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Abstract

The defensins are small antibiotic peptides produced during granulocyte 

differentiation and stored in the azurophilic granules of the mature granulocyte. Defensin is 

expressed during a brief window in differentiation with mRNA expression peaking at the 

promyelocyte and early myelocyte stages. Using the promyelocytic leukaemia cell line 

NB4, nuclear protein binding to the gene sequences immediately upstream of the main 

transcription start site was studied. Changes in such binding were correlated with mRNA 

abundance during granulocyte (high defensin) and monocyte (no defensin) NB4 

differentiation.

Protein-binding sites, signified by changes in DNAse digestion, were recognised at 

the ets site at positions -59 and -155, the overlapping c/ebp-myb site at position -120/-105 

and at numerous c/ebp-aml sites along the first 240 bp of the upstream sequence.

Binding to most of the sites, with the exception of the -59 ets site, was seen to be 

considerably greater (by footprinting studies) with granulocytic extract as opposed to 

undifferentiated NB4 extract. The presence of a DNase 1 hypersensitive site at position -  

59 (which overlaps the ets site) seems to be essential for defensin expression. The presence 

of this site appeared to be correlated with baseline expression since it is absent in 

footprints seen with the extract of monocytic NB4 cells (which do not express defensin). 

This site (termed footprint a) was shown to bind GABPa, the c/ebp-myb site ( within 

footprint p) was shown to bind C/EBPe whilst the -155 site ( in footprint y) was shown to 

bind PU.l by means of electrophoretic mobility shift assays (EMSAs). Different 

transcription factors were also shown to compete for binding to particular footprinted sites 

by means of competition EMSAs.



By inserting mutations into the binding sites for these various factors, the ets site at 

-59 and the c/ebp and myb sites at -120/-105 were shown to be very important for defensin 

promoter activity. For maximal activity in undifferentiated NB4 cells, both these sites were 

required, but in differentiated cells maximum promoter activity was obtained with a 

minimal promoter, -67/+15, which did not include any myb sites.

Co-transfection studies showed that C/EBPe and GABPa could up-regulate 

defensin expression in NB4 cells. GABPp did not co-operate with GABPa in 

undifferentiated cells, but synergised with it in differentiated NB4 cells.

In heterologous HeLa cells, defensin promoter activity was stimulated 

synergistically by C/EBPe with Myb. It was also strongly transactivated by GABPa but 

such transactivation was unexpectedly inhibited by co-expression of GABPp. 

CBFa/p, PU.l or CHOP-10 were found to co-operate with GABPaP to stimulate 

transactivation.

The pattern of transactivation obtained with GABP factors differed from the 

classical synergism seen between GABPa and GABPp. These differences may be due to 

both the different reporter systems being used, and to the defensin promoter in particular, 

which appears to bind GABPa alone, much more strongly than other promoters such as the 

neutrophil elastase promoter.

The results obtained have been used to create models of possible protein 

interactions on the defensin promoter. Using known patterns of expression of transcription 

factors during myeloid differentiation, a model is presented describing probable factor 

interactions responsible for initial up-regulation and later down regulation during 

differentiation.
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Introduction

Chapter 1: Normal and Malignant Haematopoiesis

1.1 Normal Haematopoiesis

Haematopoiesis is the process whereby blood cells, which perform different 

functions in mammalian blood, are continuously produced from precursor cells and 

ultimately from multi-potential stem cells (1).

In mammals, haematopoiesis occurs first, as yolk sac /embryonic (or primitive) 

haematopoiesis and later as foetal/adult (or definitive) (2;3). These two processes are 

similar in certain ways as in the production of red blood cells and also macrophages. 

Primitive haematopoiesis differs from definitive haematopoiesis in the lack of formation 

of the other lineages. Whilst embryonic haematopoiesis occurs in the yolk sac, adult 

haematopoiesis is now known to commence in a region of mesoderm known as the 

aorta-gonodal-mesonephric (AGM) region (4). It appears that this definitive 

haematopoiesis is not due to stem cells from the yolk sac colonising the AGM region 

but is a separate process with de novo formation of stem cells.

Such stem cells are described arbitrarily by their capability to reconstitute long 

term lympho- and myelo-poiesis in vitro or in an experimental animal, which has been 

irradiated so as to ablate it’s own blood forming tissue (5). Whilst their exact phenotype 

has not been conclusively identified, they make up part of a population of cells which 

are CD 34+ CD33- CD38- HLA DR- Thy-ll0 and are negative for all lineage markers 

(6). Differentiation of these stem cells down different pathways results in the formation 

of eight cell lineages, which make up mammalian blood (Figure 1).
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1.1.1 Proliferation and differentiation in haematopoiesis

In many other mesodermal tissues (muscular or cartilaginous or adipose tissue), 

commitment of progenitor cells to a specific lineage is often associated with a loss of 

cell division (7). On the other hand, haematopoietic development into different lineages 

requires taking decisions to differentiate whilst still in a state of high proliferative 

potential (8). Despite this, there is still a clear inverse correlation between the 

proliferative potential of haematopoietic cells and the extent of their differentiation (9). 

Whilst cessation of proliferation is not a virtual pre-requisite for commitment to 

haematopoietic differentiation as it is in many other tissues, changes in cell cycle do 

occur, concomitant with differentiation-related decisions. An increase in the G1 phase 

of the cell cycle during erythropoietin-induced erythroid differentiation is a case in point 

(10).

1.1.2 Lineage commitment in haematopoiesis

Whether the process of haematopoietic lineage commitment is primarily a 

stochastic or a directed process has long been a cause for debate (11). Some rather 

elegant work by Fairbairn et al (12), has shown that by inhibiting cell death, single cells 

taken from a multi-potential cell line can mature into cells of different lineages without 

the addition of any conditioning growth factors or cytokines. This argues in favour of a 

stochastic process. On the other hand it is quite clear that the differentiation of both cell 

lines and primary stem cells can be directed towards one or another lineage by the 

presence of different growth factors (13). Recent interesting studies using the reverse- 

transcriptase polymerase chain reaction (RT-PCR) has shown that a single cell will
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Fig. 1 Hematopoiesis.
Cells from the self-replicating stem cell compartment, can differentiate into 
progenitors of lymphoid or myeloid lineages. Through further maturation, end-stage 
cells of the eight major mature blood lineages are formed (other lineages such as the 
Natural Killer cells, are not shown).





express genes found in different lineages rather promiscuously prior to a definitive 

commitment and subsequent maturation towards one particular lineage (14). These 

different studies together suggest that haematopoietic stem cells are primed to 

differentiate down a number of possible pathways and that either stochastically or under 

the influence of growth factors, (and probably environmental cell-cell interactions) they 

mature into fully differentiated cells of one or other lineage. Any commitment decisions 

are associated with expression of one or more lineage-restricted transcription factors 

which also tend to auto-regulate their own expression in order to reinforce the decision 

(15;16). Once such a commitment has taken place, it is relatively irreversible and co

expression of transcription factors required for the development of a different lineage 

may inhibit maturation or even cause apoptosis (17). The role of transcription factors in 

haematopoiesis is discussed in greater detail later on.

1.1.3 Neutrophil differentiation

The neutrophil granulocyte, the second most common blood cell in a healthy 

human adult, is the end stage cell of one of the myeloid lineages. Early progenitor cells 

differentiate along one of two major lineages, namely the lymphoid and the myeloid 

lineages (18). Colony forming assays using bone marrow or foetal liver stem cells 

identify single colonies containing granulocytes, erythrocytes, monocytes and 

megakaryocytes (19). Such colonies are thought to originate from a pluri-potential 

myeloid precursor named the CFU-GEMM (Colony Forming Unit-Granulocytes, 

Erythrocytes, Monocytes and Megakaryocytes). Such cells are early neutrophil 

precursors. With continuing maturation along the neutrophil lineage, precursors become
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restricted to forming only granulocytes and monocytes (Such a cell has been named a 

CFU-GM). This can further differentiate from myeloblast to promyelocyte at which 

point the precursor is still bi-potential and capable of forming both neutrophil 

granulocytes and monocytes. As maturation progresses along the neutrophil lineage into 

myelocytes, and metamyelocytes, the cell is now committed to form a neutrophil and 

looses its capability of cell division as it forms a band cell and eventually a mature 

polymorphonuclear granulocyte (20). Throughout the process of differentiation from the 

earlier cells, there is a progressive reduction in the nuclear cytoplasmic ratio associated 

with chromatin condensation. In the later stages, as the cell becomes committed to the 

granulocyte lineage, different types of granules appear in the cytoplasm of the cell (21).

1.1.4 Neutrophil Function

The neutrophils, found at a concentration of 4 -  11 x 109/L in human blood, 

are the primary defence of the body against infecting micro-organisms. Whilst not as 

specifically targeted as the lymphocytes they do not require a prior exposure to an 

invading pathogen and therefore whilst being a relatively non-specific component of the 

immune system defences, their response is more rapid on occasion. As well as the 

immediate response whereby these cells home in to sites of inflammation or injury 

(including by extravasation into the tissues), and phagocytose injured cells and 

pathogens, neutrophils also secrete chemotactic factors. These attract antigen- 

presenting cells to the sites of infection and in this manner help bolster the more specific 

lymphocyte-dependent immune response (22).
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Neutrophils destroy infecting organisms by one of two mechanisms once these 

have been phagocytosed. These are oxygen-dependent and oxygen-independent 

mechanisms (23). Oxygen-dependent mechanisms involve the use of reactive oxygen 

species (including hydroxyl radicals, hydrogen peroxide and superoxide anions) which 

are produced as a result of the activity of an NADPH oxidase assembled on neutrophil 

cytoplasmic membranes (24). Non-oxidative mechanisms depend on peptide 

antibiotics with a broad anti-microbial activity found within the different neutrophil 

granules (25).

1.1.5 Granules of the polymorphonuclear neutrophil

The mature neutrophil contains primary or azurophilic granules (so named due 

to more intense staining with the azure component of cellular stains), secondary or 

specific granules, gelatinase granules and secretory vesicles. These different granules 

appear at different points during the maturation of the

(26; 27). Primary granules are already apparent as early as the late myeloblast and 

promyelocyte stages whilst specific granules, gelatinase granules and secretary vesicles 

develop in the more mature myelocytes, metamyelocytes and band cells respectively. 

Some of the different proteins present in these granules, together with a time frame 

showing their time of appearance, are seen in Figure 2 - modified from (21).

Neutrophil granule proteins are sorted to the cytoplasmic granules by processes 

common to all cells (28). Rather elegant studies whereby neutrophil proteins are 

expressed, driven by different tissue-specific or constitutive promoters show that the 

localisation of a particular protein to one or other granule is related to the time point in 

differentiation when the gene is predominantly expressed. Thus neutrophil gelatinase
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Fig.2 Chronological expression of different myeloid granule proteins. The Figure 
shows the correlation between granule protein synthesis and the transcription factors 
present at different stages of myeloid precursor differentiation towards neutrophils. 
MB-myeloblast, PMC-promyelocyte, MC-myelocyte, BC-band cell, PMN- 
polymorphonuclear cell (neutrophil).
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associated lipocalin (NGAL) was found to be localised to the azurophilic granules 

together with myeloperoxidase (whilst it is normally found in the specific granules with 

lactoferrin) when it is transcribed under the control of a constitutive viral promoter in 

myeloblast HL60 cells (29).

Neutrophil granules have different functions with primary granule proteins only 

being liberated into the phagocytic secondary lysosome whilst secondary granule 

proteins are also expressed in the cytoplasm and secretary granule proteins are secreted 

into the extra-cellular space (30;31). For this reason, in order for normal function of the 

neutrophil, it is essential that such proteins are accurately localised and therefore their 

appropriate stage specific expression during differentiation is of paramount importance.

1.1.6 Defensins

The defensins are small cysteine-rich cationic peptide molecules (29-35 amino 

acids in length) with a broad anti-microbial activity (against Gram positive and Gram 

negative bacteria, fungi and certain enveloped viruses) which are found in the neutrophil 

azurophilic granules where they represent up to 50% of the total proteins (32). 

Defensins are synthesised as inactive pre-pro-peptides about 94 amino acids in length. 

Cleavage of the signal sequence results in an inactive pro-peptide of 75 amino acids 

localised primarily to the cytosol. Once localised to the granules, the anionic pro-peptide 

sequence is cleaved off by a proteolytic process resulting in the active antibiotic 

molecule (33). Unlike the contents of the secondary granules, defensins are not secreted 

to any extent by the neutrophil but are released into phagosomes by fusion, thus forming 

a secondary lysosome (34). Even if any are released into the environment, they are
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rapidly neutralised by various serum components (35). This ensures that the defensin 

antibiotics are active and present in sufficient concentrations only within phagocytic 

vacuoles. This is essential because defensins which exert their antibiotic effect by 

permeabilising target cell membranes (36), are also cytotoxic to host cells (37). Apart 

from their direct cytotoxic effect, some defensins can act as opsonins or as chemo- 

attractants to monocytes (38).

Within the haematopoietic system, no other cell type expresses defensin genes. 

They are however are also expressed by intestinal epithelial Paneth cells, which secrete 

them into the intestinal lumen thereby producing another defence against infection 

within the intestinal crypt (39). Another class of defensins with a somewhat different 

peptide structure known as beta defensins have also been found in the epithelial cells of 

the salivary glands (40), ocular conjunctiva (41), respiratory passages (42) and placenta 

(43). These are all different sites where a defensive barrier against invading organisms is 

essential.

1.1.7 Structure and function of the defensin genes

A number of defensin genes and defensin-like genes are found in the human 

genome and expressed in different tissues. The genes expressing the beta defensin, 

HBD-1 and the alpha defensin human neutrophilic peptide l(HNP-l), are located in 

close proximity with 150kb of each other on the short arm of chromosome 8 suggesting 

a common evolutionary derivation despite considerable sequence differences (44). 

Amongst the alpha or classical defensin genes, there are differences in the structure 

between genes expressing the neutrophil peptides HNP1-4 and the intestinal human 

defensins (HD)-5 and 6 (45). The neutrophil-expressed genes have three exons and two
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introns, the first exon coding for an untranslated 5’ sequence, the second exon the 

translation start site, signal sequence and the pre-pro-peptide sequence removed during 

post-translational processing, and the last exon codes for the effective peptide. The 

intestinal expressed defensin genes have two exons only lacking the untranslated 

sequence. Regulatory regions are functionally different between the two genes as would 

be expected by their patterns of expression. The sequence homologous to the first intron 

of the HNP-1 defensin gene acts as the promoter for the HD-5 defensin gene (45). 

HNPsl-3 are expressed in a co-ordinated manner in neutrophils. HNP-4 protein on the 

other hand is present at about a 50-fold lower concentration than HNPs 1-3(46). 

HNP-1 and -3 cDNAs differ at just 2 nucleotides despite being coded for by separate 

genes, whilst HNP-2 protein which lacks the N-terminal amino acid is probably also 

coded for by one of the previously mentioned genes (47;48). The HNP-4 defensin gene 

differs somewhat from the HNP-1 defensin gene, having about 72% identity to the 

latter as well as an extra 83 base segment (49).

Earlier studies both in our laboratory and in others (50;51), found that defensin 

mRNA is expressed in normal bone marrow and in patients with myelocytic leukaemia 

but not in normal mature granulocytes. In situ hybridisation studies of bone marrow 

populations showed that defensin mRNA is present mostly in promyelocytes and 

myelocytes with lesser amounts detected in myeloblasts and metamyelocytes indicating 

that transcription is restricted to a short window during differentiation.

In recent studies monocytic differentiation of the HL60 myeloblastic cell line, 

with 12-O-tetradecanoyl phorbol 13-acetate (TPA), was shown to result in the rapid 

loss of defensin mRNA (52). On the other hand, granulocyte differentiation using the 

chemical inducer all-trans retinoic acid (ATRA), markedly up-regulates defensin 

mRNA (around 80-fold by 1pm ATRA). Maximum up-regulation occurs four days after
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initiation of induction with defensin mRNA declining to the uninduced levels thereafter. 

Doses incapable of inducing morphological differentiation (as assessed by nitroblue 

tetrazolium reduction) were still capable of up-regulating defensin expression. Despite 

this, ATRA-induced defensin gene up-regulation is probably not due to direct activation 

by ligand-bound RARa protein since it showed a more delayed pattern of kinetics and 

required de novo protein synthesis as confirmed using cyclohexamide. The lack of any 

strict consensus RAREs (Retinoic acid receptor elements) within the immediate 

upstream sequence studied also argues against such a direct effect. ATRA did not 

appear to be causing any stabilisation of defensin mRNA whilst nuclear run-on assays 

indicated that much (or possibly all) of the observed increase in defensin mRNA was 

due to an increase in transcription which reaches fourfold by dayl post-induction. The 

later down regulation is probably also due to a reduction in the rate of transcription. 

Interestingly, G-CSF synergises with ATRA to produce a more rapid accumulation of 

defensin message peaking at 48 hours.

Whilst retinoic acid receptors may not be directly responsible for defensin up- 

regulation, a number of transcription factors have very recently been shown to bind to 

and/or up-regulate the defensin promoter in mammalian cells. These include C/EBPa 

and AML-lwhich up-regulate the mouse defensin promoter (53), and a putative Ets 

factor which binds a defensin promoter ets site in a phosphorylation dependent manner 

(54).
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1.2 Leukaemia

Leukaemia, literally meaning white blood, is a malignant disorder identified by 

an increased amount of leukocytes or white blood cells in the blood. The leukaemias 

are a heterogeneous group of diseases, which have been classified characteristically 

according to cellular (morphological), and clinical features and more recently through 

immunophenotyping (55). Certain molecular abnormalities however (particularly the 

Philadelphia chromosome in chronic myeloid leukaemia), have long been recognised as 

pathognomonic for certain types of disease (56).

1.2.1 Maturation arrest and proliferation

Leukaemia can be defined as the uncontrolled proliferation or expansion of a 

clone of leukocyte precursors that do not retain the capacity to differentiate normally to 

mature blood cells (see Fig.3). The morbidity in patients with leukaemia is often not 

directly due to the clonal proliferation in itself but due to the fact that the uncontrolled 

growth of this clone of cells competes with and suppresses the normal haematopoietic 

process. This results in a lack of adequate production of the normal functional mature 

blood cells causing defective clotting, anaemia and problems with infection.

Pre-leukaemic conditions, which are not actually leukaemia, may manifest either 

as uncontrolled proliferation (myeloproliferative syndromes) or as abnormal 

differentiation (myelodysplasia) but both proliferation and maturation arrest are required 

for leukaemia to develop (57). In either of these pre-leukaemic conditions, a second 

complementing defect can transform the disease into leukaemia.
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Fig.3 Mechanism of leukaemogenesis. Top panel -  Normal haematopoiesis where 
stem cells (S) differentiate into pluri-potential progenitor cells (PPC) and from then 
through different stages into mature neutrophils. Bottom panel -  myelodysplasia with 
the diseased stem cell clone (S) also differentiates into a proliferative progenitor cell 
which is however blocked in its capability to mature normally. These cells, called 
blasts (B), which are still capable of proliferation, continue to replicate (possibly 
developing other defects and mutations which further enhance their proliferative 
potential). This expanding clone of cells eventually begins to compete with the 
normal stem cells causing the characteristic bone marrow failure of leukaemia.
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The requirement for both the proliferative and the maturation arrest 

components in the process of leukaemogenesis can be seen both in natural disease states 

as well as in experimental systems. One mechanism whereby a stem cell or proliferative 

progenitor escapes normal proliferation control is where an autocrine loop develops 

with the secretion of a growth factor which can bind to a receptor which the cell already 

possesses. This was seen in transgenic studies, where retroviral expression of IL-3 or 

GM-CSF in transgenic mice resulted in non-leukaemic myeloproliferation (58;59). IL-3 

has also been found to be occasionally over-expressed as a result of a translocation in a 

human acute pre-B cell leukaemia(60). These transgenic studies suggest that other 

genetic anomalies (possibly secondary to the proliferation following up-regulation of IL- 

3) are present and required for the leukaemia to develop. Co-transfection of a 

homeobox protein Hox-2.4 with IL-3 now results no longer in a myeloproliferative 

disorder but in myeloid leukaemia (61) probably by causing a block in differentiation.

Another mechanism for bypassing proliferation control is by activating the 

cellular pathway driving proliferation at a point further downstream. This can happen 

by means of a mutation resulting in a constitutively active surface receptor or signal 

transduction kinase (an enzyme in the pathway which normally carries the signal from a 

surface receptor towards the nucleus) resulting in proliferation. Such a mechanism 

occurs in the chronic phase of chronic myeloid leukaemia - which is basically a 

myeloproliferative syndrome with excessive amounts of white blood cells, which 

however differentiate normally. The Philadelphia chromosome-associated translocation 

results in the formation of a constitutively active tyrosine kinase gene bcr-abl, which 

drives this myeloproliferation (62). Complementation of this proliferation by a 

differentiation-blocking molecule such as the AML1/EVI-1 fusion protein (identified in 

the blast crisis of CML) results in an acute leukaemia (63).
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Myelodysplastic syndromes (MDS) which often result in low numbers of 

differentiated peripheral blood cells but normal or slightly increased marrow progenitors 

due to an apparent block in differentiation can also be complemented by mechanisms 

increasing their proliferative potential, resulting in leukaemia. In a set of patients with 

MDS who were being given growth factor supplementation in order to help increase 

their peripheral blood counts, a bone marrow picture with features of acute leukaemia 

developed in certain patients. This resolved once these factors were withdrawn (64). 

Whether the spontaneous clinically recognised transition of myelodysplastic syndromes 

into leukaemias follows a similar or totally different mechanistic pathway, the 

conversion to leukaemia will usually be associated with an increase in cellularity. This 

would be likely to result from a complementary proliferative signal originating in one of 

the maturation arrested myelodysplastic cells.

1.2.2 Mechanisms of leukaemogenesis

Various agents may cause the combination of maturation arrest and proliferative 

disorder resulting in leukaemia. Intrinsic (genetic) defects within the leukaemic clone 

are passed down to the daughter cells of the transformed founder cell. Certain 

recognised causative factors such as irradiation and certain carcinogenic chemicals 

(including chemotherapy for other malignant diseases) cause leukaemia as a result of 

genetic damage, which they bring about in DNA of haematopoietic precursor cells (65).

Apart from genetic anomalies, the most common and apparent of which are 

chromosomal translocations, viruses are well known to play a strong etiological role in 

leukaemogenesis though this has been seen more often in animals than in man. Avian
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myeloblastosis and myelocytosis viruses are well known to cause acute myeloblastic and 

myelocytic leukaemia respectively in chickens. In these cases the v-myb and v-myc 

oncogenes respectively may simultaneously block differentiation and stimulate 

proliferation (66;67). The Moloney murine leukaemia virus (68) and the spleen focus 

forming virus (SFFV) both cause leukaemia secondary to retroviral integration. In the 

latter case, though the virus contains no obvious oncogene, erythroleukaemia is induced 

due to the env gene protein of the virus, binding to and activating the erythropoietin 

receptor - a case of molecular mimicry. This makes the cell, growth factor independent 

(69) (and other changes probably secondary to this proliferation cause development of 

the leukaemia). Simultaneously, viral integration positions a viral long terminal repeat 

(LTR) next to a gene for a transcription factor (PU.l) which is thought to be responsible 

for its over-expression (70). This over-expression contributes to leukaemogenesis by 

blocking differentiation (in the case of erythroid activation of PU.l).

In humans viruses thought to play a role in leukaemia include the human T-cell 

lymphotropic virus-1 (HTLV-1) which is a necessary event in the development of a 

specific type of adult T-cell leukaemia and the Ebstein Barr herpes virus which is 

responsible for Burkitt’s lymphoma as well as possibly other illnesses (71).

1.2.3 Classification of Leukaemia

Leukaemias have classically been subdivided into acute and chronic depending 

on the rapidity of progression of the disease and as myelocytic or lymphocytic according 

to the lineage characteristics of the predominant cells seen in Romanowsky-stained bone 

marrow samples (72). This results in four major subgroups of leukaemia namely 

acute myelocytic leukaemia (AML), acute lymphocytic leukaemia (ALL),
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chronic myelocytic leukaemia (CML) and chronic lymphocytic leukaemia (CLL). Whilst 

a definitive classification of these malignancies is well beyond the scope of this 

introduction, a brief outline of classical classification follows.

Lymphocytic leukaemias are subdivided into those of T-cell or B-cell origin 

though these subsets may be further subdivided according to the stage of development at 

which lymphocyte development is arrested such as B, pre-B or pro-B (73). Some 

particular variants are separately classified according to a particular morphology of the 

abnormal leukocyte - such as hairy cell leukaemia (74). Chronic myelocytic leukaemia 

is more simply divided into Philadelphia chromosome positive or negative disease (75). 

AML is a more heterogeneous disease and has been generally classified by means of the 

predominant cell type’s morphology as shown in the widely used French American 

British (FAB) classification (Table 1).

Lymphomas are also malignant haematological disorders, being lymphoid 

proliferative diseases more usually localised to solid lymphoid tissues. They have 

historically been classified as Hodgkin’s disease and non-Hodgkin’s lymphomas (a large 

group, including some variants of chronic lymphocytic leukaemia). Another lymphoid 

malignancy is multiple myeloma where the predominant cell type is a plasma cell - the 

end stage functional cell of the B-lymphocytic lineage (76).

Cytogenetic and molecular tools are nowadays helping dissect the aetiology of these and 

other diseases more clearly. Discovered genetic abnormalities have also thrown new 

light on to the biology of various leukaemias, are helping more specific diagnosis and 

have begun to influence management (77).
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MO Acute myeloblastic leukaemia (without cytologic maturation) 0 (below)

Ml Acute myeloblastic leukaemia (with minimal maturation) 20(with MO)

M2 Acute myeloblastic leukaemia (with maturation) 30

M3 Acute promyelocytic leukaemia 10

M4 Acute myelomonocytic leukaemia 25

M5 Acute monocytic leukaemia 10

M6 Acute erythroleukaemia 4

M7 Acute megakaryoblastic leukaemia 1

Table 1. The French American British (FAB) classification of Acute Meloid 

Leukaemias. Some of the subtypes can be further subdivided. For example, M3 also 

includes an unusual hypogranular form whilst M4 can also have specific eosinophilic or 

basophilic features. Other rare varieties which do not fit neatly into any group include 

acute mixed lineage leukaemias which also include lymphocytic markers, and 

undifferentiated leukaemias where the malignant clone has a progenitor cell phenotype.
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1.2.4 Genetic abnormalities in leukaemia

Genetic abnormalities are common in leukaemia; in fact clonal chromosomal 

abnormalities are found in 80% to 90% of children with acute leukaemia (78). The most 

common anomalies are balanced chromosomal translocations. They have been shown 

to play an important causal role in leukaemogenesis in certain cases, as in the case of the 

BCR-ABL fusion protein in CML and the PML-RARA fusion protein in acute 

promyelocytic leukaemia (79;80). 25% of childhood cases of ALL and 50% of cases of 

AML are related to phenotype-specific balanced translocations with characteristic 

biological and clinical features (78). A list of the commoner known chromosomal 

anomalies found in acute childhood leukaemias, with the associated molecular defect 

resulting from this translocation, is shown in Table 2. The gene products of such 

chromosomal translocations may be fusion proteins, which act as dominant negative 

transcription factors (as appears to be the case with PML-RARA and AML/EVI-1), 

which block normal differentiation (63;81). Other translocations disrupt apparent 

tumour suppresser genes as seems to be the case with the TEL/AML1 fusion protein, 

which is very often associated with loss of the other TEL allele (82). In certain 

lymphomas, other translocations result in over expression of cellular oncogenes like 

myc (83).

Common cytogenetic anomalies in adult leukaemias include the Philadelphia 

chromosome t(9;22)(q34;qll) found in over 90% of adult chronic myeloid leukaemias 

(75). Chromosomal anomalies are also detected in 50-65% of patients with chronic 

lymphocytic leukaemia. The most common of these are trisomy 12 and abnormalities of 

the long arm of chromosomel3 (76).
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B-lineage ALL
t(12;21)(pl2-13;q22) TEL-AML 22(molecular analysis)
t(l; 19)(q23;pl3.3) E2A-PBX1 6
t(9;22)(q34;qll) BCR-ABL 3
t(4;ll)(q21;q23) MLL-AF4 2

B-cell ALL
t(8;14)(q24;q32) MYC(IGH) 1-2

T-cell ALL
- TAL 4
t(H; 14)(pl3;qll) TTG2(TCRD) 1

AML
inv(16)(pl3q22) CBF3-MYH11 8-10
t(8;21)(q22;q22) AML1-ETO 8-10
t(15;17)(q21;q21) PML-RARA 6-10
t(9; 1 l)(p21 -22;q23) MLI^AF9 7-9
t(l;22)(pl3;ql3) unknown 2-3
t(9;22)(q34;qll) BCR-ABL <1
inv(3)(q21q26) EVI1 <1

Table 2. Commoner known translocations and associated genetic rearrangements 
found in acute childhood leukaemias. The sign indicates that no gross 
chromosomal anomaly is detected.



1.2.5 Clinical significance of leukaemia biology

The cytogenetics of leukaemia is now recognised as an essential prognostic 

factor in assessing the severity of disease and also in certain cases, in directing 

appropriate treatment to the condition. Acute promyelocytic leukaemia (APL), which is 

almost always characterised by a t(15;17)(q22;ql2-21) balanced translocation, is a case 

in point. The translocation in this leukaemia results in the formation of the abnormal 

transcription factor RARa-PML. Differentiation therapy for this form of leukaemia 

with all-trans retinoic acid (ATRA) counters the inhibitory dominant negative effect of 

the fusion protein. This allows the leukaemic cells to differentiate to near-normal 

granulocytes which then apoptose normally (84). This has resulted in markedly 

improved remission rates and when combined with low dose chemotherapy, has very 

significantly improved cure rates, without developing the marrow hypoplasia common 

with usual modalities of treatment (chemotherapy). This first instance of successful 

differentiation therapy was specific to the abnormal transcription factor since a rare 

subtype of APL with a differing translocation producing the PLZF-RARa fusion protein 

did not respond similarly (85). It suggests a new way forward in the treatment of these 

diseases based on a greater knowledge of the causative anomalies in each particular 

instance. Even when using more standard modalities of treatment, cytogenetic and 

molecular abnormalities are now being more recognised as clear markers of prognosis.

IN AML, for example, patients with t(8;21) and inv(16) had the longest 

complete remissions and the best overall survivals whilst the worst prognosis was seen 

in patients with del(5q)/5q-, del (7q)/7q-, t(9;22) and rearrangements involving llq23
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except for the t(9 ;ll) rearrangement (86). Prognosis for patients with leukaemia will 

presumably continue to improve in future due to treatment modalities tailored more 

specifically to the underlying molecular defect.

1.3 Models for studying haematopoiesis and leukaemia

In order to study haematopoiesis and leukaemogenesis in an experimental 

setting, various model systems have been developed over the years. Each method is 

more useful for investigating one or another aspect of blood cell biology and replicates 

the conditions of proliferation and differentiation in the bone marrow to a greater or 

lesser extent.

1.3.1 In vivo model systems

Haematopoietic cells have been long since studied by transferring either 

unfractionated bone marrow or cells with certain characteristics (such as CD34+ve cells, 

which would include the stem cell population,) into lethally irradiated mice. By seeing 

how much of the normal pattern of haematopoiesis is recovered by the transplanted 

cells, knowledge of the proliferative capacity and differentiation characteristics of 

transplanted cell population is obtained (87).

Whilst the above system was useful in studying haematopoiesis in the mouse, 

human haemato-and leukaemo-poiesis could be similarly studied in vivo only after the 

identification of the SCID (severe combined immunodeficient) mouse. This mouse 

carries a genetic defect, which results in it being incapable of mounting either a
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humoral or cellular immune response. It can therefore be transplanted with autologous 

grafts or even xenografts from normal or leukaemic human bone marrow, whereupon 

such tissue continues to develop within the mouse and can be studied in this 

environment (88).

More specific questions into the function of certain genes in haematopoiesis 

have been addressed in vivo by means of transgenic or knockout mice, where a 

particular gene is added to, or deleted from, the mouse genome respectively (89). Whilst 

such experimental strategies may clearly indicate the importance of certain factors for 

particular aspects of haematopoiesis, they lack the flexibility to study the role of a 

particular gene product with time, or in relation to other factors or in different 

conditions. For more interventional experimentation, in vitro model systems come into 

their own.

1.3.2 In vitro model systems

The long term culture of bone marrow and peripheral blood stem cells ex vivo 

has improved greatly in the last decades greatly due to the recognition of the interaction 

between haematopoietic cells and their microenvironment, particularly stromal cells in 

the bone marrow (90). Originally by growing blood stem cells in contact with stromal 

cell ‘feeder’ layers and more recently by direct supplementation of many of the purified 

cytokines and other growth factors provided by these stromal cells, haematopoiesis can 

be maintained over months in long term liquid cultures (5). The continuing access to the 

cells allows manipulation of growth conditions over time and provides a flexibility 

lacking in in vivo models for studying differentiation-related decisions taken in blood 

progenitors over time and/or under different conditions.
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1.3.3 Myeloid cell lines as models of myelopoiesis

Both sets of experimental models described above are complex systems 

requiring considerable care and attention but may provide the most accurate information 

into the actual process of haematopoiesis. The use of leukaemic cell lines (which are 

often growth factor independent) to study more specific aspects of blood cell biology is 

a convenient and established method, provided adequate care is taken in the 

interpretation of results. Thus the K562 cell line (erythroid blast crisis of CML) has 

often been used in the study of foetal haemoglobin expression since this cell line is 

capable of expressing foetal globins to a high level (91). Likewise many myeloid cell 

lines such as HL60 (a myeloblastic cell line with the bi-directional differentiation 

capability of a promyelocyte) and U937, (a monocytoid derivative of a 

histiocytic/lymphocytic cell line) are often used to study the regulation of genes 

expressed at different time points in myeloid maturation (92). According to their 

particular phenotypes, each cell line is taken to represent the myeloid precursor cell at 

the stage of differentiation similar to that at which the leukaemic clone is arrested. 

Therefore different cell lines can be taken to represent different time points in the 

myeloid differentiation pathway.

The leukaemic nature of these cells encourages caution due to the fact that 

differences between the cell line and untransformed primary cells are certain (such as 

the lack of expression of most secondary granule proteins in differentiated myeloid 

leukaemic cells) (92;93). The easy transportation and maintenance of cell lines (as 

opposed to primary tissue) as well there relative conformity and the abundance of 

material reduces variability that would occur due to many different patient sources. This
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allows scientists in different laboratories to collaborate more closely and minimises 

difficulties in interpretation due to variant test conditions.

1.3.4 NB4 as a model of neutrophilic and monocytic differentiation

NB4 is a cell line derived from a relapsed case of acute promyelocytic leukaemia 

(APL), which as the name implies is a leukaemia where cells are arrested at the 

promyelocyte stage of differentiation (94). Promyelocytic leukaemia has been treated 

recently by differentiation therapy as described above but this treatment requires the 

presence of a t(15;17) translocation resulting in the formation of the hybrid transcription 

factor PML-RARA. The NB4 cell line, being derived from such a leukaemia with the 

characteristic cytogenetic abnormality maintains the capability to be differentiated to 

cells of near- normal neutrophil granulocyte morphology in the presence of sdl-trans- 

retinoic acid (ATRA). Further research using this cell line has shown it can also be 

induced to differentiate to monocytoid phagocytic cells using different combinations of 

inducers such as phorbol ester together with activated di-hydroxy vitamin D3 (95). 

Thus, despite a complex karyotype with hypotetraploid chromosome number in most 

metaphases, the normal pattern of bi-potential promyelocyte differentiation was 

relatively well preserved and this leukaemic cell line can be used as a model for myeloid 

differentiation. Particularly relevant to this study, NB4 cells had been shown to express 

defensin (96) so this cell line could be used to study the regulation of defensin gene 

transcription.
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Chapter 2 : Transcriptional regulation of gene expression

Gene expression, which is largely responsible for the particular phenotype of cells 

and indirectly of tissues and organisms, is controlled in many different ways. Much 

control is exerted at the initial stage of transcription where messenger RNA (mRNA) is 

produced from the genomic DNA template. Processing of the mRNA into a mature 

form, through splicing, capping and polyadenylation, translation of the mRNA into 

protein and subsequent post-translational modifications are subsequent stages of the 

process of conversion of a coded message within the DNA blueprint into a mature 

functional protein. The presence or absence of these proteins is what eventually 

determines a cell’s structure and function. Each of these steps in protein production may 

be regulated thereby allowing for a very fine control of gene expression to be achieved.

2.1 A general overview of the elements of transcriptional control

The transcription of a gene depends on cis-acting DNA elements upstream 

(and/or downstream) of the coding region as well as on trans-acting factors which 

interact with these elements. Cis-acting elements may be positioned just upstream of 

the gene in question (usually referred to as promoter elements) or may be situated more 

distantly both up- and down-stream of the gene (enhancer elements). Transcription can 

be divided into a number of individual steps, which occurs in a stepwise fashion. These 

are pre-initiation complex (PIC) assembly, DNA melting (PIC activation), 

transcription initiation, promoter clearance, elongation and termination. Binding of
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transcriptional proteins to the core promoter elements (as part of the pre-initiation 

complex) has been shown to be a major rate-limiting step for the transcription of most 

promoters in vitro (97; 98). In some promoters, however, an initiation complex seems 

to be stably bound to the DNA and in these cases , it is the later steps of transcription, 

which are likely to be responsible for regulation (99). All these interactions, though 

easily identified in in vitro experiments, are dependent, in vivo, on the chromatin 

packaging of the promoter DNA.

2.2 Chromatin and Transcription

Chromatin can be defined as the genomic DNA together with the associated 

proteins, including both structural and regulatory molecules. Much work in recent years 

has indicated that the process of transcription is intricately interlinked with the 

regulation of chromatin structure by chromatin-modifying molecular machinery - 

reviewed in (100).

2.2.1 Nucleosomes

The basic unit of chromatin is the nucleosome. About 150 bases of DNA are 

wound 1.8 times around a nucleosome core made of two molecules each of histones 2A, 

2B, 3 and 4(101). Histone 1 (often called a linker histone) binds to the DNA at either 

end of the nucleosome and encourages chromatin condensation. The primary chromatin 

fibre of genomic DNA wrapped around nucleosomes is once again coiled upon itself to 

form a 30nm fibre, which forms the bulk of interphase chromatin. Recent studies have
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shown that the RNA polymerase unwraps DNA from the nucleosomes as it transcribes 

along the DNA template so that the nucleosome is displaced to the DNA behind the 

polymerase without the latter ever actually loosing contact with the DNA(102). Despite 

being able to read through nucleosomes uninterrupted, considerable pausing occurs 

during the process, the overcoming of which is crucial, to allow adequate transcription 

of a chromatin-embedded gene.

2.2.2 Silent and active chromatin

Chromatin has long been divided rather archaically into denser heterochromatin 

and euchromatin. Actively transcribed genes are usually found within euchromatin 

(103). Genes within heterochromatin are almost always repressed as is clearly seen in 

X-chromosome inactivation (104).

The effects of chromatin on gene expression are most clearly seen in stable 

transfection experiments and related transgenic experiments where the expression of a 

gene depends greatly on where in the genome it has integrated. Genes integrated close 

to the telomeric ends of chromosomes, for example are much more likely to be 

repressed. Introduced genes, which integrate adjacent to a region of heterochromatin 

(though this could be hundreds of kilobases away), undergo the phenomenon of 

positional effect variegation. These genes are occasionally expressed and occasionally 

not resulting in variable phenotypes within different transgenic daughter cells (105). The 

exact explanation for this phenomenon is unclear. Such repression (whether stable or 

variegated) differs considerably from the situation in transient transfections where 

promoter activity is determined primarily by the absence/presence of the appropriate

2 8



transcription factors in the cellular environment and their binding sites within the

promoter sequence.

