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"Then a ploughman said, Speak to us of work.

And he answered, saying:

You work that you may keep pace with the earth and the soul of the earth.

For to be idle is to become a stranger unto the seasons, and to step out of 

life's procession that marches in majesty and proud submission towards the infinite.

When you work you are a flute through whose heart the whispering of the 

hours turns to music.

Which of you would be a reed, dumb and silent when all else sings together 

in unison?"

"The Prophet"

Kahlil Gibran

"If I answered these questions, it would kill the suspense. It would resolve 

the conflict and turn intriguing possibilities into boring old facts."

Calvin in "The Days are Just Packed" by Bill Watterson

"This is the essence of science Scully - ask an impertinent question, you're 

on your way to a pertinent answer."

Special Agent Fox Mulder
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Summary

The work presented in this thesis is concerned with the synthesis and 

biological activity of pyrrolizidine alkaloids and analogues and has been divided 

into seven main areas: (a) the isolation and preparation of simple derivatives of 

pyrrolizidine alkaloids isolated from plants and root cultures available within the 

University; (b) the synthesis of synthanecine A, and derivatives of this compound 

for investigation of their anti-tumour activity; (c) approaches to the synthesis of one 

enantiomer of synthanecine A; (d) approaches to the synthesis of a novel 

synthanecine; (e) attempted synthesis of novel necic acids for esterification with 

synthanecine A; (f) the synthesis of novel pyrrolizidine alkaloid analogues via a 1,3- 

dipolar cycloaddition; (g) investigation of the biological activity of some of the 

compounds isolated and synthesised during the project. Those topics of greatest 

significance in the thesis are summarised more fully below.

Isolation and Derivatisation of Pyrrolizidine Alkaloids

A number of pyrrolizidine alkaloids are available in the Chemistry 
Department, either from plant sources or from root cultures. Samples of these 
compounds were requested by Dr. Bryan Hanley, MAFF, Norwich, for metabolic 
studies. These compounds were also required to be radiolabelled with 14C. This was 
achieved by feeding [l,4-14C]putrescine (A) to the plants and root cultures. The N- 
oxides of the pyrrolizidine alkaloids isolated were synthesised. A-Oxides of the 
radiolabelled alkaloids were also synthesised. The quaternary methiodide derivatives 
were also prepared for biological testing.

Rosmarinine (B) can be readily isolated in gram quantities from Senecio 
pleistocephalus. This compound can be converted into the toxic alkaloid 
senecionine (C) by elimination of the hydroxyl group to give a double bond in the 
1,2-position. This elimination was carried out with limited success.



* = position of label

(A)

Me
O

(B) (C)

Approaches to the Synthesis of One Enantiomer of 

Synthanecine A

In order to prepare a closer pyrrolizidine alkaloid analogue, the synthesis of 
one enantiomer of synthanecine A (H, R=H) was undertaken. Several approaches 
were tried in this synthesis. In all approaches the key intermediate methyl (R)-3-(N- 
methylamino)-4-hydroxybutanoate was identified (D). Syntheses starting from (S)- 
malic acid (E) and from D-aspartic acid (F) were attempted. L-Aspartic acid was 
also used because it is cheaper and more readily available. The synthesis from L - 

aspartic acid proved most successful, and this route was advanced beyond the key 
intermediate to the diester (G).

NHMe OH

OH (D )

C(CH3)3

(F) (G)



Approaches to the Synthesis of a Novel Optically Active 

Synthanecine

Synthanecine A differs from a pyrrolizidine alkaloid in the number of carbon 
atoms in the molecule. Thus it was decided to attempt a synthesis of the novel 
synthanecine (H, R=Me). The substituted pentanoic acid derivative (I) was 
identified as the key intermediate. This compound could be derived from L -  

threonine. ^ )

Synthesis of Novel Pyrrolizidine Alkaloids Analogues via a 
1,3-IMpolar Cycloaddition

The 1,3-dipolar cycloaddition reaction of the azomethine ylide (J) derived 
from A-benzyl-A-(trimethylsilylmethyl)aminomethyl methyl ether (K ) with a 
variety of dipolarophiles was used to prepare a range of pyrrolidines of the general 
structure (L) and the 3-pyrroline (M). Simple derivatives of the pyrrolidines were 
prepared by removal of the benzyl groups and by reduction and further reaction of 
the ester functions.

OH

Me

(H) (I)

©
H2C ^ @ ^ C H 2Ph

N

CH
II

(Me)3Si

(J) (K)
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Chapter 1

Introduction

1.1 Pyrrolizidine Alkaloids

Pyrrolizidine alkaloids are secondary metabolites produced by certain higher 

plants. 1 They have become the subject of considerable interest over recent years 

since the recognition that the ingestion of plants containing pyrrolizidine alkaloids is 

responsible for serious livestock loss and many incidents of human poisoning 

principally by hepatotoxicity.2-6

Pyrrolizidine alkaloids contain the l-azabicyclo[3.3.0]octane system (1). A 

number of alkaloids are derivatives of l-aza-l-methylcyclo-octan-5-one (2). The 

numbering system generally used for these compounds is shown below. The base 

portions of pyrrolizidine alkaloids are termed necines. Most necines possess a 

hydroxymethyl group at C-l as in (-)-trachelanthamidine (3), and many have a 

double bond in the 1,2-position as in retronecine (4). Although these features are 

typical of necines, many examples exist which have other structural features in 

addition to or instead of the above, for example the diol platynecine (5), the triol 

crotanecine (6 ) and the non-basic pyrrole derivative (7). These factors and the 

stereochemistry of the substituents account for the large number of necine 

structures.

O

Me

1 2

1
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Pyrrolizidine alkaloids are usually found as ester derivatives. These can be 

monoesters (usually esterified at the 7- or 9- positions), diesters or macrocyclic 

diesters, for example monocrotaline (8 ) (the conventional numbering system for 

pyrrolizidine alkaloids is given for this compound). These macrocyclic diesters can 

have varying ring sizes from 11 in monocrotaline up to 13 in bulgarsenine (9). The 

esterifying acids are known as necic acids and are often highly substituted and 

oxygenated as shown by the C7 acid (-)-trachelanthic acid (10) and the Cjo acid 

seneciphyllic acid (11). Pyrrolizidine alkaloids also exist as A-oxides within the 

plant, for example rosmarinine N -oxide (12). These are normally chemically 

reduced to the free base after extraction from the plant.

1.2 Occurrence of Pyrrolizidine Alkaloids

Pyrrolizidine alkaloids occur widely both geographically and botanically.

They have been found in 14 unrelated plant families7 and over 300 plant species**

and occur in plant species on every continent. It has been estimated that

approximately 3% of the world's flowering plants contain pyrrolizidine alkaloids.9 A

2



certain degree of species specificity has been observed, for example in the 

Boraginaceae family most of the pyrrolizidine alkaloids found are monoesters and 

diesters whereas in the Asteraceae (Compositae) family, macrocyclic pyrrolizidine 

alkaloids are more frequent. 10

HO Me HQ Me

010

8

o

c o 2h

Me2HC-

HO-

OH

H

Me Me

H

Me
c o 2h

HQ

Me

9

o

HQ Me

10 11

OH

Me

Me

--O H

12

3



The particular alkaloid found within a plant and the quantity isolated is 

dependent upon the part of the plants harvested (e.g. roots, leaves, flowers, etc.), the 

climate where the plant grew, the soil conditions and the time of harvesting.11 For 

example Senecio hygrophyllus contains differing proportions of rosmarinine, 

platyphylline and hygrophylline depending upon its time of harvest, the season and 

the location of the plant. 12>13 Ratios of free base to iV-oxides can vary between 

different parts of the plant; for example in Crotalaria retusa, basic alkaloids 

accumulate in the seeds whereas Af-oxides often predominate in the green parts of 

the plant. 14’15

The yields of pyrrolizidine alkaloids isolated from a particular plant can vary 

considerably. For example, Johnson et al. 16 observed pyrrolizidine alkaloid levels 

which varied form 0.18 % to 17.99 % in Senecio ridellii from different locations.

1.3 Analogues of Pyrrolizidine Alkaloids

The amounts of pyrrolizidine alkaloids which can be isolated from plants are 

usually small, and the syntheses of such compounds are often lengthy and may 

result in a poor overall yield or are impractical to scale up. Many or all of the toxic 

effects of pyrrolizidine alkaloids can be attributed to the formation of the pyrrole 

ring (13).17 When considering the synthesis of model compounds the saturated ring 

in the didehydropyrrolizidine nucleus is not involved in metabolism to a toxic 

intermediate and could thus be omitted. 18 This has led to the preparation of a series 

of monocyclic analogues of the necine bases, which have been called 

synthanecines. 18 The most commonly prepared of these are synthanecine A (14), 

synthanecine B (15) and synthanecine C (16). Preparation of monoesters, diesters 

and macrocyclic diesters of these compounds has served to give representative 

analogues of pyrrolizidine alkaloids. A wide variety of such compounds has been 

prepared.19-22

4
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1.4 Metabolism of Pyrrolizidine Alkaloids and Analogues

In considering the toxic actions of pyrrolizidine alkaloids it is important to 

consider whether it is the alkaloid itself or a metabolite of the alkaloid that is 

responsible for the toxic action. There is considerable weight of evidence suggesting 

that it is the metabolites of the alkaloids that are responsible for their toxic action. 

This evidence is summarised below:

• Pyrrolizidine alkaloids are not locally toxic at the site of administration or 

injection. 17

• Some organisms e.g. cinnabar moth larvae are uninjured by the alkaloids, 

despite storing large quantities within their tissues.23

• The main organ damaged by pyrrolizidine alkaloids is the liver which is the site 

of their metabolism. 17

• Inhibition of liver drug metabolism enzymes results in decreased toxicity. 17

• Promotion of liver drug metabolism enzymes results in increased toxicity.24

5



It has been established that only pyrrolizidine alkaloids containing a double 

bond in the 1,2-position are hepatotoxic. Indeed the metabolite responsible for this 

hepatotoxicity is also implicated in the other toxic actions that pyrrolizidine 

alkaloids can exert. 17

1.4.1 Metabolic Pathways of Hepatotoxic Pyrrolizidine 

Alkaloids and Analogues.

Hepatotoxic pyrrolizidine alkaloids are able to undergo a variety of 

metabolic fates within the body.

i. Hydrolysis

Hydrolysis of a hepatotoxic pyrrolizidine alkaloid produces the non- 

hepatotoxic necine and necic acid. For example the enzymatic or chemical 

hydrolysis of hepatotoxic monocrotaline (8 ) results in the liberation of non- 

hepatotoxic retronecine (4) and monocrotalic acid (17) (scheme 1).

HO Me HO Me

The rates of enzymatic hydrolysis of pyrrolizidine alkaloids are important in

estimating the level of toxicity of a particular alkaloid. A fast turnover of
6

CH2OH

8 4 17

Scheme 1: Products of PA Hydrolysis



pyrrolizidine alkaloid to necine and necic acid results in less pyrrolizidine alkaloid 

reaching the liver intact. Dehydrogenation of the necine does not result in an active 

alkylating species (see section 1.5.1iii below). Steric hindrance around the ester 

groups inhibits enzymatic hydrolysis as shown in table l . 25 This results in 

pyrrolizidine alkaloids bearing hindered ester groups tending to exhibit higher liver 

toxicity.

Acida Alkyl Group of 

Acid

Enzymatic Hydrolysis 

Rate pmol/min/g liver^

Valerate Me (CH2)3- 20

Isovalerate Me2CHCH2. 4.3

Pivalate Me3C- 0.5

Senecioate Me2C=CH- 0.35

a Retronecine was the base in all cases 

b Anaerobic rates in rat liver homogenate at pH 7.5, 37 °C 

Table 1 : Comparison of Rates of Enzyme Catalysed Hydrolysis of Retronecine

Diesters

ii. A-Oxidation

Enzymatic oxidation produces two major metabolites in pyrrolizidine 

alkaloid metabolism, and the product of A-oxidation is considered here. The product 

of dehydrogenation is considered below (section 1.4.1iii). The formation of the A- 

oxide results in excretion of this compound due to its low lipophilicity. This reaction 

is brought about by the liver microsomal system.26 The A-oxide is non-hepatotoxic. 

the mechanism of A-oxidation has yet to be elucidated but probably involves a 

mixed function oxidase requiring both oxygen and NADP+. The A-oxidation of 

monocrotaline (8) to monocrotaline A-oxide (18) is shown in scheme 2.

7
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18

Scheme 2 : Enzymatic Conversion of Monocrotaline (8) into 
Monocrotaline A-Oxide (18)

iii. Dehydrogenation

Hepatotoxic pyrrolizidine alkaloids are metabolised to pyrrole derivatives. It 

is these derivatives that are responsible for the hepatotoxic action of these 

compounds. Pyrrolic metabolites are formed by the action of microsomal enzymes 

in the liver which formally dehydrogenate the unsaturated ring of the pyrrolizidine 

alkaloid. The proposed mechanism of pyrrole formation via hydroxylation is 

presented in scheme 3.26> 27*28

Although both A-oxidation and dehydrogenation are carried out by liver 

microsomal enzymes, the relative proportions of these compounds that are formed is 

dependent upon the structure and physical properties of the alkaloid.26* 29 The acid 

moieties can exert steric hindrance over C-8 , the putative site of hydroxylation in the 

formation of the pyrrole derivative. As a result of this, diesters who are able to 

hinder the C-8 position the most, often show the greatest proportion of A-oxide 

formation, whereas monoesters and macrocyclic diesters often show greater 

amounts of pyrrole formation since the steric hindrance at C-8 is less in these 

compounds.26

8
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Scheme 3 : Mechanism of Pyrrolic Metabolite 
Formation

iv. Other Metabolic Products

Alternative metabolic fates of pyrrolizidine alkaloids have been poorly 

studied. Hydroxylation of the necic acid portion of senecionine has been observed,30 

although this was a very minor metabolite. Other metabolic products include 

demethylated species31 and epoxides.1’32

v. Metabolism of Pyrrolizidine Alkaloid Analogues

Macrocyclic diesters of synthanecine A (14) have been prepared and their

toxicity in rats has been tested. 3,3-Dimethylglutaryl synthanecine A (19) proved to

be the most toxic. Moreover, the toxicity of this compound was increased when

esterases were inhibited by pretreatment with the esterase inhibitor tri-orthocresyl

phosphate (TOCP) (see section 1.5.1iii). This is consistent with pyrrolizidine
9



alkaloid toxicity. The metabolic behaviour and toxicity of this compound are 

comparable to those of a hepatotoxic pyrrolizidine alkaloid.33

19

1.5 Toxicity of Pyrrolizidine Alkaloids, Metabolites and 

Analogues

The wide variety of pyrrolizidine alkaloids can have an equally wide 

spectrum of toxic effects. These effects can be classified into two categories. 

Pharmacological effects (e.g. effect of a pyrrolizidine alkaloid on certain types of 

smooth muscle) can result in rapid death. Cytotoxic effects (e.g. the irreversible 

binding of a pyrrolizidine alkaloid metabolite to a nucleophile in the cytoplasm) can 

lead to later death as a result of tissue damage.

This thesis is concerned with the cytotoxic effects of pyrrolizidine alkaloids. 

Cytotoxicity may be divided into two categories. Acute cytotoxicity may result in 

the death of an animal up to a week after administration of the alkaloid. Chronic 

cytotoxicity can occur when an animal survives a dose of pyrrolizidine alkaloids. 

Such effects can occur when the diet is contaminated by pyrrolizidine alkaloids (see 

section 1.6).

Me

10



The conversion of pyrrolizidine alkaloids with a 1,2-double bond into the 

hepatotoxic pyrroles occurs almost exclusively in the liver and this is the primary 

site of damage. Pyrrolizidine alkaloid metabolites are also found in the lungs and the 

kidneys. Transport of the active metabolites to these organs is a reflection of their 

stability or half life. The more labile a metabolite, the less likely it is to be found in 

organs other than the liver where it is produced.34

Lipophilicity and base strength of the alkaloid are two factors which affect 

toxicity. 17 Higher lipophilicity means that the alkaloids are more susceptible to 

oxidation by hepatic microsomal enzymes, and hence are more toxic. Alkaloids of 

higher base strength are usually less lipophilic and therefore less toxic. This reduced 

toxicity is due to the fact that proportionally more of the alkaloid is protonated at 

physiological pH and thus can be excreted.

The pyrrole metabolites formed by hepatotoxic pyrrolizidine alkaloids can 

react with cellular nucleophiles as shown in scheme 4 below.

Nu

© NuNu

Nu
Nu

Scheme 4 : Reaction of Nucleophiles with a 
Pyrrolic Metabolite

11



1.5.1 Pretreatments Which Affect Metabolism

i. Hepatic Microsomal Enzyme Inducers

The susceptibility of an animal to pyrrolizidine alkaloid toxicity is increased 

by treatment with a substance such as phenobarbitone which increases the activity of 

hepatic microsomal enzymes. This enhances the rate of conversion of the 

pyrrolizidine alkaloid into the toxic pyrrolic metabolite.29’ 35

ii. Inhibitors of Microsomal Enzyme Activity

Compounds which inhibit the activity of liver microsomal enzymes such as 

carbon monoxide reduce the susceptibility of animals to pyrrolizidine alkaloid 

toxicity by decreasing the rate of conversion of pyrrolizidine alkaloids into pyrrolic 

metabolites.36 Treatment with zinc lowers the ability of rat liver microsomes to 

convert pyrrolizidine alkaloids into pyrrolic metabolites.37

iii. Esterase Inhibitors

Hydrolysis of the ester groups of a pyrrolizidine alkaloid is a detoxification 

pathway because the hydroxyl groups left after hydrolysis are poor leaving groups 

compared to the ester groups. Pretreatment of animals with esterase inhibitors such 

as TOCP results in a larger proportion of the pyrrolizidine alkaloid reaching the 

liver intact where it may form a toxic pyrrolic metabolite.

1.5.2 Liver Thiol Levels

The pyrrolic metabolites formed by hepatotoxic pyrrolizidine alkaloids are 

potent alkylating agents and will alkylate a wide variety of cellular

12



nucleophiles.39’40 Some protection can be afforded against this by pretreating the 

animal with a thiol such as mercaptoethylamine or cysteine41 thus providing a ready 

source of nucleophile which may be alkylated instead of vital cellular constituents. 

Pretreatment with cysteine increases the levels of the tripeptide glutathione (GSH) 

(20) found in the liver.42 It is this increase in levels of glutathione that decreases the 

pyrrolizidine alkaloid's toxicity.

©
n h 3 o

SH

20

1.5.3 Other Biological Effects of Pyrrolizidine Alkaloids

Although liver toxicity is the major component of the toxicological profile of 

pyrrolizidine alkaloids, these compounds have a broad spectrum of minor actions.

i. Mitochondria

Mitochondria are the sites of oxidative phosphorylation, the process in which 

the energy supplying molecule ATP is formed. Pyrrolizidine alkaloids have a pKa of 

about 7 and are partly protonated at physiological pH. The protonated form of the 

alkaloid competes for sites on mitochondria normally occupied by NAD+, a key 

molecule in oxidative phosphorylation, and thus disrupts the function of the 

mitochondria.43

13



ii. Protein and RNA Synthesis

Lasiocarpine (21) has been shown to inhibit protein synthesis in rat liver.44 

This inhibition is proposed to be due to alkylation of messenger RNA. Lasiocarpine 

has also been shown to inhibit RNA polymerase.45

OH
Me

Me
Me

oco Me

OH OMe

Me

21

iii. Hepatic Microsomal Enzymes

Treatment of rats with a non-lethal dose of retrorsine (22) reduces the ability 

of their liver microsomal enzymes to metabolise subsequent administrations of the 

alkaloid to its pyrrolic metabolite.29 This implies that metabolites formed in the 

initial administration are able to inhibit the action of the microsomal enzymes.

iv. Mineral Metabolism

The levels of minerals in rabbits were altered when they were fed on a diet 

containing Senecio jacobaea. The liver levels of zinc and copper and the levels of 

plasma iron were affected.46

14
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v. Embryotoxicity

It has been shown that senecionine (23) can cross the placenta47 and disrupt 

the pregnancy of rats. Some litters were bom prematurely and others were bom dead 

or died shortly after birth. The precise reason for this is unclear. Unborn and new­

born rats have a poor capacity for metabolising pyrrolizidine alkaloids to the toxic 

pyrrolic metabolites.48 It is likely that any damage caused in the foetus is due to 

metabolism in the maternal liver and transport of the toxic metabolites to the foetus.

vi. Teratogenicity

Injection of heliotrine (24) into rats in the second week of pregnancy caused 

a variety of birth defects including growth retardation, and skeleto-muscular

HO. Me

Me

23

defects.49
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vii. Carcinogenicity

The carcinogenicity of many pyrrolizidine alkaloids has now been 

established.50- 51 This carcinogenic action almost always gives rise to liver tumours 

suggesting that it is a metabolite of the alkaloid that is causing the tumour.

If one considers the alkylating activity of pyrrolizidine alkaloids (scheme 4) 

then it is clear that DNA may supply both the nucleophilic centres. This could result 

in cross-linked DNA. This cross-linking, although ultimately causing cell death, 

because of its antimitotic activity may provide some protection against 

carcinogenicity. 1

Studies on the carcinogenic activity of pyrrolic metabolites of pyrrolizidine 

alkaloids have shown that pyrrolic diesters are not carcinogenic,52 but the 

hydrolysed product, dehydroretronecine (13) (Ri=R2=H), known to be a secondary 

metabolite of pyrrolizidine alkaloids,53 can cause tumour growth.54’ 55

1.5.4 Pyrrolizidine Alkaloid Toxicity in Livestock

Poisoning of livestock by the pyrrolizidine alkaloid-containing plant, 

ragwort (Senecio jacobaea) is said to cause more livestock losses in the U.K. than 

all other poisonous plants put together.9 Although ragwort does not contain the
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highest concentration of pyrrolizidine alkaloids, it is a very common weed and is 

difficult to eradicate. In the north-western United States poisoning of cattle is said to 

be a major economic problem.56

Ragwort is not the only plant responsible for livestock poisoning. Table 257 

summarises a number of serious outbreaks of pyrrolizidine alkaloid poisoning. Such 

poisoning was often attributed to diseases until the toxic actions of pyrrolizidine 

alkaloids was better understood.

Country Disease Animal Plant Reference

New Zealand Winton Horse Senecio jacobaea 58

Canada Pictou Cattle Senecio jacobaea 59

South Africa Molteno Cattle Senecio colifolius 60

U.S.A. Dunskierte Horse Senecio vemalis 61

U.S.S.R Zd'or Horse Senecio erraticus 62

Central Asia Suilfuk Horse Trichodesma incanum 63

Table 2 : Pyrrolizidine Alkaloid Poisoning of Livestock

Pyrrolizidine alkaloid toxicity in livestock is seen primarily in the liver, but 

other organs are also often affected.9

1.5.5 Pyrrolizidine Alkaloid Toxicity in Humans

Pyrrolizidine alkaloid poisoning in humans is characterised by an acute liver

disease known as veno-occlusive disease (VOD).64’ 65 Many cases of VOD prove to

be fatal. Outbreaks of pyrrolizidine alkaloid poisoning in humans often derive from

contaminated sources of grain, although some poisoning is due to other sources (see

section 1.6). In South Africa in the 1920s seeds of Senecio ilicifolius and S.

burchellii plants growing in wheat fields were harvested with the wheat and were

responsible for over 80 cases of poisoning. 17 The largest case of pyrrolizidine
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alkaloid poisoning in humans was in Afghanistan in 1974 and affected a population 

of 35,000. The source of the poisoning was bread contaminated with a Heliotropium

species.66’ 67

1.6 Sources of Exposure to Pyrrolizidine Alkaloids

Livestock are exposed to pyrrolizidine alkaloids through either contaminated 

food stock or by grazing upon pyrrolizidine alkaloid-containing plants. 17

In humans, exposure to pyrrolizidine alkaloids can come from a variety of 

different sources. Pyrrolizidine alkaloid-containing plants are employed all over the 

world as foods or as medicines and can also be consumed accidentally when 

contamination occurs (see section 1.5.5).

i. Food Sources

No records of poisoning by pyrrolizidine alkaloid-containing plants used as 

foods have been found although a direct correlation between diet and cause of death 

is often difficult to establish. It seems likely however that some liver damage must 

accrue from consuming these plants. For example Crotalaria retusa is known to 

contain the alkaloid monocrotaline (8 ), which causes liver damage in rats, and is 

also carcinogenic.50 This plant is used as a vegetable in India and parts of East 

Africa.67

If milk is derived from animals which graze on pyrrolizidine alkaloid- 

containing plants then there is a possibility of the animal's milk being contaminated 

with the alkaloids. The quantity of alkaloid would be extremely low and is unlikely 

to cause any harm to anyone consuming such contaminated milk. There is no 

evidence to suggest that humans have been harmed by pyrrolizidine alkaloids in 

milk. 17
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ii Medicinal Sources

Herbal medicines have been employed throughout the world and are still 

used widely today, particularly in areas where modem medicines are unavailable. 

There has also been an increase in their use in the developed world as people seek 

alternative remedies to illnesses.

Herbal remedies can be split into two categories: those that involve 

consumption of dried plant matter and those that are prepared as teas.

Heliotropum indicum is used in dried form to treat a wide variety of ailments 

in southern Africa including sores, snakebites, prevention of abortion and strangely 

enough inducement of abortion.68 H. indicum contains the alkaloid indicine (25).

Teas are a popular remedy in parts of the West Indies. Their use is prescribed 

for treating fevers, coughs, colds and in pregnancy. Teas made with pyrrolizidine 

alkaloid-containing plants, for example Crotalaria fulva have been known to cause 

liver damage and death.69 C. fulva contains fulvine (26).
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1.7 Antitumour Activity of Pyrrolizidine Alkaloids and 

Analogues

A variety of pyrrolizidine alkaloids has been tested for antitumour activity. 

These have included both alkaloids which can be metabolised to pyrrolic 

derivatives70 and those which cannot.71 The results of these studies showed that an 

unsaturated necine was not a prerequisite for anti-tumour activity.

One compound which has been tested and has shown some promise is 

indicine Af-oxide (27) (INO).

INO is the only pyrrolizidine alkaloid to have entered clinical trials, where it 

was tested against both advanced solid tumours and advanced leukaemia. Against 

the solid tumours there was no therapeutic response. The major toxic action was 

bone marrow suppression.72 Against leukaemia, INO prompted complete remission 

in two of the ten patients who underwent the treatment. Again the major toxic action 

was bone marrow suppression, although in the treatment of leukaemia, liver failure 

was seen in two patients.73
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The mode of action of INO is unclear. Only a small amount of INO is 

converted into indicine base and so it seems unlikely that it is the base which exerts 

the antitumour action.74 The pyrrole is also a poor candidate since with only a small 

amount of base present there would be a slow turnover to pyrrole, and indicine base 

itself has a low lipophilicity and thus is fairly resistant to pyrrole formation.36’ 75 

From this evidence it would seem that it is INO itself that exerts the antitumour 

action, or some unknown metabolite.

Given the cytotoxic action of pyrrolic metabolites of pyrrolizidine alkaloids, 

it might be expected that these derivatives would be effective alkylating agents in 

treating tumours. The results however are inconclusive with some dehydro-alkaloids 

having similar activity to the parent alkaloid whilst others have a greater activity. 

For example dehydromonocrotaline (28) is more active than monocrotaline (8 ) 

itself, whilst dehydroheliotrine (29) is less active than heliotrine (24). Pyrrolic 

alcohols, for example dehydroheliotridine (30) are also active.76 The main drawback 

with such compounds is their lack of stability and some of the results may have been 

affected by their rapid decomposition. Pyrrole carbamates such as (31) were 

synthesised as potential antitumour agents and exhibited some antitumour action.77
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1.8 Comfrey
(

1«'/ "

Comfrey is a fast-growing leafy perennial. It has been widely consumed as a 

medicinal herb, as a salad plant and as a herbal remedy.78

1.8.1 Uses of Comfrey

The use of herbal remedies has increased sharply over recent years. This is

based on the mistaken belief that a natural remedy must be safer and healthier than a
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synthetic alternative. The use of comfrey is an example of one such herbal remedy 

which has seen a resurgence in its use.

Medicinal comfrey contains either the roots or leaves of Sym phytum  

officinale or Symphytum x uplandicum. The latter is a hybrid of S. officinale and S. 

asperum. Reported applications of comfrey include the treatment of colds, arthritis, 

gall and kidney stones, headaches, cancer and many other illnesses.78’79 Indeed 

comfrey was described as "being good for almost every ill of mankind" .80

1.8.2 Toxic Pyrrolizidine Alkaloids in Comfrey

Several pyrrolizidine alkaloids have been isolated from comfrey. The 

amount of pyrrolizidine alkaloid isolated depends upon the part of the plant used, its 

age and its condition, 17 as shown in table 3.

Fresh Leaves Dried Leaves Roots

% Dry W eight of 

Alkaloids + A-Oxides

0.006-0.15 0.05 - 0.22 0.07 - 0.37

Table 3 : Percentage weight of alkaloids in comfrey

The most common alkaloids found in comfrey are lycopsamine (32), 7- 

acetyllycopsamine (33) and symphytine (34). More comprehensive listings of the 

pyrrolizidine alkaloids found in comfrey can be found in Culvenor et a/.81’ 82

M e^ Me
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OH OH
OR

32 R>=H, 33 R'=Ac 
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1.8.3 Risks Associated with Comfrey Use

Comfrey contains several hepatotoxic pyrrolizidine alkaloids and as such 

could cause VOD.

ground roots were fed to rats. The comfrey caused tumours to form in both the liver 

and the bladder. The ground comfrey root caused the higher incidence of tumours.

1.9 Risks to Humans from Pyrrolizidine Alkaloid Exposure

The risks to humans from pyrrolizidine alkaloid poisoning can be classified 

into two categories: the risk due to acute poisoning and the risks due to chronic 

intoxication.

Acute poisoning by pyrrolizidine alkaloids can be due to ingestion of herbal 

medicines containing unsaturated pyrrolizidine alkaloids or through ingestion of 

contaminated cereal products (see section 1.5.5).

