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Abstract
This thesis is concerned with developing an effective and comprehensive 

method to simulate pull-out response of fibres in fibre reinforced cement com­

posites. In particular, it addresses cases involving randomly oriented fibre, 

large relative sliding and interfacial separation between fibre and matrix, 

and cyclic loading. This work is also extended to study the pull-out beha­

viour of curved bars in reinforced concrete, because this has many similar 

features and mechanisms to fibre reinforced concrete. The main strategy and 

contributions are outlined in the following.

A novel pull-out modelling method is proposed. This consists of a contact 

algorithm with friction for the interface and damage models for the matrix. 

It is the first known attempt to merge various pull-out mechanisms of a fibre 

reinforced cement composite into one two dimensional finite element model. 

These mechanisms include bonding, debonding, fibre sliding, friction, fibre 

bending, snubbing, matrix spalling and substantial separation of the fibre 

at its exit from the matrix. The use of a contact algorithm with friction 

simplifies the simulation of the interface and only requires an experimental 

pull-out load-slip relationship from a single perpendicular fibre, having no re­

quirement for additional strength or fracture criteria. Interfacial separations 

are dealt with by means of different normal constraints on the interface. 

Matrix spalling is automatically simulated using a concrete damage model.

Accompanying the development of the pull-out model, four increasingly 

complex concrete damage models and corresponding computational algorithms 

are developed. These models are a pure damage model (model I), an inelastic- 

damage model (model II), and reverse cyclic and biaxial loading damage mod­

els (model III and model IV). Although the first two models are only suitable 

for monodirectional cyclic loading, they can describe concrete responses un­



der uniaxial monotonic loading (for both models) and monodirectional cyclic 

loading (for model II) very well. Models III and IV are based on different 

damage mechanisms. In the former, the positive and negative parts of the 

principal strains control the tensile and compressive damage respectively. 

Since the model is described in strain space, the complexity due to a stress 

space description in existing models is avoided. In model IV, the introduction 

of a weighted average damage parameter overcomes the shortcoming of sep­

arating stress/strain into positive and negative parts, and greatly simplifies 

implementation in the finite element method. Additionally, the design of a 

damage multiplier distinguishes the different contributions of hydrostatic and 

deviatoric components of the stress/strain tensor to damage and produces 

the modelling under biaxial loading. The implementation of model IV under 

biaxial tension and biaxial compression reproduces completely the biaxial 

experimental results of Kupfer et al.

The validation of the developed models are proved by comparing against 

experiments. Application are made to fibre reinforced cement composite with 

single and multiple inclined fibres, and to curved bar reinforced concrete. 

These studies provide some useful conclusions and point to several recom­

mendations for further researches.
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Notation

In this thesis, each symbol is defined as it is introduced. Some of the 

commonly used symbols are described below:

Upper Case Letters

A Helmholtz free energy

D damage variable

E Young’s modulus

G Gibbs free energy

Go shear modulus of material

I 2nd or 4th identity tensors

h the first invariant of stress tensor

J2 the second invariant of deviator stress tensor

JiJ 's deviatoric strain invariants

K stiffness matrix

Ko bulk modulus of material

L element or fibre lengths

Pt total pull-out load

Pbd pull-out load in bonded zone

Pdd pull-out load in debonded zone

Q heat energy

u e, u p the elastic and plastic parts of energy respectively

Y damage energy release rate



X

Lower Case Letters

d nodal displacement vector in contact problem

eij deviatoric strain components of strain tensor

ep principal value of deviatoric strain tensor

/  yield or damage surfaces

gap, clearance or separation in normal direction of interface 

gx slip or deformation in tangential direction of interface 

I substantial separation length at fibre exit

p global displacement vector in contact problem

p contact pressure

internal force vector of contact element 

Sij deviator stress tensor

tw contact force in normal direction of interface

tx contact force in tangential direction of interface

Greek Letters

/3 internal variable or damage multiplier

5 variation of 

Kronecker delta

e strain tensor

£n ,£t penalty parameters in normal and tangential directions

respectively 

77 entropy

6 angle

k, inelastic material parameter



Ajv, Ar Lagrangian multipliers corresponding to normal and

tangent directions respectively 

A damage rate or plastic multipliers

/i the coefficient of friction

v Poisson’s ratio

<j stress

ax crack closure stress

t  shear stress

4> fibre diameter

A increment in

0  temperature

potential energy

Special Sub- or Superscripts

0  of virgin material

c compression or composite

con contact

crit critical

e elasticity

/  fibre

i, i j , ijkl indices in principal, components of stress

in inelastic

m  mean value or matrix

p plasticity

pr predictor

snub snubbing



xii

t tension

B  trial quantity

N  direction normal to contact surface

T  direction tangential to contact surface

Z  hardening/softening control variable
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Chapter 1 

Introduction

Cementitious materials, such as mortar and concrete, have an inherent weak­

ness in resisting tensile stress. To overcome this deficiency, fibres can be mixed 

into them in order to prevent premature cracking and brittle failure. The res­

ulting material is a cost effective engineering material exhibiting improved 

performance. These materials have a similar features, that is, the matrix de­

forms by microcracking, and the microcracks are stabilized by the fibres (or 

reinforcement).

Fibre reinforced concrete (FRC ) can be classed into four categories based 

on the fibre material type. There are steel FRC (SFRC); glass FRC (GFRC); 

synthetic FRC (SNFRC) including carbon fibres; and natural FRC (NFRC).

In the last decade or two, FRC has been applied widely in civil engin­

eering. For instance, the most common applications of SFRC are found in 

industrial floors, tunnel linings and pavements. Polypropylene fibre reinforced 

concrete (PPFRC), a SNFRC, is used to fabricate various types of container 

from an economical point of view, while polyolefin fibre reinforced concrete 

is adopted as overlay for roads and bridge decks [2 ]. Among all the applica­

tions, steel fibre reinforced concrete is perhaps the most widely applied FRC 

material, and has been comprehensively investigated.

1
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(b) Steel fiber cross sections (c) Fibers glued together into a bundle

Figure 1.1: Different Steel Fibre Types [1]

Various types of fibre have been developed for SRFC in order to im­

prove workability, and increase ductility and toughness. Their shapes include 

straight, hooked, crimped, deformed, paddled, enlarged ends, irregular and 

indented (Fig. 1 .1  (a)). Different cross sections are used, such as round, rect­

angular and irregular (Fig. 1 .1  (b)). A bundle of fibres glued by water-soluble 

adhesive (Fig. 1.1 (c)) has also been developed to improve workability and 

eliminate fibre balling during mixing.

Generally, fibres are randomly distributed throughout the entire volume 

of a matrix, such as concrete, in relatively dilute concentrations.

The characteristics of a composite under tension can be exhibited through 

three stages: (1) before matrix cracking; (2) multiple cracking; (3) fibre pull- 

out. The three stages can be schematically interpreted by means of a typical 

stress-elongation response of high perpormance fibre reinforced cement com­

74
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posite (HPFRCC) in Fig. 1.2, where “high performance” implies an optimized 

combination of strength and toughness.

Before matrix cracking, the material behaves elastically. The inclusion of 

fibre can enhance the pre-cracking behaviour of the composite by increasing 

its cracking strength. However, the increase in strength, to a great extent, 

depends on the fibre volume fraction.

For very low fibre volume fraction (< about 0.1%), failure occurs on the 

first through crack forming. The response of the composite is similar to that 

of its matrix (see the curve “matrix” in Fig. 1.2).

For relatively moderate fibre volume fraction (about 0.1% -  1%), the in­

crease in strength is also indistinct (see the curve “FRC” in Fig. 1 .2 ). However, 

after first cracking, the fibres transfer the load that can no longer be taken 

by the cracked part of the matrix across the crack through bond between the 

matrix and the fibres. With the crack opening, the fibres are gradually pulled 

out of the matrix. In this case, although the addition of fibres does not raise 

obviously the strength of the composite, it provides improved ductile beha­

viour. The area under the stress-elongation curve “FRC” is an indication of 

the ductility or toughness of the composite.

When the fibre volume fraction is large enough (> about 1%), becomes 

a so-called HPFRCC, and a dramatic change appears (see the curve “HP- 

FRCC” in Fig. 1 .2 ). After the matrix first cracks, fibres will start to carry 

further load. The slope of the stress-elongation curve will reduce because 

of the loss of the matrix contribution, and the composite exhibits pseudo 

strain hardening behaviour. As the load increases further, multiple cracks are 

formed, and the fibres debond partially until the ultimate tensile strength 

of the composite is reached. After the peak load, most of the fibres bridging 

the main crack are debonded and are gradually pulled out from the matrix,
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resulting in a drop of the load-carrying capacity.

The total fracture energy, i.e. the area under the tensile curve, is a measure 

of the toughness of the composite. The energy is the sum of elastic energy, 

debonding energy (i.e. the additional energy due to multiple cracking) and 

pullout energy. Obviously, the strength and toughness of a composite with 

moderate fibre volume fraction and above are significantly increased.

1.1 W hy Pull-Out?

The above description of the failure process of a composite shows that no 

matter how complex the behaviour of a composite is, crucial to its integrity 

is the bond between the matrix and fibres/reinforcement. The properties 

of a FRCC under tension, such as strength and toughness, is dominated 

by this bond and its breakdown. The fibre’s contribution to increasing the 

toughness of a composite is primarily dictated by its pull-out mechanisms. 

Its indicator, the relationship of crack bridging force versus crack opening, 

is a fundamental property that contains information regarding the compos­

ite postcracking strength and fracture energy. Hence, the study of pull-out 

behaviour is an important aspect of research into composite performance.

In summary, the interfacial properties between the matrix and a fibre are 

of primary importance in understanding the overall behaviour and perform­

ance of a composite. Only when the pull-out mechanisms are well understood, 

can the comprehensive analysis of a composite structure using stochastic or 

probabilistic methods become feasible.
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1.2 A Review of Existing Pull-Out M odelling  
M ethods

Pull-out response involves a great deal of microstructural mechanisms, such 

as bonding, debonding, friction, sliding, snubbing (a localised friction ef­

fect), fibre bending, and local matrix spalling etc. For the composites with 

randomly distributed fibres and special shape fibres, the mechanisms be­

come even more complicated. Various methods have been developed to study 

these mechanisms. Existing pull-out modelling approaches can be classified 

into two categories: analytical methods and numerical methods. A review of 

these two methods is given in the following sections.

1.2.1 Analytical M ethods

In the past decades numerous theoretical models have been postulated, nor­

mally based on continuum mechanics and fracture mechanics. In the strength- 

based models, interfacial stresses control the development of interfacial de­

bonding, while in the fracture-based models, interfacial debonding is gov­

erned by energy equilibrium. According to the characteristics of fibre de­

bonding and pull-out processes, two material parameters are usually adopted 

to describe the interfacial properties of a FRC, namely the interfacial shear 

strength and frictional stress for a strength-based approach; the critical en­

ergy release rate and frictional stress for a fracture-based approach.

Strength-Based Models

The studies using strength-based models focus mainly on understanding the 

basic mechanisms that control the behaviour of composites, such as predict­

ing the elastic modulus of the composite [15], the bond stress-slip relation­

ship and bond stress distribution [16]~[17], the effect of fibre inclination
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angle [18, 19], the effect of fibre rupture [20], the effect of lateral compression 

history on interface behaviour [21], as well as multiple cracking and pseudo 

strain hardening processes of HPFRCC [2][22]~[24]. Studying on paramet­

ers includes fibre embedded length [20] [25]~[28], critical length of fibre [29], 

fibre diameter [30], fibre aspect ratio [31], fibre volume fraction [2], fibre 

modulus [19], matrix properties [19], bond strength [19], fibre inclined angle 

[18, 19, 26, 32] and snubbing coefficient [31, 33].

In general, the basis of the theoretical models is to establish load equi­

librium on an infinitesimal segment of fibre or a single fibre embedded in a 

half-infinite matrix. Based on the equilibrium relationship, the stress distri­

butions in the reinforcement and matrix, and the shear stress distribution 

along the interface can be derived for a fully bonded problem.

An essential distinction among early models lies in the assumption of the 

bond stress distribution along the reinforcement, such as uniform [34], linear 

[35, 36] and exponential [37].

The development of pull-out experiments permited further understanding 

of the pull-out mechanisms. Using the experimental observations, and consid­

ering whether the maximum shear stress has exceeded the shear strength of 

interface, partial debonding has been taken into account [3]~[40]. Gopalar- 

atnam and Shah [3] proposed a model which considered the fibre pull-out 

process in two stages: elastic stress transfer and elastic-frictional stress trans­

fer. The corresponding bond property is shown in Fig. 1.3, where rs is the 

interfacial shear strength and T; the frictional shear strength. Two limiting 

cases exist. When t s/ t ;  =  1, the entire debonding process is stable, while for 

Ts/Ti =  oo, the debonding process is catastrophic immediately after it begins.

Wang et al [41] and Gopalaratnam and Cheng [42] realised that an im­

portant feature of bond behaviour was that interfacial bond strength at any
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Figure 1.3: Idealized Interface Property Assumed in ref. [3]

point along a fibre is a function of fibre slippage, and this was incorporated 

into their models. Gopalaratnam and Cheng assumed a local bond stress-slip 

relationship with linear softening. Although this assumption was not substan­

tiated by any physical evidence, it greatly simplified the implicit governing 

differential equation of the model. Nammur and Naaman [4] introduced an 

elastic-frictional bond relationship (see Fig. 1.4). In appearance, it is a special 

case of [3], when rs/rj =  1. However, the essential difference lies in the fact 

that the former adopted the concept of a local bond stress-slip relationship. 

Instead of assuming a bond stress-slip curve, Stang et al [43] assumed the 

matrix as a shear lag with shear stiffness A; on a rigid support. The bond 

stress-slip relation depended on the stiffness of the shear lag.

Full debonding was also considered by Naaman et al. [16, 44]. To sim­

ulate the postpeak softening phenomenon in a bond stress-slip curve they 

simulated the interaction in the normal direction between fibre and matrix
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Figure 1.4: Assumed Bond Shear Stress-Slip Relationship in [4]

as two dissimilar components. Due to the effect of Poisson’s ratio the contact 

pressure caused by the misfit will decay as the fibre is loaded longitudinally. 

To describe the decay the bond stress was assumed to reduce exponentially 

(Fig. 1.5) . Their model was the first attempt to predict theoretically the en­

tire pull-out process of a smooth straight fibre. Further research on friction 

decay is found in reference [21].

With the development of pull-out experiments for various FRCC, it was 

found that the force and energy used to pull a fibre out of matrix increases 

with the inclined angle of the fibre, but is limited by the strength of cement 

matrix at high angles due to matrix spalling. A question on the effective use of 

fibres was raised and promoted the investigation of the pull-out mechanisms 

of inclined fibres [18] [20], [45] [47]. The emphasis was then placed on the 

analysis of the crack bridging force associated with special mechanisms such 

as fibre bending, matrix spalling, snubbing and fibre rupture etc.
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Figure 1.5: Bond Shear Stress-Slip Relationship with Frictional Decay

Fibre bending causes friction concentration (i.e. snubbing) at the fibre exit 

point from the matrix and increases the pull-out resistance and the tensile 

stress on the fibre, leading to a more efficient use of the fibre. To describe 

the effect Li et al [18] suggested a pulley model which simulated the fibre 

as a flexible rope pulled over a friction pulley. A snubbing coefficient was 

introduced to consider its effect on the crack bridging force. However, the 

snubbing model is invalid for stiff and brittle fibres due to their high stiffness 

and the possible brittle rupture under bending [19, 48].

Another strategy treated an inclined fibre as a cantilever beam on an 

elastic foundation [19, 49]. Matrix spalling was assumed to occur when the 

pressure on the matrix exceeds its ultimate compressive strength. The fric­

tion concentration was considered in terms of a friction law [19]. When the 

bridging stress reaches the fibre tensile strength, rupture occurs for those
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fibres whose embedded length is longer than a critical embedded length [20].

When pseudo strain-hardening occurred during the pull-out of a HP- 

FRCC due to multiple cracking, the matrix was assumed to be divided into 

several segments with similar lengths [50]~[53]. In this case, the matrix was 

stress-free at the edges of the cracks, and the load was totally carried by the 

fibres bridging the cracks. Based on the work of Naaman et al [16], a two-fibre 

equilibrium system was suggested by Kullaa [22]~[24] instead of the original 

single fibre equilibrium.

Fracture-Based Models

Fracture-based methods [26, 43, 12, 47][54]~[64] have been developed in par­

allel with strength-based methods. They are based on the concept of energy 

release rate and treat a debonded zone as an interfacial crack. It is known that 

the formation of new surface caused by debonding requires energy, whilst, as 

the crack grows, the structure undergoes elastic recovery, resulting in a de­

crease in elastic strain energy. Based on the Griffith energy-balance concept, 

the interfacial crack will propagate when the energy release rate reaches a 

critical value Gjc, an instability condition is reached and crack propagation 

occurs. Therefore, from the point of view of fracture mechanics, the determin­

ation of energy release rate is a basis for the study of debonding and pull-out 

processes.

Using fracture mechanics, the effect of various parameters on the energy 

release rate or pull-out load have been studied. These include fibre type [65], 

fibre length [65], fibre stiffness [66], fibre spacing [66], crack length [43,12, 62], 

fibre inclination angles [45, 12], and interface properties [65] etc.

One of the methods of calculating energy release rate is by means of 

the compliance of a body. Based on this approach, a simple closed-form
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equation to predict the ultimate strength of FRC was derived by Stang and 

Shah [57]. To obtain the total energy release rate of an interfacial crack, a 

detailed analytical solution of compliance was proposed by Hamoush and 

Salami[66]. In order to seek a fracture material parameter to characterise the 

debonding process of an interface Morrison et al [62] studied the influence of 

relative crack length on the energy release rate. Their results indicated that 

the energy release rate is a constant value after the ratio of the crack length 

to the radius of the fibre reaches a certain value.

An alternative approach for calculating the energy release rate is to eval­

uate energy per unit area crack growth in conjunction with fracture energy 

criteria [43, 63, 67, 68]. Its application to composites reinforced by hooked 

and anchored fibres can be found in ref. [68].

To describe a stable debonding process before peak load, a fracture res­

istance curve (R-curve) was used by Ouyang et al [12]. In their work, a 

relationship of pull-out load (up to the peak) versus debonding length was 

derived. To apply this to the case with inclined fibres, an additional strain 

energy release rate due to fibre bending was taken into account. However, a 

shortcoming of this model is that the maximum pull-out load in the derived 

formulation has to be obtained from a special test.

To obtain a closed-form solution for theoretical models, various levels of 

approximation and assumption have to be made, especially for the matrix 

and bond behaviour. Generally, it has been assumed that the matrix behaves 

either stiffly with friction (e.g. a shear lag) or elastically (up to its tensile 

strength if matrix spalling is considered). The bond between fibre and matrix 

is assumed to be either uniform friction along the fibre length or a simplified 

linear function of slippage. The validity of these assumptions have to be 

assessed by a considerable number of experiments. With the variation of a
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large number of parameters and various optimal combinations between them, 

cost and time can be very high.

An alternative approach is to use a numerical method, such as finite 

element analysis. This will be discussed in the next section.

1.2.2 Num erical M ethods

Finite element analysis has been proved to be a powerful, accurate and effect­

ive tool to determine stress distribution, structural response and structural 

strength, and has been widely used in research and industry. The advantage 

of the FEA over experiment is that once a FEA model has been validated 

by several tests, it can easily be used for other similar situations.

The interest of early numerical studies of bond and pull-out was placed in 

developing special elements, such as bond-link elements with two orthogonal 

springs [69], contact elements [70], bond-slip elements with finite thickness 

[71] and one-dimensional bar elements [72] etc. The comparison of some in­

terface elements was given by Keuser and Mehlhorn [73].