2.2.3 Enzymatic modification of chromatin

The enzymatic acetylation of histones plays an important role in transcriptional 

activation of chromatin-bound templates and is discussed further in section 2.4.8. Other 

enzymes deacetylate histones and therefore return nucleosomes to a more stably DNA- 

bound state. These latter enzymes appear to repress transcription (106). Other enzymes 

methylate DNA, thereby inhibiting the binding of certain transcription factors to their 

binding sites and encouraging the binding of other methylation dependent DNA-binding 

proteins. This methylation of DNA also represses transcription (107). As well as these 

specific modifications, a large number of enzymes and protein complexes including the 

SWI/SNF complex (100) have been identified to play an important role in the 

modification of chromatin. Such complexes usually include proteins with acetylase and 

deacetylase activity as well as molecules, which appear to be ATP driven molecular 

motors, which shuttle along the DNA. Though the exact mechanism of action of these 

various complexes is as yet unclear, the activities of the chromatin modifying machinery 

impinge on transcription and provide yet another level of control into this process which 

defines the characteristics of living cells.
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2.3 Sequences involved in the regulation of transcription

2.3.1 Promoters and initiators

Core promoter elements are defined as the ‘minimal DNA elements that are 

necessary and sufficient for accurate transcription initiation by RNA polymerase II in 

reconstituted cell-free systems’ (108). The most well known such elements include the 

TATA box which is usually located 25 to 30 bases upstream from the transcriptional 

start site, and the initiator; a pyrimidine rich sequence ( consensus YYANVaYY) 

located at the transcriptional start. Promoter is a rather loosely used term but it 

generally refers to the sequence of the gene directly upstream from the transcribed 

sequence which is required for strong expression of the gene (or a substituted reporter 

gene) in its normal cellular environment. Whilst a promoter is often tissue-specific, 

core promoter elements are not (108).

2.3.2 Modularity of promoters

Gene promoters are made up of different recognised modules (short recognised 

sequences) which are required in order to allow the promoter to function. These 

modules may be spread out over 100 bases or more. These usually include one or more 

core promoter elements, found in many different gene promoters, as well as other 

activator binding sequences, which whilst not necessary for accurate transcript initiation 

are nonetheless required for high level gene/reporter transcription, such as CAAT boxes

(109). Such modularity of promoters and also of enhancers (see below) allows the
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building up of different combinatorial cis-acting factor complexes using binding sites 

for a limited number of transcription factors. Adjacent to and often overlapping with 

promoter sequences, upstream of genes, are sequences rich in G and C nucleotides. 

These GC-rich regions are a target for methylation, which by reducing the binding of 

methylation-sensitive activator proteins, can inhibit the expression of the adjacent genes 

(107).

2.3.3 Enhancers

Enhancers as their name implies, are sequences which enhance transcription initiation

(110). They are capably of mediating this effect at a distance from the site of 

transcription initiation, and independent of their orientation. They may be found both 5’ 

and 3’ to the transcribed gene sequences. They are often tissue specific. Whilst they are 

also modular, the different activator-binding consensus sequences are more often 

contiguous unlike in promoters. They can usually enhance the activity of diverse 

promoters placed adjacent to them rather indiscriminately by allowing activator binding 

in their proximity (111).

2.3.4 Locus control regions

Also referred to as dominant control regions and bearing certain functional 

similarities to the long terminal repeats in retrovirus genomes, these LCRs are 

exemplified by the cluster of super hypersensitive sites (in erythroid cells) 10 kb
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upstream of the |3-globin cluster. Adding these sequences to a $-cluster globin gene 

with its promoter before introduction into a mouse (thereby creating a transgenic), 

resulted in high level tissue-specific expression similar in extent to the expression of the 

endogenous mouse gene and in direct relation to the copy number of integrated genes 

(112).

Whilst many of these features are also features of strong enhancers, the LCR 

allowed this high level expression independent of the position of integration in the 

mouse genome (without the LCR, transgenic genes are usually very poorly expressed 

and then this depends on the site of integration). One element of the LCR, 

(hypersensitive site 2), whilst still capable of causing high level position independent 

expression in stably transfected transgenes or in transgenic mice, was incapable of 

enhancing linked globin gene transcription in transient transfection assays. This 

indicates that this sequence is specifically involved in chromatin-dependent regulation 

of transcription but is not a classical enhancer thus allowing distinction between the two 

types of regulatory DNA sequences.

2.4 Proteins regulating transcription

2.4.1 RNA polymerase II

All nuclear genes are transcribed from DNA by one of three RNA polymerases. 

Polymerase I exclusively transcribes the 5.8S, 18S and 28S ribosomal RNAs.
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Polymerase II transcribes genes encoding messenger RNA and certain specific small 

nuclear RNAs. Polymerase III transcribes t RNA genes, the 5S rRNA and other small 

nuclear ribosomal RNAs (113).

Some studies suggest that the RNA polymerase II is bound to DNA as part of a 

stepwise process following the previous binding of DNA-binding general transcription 

factors (114). However some recent work suggests that the polymerase may exist as a 

pre-formed complex together with various general transcription factors and co-activators 

known collectively as the RNA polymerase II holoenzyme (115). This complex may 

then be recruited as a single unit by means of interactions with DNA-bound activators 

and core-binding factors. The stepwise process of basal transcription machinery 

recruitment is described below.

2.4.2 General transcription factors

These proteins together with RNA polymerase II comprise the basal 

transcription apparatus, which recognises the core promoter and initiates transcription - 

reviewed in (108). They are the TATA-binding protein (TBP) and transcription factors 

(TFs) TFIIB, TFIIE, TFIIF and TFIIH. These sub-units are conserved between all 

eukaryotic species, even in yeast. TBP recognises known core promoter elements. 

TFIIB binds to the promoter by means of interactions both with TBP and directly with 

DNA adjacent to this molecule. It then recruits an RNA polymerase-TFIIF pre-formed 

complex by means of interactions with both proteins. TFIIE is recruited to the complex 

via interaction with the polymerase, upon which it then recruits TFIIH, a factor with 

helicase, ATPase and kinase activity, which melts the promoter DNA (116).
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Transcription of the gene DNA can then begin whilst phosphorylation of the polymerase 

C-terminal domain probably results in destabilisation of interactions with other 

promoter bound factors such that promoter clearance and elongation can proceed (117).

2.4.3 TBP and the TBP-associated factors (TAFs)

TBP is normally found in association with various factors (TAFs) making up a 

complex known as TFIID (118). TBP and certain other TAF components of TFIID are 

the only general transcription factors (GTFs) known to bind directly to DNA. There is 

clear evidence even in vivo that their binding to the promoter is a major rate-limiting 

step in transcription (119). The TAFs are likely to be important in targeting TFIID to 

promoter elements which lack a canonical TATA sequence and which therefore do not 

strongly bind TBP. Such promoter interactions may also require other factors like 

TFIIA which seems to be essential in stabilising promoter-TFIID interactions in the 

absence of a TATA box, probably by interactions with the TAFs (120).

TAFs also play an essential role in activator-enhanced transcription. This was 

recognised since TBP alone could substitute adequately for the whole TFIID complex as 

regards basal transcription, in a cell-free test system with purified proteins. However 

activator-enhanced transcription was seen to require TAFs (121). Interestingly it was 

noted that different classes of activation domains bound to different TAFs - reviewed in 

(118). Transcription factors Spl and Drosophila TF bicoid (which have glutamine rich 

activation domains) bind to Drosophila TAFn 110, whilst p53 and the viral activator 

VP 16 (acidic activation domains) bind to TAFn 40. By reconstituting TFIID from its 

constituent sub-units, it was shown that transactivator enhanced transcription was
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dependent on the presence of the TAF known to interact with that particular 

transactivator (122).

Thus transactivators may enhance transcription by recruiting the basal apparatus 

to a promoter more efficiently (123) probably via their interactions with TAFs . This 

appears to be due to more ( as opposed to faster) transcription complex formation on the 

promoter (124). Various other factors, which are not so tightly bound to the basal 

transcription machinery as the TAFs, are also required for activator-mediated enhancing 

of transcription. These are referred to as co-activators and will be discussed (see section

2.4.8 ). The interactions between all these different classes of factors are represented in 

Fig-4.

2.4.4 Activators

Many transcription factors, including c-Fos, c-Jun, c-Ets and others often act as 

activators and are distinct from the factors involved with the basal transcription 

machinery. Activators are defined as such, depending on their capability to 

transactivate a promoter - in situ within the genome or more commonly linked to a 

reporter gene (125). In most cases this is dependent on the activator binding a site 

within the promoter or a linked enhancer sequence. As described above, activators 

interact with the basal transcription machinery by means of the TAFs, thereby helping 

either recruit the basal machinery, or stabilise complex assembly on the promoter 

thereby increasing the rate of transcription by enhancing initiation. In order to do this, 

most activators therefore require a DNA binding domain to bind to their characteristic 

recognition sites (cis-DNA-elements) within a promoter or within enhancers, as well as
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Figure 4. Anatomy of a transcription factor complex. The interactions of various 
activators (act) bound to enhancer sequences (enh) with different TBP-associated 
factors (TAFs) help recruit TBP to the TATAA box. Then through interactions 
between TBP and the other general transcription factors TFIIB,F,E,H, etc, the 
RNA II polymerase is itself recruited to the promoter and initiation of 
transcription can begin.
LEF-1 is included as an example of a co-activator which whilst not itself directly 
involved in recruiting the polymerase, still performs an essential function. It 
kinks the DNA (shown here in blue) thereby allowing the enhancer sequence- 
bound activators to interact with TBP thereby stabilising the pre-initiation 
complex on the TATAA box.
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an activation domain by means of which they can interact with the transcription 

machinery. Some activators are incapable of binding DNA as monomers and therefore 

need to form dimers or multimers with themselves or with other transcription factors in 

order to establish the link between the cis-elements with which they interact and the 

basal transcription machinery. c-Jun and c-Fos, for example, interact by means of a 

common protein-protein interaction domain, the leucine zipper, to form a heterodimer, 

the transactivator AP-1 (126). GABPp, another transactivator which has a strong 

transactivation domain but no DNA binding domain, is attached to the DNA by means 

of a protein-protein interaction with a DNA-binding factor GABPa which has little 

inherent transactivation activity due to the apparent lack of a strong transactivation 

domain (127).

Thus domains commonly found in trans-activators include a DNA-binding 

domain and a transactivation domain which interacts with the proteins of the basal 

transcription machinery. Protein interaction domains allow for binding to other 

activators and co-activators whilst nuclear localisation sequences (which may not be a 

separate domain) allows the protein to be localised in the nucleus once it has been 

translated in the cytoplasm (128). Transactivators may also have other domains with 

specific functions such as ligand-binding in the case of the steroid receptors (129).

2.4.5 DNA-binding domains

A number of different protein domains allow transcription factors to interact 

with either the major or minor grooves of the DNA double helix structure. Many such 

domains are basic (net positive charge) in nature, allowing them to interact with the
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negatively charged phosphate backbone of the DNA. The different DNA-binding 

domains are classified according to the similarity of the domain to that of previously 

identified factors (e.g. ETS domain, MYB domain etc). Otherwise, they may be 

grouped according to particular structural features of the domain (e.g. zinc finger 

domain; a finger-like motif held in shape by interactions of amino acids within the 

peptide chain with a central zinc atom). Different types of DNA-binding domains found 

in different transcription factors are shown in Table 3 (130).

2.4.6 Transactivation domains

Different transcription factors also interact with the basal machinery by means of 

different transactivation domains. As has been described above, the different classes of 

activation domains may interact with the basal machinery through different TAFs within 

TFIID. Types of transactivation domains include acidic domains, as found in the 

tumour suppresser gene p53 (131), glutamine-rich domains, as seen in GABPp (132)and 

Spl (133) and proline-rich domains as found in the CAAT transcription factor CTF 

(134). Some transactivators have more than one type of transactivation domains such 

as PU.l which sports both acidic and glutamine-rich domains(135).

2.4.7 Protein interaction domains

As described above, many transcription factors interact with other factors in 

order to bind DNA, both due to a complete lack of an endogenous DNA-binding
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Helix-tum-helix (HTH) Myb, Hepatic Nuclear Factor l(HNF-l), Oct-1,Ets ( in this 
case the domain is a winged HTH)

Homeodomain - contains an HTH 
motif

Antennapedia (Drosophila), Engrailed (Drosophila), 
HoxA, HoxB

Helix-loop-helix (HLH) MyoD, E2A

Basic zipper (b/Zip) -  contains an 
HLH motif and a leucine zipper

Myc, Max, Jun, Fos, C/EBP, CREB

Zinc finger domain MZF-1, GATA-1, Evi-1, ZEB

Steroid receptors -  may include one 
or more zinc finger-type structures

Estrogen receptor, Glucocorticoid receptor

Other diverse P53, High mobility Group proteins, AML1, NFkB

Table 3. Transcription factor DNA-binding domains.

As can be seen there is a considerable overlap between various domain structures. Some 

transcription factors may also contain more than one different kind of DNA-binding 

domain as do the POU proteins which have both a homeodomain and a separate HTH 

domain. Some of the structures involved are only indirectly involved with DNA 

binding as in the case of the leucine zipper within the basic zipper proteins. It is the 

basic region which is actually responsible for DNA interaction but the leucine zipper is 

essential in mediating protein-protein interactions. Protein heterodimers formed through 

interactions via this domain are then capable of binding DNA more strongly and 

specifically.
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domain (as in GABPP) or due to an improved DNA binding and cis-element targeting 

(as in the C/EBPs or c-Fos and c-Jun). Such interaction domains again differ in various 

transactivators (136). In many cases they involve one or more alpha helices in a 

variety of configurations. One of the most common protein interaction domains is the 

leucine zipper, found in the C/EBPs, an alpha helix with a periodic arrangement of 

leucine residues (137). These residues allow two such domains on C/EBP monomers to 

interact hydrophobically with each other, resulting in dimer formation.

2.4.8 Histone Acetyltransferases and other co-activators

As well as the basal machinery and the transactivators, a number of other factors 

also play a part in transcription (138). These are not tightly bound to the basal 

machinery as are the TAFs and are not themselves capable of transactivating of 

promoters. They do however enhance the activity of transcription factors, which are 

known to target a particular promoter. One hypothesis of how these factors work is that 

they act as bridges between transactivators and the basal machinery components (139). 

One such co-activator, the CREB binding protein (CBP) and the very similar p300 

protein, have both been shown to interact with multiple transactivators thus supporting 

this possible mechanism (140). These two proteins as well as a number of other co

activators have a certain degree of histone acetyltransferase (HAT) activity(141).

Acetylation of histones, particularly the N-terminal tails of H3 and H4 histones, 

reduces the stability of histone-DNA binding (142). Thus apart from playing a 

(bridging) role in pre-initiation complex formation, certain co-activators with FLAT 

activity, may also be involved in opening up the chromatin template and allowing
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improved access of other transactivators thus further improving recruitment of the basal 

machinery of transcription.

2.5 Regulation of Transcription factor activity

Transcription factors can be positively or negatively regulated by a number of 

different processes - reviewed in (143). The rate of transcription and translation of the 

factors themselves may be regulated, thereby effecting the expression of their 

downstream target genes

As the only mechanism of gene regulation, however, this would result in an 

increasing pool of upstream factors regulating more downstream factors ad infinitum. 

Eukaryotic organisms reduce the number of factors required for gene control by having 

modular promoters. The binding of more than one transcription factor in different 

combinations to these promoters, according to the binding sites (modules) present, can 

differentially regulate various genes. Multiple forms of some transcription factors 

produced either by splicing variation or by translating the same mRNA using different 

start codons, introduces another level of control where the different variants of the same 

factor may have different transcriptional activity.

Post-translational modifications to these transcription factors and interactions 

between different factors to form various transcription factor complexes, allows a 

limited number of initial factors to regulate a large number of downstream genes in 

different circumstances and tissues.
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2.5.1 RNA splicing and translation

A large number of genes may be regulated by the formation of differently 

spliced m-RNAs, which are then translated into proteins with different transactivation 

activities. One example is the myeloid transcription factor AML-1 (acute myeloid 

leukaemia-1). Numerous transcripts of this gene have been detected in normal blood 

cells probably as a result of the use of alternate promoters and polyadenylation sites as 

well as alternate splicing (144). One AML-1 transcript, termed AML-1A, lacks a 

transactivation domain and whilst it itself has no effect on the transcription of a target 

gene, it suppresses transcription by the longer splice variant AML-1B which has a 

transactivation domain. Over expression of the AML-1A splice variant suppresses the 

GM-CSF-induced differentiation of the 32D myeloid cell line, and enhances 

proliferation. Concomitant over-expression of the AML-1B bypasses this effect. It is 

not therefore surprising that many myelocytic leukaemia patients’ cells express a 

relatively increased amount of AML-1A (144).

The transcriptional activity of both C/EBPa and C/EBPp is regulated by the 

relative expression of two protein isoforms, a full length and an N-terminal truncated 

isoform; both translated from the same mRNA. The full-length isoform usually acts as 

a strong activator of transcription whilst the shorter isoform, being a much weaker 

activator, acts as a competitive repressor. Addition of serum as well as various 

hormonal stimuli such as insulin, result in alteration of the ratio between these two 

isoforms in liver/adipose cells, suggesting that they may be important in the metabolic 

and hormone dependent regulation of target genes (145).
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2.5.2 Phosphorylation

Cell growth and differentiation signals are first recognised by cells at the cell 

surface following the binding of a growth factor/ligand or a cell surface molecule to a 

receptor on the target cell. This signalling results in activation (usually through the 

activity of a number of signal transducing G-proteins) of one or another kinase cascade 

like the MAP (mitogen activated protein) kinase cascade resulting in eventual 

phosphorylation of certain target transcription factors.

One such factor is c-Jun, which is phosphorylated on its transactivation domain 

by such kinases, resulting in an increase in transactivation activity (146). As a result of 

this, it can then trans-activate various target downstream promoters causing changes in 

gene expression. On the other hand, c-Jun’s DNA binding is reduced due to 

phosphorylation by a constitutive kinase (147). A specific phosphatase dephosphorylates 

three different sites within the DNA binding domain resulting in increased DNA binding 

(146; 147). Thus both phosphorylation and dephosphorylation can increase the ability

of c-Jun to bind to and transactivate certain downstream promoters.

2.5.3 Proteolysis

A number of transcription factors are regulated by proteolysis. One of the most 

clinically relevant factors regulated by proteolysis is the product of the tumour 

suppresser gene p53. Ubiquitination of P53 and its targeting for proteolytic degradation 

follows the formation of a complex between P53 and the protein MDM2 (148). 

C/EBPp can also be proteolytically degraded into a less active isoform in certain
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circumstances and this degradation is apparently dependent on C/EBPcx (149). This 

provides a medium whereby one C/EBP factor can reduce the competition by another 

C/EBP factor for the same DNA site. Proteolysis can be used to activate a transcription 

factor too. The inhibitory protein IkB is degraded by ubiquitination and proteolysis 

following phosphorylation (150) thus releasing the active transcription factor NFkB to 

which it is normally complexed in the cytoplasm (151). NFkB can then activate target 

genes, upon translocation into the nucleus.

2.5.4 Ligand binding

A number of transcription factors are regulated by ligand binding which converts 

an inactive factor into an active one. Foremost amongst these are the steroid, retinoid 

and thyroid receptors. All these transcription factors in the super family have a specific 

transactivation domain, and a ligand-binding domain, attached via a link sequence to a 

DNA-binding domain (129). In the case of the steroid receptors, hormone binding 

results in a configurational change, which results indirectly in the exposure of a ligand- 

binding/dimerisation surface through which homodimers of the ligand-bound receptor 

are formed. These dimers can then bind the palidromic hormone response element in 

DNA, and activate target genes.
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2.5.5 Multimerisation

One very effective and widespread method which cells use to increase 

specificity of transcriptional regulation is the process of multimerisation. Different 

factors dimerise with other members of the same family and also sometimes with 

transcription factors of different families in order to produce specific complexes which 

can then activate diverse promoters according to the particular binding sites present. 

Such transcription factor complexes as well as differing in their ability to bind DNA, 

may also differ in their strength as transactivators. One of the most common 

dimerisation motifs is the leucine zipper, found in the C/EBP transcription factors as 

well as c-Jun and c-Fos, c-Myc and Max. A group of (usually) seven leucine residues 

present on one face of an alpha helix allows two proteins with this same motif to adhere 

via hydrophobic interactions between these leucine residues thus resulting in a dimer 

(137). In the case of Myc and Max, absence of the former results in the formation of a 

Max homodimer, which binds to promoters with the correct binding site (an E-box 

sequence) but is inactive (152). The increased presence of c-Myc results in a shift with 

the formation of more c-Myc/Max heterodimers, which now bind to the same site as an 

active complex.

Amongst the C/EBPs, dimerisation between different active forms can result in 

dimers of different specificity and activities (153), whilst dimerisation with other 

regulatory family members (e.g. CHOP-10), can result in dimers with defective DNA 

binding and thus reduced transactivation potential (154). The binding specificity of 

C/EBPs may also be modified by the interaction of monomeric forms with transcription 

factors of another family such as the ATF family of factors thereby targeting the newly 

formed complex to a different site (155).
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2.5.6 Nuclear localisation

Most nuclear proteins have a primary sequence domain which directs their 

import into the nucleus (128). Transcription factors may be functionally active but kept 

inactive by compartmentalisation in a part of the cell where they cannot exert their 

effects. N F kB  sequestered in the cytoplasm by IkB  is one example. Degradation of IkB  

allows N F kB  to be translocated to the nucleus where it is active (150). Steroid receptors 

also undergo a change in their affinity for the nucleus upon ligand binding probably 

secondary to the release of a large number of chaperone proteins, which are bound to the 

cytoplasmic steroid receptor. STATs (Signal transducers and activators of transcription) 

are an ever-growing family of cell surface molecules which translocate to the nucleus 

and activate transcription upon ligand binding(156). In Drosophila, the cytoplasmic 

membrane-bound protein Notch is proteolytically cleaved following ligand binding to its 

extra-cellular domain. Release of the intracellular portion of the receptor results in its 

nuclear translocation where it too activates target genes (157).

2.5.7 Transcription factor synergism and inhibition

As mentioned above, many transcription factors function optimally as part of 

dimers or multimers. Some multimers are made up of inactive sub-units, such as the 

Max homodimer. Other protein interactions, however, (such as that between C/EBPa 

and AML1) occurs between two transcription factors, each of which is capable of 

transactivating a test promoter (as assessed by reporter genes). On occasion, the effect 

of both factors on the promoter is considerably greater than the sum of the individual
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effects of either factor suggesting that the increase is not due to two separate effects on 

the basal transcriptional machinery but a combined and somehow super-additive effect. 

This is the phenomenon of transcriptional synergism (158).

As well as collaborative effects, different transcription factors of the same or 

different families may inhibit each other’s activity. This may be due to competition for 

the same DNA binding site, as probably occurs between inactive C/EBPy dimers (159) 

and activatory C/EBP family members. It may also occur by formation of a complex 

incapable of binding DNA, as between the inhibitor CHOP-10 and other C/EBPs (154). 

Otherwise, the transactivation domain of a transcription factor may be specifically 

inhibited as occurs in P53 inhibition by MDM2 (160).

2.6 Cell/Tissue Specific Gene Transcription

All tissues and indeed even single cells of an organism (except for haploid 

gametes) contain the same genetic blue print within their DNA, the genotype. The 

phenotype of that tissue, its structural and functional identity, is however determined by 

which of those genes are expressed in its cells. This expression may be modified by 

surrounding microenvironmental stimuli coming from hormones, growth factors or from 

interactions with adjacent cells. During ontogeny, certain cells, on expressing a 

particular set of genes, take on a phenotype characteristic of the tissue involved, whilst 

other cells (also partly a result of their particular pattern of gene expression) die by 

apoptosis. The combination of these different outcomes results in tissue and organ 

formation in the embryo (161). Both cells which have yet to develop tissue-specific
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characteristics (such as embryonic stem cells) and cells which have lost tissue-specific 

characteristics (such as tumour cells) may have different gene expression patterns, 

compared to those of differentiated tissue. Loss of expression of certain genes during 

tumorigenesis can be related to changes in morphology and in behaviour of the cells as 

can be seen with oestrogen receptor loss in breast cancer (162) and with loss of E- 

cadherin in prostate cancer (163). Occasionally tumours may become so genetically 

unstable that marked changes to the phenotype occur, with these tumours loosing the 

characteristics typical of their tissue of origin. When re-transfected with DNA from the 

parental tissue, this phenotype can be at least partially recovered (164). Amongst the 

genes which can cause such recovery are transcription factors which by regulating the 

expression of other tissue-specific genes can act as master controllers of phenotype 

(165).

2.7 Transcription factors and differentiation

Both in vitro experiments with certain particular transcription factors as well as 

in vivo experiments using transgenic animal and knockout strategies bear witness to the 

immense importance of transcription factors is tissue-specific development. Disruption 

of the C/EBPa gene in mice results in lack of early fat deposition even once the fatal 

hypoglycaemia is corrected (166). Knocking out the muscle-specific transcription factor 

Myogenin results in a major absence of skeletal muscle in new-born mice (167) whilst 

disruption of the Brn-3b transcription factor results in loss of a large majority of retinal 

ganglion cells (168). Whilst these studies indicate the importance of these transcription
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factors in the genesis of particular tissues, the effects of such null mutants for particular 

genes are often less severe than expected. The apparent importance of C/EBPa in 

inducing an adipocyte phenotype from pre-adipocyte cells, as well as its role of up- 

regulating liver-specific gene transcription (169), would suggest a more severe 

phenotype upon disruption.

Similarly, disruption of the muscle specific master regulator MyoD, which can 

induce a virtually complete muscle phenotype when over expressed in certain 

heterologous cell lines (170), results in only a mild phenotype. Affected pups survive 

birth even though they are somewhat weaker than their normal siblings. This 

phenotype is less severe than expected probably due to an element of redundancy 

between different transcription factors of the same subgroup where one member may 

substitute functionally for another. Thus the function of C/EBPa in various tissues may 

be somewhat substituted for by other C/EBP members. In double knockout mice lacking 

MyoD and MRF4, (another muscle-specific bHLH transcription factor), new-born 

animals died from severe muscle defects unlike single knockout mice (171).

Whilst a single factor like MyoD can act as a master regulator and initiate a 

complete differentiation pathway in heterologous cells, this depends to some extent on 

the collaborating factors and inhibitory factors present in those cells. Thus, whilst an 

almost complete muscle phenotype was induced in 10T1/2 cells (170), other cells like 

HeLa cells did not show much muscle specific gene activation at all (172). Therefore 

whilst the importance of certain transcription factors in determining tissue identity is 

beyond doubt, both in vivo and in vitro experiments, indicate that different factors 

interplay with each other and with the general cellular environment, resulting in a 

considerably complex regulatory system determining cell and ultimately tissue fate.

49



The simple absence or presence of a transcription factor can influence cell fate 

determination, but it is the expression of a hierarchy of different transcription factors, 

throughout the process of differentiation of a precursor cell, which eventually results in 

a specific cell phenotype (165). Understanding such changing features is not so easy 

using the powerful in vivo techniques of transgenesis and knockout mice, but is more 

easily studied using in vitro experimental systems despite their obvious limitations.
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Chapter 3 : Transcription factors in haematopoiesis

The process of myelopoiesis, and indeed all haematopoietic development, like 

the differentiation of any other tissue as outlined above, depends on the interaction of 

multiple transcription factors. Many haematopoietic transcription factors were 

originally identified due to their involvement in leukaemic translocations. Using 

techniques such as those described, of knocking out (disrupting) genes in mice as well 

as by expressing these transcription factors in different cell lines, their relative 

importance at different stages of differentiation can be assessed.

3.1 Transcription factors as effectors in haematopoiesis

Cell surface receptors, their ligands (including various cytokines and other 

growth factors) and transcription factors (ubiquitously expressed as well as tissue 

specific) are all required for haematopoietic development. It is, however, changes in the 

presence and concentrations of the latter, which are ultimately responsible for 

differentiation decisions. Their expression may be in turn regulated by signals coming 

from cell surface receptors, which also provide proliferative and survival signals to cells 

at various stages of differentiation. A model for such a mechanism of differentiation 

control is shown (Fig. 5) modified from (1).

Knockout mouse experiments indicate that different transcription factors are 

essential for different stages of haematopoiesis (89). Some of these are indicated in 

Table 4. Of these a few will be highlighted.
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Fig. 5 Growth factors and Transcription factors important in Haematopoiesis. On the 
right of the pathways, (marked in orange), are growth factors and cytokines important 
in haematopoietic differentiation. These have been identified both through knock out 
mouse studies and also by their capability to enhance in vitro differentiation down a 
particular pathway. CFU and BFU stand for Colony and Blast-Forming Unit, 
respectively, eo- and mega- indicate eosinophil and megakaryocyte/blasts 
respectively.
Transcription factors which are important at different stages of 
differentiation/maturation are shown to the left of the pathways, in green. Many of 
the factors important at the early stages of differentiation (such as Myb and AML-1) 
are also important for later stage cells, but are marked here next to the earliest stage 
cells lost by deletion of the transcription factor in knockout studies.
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Transcription factor Phenotype
SCL/tal-1 Lack of yolk sac and definitive haematopoiesis

LM02/rbtn2 Lack of yolk sac and definitive haematopoiesis

GATA-2 Inhibition of definitive haematopoiesis. Reduced expansion 
of yolk sac progenitor cells

AML-1 Inhibition of definitive haematopoiesis. Reduced expansion 
of yolk sac progenitor cells

CBFP Reduced expansion of both yolk sac and definitive 
haematopoiesis progenitor cells

c-Myb No effect on yolk sac haematopoiesis. 10-fold reduction in 
all definative lineages except for megakaryocytes which are 
unaffected

Ikaros Complete lack of lymphoid lineages

GATA-1 Loss of embryonic and adult erythropoiesis and also block 
in megakaryocytic maturation

PU.l Impaired myeloid (granulocyte/monocyte but not erythroid 
or megakaryocyte) and defective B lymphocyte 
developmentboth in the yolk sac and in definitive 
haematopoiesis

Ets-1 Loss of Natural Killer cell lymphocyte lineage

C/EBPa Defective neutrophil and eosinophil maturation

C/EBPe Defective neutrophil and eosinophil maturation

C/EBPp Impaired macrophage dependent bactericidal effects

NF-E2 Late block in megakaryocytic maturation with 
thrombocytopenia

HoxA9 Reduced peripheral myeloid and lymphoid compartments

Table 4. Effects of transcription factor disruption by homologous recombination on 
haematopietic development in the mouse.
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Knocking out the tal-l/SCL basic helix-loop-helix factor resulted in a complete 

lack of haematopoietic cells both in the yolk sac and in the foetal liver. This suggests an 

important function in the earliest haematopoietic stem cells (173;174). When the gene 

expressing transcription factor GATA-2 was disrupted, this too was lethal to embryos 

but whilst a marked lack of haematopoietic cells was apparent, differentiation along the 

different lineages seemed unaffected suggesting a defect in proliferation of these early 

progenitors (122). Knockouts of both aml-1 and c-myb genes result in a marked 

reduction in definitive haematopoiesis, whilst primitive (yolk sac) haematopoiesis 

remains unaffected (175; 176).

Disruption of the GATA-1-expressing gene results in failure of formation of 

adult red blood cells whilst all other haematopoietic lineages develop normally (15). In 

vitro studies of GATA-1-negative embryonic stem cells show that the block occurs at 

the pro-erythroblast stage of maturation and results in apoptosis (177). Thus GATA-1 

seems to effect primarily a single lineage. Disruptions of other transcription factor 

genes (e.g. PU.l) correlates with other selective defects in haematopoietic 

differentiation though more than one lineage may be involved (178).

Whilst expression of a transcription factor may be important in the development 

of one lineage, down-regulation of the same transcription factor appears to be essential 

for the development of another as can be seen with GATA-1 in erythroid and myeloid 

lineages respectively (179).

Like most other tissues, homeobox genes play a large part in the development of 

haematopoietic lineages. Several genes of the HoxA and HoxB clusters for example 

HoxA 10, are expressed in haematopoietic cells in a stage specific fashion (180). 

Primitive pluri-potent progenitors express the more 3’ genes of the locus whilst 

committed progenitors express the more 5’ genes.
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Together with all these and other lineage-restricted factors, numerous general 

transcription factors contribute to haematopoietic gene expression including c-myc and 

c-Jun, Spl and NFkB, - reviewed in (181).

3.2 Transcription factors involved in myeloid gene regulation

In myeloid cells, a number of transcription factors are important in the 

expression of many myeloid genes. These include AML1, the C/EBPs and the Ets factor 

PU.1(181). These factors together with the predominantly haematopoietic transcription 

factor Myb and GABP, (another Ets factor that is involved in expression of certain 

myeloid genes) are discussed further in the next sections since they are the ones I found 

to be involved in defensin gene expression. Other transcription factors also involved in 

myeloid cell determination include the myeloid specific zinc finger MZF-1 (182) and 

the retinoic acid receptor protein RARa (183). STATs (signal transducers and 

activators of transcription) may also play a role in myeloid transcription (184).

Myeloid-expressed genes differ from other tissue specific genes in certain ways. 

Most myeloid specific genes require only a short upstream promoter sequence in order 

to be expressed in a tissue-specific manner in transient transfection studies (185). 

Within this short sequence are the binding sites for a number of the factors listed above. 

Many such promoters with the exception of those of neutrophil primary granule protein 

genes lack a consensus TATA box but may have a functional PU.l binding site at the 

equivalent position (185).

A single master regulator gene, which causes a switch to a myeloid program 

once introduced into a heterologous cell, has not been identified. However a
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combination of two factors (namely NF-M, a chicken version of C/EBP and v-Myb) has 

been shown to up-regulate the expression of myeloid genes within heterologous cells 

(186). Synergism between different transcription factors is now recognised in fact as a a 

common mechanism of myeloid gene transactivation.

3.3 The Myb family of factors

Transcription factors with a Myb-related DNA-binding domain are found in 

species as diverse as man, maize and yeast. The functions of these proteins seem to 

differ in the diverse species as might be expected due to the considerable variation in the 

proteins apart from this domain. Within mammals, the Myb family of proteins include 

c-Myb, A-Myb and B-Myb(187). The earliest family member to be discovered, was the 

viral homolog of c-myb gene, the avian myeloblastosis virus oncogene v-myb( 188). 

Over expression of c-myb is not as related to oncogenic transformation as is c-myc over 

expression, indicating that the structural changes in v-Myb, play a considerable role in 

its oncogenicity (189). The c-myb gene is expressed in haematopoietic cells and in 

various dividing epithelial cells like those in the colonic crypts (190). During murine 

development, it is also expressed in foetal thyroid and tracheo-bronchiolar epithelium 

(191). Other family members include A-Myb (found predominantly in lymphocytes 

and in the testes) and B-Myb, which is, expressed rather ubiquitously (192).
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3.3.1 c-Myb in haematopoiesis

The importance of the c-Myb transcription factor in haematopoiesis was 

established by a knockout experiment (175). Not much abnormality was apparent in 

other c-Myb-expressing tissues such as hair follicles and intestinal epithelium (which 

suggests that in these environments B-Myb or some other factor could substitute at least 

partially for c-Myb). However the gene disruption was pre-natally lethal due to a severe 

anaemia. Analysis of the affected mice showed normal yolk sac haematopoiesis but 

severely compromised definitive haematopoiesis with less than 10-fold of the normal 

amount of erythrocytes and lineage progenitors. All the various lineages were effected 

except for the megakaryocytes, which were normal in number and morphology. Studies 

in Drosophila show that D-Myb is important in preventing abnormal endoreduplication 

(193) so megakaryocytic development which requires endoreduplication may be 

enhanced by the absence of c-Myb. The granulocytes and monocytes appear normal 

suggesting that it is their quantity which is effected, not their differentiation.

3.3.2 Myb proteins in proliferation and differentiation

c-Myb is expressed most abundantly in primitive proliferating haematopoietic 

(and other tissue) progenitors (194) in a cell cycle related manner peaking in early S- 

phase (195). It is down regulated with differentiation of these cells (196). Studies in 

foetal tissue show that the down regulation of Myb correlates most clearly with terminal 

differentiation and not with the cessation of proliferation (191). Over expressing c-Myb 

in myeloid or erythroid cell lines prevents their differentiation in response to various
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inducers suggesting that the natural down-regulation seen in vivo is a pre-requisite for 

differentiation (197;198). As well as preventing differentiation, c-Myb expression 

suppresses apoptosis probably due to c-Myb inducing bcl-2 gene expression (199).

Antisense oligonucleotides directed against c-Myb reduced the number of 

colonies formed from bone marrow mononuclear cells (200) and inhibited the 

proliferation of myeloid cell lines and lymphocytes stimulated with mitogen (201;202). 

All these studies suggest the importance of c-Myb (at least in haematopoietic tissue) for 

progenitor expansion (proliferation) before differentiation.

3.3.3 c-Myb as a transcription factor

The c-Myb transcription factor has three functional domains (203). These are an 

N-terminal DNA-binding domain made of three imperfect repeat sequences, a 

transactivation domain and a negative regulatory C-terminal domain which has 

structural similarities to a leucine zipper motif (204). Of the DNA binding domain 

repeats; R l, R2 and R3, (each of which consists of three a-helices), only the R2 and R3 

repeats actually form the DNA-interacting portion of the domain. The three a-helices 

within each repeat are packed around a hydrophobic core made of 3 strongly conserved 

tryptophan residues resulting in a homeodomain like structure (205). These helices 

interact with a DNA site with the consensus sequence AACg/tG (206).

The transactivation domain is hydrophilic and slightly acidic and can activate 

transcription both within the Myb protein itself or when attached to a heterologous DNA 

binding domain (such as GAL-4) through the respective binding sites (207). CBP
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(CREB-binding protein) binds to this transactivation domain and seems to act as a co

activator for Myb as it does with other transcription factors (208). As well as enhancing 

the transactivation activities of both c-Myb and the viral oncogenic form v-Myb, CBP 

also enhances the co-operative effect of Myb with NF-M (a chicken homolog of C/EBP 

p/e) on the mim-1 promoter possibly by producing a co-operative interaction (bridge) 

between the two proteins (209).

Whilst Myb-induced transactivation can be minimal, Myb co-operates with 

different transcription factors including Ets and AML family proteins to produce 

synergistic transactivation of target promoters (210;211) and with C/EBP can even 

activate myeloid genes in heterologous cell types (186). Such co-operativity does not 

always involve direct physical interaction between the synergising factors. Myb and Ets 

factors also co-operate to overcome the effects of the transcriptional repressor ZEB (a 

mammalian homolog of the Drosophila SEF1 repressor)in haematopoietic cells (212).

Deletions and mutations to the c-Myb protein, as are those found on the 

transforming v-Myb may also increase Myb-induced transactivation. Both the extreme 

N-terminus, which contains a phosphorylation site, and the C-terminal regulatory 

domains reduce Myb-induced transactivation when present. Upon deletion of either 

terminus, the Myb protein shows enhanced DNA binding which explains the probable 

mechanism of such enhanced transcription (204). The regulatory C-terminal leucine 

zipper domain interacts with p i60 and p67 proteins, which may play a role in regulating 

Myb activity (213). Yet another factor which negatively regulates c-Myb activity in 

myeloid cells is the c-Maf transcription factor which interacts with Myb’s DNA-binding 

domain to form an inhibitory complex which is present most abundantly in immature 

myeloid cells but which is reduced in more mature cells (214). Thus a whole network of
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interactions, both synergistic and inhibitory, characterise the activity of the Myb 

transcription factor.

3.3.4 Myb-target genes

Myb binding sites are found in the promoter regions of numerous genes. Genes 

expressed in haematopoietic cells which are known to be regulated by c-Myb, include: 

the CD4 gene (215), and the lek tyrosine kinase (216) which are expressed in lymphoid 

cells, mim-i (211), c-fins (217), and neutrophil elastase (218) in myeloid cells, and the 

CD34 gene (219) in haematopoietic stem cells.

Amongst Myb target genes, the human heat shock protein hsp70 (220) and bcl-2 

(199) promoters are peculiar in that they are up-regulated by Myb in a DNA-binding 

independent fashion. In the case of hsp70 this up-regulation depends on the presence of 

an intact TATA box but this is lacking in bcl-2 suggesting a somewhat different 

mechanism. Whilst the exact mechanism of transactivation by c-Myb remains obscure, 

these different mechanisms involved and the activation of different genes by Myb in co

operation with various other factors suggest a complex functional picture.

3.4 The C/EBP family of transcription factors

C/EBP (CAAT/Enhancer Binding Protein) factors were so named upon cloning 

of the initial family member due to their ability to bind to both the CAAT box in 

promoters and to a number of viral enhancer sequences. Several family members have 

since been identified with different transactivating potentials and different expression
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patterns. These include the transactivating forms C/EBP a,p,6 and e as well as the 

inactive and/or inhibitory forms C/EBPy and CHOP-10 - reviewed in (221).