A dose of retronecine-based macrocyclic pyrrolizidine alkaloid exceeding 10 

mg/kg or a dose of a monoesterified pyrrolizidine alkaloid in excess of 50 mg/kg 

could be sufficient to cause acute liver damage. 17

The carcinogenicity of comfrey has been tested.83 Both ground leaves and
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The incidence of acute pyrrolizidine alkaloid poisoning appears to on the 

decline. This is due to modern farming techniques decreasing the incidence of crop 

contamination and of an increasing awareness in developing countries of the dangers 

of herbal medicines. However, in industrialised countries, herbal medicines are 

currently in vogue and although the overall trend may be down, the incidence in 

industrialised countries like the U. K. may be on the increase. 17

Some sources of pyrrolizidine alkaloids (e.g. herbal teas) provide very low 

levels of the alkaloids and as such are extremely unlikely to cause any acute liver 

damage. The danger from continued ingestion of such products is that chronic 

toxicity may occur. The risk of this seems low. Although many pyrrolizidine 

alkaloids found in herbal remedies have been shown to be carcinogenic, the levels 

required to induce a tumour are extremely high compared to the levels that would 

normally be ingested, indeed a person weighing 60 kg would need to drink over 700 

cups of comfrey tea at one time to approach the LD50 value . 17’84 Topical 

application of pyrrolizidine alkaloid-containing herbal medicines represents the 

lowest risk since under 5 % of the alkaloid that could be ingested orally is actually 

absorbed through the skin.85 Liver cancer is rare in countries where comfrey is 

widely used, 17 although other dietary factors should be considered in these cases. 

The connection between herbal remedies and liver cancer in regions where liver 

cancer is common is unproven.86 A more insidious risk may be through an additive 

effect when pyrrolizidine alkaloids are combined with other carcinogens in the diet.

1.10 Synthesis of Pyrrolizidine Alkaloids

Natural products often provide challenging goals for synthetic chemists and 

pyrrolizidine alkaloids have been no exception. Such syntheses have been of value 

both in providing novel compounds for biological testing, and in establishing the 

stereochemistry of the isolated natural products.
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1.10.1 Synthesis of Necines

A large number of necine bases has been prepared, both in racemic and in 

enantiomerically pure form. Early literature on this subject was reviewed by 

Kotchetkov and Likhosherstov87 and by Warren.88 More recent literature was 

comprehensively reviewed by Robins.89*90

The first total synthesis of an optically active pyrrolizidine base was by 

Robins and Sakdarat91 utilising a 1,3-dipolar cycloaddition of ethyl propiolate to a 

derivative of (-)-4-hydroxy-L-proline (35) as shown in scheme 5 to give the 

pyrrolizidine ester (39) which can be transformed into (+)-isoretronecanol (40), (+)- 

trachelanthamidine (41) or (+)-supinidine (42) depending upon the final steps in the 

synthesis.

o

OHCO----- OHCO'
NCHO

35
80% H C = C C 0 2Et

EtOH,
cN H 3

OHCO'
100%

37 36

H
C 02Et

h  : 1. soci2
2. Raney Nickel, H2

H
C 02Et

HO— -
81%

38 39

Scheme 5 : Synthesis of an optically active pyrrolizidine base.
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One compound which has been popular as a synthon in the synthesis of 

necine bases is the Geismann Waiss lactone (43) which was used in the first 

synthesis of (+)-retronecine (4) in 1962.92 A recent synthesis of (+)-retronecine used 

a derivative of this lactone (50), which was prepared according to scheme 6,93 

starting from (/?)-(+)-malic acid (44). Formation of a necine base from such a 

compound involves cleavage of the ester to give the primary alcohol and subsequent 

conversion into a good leaving group, followed by formation of the anion a  to the 

lactone carbonyl and substitution of the alcohol derivative. Alcoholic cleavage of 

the lactone followed by reduction of the ester gives the necine base.
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3. AcCl, reflux 
 ►■
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O
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2. pivaloyl chloride, pyridine

BrCH2COBr, HQ̂  
pyridine, 
diethyl ether

97%
OCO'Bu

o 4 7

1

46 0

OCO'Bu

92%
1. PPh3, MeCN
2. Et3N

O

VA
N-

5% Rh on Alumina, Q
Ethyl acetate 
 ►

100%

OCO'Bu

O

48 49
31%

OCO'Bu

1. Triethyloxonium 
tetrafluoroborate, CH2CI2

2. NaBH4, EtOH

OCO'Bu

50

Scheme 6 : Synthesis of a derivative of the Geismann Waiss lactone

Many other recent publications have made use of this lactone.90
28



1.10.2 Synthesis of Necic Acids

Syntheses of necic acids have been comprehensively reviewed by Warren88 

and by Robins.90

1.10.3 Synthesis of Pyrrolizidine Alkaloids

The total synthesis of many pyrrolizidine alkaloids has been carried out over 

the years and has utilised much diverse and interesting synthetic methodology. The 

synthesis of macrocyclic pyrrolizidine alkaloids presents the greatest problems due 

to closure of the large ring system. Some solutions to this problem are discussed in 

chapter 7.

1.11 Biosynthesis of Pyrrolizidine Alkaloids

1.11.1 Biosynthesis of Necine Bases

The biosynthesis of pyrrolizidine alkaloids has been a topic of interest for 

over 30 years since Nowacki and Byerrum94 used Crotalaria spectabilis to examine 

the pathway to monocrotaline (8 ). These initial experiments demonstrated the 

incorporation of ornithine (51) into the base portion retronecine (4) using R e ­

labelled ornithine.

Progress in elucidating the biosynthetic pathway to necines was hindered by 

the lack of good degradations of retronecine (4) required to determine the positions 

of all the radiolabels. The incorporation of stable isotopes such as deuterium and 

13C into pyrrolizidine alkaloids allowed complete labelling patterns to be 

determined by NMR spectroscopy 95
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The biosynthetic pathway to the necine bases has now been established and 

is shown in scheme 7. The known intermediates are boxed. L-Omithine (51) 

undergoes decarboxylation to give putrescine (53).96> 97 Putrescine is derived from 

L-arginine (52) in some plant species 98>99 One of the amine groups of putrescine is 

then oxidised to give the aminoaldehyde (54). This aldehyde then condenses with 

another molecule of putrescine to afford the imine (55).95 This imine is then reduced 

to give the symmetrical intermediate homospermidine (56).100>101 Oxidation of this 

intermediate and condensation gives the iminium ion (57).102>103 Further oxidation 

of the remaining amino group to give the aldehyde (58) is followed by cyclisation to 

give the pyrrolizidine aldehyde (59).95 After this stage, a series of reductions, 

hydroxylations and eliminations can give rise to heliotridine (60), retronecine (4), 

isoretronecanol (40) or trachelanthamidine (3).104>105 Otonecine (61) can be formed 

from retronecine (4), possibly after hydroxylation at C-8  and methylation of the 

nitrogen, allowing cleavage of the bicyclic ring. 106
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Scheme 7 : Biosynthesis of necine bases
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1.11.2 Biosynthesis of Necic Acids

Necic acids appear at first glance to be terpenoid in origin, but feeding 

experiments with mevalonic acid derivatives showed no incorporation into these 

acids. 107 It was then shown by Crout et a / .108 that isoleucine (62) and threonine (63) 

were incorporated into seneciphyllic acid (11) produced by Senecio douglasii.

In the alkaloid senecionine (23) two units of isoleucine are incorporated into 

senecic acid (64) with loss of both carboxyl carbons of the isoleucine units. This 

raised the interesting question of how these molecules are coupled together. Crout et 

al. 109 suggested that the intermediate could be p-methylenenorvaline (65) and 

indeed a radiolabelled form of this molecule was incorporated into senecic acid. 

Unfortunately degradations could not be carried out to determine the positions of the 

radiolabels.

The C5 compound tiglic acid (6 6 ) appears to undergo isomerisation to give 
angelic acid (67).110

V

62 63

Me OH
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Clearly a lot less is known about the biosynthesis of necic acids than about 

the necines and this is an area worthy of further investigation.

The topic of pyrrolizidine alkaloid biosynthesis has been comprehensively 

reviewed by Robins.95

1.12 Aims of this Project

The aim of this project was to assess the toxicity, and anti-tumour activity of 

a wide number of pyrrolizidine alkaloids and analogues to establish further the

potential risk to humans. In particular the toxicity of comfrey was studied.
)0To this end a number of pyrrolizidine alkaloids were isolated and simple 

derivatives were prepared of them. This work is discussed in chapter 3. In order to 

increase the number of compounds available for testing, novel pyrrolizidine alkaloid 

analogues were prepared. These analogues included compounds derived from 

synthanecine A and pyrrolines and pyrrolidines prepared via a 1,3-dipolar 

cycloaddition. In addition to this work several approaches were tried in an attempt to 

synthesise a single enantiomer of synthanecine A. Considerable progress was made 

in this route. The synthesis of analogues of pyrrolizidine alkaloids is discussed in 

chapters 3-7

Radiolabelled alkaloids were prepared for metabolic studies; however at the 

time of writing this thesis no data were available on this testing.

In order to evaluate their anti-tumour activity a number of compounds were 

tested for their ability to inhibit the growth of the PLC/PRF/5 hepatoma cell line. 

The biological data obtained are presented in chapter 8.
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Chapter 2

Isolation and Derivatisation of Pyrrolizidine Alkaloids 

2.1 Introduction

Although the focus of this thesis is on the synthesis of analogues of 

pyrrolizidine alkaloids, a number of the alkaloids were isolated from the available 

plant and root culture sources and characterised and derivatised to provide standards 

for comparison in biological studies.

2.2 Isolation and Characterisation of Pyrrolizidine Alkaloids

Available within the Chemistry Department are a number of alkaloid- 

producing plants and root cultures. The plant Senecio pleistocephalus produces the 

non-hepatotoxic alkaloid rosmarinine (6 8 ). Transformed root cultures of Senecio 

vulgaris produce the hepatotoxic alkaloid senecionine (23). Symphytum officinale 

(comfrey) was both gathered locally and cultivated to provide a crude mixture of 

alkaloids.

The alkaloids were isolated from the plants using the method of Robins and 

Sweeney111 and were purified by recrystallisation.
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Isolation of rosmarinine from the leaves of Senecio pleistocephalus gave a 

yield of 0.069 % based on the weight of the leaves extracted. The analytical data 

obtained were identical to those obtained by Roitman.112

Isolation of senecionine was carried out as described for rosmarinine and 

gave a yield of 0.088 % based on the weight of roots extracted. The analytical data 

concurred with those given by Culvenor and Smith. 113 Additional data are given in 

Chapter 9.

As previously discussed (Chapter 1.8) comfrey is a common herbal remedy 

prescribed for a wide variety of ailments. Volmer et al.79 described the isolation of 

the alkaloids from comfrey and a quantitative analysis of their toxic alkaloidal 

components. We analysed a locally gathered batch of comfrey in a similar 

experiment. The roots and leaves were analysed separately and the alkaloids were 

isolated by the method of Robins and Sweeney. 111 A known quantity of 

dibromobenzene (DBB) was then added to each sample and the samples were 

analysed by JH NMR spectroscopy. The integration of the dibromobenzene signal 

allowed calculation of the amount of toxic alkaloid present in each sample based 

upon the size of the alkenic signals due to the hydrogen attached to C-2 in each 

pyrrolizidine alkaloid. The weight of pyrrolizidine alkaloid was calculated according 

to equation l . 114

Where A is the magnitude of the integral.

Equation 1: Calculation of weight of PAs

The results of this experiment are given in table 4. The alkaloids were 

identified by comparison with previously published ^  NMR spectra. 17*79

wt. of PA = (wt of DBB)
mol. wt. of PA

mol. wt. of DBB/ \  0.25 A(DBB)
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Source Alkaloid for 2-H Quantity of 

Alkaloid 

based on 

DBB integral

% of Total 

Alkaloidal 

Mass Isolated

Root Lycopsamine
(32)/
intermedine
(69)

5.86 53.8 mg 55.6 %

Root Echimidine (70) 5.77 3.0 mg 3.1 %

Leaf Echimidine (70) 5.76 60.6 mg 87.9 %

Table 4 : Quantity of Hepatotoxic PAs in Comfrey

A portion of the 1H NMR spectrum of the comfrey leaf extract after the 

addition of 5.9 mg of dibromobenzene is shown in figure 1.
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2.3 Synthesis of A-Oxides of Pyrrolizidine Alkaloids

Pyrrolizidine alkaloids are often accompanied in the plants by varying 

quantities of the corresponding /V-oxides. These compounds are reduced to the basic 

alkaloid during the extraction procedure using Zn/H+. /V-Oxides were synthesised to 

study their metabolism and to determine their cytotoxicty. The ability of N-oxides to 

kill cells is worthy of study because of the anti-tumour activity of indicine 7V-oxide 

(2 7 ) 74, 75
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Figure 1: *H NMR spectrum of comfrey leaf extract + 5.9 mg of

dibromobenzene

The N-oxide of rosmarinine (12) was prepared by treatment of rosmarinine 

with w-chloroperbenzoic acid in chloroform to give the N-oxide in 78 % yield. The 

IR spectrum of this com pound showed a strong absorption at 975 c m ' 1 

corresponding to the stretching of the N +- 0 “ bond. NMR spectroscopic data are 

discussed below. This compound had been previously prepared by Koekemoer and
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Warren.115 The analytical data provided for this compound in chapter 9 are in 

addition to those given in the original literature.

Treatment of senecionine (23) with m-chloroperbenzoic acid failed to give 

any senecionine A-oxide (71). For this compound the method of Culvenor and 

Smith14 employing H2O2 proved successful if a 1:1 mixture of methanol and 

chloroform was employed as the solvent, yielding the A-oxide in 38 % yield. The IR 

spectrum of this compound had the predicted strong absorption at 968 cm-1 due to 

the stretching of the N + -0“ bond. NMR data are examined below. Additional 

analytical data for this compound are presented in chapter 9.

HQ Me

Me

Me

71

Monocrotaline A-oxide (18) was prepared using m-chloroperbenzoic acid in 

27 % yield; however the method of Culvenor and Smith14 using hydrogen peroxide 

solution proved more successful. Careful monitoring of the reaction mixture by TLC 

(chloroform/methanol/conc. NH3; 85:14:1) and an increased reaction time gave a 

yield of 92 %, improving the literature yield14 by 10 %. The IR spectrum of this 

compound showed a strong absorption at 955 cm-1 correlating to the stretching of 

the N+-0" bond. NMR data are discussed below. The analytical data provided for 

this compound in chapter 9 are in addition to those given in the original 

synthesis. 14
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Formation of the TV-oxides of rosmarinine, senecionine, and monocrotaline 

gave characteristic downfield shifts of the NMR signals attributable to the 

hydrogens and carbons at positions 3, 5 and 8 due to the introduction of a positive 

charge at position 4. This information is summarised in table 5.

Alkaloid
8 3 - H

(multiplicity)

5  5 -H

(multiplicity)

5  8 -H

(multiplicity)

8 3 -C 5 5 -C 5 8 -C

Rosmarinine 

(68)112

2.90 (3(3- 
H, dd), 
3.06 (3a- 
H, dd)

2.59 (5(3- 
H, m), 
3.24 (5a- 
H,ddd)

3.55 (dd) 61.3 53.3
i

69.5

Rosmarinine 

N-oxide (12)

3.31 (3(3- 
H, bd), 
5.05 (3a- 
H, m)

4.16 (m) 4.16 (m) 73.1 68.1 84.5

Senecionine

(23)

3.28 (3a- 
H, dd), 
3.90 (3(3- 
H, bd)

2.42 (5(3- 
H, m), 
3.28 (5a- 
H, m)

4.24 (d) 60.4 53.0 77.5

Senecionine N- 
oxide (69)

3.59 (3a- 
H, m), 
4.26 (3(3- 
H, m)

3.59 (5a- 
H, m), 
4.26 (5(3- 
H, m)

5.24 (m) 78.6 69.1 96.3

Monocrotaline

(8)'17

a a a 61.3 53.6 76.9

Monocrotaline 

TV-oxide (18)

3.57 (m) 4.60 (m) 4.60 (m) 77.8 67.8 95.3

a no accurate data available

Table 5 : NMR spectroscopic data for PA free bases and A-oxides
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2.4 Synthesis of Methiodides of Pyrrolizidine Alkaloids

Previous workers have prepared a number of semisynthetic quaternary 

pyrrolizidine derivatives by reaction of pyrrolizidine alkaloids with a variety of 

alkyl halides. 118 These compounds have been investigated pharmacologically and 

exhibited varying degrees of ganglion blocking activity resulting in hypertension. 119 

In order to investigate any anti-tumour activity that the adducts of pyrrolizidine 

alkaloids and methyl iodide may exhibit, a range of these compounds were 

synthesised. A comprehensive review of many semisynthetic derivatives of 

pyrrolizidine alkaloids has been published. 120

Rosmarinine methiodide (72), senecionine methiodide (73) and 

monocrotaline methiodide (74) were prepared by reaction of the alkaloids with 

iodomethane in ethanol in 56 %, 22 %, and 47 % yields, respectively.

HO, Me HO, Me

Me Me

Me Me

- - O H

Me Me

72 73
HO, HO V 6

Me

74
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In common with the N-oxides of rosmarinine, senecionine, and 

monocrotaline, the methiodides of these compounds gave the same characteristic 

downfield shift of the NMR signals due to the hydrogens and carbons at the 

positions adjacent to the nitrogen atom due to the introduction of the positive charge 

at this position. This information is summarised in table 6.

Alkaloid
8 3 - H

(multiplicity)

8  5 -H

(multiplicity)

8  8 -H

(multiplicity)

5 3 -C 5 5 -C 8 8 -C

Rosmarinine 

(68)112

2.90 (3p- 
H, dd), 
3.06 (3a - 
H, dd)

2.59 (5p- 
H, m), 
3.24 (5a- 
H, ddd)

3.55 (dd) 61.3 53.3 69.5

Rosmarinine

methiodide

(72)

3.42 (3- 
Hp, dd), 
4.86 (3- 

Ha , m)

2.88  (5p- 
H, m), 
3.86 (5a - 
H, m)

3.86 (m) 73.4 66.2 80.9

Senecionine

(23)

3.28 (3a - 
H, dd), 
3.90 (3a - 
H, bd)

2.42 (5p- 
H, m), 
3.28 (5a - 
H, m)

4.24 (d) 60.4 53.0 77.5

Senecionine

methiodide

(71)

4.42 (m) 4.42 (m) 5.35 (m) 74.5 65.1 90.7

Monocrotaline

(8)'17

a a a 61.3 53.6 76.9

Monocrotaline

methiodide

(72)

4.49 (m) 3.66 (m) 4.95 (bd) 72.7 63.3 88.5

a no accurate data available

Table 6 : NMR spectroscopic data for PA free bases and methiodides

41



2.5 Synthesis of Labelled Compounds

In order to investigate the metabolism of pyrrolizidine alkaloids it was 

necessary to prepare radiolabelled samples of these compounds. Previous workers96’ 

97 have shown that putrescine (53) is a biosynthetic precursor of pyrrolizidine 

alkaloids, thus [l,4 -14C]putrescine (75) was fed to Senecio pleistocephalus, S. 

vulgaris and Symphytum officinale. This results in labelling of the base portion as 

shown in (76).

Feeding of the radiolabelled putrescine was carried out by the wick method 

of Robins and Sweeney, 111 when whole plants were used. Direct addition to the 

growth media of seven day old roots was employed with root cultures. Whole plants 

were allowed to grow for 7 days after feeding was complete before extraction. Root 

cultures were allowed to grow for 16 days after feeding before extraction. WOxides 

of rosmarinine and senecionine were prepared as previously discussed from the 

radiolabelled alkaloids.

The results of these experiments are shown in table 7.

The results obtained for feeding to the whole plant were considerably poorer 

than those gained when root cultures were used. This is because in the whole plant 

the labelled putrescine has to be transported to the roots of the plant to be 

incorporated into the pyrrolizidine alkaloid. During this process some putrescine 

may be lost to other biosynthetic pathways. Feeding to root cultures is a more direct 

method where the labelled putrescine is incorporated directly into the root.

OR2
OR

* position of label

75 76
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These compounds were sent to Dr Hanley, MAFF, Norwich for use in 

metabolic studies. At the time of writing this thesis no results had been received.

Alkaloid Source Activity

Fed

Weight Activity of 

isolated alkaloid

Incorporation

Rosmarinine (68) S. pleistocephalus 225 uCi 42 mg 0.037 pCi / ms 0.69 %

Rosmarinine N- 

oxide (12)
Semisynthetic - 7.4 mg 0.035 pCi / mg -

Senecionine (23) S. vulgaris 275 uCi 37 mg 0.45 pCi / mg 7.4%

Senecionine N-oxide 

(71)

Semisynthetic - 9.2 mg 0.43pCi / mg -

Comfrey Root 

Alkaloids
Sym. officinale 250 |i.Ci 96 mg 0.37nCi / mg 0.014 %

Comfrey Leaf 

Alkaloids
Sym. officinale 250 pCi 45 mg 1.3nCi / mg 0.023 %

Table 7 : Results from feeding of [l,4-14C]putrescine

2.6 Synthesis of Senecionine from Rosmarinine

Senecionine (23) has 1,2-unsaturation and thus is a toxic pyrrolizidine 

alkaloid. This compound would be interesting in both metabolic and toxicity testing 

but only a small amount is available through isolation from root cultures. 

Rosmarinine (6 8 ) is however easily isolated in gram quantities from S. 

pleistocephalus and conversion into senecionine would be possible if elimination 

across the 1,2-position could be achieved. A number of methods have been tried to 

carry out this conversion.

Koekemoer and Warren121 had previously shown that senecionine (23) 

could be prepared from 2 -0 -tosyl rosmarinine (77) in moderate yield (scheme 8). 

This route was repeated with a number of modifications to see if the yield of 

senecionine could be improved.
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2-0-Tosyl rosmarinine was prepared from rosmarinine (6 6 ) in 61 % yield by 

treatment of rosmarinine with /7-toluenesulfonyl chloride at 0 °C. 121 Additional IR, 

NMR and MS data were gathered to prove the identity of the compound. The IR 

spectrum showed two strong bands at 1365 and 1190 cm -1 corresponding to the 

-SO2O- group as well as peaks indicative of the presence of an aromatic ring. The 

]H NMR spectrum showed a singlet for the CH3-AJ group at 8 2.46 and the aromatic 

protons were observed as an AA'BB' system at 8 7.35 and 7.82. High resolution MS 

gave the expected elemental composition for the M+, whilst a low resolution MS of 

the compound showed a fragment at m/z 155 corresponding to the -SC>2-Ar group.

According to the procedure of Koekomoer and Warren,121 3 hours at reflux 

temperature in pyridine should convert the 2 -0 -tosyl rosmarinine into senecionine in 

moderate yield. In our hands this reaction produced no senecionine. TLC analysis 

indicated that the major component of the mixture was starting material. A variety 

of conditions were tried to affect this transformation. These are summarised in table 

8 .

CONDITIONS YIELD
Pyridine, reflux, 22h 4%

Pyridine, DMAP, room temp, 96h no reaction

Pyridine, DMAP, 65°C, 96h 9%
Pyridine, DMAP, reflux, 22h 11%

DMF, DMAP, reflux, 4.5h 2 0 %, mixture of rosmarinine and 
senecionine

Table 8 : Formation of Senecionine (23) from 2-0-TosyI Rosmarinine (77)

At reflux temperature considerable decomposition of the 2-O-tosyl 

rosmarinine occurred. Addition of a catalytic amount of DMAP resulted in a slightly 

improved yield. This is perhaps due to the DMAP acting as a nucleophile at the 2- 

position (scheme 9) although the approach of a nucleophile at this position would be 

sterically hindered.
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HQ Me HQ Me

Me Me
TsCl, 
pyridine 
0°C, 72 h

Me Me

- - OH --O Ts

68 77

Ts =

O

O
\  / ■CH'

Table 8

HQ Me

Me

Me

O

23

Scheme 8 : Synthesis of Senecionine from Rosmarinine via 2-0-tosyl

rosmarinine

The dihedral angle between the OTs group and the methine hydrogen in (77) 

is approximately 45°. The conformation is fixed and so a sy«-elimination must take / 

place (a dihedral angle of 180° is required for an anti-tlimination) . 122 Without 

isotope studies it is impossible to determine the mechanism of this reaction. The rate 

of this reaction compared to the decomposition of the starting material was very 

low, and hence a small yield of senecionine was obtained.
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Me Me
OTs

Me Me

---O T s

Me

Me

+ DMAP + TsO'PyH

23

Scheme 9 : Possible course of reaction involving DMAP

The addition of DMAP to the reaction mixture increased the rate of 

formation of senecionine. Such effects were observed by Parker and co-workers123 

who classified such a reaction as an E2C reaction. If displacement of the tosyl group 

does occur then a dihedral angle of approximately 180° is possible between the two 

leaving groups and could account for the increase in rate. The yield is still very low 

however and an alternative approach to the elimination was formulated.

Given the closeness in space of any 2-substituent and the hydrogen atom at 

the 1-position, a reaction which exclusively favoured a yyw-elimination seemed 

appropriate. Newman and Hetzel124 reported a variation of the Chugaev reaction 

where pyrolysis of O-alkyl dimethylthiocarbamates proceeded in good yields to 

gave a wide range of alkenes. The dimethylthiocarbamates could be formed from 

dimethylthiocarbamoyl chloride (DMTCC) (scheme 10) (79).
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Cl
79 NMe2

S NMe2H OH

DMF, NaH, 
75°C, 3 h

s

R R
80 81

Scheme 10: Synthesis of a dimethylthiocarbamate

This reaction has several advantages over the Chugaev reaction, namely, the 

thiocarbamate could be prepared in a single step, and the reaction avoided use of the 

highly toxic carbon disulfide. Elimination was proposed to take place by the 

mechanism shown in scheme l l . 124

Rosmarinine proved to be too unstable to form the dimethylthiocarbamate 

under the wide variety of conditions given in table 9. In all cases the reactions 

produced a complex mixture of inseparable products.

Again the instability of alkaloids in reactions requiring long reaction times 

and/or high temperatures played a role in the failure of this approach.

NMe2

+ HSCONMe

R 81 82 83

Scheme 11 : Mechanism of elimination
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Conditions Yield
DMF, 2 equiv. NaH, 1.2 equiv. DMTCC, 

80°C,48h
mixture

DMF, 1.2 equiv. DMTCC, 80°C, 48h mixture

DMF, 0.5 equiv. NaH, 1.2 equiv. DMTCC, 
80°C,48h

mixture

DMF, 4 equiv. DMTCC, 80°C, 48h mixture

DMF, 4 equiv. DMTCC, DMAP, 80°C, 48h mixture

Table 9 : attempted preparation of dimethylthiocarbamate

The final approach taken to the conversion of rosmarinine into senecionine 

involved a Mitsunobu inversion of the secondary alcohol centre at the 2-position 

(scheme 12) with simultaneous formation of the tosylate (85) using methyl p- 

toluenesulfonate (84). Mitsunobu methodology has proved reliable in giving both 

good yields of products and clean inversion at the reaction centre. 125 The advantage 

of this reaction was that it involved a short reaction time and would remove the 

necessity of carrying out a sy«-elimination. Unfortunately no identifiable material 

could be isolated from the reaction mixture.

HQ Me HQ Me

Me MePPh3, 
DEAD 
toluene 
RT, 27 h

MeMe

S— OMe

OTs- - OH

6 8  85

Scheme 12 : attempted synthesis of a 2-0-tosyl rosmarinine epimer
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Chapter 3

Synthesis of Synthanecine A

3.1 Introduction

Synthetic analogues of pyrrolizidine alkaloids were required for metabolic 

and toxicological studies. The first synthesis of the most common necine retronecine 

(4) was reported by Geissman and Waiss in 1962.92 The route to this compound was 

lengthy and the overall yield was low (<1 %). Although many syntheses of necine 

bases have been carried out since then,90 they are still lengthy and often low 

yielding. This has led to the preparation of a range of monocyclic analogues of 

necine bases, called synthanecines.18’ 126 These have included synthanecine A (14) 

which is 2,3-bishydroxymethyl-l-methylpyrroline and synthanecine B (15) which is 

the corresponding saturated derivative. The structural similarity of synthanecine A 

to retronecine (4) is shown in figure 2.

OH

OH

Me

14

OH
OH

4

Figure 2 : structural similarity of synthanecine A (14) to retronecine (4)

The synthesis of synthanecine A and B has been well documented. 18,127,128 

Mattocks originally prepared a range of analogues for toxicology studies, while 

possible anti-tumour activity of macrocyclic diesters of synthanecine A was 

investigated by Barbour127 and by Baxter. 128 It was intended that synthanecine A
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and B would be prepared, using known procedures, and esterified with novel necic 

acid derivatives. This work is further discussed in chapter 6.

3.2 Synthesis of Synthanecine A

A modified version127 of the procedure initially developed by Mattocks18 

was used to form synthanecine A (scheme 13).

The overall yield of synthanecine A was 3 % over 6 steps.

3.3 Synthesis of Derivatives of Synthanecine A

The dibenzoyl ester of synthanecine A (93) was prepared to provide material 

for biological testing. Treatment of synthanecine A (14) with benzoyl chloride in 

pyridine/THF gave the dibenzoyl ester in 35 % yield (scheme 14). The IR spectrum 

showed absorptions at 1601, 1584 and 1491 cm-1 corresponding to an aromatic ring 

and at 1719 cm-1 corresponding to the ester carbonyl groups. The ^  NMR 

spectrum had resonances due to the aromatic protons at 5 7.19-7.47 and 7.88-7.93.
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EtOoC COoEtW
MeNH2,
0°C,
48h

89%

86

COoEt

COoEt
Me

95 % NaH, 
benzene, 
RT, 5h

67 %

89

44%
NaBH4,
2 % NaOH 
0°C, 1.5h

HO

COoEt
Me

90

pTSA, 
pyridine, 
100°C, 2h

52%

,C 0 2Et

MeHN' C 0 2Et

87

70%

E t0 2CCH2Br, 
K2C 0 3, 
aq. actetone, 
reflux, 24h

C 0 2Et

N'
Me

88

,C 0 2Et

C 0 2Et

Me

91

DIBAL,
toluene,
lh

OH

OH

Me
31 %

OH

OH

Me
15%

14

Scheme 13 : Synthesis of Synthanecine A (14)

51
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OH

OH

Me

pyridine/THF 
RT, lh

35 %

o

Me

O

14 93

Scheme 14 : Synthesis of (±)-6,7-0,0-DibenzoyI Synthanecine A

In chapter 8 the attempted synthesis of a macrocyclic diester of a 

synthanecine analogue is discussed. One of the methods attempted to prepare this 

com pound was the Corey N icolaou m ethod . 1 2 9  (±-)-6,7-0,0-(3,3- 

Dimethylglutaryl)synthanecine A (19) was synthesised to test the validity of this 

approach (scheme 15). This compound had previously been synthesised by Barbour 

and Robins.19
Me Me

OH
OH

MeN.

o '^ o ^ o

(Xj O*S-S'

PPh3,
DME,
24h,
10%

Me Me

MeN.