Numerical modelling of pull-out for brittle matrix composites reinforced 

by perpendicular straight fibres/bar is relatively simple and has been stud­

ied by several researchers [74]~[78]. For a bar pull-out in reinforced concrete, 

attention has focused on the simulation of the stress distribution on the in­

terface or in the steel bar. Groot et al [71] modelled the bond stress-slip 

relation through developing a bond-slip element which was incorporated into 

the finite element package DIANA. In their model, the concrete was mod­

elled by axisymmetric eight-node elements with elasto-plastic properties in 

conjunction with a combined criterion, i.e. a Mohr-Coulomb criterion and 

two tension cut-off criteria. For the steel bar, axisymmetric six-node bond- 

slip elements were adopted. The slip resistance, mechanical interlocking as
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well as bond layer thickness were considered by means of various paramet­

ers. Distributions of stress and strain along the steel bar were obtained. In 

fact, the model can be regarded as a generalisation of the frequently adopted 

models based on spring elements.

Ezeldin and Balaguru [74] analysed the pull-out mechanism of bar rein­

forced concrete using the finite element package ANSYS. Instead of regarding 

the bond between concrete and bar, they assumed the pull-out force varied 

linearly along the embedded length of the bar and was lumped at specific 

nodes of the concrete elements. Three-dimensional eight-node isoparamet­

ric solid elements were employed for concrete with the properties of linear 

elasticity in tension and bilinear elasticity in compression. Obviously, this 

simulation can hardly reflect real bond behaviour and the distribution of 

interface stresses cannot be attained.

Allwood and Bajarwan [76] used an alternative method which simulated 

separately the concrete and steel bar. To ensure shear stresses coincided on 

the corresponding points of the bar and the concrete, a converging iterative 

process was carried out by means of a formulated bond stress-slip relation, 

which combined the two solutions together.

Numerical research on steel fibre reinforced brittle-matrix composites, es­

pecially that involving randomly distributed fibres, is quite limited. Tsubaki 

and Sumitro [77] suggested a so-called microstructural unit element which 

consists of two orthogonal springs installed between two rigid blocks. The 

matrix, fibre and bond were all simulated with the same elements, but with 

different stiffness. Debonding was represented by the shear failure of springs. 

The failure mode of the structure can be directly perceived. However, the 

pull-out response seems discontinuous and unstable, and far from actual ob­

servations.
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Perhaps one of the better attempts at modelling a randomly distributed 

fibre reinforced composite using a numerical method was done by Leung and 

Li [32] and Leung and Chi [46], In their work, fibre bending and matrix 

spalling mechanisms were analysed by treating the fibre as a beam bent on 

an elastic foundation. The elastic foundation, i.e. the matrix, was modelled 

through a series of springs with different stiffness along the beam. The spring 

stiffness was determined using another plane strain model in a plane perpen­

dicular to the fibre in conjunction with the finite element analysis package 

ADINA. When the matrix material in the vicinity of the fibre reached its 

failure strain, spalling was assumed to occur and the corresponding springs 

were moved. The total pull-out response was obtained by coupling the result 

of the theoretical analysis [53] for debonding with that of the finite element 

analysis for bending.

Meanwhile, Leung and Chi [46] attempted to simulate all the pull-out 

mechanisms into one model through the combinations of spring elements, 

beam elements, plane elements, and contact elements using the finite element 

package ADINA, but they concluded that with this simulation convergence 

could not be achieved for most cases.

1.3 Objectives and Significance

Although much progress has been made in the theoretical and numerical as­

pects of pull-out problem , there are many important issues still to be invest­

igated. In particular, the complex pull-out behaviour of random fibre/curved 

bar reinforced cement composites requires more investigation. This includes 

interaction between fibres, special pull-out mechanisms (e.g. bending, spalling, 

snubbing etc.), the influence of bar curvature and the cyclic response of pull- 

out. The literature review shows that a practical, effective and comprehensive
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FE method is still absent for modelling complex pull-out behaviour. Any such 

method should be able to embrace as many mechanisms as possible, such as 

debonding, bending, fibre sliding against matrix, snubbing, matrix spalling 

and fibre rupture, and to simulate experimental pull-out results well. Des­

pite Leung and Chi’s reservations, in my opinion, a comprehensive modelling 

method is realisable through choosing/developing a proper matrix material 

model and interface modelling approach.

The main objective of this study is to develop a simple and effective nu­

merical modelling method that is able to predict the comprehensive response 

of pullout of steel fibre in reinforced cement composites. This, incidentally, 

could be extended further to the situation of steel bar reinforced concrete, 

since many of the mechanisms are similar.

Such a powerful interfacial modelling approach should be different from 

the commonly used method which simulated the interface and its behaviour 

by means of interface elements and the element stiffness, because this ap­

proach has shown many limitations. In order to modelling matrix spalling 

and cyclic response of pull-out, a concrete damage model also has to be de­

veloped, which, at the same time, prepares the ground for the development 

of interface damage model.

The significance of this work lies in that the model proposed will provide 

an insight into the various pullout mechanisms, including fibre sliding, fric­

tion, bending, spalling and snubbing. It requires only an experimental pull- 

out load-slip relationship of a single perpendicular fibre, which is easily ob­

tained. The study of the pull-out behaviours of inclined single fibre and mul­

tiple fibres will provide information needed for design and further stochastic 

analysis of a composite. The modelling of curved bars and the response of 

a straight bar under cyclic load lays a foundation for the application of this
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model to deformed bar reinforced concrete in the future.

1.4 Scope of the Thesis

To model fibre pull-out, the modelling of the interface is fundamental. Based 

on the interface characteristics between steel and concrete, a special interface 

modelling approach is proposed based on the theory of contact with friction. 

Chapter 2 introduces and discusses its background and the basis of the theory.

In order to avoid the numerical problems often caused by existing con­

crete models in commercial finite element packages under large deforma­

tion, four damage mechanics models of concrete are developed in this thesis. 

These models automatically simulate local matrix spalling, avoiding addi­

tional spalling criteria required in other models [32, 46]. To provide a good 

understanding for the developed concrete damage models, Chapter 3 briefly 

describes basic damage mechanics theory.

Based on La Borderie et al’s work [79], a pure damage model and an 

inelastic-damage model are developed in Chapter 4. The algorithms for the 

two models are described. The results of implementation and the comparison 

with experimental results are presented.

In Chapter 5, two new damage mechanics models for concrete subjected 

to reverse cyclic and biaxial loading are derived based on different damage 

criteria. One is governed by positive/negative principal stresses and the other 

distinguishes the different contributions of hydrostatic and deviatoric com­

ponents of principal stress to damage. The detailed derivations are provided 

in Appendices A and B. The validity of the models is assessed by application 

to concrete under uniaxial, biaxial and cyclic loading, and comparison with 

experimental results and the work of other researchers.

Subsequently, in Chapter 6 a pull-out modelling method is proposed (also
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published in ref. [80]), which treats the interface between steel fibre and 

matrix as a pair of contact surfaces. The interaction between them in normal 

and tangential directions are specifically considered. A local bond stress- 

slip relation derived from the experimental result of a perpendicular fibre 

determines the transmission of shear force on the interface and fibre sliding 

against the matrix. The influence of local snubbing on the shear force is 

estimated by a Coulomb friction law. In order to assess proposed method, 

a sensitivity analysis of various influence factors are conducted, including 

structural constraints, interface constraints, initial loading increment, mesh 

sensitivity, debonding length, frictional coefficient and substantial separation 

length etc.

Chapters 7 to 8 are on the applications of the proposed models to fibre 

or bar reinforced concrete. Three issues are discussed.

The pull-out responses of single inclined fibre and multiple fibres are in­

vestigated in Chapter 7. In the former, numerical analyses are conducted 

using specimens with initially bent and initially straight fibres respectively. 

To evaluate further the validity of the proposed modelling technique, the 

results are compared against experiments. The difference between the differ­

ent specimens are distinguished. The different contributions of pure pull-out 

and bending mechanisms are discussed (also see [81]). In the latter, the dif­

ferent fibre layouts and the effect of fibre spacing on pull-out behaviour are 

analyzed. The interaction between multiple fibres are discussed.

As an extension of the proposed pull-out model, it is applied to curved 

bar reinforced concrete in Chapter 8. Due to large bar curvature, a large 

separation between the bar and the matrix is caused by pull-out load. Con­

sequently a different normal constraint to that applied for inclined fibre is 

employed. The pull-out response of concrete reinforced with curved bar under



Chapter 1. Introduction 19

monotonic loading is investigated, and the results are compared with exper­

imental data. For cyclic loading of curved bars, a more effective interfacial 

damage model is required. Since there was insufficient time to attempt this, 

the pull-out response under cyclic loading has been limited to straight bars 

only.

Finally, in Chapter 9 the study is summarised, general conclusions are 

made and suggestions for future work are proposed.



Chapter 2 

Basic Theory of Contact w ith  
Friction

Various types of contact problem are encountered in structural analysis. The 

theory on contact has been continuously developed from early work focusing 

on frictionless contact of linearly elastic bodies under small deformation [82, 

83] to large displacement contact problems including friction [84, 85]. Reviews 

on contact problems are given in refs. [86]~[88]. A detailed introduction and 

analysis on contact in mechanics and its mathematical aspects can be found 

in refs. [89, 90].

In finite element analysis of contact problems, interface elements are inser­

ted between two interactive surfaces. Node-to-node contact (such as gap ele­

ments), node-on-segment and node-on-surface contact (such as line/surface 

slide elements etc.) are widely adopted. The last two are used in situations 

with large deformation. A contactor and a target are defined in a contact pair. 

Usually the penetration of points on the contactor into the target is limited. 

When penetration occurs, constraints force the penetrating contactor point 

to return to the boundary surface of the target element. With different con­

straints, different contact conditions (frictionless, sticking, sliding, as well as 

their combination) are realised.

20
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The implementation of the contact and sliding conditions can be con­

sidered as a problem of constrained minimisation. The penalty approaches 

[91]~ [96], Lagrangian multipliers [90, 91][97]~[99] as well as the augmen­

ted Lagrangian technique [93] [100] ~  [103], a combined Lagrangian multi­

plier/penalty function method, are widely used to solve the problem. The 

contact forces are computed so as to ensure the penetrated points remain on 

contact interface.

Based on this simple description of the contact problem, some correspond­

ing issues will be discussed in this chapter. As a starting point, the contact 

monitoring and constraint conditions are first outlined in sections 2.1 and 2.2. 

Section 2.3 focuses on the implementation of constraint conditions. Finally, 

contact forces are given.

2.1 D etection of Penetration

When contact happens between a contactor and a target, four contact states 

for the contact points can be defined, i.e. separating, sticking, sliding and 

penetrating. Penetration of points on a contactor surface into the target 

must be prevented. Penetrating points must be found and then returned, 

and contact forces modified. Two methods have been proposed to search for 

the penetrating points. One is the triangle area approach used by Guerra and 

Browning [104], see Fig. 2.1 in which 1 and 2 are two points of a segment on 

a target and s is a point on a contactor. Clearly penetration occurs if points 

(s, 1, 2) are found to be anticlockwise, and no penetration if (s, 1,2) are found 

to be clockwise. When the penetrating point is found, point s is required to 

be returned to the closest point on the segment along the direction of normal 

vector N.

The other contact monitoring method, named the element method, was
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target

§n—(^s x,)NXs

Figure 2.1: Triangle Area Method

described by Mottershead, Pascoe and English [90] (Fig. 2.2). When a con­

tactor point, Si, lies within the domain of a target element at the ith iteration, 

its location within the target can be defined by

- 1 < U < 1  (2.1)

where £s, rjs are the local co-ordinate of Si on a target surface element. The 

returned vector g is linearly determined by the intersection hi of the element 

surface with the path of s point at successive iterations i — 1 and i. At the 

next iteration hi+1 and s^+i are constrained so that they coincide. It should 

be noted that the direction of g is generally dissimilar to that of N.
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Figure 2.2: Element Method
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Figure 2.3: Two-Dimensional Contact Element
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2.2 Constraint Conditions

24

When contact occurs, suppose a contact element involves a target segment 

(with nodes 1 and 2) and a contactor node (node s) as shown in Fig. 2.3. ei 

and e2 are unit vectors, lying in the tangential direction and in the normal 

direction of the contact element, respectively, so that:

ei =  (cos0, sin0); e2 =  (— sin0, cos0). (2.2)

/0 and ln in Fig. 2.3 are the initial and current lengths between node 1 

and 2. The normal gap is defined as and the tangential slip as gr, and 

they are expressed as

gN =  (X, -  X i)r e2 =  x £ e 2 (2.3)

g t  =  oil o — oiqIo =  y^-X^ei — ao/o (2-4)
I'Tl

with

a  =  (2.5)
in

and where a  can be interpreted as the non-dimensional tangential distance 

between node 1 and the projection of the contact node s on to ei, while ao is 

the value of a  when the current phase of contact was first activated. Note that 

replacing ln with l0 in the first term of the middle part of Eq. 2.4 is to avoid 

the non-symmetry in the resulting tangent stiffness matrix [89]. To derive 

contact forces through a virtual work approach in the following description, 

the relationships between the changes in the local variables (here gN,9r) 

and the changes in global variables are required. The global variables of the 

displacement are written as
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PT =  (dJ ,d [,dD  (2.6)

where the subscripts denote the nodes. Then the changes in the local variables 

can be given by the global variables

$9n = + X j1̂ e2

= ar £p (2.7)

&9t  — — ae^d2i) +
l>n '/n

lo T r  0̂ i T r= t - c  S p - g N- b  6p
Ln

= fT£p (2.8)

with

&T =  (e2 . " ( I  “  a )e2 . ~ ae2 ) (2.9)

bT = (0T, e l - e l )  (2.10)

cr  =  ( e f , - ( l  -  a ) e f , - o e f )  (2.11)

Using virtual work, the contribution to the internal force vector q for the 

contact element is

q = tN& + tTi  = (* T)  ( ^ )  =  BTt  (2.12)

where Uv and are the contact forces in the normal and tangential directions 

respectively. Thus contact states can be defined by using so-called Kuhn- 

Tucker conditions as follows:
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(2.13)

(2.14)

where /  is a yield function, i.e. the limitation of sticking frictional capacity 

for the tangential component of the contact force, and gp is the absolute 

value of the relative sliding velocity between the contacting nodes, p is the 

coefficient of friction and u = tr/l^rl — ± 1 .

2.3 Im plem entation of Constraints

A variety of techniques may be applied for the implementation of the contact 

and sliding conditions, but the most common ones are the penalty function 

method, Lagrangian multipliers approach and a combination of both, the 

augmented Lagrangian technique.

2.3.1 Penalty Function M ethod

In a conventional penalty approach, the contact forces are defined for sticking 

friction by

for sliding contact:

/  — M + flttf — U)tT +  ptpj ^  0

9P — (9t , 9n )p > o
oII

for normal and sticking contact: 

(gr, 9n )T > 0  

(tr, tn )t < 0 

(9t ,  9N)T(tT,tN)  =  0

tN — £n 9n (2.15)
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tT — st9t (2.16)

where en and £t can be interpreted as the penalty parameter or as the 

elastic stiffness of the contact element in normal and tangential directions 

respectively.

From the variation of Eq. 2.12 in conjunction with Eqs. 2.7 and 2.8, their 

contribution to the tangent stiffness can be obtained. The variation is given 

by

5q =  KJp

== 8t]ySi d" tN5a -f" Stj1 f  T t'j'df 

= (£Na.ar  + £TffT)8p +  K ff(tN)6p +  K a(tT)5p (2.17)

in which the matrix K is a combined tangent stiffness, the first bracketed 

term is the conventional linear rank-one contact stiffness, and K a(t^) and 

K a{tr) can be interpreted as the initial stress matrices for the contact element 

corresponding to the normal and tangential directions, respectively. These 

can be derived via 5a. and 5f (a detailed derivation can be found in ref. [89]) 

as

K ff(tjv) =  y^[bcT +  cbT -  y ^ b b T]
vn. In

(2.18)

K „(tr) =  tT ^ ( - a b T - b a T +  biCT +  cb f)-2 g jv y |-(b b f+  b ib T) (2.19)
- In t/n

with

b f  =  (0 T , e f ,  - e f ) (2 .20)



Chapter 2. Basic Theory of Contact with Friction 28

Finally, the combined tangent stiffness matrix is given by

B +  K ̂ t ) +  (2-21)

K =  B t CB + Kr(tr)  +  K„(4jy)

=  s - b  0
0 sn

Thus a symmetric initial stiffness matrix is formed.

When sliding appears, sliding friction is taken into account with the aid 

of a ‘plasticity algorithm’ so that the yield function is written as

/=C) G:)=art=o ( 2 - 2 2 )

where u  has previously been defined in section 2 .2 , p is the coefficient of

friction, and tx now has a different form from Eq.2.16, i.e.

tx = txA T ~ At/cj) (2.23)

where the term txA is the value of tx at the end of the last increment, AgT is 

the incremental tangential gap from the end of last increment to the current 

iteration, while the At]lj is ‘plastic tangential slip’ related to a non-associative 

plasticity law. The non-associative flow rule is written as

fe=£ ) P=,)(^)=,)(o)=,)B (2 -24)

Adopting a backward-Euler return mapping technique used in plasticity, 

the contact forces in Eqs. 2.15 and 2.23 can be written using those computed 

at the elastic trial point, B , as

t  =  t B -  ArjC ( ) =  t B -  Ar)CbB (2.25)
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where C has been defined in Eq. 2.21. Substitution of Eq. 2.25 into the yield 

function of Eq. 2.22 leads to

A n = {u>BtTB +  =  £  (2.26)
£t St

where f g  is the value of yield function computed at the trial point, B .  So far, 

the tangent contact force in Eq- 2.23 along with Eq. 2.26 can be completely 

determined.

In a conventional return mapping procedure the elastic trial force t g  is 

first computed and then checked if yield function f g  > 0. If not, the contact 

still belongs to a sticking friction contact and the final forces are set to t g .  

However, if f g  > 0 , sliding friction contact occurs. The ‘returned forces’ from 

Eq. 2.25 can be obtained in conjunction with Eq. 2.26.

In order to obtain the tangent stiffness, Eq. 2.12 is differentiated again

£ q  =  ~BT 6 t  +  & B T t

=  [ B t C B  +  K „ ( t T ) +  K „ ( t w ) ] 5 p (2.27)

where K (T(tT) and K (T(t^) have been defined in Eqs. (2.18) and (2.19) re­

spectively. C can be obtained through the differentiation of Eq. 2.25,

t =  C g  -  r jC bg  

=  C g

0 —flLU
— Sn

0
(2.28)

Thus the combined stiffness matrix is completely determined as follows
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K =  B TeN
0 — p u

B +  K 0-(tr) +  (2.29)
0 1

Comparing Eqs. 2 .2 1  and 2.29 it is found that to change from sticking to 

sliding, only C is changed to C. However, a non-symmetric initial stiffness 

matrix is then introduced.

no additional equations are introduced. Interpreted from a physical stand­

point, the penalty parameters can be considered as the stiffness of a stiff 

spring inserted between the contacting points, and no other variables and 

manipulation are required. However, this method will not apply the con­

straints strictly unless a high penalty number is used and in that case the 

method is prone to instability and suffers from ill-conditioning that worsens 

as the penalty values are increased. [105, 100].

2.3.2 Lagrangian M ultipliers M ethod

The Lagrangian multipliers approach is a classical optimisation approach. 

It uses Lagrangian multipliers to incorporate the equality or inequality con­

straints with the objective function, so that a constrained non-linear optim­

isation problem can be converted to an unconstrained problem.

Lagrangian multipliers were first used in contact analysis by Hughes et al 

[83] to solve elastic contact and elastic impact problems. Using this approach 

the contact problem is defined by the potential function.

where 'ip is the total potential energy, and Xn and At are a set of Lagrangian 

multipliers, corresponding to normal and tangent directions respectively, re­

The advantage of the penalty method is that the technique is simple and

(2.30)
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lating to each of the contact elements . They may be interpreted as contri­

butions to the contact forces and be treated as additional variables in the 

problem.