3.4.1 Functional domains of C/EBP factors

C/EBPs are transcription factors of the basic zipper family and dimerise by 

means of their leucine zipper domains. C/EBP dimers bind to non-symmetrical 

sequences in most cases. In fact though an optimal artificial palindromic binding 

sequence (GATTGCGCAATC) has been designed (222), natural binding sites are very 

diverse and usually show significant homology only to half the palindrome. Deletion 

studies have shown that whilst both the C-terminal leucine zipper and the adjacent basic 

region are required for good DNA binding, it is the latter which is mainly required for 

DNA interaction and nuclear localisation whilst the leucine zipper is essential for 

dimerisation (223). The N-terminal region consists of a transactivator domain (which 

may be subdivided into separate protein domains) and an adjacent (or intervening in the 

case of C/EBPa) repression domain or domains (224;225).

The different family members resemble each other in this general structure. The 

greatest homology between the different family members is within the basic zipper 

domain(153). This homology allows different family members to interact via their 

leucine zippers. The amino acids flanking the hydrophobic leucine zipper interface have 

been proposed to result in preferential matching of certain partners in dimers. Extensive 

studies of the rat versions of different C/EBPs, showed that whilst all transactivatory 

family members could homo- and hetero- dimerise with similar affinities, C/EBPe
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(crpl) could not heterodimerise well with C/EBPa or P(crp2) but could adequately 

dimerise with itself or with C/EBP6 (crp3) (153).

One exception to this general co-operative cross-dimerisation is the protein 

CHOP-10 which has a different basic region and includes helix breaking amino acid 

residues which prevent it from binding well to DNA. It is known to act as a dominant 

negative inhibitor of the other C/EBPs probably by interacting with and preventing them 

from binding their cognate DNA sites(154). Other “inhibitory” C/EBPs include C/EBPy 

(Ig/EBP) (159) and N-terminal truncated form of C/EBPa (30kDa as opposed to 

42kDa) and C/EBPp (LIP as opposed to the full-length LAP)(226). All these lack the 

activation domain and whilst not inhibitory themselves, probably inhibit the active 

forms by heterodimerising with them or simply by competing for the same DNA binding 

sites.

Deleting the repression domains of the different C/EBP family members results 

in up-regulation of the different proteins to different extents. C/EBPa and the somewhat 

similar C/EBPe (224;225) are up-regulated slightly whilst C/EBPp (NF-M) is strongly 

up regulated or de-repressed (227). Once de-repressed but not beforehand, NF-M (the 

chicken homolog of C/EBPp) can, in isolation, cause the expression of its myeloid 

target genes when expressed in heterologous cells as can also be brought about by co

expression with Myb (186). This de-repression can be brought about by phosphorylation 

of target sites within the repression domain, thus suggesting it to be a physiological 

process regulating C/EBP function. The similarity of gene activation in heterologous 

cells by de-repressed NF-M or by NF-M with Myb led the authors of this study to 

propose that Myb may act in a similar manner by enhancing de-repression.
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3.4.2 C/EBPs as transactivators

Many of the C/EBP family members are strong transactivators. Protein 

elements conserved within the activation domain of these activating family members 

have been shown to bind to both TBP and TFIIB, both of which are important elements 

of the RNA polymerase apparatus (228).

The activity of the C/EBP transcription factors can be regulated both by pre- and 

post-translationally(143) and also by numerous interactions with other transcription 

factors - reviewed in (221). This results in a very complex system allowing for fine 

regulatory control in diverse tissues and during different stages of differentiation. As 

mentioned earlier, using alternate initiation codons, the C/EBPa and p mRNAs can be 

translated into ‘smaller than full length’ proteins, C/EBPa 30kDa and LIP respectively 

(226). Differences in the relative amounts of the two forms produced help regulate the 

activity by substituting active with inactive forms(229).

Phosphorylation is responsible for a number of post-translational modifications 

each having different effects on the C/EBPs. Phosphorylation of the C/EBPa basic 

region (serine 299) attenuates DNA-binding therefore reducing its activity (230). On the 

other hand, phosphorylation of a threonine residue within an inhibitory domain of 

chicken C/EBPP(NF-M), results in transactivation (de-repression) (227). 

Phosphorylation of a serine ( position 276) of the C/EBPp leucine zipper also results in 

enhanced transactivation by protein kinase C though the exact mechanism is unclear 

(231). Such phosphorylation seems also to be important in the functional recruitment of 

C/EBPp and possibly also C/EBPS to the nucleus during differentiation (232). Varying 

endogenous kinase activity has been hypothesised to be the reason why some C/EBP
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members show different activities in different cells. Rat C/EBPs a  and p is 10-fold 

more effective in stimulating the albumin promoter in HepG2 hepatocarcinoma cells 

than in HeLa cells. (153;233). Of course, these differences may also be due to different 

factors interacting functionally and/or physically with these C/EBPs in different cell 

types. A list of some transcription factors interacting with C/EBPs and the genes 

transactivated by these combinations in shown in Table 5. These include the well- 

known co-operation of C/EBPs a , P and 6 with v-Myb (234) resulting in the expression 

of myeloid genes mim-1 and lysozyme in heterologous (erythroid or fibroblast) cell lines. 

The neutrophil elastase gene promoter is also co-operatively transactivated in by Myb 

together with the activatory C/EBP family members though less with C/EBPp than the 

rest (218). It was originally speculated that Myb might somehow de-repress the C/EBP 

by interacting with its repression domain (227). Recent studies with C/EBPe however, 

show that the extent of c-Myb dependent co-operation with C/EBP (a two-fold 

enhancement of activity) is similar with full length C/EBPe or with a repression domain- 

deleted protein (224).

This indicates that Myb co-operation (at least with C/EBPe) is not mediated by 

de-repression but by some other as yet undefined mechanism. C/EBPp and v-Myb have 

been shown to interact through their DNA-binding domains and this interaction is 

essential for synergistic activation. This interaction is independent of other proteins (as 

it occurred between purified proteins) or of DNA (as mutants of v-Myb which could not 

bind DNA still bound C/EBPP) (235). Despite their functional synergism and physical 

interaction, co-operative DNA binding between these proteins has not been 

demonstrated and synergism was not reduced by separating the distance between 

binding sites for the two proteins considerably (218).
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Myb Mim-1, lysozyme (chicken) neutrophil 
elastase (human)

ATF proteins proencephaline

NFkB 11-6,11-8

AML-1 M-CSF, defensin

Glucocorticoid receptor al-acid glycoprotein

Ets factors Etsl,PU.l, GABP Eos47(chicken), g-csf, neutrophil elastase

Table 5. Transcription factors interacting with C/EBP factors and some of the target 

genes co-operatively transactivated by such interacting combinations
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Apart from the direct interaction between these factors, they may also interact 

through their individual interactions with the CBP and p300 proteins (236). Whilst Myb 

interacts with the CREB-binding site of p300-CBP, and recruits it to DNA, C/EBPp 

interacts with the ElA-binding site of p300 (236), possibly resulting in a molecular 

bridge formed via CBP-p300 between Myb and C/EBP transcription factors. The 

histone deacetylase activity of CBP, once it has been recruited to DNA may enhance 

binding of C/EBP by reducing the avidity of nucleosome binding to DNA. C/EBPp 

apparently requires loss of nucleosome binding before it can itself bind DNA properly, 

thus such a mechanism may help explain how Myb co-operates with C/EBPp in up- 

regulating target genes in heterologous cells (237).

C/EBPs also interact via their basic zipper regions with the DNA-binding 

domains of two other transcription factors important in myeloid gene expression. These 

are the AML-1 protein and the Ets proteins Ets-1 and Fli-1 with which C/EBPa exhibits 

co-operative DNA binding as well as strong synergistic activation of diverse target 

genes (238;239). Different C/EBP family members also interact with the myeloid Ets 

family member PU.l (240) but this binding is weaker than that with other Ets factors as 

is the synergism (239).

C/EBPs also interact functionally with a number of other more ubiquitous 

transcription factors including the retinoblastoma protein Rb (241), c-Jun (242), Spl 

(243), NFkB (244) and NF-Y (245). In this latter case C/EBP actually impedes NF-Y 

binding but NF-Y enhances the formation of a stable pre-initiation complex around 

C/EBP therefore stabilising its interaction with DNA. NF-Y has recently been shown to 

enhance gene transcription by recruiting a CBP-related histone acetyl transferase (246). 

This suggests that Myb may co-operate in a similar manner with C/EBP, by recruiting
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the histone acetyltransferase CBP, and stabilising the pre-initiation complexes around 

this transactivator.

3.4.3 C/EBPs -  expression patterns in different tissues

C/EBP transcription factors are most strongly expressed in liver, adipose tissue, 

and myeloid cells. The expression pattern and apparent function of the different 

C/EBPs differs according to the particular tissue. In liver cells, whilst all C/EBPs are up 

regulated during ontogeny, the ratio of C/EBPa isoforms remains the same whilst the 

ratio of LAP to LIP (C/EBPP) proteins increases (226;229). C/EBPa and p are both 

expressed in terminally differentiated hepatocytes and seem to play a role in constitutive 

expression of liver genes (226;247). It is the C/EBPp and 5 isoforms, which however 

play a role in inducible gene expression (248).

In adipose tissue cells, C/EBP p and 6 proteins are expressed prior to C/EBPa 

during adipogenesis (249). In proliferating adipoblasts and pre-adipocytes, C/EBPa is 

undetectable but it accumulates to considerable amounts in differentiated cells. C/EBPa 

has been shown to cause growth arrest if expressed prematurely and to initiate adipose 

tissue-specific gene expression (250;251). Mice with disrupted C/EBPa or both 

C/EBPp and 6 genes both have defects in adipogenesis and fat metabolism in general 

(166;252).
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3.4.4 C/EBPs in haematopoiesis

Of the haematopoietic lineages, myeloid cells (granulocytes and macrophages) 

(253), eosinophils (254) and lymphoid cells (B cells) (255) are known to express 

C/EBPs. Knocking out several of these C/EBPs in mice cause defects in the 

differentiation and maturation of such lineages though not in actual lineage commitment 

and initial development of the cells (256-258). Whether the severity of these phenotypes 

is reduced by functional redundancy is uncertain though certainly possible since 

different C/EBP family members (a,|3,S,e) can all trans-activate the promoters of 

various myeloid genes and co-operate with Myb.

C/EBP a  and e knockout mice show deficits in the differentiation of myeloblasts 

into granulocytes and in the maturation of eosinophils, whilst C/EBPp knockouts show 

defects in macrophage activation. A recent study has also shown that C/EBPe is also 

very important in phagocytic killing by neutrophils(259). Cells derived from a C/EBPe 

knockout mouse have deficiencies in the uptake of opsonised bacteria as well as a 

marked deficiency of secondary granule proteins (260).

Commitment to the myeloid or eosinophil lineages in Myb-Ets transformed 

multi-potent haematopoietic progenitors depend on the type of C/EBP factor expressed 

in them. Whilst C/EBPa expression only results in eosinophil cells, C/EBPp also results 

in some myeloid cells (254). This difference also probably depends on the interaction 

with other factors like Ets factors and GATA factors. Ets has been shown to co-operate 

with C/EBPa (more strongly than with C/EBPp) to transactivate eosinophil gene 

promoters(239) so its presence in these cells might direct differentiation away from the 

myeloid lineage.
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C/EBPa is expressed in early myeloid cells and increases transiently during 

granulopoiesis until the promyelocyte stage after which it is down regulated in 

terminally differentiated cells (253)(the opposite expression pattern to that seen in 

adipose tissue). C/EBPe also increases transiently during induced maturation of myeloid 

cell lines. Whilst C/EBP 5 is present in early myeloid cells it is further expressed during 

G-CSF-induced granulocytic differentiation of multi-potent progenitors (232). C/EBPp 

expression is low in dividing cells but increases later on during myeloid differentiation 

(253).

Changes in nuclear localisation may also regulate C/EBP function in myeloid 

cells with G-CSF induced maturation of progenitors resulting in functional recruitment 

of C/EBPp and 6 to the nucleus. C/EBPa on the other hand is present intra-nuclearly 

throughout its expression in myeloid cells (232).

Numerous genes important for myeloid differentiation, like different cytokines 

and their receptors, are known to be regulated by C/EBPs and the loss of function of 

some such genes is critical to the phenotypes seen in knockout mice. Complementation 

of these phenotypes by replacing such genes can allow some recovery of normal 

differentiation (261). Some such genes regulated by C/EBPs include G-CSF, M- 

CSF(185), IL-6(262) and M IP-la (263).

3.5 The Ets Family of Transcription factors

Ets (E-Twenty-Six) factors form a large family, the first of which to be described 

being the v-Ets oncogene of the chicken retrovirus E26 (264). Membership in the Ets
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family depends on the presence of the ETS domain, an approximately 85 amino acid 

long motif that is necessary for binding the purine rich core of the DNA target sites of 

these factors. This family now comprises a large number of transcription factors, 

homologs of which are found in species as diverse as humans and Drosophila. These 

include Ets-1, Ets-2, Erg, Fli-1, Elk-1, GABPa, Elf-1, Tel and PU.l. - reviewed in

(265).

3.5.1 Ets factors, Development and Cancer

Ets genes are expressed in numerous different tissues. Some Ets factors like 

GABPa and Ets-2 are very widely expressed whilst others can be more selectively 

expressed such as Elk-1 or ER71 which are predominantly expressed in testis and brain

(266). Ets-2 has been shown to be important in meiotic development in Xenopus (267) 

whilst Ets-1 has been shown to be predominantly expressed in developing mesenchymal 

cells particularly in angiogenesis (268).

As well as the E26 retrovirus which transforms myeloid and erythroid cells, Ets 

factors are involved in oncogenesis in a number of different systems. Friend murine 

erythroleukaemia caused by retroviral infection was found to over express either the 

pu.l or fli-1 genes in close to 100% of cases, secondary to viral integration just upstream 

of either gene (70).

Ets factors are involved in chromosomal translocations in some human cancers. 

In two cases, these translocations involve the ETS domain of the Ets factor being fused 

downstream of part of an RNA-binding protein. Such a translocation results in a 

tls/fus-erg fusion mRNA(269) in some myeloid leukaemias and an EWS-Fli-1 protein
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(and rarely also an EWS-ERG fusion) in Ewing’s Sarcoma - reviewed in Crepieux et al

(266). These translocations may alter the activity and/or binding specificity of the native 

Ets proteins but also enhance the expression of the Ets DNA-binding domains as part of 

the fusion since these are translocated downstream of a strong promoter. In Ewing’s 

sarcoma, a functional ETS domain is a specific requirement for the oncogenicity of the 

fusion protein (270).

3.5.2 The ETS DNA-binding domain

Ets proteins bind DNA as monomers, to a site whose consensus sequence is 

( g/ c) ( a/ c)G G A (a/ t )G T  (271). The ETS domain of the Ets proteins is strongly conserved 

between different family members and shows two areas of particular homology. A C- 

terminal basic region and a region containing three conserved tryptophan repeats 

somewhat reminiscent of those seen in the Myb DNA-binding domain (272). Nuclear 

magnetic resonance studies show the domain formed by three a-helices arranged into a 

helix-turn helix motif lying against a 4-stranded anti-parallel p-sheet scaffold (273). It 

was thereby classified according to this structure as a winged helix turn helix (wHTH). 

The conserved tryptophans form part of a hydrophobic core, which includes residues 

from all helices, and strands of the p-sheet. This hydrophobic core probably helps 

stabilise the protein secondary structure. Using the human Ets-1 DNA-binding domain 

to study protein-DNA interactions, major groove recognition was shown to involve the 

second helix of the HTH motif. Ets binding resulted in enhanced radical-induced DNA 

cleavage upstream of the core recognition sequence GGAa/t probably as a result of
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DNA bending at this site (271). DNA binding of Ets proteins is regulated by inhibitory 

interactions between the domains N- and C-terminally adjacent to the ETS domain. 

These two regions which both contain a-helices co-operate with each other in inhibiting 

DNA-binding. Deletion of either of these regions increases DNA-binding, as does 

extensive modification of either such as found in the C-terminal of the viral oncoprotein 

v-Ets (264). Inhibition occurs through increasing the rate of dissociation of the ETS 

domain from DNA and involves a direct physical interaction between the two inhibitory 

domains which probably results in an allosteric alteration of the ETS domain, disrupting 

binding (274).

3.5.3 Gene Regulation by Ets factors

Ets factors have been described as weak modulators of gene expression in 

search of a partner (266). Various kinds of transactivation domains are found in 

different Ets factors, including: the acid transactivation domains of Elf-1 (275), the 

glutamine rich domains of PU.l (135), and the proline/serine rich domains of Fli-1, Erg- 

1 (276;277). A number of known co-operative transactivating partners of Ets factors 

are listed in Table 6 (266). This co-operativity might depend on previous Ets binding as 

is the case for GABPa with p (278) or of PU.l with NF-EM5/PIP (279), or it may 

depend on previous binding of the co-operative partner like the serum response factor 

(SRF) in the case of SAP-1 (280). The Ets factor may serve to either recruit the co

operative partner to the DNA or to stabilise the binding of the previously bound factors 

thus enhancing their transactivation potential. Since the many different kinds of Ets 

factors all bind to a very similar core recognition sequence in DNA, the diversity of co

operative protein interactions may serve to allow tissue- and stage-specific expression of

72



target genes depending on the expression of different Ets factors and their particular co

operative partners. This in turn depends on the binding sites for these factors on a 

particular promoter.

Ets factors often co-operate with other transcription factors in a synergistic 

manner to transactivate target promoters. In the case of the interactions with core 

binding factors (CBF/AML) (281) or of GABPa with GABPp (282), DNA binding co- 

operativity was also seen to occur by increasing the stability of the DNA-bound 

complex. Synergising factors may stabilise the Ets-DNA interaction by interacting with 

one or other inhibitory domain.

Other interactions between Ets and other transcription factors appear more 

directly involved with activation or inhibition. Ets-1 has been shown to interact with the 

p300/CBP set of transactivators at two different sites (283). This co-activator complex 

also interacts physically with other factors, which transactivate genes co-operatively 

with Ets such as Myb (208), C/EBP (236) and AP-1 (284). Some of these, like Myb, do 

not interact with the same domain of the CBP protein, as does Ets. Thus CBP may form 

bridging interactions between these different sets of transcription factors allowing 

functional co-operation between factors not immediately juxtaposed to each other. CBP 

may itself play a role in (but appears not to be solely sufficient for) Ets-induced 

transactivation (283).

A recently recognised inhibitory interaction occurs between Ets-1 and the AP-1 

family- related factor Maf-B (285). This factor is expressed exclusively in myelocytic 

cells within the haematopoietic system, binds via its leucine zipper domain to the Ets-1 

ETS domain and form an inactive complex which is DNA-binding independent (285). 

Over expression of this factor in an erythroblast cell line inhibits erythroid gene 

expression and differentiation.
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Elf-1 AP-1 Yes (mutual) GM-CSF

Erg,Fli-l E12 No IgH

PU.l Pip-1 Yes (PU.l) IgK

Elk-1 SRF Yes (SRF) c-fos

Ets-1 CBF(AML) Yes (mutual) TcRp chain

Ets-1 Spl Yes (Spl) HTLV-1 LTR

Ets-1 AP-1 No uPA

Ets-1 GATA-1 No GPnB

Ets-1 Myb No CD13/APN

GABPa GABPp Yes (GABPa) HSV ICP4

Table 6. Physical and Functional co-operative interactions between different Ets factors 

and other transcription factors of diverse families. The target genes transactivated by 

these partners are also indicated.
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Ets factors are known to be involved in erythroid differentiation as can be seen 

by the erythroid transforming properties of the E26 virus as opposed to the 

predominantly myeloid transforming properties of the AMV virus, which also contains 

the v-myb oncogene but lacks v-ets. Ets-1 is expressed in both myeloid and erythroid 

cells, so the myeloid-specific expression of Maf-B may be involved in preventing

differentiation towards the erythroid lineage and stabilising the myeloid

phenotype/lineage.

3.5.4 Ets factors in myelopoiesis

PU.l is the classical myeloid Ets factor but other Ets factors are also expressed 

in myeloid tissues. These include MEF, Fli-1, Elf-1, (181) and a number of relatively 

ubiquitous Ets proteins like Ets-2 and GABPa. Whilst Ets-2 is capable of 

transactivating certain myeloid-specific genes, the myeloid differentiation of embryonic 

stem cells (ES cells) from which this gene is deleted is not adversely effected, (286) 

suggesting that it is not essential for gene expression in this tissue. In lymphoid cells, 

co-operation between PU.l and other Ets factors is essential in transactivating 

immunoglobulin enhancer elements (287). Fli-1 (288) seems essential in gene

expression and differentiation of erythroid cells. Unlike the case in these other

haematopoietic lineages, however, the role of these Ets factors other than PU.l in 

myeloid differentiation is unclear at present.
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3.5.5 The PU.l transcription factor

The PU.l (Spi-1) transcription factor, which has been described as a master 

regulator of myeloid gene expression, was first isolated from a murine erythroleukaemia 

(289). Induced expression of PU.l in multi-potent haematopoietic precursors results in 

commitment of the cells to the myeloid lineage. A shorter-term expression can however 

result instead in the formation of eosinophils (290). Together with the closely related 

Spi-B, it forms a unique Ets sub-family with distinct structures and binding specificity. 

PU.l is expressed in murine embryonic stem (ES) cells and in haematopoietic 

progenitors and is up-regulated during early myeloid development whilst it is down 

regulated during erythroid development (291). Over-expression of PU.l in erythroid 

cells can in fact inhibit their differentiation and may cause apoptosis (17). During 

differentiation of CD34+ progenitor cells, no further up-regulation of PU-1 expression 

beyond the promyelocyte stage (291) was detected. Other investigators have shown 

very high levels of PU.l m-RNA to be found in macrophages and neutrophils (as well as 

B lymphocytes) suggesting a further increase may occur during final maturation or 

activation of these cell types (292).

The pu.l gene promoter contains important functional sites, which can bind 

Spl, GATA proteins and PU.l itself (181). This combination of regulatory elements 

makes for efficient positive feedback thus re-affirming PU.l expression and the 

consequent myeloid pathway of differentiation in committed cells.

PU.l-knockout animals die either a few days pre-term or post-term. The major 

haematopoietic defects seen are a lack of monocytes, neutrophils and B-lymphocytes. 

Anaemia and loss of T-cells are more variable and depend both on the individual strain 

of mouse, the severity of the PU.l gene disruption (178;286) and the duration of
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survival of the mice with T cells appearing in the longer surviving animals. The role of 

PU.l as an essential transcription factor both in myeloid and lymphoid development is 

however evident.

3.5.6 Functional domains of PU.l

Like other Ets factors, PU.l was first recognised by its ability to bind a purine 

(PU) rich core, hence its name (293). This is a function of its ETS domain. However the 

DNA binding specificity of this protein was quite different from that of other Ets factors 

and often (though not always) requires an additional GA adjacent to the usual GGA 

resulting in a consensus binding site of GAGGAA/T.

Many early studies had difficulty in defining PU.l transactivation domains since 

it is a relatively weak transactivator but a number have since been identified. These 

include three relatively strong acidic transactivation domains and a weaker glutamine- 

rich transactivation domain (the strength of such domains was often tested on artificial 

promoters in non-myeloid cells) (294). More recent studies have shown that the 

glutamine-rich domain, together with the DNA-binding ETS domain and the PEST 

(Proline, Glutamic Acid, Serine and Threonine) domain are all essential for myeloid 

development unlike the acid transactivation domain (135). These elegant studies used 

macrophage formation from PU-1 -/- ES cells as a test eiid-point and studied the 

required domains by re-introducing different PU.l mutants and noting which could 

rescue myeloid differentiation. PU.l can interact with many other transcription factors. 

The Ets DNA-binding domain allows interaction of PU.l with C/EBP6, (240) CEBPs a  

and |3 (239), the runt domain proteins like AML-1 (295) and the c-Jun oncoprotein
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(296). The PEST domain allows functional interaction, and co-operative DNA-binding 

with Pip-1 (NF-EM5), which co-activates lymphoid genes together with PU.l. Mutation 

of the serine (148) within the PEST domain which inhibits co-operation with Pip-1 but 

does not inhibit myeloid development suggesting that other residues within this domain 

are important in this regard. Other proteins which interact with PU.l include the high 

mobility group protein HMGI/Y (240), the retinoblastoma protein Rb and TFIID (297).

3.5.7 Transcriptional regulation by PU.l

Experiments using PU-1 -/- ES cells have shown that early myeloid genes such 

as myeloperoxidase and the gm-csf receptor are still expressed whilst later myeloid 

genes like cd llb  and the m-csf receptor are not expressed in the absence of this 

transcription factor. (298). PU.l therefore appears to be essential for later rather than 

early myeloid gene expression. The effects of PU.l on transcription are dependent to a 

large extent on its numerous interactions with other factors. In lymphoid cells, PU.l co

operatively transactivates promoters and enhancers together with Pip-1 or in 

combinations with other factors including AP-1, high mobility group (HMG) proteins, 

helix-loop-helix (HLH) factors and other Ets factors (279;299;300).

The importance of these protein- protein interactions is such that in some cases, 

PU.l can contribute to transactivation despite lacking an activation domain (300). PU.l 

can also functionally inhibit certain transcription factors such as the steroid and retinoid 

receptors though the relevance of this is as yet unknown (301).

A number of myeloid gene promoters are transactivated by PU.l. These include 

those of early myeloid genes such as cdl8  (302), the neutrophil elastase gene (303) and
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the gm-csf receptor gene as well of as later myeloid genes such as the m-csf gene(185), 

the cdllb(304), and the macrophage scavenger receptor A  (305). The great majority of 

these promoters are similar in that they have no TATA box, a pu.l site close to the site 

of transcriptional initiation and a number of binding sites for other not exclusively 

myeloid transcription factors like C/EBPs, AML and Spl (306).

Since PU.l can bind TFIID(297), the first component required for formation of 

the transcriptional pre-initiation complex, it is speculated that PU.l may act as a DNA- 

binding anchor for complex enucleation in the absence of the TATA box. Indeed 

studies on the myeloid c-fms gene promoter detected a number of functional Ets- 

binding sites near the transcriptional start site, one of which bound PU.l. These sites 

are sufficient for macrophage-specific basal transcription initiation through the co

operation between PU.l and other Ets family members (307). Similar studies on 

another pu.l site-dependent promoter (that of the human Fc gamma R ib  gene) showed 

that insertion of a strong TATA box substituted efficiently for basal and induced 

transcription initiation in the presence of a mutated pu.l site (308).

PU.l can also repress certain genes including the cd llc  integrin gene (309), and 

the I-Aft gene (310), possibly through competition with other transcription factors for 

the same binding sites.

3.5.8 The GA-binding protein

Both the human (E4TF1) and the rat (GABP) forms of this transcription factor 

were originally identified as proteins binding to cis-sequences required for early gene 

activation in the Adenovirus and Herpes Simplex type 1 virus genomes respectively
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(311;312). Just like other Ets factors and as the name implies, this transcription factor 

binds a sequence with a purine rich core. This factor was also later recognised to be 

similar to the mitochondrial gene-binding transcription factor nuclear respiratory factor 

2 (NRF-2)(313). This factor was found to be made of more than one sub-unit including 

a DNA-binding Ets sub-unit (GABPa) and a number of interacting transactivatory sub

units (GABPp, y). In the mouse these proteins were found to be expressed from 

unlinked loci on different chromosomes (GABPa to chromosome 16 and the GABPp 

genes to chromosome 2) but which were co-ordinately regulated (314).

3.5.9 Sub-units and domains of GABP

GABP functions as a heteromer, GABPa, a DNA-binding sub-unit which is a 

member of the Ets family and GABPp, a transactivatory sub-unit which has a number of 

ankyrin repeats similar to those found in the Drosophila Notch protein (282). The 

interaction interface between the GABPa and p sub-units includes the part of the Ets 

domain and the C-terminal tail of GABPa, and the N-terminal domain of GABPp 

containing four ankyrin-like repeats. This same GABPp domain interacts weakly with 

the DNA, 3’ to the core GGAA ets site (278). The C-terminal residues of GABPp form 

a coiled coil motif which acts as a dimerisation sequence and can substitute for 

dimerisation domains of other transcription factors such as a leucine zipper domain 

(314). GABPp is purified primarily as a homodimer. Interaction of GABPa with 

GABPp and of two GABPp sub-units together results in the formation of a 

heterotetramer, a process independent of DNA binding (282). Another protein called 

GABPp 1-2 or more commonly GABPy, is probably also expressed from the GABPp
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gene by differential splicing. This splice variant lacks the most C-terminal residues of 

GABPp, so that whilst still capable of interacting with GABPa, it cannot homodimerise 

like GABPp.

The GABPap partnership seems to be an exceedingly specific interaction since 

GABPp was found not to augment the DNA binding of the highly similar Ets domains 

from ER71, ER81 or Ets-1 (315). However most of the residues involved in the 

GABPa-p interface as identified by crystal structure analysis of the heteromer (316) are 

well conserved between GABPa and Ets-1, leading the authors to speculate of a 

possible interaction between Ets-1 and a GABPp family member.

The avidity of DNA binding of the complex has been intensely studied. It was 

shown that the GABPap complex binds DNA 100-fold more strongly than GABPa 

alone (127). The GABPay complex also binds DNA more strongly but to a lesser extent 

than the GABPap complex. This apparent increase in binding is actually due to a 

reduced dissociation of the complex from DNA (282). Similar studies with human 

GABP confirmed this and also showed a markedly strong binding (and protection of 

DNA from enzymatic digestion) where GABP ap  was bound to more than one adjacent 

ets site (313).

GABPa expressed in COS-1 cells was not specifically localised to the nucleus 

but its nuclear localisation was strongly enhanced by co-expression of GABPp or y 

(317). Residues 240-330 are required for nuclear localisation of human GABPp whilst 

the activation domain is confined to residues 330-353. Transactivation studies with 

reporter genes in vivo in Drosophila Schneider cells were used to define the activation 

domain. They suggested an overlap between the transactivation domain and the 

homodimerisation domain of GABP p. This correlates well with the relative lack of
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transactivation by GABPy with GABPa, as well as with the similar results seen with in 

vitro transcription studies (318). Other studies using fusion proteins between GABPp or 

y and the DNA binding/homodimerisation domain of GAL4 show no difference in the 

transactivation properties of GABP(3 or y. This suggests that it is predominantly the 

capability to homodimerise and thus localise multiple transactivator domains to the 

target site by improved DNA-binding which enhances transactivation. These same 

studies localised the transactivation domain to a glutamine/hydrophobic domain 

between residues 258 and 237 (132). It was in fact recognised by extensive mutagenesis 

studies that it was the hydrophobic residues more than the glutamine residues, which 

were in fact shown to be important for transactivation (319).

3.5.10 Transactivation by GABP

GABP a/p has been shown to transactivate a number of promoters in reporter 

gene studies. Concomitant with its widespread expression, these include widespread 

genes involved in the respiratory chain such as the cytochrome c oxidase sub-unit IV  

gene (320). A number of haematopoietic gene promoters such as the neutrophil elastase 

gene promoter (321), the cdl8  integrin gene promoter (322) and that of the yc chain sub

unit of various haematopoietic cytokine receptors (323) are also transactivated by 

GABP. Synergism with more restricted haematopoietic factors may help explain its 

tissue-specific role. In the above-mentioned cases, GABP co-operates with C/EBPa and 

Myb, PU.l and Spl respectively. In all cases, both in vivo (as in the studies quoted 

above) and even in in vitro studies (324), both GABPa and p sub-units are required
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together in order to cause transcriptional activation. GABPa, with GABPy, is able to 

weakly stimulate transcription in vitro (324). In promoter sequences, GABP-binding 

sites can be found just at the transcriptional start site or a considerable distance (40- 

lOObp) upstream (325). In the former cases, a combination of GABP a  and |3 sub-units 

can initiate transcription in the absence of a TATA box (326). Transcriptional initiation 

is optimal in the presence of two ets binding sites end to end and spaced by a whole 

number of helical turns of the DNA helix. This correlates with the preference for GABP 

binding to a dimeric site. Inhibition of such transcription by antibodies against either 

GABP sub-unit clearly indicated that GABP could not be substituted by any other Ets 

factor (325). This correlates with the results of in vitro experiments showing the 

specificity of binding of GABPp to GABPa (315). There was no such inhibition of 

transcription in a promoter containing a TATA box as well as a dimeric ets site (325).

Studies on the cd.18 promoter where the GABP-binding sites are somewhat 

upstream of the transcriptional start site show that even on this promoter, the multiple 

Ets-binding sites are essential for promoter activity (327). However here, they may not 

be necessarily involved in transcriptional initiation. Despite the predilection for a 

dimeric binding site for GABP-induced transactivation, cases where GABP causes 

transactivation through a single site have been recognised as in the case of the 

coagulation factor Factor IX  gene promoter (328). Here GABP binding to a single site 

adjacent to (and almost overlapping with) C/EBPa is essential for transactivation of the 

promoter. GABP a/p, a ubiquitously expressed factor and the tissue (liver) restricted 

C/EBPa co-operate to result in maximal transactivation. GABP also co-operates with 

PU.l to transactivate the cd!8 promoter despite the fact that they compete for the same
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Ets binding sites (322). In both these cases, the mechanism for such co-operative 

transactivation is undefined.

3.5.11 Regulation of GABP transcriptional activity

Since GABP is expressed rather ubiquitously (315), its capability to 

differentially regulate target genes requires modulation of its activity. During early 

post-natal life, up-regulation of GABPp expression may play a role in transactivation of 

certain genes (328). Differential expression of the multiple GABPp variants (132) in 

different tissues may also play a major, (if not as yet well defined) role in target gene 

expression. GABP activity may also be regulated by post-translational mechanisms 

effecting its dimerisation and DNA-binding potential. Both GABPa and p proteins are 

targets for casein kinase II phosphorylation (321). Raf-1, which enhances HIV LTR- 

dependent transcription, enhances the phosphorylation of both GABP sub-units, which 

then bind to the LTR (329). Insulin up-regulates the prolactin gene. However, insulin 

has been shown to phosphorylate GABPa, which can then bind the prolactin promoter 

and transactivate it. (330).

GABP may also be regulated by redox- sensitive mechanisms, which may be 

important in respect to its transactivating of a number of respiratory chain enzyme 

promoters. Reduction of different cysteine residues in the GABPa sub-unit resulted in 

either inhibition of DNA binding or of its dimerisation potential with GABPp (331). 

Even if GABP is inherently fully active, it can be rendered inactive with respect to many 

promoters by methylation of cytosine residues within its binding site. This has been
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recognised with the mouse M-Lysozyme downstream enhancer (332) as well as the rat 

thyrotropin receptor gene promoter (333).

3.6 The AML family of Transcription factors

The AML (acute myeloid leukaemia) factors, also known as the core binding 

factor (CBF) or Polyoma enhancer binding protein 2 (PEBP2) transcription factors, form 

dimers between a DNA binding sub-unit (CBFa) - of which there are many family 

members, and a CBF|3 sub-unit which does not bind DNA directly but enhances CBFa 

binding (334). As two of the names imply, these factors were first identified as a result 

of binding different viral enhancers(335;336). The CBFa sub-unit was also later 

recognised as a protein involved in one of the most common translocations in acute 

myeloid leukaemia (AML), hence its third name.

3.6.1 AML factors in haematopoiesis

AML-1 is expressed, though not exclusively, in haematopoietic tissues during 

myeloid differentiation (337;338). Mouse embryos whose aml-1 locus has been 

disrupted die in utero due to defective definitive haematopoiesis (176). All lineages are 

effected including megakaryocytes and possibly also vascular endothelial cells to some 

extent. This result in a phenotype similar to, but somewhat worse than that seen with 

the c-myb knockout mouse. As in the case of the myb knockout, primitive
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haematopoiesis was not affected. Disruption of the cbffi gene resulted in an almost 

identical phenotype (339), upholding the functional inter-relatedness of the two sub

units. It is noteworthy that the other AML isoforms could not effectively substitute for 

the lack of AML-1.

3.6.2 AML factors and Cancer

AML-1 is involved in one of the most frequent chromosomal translocations in 

acute myeloid leukaemia (AML), t(8;21)(q22;q22) (340). It is also involved in the 

t(3;21) therapy-related acute myeloid leukaemia/myelodysplasia or chronic myeloid 

leukaemia during blast transformation (with AML/MDS1, AML1/EAP and AMLl/Evi- 

1 fusion proteins ) and in childhood B-cell Acute lymphocytic leukaemia (TEL/AML1) 

(181). The CBFp sub-unit is also involved in a chromosomal anomaly inv (16)(pl3;q22) 

associated with the M4 (FAB classification) variety of AML (341).

Studies on two of the fusion proteins involved in these leukaemias show that the 

abnormal transcription factors modify normal AML-1 function in both positive and 

negative ways. They act partly as dominant negatives and partly by stimulating 

transcription of otherwise inactive genes (alone or synergistically with un-mutated 

AML-1) (181). This combination of effects leads to a block in differentiation (342) or 

an abnormal myeloid differentiation (343) in different experimental systems. It seems 

that, in some cases, the different components of the fusion proteins can act separately 

and possibly co-operate both to block differentiation and also to stimulate proliferation 

thus resulting in leukaemic transformation (342).
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3.6.3 Functional domains of the AML factors

Multiple CBFa sub-unit genes have been detected (AML-1, 2, 3) and though 

these are differentially expressed in different tissues, the exact function of each homolog 

is unclear(344). Both the CBFa and P sub-unit genes are differentially spliced resulting 

in a number of different forms being detected. The AML-1 gene can be expressed as a 

result of this differential splicing in either the shorter form AML-1 or the longer AML- 

1A and B (of these two predominantly as AML-1B). It is these longer forms which are 

transcriptionally active (345). Such active forms are targeted to the nuclear matrix, an 

interaction independent of DNA binding and which is missing in the shorter inactive 

splice variant AML . Such matrix targeting depends on a matrix targeting sequence, 

which is different from a nuclear localisation sequence and is localised to 31 amino 

acid residues near to the C-terminus of the protein (346). DNA binding by CBFa 

proteins depends on the runt homology domain. This domain, which is present in all 

different CBFa splice variants targets DNA with a consensus sequence TGt/cGGT 

(347).

AML proteins are able to interact with a number of different proteins in most 

cases through their runt homolgy domains. They can physically interact with Ets factors 

including MEF (348), Ets-1 (349) and C/EBP (295). AML-1 can also interact with co

activators like ALY (350) and co-repressors like Groucho (351). The ability to interact 

with numerous other transactivators and co-factors means that the effect of AML-1 on 

different promoters is dependent to a large extent on other associated binding sites 

within the promoter. Different residues within the runt homology domain interact with 

different factors. Myb and C/EBPa both can synergise with AML-1 through the same
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residues but PU.l requires a more C-terminal part of the runt domain (295). AML-1 

binds DNA co-operatively with C/EBPa but not with Ets or Myb as a result of such 

interactions. A specific sub-region of the runt homology domain has been recognised as 

particularly important for Ets factor-interaction (348). These different protein-binding 

sites may allow interactions with different factors simultaneously, thereby enhancing the 

formation of multiple transcription factor complexes and functional co-operation.

3.6.4 AML-1 as a transcriptional regulator

AML-l/CBF-p can transactivate certain myeloid promoters alone, such as the m- 

csf receptor promoter (238). However it requires co-operation with other transcription 

factors to strongly transactivate most target promoters (210;349). This synergism may 

be dependent on co-operative DNA binding by AML-l/CBFp with the other factors as 

is the case when it interacts with C/EBPs through their leucine zipper domain or with 

Ets-1 through amino acids 123-240 within the Ets N-terminus. C/EBP -AML 

synergism results in a 60 fold greater transactivation of the m-csf receptor 

promoter(238).

In other cases, however, no clear co-operative binding is detected yet synergism 

still occurs, as in the case of PU.l (295) or Myb (352). In most cases synergism is 

dependent on DNA-binding of both AML and its co-operative partners though this does 

not always require a precise distance relationship between such DNA binding sites 

(281). AML-l/CBFp occasionally forms part of large complexes of transcription factors 

involving a number of co-activators as happens on the TCRa enhancer. In this case, 

DNA bending by co-activator LEF-1 can stabilise functional interactions between
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AML-1 and Ets-1 thus sponsoring their synergism (353). Myeloid gene promoters up- 

regulated by AML-1 include many of the primary neutrophil granule protein genes such 

as myeloperoxidase, neutrophil elastase (354) and NP-3 defensin (53), making it a 

crucial transcription factor in early myeloid differentiation.