14 19

Scheme 15 : Synthesis of (±)-6,7-0,0-(3,3-Dimethylglutaryl)synthanecine A

(19)19



Treatment of synthanecine A with 3,3-dimethylglutaric anhydride, di-2- 

pyridyl disulfide and triphenylphosphine afforded the macrocyclic diester in 10 % 

yield. All analytical data were identical to those previously published. 19

A further discussion of the formation of macrocyclic diesters can be found in 

chapter 8.
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Chapter 4

Approaches to the Synthesis of a Single Enantiomer of 

Synthanecine A

4.1 Introduction

Synthanecine A (14) was first synthesised by Mattocks18 in 1974 and has 

proved to be a useful analogue in the study of pyrrolizidine alkaloid toxicity.33 

Synthanecine A contains a single chiral centre at the 2-position. In a necine base the 

equivalent position is the 8 -position, which is also a chiral centre. In the common 

necine base retronecine (4) the absolute configuration at this center is R. It is likely 

that if synthanecine A could be synthesised with the same configuration at the 2- 

position, then the biological activity of its derivatives would be enhanced. This 

enhancement might be evident in anti-tumour activity of derivatives of synthanecine 

A. Any enhancement could be attributed to the fact that receptor sites in biological 

systems are optically active and have the ability to distinguish between two 

enantiomers of a racemate. This property of receptor sites in the body cannot only 

cause a particular enantiomer to be active whilst its mirror-image is inactive but can 

cause both enantiomers to have different properties. The most infamous case of this 

involves the use of the drug thalidomide (94). When administered in its racemic 

form to pregnant women there was a high incidence of birth defects. 130 The 

teratogenic properties of thalidomide were attributed to the (,S)-(-)-enantiomer.131

HN

94
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4.2 The Synthesis of Enantiomerically Pure Compounds

If a single enantiomer of a molecule is required then there are a number of 

approaches to achieving this.

4.2.1 Resolution

Traditionally optically pure compounds were obtained by resolution of 

racemic material at some stage in the synthesis. This resolution should ideally be at 

the earliest point in the synthesis to avoid carrying any unwanted material through a 

large number of synthetic stages. Although often wasteful, this method is worthy of 

consideration if it is possible to recycle the unwanted isomer. Resolution is often 

carried out using naturally occurring optically active acids or bases such as L-tartaric 

acid (95) or quinine (96) respectively, to form diastereoisomeric salts of sufficient 

crystallinity which can then be readily separated by crystallisation.

A covalent bond can also be formed between a racemic substrate and an 

optically pure compound thus forming a pair of diastereoisomers which can then be 

separated. The desired enantiomer can then be regenerated from the appropriate 

diastereoisomer. This method requires that the racemic material has an appropriate 

"handle" for the attachment of the optically pure compound as well as there being 

high yielding reactions available for the necessary transformations.

N

95 96
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A related and much more expensive method is to use a chiral stationary 

phase and column or high pressure liquid chromatography.

Resolution can also be carried out enzymatically. For example treatment of 

dimethyl (3-hydroxyglutarate (97) with a-chymotrypsin gave selective hydrolysis of 

the pro-(S) ester group to give the mono-acid (98) (scheme 16).132

Unfortunately resolution can quickly become impractical as the number of 

chiral centres within the molecule begins to rise, since the number of possible 

enantiomers then becomes 2n where n is the number of chiral centres.

4.2.2 Optically Active Starting Materials

The strategy that is utilised in the synthetic approaches discussed later in this 

chapter is that of disconnecting the target molecule into a readily available optically 

active starting material. Compounds that are particularly useful in this respect are 

amino acids133 and sugars.134 Such compounds are known as chirons.134

4.2.3 Stereospecific Reactions

Asymmetry in a target molecule can be induced by using a chiral auxiliary. 

Such auxiliaries may form electrostatic or hydrogen bonds with the substrate or the 

chiral auxiliary may be attached covalently to the substrate and removed later in the 

synthesis. Such reactions tend to control the absolute stereochemistry. An example

CH2 C 0 2MeCH2C 0 2HCH2 C 0 2Me

CH2 C 0 2MeCH2C 0 2MeCH2 C 0 2Me

97 98 99

Scheme 16: Separation of (3-hydroxyglutarate enantiomers
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of the former is the enantioselective epoxidation of allylic alcohols using diethyl 

tartrate as a catalyst (scheme 17).135

An example of the latter is the use of the chiral auxiliaries (5)- and (R)-1- 

amino-2-methoxymethylpyrrolidine, (102) and (103). These compounds are also 

known as SAMP and RAMP respectively.136’ 137 They can be used to prepare 

aldehydes via alkylation of SAMP-hydrazones (105) (scheme 18).138 Typically the 

enantiomeric excess for such compounds is >90 % .138

f-BuOOH,
Ti(OPr')4,
D-(-) diethyl tartrate

100 101

Scheme 17 : Epoxidation of an allylic alcohol

CH2 OCH3 c h 2 o c h 3

n h 2 n h 2

102 103

R iCH2CHO

1. SAMP
2. LDA, 0°C

3. R2 X, 
-95°C

CH2OCH3 74-87 %

HC1 or
0 3 YCHO

104 105 106

Scheme 18 : Synthesis of optically active aldehydes
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When only the relative stereochemistry needs to be controlled then many 

reagents by their mechanism control the relative stereochemistry in a reaction, for 

example the synthesis of a c/s-diol using osmium tetroxide (scheme 19).

Me 1. 0 s0 4 M e m OH OH

2 . mild reduction

\
Me Me Me Me

107 108

Scheme 19 : Synthesis of a c/s-diol

There are a large number of reviews available on these subjects.139

4.3 Retrosynthetic Analysis of the Synthesis of a Single 

Enantiomer of Synthanecine A

Synthanecine A (14) contains a single chiral centre at the 2-position. For 

much of Mattocks' original synthesis of synthanecine A (scheme 13), this position is 

a to an ester group and has an approximate pKa of 16.140 This position is subject to 

racemisation particularly under some of the harsh conditions employed in the 

original synthesis. It was thus decided to reduce the ester to the hydroxymethyl 

group at the earliest possible stage hopefully protecting the compound from 

racemisation. The retro-synthetic analysis shown in scheme 20 was proposed. This 

retained as many of Mattocks' original procedures as possible and identified methyl 

(ft)-3-(A-methylamino)-4-hydroxybutanoate (109) as the key intermediate. The 

methyl ester was selected arbitrarily and is shown below for clarity.

OH
C 0 2Me

R

NHMe

109
58



Approaches were then considered to the synthesis of methyl (R)-3-(N- 

methylamino)-4-hydroxybutanoate (109), preferably with the alcohol group 

protected. Two possible disconnections suggested suitable routes to the desired 

compound. One route gave a derivative of (S)-malic acid (115) as the starting 

material (scheme 21), whereas the other gave a derivative of D-aspartic acid (116) 

(scheme 22).

C 0 2Me
OH

110 111
P=protecting group

C 0 2Me
C 0 2Me

NHMe

OP

NHMe

113 112

Scheme 20 : Disconnection of (/?)-Synthanecine A (110) to methyl (R)-3-(N- 

methylamino)-4-hydroxybutanoate (109)



OP C 0 2Me
NHMe

R

NHMe

113

OH

V

OH

r o 2c

C 0 2Me <: C 0 2Me

OH

115 114

Scheme 21: Disconnections to (S)-Malic Acid

NHMeOP C 0 2Me

NHMe

113

v

n h 2

r o 2c

C 0 2Me

116

Scheme 22 : Disconnections to D-Aspartic Acid

The availability and cost of starting materials dictated that much of the 

development of this route would be done via the synthesis of methyl (S)-3-(N-
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methylamino)-4-hydroxybutanoate (117), allowing the use of the readily available 

and cheaper L-aspartic acid (118).

NHMe ©
n h 3

C 0 2Me

©
c o 2h

0 2C
OH

117 118

4.4 Approaches to the Synthesis of a Single Enantiomer of

Synthanecine A Using Dimethyl (S)-Malate (121)

4.4.1 Introduction

Hydroxyacids such as (S)-malic acid (119) are useful and inexpensive chiral 

synthons. Saito et al. 141 recently reported a site selective reduction of diethyl malate 

(120), to give a diol of structure similar to (114) required in the retrosynthetic 

analysis given in scheme 21. The ease of preparation of a key intermediate in the 

synthesis based on malic acid prompted selection of this route over the route based 

upon L-aspartic acid. The development of this route is discussed below.

OH OH

119 120

61



4.4.2 Attempted Synthesis of a Single Enantiomer of 

Synthanecine A Using Dimethyl Malate

Treatment of dimethyl malate (121) with one mole equivalent of boron 

methyl sulfide complex caused evolution of hydrogen which continued for 30 

minutes during which time it is postulated141 that the oxyborane intermediate (128) 

is formed. Addition of 5 mol% NaBH4 gave the diol in 85 % yield. The appearance 

of an ABX system at 8 3.45 and 4.00 due to the methylene hydrogens next to the 

oxygen and the methine hydrogen, and the absence of a singlet due to one of the 

methyl esters in the ]H NMR spectrum of the product confirmed its structure to be 

(122).
BH3.SMe2,

OH

MeQ2C
C 02Me

5mol% NaBH4, 
RT, lh OH

OH

121 122

TBDMSC1,
Imidazole,
THF,
0°C, 2h

OMs

C 02Me

MsCl, 
Pyridine, 
RT, 2h

OH

C 02Me

OTBDMS

124
OTBDMS

123

Table 10

NHMe

OTBDMS

C 02Me C 02Me

OTBDMS

126

Scheme 23 : Attempted synthesis of methyl (/?)-3-(A-methylamino)-4-

hydroxybutanoate (109)
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Saito et alA42 originally proposed the mechanism given in scheme 24 to 

account for the site selectivity of the reduction.

c o 2r

OR
129

121

BH3.SMe2

c o 2r

o b h 2

J ^ ^ co2r
*

■R0 128

c o 2r

NaBH*

127
5 B? O' 'O

r o 2c ' ^ Nv- ^ ^ o r

131

NaH

CO,R ---------►  122

OR
130

r o 2c

OR H

Scheme 24 : Originally proposed mechanism for selective reduction of (121)

This mechanism was then revised141 to incorporate the observation that only 

a small amount of hydrogen is evolved on work-up. The revised mechanism is 

presented in scheme 25. The revised mechanism accounts for this by reasoning that 

two possible intermediates may give rise to the product (122). Only one of these 

intermediates (134) has an intact B-H bond which would be capable of liberating 

hydrogen gas on work-up.

The five-membered transition state (128) is favoured over the six-membered 

transition state (131) because neighbouring group participation is favoured in a five- 

membered cyclic array143 and in the six-membered transition state there is a severe 

1,3-diaxial interaction between the ester alkoxy group and one of the hydrogens 

attached to the boron.
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121
\B—  O

132

Scheme 24

130

RO

*B—  O

135

NaBH,
B—o

C02R
-H
-Na'

134
ROH

■B—  O -H2
Na"co2r

122'workup

133 ROH

RO,

B—  O

co2rco2r
-H
-NaH

137
RO

Na'co2r

136

Scheme 25 : Revised mechanism for selective reduction of (121)

The terr-butyldimethylsilyl ether was then prepared, reaction taking place 

selectively at the primary alcohol to give the monoprotected diol (123) in 81 % yield 

after column chromatography. The IR spectrum of this compound showed 

absorptions at 1074 and 838 cm-1 corresponding to the stretching of the Si-O bond. 

The *H NMR spectrum showed a singlet at 8 0.01 due to the geminal dimethyl 

groups attached to the silicon and a singlet at 8 0.83 due to the methyl groups of the 

tert-butyl group.

In order to transform the secondary alcohol of (123) into a better leaving 

group it was converted into the mesylate (124) by treatment with methanesulfonyl 

chloride in pyridine. The product was isolated by column chromatography in 66 % 

yield. The expected absorptions due to the stretching of the SO2O- group were
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found at 1360 and 1176 cm-1. The !H NMR spectrum showed a singlet at 8 2.99 

correlating with the methyl group of the mesylate.

Upon treatment of the mesylate (124) with methylamine it was hoped that 

the mesylate would undergo an Sn2 reaction to give the protected form of methyl 

(R)-3-(A-methylamino)-4-hydroxybutanoate (109). Unfortunately this proved not to 

be the case. Treatment of the mesylate with methylamine in ethanol at reflux 

temperature gave the racemised amine (125) as the major product.

The IR spectrum of the amine showed a broad absorption at 3344 cm-1 

corresponding to an N-H stretch, and the loss of the absorptions representing the 

-SO2O group. The *H NMR spectrum showed the absence of the methyl singlet due 

to the methyl group of the mesylate and the appearance of a singlet at 5 2.37 due to 

the methyl group attached to the nitrogen. At 8 1.97 there was a D2O exchangeable 

signal due to the N-H hydrogen.

The racemisation of the compound (125) was proven by measurement of the 

compound's optical rotation which was found to be 0 °, and by examination of the 

NMR spectrum of the compound after addition of 3 % (by mole) of the chiral shift 

reagent europium (III) tris[3-(heptafluoropropylhydroxym ethylene)-(+)- 

camphorato] (138).

Me Me

Eu

Me

138

A portion of *H NMR spectrum after treatment with the shift reagent is

shown in figure 3. The doubling of the signal due to the methoxy group can be

clearly seen. The same experiment was carried out on the mesylate (124) to ensure

that the starting material was optically pure. No doubling of the signals was noted.
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Note the doubling of 
the OMe Signal “

O

PPM

Figure 3 : A portion of the !H NMR spectrum of 125 after addition of 3 mol %

of chiral shift reagent (135)

Clearly visible in the *H NMR spectrum of the racemised amine were 

signals corresponding to a trace amount of the alkene (126)144 formed by 

elimination of the mesyl group to give the a, (3-unsaturated ester. It is assumed that 

the racemisation of the amine is due to this elimination being the first stage of the 

reaction, followed by a conjugate addition to the double bond (scheme 26).
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OMs

TBDMSO.

H

TBDMSO

I NH2Me QMe

TBDMSO.

124 trans-double bond shown 126 
for clarity only

-HH

NHMe

\ 1
NHMe OMe

C02Me TBDMSO

125 139

Scheme 26 : Proposed mechanism of amination of 124

McElvain et a / .145*146 have shown that treatment of p-bromoesters with 

piperidine gave a mixture of the a,p-unsaturated ester and the product of conjugate 

addition with the unsaturated ester. The reaction mechanism proposed above is 

analogous to the observations of McElvain et al.

The amount of oc,p-unsaturated ester (126) remaining at the end of the 

reaction was too small for isolation and characterisation and so it was decided to 

synthesise this ester to show that its NMR spectrum was identical to that 

observed as an impurity in the *13 NMR spectrum of the amine (125). This reaction 

was carried out by treatment of the mesylate (124) with the non-nucleophilic 

nitrogen base DBU in toluene at reflux temperature (scheme 27).

DBU,
Toluene,
reflux, lh  2 ►

TBDMSO

124 140

C 02MeTBDMSO

Scheme 27 : Reaction of mesylate (124) with DBU in toluene
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This reaction gave an unexpected product: the silyl enol ether (140) was 

formed in preference to the predicted a,p-unsaturated ester. The IR spectrum of the 

ether showed absorptions at 1744 cm-1 corresponding to the ester carbonyl and 1660 

cm-1 due to the stretching of the C=C bond. It should be noted that these absorptions 

are at too high a frequency to be due to the a,(3-unsaturated compound. The *H 

NMR spectrum showed a doublet of triplets at 8 4.66 with coupling constants of 5.8 

and 7.0 Hz and another doublet of triplets at 8 6.30 with coupling constants of 7vic 

5.8 Hz and 7allylic 1-6 Hz corresponding to the alkenic hydrogens. The fact that the 

downfield alkenic hydrogen shows the allylic coupling also suggests that the 

compound formed is the silyl enol ether (140). The coupling constant between the 

alkenic protons is 5.8 Hz suggesting a cis double bond. Selected *H NMR data are 

shown in figure 4.

5 4.66

1.6 Hz
5.8 Hz7.0 Hz

5 3.14

C 0 2Me O.

C(CH3 ) 3

Figure 4 : Selected chemical shifts and coupling constants for the silyl enol

ether (140)

No previous reference can be found in the literature to this method of 

formation of silyl enol ethers. However it assumed that the reaction goes via the a,p- 

unsaturated ester, which then undergoes isomerisation to the silyl enol ether. The
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implication is that the silyl enol ether is more thermodynamically stable than the 

a,(3-unsaturated ester.

A variety of conditions was tried to affect the substitution of the mesylate 

with methylamine without racemisation. These methods are summarised in table 10. 

None of the methods proved successful and this synthetic approach was abandoned.

Conditions Racemised ? Yield
reflux, EtOH, MeNH2 , lh

Yes 47% of 125 & trace 126
rt, EtOH, MeNH2

Yes 82% of 125 & tracel26
Et20, -78—>0°C, MeNH2 via 

cold finger Yes 49% of 125 & trace 126
hexane, -78—>0°C, MeNH2 

via cold finger Yes 37% of 125 & trace 126
MeCN, 0°C, MeNH2 via 

bubbler Yes 31% of 125 & trace 126
hexane, -78°C, MeNH2 via 

bubbler Yes 42% of 125 & trace 126

Table 10 : Attempted formation of methylamine without racemisation

4.5 Approaches to the Synthesis of a Single Enantiomer of

Synthanecine A Using L-Aspartic Acid (118)

4.5.1 Introduction

L-Aspartic acid (118) [(S)-2-aminosuccinic acid] is an essential amino acid 

in the diet of mammals, and plays an important role in a wide variety of biochemical 

processes. The relative pKa values of the amino group and the two acid groups are 

shown in figure 5. The use of aspartic acid in organic synthesis has been 

comprehensively reviewed. 133
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8 .0
n h 2

4.0
3.1 c o 2h

h o 2c

Figure 5 : pKa values of L-aspartic acid

The first route which was attempted to synthesise a single enantiomer of 

synthanecine A utilised D-aspartic acid (141) (scheme 28). Later attempts used L- 

aspartic acid.

4.5.2 Attempted Synthesis of a Single Enantiomer of 

Synthanecine A Using Aspartic Acid

The initial attempt to synthesise the key intermediate methyl (R)-3-(N- 

methylamino)-4-hydroxybutanoate (109) is detailed in scheme 28.

P-Methyl D-aspartic acid (142) was required in the first stage of this 

synthesis. Acid catalysts used to effect this esterification include sulfuric acid, 147 

hydrochloric acid, 148 boron trifluoride etherate149 or chlorotrimethylsilane. 150 In all 

of these reactions diester formation was reported as a significant side 

reaction.148’̂  Albert et al. reported that tetrafluoroboric acid is an excellent 

catalyst for this reaction in terms of yield, selectivity, and ease of work-up. 152 This 

reaction was carried out in 73 % yield with no diester formation. Additional 

spectroscopic data are provided in chapter 9. The IR spectrum of this compound 

showed a strong absorption at 1728 cm-1 corresponding to the ester carbonyl stretch. 

The antisymmetrical and symmetrical stretches of the acid carbonyl were found at 

1644 and 1376 cm-1 respectively. The NMR spectrum showed the methyl singlet 

at 5 3.60 due to the methyl ester.
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NH

co2

141

h b f 4

Na2S04
MeOH

f tH2Me

Me02C
cP2

144

BH3 /THF

Me02C

NHMe

109

60°C, 16h 
73 %

CHCI3

TFA
Triethylsilane 
RT, 20 h

©
n h 3

Me02C
CO?

142

5h
Room Temp.

2M HC1
Cyclopentadiene
Formaldehyde

1

A,
\  G) ------ co2

Me02C '

143

Scheme 28 : Attempted synthesis of methyl (/?)-3-(A^-methylamino)-4-

hydroxybutanoate

Grieco and Bahsas153 reported a novel method of A-methylation via a retro

aza Diels-Alder reaction. They used a wide variety of substrates (no aspartic acid

derivatives were reported) and reported that no protection of the a-carbonyl was

necessary and that no racemisation took place. The reaction was reported to proceed

via the acid-catalysed formation of the imine adduct of the amino acid and

formaldehyde, and subsequent trapping of this adduct via the aza Diels-Alder

reaction. The retro aza Diels-Alder reaction then proceeded smoothly in the
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presence of trifluoroacetic acid. Triethylsilane reduced the liberated iminium ion to 

the A-methyl compound. Treatment of (3-methyl D-aspartic acid (142) with 

formaldehyde, HC1 and cyclopentadiene failed to give the aza Diels-Alder product 

(143). This route was abandoned.

The final stage of this route would have been BH3/THF reduction of the N- 

methyl compound (144) to give methyl (/?)-3-(Ar-methylamino)-4-hydroxybutanoate 

(109). Yoon et a / .154 had shown that BH3/THF could be used to reduce carboxylic 

acids in the presence of esters citing the slow rate of reduction of esters by 

BH3/THF as the reason for the selectivity.

L-Aspartic acid (118) was then adopted as the starting material for the new 

approach to the synthesis of the key intermediate methyl (5)-3-(A-methylamino)-4- 

hydroxybutanoate (117). This synthesis is detailed in scheme 29.

MeQ2C.

©
n h 3

118

MeOH/SOCl2 
-10°C, 25 m

85 %
_Me02C.

© 0
NH3CI

c o 2h

145

M e02C,

M e02C .

NMeCBZ

c o 2h

147

T ab le  11

t
©
NH2Me

NaH/Mel, 
THF 
RT, 24 h

76%

BH3/THF

75 %

M e02C .

M e02C.

CBZC1, Na2 C 0 3 

RT, 3h

NHCBZ

c o 2h

146

NHMe

148 117

Scheme 29 : Attempted synthesis of methyl (S)-3-(A-methylamino)-4-

hydroxybutanoate (114)
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Despite reports to the contrary by Albert et thionyl chloride and

methanol were used to synthesise the hydrochloride salt of p-methyl L-aspartic acid

(145) using the method of Schwarz et a / .155 with no diester formation noted. This 

compound was obtained in 85 % yield. Additional spectroscopic data are presented 

in chapter 9. The IR spectrum of this compound showed an absorption at 1732 cm-1 

corresponding to a carbonyl stretch. The NMR spectrum shows a singlet at 6 

3.53 corresponding to the methoxy group.

In order for the Af-methylation to take place the nitrogen in 145 had to be 

protected as its benzyloxycarbonyl derivative. 156 This protection was carried out 

using benzyl chloroformate, with sodium carbonate acting as the base. The product

(146) was isolated in 75 % yield after recrystallisation. The IR spectrum of this 

compound showed strong absorptions at 1694 and 1588 cm-1 corresponding to the 

carbamate carbonyl and the aromatic ring respectively. The CBZ group gave 

characteristic resonances in the *H NMR spectrum: a broad singlet at 5 7.33 due to 

the aromatic ring, and a singlet at 5 5.10 due to the methylene group next to the 

aromatic ring.

McDermott and Benoiton157 had prepared A-methyl derivatives of a variety 

of amino acids including (3-te/t-butyl L-aspartic acid using sodium hydride and 

methyl iodide in THF. The N-methylation of the protected (3-methyl ester (146) 

proceeded in 76 % crude yield to give a thick yellow oil. This oil could not be 

induced to crystallise, nor could it be successfully purified by column 

chromatography. McDermott and Benoiton had described the purification of their 

aspartic acid derivative as its dicyclohexylamine salt. This also proved unsuccessful 

for the Af-methyl derivative (146). The compound was thus used crude in the next 

stage of the reaction. The NMR spectrum of the crude material showed a singlet 

at 5 2.9 due to the A-methyl group.

In order to facilitate purification it was decided to remove the protecting 

group from the nitrogen which should result in an easily purified crystalline

7 3



derivative. A variety of methods are available for the removal of such 

benzyloxycarbonyl protecting groups. 158 It was elected to remove the protecting 

group by hydrogenolysis since this method should leave the labile methyl ester 

untouched and also presented a wide variety of possible methods for carrying out 

the hydrogenolysis. The deprotection proceeds by decarboxylation of the free 

carbamic acid resulting from hydrogenolysis of the benzyl residue. 159 A variety of 

methods was attempted to remove the protecting group. These are summarised in 

table 11.

Method Yield Reference

10 % Pd/C catalyst, H2, 80 % acetic acid 160

10 % Pd/C catalyst, cyclohexene, ethanol _ 161

10 % Pd/C catalyst, ammonium formate, 

methanol

26% 162

Table 11 : Deprotection of p-methyl (iV-benzyloxycarbonyl-iV-methyl)-L-

aspartic acid (147)

The standard method of hydrogenolysis159 using 10 % Pd/C catalyst and 

hydrogen gas, where both the hydrogen gas and the organic substrate are absorbed 

onto the catalyst facilitating their contact, failed to give any product and only 

starting material could be isolated.

Jackson and Johnstone161 reported that using cyclohexene as a hydrogen 

source, removal of benzyloxycarbonyl protecting groups would be complete in 2 h 

at 25 °C. This reaction failed to give any product and only starting material could be 

isolated.

The method of Makowski et a / . 162 using ammonium formate as a hydrogen 

source proved successful in removing the protecting group but only in a poor yield 

of 26 %. The IR spectrum of this compound showed an absorption at 1740 cm-1 

corresponding to the ester carbonyl and further peaks at 1591 and 1377 cm-1
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corresponding to antisymmetrical and symmetrical stretching of the carboxylate ion 

respectively. No peaks due to the CBZ protecting group were seen.

The A-methyl derivative proved particularly resistant to hydrogenolysis. 

This lack of success in the deprotection step was probably due to the lack of purity 

of the A-methyl derivative causing catalyst poisoning. A likely constituent of this 

catalyst poison may be residual iodine liberated in the previous stage of the 

reaction. 159 In view of the poor yield obtained in the deprotection step this route 

was abandoned.

A protected form of the key intermediate methyl (S)-3-(A-methylamino)-4- 

hydroxybutanoate (154) was finally synthesised as shown in scheme 30. This route 

was continued beyond the synthesis of 154 and toward a single enantiomer of 

synthanecine A.

In order to achieve the correct oxidation states in the synthesis as early as 

possible, the method of McGarvey et a / . 163 was used to reduce the a-carbonyl of L- 

aspartic acid. Additional spectroscopic data are provided in chapter 9.

Treatment of L-aspartic acid (118) with benzyl chloroformate and NaOH 

afforded the protected amino acid (149) in 89 % yield after recrystallisation. The IR 

spectrum of this compound showed absorptions at 1705 cm-1 due to stretching of the 

carbamate carbonyl and at 1585 and 1533 cm-1 due to the aromatic ring. The ^  

NMR spectrum of this compound showed a broad singlet at 8 7.34 due to the 

aromatic hydrogens and at 8 5.05 corresponding to the methylene group next to the 

aromatic ring.

A-Benzyloxycarbonyl-L-aspartic anhydride (150) was prepared in 96 % yield 

by the method of Lutz et al. 164 This compound gave an elemental composition and 

melting point consistent with product formation. The IR spectrum showed a strong 

absorption at 1306 cm-1 due to C-0 stretching.

Reduction of the anhydride (150) was effected using NaBH4 in THF and 

gave the lactone (151) in 75 % yield. The IR spectrum of this compound was 

significantly altered from that of the starting material and showed an absorption at
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1780 cm -1 due to a 5-membered lactone. The *11 NMR spectrum showed a new 

multiplet a 5 4.14-4.17 assigned to the newly formed methylene group. The 13C 

NMR spectrum showed only two quaternary carbons corresponding to carbonyl 

groups at 5 155.9 and 175.8 due to the carbamate carbonyl and the lactone carbonyl 

respectively.
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CO,Et
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Scheme 30 : Attempted synthesis of a single enantiomer of synthanecine A

Reduction to give the lactone took place at the more hindered position a  to

the protected amino group. This is the normal steric course of reductions using
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NaBH4-165’ 166 This selectivity is due to the less hindered carbonyl complexing with 

a solvated cation, in this case Na+, to give the species (157) shown in scheme 31. 

This makes this site the more hindered. Attack of a hydride ion at the position a to 

the amino group can then occur producing an aldehyde (158) which is then rapidly 

reduced by borane liberated in the reaction to give the alcohol (159). Heating at 

reflux in benzene in the presence of p-toluenesulfonic acid then closed the ring to 

form the lactone (151).

NHCBZ NHCBZ

157

NHCBZ NHCBZ

+Na'02( .OH

159

benzene, pTSA, 
reflux, 5 h

+N a 0 2i

158

NHCBZ

O
151

Scheme 31: Reduction of anhydride (150) with NaBHLi

In their synthesis of the anthracycline antibiotic L-daunosamine, Jurzal et 

al4 67 detailed a method for the ring opening and subsequent protection of the 

lactone (151) to give the TBDMS protected methyl ester (152). Following this 

method and treating the lactone first with methanol and DCC for 5 days at room 

temperature followed by treatment with TBDMSC1 and imidazole in THF at 40 °C
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gave the protected ester (152) in 61 % yield after purification by column 

chromatography. Additional spectroscopic data to that originally published167 are 

presented in chapter 9. The IR spectrum of this compound showed a strong 

absorption at 1728 cm-1 assigned to stretching of the ester carbonyl group. 

Absorptions at 1256 and 1088 cm-1 corresponded to stretching of the SiMe2 group 

and stretching of the Si-O bond respectively. The silyl protecting group was 

distinctive in the !H NMR spectrum showing singlets at 5 0.00 and 8 0.85 due to the 

geminal methyl groups and the methyl groups of the tert-butyl group respectively. A 

singlet at 8 3.59 corresponded to the methyl ester. The MS of this compound showed 

fragments at m/z 324 and 116. These fragments are indicative of the presence of 

TBDMS protecting group (figure 6).

Previously, when an A-methyl compound was required, the method of 

McDermott and Benoiton157 had proved successful (scheme 29) using sodium 

hydride and iodomethane. However when the amine (152) was the substrate for this 

reaction it proved unsuccessful giving only starting material. The conditions for this

C(CH3)3

C 0 2Me

160 161

m/z 324 m/z 1 ! 6

Figure 6 : Identity of fragments from MS of 152
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reaction were varied as shown in Table 12. None of these conditions succeeded in 

forming the product (153).