By minimising with respect to and SX and satisfying the first-order 

conditions, for the sticking friction over an ‘active set’, a, Eq. 2.30 becomes

with

5U = FT5p + ^ 2 \ N6gN{5p) + ^ 2 \ TdgT{6p)
a a

=  FT5p +  qT<5p

=  0 (2.31)

S n

and the Kuhn-Tucker conditions

1 =  0 over a (2.32)

gN > 0 

Xn — 0 

<7AtA;v =  0

(2.33)

where F contains the gradient of the total potential energy for ‘non-contact 

elements’. The internal force vector q can be derived for a single contact 

element in the same manner as in section 2.2. Thus,

‘>-sr'=QG;) <2-34)

with the contact constraints of Eq. 2.32. Applying respectively a Taylor series 

expansion for the equilibrium equation of Eq. 2.34 and the constraints of 

Eq. 2.32, a Newton-Raphson iteration of the form below is obtained
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© <2-35>

where

K =  K +  K a(Ar ) +  K„(A*) (2.36)

in which K has the tangent stiffness matrix from the non-contact elements.

The benefit of the Lagrangian multipliers method is its accuracy since 

constraints are exactly imposed. Its drawback is the appearance of additional 

variables — the Lagrangian multipliers, and special care must be taken with 

the ordering of the equations during the solution process [89]. An augmented 

Lagrangian technique as a new treatment has been developed, which can be 

viewed as a combined Lagrangian multipliers/penalty function method. It 

provides important advantages over the more traditional Lagrangian multi­

pliers and penalty methods. The method will be briefly discussed in the next 

section.

2.3.3 A ugm ented Lagrangian Technique

The augmented Lagrangian method was originally proposed by Hestenes[106] 

and Powell[107] for coping with mathematical programming problems subjec­

ted to equality constraints. It can be regarded as an extension or combination 

of the two methods described previously.

For the augmented Lagrangian method, Eq. 2.30 is employed and appen­

ded with a penalty term, which results in

' W K, B T

n  +  E  \ s TC S =  A  + Y ,  gTA + £  \ s TCg  (2.37)
a a a
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Following the same approach as was done for the Lagrangian multipliers 

method, the equilibrium and constraint equations are expressed as follows

where

F =  F +  q

=  F +  BT(Cg +  A)

=  0 (2.38)

g =  ( 9T ) = 0  (2.39)
<9n ,

(2 4 o )

If the contact is accompanied with Coulomb ‘sliding friction’, the internal 

force vector for the contact element is modified to

«- © O'+1 - O -s'* <2-4i>
where f, a, and scalar A77 all have been defined in Eqs. 2.8, 2.9 and 2.26, 

respectively, and A77 must satisfy the yield function Eq. 2.22. Using a Taylor 

series expansion as it was done for Eq.2.35 leads to

(») <242)

Thus has the same form as Eq. 2.35, but the tangential stiffness matrix 

contribution from the contact element is now

K, Bj
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K — BTC rB  +  K a(Ar  +  £t {^9t ~~

+ Ko-(Aiv +  £n 9n ) (2.43)

The augmented Lagrangian approach has its advantages: no ‘solution 

ordering’ problem in the Lagrangian multipliers method since K on its own 

is now non-singular, no large penalty parameters are required because the 

Lagrangian multipliers can be more effective for satisfying the constraint 

conditions [89]. However, additional variables, i.e. Lagrangian multipliers, 

are still required.

The penalty method and augmented Lagrangian technique are adopted in 

this work to compute and cope with the interaction of the interface between 

the fibre/bar and matrix.



Chapter 3 

Dam age M echanics Framework

The mechanical response of brittle materials, such as concrete weakened by 

a large number of micro cracks, can be studied by damage mechanics. The 

phenomenon of damage is exhibited by the strain softening of the material. 

The difference between the effect of plasticity (inelasticity) and damage on 

material non-linear response was interpreted by Chen [108]. Fig. 3.1 shows 

that the former reflects the existence of the plastic or inelastic strain, while 

the latter induces stiffness degradation. The non-linear response of a material 

is the combination of these two behaviours.

Continuum damage mechanics (CDM), pioneered by Kachanov [109], has 

been developed to describe progressive failure. It is based on the thermo­

dynamics of irreversible processes, relevant assumptions such as the homo­

genization concept, the internal state variable theory and the kinetic law 

of damage growth. Damage or stiffness degradation is related to initiation, 

growth and interconnection of micro cracks.

A number of damage models of varying levels of complexity have been 

proposed to deal with this phenomenon. For example, Lubliner [110] estab­

lished thermodynamic constitutive laws of solid based on internal variables. 

Krajcinovic et al. [Ill] and Ortiz [1 1 2 ] gave a mathematically rigorous de­

35
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scription of damage growth in terms of vectors and tensors, respectively. 

Chow and Wang [113] developed the basic mathematical framework for the 

general case of anisotropic damage.

From the late 1970’s, numerous damage models have been applied to 

simulate the inelastic response of brittle materials such as concrete. Typic­

ally these include Mazars’ scalar damage model [114], Ladeveze’s and Maz- 

ars’ unilateral damage models[115, 116], Collumbet’s damage model with 

permanent strains and induced anisotropy [117], Pijaudier-Cabot’s damage 

model for high compressive loadings [118], La Borderie et al.’s damage model 

considering crack closure [79], Yazdani and Schreyer’s and Fichant et al’s an­

isotropic damage models with dilation [119, 120], as well as Baker et al.’s 

thermo-mechanical damage model [1 2 1 , 1 2 2 ].

Considering that a free energy potential consists of both elastic and plastic 

parts and damage is linked to the elastic potential function, elastoplastic 

damage models and coupled plastic-damaged theory have also been suggested 

by, for example, Simo and Ju [123], Ju [124], Lubliner et al. [125], Oiler et 

al.[126], Voyiadijs and Kattan [127], Luccioni et al. [128] and Lee and Fenves 

[8],

Other research using non local damage concepts has also been proposed 

by Pijaudier-Cobot et al. [129, 130] to avoid spurious mesh sensitivity in FE 

analysis.

All available methods on damage can be classified into three large categor­

ies: (1 ) micro mechanical models which provide the fundamental structure 

of a governing equation to model micro structural changes and individual 

micro crack growth; (2 ) phenomenological continuum damage models which 

model discontinuous micro cracks according to ‘observable’ state variables; 

(3) statistical methods which focus on universal trends in the statistics of
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the micro structural disorder. All the damage models referred to above can 

be classified into the phenomenological approach. Based on this approach, 

some other damage models for concrete will be developed in this thesis.

First, in this chapter, phenomenological models are briefly introduced. 

This includes the basic forms of thermodynamic potential function, the de­

scription of damage parameters and the governing equations of damage evol­

ution.

3.1 Thermodynamic Potential

Observing a typical response of reinforced concrete subjected to cyclic load­

ing (see Fig. 3.2) it is found that the inelastic deformation and the stiffness 

degradation increase with strain, especially in the strain softening regime. 

The behaviour is caused by the propagation and coalescence of micro cracks 

inside concrete and at the interfaces between reinforcement and concrete. 

We know that thermodynamics is a science which deals with energy and its 

transformation and with certain relationships between the properties of sub­

stances. As viewed from thermodynamics, the foregoing behaviour is induced 

by irreversible damage and an increase in entropy (a property of matter) dur­

ing the loading process.

Consider a deformable body under a static loading and subjected to pro­

gressive damage. The internal energy per unit volume U of the body is a 

function of strain e, entropy 77, an internal damage variable D and an in­

ternal plasticity variable (3.

Based on the hypothesis of uncoupled elasticity [131], the elastic and 

plastic potential energy function can be written as
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Figure 3.2: Typical Behaviour of Reinforced Concrete under Cyclic Loading
[5]

U(ee,r),D,/3) = Ue(ee,r), D) +  UP(P) (3.1)

=  (1 -  D)UZ(e\V) + (3.2)

where superscripts e and p denote elastic and plastic respectively. Uq is the 

elastic energy of a virgin material.

The damage variable D may be a scalar or a tensorial quantity. The scalar 

representation implies that the damage is isotropic and ignores the influence 

of the orientation of micro defects. Within the domain of D (0 < D  < 1), the 

case D — 0 means that the material is undamaged, whilst the case D = 1 is 

at fracture.

Since this thesis only involves the damage relative to elastic potential 

energy, the plastic part of potential energy will be left out of consideration 

in the following.

To derive a family of thermodynamic constitutive relations, it is neces­
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sary to start with the second law of thermodynamics. This states that the 

entropy of an isolated system increases in all real processes (spontaneous and 

irreversible). Prom this law, the Clausius-Duham Inequality for a irreversible 

process (not necessarily adiabatic) is given by

V -  V ( f ) > 0  (3.3)

where Q is heat energy, and 0  is temperature. V is a gradient operator.

Furthermore, the change of internal energy in a body should be equal to 

the sum of the changes of mechanical and heat energies if no kinetic and 

potential energies exist, and is written mathematically as

U = er : e + Q (3.4)

Substituting Q into Eq. 3.3, we have

A 0
Qr) + cr : e -  U -  Q -q - > 0 (3.5)

Using the derivative of U with respect to 77, e and D , Eq. 3.5 becomes

^  dU x. , dU ,. dU • ^A ©  , ,(0 _ _ _ ) J7 +  ( £ r _ _ ) £ _ _ Z ? _ Q _ > °  (3 .6 )

For an isothermal (slow loading, slow crack growth) and elastic system, 

D is independent of 77 and e. In order that the inequality holds for arbitrary 

77 and e in a given thermodynamic state, it is required that
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where K  is the stiffness matrix associated with the damage variable. Due to 

isothermal conditions, we have

~ D  = Y t ) >  0 (3.9)

where Y  is a thermodynamic force (damage energy release rate), a measure 

of damage susceptibility. The physical interpretation of Eq. 3.9 is that the 

damage process reduces the internal energy of a system.

Eq. 3.7 to Eq. 3.9 are the general thermodynamic constitutive laws.

Two other forms of free energy are often applied in damage mechanics, i.e.

Helmholtz free energy (per unit volume) A  and Gibbs free energy (per unit 

volume) G. Generally, the Helmholtz free energy uses displacement as an in­

dependent variable, while the Gibbs free energy uses force as an independent 

variable. They are respectively defined as follows [119]:

A (e,0, D) = U(e,rj, D) — Op (3.10)

G(<r, 0 , D) = cr : e — A(e, 0 , D) (3.11)

By the same token as before, for the Helmholtz free energy, we have

■» =  - §  ( 3 -1 2 )

(3-13)

r)A
- W D > 0  (3.14)

and for the Gibbs free energy
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* = f §  (3-15)

e = g (3.16)

c)C
W b > o  (3.17)

Clearly, the Helmholtz free energy reduces with damage, but the Gibbs 

free energy does the opposite. In a sense, the Helmholtz free energy is strain 

energy, whilst the Gibbs free energy is complementary of the Helmholtz free 

energy.

In addition, based on elastic damage theory, assuming all micro cracks 

will be closed and no residual strain will be induced by micro-defects upon 

complete unloading [124], the undamaged free internal energy function Uq 

( also A q and Go) can be expressed directly by the thermodynamic force 

(damage energy release rate) and conjugated to the damage variable D [124], 

viz.

(,18)
The thermodynamic force may be used as an initial damage criterion.

3.2 Damage Surface and Damage Evolution  
Law

To determine the stress or strain states during a damage process, the evol­

ution of damage has to be defined. This can be accomplished by a load­

ing function (i.e. damage surface) and an evolution rule. The evolution rule 

can be defined in either an associated or a non-associated format. Recalling
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the formulation of a yield function and plastic flow law in plasticity theory

[108, 132], it is not difficult to define a corresponding damage function / ,  

and a damage evolution law according to the normality rule. For example, 

for an isothermal process we can define [79, 133] the damage surface as

where Y0 denotes a non-negative scalar damage threshold (energy barrier)

d ^ / d Y  is a potential gradient. The evolution rule is termed a nonassociated 

damage evolution law.

Eq.(3.19) states that damage in a material is initiated when the damage 

energy release rate exceeds the initial damage threshold Yq.

A simple, yet important, case is when the potential function and the 

damage surface coincide, $  =  / ,  Le a so-called associated damage evolution 

rule (see Fig 3.3). Eq. 3.20 then becomes

f(Y ,D ) = Y - Y 0 - Z  = 0 (3.19)

and the evolution rule as

(3.20)

and Z  is a hardening-softening control variable. A is a scalar constant and

(3.21)

with the Kuhn-Tucker conditions

A > 0

f <  0

A/ =  0

(3.22)
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Figure 3.3: (a)Associative Evolution Rule and (b) Nonassociative Evolution 
Rule.



Chapter 3. Damage Mechanics Framework 45

Based on the damage criterion Eq.(3.19), the loading condition can be 

established as follows:

If /  < 0 then D = 0

If /  =  0 and /  < 0 then D = 0

If /  =  0 and /  =  0 then D =  > 0 (3.23)

3.3 Summary

In this chapter, the development of damage mechanics associated with brittle 

materials is briefly reviewed. The basic damage mechanics formulations are 

outlined, which include the potential energy function, thermodynamic con­

stitutive relationships and thermodynamic force. In addition, the damage 

criterion, damage evolution law and loading condition are also described.

Obviously, the key steps in the analysis of damage mechanics are to de­

termine a damage surface and damage evolution law after a proper free en­

ergy function is chosen. The development of damage models in this thesis 

will follow these steps.



Chapter 4 

Dam age M odels for Concrete 
Subjected to Cyclic Loading

In order to develop a concrete damage model, this chapter begins with a 

comment and discussion on existing scalar damage models. Then a simple 

but basic damage model, a pure damage model, is presented. Based on this 

model, an inelastic-damage model is then proposed to include the inelastic 

strain during cyclic unloading. The emphasis will be put on the development 

of computational algorithms in FEM of both models. Finally, a comparison 

between the models and experiment is made.

4.1 Introduction

A number of damage models have been developed to describe the non-linear 

evolution of concrete structures under monotonic and cyclic loading. Some of 

these were discussed in Chapter 3. The sophistication of the models depends 

on the number and type of internal variables. Existing damage models can 

be categorized into two classes: isotropic models which use a scalar damage 

variable, or anisotropic models which a tensorial damage variable. Those of 

Mazars [114, 116], Ladeveze [115] and La Borderie et al [79] are typical of

46
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the first class, whilst Fichant’s model [120] is typical of the second.

Among the isotropic damage models, Mazars’ single scalar damage model 

has a simple form, where damage is coupled with elasticity. The inelastic 

behaviour of material due to damage is piloted by changing the virgin Young’s 

modulus Eq to E , i.e. E = E0(l — D).

A Helmholtz elastic state potential was adopted for concrete under iso­

thermal condition, as follows:

where K° is the virgin elastic tensor.

An equivalent tensile strain e controls the evolution of damage. This is 

defined as

where €; are the principal strains, and Z(D) is a hardening-softening para­

meter.

Eqs. 4.2 and 4.3 imply that compressive strain will not induce damage, 

but the transverse strain caused by Poisson’s ratio will. This is generally 

known to violate experimental observation.

This model can be used for the case of monotonic loading, but not for the 

certain cases of reverse loading [134]. Typical results are presented in Fig.4.1.

Regarding the fact that a different extent of damage exists for concrete 

under tension and compression, a unilateral damage model was proposed by

2
(4.1)

3

(4.2)

with the damage criterion

e -  Z(D) =  0 (4.3)
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Ladeveze [115]. In this model, the stress tensor is decomposed into a positive 

part cr+ and a negative part <r_. Two damage variables, Dt and Dc, are used 

to describe damage related to positive and negative stresses respectively. The 

state potential is then given in a Gibbs free energy form as:

Ge = Ge{<r+) + Ge(<r_)

= 5(^(1- A ) 1(1 + **)(<r+ : *+) " V° T r 2 ( T ]

+ A ( 1 - A ) ^ 1 +  Vô tr~ : <T“  ̂ “  v<sTt2<t^}- (4-4)

in which Trcr = <7**, and E0 and v0 are Young’s modulus and the Poisson’s 

ratio of the virgin material. The evolution of damage is piloted by two damage 

energy release rates, Yt and Yc, corresponding to tensile and compressive 

damage respectively. Fig.4.2 shows typical results.

As pointed out by La Borderie [79], this treatment of stress in Eq. 4.4 res­

ults inevitably in non one-to-one stress-strain relationship in the constitutive 

law. From Fig. 4.2, it can be observed that the each loading follows the same 

initially loading path which is not acceptable.

La Borderie modified the above model by eliminating the influence of

P a th  

OA 
AOA BGOO 
O EF

033 0 38 Ot <MPa>

€, i 10 * f

Figure 4.1: Response of Damage Model with One Scalar Damage Variable [6]
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Figure 4.2: Response of Damage Model with Two Scalar Damage Variables 
[6]
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damage on transverse deformation, and took inelastic strain and crack closure 

into account. To achieve this, a new form of the Gibbs free energy was chosen 

as a state potential as follows:

( T  _ l  • ^ —  • c X —  is  ■ ■ ,  n

+ + W 0i < T : ~  r<7) +
fyDt , s kcDc 

+ E ^ ^ ) ^ ) + E ^ D f r^  +
+ Ht(zt) +  Hc(zc) (4-5)

in which the two scalars damage variables Dt and Dc are associated with 

tension and compression respectively, and two parameters Kt and kc are in­

troduced to cover inelastic strain. Ht(zt) and Hc(zc) are hardening-softening 

functions. A crack closure function, xM * was used to describe the degrada­

tion of tensile inelastic strain with crack closing, i.e.

x(<t) =  Tr(cr) when T r(a ) G [0, oo]

X{cr) = (1 +  Tr̂ )T r(cr) when Tr(a)  G [—crx, 0]

x(°0 =  - y  when Tr{cr) G [-o o , - a x\

where ox is crack closure stress. For clarity, this functional relation is plotted 

in Fig. 4.3.

By differentiation of the potential Eq. 4.5 with respect to a, Dt , and Dc 

etc. respectively, the thermodynamic constitutive relationships are obtained.

e = =  ee +  ein (4.6)
da

Y  Q-+ : <t+ +  2Ktx(<r) , .
‘ dDt 2E0( l - D ty

v  _  9G_ _  q-_ : <r_ +  2Kcx{tr)
*c dDc 2Eo(l -  Dcy  y -a>
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(4.9)

where Ai, Bi, Yoi and z,- are parameters to be determined, and e6 and em are 

the elastic and inelastic strain tensors respectively with the forms

€ e =

and

ew = A 9 x  K CD C t

(4.10)

(4.11)
E0( l - D t)dcr E0( l - D c) 

in which I is an identity tensor.

In this model, the tensile and compressive damage are controlled respect­

ively by following two damage surfaces:

ft(Yt,Z t) = Yt - Z t

~  G;

Tr(o)

Figure 4.3: Crack Closure Function
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f c(Yc,Z c) = Yc - Z c (4.12)

The features of this model are: (1) the permanent deformation caused 

by damage and the effect of crack closure are included; (2) the evolution 

of damage is dominated by the local damage energy release rates. Mazars 

[134] pointed out that this model was more efficient than the previous ones, 

but its implementation in the F.E.M. was also more difficult. Actually, only 

a one-dimensional version of this model has been implemented with beam 

elements [79].

Hence to aid implementation in the FEM, modifications of the models of 

La Borderie et al [79] are proposed in the following sections.

4.2 Basic Equations

Two models are developed to represent concrete subjected to monodirec- 

tional (either tensile or compressive) cyclic loading. The first model (pure 

damage model) does not include inelastic deformation, whilst the second 

(inelastic-damage model) does. To avoid the problem caused by separating 

stress and to enable developed models to apply to plane stress/strain states, 

only monodirectional loading is considered.