Apart from co-operative interactions, AML-1 may itself be regulated by 

phosphorylation of serine residues; such phosphorylation is essential for AML-1 

induced fibroblast transformation (355). During granulocytic differentiation, however, 

it may be primarily regulated by transcriptional methods. In 32D cells induced to 

differentiate by G-CSF as well as during retinoic acid-induced U937 differentiation, 

AML-1 is up-regulated early in the process (338;354). Impeding AML-l-induced 

transcriptional activity during such differentiation, as do many of the AML-fusion 

products of translocations (dominant negative effect) can easily result in a 

differentiation block, which may progress to leukaemia.
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Aims of the project

Defensin was identified as a gene expressed strongly in certain leukaemic cells 

as opposed to normal blood (356). This enhanced expression was detected due to the 

accumulation of cells blocked at a certain stage of differentiation

(promyelocytes/myelocytes) as a result of the block of differentiation caused by the 

leukaemia. During normal differentiation, defensin is expressed during a brief window 

only (51). Therefore , by understanding the regulation of defensin gene expression, and 

identifying the transcription factors involved, it may be possible to identify factors 

responsible for the elevated level of expression in the leukaemic cells.

Abnormal expression and/or function of transcription factors (often as a result 

of chromosomal translocations) are known to play a role in leukaemogenesis in a 

number of cases (81;342). Therefore, understanding normal and leukaemic defensin 

expression may, in the longer term provide insights into transcription factor 

relationships which may play a role in maturation arrest and thus in causing leukaemia.

A myeloid cell line was used here to study defensin expression since it provided 

an easily available and reproducible source of defensin-expressing promyelocyte-like 

cells. Another benefit of this cell line is that it can be reproducibly differentiated in 

vitro ( using chemical inducers), thus recapitulating the process of normal neutrophil 

maturation to some extent. This allows the study of changes in transcription factor 

binding with differentiation, and the correlation with defensin gene expression.

The NB4 promyelocytic cell line was used in preference to HL60 because the 

HL60 cell line maintained in our laboratory had lost defensin expression during in vitro 

growth. During initial experiments, another benefit became obvious, namely that NB4
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cells were much more easily transfected than HL60s. Previous studies in our 

laboratory with HL60 cells had identified a number of potentially interesting factor 

binding sites within the HNP-3 defensin promoter. However they could not be 

correlated to mRNA accumulation with differentiation since the cells had lost the 

ability to express defensin.

The initial aims of my study are therefore, to use the NB4 cell line to identify 

transcription factor binding sites on the HNP-3 defensin promoter by in vitro 

footprinting. The importance of these sites will be tested functionally by reporter gene 

studies and an attempt will be made to identify the factors binding to these particular 

sites. Using the results of these experiments, I will try to understand the interactions 

of the different transcription factors with the defensin promoter sequences and how 

such interactions can diversely regulate defensin gene expression during myeloid 

differentiation.
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Materials and Methods

Chapter 4 : Materials

4.1 Cell lines and tissue culture media

4.1.1 Cell lines

The human promyelocytic leukaemia NB4 cell line, which was isolated by Dr M 

Lanotte (INSERM, Paris) was obtained from Dr. Ian Traynor (King’s College Hospital - 

University of London). The HeLa and HL60 cells were taken from Beatson Institute 

laboratory stocks.

4.1.2 Media and sterile supplies

Supplier : Beatson Institute Central Services.

Sterile distilled H2O Penicillin (7.5mg/ml)

Streptomycin (lOmg/ml) Amphoteracin B (250jig/ml)

Sterile PBS Sterile glycerol

Sterile glassware and pipettes

Supplier: Gibco Europe Life Technologies Ltd., Paisley, Scotland.

L-Glutamine (200mM) Sodium Pyruvate (lOOmM)

7.5% (w/v) sodium bicarbonate

.5% (w/v) trypsin Special liquid medium (SLM)
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Supplier : Northumbria Biologicals Ltd., Cramlington, England. 

lOx RPMI 1640 medium

Supplier: TCS Biologicals Ltd., Buckingham, UK. 

Bovine foetal serum

Supplier : A/S Nunc, Roskilde, Denmark 

Sterile tissue culture flasks 

Nunc cryotubes

Supplier : Becton Dickinson Labware, Plymouth, Devon, England. 

Tissue culture dishes 

Sterile Roller Bottles

Supplier : Costar Corporation, Cambridge, Massachusetts, USA. 

Tissue culture plates

Supplier : Fisher Scientific International, Loughborough, Leicestershire, England. 

Dimethyl Sulphoxide (DMSO)
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4.2 Bacterial culture

4.2.1 Media and sterile supplies

Supplier : Beatson Institute Central Services.

L-broth prepared as outlined by Sambrook et al. (357). 

Sterile glassware

Supplier : Difco, Detroit, Michigan, USA. 

Bacto-Agar 

Bacto-Tryptone

Supplier : Epicentre Technologies, Madison, WI, USA 

Transformation and Storage solution (2X TSS)

Supplier : Sigma Chemical Co. Ltd., Poole, Dorset, England 

Ampicillin 

Tetracycline

Supplier: Bibby- Sterilin Ltd, Stone, Staffordshire, England 

Bacteriological (sterile) petri-dishes
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4.2.2 Host cell strains

Three strains of ultra-competent E.coli cells were used for transformation of plasmids. 

\)E.coli host strain DH5a was obtained from Gibco Europe Life Technologies Ltd., 

Paisley, Scotland

2)E.coli host strain Nova Blue was supplied by Novagen

3)E.coli host strain HB101 was obtained from a laboratory stock held by Marion Lacey 

4.3 Plasticware

Supplier: Becton Dickinson Labware, Plymouth, Devon, England.

Falcon Tubes -  50ml and 15ml ( sterile packed)

Supplier: Bibby- Sterilin Ltd, Stone, Staffordshire, England 

Sterile 30ml Universal containers and 6 ml bijou bottles

Supplier : Du Pont Co., Wilmington, Delaware, USA 

Sorvall ultracentrifuge tubes

All other plasticware including pipette tips and microfuge tubes was as supplied by the 

main laboratory stores
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4.4 Water

De-ionised water for buffers and general solutions was obtained from a Millipore 

MilliRO 15 system. Water for protein/enzyme work or recombinant DNA protocols 

was further purified by reverse osmosis on a Millipore MilliQ system to 18MQcm.

4.5 Chemicals

Unless otherwise specified, all chemicals (AnalaR grade) used in the making of 

buffers or generally in other protocols were obtained from either Fisher scientific 

international, Loughborough, Leicester, England or from BDH Chemicals Ltd., Poole 

Dorset, England .

Supplier : Sigma Chemical Co. Ltd., Poole, Dorset, England

Bromophenol blue Bovine serum albumin Fraction V

Xylene Cyanol Bicinchoninic acid solution

Ethidium Bromide Dithiothreitol (DTT)

Spermidine All-trans retinoic acid (ATRA)

N\N\N* ,N’-tetramethylethylenediamine (TEMED)

3-(N-Morphlino) propanesulfonic acid (MOPS)

Phorbol Myristate Acetate (PMA/TPA) 

p-nitrophenylphosphate (Alkaline Phosphatase Reagent)
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Supplier : Premier beverages, Adbaston, Staffordshire,England 

“ Marvel” non-fat dried milk powder

Supplier : James Burrough Ltd., Witham, Essex, England 

Ethanol

Supplier : Fluka Chemika-Biochemika AG, Buchs, Switzerland 

Formamide

Supplier : BDH Chemicals Ltd., Poole Dorset, England .

Giemsa histological stain (Gurr)

May-Grunwald histological stain (Gurr)

Supplier : Boehringer Mannheim UK Ltd., Lewes, East Sussex, England 

Caesium chloride

Supplier : Gibco Europe Life Technologies Ltd., Paisley, Scotland Enzymes 

TRIzol reagent for isolation of RNA

Supplier : Rathbum Chemicals Ltd., Walkerbum, Scotland 

Water -saturated Phenol

Supplier : Severn Biotech Ltd., Kidderminster, Worcestershire, England. 

Design-a-gel 30%(w/v)acrylamide, 0.8% bisacrylamide solution 

Design-a-gel 40%(w/v)acrylamide, 2.1% bisacrylamide solution
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Supplier : Mr David Godfrey at Hoffman-La Roche UK 

1, 25-dihydroxyvitamin D3 was a kind gift

4.6 Nucleotides and polynucleotides

Supplier: Amersham International pic, Little Chalfont, Buckinghamshire, England 

[a-32P] dCTP ~3000Ci/mmol 

[y-32P] dATP -5000Ci/mmol 

[a-35S] L- methionine >1000Ci/mmol

Supplier: Bethesda Research Laboratory, Gibco Ltd., Paisley, Scotland

DNA markers (1 jLLg/jLil): lkb ladder and bacteriophage Oxl74DNA (Hae Ill-cut) 

0.24-9.5kb RNA markers (lp.g/p.1)

Supplier: Sigma Chemical Co. Ltd., Poole, Dorset, England 

Yeast tRNA 

Salmon sperm DNA

Supplier: Pharmacia Ltd., Milton Keynes, Buckinghamshire, England 

Poly (dl-dC)

Ultrapure dNTP Set (lOOmM)
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Supplier: Boehringer Mannheim UK, Lewes, East Sussex, England 

Random hexanucleotide mix 

Unlabelled nucleotides

Oligonucleotides were made using ‘in house’ oligonucleotide synthesisers with 

nucleotide substrates supplied by Cruachem (Glasgow)

4.7 Plasmids

Plasmid Suppliers

pBLCAT6 M. Boshart ( via C.Bartholomew-Beatson Institute)

pOGH R. Selden (via M.McDonald-Beatson Institute)

pMBMl(Myb) M.Clarke (via M.McDonald Beatson Institute)

hGHcDNA Paul Robbins (University of Pittsburgh)

7s rRNA L. Wu (Beatson Institute)

pcDNA vector J. Wallin (University of California, Berkeley)

pcDNA-PU.l J. Wallin (University of California, Berkeley)

pcDNA-N-133 (PU.l) J. Wallin (University of California, Berkeley)

FNE2full(Ets-2) Craig Hauser (The Burnham Institute, La Jolla, CA)

pCAGGS vector Hiroshi Handa (Tokyo Institute of Technology, 

Yokohama, Japan)

E4FTF1-60 (GABPa) Hiroshi Handa (Tokyo Institute of Technology, 

Yokohama, Japan)

E4FTF1-53 (GABPP) Hiroshi Handa (Tokyo Institute of Technology, 

Yokohama, Japan)

E4FTF1-47 (GABPy) Hiroshi Handa (Tokyo Institute of Technology, 

Yokohama, Japan)
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pGL2 (basic) C. Bartholomew (Beatson Institute)

CBFa2-expression Dr.Nancy Speck (Dartmouth Medical School, New 

Hampshire)

CBFp-expression Dr.Nancy Speck (Dartmouth Medical School, New 

Hampshire)

pHSV (P-gal) J. O’Prey (Beatson Institute)

pcDNA- C/EBPe A.Chumakov (Cedars-Sinai Medical Center ,LA)

GAPDH-CAT M.Alexander (Howard Hughes Medical Institute, 

Boston, MA)

PSV2Apap T.Kadesch (via K.Ryan , Beatson Institute)

p-actin (p-gal) Dr H Weintraub (Hutchinson Cancer Research Centre, 

Seattle, WA)

pBluescript Promega Inc.

p2-microglobulin K. Itakura (via K.Ryan, Beatson Institute)

CHOP-10, CHOP-10-lz D.Ron ( NYU Medical Center, NY)

pSCT-E (Ig/EBP) Andrew J. Henderson (Cloumbia University, NY)

C/EBPa in pMEX Pete Johnson (National Cancer Institute - FCRDC, MD);

C/EBPp inpMEX Pete Johnson (National Cancer Institute - FCRDC, MD);

C/EBP5 in pMEX Pete Johnson (National Cancer Institute - FCRDC, MD);

4.8 Enzymes and enzyme inhibitors

Supplier: Bethesda Research Laboratories, Gibco Ltd., Paisley, Scotland 

All restriction endonucleases with lOx reaction buffers 

Proteinase K

T4 DNA ligase (1U/jll1) and 5x ligation buffer

Taq DNA polymerase (lOU/pl) and lOx PCR reaction buffer
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Supplier: Boehringer Mannheim UK, Lewes, East Sussex, England 

Calf intestinal alkaline phosphatase (lU/pl)

RNase A 

DNase I

Supplier: Northumbria Biologicals Ltd. (NBL), Cramlington, Northumberland, England 

Klenow DNA polymerase (IU/jj.1)

T4 polynucleotide kinase (10U/p,l) and lOx kinase buffer

Supplier: Sigma Chemical Co. Ltd., Poole, Dorset, England 

Aprotinin Leupeptin

Benzamidine Pepstatin A

Bestatin Phenylmethylsulphonyl fluoride (PMSF)

Sodium butyrate p-glycerophosphate

Levamisole Sodium orthovanadate

Lysozyme Diethylpyrocarbonate (DEPC)

Supplier : Perkin Elmer Cetus (Norwalk, CT)

“AmpliTaq” Recombinant Taq DNA polymerase
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4.9 Antibodies

Supplier : Santa Cruz Biotechnology Inc., Santa Cruz, California, USA 

C/EBPa Rabbit IgG polyclonal (14AA)

C/EBP[3 Rabbit IgG polyclonal (C-19)

CRP1 (rat C/EBPe-C-Terminal) IgG polyclonal (C-22)

Rabbit anti-mouse IgG, (whole molecule) horseradish peroxidase conjugate.

Anti-C/EBPe (N-terminus) antibody was a gift from Dr A Chumakov (Cedars-Sinai,

UCLA).

Supplier : Pharmingen, San Diego, California, USA.

Anti-PU.l monoclonal antibody (G148-74) raised against a GST-PU.l fusion 

protein ( whole protein).

PU.l polyclonal anti-serum against PU.l was a gift of Dr. Glas (University of California

San Diego).

Supplier : Upstate Biotechnology Incorporated, Lake Placid, New York, USA 

Anti-c-Myb (C-terminal 235 aa) monoclonal antibody

Phospholipase A2  monoclonal antibody was a gift of Dr. Angeliki Malliri (Beatson

Institute).

Supplier: Amersham International pic, Little Chalfont, Buckinghamshire, England 

Donkey anti-rabbit IgG, (whole molecule) horseradish peroxidase conjugate.

102



Purified GABPa and GABPp proteins synthesised in and purified from E.coli, as well 

as polyclonal rabbit antiserum raised against these two proteins, were kind gifts from Dr 

Tom Brown (Pfizer, Groton CT).

4.10 Membranes, papers and radiographic film

Supplier: Amersham International pic., Little Chalfont, Buckinghamshire, England 

Hybond N nylon membrane (fingerprint grade)

Supplier: Millipore Corporation, Bedford, Massachusetts, USA 

Immobilon membranes

Supplier: Whattmann International Ltd., Maidstone, Kent, England 

3MM filter paper

Supplier: Eastman Kodak Co., Rochester, New York, USA 

(X-OMAT-AR) X-Ray film

Supplier: Fuji Photo Film Co., Tokyo, Japan 

(RX) X-Ray film

Supplier: Sartorius AG, Gottingen, Germany 

Colloidon dialysis bags
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4.11 Molecular Biology Kits and Columns

Supplier: Amersham International pic, Little Chalfont, Buckinghamshire, England 

ECL Western Blotting Analysis System

Suppler: Applied Biosystems, Warrington, UK

Dyedeoxy Terminator Cycle Sequencing Prism Kit

Supplier: Qiagen Ltd., Dorking, Surrey, England 

QIAquick Gel Extraction Kit 

QIAgen EndoFree Plasmid Maxi Kit

Supplier: Nichols Institute Diagnostics., Saffron Walden, Essex, England 

Human Growth Hormone Radioisotopic Assay Kit

Supplier : Pharmacia Ltd., Milton Keynes, Buckinghamshire, England 

Sephacryl S-400 HR resin MicroSpin columns 

NICK columns

Supplier : Perkin Elmer Cetus (Norwalk, CT)

Gene Amp DNA Amplification Reagent Kit with AmpliTaq.

Supplier: Promega, Madison, Wisconsin, USA

TNT T7 Quick Coupled Transcription/Translation System
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Supplier : Sigma Chemical Co. Ltd., Poole, Dorset, England

Naphtol AS-D Chloroacetate and a-Naphthyl Acetate Esterase diagnostics kit 

Nitroblue Tetrazoilium Reduction kit

4.12 Equipment

Suppler: Applied Biosystems, Warrington, UK 

ABI 373A DNA Sequencer

Supplier: BioRad Laboratories, Richmond, California, USA 

BioRad Gene Pulser with capacitance extender

Supplier: Flowgen Instruments, Ltd., Lichfield, Staffordshird, UK 

4mm chamber Electroporation cuvettes

Supplier : Beckman

Gamma 5500B y-counter
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Chapter 5 : Methods

5.1 Cell culture

5.1.1 Culture conditions during routine passage of cell lines

All cell lines were incubated at 37°C in humidified air with 5% added CO2. NB4 

cells were grown in RPMI 1640 supplemented with 12% foetal calf serum, 5.0 units of 

penicillin and 5pg of streptomycin per ml. Cell cultures were maintained at a density of 

2-10xl05 cells/ml and 2 days prior to transfection they were cut back to 4xl05cells/ml. 

Cells used during experiments were from passage 4 till 1 2 .

HL60 cells were passaged every 2 days in routine culture with cells being cut back to 

concentrations of 5xl05 cells/ml. HeLa cells were passaged twice weekly in routine 

culture with new cultures being re-seeded with lx 106 cells.HeLa and HL60 cells were 

grown in Special Liquid Medium supplemented with 10% foetal calf serum and 

glutamine (final concentration 2mM).

5.1.2 Cryopreservation and recovery of cells

Cells to be stored at a particular passage number were counted. They were then 

pelleted by centrifugation at 350 x g for 10 minutes at 25°C and re-suspended at a 

concentration of about 107/ml in 90% serum 10% DMSO( for HL60 and NB4 cells) or 

90% serum supplemented medium, 10% DMSO for HeLa cells. 1ml of the cell
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suspension was aliquotted into 1.5 ml Nunc cryopreservation tubes and frozen slowly 

overnight in a protective polystyrene box to -80°C. The frozen samples were later 

submerged in liquid nitrogen storage Vats where they were stored long term.

To thaw cells, samples were placed in a 37°C water bath till thawing, washed 

with 10 to 20 ml of fresh medium, pelleted by centrifugation at 350 x g for 10 minutes 

at 25°C, and resuspended in the required volume of new medium.

5.1.3 Mycoplasma testing

Hoechst 33258 staining to exclude Mycoplasma contamination was performed 

as described by T.R.Chen (358). 2ml of medium from the cell line being tested were 

incubated with 104 NRK cells(an indicator cell line) in 60mm petri-dishes with 4 ml 

fresh medium for 3-4 days. The medium was then removed, the cells washed repeatedly 

with PBS, and fixed on the dish. 5mls of Hoechst 3258 stain in PBS (0.05jxg/ml) was 

added and left for lOminutes. The stain was removed, the cells washed twice in distilled 

water, mounted in Mcllvaine’s buffer and sealed. They were then viewed with a 

fluorescence microscope. Any fluorescence seen outside the nucleus is due to extra- 

nuclear DNA and is indicative of Mycoplasma infection.

5.1.4 Induction of differentiation

NB4 cells were differentiated by addition of inducers to a final concentration of 

lpM  all-£ra«s-retinoic acid (ATRA) for granulocytic differentiation (359), and 0.4pM
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of each of 1,25 di-hydroxy cholecalciferol (vitamin D3) and phorbol myristate acetate 

(PMA) for monocytic differentiation (95).

5.1.5 Cell Staining - May-Grunwald and Giemsa stains

lx  106 NB4 cells were harvested by cytocentrifugation at 350 x g for 5 minutes 

onto a slide. They were fixed by flooding with methanol for 5 minutes at 25°C. The 

slides were stained with May-Grunwald stain (1 part stain in 2 parts Sorensen’s buffer). 

Sorensen’s buffer is 0.066M Na2HP04 and 0.066 M KH2PO4 pH6.85. The slides were 

then transferred to Giemsa stain (5% in Sorensen’s buffer) for 10 minutes at 25°C. They 

were then washed twice in distilled water, mounted, and left to dry for 24 hours.

5.1.6 Nitroblue tetrazolium staining

Granulocytic differentiation of NB4 cells was tested using NBTZ staining by a 

modification of the “stimulated” test procedure described by the manufacturer with the 

testing kit provided (see Materials section 4.11). 0.25 ml of NBTZ solution were added 

to a vial with a plastic pipette. In place of the supplied stimulant solution, 5pi of 

Phorbol Myristate Acetate (PMA) at a concentration of 1 mg/10ml ( in alcohol) was 

added as stimulant, lx  106 NB4 cells resuspended in 2 ml of PBS were added and 

incubated together with the NBTZ/PMA mixture for 30 minutes at 37°C and then for an 

additional 10 minutes at 25°C. 0.5 ml of this cell suspension in NBTZ solution was then 

transferred to a slide by means of cytocentrifugation. The cytospun cellular preparation



on the slide was stained with Wright stain (provided) for 15 seconds, with diluted stain ( 

flood the slide with distilled water) for a further 30 seconds, after which the stain was 

washed off. The slide was then dried, mounted and viewed by microscopy.

5.1.7 Non-specific Esterase staining

NB4 cells were assessed for monocytic differentiation by non-specific esterase 

staining using the a-Naphthyl acetate esterase procedure as described by the 

manufacturer in the supplied test kit. 1ml of Sodium Nitrite solution was added to 1 ml 

of fast Blue BB Base, mixed and allowed to stand till the colour converts from brown to 

a deep yellow. 40 ml of pre-warmed (37°C) de-ionised water was added to this solution. 

Furthermore, 5 ml of TRIZMAL 7.6 buffer concentrate was added as well as 1 ml of a- 

Naphthyl acetate solution. The solution turns green. Slides prepared with lx 106 NB4 

cells from differentiation time points were prepared previously and now fixed in Citrate 

Acetate Formaldehyde solution at room temperature (23 to 26°C) for 30 seconds with 

vigorous agitation in the last 5 seconds. The slides were rinsed in running de-ionised 

water for 1 minute and then incubated in the previously prepared green solution for 30 

minutes at 37°C, shielded from light. The slides were then washed for at least 2 minutes 

in running de-ionised water, counter stained with Hematoxylin solution, washed in tap 

water, air dried, mounted using an aqueous mounting agent and viewed by 

microscopy.
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5.2 Transient Transfections and Reporter Gene Assays

5.2.1 Plasmids for Transfections

The human growth hormone (hGH) reporter gene construct was made by cloning 

hGH cDNA into the CAT vector pBLCAT6  (360) in place of the CAT cDNA and 

improved to reduce vector-dependent promoter effects. Many defensin deletion mutant 

promoter fragments were obtained from A.C. Philips (Beatson Institute). Others were 

amplified by PCR using primers with appropriate Hind III and Bam HI restriction 

endonuclease sites at their ends. Amplified sequences were cloned into restriction sites 

on the reporter vector. Site-specific mutations were introduced using a method 

previously described (361). All PCR-derived cloned promoter sequences were verified 

by sequencing. The GAPDH, p-actin and herpes simplex thymidine kinase promoter 

sequences were directly cloned into the hGH reporter gene using available restriction 

sites.

5.2.2 Electroporation

Transient transfections into undifferentiated and differentiated NB4 cells 

followed exactly the same protocol. For the 2 days prior to transfection they were cut 

back to 4xl05cells/ml. This increases the percentage of cycling cells prior to 

transfection. Differentiated NB4 cells were treated with inducer 20 hours prior to 

transfection. 7xl06 cells were harvested by centrifugation at 350 x g for 10 minutes at 

252C and their conditioned RPMI 1640 medium reserved. The cells were then 

suspended in 200pl of special liquid medium (SLM) supplemented with foetal bovine
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serum and glutamine. Plasmid DNA for transfection, (5 pg of reporter vector, 5 pg of 

internal control, any expression vectors and made up to a total of 30pg with pBluescript 

DNA) was prepared in a final volume of 50|li1 sterile lxTE ( lx TE is lOmM Tris.HCl , 

ImM EDTA - pH8.0). This was mixed with the concentrated cell suspension in a 4mm 

gap electroporation cuvette (Flowgen) and the cells were electroporated at 960pF and 

200V using a Bio-Rad gene pulsar, lml of fresh SLM medium was immediately added, 

and the contents of the cuvette transferred to a 60mm diameter dish with 4ml of 

conditioned RPMI medium. After recuperative incubation at 37° C in a humid 

atmosphere with 5% CO2 for 20 hours, two lOOpl aliquots of medium were removed for 

analysis.

HL60 cells are electroporated in a similar manner as are NB4 cells. Differences 

include that cells are grown in SLM not RPMI and are cut back to 5 x 105 on the 2 days 

prior to transfection. Electroporation is performed using a total of 50, not 30 pg of 

DNA and at 250 not 200 V.

5.2.3 Calcium Phosphate transfection

HeLa cells were seeded at lxlO6 cells per 60mm dish and incubated overnight 

prior to transfection. The DNA to be transfected (5pg of reporter construct, plus 

expression constructs, and pBlueScript carrier DNA to a total of lOpg) was diluted in 

filter-sterilised water. CaCl2 was added to a final concentration of 0.22M in a final 

volume of lml. This solution was added drop-wise to an equal volume of 2 x HEPES- 

buffered saline (280mM NaCl, 50mM HEPES, pH7.1, 1.5mM Na2H P04) and incubated 

for 30 minutes at 25°C. Medium was aspirated off the cells and 2ml of transfection
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mixture together with 4ml of fresh SLM medium added. After overnight incubation for 

recovery, medium was removed, fresh medium added and, after a further 24 hours, a 

sample of medium was removed for reporter gene assay.

Since alkaline phosphatase (SV40 early promoter) reporter activity was 

drastically affected in HeLa cells by co-expression of some of the transcription factors, 

no internal control was included in HeLa transfection experiments since including the 

alkaline phosphatase activity would have invalidated the results. Therefore, multiple 

transfections (at least 4 for each experiment) were carried out.

5.2.4 Assay for Placental Alkaline Phosphatase

Alkaline phosphatase activity was determined as has been previously described 

(362) using lOOpI of a 1:10 dilution of the medium for NB4 cells. With HL60 cells 

lOOpl of medium are used directly since the activity produced following transfection is 

much less. Any cells are pelleted by centrifugation. The sample was heated at 65°C for 

2  hours in order to degrade any endogenous (heat labile) alkaline phosphatase activity 

(secreted placental alkaline phosphatase activity is heat labile). It was then cooled on 

ice. 1 ml of substrate ( 5mM p-nitrophenylphosphate in DEA buffer) was added to the 

sample and the reaction transferred to 37°C. Absorbency at 405nm was measured 

when an orange/yellow colour begins to develop after twenty minutes. DEA buffer is 

1M diethanolamine, 0.28M NaCl and 0.5 M MgCl, pH 9.85 and stored at 4°C.
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5.2.5 Radioimmunoassay for human Growth Hormone

Growth hormone was measured in one aliquot by radioimmunassay (Nichols 

Institute Diagnostics, CA) according to the manufacturers’ instructions. lOOpl of 

medium (from which the cells had been removed by centrifugation) was added to lOOpl 

of anti-human growth hormone antibody mixture in a clean round bottomed polystyrene 

tube. The antibody mix included an 125I-radiolabelled antibody against one growth 

hormone epitope and another biotin-linked antibody against another epitope. The 

solutions were carefully mixed by gentle vortexing. An avidin coated bead was added 

and the tubes incubated with gentle circular shaking for 4 hours at 25°C. Upon 

incubation, this results in the formation of a BEAD-avidin-biotin-Ab-hGH-Ab- 

radioisotope sandwich. After this incubation, the supernatant is aspirated, the bead 

washed thoroughly twice with the provided wash buffer, and the bead then transferred to 

a suitable vial and gamma irradiation counted in the Gamma 5500B Beckman counter.

113



5.3 Molecular Biology

5.3.1 Microbiological techniques

5.3.1.1 Generation of competent cells

E.coli ( of whatever strain) grown overnight, were diluted 1:50 with LB broth. 

They were incubated at 37°C with shaking ( at 200 rpm) until the cells reached early log 

phase (OD600 = 0.25-0.4). 2x Transformation & Storage Solution (Epicentre 

Technologies) was diluted in the required amount 1:1 with sterile distilled water and the 

lx  solution was chilled on ice. ( lOOpi of this solution is required for 1 ml of cells). 1 ml 

aliquots of the log phase growing cells were pelleted in sterile microfuge tubes by 

centrifugation for 1-2 minutes at 4°C. The supernatant was removed by a sterile pipette 

tip and lOOpl of cold lx  TSS solution was added and the pellet gently resuspended by 

pipetting. The cells were either transformed ( as described below) or frozen 

immediately in a dry ice/alcohol bath and stored frozen at -70°C to maintain their 

competency.

5.3.1.2 Transformation of bacterial cells

Frozen aliquots of competent cells were thawed slowly on ice. lOOpg -lOng of 

DNA required to be transformed into the cells was added to each tube, which was then 

flicked to mix the cells and incubated for 10 minutes on ice. The tubes were then
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transferred to 25° for a further 10 minutes. Once again the tubes were transferred to ice 

and incubated for a further 10 minutes. 1 ml of LB broth was added and the cells were 

incubated at 37°C for at least 1 hour with shaking after which the transformed cells 

could be selected by plating on a selective medium to identify incorporated resistance 

genes in the transformed plasmids.

5.3.1.3 Preservation of transformed and host strains

The DH5a, Nova Blue and HB101 E.coli cells transformed with useful plasmids 

were stored as glycerol stocks for future retrieval. Stationary cultures in liquid medium 

were mixed with glycerol resulting in a final concentration of this antifreeze agent of 

30% (v/v) /L-broth solution (see Section 4.2.1), cooled on ice and then frozen at -20°C.

5.3.2 DNA isolation from bacteria

5.3.2.1 Minipreparation of plasmid DNA

One step ‘miniprep’ method for the isolation of plasmid DNA was carred out 

according to Chowdhury (363). 1.5ml of overnight bacterial culture in L-Broth (see 

section 4.2.1) was harvested in a microfuge tube and spun at 14,000rpm in an 

Eppendorf microfuge for 30sec. lml of supernatant was discarded, 0.5ml of PCI 

(phenol:chloroform:isoamylalcohol = 25:24:1) added and the mix vortexed and then 

transferred to a Eppendorf mixer for 5-10min. Samples were spun at 20°C for 5min and 

the upper aqueous layer transferred to fresh microfuge tubes (phenol chloroform
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extraction) containing an equal volume of isopropanol. After mixing thoroughly by 

vortexing, plasmid DNA and RNA was pelleted by centrifugation as above for lOmin. 

The pellets were washed twice with ice-cold 75% (v/v) ethanol, air dried and re

suspended in 20fil of lxTE (see section 5.2.2) containing 20|ig/ml RNaseA.

5.3.2.2 Large scale preparation of DNA - purification by ultracentrifugation

500ml of overnight bacterial culture of E.coli in L-broth (see section 4.2.1) were 

harvested and spun at 4,000rpm for lOmin at 4°C using a Sorvall Centrifuge RC3C 

using a H6000A/HBB6 swing-out rotor. The supernatant was discarded and the 

bacterial pellets re-suspended in 5ml Resuspension Buffer (50mM Tris.HCl (pH8.0), 

lOmM EDTA (pH8.0), and lOOjig/ml RNase A), mixed well by vortexing, and then 

10ml of Lysis Buffer (200mM NaOH and 1% SDS) added, and the tubes were inverted 

gently for a few times to achieve a homogeneous lysate without shearing the bacterial 

genomic DNA. Then 7.5ml of Neutralisation Buffer (3M K+Acetate [pH5.5]) were 

added, mixed well, and centrifuged at 8000rpm for 5 minutes at 4°C. The supernatant 

was filtered through 2  layers of gauze, 0 .6  volume of isopropanol added, and the 

contents mixed by vigorous shaking before pelleting the plasmid DNA and bacterial 

RNA by centrifugation at 8000rpm for 5 minutes at 4°C. DNA of this quality, whilst 

suitable for transfection into certain cells once RNA had been removed is considerably 

toxic to myeloid cells during transfection, possibly due to the presence of 

lipopolysaccheride from the bacterial cell walls, a myeloid cells stimulant. For this 

reason further purification was required. The pellet was therefore dried in air, after 

which it was dissolved in 7.4 mis of TE ( see section 5.2.2) buffer. 7g of CsCl was 

added together with 300p.l of Ethidium Bromide (10|Lig/ml). The refractive index was
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measured and CsCl or TE was added as required to obtain a final index of between 

1.3890 and 1.3915. After accurately balancing the Ti 60 tubes, containing this solution, 

they were ultracentrifuged at 40,000 rpm for 40 to 60 hours at 20°C. After 

centrifugation, the double stranded super-coiled DNA band was extracted from the 

CsCl gradient and cleaned from ethidium bromide by repeated isopropanol extractions 

using TE-equilibrated isopropanol until the aqueous phase was clear. This DNA 

solution is dialysed in collodion bags against lx TE buffer (see section 5.2.2) for 16 

hours at 4°C changing the buffer at least 3 times. This allows removal of the casium 

salts which are toxic to the cells. The content of the collodion bags was then ethanol 

precipitated with a 0.1 volume of 0.3M sodium acetate and 2.5 volumes of ethanol 

overnight at -20°C. The precipitate was washed with cold 70% ethanol, air dried, and 

re-dissolved in TE whereupon it was quantified by spectroscopy as described in section 

5.3.4. This method ( which can be scaled up to use even larger starting volumes of 

bacterial super-broth culture) was used when huge amounts of a particular plasmid was 

required, such as the pBluescript carried plasmid or the alkaline phosphatase internal 

control plasmid.

5.3.2.3 Large scale preparation of plasmid DNA-purification by QIAgen

This method of preparation was used when large amounts of a plasmid were 

required but not the huge amounts required as for plasmid used in most transfections. 

Large scale bacterial growth was allowed to occur as described above, though lesser 

volumes of bacterial culture were required with only 1 0 0 ml of bacteria transformed with 

a high copy plasmid being used with each Maxi prep Qiagen column. The bacteria were
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pelleted after overnight growth by centrifugation at 6000rpm in a Sorvall GS3 rotor. 

The pellet was then resuspended in 10 ml of buffer PI (to which RNAse A had been 

added to a concentration of 100|ig/ml). This was continued till no particular clumps of 

bacterial cells could be seen. 10ml of buffer P2 were added, the solutions mixed by 

inverting the centrifuge bottle for 5 times, and incubation allowed for 5 minutes at 20°C. 

This results is cellular lysis with the suspension turning viscous. A QIAfilter Cartridge 

was prepared by screwing a cap into the outlet nozzle. 10ml of chilled (ice) Buffer P3 

was added to the lysate and mixed immediately by inverting the bottle 5 times. The 

lysate following such mixing was immediately poured into the QIAfilter cartridge and 

allowed to stand for 10 minutes at 20°C. The cap was removed from the QIAfilter 

Cartridge, the plunger inserted and the lysate filtered into a clean sterile 50 ml tube 

(Falcon). 2.5 ml of buffer ER (endotoxin removal) was added to the lysate 

(approximately 25 ml), the tube inverted for 10 times and incubated on ice for 30 

minutes. A QIAGEN-tip 500 was equilibrated by applying 10 ml of buffer QBT and 

allowing the column to empty by gravity flow. The lysate was applied to the column 

and allowed to enter the resin by gravity flow. The QIAGEN-tip was washed twice in 

succession with 30mls of buffer QC. The DNA was then eluted with 15 ml of buffer 

QN. The DNA was then precipitated by the addition of 10.5 ml (0.7 volumes) 

isopropanol (25°C), mixing immediately by inverting the tube 4 or 5 times, and 

immediate centrifugation at 11000 rpm for 30 minutes at 4°C in a Sorvall SS-34 rotor. 

The supernatant was carefully decanted off, washed with 2.5 ml of endotoxin free 70% 

ethanol (made using supplied endotoxin free water), and centrifuged at 1 1 0 0 0  rpm for 

10 minutes at 4°C in a Sorvall SS-34 rotor. The supernatant was again carefully 

decanted, the pellet air-dried for about 5 to 10 minutes, without allowing overdrying
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(since this makes dissolution very difficult). The pellet was dissolved in endotoxin free 

TE (supplied) and quantified as described ( see section 5.3.4).

5.3.3 Recombinant DNA techniques

5.3.3.1 Restriction enzyme digestion

Small quantities of plasmid DNA (usually < 2\ig) were digested in the 

appropriate buffer in a total volume of 20pl using 1-10 units of enzymes per ug of DNA, 

depending on the enzyme used and the number of sites present. Larger, preparative 

digests were carried out using proportionately larger volumes. For double digests, 

suppliers’ information was consulted and the most appropriate buffer used. Reaction 

mixes were incubated for 2-3h at 37°C and then terminated by the addition of l/5th 

volume of 6 x DNA gel-loading buffer (6 x buffer: 0.25% (w/v) bromophenol blue, 

0.25% (w/v) xylene cyanol, 30% glycerol).

5.3.3.2 Agarose gel electrophoresis

DNA fragments were resolved on agarose gels containing ethidium bromide for 

subsequent visualisation under UV luminator. In general, 1% (w/v) agarose gels were 

used, but smaller fragments (100-400) were separated on 2-4% gels. Gel mixes 

containing the appropriate amount of agarose in 1 x TBE (90mM Tris, 

90mM boric acid and 2mM EDTA - pH8.0) were heated in a microwave oven to
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dissolve the agarose, and then cooled to 60°C when ethidium bromide was added to 

0.5|Hg/ml and the mix was poured into appropriate gel cast. Gels were allowed to set at 

room temperature and installed into the electrophoresis tank in lxTBE buffer. Samples 

containing the DNA gel-loading buffer (see section 5.3.3.1) were loaded and 

electrophoresed at around 100V. Molecular weight standards used include the lkb 

ladder and Hae Ill-digested bacteriophage 0x174 fragments. A photograph was taken of 

the gel with a polaroid camera, using a TF-35M UV luminator (Vilber Laurmat).

5.3.3.3 Purification of DNA fragments from agarose gels

DNA fragments excised from agarose gels were purified with the QIAquick gel 

extraction kit. The required bands were excised with a clean sharp scalpel. The gel 

slice was weighed and 3 volumes of buffer QX1 were added to one volume of gel 

(300fil buffer for lOOmg of gel). The mixture was incubated for 10 minutes at 50°C 

with intermittent flicking to help dissolution of the gel. The melted gel sample was 

loaded into a Qiaquick spin column which was itself placed into a 2 ml collection tube. 

For large DNA fragments ( more than 5kb) 1 gel volume of TE buffer ( see section 

5.2.2) was added to the solubilised gel slice and mixed by inverting prior to loading on 

the QIAquick column. The column/collection tube set-up was centrifuged at maximum 

speed in an Eppendorf microfuge for 60 seconds. The fluid collected in the collection 

tube was discarded and the column returned to the same tube. Washing was performed 

with 0.75 ml of Buffer PE which was added to the column prior to another 60 second 

centrifugation. When the fragment was required for blunt end ligation, the column was 

allowed to stand for 5 minutes with the washing buffer PE, prior to centrifugation. 

Wash buffer was also discarded and the column was again centrifuged in the collection
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tube to remove any residual traces of PE buffer. To elute the DNA, the column was 

placed in a clean 1.5 ml microcentrifuge tube. 50 pi of lOmM Tris-HCl [pH8.5] or 

double distilled water was added and the set-up centrifuged for 60 seconds. The DNA 

was now ready for further manipulations.

5.3.3.4 Phosphatase treatment of vectors for ligation

The required vector was digested to completion (long incubation with excess of 

required restriction endonuclease enzyme) in a total volume of 50 pi. lp l of calf 

intestinal alkaline phosphatase (CIP was added and incubation was allowed to proceed 

for 1 hour at 37°C in the same restriction enzyme buffer. 6 pl of 10% SDS and 6 pl of 

lOx STE (lOOmM Tris pH8 , 1M NaCl, lOmM EDTA) were added and the reaction 

then incubated at 6 8 °C for 15 minutes. The aqueous phase was extracted by phenol 

chloroform extraction ( see section 5.3.2.1) and transferred to a fresh tube. 2pg of 

transfer RNA was added and the DNA was precipitated with l/10th the volume of 0.3M 

sodium acetate and 2 volumes of ethanol on dry ice for an hour. The DNA was pelleted 

by centrifugation in an Eppendorf microfuge at full speed for 10 minutes. The 

supernatant was aspirated, the pellet washed with 70% ethanol at -20°C and 

centrifugation repeated. The supernatant was removed, centrifugation repeated and the 

remaining alcohol removed. The DNA was resuspended in TE (see section 5.2.2) at an 

approximate concentration of lOng/pl and the actual concentration was then assessed on 

an ethidium bromide stained agarose gel using Haelll <j) X I74 digest for comparison.
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5.3.3.5 Ligation reactions

10 to 20 ng of dephosphorylated vector was added together with a 3 fold molar 

excess of insert and 2pl of 5x ligation buffer and 1 unit of T4 DNA ligase ( Gibco 

BRL). Water was added to a total of 10 pi and incubation was performed overnight at 

16°C (for blunt ended ligations) and 4°C ( for sticky end ligations). The ligated 

vector was then transformed into competent cells and selection performed using the 

appropriate antibiotics.