Reagents Conditions Product

iodomethane ( 8  equiv.), 

sodium hydride (1.5 equiv.), 

THF

room temperature, 24 h starting material, 85 %

iodomethane ( 8  equiv.), 

sodium hydride (3 equiv.), 

THF

room temperature, 24 h starting material, 14 %

iodomethane ( 8  equiv.), 

sodium hydride (3 equiv.), 

THF

reflux, 3 h starting material, 6  %

iodomethane ( 8  equiv.), 

sodium hydride (3 equiv.), 

THF

reflux, 24h complex mixture of 

products.

Table 12 : Attempted synthesis of A-methyl amine (153)

A wide variety of methods is available for the A-methylation of amines 

including the use of organocopper reagents, 168 alkylation of Schiff bases, 169 and via 

a retro aza Diels-Alder reaction.153 The method selected to affect the formation of 

the A-methylamine (153) was that of Olsen170 using silver (I) oxide and 

iodomethane in DMF. Treatment of the amine (152) with these reagents at room 

temperature for 24 hours gave the product (153) in 51 % yield after purification by 

column chromatography. Although apparently pure by TLC, both the iH and 13C 

NMR spectra show a doubling of some of the signals (figure 7 ).
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Figure 7 : *11 NMR spectrum of the iV-methyl amine (150)

Such doubling of the signals in the *11 and 13C NMR spectra suggest that the 

Af-methylamine can adopt two distinct conformational isomers. This doubling of 

signals is not observed in either the starting material (152) or in the next stage of the
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synthesis (after removal of the CBZ protecting group) (117). The presence of 

distinct conformational isomers can be observed in some amides and thioamides 

where resonance gives the molecule some double bond character and thus slows 

rotation about the C-N bond171 (Scheme 32).

R

© /
= N

\

R

O R
162

©.

© /  
-  N

\

R 1

O R'

A

T

163

t
T

R R̂

O R 1

R R 1

r \ .
O R"

164 165

Scheme 32 : Conformational isomers of an amide

Such isomerisation is possible (scheme 33) in the TV-methyl carbamate (153).

OBn

TBDMSO

Me

TBDMSO CQ2MeC 02Me

Scheme 33 : Possible isomerisation of the N-methyl carbamate (153)

The IR spectrum of this compound shows a strong absorption at 2856 cm-1 

due to the stretching of the N-Me bond.

The CBZ- protecting group was removed by treatment with 5 % Pd/C in dry 

methanol to give the free amine (154) in 86  % yield.
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The IR spectrum of this compound showed no signals attributable to either 

carbonyl stretching in a carbamate or the presence of an aromatic ring. A moderate 

absorption was observed at 3442 cm-1 attributable to the stretching of the N-H bond. 

The *H NMR spectrum of this compound had no signals due to the CBZ- protecting 

group. A singlet at 8 2.37 was correlated with the hydrogens attached to the N- 

methyl group.

The O -protected form of the key intermediate methyl (S)-3-(N- 

methylamino)-4-te/t-butyldimethylsilyloxybutanoate (154) has now been 

synthesised in 6 steps from L-aspartic acid in 17 % overall yield.

It is hoped that the remainder of the synthesis of a single enantiomer of 

synthanecine A will proceed using the same synthetic procedures originally used by 

Mattocks18 (Scheme 13).

T o th i s  e n d  m e th y l  (S)-3-(A-methylamino)-4-terf- 

butyldimethylsilyloxybutanoate (154) was treated with ethyl bromoacetate and 

hydrated potassium carbonate in aqueous acetone to give the tertiary amine (155) in 

46 % yield after purification by column chromatography.

The *H NMR spectrum of this compound exhibited a doublet at 8 3.37 with a 

coupling constant of 5.1 Hz corresponding to the new methylene group. This is an 

example of four bond coupling to the methine hydrogen. The high coupling constant 

could be accounted for if this were an example of W coupling which is mediated by 

the overlap of the a bonds. The ethyl ester gives a characteristic quartet at 8 4.12 and 

triplet at 8 1.2 2 .

Ring closure of this tertiary amine via a Dieckmann ring closure to give the 

pyrrolidine (156) was attempted using sodium hydride in dry benzene. Only starting 

material was recovered from the reaction.

It is likely that the failure of this Dieckmann ring closure was a result of the 

extremely small scale that the reaction was carried out on. Only 5 mg of sodium 

hydride were required for this reaction and such a small amount of an air sensitive 

reagent is likely to be deactivated quickly by exposure to even very small quantities



of moisture. Time constraints prevented this reaction from being repeated on a larger 

scale.
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Chapter 5

Approaches to the Synthesis of a Novel Optically Active 

Synthanecine

5.1 Introduction

Synthanecine A (14) has been shown to be a good analogue of pyrrolizidine 

alkaloids in both structure and biological behaviour.33 It does however differ from a 

pyrrolizidine base such as retronecine (4) in the number of carbon atoms in the 

molecule and in containing two primary alcohols as opposed to a primary and a 

secondary alcohol. Thus it was decided to attempt a synthesis of the novel 

synthanecine (2/?r^6/?)-2-(l-hydroxyethyl)-3-hydroxymethyl-l-methyl-3-pyrroline 

(167). The structural similarity of this compound to the common necine base 

retronecine (4) is shown below (figure 9).

OH
OH

4

OH
OH

Me

Me

167

Figure 9 : Comparison of retronecine (4) and a novel synthanecine (167)

5.2 Retrosynthetic Analysis of (2/?,6/?)-2-(l-hydroxyethyl)-3- 

hydroxymethyl-l-methyl-3-pyrroline (167)

The retrosynthetic analysis of (2/?,6/?)-2-(l-hydroxyethyl)-3-hydroxymethyl- 

l-methyl-3-pyrroline (167) is given in scheme 34 below. As was the case with the



synthesis of a single enantiomer of synthanecine A (chapter 4) as many of 

Mattocks' original procedures as possible were incorporated.

OH

Me

Me

OH

167

OH

Me

Me

O

168

OH

Me

Me
169

OH

Me
NH

Me

V

OH

Me

NH2

HO.

171 172

Scheme 34 : Retrosynthetic analysis of (2R,6R)-2-(l-hydroxyethyI)-3- 

hydroxymethyI-l-methyl-3-pyrroline (167)

(3R,4R)-3-Amino-4-hydroxypentanoic acid (171) (R=H) was identified as 

the key intermediate. This compound could be derived from L-threonine (172) 

(R=H).
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5.3 Approaches to the Synthesis of (3/£,4/?)-3-amino-4- 

hydroxypentanoic acid (165)

5.3.1 Introduction

L-Threonine is an essential amino acid. Besides L-isoleucine (173), it is the 

only other member of the common amino acids to contain two asymmetric carbon 

atoms. This makes L-threonine and its derivatives extremely useful as chiral starting 

materials in syntheses (see chapter 4.2.2). The use of threonine in organic synthesis 

has been extensively reviewed.133

©
n h 3

c h 3

173

5.3.2 The Attempted Synthesis of (3 R , 41?)-3-amino-4- 

hydroxypentanoic acid (171) from L-threonine (172)

The attempt to synthesise (3R,4R)-3-amino-4-hydroxypentanoic acid from L-

threonine is shown in scheme 35.

L-Threonine was first converted into iV-CBZ-L-threonine in 85 % yield using

a variation of the standard methodology. 172 Additional spectroscopic data are

presented in chapter 9. The IR spectrum of the protected threonine (174) showed an

absorption at 1717 cm-1 assigned to the carbamate carbonyl. Absorptions at 1612,

1565 and 1463 cm-1 corresponded to the aromatic ring. The ^  NMR spectrum

showed the expected broad singlet at 6 7.26 due to the aromatic hydrogens and a

singlet at 5 4.99 corresponding to the methylene group next to the aromatic ring.
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Scheme 35 : Attempted synthesis of A-protected (3R, 4R)-3-amino-4- 

hydroxypentanoic acid from L-threonine

In Kurokawa and Ohfune's synthesis of the antibiotic echinocandin D , 173

they gave a method for the preparation of A -(benzyloxycarbonyl)-0-(terr-

butyldimethylsilyl)-L-threonine (175). Additional spectroscopic data are presented
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in chapter 9. Treatment of the V-protected L-threonine (174) with TBDMS chloride 

and imidazole in DMF gave the diprotected L-threonine (175) in 64 % yield. The IR 

spectrum of this compound showed an absorption at 1251 cm-1 corresponding to 

stretching of the Si-O bond. The *H NMR spectrum gave singlets at 5 -0.03, 0.00 

and 0.78 corresponding to the methyl groups of the TBDMS protecting group. The 

two diastereotopic geminal methyl groups attached to the silicon come into 

resonance at slightly different frequencies. The 13C NMR spectrum also shows the 

diastereotopic nature of the methyl groups as the carbons of the geminal methyl 

groups resonate at 5 -6 .6  and -6 .1.

The initial attempt to form the acid chloride of the L-threonine derivative 

(176) using oxalyl chloride in THF proved unsuccessful. However, the method of 

Venkataraman and Wagle174 using cyanuric chloride (178) gave the acid chloride 

(176) in 93 % crude yield. The proposed mechanism174 for this reaction is presented 

below in scheme 36. Cyanuric chloride can supply a single chorine forming 

dichlorohydroxy-s-triazine (181) or twice to form chlorodihydroxy-5-triazine.

Both the !H and 13C NMR spectra of this compound (176) showed a 

doubling of signals attributable to a 2:1 mixture of diastereoisomers. The 

mechanism illustrated (scheme 36) suggests that a catalytic amount of triethylamine 

would be sufficient to catalyse the reaction. The reaction was carried out using one 

molar equivalent of triethylamine as suggested by Venkataraman and Wagle.

Racemisation of amino acids can occur in basic175 and acidic media176 and 

at neutral pH . 177 Conversion of the amino group into an amide can cause a dramatic 

increase in the rate of racemisation.178 Hydroxyl groups located on the carbon atom 

next to the methine carbon bearing the a-hydrogen are the most effective groups for 

increasing the rate of racemisation.179 Ethers are still effective but the rate of 

racemisation is reduced by approximately 55% .179 Although the free hydroxyl 

group causes a number of effects which lead to an increased rate of racemisation, 

including solvation of the base and hydrogen bonding to the carboxylate anion, in 

the ether the only possible effect is that of induction stabilising the a-anion through

8 9



the a-system. The effect of ether formation on the racemisation of hydroxyamino 

acids has been studied by Smith et al. 179 Such an inductive effect could contribute 

to the racemisation of the threonine derivatives 175 and 176. No silyl ethers were 

studied by Smith et al. Silicon is more electropositive than carbon and the O-Si 

bond is more polarised than the O-H bond, and the O-C bond. However the 

inductive effect of an atom so far removed from the methine carbon is unlikely to 

have any effect on the rate of racemisation. 179

It cannot be said whether the racemisation takes place before or after the 

formation of the acid chloride. However the formation of a carboxylate anion 

adjacent to the a-hydrogen makes it less likely to be removed and so it would seem 

that racemisation is more likely to occur after formation of the acid chloride.

ci Cl
RC

RCOOH

Cl

179 ©
H-NEt3

Cl

Cl

N

"N'

181

t
ci

OH

+ RCOC1 

+ NEt3 Cl

180

CR

Scheme 36 : Proposed mechanism for acid chloride formation using cyanuric

chloride
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The ^  NMR spectrum of the proposed acid chloride showed no signal 

attributable to the acid proton of the starting material (175) which had previously 

been observed at 8 10.74. The 13C NMR spectrum showed the acid chloride 

carbonyl carbon at 8 164.3 and 167.8 as opposed to 8 174.2 for the carboxylic acid 

carbonyl carbon in the starting material. This upfield shift of the carbonyl signal in 

the acid chloride is always observed in acid chloride formation.

The mixture of diastereoisomers prepared in the previous step was then 

treated with diazomethane in diethyl ether to give the diazoketone (182). The *H 

NMR spectrum of this compound showed a singlet corresponding to one hydrogen 

at 8 5.09 which suggests that the diazoketone had formed. Unfortunately attempted 

purification of this compound by column chromatography on neutral alumina 

resulted in its decomposition. Time constraints prevented a further investigation of 

this reaction.

The next stage of this synthesis was to have been a Wolff rearrangement180 

involving treatment with an alcohol and silver (I) oxide as a catalyst, to give the 

carboxylic ester with the carbon chain increased by one. The mechanism of this 

reaction is thought to involve a ketene (scheme 37) .180

NHCBZ

TBDMSO

COCHN2

c h 3

182

:h
o ^ = c = c — R

H
o o

183 184 185

Scheme 37 : Formation of ketene in Wolff rearrangment
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The ketene (185) then reacts with the alcohol to give the carboxylic ester. 

Replacing the alcohol with water or an amine will give the carboxylic acid or amide 

respectively. Because the R group migrates with its bonding electrons the optical 

purity is maintained. Overall the homologation of the carboxylic acid is known as 

the Arndt Eistert synthesis.
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Chapter 6

Attempted Synthesis of Necic Acid Analogues

6.1 Introduction

Necic acids are generally highly substituted and oxygenated compounds. A 

wide variety of necic acids form the acid moiety of pyrrolizidine alkaloids. These 

compounds are often closely related, differing only in their stereochemistry. 

Examples of necic acid structures are given in chapter 1. The necic acid portion of a 

pyrrolizidine alkaloid has a considerable influence over its biological activity. Table 

13 compares the biological properties of several pyrrolizidine alkaloids differing 

only in the nature of their necic acid: the macrocyclic diester monocrotaline (8 ); and 

the "open" diesters heliotrine (24) and indicine (25).

Alkaloid Approximate acute 
LD50 (mg/kg)36’ 

176

Enzymic activity for 

conversion into 

pyrroles and N-oxides 

(nmol/min/mg 

microsomal 

protein)^

Pyrrolic metabolite 

levels per dose of 

lOOmg/kg*3, 3 »̂

Monocrotaline

(8 )

109 2.62 0.64

Heliotrine (24) 280 1.70 0.27

Indicine (25) >1000 0.325 0.09

a arbitrary units representing absorbance of Ehrlich colour from 0.5 g of liver tissue 

Table 13 : Comparison of the biological activities of several alkaloids
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The choice of necic acid also affects the lipophilicity of the pyrrolizidine 

alkaloid. A high lipophilicity makes the pyrrolizidine alkaloid more susceptible to 

activation by hepatic microsomal enzymes and thus potentially more toxic.

In chapter 3 the synthesis of synthanecine A was briefly discussed. The 

purpose of this synthesis was to provide material which would be used to esterify a 

range of novel necic acids. Ogawa et al.182 had used methodology first designed by 

Seebach et a/.183 to synthesise a (-)-trachelanthic acid derivative (189) (scheme 38) 

as part of their synthesis of indicine N-oxide. It was decided to use this approach to 

synthesise a range of necic acid analogues.

Pival aldehyde,
pTSA, 
pentane, 
reflux, 5 h

o
186 187

1. LDA.THF, 
-108°C
2. CH3CHO

/-Bu Camphorsulfonic acid
benzene, reflux 

^ --------------- C H :
CH

189
o OH

Coupling with retronecine (4), 
hydrolysis (1M HC1, RT)

188

25

Scheme 38 : Synthesis of indicine (25)182
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6.2 Attempted Synthesis of Necic Acids Via Alkylation of 

Dioxolanones

Scheme 39 shows the synthetic route which was planned to give novel necic 

acid analogues and thus novel pyrrolizidine alkaloid analogues after esterification 

with synthanecine A (14).

HÔ

Pivalaldehyde, ,.Bu
pTSA,
pentane,
reflux, 3-6 h 
 ►

190 R = CH3

186 R = (CH3)2CH
191 R = CH3

187 R = (CH3)2CH

Table 14

PO

HO.
R

Elec

1. Hydrolysis
2. Protection of 3C 
alcohol

o P = protecting group

/-Bu

3° )------o
/  \

Elec

194 R = CH3

195 R = (CH3)2CH

1. Coupling with Synthanecine A
2 . deprotection

192 R = Cll3

193 R = (CH3)2CH

HOx

o
OH Elec

O

MeN

196 R = CH3

197 R = (CH3)2CH

Scheme 39 : Attempted synthesis of novel pyrrolizidine alkaloid analogues
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Two dioxolanones were prepared using L-lactic acid (190) and (S)-(+)-2- 

hydroxy-3-methylbutanoic acid (186) using the method of Seebach et a / .183

(25,55)-2-(r-Butyl)-5-methyl-l,3-dioxolan-4-one (191) was synthesised in 54 

% yield and 92 % de. It was found that any purification other than an aqueous wash 

reduced the diastereoisomeric excess and repeated attempts at recrystallisation could 

not improve the de, thus the compound was used without any further purification. 

The spectroscopic data for this compound are identical to those given by Seebach et 

a l 183

(25,55')-2-(r-Butyl)-5-(isopropyl)-l,3-dioxolan-4-one (187) was synthesised 

in 85 % yield and 99 % de. As above the diastereoisomeric excess was reduced by 

any attempts at purification. Spectroscopic data in addition to that given by Seebach 

et a / . 183 are given in chapter 9. A strong absorption at 1090 cm-1 in the IR 

spectrum corresponded to the stretching of the C-O bond. The lH NMR spectrum 

showed a doublet, J  7.0 Hz, at 8 1.12 due to the methyl groups of the isopropyl 

group. The hydrogen a  to the carbonyl group was found as a double doublet at 8 

4.10 (7 4.0 & 1.3 Hz). The smaller coupling constant is due to coupling through 

oxygen to the methine hydrogen next to the tert-butyl group.

Diastereoisomeric excesses for these compounds were determined by *H 

NMR spectroscopy.

The diastereoselectivity found in the synthesis of the dioxolanones is due to 

the formation of the chair-like transition state shown in 198 leading to the cis- 

isomer. The transition state leading to the trans-isomer (199) has a strong 1,3-diaxial 

interaction between the r-butyl group and the hydrogen a to the carbonyl. The 

configurations were originally assigned using NOE measurements. 183 After 

irradiation at the frequency of the tert-butyl protons, the trans-isomer showed an 

enhancement of the signal due to the hydrogen a  to the carbonyl. The cfy-isomer 

showed no such enhancement.
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r-Bu H

HO

H

i-Pr
HO

H

198 199

T T
cw-isomer trans-isomer

Despite the literature precedent for the alkylation of such dioxolanones,182’ 

183 only a complex mixture of products was formed and no products of alkylation 

could be isolated when the anions of the dioxolanones were treated with a range of 

simple electrophiles (table 14). As a result of this, this route had to be abandoned. 

The electrophiles should have approached the anion on the opposite face from the 

terr-butyl group because of steric hindrance, giving rise to the diastereoisomers 

shown in scheme 39.

Dioxolanone Electrophile Result

187 methyl iodide Complex mixture of products

187 benzyl bromide Complex mixture of products

191 methyl iodide Complex mixture of products

191 benzyl bromide Complex mixture of products

Table 14 : Attempted alkylation of the dioxolanones 187 & 191

The remaining stages of this synthesis would have involved hydrolysis of the 

dioxolanone to liberate the hydroxy acid, protection of the hydroxyl group of the 

acid and subsequent coupling with synthanecine A and deprotection to give the 

novel pyrrolizidine alkaloid analogue (196 or 197).
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Chapter 7

Synthesis of Novel Pyrrolizidine Alkaloids Analogues via a 

1,3-Dipolar Cycloaddition

7.1 Introduction

In order to prepare more compounds for anti-tumour testing that have 

structures related to pyrrolizidine alkaloids, the work of Hosomi et a / . 184 was 

utilised to prepare a range of novel necine base analogues based upon pyrroline and 

pyrrolidine structures via 1,3-dipolar cycloadditions. The comparison between the 

pyrroline (200) and (+)-retronecine (4), and the general pyrrolidine structure (202) 

and (-)-rosmarinecine (201) are shown below (figure 10).

OH

OH
OH

OH

200

OH

OH

"~OH

OH

OH

PhH2CN

202

Figure 10 : Comparison of pyrroline (200) and pyrrolidine (202) with (+)- 

retronecine (4) and (-)-rosmarinecine (201)
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7.2 The 1,3-Dipolar Cycloaddition

7.2.1 Introduction

The 1,3-dipolar cycloaddition reaction proceeds through a 671 electron 

"aromatic" transition state. The name of the reaction is derived from the 4k  electron 

component of the reaction (203) which contains a 1,3-dipole. This component also 

contains at least one hetero-atom. The 2n electron component is known as the 

dipolarophile (204). A generic 1,3-dipolar cycloaddition reaction is shown in 

scheme 40. Such cycloadditions lead to five-membered heterocycles. It is generally 

agreed that 1,3-dipolar cycloadditions are concerted. 185

204 205

Scheme 40 : Generic 1,3-dipolar cycloaddition reaction

1,3-Dipoles have been classified into two groups: propargyl allenyl types, 

e.g the nitrile ylide (206), and allyl types, e.g. the azomethine ylide (207).185>186

©  § /  \  ©
C = N  C : . C = N -

0

206 207

The work which is discussed below is concerned with syntheses involving 

azomethine ylides. Reactions with azomethine ylides take place most easily with 

dipolarophiles bearing electron withdrawing substituents and occur via a HOMO
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(dipole) - LUMO (dipolarophile) interaction. 187 With dipolarophiles containing 

double bonds, the stereochemistry of the double bond is maintained in the product of 

cycloaddition. With mono-substituted alkenes the reactions are regioselective, 

giving preferentially 2, 4-disubstituted pyrrolidines for example (scheme 41).

PhMe

208 209 210

Scheme 41: Formation of a 2,4-disubstituted pyrrolidine via a 1,3-dipolar

cycloaddition

The example given in scheme 41 is an example of the thermolysis of an 

aziridine (208): a common method of azomethine ylide formation. The azomethine 

ylide (209) shown above is a stabilised ylide. This stabilisation is due to the electron 

withdrawing group next to the carbon bearing the negative charge.

Azomethine ylides can also be generated from imines of a-amino acid esters 

(scheme 42). This is an example of a 1,2-prototropic shift.

PhCH^ H Ph

N\ ^ > Ph PhMe 1 „  I©
150°C Ph F C 0 2Me

COoMe I
H

211 212

Scheme 42 : Generation of an azomethine ylide from an imine

Desilylation of trimethylsilylmethylamines has provided a route to non­

stabilised azomethine ylides (scheme 43). It is this method of forming an 

azomethine ylid which is utilised in the reactions discussed below.
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© /NC N SiMe3
^  H2 C =  N

CH2Ph CH2Ph

213 214

Scheme 43 : Formation of a non-stabilised azo-methine ylide

7.2.2 Synthesis of Pyrrolidines and Pyrrolines Using a 1,3- 

Dipolar Cycloaddition

A variation of the method of Hosomi et a / . 184 was used to prepare the 

p re c u rse r  to the azo m eth in e  y lid e . T rea tm en t o f N  - 

(trimethylsilylmethyl)benzylamine (215) with paraformaldehyde in methanol gave 

7V-benzyl-A-(trimethylsilylmethyl)aminomethyl methyl ether (216). The use of a 

suspension of paraformaldehyde in methanol as opposed to the formalin solution 

used by Hosomi et al. resulted in an improved yield of 82 % compared to 51 % in 

the original work. Additional spectroscopic data are presented in chapter 9. No 

purification was necessary. The IR spectrum of this compound showed a strong 

absorption at 2841 cm-1 corresponding to stretching of the O-CH3 bond. The *H 

NMR spectrum of this compound showed singlets at 5 3.10 and 3.95 attributed to 

the methoxy hydrogens and the hydrogens on the methylene group attached to the 

oxygen, respectively.
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(Me)3Si

215

,CH2Ph

82%
(CH2 0 ) n
MeOH

.CH2Ph
(Me)3Si ^  N'

.CHc
O'

216

C 0 2Et

Et02C
Me02C—= — C 0 2Me

Et02C C 0 2Et

66%

217

C 0 2Et

CH2Ph

98% (crude) 

21988%

218
Conditions: CsF, THF, 60°C, 18h 

Scheme 44 : Preparation of pyrrolidines and pyrrolines via a 1,3-dipolar

cycloaddition

The azom ethine ylid (2 2 2 )  was generated by treating the 

trimethylsilylmethylamine (216) with trimethylsilyl triflate and caesium fluoride. 

The proposed mechanism for this reaction is shown in scheme 45. 188 T h e

trimethylsilylmethylamine undergoes 1,3-elimination of methoxytrimethylsilane 

catalysed by the trimethylsilyl triflate. Addition of a small amount of caesium
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fluoride improves the yield of the cycloaddition reaction presumably aiding 

desilylation of 221. The reaction proceeds in poorer yield if the addition of caesium 

fluoride is omitted. 184

.CH2Ph
(Me)3Si N' Me3 Si-OSOCF3

.CH,
O'

C H 2Ph
(Me)3Si ( N

C|"
Si(Me3)3

c h 3

216 220

O
H2C. @ CH2Ph 

N

CH2

A

0 T
H2C ^  CH2Ph 

N

<§H2

222

(Me)3SiS ^ @ / CH2Ph

221

R'CH=CHR2 R2.

NCH2Ph

223

Scheme 45 : Mechanism of generation of azomethine ylide (222) from AMbenzyl

ether (216)188

Three compounds were prepared by this cycloaddition reaction. The 

pyrrolidines (217 and 218) were first prepared by Hosomi et a / . 184 although no 

analytical data were given. Complete analytical data for these pyrrolidines and for 

the pyrroline (219) are presented in chapter 9.
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The azomethine ylide (222) was generated in situ and treated with diethyl 

fumarate to give diethyl (±)-l-benzylpyrrolidine-3,4-dicarboxylate (217) in 66  % 

yield after purification by column chromatography. An absorption at 1732 cm-1 in 

the IR spectrum corresponded to the stretching of the ester carbonyl group. The JH 

NMR spectrum of this compound showed a characteristic triplet and quartet at 6 

1.24 and 4.15 respectively with a coupling constant of 7.1 Hz corresponding to the 

two ethyl esters. The signals corresponding to the hydrogens on the pyrrolidine ring 

are complex. The signal due to the hydrogens a  to the ester groups appear as a 

multiplet at 5 3.39-3.50. The hydrogens of the methylene groups adjacent to the 

nitrogen are seen at 5 2.77-2.94.

Treatment of the azomethine ylide (222) with diethyl maleate gave diethyl 

rae.ye>-l-benzylpyrrolidine-3,4-dicarboxylate (218) in 88 % yield after purification by 

column chromatography. An absorption at 1732 cm-1 in the IR spectrum was 

attributed to the stretching of the ester carbonyl group. No peaks due to the 

trimethylsilyl group were seen. The JH NMR spectrum of this compound also 

showed a characteristic triplet and doublet pattern at 8 1.16 and 4.04. Once again the 

signals corresponding to the hydrogens of the pyrrolidine ring are complex. The 

signal due to the hydrogens a  to the ester groups is seen as a multiplet at 8 3.18-3.26. 

The methylene groups next to the nitrogen are found as a pair of multiplets at 8 

2.61-2.69 and 8 3.03-3.07 each integrating to two hydrogens.

The azomethine ylid (222) reacted with diethyl acetylenedicarboxylate to 

give dimethyl l-benzyl-3-pyrroline-3,4-dicarboxylate (219) in 98 % crude yield. 

Attempts at the purification of this compound by column chromatography on both 

silica and neutral alumina both resulted in extremely low yields of impure product. 

3-Pyrrolines such as 219 are easily converted into pyrroles, 189 and this is perhaps 

the reason for the difficulty in successfully purifying this material. Because of this 

lack of stability and purity this compound was not used in any of the transformations 

discussed below. The spectroscopic data were consistent with product formation. A 

strong absorption at 1738 cm-1 was seen in the IR spectrum corresponding to
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stretching of the ester carbonyl. An absorption at 1622 cm-1 corresponded to the 

aa',pp' unsaturated alkene. The *H NMR spectrum of this compound showed a 

singlet at 8 3.77 due to the methoxy groups and a singlet at 8 3.82 correlating to the 

methylene groups next to the nitrogen. The 13C NMR spectrum showed the alkenic 

carbons at 8 137.1.

7.3 Synthesis of Compounds Prepared from diethyl (±)-l- 

benzylpyrrolidine-3,4-dicarboxylate (217) and diethyl meso-1- 

benzylpyrrolidine-3,4-dicarboxylate (218)

Simple compounds were prepared from the pyrrolidines 217 and 218.

C 0 2Et

CH2Ph

217

10% Pd-C 
HCOOH/MeOH 
RT, 18 h

59%

224

CH2Ph

10% Pd-C 
HCOOH/MeOH 
RT, 18 h

27%

225218

Scheme 46 : Hydrogenolysis of pyrrolidines

Treatment of the pyrrolidines 217 and 218 with 10 % Pd/C in a 5 % solution 

of formic acid in methanol using the methodology of El Amin et a / .190 resulted in 

hydrogenolysis to give the free amines in moderate yield (scheme 46).
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Diethyl (±)-l-benzylpyrrolidine-3,4-dicarboxylate (217) was hydrogenolysed 

to give diethyl (±)-pyrrolidine-3,4-dicarboxylate (224) in 59 % yield after 

purification by column chromatography. A broad absorption at 3318 cm-1 in the IR 

spectrum was correlated with the stretching of the N-H bond. The *H NMR 

spectrum of this compound showed a deuterium exchangeable signal at 8 2.51 due to 

the N-H hydrogen. Signals attributable to the benzyl group were absent in the *H 

NMR spectrum.

Hydrogenolysis of diethyl m^5o-l-benzylpyrrolidine-3 ,4 -dicarboxylate (218) 

gave diethyl m^56>-pyrrolidine-3,4-dicarboxylate (225) in 29 % yield after column 

chromatography. The JH NMR spectrum of this compound showed no signals 

attributable to the benzyl group. A deuterium exchangeable signal at 8 3.68 

corresponded to the N-H hydrogen.

HO
DIB AL/Toluene 
RT, 1 h

59%

217 226

HO OHDIB AL/Toluene 
RT, 1 h

53%

CH2Ph
218 227

Scheme 47 : DIBAL reduction of pyrrolidines

Treatment of the pyrrolidines 217 and 218 with DIBAL in toluene gave the 

bishydroxymethyl compounds in moderate yield (scheme 47).

Diethyl (±)-l-benzylpyrrolidine-3,4-dicarboxylate (217) gave (±)-3,4- 

bishydroxymethyl-l-benzylpyrrolidine (226) in 53 % yield after purification by
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column chromatography. The strong absorption at 3366 cm-1 in the IR spectrum was 

correlated with the stretching of the O-H bond. No absorptions attributable to 

carbonyl stretching were present. The ]H NMR spectrum of this compound 

exhibited a broad multiplet integrating to two hydrogens at 5 2.16 corresponding to 

the methine hydrogens in the pyrrolidine ring. The methylene hydrogens of the 

hydroxymethyl groups were found as a multiplet at 6 3.47-3.58.

