours give intense fluorescence 

(V aidyanathan et al., 1996). If SK-N-SH xenografts secrete more
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catecholamines this would account for the lack of tumour uptake advantage seen 

with n.c.a [131I]MIBG in this type of xenograft.

Another possible explanation for the observed differences could be related to the 

way in which the xenograft model itself is created and maintained. The method 

used to grow SK-N-BE (2c) xenografts is based on published methodology 
(Rutgers et al., 1991). After establishing splenic and hepatic tumours on donor 

mice these are removed and fragments of the excised tumour are inserted 

subcutaneously in recipient mice. Tumours are maintained by repeated 
subcutaneous passage. It has however been noted that successive serial passage 
of tumours does result in decreased expression of the noradrenaline transporter 
particularly in those tumours established using SK-N-SH cells (personal 
observation). This will ultimately effect the MIBG uptake ability of xenografts. 
In the Vaidyanathan study, SK-N-SH tumours were initiated by subcutaneous 
injection of SK-N-SH cells into donor mice. Subsequent tumours were then 
minced and the resultant homogenate injected subcutaneously into recipient mice 
who were used for biodistribution studies when tumours reached a suitable size. 
The effect this technique has on expression of the transporter is unknown but it 
is possible that the degree of expression may be adversely affected.

5.4.4 Clinical Implications

From a clinical perspective, the use of n.c.a MIBG has several advantages. 
Currently the administration of [13II]MIBG to patients is limited by normal 
tissue toxicity - principally to the bone marrow. In practice this means that the 
administered dose is limited to a whole body dose of 2Gy (Lashford et al.,
1992). Since the majority of this dose comes from [ ,3II]MIBG uptake by 
normal tissue rather than tumour, any formulation which reduces normal uptake 

is likely to be beneficial. N.c.a MIBG fulfils this objective:- the higher tumour- 

to-normal uptake ratio means that for a given radioactivity the proportion 

reaching the tumour is greater, resulting in a larger radiation dose and therefore 

an increased likelihood of benefit.
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In addition to improving therapy, n.c.a MIBG could also be beneficial in 
diagnostic scintigraphy. Ideally the diagnostic scan should provide accurate 

tumour and whole body dose data for a specific patient prior to a planned MIBG 
therapy so that the appropriate amount of activity can be administered. However 

in practice this is difficult to achieve due to differences in the biokinetics of 

tracer and therapy doses (Wafelman etal., 1994). It has been suggested that this 
divergence arises because of the differences in total MIBG concentration 

between the low-dose diagnostic and high-dose therapy applications (Tristam et 
al., 1996). The improved tumour to normal ratios obtained with the n.c.a MIBG 

may improve the sensitivity of the procedure allowing more accurate and reliable 
staging of patients with disseminated disease, and improve dosimetry and 
treatment planning for therapy applications.

One other potential advantage of n.c.a MIBG is related to the side effects 
associated with therapeutic administration of MIBG. Nausea and vomiting have 
been recorded in patients receiving therapeutic doses of [ l3lI]MIBG (Shapiro 
and Fischer, 1985; Sisson etal., 1988; Shapiro etal., 1991). In cancer patients 
undergoing chemotherapy, noradrenaline has been strongly implicated as the 
potentiator of delayed nausea and vomiting (Fredrikson etal., 1994). This study 
found a correlation between post-chemotherapy nausea and the levels of 
noradrenaline, a finding which is supported by previous studies which show 
that catecholamines can up-regulate nausea and vomiting (Andrews et al., 1988; 
Leslie and Reynolds, 1993). Since a therapeutic dose of commercial therapy 
[ l3lI]MIBG contains 7-14 mg of MIBG it is possible that the nausea and 
vomiting observed is due to the presence of high concentrations of biogenic 
amine. As a therapeutic dose of n.c.a [ l31I]MIBG would only contain 3-6 fig of 

MIBG these unpleasant side-effects could be minimised. Administration of 

lower amounts of MIBG is also advantageous in terms of blood pressure: 
therapeutic-level doses of commercial [131I]MIBG can cause an elevation in 

blood pressure which means the drug has to be slowly infused over 2 hours. 

Use of lower amounts of MIBG should decrease these pressor effects (Mairs 
and Zalutsky, 1995).
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5.5 Conclusions

The results of these studies are highly encouraging, suggesting that the use of 

n.c.a MIBG could offer significant advantages over conventional exchange 
prepared MIBG. The favourable uptake and biodistribution results presented 

here are supported by in vitro cytotoxicity studies using SK-N-BE(2c) 

spheroids: inhibition of growth was apparent at 2 MBq / ml of n.c.a 
[ l31I]MIBG. However this inhibition decreased in a dose dependent manner as 

the specific activity of the n.c.a preparation was lowered by the addition of 
increasing amounts of cold carrier MIBG (Mairs et al., 1995). The therapeutic 
efficacy of n.c.a [13II]MIBG now needs to be evaluated in suitable in vivo 
model systems to confirm that these benefits lead to enhanced tumour cell kill.
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CHAPTER 6

THE EFFECT OF CISPLATIN PRETREATMENT ON 
MIBG UPTAKE BY NEUROBLASTOMA CELLS
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6.1 Introduction

6.1.1 Current clinical status of [131I]MIBG

As described in chapter 3, more than a decade of clinical experience with 

[131I]MIBG as a single agent has confirmed its usefulness in the treatment of 
advanced neuroblastoma: in addition to its palliative properties and lack of 
side effects, prolonged remissions have been reported in a significant number 

of patients.

Despite these encouraging results, it is doubtful that the use of [131I]MIBG 
alone will cure patients with widely disseminated disease. Consequently, 
many centres have adopted the use of MIBG targeted radiotherapy in 
combination with more firmly established treatment modalities (section 3.7.2). 
To achieve synergism it is essential that the optimal sequence of these 
treatments is established.

6.1.2 In vitro studies of combined therapy approaches

Unfortunately laboratory studies to determine the effects of therapy 
combinations are lacking. One published study reported the effect of external 
beam irradiation on MIBG uptake by neuroblastoma cells in vitro. Exposure of 
cultured SK-N-SH neuroblastoma cells to 5 Gy, 24 hours prior to MIBG 
exposure, resulted in stimulated MIBG uptake. As irradiation would have 
selectively depleted proliferating cells and left more differentiated cells, it was 

suggested that these more mature neuroblasts had a greater capacity for active 
uptake of MIBG (Smets et a l, 1991). This hypothesis is supported by the 
results of Montaldo and colleagues (1992, 1996), who have demonstrated that 
a variety of agents which are capable of inducing differentiation in 

nueroblastoma cells can enhance MIBG uptake ability and expression of the 

noradrenaline transporter in these cells. However, this phenomenon of 

enhanced uptake is not repeated in vivo. Preirradiation of mice bearing SK-N-

92



SH neuroblastoma xenografts at doses of 5, 10 and 20 Gy failed to enhance 
MIBG accumulation by the tumours (Sautter-Bihl and Bihl, 1996). The effect 

of chemotherapeutic agents on MIBG uptake and retention are largely 
unknown, although one in vitro study has reported significant decreases in 
MIBG accumulation after exposure to adriamycin (Paffenholz et al., 1989).

6.1.3 Aims of this study

To determine what effect anticancer agents may have on MIBG uptake and 
retention a series of in vitro experiments were undertaken. For these initial 
studies the chemotherapeutic agent cisplatin was chosen because it is used 

effectively in the treatment of neuroblastoma ( eg De Bemardi et al., 1992; 

Pearson et a l, 1992) and because it may act in synergy with radiotherapy 
(Douple e ta l ,  1985; Dewit, 1987).
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6.2 Materials and Methods

6.2.1 Cell culture

SK-N-BE(2c) cells were used for these studies and were cultured as described 
in section 5.2.3.

6.2.2 Effect of culture density on MIBG uptake and noradrenaline 
transporter expression

The influence of cell culture density on the active incorporation of MIBG was 

determined using SK-N-BE(2c) cells that had not been subjected to treatment 
with cisplatin. Transcription of the noradrenaline transporter gene by SK-N- 

BE(2c) cells was assessed by RT-PCR. Cells were seeded at a range of cell 
numbers, from 0.2 x 105 to 1.2 x 105, cultured for 5 days and then assayed for 
MIBG uptake as described in section 6.2.4. A second set of cultures were used 
for RNA extraction and RT-PCR as described in section 6.2.5.

6.2.3 Clonogenic Assay

The toxicity of the cisplatin concentrations used was determined by 
clonogenic assay. For this, cells were seeded in 25cm3 flasks at 2.5 x 105 cells 
per flask. After 2 days, medium was removed and replaced with fresh medium 
containing the appropriate concentration of cisplatin (David Bull Laboratories, 
Warwick, UK). After 24 hours, medium was removed and the cells were 

washed three times with PBS. Fresh medium was added and the cells were 
incubated for a further 24 hours. Cells were then trypsinized and counted. For 
each cisplatin concentration three flasks were seeded at 1 0 0 0  cells per flask. 
Flasks were equilibrated with 5% CO2 and then incubated at 37°C. After 14 
days, medium was removed and the colonies were fixed and stained with 
Carbol Fuchsin (R A Lamb, Middlesex). Colonies of more than 50 cells were 

counted using an autom ated colony counter (A rtek System s).
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6.2.4 MIBG uptake studies

Cells were seeded in six-well plates at an initial density of 0.5 x 105  cells and 
cultured for 48 h. Cisplatin was then added at the appropriate concentration 
and the cells incubated for 24 h. The medium was then removed; the cells 

were washed with PBS, and 5 ml of fresh medium was added. Cells were 
assayed for MIBG uptake, before cisplatin exposure, at the point of cisplatin 
removal, and 24 h after cisplatin removal. MIBG incorporation was measured 

by incubating the cells for 2 h with 7 kBq of [ 1311]MIBG (specific activity 45- 
65 MBq / mg, Dupont Radio-pharmaceuticals, Hertfordshire, UK). Non
specific uptake was measured in the presence of 1.5 pM desmethylimipramine 

(DMI) (Sigma-Aldrich, Dorset, UK). After incubation, medium was removed, 
the cells were washed with PBS and radioactivity was extracted using 2 
aliquots of 10% (w / v) trichloroacetic acid. The activities of the extracts were 
then measured in a gamma-well counter. Specific uptake, expressed as cpm 
per 1 0 5  cells, was calculated by subtracting values obtained in the presence of 
DMI from total uptake.