4.2.1 Pure Damage M odel —  M odel I

First, a Helmholtz free energy is defined by

Ae = L e : K :  ee (4.13)

in which K  is an isotropic four-order tensor with the form

K ijkl =  (1 -  D)K°jkl
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_  E0( 1 — D) r 2vq x x l x s , r x n  / a -i a\
"  2(1 +  vb) 1̂ -  2^b  ̂ J ^   ̂ ^

where K ^ kl is the stiffness tensor of virgin material, and 5{j is the Kronecker

delta with

8ij — <
1 when i = j  

0 when i ^  j

The differentiation of the potential function with respect to e and D, 

respectively, leads to the stress tensor and damage energy release rate as 

follows:

dAe 
cr — -----

dee
= (1 -  D)K° : ee -  ADK° : ee (4.15)

Y  =  =  ? e ■ K ° ■ €° ( 4 1 6 )

4.2.2 Inelastic-Dam age M odel —  M odel II

For the inelastic-damage model, we defined a Gibbs free energy as

1, cr . o’ \ vq . 2 \i
G =  2 [^ 1 ^ D ) +  £ ^ (<T:<T“ r r <T) 1

K  D

+ W ^ ) Tr{<T) (4 1 7 )

where k is an inelastic material parameter. A is a parameter which is intro­

duced to consider the effect of damage on Poisson’s ratio. The second term 

in Eq. 4.17 defines the inelastic deformation caused by damage in a sim­

ilar form to that in ref. [79], but particular attention is paid to the case of 

monodirectional cyclic loading.
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In La Borderie et al’s model, Poisson’s ratio did not change with damage. 

However, uniaxial compression experimental results, for example ref. [7] (see 

Fig. 4.4), show that the increase of transverse strain after damage does not 

simply depend on the initial Poisson’s ratio. For an elastic material under 

uniaxial loading, to consider the effect of Poisson’s ratio, the transverse strain 

s' is defined by

e = z'o (4.18)E0(l -  D)

in which ae is elastic stress. If we adopt the same approach in the current 

case, it would imply that no volume dilation occurs, which does not reflect 

concrete behaviour.

Therefore, to include volume dilation we replace v by At'o, where

A =
1

1 -  Da

and a  is a parameter with a different value for tension and compression. 

Taking k as zero, Eq. 4.17 reduces to a pure damage model.

(4.19)

o/f'c o/f'c

A xial s tra in
L ateral s tra in

P ro p o rtio n a lity  lim it
0.3

C om pressionE x te n s io n .

Critical stress

V olum e red u c tio nV olum e increase

Figure 4.4: Typical Stress-Strain Curve for Concrete in Uniaxial Compression 
Test [7]
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To derive the material constitutive relationship and the damage energy 

release rate we differentiate G with respect to o and D.  This leads to

dG
€  =

dcr
= ee +

cr
E0{ l - D )

kD
+

+  yr(<r ~ T r (o ) I) +

E0( l - D ) (4.20)

dG <t : <t + 2kT tct 
= W = 2£?0(1 -  D)2 

aD a~lu0
E0(l -  Da)-

4.3 Control Equations

(cr : cr — T t2<t ) (4-21)

To detect the onset of damage for the two models described in the previous 

section, the same initial damage surface is used. This is defined by

f ( Y , D ) = Y - Y 0 = 0 (4.22)

where Y0 is an initial damage threshold which governs the onset of damage.

With damage, the initial damage surface can expand (harden) or shrink 

(soften). Subsequent damage surfaces follow an evolution law, which can be 

defined by a hardening/softening parameter Z  similar to that in Eq. 4.9, i.e.

f  = Y  — Y0 — Z  = 0 (4.23)

and
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(4-*»

where A  and B  are parameters to be determined.

A stress point in principal stress space can be either within or on the 

current damage surface. When the stress state lies within the damage surface, 

two states may exist. One may be loading, which has not violated the initial 

damage criterion, and the other may be unloading. Both processes are defined 

by D =  0. Once the stress point is on the damage surface, it is loading and is 

accompanied with a change of the damage surface with D > 0. The damage 

parameter can be derived from Eq. 4.23 as

D 1 i +  [A(y  -  y„)]B (4'25)

In summary, we have

if /  < 0 then D =  0,

if /  =  0 and /  < 0 then t) — 0,

and if /  =  0 a n d / =  0 then D > 0 (4.26)

With these basic equations, the key issue in the next step is how to

implement in a finite element analysis.

4.4 Computational Technique

The implemention of the pure damage model is straightforward because after 

the onset of damage, the damage variable can be determined directly through 

the damage energy release rate. However, the implementation of the inelastic- 

damage model is more complex, since the energy release rate Y  depends on
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the instantaneous stress and the damage state. Therefore, a damage identi­

fication and iteration scheme is developed here.

Two aspects have to be taken into account: firstly detecting damage and 

then defining the stress state. From Eqs. 4.20 and 4.21, clearly the damage 

parameter and total strain must be known. A real difficulty arises at the be­

ginning of a loading increment. We know the total strain, but nothing about 

the stress and damage variable. To tackle this, a scheme has been derived 

here in which an undamaged elastic stress state predictor, denoted “<Tpr” , 

is assumed, and the updated values are calculated using a Euler Backward 

algorithm.

Denoting the start state of a loading increment as n, the end state as 

n +  1, and Eqs. 4.20 and 4.21 as functions Fi (i = 1,2), a set of non-linear 

simultaneous equations can be set up in terms of a Taylor expansion.

Before damage or under unloading:

(4.27)

After damage:

(4.28)

where

~dF? dF?
da dD 

M =  dF? dF? (4.29)

da dD

with
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BOX 4.1: Basic Algorithm for Pure Damage Model.

1. Evaluate energy release rate
y n + l  _ ig f t + l  • J (0  . ^71+1

2. Check if damaged in previous loading
IF  f n <Tol THEN A D  =  0 GOTO 4

3. Check present iteration is under loading or unloading
IF y n + i  < Y n THEN A D  =  0 GOTO 6

4. Check if current damage condition is violated
IF  /("+!) < Tol THEN AD  =  0 GOTO 6

5. Evaluate damage parameter

D n + 1  =  1 , , 1
i  +  [ / i ( y » + i  -  y 0)]B

6. Evaluate stresses
a n+ \  =  (i _  D n ) K °  : en+1 -  A D K °  : en+l
or a n + l  =  { 1 -  D n + 1 ) K °  : en+1

[ d F ? ] i j 1 / 1  , VQ V0

dokl E 0 h  -  D  +  1 -  D * ' )5 ih 5 j l  E o (  1 -  D ° ) 5 k l5 i i

[9F?}ij 1 aD a V 0 . Sij. k aD a V 0 <7m m

dD ~  E0 l (l -  D)2 (1 -  Da)2' E0 l (l -  D)2 (1 -  Da)2 J
dF.f _  (Tki + K5kt i 2aDa~1i/0 , _
dak, ~  E0( 1 -  D f  E0{1 -  Da)2 1 <7mm kl>
9F2" UjjUjj +  2namm 2(aDa~1)2i'o _  2
dD ~  E0(l -  D)3 F 0(l -  Da)3 (aijaij amm>

— — (— —  )2- (4-30)A B A - D ’ yl - D ! y !

Boxes 4.1 and 4.2 show the details of the algorithms for the two models,

respectively.
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BOX 4.2: Basic Algorithm for Inelastic-Damage Model.

1. Evaluate predictor stress state and energy release rate

2. Check if damaged in previous loading 
IF f n < Tol THEN AD =  0 GOTO 6

3. Check present increment is under loading or unloading 
IF fY n+1)pr < CYn)pr THEN AD =  0 GOTO 6

4. Check if current damage condition is violated 
IF (/(«+i>)pr < Tol THEN A D  =  0 GOTO 6

5. Iterate non-linear simultaneous equations Eq.4.28
for evaluating the change in stress a  and damage variable D 
GOTO 7

6. Iterate non-linear simultaneous equations Eq.4.27 
for evaluating the change in stress cr

7. Update stresses, damage parameter and energy release rate
a n + l =  a n +  A ( T

Dn+1 = Dn +  AD

_ n + l  y n + 1 
u pr  j pr

1 _  o-"+1 : <rn+1 +  2K.Tr(<Tn+1)
2F0(1 -  Dn+1)2

(before damage)

) b (after damage)
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4.5 Numerical Examples

The models are assessed under uniaxial cyclic tension and uniaxial cyclic 

compression with plane strain and plane stress elements, respectively. Both

one element and four elements tests have been conducted. Figs. 4.5 and 4.6

show respectively the cyclic responses of the two models, with the following 

parameters chosen only for the purpose of testing the cyclic trend of concrete.

Do =  31800MPa

v q  —  0.2

Yo = 3.35 x 10-2 M Pa  (for cyclic tension)

=  0.15 x 10-1 MPa  (for cyclic compression)

A = 4 . 0 x 1 0  -3 M P a-1 

B = 1.2

k = 1000.0 M Pa  (for cyclic tension)

=  —4000.0 MPa  (for cyclic compression) 

a  = 1 .0  (for cyclic tension)

=  10.0 (for cyclic compression)

The validation of the inelastic damage model under cyclic tension is fur­

ther evaluated by a comparison with the experimental results of ref. [9]. 

4-node plane strain elements are adopted. Material constants are the same 

as those in the previous examples. The parameters are calibrated against the 

experiment with the values A = 2 x 1018 M P a-1, B = 6.4, Yq =  6.45 x 10-4 

MPa, n =  3.5 MPa, and a = 1.0.

The result is depicted in Fig. 4.7. The numerical result of a plastic-damage 

model from Lee and Fenves [8] is shown in Fig. 4.8 as a comparison.

The results are found to be in reasonably good agreement with experi­

mental results, and as good as those of the plastic-damage model.



Chapter 4. Damage Models for Concrete Subjected to Cyclic Loading

3i

STR E SS VERSUS ST R A IN

(a) Uniaxial Cyclic Tension

0.0

•0.5

•1.0

•1.5

-2.0
•0.2 -0.1 0.0•0.7 -0 .5 •0.4 -0.3-0.6

STRAIN

STRESS VERSUS STRAIN 

(b) Uniaxial Cyclic Compression

Figure 4.5: Numerical Results for Pure Damage Model
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Figure 4.6: Numerical Results for Inelastic-Damage Model
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Figure 4.7: Comparison of Inelastic Damage Model with Experiment
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Figure 4.8: Comparison of Lee and Fenves’ Model with Experiment [8]
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4.6 Summary

In this chapter, a pure damage model and an inelastic damage model were 

proposed. In the latter, the effect of damage on transversal deformation and 

inelastic deformation are involved. The computational techniques for these 

models were developed, which enabled them to be implemented using nu­

merical methods in plane strain and plane stress states.

Although both models only can be applied as they stand to concrete un­

der monodirectional loading, they are an essential step towards developing 

more complex or biaxial damage models. The pure damage model is simple 

and easy to programming using FE code, while the inelastic-damage model 

can simulate the nonelastic strain response under monodirectional cyclic un­

loading very well.

The numerical results indicate the validation of the models. However, 

to deal with situations involving reverse cyclic loading or when tension and 

compression co-exist, more powerful damage models are developed in Chapter

5.



Chapter 5

Dam age M odels for Concrete 
Subjected to Reverse Cyclic 
and Biaxial Loading

5.1 Introduction

As noted earlier, neither of the models in Chapter 4 can simulate both ten­

sion and compression simultaneously for a plane stress or strain state. Al­

though La Borderie et al’s damage model covered inelastic strain and the 

effect of crack closure, the positive and negative parts of principal stress in 

their formulations could not be determined a priori due to a description in 

a stress-space. This causes difficulties for finite element implementation and 

its application is limited to problems which are dominated by uniaxial stress 

states.

In this chapter, two damage models are developed which overcome these 

difficulties. Two new potential functions are respectively defined for the two 

model. One (model III) is directly described in principal strain-space, based 

on the assumption that damage occurs in the principal stress/strain direc­

tions. The other (model IV) is developed using the postulate that the spher-

65
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ical and deviatoric components of the principal strain/stress tensor have dif­

ferent contributions to damage.

5.2 Reverse Cyclic Loading Damage M odel 
—  M odel III

5.2.1 Basic Equations

To simulate the response of concrete in the softening regime, a description of 

damage model in strain-space is more appropriate, because strain is known at 

the start of each stage and can be straightwardly separated into the positive 

and negative parts if needed.

In this model, damage is split into two components, tensile damage and 

compressive damage. The former is controlled by the tensile principal strain 

and the latter by the compressive principal strain e~. The state potential 

is expressed in principal strain space as

r  =  |[ ( 1  -  A ) e p+^ 0, <  +  (1 -  D c)e;K°pqe,;  +

+ e p K p q 6 q + 6 p  K p q t ^ ]  (5.1)

where D t and D c are damage variables corresponding to tension and com­

pression, respectively. K®q is the stiffness tensor of virgin material, described 

in principal strain space. Making use of tensor transformation matrix L, we 

have

K°pq = LpijK ijklLklpL~p . (5.2)

where the matrix LPij can be derived through the equilibrium of forces in the 

principal directions of a stress point. These are written as, for a plane stress
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state

cos2 # sin2 # 2 cos # sin # 

sin2# cos2 6 — 2 cos# sin#
(5.3)

for a plane strain state

cos2# sin2# 0 2 cos#sin# 

Lpij = sin2 # cos2 # 0 —2 cos # sin # (5.4)

0 0 1 0

and

(cos2 # + sin2 #)2 —2 cos2 # sin2 # 

—2 cos2 # sin2 # (cos2 # +  sin2 #)2
(5-5)

where # is the angle between the component and the principal stress axes.

5.2.2 C onstitutive Laws

Prom the potential Eq.5.1, the thermodynamic constitutive relations can be 

readily obtained.

The energy release rates corresponding to tensile damage and compressive 

damage are respectively written as

The stress and tangential stiffness tensors are derived via the first and 

second derivatives of the potential with respect to strain, respectively, as 

follows:

(5.6)

(5.7)
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&ij —
d ^ e
ddj

= (1 -  A ) « ^  +  (1 -  Dc)e;K°pq-dtij
, n de~ de+ n 

+  e+K° —q-  +  —p-K q e~ 
p pqdeij dei:i pqq

deij +

(5.8)

dojj _  d2Ve 
deki deaden

n d2en den n den v 
+  (1 -  Dc)(<±K„ f c ^ -  + Q^-Km-feT) +

, n d2e~ de+ n de~ det  n de~
+  tp K p" d ^ d ^ i  +  d ^ i Kpqd ^  +  Tqd ^ i  +

+ fe ~ k ^ lK™e'> (5’9)

5.2.3 Control Function

It is well known that concrete behaves totally differently under tension and 

compression. Two independent damage surfaces f t = 0 and f c — 0 are re­

quired to control the evolution of damage under tensile and compressive 

loading, respectively. In the context, the subscripts t and c serve to denote 

tension and compression respectively.

Since the magnitude of the damage energy release rate is a measure of 

how susceptible the material is to damage, it is adopted to define the damage 

surfaces. Thus

(5.10)
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f c(Yc,D c) = Y e - Z c = 0 (5.11)

where the hardening /softening parameter Z  is expressed as

<sl2>

1 , Dr >. 1 x
z ' - y -  +  a , i- T ^ d , i ’ :  (5 1 3 )

in which Yo> A  and B  have the same definitions as those in chapter 4, except 

they now correspond to tensile and compressive damage.

Thus from Eqs. 5.10 to 5.13 we obtain

Dc  1 i  +  i m v c  -  n o ) ] *  (5,15)

5.2.4 Im plem entation

The implementation of this model is relatively simple, since the derived for­

mulations are described in principal strain-space and no inelastic deformation 

is involved at this stage. The computational scheme is the same as that for 

the pure damage model (model I) described in Chapter 4.

To obtain the stress tensor and tangential stiffness from Eqs. 5.8 and 5.9, 

the first and second derivatives of the principal strain tensor with respect to 

the strain tensor, i.e. dtp/de^ and d2ep/eijeki, have to be known.

The strain tensor can be decomposed into two parts, a spherical part 

associated with a change in volume, and a deviatoric part associated with a 

change in shape (distortion). That is
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£%j — C{j -f- ^kk $ i j  (5.16)

where is the deviatoric strain tensor, and e ^ /3 is the mean strain.

Based on the coincidence of the direction of principal strain tensor with 

its deviatoric tensor, we can express the principal strain cp in the following 

form

€p — Cp -f- ~€kkfip-

in which ep is the principal value of the deviatoric strain tensor. It can be 

obtained from Appendix A, i.e.

ei sin(0 +  ^ )

e2 II to

sin#

_ e 3 _ _sin(0 +  f ) _

with e\ > e2 > e$ and —7r/6 < 0 < 7t/6, and

1
0 = -  arcsinf—

3 2 (j»)
3%/3 4

where f 2 and f 3 are the deviatoric strain invariants.

(5.18)

(5.19)

Hence, we have

deq
deij

dCq Iq&ij
dc*3

(5.20)

d2Cq
dcijdcki

d
dcki

d2e

^deq
dcij

dcijdcki
(5.21)
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The detailed derivations for deq/deij and d2eq/dcijdeki in Eqs. 5.20 and 

5.21 are provided in Appendix B.

5.2.5 Example

To test the response of the damage model under reversed cyclic loading, 

4-node linear plane strain/stress elements are used , with the parameters 

Eq — 31.8 GPa, pq — 0.2, At — Ac — 4.0 x 10 ^MPa Bt = B c — 1.2, 

Yt0 =  3.35 x 10-2 MPa, and Ycq = 1.5 x 10-2 MPa. Note that the parameters 

are chosen arbitrarily only for testing the trend under reversed cyclic loading. 

The numerical results are plotted in Fig.5.1.

YMIN -2.005E+03 
YMAX 2.022E+03

XMIN -3.564E-01 
XMK X . 2.623E-01

S-E_l

- 2 . 0
-0.3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2

STRAIN

STRESS VERSUS STRAIN

Figure 5.1: Response of Reverse Cyclic Loading from Model III
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5.3 Biaxial Damage M odel —  M odel IV

It is generally recognized that the non-linear behaviour of concrete under 

biaxial loading is difficult to handle mathematically and computationally. 

For this reason, the numerical simulation of concrete under biaxial loading is 

quite limited. To realise a modelling for biaxial loading, a new concept and 

model are proposed in this section.

The developed model stems from the idea of stiffness correction in plas­

ticity mechanics, so a good starting point is to recall basic plasticity theory.

Consider an initial elastic body subjected to an external load. A plastic 

deformation can be superimposed after a certain level of stress is reached. 

However, the most significant feature of the plastic deformation is its irre­

versibility and load path dependence. The onset of plastic deformation (or 

yield) is governed by an initial yield criterion, for example the Drucker-Prager 

failure criterion. This is given in the following form.

f ( I i ,  J 2 ) =  a l i  +  y f j 2 — k  =  0 (5.22)

in which A =  an is the first invariant of stress tensor, J2 =  SySy/2 is 

the second invariant of the deviator stress tensor s^, and a  and k are ma­

terial constants. Subsequent yield conditions are described through harden­

ing/softening rules.

A flow rule defines the direction and magnitude of the plastic strain rate 

vector de^ which is assumed to be proportional to the stress gradient of a 

plastic potential function ^(cr^-, ê -, k). This is written by

* 5 - % ;  <“ 3>
where dX is a plastic multiplier. By means of the flow rule, the increment



Chapter 5. Reverse Cyclic and Biaxial Damage Models 73

constitutive relation can be expressed as

d ° i j  =  K m  ( d e kt ~  de*,)

=  K fjk i ( .d tk i  ~  d x ^ ~ )d(Jki
(5.24)

where Kfjkl and K ^kl are the tensors of elastic and elastic-plastic stiffness, 

respectively, dtki is an increment of strain.

For the Drucker-Prager yield function with its associated flow rule, we 

can derive the elastic-plastic stiffness tensor as

where K q is the bulk modulus of material.