Diethyl m^^6>-l-benzylpyrrolidine-3,4-dicarboxylate (218) gave meso-3A~ 

bishydroxymethyl-l-benzylpyrrolidine (227) in 59 % yield after purification by 

column chromatography. The IR spectrum of this compound showed a strong 

absorption at 3342 c n r 1 due to the stretching of the O-H bond and no absorption due 

to a carbonyl stretch. A multiplet at 5 2.48 in the NMR spectrum corresponded to 

the methine hydrogens of the pyrrolidine ring. The methylene hydrogens of the 

hydroxymethyl groups were found as a complex multiplet at 5 3.55-3.70.

HO   PhHNOCO------- - m------OCONHPh
P h N = C = 0
Dibu iy ll in  diacelate  
-----------------------

c h 2c i 2
RT, 18 h

217 228

Scheme 48 : Synthesis of (±)-bis(phenyIaminocarbonyloxymethyl)-l-benzyl

pyrrolidine (228)

CH2Ph

Mattocks had previously studied the metabolism and toxicity of carbamates 

of both synthanecine A (14) and synthanecine B (15) and found them to be good 

models for pyrrolizidine alkaloid toxicity, with the unsaturated synthanecine A 

carbamates proving extremely to x ic .34’181 Based upon this earlier work, it was 

decided to synthesise the bisphenylcarbamates of the pyrrolidines 220 and 227. 

These derivatives would be saturated and thus should be unable to form pyrrolic 

derivatives. It was hoped that these compounds would show a degree of anti-tumour
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activity without exhibiting liver toxicity due to pyrrole formation and should be 

more stable than pyrrole derivatives previously tested.77

Treatment of diethyl (±)-l-benzylpyrrolidine-3,4-dicarboxylate (226) with 

phenyl isocyanate using dibutyltin diacetate as a catalyst gave the (±)-biscarbamate 

(228) in 11 % yield after purification by column chromatography. A strong 

absorption at 1702 cm-1 in the IR spectrum corresponded to the stretching of the 

carbonyl group in the carbamate. The *H NMR spectrum showed a complex 

multiplet at 5 6.86-7.34 integrating to 15 hydrogens and corresponding to the three 

phenyl rings now present in the molecule. The methylene hydrogens of the 

hydroxymethyl groups showed an acylation shift of -0.5 ppm downfield to 5 3.95- 

4.14 from 5 3.47-3.58 in the starting material.

The dibutyltin diacetate in this reaction acts as a catalyst by activating the 

carbonyl group of the isocyanate (scheme 49).191

H

OAc

t

H

231
R N = C  O

+
Bu Bu

Sn R)Ac/  \
AcO OAc

230

Scheme 49 : Mechanism of catalysis by dibutyltin diacetate
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The attempted synthesis of the meso-biscarbamate (232) failed to give any 

isolable or characterisable material probably due to the steric hindrance of having 

two bulky phenyl carbamates cis to each other. This steric hindrance may also 

account for the low yield obtained in the synthesis of the (±)-biscarbamate.

PhHNOCO

N
C H 2Ph

232

7.4 Attempted Synthesis of Macrocycles of (±)-3,4-

bishydroxymethyl-l-benzylpyrrolidine (226)

Pyrrolizidine alkaloids often exist as macrocyclic diesters, thus it was 

decided to attempt to synthesise macrocyclic diesters of the pyrrolidine 226 to form 

a novel pyrrolizidine alkaloid analogue for anti-tumour testing.

7.4.1 Introduction

Synthesis of macrocyclic diesters of pyrrolizidine alkaloids is one of the 

most challenging goals of organic synthesis and a great number of reagents have 

been used to affect macrocycle formation. These processes rely upon carboxyl 

and/or hydroxyl activation techniques to overcome the unfavourable entropic factors 

and polymerisation processes which may occur. Some of the most frequently 

utilised procedures for the synthesis of macrocyclic diesters of pyrrolizidine 

alkaloids are presented below.
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The first synthesis of a macrocyclic diester pyrrolizidine alkaloid was by 

Robins and Sakdarat192 using the Corey-Nicolaou method. 129 The Corey-Nicolaou 

method employs a 2 -pyridylthiol ester generated in situ from aldrithiol-2  and relies 

upon a double activation sequence as shown in scheme 50.

(C H2)n OH ©
H

234

-H

236

+

o

235

Scheme 50 : Corey-Nicolaou macrocyclisation process

Treatment of (+)-retronecine (4) with 3,3-dimethylglutaric anhydride (237) 

resulted in formation of the two possible monoesters. Once the monoesters had 

formed, addition of aldrithiol-2  and heating at reflux in dimethyl formamide gave 

13,13-dimethyl-1,2-didehydrocrotalanine in 50 % yield (238) (scheme 51).192
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o

4 237 238

Scheme 51: Synthesis of 13,13-dimethyI-l,2-didehydrocrotaIanine (238)192

Robins and Burton extended the scope of this methodology by using the 

allylic chloride derivative of (+)-retronecine (239), significantly improving the 

yields in some macrolactonisations.20

This methodology involving the allylic chloride was also used to synthesise 

a range of macrocyclic diesters of synthanecine A .21>22

An alternative cyclisation method was used by White et in their

synthesis of (-)-integerrimine (240) and (+)-usaramine (241). Treatment of the 

lithium alkoxide, prepared by treatment of the necine base (242) with BuLi, with the 

protected necic acid (243), DMAP and the carboxylate activating reagent diethyl 

phosphoryl chloride gave the protected monoester (244). Macrolactonisation was 

then affected by deprotection of the primary alcohol to give 245 and subsequent 

formation of the mesylate, which resulted in macrocycle formation (246). A series

Cl

239
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of deprotections then afforded (+)-usaramine (241) (scheme 52). A similar sequence 

of reactions afforded (-)-integerrimine (240).

Me HQ

Me

240

Me HQ OH

Me

241
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Me

OTBDMS
OH

I
>'
BH

242

243

1. n-BuLi, DMAP 
 >

2.243, (EtO)2POCl 
3. NH4F

Me,

Me Me

c o 2h Me

]. EtOH
2. M HC1

Me

Me

Me OR

II
BH

244 R=TBDMS
245 R=H

1. CH3S 0 2C1, Et3N,

2. n-Bu4NF

241 246

Scheme 52 : Synthesis of (+)-usaramine193

H Me

The reactions of stannoxanes derived from diols and dibutyltin oxide have 

been used in the synthesis of macrocyclic pyrrolizidine alkaloid diesters. Niwa et 

a / . 194 used the cyclic stannoxane 248 (this is the proposed structure only: it hasn't 

been isolated) to form the monoester 249 in their synthesis of integerrimine (240). 

The final ester linkage was formed using the procedure reported by Yamaguchi et 

al. 195 This method involves formation of the mixed anhydride (250) using 2,4,6-
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trichlorobenzoyl chloride and triethylamine followed by heating at reflux with 

DMAP and toluene. Subsequent deprotection afforded integerrimine (240) (scheme 

53).

MeMe

Me Me, OCH2SCH3Me

247
benzene, RT OH

Bu Bu

249

2,4,6-trichlorobenzoyl 
chloride, Et3N

248

Me MeMe, OH Me, OCH2SCH3

O 1. Toluene, 
DMAP, 
reflux

2. Deprotection
Me' Me'

OH

240 250

Scheme 53 : Synthesis of integerrimine (240) via a cyclic stannoxane194

This method was also utilised in the synthesis of (+)-dicrotaline (252) where 

reaction of the cyclic stannoxane (248) with the anhydride (257) afforded the 

pyrrolizidine alkaloid in a single step (scheme 54).196
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251

+

Bu Bu

248

o

xylene, reflux OH

252

o

Scheme 54 : Synthesis of (+)-dicrotaline (252) via a cyclic stannoxane

A number of variations on these methods have been used. The total synthesis 

of pyrrolizidine alkaloids, including methods of macrocyclic diester formation has 

been comprehensively reviewed.90

7.4.2 Attempted Synthesis of the Macrocyclic Adduct of 3,3- 

dimethylglutaric anhydride (237) and (±)-3,4- 

bishydroxymethyl-l-benzylpyrrolidine (226)

A variety of methods was used in the attempted synthesis of (±)-6,1 -0 ,0 -  

(3,3-dimethylglutaryl)-3,4-bishydroxymethyl-l-benzylpyrrolidine (253) (schem e 

55). These methods are summarised in table 15.



o
237

HO OH

T ab le  15

.o

253

226

Scheme 55: Attempted Synthesis of the Macrocyclic Adduct of 3,3- 

dimethylglutaric anhydride (237) and (±)-3,4-bishydroxymethyl-l-

benzylpyrrolidine (226)

Conditions Result

1.226 + 237, DME, 40°C, 24 h 

2. Aldrithiol-2, PPh3, DME, RT 24 h

Complex mixture

1.226, BuLi, THF, 0°C, 2h

2. 237, THF, RT, 16 h

3. (EtO)2POCl, DMAP,

Complex mixture

226, dibutyltin oxide, benzene, reflux, 

24h

insoluble product

Table 15: Attempted Synthesis of the Macrocyclic Adduct of 3,3- 

dimethylglutaric anhydride (237) and (±)-3,4-bishydroxymethyI-l-

benzylpyrrolidine (226)

Following the Corey-Nicoloau method used by Robins and Kelly, 197 3,3-

dimethylglutaric anhydride (237) was added to a solution of the pyrrolidine in DME

and the reaction was carefully monitored by TLC (chloroform/methanol/conc.

ammonia; 85:14:1) until the spot for the pyrrolidine had been replaced by a base-
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line spot assumed to be the zwitterionic monoester (254). Aldrithiol-2 and 

triphenylphosphine were then added and the mixture was stirred for a further 24 h. 

After this time a new spot had appeared in the TLC assumed to represent the 

thioester (255). The mixture was then heated at reflux for 24 h. This gave a complex 

mixture of products. *11 NMR spectroscopy of this complex mixture suggested that 

it contained mainly pyridine derivatives.

Me

Me

0 2C

HO

H

O

\
■ ^ = N

HO

O

254 255

The next method attempted was based upon the methodology of White et 

al4 93 and involved the formation of the lithium alkoxide of the pyrrolidine (226) 

and treatment of this with 3,3-dimethylglutaric anhydride. Monitoring of the 

reaction by TLC showed when the 3,3-dimethylglutaric anhydride had reacted 

(Rf=0.0). Diethylphosphoryl chloride and DMAP were then added. After stirring for 

24 h TLC showed the formation of a new species, assumed to be the mixed 

anhydride (256). The reaction was then heated at reflux for a further 24 h. No 

products could be isolated from the reaction mixture.

The final attempt to form the macrocyclic diester was via the cyclic 

stannoxane (257) and was based on the work of Niwa et al, 194 Treatment of the 

pyrrolidine (226) with dibutyltin oxide in benzene at reflux temperature gave a 

insoluble residue from which no product could be isolated.

Time limitations prevented a further investigation of this synthetic route.
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Chapter 8

Biological Activity of Pyrrolizidine Alkaloids and Derivatives 

8.1 Anti-tumour Activity of Pyrrolizidine Alkaloids and 

Derivatives

Certain pyrrolizidine alkaloids, particularly indicine A-oxide (27) and some 

analogues have shown anti-tumour activity (see chapter 1.7). One of the goals of 

this project was to evaluate the anti-tumour activity of a range of pyrrolizidine 

alkaloids and analogues. To this end a number of samples were sent to Dr Alan 

McGown at the Paterson Institute in Manchester for evaluation as anti-tumour 

agents. The compounds were tested for their inhibition of the growth of the 

PLC/PRF/5 hepatoma cell line. This cell line is a liver cancer cell line and was 

chosen because of its high levels of microsomal enzymes which should be able to 

transform alkaloids with 1,2-unsaturation into pyrrolic derivatives. Such derivatives 

would be expected to be toxic to the cells.

8.2 Results of Anti-tumour Testing

The compounds that were submitted for testing are shown below. The results 

of their anti-tumour testing are given in Table 16.
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HO Me

Me

Me

- - OH

68

HQ Me

Me'

Me

23 '

HOMe MeHQ

Me

8

HQ. Me

Me

Me

- - OH

12

HQ Me

Me'

Me

69

HOMe MeHQ

18
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Compound Result^

Rosmarinine (68) 39 jig/ml

Rosmarinine N-oxide (12) No toxicity^

Senecionine (23) No toxicity 7̂

Senecionine N-Oxide (69) No toxicity 7̂

Monocrotaline (8) No toxicity 7̂

Monocrotaline N-oxide (18) No toxicity 7̂

a cone (|ig/ml) which inhibits 50 % of cell growth 

b no toxicity up to 50 Jig/ml against PLC/PRF/5 cell line 

Table 16 : Results of anti-tumour testing

As can be seen from the results only rosmarinine (6 8 ) exhibited any 

inhibition of cell growth. A graph of this inhibition is given in figure 12. 

Rosmarinine does not contain a double bond at the 1,2-position and as such is 

unlikely to form a hepatotoxic pyrrole derivative. This suggests that the inhibition of 

cell growth is by some other unknown mechanism.

Rosmarinine A-oxide (12) was non-toxic to the cells. This implies that the 

free nitrogen in rosmarinine is important for its toxicity and that the cell line does 

not possess the reducing power to liberate the free nitrogen from the A-oxide.

Those alkaloids which contained 1,2-unsaturation proved non-toxic. This is 

the opposite of the predicted result based upon previous work, 17 and suggests that 

this cell line does not have the oxidising capability to convert the alkaloid into the 

pyrrole derivative. However it is possible that the pyrroles may have been formed 

but in this cell system they are non-toxic. Different cell lines may give different 

results for these experiments. It should also be noted that the work cited above17 

was carried out predominantly in vivo, whereas the testing carried out in this project 

was in vitro. This may have had an effect on the results.
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Additional compounds have been submitted for anti-tumour testing, but at 

the time of writing no results were available.

350402 p l c / p c f / 5  gc t2

30

X

10 20 30 40
DOSEUG/ML

Figure 12 : Graph of cell growth inhibition by rosmarinine (68)

8.3 Metabolism of Pyrrolizidine Alkaloids and Derivatives

14C-Labelled pyrrolizidine alkaloids were isolated and their A-oxides were 

synthesised (see chapter 2.5) as requested by Dr. Bryan Hanley, MAFF, Norwich. 

At the time of writing, no results were available on the metabolic studies on these 

compounds.
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Chapter 9

Experimental

9.1 General Experimental

Melting points were measured on a Kofler hot-stage apparatus and are 

uncorrected. Mass spectra were obtained with A.E.I. MS 12 or 902 spectrometers. 

Nuclear magnetic resonance (NMR) spectra were recorded with a Perkin Elmer R32 

spectrophotometer operating at 90 MHz (5h), a Varian EM 390 spectrophotometer 

operating at 90 MHz (8h), a Bruker AM200 or WP200-SY spectrophotometer 

operating at 200 MHz (5h) or 50 MHz (8c). Coupling constants are quoted in hertz. 

The multiplicities of the 13C NMR resonances were determined using DEPT spectra 

with pulse angles of 0 = 90° and 0 = 135°. Tetramethylsilane (TMS) was used as an 

internal standard in organic NMR solvents. Infrared spectra (IR) were obtained on 

either a Perkin Elmer 983 spectrophotometer or a Philips PU 9800 FTIR 

spectrophotometer. Elemental analyses were performed using a Carlo-Erba 1106 

elemental analyser. Optical rotations were determined with an Optical Activity 

Limited AA10 polarimeter operating at 589 nm.

The diastereomeric compositions of products were determined by JH NMR 

spectroscopy. Enantiomeric compositions were determined by the use of an 

appropriate chiral shift reagent as discussed in chapter 4.

Thin layer chromatography (TLC) was carried out on Merck Kieselgel G 

(silica) plates of 0.25 mm thickness. Column chromatography was carried out using 

Merck silica gel 60 (230-400 mesh) or Brackmann standard grade neutral alumina 

(150 mesh).

Organic reagents and solvents requiring purification were purified according 

to the methods given in "Purification of Laboratory Chemicals" .198
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Organic solvents were dried with anhydrous magnesium sulfate unless 

otherwise stated and solvents were evaporated under reduced pressure below 50°C.
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9.2 Experimental For Chapter 2

Extraction of Rosmarinine (68) from Senecio 

pleistocephalus111

Fresh leaves of Senecio pleistocephalus {ca. 1 kg) were chopped and blended 

with methanol {ca. 1.5 1). Extracts were filtered and concentrated under reduced 

pressure. The green residues were then dissolved in dichloromethane (100 ml) and 

extracted with 1M sulfuric acid (3 x 50 ml). The acidic extracts were combined and 

washed with dichloromethane (6 x 75 ml). Powdered zinc metal {ca. 5 g) was added 

to the acidic solution which was stirred at room temperature for 1 h. The solution 

was filtered through a pad of Celite which was then washed with water (25 ml). The 

filtrate was basified with concentrated ammonia solution to pH 9 and the alkaline 

solution was extracted with dichloromethane (4 x 100 ml). Combined organic 

extracts were dried, filtered and concentrated to give the crude alkaloid as a brown 

residue (1.61 g). This crude extract was recrystallised from acetone-dichloromethane 

(1:1) to give the pure alkaloid as fine white crystals (0.69 g, 0.069 % based on 

weight of leaves).

HO Me

Me

Me

OH

68
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Extraction of Senecionine (23) from Senecio vulgaris111

Transformed root cultures of Senecio vulgaris were grown for 21 days in 

Gamborg's B5 media. They were then filtered and the media discarded to leave the 

roots. The roots thus prepared {ca. 225 g) were chopped and blended with methanol 

{ca. 1 1). Extracts were filtered and concentrated under reduced pressure. The brown 

residues were then dissolved in dichloromethane (1 0 0  ml) and extracted as for 

rosmarinine (above) to give the crude alkaloid as a brown solid (0.258 g). 

Recrystallisation from acetone-dichloromethane (1:1) gave the pure alkaloid as fine 

white crystals (0.199 g, 0.088 % based on weight of roots).

HQ Me

21
Me

Me O10

5 3

2 3

m.p. 235 °C (dec.) (acetone - dichloromethane; 1: 1), (lit. ,113 232 °C (dec.)); [ a ]22d

-54.2 ° {c 1.02 in CHC13), (lit., 113 -56 0 {c 1.0 in CHCI3)); Rf 0.30 (CHCI3 / MeOH

/ conc. NH3; 85:14:1); (Found: M+, 335.1744. C 18H25NO5 requires M+ 335.1733);

vmax (KBr disc) / cm-1 3400 (br, OH stretch), 1740 (s, ester C=0), 1712 (s, oc,p

unsaturated ester), 1654 (w, alkene), 1640 (w, a,p unsaturated alkene); 8h  (200

MHz, CDCI3) 0.84 (3 H, d, J  6.3, 19 - Me), 1.26 (3 H, s, 18 - Me), 1.78 (3 H, dd, J

7.1, 1.4, 21 - Me), 1.54 - 1.69 (2 H, m, 6 - Ha & 13 - H), 1.95 - 2.15 (2 H, m, 14 -

H), 2.27 - 2.56 (2 H, m, 5 - Hp, 6 - Hp), 3.18 - 3.38 (2 H, m, 3 - Ha & 5 - Ha), 3.90
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(1 H, bd, J  16.0, 3 - Ha), 3.98 (1 H, d, J \ \.l,p ro -R  9 - H), 4.24 (1 H, d, J  2.1, 8 - 

H), 4.95 - 4.98 (1 H, m, 7 - H), 5.44, (1 H, d, /  11.7, pro-S 9 - H), 5.66 (1 H, dq, J

7.1, 0.9, 20 - H), 6.13 (1 H, bs, 2 - H); 5C (50 MHz, CDC13) 11.0 (19 - C), 14.0 (18 - 

C), 24.9 (21 - C), 29.5 (6  - C), 34.7 (6  - C), 38.2 (14 - C), 38.3 (13 - C), 53.0 (5 - C),

60.4 (3 - C), 62.7 (9 - C), 74.8 (7 - C), 77.0(12 - C), 77.5 (8 - C), 131.3 (1 - C), 

132.9(15-C), 1 3 4 .2 (2 -0 , 1 3 6 .4 (2 0 -0 , 1 6 7 .4 (1 6 -0 , 178.0(11 - C)\m /z 335 

(M+, 4.8%), 138 (30.4), 111 (4.1), 106 (19.6), 94 (85.8), 82 (12.4), 80 (544.2), 43 

( 100).

Extraction of Alkaloids From Comfrey ( S y m p h y t u m

officinale) Leaves

The leaves (472 g) of flowering Symphytum officinale collected locally were 

extracted as detailed above for Senecio pleistocephalus to give a mixture of 

alkaloids (9 mg, 0.0019 % based on weight of leaves).

Extraction of Alkaloids From Comfrey ( S v m p h v t u m

officinale) Roots

The roots (338 g) of flowering Symphytum officinale were extracted as 

detailed above for Senecio pleistocephalus to give a mixture of alkaloids (97 mg, 

0.029 % based on weight of roots).

Rosmarinine iV-Oxide (12)

Rosmarinine (6 8 ) (0.500 g, 1.33 mmol) was dissolved in CHCI3 (50 ml). 3- 

Chloroperoxybenzoic acid (0.330 g, 1.65 mmol) was dissolved in CHCI3 (15 ml)

and added dropwise to the rosmarinine solution. The mixture was stirred at room

temperature for 45 min. The CHCI3 was removed under reduced pressure and the

1 2 7



residue was dissolved in water (25 ml) and washed with diethyl ether (6  x 50 ml). 

The aqueous layer was concentrated to give the title compound as pale brown 

crystals (0.383 g, 78 %).

HO Me

21
Me

Me O10

- -  OH

12

m.p. 141-142 °C (dec.), (lit. , 115 164 °C); Rf 0.08 (CHC13 / MeOH / conc. NH3; 

85:14:1); (Found: M+ - 16, 353.1836. C 18H27NO6 requires M+-16, 353.1838); vmax 

(nujol) / cm-1 3400 (br, OH stretch), 1720 (br, ester C=0 & a, p unsaturated ester), 

1630 (w, a,p unsaturated alkene), 975 (N+- O ); 5h (200 MHz, CDCI3 / D6 - DMSO) 

0.94 (3 H, d, J  6 , 19 - Me), 1.32 (3 H, s, 18 - Me), 1.86 (3 H, d, J 6, 21 - Me), 1.97 - 

2.23 (4 H, m, 6 a - H, 13 - H & 14 - H); 2.88 (1 H, m, 6 p - H); 3.31 (1 H, m, 3p - H); 

3.79 - 4.53 (7 H, m, 1 - H, 2 - H, 5 - H, 8 - H & 9 - H), 5.05 (1 H, m, 3a  - H); 5.51 (1 

H, bd, 7 - H); 5.93 (1 H, q, /  6 , 20 - H); 8C (50 MHz, CDCI3 / D6 DMSO) 12.1 (19 - 

C), 15.6 (21 - C), 25.8 (18 - C), 31.4 (6  - C), 37.8 (13 - C), 39.2 (14 - C), 47.0 (1 - 

C), 61.1 (9 - C), 69.8 (2 - C), 68.1 (5 - C), 73.1 (3 - C), 75.6 (12 - C), 76.5 (7 - C),

84.5 (8 -C ), 131.3(15-C), 137.6 (2 0 -C), 166.7 (16 - C), 178.6(11 - C); m/z 353 

(1.0), 153 (29.8), 135 (57.8), 81 (38.9), 43 (100).
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Senecionine N  - Oxide (71)14

Senecionine (23) (0.429 g, 1.28 mmol) was dissolved in methanol / 

chloroform (1:1) (20 ml). Hydrogen peroxide solution (30% aqueous solution, 0.44 

g, 0.44 ml, 3.84 mmol) was added dropwise to the senecionine solution. The mixture 

was then stirred at room temperature for 5 d. The solvent was removed under 

reduced pressure to give a white solid. Recrystallisation from methanol / diethyl 

ether gave the title compound as white crystals (0.170 g, 38 %).

HO Me

2 1
Me

Me O10

71

m.p. 132 - 144 °C (dec.), (lit. , 116 141 - 142 °C (dec.)); [a ]22D -21.3 ° (c 1 in 

methanol); Rf 0.09 (CHC13 / MeOH / conc. NH3; 85:14:1); (Found: M + - 16, 

335.1731. C 18H25NO6 requires M+-16, 335.1681); vmax (nujol) / cm’1 3400 (br, OH 

stretch), 1716 (s, ester C=0 & a , p  unsaturated ester), 1651 (s, oc,p unsaturated 

alkene), 968 (N+- O ); 5H (200 MHz, D20) 0.60 (3 H, d, J 6.1, 19 - Me), 1.00 (3 H, 

s, 18 - Me), 1.44 - 1.61 (2H, m, 13 - H & 14 - Ha ), 1.54 (3 H, d, J  7.2, 21 - Me), 

1.92 (1H, bd, 14 - Hp), 2.30 (1 H, bd, 6 - Ha), 2.53 (1 H, bm, 6 - Hp), 3.59 (2 H, bm, 

3 - Ha  & 5 - Ha), 4.01 - 4.61 (4 H, m, 3 - Hp. 5 - Hp, & 9 - H), 5.19 - 5.29 (2 H, m, 

7 - H & 8 - H), 5.75 (1 H, q, J 7.2, 20 - H), 6.05 (1 H, bs, 2 - H); 6C (50 MHz, D20)
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10.0 (18 - C), 15.4 (19 - C), 24.6 (21 - C), 33.29 (6  - C), 38.3 (14 - C), 39.2 (13 - C),

60.1 (9 - C), 69.1(5 - C), 74.8 (7 - C), 78.6 (3 - C), 96.3 (8 - C), 129.2 (1 - C), 131.8 

(15 - C), 132.3 (2 - C), 138.7 (20 - C), 169.9 (16 - C), 178.4 (11 - C); m/z 335 (0.7), 

198(1.7), 127(14.1), 119 (100), 94 (9.3), 81 (31.9).

Monocrotaline iV-Oxide (18): Procedure 1

Monocrotaline (0.175 g, 0.5 mmol) was dissolved in CHCI3  (20 ml). 3- 

Chloroperoxybenzoic acid (0.126 g, 0.63 mmol) was dissolved in CHCI3  (6  ml) and 

added dropwise to the monocrotaline solution. The mixture was stirred at room 

temperature for 45 m. The CHCI3  was then removed under reduced pressure and the 

residue dissolved in water (10 ml) and washed with diethyl ether (6  x 20 ml). The 

aqueous layer was evaporated to approximately a quarter of its volume. On standing 

the product crystallised as clear needles (0.064 g, 27 %).

HO. HO Me

18

m.p. 188 - 194 °C (dec.), (lit. , 14 192 - 196 °C (dec.)); [a]22D -11.5 0 (c 0.73 in 

methanol), Rf 0.05 (CHCI3 / MeOH / conc. NH3; 85:14:1); vmax (nujol) / cm4  3500 

(br, OH stretch), 1732 (s, ester C=0), 1720 (s, ester C=0), 1680 (w, alkene), 955
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(N+- O’); 5h  (200 MHz, D20) 1.02 (3 H, d, 7 7.2, 19 - Me), 1.15 (3 H, s, 18 - Me), 

1.30 (3 H, s, 17 - Me), 2.07 (1 H, m, 6 - Ha ), 2.54 (1 H, m, 6 - Hp), 2.94 (1 H, q, 7

7.2, 14-H), 4.18 (1 H, 7 17, pro/? 9 - H), 3.57 (2 H, m, 5 - H), 4.49(1 H ,7 17, p ro S 

9 - H), 4.51 - 4.70 (3 H, m, 3 - H & 8 - H), 5.28 (1 H, bdd, 7 12.4, 5.6, 7 - H), 6.13 

(1 H, bs, 2 - H) 8C (50 MHz, D20) 14.1 (19 - C), 18.1 (18 - C), 22.1 (17 - C), 32.3 

(6  - C), 43.5 (14 - C), 60.5 (9 - C), 67.8 (5 - H), 73.5 (7 - H), 77.4 (12 - C), 77.8 (3 - 

C), 80.4(13 -C),  95.3 (8 -C), 130.3 (1 - C), 132.8 (2 - C), 175.9 (15 - C), 177.1 (11 

- C)\m /z 117 (13.5), 111 (1.2), 99 (21.4), 94 (2.2), 83 (9.3), 80 (2.0), 43 (100).

Monocrotaline N- Oxide (18): Procedure 214

Monocrotaline (0.5 g, 1.54 mmol) was dissolved in ethanol (5 ml). Hydrogen 

peroxide solution (30% aqueous solution, 0.34 g, 0.36 ml, 2.32 mmol) was added 

dropwise to the monocrotaline solution. The mixture was stirred at room 

temperature for 5 d. The ethanol was removed under reduced pressure to give the 

title compound as white crystals (0.485 g, 92%). The sample was identical to that 

shown above.

Ouaternisation Procedure 2.2.1

A mixture of the alkaloid and iodomethane (quantities given under 

individual compounds) was stirred at room temperature in methanol (5 ml) for 5 h. 

The methanol and excess iodomethane were removed under reduced pressure to give 

a thick oil. Upon trituration with diethyl ether this oil crystallised. Recrystallisation 

from ethanol / hexane gave the pure material.
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Rosmarinine Methiodide (72)

Rosmarinine (6 8 ) (0.2 g, 0.57 mmol) and iodomethane (0.113 g, 0.05 ml, 0.8 

mmol) were treated according to procedure 2 .2 .1  to afford the title compound as 

plates (0.156 g, 56 %).

HO Me

Me

Me O10

--O H

M e

72

m.p. 243 - 245 °C; [a]22D -62.1 ° (c 2.31 in methanol), Rf 0.05 (CHC13 / MeOH / 

conc. NH3; 85:14:1); (Found: C, 46.1; H, 6.2; N, 2.8; M+-15, 353.1844. 