6.2.5 Reverse transcription polymerase chain reaction (RT-PCR) analysis 
of noradrenaline transporter gene expression

Total RNA was extracted from control and cisplatin-treated cultures before 
treatment, at the time of cisplatin removal and 24 h after cisplatin removal. 
RNA extractions were performed using a PUREscript RNA isolation kit 
(G en tra). RNA concen tra tion  o f the sam ples was determ ined  
spectrophotometrically at 260 nm. 1 pg of RNA was converted to cDNA using 

the Clontech lst-strand cDNA synthesis kit (Cambridge Bioscience). cDNA 
was then PCR amplified using primers specific for the transporter sequence. 
The sense primer was 5' - CTGGTGGTGAAGGAGCGCAACGGC-3' and 

the antisense primer was 5' - ATGTCATGAATCCCGCTGCTCTCG-3' 
(Montaldo et al., 1992).This amplification generated a 590 bp PCR product. 
Semiquantitation was achieved by comparison of the target signal with
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achieved by comparison of the target signal with thesignal generated by co

am plification of a reference sequence - glyceraldehyde-3-phosphate 
d eh y d ro g en ase  (G A PD H ). The G A PDH prim ers w ere 5' -
GCATTGCTGATGATCTTGAGGC- 3’ (sense) and 
5' -TCGGAGTCAACG GATTTGG - 3' (antisense). These generated a 390 bp 
product. Co-amplification of target and reference sequences was performed in 
10 x synthesis buffer containing 100 mM Tris-HCl, 1.5 mM MgCl2 , 500 mM 

KC1, pH 8.3, with 10 nmol of dNTPs, 20 pmol of each target primer, 20 pmol 
of each reference GAPDH primer and 2 units of Taq polymerase. Cycling 

conditions consisted of 1 min denaturation at 94°C, 1 min annealing at 65 °C 
and 1 min extension at 72°C for 35 cycles. The PCR products were separated 
by electrophoresis through 1.6% (w / v) agarose (Flowgen, UK, Kent). These 
were densitometrically scanned using Quality One Image Analysis software.

6.2.6 MIBG release experiments

To determine whether cisplatin treatment affected storage capacity of the 
neuroblastoma cells, experiments were carried out to investigate the kinetics 
of release of MIBG from control and treated cells. At 48 h after initial 
cisplatin exposure, cells were incubated with labelled MIBG as described 
above. The culture medium was then removed and changed for drug-free fresh 
medium or medium containing 1.5 pm DMI. In a second set of cultures, 

medium was replaced with drug-free fresh medium or medium containing 2  

pM reserpine. At 0 , 2, 4 and 6  h after withdrawal of MIBG, the cells were 

assayed for MIBG retention. Data were analysed using the Students t - test.
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6.3 Results

6.3.1 Effect of culture density

Initial experiments were undertaken to monitor the effects of culture density 
on MIBG uptake and noradrenaline transporter expression. These confirmed 

the previous observations (Montaldo et al., 1992) that at high culture densities 
(greater than 0.24 x 105 cells per cm2 which is equivalent to 2.5 x 105 cells per 

well), there was a progressive decline in MIBG accumulation (Figure 6.1).

Figure 6.1 The effect of culture density on MIBG uptake by
SK-N-BE(2c) cells

u
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6

0.0 0.2 0.4 0.6
culture density 

cell no x 105 / cm2

0 . 8 1 . 0

Culture density is expressed as the number of cells 
per cm2 of culture dish. Data points represent the 
mean ±  sd of three experiments.
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RT-PCR analysis  indicated that this reduction in uptake could be due to 

decreased expression  o f  the gene encoding  the noradrenaline transporter  

(Table 6.1).

Table 6.1 Effect of culture density on noradrenaline transporter 
expression

R T
culture density 

(cell no x 1 0 5/cm->
target: reference 

ratio

0.09 0.96

0.16 1.01

; 0.19 0.82

1
0.37 0.45

0.65 0.32

r 0.86 0.25

Target to reference ratios were calculated from the intensity 

of PCR signals m easured by scanning o f  ethidium bromide- 

stained gels. R = reference sequence (GAPDH ); T = target 

sequence (noradrenaline transporter).

Accordingly, in all cisplatin experiments, cell numbers in control and treated 

cultures were kept below this figure. Data from wells containing more than 2.5 

x 10s cells were discarded.
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6.3.2 Effect of cisplatin on SK-N-BE(2c) survival

The toxicity of a range of concentrations of cisplatin was determined by 
clonogenic assay. Figure 6.2 shows that the toxic effects of cisplatin were 
apparent at concentrations of the drug greater than 0.2 pM.

Figure 6.2 The effect of cisplatin on clonogenic survival of 
SK-N-BE(2c) cells

concentration of cisplatin (pM)
. 01 . 1 1 1 0 1 0 0

■B

I
.01

.001

6.3.3 Effect of cisplatin pretreatment on MIBG uptake

SK-N-BE(2c) cells were incubated with a range of concentrations of cisplatin 
for 24 h. The ability of the cells to incorporate MIBG was then assessed 

immediately after drug removal and 24 h after drug removal. The degree of 
specific uptake was calculated for each cisplatin concentration and compared 

with that of control cultures. Figure 6.3 shows that cisplatin induced a 
concentration-dependent stimulation in active incorporation of MIBG.
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Figure 6.3 The effect of cisplatin pretreatnient on MIBG uptake by 
SK-N-BE(2c) cells
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Cells were incubated with cisplatin (CP) for 24 hours as 
indicated. MIBG uptake was measured prior to CP treatment 
(day 0), at CP removal (day 1) and 24 hours later (day 2).
X: control, ♦ :  0.02 pM  CP, • :  0.2 pM  CP, ▲: 2 pM  CP,

■  : 20 p M  CP. Points represent the m eans and standard 
deviations of  3 experiments in triplicate. Double asterisks 
indicate specific uptake significantly different from control, P 
< 0.01. Triple asterisks indicate specific uptake significantly 
different from control, P < 0.001.
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At the point of  drug removal, values for MIBG uptake after 0.02, 0.2, 2 and 20 

pM  cisplatin were 95% (not significantly different from control), 134% (P < 

0.01), 178% (P < 0.001), 232%  (P < 0.001) of  control values respectively. 

After a further 24 h, this enhancem ent was even more pronounced with 

uptake values of 171% (P < 0.001), 162% (P < 0.001), 355% (P < 0.001) and 

431% (P < 0.001) of controls.

6.3.4 Effect of cisplatin pretreatment on expression of the noradrenaline 

transporter

Expression o f  the noradrenaline transporter molecule was examined in control 

and treated cultures by RT-PCR. The cDNA amplification products obtained 

after exposure o f  SK-N-BE(2c) cells to 20 pM  cisplatin are shown in Figure 

6.4.

Figure 6.4 RT-PCR analysis of noradrenaline transporter expression 
in cells exposed to 20 pM cisplatin

Ohrs 24 hrs 48 hrs
M C C T C T

615 bp 
492 bp 
369 bp 
246 bp

Expression o f  noradrenaline transporter (NET) and GA PD H  

reference determined by co-amplification using the appropriate 

primers. Expression was assayed prior to cisplatin exposure (0 

hours), immediately after cisplatin exposure (24 hours) and 24 

hours later (48 hours). M= 123 bp markers.

NET
GAPDH
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For each time point and treatment, the ratio of target to reference signal 

intensity was calculated and expressed as the percent of the control value. 

These results are summarised in Table 6.2.

Table 6.2 Semi-quantitation of expression of noradrenaline 
transporter gene in cisplatin treated cells.

Concentration of 
cisplatin (pM)

Noradrenaline transporter expression (% of control) 
24 hours 48 hours

0 . 0 2 115 (±6.2) 89 (± 11.2)

0 . 2 0 120 (±7.5) 94 (± 8.4)

2 . 0 0 129 (±7.9) 134 (± 9.3)

2 0 . 0 0 125 (±8.2) 165 (± 10.6)

The values presented are ratios of intensity of target sequence to 
intensity of reference sequence. The results are expressed as the 
percent of control values.

This data demonstrates that cisplatin induced a dose-dependent stimulation of 
expression of the transporter molecule. At 0.02 pM and 0.2 pM  levels of 

cisplatin, the enhanced expression was not maintained after removal of the 
drug. However, at higher concentrations (2.0 and 20 pM), the effect was 

prolonged and was in fact greater at 48 h than at 24 h after the initiation of 
exposure to cisplatin. These results indicate that the cisplatin-induced 
enhancement of MIBG uptake could be due to increased synthesis of new 
transporter molecules, as opposed to increased activity of existing molecules.
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6.3.5 Effect o f cisplatin pretreatment on retention o f MIBG

To determine whether cisplatin enhanced the ability of SK-N-BE(2c) cells to 
store catecholamines, experiments were carried out to determine the retention 

of MIBG. These were performed in the presence of reserpine (which depletes 
neurosecretory granules) and DMI (which inhibits re-uptake of released drug 

by the transporter). In control- and cisplatin-treated cells, spontaneous release 
of MIBG was similar to that in the presence of reserpine (Figure 6.5). In 

contrast, DMI induced a rapid depletion of MIBG from the cells (Figure 6 .6 ).
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These results show that the cisplatin-treated cells maintain levels of MIBG by 
continual re-uptake of released drug via the noradrenaline transporter. 
Cisplatin did not affect the storage capacity of the cells as no statistically 
significant difference in the retention of radiopharmaceutical was observed in 
the presence or absence of reserpine (P >0.1).

106



6.4 Discussion

6.4.1 Effect of culture density

Preliminary experiments were performed to examine the effects of different 

culture densities on MIBG uptake by untreated SK-N-BE(2c) cells. This 
ensured that possible differences in MIBG incorporation between control and 
treated cells were not misinterpreted. The results indicate that MIBG uptake 
was adversely affected at high culture densities (>  2.5 x 105  cells per well). It 
was therefore crucial that in all subsequent experiments densities were kept 
below this level. The reasons for this decrease are not clear, although 

increasing culture confluency has been shown to cause a decline in the number 
of Na / K ATPase pump sites in a variety of cell types, possibly as a 
consequence of changes in cell-cell association (Burke et a l., 1991).

6.4.2 Toxicity of cisplatin

Clonogenic survival of SK-N-BE(2c) cells was inhibited at concentrations of 
cisplatin at, or above, 0.2 pM. Cisplatin is thought to cause death by inducing 

apoptosis: analysis of cells dying as a result of cisplatin treatment reveal the 
characteristic features of program m ed cell death including DNA 
fragmentation, loss of membrane integrity and cell shrinkage (eg Barry et al., 
1990; Sorenson et al., 1990; Maldonado et al., 1995). Supporting evidence 
comes from studies on cisplatin resistant cell lines which reveal that resistance 
is associated with a defective apoptotic process (Segal-Benirdjian et al., 1995; 
Perego et al., 1996). However the situation is complicated by the finding that 
the mode of death depends on the concentrations of cisplatin used: at 
supralethal concentrations (100 pM) rapid apoptotic cell death occurred in a 
murine leukaemic cell line, whereas lower concentrations (1 - 1 0  pM) caused 

G2 arrest, followed by slow non-apoptotic death (Ormerod et al., 1994). 

Independent studies in two neuroblastoma cell lines demonstrated that 
cisplatin treatment (5 and 6  pM) caused a block in the G2 / M phase of the cell 

cycle and subsequent apoptosis (Piacentini etal., 1993; Cece etal.., 1995).
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6.4.3 Effect of cisplatin pretreatment on MIBG uptake and noradrenaline 

transporter expression

The data indicates that cisplatin pretreatment at therapeutically relevant 
concentrations causes a significant increase in uptake of MIBG. This appears 
to be the result of an increased capacity to actively accumulate the drug, since 
DMI, which specifically prevents reuptake of MIBG by inhibiting 
noradrenaline transporter function, caused a rapid depletion of MIBG levels in 

both control and treated cells. This notion is supported by the observation of a 
cisplatin-provoked (dose-dependent) stimulation of transcription of the 
noradrenaline transporter gene.