5.3.4 Quantitation of nucleic acids

Nucleic acid concentrations were determined spectrophotometrically. 3pl of the 

sample was added to 300pl of dH20 and absorbance (A) readings taken at 260nm and 

280nm in a quartz cuvette using a DU 650 spectrophotometer (Beckman). dH20 was 

used as the blank for quantitating DNA samples. The blank for RNA samples was 

prepared by adding 3pl of RNA dissolving buffer into 300pl dH20. An A260 value of 

1 was taken to be equivalent to 50pg/ml of plasmid or genomic DNA, 40pg/ml of RNA 

and 20pg/ml of oligonucleotide. The A260/A280 rati° was use<̂  as a measure of purity: 

samples giving a ratio less than 1.75 were further purified by Phenol/Chloroform 

extraction (see section 5.3.2.1), ethanol precipitation and the A2 6 O/A2 8 O ratio was then 

re-assessed.

122



5.3.5 Sequencing of DNA

PCR products were sequenced using cycle sequencing following cloning into 

the appropriate vector. They were sequenced on both strands using the same primers 

used in the initial PCR reaction. 3.2 pmols of primer was added to approximately ljig of 

plasmid DNA and the total volume made up to 12pl with RQ grade ddH20. To this

mixture was added 8jll1 of the Dideoxy Terminator Cycle Sequencing Prism Kit 

(Applied Biosystems). Reactions were carried out in a Perkin-Elmer 9600 thermal 

cycler using using 25 cycles 96°C for 15sec, 50°C for lsec and 60°C for 4min or in a 

Perkin Elmer Thermal Cycler 480 using 25 cycles 96°C for 30sec, 50°C for 15sec and 

60°C for 4min. The resultant DNA products were precipitated (see Section 5.3.2.1) and 

dissolved in 3-4p.l of loading buffer (5x: 5 parts deionised formamide and 1 part 50mM 

EDTA containing 30mg/ml blue dextran). Running and analysis of sequencing gels was 

expertly performed by Robert MacFarlane (Beatson Institute, Glasgow, UK) as follows. 

Samples were run on a 6 % polyacrylamide gel (made from a stock with 40% acrylamide 

and 2.1% bis-acrylamide) in lxTBE buffer TBE (see section 5.3.3.2) using an Applied 

Biosystem ABI 373A DNA Sequencer at 30W for 12h. Gels were analysed using 373A 

software version 1 .2 .1 .

5.3.6 Polymerase chain reaction (PCR)

Amplification of fragment from plasmid DNA was carried out by polymerase 

chain reactions (PCR) using Taq DNA polymerase. The concentration of DNA template
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used in PCR reactions was lng/jLtl for plasmid DNA in lx TE (see section 5.2.2 ). 2pl 

were used for amplification. The PCR reaction mix was set up as follows:

ddH20 57.5jil

lOx PCR Reaction Buffer (Gibco) lOpl

25mM MgCl2 lOpl (final 2.5mM)

2mM dNTPs (Pharmacia) lOpl

DNA template 2pi

forward primer (20pM) 5pl

reverse template (20pM) 5pl

Taq DNA polymerase (lOU/pl,Gibco) 0.5pl

The mixture was mixed thoroughly and 50pl mineral oil added to prevent 

evaporation. The reactions were carried out in a Perkin-Elmer Thermal Cycler 480 with 

the following program:

Program segments Temperature Time Cycles

1 95°C 2min 1

2 95°C lmin 25-30

55°C 1.5min

72°C 2min

3 72°C lOmin 1

4 4°C hold -

The products were electrophoresed on an agarose gel (see section 5.3.3.2) and the 

appropriate sized fragments were purified using the Pharmacia Sephacryl HR resin S- 

400 Microspin columns (see Section 4.11).
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5.3.6.1 Design of oligonucleotides

Oligonucleotides used to amplify and later clone fragments of defensin promoter were 

based on the HNP-3 defensin 5’ upstream sequence cloned in our group (364) and of 

the near-identical published upstream sequence of the HNP-1 defensin promoter (45). 

Hindlll and BamHI endonuclease restriction sites were included into the 5’ extremities 

of the forward and reverse primers respectively, allowing cloning into the growth 

hormone vector. The forward and reverse primers used for amplifying the growth 

hormone cDNA for later cloning and expression as the reporter gene in our reporter 

vectors, are shown below. The former contains a Kozak sequence between the 

restriction enzyme site 5’ and the specific growth hormone sequence 3’ for good 

hybridisation. Similarly, the reverse primer has an artificial polyadenylation sequence 

added between the restriction enzyme site 5’ and the specific growth hormone sequence 

3’. These are shown below:

Forward primer: 5 ’ ATTCAAGGATCCAGCCACCTCTAGACTGCCATGG 3 ’

Reverse primer:5 ’TAGTCGAATTCTTAATTTTATTGATCAGCTAGAAGCCAACAGCTGCCC 3’

The cdl8  promoter sequence cloned into the growth hormone reporter gene was 

synthesised chemically in order to have the right restriction enzyme sites at the ends of 

the sequence. The sense strand of that sequence is noted below:

5 ’ GCTTCCACTTCCTCCAAGGAGGAGCTGAGAGGAACAGGAAGTGTCAGGACTTTACGACC 

CGCGCCTCCAGCTGAGGTTTCTAGAG 3 ’
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5.3.6.2 Synthesis of oligonucleotides

Oligonucleotides were synthesised on an Applied Biosystems model 381A DNA 

synthesiser according to manufacturers’ instructions. 5’ trityl groups were removed by 

the machine and the DNA immobilised on a column.

5.3.6.3 Purification of oligonucleotides

The DNA was eluted in 29% (v/v) ammonia by passing the solution through the 

column once every 5min for lh. This solution was sealed in a glass vial and incubated at 

55°C overnight to deprotect the oligonucleotides. Oligonucleotides were precipitated by 

adding 1ml of butan-l-ol to 100-150|il of the ammonia stock, the mixture incubated at 

20°C for 10-15min and the oligonucleotides pelleted for 5-10min at 14,000rpm in an 

Eppendorf microfuge. The supernatant was discarded and the butanol was removed by a 

speedivac. The dried pellets were resuspended in lOOjul of lxTE buffer (see section 

5.2.2). Oligonucleotides were quantitated as described in section 5.3.4 and a 20pM 

dilution prepared for use in PCR. Oligonucleotides which were used for making 

EMSA probes were firstly purified as above and then diluted to the required 

concentration and hybridised as described in section 5.3.9.1.
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53.6A  Site directed mutagenesis by PCR

Site-specific mutations were introduced using a method previously described by 

S.F. Michael (361). Briefly, a thermostable ligase is inserted into the polymerase chain 

reaction to incorporate a phosphorylated mutagenic oligonucleotide primer into the 

amplified product. The mutagenic oligonucleotide was phosphorylated using the T4 

polynucleotide kinase from Gibco BRL in the reaction indicated below

lOx kinase buffer 5 pi

lOOmM spermidine 5pi

lOmM [32P]-dATP 5|xl

T4 polynucleotide kinase 4pl 

Oligonucleotide 15pg

Water up to 50pl

This was incubated for 1.5 hours at 37°C. Then lOOpl of TE (see section 5.2.2) 

was added, and the aqueous phase extracted, and the DNA precipitated after addition of 

0.1 volumes of 0.3M sodium acetate and 2.5 volumes of 100% ethanol overnight at -  

20°C. The precipitated oligonucleotide was then pelletted by centrifugation washed in 

70% ethanol at -20°C, air dried and resuspended in TE. The purified oligonucleotide 

was quantified by spectroscopy and a 20pM dilution prepared. PCR amplification was 

then performed with the following reaction contents, a modified reaction mix from that 

presented in the original paper
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ddH20 42.25(il

lOx PCR Reaction Buffer (Gibco) 10(il

25mM MgCl2 6.25pl

2mM dNTPs (Pharmacia) 16jil

DNA template lOpl

forward primer (20|iM) lpl

reverse template (20jxM) lpi

mutagenic primer (20jiM) 2pl

Taq Ligase buffer lO îl

Taq Ligase l|LLl

Taq DNA polymerase (10U/|il,Gibco) 0.5pl

The mixture was mixed thoroughly and 50jll1 mineral oil added to prevent 

evaporation. The reactions were carried out in a Perkin-Elmer Thermal Cycler 480 with 

the following program:

Program segments Temperature Time Cycles

1 93°C 5min 1

55°C 5min

73°C 15min

2 93°C lmin 25-30

55°C 1.5min

73°C 2min

3 73°C 15min 1

4 4°C hold -

128



When assessed by agarose gel electrophoresis, only one PCR product was 

observed, though the original paper describes other products being formed between the 

mutagenic oligonucleotide and the reverse oligonucleotide. No such product was 

detected in these experiments. The PCR product was cloned into the reporter vector and 

DNA from different clones selected by antibiotic resistance; it was sequenced by the 

automatic sequencer to check whether the required mutation had been incorporated into 

the DNA.

5.3.7 Northern Blot Analysis

5.3.7.1 Isolation of cellular RNA

Total cellular RNA was prepared using the TRIzol method (Gibco), following 

the manufacturer’s instructions. Cells were grown and harvested by centrifugation at 

l,200rpm for 5min in a MSE Centaur benchtop centrifuge. After removed of growth 

medium, the cells were lysed by dispersing the cell pellets in TRIzol Reagent at a 

density of 5-10xl06 cells per ml followed by incubation at 20°C for 5min. At certain 

differentiation time points, cells adherent to the plastic bottoms of the flasks were 

present in considerable numbers (such as in the later stages of monocytic 

differentiation). In these cases, Trizol mixture (or part of the total volume to be used) 

was directly applied to the flask after having harvested floating cells and medium so as 

to lyse the cells in situ. This TRIzol was then aspirated and added to that added to the 

pelleted suspension cells. Then 0.2ml of chloroform per 1ml of TRIzol was added and 

samples vortexed vigorously for 15sec and the incubation continued at room 

temperature for 2-3min. Samples were then centrifuged at 14,000rpm in an Eppendorf
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microfuge at 4°C for 15min and the upper colourless aqueous phase containing RNA 

was transferrred to a fresh tube. The RNA was precipitated by incubating with 0.5ml of 

isopropanol per ml of TRIzol Reagent at RT for lOmin. Samples were then centrifuged 

as above for lOmin and RNA pellets washed with ice-cold 75% ethanol using at least 

lml of 75% (v/v) ethanol per ml of TRIzol Reagent. RNA was spun down as above, the 

pellets air dried for 5min and dissolved in a buffer containing lOmM EDTA (pH8.0), 

1% (w/v) SDS and l|ig/|il proteinase K. To facilitate dissolving, RNA samples were 

incubated at 55-60°C for 5-10min.

To avoid degradation by contaminating RNases, a number of precautionary 

steps were taken. First, plasticware rather than glassware was preferred for handling and 

storage of solutions. All tubes were autoclaved before use. Second, all solutions 

including ddH20 were pre-treated with 0.1% (v/v) DEPC, an irreversible inhibitor of 

RNases, and autoclaved. Treatment with DEPC was carried out in a fume hood for 3h at 

37°C or overnight at room temperature. Third, the buffer used to dissolve RNA 

contained SDS and proteinase K and this serves to inhibit any residual RNases or those 

that carried over during subsequent handling of the samples. Finally, all solutions were 

pre-cooled in ice and all manipulations and centrifugations were carried out at 4°C. The 

concentration was determined spectrometrically (see section 5.3.4)

5.3.7.2 Electrophoresis of RNA

20|ig of RNA was ethanol precipitated (see section 5.3.2.1) and the pellets 

resuspended in 22|il of RNA sample buffer freshly made as below. Formaldehyde gel- 

running buffer is (5x FGRB: 0.1M MOPS [pH7.0], 40mM NaAcetate and 5mM EDTA 

[pH8.0]).
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lOx formaldehyde gel-loading buffer is (lOx FGLB: 0.25% (w/v) bromophenol blue, 

50% (v/v) glycerol and ImM EDTA [pH8.0]).

2\i\ 5x formaldehyde gel-running buffer 

3.5pl formaldehyde (40.6%, v/v) 

lOpl formamide (>99%)

2pl lOx formaldehyde gel-loading buffer 

2.5pl ddH20

2pl Ethidium bromide (lO^ig/ml)

The RNA samples, with 5pg of RNA size markers analysed in parallel, were 

denatured by incubation at 65°C for 15min followed by immediate chilling on ice. They 

were then loaded in 1.1% (w/v) agarose gel containing 6.5% (v/v) formaldehyde in 

lxFGRB and electrophoresis was carried out in lxFGRB (see above) at 80mM for 3-4h. 

At the end of electrophoresis, RNA gels were visualised under a TF-35M UV 

transilluminator and 28s, 18s and low molecular weight RNA bands seen could give a 

rough idea with regard to the quality of RNA samples and also act as a loading control.

5.3.7.3 Transfer of RNA to membrane

Following electrophoresis, RNA gels were rinsed in dH20 for 5min, followed 

by soaking in 20xSSC (3M NaCl, 0.6M sodium citrate, pH7.0) for 20-60min. They 

were then transferred to Hybond N nylon membrane (Fingerprint grade) by capillary 

action overnight in 20 x SSC using multiple layers of tissue paper pressed down by a 

weighted glass plate. After transfer, the membrane was air-dried and UV cross-linked
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using a UV Stratalinker 1800 UV cross-linker. Lanes containing RNA markers were 

fixed in 0.5% acetic acid for 5-10min and then stained with 0.04% (w/v) methylene blue 

in 0.5M NaAcetate (pH5.2) for 5-10min to allow size identification for probed 

messenger RNAs.

5.3.7.4 Random-primed radiolabelling of DNA probes

All DNA probes used for hybridisation to Northern blots were labelled with 

[a P]dCTP using a random-priming kit (Boehringer Mannheim) according to the 

manufacturer’s instructions. Briefly, lOOng of probe in 8p.l lxTE (see section 5.2.2) was 

denatured by boiling at 100°C for 5min and chilling on ice immediately. To the 

denatured probe, the following were added:

lOx hexanucleotide mix 2jil

0.5mM dNTPs (dATP+dGTP+dTTP) 3pi

[a-32P]dCTP ( I0(Ci/jj.l) 5|il

Klenow enzyme (lOU/pl, Gibco) 2 pi

The reaction mix was incubated at 37°C for 30min. Unincorporated nucleotides 

were removed by gel filtration on Nick column (Pharmacia). To prepare the columns, 

the storage buffer was poured off, the column was filled with elution buffer ( O.lxSSC, 

0.1% SDS) and it was allowed to empty under gravitational flow. The probe was then 

loaded carefully onto the top of the column followed by 400pl of elution buffer. Any 

eluted liquid at this point was discarded. Another 400pl was added onto the top of the

132



column and the eluent was now collected. This eluent containing the radio-labelled 

probe was boiled for 5min and then chilled immediately on ice to denature the probe.

5.3.7.5 Pre-hybridisation and Hybridisation

The membranes were prehybridised in a 42°C shaking water bath for l-3h or 

overnight depending on the strength of the signals expected. Hybridisation buffer 

contained 4xSSPE (20xSSPE: 3M NaCl, 0.2M NaH2PC>4, 25mM EDTA, pH7.4), 50% 

(v/v) formamide, 5xDenharts (50xDenhardts: 1% (w/v) Ficoll-400, 1% (w/v) 

polyvinylpyrrolidone, 1% (w/v) BSA), 0.5% (w/v) SDS and 200pg/ml denatured 

salmon sperm DNA. Following prehybridisation, radio-labelled probe was boiled for 

5min, chilled on ice and added to the hybridisation buffer. The membrane was 

subsequently hybridised overnight under the conditions described above.

5.3.7.6 Washing and Autoradiography

After hybridisation, the membranes were washed under increasingly stringent 

conditions as follows: twice in 2xSSPE, 0.1% (w/v) SDS at 25°C for lOmin, once in 

lxSSPE, 0.1% (w/v) SDS at 25°C for lOmin and finally 2-3 times in O.lxSSPE, 0.1% 

(w/v) SDS at 65-68°C for 10-15min. The membranes were then exposed to a Kodak X- 

OMAT-AR imaging film at -70°C for the required time.
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5.3.7.7 Stripping of blots

The radio-labelled probe was stripped from the blots by placing in boiling 0.1 % 

SDS and shaking until the solution cooled to room temperature. The blots were then 

hybridised to another probe as described above.

5.3.8 DNAse 1 Footprinting

DNase 1 footprinting analysis was carried with slight modifications to the 

method described by Plumb and Goodwin (365).

5.3.8.1 Generation of radiolabelled probes

50jng of plasmid DNA was digested with an appropriate restriction enzyme in a 

total volume of lOOjil for 2-3h (see section 5.3.3.1). At the end of the digestion, 20|il of 

calf intestinal alkaline phosphatase (lU/pl, Boehringer Mannheim, diluted from 

purchased stock) was added and the incubation continued at 37°C for another 30min. 

Then, lOpl of 10% (w/v) SDS, 5pl of 2M NaCl and 5pl of EDTA (pH7.5) was added 

and the mixture heated at 68°C for 5min to inactivate the enzyme. The DNA was 

Phenol-Chloroform-Isoamyl alcohol extracted and ethanol precipitated (see section 

5.3.3.1) . The pellets were dissolved in 45pl of a solution containing lOOmM Tris.HCl 

and ImM EDTA (pH8.0). 7|il of such dephosphorylated DNA (approximately 7|ig) was 

used for each 5’-end labelling reaction as follows.
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The following reaction mix was prepared:

dephosphorylated DNA (~lpg/pl) 7pi 

lOx Kinase Buffer (Gibco) 3pi

50mM DTT 3pl

20mM spermidine 3pi

ddH20 l lp l

The mixture was heated at 70°C for 5min to denature the ends of the DNA and 

then quickly chilled at -20°C. It was then thawed on ice and 5pi of [y-32P]dATP (lOpCi/ 

pi), Amersham) and 0.7pl of T4 polynucleotide kinase (lOU/pl, Gibco) were added and 

incubated at 37°C for lh  before adding lp l of 0.2M EDTA (pH7.5) and incubation at 

70°C for lOmin to inactivate the enzyme. Then lOOpl of TE (see section 5.2.2) was 

added and the mixture deproteinised by PCI extraction (see section 5.3.2.1). The 

aqueous phase was transferred to a fresh microfuge tube and lOpl of 4M NaCl, 3pl of 

calf liver tRNA (lOmg/ml, Boehringer Mannheim) added, and the DNA was 

precipitated with 3 volumes of ethanol (see section 5.3.2.1). The pellets were dissolved 

in 90pl of TE (see section 5.2.2), lOpl of 1M KAcetate added and the DNA was re

precipitated with ethanol as above. The DNA pellets were then dissolved in 17pl of 

ddH20 and the second restriction enzyme digest carried out in the appropriate buffer in 

a total volume of 20pl for 2h. At the end of the incubation, 5pl of 6x DNA gel-loading 

buffer (see section 5.3.3.1) was added and the 5’ labelled probe separated from the rest 

of the plasmid by gel electrophoresis using a 1-1.5% agarose gel (see section 5.3.3.2). 

The gel was exposed to a Kodak X-OMAT-AR imaging film for 5min, the film 

developed and the radiolabelled DNA excised from the gel by 

aligning the autoradiograph with the gel. A second exposure
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was then taken to ensure this had been adequately removed. The probe was then 

purified using the QIAquick Gel Extraction Kit for Agarose gel (see section 5.3.3.3) and 

the DNA was eluted into lOOjil of ddH20.

5.3.8.2 Isolation of nuclear protein

NB4, HL60 or HeLa cells were cultured as described ( see section 5.1.1) and 

eventually transferred to Roller bottles (Falcon, Becton Dickinson) incubated on a 

New Brunswick RollaCell roller at 37°C to increase the amount of cultured cells. When 

the cell number had reached approximately 109, they were pelleted by spinning at 1700 

rpm (860g) for lOmin at 4°C in a H6000A/HBB6 swing-out rotor using the Sorvall 

centrifuge RC3C. The pellets were washed once with ice-cold TMS solution (5mM 

Tris.HCl, 2.5mM MgCl2 and 125mM sucrose, pH7.5). The volume of the pellet was 

estimated and this was resuspended in 4 times its volume of 2x TMS with Triton X-100 

(about 0.1%), ImM DTT, lOmM P-mercaptoethanol and proteinase inhibitors and 

incubated on ice for 10 minutes. (The exact percentage of Triton -X-100 was adjusted 

for different states of NB4 differentiation and for the different cells types to make sure 

there was cytoplast rupture but that nuclei remained intact after homogenisation, as 

judged by phase-contrast microscopy).

The freshly added proteinase inhibitors (0.5mM benzamidine, lOmM 13- 

glycerophosphate, 2mM levamisole, 0.5mM PMSF, lOmM sodium butyrate, 5mM 

sodium orthovanadate (pH8.0) and l|Lig/ml each of aprotinin, bestatin, leupeptin and 

pepstatin), ImM DTT and lOmM (3-mercaptoethanol were also added to TMS solutions 

used in all the following steps. The cell suspension was homogenised with 30-40
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strokes of a Dounce homogeniser and centrifuged at 2000 x g for 10 minutes at 4°C. 

The pellet was washed first in 2xTMS with Triton (at the same concentration as before), 

and then in 2xTMS. The pellet was suspended in 10ml of 2xTMS and nuclear integrity 

assessed by microscopy. 750|il of 5M NaCl was added drop-wise on ice and the 

solution incubated for 30 minutes with continuous stirring. The suspension was 

centrifuged at 2000g for 10 minutes at 4°C, and the supernatant kept. The pellet was 

resuspended in half the original volume, and the addition of NaCl and centrifugation 

repeated. The pooled supernatants were centrifuged in a T1270 rotor using Sorvall 

OTD- ComBI Ultracentrifuge at 35,000rpm for lh at 4°C. The supernatant was 

removed, its volume measured, and 0.45g (NH4)2S04 added per ml. The mixture was 

vortexed to dissolve the salt and then stirred on ice for 30min. The suspension was 

centrifuged at 15,000 rpm for 15 minutes at 4°C using the Sorvall RC-5B Superspeed 

Centrifuge. The supernatant was discarded and the pellet resuspended in 2ml of 2xTMS 

containing 0.35M NaCl. This was dialysed overnight against 1 litre of protein storage 

buffer (50mM NaCl, 20mM Hepes, pH 7.9, 5mM MgCl2, ImM DTT, proteinase 

inhibitors and glycerol 20% v/v). The next day, the samples were ultracentrifuged in a 

TLA100.3 rotor using the Beckman centrifuge TL100 at 35,OOOrpm for lh at 4°C. The 

supernatant was aliquotted into sterile microfuge tubes, snap frozen in liquid N2 and 

stored at -70°C.

5.3.8.3 G and A tracking reactions

The positions of footprints within the promoter were localised by utilising A+G 

chemical sequencing reactions (366). 9.5jll1 of 32P-labelled probe were mixed with 0.5pi 

of yeast tRNA (lOmg/ml) and 1.5pl of 88% (v/v) formic acid. The reaction mix was 

incubated at 37°C for 14min, chilled on ice and 150|Ltl of freshly prepared 1M aqueous
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piperidine added to cleave the DNA at 90°C for 30min. At the end of the incubation, the 

samples were chilled on ice and precipitated by the addition of 1ml of butan-l-ol 

followed by spinning at full speed in a microfuge for 2-5min. The pellets were 

resuspended in 1% SDS and re-precipitated with 1ml of butan-l-ol as above. The pellets 

were dried in a Heto Vac speedivac (Inter Med) for 5min, resuspended in 10-30pl of lx  

Sequencing Gel Loading Buffer (see section 5.3.8.4) and then separated in a urea 

denaturing polyacrylamide (see section 5.3.8.4) gel along with samples from 

footprinting reactions.

5.3.8.4 Footprinting reaction

Nuclear protein extract (40pg or 200pg) was incubated with approximately 

30ng of (-240/+15) defensin promoter sequence (lxlO3 cpm/ng), end-labelled with y32P- 

dATP on one strand and 6pg of poly (dldC) on ice for 1 hour in a total volume of lOOpl 

of protein storage buffer ( with proteinase inhibitors as indicated in section 5.3.8.1). 

Incubation was then further continued for 20 minutes at 25 °C. In the control reaction 

bovine serum albumen was used instead of nuclear proteins.

As DNA fragments are extremely sensitive to DNasel, minor inconsistencies in 

handling could cause large differences in digestion. To circumvent this problem: 

handling was kept as consistent as possible; the reactions were carried out one by one 

and, in addition various amounts of DNase I were used in each experiment. Briefly 0.5, 

1.0 or 1.5 U of DNAasel (Boehringer Manheim - diluted from purchased stock to 

lU/pl) was added to the protein-DNA incubation, the mixture briefly vortexed and then 

incubated for 20 seconds at 25°C. Reactions were stopped by adding, footprint stop 

buffer (resulting in a final concentration in the reaction tube of 4 x TE (pH8), 0.5%
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SDS, 0.5M NaCl, 0.33pg/ml tRNA, and 2jig/ml proteinase K) and transferring the 

sample onto ice. The mixture was incubated at 37°C for 30 minutes to allow protein 

digestion by the proteinase, and the DNA denatured at 90°C for 2 minutes. The DNA 

was then deproteinised by two phenol/chloroform/isoamyl alcohol extractions and a 

chloroform extraction. Nucleic acid was ethanol precipitated overnight using 15pi of 

5M LiCl (final concentration, 0.4M) and by the addition of 3 volumes of ethanol. The 

DNA was pelleted by spinning the samples at 14,000rpm in an Eppendorf microfuge 

and the pellets were washed once with ice-cold 75% (v/v) ethanol. After air-drying, the 

pellets were dissolved in 8pl of sequencing buffer (95% formamide, 20mM EDTA, 

0.05% bromophenol blue, 0.05% Xylene Cyanol FF).

5.3.8.5 Gel analysis

The DNAse 1 digested and deproteinised DNA in sequencing buffer was 

denatured for 3 minutes at 90°C, cooled on ice and 4pi of the sample was loaded onto a 

denaturing (42% w/v urea) 6% polyacrylaminde gel which had been pre-run for 1 hour 

at 66 watts (1.6kV) at room temperature with lxTBE as running buffer. After sample 

loading, the gel was run in similar conditions for 2-3 hours, vacuum dried on Whatman 

paper, and exposed to Kodak imaging film. The polyacrylamide gels were prepared 

from a stock solution with 40% acrylamide and 2.1% bis-acrylamide as described in 

Sambrook et al (357).
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5.3.9 Electrophoretic Mobility Shift Assay(EMSA)

5.3.9.1 Preparing double stranded oligonucleotides

250pmols of each complementary oligonucleotide were added to a solution 

containing 0.1M NaCl in lxTE (see section 5.2.2) in a total volume of 100|il. The 

mixture was boiled in a water bath for lOmin and then left to slowly cool down to RT in 

the water bath. The concentration of the annealed double-stranded oligonucleotides was 

2.5pmols/pl. Oligonucleotide probes used for band shifts are shown below (references 

from where competitor oligonucleotides were obtained are also indicated).

FPoc: ACAGAAAGTAACCCCGGAAATTAGGACACCTCATCCC

FPa mut-ets: ACAGAAAGTAACCCCactAATTAGGACACCTCATCCC

FPp: TTTAACCTC ACCTTCCC ACC A A ATTTCTC A ACTGTCCTTGCC ACC AC A

FPpmut-c/ebp: TTTAACCTC ACCTTCCC ACC AAgggTaTCAACTGTCCTTGCC ACC AC A

FP{3mut-myb: TTTAACCTCACCTTCCCACCAAATTTCTCgAgTcTCCTTGCCACCACA

FP|3 mut-aml: TTTAAtCTCgCCTTCCC ACC A AATTTCTC A ACTGTCCTTGCC ACC AC A

FPy: GGT AG ATG AG AGGTTCCTCTGTGG AGTTCT ACTTT AA

FPy mut-ets: GGTAGATGAGAGGTagtTCTGTGGAGTTCTACTTTAA

FPy mut-pu. 1: GGT AGATGAGAGGTTCCgaTGTGGAGTTCT ACTTT AA

Oligonucleotide name Oligonucleotide sequence Reference

ets (neutrophil elastase) GTGTCCCC AGGG AGG A AGT AGGGCT (321)

pu.l (c d l lb ) CTTCTGCCTCCTACTTCTCC1TTT CTGCCCT (304)

myb (SV40 enhancer) TTCGGC AT A ACGGTTCCGT AGCC (367)

c/ebp (M IP -la ) GCTGCAGATTGCGCAATCTGCAGC (263)

c/ebp-aml (M-CSF Receptor) CAAGATTTCCAAACTCTGTGGTTGCCTTGC (238)

ami (neutrophil elastase) CAGTAGGGCTGTGGCCAGGATGGG (354)

mut-aml (neutrophil elastase) CAGTAGGGCcGaGaCCAGGATGGGG (354)
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5.3.9.2 Radiolabelling of probes

5'-end labelling of double stranded oligonucleotides was carried out as 

previously described by Plumb et al (368). 2pl (5pmols ~ 200ng) of double-stranded 

oligonucleotide annealed as described above was 5'-[32P]-end labelled in the following 

reaction:

lp l lOx kinase buffer (Gibco)

0.5pl lOOmM DTT

lp l 20mM spermidine (Sigma)

2.5pl ddH20

2pl [y-32P] dATP (lOptCi/pil, Amersham)

lptl T4 polynucleotide kinase (lOU/pi, Gibco)

The above mixture was incubated at 37°C for 45minutes. The labelled 

oligonucleotides resulting from this reaction were then electrophoresed in a lxTBE (see 

section 5.2.2), 8% (w/v) polyacrylamide gel (prepared from a stock with 40% 

acrylamide and 2.1% bis-acrylamide) at 100-150V for l-2h in lxTBE running buffer. 

The gel was exposed to a Kodak X-OMAT-AR imaging film for 2min, the film 

developed and the radiolabelled oligonucleotides excised from the gel by aligning the 

autoradiograph with the gel. A second exposure was then taken to ensure the 

oligonucleotides had been removed. The gel slice was pureed by centrifuging it through 

a pinhole in the bottom of a 250pl microfuge tube into a 500pi tube and this then 

incubated at 37°C overnight in 400pl lxTE (see section 5.2.2). The gel fragments are 

then pelletted by rapid centrifugation in an Eppendorf microcentrifuge and the 

supernatant is used as the probe for EMSA experiments. To estimate the 

amount of unlabelled sequence used in competition experiments it was assumed that
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80% of the oligonucleotides was recovered during the procedure, giving a concentration 

of labelled oligonucleotides of approximately 5 fmols/pl

5.3.9.3 Isolation of nuclear protein

NB4 Nuclear protein extract used for EMSA was the same extract that was used 

for footprinting reactions, the rationale being that similar features of transcription 

factor-DNA binding were being studied in both experimental procedures so it did not 

make sense to use a different type of protein extract. HL60 or HeLa proteins extracts 

were prepared in a similar manner except for that used in the figure 34a where the 

extract used was produced by a rapid micropreparation technique exactly as described 

by Andrews and Faller (369).

5.3.9.4 Incubation reaction and gel analysis

Unless otherwise specified, nuclear protein extract (5|ig) was pre-incubated with 

unlabelled DNA sequences (including 2 pmoles of competitor oligonucleotides where 

applicable ) for 10 minutes on ice with 15|il of buffer 1 including proteinase inhibitors 

in final concentrations similar to those used in footprint protein storage buffer (see 

section 5.3.8.1) The final buffer concentration in the reaction was: 5% glycerol, 190mM 

KC1, 50mM Hepes, pH7.5, 0.3% non-fat milk, 0.25% Nonidet P-40, and 25|ig/ml poly 

dldC. 2pl of y^P-dATP end-labelled probe (approximately 10 fmol, 105 cpm) was 

then added up to a total volume of 20jil and the reaction incubated at 25°C for 20 

minutes. DNA-protein complexes were separated by electrophoresis through a 6% non

denaturing polyacrylamide gel with 0.5 x TBE as running buffer (30v, 50mA) for
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about 3.5 hours at 25°C after pre-running for about half an hour under the same 

conditions. Gels were fixed in 10% acetic acid/methanol, vacuum dried and exposed to 

photographic film (Kodak X-OMAT- AR5).

5.3.9.5 Modifications of EMSAs including supershift analysis

Modifications to the above procedure are described when used in particular 

experiments in the text and particularly in the figure legends. These include different 

incubation lengths, pre- or post-addition of antibodies, different electrophoresis running 

buffers and different gel concentrations to enhance separation of particular complexes. 

One common variable introduced was the use of different buffers with different reaction 

volumes. These different buffers were originally used in order to better replicate the 

conditions for particular antibody-antigens reactions as had been originally described by 

their developers. Later, however, they were also occasionally used, in order to try and 

better view certain particular complexes or interactions. These buffers were buffer 2 

which was used by Chumakov et al. (370) with the anti-N-terminal C/EBPe antibody 

but modified with dldC (ljig/reaction) as non-specific competitor instead of salmon 

sperm DNA. Generally, 5pg not 10 jig of nuclear protein extract was used in the 

reaction. The total reaction volume when using this buffer ( final concentration 20mM 

Hepes, [pH 7.9], 20% glycerol, 125mM NaCl, 1.5mM MgCl2, 0.2mM EDTA, 0.1% 

Triton-X-100, ImM DTT, ImM PMSF, 10|ig/ml leupeptin, lOjig/ml pepstatin A, and 

lOOjig/ml aprotonin) was just 12 jil. When using this buffer, labelled probe was added 

immediately after nuclear extract ( there was no pre-incubation between extract and 

unlabelled competitor DNA) and complexes formed were separated by electrophoresis 

through a 4.5 % (as opposed to 6%) polyacrylamide gel. Buffer 3 was used primarily
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with antibodies to GABP (322). lOpg of nuclear protein extract ( or 25 ng of purified 

GABP proteins ) are used with this buffer (final concentration : lOmM Tris[pH 7.5], 

50mM NaCl, ImM EDTA, ImM p-mercaptoethanol and 1% Ficoll) in a total reaction 

volume of 30pl, a modification from the 15pl total volume previously used). Poly dl-dC 

was added to the reaction in different concentrations depending on whether purified 

proteins (0.5 jig) or nuclear extract (2.0 (ig) were being analysed. Using this buffer, the 

whole incubation is just kept on ice for 10 minutes before electrophoresis through a 4.5 

% polyacrylamide gel, more often than not with a 0.25 x TBE running buffer ( which is 

better than the normal 0.5x TBE to allow GABP binding).

In “supershift” analysis, unless otherwise specified, 2pl of pre-immune serum or 

anti-serum were added to the DNA-protein binding mix just after addition of the 

labelled probe sequence. Incubation and gel electrophoresis were carried out as 

described (section 5.3.9.4).

5.3.10 Western Blot Analysis

5.3.10.1 Isolation of nuclear protein

Nuclear protein extract used in western blots for GABP and PU.l detection were 

the same protein extract made for footprinting or EMSA both in the case of NB4 and in 

the case of HeLa nuclear extracts. Different time point nuclear protein made for Myb 

western blot analysis was made by rapid micropreparation as described by Andrews and 

Faller (369). Basically, 107 cells were pelleted by centrifugation at about 1500 rpm and 

resuspended in 1.5 ml of ice cold PBS. They were repelleted by centrifugation for 

lOseconds in an Eppendorf microfuge and the supernatant wash was discarded. The
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pellet was resuspended in 400 p.1 hypotonic lysis buffer (10  mM Hepes/KOH [pH7.9], 

1.5mM MgCl2i10mM KC1, 0.5 mM DTT, 0.2 mM PMSF at final concentration) and left 

to swell on ice for 10 minutes. The suspension was then vortexed for 10 seconds to 

break the cytoplasmic membrane and release the nuclei. The nuclei were pelleted by 

microfuging for 10 seconds and the supernatant discarded. The pellet was suspended in 

about 50 |il of high salt buffer (20mM Hepes/KOH [pH7.9], 25% glycerol, 420mM 

NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 0.2mM PMSF at final 

concentration) and incubated on ice for 20 minutes. The cellular and nuclear debris was 

pelleted in a microfuge through a 10 second spin and supernatant was split into 20pl 

aliquots, frozen in a dry-ice-alcohol bath and stored at -70°C.

5.3.10.2 Quantification of samples

The concentrations of protein extracts were determined by the Bicinchonininc 

acid protein assay. The working reagent was prepared by mixing 50 parts of reagent A 

(Bicinchonininc acid solution, Sigma) with 1 part of Reagent B (CuSC>4.5H20 4% w/v 

solution). lOpl of test protein samples or each of the BSA protein standards (80, 100, 

200, 400, 1000 and 2000 jig/ml)was added to 200jll1 of the working reagent and the 

mixture was incubated at 37°C for 30min. The absorbance at 562nm was measured 

using a spectrophotometer.

5.3.10.3 SDS-Polyacrylamide gel analsis (PAGE)

For Western blot analysis, the appropriate amount of protein extract was mixed 

with an equal volume of 2x SDS loading buffer (lOOmM Tris -pH 6.8, 200mM DTT,
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4% SDS, 0.2% bromophenol blue and 0.2% glycerol) and denatured by boiling for 5- 

lOmin. The samples were then ready for use in SDS polyacrylamide gel electrophoresis. 

Denatured protein samples in loading buffer were separated by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) in the appropriate percentage (5-15%) of acrylamide 

resolving gels containing 0.1% (w/v) SDS, 0.1% (w/v) Ammonium persulphate(APS), 

0.04% TEMED in 1.5M Tris.HCl (pH8.8). 5% acrylamide stacking gels, containing the 

same concentration of SDS, APS and TEMED, were made in 1.0M Tris.HCl (pH6.8). 

Gels were prepared from a stock with 30% (w/v) acrylamide and 0.8% (w/v) bis- 

acrylamide. Electrophoresis was carried out in lx Tris-glycine electrophoresis buffer 

(250mM glycine[pH8.3], 0.1% (w/v) SDS and 25mM Tris.) at 150-200V.

5.3.10.4 Wet Blotting

This procedure was carried out using the Bio-Rad wet transfer apparatus. Any 

unused parts of the gel as well as the stacking gel are cut away. 4 pieces of Whatman 

3MM paper and 1 piece of Immobilon membrane, the size of the gel were cut out. 2 

pieces of 3MM paper were soaked in Towbin buffer ( 4 litres are made with 12.11 g 

Tris, 57.6g Glycine, 800mls of methanol and 1.2 mis of concentrated HC1 and water). 

These 2 soaked 3MM paper pieces are placed of one of the sponge sheets. Any air 

bubbles were squeezed out. The gel was washed in Towbin and placed on these 3MM 

paper pieces. The Immobilon was wetted in Towbin, placed carefully on the gel and 

extra care was taken to ensure no air bubbles were present between the gel and the 

membrane. The remaining two sheets of 3MM paper were similarly soaked in Towbin 

and placed on the nitrocellulose and again care was taken to ensure no bubbles were 

present. Any present were sqeezed out by rolling a glass rod over the sandwich. The 

remaining sponge sheet was placed over the whatman paper and the entire sandwich is
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enclosed within the plastic holding frame. This sandwich plate was locked so as to hold 

the contents firmly in place between the sponge sheets and inserted into the tank 

compartment of the apparatus with the nitrocellulose on the side of the red plug 

(cathode) and the gel on the side of the black plug ( anode). The tank was filled with 

Towbin, closed and transfer was performed over night at 4°C and 30 V.