C 19H28NO5I requires C, 46.1; H, 6.1; N, 2.8 %; M+-15, 353.1838); vmax (nujol) / 

cm -1 3418 & 3272 (s, OH stretch), 1736 (s, ester C=0) 1707 (a, p unsaturated ester), 

1640 (w, a, p unsaturated alkene); 8h  (200 MHz, D2O) 0.74 (3 H, d, T 6 .6 , 19 - Me), 

1.20 (3 H, s, 18 -Me),  1.65 (3 H, d, 77.2, 21 - Me), 1.71 -2.11 ( 3 -H,  m, 1 3 - H &  

14 - H), 2.43 - 2.54 (2 H, m, 6  - H), 2.88 (1 H, m, 5p - H), 3.24 (3 H, s, 22 - Me), 

3.42 & 4.86 (2 H, ABX, Tab 10, Tax 6 , 3p & 3a  - H), 3.68 - 4.05 (4 H, m, 1 - H, 2 - 

H, 5a  - H, 8 - H), 4.33 - 4.43 (2 H, m, 9 - H), 5.40 (1H, bd, 7 - H), 5.9 (1 H, q, T 7.2, 

20 - H); 5C (50 MHz, D20) 12.0 (19 - C), 15.7 (18 - C), 25.4 (21 - C), 31.8 (6  - C),

38.3 (13 - C), 39.5 (14 - C), 46.8 (1 - C), 55.9 (22 - C), 60.4 (9 - C), 66.2 (5 - C),

69.8 (7 - C), 73.4 (3 - C), 75.3 (2 - C), 78.9 (12 - C), 80.9 (8 - C), 131.3 (15 - C),
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139.2 (20 - C), 169.8 (16 - C), 179.4 (11 - C); m/z 353 (M+ - 15, 3.1), 142 (31.4), 

127 (21.4), 112 (24.2), 98 (21.6), 82 (73.5), 43 (100).

Senecionine Methiodide (73)

Senecionine (23) (0.2 g, 0.60 mmol) and iodomethane (0.113 g, 0.05 ml, 0.8 

mmol) were treated according to procedure 2 .2 .1  to afford the title compound as 

pale brown cubes (0.062 g, 22  %).

HO Me

21
Me

Me O10

Me

73

m.p. 248 - 249 °C (dec.), (lit. ,17 249 °C (dec.)); [a]22D -16.2 ° (c 0.53 in methanol), 

Rf 0.07 (CHC13 / MeOH / conc. NH3; 85:14:1); (Found: C, 47.8; H, 6.0; N, 2.8; M+- 

15, 335.1708. C 19H28NO5I requires C, 47.8; H, 5.9; N, 3.00 %; M+-15, 335.1733); 

V m a x  (nujol) / cm-1 3500 (br, OH stretch), 1730 (s, ester C=0) 1710 (w, a ,(3 

unsaturated ester), 1640 (w, a ,(3 unsaturated alkene); 8h  (200 MHz, D2O) 0.74 (3 H, 

d, J  6.4, 19 - Me), 1.24 (3 H, s, 18 - Me), 1.68 (3H, d, J  7.3, 21 - Me), 1.59 - 1.71 

(2H, m, 13 - H & 14 - Ha ), 2.07 (1H, bd, 14 - Hp), 2.58 (2 H, bs, 6 - H), 3.19 (3 H, 

s, 22 - Me), 3.58 - 3.88 (2 H, m, 5 - H), 4.12 - 4.35 (3 H, m, 3 - H & pro R 9 - H), 

4.90 (1 H, bs, pro S 9 - H), 5.32 - 5.38 (2 H, m, 7 - H & 8 - H), 5.88 (1 H, q, 7 7.2,
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20 - H), 6.20 (1 H, bs, 2 - H); 5C (50 MHz, D20) 11.0 (19 - C), 15.5 (18 - C), 24.6 

(21 - C), 33.4 (6 - C), 38.4 (14 - C), 39.3 (13 - C), 55.2 (22 - C), 59.3 (9 - C), 65.1 (5 

- C), 74.5 (3 - C), 75.1 (7 - C), 78.7 (12 - C), 90.7 (8 - C), 129. 4 (1 - C), 131.7 (15 - 

C), 132.5 (2 - C), 138.7 (20 - C), 169.8 (16 - C), 178.5 (11 - C); m/z 351 (M+ - 15,

0.2%), 335 (1.6), 198 (1.2), 127 (21.3), 120 (37.5), 111 (3.2), 94 (39.8), 80 (21.8), 

43 (100).

Monocrotaline Methiodide (74)

Monocrotaline (0.2 g, 0.62 mmol) and iodomethane (0.113 g, 0.05 ml, 0.8 

mmol) were treated according to procedure 2 .2 .1  to afford the title compound as 

white crystals (0.136 g, 47 %).

HO H 0 Me

Me

74

m.p. 204 - 205 °C (dec.), (lit. , 17 205 - 206 °C (dec.)); [oc]22D +22.6 ° ( c  3.1 in 

methanol) (lit. ,17 +23.4° (c 3.1 in methanol)); Rf 0.06 (CHCI3 / MeOH / conc. NH3; 

85:14:1); (Found: C, 44.4; H, 5.6; N, 3.1. C i7H26N06I requires C, 44.7; H, 5.6; N,

3.0 %); vmax (nujol) / cm-1 3500 (br, OH stretch), 1728 (s, ester C=0), 1711 (s, ester 

C=0), 1613 (w, alkene); 5H (200 MHz, D20 ) 1.08 (3 H, d, J  7.2, 19 - Me), 1.19 (3
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H, s, 18 - Me), 1.34 (3 H, s, 17 - Me), 2.20 - 2.35 (1 H, m, 6 - Ha ), 2.46 - 2.60 (1 H, 

m, 6 - Hp), 3.00 (1 H, q, 77.2, 14 - H), 3.19 (3H, s, 20 - Me), 3.53 - 3.80 (2 H, m, 5 - 

H), 4.26 - 4.72 (4 H, m, 3 - H & 9 - H), 4.95 (1 H, bd, J 12 , 8 - H), 5.26 (1H, dt, Jd

6.2, Jt 6 .6 , 7 - H), 6.21 (1H, bs, 2 - H); 8C (50 MHz, D20 ) 13.9 (19 - C), 17.9 (18 - 

C), 21.9 (17 - C), 31.6 (6  - C), 43.2 (14 - C), 54.0 (20 - C), 59.7 (9 - C), 63.3 (5 - C), 

72.7 (3 - C), 73.9 (7 - C), 77.2 (13 - C), 80.2 (12 - C), 88.5 (8 - C), 130.5 (1 - C),

132.8 (2 - C), 175.5 (15 - C), 176.8 (11 - C); m/z 142 (7.2), 126 (7.4), 111 (2.8), 99 

(16.4), 94 (3.5), 80 (2.2), 43 (100)

Preparation of Labelled Compounds

[l,4-14C]Putrescine dihydrochloride was fed to the following plants and root 

cultures and the alkaloids thus produced were isolated by the method given 

above. 111

1. Senecio pleistocephalus

[l,4-14C]Putrescine dihydrochloride (3.6 mg, 225(iCi) was dissolved in 

distilled water (4 ml) and fed to six six month old plants at the rate of 1 ml/day by 

the wick method. After a further seven days the plants were harvested and the 

labelled rosmarinine extracted by the procedure shown above111 to give 42 mg of 

labelled rosmarinine with an activity of 0.037 |iCi/mg.

2. Senecio vulgaris

[l,4-14C]Putrescine dihydrochloride (4.4 mg, 275|iCi) was dissolved in 

sterile water and added to twenty flasks of seven day old S', vulgaris root cultures. 

After a further sixteen days of growth, the cultures were harvested and the labelled 

senecionine extracted by the procedure shown above111 to give 37 mg of labelled 

senecionine with an activity of 0.45 p,Ci/mg.
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3. Symphytum officinale

[l,4-14C]Putrescine dihydrochloride (3.6 mg, 225 p,Ci) was dissolved in 

distilled water (4 ml) and fed to two eighteen month old plants in a single batch by 

the wick method. After a further twelve days the plants were harvested and the 

labelled alkaloids extracted from the roots and leaves separately by the procedure 

shown above111 to give 96 mg of root alkaloids with an activity of 0.37 nCi/mg, and 

45 mg of leaf alkaloids with an activity of 1.3 nCi

2-O-Tosvl Rosmarinine (77)121

Rosmarinine (6 8 ) (3.0 g, 8.4 mmol), in dry pyridine (30 ml) was cooled to 0 

°C and added to a solution of p-toluenesulfonyl chloride (3.1 g, 16.8 mmol) in dry 

pyridine (1 0  ml) with cooling such that the temperature of the reaction mixture did 

not rise above 0 °C. The reaction mixture was then flushed with nitrogen, stoppered 

and refrigerated for 72 h. After this time the red reaction mixture was poured into 

ice-cooled 5 M ammonia solution (75 ml) and extracted with diethyl ether (3 x 100 

ml). The combined organic extracts were dried, filtered and concentrated to give a 

brown oil which was induced to crystallise upon drying in vacuo. The brown solid 

was recrystallised from acetone / dichloromethane (1:1) to afford the title compound 

as orange crystals (2.61 g, 61 %).
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MeHQ

Me

Me OlO

23

5

m.p. 121 - 122 °C (dec.), (lit. , 122 120 °C (dec.)); [a]22D -43.6 ° (c 1.02 in CHC13), 

Rf 0.62 (CHCl3/MeOH/conc. NH3; 85:14:1); (Found: M+, 507.1919. C25H33N0 8S 

requires M+, 507.1927); vmax (CHC13 soln.) / cm-1 3532 (br, OH stretch), 1719 (s, 

ester C=0), 1624 (w, alkene), 1537 - 1576 (v, benzene ring), 1365 (s, S 0 20-), 1190 

(m, S 0 20-), 849 (s, p-disubstituted benzene ring); 5h (200 MHz, CDC13) 0.96 (3 H, 

d, 7 6 .8 , 1 9 -M e), 1.27 (3 H, s, 18 - Me), 1.82 (3 H, d, 7 7.1,21 - Me), 1.86- 1.96 

(1H, m, H - 13), 2.10 - 2.28 (4 H, m, H - 6 & H - 14), 2.46 (3 H, s, 30 - Me), 2.60 - 

2.78 (2 H, m, H - 1 & H - 5p), 2.92 - 3.10 (3 H, m, H - 3 & H - 5a ), 3.56 (1H, dd, 7

7.2, 4.5, 8 - H), 3.88 (1 H, dd, 7 11.8, 1.9, pro R 9 - H), 4.58 - 4.68 (1H, m, pro S 9 -

H), 4.77 - 4.87 (1H, bq, 76.3, H - 2), 5.25 (1H, q, 74.2 H - 7), 5.85 (1 H, q, 77.1, H

- 20), 7.35 (2 H, dd, 7 8.3, 26- H & 28 - H), 7.82 (2 H, dd, 7 8.3, 25- H & 29 - H); 6C 

(50 MHz, CDC13) 13.2 (19 - C), 15.5 (18 - C), 21.7 (21 - C), 26.0 (30 - C), 35.0 (14

- C), 37.2 (13 - C), 39.2 (6  - C), 45.5 (1 - C), 51.9 (3 - C), 59.1 (5 - C), 62.6 (9 - C),

67.4 (8 - C), 74.1 (2 - C), 75.9 (12 - C), 81.6 (7 - C), 128.0 (26 - C & 28 - C), 129.9 

(25 - C & 29 - C), 131.8 (15 - C), 133.4 (27 - C), 135.6 (20 - C), 145.2 (24 - C),

167.5 (16 - C), 178.1 (11 - C); m/z 507 (M+, 0.4%), 353 (0.5), 335 (1.4), 155 (6.4), 

138 (39), 120 (55.9), 94 (45.1), 91 (61.8), 82 (44.4), 80 (49.0), 43 (100).
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Senecionine (23) From 2-O-Tosvl Rosmarinine (77) in

Refluxing Pyridine

A solution of 2-0-tosyl rosmarinine (77) (0.15 g, 0.30 mmol) in dry pyridine 

(3 ml) was heated at reflux under nitrogen for 22 h, after which time TLC (CHCI3 / 

MeOH / conc. NH3; 85:14:1) showed no remaining starting material. The solution 

was cooled and poured into 5M ammonia solution (25 ml). The aqueous layer was 

extracted with chloroform (3 x 15 ml). The combined organic layers were dried, 

filtered and concentrated. Remaining pyridine was removed by azeotroping the 

residue with water (3 x 1 ml) and toluene ( 3x1  ml) to give a brown solid. This was 

purified by preparative TLC (CHCI3 / MeOH / conc. NH3; 85:14:1; Rf 0.30) to give 

the title compound as a white powder (0.004 g, 4 %).

Attempted Synthesis of Senecionine (23) From 2-O-Tosvl 

Rosmarinine (77) in Pyridine / DMAP

A solution of 2-O-tosyl rosmarinine (77) (0.3 g, 0.59 mmol), DMAP (0.029 

g, 0.24 mmol), and triethylamine (0.1 ml, 0.64 mmol) in dry pyridine (6  ml) was 

stirred under dry nitrogen for 24 h. TLC analysis (CHCI3 / MeOH / conc. NH3; 

85.T 4 :1) showed that no product had formed.

Senecionine (23) From 2-O-Tosyl Rosmarinine (77) in 

Refluxing Pyridine / DMAP

A solution of 2-0-tosyl rosmarinine (77) (0.15 g, 0.30 mmol) and DMAP 

(0.015 g, 0 .1 2  mmol) in dry pyridine (6 ml) was heated at reflux under dry nitrogen 

for 48 h, after which time TLC (CHCI3 / MeOH / conc. NH3; 85:14:1) showed no 

remaining starting material. The solution was cooled and poured into 5 M ammonia 

solution. The aqueous layer was extracted with chloroform (3 x 50 ml). The
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combined organic layers were dried, filtered and concentrated. Excess pyridine was 

removed by azeotroping the residue with water ( 3 x 5  ml) and toluene ( 3 x 5  ml) to 

give a brown solid. This was purified by preparative TLC ( CHCI3 / MeOH / conc. 

NH3 ; 85:14:1; Rf 0.30 ) to give the title compound as a white powder (0.009 g, 9

%).

Senecionine (23) From 2-fl-Tosvl Rosmarinine (77) in DMF

A solution of 2-O-tosyl rosmarinine (77) (0.20 g, 0.39 mmol) in dry DMF 

(10 ml) was heated at reflux under dry nitrogen for 5 h, after which time TLC 

(CHCI3 / MeOH / conc. NH3; 85:14:1) showed no remaining starting material. The 

solution was cooled and poured into 5 M ammonia solution. The aqueous layer was 

extracted with diethyl ether (3 x 25 ml). The combined organic layers were dried, 

filtered and concentrated to give a brown solid. This was purified by preparative 

TLC (CHCI3 / MeOH / conc. NH3; 85:14:1) to give the title compound as a white 

powder (0.015 g, 12 %) and rosmarinine (0.009 mg, 6 %).

Attempted Synthesis of 2-O-Dimethylthiocarbamoyl 

Rosmarinine (79)

To a solution of rosmarinine (6 8 ) (0.4 g, 1.1 mmol) in dry DMF (5 ml) under 

nitrogen was added NaH (60 % in mineral oil, 0.088 g, 2.2 mmol). The resulting 

solution was stirred at room temperature until TLC (CHCI3 / MeOH / conc. NH3; 

85:14:1) suggested formation of the sodium salt (Rf 0.0) (c a . 1 h). 

Dimethylthiocarbamoyl chloride (0.16 g, 1.3 mmol) was then added and the reaction 

mixture was heated at 80 °C for a further 3 h. The reaction mixture was cooled and 

poured into brine (10 ml) and extracted with chloroform (3 x 25 ml). The combined 

organic extracts were washed with brine (3 x 25 ml), and extracted with 5 M HC1 (3 

x 25 ml). The combined acidic extracts were washed with chloroform (2 x 25 ml),
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basified with conc. NH3 solution and extracted with chloroform (3 x 25 ml). The 

combined organic extracts were dried, filtered and concentrated to give a brown oil. 

In this complex mixture of products no alkaloidal product could be detected by TLC 

(CHCl3/MeOH/conc. NH3; 85:14:1) and visualisation using Dragendorffs reagent. 

A variety of other conditions were tried to affect this reaction. These are detailed in 

table 9 in chapter 2.

Attempted Synthesis of a 2-O-Tosyl Rosmarinine Epimer (85) 

Via a Mitsunobu Reaction

Diethyl azodicarboxylate (0.192 g, 0.17 ml, 1.1 mmol) in dry toluene (2 ml) 

was added to a solution of rosmarinine (6 8 ) (0.353 g, 1 mmol) and 

triphenylphosphine (0.288 g, 1.1 mmol) in dry toluene (5 ml). This mixture was 

stirred until complete dissolution had occurred (ca . 15 min). Methyl p- 

toluenesulfonate (0.208 g, 1.1 mmol) was then added dropwise and stirring was 

continued for a further 27 h. A complex, inseparable mixture of products was 

obtained. The main component of this mixture was shown by TLC (CHCI3 / MeOH 

/ conc. NH3; 85:14:1; Rf 0.21 - 0.22) to have the same Rf value as rosmarinine.
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9.3 Experimental For Chapter 3

Preparation of Svnthanecine A (14)127

OH

OH

Me

14

Synthanecine A (14) was prepared according to the method of Mattocks18 as 

modified by Barbour and Robins. 127 All analytical data agreed with literature 

values.

(±)-6.7-O.Q-Dibenzovl svnthanecine A (93)

Distilled benzoyl chloride (0.37 g, 0.31 ml, 2.64 mmol) was added dropwise 

with ice cooling to a solution of synthanecine A (0.12 g, 0.88 mmol) in a mixture of 

dry THF (20 ml), and dry pyridine (5 ml) under nitrogen. The mixture was stirred at 

room temperature for 1 h then poured into ice water (25 ml). The solution was 

acidified with 2 M HC1 and washed with diethyl ether (3 x 50 ml). The aqueous 

solution was basified with conc. NH3 solution and extracted with chloroform (3 x 50 

ml). The combined organic layers were dried, filtered and concentrated to give the 

crude product as a thick oil. This was purified by column chromatography (silica; 

CHCl3/methanol/triethylamine; 85:14:1) to give the title compound as an oil (0.108 

g, 35 %).
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5

Me

O

93

(Found: M+-135, 216.1034 C 13H 14NO2 requires M+-135, 216.1024); v max (KBr 

disc) / cm-1 2943 (m, CH2 stretch), 2785 (m, N-Me stretch), 1719 (s, C=0 stretch), 

1664 (m, C=C stretch), 1601 (m, aromatic ring), 1584 (m, aromatic ring), 1491 (m, 

aromatic ring); 8h (200 MHz, CDCI3) 2.53 (3 H, s, 1 - Me), 3.18 - 3.28 (1 H, m, 5 - 

Ha), 3.45 - 3.47 (2 H, m, 2 - H), 3.57 (1 H, dd, J ab 9.7, 6 - Ha), 3.62 (1 H, dd, 7ab 

9.7, 6 - Hb), 3.74 - 3.84 (1 H, m, 5 - Hb), 4.89 (2 H, bs, 7 - H), 5.89 (1 H, bs, 4 - H), 

7.19 - 7.47 (6  H, m, aromatic H), 7.88 - 7.93 (4 H, m, aromatic H); m/z 216 (9.0), 

112 (9.0), 94 (100), 77 (25.6), 42 (12.8).

(±)-6.7-fl.O-(3.3-Dimethylglutaryl)synthanecine A (19)

Treatment of synthanecine A (0.142 g, 1 mmol) and 3,3-dimethylglutaric 

anhydride (0.142 g, 1 mmol) according to the method of Barbour and Robins gave 

the title compound in 10 % yield. All analytical data were identical to those 

previously published. 19
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9,4 Experimental For Chapter 4

Methyl (3S)-3.4-dihvdroxybutanoate (122)

To a solution of dimethyl (S')-malate (1 g, 6.17 mmol) in dry THF (10 ml) 

under nitrogen was added boron methyl sulfide complex (10 M, 0.64 ml, 6.35 

mmol) dropwise over 20 min, maintaining the temperature at 20 °C. The solution 

was then stirred at room temperature for 30 min until the evolution of hydrogen had 

ceased. After this time the flask was cooled to 0 °C and NaBH4 (12 mg, 5 mol %) 

was added with vigorous stirring in one portion. When the exothermic reaction had 

subsided the cooling bath was removed and stirring was continued for a further 1 h. 

The reaction was quenched by addition of methanol (6 ml), stirred for 30 min and 

concentrated to give a colourless oil. This was purified by column chromatography 

(silica, ethyl acetate, Rf = 0.34) to give the product (122) as an oil (0.701 g, 85%).

OH

4

OH

122

[a ]o 22 -4.7 ° (c 1.7 in methanol); (M+-31, 103.0394. C4H7O3 requires M+-31, 

103.0395); vmax (thin film) / cm_l 3362 (br, OH stretch), 2954 (s, C-H stretch), and 

1738 (s, ester C=0 stretch); 5 r  (200 MHz, CDCI3) 2.39 (2 H, d, J  6 .6 , 2 - H), 3.45 

& 4.00 (3 H, ABX system, /a b  11.5, 4 - Ha, 4 - Hb & 3 - H), 3.58 (3 H, s, 5 - Me); 

5C (50 MHz, CDCI3 ) 37.9 (2 - C), 51.9 (5 - Me), 65.7 (4 - C), 68.8  (3 - C), 172.8 (1 

- C); m/z 103 (13.2), 71 (19.7), 61 (19.1), 43 (100).
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Methyl (3S)-3-hydroxy-4-(fert-butyldimethylsilvl)butanoate

am

A solution of the diol (122) (0.5 g, 3.73 mmol) in dry THF (5 ml) under 

nitrogen was cooled to 0 °C. Imidazole (0.33 g, 4.85 mmol) and TBDMSC1 (0.59 g, 

3.92 mmole) were then added with stirring. Stirring was continued for 2 h at 0 °C 

before the solution was partitioned between diethyl ether (30 ml) and water (20 ml). 

The aqueous layer was extracted with ether (2 x 30 ml) and the organic extracts 

combined, washed with brine (3 x 30 ml), dried and concentrated to give the crude 

product (0.79 g). This was purified by column chromatography (silica; EtOAc / 

hexane; 75:25) to give the pure monoprotected diol (0.75 g, 81 %);

OH

C(CH3)3

123

[a ]D22 -8.9 ° (c 1.50 in CHC13); (M+-31, 217.1251. C i0H2 iO3Si requires M+-31, 

217.1260); vmax (thin film) / cm-1 2954 - 2856 (s, C-H stretch), 1740 (s, ester C=0 

stretch), and 1122 (m, C-O stretch), 1074 (s, Si-O), 838 (s, Si-O); Sh (200 MHz, 

CDCI3) 0.01 (6  H, s, 5 & 6 - H), 0.83 (9 H, s, 8 - H), 2.45 (2 H, m, 2 - H), 2.93 (1 H, 

d, J  5, O-H), 3.53 (2 H, m, 4 - H), 3.75 (3 H, s, 9 - Me), 4.00 (1 H, m, 3 - H); 8C (50 

MHz, CDCI3) -5.6 (5 - C, 6 - C), 18.2 (7 - C), 25.8 (8 - C), 37.8 (2 - C), 51.6 (9 - 

Me), 66.1 (4 - C), 68.4 (3 - C), 172.5 (1 - C); m/z 217 (4.9), 191 (18.8), 117 (73.2), 

75 (100).
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Methyl (3/?)-3-methanesulfonvl-4-(ferl-

butyldimethylsilvl)butanoate (124)

To a solution of the monoprotectected diol (123) (2 g, 8.06 mmol) in dry 

pyridine (25 ml) under nitrogen was added methanesulfonyl chloride (0.95 g, 0.64 

ml, 1.65 mmol) with stirring. Stirring was continued for 2 h at room temperature. 

After this time diethyl ether (100 ml) was added to precipitate pyridine 

hydrochloride. The solution was filtered and evaporated to give the crude product. 

This was purified by column chromatography (silica; EtOAc) to give the product as 

a yellow oil (1.74 g, 66 %);

O

124

[aD]22 -30.6 ° (c 1.56 in CHC13); (Found: C, 44.3; H, 8.0; M+-31, 295.1037.

C i2H26SC>6Si requires C, 44.2; H, 8.0 %; M+-31 295.1035); vmax (thin film) / cm-1

2954 - 2858 (s, C-H stretch), 1740 (s, ester C=0 stretch), 1360 & 1176 (s, SO2O-)

and 1126 (s, C-O stretch), 1035 (s, Si-O), 840 (s, Si-O); 6H (200 MHz, CDCI3) 0.00

& 0.00 (2 x 3 H, 2 x s, 5 & 6 - H), 0.81 (9 H, s, 8 - H), 2.70 (2 H, m, 2 - H), 2.99 (3

H, s, 9 - H), 3.63 (3 H, s, 10 - Me), 3.74 (2 H, m, 4 - H), 4.90 (1 H, m, 3 - H); 8C (50

MHz, CDCI3) -5.6 (5 - C, 6 - C), 18.2 (7 - C), 25.7 (8 - C), 36.0 (2 - C), 38.1 (9 - C),

52.0 (10 - Me), 64.2 (4 - C), 78.8 (3 - C), 170.5 (1 - C); m/z 295 (2.3), 269 (5.8),

173 (70.4), 153 (100), 89 (46.2), 75 (24.4).
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Attempted Synthesis of Methyl (3/?)-3-(iV-methvlamino)-4-

(fert-butyldimethvlsilvl)butanoate (125) 1

The mesylate (124) (0.4 g, 1.23 mmol), was stirred with methylamine (33% 

solution in ethanol, l.lg , 1.16 ml, 1.23 mmol) at room temperature for 18 h. 5 M 

ammonia solution (10  ml) was then added and the aqueous layer was extracted with 

chloroform ( 3 x 1 5  ml). The combined organic extracts were dried, filtered and 

concentrated to give a pale yellow oil. Purification by column chromatography 

(silica, CHCI3 / MeOH / Et3N; 85:14:1) gave the racemised amine (125) (0.161 g, 

50 %) and the olefin (126) (0.014 g, 5 %).

9
NHMe

C 0 2Me

CH

125

[ocD]22 0 0 (c 1.51 in CHCI3); (Found: M+-31, 230.1569. C n H 24N0 2Si requires 

M+-31 230.1576); vmax (thin film) / cm-1 3344 (w, N-H stretch), 2954 - 2856 (s, C- 

H stretch), 1736 (s, ester C=0 stretch), 1534 (w, N-H bend), 1041 (s, Si-O), 830 (s, 

Si-O); 8h (200 MHz, CDCI3) 0.00 (6  H, s, 5 - Me & 6 - Me), 0.84 (9 H, s, 8 - Me), 

1.60 (1 H, bs, N-H), 2.37 (3 H, s, 9 - Me), 2.40 (2 H, d, J  6.4, 2 - H), 2.85 - 2.97 (1 

H, m, 3 - H), 3.47 - 3.60 (2 H, m, 4 - H), 3.63 (3 H, s, 10 - Me); 8 C (50 MHz, 

CDCI3) -5.6 (5 - C & 6 - C), 18.1 (7 - C), 25.7 (8 - C), 33.7 (9 - Me), 35.9 (2 - C),

51.4 (10 - C), 57.8 (3 - C), 63.7 (4 - C), 172.7 (1 - C); m/z 261 (M+, 0.1 %), 188 

(5.4), 173 (7.2), 130 (41.5), 116 (100), 89 (25.5), 75 (22.7).
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Attempted Synthesis of Methyl (3/?)-3-(A-methvlamino)-4-

(fer^butvldimethylsilyl)butanoate (113) 2

The mesylate (124) (0.4 g, 1.23 mmol), was dissolved in dry acetonitrile (5 

ml). The reaction mixture was cooled to 0 °C and methylamine gas was bubbled 

through the solution for 1 min. The solution was then stirred for 15 min at 0 °C after 

which time 5 M ammonia solution (10 ml) was added and the aqueous layer washed 

with chloroform ( 3 x 1 5  ml). The combined organic layers were dried, filtered and 

concentrated to give a pale yellow oil. Purification by column chromatography 

(silica, CHCI3 / MeOH / Et3N; 85:14:1) gave the racemised amine (125) (0.100 g, 

31 %) and trace amounts of the alkene (126). Further attempts to synthesise the 

amine (113) were carried out (see Table 10). None of these gave enantiomerically 

pure material.

Methyl 4-(fe^butyldimethylsilyl)but-3-enoate (140)

To a solution of the mesylate (124) (0.5 g, 1.53 mmol) in toluene (10 ml) 

was added DBU (1.16 g, 1.14 ml, 7.67 mmol) and the mixture heated at reflux for 1 

h. The solution was then allowed to cool and poured into 0.1 M HC1 (50 ml) and 

extracted with dichloromethane (3 x 75 ml). The combined organic layers were 

dried, filtered and evaporated to give the crude product. This was purified by 

column chromatography (silica; hexane / ethyl acetate; 9:1) to give the title 

compound as a clear oil (0.066 g, 19 %).
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CH3

8 CH3 
C(CH3)3

140

(Found: C, 57.2; H, 9.8; M+-31, 199.1157. C jo H j^ S i  requires C, 57.4; H 9.6 %; 

M+-31, 199.1154); vmax (thin film) / c n r1 2954 - 2858 (s, C-H stretch), 1744 (s, 

ester C=0 stretch), 1660 (s, olefin), 1046 (s, Si-O), 840 (s, Si-O); 5h (200 MHz, 

CDC13) 0.12 (6 H, s, 5 - Me & 6 - Me), 0.90 (9 - H, s, 8 - Me), 3.14 (2 H, dd, J  vic 

7.0, J  aiiylic 1.6, 2 - H), 3.66 (3H, s, 9 - Me), 4.66 (1 H, dt, J  5.8, 7.0, 3 - H), 6.30 (1 

H, dt, J vic 5.8, J aiiyiic 1.6, 4 - H); 8C (50 MHz, CDCI3) -5.5 (5 - C & 6 - C), 18.1 (7 

-C) ,  25.5 (8 - C), 29.3 (2 - C), 51.6 (9 - C), 101.4 (3 - C), 140.9 (2 - C), 172.8(1 - 

C); m/z 200 (0.4), 173 (51.3), 145 (16.8), 115 (5.8), 89 (100), 73 (39.9), 59 (28.3).

p-Methvl D-Aspartic Acid (142)152

D-Aspartic Acid (2.0 g, 15 mmol) and sodium sulfate (2.0 g, 14 mmol) were 

suspended in dry methanol (25 ml) under nitrogen. To this suspension was added 

tetrafluoroboric acid diethyl etherate (4.7 ml, 30 mmol) dropwise via a syringe. The 

mixture was heated to 60 °C and stirred for 15 h. After this time the sodium sulfate 

was removed by filtration, washed with methanol ( 2 x 1 0  ml) and the filtrate was 

neutralised with triethylamine. The excess methanol was removed under reduced 

pressure and the residue was triturated with ethyl acetate / acetone (4:1). The solid 

was filtered off and recrystallised from water/acetone to give the title compound as 

white platelets (1.60 g, 73 %).
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1 4 2

m.p. 190 - 193 °C , (lit. , 152 180 - 181 °C); [a ]D22 -20.1 0 (c 2 in 1 M HC1) (lit. ,152 

-20.6 ° (c 2 in 1 M HC1)), Rf 0.27 (MeOH/ether/water; 50:35:15); (Found: MH+, 

148.0583. C5H 10NO4 requires MH+, 148.0610.); v max (nujol) / cm-1 3100 (w, 

NH3+ stretch), 2922 & 2852 (s, C-H stretch), 1728 (s, ester C=0 stretch), 1644 (s, 

C0 2 " antisymmetrical stretch), 1376 (s, CO2'  symmetrical stretch); 8h  (200 MHz, 

D20 ) 2.93 (2 H, d, J  5.6, 3 - H), 3.60 (3 H, s, 5 - Me), 4.02 (1 H, t, J  5.6, 2 - H); 8c 

(50 MHz, D20 ) 35.1 (3 - C), 51.1 (2 - C), 53.7 (5 - Me), 173.3 (1 - C & 4 - C); m/z 

148 (MH+ 1.0%), 102 (100), 88  (10.2), 74 (65.9), 60 (46.7), 43 (98.1).