The analysis used to determine noradrenaline transporter gene expression was 
semi-quantitative : alterations to expression levels of the target noradrenaline 
transporter sequence were compared to those of a co-amplified internal 
reference sequence. To be valid it is critical that cycling conditions are 
optimised so that the amplification efficiency of both products is similar (ie 
are being produced during the exponential phase of the PCR reaction). In more 
recent approaches the accuracy and quantitation of PCR based reactions has 
been improved by preliminary characterisation of the PCR kinetics: Serial 
cDNA dilutions are made and amplified using appropriate primer sets. The 
amount of PCR product is then measured and plotted against the input cDNA 
dilution. By identifying the linear ranges of the amplification subsequent 
quantification can be achieved by measuring the ratio of total cDNA 
concentrations of target and reference(Clifford eta l, 1996).

The reasons for the observed enhancement in noradrenaline transporter 
expression could be related to the mechanism of action of cisplatin. Previous 
studies have shown that a variety of agents including ionizing radiation, 
interferon-Y and phorbol esters can cause an increase in the MIBG uptake 

ability of neuroblastoma cells in vitro (Smets et a l., 1991; Montaldo et a l., 
1992, 1996). In common with these agents, cisplatin causes perturbations of 
the DNA, which in turn causes upregulation of p53 expression. In addition,
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cisplatin has been shown to induce the expression of p53-dependent genes, 
such as the CIPl gene which encodes the cell cycle inhibitor p21 (El-Deiry et 
al., 1994). It is possible that p53 is involved in the cisplatin induced 
enhancement of the cellular accumulation of MIBG: the noradrenaline 
transporter gene may contain a p53 consensus sequence which is 

transcriptionally transactivated by p53 after cisplatin treatment. Confirmation 
of this hypothesis awaits sequence analysis of noradrenaline transporter gene 

regulatory elements.

Alternatively, treatment with cisplatin may induce the SK-N-BE(2c) cells to 
differentiate. A range of cytotoxic agents including epirubicin and tiazofurin 
(Rocchi et al., 1987; Pillwein et al., 1993), and gamma irradiation (Rocchi et 
al., 1993), have been shown to induce biochemical, as well as morphological, 
evidence of differentiation of neuroblastoma cells in vitro. Cisplatin itself has 
been reported to induce neurite outgrowth at concentrations of 0.4 - 13.2 pM 

(Konnings et al., 1994). These doses are within the range of plasma 
concentrations achieved during therapy (Dominici et al., 1989). Induction of 
differentiation by a range of differentiative stimuli, including y-interferon, 

tumour necrosisis factor and all-trans retinoic acid, are known to enhance 
MIBG uptake by increasing noradrenaline transporter expression in 
neuroblastoma cell lines (Montaldo etal., 1992, 1996).

6.4.4 Therapeutic Implications

The predominant mechanism by which 13 , I-labelled radiopharmaceuticals 
achieve cell kill is through (J-particle cross-fire irradiation (see section 2.4.3 

and Figure 2.2): areas of the tumour which do not take up 1311- labelled drug 

are irradiated by adjacent targeted regions. Administration of cisplatin prior to 
[131I]MIBG may maximise the effectiveness of radiation cross-fire. Even cells 
destined to die as a result of ciplatin treatment will contribute to this effect by 
virtue of their increased uptake of the radiopharmaceutical. Such an effect
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would increase tumour cell kill by increasing the amount of {$-decay particle 

energy deposited in tumour sites.

The combination of cisplatin and [13 1I]MIBG has been investigated in 
relapsed neuroblastoma patients with progressive disease (Mastrangelo et a l., 
1995). In a regimen involving the administration of cisplatin, followed 24 
hours later by [1311]MIBG, a response rate of 67% was obtained. The rationale 
for combining these two agents was based on the established synergism 
between radiation and cisplatin when the agents are given closely followed by 
one another (Douple et al., 1985; Dewit 1987). In light of the in vitro findings 
presented here, it is possible that the impressive response rate is the result of 

cisplatin-induced enhancement of MIBG uptake by tumour sites.

It has been convincingly argued that the most effective use of [I3 1 I]M1BG is 
"up-front" as the initial treatment in newly diagnosed patients (Gaze and 
Wheldon, 1996). The rationale for this is based on the special features which 
apply to targeted radiotherapy (heterogeneity of uptake and the particle 
emission characteristics of the targeted radionuclide - see section 2.4 ). The 
authors maintain that early administration of [ l3 1 I]MIBG maximises uptake 
and dose absorption in metabolically viable tumours of all sizes. The resultant 
tumour regression will leave smaller tumours containing fewer clonogenic 
cells and an increased growth fraction in surviving repopulating cells - 
conditions which are more favourable for chemotherapy. The observation that 
an initial dose of cisplatin can enhance MIBG accumulation would appear to 
run counter to these arguments, favouring administration of cytotoxic therapy 
first. Nevertheless, it may be that a single priming dose of cisplatin is 
sufficient to stimulate noradrenaline transporter expression without causing 
extensive cell kill and tumour regression. In a possible therapeutic approach, a 
single cisplatin dose could be administered at first presentation to stimulate 

MIBG uptake, followed by [13l I]MIBG to treat macroscopic tumours and 
subclinical metastases, and more intensive combination treatments to sterilise 
cells surviving earlier treatment (Armour etal., 1997).
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6.5 Conclusions

The discovery that pretreatment of neuroblastoma cells with cisplatin leads to 
enhanced uptake of MIBG has important implications for the design and 
scheduling of combination regimens to treat progressive neuroblastoma. 
Appropriate scheduling of cisplatin and [ 13 1I]MIBG could be exploited to 
increase tumour accumulation of MIBG which should lead to increased cell 

kill by maximising radiation cross-fire from 1 3 1 1 disintegration.
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CHAPTER 7

THE RADIOTOXICITY OF BETA- AND AUGER 
ELECTRON-EMITTING CONJUGATES OF 

BENZYLGUANIDINE TO NEUROBLASTOMA CELLS
AND SPHEROIDS
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7.1 Introduction

7.1.1 Disadvantages of 131I labelled MIBG

Although many patients show beneficial responses to [131I]MIBG treatment, a 
significant number subsequently relapse from previously undetected tumour 

sites (Sisson et al., 1989). This suggests that microtumours below the limit of 

clinical detectability have survived [1 3 1 I]MIBG therapy. A possible 
explanation for the relative sparing of micrometastases is related to the 
microdosimetry of 13 !I targeted radiation (section 2.4.2). 13 H emits (3 particles 
with a mean path length of 800 p.m. Therefore, in addition to targeted cells, 

neighbouring cells will be irradiated by crossfire (Figure 2.2). In large tumours 
this may be advantageous as underdosing due to heterogeneity of uptake will 
be offset to some extent. However, as tumour size decreases, the fraction of 
energy absorbed by the tumour becomes progressively smaller and more of the 
energy is deposited outside the target (Humm, 1986). Mathematical modelling 
studies predict that, for 1 3 ll, the optimal diameter range for curability is 2 . 6  to 
5.0 mm (Wheldon et al., 1991; O'Donoghue et a l, 1995). Tumours below this 
size are operationally resistant to 131I p emissions since the fraction of energy 

they absorb is greatly reduced. Experimental evidence supporting these 
predictions has been provided by in vitro investigations using large and 
small spheroids (Gaze et a l,  1992; Weber et al., 1996). In addition to 
underdosing of small tumour deposits, long range P emissions may also 

damage surrounding normal tissues. A large proportion of the patients treated 

with [1 3 1I]MIBG suffer significant haematological toxicity which may be 
partially due to radiation cross fire to haemopoetic cells from MIBG-targeted 
neuroblastoma cells infiltrating the marrow (Gelfand, 1993) (section 3.7.2).
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7.1.2 Alternative radiolabels

Because of these limitations of 1 3 1 I, alternative radiohaloconjugates of 

benzylguanidine have been proposed. Short range emitters with therapeutic 

potential include 1 2 3 I , 1251 and 211 At.

123I and 125I decay by electron capture and internal conversion. These 

processes result in the emission of low-energy "Auger" electrons, which have 
ultra-short range ( - 1 0  nm) and are densely ionising. Auger electron emitters 

deposit highly localised energy, resulting in severe damage to molecular 
structures in the immediate vicinity of the decay site. This has important 
consequences for the treatment of micrometastases. Firstly, the efficacy of 
Auger electron emitters will be unaffected by the same size constraints as 1 3 11, 
with the result that the energy they deposit will be more fully absorbed in 
small tumour volumes. In addition, crossfire to adjacent non-target sites will 
be negligible resulting in the sparing of surrounding normal tissues. However, 
crossfire will not be available to offset heterogeneity of radionuclide 
distribution.

[1 25I]MIBG has been shown to be toxic to neuroblastoma cells in vitro 
(Bruchelt et al., 1988; Guerreau et al., 1990; Senekowitsch et al., 1992). In 
contrast, in vivo data from mice bearing microscopic disease demonstrated no 
difference in tumour survival between control and [1 25I]MIBG treated animals 
(Rutgers et al., 1994). Despite these conflicting laboratory findings 
[1251] MIBG has been used to treat stage 3 and 4 neuroblastoma patients with 
bone marrow involvement with encouraging results (Sisson et al., 1990, 1991, 

1996; Hoefnagel etal., 1991).
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7.1.3 Aims of this study

The advent of chemical syntheses that produce n.c.a radiohalogenated 
benzylguanidines (Vaidyanathan et al., 1993) facilitates the evaluation of the 

potential of short-lived radionuclides such as 123I for neuroblastoma therapy. 

A comprehensive in vitro study was undertaken using neuroblastoma cell 
monolayers and multicellular spheroids to examine the toxicity of 3 different 

n.c.a preparations of benzylguanidine: [1 2 3 I]MIBG, [1 2 5I]MIBG and 
[13 1I]MIBG.
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7.2 Materials and Methods

7.2.1 Cell Culture

SK-N-BE (2c) cells were cultured as described in section 5.2.3.

The MCF-7 cell line was used as a negative control. This is a human breast 
cell line derived from the pleural effusion of a breast carcinoma patient (Soule 

et al., 1973). These were cultured in RPMI 1640 medium, supplemented with 
10% fetal calf serum, penicillin/streptomycin (100 I.U / ml), fungizone (2 pg / 

ml) and glutamine (200 mM) (all Gibco, Paisley, Scotland). Cells were grown 

in a 5% CO2 atmosphere at 37°C.