5.3.10.5 Protein detection

The membranes were incubated in a blocking solution (5-10% (w/v) dairy milk 

powder(‘Marvel’ see section 4.5) in lx Tris-buffered saline-Tween (lxTBS-T: 20mM 

Tris, 137mM NaCl and 3.8mM HC1, pH7.6, plus 0.1% (v/v) Tween 20)) at 4°C 

overnight or at RT for l-2h with constant vigorous shaking. After blocking, the blots 

were washed in lxTBS-T (see above) as follows: two brief rinses at RT, one wash at RT 

for 15min with constant vigorous agitation and finally two washes at RT for 5min. Then 

the membranes were incubated with a 1:1-5,000 dilution of the primary antibody in 

TBS-T containing 5-10% (w/v) dairy milk power at RT for lh or 4°C overnight with 

constant vigorous agitation. At the end of the incubation, the membranes were washed 

as described above and then incubated with a 1:5,000 secondary antibody in TBS-T 

containing 5-10% (w/v) dairy milk power at RT for lh with constant agitation. The 

membranes were then washed again as described above and antibody binding detected 

using the ECL system (Amersham). Equal volumes of detection solution I and II were 

mixed and the mixture placed onto the membranes with protein-side up. After 

incubation for exactly lmin, the membranes were wrapped in Saran Wrap and exposed 

to a Fuji Medical X-ray imaging film for the appropriate length of time.
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5.3.11 In Vitro Transcription/Translation

In vitro transcription and translation of the Fli-1 protein were carried using the

TNT T7 Quick Coupled Transcription/translation System (Promega) following the

manufacture’s instructions. The following reaction components were assembled:

TNT T7 Quick Master Mix 40|il

[35S]methionine (10(Ci/pl, Amersham) 4 jll1

DNA template lfig

nuclease-free ddFQO make up to 50pl

The reaction was incubated at 30°C for 90min. The radioactive translation 

products were analysed on an SDS-polyacrylamide gel as follows. 5|il aliquot was 

added to 20|il of lx SDS-sample buffer (see section 5.3.10.3). After denaturation by 

boiling at 100°C for 2min, the samples were then analysed by SDS-PAGE (see section 

5.3.10.3). At the end of the electrophoresis, the gel was dried down and exposed to a 

Kodak X-OMAT AR imaging film for 6-16h at RT. For producing non-radioactive 

translation products, 1 jllI of ImM unlabelled methionine was substituted for the 

[ S]methionine for gel retardation assays (see section 5.3.9.4).
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Results

Chapter 6: Characterisation of the NB4 cells

Having obtained a clone of the differentiable, NB4 acute promyelocytic 

leukaemia cell line, which had already been shown to express defensin, we 

characterised these cells as regards differentiation and as regards defensin expression to 

assess whether they would represent a good experimental model for promoter studies.

6.1 Differentiation of NB4 cells - Morphological Changes

Undifferentiated NB4 cells appear as typical leukaemic blasts with large nuclear 

to cytoplasmic ratios and finely dispersed chromatin (Figs. 6 and 7). Nucleoli are not 

clearly defined and granules are also not identifiable, as is sometimes the case in Acute 

Promyelocytic Leukaemia.

During granulocytic differentiation, induced with 1 pM all-trans retinoic acid 

(ATRA), the nucleoli rapidly become prominent (by 24 hours) and the nuclear to 

cytoplasmic ratio begins to decline (Fig.6). Mitotic figures are no longer visible after 48 

hours of ATRA-induction indicating a cessation of cell division. After 72 hours of 

granulocytic differentiation, the characteristic multi-lobed nucleus of the mature 

granulocyte begins to appear with the nuclear chromatin becoming particularly 

condensed by 5 days after the initiation of ATRA-induction. Concurrently the

149



Fig.6 ATRA-induced maturation of NB4 cells towards the granulocyte neutrophil 
lineage.
Morphological evidence of maturation, as evidenced by May-Grunwald Giemsa 
staining. The panels to the left of the page show cells at a 400 x magnification 
whilst the panels to the right are magnified by 1000 x and viewed by oil immersion.
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Fig.7 Vitamin D3 and Phorbol Myristate Acetate (PMA) - induced monocytic 
differentiation of NB4 cells.
Morphological maturation as evidenced by May-Grunwald Giemsa staining. The top 
three panels show cells at a 400 x magnification whilst the cells in the bottom panel 
are magnified by 1000 x and viewed by oil immersion.
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cytoplasm becomes somewhat more granular and appears foamy probably due the 

presence of numerous vacuoles/granules.

Monocytic differentiation is induced using 0.4pM Phorbol 12-Myristate 13- 

Acetate (PMA) and 0.4pM 1,25-dihydroxy Vitamin D3 (Fig.7). There is early 

withdrawal from the cell cycle as evidenced by the rapid disappearance of mitotic 

figures in less than 24 hours. By this time point a large majority of the cells (about 

80%), are adherent to the plastic at the bottom of the flask. Nucleoli also become more 

prominent as during early granulocytic differentiation and small pseudopodia are 

identified as irregularities of the cellular circumference. These become more apparent as 

differentiation progresses resulting in a characteristic monocyte-like cell with horseshoe 

shaped nucleus, foamy cytoplasm and irregular cell outline by 72 hours of induction 

(Fig.7).

6.2 Functional Evidence of Granulocytic differentiation

Granulocytic differentiation is monitored by the capability of NB4 cells to 

reduce the dye Nitroblue tetrazolium (NBTZ). The appearance of insoluble blue 

crystals within the cells allows the percentage of cells showing this activity to be 

counted (Fig. 8). By counting the number of blue cells and the total cell number within a 

fixed number of high power fields, the percentage of NBTZ-reducing cells at different 

time points of ATRA-induced differentiation can be plotted. Fig. 9 which shows a 

representative experiment indicates that at 48 hours of induction, 40 to 50 % of the cells 

are capable of converting NBTZ whilst by 96 hours, more than 80 % of the cells have 

acquired this potential. This variability in reduction activity is probably partly due to
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Fig.8 Changes in reducing ability during granulocytic NB4 cell differentiation. 
Nitroblue tetrazolium (NBTZ), a yellow dye is incubated with cells at different time 
points of differentiation. According to the reducing activity of the cells, the dye is 
converted into blue insoluble formezan precipitate. The left and topmost right panel 
show cells at a 400 x magnification whilst the cells in the 3 lower right panels are 
magnified by 100 x.
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Fig.9 Assessing granulocytic differentiation by quantifying the 
amount of cells, reducing NBTZ.
Samples of the induced culture are assayed at different time points 
following the initiation of incubation with ATRA. The percentage of 
cells having such reducing ability is calculated from the fraction of 
blue-staining cells out of the total number of cells counted per high 
power microscope field. An average fraction calculated from 10 
such fields is used.
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cells being at different stages of the cell cycle within the growing NB4 population when 

induction was initiated. This may effect the actual initiation of differentiation in 

particular cells. Interestingly the cell concentration at induction of differentiation also 

influences the rate of differentiation (371) so uniformity between experiments is of the 

utmost importance. However studies with other myeloid cell lines have shown a certain 

cell-cycle independent variability since even if cells are sorted for cell cycle status and 

differentiated as a sorted population, some cells show activity as early as 24 hours after 

induction whilst the great majority do not (372). NB4 cells which are transfected after 

20 hours of ATRA-induction and are assessed by NBTZ staining 48 hours after 

initiating induction, reduce the dye to a similar extent as do untransfected cells at this 

time point during differentiation (Fig. 8). This is very important and indicates that 

granulocytic differentiation is not significantly perturbed by the transfection procedure 

and that results obtained by these studies therefore accurately represent defensin 

promoter function in cells differentiated to a time point equivalent to non-transfected 

cells.

6.3 Functional Evidence of Monocytic Differentiation

Monocytic differentiation was assayed by non-specific esterase testing as well 

as by morphological changes. As can be seen in Fig. 10, a progressive increase in such 

esterase activity (as indicated by the dark intracellular staining) can be detected from as 

early as 4 hours after the induction of monocytic differentiation. The intensity of this 

staining within individual cells in the population is rather variable even at the later 

stages of differentiation where morphological transformation is clearly indicative of the
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Fig. 10 Non-specific esterase activity in NB4 cells induced to differentiate to 
monocytes.
Enzyme activity results in the conversion of a soluble dye to dark insoluble 
precipitates within the cells. The extent of activity clearly varies between different 
cells at the same time point following induction. The right panels show cells at a 100 
x magnification whilst the cells in the lower left panels are magnified by 1000 x and 
is viewed by oil immersion.
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monocytic/macrophage phenotype. However, when compared to uninduced cells which 

lack any such staining, and counting the number of staining cells and total cells per high 

power field, the percentage of staining cells (albeit weak staining in many cells) 

increases rapidly to around 80% within the first 24 hours. After this there is a further 

small increase in staining as is shown in Fig. 11 which documents a representative time 

course experiment. This pattern of rapid increase in esterase activity closely follows the 

rapid morphological changes seen during monocytic differentiation, as opposed to the 

more drawn out changes in granulocytic differentiation. The high power view of a 

heavily stained cell at 72 hours of differentiation clearly also shows the characteristic 

monocyte bi-lobed nucleus (Fig. 10)

6.4 Defensin expression during NB4 cell differentiation

Since studying the factors responsible for stage-specific expression was the aim 

of this work, defensin mRNA abundance in NB4 cells during chemically induced 

differentiation down each pathway was analysed. Northern Blots of RNA prepared at 

different time points during differentiation were probed with a complete HNP-3 

defensin cDNA (Fig. 12). The same blots were also probed with a |3 2-micro globulin 

cDNA to control for loading differences between lanes.

During granulocytic (ATRA-induced) differentiation, there is a clear increase in 

defensin message abundance first detected at 16 hours post-induction and increasing to 

peak at the 24 and 48 hour time points. Studies of defensin expression upon chemical 

induction in HL60 cells indicate that the increase in mRNA abundance during ATRA- 

induced differentiation occurs as a result have increased transcription, as indicated by 

run-on assays (52). Whilst an increase in transcription is most probably responsible for
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Fig. 11 Measuring monocytic differentiation by quantification of the 
percentage of esterase-positive cells.
The percentage was calculated by identifying the fraction of cells darker 

than similarly stained uninduced cells, out of the total cells viewed per high 
power field. An average fraction from 10 such fields is used. Esterase 
activity is seen to rise sharply within a few hours of starting chemical 
induction after which a plateau is reached.
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Fig. 12 Northern blots of total RNA during chemically-induced granulocytic and 
monocytic NB4 cell differentiation.
The blots were probed with a radiolabeled defensin HNP-3 cDNA fragment (shown 
in the lower panel in each case). The same blot was re-probed with a labelled P2- 
microglobulin cDNA as a loading control (shown in the upper panel). The difference 
in the strength of the defensin signal at 0 hours between the granulocytic and 
monocytic blots is due to the much shortened exposure in the granulocytic blot in 
order to prevent over-exposure of the signal at later time points.
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Fig. 13 Increased defensin mRNA accumulation with differentiation.
Northern blot of total RNA from different time points during ATRA-induced 
granulocytic differentiation of NB4 cells was prepared. The blot was probed with a 
labelled b-actin cDNA (top panel) and subsequently with a labelled defensin HNP-3 
cDNA fragment (middle panel). Ethidium bromide staining of the gel, showing the 
18S-rRNA band was used as the loading control (lower panel).
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the inceased mRNA abundance, other factors like mRNA stabilisation effects cannot be 

excluded as playing a part in NB4 cells. One disparity between the NB4 cells and the 

HL60-based study, which may be accounted for by such a difference, is that the level of 

defensin mRNA does not return rapidly to uninduced levels after reaching peak 

abundance. This may however also be related to the different time course of 

differentiation where the HL60 cells showed peak defensin message abundance after 4 

(as opposed to 2) days. When compared to the pattern of expression of defensin in 

normal haematopoiesis, the induction of defensin expression in the NB4 cells closely 

follows this time course whilst the down regulation, which is normally seen during 

terminal stages of granulocytic differentiation, is not replicated in this in vitro model. 

For this reason I decided to concentrate my studies on defensin up-regulation as opposed 

to terminal down-regulation.

A reporter gene driven by the $-actin promoter was used in transfection studies 

(see Chap ter 12), in NB4 cells, so a repeat Northern was performed to ensure that the 

fi-actin mRNA was not increased with differentiation ensuring it to be a good control. 

Ethidium bromide staining of the total RNA served as a loading control (Fig. 13). 

Whilst there is little change in the abundance of the P-actin, there is a 10 to 12-fold 

increase in defensin message (as measured by densitometry).

Northern blots of NB4 cells induced to differentiate with vitamin D3 and TPA 

show a total absence of defensin mRNA by the 24 hour time point (Fig. 12). This is in 

accordance with what has been seen in the case of monocytic differentiation of HL60 

myeloblast cells.
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Chapter 7 : In vitro protein binding to the HNP-1 defensin 

promoter

Initial studies were performed on 240 base pairs of sequence upstream of the 

main transcriptional start site. These included both footprinting experiments and 

electrophoretic mobility shift assays (EMSAs). Both others and ourselves identified the 

main transcriptional start site as being 24 nucleotides downstream from the 3’end of the 

TATAAbox (52;364).

7.1 DNAse 1 footprinting

200 pg °f nuclear protein extract from undifferentiated NB4 cells (which 

expresses defensin at a low level), ATRA- induced NB4 cells - 40 hours ATRA 

exposure (high level defensin expression) and TP A- and Vitamin D3- induced NB4 cells 

- 24 hours inducer exposure (no defensin mRNA) were used in the initial experiments. 

These nuclear proteins are incubated with a DNA duplex fragment representing the 

above mentioned sequence labelled on only one strand, prior to addition of DNAsel at 

known concentrations for a fixed period of time.

7.1.1 Changes in footprints on the defensin promoter with differentiation

Figs. 14 and 15 show such experiments with the positive (sense) and negative 

(antisense) strands labelled respectively. The protein-DNA complexes are incubated 

with increasing concentrations (labelled as 1,2,3) of DNAsel to assess the extent of

162



Fig. 14 DNAsel footprinting of the defensin upstream sequence -240/+15 (sense 
strand).
The labelled DNA was incubated with 200 pg of nuclear protein and DNAsel at 
different dilutions. The numeration to the left of the panel indicates the position on 
the defensin promoter of the 5’ extremity of the labelled fragment migrating at that 
position. This is calculated using a similarly labelled DNA fragment cleaved in G+A 
specific positions (Maxam-Gilbert chemical cleavage reaction). Lane (B), is a control 
digestion following incubation with 200pg of bovine serum albumen to exclude non
specific protein binding effects. Lanes 1, 2 and 3 represent 0.5, 1.0 and 1.5 pi of a 
20-fold dilution of DNAsel, incubated with the DNA. U, G and M signify, 
undifferentiated, granulocytic and monocytic NB4 nuclear extract respectively.
Red boxes to the right of the gel panel indicate sequences protected from DNAsel 
digestion. The lettering to the right indicates which cellular extracts protect the 
DNA.
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Fig.15 DNAsel footprinting of the defensin upstream sequence -240/+15 (antisense 
strand).
The labelled DNA was incubated with 200 pg of nuclear protein and DNAsel at 
different dilutions. The numeration to the left of the panel indicates the position on 
the defensin promoter of the 5’ extremity of the labelled fragment migrating at that 
position. This is calculated using a similarly labelled DNA fragment cleaved in G+A 
specific positions (Maxam-Gilbert chemical cleavage reaction). Lane (B), is a control 
digestion following incubation with 200pg of bovine serum albumen to exclude non
specific protein binding effects. Lanes 1, 2 and 3 represent 0.5, 1.0 and 1.5 pi of a 
20-fold dilution of DNAsel, incubated with the DNA. U, G and M signify, 
undifferentiated, granulocytic and monocytic NB4 nuclear extract respectively.
Red boxes to the right of the gel panel indicate sequences protected from DNAsel 
digestion. The asterisks indicate the presence of marked hypersensitivity to DNAsel 
digestion. The lettering to the right of the gel indicates which cellular extracts 
protect the DNA or induce hypersensitivity.
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protection provided. The control lane (B) is also shown where an equivalent amount 

(200|ig) of bovine serum albumen was added to the same labelled DNA and was 

incubated with an intermediate concentration (as in lane 2) of DNAsel.

Protected sequences (footprints) are clearly visible (the more obvious of these 

have been indicated by an adjacent red rectangle), such as the protection of the TAT A A 

box sequence between nucleotides -22 and -30 on the antisense strand. However the 

large amount of nuclear extract may obscure differences between the different extracts 

resulting due to sufficient amounts of transcription factors being added in each case 

resulting in similar footprints.

Therefore these experiments were repeated using just 40jig of nuclear extract in 

order that only sequences bound with highest affinity by the various nuclear extracts 

would be protected (Fig. 16). The results are diagrammatically represented in Fig. 17 

where the footprinted sequences of DNA are indicated by a rectangular block the 

thickness of which represents the strength of protection seen.

In the presence of undifferentiated NB4 extract, a strongly hypersensitive site at 

position -63, on the negative strand was the major recognised feature. This hypersite 

was also detected with granulocytic but not with monocytic nuclear extracts. In 

addition, granulocytic extract (and monocytic extract to a lesser extent) protected a 

sequence stretching from -62 to -50, just downstream of the above mentioned hypersite 

and another stretch of sequence starting from the TATA box at -30 downstream till -10 

(Fig. 16). These sequences close to the initiation site were also protected weakly by 

undifferentiated NB4 nuclear proteins.

Using this reduced amount of nuclear protein (40pg), the TATA box sequence 

was strongly protected only by granulocytic nuclear extract indicating that high affinity 

binding to the site (possibly by a component of the basic transcription machinery) only
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Fig. 16 DNAse 1 footprinting of the defensin -240/+15 upstream sequence using 40|ig 
of nuclear extract with 0.5U of DNAse 1. Numeration to the left of the panel indicates 
the position of the unlabelled extremity of the fragment as previously. B, U, G and M 
indicate Bovine serum albumen, Undifferentiated NB4 extract, Granulocytic NB4 
extract and Monocytic NB4 extract respectively. Black rectangular boxes next to 
each lane identify sequences protected from DNAse 1 digestion in comparison to the 
albumen control- the width of these boxes indicates the strength of the protection. 
Asterisks show areas of increased DNAse 1 sensitivity compared to the albumen 
control.
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Fig. 17 Diagrammatic representation of defensin promoter DNAse 1 footprinting 
experiments with 40jig of nuclear protein extract. The long dark arrows represent the 
defensin upstream sequence and numeration above this indicates the position of 
particular features. Rectangular boxes indicate protected sequences on the sense 
(above the arrow) or antisense (below the arrow) strands, thickness signifying 
increased protection. Hatched ellipses indicates DNAse 1 hypersensitive sites with the 
size of the ellipses indicating the extent of hypersensitivity.
The sequence of the sense strand of the defensin promoter fragment is indicated in 
the lower part of the figure with the major footprinted sequences indicated in boxes. 
Also shown by black lines are potential transcription factor binding sites identified 
by computer assisted searches.
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occurs during granulocyte differentiation. This correlates with high level defensin gene 

expression only being seen in granulocytic NB4 cells.

Extracts from both granulocytic and monocytic differentiated NB4 nuclei 

protected sequences -125/-110 on both strands with associated hypersites being detected 

just downstream of this sequence on the positive strand and just upstream on the 

negative strand. The sequence between position -80/-90 was also protected to some 

extent by all three extracts on the negative strand. Hypersensitive sites were seen at 

position -155 on the negative strand in the presence of both granulocytic and monocytic 

nuclear extracts, though this was much more clearly seen with greater amounts (200pg) 

of nuclear protein (Fig. 18) where it is detectable on both strands. Some weak protection 

was also seen around this site on the positive strand with undifferentiated nuclear 

extract.

Various other sequences are protected when using 200pg of nuclear protein but 

are less likely to be functionally significant in vivo, being less specifically bound.

They include one sequence specifically protected by granulocytic proteins, which 

extends from position -210 till -160 on the sense strand. Another long footprint was 

seen with monocytic protein, from sequence -240 to -200 on the anyisense strand.

A comparison between the footprints obtained with 40 and with 200pg of 

nuclear protein extract is seen in Fig. 18 and the differences between the two 

experiments are represented diagrammatically in Fig. 19. The results from the 200pg 

experiment are represented by grey rectangles the darkness of which is an indication of 

the strength of protection. The results from the 40 pg experiments are indicated by the 

presence of unfilled or colour filled boxes with the thickness of each box indicating the 

strength of protection. Hypersensitive sites are indicated by hatched circles, which are 

also seen in the 40pg experiment if they lie on a white circle.
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Fig. 18 Comparison of the DNAse 1 protection (footprinting) seen with different 
amounts of nuclear proteins. Numeration to the left of the panel indicates the position 
of the unlabelled extremity of the fragment as previously. B, U, G and M indicate 
Bovine serum albumen, Undifferentiated NB4 extract, Granulocytic NB4 extract and 
Monocytic NB4 extract respectively. Black boxes and grey boxes to the left of each 
lane indicate the footprinted sequences.
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Fig. 19 Diagrammatic representation of the differences in footprinting studies with 
different amounts of nuclear protein extract. Arrows represent the promoter as in 
Figure 17. Grey rectangles represent the footprints seen with 200|ig of nuclear 
extract; the darkness of each rectangle indicates the strength of the protection. White 
rectangles indicate the footprints seen with 40pig of nuclear protein extract and the 
thickness of the rectangle signifies the extent of protection seen. Hatched ellipses 
indicate hypersensitive sites seen with 200pig of protein and those lying within a 
white ellipses are also seen when using 40|ig. Lilac rectangles indicate sequences 
protected to a different degree by different extracts when 40pig of protein was used 
but to a similar extent when 200|ig of extract was used. Red ellipses indicate 
hypersensitive sites seen when using 40pig of nuclear protein which were not seen 
with 200pig of nuclear extract.
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7.1.2 Preliminary interpretation of Footprinting Results

The sequences protected to some extent on either or both strands by 40pg of 

nuclear protein extract (and therefore the most likely to be functionally relevant) were 

grouped into continuous overlapping composites independent of the strand protected 

and named accordingly. This nomenclature will be used in referring to these sequences 

during further studies resulting from these initial experiments. These included three 

major footprints: -

-30/-10 Start Site Footprint (which includes the TATA sequence)

-70/-45 FP a  

-135/-100 FP p

And two much smaller footprinted sequences whose names refer to their position in 

relation to the previously mentioned named footprints.

-95/-80 FPctl 

-160/-150 FPy

Using the computer-based search engines Matlnspector, TFSearch (373) and 

GCG Wisconsin Package Version 9 (Genetics Computer Group, Madison, Wis.), I 

looked for potential transcription factor binding sites with the sequence of the 240 bases 

upstream of the defensin start site. Numerous potential binding sites were found many 

of which overlapped to some extent with the footprinted sequences. These transcription 

factor binding sites are marked on Fig. 17 (bottom half) together with a schematic 

representation of the footprinted sequences (boxed in on the promoter) so as to show the 

overlap.
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The main aim of the footprint studies was to show differences in binding with 

differentiation and between lineages and to correlate this with the activity of the 

defensin promoter in these situations. Clear differences were indeed seen. 

Differentiated nuclear protein from either lineage resulted in markedly increased 

binding to footprints a, a l  and p. The sequences which were increasingly protected by 

differentiated protein extract overlap with the binding sites for C/EBP- and AML- 

family transcription factors. The appearance of the hypersite at position -155 also 

correlates with differentiation and overlies a potential binding site for the Ets 

transcription factor PU.l. The increased protection at the binding sites of all these 

factors by differentiated nuclear extract correlates well with their known expression 

profiles. They are up-regulated during granulocytic differentiation both in myeloid cell 

lines and in primary myeloid cells (21;338;374).

The feature that seems to most characterise the undifferentiated state is the 

strong hypersite found at the most upstream part of FPa. Whilst this hypersite is 

considerably less obvious with granulocytic extract, it is still present, yet it is totally 

absent with monocytic extract. It lies just upstream of a strong potential binding site for 

another Ets transcription factor. Ets factors ( such as PU.l) are known to be capable of 

bending DNA and as such may be responsible for the hypersites found both at this 

position and at position -155 (375).The other hypersites found at the upstream and 

downstream limits of FPp may be caused by AML-1 and Myb respectively, both of 

which have been shown to bend DNA (376;377).

By correlating the footprints with the level of defensin mRNA expressed in each 

case, it appears that the presence of the FPa hypersite (probably a result of Ets factor 

binding) is required for the gene to be at all active. However it is the presence of this 

hypersite together with protection of footprints P, a l  and a  downstream of the
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hypersite, that correlates with high-level gene expression in granulocytic NB4 cells. 

The presence of the factors protecting these latter sequences in differentiated cells 

(possibly C/EBP and/or AML family) without the associated presence of the factor 

causing the FPa hypersite were not associated with even minimal gene expression.

Correlations between changes in promoter binding and the levels of defensin 

mRNA detected are based on the assumption that transcriptional regulation is mainly 

responsible for regulation of these mRNA levels. Studies of defensin gene expression in 

myeloid cell lines have indicated this to be the likely case (52).

One of the more interesting points recognised during these footprinting studies 

is that the footprinting seen when using a lesser amount of nuclear protein (40jig) was 

not uniformly weaker than that seen with a greater amount of nuclear protein (200pg). 

Nor were the differences between different types of extracts most clearly shown with 

greater amount of extract. In Fig. 19, the lilac-filled boxes indicate footprints which are 

quite clearly more specifically protected by one particular extract when using 40p.g but 

which were equally protected by different extracts when 200|ig of protein were used.

This is not so remarkable in itself though important in designing experiments. It 

suggests that the threshold amount of a factor X, required to bind to and protect a 

particular segment of DNA, is found in differing amounts of total nuclear protein from 

different cells. This depends on the abundance of that particular factor within the 

nuclear extract at each stage of differentiation. More surprising are the hypersensitive 

sites (seen as hatched circles upon a red background in Fig. 19) which are detected when 

using 40 but not with 200jixg of nuclear extract. The explanation for this is unclear but 

one possibility may be that when using 200jng of nuclear protein, unbound excess of one 

nuclear factor may interact with other factors and prevent their binding to DNA.
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In summary, footprinting studies suggest the importance of factor binding to the 

upstream of FPa for minimal gene activity. Factor binding to other sequences (FPs a, 

a l ,  j3) upon differentiation, together with the FPa hypersite correlate with high level 

activity but similar sequence protection in the absence of the FPa hypersite does not.

7.2 Electrophoretic Mobility Shift Sssay on the defensin promoter

7.2.1 Different protein binding with differentiation

The whole -240/+15 upstream sequence of the defensin gene was labelled and 

used as a probe in electrophoretic mobility shift assays using extracts from NB4 cells in 

different stages/lineages of differentiation and also using extract from an HL60 sub-line 

which had lost defensin expression. The results of this experiment are shown in Fig. 20. 

Undifferentiated or granulocytic NB4 nuclear extracts (from cells in which defensin is 

expressed) retard the progress of the labelled probe through the 4% polyacrylamide gel 

considerably more than do the extracts of monocytic NB4 cells or HL60 cells both of 

which are not expressing defensin. This would suggest that either a lot more proteins 

bind directly to the probe sequence in the case of the former two extracts, or that larger 

protein complexes (thereby resulting in more retardation) are involved as a result of 

protein-protein interaction. The footprinting results suggest the latter hypothesis to be 

the case because monocytic extract provides more protection (and therefore includes 

more direct DNA-binding proteins than undifferentiated extract). Undifferentiated and 

granulocytic NB4 cells are the two cell types which express defensin. It is therefore 

tempting to speculate that this increased retardation is a result of the basal transcription
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Fig. 20 Electrophoretic mobility shift assay (EMSA) of the defensin upstream 

sequence -240/+15 with different nuclear protein extracts. 5|ig of nuclear 

protein from Undifferentiated NB4 cells (U), Granulocytic NB4 cells (G), 

Monocytic NB4 cells (M), or HL60 cells (H) were incubated with labelled probe 

in the presence of buffer 2. The reactions were then loaded and run into a 5% 

polyacrylamide gel. Other incubations were also performed with the same 

nuclear protein extracts and probe and a 50-fold molar excess of unlabelled probe 

sequence (signified by an ). The last lane, labelled (-) is a similar reaction 

without the nuclear extract.
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machinery (or components thereof) binding onto the DNA in combination with 

transcription factors found in these cells but lacking in the others.

Competition experiments with 50-fold molar excess of unlabelled DNA probe 

show a differing pattern of band shifts. In the presence of monocytic NB4 or HL60 

nuclear extract, the retarded probe-protein complex is completely lost. However, a band 

is still seen with undifferentiated or granulocytic nuclear extract, though of an increased 

mobility, suggesting that some but not all of the bound components were removed by 

competition. Such a picture upon self competition, usually indicates the presence of 

non-specific protein binding. Another possibility is that a one (or more) transcription 

factor/s present in granulocytic and undifferentiated NB4 extracts (possibly those 

responsible for the -63 hypersite) are not completely competed away by a 50 fold molar 

excess of unlabelled DNA. These factors alone may be able to tether part of the basal 

transcription machinery to the labelled DNA resulting in a still markedly retarded band. 

As can be seen below, greater excess of unlabelled oligonucleotide did indeed 

completely compete away granulocytic NB4 protein binding.

7.2.2 Individual footprint sequences cannot compete promoter-bound complex

An attempt was made to isolate which sites, were required for the protein 

binding seen with the extract of expressing cells. The labelled -240/+15 defensin 

upstream sequence was competed with 200-fold molar unlabelled excess of the same 

long sequence in the presence of granulocytic NB4 nuclear extract. Competition was 

also performed using 200-fold excess of unlabelled oligonucleotides representing the 

different footprinted sequences as well as recognised binding sites for the transcription 

factors suspected to bind the defensin promoter. None of the individual
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oligonucleotides where capable of disrupting the retarded band as much as the complete 

sequence did (Fig.21). This phenomenon has been recognised (158) and is thought to be 

due to single factor DNA-binding being incapable of competing with the stability of a 

multifactorial complex bound to DNA including the said factor. A certain increase in 

mobility was however seen with most of the oligonuceotides and there was also some 

reduction in the intensity of binding. The significance of these changes are hard to 

interpret in the context of the whole 255 base pairs, however. Therefore n order to 

reduce the complexity of protein complexes formed in these EMSAs and be able to 

perform more specific experiments we progressed to studying binding to the main 

footprinted sequences in isolation.
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Com petitor

-240/+15 defensin

Fig.21 Competition EMSA with -240/+15 promoter fragment as the [y-32P]- 

labelled probe sequence. 5pg of granulocytic NB4 nuclear protein extract was 

incubated together with the probe and a 200-fold molar excess of the indicated 

competitor sequence in the presence of buffer 2. Incubated reactions are then 

loaded and run on a 4% polyacrylamide gel. The sequences of the different 

competitor oligonucleotides are documented in the materials and methods 

section.
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Chapter 8 : Analysis of Footprint-bound proteins by EMSA

8.1 Analysis of FPa-binding proteins

8.1.1 Changes in FPa binding with differentiation

Using a oligonucleotide incorporating the FPa binding site (-76/-39), EMSAs 

were performed using extract from undifferentiated, granulocytic and monocytic nuclear 

extract with two different buffers (Fig. 22 a, b). A clear increase in binding is seen with 

the granulocytic as opposed to the undifferentiated nuclear extract. Monocytic extract 

also shows less binding than granulocytic but with a different pattern from that seen 

with the undifferentiated extract. These results all correlate with those obtained by 

DNAse 1 footprinting.

Binding is specific, as can be seen by self competition experiments whilst a 

recognised Ets-1 binding site also competes away most granulocytic-bound protein 

suggesting the importance of the ets core binding site (GGAA) within FPa. Using an 

oligonucleotide identical to the FPa one but mutated in this core ets site (Fig. 22a) as 

the labelled probe, results in much reduced binding showing that Ets factors are 

probably bound to this site and may possibly be responsible for co-operative binding of 

other factors. These results correlate well with recently published data indicating that an 

Ets factor is bound to this site of the defensin promoter in HL60 nuclear extract in a 

phosphorylation-dependent manner (54).
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Fig.22 Changes in nuclear protein binding to FPa with differentiation, (a) 5\ig of 
nuclear protein from undifferentiated (U), granulocytic (G), or monocytic (M) NB4 
cells was incubated in buffer 2 with [y- P] labelled FPa oligonucleotide. Specificity 
of binding was confirmed by competition of granulocytic protein binding to the 
probe with a 200-fold molar excess of unlabelled FPa oligonucleotide (G*) and a 
200-fold molar excess of ets site from the murine neutrophil elastase promoter 
(G**). Also shown are similar reactions (also in buffer 2) where the labelled probe 
sequence is FPa mutated at the core ets site GGAA nucleotides, marked as 
FPa(mut). All reactions are run on a 6% polyacrylamide gel. (b) Similar EMSA to 
that shown in Fig.22(a) but with reactions performed using buffer 1. Protein 
complexes bound within this buffer are also specific as can be seen by competition of 
granulocytic extract proteins bound to FPa, by a 200-fold molar excess of unlabelled 
FPa (G*).
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8.1.2 Characterisation of FPa binding by competition EMSAs

To try and further identify which factors may be bound to the FPa 

oligonucleotide, competition experiments with different unlabelled oligonucleotides, in 

excess, were performed (Fig. 23) in the presence of undifferentiated (23a) or 

granulocytic (23b) nuclear extracts.

FPp was able to compete away some complexes formed by undifferentiated 

extract but this same FPp sequence mutated at either its potential c/ebp or myb sites was 

incapable of doing so. This suggests that some factors bound to FPa (possibly C/EBP) 

are also bound to FPp. The requirement for the Myb site to be intact for efficient 

competition suggests a co-operative binding of sorts though co-operative binding 

between Myb and C/EBP factors has never yet been recognised. Many of the 

competitor oligonucleotides enhance the formation of certain complexes bound to FPa 

(seen as bands of high and intermediate mobility).

When using granulocytic differentiated NB4 extract (Fig.23 b), unlabelled FPp 

competed binding to some extent, as was the case with undifferentiated extract. A 

known GABP/PU.l (Ets) binding site also reduced the formation of certain bands. On 

the other hand, recognised or potential PU.l binding sites (including FPy) as well as 

recognised C/EBP-binding sites resulted in increased complex formation on the labelled 

FPa DNA and enhancement in the intensity of a low mobility band. The significance of 

these findings is discussed later.

AML family proteins are also bound to FPa as can be seen in Fig. 24. A 

competing oligonucleotide which is a recognised AML-1-binding site (from the mouse 

neutrophil elastase promoter) inhibits the formation of two complexes whilst a similar 

oligonucleotide mutated at this site does not also compete them away. An
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Fig.23 Competition EMSA of FPa-bound proteins, (a) Analysis of FPa-bound 
proteins in undifferentiated nuclear extract. 5pg of nuclear extract was incubated in 
buffer 1 together with 200-fold molar excess of unlabelled competitor as indicated 
for each reaction and with labelled FPa probe as described in materials and methods. 
Complexes were separated by electrophoresis through 6% polyacrylamide gel. (b) 
Competition EMSAs are performed with 200-fold molar excess of the competitor 
sequence indicated and 5pg of granulocytically differentiated NB4 nuclear proteinon
extract and a [y- P] labelled FPa probe sequence in the presence of buffer 
1.Complexes are separated as in Fig 23a.
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Competitor

Fig.24 Competition EMSA to assess AML and Ets binding to FPa. 
5jag of granulocytic nuclear protein extract was incubated together 
with a 200-fold molar excess of unlabelled competitor 
oligonucleotide as indicated together with EMSA buffer 3 and with 
labelled FPa probe. Complexes were separated through a 6% 
polyacrylamide gel. Al and A2 identify two complexes competed by 
a known AML-1-binding oligonucleotide but not competed by the 
same oligonucleotide mutated so as not to bind AML-1. G identifies 
a complex competed by the neutrophil elastase (NE) but not the 
cdl lb  ets site, therefore likely to be GABP
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oligonucleotide competitor which is a known binding site for the Ets factor GABP 

(from the neutrophil elastase promoter) competes away the binding of a separate 

complex (marked G) which was not however successfully competed away by another 

Ets factor (PU.l) binding site (lane 3).

8.1.4 GABP binds to FPa

These previous studies helped identify the core ets GGAA site within FPa as 

essential for binding. Closer analysis of the site suggests that there is close resemblance 

with the consensus binding sequence for the GA-binding protein (GABP). Other 

studies within our group (T. Jamieson unpublished) showed that binding to this site was 

sensitive to methylation or even hemimethylation of the site, a recognised feature of 

GABP binding (378).

Using a pair of antibodies raised against GABP expressed in and purified from 

Escherichia coli (E.coli), we attempted to identify whether this factor was indeed 

binding to FPa both in undifferentiated and granulocytic NB4 nuclear extracts. With 

undifferentiated extract, two band doublets (marked as 1 and 2 in Fig. 25a) which are 

not effected by pre-immune serum, are supershifted in the presence of GABPa 

antibody but not in the presence of GABP(3 antibody. Whilst the higher mobility (and 

probably smaller) of these proteins/complexes (band2) may represent GABPa binding 

to the DNA alone, the lower mobility complex (band 1) should represent bigger 

complexes resulting from GABPa binding to the DNA with (or adjacent to) another 

factor/s.

With differentiated extract, such supershifted bands are barely seen at all with 

GABPa antibody but a reduction in the intensity of another band, (marked as 3) is seen
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Fig.25 GABP binding to FPa.
(a), 5jig of nuclear protein from NB4 cells - undifferentiated (U), or granulocytic (G) 
- was incubated in buffer 3 with GABPa antibody (Aa), GABPp antibody (A|3) or 
pre-immune serum (PI), [y- P] labelled FPa oligonucleotide was then added. Bound 
complexes were separated by electrophoresis in a 6% polyacrylamide gel with
0.5xTBE as running buffer. Complex doublets 1 and 2 are supershifted by GABPa 
antibody resulting in a complex marked as S. Complex 3 (formed with differentiated 
extract) is disrupted by GABP(3 antibody.
(b) 25ng of purified GABPa (Ga) or GABPp (Gp) or both (Gap), in the presence 
or absence of nuclear protein (lOpg) from undifferentiated NB4 cells (U+Gap), and 
antibody to GABPa(+Aa), GABPp(+Ap) or pre-immune serum (+PI) were 
incubated in buffer. [y-32p]-labelled FPa oligonucleotide was added and incubation 
continued. 0.25xTBE instead of 0.5xTBE was used as electrophoresis running buffer 
since purified GABP proteins are prevented from binding well under higher salt 
concentrations. The doublet A represents GABPa alone bound to DNA whilst the 
band AB represents the bound GABPaP heteromer. S indicates a supershifted band 
on addition of GABPa antibody. Binding of the GABPaP complex is prevented by 
GABPp antibody with a concomitant increase in GABPa binding.
(c) 25ng of purified GABPa and GABPp are incubated together with buffer 3 with 
[y-32p]-labelled probes FPa, FPa, mutated at the core GGAA-(FPa-mut-ets) and the 
ets site from the neutrophil elastase promoter- ets (NE). As in Fig.25b, 0.25x TBE is 
used as a running buffer for electrophoresis. Binding of the GABP dimer to FPa is 
strong and clearly dependent on the FPa core ets site.
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with the GABP (3 antibody. In order to confirm the effects of the two antibodies, and 

the binding characteristics of the components of the GABP complex, similar EMSAs 

were performed using purified GABP proteins made in E.coli and labelled FPa probe 

sequence (Fig. 25b). GABPa alone bound to the FPa sequence in a doublet, GABP|3 

as expected did not bind at all to the DNA whilst addition of both component peptides 

resulted in the formation of a single more retarded band. The GABPa doublet has been 

recognised to occur despite the presence of a single species of protein (313). It can 

sometimes occur due to two molecules of GABPa binding to two adjacent sites. When 

undifferentiated nuclear extract was added to the purified proteins, they formed the same 

set of complexes with complex doublet A having a mobility similar to that of complex 

doublet 1 (in Fig. 25a) and complex AB a lesser mobility, as in bands 2 and 3. 

Differences between Figs 25a and 25b related to varying extent of electrophoresis are 

apparent. Antibody co-incubations result in a supershifted band being formed in the 

presence of GABPa antibody with minimal reduction of both complexes A and AB, 

whilst GABPp antibody prevents the formation of band AB without a resultant 

supershifted band and enhances band A formation. These results confirm that the 

changes seen in Fig.25a are specific effects of the antibodies on GABP proteins found in 

the NB4 nuclear extract and binding to FPa.