It is obvious from the above that the essence of plasticity theory is to 

describe the response of an elasto-plastic material by means of a stiffness 

modification of the material. It is found from Eq. 5.26 for a Drucker-Prager 

model that the modification is associated with the deviatoric stress.

The same approach is applied to the present biaxial damage model, and 

the different contribution of the hydrostatic and deviatoric components to 

damage are distinguished. A new potential function and a set of damage 

parameters are proposed.

=  K !jk, +  K k !

(5.25)

in which Go is the shear modulus of material and

(5.26)
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5.3.1 Potential Function

The simplest form of potential energy can be written as

^  — 2  ̂ uv-^uvst^st (5.27)

where K uvst is the stiffness of material, and euv is a strain tensor.

The substitution of Eq. 5.16 into Eq. 5.27, in conjunction with considering 

that the hydrostatic and deviatoric components have different contributions 

to damage, leads to

^  — 2 ^  D)(euvK uvstest +  €m5uvK uvstest +  €meuvKuvstSst) +

+ 2 — DP)emduvKuvstfist (5.28)

where euv is the deviatoric strain tensor, em = (cn +  e22 +  e33)/3 is the 

mean stress, and Suv an identity tensor. D is a combined tension/compression 

damage parameter, and fd is a damage multiplier associated with mean stress 

for uniaxial loading and with the total energy release rate for biaxial loading.

The damage parameter D  is defined as a weighted average of a scalar 

tensile and compressive damage parameters, Dt and Dc. This has the form

D  =  E ^ D t +  E  \ap \Dc (5 29)

\ a p \

where op and &p are the positive and negative parts of the principal stress 

tensor respectively, and XllopI is the sum of the absolute values of prin­

cipal stresses. This definition implies that damage under uniaxial loading is 

governed by the corresponding damage parameters, while under biaxial load­

ing two damage parameters, Dt and Dc, contribute to the induced damage 

together. The effective contribution is in proportion to the ratio of relative
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positive and negative principal stresses to the sum of absolute values of the 

principal stress. This effect is equivalent to separating the stress tensor into 

positive and negative parts, but it greatly simplifies the implementation in a 

FE code.

Based on the failure characteristics of concrete, we assume that the ef­

fect of hydrostatic component on damage is less than that of the deviatoric 

component. Thus a damage multiplier /3 is introduced to reduce the effect of 

damage parameter on the hydrostatic component. It is defined as a ratio of 

the average stress to the maximum principal stress for uniaxial loading, i.e.

while for biaxial loading it is related to total energy release rate by

in which Am and Bm are two parameters to be determined, and Ye is the 

total energy release rate. Clearly, we have (3 < 1.

5.3.2 C onstitutive and Evolution Laws

From Eq.5.28, the thermodynamic force, stress, and tangential stiffness can 

be derived as follows

(5.30)

,t^st (1 (^ )^ m ^ u v^ u vst^ im 0 u v j x u v s t ° s t _ (5.32)
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cr =  ( i -
E ̂  D _ E WP
E CFr, E Dc)K®]stest +

+ ( ! - /* ) (
E ^ A  +  E k j .  lA .e

E k p l
) f M UV1 Y u V S t USt (5.34)

d d i - i  ,  E ^ r c  E  k n  I ,  n
= (1 -  U r^-.D t -  +

de.ij 2*1 \®p\ z.*/ \®p\
, (i  /3\f'52<JpDt~\~^2\&p\Dc^Sij5klx TsO x /K OCA + (1 -  p )(----------------- )—^ - 0 UvKuvstdst (5.35)

2^ Fpi y

The damage surface and evolution law have the same forms as in model

III.

5.3.3 Implementation

We denote the beginning state of a loading increment as n, and the end state 

as n +  1. Box 5.1 presents the detailed algorithm of this model.

5.4 Applications to Concrete

In this section, several examples are presented to test the proposed mod­

els. The finite element implementation uses a single two-dimensional, 8-node 

quadratic plane stress element and are conducted for uniaxial loading, biaxial 

loading, as well as reverse cyclic loading. Loading is controlled by displace­

ment to simulate the response of concrete in the softening regime. In order 

to compare with experimental results from refs. [9] and [5] the following 

material properties are adopted in numerical computation: Young’s Modulus 

Eq — 31.8GPa, Poisson’s ratio vq = 0.18, maximum tensile strength 3.5MPa, 

and maximum compressive strength — 27.6MPa. The parameters calibrated 

from the experiments are listed in Tab. 5.4. It should be noted that making



Chapter 5. Reverse Cyclic and Biaxial Damage Models 77

BOX 5.1: Basic Algorithm for Model IV

1. Evaluate energy release rate 
Ytn+1 and Vcn+1

2. Check present increment is loading or unloading 
IF K"+1 < Ytn THEN AO, =  0 GOTO 6
IF ycn+1 < Ycn THEN AOc =  0 GOTO 6

3. Check if current damage conditions are violated 
IF / (n+1 < Tol THEN AO, =  0 GOTO 5
IF / c"+1 < Tol THEN A Dc =  0 GOTO 5

4. Evaluate tensile and compressive damage parameters, respectively.
1D?+1 = 1 -

LP+1 =  l -
1 +  [At(Ytn+1 -  Yt0)]B.

1 +  [.4c(yc"+1 -  Fc0)]B'
GOTO 6

5. 0 " +1 =  Op
D n+1 =  D n

6. Evaluate total damage parameter D 
IF unloading THEN Dn+1 = Dn
ELSE evaluate total damage parameter Dn+l (Eq. 5.29)

7. Evaluate stress tensor, cr̂
8. Evaluate tangential stiffness, doij/deij
9. Evaluate the eigenvalue of stress tensor, op
10. Evaluate and Update parameters

p, Zt and Zc
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Table 5.1: Parameters for Numerical Computation

Model III Model IV
At 5000.0 M P a -1 7000.0 M P a -1
Ac 21.0 M P a '1 29.0 M P a -1
Am 2.0 M P a '1
Bt 1.3 1.1
Bc 1.05 0.94
Bm 0.7 M P a -1
Yt0 2.0 xl0~4 MPa 1.9xl0-4 MPa
Yc o 4.0xl0-4 MPa 3.0xl0-4 MPa

small changes to these parameters, other concrete with different properties 

can be modeled. If only the ultimate strength is required, modifying At and 

Ac is sufficient.

5.4.1 Uniaxial Loading Test

Figs.5.2 and 5.3 illustrate the results of the two models III and IV under uni­

axial tension and compression. These are compared with the experimental 

results under tensile loading (Gopalaratnam and Shah (1985) [9]) and com­

pressive loading (Karsan and Jirsa(1969) [5]). Excellent agreement between 

the numerical analyses and the experimental results are obtained. Similar 

comparisons were carried out by Lee and Fenves (1998) [8] using a plastic- 

damage model (see Fig. 5.4). It is demonstrated that the proposed models 

can simulate concrete response as well as the plastic-damage model. It also 

shows closer agreement than Lee and Fenves’s model during certain stages 

under uniaxial tension loading.
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Figure 5.2: Comparison of Numerical Solutions of Model III with Experi­
mental Results under (a) Uniaxial Tension [9]; and (b) Uniaxial Compression
[5]
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Figure 5.3: Comparison of Numerical Solutions of Model IV with Experi­
mental Results under (a) Uniaxial Tension [9]; and (b) Uniaxial Compression
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Figure 5.4: Comparison of Numerical Solutions of Lee et al’s Model with 
Experimental Results under (a) Uniaxial Tension (Gopalarantnam and Shah 
1985); and (b) Uniaxial Compression (Karasan and Jirsa 1969)
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5.4.2 Biaxial Loading Test

Numerical simulation using model IV for biaxial tensile and compressive 

loading are carried out respectively. Fig. 5.5 provides an entire biaxial tensile 

stress and strain relation.

Figs. 5.6 and 5.7 give the numerical results of biaxial tension and com­

pression under three stress ratios respectively, in conjunction with the cor­

responding experimental results of Kupfer et al [10]. The numerical analyses 

show a very good agreement in trend with Kupfer et al’s experimental results.

2.5

0.5

1.0E-04 3.0E-04-3.0E-04 -1.0E-04
Strain

Figure 5.5: Relationship of Stress versus Strain under Biaxial Tension 

5.4.3 Reverse Cyclic Loading Test

Reverse cyclic loading is imposed on the same model as above. The result is 

depicted in Fig.5.8. Loading paths are tensile loading, tensile unloading, com­

pressive loading and compressive unloading, and the whole cycle is repeated 

several times. The detailed paths are as follows:

0 = > 1 = ^ 0 = ^ 2 = > 0 = ^ 3 = ^ 4 = > 0 = ^ 5 = > 0 = ^ 6 = > 7 = ^ 0 = > 8=^0
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Figure 5.6: Stress-Strain Relationship under Biaxial Tension (a) Numerical 
Results from Model IV; (b) Experimental Results [10]
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Figure 5.7: Stress-Strain Relationship under Biaxial Compression (a) Numer­
ical Results from Model IV; (b) Experimental Results [10]
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=>9=>10=>0=^11=>0

5.5 Discussion and Summary

Two new damage models are developed in this chapter, where different as­

sumptions are proposed. Model III is based on a maximum principal strain 

postulate, i.e. the positive part of maximum principal strain governs tensile 

damage, whilst the negative part of the maximum principal strain dominates 

compressive damage. Model IV considers the different contribution of the 

hydrostatic and deviatoric components to damage. Since a weighted damage 

parameter is introduced, the computational complexity caused by separating 

strain/stress into positive and negative parts in existing models is overcome. 

The definition of the damage multiplier produces a satisfactory simulation of 

concrete behaviour under biaxial loading.

The implementation in finite element code of the two models is greatly

-4.0E-03 :+oo 2.01 '-03-2.0E-03

co

-20 -

-25 -

Strain

Figure 5.8: Response of Reverse Cyclic Loading from Model IV
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simplified due to a description of potential energy in a strain space.

Although the phenomena of inelastic strain and crack closure are import­

ant features of concrete and further study is quite necessary, they are outside 

the scope of this thesis. The present models, however, are sufficient to sim­

ulate the matrix subjected to pull-out in fibre reinforced concrete, where 

tension and compression coexist in different places. In addition, further de­

velopment of the models to include the inelastic response and crack closure 

should be fairly straightforward, although not without some difficulties.

Although the two models are developed from different concepts and as­

sumptions, the comparison of the numerical analyses with the experiments 

demonstrates that they all can simulate the response of concrete subjected 

to uniaxial (models III and IV) and biaxial loading ( model IV) very well. 

Finite element simulation with reverse cyclic loading also works well.

However, it is a fact that model IV is more powerful than model III. The 

main advantages of the former are that it is simple mathematically, does 

not require separating strain/stress due to introducing a weighted damage 

parameter, and can satisfactorily describe the behaviour of concrete under 

biaxial loading due to adopting a damage multiplier.



Chapter 6 

M odelling Pull-O ut

In steel fibre reinforced cement-based composites, since the ultimate strain 

capacity of the matrix is lower than that of fibre, the matrix fails before the 

full potential capacity of the fibre is achieved. In this case, the fibres which 

bridge the cracks formed in the matrix contribute to the energy dissipation 

through the processes of debonding and pull-out. The efficiency of this con­

tribution is commonly assessed by the maximum crack bridging force (peak 

pull-out load) and the total energy absorption (pull-out work) during the 

fibre’s pull-out.

Many factors affect the behaviour, including the properties of fibre, mat­

rix and interface, fibre size, volume fraction, distribution, orientation, and 

geometry. However, in order to understand the entire response of a compos­

ite and to also develop a good pull-out model, a sound understanding of the 

contribution of a single perpendicular fibre and its pull-out mechanisms is 

essential. For this reason, section 6.1 will briefly describe the basic pull-out 

behaviour of a cement-based composite reinforced by a single perpendicular 

fibre.

As reviewed in Chapter 1 for existing finite element models of the pull- 

out problem, an interface is usually simulated by means of spring elements,

87
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contact elements or specially developed elements in conjunction with a linear 

or non-linear stiffness. The direct application of interface elements is feasible 

for perpendicular fibres with small slip (usually less than 0.1 mm). For those 

composites with inclined, deformed or curved fibres, geometric constraints 

and Poisson’s ratio will cause interaction and separation between fibre and 

matrix. Moreover, for a smooth short fibre, large sliding and full pull-out 

from matrix can occur after full debonding.

Considering only the change in the interface element stiffness, as in the 

existing models, is insufficient to describe this complex response. Therefore, 

a new and comprehensive pull-out model is required. In order to develop 

such a model which merges various pull-out mechanisms into one analytical 

model with little or no convergence problems in a non-linear analysis under 

large slip, many aspects have to be taken into account: (1) before debonding, 

the transmission of normal and shear stresses through the interface between 

fibre and matrix; (2) debonding criterion and debonding length; (3) after 

debonding, interfacial friction behaviour and interaction, and the large rel­

ative sliding of fibre against matrix; (4) matrix spalling and snubbing due to 

inclined fibre bending.

To deal with this, a novel modelling method is proposed in this chapter. 

A contact algorithm with friction, in conjunction with certain constraint 

conditions, is adopted to cope with the interaction and separation between 

fibre and matrix, and large relative sliding. The corresponding theory on 

contact with friction was outlined in Chapter 2.

To detect the onset and development of debonding in existing numerical 

models [77, 61], strength or fracture criteria were employed. In the strength- 

based methods, debonding was simulated by the shear failure of interface ele­

ments. In the fracture-based models, an initial crack length was first defined
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and singular interface elements were placed at the interface crack front. The 

energy release rate was then calculated to decide whether debonding occurs 

or not. In the former, due to debonding, discontinuous and unstable com­

putational results are often met, while in the latter the analysis has to be 

carried out for a series of meshed models with different crack lengths. An 

alternative consideration, where bonding and debonding are assumed as the 

constitutive properties of a given interface, is given in Section 6.2.

Since large relative sliding during pull-out can result in severe damage of 

the matrix (concrete), convergence difficulties often arise. In order to solve 

this problem at the beginning of this work, various attempts were made by 

employing different concrete models such as the smeared crack model etc. 

The results showed that using existing concrete models convergence was ex­

tremely difficult to achieve under relatively large sliding. This problem was 

also encountered by Leung and Chi [46], as described in Chapter 1. To over­

come this, the strategy here regards matrix spalling and large deformation as 

a kind of material damage. Concrete damage models developed in Chapters 

4 and 5 are adopted.

Another problem to be considered in modelling pull-out of inclined fibres 

is that when a fibre bends, snubbing and a substantial separation of the fibre 

occurs at its exit point. Its effect on pull-out behaviour is complex. Dealing 

with this will be described in Section 6.3. Finally, to evaluate the modelling 

accuracy, the sensitivity of various parameters is analyzed in the last section.
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6.1 Pull-Out Characteristics of a Single Per­
pendicular Fibre

To analyse pull-out mechanisms of a single perpendicular fibre, we start with 

a typical bond force-slip relationship, i.e. the crack bridging force versus crack 

opening relation, Fig. 6.1. The curve can be subdivided into three stages. 

Stage 1 is controlled by elasticity, stage 2 by damage/fracture and stage 3 

by friction. Fig. 6.2 illustrates the contribution of the bond force Pu in the 

bonded zone and the frictional force Pdd in the debonded zone. Clearly, the 

total pull-out force Pt is simply given by

Pt — Pbd +  Pdd (6-1)

In Fig. 6.2, L denotes the bonded length before any debonding has oc­

curred (i.e. the fibre length) and a denotes the debonded length; r  is the 

friction stress along the interface of the debonded zone; while gr is the total 

slippage at the fibre exit point from the matrix and includes both the elastic 

and plastic slips.

We shall now derive a relationship between the pull-out force Pt and slip 

gT during the complete pull-out process. In this context, the subscripts t , bd 

and dd donate total, bonded and debonded states respectively, and c, m  and 

/  represent composite, matrix and fibre respectively. The subscript numbers 

represent the stage number.

In stage one, we suppose the fibre and matrix are fully bonded (see 

Fig.6.3), so that force Pt\ is completely transmitted from the fibre to the 

matrix through bond. According to St. Venant’s principle, the average stress 

of the composite away from the load point can be written as
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Figure 6.1: Typical Relationship of Bond Stress vs. Local Slip
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Figure 6.2: Relationship between Forces during Pullout
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Matrix

Phdi Fibre

Figure 6.3: Fully Bonded Fibre

Or = ti Pbdi n  9 t
~a 7  = EcT

(6 .2)

where Ac = Am +  A /  is the cross-section area of the composite, and Ec = 

VfEf + (1 — Vf)Em is the Young’s modulus of the composite. Vf is the fibre 

volume fraction. From Eq. 6.2, the pull-out load Pt\ can be written as

(6.3)

where K c =  ACEC is the stiffness of the composite. During this stage, the 

friction force Pddi is equal to zero because there is no debonding.

Beyond the elastic bond limit, debonding starts to occur (Fig. 6.4). A 

length a of the interface crack can be defined by a strength or fracture cri­

terion. For the debonded part, the friction shear stress r  is assumed to be 

constant over a. Thus, the total friction force in the debonded zone is

Pdd2 =  Tr<l>aT (6.4)

in which </> is the diameter of the fibre.

In stage two, regardless of the contribution of the debonded matrix, Pm2 

is similar to that in stage one, that is
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Matrix:

Fibre Pbd?'

L - a

Figure 6.4: Fibre with Partial Debonding

P b d 2  —
Kc9Tbd K cRa9Tbd (6.5)L — a a

where grbd is the deformation of the bonded part, and Ra is the ratio of the 

debonded length to bonded length. Combining Eqs. 6.4 and 6.5 and replacing 

a by £ in Eq. 6.4, the total pull-out load at any cross section of the debonded 

zone is obtained as

Pt2{x) = Pbd2 + Pdd2 (x)

=  M * ™ . +  K<t>TX (6.6)
a

In order to relate the pull-out load Pt2 to the total deformation gx at the 

fibre exit point, consider an equilibrium of an infinitesimal free body in the 

debonded zone, as shown in Fig.6.5. To simplify the analysis, it is assumed 

that this infinitesimal segment is in uniaxial tension. Thus, the fibre stress 

Of at x +  A x  can be written in the following form,

From Eq. 6.7 the total deformation gTdd in the debonded zone can then 

be derived as follows
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Ax

Figure 6.5: Free Body Diagram of Infinitesimal Segment of Fibre

f a 1 f a
9 r d d =  d g Tdd =  ^ —r  [P t2 ( x ) d x  +  7T(j)T(dx)2] (6.8)Jo hsfAf Jo

Ignoring the higher order term in the right-hand side of Eq. 6.8 and using 

Eq.6.6, Eq.6.8 becomes

h i Pt2(x)d3
9Tdd =  I r n  [ X ) a x

= ^ r ( K cRagTM + ' ^ - )  (6.9)f  z

where K f = E jA f  is the fibre stiffness. Since the total deformation gr is the 

sum of the deformations in the bonded and debonded zones, we have

9T — 9Tdd +  9Tbd

R u +  R k  , ^ T O 2

=  — R — 9 T M + ~ W  ( }

in which R k =  K f /K c  is the fibre relative stiffness. From Eq.6.10, grbd can 

be easily derived as

R k  ( /K(j)Ta2.
9 ™  =  R a +  R K  ~  2 D ;  '

(6.11)



Chapter 6. Modelling Pull-Out 95

Finally, substituting Eq. 6.11 into Eq. 6.6, the total pull-out load in stage 

two is obtained.

P '2 =  o .(R a +  R K ) 9 T  +  I1 "  2 ( 6 1 2 )  

After the peak pull-out load is reached, the load drops until the fibre has 

fully debonded from the matrix. After this the bonding force Pbdz drops to 

zero and pullout is completely controlled by friction. During the third stage, 

the friction force at the interface is assumed to be uniform, any friction decay 

being ignored. Thus

Ptz =  Pddz = (6.13)

Figs. 6.2 (a) and (b) illustrate the change of Pbd and Pdd with slip.