7.2.2 No-carrier-added synthesis of radiohaloanalogues of MIBG

Chemicals were purchased from Aldrich Chemical Company (Dorset, UK). 
HPLC grade solvents were obtained from Rathbum Chemicals (Peebleshire, 
UK). Carrier free sodium [13 1I] iodide and sodium [1 2 5 I] iodide were 
purchased from Amersham International (Buckinghamshire, UK). Carrier free 
sodium [ 1 2 3 I] iodide was purchased from Cygne (Holland), n.c.a MIBG was 
synthesised as described in section 5.2.1. As indicated in section 5.2.1 the 
specific activity of these preparations cannot be calculated exactly due to the 
limited degree of sensitivity of the UV detector. The three preparations were 
therefore compared in terms of administered radioactivity per ml of each 
MIBG conjugate. While this does not give any information about the absorbed 
dose it allows a convenient means of comparing the relative toxicity of each.

7.2.3 Spheroid Studies

Spheroids were grown by the continuous stirring of 3 x 106 SK-N-BE(2c) cells 

in Techne stirrer flasks. In this study 2 sizes of spheroid, of approximately 240 
pm  and 400 pm diameter, were used. Small spheroids were ready after 3 - 4  

days in the stirrer flask while large spheroids took 6 - 7  days to develop.
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For cytotoxicity studies, aliquots of spheroids of the appropriate size were 

transferred to 20 ml universal containers and suspended in 1 ml of RPMI 
containing the appropriate activity of radiolabelled drug. After a 2 hour 

incubation at 37°C the medium was removed and the spheroids washed 3 
times with PBS. Spheroids were then transferred to petri dishes and 

individually pipetted into agar coated wells containing 1ml of RPMI medium. 
One 24-well plate was used per treatment. These were incubated at 37°C in a 

5% CO2 atmosphere. Growth of the spheroids was monitored over the next 2 
to 3 weeks by measurement of their cross sectional area, using a sem i
automated image analysis system coupled via a television camera to an 
inverted optical microscope. From these measurements the median volume of 

the spheroids was calculated to allow the construction of spheroid regrowth 

curves.

7.2.4 Clonogenic Assays

Cells were seeded in 25 cm 2 flasks at 2.5 x 105 cells per flask. After 2 days, 
medium was removed and replaced with fresh medium containing the 
appropriately labelled benzylguanidine at the desired radioactivity 
concentration. After incubation for 2 hours, medium was removed and the 
cells were washed 3 times with PBS. Cells were then trypsinised and counted. 
For each radioactivity concentration 3 flasks were seeded at 1000 cells per 
flask. For greater radioactive concentrations (> 400 kBq / ml), additional 
flasks were seeded at higher cell numbers to compensate for the potential 
increase in toxicity. Flasks were equilibrated with 5% CO2 and then incubated 
at 37°C. After 14 days, medium was removed and the colonies were fixed and 
stained with Carbol Fuchsin (R A Lamb, Middlesex). Colonies of more than 
50 cells were counted using an automated colony counter (Artek Systems 
Corporation).
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7.3 Results

7.3.1. Effect of [123I]-, [[25\]- and [ 131I]-MIBG on SK-N-BE(2c) 

neuroblastoma monolayers.

Clonogenic assays o f  neuroblastom a cell m onolayers demonstrated that the 

two Auger emitting conjugates were more toxic to neuroblastoma cells than 

1311 labelled drug (Figure 7.1).

Figure 7.1 Clonogenic survival of SK-N-BE(2c) monolayers after 
[t23i].? [125!]. and [131JJMIBG treatm ent.

kBq / ml

0 2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

.001 J

Means +/- standard deviations o f  3 observations. 
• :  [i3iI]MIBG, ■ :  [123I]MIBG, A : [i25i]MIBG



Even at radioactive concentrations o f  1000 kBq / ml the surviving fraction for 

1311 labelled material was only 0.4. In contrast, using [123I]MIBG, a 1 log cell 

kill was achieved at a concentration o f  600 kBq / ml. [ I25I]MIBG was even 

more potent than [ 123I]MIBG :1 log cell kill was apparent after exposure  to 

approximately 300 kBq / ml of drug. To control for the effects of non-specific 

irradiation by the isotopes used, monolayers were incubated with identical 

activities of unconjugated radioactive sodium iodides for 2 hours. As Figure

7.2 shows, over this incubation period none of these was toxic.

Figure 7.2 The effect of non-specific irradiation on clonogenic 

survival of SK-N-BE(2c) monolayers.
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Means +/- standard deviations of  3 observations.. 
• :  [131I]NaI, ■ :  [i23i]NaI. A: [i25i]NaI
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In addition, to demonstrate that the observed toxicity was the result o f  specific 

uptake o f  the labelled drug, the cell line M CF-7 was used as a negative 

control. This cell line does not express the noradrenaline transporter and 

therefore has no capacity for active uptake of M IBG (Mairs et al., 1994). 

Again, none o f  the species tested caused inhibition o f  colony form ation 

(Figure 7.3).

Figure 7.3 Clonogenic survival of MCF-7 monolayers after [1 2 3 I]-, 
[1 2 5I]- and [1 3 , I]MIBG treatm ent

kBq / ml

0 2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0

10

1

1
Means +/- standard deviations of 3 observations.
• :  [i3iI]MIBG, ■ :  [ l23IlMIBG, ▲: [12iT]MIBG

It is concluded that the observed toxicity to neuroblastoma cells was due to the 

specific incoporation of labelled MIBG.
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7.3.2 Effect of [123I]-, [125I]- and [131I]-MIBG on small (240 |im) 

neuroblastoma spheroids

The relative effectiveness of the radiolabelled MIBG analogues was also 
determined using small (240 |im  diameter) spheroids. A result similar to that 

obtained with cell monolayers was observed. Both [1 2 3 I]MIBG and 
[1 2 5I]MIBG inhibited spheroid growth in a dose dependent manner (Figure
7.4 A + 7.4B).
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spheroids after treament with [123I]MIBG
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The ordinate is the common logarithim o f  the spheroid volume
in units o f  (pm )3 calculated from measured cross-sectional 
area. Each point represents the median log volume of  24 
measurements. ■: control, ■: 0 . 1 MBq / ml.B: 1 MBq / ml,
■ :  2 MBq/ ml, ■: 3M Bq / ml, ■: 4M Bq / ml.
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Figure 7.4B Growth curves of 240pm diameter SK-N-BE(2c)

spheroids after treatment with [125I]MIBG
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The ordinate is the common logarithim o f  the spheroid volume
in units of (pm )3 calculated from measured cross-sectional 
area. Each point represents the median log volume of  24 
measurements. ■: control, ■: 0 . 1 MBq / ml.B: I MBq / ml,
■ :  2M Bq/ ml, ■: 3MBq / ml, ■: 4M Bq / ml.

[ 123I]MIBG was the more effective radiopharmaceutical when compared on a 

radioactivity per ml basis: growth inhibition, defined as a failure to regrow 

after 20 days, was apparent at 0 . 1 MBq / ml o f  [ l2M]MIBG whereas IM B q / 

ml o f  [ l 2 3I]M 1BG w as  r e q u i r e d  to a c h ie v e  a s im i la r  e f fe c t .
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[ 131I]M IBG was again the least effec tive  o f  the iodinated conjugates: 

significant growth delay was only apparent at a concentration of 3 M Bq / ml 

(Figure 1 AC).

Figure 7.4C Growth curves of 240pm diam eter SK-N-BE(2c) 

spheroids after treatm ent with [1 31I]MIBG
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The ordinate is the common logarithim of  the spheroid volume
in units o f  ( p m ) 3 calculated from measured cross-sectional 
area. Each point represents the median log volume of 24 
measurements. ■: control, ■: 0.1 MBq / m l 1 MBq / ml, 
■ :  2M Bq/ ml, ■: 3M Bq / ml, ■: 4M Bq / ml.
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7.3.3 Effect of [123I]-, [1 25I]- and [131I]-MIBG on large (400pm) 

neuroblastoma spheroids

In contrast to the toxic effects of [1 2 3I]MIBG and [1 2 5I]MIBG on monolayer 

and small spheroids, 123I and 125I labelled conjugates were completely 
ineffective in the treatment of large (400pm) spheroids. At the radioactive 

concentrations tested, no inhibition of growth was observed and all spheroids 
regrew at rates comparable to controls (Figures 7.5A + 7.5B).
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Figure 7.5A Growth curves of 400pni diameter SK-N-BE(2c)

spheroids after treatment with [123I]MIBG
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The ordinate is the common logarithim of the spheroid volume
in units of (jam)3 calculated from measured cross-sectional 
area. Each point represents the median log volume of 24 
measurements. ■: control, ■: 0.1 MBq / ml.H: 1 MBq / ml, 
■ :  2 MBq/ ml, ■: 3M Bq / ml, ■: 4M Bq / ml.
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Figure 7.5B Growth curves of 400pm diameter SK-N-BE(2c)

spheroids after treatment with [125I]MIBG
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The ordinate is the common logarithim of  the spheroid volume
in units of ( p m p  calculated from measured cross-sectional 
area. Each point represents the median log volume of  24 
measurements. ■: control, ■: 0.1 MBq / m l I M B q  / ml,
■ :  2M Bq/ ml, ■: 3M Bq / ml, ■: 4M Bq / ml.
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Conversely [ 131I]MIBG induced growth inhibition at concentrations greater 

than IMBq / ml (Figure 7.5C).

Figure 7.5C Growth curves of 400pm diam eter SK-N-BE(2c) 

spheroids after treatm ent with [1 3 1I]MIBG
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The ordinate is the common logarithim of  the spheroid volume
in units of (pm)3 calculated from measured cross-sectional 
area. Each point represents the median log volume of 24 
measurements. ■: control, ■: 0 . 1 MBq / ml.B: l MBq / ml,
■ : 2M Bq/ ml, ■: 3M Bq / ml, ■: 4M Bq / ml.

To control for the effects o f  non-specific irradiation, spheroids o f  both sizes 

were incubated with 4 MBq / ml o f  the appropriate radioactive sodium iodide. 

No growth inhibition was observed in any of  the spheroids (data not shown).
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7.4 Discussion

7.4.1 Relationship between toxicity and target size

These studies have compared the cytotoxic efficacies of beta and Auger 
electron emitting radioconjugates of benzylguanidine in treating SK-N-BE(2c) 

cells grown in m onolayer and spheroid culture. The results clearly 
dem onstrate a relationship between the physical characteristics of 

radionuclides and their therapeutic effectiveness in experimental in vitro 

therapy (Table 7.1).

Table 7.1 Relative toxicity of alternative radionuclides conjugated 
to benzylguanidine

Radiolabel Radiotoxicitya

monolayer small spheroid large spheroid

1311 + + +++

1231 / 1251 +++ +++ NE

a Number of + signs allow comparison of rank order of 

inhibitory potency within columns or rows. They do not 
indicate proportional effectiveness. NE indicates no effect 
on growth at the concentrations of radioactivity used in this 
study.
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The Auger electron emitting conjugates of MIBG ([ 1 2 3 I]MIBG and 
[12 5I]MIBG) were capable of killing single cells and small spheroids. 
However, their toxicity was reduced in larger target volumes. Incomplete drug 

penetration and lack of crossfire probably account for the absence of growth 
inhibition in the 400 pm  spheroids after exposure to [1 2 3 I]MIBG or 

[12 5I]MIBG. Incomplete penetration of MIBG in neuroblastoma spheroids 
whose diameter exceeds 400 pm has previously been documented (Mairs et 

al., 1991). Therefore [1 2 3I]MIBG and [1 2 5I]MIBG may have been toxic only to 
the outer, metabolically most active, cell layers. Adjacent untargeted cells 

would have continued to proliferate since they experienced no crossfire from 
their targeted neighbours. Consequently, growth would be unaffected.