Fig. 25c shows that binding of purified GABP proteins to FPa is dependent on 

the core GGAA as is seen by the lack of binding to the mutated site. Comparing this 

with binding of nuclear proteins to the recognised mouse neutrophil elastase site shows 

FPa to be a strong GABP target site and confirms that the a|3 species seen is indeed the 

dimer and not the tetramer (since there is only one ets site in this oligonucleotide).
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8.2 Analysis of FPp-bound proteins

8.2.1 Changes in binding to FPp with differentiation

In order to study FPp, a short sequence, -129/-104 was first used in experiments 

but when incubated with extracts from undifferentiated NB4 and from both 

differentiated lineages, the changes in protection identified during footprinting did not 

correlate with the pattern of bands seen. There was no increased binding with 

granulocytic as opposed to undifferentiated extract though some increase was detected 

with monocytic extract (Fig.26). For this reason, 10 base pairs of sequence were 

included on either end to include the whole of the protected sequence with 3-5 adjacent 

nucleotides on each side and in this case a clear increase in binding was seen with 

differentiated as opposed to undifferentiated extract. This binding, which is specific, is 

seen in Fig. 26 . It is interesting to note that despite rather similar FPp footprints seen 

during footprinting experiments, monocytic and granulocytic extracts clearly contain 

different proteins that bind this site as can be seen from the different band patterns. One 

interesting quandary about Fig.26a is that inclusion of more FPp flanking sequence 

resulted in the loss of a strong band seen with undifferentiated extract. One possibility 

may be that the extended oligonucleotide folds on itself and forms a tightly hybridised 

loop preventing easy access by the factors which bound the original shorter nucleotide.

Fig. 26b shows the effect of a number of mutations of potential transcription 

factor binding sites within FPp. The different banding pattern seen is due to this EMSA 

being performed with different incubation conditions with the probe being added 

simultaneosly with the nuclear extract instead of after a 10 minute delay at 4°C. This
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Fig.26 Changes in binding to FPp with differentiation, (a) 5pg of nuclear protein 
from undifferentiated (U), granulocytic (G) or monocytic NB4 cells (M) was 
incubated with FPP oligonucleotides of different lengths in buffer 1. Effective 
competition by a 200-fold molar excess of identical unlabelled FPp oligonucleotide 
indicates that binding of protein from all three cell types (U*, G* and M*) on the 
longer FPp oligonucleotide is specific.
(b) 5pg of nuclear protein from undifferentiated (U) or granulocytic (G) is incubated 
with wild type or mutated FPp probes (indicated below the reaction lanes) in buffer 1. 
Addition of probe simultaneously with nuclear proteins, instead of after the usual 10 
minute delay at 4°C, results in smaller protein complexes binding to the DNA whilst 
bigger protein-protein conglomerates do not form. X marks a band which appears on 
differentiation and which binds the myb site-mutated FPp probe more strongly than 
the wild type FPP but which cannot bind the probe mutated at the c/ebp or ami sites.
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Fig.27 Identification of FPP binding proteins by competition EMS A.
(a) 5jig of undifferentiated (UND) or granulocytic (DIFF) NB4 nuclear protein was 
incubated with a 200-fold molar excess of unlabelled competitor oligonucleotide (as 
shown) in buffer 2. [y-32p]-labelled FPP probe was then added and the reaction is 
loaded onto a 4.5 % polyacrylamide gel and separated by electrophoresis.
(b) As in Fig.27a, 5pg of granulocytic NB4 nuclear protein was incubated with a 

200-fold molar excess of unlabelled competitor oligonucleotide, however, in buffer
1. [y-32p]-labelled FPp probe was added and the complexes formed separated by 
electrophoresis through a 6% polyacrylamide gel.
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(Fig. 26b) where binding of band “X” to the myb site mutant is stronger than that to the 

unmutated FP(3 probe. On the other hand, ami and particularly c/ebp site mutants are 

much poorer competitors of binding in the presence of granulocytic nuclear extract 

indicating the likely binding of these factors at this stage of differentiation. FPa, a l  and 

a short consensus c/ebp binding site from the neutrophil elastase promoter are all 

relatively poor competitors whilst FPy is a slightly better competitor. Similar results 

were obtained with a different buffer system as seen in Fig. 27b where the myb site- 

mutated sequence is just as effective a competitor as wild type sequence and where 

c/ebp site mutated sequence is a much poorer competitor. Two different recognised 

binding sites for C/EBP from different promoters result in partial competition of the 

complex indicating that whilst C/EBP probably plays a major role in transcription factor 

binding to FPp, it is not the only major player.

8.2.3 C/EBPe and GABPa bind to FPp in granulocytic cells

In order to try and positively identify some of the factors binding to FPp, 

antibodies were used to assess whether candidate transcription factors are present. The 

prime candidate for binding to this site was C/EBPe. Previous experiments had 

indicated a strong likelihood that a C/EBP family member was binding to this site. 

From work done by myself (unpublished observation) and others (370), it is apparent 

that C/EBPe is the main C/EBP family member expressed in NB4 cells whilst many 

other C/EBPs widely expressed in myeloid tissues and cell lines are absent.

Indeed both an antibody directed against the N-terminal activation domain of human 

C/EBPe and an antibody raised against the C-terminal domain of the rat homologue of 

this protein, CRP1, resulted in the formation of strong supershifted bands when co
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incubated with granulocytic nuclear extract and labelled FPp probe (Fig.28a). With 

undifferentiated NB4 nuclear protein, no such supershifted band was seen (probably due 

to the lesser abundance of C/EBP), although both antibodies, unlike pre-immune serum, 

disrupted some low mobility complexes, a feature also seen with differentiated extract. 

Similar supershifted bands were formed when these antibodies were incubated with 

granulocytic extract and a known binding site for C/EBPe, within the m-csf receptor 

promoter (Fig.28b). The antibodies resulted in no such supershift when incubated with 

FPp mutated at the myb site (Fig 28c), suggesting that C/EBPe might require Myb to 

bind FPp or that C/EBP bound to this probe might be inaccessible to the antibodies.

Due to the presence of a weak ets site within the FPp probe sequence shifts using the 

anti-GABP antibodies were performed. As can be seen the GABPa antibody results in a 

shifted band (S*) not seen with the GABPp antibody (Fig.28d). Similarly, studies with 

an anti-Myb monoclonal antibody, did not show any change in binding or supershift (not 

shown).

Therefore in summary both C/EBPe and GABPa may bind to FPp in 

granulocytic NB4 cells (Fig.28). C/EBPe and AML-1 appear to bind FPp more strongly 

in differentiated cells (Fig.26b) whilst Myb appears more important for FPp protein 

binding in undifferentiated cells (Fig.23a). However, in the presence of granulocytic 

cell extract, whilst mutation of the myb site results in stronger FPp binding (as noted by 

competition experiments with mutated FPp sites), any C/EBPs bound is inaccessible to 

antibodies suggesting a possible conformational change in the protein or an interaction 

which inhibits antibody access.
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Fig.28 Identification of FPP-binding proteins by means of antibody supershifts.
(a), (b) and (c) 5pg of undifferentiated or granulocytic NB4 nuclear protein ( as 
indicated) was incubated with [y-32p]-labelled FPp, M-CSFR (c/ebp-aml site) or 
FPp-mut-myb probes respectively in buffer 2. No antibody (-), pre-immune serum 
(PI), anti-N-terminal C/EBPe antibody (Ce), or anti-rat -C-terminal C/EBPe antibody 
(CRP1) are co-incubated with the above reactions (as indicated) and the complexes 
formed separated by electrophoresis through a 4.5% polyacrylamide gel.
(d) 5[lg of granulocytic NB4 nuclear protein was incubated with [y-32p]-labelled FPp 
in buffer 3. No antibody, (-), anti-GABPa antibody (Aa) or anti-GABPp antibody 
(Ap) was co-incubated and the complexes formed separated by electrophoresis 
through a 4.5% polyacrylamide gel.
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8.3 Analysis of FPy-bound proteins

8.3.1 Changes in FPy binding with differentiation

Despite the relatively small size of FPy and the relatively weak footprinting, 

computer analysis of the sequence indicated a rich abundance of strong potential 

transcription factor binding sites, including a good pu.l consensus site and adjacent, 

overlapping c/ebp and ami sites (see Fig. 17).

Fig. 29 shows clear changes in binding to this site with differentiation. The 

appearance of a low mobility (large) complex (band X) and an even clearer high 

mobility doublet (bands 3,4) with granulocytic differentiation show that this site may be 

functionally important in regards to changes in defensin expression with differentiation. 

Mutation of the core ets GGAA sequence within the pu.l site results in loss of both 

these granulocytic- specific bands and the appearance of a low mobility doublet which is 

uninfluenced by lineage or differentiation. There is also a marked enhancement of the 

intermediate mobility complex (marked as 2) which again is relatively invariable with 

differentiation. The mutation study suggests that the granulocytic-specific high mobility 

complexes may contain Ets factors.

8.3.2 Characterisation of FPy binding by competition EMSAs

Due to the clear band pattern seen with FPy on EMSA, (possibly due to its much 

smaller size than FPs a  and P), competition EMSAs were very informative in the sense 

that very clear patterns could be obtained so a good number of experiments were 

performed. As seen in Fig. 30a, the larger (lower mobility) complexes 1 and/or 2 have a
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FPy FPy-mut-ets

Figure 29. Changes in binding with differentiation to FPy and to ets- 
site mutated FPy.
U, G, and M refer to undifferentiated, granulocytic and monocytic 
nuclear extract (5 jag) respectively. Whilst the high mobility 
complexes seen as the band doublet 3 and 4 were reproducibly seen, 
the band X was often indistinguishable from band 1 in other 
experiments.
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non-specific component which still binds after competition with 200-fold molar excess 

of unlabelled FPy. FPa is a weak competitor though it does compete the lower band 

doublet slightly which is not surprising considering that they are probably Ets factors. 

FPal cannot compete much except for a component of complex 1 (possibly a non

specific binding protein since a loss of part of complex 1 and a consequent enhancement 

of complex 2 occurs with many different competing oligonucleotides).

FPp on the other hand, is a good competitor for some of the components of 

complexes 1 and 2 whilst not having any effect on the binding of the high mobility 

complexes (band doublet 3 and 4).

Competition EMSAs using site-specific mutant FPp oligonucleotides (Fig.30b) 

show that whilst wild type and myb site mutants are strong competitors of the complex 

1 and 2 proteins, the c/ebp and ami mutants are incapable of such competition. This 

indicates that these two transcription factors are bound to the FPy sequence as was 

suggested by computer analysis.

Fig. 30c shows competition experiments using a number of recognised binding 

sites for different transcription factors thought to be binding to this site as 

oligonucleotide competitors. As noted with other oligonucleotide competitors, complex 

1 is disrupted to some extent by all, possibly due to competing off some non-specific 

component. Sites known to bind C/EBP, Myb and AML-1 do not bind the residual 

proteins from the lower mobility complexes, nor do they bind the high mobility doublet 

though some slight competition does appear to occur in the presence of the myb site. 

The Ets binding sites from the cd llb  promoter (which binds PU.l) and the neutrophil 

elastase promoter (which binds GABP or PU. 1) both efficiently compete away the Ets 

factor-related complexes bands 3 and 4. It is interesting to note that FPy mutated at the 

Ets binding site is also capable of competing bands 3,4. This suggests that while such an
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Fig. 30 Identification of proteins binding to FPy by competition EMSAs.
(a), (b) and (c) 5|ig of granulocytic NB4 nuclear protein was incubated with a 200- 
fold molar excess of unlabelled competitor oligonucleotide, (shown) in buffer 1. [y- 
32p]-labelled FPy is then added and the complexes formed separated by 
electrophoresis through a 6% polyacrylamide gel. Self competition shows that protein 
binding to FPy is specific.
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oligonucleotide is incapable of binding the Ets proteins of these complexes directly, it is 

capable of binding them as part of a complex with other factors by means of protein- 

protein interactions. Amongst the Ets-binding sites, there are clear differences with 

regards to the competition of lower mobility complexes. Whilst the neutrophil elastase 

site competes for the binding of some complex 2 proteins, the cd llb  site does not. This 

suggests that Ets factors other than PU.l may also form part of the lower mobility 

complexes.

8.3.3 PU.l binds to FPy

In order to identify the Ets factors binding to FPy, antibody studies were 

performed (Fig. 31 a, c). The main candidate was PU.l both from computer analysis of 

the site and from the presence of the characteristic doublet (bands 3 and 4) which is 

often seen in myeloid cells, with PU.l-binding sites (322).

Co-incubation of a monoclonal antibody against PU.l with the EMSA reaction 

(Fig.31a) resulted in the supershifting of band 3 (but not band 4) and the consequent 

formation of a supershifted complex (band S). This pattern of supershift is again 

characteristic of PU.l with the higher mobility band 4 representing a proteolytic 

breakdown product of PU.l that can bind DNA but is unrecognised by most antibodies 

(322).

Using a transcription/translation system (Promega), both in vitro translated PU.l 

and a deletion mutant (N-133) lacking the N-terminal 133 aa residues (which include 

the activation domains) are capable of strongly binding the PU.l binding site of the 

cd llb  promoter. They also bind to the defensin promoter site FPy (though much less 

strongly). Some diffuse bands are seen due to 35S-induced non-specific labelling of
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Fig.31 Ets protein binding to FPy.
(a) 5(ig of undifferentiated (U), or granulocytic (G) nuclear protein extract was 
incubated with [y-32p]-labelled FPy in the presence of buffer 3. No antibody (U or 
G), control monoclonal antibody against phospholipase A2 (C), or anti-PU.l 
monoclonal antibody (P), co-were incubated and the complexes formed, separated by 
electrophoresis through a 6% polyacrylamide gel. Bands 1-4 identify complexes 
migrating in a similar pattern to those seen with buffer 1, (Fig29,30). A supershifted 
complex formed upon co-incubation with PU.l antibody is marked as S.
(b) Both left and right panels show in vitro translated PU.l or N-133 (an N-terminal 
PU.l deletion mutant), co-incubated with the cd llb  or FPy ets site labelled probes, in 
buffer 3. In the left panel, diffuse bands are due to non-specific labelling of proteins 
during the in vitro translation reaction by 35 S. ( This was excluded from the reaction 
to produce proteins used in the EMSA shown in the right panel.) These diffuse bands 
obscure the band due to PU.l binding to FPy yet a band due to N-133 binding is 
visible.
(c) 5pg of undifferentiated (U), or granulocytic (G) nuclear protein extract was 
incubated with [y-32p]-labelled FPy in the presence of buffer 3. Antibodies against 
GABPa (Aa) or against GABPp (Ap) or pre-immune serum (PI), were added to the 
incubations and the complexes formed, separated by electrophoresis through a 6% 
polyacrylamide gel. Bands 1, 3 and 4 refer to the same complexes as those seen in 
Fig 31(a) whilst S indicates a supershifted complex formed with the GABPa 
antibody. Two bands of lower mobility than band 1, seen in the lane labelled “U” 
were not seen in Fig 31 (a) nor in any other incubations with FPy in this or any other 
buffers and were therefore considered spurious.
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translation mix components and non-specific binding of transcription/translation mix 

factors to the probe DNA (Fig. 31b).

Antibodies against GABPa also showed a supershift with both undifferentiated 

and granulocytic nuclear extract. Two spurious accessory bands can be seen here with 

undifferentiated NB4 extract, which have a lower mobility than band 1. The intensity of 

band 1 is reduced by anti-GABPa antibody more than by anti-GABP|3 antibody. 

Concomitant with this a supershifted band (S) appears, as does a band of similar 

mobility to band 4. One explanation may be that some of the GABPa may have been 

displaced from the DNA (band 1 without the antibody seems more intense than the sum 

of the residual band 1 and the supershifted band.) The PU.l proteolytic product can 

therefore bind to FPy DNA in its place (see section 16.3).

When incubated with granulocytic extract, GABPa antibody induced the 

appearance of a similar supershifted band and a concomitant reduction of band 3. This 

band is likely to be due to PU.l so it is unlikely to be shifted by the GABPa antibody. 

A more likely explanation is that GABPa formed part of complex ( not necessarily 

DNA-bound) and this was partly disrupted by the antibody. PU.l being an alternate Ets 

transcription factor may then interact with the other factors in this low mobility 

complex, through its ETS domain, resulting in less binding of the PU.l to DNA by 

itself.

The PU.l proteolytic product seen as band 4 is probably incapable of 

substituting GABPa since protein interaction domains other than the pure DNA binding 

domain may be necessary. The need for domains outside the ETS domain in co

operative interactions is confirmed in transfection experiments (see section 13.4).
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8.3.4 C/EBPs binds to FPy as well as to FPa

Since there is considerable competition between FPp and FPy and since c/ebp 

site mutation inhibits this cross competition between these two sequences, I decided to 

perform tests to see whether C/EBPs is binding to FPy. Similarly FPp is capable of 

competing FPa binding, a feature which is also dependent on an intact c/ebp site. Co

incubations of anti-C/EBPs antibodies with undifferentiated and differentiated NB4 

extracts and with FPa or FPy probes are shown in Fig. 32a and b respectively.

Though it is clearer in the case of FPy, in both cases a similar pattern emerges. In 

EMSAs using undifferentiated extract, the anti-N-terminal antibody named Ce disrupts 

binding of a number of complexes unlike the anti-C-terminal antibody named CRP1. No 

supershifted complex is seen with either antibody. When differentiated nuclear extract 

is used, no such supershift or disruption of complexes is seen to occur. This result is 

unexpected because both from previously published studies, as well as from my own 

studies with FPP; it is apparent that more C/EBPe is found in myeloid cells as they are 

differentiated along the granulocytic pathway. Therefore in this differentiated state, it is 

not that C/EBPe is not present in the extract but either that it is not bound to DNA, or 

that it is bound to DNA in a manner such that it is not accessible to the antibodies. In 

differentiated extract EMSA, other transcription factors (not present in undifferentiated 

extract), may bind to the DNA and in so doing, prohibit C/EBPe binding. In the case of 

FPa, changes in binding of GABPp (upon differentiation) may be involved whilst 

enhanced PU.l binding may be responsible in the case of FPy. Why the anti-C- 

terminal antibody has no effect is unclear but it would suggest that the C-terminal 

part of the protein is tightly complexed to other proteins or to DNA in such a 

manner as to prevent antibody binding. On the other hand antibody binding to the
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Fig.32 C/EBPs binding to FPa and FPy.
(a) 5p,g of undifferentiated, or granulocytic nuclear protein extract (as indicated) 
was incubated in the presence of buffer 2 with [y-32p]-labelled FPy. Pre-immune 
serum (PI), anti-rat -C-terminal C/EBPs antibody (CRP1) or anti-N-terminal C/EBPs 
antibody (Cs), are co-incubated with the above reactions (as indicated) and the 
complexes formed separated by electrophoresis through a 4.5% polyacrylamide gel. 
When using such electrophoresis conditions protein binding to FPa is weak resulting 
in indistinct and smeared bands.
(b) Reactions are prepared and separated exactly as described above, substituting 
labelled FPy for FPa, as probe.
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N-terminal part of C/EBPe results in disruption of some complexes suggesting that this 

part of the protein may be involved in some protein interactions which are not however 

strong enough to prevent the interaction with antibody.
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Chapter 9 : Factor interactions on the defensin promoter

Both footprinting experiments and certain EMSAs indicated that different 

factors bound to sequences within the defensin promoter may also interact with each 

other thereby influencing their capability to bind DNA and to form complexes on the 

promoter sequences. This was investigated in more detail.

9.1 Antibodies alter NB4 nuclear protein binding to the defensin 

promoter

Using specific transcription factor binding sites as competing sequences, it had 

been impossible to detect which factors if any, play an essential role in the granulocytic 

complex formed on the -240/+15 defensin promoter sequence (see Fig.21). Evidence 

had been obtained using antibodies about different factors binding to sites within the 

promoter. Therefore, these antibodies were co-incubated in EMSAs with the whole 

promoter sequence labelled as probe, to see whether they had any effect on the promoter 

complex. In this study, a different buffer system was used which distinguishes between 

the complexes formed by undifferentiated and granulocytic NB4 extract (lanes 1 and 5 

respectively in Fig. 33). Using this buffer, monocytic extract produces a band complex 

of similar mobility to granulocytic extract (not shown) so that the main factors binding 

the DNA in this buffer are likely to be those common among monocytic and 

granulocytic extracts. These are indeed many as can be seen in the footprinting 

experiments. In this EMS A, antibodies were pre-incubated with the nuclear extract for
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Fig.33 Identification of proteins binding to the -240/+15 defensin upstream 
sequence.
5pg of undifferentiated (UND), or granulocytic (DIFF) NB4 nuclear protein extract 
was incubated with in vitro translated proteins or translation mix, (shown) or with 
various antibodies (shown) in the presence of buffer 1. Labelled -240/+15 defensin 
probe sequence was added, and the complexes formed, separated by electrophoresis 
through a 4% polyacrylamide gel. P,U, and G identify the probe alone, the complex 
formed with undifferentiated extract and that formed with differentiated extract 
respectively. R is a band caused by 35 S-radioactively labelled proteins in the 
translation reaction.
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a couple of hours prior to adding in the probe unlike other regular EMSAs where 

nuclear extract and antibodies are added one after the other and probe is added after a 

further 10 minutes.

Lanes 2 to 4 show the effects of adding in vitro translated PU.l to 

undifferentiated extract. Undifferentiated protein extract alone is shown in lane 1. The 

complex formed is marked as band U. PU.l (lane 3) reduces the mobility of this 

complex to an extent similar to that of the granulocytic extract complex (marked as G). 

This suggests that PU.l is a major difference between the two states of differentiation, 

as indicated also by FPy EMSA experiments. As can be seen in lanes 2 and 4 

respectively, addition of the in vitro transcription/translation mix alone, or of the N-133 

deletion mutant of PU.l synthesised in this mix did not have such an effect. Non

specific bands are seen across all these three lanes as a result of radioactivity due to the 

35S in the synthetic reaction - the stronger of these marked as R.

A monoclonal antibody against PU.l (lane 7) had a complementary yet opposite 

effect when incubated with granulocytic extract. The formation of the granulocytic 

complex was inhibited, suggesting that PU.l is indeed important for transcription factor 

complex formation on the defensin promoter at this stage of differentiation. A control 

monoclonal antibody had no such effect. Anti-C/EBPe antibody (CRP1) in the presence 

of anti-Myb antibody also disrupted the complex indicating the importance of these 

proteins in granulocytic factor promoter complexes and again suggesting that in the case 

of C/EBPe co-operative binding may occur between Myb and C/EBP.

Anti-C/EBPe antibody alone had no apparent effect. Antibodies against GABPa 

or GABPp also had no specific effect. A slight reduction in mobility (supershift) seen 

with these and other antibodies including non-specific controls or pre-immune serum 

suggests some non-specific serum binding to promoter-bound factors.
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9.2 Anti-Ets factor antibodies increase HL60 nuclear factor binding

to FPy

As well as some initial studies with FPa using NB4 extracts, previous results 

obtained by another researcher in our laboratory, Thomas Jamieson, also indicated 

interactions between different factors. When using HL60 nuclear extract to perform 

EMSA experiments, on the defensin promoter, it was noted that anti-PU.l antibody (in 

this case a polyclonal preparation provided by C.K.Glas (Beth Israel Hospital, Haarvard 

Medical School, Boston, MA) enhanced the formation of the predominant complex seen 

bound to FPy (Fig. 34a). Pre-immune serum had no such effect. When performing 

similar experiments with the same antibodies on a recognised PU.l-binding site from 

the cd llb  promoter, the same anti-PU.l antibody inhibited the formation of the complex 

suggesting that it did indeed bind PU. 1, possibly close to, or at the ets site. Anti-GABP 

antibodies were also co-incubated with HL60 nuclear extract and labelled FPy DNA 

(Fig. 34b). GABPa antibody also had a clear enhancing effect on the predominant 

complex marked as C (it is interesting to note that the PU. 1 doublet seen clearly with 

NB4 extract is absent here with only the proteolytic form visible). GABPp antibody had 

no such effect or if anything reduced the complex formation slightly. It is important to 

point out that the much less complex banding pattern seen with HL60 extracts, in 

Fig.34a is due to the extract being prepared in a simpler and more rapid way. The 

extracts used in Fig.34b were prepared by a method similar to that used in the other 

EMSA and footprinting experiments and which were purposely designed to isolate 

transcription factors.
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Fig.34 Increased binding of HL60 proteins to FPy upon co-incubation with anti-Ets 
factor antibodies.
(a) 5pg of HL60 nuclear protein extract (H) was incubated with [y-32p]-labelled FPy 
or the cd llb  ets probe ( as shown) in the presence of buffer 1. Pre-immune serum 
(PI) or polyclonal anti-PU.l antibody (P) was added to the incubation reaction and 
the complexes formed, separated through a 6% polyacrylamide gel.
(b) jig of HL60 nuclear protein extract (H) was incubated with [y-32p]-labelled FPy in 
buffer 1. GAB P a antibody (Aa) or GABPp antibody (Ap) were co-incubated with 
these reactions and the complexes formed separated by electrophoresis through a 6% 
polyacrylamide gel. The complex whose binding is increased by GABPa antibody is 
marked as C.
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Therefore a similar pattern is observed where there is increased binding of a 

particular protein (or proteins) to FPy when anti-Ets factor antibodies are co-incubated. 

No supershifted bands are seen, so this suggests a picture where the antibodies are 

interacting with their respective Ets factors and disrupting a complex formed in solution 

between the Ets factor and another factor. (Such DNA-independent interactions are 

known to occur between Ets factors and other transcription factors including Notch-like 

GABP(3 and also C/EBP a,(3(239;379)). Disruption of this complex allows the other 

factor to bind to the DNA target site thus enhancing the intensity of a previous band or 

resulting in the formation of new complexes. In order to further test this hypothesis, we 

performed similar experiments on NB4 cells to try and replicate this phenomenon 

primarily using FPa as our sequence of interest and trying to identify the factor 

responsible for the enhanced binding upon Ets factor removal.

9.3 Increased NB4 nuclear protein binding to FPa upon competition

9.3.1 Low mobility complex binding after prolonged competition

Using FPa as a labelled probe, granulocytic nuclear extract was incubated with 

several competing oligonucleotides (Fig.35a). The incubation was allowed to proceed 

overnight at 4°C prior to running out on the gel. As can be seen this allows much 

clearer complexes to be formed on the long FPa probe than had been previously seen. 

A 200-fold molar excess of unlabelled FPa as well as of competitor Ets-binding site 

from the neutrophil elastase (NE) promoter is able to compete away most complexes 

bound to this site. However, the pu.l binding site from the cd llb  promoter as well as 

c/ebp binding sites from the M-CSF receptor promoter resulted in a marked increase in

209



Fig. 35 More FPa competition EMSAs. (a) Enhanced binding of NB4 nuclear 
proteins to FPa following a prolonged incubation with competing oligonucleotides. 
5pg of granulocytic NB4 nuclear protein extract was incubated with 200-fold 
molar excess of unlabelled competitor oligonucleotide, (shown) and with [y-32p]- 
labelled FPa in buffer 1. Incubations were allowed to proceed for 16 hours slowly 
rotating at 4°C. The complexes formed were then separated by electrophoresis 
through a 6% polyacrylamide gel.
(b) Assessing the binding specificity of different ets site competitor 
oligonucleotides. Purified GABPa(Ga), GABPa together with GABPP(GaP), or 
both sub-units together with 200-fold molar excess of different unlabelled competitor 
oligonucleotides (shown), were incubated together with [y-32p]-labelled FPa in 
buffer 3. The complexes formed were then separated by electrophoresis through a 
4.5% polyacrylamide gel.
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binding. Fig.35b shows that whilst the NE ets site strongly competes for GABP bound 

to FPa, the cd llb  ets site is a much weaker competitor. This suggests that removal of 

one factor (in this case by binding to its recognised DNA site) allow other components 

to bind to FPa (Fig 35a). The increase in binding seen here is greater than that seen 

during shorter incubations and results in a markedly retarded complex. This was 

hypothesised to be due to the binding of a particular transcription factor to FPa in the 

absence of competing factors which could then recruit other transcription factors (or 

components of the transcription machinery) to FPa. In order to maintain some 

uniformity (despite certain benefits of a longer incubation), the standard shorter 

incubation was used for all other experiments

9.3.2 Increased FPa binding after competion with Ets-binding oligonucleotides 

is due to C/EBPe

Standard co-incubations with undifferentiated NB4 nuclear extract, radiolabelled 

FPa probe and various competitor oligonucleotides, were performed (Fig.36a). 

Different patterns of increased binding were detected.Oligonucleotides which bind 

C/EBP factors such as FPp, FPal (potential if not proven binding), and other 

recognised C/EBP binding sites resulted in a marked increase in the formation of high 

mobility (low molecular weight) complexes which were seen in a number of discreet 

bands (marked as H). At the same time the lower mobility (higher molecular weight) 

bands (marked as L) are reduced in intensity to a greater or lesser extent (lane 2) or 

become more distinct (lanes 3, 8 and 9).When Ets-binding oligonucleotide competitors 

(such as FPy, the PU.l binding site of c d llb , or a short part of FPa which includes 

just the core GABP-binding ets site but not adjacent c/ebp or ami sites) are co-incubated
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Fig.36 Enhanced binding of undifferentiated NB4 nuclear proteins to FPa following 
oligonucleotide competition.

5pg of undifferentiated NB4 nuclear extract, a 200-fold molar excess of unlabelled 

competitor oligonucleotides (shown), and [y-32p]-labelled FPa are incubated in buffer
1. Where more than one competitor is added, it is the total which is in a 200-fold 

molar excess with respect to the probe. Where indicated pre-immune serum (PI) and 

anti-C/EBPe antibody (Ce) were added to the reaction. Protein complexes formed were 
separated by electrophoresis through a 6% polyacrylamide gel. L and H signify Low 
and High mobility complexes respectively
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with labelled FPa, a different pattern was observed. Whilst the increase in the intensity 

of the high mobility bands still occurs, this is now accompanied by a clearly enhanced 

binding of lower mobility complexes too (lanes 4, 5, 6 and 11). Addition of either a 

C/EBP-binding oligonucleotide (lane 12) or an anti-C/EBPe antibody (lane 14) reduced 

the formation of the Ets-binding oligonucleotide-induced complexes. In the case of anti- 

C/EBP antibody, a supershifted band was seen. No such reduction in band intensity or 

supershifted band was seen in the presence of pre-immune serum (lane 13).

Clearly these lower mobility complexes seem to be due to enhanced binding of 

C/EBPe-containing factor complexes. The GABP/PU.l-binding site from the neutrophil 

elastase promoter, whilst enhancing the appearance of these (C/EBP-dependent) low 

mobility complexes, also results in loss of the intense high mobility complexes. A 

possible explanation is that these factors (which may possible be Maf family members) 

form a complex C/EBP in the place of Ets factors once all of these have been removed 

by the GABP/PU.l binding site. Thus whilst forming a complex with C/EBPe, no free 

factors are left over to bind DNA alone. As well as Mafs, they may be other small 

leucine zipper factors such as Ig/EBP which is present rather ubiquitously (159). 

Competition of Ets and C/EBP factors for overlapping sites within FPa might explain 

why the bands seen in incubations with this probe were often quite hazy and indistinct 

whilst they are more clear after one of these factors has been competed away.

Similar studies were performed using granulocytic NB4 extract and the results of 

these EMSAs are shown in Fig.37. Again, co-incubation with oligonucleotides that 

bind PU.l, like the cd llb  promoter site (Fig.37a), resulted in increased intensity 

binding. This increased binding is inhibited by C/EBP-binding oligonucleotides or by 

anti-C/EBPe antibodies whilst pre-immune serum has no such effect. As seen by the
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Fig. 37 Enhanced binding of granulocytic NB4 nuclear proteins to FPa following 
oligonucleotide competition.
(a) 5(ig of granulocytic NB4 nuclear protein extract was incubated with a 200-fold 

molar excess of competitor oligonucleotide (cdllb), together with other 
oligonucleotides or antisera (as indicated) in buffer 1. [y-32p]-labelled FPa is then 
added and complexes formed were then separated by electrophoresis through a 6% 
polyacrylamide gel. The band S indicates a supershifted complex formed with in the 
presence of the anti-C/EBPe antibody CRP1. Self (FPa) competition shows that 
nuclear protein binding to this probe in these conditions is specific.
(b) 5|ig of granulocytic NB4 nuclear protein extract was incubated with a 200-fold 
molar excess of c/ebp site competitor oligonucleotides together with other 
oligonucleotides or antisera (as indicated) in buffer 1. [y-32p]-labelled FPa is then 
added and complexes formed were separated by electrophoresis through a 6% 
polyacrylamide gel. Arrow 1 indicates the top band of a doublet of complexes which 
is lost upon incubation with GABPP antibody and the complexes which bind DNA 
concomitantly are marked as 2. Self (FPa) competition shows that nuclear protein 
binding to this probe in these conditions is specific.
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supershifted band, the amount of C/EBPe is greater than that seen with undifferentiated 

extract (see Fig.36). This agrees with the results of previous studies (Fig.28). C/EBP- 

binding competitor oligonucleotides incubated with labelled FPa and granulocytic 

extract results in distinct complexes as opposed to the diffuse patterns seen with 

uncompeted reactions.

9.3.3 Ets-related complexes bind more strongly to FPa after C/EBP removal

The factors, whose binding is impaired by c/ebp oligonucleotide competition, 

are themselves competed away by the GABP/PU.l-binding ets site oligonucleotide 

from the neutrophil elastase promoter (Fig. 36b). Antibodies against GABPp inhibited 

the formation of the upper band of the top doublet seen following this c/ebp site- 

competition (marked as 1). Pre-immune serum did not have such an effect (lane 7 as 

opposed to lane 8). Concomitant with the disruption of this band by the GABPp 

antibody, there was an increased appearance of high mobility bands marked as 2. This 

pattern is reminiscent but not identical to that seen with purified GABP proteins with 

GABP antibodies (Fig.25b). One of the protein complexes bound more strongly in the 

absence of C/EBP appears to contain GABP(3 and may be be GABPa|3. Removal of the 

GABPp component results in enhanced binding of the high mobility factors, which may 

be displaced from other complexes ( unbound to DNA) by released GABPa.
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Chapter 10 : Western analysis - Changes in transcription 

factor abundance with differentiation

Changes in transcription factors abundance and expression are likely to play a 

role in regulating promoter activity. Increased C/EBPs expression is a recognised 

feature of granulocytic differentiation of myeloid cells and cell lines (374). This 

correlates well with the changes seen both in footprinting studies and in EMSAs. Using 

the available antibodies, western analysis was performed to assess changes in the 

abundance of other transcription factors suspected to be binding to the defensin 

promoter during granulocytic differentiation. The results of such analyses are shown in 

Fig.38.

One such factor which was not detected by EMSA but whose binding site is 

protected in DNAse 1 footprinting assays is Myb. Using a monoclonal antibody derived 

against the C-terminal 235 amino acids of the protein, a western blot was performed 

using NB4 nuclear proteins prepared during a time course of granulocytic 

differentiation using ATRA. A significant reduction in the amount of Myb detected was 

seen after 48 hours of such induction (Fig38a) This correlates well with a time point just 

before cell division ceases in ATRA-induced NB4 cells (94).

PU.l may be up regulated during myeloid differentiation (337) and preliminary 

results from EMSAs suggested that this was the case in NB4 cells. Using a monoclonal 

antibody derived against a GST- PU.l fusion protein, undifferentiated and ATRA- 

induced (40 hours) NB4 nuclear extracts were analysed by western blotting. A clear 

increase in the abundance of a band migrating at the correct molecular weight of 40kDa
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Fig.38 Western analysis of changes in transcription factor abundance with 
differentiation.
(a) 10(Xg of nuclear protein, prepared from cells at different time points into ATRA- 
induced granulocytic differentiation of NB4 cells (indicated in hours above each lane) 
was separated by electrophoresis through a denaturing SDS polyacrylamide gel. 
Following blotting, the gel was incubated with a monoclonal c-Myb primary antibody 
and protein was detected using a secondary HRP-linked antibody and chemi 
luminescence.
(b) The left panel shows a western blot of 10|ig of nuclear protein prepared from 
uninduced NB4 cells (U) and cells 40 hours post initiation of ATRA-induced 
granulocytic differentiation (G). PU.l is detected in the same manner as described 
above following incubation of the blot with a monoclonal anti-PU.l antibody. The 
right panel also shows the increase in PU. 1 upon NB4 differentiation by the enhanced 
binding to the known PU.l- binding site of the cd llb  promoter in an EMSA. 5pg of 
undifferentiated (U), granulocytic (G) and monocytic ( M) NB4 cell nuclear protein 
extract was incubated with the labelled probe in buffer 1. Binding is shown to be 
specific by co-incubation of a 200-fold molar excess of the same cdl lb  site as an 
unlabelled competitor (G*).
(c) 25ng of purified GAB Pa and GABPp and lOpg of nuclear protein extract taken 
from undifferentiated NB4 cells (Nu) or differentiating NB4 cells 40 hours after 
initiation of ATRA-induction,(Ng) were blotted after separation by SDS- 
polyacrylamide gel electrophoresis. Protein was then detected by incubation with 
anti-GABPa or GABPp antibodies and then by chemiluminescent detection as 
described.
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was detected (Fig.38b). An EMSA is also shown using the recognised PU.l binding site 

of the cd llb  promoter, which also shows a clear increase in the characteristic PU.l 

doublet with granulocytic extract with respect to undifferentiated or even monocytic 

extract (24-hour induction).

Western analysis of undifferentiated and granulocytic NB4 nuclear proteins was 

also performed using antibodies against the a  and P sub-units of the GABP transcription 

factor. EMSA results had given some indication that the GABPa sub-unit but not the 

GABPp sub-unit was detectable in undifferentiated extract. This was contrary to what 

was indicated in previous publications, (315) that both GABP sub-units were 

ubiquitously expressed in most tissues. Western analysis indicated that both sub-units 

were in fact efficiently expressed in both undifferentiated and granulocytically 

differentiating NB4 cells. Neither were large changes in molecular weight of GABPa or 

P, as a result of post-translational modifications, apparent between undifferentiated and 

differentiating cell extracts. This suggests that any modifications may be happening by 

re-distribution of modifier groups rather than de novo addition.

Importantly whilst GABPp may not be bound to its target site DNA through 

GABPa in undifferentiated NB4 cells, it is definitely present. Having knowledge of the 

main transcription factor binding sites within the defensin promoter and evidence of 

transcription factors bound to these sites, functional testing was performed to assess the 

importance of these various factors in vivo.
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Chapter 11 : Characterisation of the reporter gene system for 

transfection studies

The main interest of our study was to study the function of the defensin 

promoter in vivo, to intervene experimentally and assess the results of such 

interventions. In order to do so, a good reporter gene system that can function 

effectively within the test environment is essential. Other members in our laboratory 

had through their own studies, noted, that, when analysing promoter activity within 

myeloid cells (HL60 myeloblastic leukaemia cells), reporter molecules which were 

exported from the cell proved greatly advantageous over other more commonly used 

reporters. Luciferase reporter activity was found to be weak in undifferentiated HL60 

cells and was completely lost once the cells were induced to differentiate (380). 

Assaying luciferase reporter activity, like chloramphenicol acetyl transferase (CAT) 

reporter activity, requires lysis of the transfected cells and assaying the activity within 

this lysate. Myeloid cells are the organism’s host defence system against intruding 

pathogens and as such are laden with nucleases and proteases far beyond most other 

cells. One explanation for these results was therefore that the enzyme was destroyed by 

the said proteases upon cell lysis (despite the use of various protease inhibitors) and was 

therefore an ineffective method to study promoters in these cells. For this reason, 

experiments were performed using a human growth hormone gene driven by the test 

promoter as a reporter whilst placental (secreted) alkaline phosphatase expressed from a 

cDNA driven by an early SV40 promoter(362) was used as a transfection control. Since 

both reporter and transfection control molecules were secreted by the cells, testing

219



involved a simple assay on an aliquot of the medium in which the cells were growing. 

This was the system I had then determined to use for the study of defensin promoter 

activity in the myeloid NB4 cells.

11.1 Anomalous up-regulation of empty growth hormone reporter vector

Initial studies presented a serious problem that required amending before any 

experiments could be performed. Co-transfection of expression vectors producing my 

test transcription factors together with the growth hormone reporter gene driven by a 

defensin promoter fragment caused a good increase in the reporter gene activity. This 

was unfortunately invalidated by a similar increase in the reporter activity obtained 

upon co-transfection of an expression construct together with the empty reporter vector 

(the growth hormone gene not driven by any promoter). Such an effect was seen with 

two different co-transfected transcription factors (Fig.39). This initial problem with 

the reporter system was compounded by similar problems of up-regulation of the empty 

reporter vector activity by the process of granulocytic differentiation itself (see 

Fig.41a). Since the change in promoter activity with differentiation was my main area 

of interest, steps were taken to correct this reporter system in order for valid 

experiments to be carried out.