Attempted Synthesis of p-Methyl (N-r2-norborn-5-ene1)-D- 

aspartic Acid (143)

To a homogeneous solution of (3-methyl D-aspartic acid (1 4 2 )  (0.5 g, 3.4 

mmol) in 2 M HC1 were added with vigorous stirring, cyclopentadiene (1.78 g, 2.2 

ml, 27.2 mmol), and formaldehyde (37 % aqueous solution, 0.81 g, 9.96 mmol). 

Stirring was continued for 22 h. The reaction mixture was then poured into water 

(25 ml) and extracted with dichloromethane (3 x 25 ml). The combined organic 

layers were dried, filtered and concentrated to give a crude brown oil from which no 

identifiable products could be isolated.

p-Methyl L-Aspartic Acid Hydrochloride (145)155

A solution of L-aspartic acid (17 g, 0.13 mol) in dry methanol (80 ml), was 

cooled to -10 °C. To this cooled flask was added thionyl chloride (20.2 g, 12.4 ml,
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0.17 mol) dropwise with stirring. The flask was allowed to warm slowly to room 

temperature. Stirring was then stopped and the flask was allowed to stand for a 

further 25 min. Diethyl ether (250 ml) was added and the flask was vigorously 

shaken and cooled to 0 °C. A white precipitate formed and the flask was refrigerated 

for 1 h to induce further precipitation. The precipitate was collected by filtration and 

placed in a desiccator for 24 h at ca. 20 mmHg to remove any residual SO2 . 

Recrystallisation from methanol/ether (with a few drops of dilute HC1 added) gave 

the product (1 4 5 )  (23.4 g, 85 %).

NH3+cr

M e02C

1 4 5

m.p. 201 - 204 °C , (lit. , 155 190 °C); [a ]D22 +17.4° (c 1 in EtOH / water [3:1]) 

(lit. ,155 +21.4 0 [c 1 in EtOH / water (3:1)]), (Found: MH+-HC1, 148.0593. 

C5H 10NO4 requires MH+-HC1, 148.0610.); vmax (nujol) / cm-1 2923 (m, amino 

salt), 2695 - 2458 (m, acid O-H stretch), 1732 (s, C=0 stretch), 1500 (s, N-H bend); 

8h (200 MHz, D20 ) 2.94 (2 H, d, J  5.3, 3 - H), 3.53 (3 H, s, 5 - Me), 4.22 (1 H, t, J

5.2, 2 - H); 6C (50 MHz, D20 ) 34.5 (3 - C), 50.0 (2 - C), 53.8 (5 - Me), 171.4 (4 - 

C), 172.6 (1 - C); m/z 148 (MH+ 1.1%), 102 (99.8), 88  (12.7), 74 (65.2), 60 (48.5), 

43 (100).

ft-Methyl W-Benzyloxycarbonyl)-L-aspartic Acid (146)156

The aspartic acid derivative (1 4 5 )  (5 g, 27 mmol) and sodium carbonate 

(2.97 g, 28 mmol) were dissolved in water (30 ml) at 0 °C. When evolution of C 0 2 

had ceased benzyl chloroformate (5.12 g, 4.28 ml, 30 mmol) was added dropwise 

via syringe simultaneously with sodium carbonate (4 g, 38 mmol in 30 ml water) via
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a dropping funnel to the vigorously stirred reaction mixture. The reaction was 

allowed to warm to room temperature and stirring was continued for 3 h. The 

reaction mixture was then washed with diethyl ether (3 x 50 ml), acidified to pH 1 

with conc HC1 and extracted with ethyl acetate (3 x 75 ml). The combined organic 

extracts were dried, filtered and concentrated to leave a clear oil. Cooling and 

vigorous scratching induced crystallisation. Recrystallisation from ethyl 

acetate/petroleum ether (40 - 60 °C) gave the product (1 4 6 )  as white crystals (5.66 g, 

75 %).

O f. NH
: 14

5 4
M e0 2C

C 0 2H

1 4 6

m.p. 89 - 90 °C, (lit. ,156 97 - 98 °C); [cc]D22 +33.4 ° (c 1 in chloroform), (Found: C, 

55.3; H, 5.5; N, 5.1; M+, 281.0903. C i3H i5N 0 6 requires C, 55.5; H, 5.3; N, 5.0 %; 

M+, 281.0899); v max (nujol) / cm- 1 3318 (s, acid O-H stretch), 1745 (s, C=0 

stretch), 1694 (s, carbamate), 1588 (s, aromatic ring); 8h (200 MHz, CDCI3) 2.95 &

4.66 (3 H, ABX system, 7AB 17.4, 3 - H & 2 - H), 3.65 (3 H, s, 5 - Me), 5.10 (2 H, s, 

9 - H), 6.00 (1 H, d, J  8.6, 6 - H), 7.33 (5 - H, bs, aromatic H), 10.35 (1 H, s, 1 - 

CO2H); 8c (50 MHz, CDCI3) 36.2 (3 - C), 50.1 (2 - C), 52.2 (5 - Me), 67.3 (9 - C), 

128.1 - 128.5 (aromatic C-H), 135.9 (10 - C), 156.3 (7 - C), 171.5 (4 - C), 175.0 (C -

1); mJz 281 (M+, 1.9 %), 146 (4.7), 108 (36.4), 91 (100), 79 (12.2), 43 (16.6).
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P-Methvl (iV-Benzyloxycarboiivl-iV-methyl)-L-aspartic Acid

am

The amino acid derivative (1 4 6 )  (0.7 g, 2.5 mmol) and iodomethane (1.25 

ml, 20 mmol) were dissolved in dry THF (8 ml) under nitrogen. The mixture was 

cooled to 0 °C and sodium hydride (60 % dispersion, 0.3 g, 7.5 mmol) was added 

cautiously with gentle stirring. After the addition was complete the suspension was 

stirred at room temperature for 24 h after which time the reaction mixture was 

homogeneous. Ethyl acetate (15 ml) was added followed by a dropwise addition of 

water (10 ml) to destroy any remaining sodium hydride. The solution was then 

concentrated and the oily residue was partitioned between diethyl ether (25 ml) and 

water (40 ml). The organic layer was extracted with 5 % sodium bicarbonate (3 x 25 

ml) and the combined aqueous extracts were acidified to pH 2 with 5 M HC1. The 

aqueous layer was extracted with ethyl acetate (3 x 30 ml), and the organic extracts 

were further washed with water (2 x 25 ml), 5 % sodium thiosulfate (25 ml) and 

brine (15 ml). The combined organic extracts were dried, filtered and concentrated 

to give a thick yellow oil (0.557 g, 76 %). This oil could not be induced to 

crystallise, nor could it be successfully purified by column chromatography and thus 

it was used crude in the next stage of the synthesis.

9 11
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M e0 2C

3

1 4 7
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8h (90 MHz, CDCI3) 2.7 - 3.0 (2 H, m, 3 - H), 2.9 (3 H, s, 16 - Me), 3.6 (3 H, s, 5 - 

Me), 4.6 - 4.9 (1 H, m , 2 - H), 5.05 (2 H, s, 9 - H), 7.2 (5 H, bs, aromatic H), 8.55 (1 

H, bs, 1 - CO2H); m/z 295 (M+, 0.1 %), 160 (4.1), 116 (7.8), 91 (100), 43 (4.0).

Attempted Synthesis of p-Methvl (/V-methvll-L-aspartic Acid 

£1481

(i) A solution of the amino acid derivative (147) (0.25 g, 0.85 mmol) in 80 % 

acetic acid solution (5 ml) was mixed with 10 % Pd - C catalyst (0.2 g). The mixture 

was vigorously stirred in a H2 atmosphere for 5 h. The mixture was filtered through 

Celite to remove the catalyst. The catalyst was extracted with ethanol (2 x 20 ml) 

and the combined filtrates were concentrated to give only starting material (0.24 g, 

98 %).

(ii) A solution of the amino acid derivative (147) (0.25 g, 0.85 mmol) in dry 

ethanol (5 ml) was mixed with cyclohexene (0.1 ml) and 10 % Pd - C catalyst (0.2 

g). The mixture was heated at reflux for 2 h, before being filtered through Celite to 

remove the catalyst. The catalyst was extracted with ethanol (2 x 20 ml) and the 

combined filtrates were concentrated to give only starting material (0.18 g, 72 %).

P-Methvl (iV-methvD-L-aspartic Acid (148)

Ammonium formate (5 g, 17.8 mmol) was heated at 40 °C at 2 mmHg for 1 

h. Dry methanol (60 ml), the amino acid derivative (147) (5 g, 17.8 mmol) and 10 % 

Pd - C catalyst (5 g) were then added. The mixture was vigorously stirred under a 

nitrogen atmosphere for 5 h before being filtered through Celite to remove the 

catalyst. The catalyst was then extracted with methanol (2 x 50 ml) and the 

combined filtrates were concentrated to give a brown oil. Crystallisation was
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induced by dissolving the residue in a small amount of methanol and carefully 

adding diethyl ether dropwise to give the title compound as white crystals (0.74 g, 

26 %).

©  7
6 NH2Me

148

m.p. 176 - 180 °C (dec.); [oc]d22 +19.1 ° (c 0.65 in methanol); vmax (nujol) / cm-1 

1740 (s, C=0 stretch), 1591 (s, anti symmetrical C 0 2" stretch), 1377 (s, symmetrical 

C 0 2- stretch); 8H (200 MHz, D20) 2.57 (3 H, s, 7 - Me), 2.77 - 2.85 (2 H, m, 3 - H), 

3.54 (3 H, s, 5 - Me), 3.63 - 3.73 (1 H, m, 2 - H); 8C (50 MHz, D20 ) 32 .9 (6 - C),

33.9 (3 - C), 53.5 (5 - C), 59.9 (2 - C), 173.1 (4 - C), 175.5 (1 - C); m/z 161 (M+, 

0.1 %), 130(4.7), 116(38.4), 102 (3.2), 88 (31.8), 74 (12.7), 42 (100).

Af-Benzyloxycarbonvl-L-aspartic Acid (149)

L-Aspartic acid (2.9 g, 22 mmol) was dissolved in 2 M NaOH (17 ml) and 

diethyl ether (5 ml). The solution was cooled to 0 °C and benzyl chloroformate (8.2 

g, 6.9 ml, 48 mmol) was added dropwise with vigorous stirring simultaneously with 

a 4 M NaOH solution (12 ml) over 45 m. The solution was stirred for a further 5 h 

after which time the reaction mixture was washed with diethyl ether (2 x 25 ml), 

acidified to pH 1 with 5 M HC1 and extracted with ethyl acetate (3 x 50 ml). The 

combined ethyl acetate extracts were dried, filtered and concentrated to give a clear 

oil. Careful dropwise addition of chloroform afforded the title compound as white 

crystals (5.23 g, 89 %).

M e02C

1 5 5



o

8 10

149

m.p. 116 - 117 °C (lit., 199 117- 119  °C); [oc]D22 +8.7 0 ( c l  in acetic acid), (lit., 199 

+8.6  (c 1 in acetic acid)); (Found: C, 53.9; H, 4.9; N, 5.2. C 12H 13NO6 requires C, 

53.9; H, 4.9; N, 5.2 %); vmax (nujol) / c n r1 2855 - 2924 (s, O-H stretch), 1705 (s br, 

acid C=0 stretch, O-CO-N stretch), 1585 (m, aromatic ring), 1533 (s, aromatic 

ring), 775 - 736 (aromatic C-H bending); SH (200 MHz, CDCI3 / D6 DMSO) 2.55 - 

2.82 (2 H, m, 3 - H), 4.45 (1 H, q, 2 - H), 4.52 (1 H, s, N-H), 5.05 (2 H, s, 8 - H), 

7.34 (5 H, bs, aromatic H), 9.68 (2 H, bs, 2 x CO2H); 6C (50 MHz, CDCI3 / D6 

DMSO) 36.0 (3 - C), 50.5 (2 - C), 65.6 (8 - C), 127.6 - 128.3 (aromatic C), 136.8 (9 

-C), 155.9(6-C). 171.7(1 - Q ,  172.7 (4 - C); m/z 107 (27.3), 91 (100), 79 (25.7), 

77(19.2).

AMBenzyloxvcarbonvl-L-aspartic Anhydride (150)

A mixture of CBZ-L-aspartic acid (149) (5 g, 18.7 mmol) and acetic 

anhydride (11.9 g, 11 ml, 0.11 mol) were gently stirred for 1 h. After this time the 

mixture was allowed to stand for a further 2 h. The acetic anhydride and acetic acid 

formed were removed under reduced pressure to afford a thick oil. Remaining acetic 

anhydride and acetic acid were removed by azeotroping the residue with dioxane (6 

ml), and xylene (6 ml) to leave a colourless solid. This solid was stored in a 

desiccator at ca 20 mmHg for 72 h. Recrystallisation from ethyl acetate / hexane 

afforded the title compound as an colourless solid (4.47 g, 96 %).
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150

m.p. 82 - 84 °C (lit., 164 79.5 - 81.5 °C); [oc]D22 -5.3 ° (c 1.8 in methanol); (Found: 

M+, 249.0634. C12H 11NO5 requires M+, 249.0637); vmax (nujol) / cm4  1702 (s, br,' 

anhydride C=0 stretch, O-CO-N stretch), 1586 (m, aromatic ring), 1534 (s, aromatic 

ring), 1306 (s, C-O stretch), 1274 (s, C-O stretch), 1192 (s, C-O stretch), 776 - 736 

(aromatic C-H bending); 5h (200 MHz, D6-DMSO) 2.71 & 4.42 (3 H, ABX system, 

/ax 7.8, / bx 7.9, 3 - H & 2 - H); 5.09 (2 H, s, 9 - H), 7.39 (5 H, bs, aromatic H); 5C 

(50 MHz, D6 -DMSO) 36.1 (3 - C), 50.6 (2 - C), 65.6 (9 - C), 127.8 - 128.5 

(aromatic C), 137.0 (10 - C), 156.0 (7 - C), 171.8 (1 - C), 172.8 (4 - C); m/z 249 

(M+, 4.1 %), 107 (27.3), 91 (100), 79 (25.7), 77 (19.2).

3(5)-r(Benzyloxycarbonvl)aminol-y-butyrolactone (151)163

Treatment of the anhydride (150) (11 g, 44.2 mmol) in dry THF (50 ml) with 

sodium borohydride (1.68 g, 44.2 mmol) in dry THF (50 ml) according to the 

method of McGarvey et al.163 gave the title compound in 75 % yield.

7

5
151
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m.p. 103 - 104 °C (lit., 163 103 - 104 °C); Rf = 0.63 (silica, ethyl acetate); [oc]d 22 

-51.6 ° (c 2.25 in chloroform), (lit., 163 -54.9 ° (c 2.27 in chloroform)); (Found: M+, 

235.0840. C 12H 13NO4 requires M+, 235.0844); vmax (nujol) / cm-1 1780 (s, lactone 

C =0 stretch), 1674 (s, O-CO-N stretch), 1550 (m, aromatic ring), 1462 (s, aromatic 

ring), 786 - 722 (aromatic C-H bending); 6H (200 MHz, CDCI3) 2.35 - 2.77 (2 H, m, 

3 - H), 4.14 - 4.17 (1 H, m, 2 - H), 4.34 - 4.40 (2 H, m, 1 - H), 5.05 (2 H, s, 9 - H),

6.00 (1 H, bs, N-H), 7.30 (5 H, bs, aromatic H); 5C (50 MHz, CDCI3) 34.6 (3 - C),

47.9 (2 - C), 67.0 (1 - C), 73.7 (9 - C), 128.1 - 129.6 (aromatic C), 135.9 (10 - C),

155.9 (7 - C), 175.8 (4 - C); m/z 235 (M+, 20.0 %), 108 (42.7), 107 (22.4), 91 (100), 

79(15.8), 77 (9.9).

Methyl OS) -3- f(benzvloxvcarbonvDaminol-4-tert- 

butyldimethvlsilvloxvbutanoate (152)167

Treatment of the lactone (151) (3 g, 12.8 mmol) in dry methanol (60 ml) 

with DCC (2.91 g, 14.1 mmol) followed by imidazole (1.74 g, 25.6 mmol) and tert - 

butyldimethylsilyl chloride (2.89 g, 19.2 mmol) in dry DMF (20 ml) according to 

the method of Jurzal et al.167 gave the title compound in 75 % yield.

C 0 2Me

152
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Rf = 0.52 (silica, diethyl ether /hexane; 50:50); [a]d22 -4.1 ° (c 1.0 in chloroform), 

(lit. ,167 -4.1 (c 1.0 in chloroform)); (Found: M+-57, 324.1267. C i5H22N0 5Si 

requires M+-57, 324.1267); vmax (thin film) / cm-1 2953 & 2932 (s, C-H stretch), 

1728 (bs, ester C=0 stretch & O-CO-N stretch), 1612 (m, aromatic ring), 1508 (s, 

aromatic ring), 1256 (SiMe2), 1088 (Si-O), 777 - 698 (aromatic C-H bending); 8h 

(200 MHz, CDC13) 0.00 (6  H, s, 5 - Me & 6 - Me), 0.85 (9 H, s, 8 - Me), 2.56 (2 H, 

d, J  6.1, 2 - H), 3.59 (3 H, s, 19 - Me), 3.62 - 3.70 (2 H, m, 4 - H), 4.02 - 4.11 (1 H, 

m, 3 - H), 5.04 (2 H, s, 12 - H), 5.51 (1 H, d, J 8 .8 , N-H), 7.28 (5 H, bs, aromatic H); 

8C (50 MHz, CDCI3) -5.6 (5 - C & 6 - C), 18.2 (7 - C), 25.8 (8 - C), 35.3 (2 - C), 

49.3 (3 - C), 51.6 (19 - C), 63.9 (4 - C), 66.7 (12 - C), 128.1 - 128.5 (aromatic C),

136.5 (13 - C), 156.0 (10 - C), 172.0 (1 - C); m/z 381 (M+, 0.1 %), 350 (0.6), 324

(10.1),, 116 (8.7), 91 (100), 79 (5.7), 77 (4.5), 73 (18.1).

Attempted Synthesis of methyl (S)-3- 

r(benzvloxycarbonylamino)-A-methyll-4-fert- 

butvldimethvlsilvloxvbutanoate (153)

The amine (152) (0.381 g, 1 mmol) and iodomethane (1.13 g, 0.5 ml, 8 

mmol) were dissolved in dry THF (5 ml) under nitrogen. The flask was cooled to 0 

°C and sodium hydride (0.036 g, 1.5 mmol) was added cautiously with gentle 

stirring. Stirring was continued at room temperature for 24 h. Ethyl acetate (5 ml) 

was added followed by water (5 ml). The solution was concentrated and the residue 

that remained was partitioned between diethyl ether (25 ml) and water (25 ml). The 

aqueous layer was washed with extracted with diethyl ether (3 x 25 ml) and the 

combined organic extracts were dried, filtered and concentrated to give a yellow oil. 

TLC (silica; diethyl ether /hexane; 50:50) and NMR spectroscopic analysis showed 

this to be a mixture of products of which the major component was the starting 

amine (152). The conditions of this reaction were varied with no further success. 

These conditions are summarised in table 12.
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Methyl (S)-34(benzyloxycarbonylamino)-,/V-methyll-4-fert-

butvldimethylsilyloxvbutanoate (153)

The amine (152) (0.381 g, 1 mmol) was dissolved in dry DMF (5 ml) and 

iodomethane (1.13 g, 0.5 ml, 8 mmol) and silver (I) oxide (0.972 g, 4 mmol) were 

added. The reaction was stirred at room temperature for 24 h. The mixture was 

filtered through Celite to remove the silver (I) oxide. The Celite was washed with 

diethyl ether ( 2 x 1 0  ml). A white solid was precipitated. Filtration removed this 

solid and the filtrate was diluted with diethyl ether (20 ml) and washed with 2 M 

HC1 (2 x 25 ml), water (2 x 25 ml) and brine (30 ml). The organic solution was 

dried, filtered and concentrated to give an oil. This was purified by column 

chromatography (silica; diethyl ether / hexane; 60:40) to give the title compound as 

a clear oil (195 mg, 51 %).

14 12

9

153

Rf = 0.47 (silica, diethyl ether/hexane; 60:40); [oc]22d -5-2 ° (c 0.81 in chloroform);

(Found: M+-15, 380.1886. C i9H3oNC>5Si requires M+-15, 380.1893); vmax (thin

film) / cm-1 2954 - 2886 (s, C-H stretch), 2856 (s, N-Me), 1741 (s, ester C=0

stretch), 1703 (O-CO-N stretch), 1538 (m, aromatic ring), 1471 (s, aromatic ring),

1257 (SiMe2), 1007 (Si-O), 778 - 698 (aromatic C-H bending); SH (200 MHz,

CDC13) -0.03 / 0.00 (6 H, 2 x s, 5 - Me & 6 - Me), 0.84 (9 H, s, 8 - Me), 2.53 - 2.68

(2 H, m, 2 - H), 2.86 / 2.89 (3 H, 2 x s, 20 - Me), 3.60 / 3.63 (3 H, 2 x s, 19 - Me),
160



3.67 - 3.81 (2 H, m, 4 - H), 4.31 - 4.51 (1 H, m, 3 - H), 5.09 (2 H, bs, 12 - H), 7.31 

(5 H, bs, aromatic H); 6c (50 MHz, CDC13) -5.7 / -5.6 (5 / 6 - C), 18.0 (7 - C), 30.8 /

32.0 (20 - C), 33.7 / 34.2 (2 - C), 51.7 (19 - C), 63.3 / 63.4 (4 - C), 66.8 / 67.2 (12 - 

C), 127.7- 128.4 (aromatic C), 137.0 (1 3 -C), 156.0 (10 - C), 171.6/171.8(1 - C); 

m/z 380(0.3), 338 (21.2), 206 (5.4), 130 (9.9), 116 (1.3), 91 (100), 73 (9.8).

Methyl (S)-3-(ALmethvIamino)-4-/gr/- 

butyldimethvlsilvloxvbutanoate (154)

A solution of the protected amine (153) (0.131 g, 0.34 mmol) was dissolved 

in dry methanol (5 ml). To this solution was added 5 % Pd - C (100 mg) and the 

mixture was stirred at room temperature in a hydrogen atmosphere for 18 h. The 

mixture was filtered through Celite to remove the catalyst, washed with methanol (2 

x 15 ml) and the organic solution was concentrated to leave the title compound as an 

oil (0.076 g, 86 %).

10
9 NHMe

Si
4 2

7 I 8 
C(CH3)3

154

Rf = 0.24 (silica, diethyl ether /hexane; 60:40); [oc]d 22 -6.7 0 (c 0.73 in chloroform); 

(Found: M+, 261.1744. C i2 H 2 7 N 0 3Si requires M+, 261.1760); vmax (thin film) / 

cm - 1  3442 (m, N-H stretch), 2954 - 2887 (s, C-H stretch), 2798 (m, N-Me), 1739 (s, 

ester C = 0 stretch), 1255 (SiMe2), 1106 (Si-O); 6H (200 MHz, CDCI3 ) 0.00 (6 H, s, 

5 & 6 Me), 0.84 (9 H, s, 8 - Me), 2.37 (3 H, s, 10 - Me), 2.38 - 2.42 (2 H, m, 2 - H), 

2.85 - 2.97 (1 H, m, 3 - H), 3.46 - 3.60 (2 H, m, 4 - H), 3.63 (3 H, s, 11 - Me); 6C (50 

MHz, CDCI3 ) -7.2 (5 & 6 - C), 16.6 (7 - C), 24.2 (8 - C), 32.2 (10 -Me), 34.4 (2 -
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C), 49.9 (11 - C), 56.2 (3 - C), 62.1 (4 - C), 171.2 (1 - C); m/z 261 (M+,0.1 %), 188

(5.0), 130 (34.8), 116 (100), 75 (22.5).

Methyl (S)-3-W-methvlamino-/V-ethoxycarbonvlmethvl)-4- 

fert-butyldimethylsilvloxvbutanoate (155)

A solution of the secondary amine (154) (0.105 g, 0.4 mmol), ethyl 

bromoacetate (0.084 g, 0.06 ml, 0.5 mmol), and hydrated potassium carbonate 

(0.083 g, 0.6 mmol) were heated at reflux in 7 % aqueous acetone (5 ml) for 24 h. 

The potassium carbonate was removed by filtration and the organic solution was 

concentrated to give a yellow oil. This was purified by column chromatography 

(silica; diethyl ether / hexane; 60:40) to give the title compound as a clear oil (0.064 

g, 46 %).

10

C 0 2Me

C(CH3)3

155

Rf=0.56 (silica, diethyl ether /hexane; 60:40); (Found: M+ 347.2126. C i6H33NC>5Si 

requires 347.2128); vmax (thin film) / cm-1 2954 - 2887 (s, C-H stretch), 1741 (s, 

ester C=0 stretch), 1255 (SiMe2), 1112 (Si-O); 6H (200 MHz, CDC13) 0.00 (6 H, s, 

5 & 6 - Me), 0.84 (9 H, s, 8 - Me), 1.22 (3 H, t, J  7.1, 13 - Me), 2.38 (3 H, s, 14 - 

Me), 2.49 (2 H, d, J  6.9, 2 - H), 3.15 - 3.27 (1 H, m, 3 - H), 3.37 (2 H, d, /  5.1, 10 - 

H), 3.63 (3 H, s, 15 - Me), 3.60 - 3.76 (2 H, m, H - 4), 4.12 (2 H, q, J  7.1, 12 - H); 

5C (50 MHz, CDCI3) -7.3 (5 & 6 - C), 12.6 (13 - C), 16.5 (7 - C), 24.2 (8 - C), 31.6 

(2 - C), 37.3 (14 - C), 49.9 (15 - C), 54.6 (10 - C), 58.8 (4 - C), 59.7 (3 - C), 61.6 (12

1 6 2



- C), 170.0 (1 - C), 171.29 (11 - C); m/z 347 (M+ 0.9 %), 274 (16.5), 202 (100),

170 (53.5), 143 (6.8), 89 (11,0), 73 (25.6).

Attempted Synthesis of Methyl l-methvl-4-oxopyrrolidine- 

(S)-2-fert-butyldimethylsilyloxvmethvl-3-carboxylate (156)

To a solution of the tertiary amine (155) (0.052 g, 0.16 mmol) in dry 

benzene under nitrogen was added sodium hydride (5 mg, 0.21 mmol). The mixture 

was stirred at room temperature for 5 h. Saturated ammonium chloride solution was 

added (10 ml) and the resulting solution was extracted with diethyl ether (3 x 10 

ml). The combined organic extracts were dried, filtered and concentrated to give 

starting material (0.039 g, 75 %).
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9.5 Experimental For Chapter 5

iV-Benzvloxvcarbonyl-L-threonine (174)172

L-Threonine (10 g, 0.084 mol) and sodium hydroxide pellets (8.4 g, 0.21 

mol) were dissolved in water (50 ml). To this solution was added benzyl 

chloroformate (17.6 g, 14.3 ml, 0.1 mol) at 0 °C in three equal portions 5 m apart. 

The solution was then allowed to warm to room temperature and left stirring for 12 

h. After this time the reaction mixture was washed with diethyl ether (3 x 30 ml), 

acidified to pH 1 with 6 M HC1 and extracted with ethyl acetate (4 x 50 ml). The 

combined organic extracts were dried, filtered and evaporated to give a thick oil. 

Crystallisation was induced by careful addition of a 1:1 mixture of ethyl acetate and 

petroleum ether (40 - 60 °C) to give the product as a white solid (18.1 g, 85 %).

11

174

m.p. 105 - 106 °C (lit. 172 101 - 102 °C); [a ]D22 -5.7 ° (c 2 in ethanol), (lit. ,172 -5.9 ° 

(c 2 in ethanol)); (Found: C, 56.8; H, 6.0; N, 5.5; M+, 253.0962. C 12H 15NO5 

requires C, 56.9; H 5.9; N 5.5 %; M+, 253.0950); vmax (nujol) /  c m 1 3404 (br, O-H 

stretch), 2923 & 2854 (s, C-H stretch), 1717 (s, acid C =0 stretch & O-CO-N 

stretch), 1660 (s, N-H bending), 1612 (m, aromatic ring), 1565 (s, aromatic ring),
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1463 (s, aromatic ring), 760 (aromatic C-H bending), 694 (aromatic C-H bending); 

5h  (200 MHz, D6 DMSO) 1.04 (3 H, d, J  6.3, 4 - Me), 3.92 (1 H, dd, J  8.9, 3.3, 2 - 

H), 3.99 - 4.06 (1 H, m, 3 - H), 4.99 (2 H, s, 8 - H), 6.90 (1 H, d, J  8.9, 5 - H), 7.26 

(5 H, m, aromatic H); 5C (50 MHz, D6 DMSO) 20.5 (4 - C), 60.1 (2 - C), 65.7 (8 - 

C), 66.6 (3 - C), 127.3, 127.8, 127.9, 128.5 (all aromatic C), 137.1 (9 - C), 156.6 (6 - 

C), 172.5 (1 - C); m/z 253 (M+, 0.2 %), 209 (3.8), 148 (9.6), 108 (16.7), 91 (100), 

79 (22.8), 65 (12.6).

iV-Benzvloxvcarbonvl-O-ffe/t-butyldimethylsilvD-L-threonine

(175)173

To a solution of imidazole (2.42 g, 36 mmol) and the L-threonine derivative 

(3.0 g, 12 mmol) in dry DMF (10 ml) was added tert - butyldimethylsilyl chloride 

(5.38 g, 36 mmol) in dry DMF (10 ml) at 0 °C under nitrogen. The mixture was 

warmed to room temperature and stirred for 14 h. The reaction mixture was poured 

into ice water (50 ml) and extracted with diethyl ether (3 x 50 ml). The organic 

extract was dried, filtered and concentrated. The residue was dissolved in THF (10 

ml) and 0.5 M KOH (10 ml), stirred for 4 h and washed with diethyl ether (3 x 40 

ml) to remove organic impurities. The aqueous layer was acidified to pH 3 with 1 M 

HC1 and extracted with diethyl ether (3 x 50 ml). The combined organic layers were 

washed with brine (50 ml), dried, filtered and concentrated to give a crude solid. 