For the long range p-emitting conjugate ([13 1I]MIBG) the size dependence of 

toxicity was opposite to that of [1 2 3 I]MIBG and [1 2 5I]MIBG: i.e. small 
spheroids were less vulnerable to [13 1I]MIBG than large ones. This may be 
due to the dissipation of more |3 decay energy outside small target volumes as 

predicted from microdosimetric considerations (Wheldon et al., 1991; 
O'Donoghue et al., 1995) and in agreement with previous experimental 
findings (Gaze et al., 1992). This explanation is supported by the results of the 
data obtained from monolayer studies which indicated that, of the radioiodine 
isotopes examined, 1 3 1 1 was the least effective inhibitor of colony formation. 
Due to the planar geometry of cellular monolayers, most of the decay energy 
would have been deposited above and below the plane of the cells.

These findings are in agreement with the results of a recent study by Weber et 
al (1996), which found [1 2 5I]MIBG to be superior to [1 3 1I]MIBG in treating 

small spheroids, but that as spheroid size increased this advantage was lost and 
[13 11]MIBG became the more effective radiopharmaceutical.
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7.4.2 Comparative toxicity of radioiodine conjugates

To allow a quantitative comparison of the relative effectiveness of each 
isotope the administered activity in kBq / ml and in atoms / ml was calculated 

for each analogue of MIBG (Tables 7.2 + 7.3).

Table 7.2 Comparison of the toxicites of radionuclide conjugates of 
MIBG in terms of administered radioactivity in kBq / ml

endpoint activity (kBq/ml) required to achieve endpoint 

1231 1251 131I

clonogenic survivala 

spheroid regression0

480 300 — b 

1414 320 3460

a surviving fraction of 0 .1 .
b no value is included since 1 3 1 1 failed to achieve the 

stipulated degree of cell kill. 
c no spheroid regrowth by 20 days. Only data from the 

analysis of 240 pm diameter was included.

As Table 7.2 indicates, on a kBq / ml basis, the rank order of toxicity was 125I 
> i23i > 1311. On conversion of these activities to the number of atoms present 

per ml, however, 123I rather than 125I was the most effective iodine species 

(Table 7.3).
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Table 7.3 Comparison of the toxicities of radionuclide conjugates of 
MIBG in terms of number of atoms / ml

endpoint No of atoms x 1010 required to achieve endpointa 

1231 1251 1311

clonogenic survival 

spheroid regression

3.5 230

9.68 241 346

aThe activities presented in Table 7.3 were converted to 
number of atoms present per ml using the formula: 
radioactivity (Bq) = A.N, where X = the decay constant and N 

= number of atoms. Decay constants for each isotope were 
calculated from ti /2  = In 2  / X where ti /2  is the half life of the 

isotope.

These calculations highlight the potential of 123I over 125I for targeted 
radiotherapy. Although it is less efficient in the production of DNA double 
strand breaks (0.74 compared to 1 per cell per decay for 125I (Makrigiorgos et 
a l.t 1992), the number of atoms of 123I present in a given activity is 
approximately 100 fold fewer. Therefore, significantly lower molar amounts 
of [123I]MIBG would be required to deliver a dose of targeted radiation. It is 
predicted that the administration of low concentrations of MIBG should 
decrease passive uptake relative to active drug uptake, thereby enhancing the 
therapeutic ratio (Mairs et a l., 1995). Furthermore, the number of radioactive 

atoms administered should be as low as possible to minimise the dose to 
normal organs which are capable of uptake with long term retention (eg 
thyroid).
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7.4.3 Potential mechanisms by which Auger electron emitter conjugates of 

benzylguanidine mediate cell death

The observation that Auger electron emitters conjugated to benzylguanidine 

are capable of killing SK-N-BE(2c) neuroblastoma cells raises important 
questions about the subcellular location of MIBG and the mechanism of cell 

death. Several hypotheses could explain these results. MIBG may localise in 

the nucleus of neuroblastoma cells. Alternatively, particles other than Auger 
electrons emitted during the decay of 123I and 125I may have sufficient range to 

penetrate into the nucleus of a targeted cell. A third possibility is that MIBG 
labelled with Auger electron emitters mediates cell kill through apoptosis 
triggered by a novel mechanism.

The radiobiological expectation is that the critical cellular target for ionising 
radiation damage is nuclear DNA. Therefore ultra short range radionuclides, 
such as Auger electron emitters, should be toxic only if delivered to the 
nucleus of the target cell (Charltan, 1986). This has been confirmed by in vitro 
studies - using extracellular Na1 2 5I, cytoplasmic [1 2 5I]iododihydrorhodamine 
and nuclear 125IUdR - which demonstrated that significant toxicity was 
associated only with the nuclear located 125I (Kassis et al., 1987). While 
subcellular localisation studies have demonstrated that MIBG concentrates 
mainly in the cytoplasm of neuroblastoma cells (Gaze et al., 1991; Clerc et al., 
1993), the fixation procedures employed in these studies may have caused a 
redistribution of the drug (Smets et al., 1991). The demonstration that 
significant cell kill can be achieved with 125I or 123I labelled MIBG could 
represent evidence for a nuclear localisation of MIBG. The amount of drug 
accumulated at this site may be undetectable by conventional means but 
nevertheless capable of delivering a toxic dose of radiation to the cell nucleus.

Alternatively, some particles emitted during the decay of 1231 and 1251 may 

have sufficient range to reach genomic DNA of a targeted cell despite 
cytoplasmic or perinuclear localisation. Although the entire Auger and Coster 

Kronig electron spectra for these radionuclides have not been measured
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experimentally, calculations using theoretical transition rates and energies 
indicate that both isotopes emit some electrons with ranges of the order of the 
radius of a mammalian cell (Sastry, 1992; Howell, 1992). Assuming a 

cytoplasmic location for MIBG, it is possible that such emissions would 
deliver significant doses of radiation to the nucleus. However, this possibility 

is not supported by the classical experiments of Kassis and colleagues 

described earlier (Kassis et a l,  1987).

A third explanation for the toxicity of Auger electron emitter conjugates of 

MIBG assumes no nuclear sequestration of the radiopharmaceutical. This 

challenges the conventional model of radiation-induced cell kill which 
recognises the cell nucleus as the initial target for the lethal effects of ionising 
radiation. After radiation exposure cells may undergo cell death in one of two 
ways. Firstly, cells may experience mitotic death, whereby cells die during cell 
division. This does not necessarily occur at the first post irradiation mitosis. 
The cell may struggle through one or two mitoses before the damaged 
chromosomes cause it to die in attempting to complete cell division. 
Alternatively, they may undergo programmed cell death (apoptosis). In 
contrast to mitotic cell death, radiation induced apoptosis generally occurs 
rapidly and is thought to be a regulated process.

The trigger for the cells to undergo apoptosis after irradiation remains unclear. 
The initiating signal may be nuclear derived - possibly the double strand break 
itself. More recent data tentatively suggests that it could also be activated by 
signals arising at the cell membrane. Experimental evidence to support this 
comes from studies of the sphingomyelin pathway. This signal transduction 
pathway mediates the effects of several cytokines including TNF-a. In studies 
on leukaemic cell lines, it has been shown that binding of TN F-a to its 

receptor promotes the hydrolysis of sphingomyelin, a membrane phospholipid, 
to ceramide which acts as a 2 nd messenger to trigger a series of events 

culminating in apoptosis (Obeid et al., 1993; Jarvis et al., 1994). Further work 
has demonstrated that ionising radiation, like TNF-a, can stimulate this 

pathway, creating elevated ceramide levels and subsequent apoptosis in bovine
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aortic endothelial cells. Irradiation of cell membrane preparations, devoid of 
nuclei, was also capable of stimulating sphingomyelin hydrolysis suggesting 
that a direct effect of ionising radiation on the membrane is sufficient to 

produce ceramide and thereby transduce the apoptotic signals. No nuclear 
communication is required (Haimovitz-Friedman et al., 1994). Several other 

studies support the view that alterations at the cell membrane may trigger 

apoptosis (Langely et a l, 1993; Ramafrishnan et al., 1993).

If MIBG is genuinely non-nuclear in location then the toxic effects observed 
with Auger labelled material could be the result of membrane-signal induced 
apoptosis. The critical target within the membrane remains unknown. Such a 
mechanism would occur only in apoptosis-competent cells and could be absent 

from many long-established cell lines. This would explain the results of 
classical experiments which demonstrate an obligatory nuclear localisation for 
cell kill by Auger emitters (Bloomer et al., 1981; Kassis et al., 1987).

7.4.4 Implications for targeted radiotherapy with MIBG

Whatever the detailed mechanisms, the demonstration that short range 
radionuclides conjugated to MIBG are toxic to neuroblastoma cells could have 
important consequences for the treatment of neuroblastoma patients with 
disseminated disease. The implication of these studies is that 'combination 
cocktails' of radiolabelled MIBG conjugates would be the most effective 

strategy for treating a range of sizes of tumours. The concept of combining 
two radionuclides, one short and one long range emitter, has been discussed by 
O'Donoghue et al (1995). By choosing the appropriate proportions of activity, 
it is postulated that the likelihood of tumour cure is kept at a more constant 
rate throughout the size range, which in principle should extend the range of 
optimal curability. Of the two Auger electron emitters investigated here, 123I 

would appear to be the more suitable short range emitter. As a consequence of 
its short half-life, it is believed to be about 40 times more efficient at 

producing DNA damage over 8  hours than 125I (O'Donoghue, 1996). Since the 
biological half life of MIBG is around 37 hours (Ehninger et al., 1987) an 123I

135



labelled conjugate should inflict much greater damage than its long lived 125I 

counterpart.

Short range MIBG conjugates could also be useful for the ex vivo purging of 

autologous bone marrow. Many older patients undergo supralethal 

chemotherapy to eradicate the residual neuroblastoma cells that have escaped 

conventional treatments. They are then rescued by autologous bone marrow 
infusion, using marrow harvested while the patient was in remission (Pole et 
al.., 1991; Kremens et al., 1994). With this treatment, a significant number of 
patients still relapse, suggesting the presence of contaminating neuroblastoma 
cells in the reinfused marrow ( Rill et al., 1992). Auger electron emitter 

labelled MIBG could be incubated with marrow aspirates to sterilise 
contaminating neuroblastoma cells, with minimal damage to haemopoetic 
precursors, prior to reinfusion.