Based on the Eqs. 6.3, 6.12 and 6.13, and considering friction degradation, 

the relationship among the forces Pt, Pbd and Pdd is schematically presented 

in Fig. 6.2(c). It can be concluded that for a composite with given mater­

ial properties and geometry, the pull-out response is mainly dominated by 

stage two and stage three. The former controls the peak crack bridging load, 

and depends primarily on the ratio of debonded length to bonded length, 

the debonded length and the residual interfacial friction force. The latter is 

an indicator of the softening process, and is only governed by the residual 

interfacial friction force associated with frictional degradation.

In addition, observing Fig. 6.1, we find that the pullout work of area I +  

area II required to overcome elastic deformation and to debond the interface 

is much less than that of area III caused by friction after full debonding. 

Since a primary purpose of adding fibres into a brittle matrix is to enhance 

its material toughness, and the pullout work is a measure of the material
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toughness, the modelling of the frictional mechanism is of special importance 

in understanding and modelling pullout behaviour.

6.2 Basis of the M odel

The bond stress-slip curve of a composite with a perpendicular fibre is a ba­

sic characteristic of its interfacial properties, whilst the interfacial behaviour 

is determined by the material properties of the matrix and fibre, interfacial 

chemical adhesion and the manufacturing technique. Once these are given, 

the interfacial properties are uniquely defined. In addition, the bond stress- 

slip relation also embodies information such as interfacial friction and trans­

verse shrinkage etc. Therefore, we assume the bond stress-slip relationship 

of a composite with a perpendicular fibre as a local interfacial constitutive 

property. Based on this hypothesis, the bond shear stress at any point along 

the interface will depend on the relative slip at the same point.

Similar postulates can be found in the theoretical works of Naaman et 

al. [16] and Nammur and Naaman [4]. In ref. [4], a linear bond stress-slip 

relationship before debonding and a constant shear stress after debonding 

were assumed. In ref. [16], the degradation of shear stress after debonding 

was considered by means of the decrease of the misfit between matrix and 

fibre (introduced in Chapter 1).

To accurately describe interfacial bonding, debonding and friction degrad­

ation in this work, the bond stress-slip relationship is directly obtained by 

means of a curve fitted from the experimental relationship of crack bridging 

force versus crack opening for a perpendicular fibre. Based on experimental 

data, two curve fitting methods are employed, piecewise linear and piecewise 

regressions. The latter includes linear regression for stage one and power re­

gression for stages two and three. Obviously, such a curve when applied to
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a composite with randomly distributed fibres, requires additional considera­

tions.

Based on the basic assumption that bond stress-slip relationship is a con­

stitutive property of the interface, the magnitude of the pull-out load depends 

totally on the bond stress-slip relationship of each point along the fibre. In 

other words, it depends on the transmission of shear stress on the interface. 

Consequently, a contact algorithm with friction is adopted to simulate this 

transmission.

6.2.1 Definition of Contact Surfaces

For a contact problem, a contact pair for the interactive surfaces has first to 

be defined, i.e. a contactor and a target, sometimes called a slave surface and 

a master surface. For steel fibre reinforced concrete, the fibre side is chosen 

as the master surface and the concrete side as the slave surface.

Consider contact of a point xs on a slave surface with a quadratic slide 

line segment (consisting of points aq, x2 and x3) on a master surface (see 

Fig. 6.6). We can find such a point x on the segment so that it is closest to 

point xs. Then, a contact element can be formed by points xs and x, and 

the local normal N  and tangential T  vectors of point x can be determined. 

Obviously, the normal N  is related to the contact gap g^.

Since a; is on a segment of the master surface, its position is completely 

defined by the interpolation function iVj(f) of the segment. For a quadratic 

segment, we have

= 1 +  C6) * =  1,3

Nt = 1 - f  i = 2 (6.14)
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Slave Surface

Xs

X2

Master Surface X3

Figure 6.6: Quadratic Slide Line Segment 

Slave Surface

Xs

Xi
N

X2

Master Surface 

Figure 6.7: Linear Slid Line Segment

and for a linear segment (see Fig. 6.7)

iVi =  5 (1 -  0

=  5 ( 1  +  0

To determine the position of point x, we define

N gN =  x -  xs = Ni(£)xi

__ dx . 
T  = — /

dx

(6.15)

(6.16)

(6.17)
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where dx/df  = (dNi/d£)xi and the other variables have been defined in 

Chapter 2. Obviously, the normal and tangential vectors must be orthogonal, 

i.e.

N  • T = | p Xi • x, =  0 (6.18)

From this equation, point x can be solved iteratively.

When contact occurs, the interaction is measured through the normal 

gap (separation) gn and the tangential gap (slippage) gr- Their computa­

tional expressions are given by Eqs. 2.3 and 2.4 in Chapter 2. The contact 

is controlled by g^. Commonly, if > 0, the two contact surfaces have 

no contact, and the contact algorithm is not considered. When < 0 or 

gr > 0, contact or slip occur respectively.

From a bond stress-slip curve we can see that after full debonding there is 

still a residual friction strength at the interface. However, with a basic contact 

algorithm, the transmission of interfacial forces will cease after debonding 

( 9 n  > 0)- In fact, due to the effect of Poisson’s ratio and fibre inclination 

etc. separation of interface is unavoidable during pull-out. To ensure that the 

bond stress-slip relationship is still workable under the separated situation, 

a normal constraint has to be enforced on the interface, and there must be 

no influence on the transmission of the tangential stress. This demands that 

firstly, the gap gn must be kept to zero or within zero and an allowable value 

specified for the cases with large separation; secondly, the contact states, 

including sticking and sliding, are only determined by the tangential gap gr- 

To realize the above conditions, different interfacial constraints are defined 

as follows.
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6.2.2 Constraint Conditions and Im plem entation  

Constraints in Normal Direction

Two normal constraint conditions are considered in the present model.

For a small clearance, the separation is mostly caused by transverse 

shrinkage of fibre due to the effect of Poisson’s ratio. In this case, the normal 

gap gx = 0 is defined. When the interface tends to separate, a negative pres­

sure po is enforced to constrain the contact surfaces together. The constraint 

condition (hard contact) can be expressed as

9n  >  0 

tN ^ PO-Acon 

Qn^n = 0

(6.19)

where A con is area of a contact element, and the constraint is schematically 

presented in Fig. 6.8.

^ contact pressure

§ N gap
Po

Figure 6.8: Contact Pressure-Gap Relationship 

For a large clearance, separation mainly stems from reinforcement geo-
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metry and matrix constraint, such as the case of a curved bar in reinforced 

concrete. With large separation, a tensile stress enforced at the interface is 

not enough to prevent the interface opening. An alternative constraint ap­

proach is to allow the interface to sustain a certain separation g0, and the 

normal load-transmitting capability to decrease exponentially with the sep­

aration. This ensures that the tangent load transmits continuously until the 

given value go is achieved. This exponential pressure-gap relationship (soft 

contact) [135] is

tN =  0 for gN > g0

t N =  - T tC1 “  X)1 f ° r  ~  6 9o < 9 n < 9 o

tN = _ Po4son[7e? _  i _  (6 + |^ )(8 e 7 -  1)] for gN < -6 g0

(6 .20)

and is illustrated diagrammatically in Fig. 6.9.

contact pressure

gap

Figure 6.9: Exponential Pressure-Gap Relationship
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Figure 6.10: Assumed Bond Force vs. Slip Relationship 

Constraints in Tangential Direction

During a sticking contact, only elastic tangential slip exists. The shear force 

and relative slip on the interface yield the following relation before a critical 

slippage g ^ lt is attained.

tr  — kegT (6 .21)

where ke is the bond modulus in the linear-elastic portion of a bond force-slip 

curve (see Fig. 6.10).

When the slippage gT exceeds the critical value g!£lt, the slip is accom­

panied by an unrecoverable relative motion. The total slip g? is the sum of 

the elastic slip and the unrecoverable relative motion, i.e.

9t — 9 r lt + A9t — 9t d +  ^ 9 t + ^ 9 t (6.22)

Depending on the adopted bond stress-slip curve, the constraints are then 

given as follows:
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or

tr = kegT for 9t < 9?il

tr = Uigrp for 9?u < 9t < jpeak
9t

tr 62= for 9t > 9Preak

tr — kei9T i = 1,2, . . . (6.23)

(6.24)

with

/  =  tr  < 0 

9t  ^  0  

/<7t  =  0

(6.25)

where ai,a2,biandb2 are regression coefficients, and g ^ ak is the slip cor­

responding to the peak load point. /  and gr have been defined in Chapter 

2 .

With these constraints, the modelling of pull-out can be conducted. The 

constraints in the normal direction for the case with small separation and 

in the tangent direction are implemented by the penalty method. The aug­

mented Lagrangian technique is employed to deal with the case with large 

separation.

The non-linear finite element code ABAQUS [135] was used for imple­

menting the contact algorithm in conjunction with new developed code for 

dealing with the constraints in the tangential direction and for modelling 

some special pull-out mechanisms, such as snubbing etc.
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substantial separationmatrix spalling

Figure 6.11: Illustration of Matrix Spalling and Substantial Separation

6.3 M odelling o f Other Pull-Out M echanisms

In addition to the mechanisms discussed previously, a composite with ran­

domly distributed fibres will suffer local snubbing and substantial separation 

at the fibre exit point from the matrix due to fibre bending, as sketched in 

Fig. 6.11.

Snubbing

To cover the effect of snubbing, a Coulomb friction law is used to measure 

its contribution to the interfacial shear force in the form

tsTnub = fipAcon (6.26)

where p is a friction coefficient, and p is the contact pressure inducing local 

friction. The extra shear force is added to the total interfacial shear force 

during each loading increment.
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Figure 6.12: Determination of Substantial Separation Length

Substantial Separation

A substantial separation at the fibre exit accompanies matrix spalling. The 

same method is adopted for its simulation as in the soft contact model. The 

differences are: an individual contact pair has first to be defined within an 

estimated separated length /; then a pressure po with the same magnitude as 

the bond strength (2.0MPa  in the present analyses) constrains the interface. 

When the normal force on the interface exceeds its ultimate tensile bond 

capacity, the interface opens, which results in the matrix spalling on the 

other side of interface.

Assuming, in Fig. 6.12, the fibre is bent from a position A  to B  around 

point “o”, the opening length can be approximated by

l = ^ n e  +  2 ^ e ) ( 6 '2 7 )

in which 9 is the inclined angle of the fibre, and </> is the fibre diameter.
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6.4 Validation of 2-D M odel

106

Because a fibre is surrounded by the matrix, pull-out behaviour is essen­

tially three dimensional. Existing two dimensional pull-out modelling do not 

fully describe an actual three dimensional situation. Some methods have 

been used for solving this problem, such as axisymmetric models [78], or 

two-dimensional multiplane finite element meshes [61]. These approaches are 

practical for a perpendicular fibre. However difficulties arise for randomly 

distributed fibres. Three dimensional interface modelling is very complex, 

and requires excessive computer time and storage.

The introduction of contact algorithms with friction in the present model 

makes the substitution of 2-D for 3-D possible. A friction contact area Acon 

for each contact element is defined as

where Lcon is the length of contact element. By this, the transverse effect of 

matrix on fibre is applied to the whole perimeter of the fibre.

This approximation is assessed by means of a pull-out numerical model 

with a perpendicular fibre. A two dimensional plane strain model and an 

axisymmetric model are used (Fig.6.13) respectively. The same material prop­

erties and constraint conditions are defined.

In the two dimensional plane model, 8-node quadratic plane strain quad­

rilateral elements are used for the fibre, and 6-node quadratic plane strain 

triangle elements for the matrix. For the axisymmetric model, both matrix 

and fibre are meshed with 8-node quadratic axisymmetric quadrilateral ele­

ments. The results are compared in Fig. 6.14 and very close agreement is 

obtained.
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(a)

(b)

Figure 6.13: Configurations of Pull-Out Models: (a) Two Dimensional Plane 
Model; (b) Axisymmetric Model
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Figure 6.14: Comparison of Results of Two Models

Using the same model, the capability of modelling full pull-out is ex­

amined. Figs. 6.15 and 6.16 are evidence that it works well and has a similar 

configuration with the experimental curve [11].

6.5 Choice of M odel Parameters

Many factors could influence the numerical results, such as the structural 

constraints, interfacial constraints, the magnitude of the loading increment, 

element size, the coefficient of friction, and the separating length at the fibre 

exit. For this reason, the choice of various parameters are discussed in the 

following. All analyses are performed using the same 2-D plane model with 

a fibre inclined at 45°.

Structural Constraints

Several different constraints are depicted in Fig. 6.17: (a) at the two sides of 

the matrix; (b) at the top of the matrix, but close to the fibre; and (c) at the
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Figure 6.15: Configuration after Full Pull-Out

top of the matrix, but a little distance from the fibre.

The influence of structural constraints on pull-out responses are plotted in 

Fig. 6.18. The results indicate that for the top constraints, different constraint 

lengths lead to different pull-out responses. Full constraint (case b) limits the 

deformation of matrix and causes an increase of the pull-out load. Insufficient 

constraint (case c) results in convergence problems of non-linear solution. In 

fact, the crack surface is stress free. Therefore, the lateral constraint (case a) 

is more reasonable for a pull-out experiment and numerical analysis.

Interface Constraints

Four different contact pressures for the hard contact model were tested, i.e. 

10 MPa, 100 MPa, 1000 MPa and 10000 MPa (see Fig. 6.19). The deformed 

configurations are shown in Figs. 6.20 to 6.23. For the very small contact 

pressure, pQ = 10 MPa, an interfacial crack initiates prematurely and propag-
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Figure 6.16: Full Pull-Out Responses: (a) Numerical Result; (b) Experimental 
Result [11]
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(a)
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Figure 6.17: Different Structural Constraints
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Figure 6.18: Effect of Different Structural Constraints on Pull-Out Response

ates rapidly passing over the whole fibre length along one side of the fibre 

(Fig. 6.20), leading to the collapse of the computational system. The phe­

nomenon can also be explained by tensile principal stress contours, Fig. 6.24, 

and vector plots, Fig. 6.25, under four different loading increments. These 

contours and vector plots describe the propagation process of the interfacial 

crack from the active to passive ends of the fibre through the transmission of 

tensile principal stress along the interfaces. Fig. 6.19 shows that to obtain a 

insensitive numerical result, any value of po over 1000 MPa can be adopted.

Initial Loading Increment

To describe the softening stage of the pull-out response, displacement loading 

has to be adopted in a finite element analysis. The total expected displace­

ment is loaded by a series of increments. The term “increment” is defined as 

the ratio of the current loaded displacement to the total expected displace­

ment.
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Figure 6.19: Effect of Constraint Pressure on Pull-Out Response

Figure 6.20: Deformed Configuration for p0 = 10 MPa
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Figure 6.21: Deformed Configuration for p0 = 100 MPa

Figure 6.22: Deformed Configuration for po =  1000 MPa
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Figure 6.23: Deformed Configuration for p0 = 10000 MPa

Obviously, too small an initial increment will increase computational 

time, and be prone to diverge at the discontinuities of a piecewise fitted 

bond stress-slip curve due to a discontinuous first derivative. For a large 

initial increment it may be difficult to reach an equilibrium solution.

Several initial increments are evaluated, from 0.0001 to 0.01. Among the 

chosen range, none influenced the pull-out response (Fig. 6.26). Each incre­

ment is generally convergence after four to five iterations. The increase of 

initial increment is accompanied by a decrease of the total number of incre­

ments to complete an analysis (Fig. 6.27).

Generally, to ensure modelling accuracy around the discontinuities of a 

piecewise fitted bond stress-slip curve, 0.0001 is first chosen. If convergence 

problem occurs, this can be overcome by increasing the increment to 0.001 

so that the discontinuity causing trouble is by-passed.

In the following analyses, an initial increment between 0.0001 to 0.001 is
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Figure 6.24: Tensile Principal Stress Contours
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Figure 6.25: Tensile Principal Stress Vectors
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Figure 6.26: Effect of Initial Loading Increment
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Figure 6.27: Relationship of the Number of Total Solution Steps vs. Increment 
Size
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Figure 6.28: Pull-Out Response for Fibre with Triangle Elements 

chosen.

Mesh Sensitivity

The simulation of contact with friction in the present model is a key point. 

So it is necessary to establish whether the pull-out response is affected by 

the size and shape of elements of the master and slave surfaces.

To illustrate this, the fibre and matrix are meshed using different num­

bers of elements respectively. The matrix is meshed with triangular elements. 

Since the fibre suffers large geometric non-linearity under bending, both tri­

angular and quadrilateral elements are tested respectively. The effects of the 

number of elements on pull-out responses are depicted in Fig. 6.28 for the 

fibre with triangular elements, Fig. 6.29 for the fibre with quadrilateral ele­

ments and Fig. 6.30 for the matrix.

Generally, a change in the number of elements causes a change in peak 

pull-out loads, but has little influence on the total energy dissipation of pull-
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Figure 6.29: Pull-Out Response for Fibre with Quadrilateral Elements
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Figure 6.30: Pull-Out Response for Matrix with Quadrilateral Elements
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Figure 6.31: Relationship of the Total Number of Element vs. Peak Load

out. For the fibres meshed with triangular elements, a small change in pull- 

out peak load can be observed, but this stabilizes after 49 elements. With 

quadrilateral elements the peak load changes within a small range, but the 

displacements under the peak loads are basically a constant. A stable solution 

is found after 16 elements.

As for the matrix, the different number of elements exhibit different peak 

loads and pull-out work (see Fig. 6.30), but the results tend to stabilize after 

a large number of elements.

To take account of the general influence of fibre and matrix, the rela­

tionship of peak load versus the total number of elements is illustrated in 

Fig. 6.31, in which the fibre has been meshed with two element types. For 

both element types, a stable peak load is obtained after the total number 

of elements is about 800. However, between the two element types, peak 

loads have a relative error around 3.4%. Actually, the experimental evidence 

from refs. [12, 11] indicated that the experimental scatter of peak load was
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Figure 6.32: Effect of Friction Coefficient on Pull-Out Response

from about 10% to 50%. Therefore, the analytical error is acceptable from 

an engineering point of view.

From the preceding analyses, it can be concluded that sufficiently large 

number of elements for fibre and matrix is necessary to ensure modelling 

accuracy.

Coefficient of Friction

As interpreted earlier in Section 6.3, the effect of snubbing depends on the 

coefficient of friction. Figs. 6.32 and 6.33 illustrate the effect of the coefficient 

of friction on the pull-out response, where the normalised peak load is defined 

as the ratio of the current peak load to that with a perpendicular fibre. The 

results indicate that the increase of friction coefficient not only increases 

the peak load, but also the total pull-out work. However, the magnitude of 

the friction coefficient in the analysis can be determined by simulating the 

experimental data.
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Figure 6.34: Effect of Substantial Separation Length on Peak Load
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Substantial Separation Length at Exit Point of Fibre

The substantial separation at the fibre exit will reduce the contact length of 

the interface and increase the degree of snubbing and spalling. To evaluate 

this effect, different separation lengths are tested. The results (see Fig. 6.34) 

show that the separation length has a large influence on the peak pull-out 

load.

Since the length is affected by many factors, such as fibre and matrix 

properties etc., how to determine its magnitude is still an open question. 

Further research including experiment and theory is needed.

6.6 Summary

A pull-out modelling method was proposed in this chapter. With the model, 

pull-out response with inclined or curved reinforcement can be simulated, 

and the modelling of large sliding and full pull-out can be achieved.

The different features of the present model from other existing finite ele­

ment models are:

1. a local bond stress-slip curve fitted from a pull-out experiment with a 

perpendicular fibre was used to describe the whole process of bonding, 

debonding, bond degradation and pull-out, with no requirement for an 

additional strength or fracture criterion;

2. the contact algorithms with friction were introduced to deal with the 

interaction between contact surfaces;

3. matrix spalling is automatically simulated by means of the concrete 

damage model;
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4. snubbing and the substantial separation at fibre exit are capable of 

being modeled.