Careful trituration with hexane gave the title compound as white crystals (2.83 g, 64 

% ).
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11

HNnj

175

m.p. 146 - 148 °C (lit.173 150.5 - 152.5 °C); [oc]D22 +12.1 ° (c 1 in chloroform), (lit., 

173 +13.2 ° (c 1 in chloroform)); (Found: C, 58.6; H, 7.9; N, 3.9; M+, 367.1801. 

C i8H29N0 5Si requires C, 58.9; H 7.9; N 3.8 %; M+, 367.1815); vmax (nujol) / cm' 1 

2925 & 2854 (s, C-H stretch), 2725 (w, acid O-H stretch), 1755 (s, acid C=0 

stretch) 1737 (s, O-CO-N stretch), 1688 (s, N-H bending), 1526 (s, aromatic ring), 

1458 (s, aromatic ring), 1251 (m, Si-O), 745 (aromatic C-H bending), 696 (aromatic 

C-H bending); 8H (200 MHz, CDC13) -0.03 (3 H, s, 15 - Me / 16 - Me), 0.00 (3 H, s, 

15 - Me / 16 - Me), 0.78 (9 H, s, 18 - Me), 1.14 (3 H, d, J  6.2, 4 - Me), 4.27 (1 H, dd, 

J  9.2, 1.9, 2 - H), 4.42 (1 H, m, 3 - H), 5.08 (2 H, s, 8 - H), 5.42 (1 H, d, J  9.1, 5 - 

H), 7.30 (5 H, m, aromatic H), 10.74 (1 H, bs, -CO2H); 8c (50 MHz, CDCI3) -6.6  (C

- 15 / C - 16), -6.1 (C - 1 5 / C - 16), 16.2 (17 - C), 18.8 (18 - C), 24.0 (4 - C), 58.0(2

- C), 65.9 (8 - C), 67.0 (3 - C), 126.6 (aromatic C), 126.8 (aromatic C), 129.0 

(aromatic C), 134.5 (9 - C), 155.1 (6 - C), 174.2 (1 - C); m/z 367 (M+, 0.1 %), 202

(5.1), 159 (22.7), 130 (24.3), 91 (100), 73 (43.7).
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Attempted Synthesis of iV-Benzvloxvcarbonyl-O-ffert-

butvldimethylsilvD-L-threonine chloride (176)

The amino acid derivative (175) (0.5 g, 1.36 mmol) was dissolved in dry 

THF (20 ml). Oxalyl chloride (0.173 g, 0.12 ml, 1.36 mmol) was added and the 

mixture was stirred at room temperature for 16 h. After this time the solvent was 

removed under reduced pressure to give starting material (0.46 g, 92 %).

Af-Benzyloxvcarbonvl-fl-(fert-butvldimethvlsilvl)-L-threonine 

acid chloride (176)

The amino acid derivative (165) (1.14 g, 3 mmol) and cyanuric chloride 

(0.369 g, 2 mmol) were dissolved in dry acetone (20 ml) under nitrogen. 

Triethylamine (0.304 g, 0.42 ml, 3 mmol) was added and the solution was stirred for 

10 h at room temperature. The solvent was removed under reduced pressure to give 

a 2:1 mixture of diastereoisomers (1.08 g, 93 %). This mixture was used without 

further purification in the next stage of the synthesis.

11

COC1
HN.

176
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8h (200 MHz, CDCI3) -0.02 (3 H, s, 15 - Me / 16 - Me), 0.00 (3 H, s, 15 - Me / 16 - 

Me), 0.78 & 0.80 (9 H, s, 18 - Me), 1.16 - 1.28 (3 H, m, 4 - Me), 4.20 (1 H, bd, J  

6 .6 , 2 - H), 4.39 (1 H, m, 3 - H), 4.48 & 5.06 (2 H, s, 8 - H), 5.59 (1H, d, J  9.6, 5 - 

H), 7.27 (5 H, m, aromatic H), 8C (50 MHz, CDCI3) -7.2 & -6.9 (C - 15 / C - 16), 

-6.0 & -5.8 (C - 15 / C - 16), 16.0 & 16.1 (17 - C), 18.7 & 19.2 (18 - C), 23.9 & 24.0 

(4 - C), 62.7 (2 - C), 65.6 (8 - C), 65.8 & 66.3 (3 - C), 125.3 - 127.0 (aromatic C),

134.4 & 135.8 (9 - C), 151.8 & 154.9 (6  - C), 164.3 & 167.8 (1 - C).

Preparation of Diazomethane200

Diazomethane was prepared according to the procedure given in "Advanced 

Practical Organic Chemistry" .200

Attempted Synthesis of A-Benzvloxvcarbonvl-l-diazo-O -(tert- 

butvldimethylsilyl)-L-threonine chloride (182)

The acid chloride ( 1 7 6 )  (1.06 g, 2.75 mmol) was dissolved in dry diethyl 

ether (5 ml) under nitrogen. A solution of diazomethane was added at 0 °C dropwise 

until a yellow colour persisted. The mixture was allowed to warm to room 

temperature and stirred for a further 3 h. After this time dilute acetic acid was added 

to remove the yellow colour, and the solution was dried, filtered and concentrated to 

give a thick yellow oil. Attempted purification of this oil (neutral alumina; diethyl 

ether) resulted in decomposition.

16 8



9.6 Experimental For Chapter 6

(2S.5S)-2-(tert - Butyl)-5-(methyl)-1.3-dioxolan-4-one (191)183

Lactic acid (190) (10 g, 0.11 mol) trimethylacetaldehyde (19.1 g, 24 ml, 0.22 

mol) and p-toluenesulfonic acid (0.2 g) were dissolved in pentane (150 ml). Two 

drops of conc. H2SO4 were added and the mixture was heated at reflux in a Dean 

Stark apparatus for 6 h. After this time the reaction mixture was washed with water 

(3 x 100 ml) and brine (75 ml) and the organic layer was dried, filtered and 

concentrated to give the product (9.5 g, 54 %, 92 % de). The analytical data for this 

compound are identical to those given by Seebach et al. 183

(2S.5S)-2-(fert-Butyl)-5-(isopropyr)-1.3-dioxolan-4-one (187)183

(S)-(+)-2-Hydroxy-3-methylbutanoic acid (1 8 6 ) (4 g, 33.9 mmol) 

trimethylacetaldehyde (5.83 g, 7.36 ml, 67.8 mmol) and p-toluenesulfonic acid (0.20 

g) were dissolved in pentane (80 ml). One drop of conc. H2SO4 was added and the 

mixture was then heated at reflux in a Dean Stark apparatus for 3 h. After this time 

the reaction mixture was washed with water (3 x 40 ml) and brine (40 ml) and the 

organic layer was dried, filtered and concentrated to give the product (5.39 g, 85 %, 

99 % de).

C(CH3)3

191
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nh

187

[oc]d 22 -7.1 ° (c 3 in chloroform), (lit. ,183 -6.9 ° (c  2.9 in chloroform)); (Found: M+, 

186.1257. C10H 18O3 requires M+, 186.1256); vmax (thin film) / cm-1 2938, 2909 & 

2878 (s, C-H stretch), 1798 (s, C=0 stretch), 1366 (s, -OCOC-H stretch), 1090 (C-O 

stretch); SH (200 MHz, CDCI3) 0.99 (9 H, s, 10 - Me), 1.12 (6 H, d, J  7.0, 7 & 8 - 

Me), 2.12 - 2.26 (1 H, m, 6 - H), 4.10 (1 H, dd, J  4.0, 1.3, 5 - H), 5.10 (1 H, d, J 1.3, 

2 - H); 6c  (50 MHz, CDCI3) 17.1 (7 / 8 - C), 18.5 (7 / 8 - C), 23.6 (10 - C), 29.6 (6 - 

C), 34.4 (9 - C), 79.5 (5 - C), 108.9 (2 - C), 172.9 (4 - C); m/z 186 (M+, 0.1 %), 129

(21.7), 101 (92.1), 85 (10.8), 73 (100), 57 (91.8), 43 (47.1).

Attempted Synthesis of (2S.5/?)-2-(fert-Butyl)-5-(methvl)-5- 

(isopropyl)-1.3-dioxolan-4-one

To a solution of diisopropylamine (0.23 ml, 1.6 mmol) in dry THF (7 ml) 

under nitrogen at -78 °C was added «-butyl lithium (1.6 M in hexanes, 0.98 ml, 1.5 

mmol) dropwise via syringe. The solution was stirred for 30 min with no further 

cooling. The resulting solution of LDA was cooled to -78 °C and a solution of the 

dioxolanone (187) (0.19 g, 1.62 mmol) in THF (1 ml) was added dropwise via 

syringe. After stirring for 1 h at -78 °C, methyl iodide (0.33 g, 0.14 ml, 2.3 mmol) 

was added dropwise. The mixture was allowed to warm to room temperature with 

continuous stirring for 1 h before being quenched by the addition of saturated 

NH4CI solution (2 ml). The reaction mixture was extracted with diethyl ether (4 x 

2 0  ml) and the combined organic extracts were dried, filtered and concentrated to 

give a brown oil. No characterisable products could be isolated from this oil. This
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reaction was repeated using the dioxolanone 191 and other nucleophiles as shown in 

table 14. None gave any characterisable products.
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9.7 Experimental For Chapter 7

AMlenzvl-N-(trimethylsilylmethyl)aminomethvl methyl ether

(216)

To a suspension of paraformaldehyde (5 g) in methanol (50 ml) was added 

N-(trimethylsilylmethyl)benzylamine (6.16 g, 31.8 mmol) dropwise at 0 °C. The 

mixture was stirred for 3 h after which time potassium carbonate was added and the 

oily layer was separated. The residue was extracted with diethyl ether (3 x 50 ml) 

and the combined organic extracts were dried over anhydrous potassium carbonate. 

Filtration and solvent evaporation gave the title compound as a colourless oil (6.17 

g, 82 %). Analytical data was identical to that previously published. 184

Cycloaddition Procedure 9.7.1184

Caesium fluoride was heated under vacuum at 40°C for 2 h. Dry THF, the 

aminomethyl methyl ether (216) and the dienophile were then added under a 

nitrogen atmosphere. To the resulting solution, trimethylsilyl triflate was added and 

the reaction mixture was stirred at 60 °C for 18 h. The flask was cooled to 0 °C and 

quenched with 15% NaOH. The organic layer was separated and the aqueous phase

4

( H 3C ) 3Si

3r/ N 5

9

216

172



was extracted with diethyl ether. The combined organic extracts were dried, filtered 

and concentrated to give the crude product.

Diethyl (±)-l-benzvlpvrrolidine-3.4-dicarboxylate (217)184

Caesium fluoride (0.749 g, 4.9 mmol), the aminomethyl ether (216) (5.80 g,

24.5 mmol), diethyl fumarate (4.21 g, 4 ml, 24.5 mmol) and trimethylsilyl triflate 

(1.09 g, 0.89 ml, 4.9 mmol) were treated in THF (90 ml) according to procedure

9.7.1 to give the crude pyrrolidine (217). This was purified by column 

chromatography (silica; diethyl ether / hexane; 25:75) to give the title compound as 

a colourless oil (4.89 g, 66  %).

8 7 6 9 10 11

2

1 N

17

217

(Found: M+, 305.1627. C 17H23NO4 requires M+, 305.1627); Rf 0.31 (diethyl ether/ 

hexane; 25:75); vmax (thin film) / cm-1 2981 & 2936 (s, C-H stretch), 2800 (s, N- 

CH2-, stretch), 1732 (s, C=0 stretch), 1604 (w, aromatic ring), 1495 (m, aromatic 

ring), 741 (m, monosubstituted benzene ring, C-H bend), 700 (m, monosubstituted 

benzene ring, C-H bend); 6H (200 MHz, CDCI3) 1.24 (6 H, t, /  7.1, 8 - Me & 11 - 

Me), 2.77 - 2.94 (4 H, m, 2 - H & 5 - H), 3.39 - 3.50 (2 H, m, 3 - H & 4 - H), 3.60 (2 

H, s, 12 - H), 4.15 (4 H, q, J  7.1, 7 - H & 10 - H), 7.29 (5 H, m, aromatic H); 6C (50
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MHz, CDC13) 14.2 (8 - C & 11 - C), 45.5 (3 - C & 4 - C), 56.6 (2 - C & 5 - C), 61.0 

(7 - C & 10 - C / 12 - C), 61.3 (7 - C & 10 - C / 12 - C), 127.1 - 128.6 (aromatic C),

138.4 (13 - C), 175.5 (6 - C & 9 - C); m/z 305 (M+, 4.9), 276 (3.6), 260 (13.9), 230 

(7.8), 214 (9.9), 168 (38.6), 140 (18.6), 91 (100).

Diethyl mgso-l-benzylpyrrolidine-3.4-dicarboxylate (218)

Caesium fluoride (0.602 g, 3.97 mmol), the aminomethyl ether (216) (4.7 g,

19.8 mmol), diethyl maleate (3.41 g, 3.2 ml, 19.8 mmol) and trimethylsilyl triflate 

(0.88 g, 0.72 ml, 3.97 mmol) were treated in THF (100 ml) according to procedure

9.7 .1  to give the crude pyrrolidine (218). This was purified by column 

chromatography (silica; diethyl ether / hexane; 25:75) to give the title compound as 

a colourless oil (5.32 g, 88 %).

8 7 6 9 10 11

17

218

(Found: M+, 305.1622. C 17H23NO4 requires M+, 305.1627); Rf 0.31 (diethyl ether/ 

hexane; 25:75); vmax (thin film) / cm-1 2980 & 2906 (s, C-H stretch), 2810 (s, N- 

CH2-, stretch), 1732 (s, C=0 stretch), 1604 (w, aromatic ring), 1494 (m, aromatic 

ring), 742 (m, monosubstituted benzene ring, C-H bend), 700 (m, monosubstituted 

benzene ring, C-H bend); 8h (200 MHz, CDCI3) 1.21 (6 H, t, /  7.1, 8 - Me & 11 -
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Me), 2.61 - 2.69 (2 H, m, 2 - Ha & 5 - Ha), 3.03 - 3.07 (2 H, m, 2 - Hb & 5 - H>), 

3.18-3.26 (2H, m, 3 - H & 4 - H), 3.63 (2 H, s, 12 - H), 4.09 (2 H, q, J  7.1, 7 - H &

10 - H), 7.29 (5 H, m, aromatic H); 6C (50 MHz, CDC13) 14.0 (8 / 11 - C), 14.1 (8 /

11 - C), 45.3 (3 - C & 4 - C), 56.1 (2 - C & 5 - C), 59.9 (7 - C /1 0  - C / 12 - C), 60.6 

(7 - C / 10 - C / 12 - C), 61.2 (7 - C / 10 - C / 12 - C), 127.1 - 129.8 (aromatic C),

138.5 (13 - C), 165.2 (6 - C / 9 - C), 172.5 (6 - C / 9 - C); m/z 305 (M+, 1.3), 276

(2.7), 260 (14.5), 230 (5.1), 214 (19.5), 168 (13.0), 140 (8.6), 91 (100).

Dimethyl l-benzyl-3-pyrroline-3.4-dicarboxylate (219)

Caesium fluoride (0.573 g, 3.77 mmol), aminomethyl ether (216) (4.47 g,

18.9 mmol), dimethyl acetylenedicarboxylate (2.68 g, 2.32 ml, 18.9 mmol) and 

trimethylsilyl triflate (0.837 g, 0.68 ml, 3.77 mmol) were treated in THF (100 ml) 

according to procedure 9.7.1 to give the crude pyrroline (5.06 g, 98 %). No further 

purification was carried out.

7 6 8 9

15

219
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(Found: M+, 275.1146. C 15H 17NO4 requires M+ 275.1157); Rf 0.42 (diethyl ether / 

hexane; 25:75); vmax (thin film) / cm-1 2952 & 2898 (s, C-H stretch), 2818 (s, N- 

CH2-, stretch), 1738 (s, C= 0  stretch), 1622 (acc'pp'unsaturated alkene), 1568 (w, 

aromatic ring), 1496 (m, aromatic ring), 746 (m, monosubstituted benzene ring, C-H 

bend), 700 (m, monosubstituted benzene ring, C-H bend); 8 h (200 MHz, CDCI3) 

3.77 (6 H, s, 7 & H & 9 - H), 3.79 (2 H, s, 10 - H), 3.82 (4 H, s, 2 - H & 5 - H), 7.33 

(5 H, s, aromatic H); 8C (50 MHz, CDCI3) 52.2 (7 - C & 9 - C), 59.7 (10 - C), 60.6 

(2 - C & 5 - C), 127.3 - 128.6 (aromatic C), 137.1 (3 - C & 4 - C), 138.4 (11 - C), 

164.0 (6 - C & 8 - C); m/z 275 (M+, 1.8), 242 (5.0), 184 (6.1), 91 (100), 59 (7.7).

Debenzvlation Procedure 9.7.2

The benzylated amine was dissolved in a solution of formic acid in dry 

methanol (5 %) under nitrogen. To this solution was added 10 % Pd / C. The 

mixture was stirred at room temperature for 18 h. After this time the reaction 

mixture was filtered through Celite to remove the catalyst and the Celite was 

washed with methanol and water. The solvent was then removed under reduced 

pressure to give the crude product. Conc. ammonia solution was then added 

dropwise to the residue and the filtrate extracted with ethyl acetate. The combined 

organic extracts were dried, filtered and evaporated. The remaining residue was 

purified by column chromatography (silica; chloroform / methanol / triethylamine; 

85:14:1) to give the pure amine.

Diethyl (±)-pyrrolidine-3.4-dicarboxylate (224)

The amine (217) (0.40 g, 1.31 mmol), in 5% formic acid in methanol (10 ml) 

and 10 % Pd / C (0.40 g) were treated according to procedure 9.7.2 to give the title 

compound (0.166 g, 59 %).
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8 7 6 9 10 11

2

224

(Found: M+, 215.1154. C 10H 17NO4 requires M+, 215.1157); vmax (thin film) / cm-1 

3318 (w, N-H stretch), 2942 & 2908 (s, C-H stretch), 1728 (s, C=0 stretch), 1304 & 

1232 (s, C-O stretch); 8H (200 MHz, CDCI3) 1.27 (6  H, t, J 7.1, 8 - Me & 11 - Me), 

2.51 (1 H, s, N-H), 3.04 - 3.33 (6 H, m, 2 - H, 3 - H, 4 - H & 5 - H), 4.17 (4 H, q, J 

7.1, 7 - H & 10 -H);  8C (50 MHz, CDCI3) 14.2 (8 - C & 11 - C), 48.3 (3 - C & 4 -  

C), 52.1 ( 2 - C & 5 - C ) ,  61 . 0(7- C  & 10 - C). 173.9 (6  - C & 9 - C); m/z 215 (M+ 

2.9), 170 (32.6), 142 (20.5), 96 (25.2), 68 (100), 43 (44.1).

Diethyl mgso-pyrrolidine-3.4-dicarboxvlate (225)

The amine (218) (0.43 g, 1.42 mmol), in 5% formic acid in methanol (10 ml) 

and 10 % Pd / C (0.43 g) were treated according to procedure 9.7.2 to give the title 

compound (0.166 g, 67 %).

8 7 6 9 10 11

225
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(Found: M+, 215.1160. C 10H 17NO4 requires M+, 215.1157); vmax (thin film) / cm-1 

294 & 2907 (s, C-H stretch), 1737 (s, C =0 stretch); 8H (200 MHz, CDCI3 ) 1.18 (6 

H, t, J 7.1, 6 - Me & 11 - Me), 3.08 - 3.32 (6  H, m, 2 - H, 3 - H, 4 - H & 5 - H), 4.06 

(4 H, q, 7 7.1, 7 - H & 10 - H); 8C (50 MHz, CDCI3 ) 14.0 (8 - C & 11 - C), 47.2 (3 - 

C & 4 - C), 50.0 (2 - C & 5 - C), 60.7 (7 - C & 10 - C). 172.4 (6  - C & 9 - C); m/z 

215 (M+, 2.5), 170 (13.0), 141 (12.3), 96 (8.2), 87 (8.9), 68 (100), 43 (40.3).

Reduction Procedure 9.7.3

A solution of DIB AL in toluene was added, with stirring and ice cooling via 

syringe over 30 min to a solution of the diester in dry toluene under nitrogen. The 

reaction mixture was stirred at room temperature for 1 h. Ethyl acetate was then 

added to consume the excess DIBAL. After a further 5 min acetone and Celite were 

added. Methanol was then added dropwise with ice cooling. The mixture was 

shaken vigorously until gelling occurred (5 min), then water was added. The mixture 

was shaken vigorously again to break up the gel, then stirred at room temperature 

for 1.5 h. The resulting suspension was filtered, and the solid residue was washed, 

firstly with hot water then with hot methanol. The combined filtrates were 

concentrated under reduced pressure to give the crude product which was purified 

by column chromatography (silica; chloroform / methanol / triethylamine; 85:14:1) 

to give the pure aminodiol.

(±)-3.4-Bishydroxymethyl-l-benzvlpvrrolidine (226)

The amine (217) (2.0 g, 6.55 mmol), DIBAL (1.5 M in toluene, 39 ml, 58.5 

mmol) and dry toluene (5 ml) were treated according to procedure 9.7.3, Work-up 

using ethyl acetate (7 ml), acetone (35 ml), Celite (7.1 g) and methanol (7 ml) gave 

the title compound after purification (0.772 g, 53 %).
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OHHO'

13

226

m.p. 74 - 77 °C; (Found: M+, 221.1408. C 13H 19NO2 requires M+, 221.1416); vmax 

(nujol) / cm-1 3366 (s, O-H stretch), 2902 (s, C-H stretch), 2848 (s, N-CH2-, 

stretch), 1602 (s, aromatic ring), 1584 (s, aromatic ring), 1496 (m, aromatic ring), 

1044 (s, C-O stretch), 756 (m, monosubstituted benzene ring, C-H bend), 700 (m, 

monosubstituted benzene ring, C-H bend); 8h (200 MHz, CDCI3) 2.16 (2 H, m, H - 

3 & H - 4), 2.36 - 2.43 (2 H, m, 2 - Ha & 5 - Ha), 2.74 - 2.82 (2 H, m, 2 - Hb & 5 - 

Hb), 3.47 - 3.58 (4 H, m, 6 - H & 7 - H), 4.61 (2 H, s, 8 - H), 4.75 (2 H, bs, 2 x 0 -  

H), 7.29 (5 H, bs, aromatic H); 8C (50 MHz, CDCI3) 44.3 (C - 3 & C - 4), 56.9 (2 - 

C & 5 - C), 60.1 (8 - C), 64.9 (6  - C & 7 - C), 127.4 - 130.5 (aromatic C), 137.2 (9 - 

C); m/z 221 (M+, 8.0 %), 132(6.4), 112 (12.3), 91 (100), 55 (8.2).

meso -3.4-Bishvdroxvmethy 1-1 -benzvlpvrrolidine (227)

The amine (218) (0.603 g, 2.18 mmol), DIBAL (1.5 M in toluene, 13.1 ml,

19.6 mmol) and dry toluene (5 ml) were treated according to procedure 9.7.3. 

Work-up using ethyl acetate (2 ml), acetone (10 ml), Celite (1.8 g) and methanol (2 

ml) gave the title compound as an oil after purification (0.286 g, 59 %).
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OHHO

13

227

(Found: M+, 221.1410. C 13H 19NO2 requires M+, 221.1416); vmax (thin film) /cm ' 1 

3342 (s, O-H stretch), 2902 (s, C-H stretch), 2854 (s, N-CH2-, stretch), 1600 (s, 

aromatic ring), 1586 (s, aromatic ring), 1495 (m, aromatic ring), 1036 (s, C-O 

stretch), 756 (m, monosubstituted benzene ring, C-H bend), 702 (m, 

monosubstituted benzene ring, C-H bend); 5h (200 MHz, CDCI3) 2.19 - 2.27 (2 H, 

m, H - 3 & H - 4), 2.48 (2 H, m, 2 - Ha & 5 - Ha), 2.69 - 2.77 (2 H, m, 2 - Hb & 5 - 

Hb), 3.52 (2 H, s, 8 - H), 3.55 - 3.70 (2 H, bs, 2 x O-H), 7.25 (5 H, bs, aromatic H), 

5C (50 MHz, CDCI3) 39.7 (C - 3 & C - 4), 55.1 (2 - C & 5 - C), 58.7 (8 - C), 60.2 (6 

- C & 7 - C), 125.7 - 127.3 (aromatic C), 136.4 (9 - C); m/z 221 (M+, 4.5 %), 132 

(12.5), 112 (16.9), 91 (100), 55 (5.6).

Carbamate Formation Procedure 9,7.4

A mixture of the aminodiol, phenyl isocyanate and 2 drops of dibutyltin 

diacetate were stirred at room temperature for 18 h in dichloromethane. The reaction 

was then concentrated and the oily solid thus obtained was subjected to column 

chromatography (silica; diethyl ether / hexane; 1:1).
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(±)-3.4-Bis(phenvlaminocarbonvloxvmethvl)-l- 

benzvlpvvrolidiiie (228)

The aminodiol (226) (0.05 g, 0.23 mmol), phenyl isocyanate (0.068 g, 0.06 

ml, 0.58 mmol) and dibutyltin diacetate were treated according to procedure 9.7.4 

in dichloromethane (5 ml) to give the product as a white solid after purification

(0.012 g, 11 %).

16 17

r \ 18

25 20 19

228

Rf 0.20 (diethyl ether / hexane; 1:1); vmax (nujol) / cm-1 2922 (s, C-H stretch), 2852 

(s, N-CH2-, stretch), 1702 (s, R-O-CO-N stretch), 1600 (s, aromatic ring), 1594 (s, 

aromatic ring), 1522 (m, aromatic ring), 752 (m, monosubstituted benzene ring, C-H 

bend), 696 (m, monosubstituted benzene ring, C-H bend); 8 h (200 MHz, CDCI3) 

2.17 - 2.26 (2 H, m, H - 3 & H - 4), 2.34 - 2.42 (2 H, m, 2 - Ha & 5 - Ha), 2.65 - 2.73 

(2 H, m, 2 - Hb & 5 - Hb), 3.62 (2 H, s, 22 - H), 3.95 - 4.14 (4 H, m, 6 - H & 7 - H), 

6 .86  - 7.34 (15 H, m, aromatic H), 5C (50 MHz, CDCI3) 47.1 (C - 3 & C - 4), 58.0 

(2 - C & 5 - C), 61.2 (22 - C), 67.9 (6  - C & 7 - C), 119.9, 120.4, 123.8, 124.1, 

128.4, 129.4, 129.8 & 130.2 (all aromatic C), 139.3 & 140.1 (aromatic quaternary 

carbons), 155.9 (C - 8 & C - 15); m/z 212(13.0), 151 (7.3), 119 (11.6), 93 (100), 65 

(22.2).
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Attempted Synthesis of meso -3.4-

bis(phenvlaminocarbonyloxymethvl)-l-benzvlpyrrolidine

(232)

Procedure 9.7.4 failed to produce any isolable or characterisable product.

Attempted Synthesis of the Macrocvclic Adduct of 3.3- 

dim ethylglutaric anhydride (237) and (±)-3.4- 

bishydroxymethyl-l-benzylpyrrolidine (226)

(i) 3,3-Dimethylglutaric anhydride (0.053 mg, 0.37 mmol) was added to a 

solution of the aminodiol (226) (0.075 mg, 0.34 mmol) in dry DME (10 ml) under 

nitrogen. The solution was heated at 40 °C for 1 h and then stirred at room 

temperature for a further 48 h. After this time TLC (chloroform / methanol / conc. 

NH3; 85:14:1) indicated the formation of a new species (Rf 0.0) assumed to be the 

zwitterion. Di-2-pyridyl disulfide (0.123 g, 0.56 mmol) and triphenylphosphine (147 

mg, 0.56 mmol) were added and the solution was stirred at room temperature for 24 

h when TLC (chloroform / methanol / conc. NH3; 85:14:1) suggested formation of 

the thioester (Rf 0.33). The solution was diluted with dry DME (50 ml) and heated 

at reflux temperature for 24 h. No products could be isolated from the reaction 

mixture.

(ii) To a solution of the aminodiol (226) (0.075 g, 0.34 mmol) in dry THF (5 

ml) was added rc-butyl lithium (0.22 ml, 0.34 mmol) at 0 °C. The mixture was 

stirred for 2 h. TLC (chloroform / methanol / conc. NH3; 85:14:1) suggested 

formation of the lithium alkoxide (Rf 0.0). This solution was then added dropwise to 

a solution of 3, 3-dimethylglutaric anhydride (0.053 mg, 0.37 mmol) in dry THF ( 5
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ml) under nitrogen. The resulting solution was stirred at room temperature for 16 h, 

after which time diethylphosphoryl chloride (0.059 g, 0.05 ml, 0.34 mmol) and 

DMAP (4 mg, 0.03 mmol) were added. After stirring for 24 h, the reaction mixture 

was heated at reflux for a further 24 h. No products could be isolated from the 

reaction mixture.

(iii) A mixture of the aminodiol (226) (0.075 g, 0.34 mmol) and dibutyltin 

oxide (0.101 g, 0.41 mmol) in dry benzene (8 ml) under nitrogen was heated at 

reflux temperature for 24 h with continuous removal of water by the use of 4 A 

molecular sieves (ca. 2 g). After cooling, an insoluble and unidentifiable solid was 

obtained. No product could be detected by TLC (chloroform/methanol/conc. NH3; 

85:14:1).
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