7.5 Conclusion

The experiments reported demonstrate the theoretically expected relationships 
between radiotoxicity, radionuclide emission characteristics and the 
geometrical configuration of the target cell kill population, while posing some 
questions about mechanisms of cell kill by Auger electron emitters. These 
results suggest that the combined use of short range and long range particle 
emitting radionuclide conjugates of benzylguanidine could enhance the 
therapeutic efficacy of targeted radiotherapy in neuroblastoma patients with 
disseminated disease.
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CHAPTER 8

DEVELOPMENT OF A MURINE MODEL OF 
MICROMETASTATIC NEUROBLASTOMA
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8.1 Introduction

8.1.1 Existing in vivo models of neuroblastoma

In vitro research provides a controlled environment in which to test new 

treatments and predict the limitations of novel approaches to therapy. 
Extrapolation of such results to the treatment of patients is however 

problematical. It is therefore inevitable that some in vivo work is carried out 
to validate the results of laboratory studies. In vivo models must provide a 
realistic reflection of the disease under investigation.

As discussed in section 3.6.1, several in vivo models of human neuroblastoma 
have been established using a variety of injection sites and with a number of 
human neuroblastoma cell lines. These approaches resulted in the production 
of subcutaneous tumours which could be simply maintained by serial passage 
(Senekowitsch et al., 1989; Rutgers et al., 1991; Gaze et al., 1994). 
Histological examination of tumour sections revealed that they retained the 
morphological, biological and biochemical characteristics of the original 
neuroblastoma tumour. While they have provided useful information about the 
uptake and biodistribution of MIBG, attempts to perform meaningful therapy 
experiments have been less successful. An unfavourable characteristic of these 
in vivo models is the failure of the implanted tumours to metastasise. These 
deficiencies question the reliability and authenticity of such models.

8 .1.2 Aims of this study

Widespread dissemination is a characteristic and lethal feature of late stage 

neuroblastoma which needs to be attacked with new therapy regimens. While 

various combined approaches are currently under clinical evaluation (see 
section 3.7.2), they are based largely on the results of in vitro findings and 

theoretical modelling studies. It would be helpful if a more realistic in vivo 
model of metastatic disease was available by which to evaluate novel 

therapeutic approaches. To address this problem, experiments were undertaken
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to develop a reliable and reproducible murine model of micrometastatic 
neuroblastoma. Nude mice were intrasplenically injected (ISI) with human 
neuroblastoma cells and then examined for the presence of disease using a 

PCR based assay. Having developed a reproducible model the therapeutic 
efficacy of n.c.a [1 3 1I]MIBG could be accurately compared with conventional 

exchange prepared [ 1 3 1I]MIBG. In addition the potential role of alternative 

short range conjugates of MIBG to treat micrometastatic 
neuroblastoma could be assessed in vivo.
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8.2 Materials and Methods

8.2.1 Cell culture

SK-N-BE(2c) cells were cultured as described in section 5.2.3. Clone M3 
cells, which were used to obtain murine RNA for control PCR reactions, were 

established from a cloudman S91 melanoma in a male mouse (Yasumura et 
al., 1966). These were grown in Hams F10 medium supplemented with 15% 
fetal calf serum and penicillin / streptomycin (100 IU / ml). All media and 

supplements were obtained from Gibco (Paisley, UK). Flasks were 

subcultured every 5-7 days when the monolayers became confluent.

8.2.2 Intrasplenic injection of SK-N-BE(2c) neuroblastoma cells

Initial studies used adult nude mice of the strain MF-1. For subsequent studies 
infant BALB/c nude mice aged 4 weeks were used. All mice were obtained 
from Harlan Olack Ltd, Oxfordshire.

Intrasplenic injection of SK-N-BE(2c) cells was carried out as described in 
section 5.2.5.1. At fixed timepoints after inoculation mice were sacrificed by 
CO2 inhalation, dissected and examined for macroscopic evidence of 
metastatic disease. Tissue samples of liver, spleen, heart, lung, kidney and 
adrenals were then removed and frozen for subsequent RNA extraction. To 
obtain bone marrow samples, femurs were excised and the marrow cells 
flushed through with l-2mls of PBS.

8.2.3 Reverse transcription polymerase chain reaction reaction (RT-PCR)

Tissues were thawed and minced finely with scissors. RNA extraction was 
then performed using a PUREscript RNA isolation kit (Gentra). RNA 

concentration of the samples was determined spectrophotometrically at 260 
nm. lp g  of RNA was converted to cDNA using the Clontech lst-strand 

cDNA synthesis kit (Cambridge Bioscience). Several primer sets were used all
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of which were obtained from Oswell (Southampton, UK). For the human 

noradrenaline  transporter sequence the sense p rim er was 5'- 
CTGGTGGTGAAGGAGCGCAACGGC- 3' and the antisense primer was 5' 

-ATGTCATGAATCCCGCTGCTCTCG -3' (M ontaldo et a l., 1992). 
Amplification with these primers generated a 590 bp product. For the human 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence the sense 
primer was 5'- TCGGAGTCAACGGATTTGG-3' and the antisense primer 

was 5'-GCATTGCTGATGATCTTGAGGC-3\ This amplification generated 
a PCR product of 390bp. For the murine GAPDH sequence the sense primer 

was 5' - CCATGGAGAAGGCTGGGG - 3' and the antisense primer 5'- 
CAAAGTTGTCATGGATGACC - 3'. This amplification generated a product 
of approximately 200bp. Amplification of human and murine sequences was 
carried out in lOx synthesis buffer containing 100 mM Tris-HCL, 1.5 mM 

M gCb, 500 mM KC1, pH 8.3 with 10 nmoles of dNTP (Gibco, Paisley), 20 
pmoles of each target primer, 20 pmoles of each GAPDH primer and 2 units 
of Taq polymerase (Boehringer Mannheim, Sussex). Cycling conditions 
consisted of a lmin denaturation at 94°C, lm in annealing at 65°C and 1 min 
extension at 72°C for 35 cycles. The PCR products were separated by 
electrophoresis through 1.6 % (w / v) agarose (Flowgen, UK, Kent).
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8.3 Results

8.3.1 ISI of SK-N-BE(2c) neuroblastoma cells in athymic adult MF-1 mice

Initial experiments were carried out using the standard strain of nude mice 

used in previous in vivo work (section.5.2.5). Groups of 12 mice were 

inoculated with a range of neuroblastoma cell numbers ( 1 0 4, 1 0 5 and 1 0 6), 
sacrificed at 1 0  weeks after injection and examined for macroscopic evidence 
of disease on the spleen and liver (Table 8.1).

Table 8.1 Development of tumours in adult MF-1 nude mice after ISI

Tumour cell innoculum No. mice with splenic 
tumours

No. mice with macroscopic 
evidence of metastases

1 0 4  cells 7 / 1 2 0 / 1 2

105 cells 7 / 1 2 0 / 1 2

1 0 6 cells 8 / 1 2 0 / 1 2

With tumour cell innocula of 104  and 105 cells, 7 out of the 12 mice (58%) 
developed tumours on the spleen. With the larger innoculum of 106 cells, 8  of 
the 12 animals (67%) had splenic tumours. Examination of the livers of these 
anim als revealed  no v isib le  ev idence o f m etasta tic  d isease.
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8.3.2 ISI of SK-N-BE(2c) neuroblastoma cells in infant BALB c mice

Several investigators have postulated that the ability of human tumour cells to 
metastasise may be affected by the natural killer cell status of the athymic 

mouse host. As the age and possibly the strain of the athymic mice may 
influence host natural killer cell activity, a second series of intrasplenic 

injections were carried out in immature (3-4 weeks) nude mice of the BALB c 

strain. For these studies a fixed high innoculum of 3 x 106 cells was injected 

and the animals were sacrificed at specific time intervals after injection: either 
28 days (group I) or 42 days (group II). Animals were examined at autopsy 

and scored for the presence of disease on the spleen and liver (Tables 8.2 and 
8.3).

Table 8.2 Tumour development in infant BALB c mice after ISI: 
sacrifice at 28 days

Animal No. Presence of splenic tumour Presence of liver metastases

1 + +
2 (2 1 )* + +
3 (23)* + +
4 (25)* + -

5 + -

6 - -

7 + +
8 - -

9 + +
1 0 - -

1 1 + +
1 2  (26)* + -

total 9 / 1 2 total 6 / 1 2

* numbers in brackets indicate time of death if less than 28 days.
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Table 8.3 Tumour development in infant BALB c mice after ISI: 
sacrifice at 42 days

Animal No. Presence of splenic tumour Presence of liver metastases

1 (26)* + _
2(27)* + +
3 + +
4 + -

5 + +
6  (32)* + +
7 - -

8  (33)* + +
9 - -

1 0 + +
11 + -

1 2 + -

total 1 0 / 1 2 total 6 / 1 2

* numbers in brackets indicate time of death if less than 42 days.

Infant BALB c nude mice were clearly more susceptible to tumour growth: in 
group I, 9 /1 2  (75%) of the animals had splenic tumours. In group II the figure 
rose to 10 / 12 (83%). In addition there was macroscopic evidence of 
metastases: in each group 50% of the animals had visible liver tumour foci.

8.3.3 RT-PCR analysis

The use of younger athymic mice of the BALB c strain produced encouraging 
results, in that half of the animals produced visible signs of disease. To 
determine whether the animals who appeared disease-free on visual 
examination might be harbouring microscopic tumours, a more sensitive 

method was developed to detect metastatic foci of human tumour cells. To 
assess metastatic tumour burden and response to therapy the assay should be 
specific and quantifiable. Therefore a modification of the RT-PCR system 

described in chapter 6  was developed.
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8.3.3.1 Species specificity

Preliminary experiments were carried out to confirm  that the primers being 

used were specific for human sequences. RNA from human SK-N-BE(2c) and 

m urine Clone M3 m elanom a cells was reverse transcribed and then PCR 

amplified using primers for the human noradrenaline transporter (NET) and 

human GAPDH genes (Figure 8.1).

Figure 8.1 Specificity and sensitivity of hum an noradrenaline 
transporter and GAPDH prim ers

mouse Quantitiy of hum an RNA (pg) 
0.1 0.25 0.5 0.75 1

615 bp __ 
492 bp -  
369 bp -

NET
GAPDH

RT-PCR reactions were carried out with 0.1 - 1 jug of 

human RNA or 1 pg  of mouse RNA. M = 123 bp markers.

The absence o f  signal when murine clone M3 RNA was used as the template 

confirm ed that both prim er sets were specific for human sequences. The 

sensitivity of detection was 0.5 pg  using the noradrenaline transporter primers 

and 0.1 pg  with the GA PD H primers. Since the limit o f  detection was 5-fold 

higher with the GAPDH primers, these were chosen for subsequent studies.

8.3.3.2 Sensitivity o f  RT-PCR

The ultimate application o f  this assay would be to detect small amounts of  

human RNA in a complex background of murine RNA. RT-PCR reactions
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were therefore carried out in the presence of murine RNA to ascertain what 

effect this had on detection sensitivity.

This was determined by mixing a range of  amounts o f  purified human RNA 

(0.1 ng -1 pg) with an excess of murine RNA (1 pg) (Figure 8.2).