In addition, the use of a two-dimensional model was verified.

The sensitivity analysis of the various parameters indicated that the 

choice of structural and interfacial constraints influences the numerical res­

ults. Lateral structural constraint is recommended for both experiment and 

analysis. An interfacial constraint large enough to ensure a consistent result 

is needed for hard contact model.

Due to geometrical non-linearity and load concentration in the vicinity of 

the fibre exit point from matrix, a sufficiently large number of elements for 

the fibre and matrix are necessary. Finally the coefficient of friction and the 

separation length at the fibre exit has a significant influence.



Chapter 7 

Pull-out Response of Inclined  
Fibres

The pull-out mechanisms of a cementitious composite with a fibre perpendic­

ular to crack has been presented in Chapters 1 and 4. Its numerical model­

ling is relatively straightforward. However, in reality, fibres in a cementitious 

composite are distributed in a quasi-random manner. Consequently, fibres 

bridging matrix cracks are generally inclined at an angle to the cracks (see 

Fig. 7.1).

Inclined fibres subjected to a pull-out load behave differently from per­

pendicular fibres. Pull-out results from a perpendicular fibre may not be 

representative of crack bridging behaviour in a composite [11]. In the lat­

ter, bridging forces are mainly balanced by debonding mechanisms such as 

shear friction and cohesive forces. Inclined fibres, however, are also subject to 

bending mechanisms [49, 12]. These include bending and yielding of the fibre 

as it exits from the matrix accompanied by snubbing [18], matrix spalling 

[32, 19, 46] and a substantial separation of the fibre in the vicinity of the 

fibre exit (Fig. 7.2). Brittle fibres can also break during pull-out.

Several experimental studies of the influence of fibre inclination on pull- 

out behaviour have been carried out. Pull-out tests of inclined fibres are

126
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Figure 7.3: Configurations of Pull-out Specimens with: (a) Initially Bent 
Fibre; (b) Initially Straight Fibre

usually performed using two types of specimen (see Fig. 7.3), one with an 

initially bent fibre and the other with an initially straight fibre. Using the 

former specimen, Naaman and Shah [13], and Ouyang et. al. [12] found that 

the work required to fully pull out inclined steel fibres is larger than that 

of perpendicular fibres and that the final pull-out load just before the fibre 

is pulled out of the matrix increases with inclination. This implies that an 

inclined fibre has a higher residual frictional resistance against sliding.

Leung and Ybanez [136] tested flexible fibres which were either initially 

straight or initially bent at their exit from the matrix. Significant differences 

in the pull-out behaviour of the two types were observed. With initially 

bent fibres, both the peak pull-out load and pull-out work increased with 

inclination and were significantly higher than those with initially straight 

fibres, especially when the inclined angle is beyond 45°. Consequently, they 

considered that the use of initially bent fibres in pull-out specimens could 

overestimate crack bridging effectiveness of flexible fibre.

In order to clarify the influence of different specimens and fibre inclina­

tion in SFRC on pull-out response, numerical analyses are conducted in this 

chapter with initially straight and initially bent fibres respectively. These ana­
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lyses are also used to further verify the proposed models. The results with 

the initially bent fibres are compared with the experiments of Ouyang et. al. 

[12], whilst those with initially straight fibres are checked against those of 

Naaman and Shah [13], and Leung and Shapiro [11]. The difference between 

specimens is distinguished and finally the bending mechanisms of inclined 

fibres are studied.

For concrete reinforced by randomly distributed fibres, another interesting 

issue to study is the interaction between multiple fibres. Its investigation is 

of assistance in optimising the distribution of fibres in concrete.

Mandel et al [61] studied the effect of fibre spacing on the interfacial bond 

strength for perpendicular fibres. In their experiments, fibre spacing of 100, 

12.50, 16.50, and 250 (where 0 denotes the fibre diameter) were used. The 

results shown that fibre spacing had little effect on the average bond stress 

per fibre.

To investigate the effect of fibre spacing for inclined fibres with different 

layouts, numerical analyses of the pull-out of two fibres are also carried out. 

Finally the interaction between fibres is discussed.

7.1 M odelling Approach

The two dimensional finite element analysis model presented in Chapter 4 

is used. Concrete is meshed with 6-node quadratic plane strain elements. 

Both 6-node and 8-node quadratic plane strain elements are used for fibres 

respectively.

The Von Mises yield criterion is adopted to characterize the behaviour of 

steel fibre using a uniaxial yield strength of 347 MPa. The matrix is described 

either using damage model IV with uniaxial ultimate strength of 34.8 MPa 

or using a Drucker-Prager yield criterion with material cohesion of 38.1 MPa
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and friction angle of material of 18.8°. Young’s modulus and Poisson’s ratio 

are respectively 210 GPa and 0.3 for the fibre, and 23.7 GPa and 0.15 for the 

matrix. These parameters are based on the common properties of concrete.

For simulating the interface, the contact algorithm with friction intro­

duced in Chapters 2 and 4 is used. A constraint with the hard contact 

pressure-gap relationship as described in Fig. 6.8 is imposed in the normal 

direction of the interface with p0 = 1000.0 MPa. The local interfacial bond- 

slip relationship was obtained by retrofitting the experimental data [12] of 

a perpendicular fibre, and is employed directly as the tangential constraint. 

As previously stated, this relationship is assumed to be an inherent macro­

scopic property of the fibre interface, so that it is applicable for the cases 

with inclined fibres. The experience from numerical tests indicated that the 

bond-slip relationship significantly influences the pull-out behaviour of a com­

posite, especially around peak load point. Consequently, it is important that 

this relationship is accurately defined by sufficient data.

When local snubbing happens during pull-out, Eq.6.26 is used to calculate 

the contribution of local friction to interfacial shear stress with a coefficient 

of friction of 0.1.

Analyses indicated that the length of separation at the fibre exit can 

greatly influence the analytical results. However, this effect mainly reduces 

the magnitude of pull-out load, and should not change the pull-out mechan­

isms. On the other hand, since no matrix spalling or separation was actually 

observed in Ouyang et. al.’s experiments[12], the effect of this separation is 

omitted in the following analyses. In doing so, the results from numerical 

analyses are easier to understand and explain.
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Figure 7.4: Dimension of Specimen for Numerical Modeling

7.2 Pull-out of a Single fibre

The modelling of pull-out for a single fibre is first conducted for initially bent 

fibres.

To compare the numerical solution against experiment, the model is de­

signed with the same specimen dimensions as in ref. [12], but averaged over 

the fibres, i.e. 25.4 x 12.7 mm, with a fibre of diameter 0.406 mm and a 

length of 12.2 mm (see Fig. 7.4). This is equivalent to a fibre volume fraction 

of 0.15%. Six inclined angles are chosen, 0°, 14°, 27°, 37° 45° and 60°. The 

first four angles are the same as in ref. [12].

Figs. 7.5 to 7.6 present the typical mesh and deformed configuration for 

an initially bent fibre with inclined angle of 37°.

When a crack is first generated, fibres bridging the crack are likely to be 

initially straight but will gradually change in curvature and possibly kink 

as the crack opens, see Figs. 7.2. In these circumstances, pull-out resistance
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t

Figure 7.5: Typical Mesh for Initially Bent Fibre

is likely to be enhanced by an additional force provided by the mechanical 

deformation of the steel fibre at the exit point. To examine this mechanism 

further, a study is also carried out with initially straight fibres. The same 

six inclinations as those for initially bent fibres are adopted. Figs. 7.7 to 7.8 

illustrate the typical mesh and deformed configuration (37°) with the load 

placed exactly at the point where the fibre exits from the matrix (case A). 

Inevitably, there will be a certain clearance between specimen and loading 

grip in a practical experiment; in other words it will be almost impossible to 

place the load point exactly at the fibre exit. Hence we also consider another 

loading case B where the loading point is placed about 1 mm  away from the 

fibre exit. The relevant mesh and deformed configuration (37°) are shown in 

Figs. 7.9 to 7.10.
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Figure 7.6: Typical Deformed Configuration for Initially Bent Fibre

Figure 7.7: Typical Mesh for Initially Straight Fibre (case A)
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Figure 7.8: Typical Deformed Configuration for Initially Straight Fibre (

Figure 7.9: Typical Mesh for Initially Straight Fibre (case B)
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Figure 7.10: Typical Deformed Configuration for Initially Straight Fibre (case
B)

7.2.1 Initially Bent Fibres

Figs. 7.11 and 7.12 illustrate the numerical and experimental results [12] re­

spectively. The experimental results represent the average of 16 fibres (Fig. 7.12 (a)) 

and the average of 8 fibres (Fig. 7.12(b)) respectively. Notably, the results 

exhibit substantial experimental scatter.

Comparing both, the numerical pull-out responses is found to agree reas­

onably with those from the average of 16 fibres for the inclined angles 0° to 

27°. It is suspected that a 10° change from 27° to 37° changes experimental 

behaviour so much. For those specimens with 8 fibres, however, the results 

for 37° is fairly close to that of 27°.

The peak loads are plotted in Fig. 7.13. Basically, the numerical results 

lie between the test data for 16 fibres and 8 fibres, and have a similar trend to 

the average results of 16 fibres. Increases of both the peak load and pull-out 

work (the area under the curve) with fibre inclination are verified from these
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Figure 7.11: Pull-out Curved of Analyses for Initially Bent Fibre

results.

7.2.2 Initially Straight Fibres

The pull-out responses of initially straight fibres for cases A and B are depic­

ted in Figs. 7.14 and 7.15, respectively. A significant difference is observed 

between cases A and B. In the former, the peak load and pull-out work 

increases with inclination, but in the latter it peaks at 45°.

A similar trend was reported by Naaman and Shah [13] who used similar 

model parameters to the current analysis (fibre diameter of 0.406 mm and 

embedded length of 13 mm). Although their specimens were similar to those 

with initially bent fibres in appearance (Fig. 7.16), after observing them care­

fully it is found there was a certain free length of fibres between the specimen 

and the grip, which corresponds to the loading case B. The analytical peak 

load for case B shows good correlation with their results (see Fig. 7.17). 

Leung and Shapiro [11] performed a series of pull-out tests for steel fibre



Chapter 7. Pull-out Response of Inclined Fibres 137

&•p
CO

a
s3
S.

(a)

90

60

30

0
1.51.20.6 0.90.30.0

Slip (mm)

a>
ip
CD

a

5
3
Q_

40

30

20

10

0
1.51.20.6 0.90.0 0.3

Slip (mm)

Figure 7.12: Pull-out Curves of Experiments [12]: (a) Specimens with 16 
Fibres; (b) Specimens with 8 Fibres



Chapter 7. Pull-out Response of Inclined Fibres 138

80
70
60

— Analysis
— Test (with 16 fibres)
— Test (with 8 fibres)

0
0 10 20 30 40 50 60

Inclined Angle (in degree)

Figure 7.13: Comparisons of Peak Load for Initially Bent Fibres

reinforced concrete using specimens with initially straight fibres. The inclina­

tions included 0°, 30° and 60°. The diameter of the fibre was 0.5 mm. Fig. 7.18 

gives a family of their experimental curves for a fibre yield strength of 275 

MPa. A similar pull-out response between numerical and experimental res­

ults can be seen for the slip within 0 to 2 mm  range. The peak loads are also 

presented in Fig. 7.17 and there is a maximum peak load as in case B and 

ref. [13] as well.

From these results, it can be concluded that the variation of peak loads 

depends, to a great extent, on the position of the loading point, or how much 

free length of fibre exists.

7.2.3 Comparison of Initially Bent and Initially Straight

To gain insight into the distinction between the different loading cases, the 

relationships of peak pull-out load versus inclined angle for all the cases with

Fibres
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Figure 7.15: Pull-out Curves for Initially Straight Fibres in Case B
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Figure 7.18: Average Response of Experimental Pull-out from Ref.[11]

initially bent and initially straight fibres are merged in Fig. 7.19.

It is evident that case A for initially straight fibres has a similar trend to 

initially bent fibres. The discrepancy in magnitude comes from the different 

initial shapes at the fibre exit where the initially bent fibre has yielded before 

pull-out. Their difference amplifies with the inclination, because under a 

large inclination the initially bent fibre is more severely yielded at the fibre 

exit, resulting in a decrease of the peak load , but the initially straight fibre 

becomes more difficult to bend, leading to a increase of the peak load.

The disparity between cases A and B for initially straight fibres stems 

from how much fibre extends from the matrix. It is not difficult to imagine 

that pulling a fibre will be more difficult for case A than case B due to a 

shorter bending length. The difference between the two curves is a measure 

of a stiffer bending action.

Overall, even though the case A is closer to the practical situation, where 

crack opening is equal to zero at the instant when the crack propagates cross
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Figure 7.19: Comparison of Trends in Peak Load

the matrix, it is very difficult to simulate this loading case in an experiment. 

Moreover, since the diameter of fibre is only around 0.5 mm, a clearance of 

more than 1 mm between the grip and specimen is unavoidable and will result 

in different experimental results. In this sense, a specimen with an initially 

bent fibre is perhaps more reasonable.

7.2.4 Discussion of Bending M echanism

The crack bridging force P t in Fig. 7.2 can be decomposed into two com­

ponents, an axial component along the fibre (pure pull-out force) Pf and a 

shear component (bending force) Pf,. The axial pull-out component P f  will 

cause fibre stretching and debonding of the fibre/matrix interface, whilst the 

shear component Pf, will cause bending of the free length of fibre and matrix 

spalling at the fibre exit point. The increase of peak pull-out load with in­

clination is most likely due to the bending force creating a large concentrated 

force at the fibre exit, which raises the pull-out resistance.
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Figure 7.20: Loading Paths of Pull-out Components

To get a clear understanding of this mechanism, a loading regime (see 

Fig. 7.20) was devised, which separated the pure pull-out and bending ac­

tions. Since the magnitude of bending depends on the amount of fibre de­

formation, a pure pull-out load Pf was first applied incrementally along the 

fibre axis to a given value 7 /. A bending force Pf, was then applied through 

a distance 7 ^ at each increment i. In this way, it is possible to assess the 

contribution of bending under different fibre deformations.

The analytical results for 14° and 60° are plotted in Figs. 7.21 and 7.22 

respectively. Trends have clearly emerged. Since the contribution of the shear 

component is less than that of the axial component when the inclination is 

less than 45°, the shape of the pull-out curve is dominated by the axial 

component, but is the opposite for over 45°.

Comparing curves 2  and 5 in Figs. 7.21 and 7.22 it is found that the axial 

component (curve 1 ) of inclined fibres reduces as the inclination increases, 

while the bending component (curve 2) increases. The action of bending is 

mostly completed at the early stages of pull-out, especially for large inclin-
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ation e.g. 60°. This is clearly seen from Fig. 7.23. Therefore the increase of 

peak load with inclination can be attributed to bending action overwhelm­

ing that of pure pull-out. For case B, the optimum combination of the two 

components appears at 45°.

Although the substantial separation of the interface at the fibre exit has 

not been included and the matrix damages only a little in these analyses, it is 

worth mentioning that, actually, substantial separation and matrix spalling 

can gradually develop during the early stages of pull-out when the initially 

straight fibre first starts to change in curvature. The larger the fibre inclin­

ation, the earlier this behaviour will occur. As a result, the peak load would 

decrease when the inclination exceeds a certain threshold value.

7.3 Pull-out of M ultiple Fibres

Three fibre layouts are designed to study the interaction between multiple 

fibres: (1) perpendicular fibres; (2) parallel inclined fibres with an inclined 

angle of 30°; and (3) non-parallel inclined fibres with 30° inclinations. Typical 

configurations are presented in Figs. 7.24 to 7.26 respectively.

We define fibre spacing as the distance between two fibre axes. For parallel 

perpendicular fibres, five fibre spacings are chosen, i.e. 20, 30, 60, 110 and 

160. For parallel inclined fibres the spacing includes 20, 40 and 60, and is 

extended to 110 and 160 for non-parallel inclined fibres.

The pull-out responses of the three layouts are illustrated in Figs. 7.27 

to 7.29. It is apparent that fibre spacing has no effect on the total pull-out 

behaviour for perpendicular fibres. For parallel inclined fibres the effect is 

noticeable. When spacing is less than 40, there is a large influence on post 

peak behaviour. After 40, this influence disappears. However, for non-parallel 

inclined fibres the effect on post peak behaviour decreases gradually with the
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Figure 7.23: Bending and Sliding of Fibre
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Figure 7.24: Two Perpendicular Fibres

Figure 7.25: Two Parallel Inclined Fibres
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Figure 7.26: Two Non-parallel Inclined Fibres
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Figure 7.27: Pull-out Response of Perpendicular Fibres
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Figure 7.30: Influence of Fibre Spacing on Peak Pull-out Load

increase of spacing.

The effect of fibre spacing on peak pull-out load is shown in Fig. 7.30 

for all three layouts. Generally, there is little change on peak loads when the 

fibre spacing is over 60, which coincides with experimental results [61]. When 

fibre spacing is less than 60, the influence is different for different layouts.

To undertand further the interaction between fibres under small spacing, 

Figs. 7.31 to 7.33 provide contours of the principal stresses. It can be seen 

from Fig. 7.31 that based on given boundary condition and bond property 

the compressive principal stress presents a conical distribution. For small 

spacing, less then 60, double fibres behave like a thick fibre. Only a small 

change of peak load is caused (Fig. 7.30).

However, for parallel inclined fibres (see Fig. 7.32) the concrete between 

the two fibres is severely damaged due to bending of the fibres. This induces 

a decrease in the peak pull-out load in Fig. 7.30.

As for non-parallel inclined fibres, Fig. 7.33 shows that as spacing de­
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creases the stressed area of concrete changes from only outside of the fibres 

to including the whole concrete. It is very likely that the existence of one 

fibre relative to the other fibre enhances the stiffness of concrete when the 

two fibres are close enough to each other. Thus an increase of peak load 

occurs.

7.4 Conclusion

The method of modelling bond and pull-out behaviour presented in Chapter 

4 can satisfactorily describe the response of cement-based composites rein­

forced by steel fibres. The model is applicable for the cases with large interfa­

cial sliding and randomly distributed fibres, as long as the bond-slip property 

of a perpendicular fibre is known in advance and the proper constraints are 

defined in the contact algorithm with friction. The development of the model 

offers a computationally efficient approach for investigating composite and 

interface behaviour.

The analyses of pull-out behaviour of single fibre indicate that both the 

friction and bending mechanisms are important factors in understanding and 

investigating the crack bridging forces of FRCC. For low inclinations, fric­

tion is dominant, but as the inclination increases, bending takes over as the 

dominant mechanism. The bending mechanism can improve bond efficiency 

especially for inclinations less than 60°. From the analyses, it can be con­

cluded that inclined fibres can increase the ultimate strength of a composite 

through a gain in the peak pull-out load, and enhance resistance against 

crack propagation and postpone rupture by providing more pull-out work.

Pull-out specimens with initially straight fibres can reasonably represent 

a practical engineering case, but it is difficult to load the fibre exactly at the 

fibre exit. The trends in peak pull-out load versus inclination is variable with
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7.31: Compression Principal Stress Contours from Perpendicular
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Figure 7.32: Tensile Principal Stress Contours from Parallel Inclined Fibres
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Figure 7.33: Compressive Principal Stress Contours from Non-parallel In­

clined Fibres
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different loading approaches. Perhaps specimens with initially bent fibres are 

proper substitute for experimental investigation.

The investigation on pull-out with multiple fibres demonstrates that fibre 

spacing of about 60 represents a threshold. Fibre spacing of greater than 60 

has basically no effect on the pull-out behaviour, including peak load and post 

peak response. Within a spacing of 60, peak load increases for non-parallel 

inclined fibres, but decreases for parallel inclined fibres. The influence of 

fibre spacing on perpendicular fibres may be ignored. When spacing is less 

than 60 the layout with non-parallel inclined fibres can increase the cracking 

resistance and bond efficiency.