Figure 8.2 Sensitivity of detection by RT-PCR of hum an derived RNA 

in the presence of murine derived RNA

M O.lng lng  10ng lOOng lpg

hum an
"GAPDH

The effect o f  excess murine RNA on the ability to detect 

human GAPDH RT-PCR signals. Reactions were carried out 

with 0 . 1 - 1  pg  o f  human RNA admixed with I pg  o f  mouse 

RNA. M = 123 bp markers.

In the presence o f  excess murine RNA, a human G A PD H  signal could be 

detected down to 0.1 ng of human RNA, which corresponds to 2-30 cells.

The sensitivity o f  the m ethod was also determ ined by m ixing increasing 

numbers o f  human SK-N-BE(2c) neuroblastoma cells (10 - 100 000) with an 

excess o f  murine Clone M3 cells, extracting total RNA from the mixed cell 

population and then carrying out the RT-PCR reaction (Figure 8.3).
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Figure 8.3 Sensitivity of detection by RT-PCR of hum an derived RNA 
extracted from a mixed hum an and mouse cell population

M 101 102 103 104 105

hum an 
GAPDH 
m urine 

GAPDH

The effect o f  excess murine cells (107) on the ability to 

detect human G A PD H  RT-PCR signals. Num bers above 

lanes represent the number o f  human cells present in the cell 

mixture prior to RNA extraction.

The sensitivity o f  detection was detrimentally  affected when hum an and 

murine cell populations were mixed prior to extracting the RNA: the limit of 

detection o f  the human GAPDH signal was 1000 neuroblastoma cells.

492 bp 
369 bp 
246 bp

123 bp
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8.3.3.3 RT-PCR analysis in BALB c mice after ISI

To evaluate the potential for the detection o f  human neuroblastom a cells in 

mouse host tissues in vivo , the RT-PCR assay was tested on BALB c mice 

which had been intrasplenically injected with SK-N-BE (2c) cells. RNA was 

extracted from  a variety of tissues, reverse transcribed and PCR amplified 

using the human-specific  GA PD H primers. Amplification was also carried out 

with m ouse-specific  G A PD H  primers to confirm the integrity o f  the RNA. 

This ensured that any lack of signal was attributable to the absence of  human 

cells rather than to general degradation o f  the RNA sample. A sample gel is 

shown in Figure 8.4.

Figure 8.4 RT-PCR analysis of a BALB c mouse after ISI 

M -ve Li Sp H Lu Ki Ad BM
!1 (

y492 bp _
369 bp —
246 bp “

123 bp _

hum an
GAPDH
mouse

GAPDH

Detection o f  human cells in a selection of tissues of a BALB 

c nude mouse after ISI. A negative control containing no 

RNA was included to ensure that the presence of signal was 

not due to contamination during the PCR reactions (- ve). M 

= 123 bp markers, Li = liver, Sp = spleen, H = heart, Lu = 

lung, Ki = kidney, Ad = adrenals, BM = bone marrow.

PCR signals for the human GAPDH sequence were found in the spleen, liver, 

heart, lung, kidney and adrenal glands. No human cells were detectable in the 

bone marrow.
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8.4 Discussion

The aims of this study were to develop a realistic in vivo model of 

micrometastatic neuroblastoma. The availability of such a laboratory model 
would allow the potential of combined therapeutic strategies, designed to treat 

metastatic neuroblastoma, to be investigated.

As indicated in the introduction (section 8.1.1), existing murine neuroblastoma 
models do not show evidence of metastasis. This lack of dissemination is a 
common problem with the growth of human tumour xenografts in nude mice. 

Regardless of the malignancy of the original tumour in the patient, subsequent 

implantation in nude mice often fails to produce metastases (Sharkey et al., 
1979). A number of factors can influence both the development of metastases 
and the subsequent ability to detect disseminated disease. The experiences in 
developing a metastatic neuroblastoma reflect some of these problems and are 
incorporated in the discussion below.

8.4.1 Selection of appropriate age and strain of athymic mouse

The initial studies relied on the ability of intrasplenically injected cells to 
spread and produce visible evidence of disease on the spleen and liver. 
Preliminary experiments were carried out in adult MF-1 mice using a range of 
tumour cell innocula. These studies revealed that the degree of tumour take 
was fairly low and demonstrated that there was no real relationship between 
the size of the innoculum and tumour development: the number of animals 
with splenic tumours was similar, regardless of the number of cells injected. 
This could reflect inconsistencies in the injection technique. In addition none 
of the above animals showed any evidence of metastatic disease on the liver.

The metastatic potential of injected tumour cells is believed to be affected by 
the natural killer cell status of the host mice. Laboratory studies have revealed 

that mice who exhibit low levels of NK-mediated cytotoxicity (eg 3-week old 
syngenic mice, or (3-estradiol-treated mice) show increased incidence of
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metastases. Conversely, hosts with high NK activity (adult mice and syngenic 
mice treated with NK-cell-stimulating biological response modifiers) are very 
resistant to metastases (Hanna, 1982). This might explain the differences 

observed when the intrasplenic injections were repeated in infant BALB c 

mice. Comparison of Tables 8.2 + 8.3 with Table 8.1 indicate that BALB c 

mice were more susceptible to tumour growth both at the initial site of 

injection and in producing visible liver foci. This increased vulnerability to 

tumour growth is also reflected in the fact that several animals had to be 

sacrificed before the appointed time because of haemorrhaging of the primary 
splenic tumour. It is possible that development of large tumours on the spleen 
may prevent the development of potential metastases. Several investigators 

report a higher degree of metastatic spread if the spleen is removed a short 
time after injection (Laffreniere and Rosenberg, 1986).

8.4.2 Use of RT-PCR to detect micrometastases

A potential problem with the above system is the possibility that metastases 
do develop but are missed because the techniques used to detect them are not 
sufficiently sensitive. As in the majority of human xenograft studies, cells 
were inoculated and the animals observed for macroscopic evidence of 
metastatic lesions. Such evaluations may not be sensitive enough to detect 
micrometastases (McKenzie et al., 1991; Shoemaker et al., 1992). To 
maximise the sensitivity of detection, an assay based on PCR, was 
incorporated. This enabled the presence or absence of human neuroblastoma 
cells to be confirmed. Such an approach relies on the use of appropriate 
primers which are specific for human sequences. Previous studies have 

utilised the human specific Alu repeat sequence which can be used to identify 
and isolate human DNA from complex backgrounds. Unfortunately because 

the Alu sequences occur frequently in the genome, the signal detected by PCR 
is a smear rather than a discrete band, which makes quantitation difficult 
(Nelson et a l, 1989). To circumvent this problem primers were required 

which as well as being human specific, gave rise to a single discrete signal 
after PCR amplification.
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As the primer sets used in the RT-PCR assay in chapter 6 fitted these 
requirements experiments were undertaken using this system. As Figure 8.1 
shows, primers for human noradrenaline transporter and the GAPDH were 

both specific for human sequences. Attempts to obtain a signal with murine 

RNA failed. The greater sensitivity observed with the GAPDH sequence 
probably reflects the higher level of constitutive expression of this 
housekeeping gene.

In order to assess the susceptibility of the RT-PCR assay to interference by 
mouse RNA, in vitro experiments using mixtures of human- and murine- 
derived material were performed. When RNA purified from murine clone M3 
cells was mixed with human SK-N-BE(2c) RNA, a signal for the human 
GAPDH could be detected down to O.lng of human RNA; estimated to 
represent around 30 cells. A more realistic assessment of the sensitivity was 
obtained by using RNA purified from a mixed human and mouse cell 
population. A detectable signal at 1000 human neuroblastoma cells is probably 
a more accurate reflection of the true sensitivity of the assay for the in vivo 
context in which it is to be used.

Using RNA from intrasplenically injected BALB c mice, a human GAPDH 
signal could be detected in a variety of organs. The results demonstrate the 
feasibility of the assay and suggest that SK-N-BE(2c) cells are widely 
disseminated after injection. The use of PCR is advantageous since it is direct, 
sensitive and technically simple to apply. It also avoids detailed histological 
examination that would otherwise be needed to detect occult micrometastases.
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8.5 Conclusions

Attempts to develop a reliable and reproducible model of micrometastatic 

neuroblastoma in mice have met with partial success. The initial data suggest 

that RT-PCR could be a viable means of detecting micrometastases. However 
a number of points need to be clarified:

Does the presence of a positive PCR signal in an organ definitely predict 

the eventual development of microtumours? Long term survival of the 
animals after injection would be required to address this question. To ensure 
this the animals would require a splenectomy to avoid them succumbing to 
the effects of the primary tumour.

It is likely that tumour cells would be non-randomly distributed throughout 
a tissue. Therefore, to ensure that the lack of a signal was definitely due to 
the absence of neuroblastoma cells, RNA would have to be extracted from 
entire organs.

Quantification of the assay is required to assess the therapeutic effect of 
treatment(s). One method is to create a standard curve using a range of 
sample cell numbers. PCR signal strength could be measured by 
densitometry and plotted against the number of human cells initially present. 
By measuring the PCR signal strength from tissues of intrasplenically 
injected mice, the number of tumour cells present could be estimated by 
reference to the curve. This strategy was successfully used to quantify DNA 
dot blots from mice bearing melanoma metastases (Shoemaker et al., 1992). 

In therapeutic studies this has distinct advantages since it means that defined 
endpoints can be used. Most such studies currently use life span as an 
endpoint which is problematic due to variability in death patterns between 
mice and can involve subjecting animals to unnecessary suffering. With a 

quantifiable RT-PCR approach the metastatic tumour burden in control and 

treated mice could be compared at pre-determined time intervals.

152



In summary, the preliminary data presented here demonstrates that, by 

injecting infant athymic mice with neuroblastoma cells and using RT-PCR to 
track the fate of inoculated cells, widespread dissemination of tumour cells in 
mouse tissues can be detected. However, further experiments are required to 

determine a suitable method of quantifying the assay . Such a model will allow 
the potential of novel treatment approaches aimed at managing progressive 

neuroblastoma to be investigated.
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CHAPTER 9

FINAL CONCLUSIONS AND PROPOSALS 
FOR FUTURE WORK



9.1 Aims

The principal objectives of this work, which were set out in chapter 4, were to 

investigate ways in which the targeted radiotherapy of neuroblastoma with 
radioiodinated MIBG could be improved. The results presented in this thesis 

suggest that a number of approaches have the potential to enhance the 

therapeutic efficacy of MIBG therapy, and raise a number of questions which 
need to be addressed in future studies. These are discussed below.

9.2 No-carrier-added MIBG

9.2.1 Therapeutic efficacy of n.c.a MIBG

The biodistribution data presented in chapter 5 suggest that n.c.a [ i31I]MIBG 
could offer significant benefits both in terms of increased tumour doses and 
reduced normal tissue uptake. In vivo experiments are now required to 
compare the therapeutic efficacy of n.c.a- and exchange- prepared MIBG to 
determine whether the observed uptake advantage results in enhanced tumour 
cell kill. For these experiments to be accurate and informative a realistic 
murine model of neuroblastoma is needed. The initial data presented in 
chapter 8 indicate that, with appropriate quantitation, the RT-PCR based 
system could be used for this purpose.