Therefore, it is recommend that during manufacturing process of FRCC 

fibres should be completely mixed into concrete so as to prevent parallel 

layout occurring. However, for the fibre volume fraction commonly used in 

practical engineering, small fibre spacing would not exist.

In Ouyang et al’s tests [12], fibres were laid out parallel with the spacing 

above 310 for the specimen with 8 fibres and 150 for that with 16 fibres. 

Based on the studies in this chapter, its difference between the results with 

8 fibres and 16 fibres is not caused by the effect of fibre spacing, but must be 

due to other factors, most probably errors in the experimental procedures.



Chapter 8

Num erical M odelling of Bar 
Pull-O ut in Reinforced  
Concrete

It is well known that bond behaviour in reinforced concrete plays an im­

portant role in understanding and determining the behaviour of reinforced 

concrete structures under monotonic and cyclic loading. Many experiments 

have been carried out for reinforced concrete with straight bars, but much 

less for curved bars, e.g. Phillips et al 1995 [14], and Hota and Naaman 1997 

[137]. Similarly, the numerical modelling of pull-out and cyclic behaviour for 

straight steel bars (including plain, deformed and anchored bars) is often 

reported, for example refs. [76, 138, 139], but that for curved bars has been 

little addressed. The difficulty and complexity of modelling is caused by the 

large separation between the curved reinforcement and concrete under cer­

tain pull-out loads, as well as the concrete becoming severely damaged in 

the vicinity of the curved bar. Convergence and numerical stability become 

troublesome problems.

The strategy developed in this thesis for the pull-out of fibres is also 

appropriate to the pull-out of reinforcing bars from concrete, albeit on a dif­

156



Chapter 8. Numerical Modelling of Bar Pull-Out in Reinforced Concrete 157

ferent scale. Thus the contact algorithm with friction introduced in Chapter 

2 is applied to the interface between the bar and concrete. Bond behaviour 

and interfacial separation are manipulated by means of different contact con­

straints. Concrete is simulated by the biaxial concrete damage model de­

scribed in Chapter 5 and ref. [140]. Finally, the numerical results under pull- 

out and cyclic loading are compared against experimental results obtained 

elsewhere.

8.1 Numerical M odelling Approach

Two dimensional finite element analyses are conducted to model the pull-out 

responses of reinforced concrete with 0°, 30°, 60° and 90° curved bars.

In order to compare numerical solutions with the experimental results, 

the model sizes and material properties chosen are similar to those of the 

specimens in ref. [14] whose detailed configurations are shown in Fig. 8.2. 

The dimensions of the concrete block is 600 x 625 mm. The diameter of 

steel bar is 32 mm and the embedded length of bar is 350 mm (see Fig. 8.1). 

Although the concrete blocks were reinforced by some longitudinal bars and 

stirrups, their effect is only to increase slightly the stiffness of the concrete. 

They have no influence on the pull-out response during a numerical analysis 

and hence their existence is not considered.

The Von Mises yield criterion and the biaxial concrete damage model 

(model IV) are applied to the steel bar and concrete respectively. Since the 

required property curve of concrete was not given in ref. [14], the damage 

model is calibrated using the data from refs. [9, 5]. Tab.8.1 lists the material 

properties employed in the analyses and from the experiments. The subscripts 

c, s and u denote concrete, steel bar and ultimate strength respectively.

In order to simulate the practical loading situation in the experiment of
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Figure 8.1: Dimension of Specimen for Numerical Modeling

Table 8.1: Material Properties Used in Analysis and from Experiment

Analysis Experiment
Ec 31.8 GPa 26.05~34.13 GPa
Es 205.7 GPa 205.7 GPa
Vc 0.18 —

Vs 0.3 —

feu 34.8 MPa 46.5~54.1 MPa
fsu 455 MPa 455 MPa
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ref. [14] the model is constrained at the top. To ensure the bars are pulled out 

along their curvatures as observed in the experiments, a series of constraints 

are imposed along the curved segments. This also guarantees the effective 

implementation of the contact algorithm.

Fig. 8.3 shows the meshed configurations. 8 -node quadratic plane strain 

elements are adopted for both bar and concrete. Since the volume of concrete 

is much larger than that of steel bar, the concrete is divided into two zones, 

depending on the distance from the steel bar. The zone in the vicinity of the 

interfaces is the main transmitting zone of the pull-out load and is densely 

meshed. The zone far from the bar is sparsely meshed. The mismatch of 

element nodes between the two zones is dealt with by means of displacement 

constraint equations. This reduces the number of elements and computational 

time.

In order to ensure the transmission of tangential load when separation 

stems from bar curvature and matrix constraint, interface constraints in the 

normal direction adopts the soft contact relation described in Eq. 6.20 of 

Chapter 6 , with po = 2.0 MPa as the bond strength. Eq. 6.24 in Chapter 

6  is employed as the constraints in the tangential direction, with regression 

coefficients: ks = 950.0 N/mm, cq =  1.5921 N/mm, b\ =  0.0832, 02  =  0.87 

N/mm and 62 =  —0.2678.

In addition, considering a residual bond stress exists on the interface 

after full debonding, a residual shear stress of 0.5 MPa observed from the 

experimental data is exerted on the interfaces after the separation is detected. 

In snubbing modelling, the friction coefficient of 0.1 is used.

Displacement loading is employed in order to simulate the softening beha­

viour under pull-out. The finite element analysis used ABAQUS in conjunc­

tion with the developed codes for the interfacial constraints and the biaxial
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Figure 8.3: Meshed Configurations
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damage model of concrete.

8.2 Results and Discussion

8.2.1 Pull-Out Test

Fig. 8.4 shows the deformed configurations. Figs. 8.5 to 8.7 present contours 

of maximum principal stress in the concrete, normal stress in the bars and 

shear stress respectively. The maximum tensile principal stress vectors is 

given in Fig. 8.8

From Fig. 8.5, it is found that using subregion meshing has no influence 

on the stress distribution, but it greatly reduces the number of elements and 

increases computational efficiency. As the curvature increases, the maximum 

principal stress distribution tends to concentrate over a small region on the 

concave side of the bar rather than covering the whole concrete. This suggests 

that with different curved bars the concrete will fail in different modes under 

further loading.

The normal stress distributions along the bars indicate that the stress 

transmits gradually from the active end to the passive end. As curvature 

increases, the stress concentrates on the inside of bar curvature. However, 

the shear stress distributions show localisation around the interfaces.

The distribution of maximum tensile principle stress in Fig. 8.8 predicts 

the positions of debonding on the interfaces. Clearly, as the curvature in­

creases debonding happens from on the two interfaces to only on the convex 

side. This implies that the interface outside of the curved bar is inclined to 

damage.

Fig. 8.9 illustrates the relationship of pull-out load versus slip, in which 

N  and T  denote the numerical and test results respectively. The trends of
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Figure 8.4: Deformed Configurations



C h a p t e r  8. Numerical  M o d e l l ing  o f  Bar  Pu l l -Out  in Reinforced  Concretel64

30° Curvature

60° Curvature 90° Curvature

Figure 8.5: Maximum Principal Stress Contours of Concrete
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Figure 8.6: Normal Stress Contours of Bar
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Figure 8.7: Shear Stress Contours
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Figure 8.8: Maximum Tensile Principal Stress Vectors in Concrete
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Figure 8.9: Relationship of Pull-Out Load versus Slip

both the numerical and experimental results for 0° to 60° are similar. Dif­

ferences in magnitude are expected, as the concrete strength in the analysis 

was lower than that of experimental specimens. When the strength of con­

crete contributes little to the overall pull-out response, such as for the 0° 

curvature, good agreement between the analysis and experiment is achieved. 

For 90° curvature, the tendency of numerical analysis is similar to that of the 

experiments with 16 mm diameter bars (see Fig. 8.10). Since no experimental 

repeat test was carried out and it is difficult to bend 32 mm diameter bar to 

the desired curvature, it is suspected that there may have been some exper­

imental random error. This may explain the difference in trends between 16 

and 32 mm  diameter bars for 90° curvature in the experiments.

Pull-out load and slip relationships demonstrate that pull-out energy in­

creases with curvature within 0° to 60°, i.e. the curvature raises the resistance 

to pull-out, as expected.

The axial stress distributions in the bars and shear stress distributions
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Figure 8.10: Relationship of Pull-Out Load versus Slip from Experiments 
with 16mm diameter bars

along the interfaces are plotted in Figs. 8.11 to 8.12, in which L and R  denote 

left and right interfaces respectively. Axial stress distributions indicate that 

the difference in magnitude between the left-side and right-side interfaces 

increases with curvature, which is also apparent in Fig. 8.6. The stress from 

the active to passive ends is basically a linear distribution. Shear stress dis­

tribution with loading develops gradually from the passive end to the whole 

embedded length.

8.2.2 Cyclic Loading Test

A cyclic pull-out loading test was conducted for the reinforced concrete with 

a straight bar. The modelling method and parameters chosen are the same as 

those in the monotonic pull-out loading, except that an unloading stiffness 

is introduced. Experimental results in Fig. 8.13 indicated that unloading 

stiffness of the cyclic pull-out is almost a constant. Based on these data a
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Figure 8.13: Cyclic Pull-out Response from Experiment [14]

unloading stiffness of 850 MPa is defined for the current analysis. The bond 

stress-slip relationship employs the tensile envelope of experimental bond 

stress-slip curve under cyclic loading. The results from both the analysis 

and experiment are compared in Fig. 8.14, where only the tensile curves are 

shown for the experimental data. Numerical results are found to fit favorably 

with experimental results.

8.3 Conclusion

The application of a contact algorithm with friction and a concrete damage 

model accompanied with reasonable constraints to reproduce the pull-out 

behaviour of reinforced concrete with curved bars is promising. Generally, 

the complexity in simulating large sliding and separation between contact 

surfaces has been overcome. The similarity in trends between the numerical 

analyses and experiments under pull-out, especially for 0° to 60°, suggests
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Figure 8.14: Comparison of Numerical Analysis with Experimental Result 
under Cyclic Loading

that the model is currently reproducing the main mechanisms. To obtain 

closer numerical agreement, more accurate data for the concrete behaviour 

is required.

The analytical results indicate that the increase of bar curvature can raise 

greatly the resistance of pull-out. The efficiency is more obvious for bars 

with 30° to 60° curvatures. For curved bar reinforced concrete, interfacial 

debonding occurs first at the outside of the bars.

The modelling under cyclic loading is also satisfactory.



Chapter 9

Conclusions and 
Recom m endations

9.1 Summary and Conclusions

This thesis was aimed at developing an effective and comprehensive numer­

ical method for modelling the pull-out response of FRCC, especially for those 

complex cases with inclined fibres, large interfacial slip and cyclic loading. 

In this study, many problems were encountered and solved, including how to 

determine debonding criterion; how to tackle separation of interfaces, fibre 

sliding against the matrix and severe matrix damage etc. Finally, a pull-out 

model was developed which consists of a contact algorithm with friction for 

the interface and damage models for the matrix. This model was used to 

research the pull-out response of cement composites reinforced by randomly 

distributed fibres, including single and double inclined fibres with different 

layouts. Its application was also extended to curved bars in reinforced con­

crete. From the work, the following conclusions can be made.

• A pure damage model and an inelastic-damage model were proposed. 

In these models damage is controlled by damage energy release rate. 

The development of the corresponding computational algorithms en-

174



Chapter 10. Conclusions and Recommendations 175

ables these models to be implemented in a two dimensional finite ele­

ment program. Their features are that model I is fairly simple and 

easy to program, whilst model II can describe the nonlinear loading 

and unloading responses of concrete subjected to monodirectional cyc­

lic loading very well. Although the two models are only applicable to  

concrete subjected to monodirectional loading, they are essential steps 

towards developing more complex damage models.

•  The development of damage models III and IV provide effective con­

crete damage models for revese cyclic and biaxial loading. The descrip­

tion of model III in strain space makes the simulation of tensile and 

compressive damage by means of separating strain much easier than ex­

isting models described in stress space. The introduction of a weighted 

average damage parameter in model IV overcomes the shortcoming 

of separating stress/strain into positive and negative and greatly sim­

plifies implementation in the finite element method. Meanwhile, the 

design of the damage multiplier distinguishes the different contribu­

tions of the hydrostatic and deviatoric components of the stress/strain  

tensor to damage and produces modelling under biaxial loading. The 

implementation of model IV under biaxial tension and biaxial compres­

sion reproduces completely the biaxial experimental results of Kupfer 

et al.

•  The proposed pull-out modelling method merges various pull-out mech­

anisms of FRCC, such as bonding, debonding, fibre sliding, friction, 

fibre bending, snubbing, matrix spalling and the substantial separation 

of the fibre at the exit from the matrix, into one two dimensional finite 

element model. In this approach, the use of a contact algorithm with
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friction makes the interfacial simulation straightforward, requiring only 

an experimental pull-out load-slip relationship for a single perpendicu­

lar fibre, and no additional strength or fracture criteria. The modelling 

of different interfacial separation magnitudes can be realized by means 

of changing the constraint conditions in the normal direction of the in­

terface. The development of the damage models enables the automatic 

simulation of matrix spalling.

•  The sensitivity analyses of various modelling parameters provide a 

guide for using the model. The analyses indicate that to obtain reliable 

numerical results the choice of structural and interfacial constraints, 

the number of elements and the separation length at the fibre exit have 

to be taken into account.

•  The applications of the pull-out model to FRCC and bar reinforced con­

crete, including the cases with single fibre, multiple fibres and curved 

bars, demonstrate the model can deal with large sliding, large separa­

tion and full pull-out. Its application offers a computationally efficient 

approach for investigating composite behaviour.

•  The pull-out results of single inclined fibres indicate that both friction 

and bending mechanisms are important factors in understanding and 

investigating the crack bridging forces of FRC. The former holds sway 

for cases with smaller fibre inclination, whilst the latter dominates the 

pull-out mechanisms for large fibre inclination. Inclined fibres can en­

hance the ultimate strength and cracking resistance of a composite, 

and postpone its rupture due to the increase in peak load and pull-out 

work.

•  The study with different pull-out specimens reveals the important phe-
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nomenon that different methods of applying the pull-out load will cause 

different pull-out responses. The problem has been ignored by exper­

imental researchers. Therefore specimens with initially straight fibres 

should be used with caution. Although the pull-out specimens with ini­

tially straight fibres can reasonably represent the practical engineering 

case, it is difficult to load the fibres exactly at the fibre exit. Specimens 

with initially bent fibres are recommended as reasonable substitute for 

experimental studies.

•  From the study of pull-out with multiple fibres it is concluded that for 

the fibre volume fraction commonly adopted in engineering the effect 

of fibre spacing on pull-out can be ignored. In experimental research, 

specimens with a single fibre can be used to assess the average pull-out 

behaviour of a composite with a similar inclined angle fibre. The entire 

response of a composite can be then obtained through probabilistic and 

statistical analyses of the results from various single fibre researches.

•  The prospect of applying the developed model to curved bar reinforced 

concrete has been demonstrated. Adopting reasonable contact con­

straints can overcome the complexity in simulating large sliding and 

separation caused by bar curvature. The analyses indicate that the in­

crease of bar curvature can raise greatly the pull-out resistance. The 

efficiency is more obvious for bars with 30° to 60° curvatures.

9.2 Suggestions for Further Work

The work presented in this thesis provides an important means for studying 

pull-out behaviour of SFRCC and bar reinforced concrete, and an import­

ant basis for further development of the damage concrete model. Based on
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the present research, further development and consolidation of the work are 

suggested as follows:

•  Based on damage model IV, a more powerful biaxial damage model can 

be developed to include inelastic residual deformation and crack clos­

ure effect under reverse cyclic loading. This can be completed though 

adding a plastic term and crack closure function into the potential 

equation.

•  Complex reinforcement geometry can cause serious damage to the mat­

rix in the vicinity of the interface, and severe distortion in correspond­

ing elements. This will influence the proper working of the initial con­

tact pairs, resulting in convergence problems. To overcome this, an in­

terfacial damage model might offer a promising alternative. Moreover, 

to reasonably describe cyclic pull-out response, an interfacial damage 

model is also necessary since the definition of unloading stiffness in the 

present analysis is not very satisfactory. The development of the con­

crete damage models lay the foundation for developing an interfacial 

damage model. The main difference in the latter would be to design a 

damage criterion based on shear failure.

•  The separation length at a fibre exit point needs to be more accurately 

defined. To reliably estimate its magnitude and variation during pull- 

out, a strength or fracture criteria may be needed.

•  In order to use the pull-out method to carry out three dimensional 

finite element modelling, much work needs to be done. The increase in 

modelling complexity and meshing would be considerable, especially for 

defining contact pairs etc. Perhaps an interfacial damage model would 

have some potential in this respect as well.
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•  Based on the developed pull-out method, further study of FRCC can 

be carried out, including the effect of fibre strength, interaction among 

triple fibres and the pull-out behaviour of different fibre geometries, 

such as hooked, crimped and paddled fibres etc. During the investig­

ation of the latter, some new pull-out mechanisms might be brought 

into play, which will also promote further development of the present 

model.
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Principal Value of D eviatoric  
Strain

The strain tensor can be decomposed into two parts, a spherical com­

ponent associated with a change in volume, and a deviatoric component 

associated with the change in shape. That is

where is a deviatoric strain tensor.

In order to derive the principal value of the deviatoric strain tensor, we 

need to solve for the following determinantal equation.

| &ij | — 0. ( '^ )

The expansion of Eq. .2 leads to a characteristic equation

e3 -  J[e2 - J ' 2e - J ' z =  0 (.3)

where J ■ (i =  1, 2 ,3) are deviatoric strain invariants and

J[ =  e* =  0 (.4)

</2 — (*̂ )
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#3 ^ ij^ jk ^ k i  0 ^ )

Since J[ =  0, Eq..3 becomes

e3 -  J 'e  -  J'3 =  0. (.7)

Taking e — r sin 6 , the above equation becomes

s ine3 - 4 s i n 0 - 4  =  0. (.8)

Comparing Eq..8 with the trigonometric identity (Eq..9),

3 1
sin#3 — -  sin# +  -  s in 30 =  0, (.9)

4 4

we obtain

. „„ 4 JL 3 V 3 J L  .
sin3 0 = ---- £  = ---- - — |  (.11)

r  2(oT ')f

.  1 . , 3%/3 JL .
0 =  -  arcsin(-—  - — y ) (.12)

3  2  ( J ' ) 2

There are three roots of Eq..8 for —7r/6 <  # < 7r/6. The three principal

values of the deviatoric strain tensor are

ei sin(# +
/ /i\

e2 V3
sin(#)

_e3_ .sin(0 +  f ) _

(.13)

with e\ > C2 > 63.



Derivative of
Principal/D eviatoric-Principal 
Strain and Invariants

d2eq
dcijdeki

de,
de,:

d  / ^rr T \
a ^ (e< +  T /?)
deg Iq6ij
deij

(.14)

d2e,
deijdeki

d ^de
de*/ deij 

d2eq 
d e a d e r

+
d i j lq

(.15)

de,
de*7 d t i j  y /3

sin(6 +  f ) 

sin 6

sin(0 +  ^ )

a .
( ^  sin 0 g)

d e y  x /3

^ ^ cos0 +  _ ! _ M
V5 * +  V ^ a e y

sin 0 , (.16)

a 2^/jJ 00 ^  i  3 4  .
( /_ ——  COS0, H j = - ^ -  s in 0 9)

defc/ ^ 3  dcy y / S l l  d^ij
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2^/4  d2e n  y 4  de de . ^  %
— — a— cos0g  — - s in 0 9 +

y/3 06ijd€kl v3 0€ij 0€kl
1 8 4  8 8  „  1 8 24— —   cos 0  H .. ------- ---
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