9.2.2 Clinical use of n.c.a MIBG

The use of a lower total mass dose of MIBG is postulated to enhance the 
accuracy and sensitivity of neuroendocrine tumour imaging (section 5.4.4). To 
determine whether this is true clinical evaluation of the scintigraphic potential 

of n.c.a [123I]MIBG has commenced. Initial investigations are being conducted 
in adult patients with suspected phaeochrom ocytom a. Encouraging 
preliminary results confirm that n.c.a MIBG detects sites of neuroendocrine 

tumours and is at least as sensitive as its conventional exchange-prepared 

counterpart.
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9.3 Appropriate combination and scheduling of [131I]MIBG therapy

The finding that cisplatin pretreatment of neuroblastoma cells enhances MIBG 
uptake raises a number of questions which need to be addressed using in vitro 

and in vivo models. Experiments are required to determine whether other 
cytotoxic agents currently in use to treat neuroblastoma are capable of eliciting 

the same responses as cisplatin. Indeed recent results suggest that the effect is 
not confined to cisplatin. Meco and colleagues have reported that both 
cisplatin and adriamycin are capable of stimulating enhanced MIBG uptake in 

a panel of neuroblastoma cell lines (Meco et a l ,  1997). Clonogenic and 
spheroid regrowth delay assays would confirm whether enhanced uptake of 
MIBG results in a complementary increase in cell kill. It would also be useful 

to determine whether cytotoxic drug pretreatment is a potential means of 
stimulating the MIBG uptake ability of neuroblastoma cell lines which are 
negative for or have low levels of expression of the noradrenaline transporter. 
This opens the possibility of converting an MIBG negative neuroblastoma into 
one which is amenable to MIBG therapy.

From a mechanistic standpoint, the roles of differentiation and commitment to 
apoptosis after cisplatin pretreatment need to be clarified. There are several 
independent markers of neuroblastoma cell differentiation which could be 
monitored, including decreased expression of N-myc, increased activity of the 
enzyme acetylcholinesterase and the measurement of neurite projections. 
Assessment of apoptosis can be achieved directly by the recognition of cells 
which exhibit chromatin condensation and nuclear fragmentation (Russell et 
al., 1995). The potential role of p53 as a transcriptional transactivator of 
noradrenaline transporter expression could be addressed by comparing 

cisplatin pretreatment and subsequent MIBG uptake in wild type and p53 

mutant neuroblastoma cell lines.

The specificity of this effect needs to be established: ie is cisplatin-induced 
enhancem ent specific to neuroblastom a cells or are non-m alignant 

sympathetically innervated tissues such as heart and adrenals also affected?
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An equally important consideration is whether cisplatin is capable of 
modulating MIBG uptake in non-neuronal cells. The most important toxic 

effect observed with the clinical use of [131I]MIBG is bone marrow depression 
which may be a result of active accumulation by megakaryocytes via the 
serotonin transporter (Rutgers et al., 1993) (although this hypothesis is 

contentious, section 3.7.2). The possibility that uptake in haematopoetic 
progenitor cells could be enhanced by cisplatin pretreatment needs to 

addressed.

9.4 Alternative radiohalogens and modified MIBG carrier molecules

9.4.1 Therapeutic potential of [211 AtJMABG

The experiments described here have confirmed the importance of the cross
fire effect in targeted radiotherapy. As illustrated in Figure 2.2 the radioiodines 
tested here represent the two extremes of the 'particle range / crossfire' 
spectrum. That is long range p-particles and ultrashort range Auger electrons. 

Intermediate in path length are alpha particles which may exhibit a small 
crossfire effect. Based on this, it has been suggested that another radiohalogen 
with potential for the treatment of neuroblastoma micrometastases is 211 At, an 
a  particle emitter with a range of 50 to 100 pm in tissues, corresponding to 6- 

10 cell diameters. In addition to cross-fire, an added advantage is the high 
LET quality of the emitted radiation with its added toxicity. This 
radiopharmaceutical has been synthesised and its uptake and toxicity have 
been characterised in vitro (Vaidyanathan et a l , 1992; Strickland et a l ,  
1994). With respect to kinetics of accumulation and retention MABG was 
identical to MIBG. However, as expected, MABG was significantly more 
toxic to neuroblastoma monolayers than MIBG. This high degree of toxicity 

has also been demonstrated in small spheroids (P W elsh, personal 
communication), although their efficacy in the treatment of larger cellular 

aggregates is yet to be evaluated. It would be interesting to determine the 

size/cure relationship for MABG. The expectation is that the optimal target 
size for MABG will lie between those of 123I / 125I and 131I. It is probable that
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cocktails of all three conjugates would constitute the optimal means of 
eradicating tumours of a range of sizes.

W hile 211 At is significantly more toxic than any of the radioiodines, 

considerable work is still needed in vivo to confirm its efficacy and, perhaps 
more crucially, its effects on normal non-target tissues. Recent biodistribution 

studies in xenografted nude mice, suggest that normal tissue toxicity could be 
problematic since significantly higher uptake of MABG was observed in 

normal tissues, especially the heart (Vaidyanathan et al., 1994). Strategies 
which limit such uptake will need to be developed to minimise radiation dose 
to non-target organs.

9.4.2 Alternative analogues of iodobenzylguanidine

The development of alternative analogues of MIBG arose out of the search for 
PET (positron emission tomography) imaging agents for neuroendocrine 
tumours. PET like SPECT (single photon emission computerised tomography) 
allows tomographic imaging to be perform ed but is thought to be 
advantageous as it provides superior quantitative information. Several PET 
ag en ts  have now been sy n th es ised  in c lu d in g  [76Br]-meta- 
bromobenzylguanidine ([76Br]MBBG) (Valette et al., 1993) and [124I]meta- 
iodobenzylguanidine (Ott et al., 1992). Another potential agent is 4-fluro-3- 
[1311]iodobenzylguanidine ([131I]FIBG) (Figure 9.1).
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Figure 9.1 Chemical structures of [131I]MIBG and [131I]FIBG

CH2— NH— CH2— NH—

n h 2 n h 2

F

[131I]FIBG

Laboratory investigations have shown that [131I]FIBG has several 
advantageous properties. In vitro binding studies indicate that uptake and 
retention of [131I]FIBG was significantly higher than that of MIBG. This 
enhanced retention is also seen in vivo, where approximately 2-fold higher 
retention was observed in the adrenal glands of normal mice with [131I]FIBG 
(Vaidyananthan et al., 1997). Prolonged retention of the radiopharmaceutical 
could have significant benefits for MIBG therapy since it would result in an 
increased radiation dose to the tumour. It would be useful to assess the 
potential of this agent with in vitro and in vivo models of neuroblastoma.

9.5 Investigating mechanisms of cell kill by Auger-electron emitting 
radionuclides

The most surprising feature of the results presented in chapter 7 is the 
effectiveness of the Auger electron emitters 123I and 1251 in treating monolayer 
cultures and small spheroids. As discussed, this finding could be the result of 
membrane-signal induced apoptosis.

This possibility could be investigated using Auger labelled targeting agents for 

which the subcellular fate is known. Unequivocal DNA-targeting can be 

achieved using 1251 incorporated in IUDR. Membrane targeting can be 

accomplished by Auger electron emitters conjugated to concanavilin A. These
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two agents could then be used to treat a panel of cell lines to determine the 
role of membrane irradiation in radiation cell killing in apoptosis competent 

cells.

Russell et al (1995) have reported the isolation of a radioresistant 
neuroblastoma cell line variant which evolved under the selective pressure of 

repeated irradiation. Comparison of the parent and resistant lines demonstrated 

that the resistant variant had a decreased propensity to undergo apoptosis after 
irradiation. The effects of MIBG labelled with alternative Auger electron 

emitters on clonogenic survival in these two lines could be compared. This 
would confirm the role of apoptosis in cell death mediated by MIBG labelled 
with Auger electron emitters. Such experiments should provide a definitive 
evaluation of the role of apoptosis and of membrane irradiation in cell kill by 
Auger electron emitters.

9.6 Alternative approaches to establishing a metastatic model of human 
neuroblastoma

Although the RT-PCR based assay system described in chapter 8 was 
successful in detecting disseminated neuroblastoma cells, a number of recent 
reports in the literature on murine metastatic models indicate that several 
alternative approaches might be worth pursuing.

The selection of an appropriate tumour injection route has proved to be 
important in achieving tumour cell metastases. Choice of a sub-optimal site 
may prevent tumour dissemination (Kozzlowski et al., 1984). Attempts to 
establish neuroblastoma tumours via intra-peritoneal and intravenous routes 
failed (Gaze, personal communication). As intrasplenic injection had 

previously been used to generate hepatic metastases (Giavazzi et a l, 1986; 
Laffreniere and Rosenberg, 1986) and to generate splenic neuroblastomas 
(Rutgers et a l,  1991) this injection route was chosen for metastatic studies. 

However, an increasing number of studies suggest that orthotopic injection is 
required to assess metastatic potential, in keeping with the theory that the
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establishment of metastases depends on the interaction of metastatic cells with 

their relevant organ environment (Manzotti et a l ,  1993; Kubota, 1994). 
Although beyond the scope of this present work, it may be that selection of an 

orthotopic injection site, in the case of neuroblastoma cells probably the 

adrenal gland, could be a more effective and reliable means of establishing 

neuroblastoma metastases.

Another approach would be to screen alternative neuroblastoma cell lines for 
metastatic potential. Subculturing techniques and in vitro assays which 

measure invasive potential have identified human neuroblastoma cell lines 
which are more likely to metastasise in vivo (Ferrandis et all., 1994). There 
are also reports o f a murine model of metastasis using the mouse 
neuroblastoma cell line C-1300 (Iwakawa et al., 1994). The disadvantage of 
using alternative cell lines is the lack of relevant in vitro data on them. SK-N- 
BE(2c) cells were used in these studies because their radiobiology, MIBG 
uptake ability and response to chemotherapy are all well characterised, a 
prerequisite to testing therapeutic regimens incorporating these agents in 
combination. One final possibility would be to use severe combined immune 
deficient (SCID) mice which have been shown to have marked advantages 
over nude mice for studying human tumours in vivo (Mueller and Reisfield, 
1991). Indeed these mice have recently been used to successfully develop a 
human metastatic neuroblastoma model (Bogenmann, 1996).
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9.7 Conclusions

While radioiodinated MIBG is now a firmly established diagnostic tool, its 
potential as a therapeutic agent is yet to be fully realised. Progress is however 

being made. For stage IV neuroblastoma patients, regimens which integrate 
[131I]MIBG with other treatment modalities are yielding promising results. 

From a research standpoint, ongoing laboratory studies should identify the 
mechanisms underlying the interactions between [131I]MIBG and other 

treatment agents. This will establish the optimum sequencing and scheduling 
of [131I]MIBG, ensuring that maximum benefit is achieved with this targeted 
radiotherapy agent.
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