11.2 Modification of the growth hormone reporter vector

The growth hormone reporter construct I had used was described by Selden et al 

(381). Analysis of this construct led me to identify a number of potential

2 2 0



100 T
0>
0_l

90

800co
E 70
o

X
sz
%ok_
CD 4 0  
§  30

20

C M CM

Ogh 140gh

Co-lransfected 
Transactivators

Fig.39 Transactivation of the empty genomic growth hormone reporter 

vector.

Average growth hormone levels, are indicated, relative to that measured 

after transfection of the reporter vector alone (taken as 1). All results 

represented are means of at least 4 separate experiments. M indicates 5jng of 

co-transfected c-Myb expressing vector whilst C signifies 5flg of co

transfected C/EBPa expression vector. It is evident that the empty reporter 

vector (Ogh) is up regulated in a manner similar to the defensin promoter 

fragment-bearing vector (140gh).
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C/EBP-binding sites within the intron sequences of the growth hormone gene. Since 

C/EBP co-transfection had caused a large up-regulation of the empty reporter vector, 

removal of these sequences would, theoretically, help reduce this vector-dependent 

reporter activity. Whilst these intron sequences may be acting as enhancer sequences, no 

transcription should have been possible in the absence of a promoter, suggesting that a 

spurious promoter sequence was present within the backbone vector sequence derived 

from the pUC12 plasmid. In order to remedy these two points, I cloned a human growth 

hormone cDNA (a kind gift from Paul Robbins) in place of the genomic growth 

hormone sequence. This I modified by introducing a consensus Kozak sequence just 

upstream and an efficient polyadenylation signal downstream of the cDNA. I also 

introduced two synthetic transcriptional stop and polyadenylation signals upstream of 

the multiple cloning site such that any mRNA initiating upstream of these sequences 

would be terminated and would not extend into the reporter gene sequence. These 

changes are marked as points 1 and 2 in the schematic in Fig.40. This reporter gene was 

much improved with respect to vector dependent activity caused by granulocytic 

differentiation (despite a now anomalous up-regulation upon monocytic differentiation). 

However, there was still considerable up-regulation of the promoter by C/EBP 

expressing vectors (See Fig. 41b). Further changes were therefore required.

A similar problem with spurious vector-dependent activity had been previously 

detected and corrected in a CAT reporter construct pBLCAT3 by Boshart et al(360). In 

this case, sequences upstream of the multiple cloning site where promoters were 

introduced for study, had been noted to have promoter activity, and the deletion of these 

sequences together with insertion of two SV40 derived transcriptional stop sequences, 

markedly reduced vector sequence dependent reporter activity. In order to produce the 

best reporter gene for my studies, the modified human growth hormone cDNA from my
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Fig.40 Corrective measures applied to the genomic growth hormone reporter vector. 
Black rectangles along part of the vector, schematically represent intron-exon 
boundaries within the growth hormone gene, with pink starbursts showing potential 
enhancer sequences within the introns. The red star signifies an anomalous promoter 
upstream of the multiple cloning site of the reporter vector (indicated by the green 
arrow). Steps take to correct the reporter gene are noted numerically with 
modifications 1 and 2 having been incorporated first and change number 3 being 
introduced into the final reporter gene vector.
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improved reporter vector was cloned into the corrected backbone of the improved 

pBLCAT6 reporter vector in place of the CAT cDNA. These changes are marked as 

point 3 in the cartoon in Fig.40.

11.3 Differential responses with new and old hGH vectors

11.3.1 Different vector responses to differentiation and co-expressed activators

Fig. 41 shows the improvements to the new hybrid PBLCAT6/hGH vector as 

opposed to the initial corrected vector and the original genomic growth hormone vector. 

Fig. 41a clearly shows a marked reduction in granulocyte differentiation-induced 

activity. The unexpected increase in monocytic differentiation-induced up-regulation 

in the activity of the initial corrected vector is also shown. The Final reporter vector, 

though retaining minimal monocytic induced activity, is much improved when used in 

both lineages.

The modifications to the reporter vector reduced spurious vector sequence- 

dependent promoter activity even in the case of co-transfections with expression 

vectors, as can be seen in Fig.41b. The three lanes marked for each vector 1, 2 and 3 

show the effects of 50ng, 500ng and 5jig of co-transfected C/EBPa-expressing vector 

respectively.

11.3.2 Different activity of promoter fragments in old and new hGH vectors

Since a number of experiments had been carried out previously in our laboratory 

using HL60 cells, I decided to compare the activity of defensin promoter fragments
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Fig.41 Up regulation of old and new, growth hormone reporter vectors, by 
differentiation and transactivators.
(a) From left to right are indicated the relative growth hormone levels measured after 
transfection of the genomic growth hormone reporter, the intermediate modified 
reporter and the final reporter vectors into undifferentiated (U), granulocytic (G) and 
monocytic (M) NB4 cells respectively. Growth hormone levels are quantified relative 
to that measured following transfection of the genomic vector into undifferentiated 
cells.
(b) Relative growth hormone levels measured following transfection of the genomic 
(A), intermediate (B) and final (C) growth hormone reporter vectors into 
undifferentiated NB4 cells with 50ng (1), 500ng (2) or 5pg (3) of C/EBPa-expressing 
vector. Values are quantified relative to the level of growth hormone measured 
following transfection of the final vector (C) without any co-transfected activators 
(taken as 1).
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driving the new reporter vector with the activity obtained by the same fragments driving 

the original genomic growth hormone vector. The results of these experiments are 

shown in Fig.42. The results obtained with the old vector repeated the pattern seen with 

earlier HL60 experiments (Fig.42a). Those with the new vector showed two interesting 

and important changes (Fig.42b). Firstly it is apparent that the absolute amount of 

growth hormone activity produced by this new vector is considerably less than that 

produced by the original vector (not shown) which means it may not be optimal for use 

in studying cells which are transfected as poorly as HL60. This reduced activity may be 

due to the lack of enhancers within the intron sequences and the loss of one promoter in 

the vector sequence.

The other difference is the change in the pattern of reporter activity as expressed 

by the different defensin promoter fragments. In both cases, all values are expressed as 

relative to the activity of the -240/+15 promoter, (which is taken arbitrarily as 1). As 

can be seen, fragments cloned into the old vector present a pattern where the bulk of the 

promoter activity is present in very short defensin upstream sequences and peak activity 

was obtained from a -67/+15 sequence. Greater lengths of upstream sequence resulted 

in reduced activity. When assessing the activity of the same promoter fragments in the 

new vector, the shortest fragment -30/+15 was one of the least active. Promoter activity 

increased gradually to reach a peak activity in the -140/+15 fragment that had a similar 

activity to that obtained from a -240/+15 promoter fragment-driven construct. The - 

180/+15 fragment is relatively inactive- a feature that was later also found in NB4 cells. 

Thus the overall pattern is one where with the new vector, adding in other site within 

this sequence enhances activity whilst with the original vector, adding in more promoter 

sequence reduces the activity. One possible explanation for this is that when using the 

older reporter system, much of the growth hormone expression is dependent on the
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Fig.42 Different reporter constructs show different patters of deletion mutant 
promoter activity.
(a) Relative growth hormone activity following transfection of the genomic growth 
hormone reporter gene driven by different defensin promoter fragments (as 
indicated) into HL60 myeloblast cells.
(b) Relative growth hormone values following transfection of the final growth 
hormone reporter vector into HL60 cells driven by the same promoter deletion 
fragments as in (a). In both cases, growth hormone levels are quantified relative to the 
value measured following transfection of the -240/+15 deletion mutant construct.
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spurious promoter sequence in the vector and not the test promoter. Therefore, inclusion 

of longer test promoter sequences actually distance this promoter (and its associated 

transcriptional start site) from the reporter gene itself such that mRNA produced by this 

promoter end up having elongated untranslated sequences which may be deleterious to 

eventual translation of the reporter gene. In the case of the new vector, addition of more 

transcription factor binding sites, so long as they bind positive acting factors, result in 

increased activity. This shows that this new reporter vector probably gives a more 

accurate assessment of the real activity of the test (defensin) promoter in this myeloid 

cell system.

11.4 Optimising the new hGH reporter test system

11.4.1 Optimisation of transfection conditions

Having decided upon the test reporter vector to be used, studies were performed 

in order to establish optimal conditions of transfection in NB4 cells. These cells are 

easier to transfect than HL60 cells so the activity obtained from the new growth 

hormone reporter construct was likely to be sufficient for easy and accurate 

measurement yet optimisation was important nonetheless.

A standard amount (5pg) of control plasmid which expresses placental 

(secreted) alkaline phosphatase, was transfected into NB4 cells (as described in 

materials and methods) using a range of different voltage settings. Alkaline 

phosphatase activity is measured in the medium collected after overnight recovery of 

the cells post-transfection. These experiments suggested that optimal transfection occurs 

with a voltage of 180 to 200 V. The latter voltage was chosen for all subsequent
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experiments. The total amount of DNA used in transfections is known to influence the 

efficiency of transfection (382). Therefore, using the optimised transfection voltage a 

number of transfections were carried out with varying amounts of total DNA (made up 

by adding carrier pBluescript DNA over and above the 5jig of alkaline phosphatase 

construct). 30pg of total DNA resulted in the optimum reporter activity. Using these 

two optimised features, transfections were carried out and medium was collected at 

different time points following transfection to assess when reporter activity is first 

detected and when it is best to assay the medium. Alkaline phosphatase activity above 

background levels was first detected at about 6 hours. A significant amount of activity 

(about 50% of that seen after 20 hours) was detected at 8 hours post transfection and 

also at later times well after this point (Fig. 43).

11.4.2 Control studies with uninduced, ATRA-exposed and differentiated cells

Once the optimal conditions for transfection had been established using the 

alkaline phosphatase plasmid, the actual reporter gene construct was tested. It is 

important to quantify the production rate of the reporter molecule such that medium can 

be assayed before plateau is reached. This will allow differences in the amount of 

growth hormone quantified, to be more accurately related to the activity of the test 

promoter. It is also important to perform similar tests during transfection into 

differentiating cells so as to ascertain that results obtained from these studies are 

similarly relevant. Using a test defensin promoter construct (-240/+15), and the 

conditions optimised using the alkaline phosphatase promoter, transfections were 

carried out and medium removed for assaying growth hormone concentration at 

different time points following the transfection. As can be seen in Fig.44, growth
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Fig.43 Identifying the best time to withdraw medium for testing reporter activity. 

Following transfection of the alkaline phosphatase reporter construct,into 

undifferentiated NB4 cells, samples of medium were removed from the flasks 

containing the transfected cells at different time points. Enzyme activity is 

measured, average values from four different transfections are calculated and the 

mean level of activity relative to that one hour post transfection is plotted against the 

time elapsed since transfection.
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hormone in concentrations above background was detected as early as six hours after 

transfection in the ATRA-induced cells (brown columns) but was barely detectable up 

until 12 hours in the uninduced cells (blue columns). In both cases, a major increase in 

the reporter activity (of similar rate) was seen between 12 and 20 hours post

transfection but even at this time point the expression of growth hormone had not yet 

reached a plateau but was still increasing. Therefore I decided to assay medium taken 

18 to 20 hours post-transfection since the growth hormone level measured at this time 

point should give a fair indication of the activity of the test promoter.

One very important test was to ensure that ATRA had no direct effect on 

defensin promoter activity (due to ligand-bound RARa -induced transactivation) which 

could be misconstrued to be a differentiation-induced effect.

In order to assess this, ATRA was added to undifferentiated NB4 cells 10 hours 

after transfection of a defensin test promoter construct but 8-10 hours prior to assaying 

the medium for growth hormone. As can be seen in Fig. 12, the increase in defensin 

mRNA during ATRA-induced differentiation of NB4 cells is first detected at 16 hours 

and is not present at 8 hours following initiation induction. Thus if ATRA directly 

enhances the promoter activity it should be detected in this experiment whilst there is 

not enough time to cause an increase in the promoter activity secondary to 

differentiation of the transfected NB4 cells.

As can be seen, this test excludes a direct effect of ATRA in up-regulation of the 

defensin promoter in this test system (green column 20 hours). This correlates with 

studies in HL60 cells where the kinetics of ATRA-induced defensin mRNA up- 

regulation excluded a direct effect (52). The lack of consensus retinoic acid receptor 

recognition elements (RAREs) within the defensin promoter also concurs with the lack 

of direct RARa- dependent transactivation.
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Chapter 12 : Transfection studies in NB4 cells

12.1 Up-regulation of defensin promoter activity upon differentiation

Various lengths of the sequence 5’ of the HNP-1 gene, each extending 3’ to nt 

+15 relative to the primary transcription start site were cloned into the new growth 

hormone reporter vector resulting in a number of test promoter constructs. Many of, but 

not all the promoter fragments had been generated previously (380). The test constructs 

are schematically represented in Fig. 45 on the left side of the figure. These different 

defensin promoter deletion mutant constructs were transfected into ATRA-induced and 

uninduced NB4 cells together with a number of different controls and medium was 

removed for growth hormone assay (as described in the materials and methods). The 

bars on the right of the figure indicate relative growth hormone activity in 

undifferentiated (red) and differentiated (blue) NB4 cells.

The different effects on the different control promoters show that differentiation 

is not causing a non-specific up-regulatory effect. The |3-actin promoter-driven reporter 

gene is not up-regulated to any great extent (1.5 fold), a result which correlates well 

with the picture seen in the northern analysis of |3-actin mRNA (Fig. 13). The minimal 

up-regulation may be a non-specific effect of differentiation on the construct. The 

herpes simplex virus thymidine kinase (HSVtk) promoter is down regulated by 

differentiation, an effect that may reflect the increased expression of repression factor 

Evi-1 upon myeloid differentiation (383). Evi-1 has been shown to down-regulate 

HSVtk promoter activity (384). The Glyceraldehyde phosphate dehydrogenase 

(GAPDH) promoter is strongly up regulated on the other hand. C/EBP factors, which
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Fig. 45 Functional activity of defensin promoter constructs in undifferentiated and 
differentiated NB4 cells. Cells were transfected with 5pg of each deletion mutant 
construct ( shown schematically on the left of the figure) together with 20pg of 
pBluescript as carrier DNA and 5pg of pSV2Apap as internal control. Mean hGH 
levels calculated from measurements taken of 4 separate transfections into 
undifferentiated cells. These are normalised to alkaline phosphatase activity and 
expressed relative to the mean normalised activity of the longest (-1150/+15) 
promoter construct (taken as 1). These are shown as red bars.
To assess the increase in promoter activity upon differentiation, the alkaline 
phosphatase internal control activity is disregarded since changes to the activity of 
the SV40 promoter which drives its expression with differentiation cannot be gauged. 
The relative up-regulation of the defensin promoter construct is calculated as the ratio 
of the average hGH level measured after transfection into differentiated cells to the 
average level measured in undifferentiated cells. This value is then multiplied by the 
undifferentiated normalised value for that construct, and the value shown as the blue 
bars. Mean hGH levels are calculated from measurements from four separate 
transfections. Growth hormone reporter constructs driven by other promoters ; 
glyceraldehyde phosphate dehydrogenase (GAPDH), herpes simplex virus thymidine 
kinase (HSV-tk) and P-actin, indicate that the effects of differentiation of different 
promoters is specific to the particular promoter.
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are up regulated during myeloid differentiation, may be responsible (385). The overall 

pattern of deletion mutant promoter activity seen in undifferentiated NB4 cells is not 

dissimilar to that seen in HL60 cells with the new reporter construct (see Fig.42b).

Minimal promoter activity was detected within the sequence -67/+15, which 

incorporates FPa. This is significantly shorter than the minimal promoter (-83/+82 with 

respect to the transcription start site) identified in defensin-exptessing HL60 cells by Ma 

et al (54). The promoter sequence appears to be tissue-specific since it has negligible 

activity in endothelial (HeLa) cells (see Fig.49). The inclusion of further upstream 

sequences (-105/-67) slightly reduced activity whilst the fragment -140/-105 (FP|3) 

increased it considerably and the -180/-140 (FPy) sequence again reduced it. Inclusion 

of more 5’ sequences had variable effects but with these longer fragments which we did 

not study in detail as to protein binding, non-specific effects may predominate. 

Therefore, the -140/+15 fragment is the shortest length to show strong promoter activity 

in undifferentiated cells.

To determine the effect of differentiation on the activity of the defensin gene 

promoter, NB4 cells were induced with retinoic acid and, 20 hours later, transfected 

with promoter-reporter gene constructs, the alkaline phosphatase construct and carrier 

DNA. A concurrently grown batch of uninduced cells was simultaneously transfected 

with the same mixture. Medium was collected for reporter assay 20 hours after 

transfection.

While there was only a 2.5-fold increase in the activity of the longest (- 

1150/+15) promoter construct, a much more marked increase (7-fold) occurred with 

shorter constructs that included FPa (-67/+15 and -105/+15). In contrast, the -140/+15 

construct (which also includes FPP) showed only 2-fold greater activity in differentiated 

cells, though, as noted earlier, this construct had relative high activity in undifferentiated
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undifferentiated cells. Interestingly, the activity of the construct incorporating FP a,P 

and y (-180/+15) which was low in undifferentiated cells showed a marked 8-fold 

increase after differentiation. It is notable that the -240/+15, -140/+15 and -67/+15 

promoter constructs, which all contain FPa, had the same elevated level of activity after 

differentiation despite displaying considerably different activities in undifferentiated 

cells. On the other hand, the greatest increases in promoter activity were seen with 

those constructs with the lowest activities (-180/+15 and -105/+15) prior to induction of 

differentiation. The shortest construct (-30/+15), which lacked FPa, had negligible 

activity even in differentiated cells.

The high activity of the minimal promoter construct (-67/+15) upon 

differentiation suggests that factor binding upstream of nt -67 is not essential for 

expression in differentiating cells. The greater activity of the -140/+15 promoter 

sequence in undifferentiated cells, suggest that factors (possibly c-Myb) bind to the - 

140/-67 fragment which co-operate with the factors bound to the minimal promoter (- 

67/+15) to enhance activity. In differentiated NB4 cells, unlike in undifferentiated ones, 

factors bound to the -67/+15 construct resulted in maximum promoter activity. GABP, 

(Fig.25a), AML-1 (53) and PU.l (54) have all been shown to bind within this length of 

defensin promoter sequence. All three of these factors are known to co-operate with 

C/EBPs (which also appear to bind FPa) on different promoters (185;218;238;321). 

GABP also co-operates with AML-1(349). Increased abundance of transcription factors 

that can bind to the minimal promoter sequence with differentiation, (e.g. AML-1(338) 

C/EBP(386)) may provide alternative synergistic partners to the factors binding there in 

undifferentiated cells. This obviates the need for factors binding further upstream (such 

as at FPp).
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Inclusion of promoter sequences -180/-140 and -105/-67, respectively, strongly 

inhibited the activity of shorter promoter constructs, and the inhibitory effect was not 

relieved by differentiation. One possible cause of this is the presence of inhibitor 

binding sites. A potential site for the inhibitory protein E4BP4 (387) was found at 

position -97/-85 superimposed on a c/ebp site, and a second one, for the 8EF1 repressor 

protein (388), at -180/-140. It has been shown that a human truncated variant of 8EF1, 

ZEB, is capable of repressing an early myeloid gene in mice and that this repression is 

relieved by a combination of Ets and Myb, transcription factors (212).

Inclusion of further upstream sequences overcomes this repression and restores 

good promoter activity. This suggests that it is the ratio of inhibitors to activators bound 

to the DNA and their co-operative and/or inhibitory interactions, which is responsible 

for the relative activity of each individual construct.

12.2 Mutation of C/EBP-, Myb- and Ets-binding sites reduce promoter 

activity

In order to study further the relative importance of the protein-binding sequences 

FP a,p  and y in undifferentiated and differentiated cells, a number of site-specific 

mutations were introduced into the -240/+15 promoter construct. These mutations 

were: a mutated ets site in FPa; mutated c/ebp or myb sites in FPp and mutated ets or 

pu. 1 sites in FPy. (The specific mutated sequences are all indicated in the materials and 

methods section 5.3.9.1). Whilst all the mutations resulted in reduced promoter activity 

in undifferentiated and differentiated cells (Fig. 46), the extent of this inhibition varied. 

The increase in promoter activity following induction of differentiation also differed



Fig. 46. Effects of mutating transcription factor binding sites on promoter activity. 
The -240/+15 defensin promoter constructs (5pg) was transfected into 
undifferentiated and granulocytic NB4 cells, as was 5 pg of each mutated construct 
together with carrier DNA and internal control as described in Fig.45. The mutation 
is represented in each construct on the left side of the figure as an asterisk within the 
mutated footprint. In undifferentiated cells, the mean hGH level in each case was 
normalised against alkaline phosphatase activity and then expressed relative to the 
value for the unmutated -240/+15 construct. The up-regulation of promoter construct 
activity with differentiation is calculated as described in Fig.45. Red bars; 
undifferentiated cells, blue bars; differentiated cells. Mean hGH levels are calculated 
from measurements from four separate transfections.
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with each individual mutant. The particular mutations are marked as an asterisk within 

the box representing each particular footprint on the left side of the figure.

Mutations in FPa and FPp had the most notable effects. Mutation of the ets site 

in FPa reduced promoter activity in both undifferentiated and differentiated cell to less 

than 5% of that of the unmutated promoter. The increase in promoter activity with 

differentiation, however was 11-fold (considerably more than that of the unmutated 

promoter). Mutation of either the juxtaposed c/ebp or myb sites in FPp caused a 10-fold 

reduction in promoter activity in uninduced cells. However the increase of promoter 

activity of the mutants with differentiation was 8-fold (c/ebp-site mutant) or 11-fold 

(myb-site mutant) as opposed too only 4-fold for the unmutated promoter. Thus, these 

mutations of the promoter result in constructs with a similar pattern of an activity as the 

-105/+15 deletion mutant construct that lacks both the FPp c/ebp and myb sites.

This fits in with the model proposed above where it is the balance of inhibitors 

to activators bound to the promoter that is responsible for the overall activity of the 

construct. These mutants have a low activity due to the loss of activators as opposed to 

the inclusion of inhibitor sequences which is probably the case with the -180/140 

fragment. Mutation of FPy at either the PU. 1-binding or the ETS-binding site had least 

effect on the defensin promoter, both mutations reducing activity to about half in 

undifferentiated cells and not changing the extent of increase upon differentiation.

With the exception of the FPa ets site mutation, all the other mutant constructs 

result in a similar promoter activity in differentiated cells. It appears that the loss of one 

activator set (FPp- or FPy-bound) results in a certain reduction in activity as compared 

to the unmutated promoter (due to a reduction in the activator/inhibitor ratio of one 

activator). Loss of the FPa Ets-binding site is however more deleterious suggesting that 

all the other activators can only function in co-operation with the FPa-bound Ets
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protein. In undifferentiated cells on the other hand, both the FPa and FPp-bound factors 

are essential for good activity such that neither alone can make up for the other. This ties 

in nicely with the results of the deletion studies where in undifferentiated cells both FPs 

a  and p are required for good promoter activity. It is interesting that none of the FPp 

and FPy site-specific mutant reporters reach the same activity as the -67/+15 deletion 

mutant in differentiated cells ( which is the same as that of the -240/+15 reporter) This 

suggests that sequences upstream of -67 have a negative effect when unopposed by 

FPP or FPy- binding factors.

12.3 Co-transfection studies with various activators in NB4 cells

From these previous studies, it was apparent that factors that bind to particular 

sites within the defensin promoter greatly influence its activity. A number of 

transcription factors were identified by EMSAs to bind the various sites. Constructs 

expressing these transcription factors were co-transfected together with the -240/+15 

defensin promoter fragment-reporter gene construct, into NB4 cells to determine the 

particular effects of each factor in a background milieu ideal for defensin expression.

GABPaP co-expression up-regulates the activity of the -240/+15 defensin- 

reporter construct 8 fold whilst C/EBPs expression produced a 3-fold up regulation in 

undifferentiated cells ( Fig.47 upper panel). Myb, PU.l and AML-1 were ineffective as 

transactivators in NB4 cells (not shown). This may be due to their already being present 

in adequate amounts for maximum defensin expression within NB4 cells. Alternatively 

they may require other co-operative partners which are not present in this cell line at this 

stage of differentiation in order to transactivate the promoter. C/EBPe and GABPaP on 

the other hand appear to be limiting with regards to defensin expression. Indeed,
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Fig.47 Changes in transactivation and transcription factor synergism with 
differentiation.
The -240/+15 defensin promoter-hGH construct (5pg) was transfected into NB4 cells 
with pSV2Apap (5jig), constructs expressing C/EBPe (lOOng), or GABPs (2pg of 
each), and pBluescript to a total of 30pg of DNA as described. hGH measurements 
were normalised to those for alkaline phosphatase, to control for variations in 
transfection efficiency in undifferentiated cells. Mean growth hormone values from 
at least four independent transfection experiments are then calculated and expressed 
relative to the normalised value for the -240/+15 promoter construct in the absence of 
exogenous factors (taken as 1.0). Growth hormone values for differentiated cells are 
not being related to those in undifferentiated cells and are therefore also normalised to 
the alkaline phosphatase internal control. Mean values are calculated from 4 
independent transfections, and expressed relative to the value obtained without any 
co-expressed activators.
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increases and later decreases in C/EBPe expression during granulocytic differentiation 

of the cell line largely parallel the changes in abundance of defensin mRNA (386), Fig. 

12. Myb or Ets ( GABP or PU.l) co-expression with C/EBPe does not produce co

operative activation , resulting in less promoter activity than the sum of that induced by 

individual factors (not shown).

12.4 GABP up-regulates the defensin promoter diversely, on 

differentiation

GABP is a bipartite transactivator composed of a DNA-binding but 

transcriptionally inactive Ets factor (a) and a Notch-related transactivatory factor (p) 

which is attached to DNA through its interaction with GABPa (314). GABPa 

expression alone has not been shown so far to transactivate any promoter (278;317); 

GABPp co-expression was always required.

In this study, expression of GABPa alone resulted in similar up-regulation of the 

defensin promoter (8-fold), as did co-expression of both GABPa and p sub-units 

together, in undifferentiated NB4 cells (Fig. 47 upper panel). Whilst GABPp alone was 

completely ineffective in transactivating the defensin promoter, GABPy resulted in a 2 

to 3-fold up-regulation of promoter activity. The reason for this difference is unclear. 

GABPy, like GABPp, has a transactivation domain and a domain for heterodimerisation 

with GABPa. It lacks a homodimerisation domain and is therefore only capable of 

forming a heterodimer with GABPa but not a heterotetramer (324). Western blot 

analysis had already shown (Fig. 38) that both GABPa and p are easily detectable in 

undifferentiated NB4 nuclear extracts, thereby excluding that exogenous expression of 

GABPa is activating the defensin promoter by interacting with endogenous GABPp 

which previously lacked a partner.
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Unlike the co-transfected GABP sub-units, whose effect on defensin promoter 

activity changed considerably with differentiation, C/EBPe (Fig.47), AML-1 and PU.l 

(not shown) expression had a similar effect as in undifferentiated cells. In 

differentiated NB4 cells, GABPp (as well as GABPa and GABPy) co-transfection 

transactivated the defensin promoter. When co-expressed together with GABPa, 

GABP (3 increased defensin promoter construct activity in a synergistic manner whilst 

GABPy had a less than additive effect when co-expressed with GABPa. Westerns have 

already shown no great changes in abundance of either GABP sub-unit upon 

differentiation. EMSA (Fig.25a ) suggests binding of GABP(3 to FPa in differentiated 

but not in undifferentiated cells. This suggests a change in the interaction between the 

two GABP sub-units in differentiated as opposed to undifferentiated cells.

12.5 Effects of site-specific and deletion mutations on transactivation 

by co-activators

Having identified GABPa(3 and C/EBPb as transactivators of the defensin 

promoter in NB4 cells, further studies were performed using different deletion and site- 

specific mutants in order to identify the important sites through which these factors are 

acting. The results of these transfections into differentiated NB4 cells are presented in 

Fig.48. The activity induced by C/EBPe co-transfection with the -67/+15 promoter 

construct was half that seen with the -240/+15 construct. C/EBPe co-transfection with 

the FPp c/ebp site promoter mutant similarly resulted in half the activity of the 

unmutated -240/+15 promoter construct. This is consistent with the evidence from 

recent studies on the rat defensin gene promoter (as well as my own observations) that



Fig. 48 Transactivation of mutated defensin gene promoters in uninduced NB4 cells 
by GABPaP and C/EBPe. The cells were transfected with 5pg of the promoter 
reporter construct, expression constructs (lOOng of C/EBPe or 2|ig each of GABPa 
and GABPp), 5jig of pSV2Apap, and pBluescript to 30|ig. hGH measurements were 
normalised to those for alkaline phosphatase to control for variations in transfection 
efficiency. The means of four independent transfection experiments relative to that 
for the -240/+15 promoter construct transactivated by C/EBPe ( taken as 1.0) are 
shown.
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C/EBPs also bind within the gene’s -67/+15 sequence (53). Therefore, only half the 

functional c/ebp sites would be lost by mutation or deletion of FP(3. The -240/+15 

construct lacking the FPp myb site, however, showed 4-fold lesser C/EBPs-induced 

activity compared to the unmutated construct. This is considerably less than the activity 

seen with the FPp c/ebp site mutated construct suggesting that binding of c-Myb is very 

important for defensin promoter activity.

Interestingly, C/EBPe-induced activity was completely lost with mutation of the 

GGAA core of the ets site in FPa (Fig.48), suggesting that binding of an Ets factor 

(probably GABP) is essential for C/EBPe-dependent activation of the promoter. As 

indicated from previously presented transfected studies with mutant reporter genes, the 

FPa-bound factors appear essential for any trans-activation of the defensin promoter. 

Co-expression of GABPa and p transactivated the minimal -67/+15 promoter construct 

and the longer -240/+15 construct to a similar extent, suggesting that the majority of 

GABP-induced activity was dependent on the FPa ets site. Mutation of the core GGAA 

in FPa resulted in a 5-fold reduction in GABPaP-induced activation, confirming the 

importance of this binding site. Mutation of the core ets site in FPy (Fig.48) reduced 

GABPaP-induced activation only minimally suggesting that any GABP binding we may 

have noted at this site is either an artefact of the EMSA or is functionally irrelevant in 

vivo.
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Chapter 13 : Promoter studies in non-myeloid HeLa cells

Many transcription factors present in NB4 cells may play a role in defensin 

promoter transactivation. Therefore, in order to observe any co-operative transactivation 

effects in a cell line with low background levels of many of the factors involved, 

functional studies were also performed in non-myeloid HeLa cells which do not express 

defensin. The -240/+15 defensin promoter construct had negligible activity in HeLa 

cells (Fig.49). The -140/+15 construct had a similarly negligible activity though that of 

the -67/+15 construct was marginally increased in relation to the longer constructs. This 

is possibly due to interaction of different endogenous factors (such as GABPa and 

C/EBPp) on this short sequence resulting in some synergism (evidence for such an 

interaction is shown later). On longer constructs, these factors would most likely have 

been bound to separate sites and would be less likely to interact.

13.1 Myb and C/EBPe synergistically transactivate the defensin 

promoter

Co-transfection of a Myb-expressing construct did not increase the basal 

promoter activity of the -240/+15 reporter construct in HeLa cells (Fig.49). C/EBPe 

co- expression produced only a three-fold up-regulation whilst co-transfection of 

C/EBPe together with Myb produced a clearly synergistic 26-fold activation. Similar 

co-operative transactivation was apparent with the -140/+15 promoter construct but 

there was no such co-operative transactivation of the -67/+15 promoter. This correlates
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Fig. 49 Transactivation of defensin gene promoters in HeLa cells by MYB and 
C/EBPe.
The cells were transfected with promoter construct (5|ig in each case), expression 
constructs (lOOng of C/EBPe and/or 2|ig of Myb as indicated), and pBluescript to 
10|ig. Since no internal control plasmid is being used (due to the fact that it was 
markedly effected by some co-expressed transactivators), it is essential that multiple 
repeats of each experiment be performed. For this reason, for each experiment the 
means of four independent transfections are calculated and expressed relative to that 
for the -240/+15 promoter construct in the absence of exogenous factors (taken as 
1.0).
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with the absence of the FPp myb site in the latter. Using site-specific mutant promoter 

constructs we analysed the binding site requirements for this co-operative 

transactivation. The FPp c/ebp-site mutant was transactivated just as strongly by 

C/EBPe and Myb as the unmutated construct whilst the FPP myb-site mutant showed 

markedly reduced transactivation, indicating an absolute requirement for a Myb-binding 

site. Strong transactivation of the FPp c/ebp-site mutant promoter construct suggests 

that Myb is capable of co-operating with C/EBP bound elsewhere on the promoter 

(possibly at FPa), and indicates that myb and c/ebp binding sites need not necessarily 

be adjacent for co-operative transactivation of the promoter.

The -240/+15 promoter construct mutated at the FPa ets site was not 

transactivated by co-expression of C/EBPe and Myb, indicating that this site is essential 

for any transactivation by C/EBP just as was seen with transfections into NB4 cells. On 

the other hand, the promoter construct bearing an ets site mutation in FPy, was co

operatively transactivated by C/EBPe and Myb to a similar extent as the unmutated 

construct. The importance of the FPa Ets-binding site is emphasised even in this cell 

line indicating that the factor bound here is most probably not a myeloid-specific factor. 

Alternatively, the function of whatever binds here in myeloid cells can be effectively 

substituted in non-myeloid ones.

13.2 C/EBP a and p do not co-operate with c-Myb and can be 

inhibited by CHOP-10, unlike CEBPe

The main transactivating C/EBP family member found in HeLa cells is C/EBPp 

(145). As expected from the low background activity of the defensin promoter in HeLa
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cells, overexpression of C/EBPp did not produce any increase in reporter activity, nor 

was there any significant co-operative transactivation with Myb (Fig.50). Co-expression 

of C/EBPa with Myb resulted in transactivation three-fold greater than that observed 

with C/EBPe and Myb. C/EBPa alone was, however, an even more potent 

transactivator of the defensin promoter so that Myb actually reduced C/EBPa-induced 

transactivation. When CHOP-10 (154), a dominant negative form of C/EBP, was co

transfected together with the various C/EBP family members and Myb, it inhibited 

C/EBPa or P-induced transactivation but enhanced transactivation by C/EBPe and Myb. 

These differences probably have to do with the different structures of the different 

C/EBP family members particularly in the leucine zipper domain. C/EBPe is poor at 

dimerisation through its leucine zipper and unlike the others may bind DNA 

predominantly as a monomer (153;370). These differences probably explain why 

C/EBPe is protected from inhibition (due to CHOP-10 induced disruption of DNA 

binding). C/EBPe’s poor heterodimerisation may also be responsible for its better co

operation with c-Myb since Myb is known to interact with C/EBP family members 

through their basic zipper domains (235). This interaction is essential for functional co

operation, so not having to compete with other C/EBP dimerisation partners is possibly 

beneficial to interaction of Myb with C/EBPe. The increased transactivation caused by 

the co-transfection of CHOP-10 with C/EBPe and Myb is probably due to disruption of 

endogenous C/EBPp binding to DNA thereby allowing enhanced C/EBPe binding, to 

sites previously occupied by C/EBPp.

Myb has however been shown to co-operate with C/EBPa and p in other studies 

(218;235), suggesting that the conditions of each particular experiment (including the 

cell background and possibly the expression vectors used) may play a role in such co- 

operativity or the lack of it.
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Fig50 Effects of CHOP on Myb-C/EBP-induced transactivation of the defensin 
promoter. The defensin -240/+15 promoter-hGH construct (5jig) was transfected into 
HeLa cells with constructs expressing transcription factors as indicated: lOOng of 
C/EBPa, p or e, lOOng of CHOP-10, 2|ig of c-Myb; and pBluescript to lOjig. The 
mean growth hormone level from four independent transfection experiments is 
calculated in each case and expressed relative to that calculated for co-expression of 
C/EBPe + MYB with the reporter (taken as 1.0).
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13.3 GABPa strongly activates the defensin promoter without 

GABPp

GABPp and y both produced a 10 to 20-fold transactivation of the -240/+15 

defensin reporter construct in HeLa cells, but GABPa alone, transactivated the promoter 

100-fold. The empty GABP expression vector pCAGGS had no effect on defensin 

promoter activity (Fig.51). Transactivation of this promoter by GABPa alone was 

similarly seen in NB4 cells, though not to such a great extent. In HeLa cells, however, 

unlike in NB4 cells, co-transfection of GABPp together with GABPa resulted in an 

80% reduction in reporter activity compared to that with GABPa alone. GABPp 

produced a transactivation similar to that of GABPap, possibly by enhancing 

translocation of endogenous GABPa into the nucleus. It has been shown that GABPa is 

not strongly localised in the nucleus in the absence of a dimerisation partner (317). It is 

noteworthy that GABPy is considerably less inhibitory than GABPp when co-expressed 

in HeLa cells with GABPa, suggesting that protein domains which differ between 

GABPp and y are partially responsible for this inhibitory effect. GABPa induced the 

activities of the -140/+15 and the -240/+15 constructs to about the same extent, but 

induced that of the -67/+15 deletion mutant to a lesser extent (Fig.51). This indicates 

that sequences upstream of the FPa ets site are required for optimum GABPa-induced 

activity unilke in NB4 cells. FPp, that was shown to bind GABPa may be such a 

sequence (see Fig.28d).

Transfections of GABPa together with site-specific mutant promoter constructs 

were performed to identify the sequences involved in GABPa-induced transactivation. 

This was completely lost in the case of the FPa core GGAA ets site mutant, as was
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Fig.51 Transactivation of defensin mutant promoter constructs in HeLa cells by 
GABPs.
Cells were transfected with 5pg of promoter construct, GABP-expression constructs 
or empty expression vector, pCAGGS (2|ig of each vector transfected), and 
pBluescript to lOpg. The mean growth hormone level of four independent 
transfection experiments was calculated and expressed relative to that measured for 
the -240/+15 promoter construct transactivated by GABPa and (3 (taken as 1.0).
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expected due to this site being essential (as previoulsy shown) for any promoter 

activity. It has already been shown to bind GABP (Fig. 25a). Mutation of the c/ebp site 

in FPp and of the core ets site in FPy also reduced GABPa-induced transactivation 

about 4-fold (Fig.51). A mutant construct where the FPy core GGAA was unmutated 

but the adjacent nucleotides had been modified to inhibit PU.l binding, actually resulted 

in even greater transactivation by GABPa. This is probably because an additional Ets- 

binding site similar to the consensus GABPa binding site had been created by such 

modifications.

It is particularly interesting in these mutagenesis studies that the mutation of 

specific sites within footprints was often more deleterious to GABPa-induced activation 

than deletion of the entire footprint (eg. 240/+15 y-mut-ets as opposed to -140/+15). 

This reduced transactivation may be due to disruption of paired sites where GABP and 

other co-operative factors (possibly C/EBP) bind adjacently. This may result in the 

transcription factors binding to preferred sites separated along the length of the promoter 

rather than adjacently, thereby reducing functional co-operation.

GABPa is an Ets factor and is rather similar in structure to various other 

members of the Ets family (including Ets-1, Ets-2 and TEL). Ets-2 - another Ets factor 

known to be expressed in haematopoietic cells; and quite ubiquitously (389) was co

transfected with the defensin reporter genes. This resulted in only a 4-fold activation of 

the promoter, similar to the transactivation seen by PU.l, indicating that massive 

transactivation by GABPa is not a non-specific Ets-induced effect (See Fig.53)

In order to try and understand why GABPa was seen to have this effect in our 

system, an experiment was performed using a previously studied promoter which 

GABPa did not up-regulate when transfected into HeLa cells. To identify any influences 

due to the novel reporter system (most transfection studies with GABP have

253



used a luciferase-based reporter vector of some sort), I cloned the cdl8  minimal 

promoter sequence into my reporter vector and transfected this construct into HeLa cells 

together with the different GABP expression constructs. The results I obtained (Fig. 52) 

were similar in pattern if not in degree to those seen with the defensin promoter. 

GABPa co-transfection resulted in transactivation, unlike the combination of GABPap 

which was inactive and where GABPp and GABPy actually repressed basal promoter 

activity. This suggests that our reporter system is influencing the results obtained. A 

possible explanation for these differences in the reporting systems and the 

significance/not of our results is proposed later ( see section 15.4 ).

13.4 PU.l co-operates with GABPap but not with GABPa in 

transactivating the defensin promoter

It has been shown that GABPap and PU.l co-operate in transactivating the cdl8  

promoter. Both these factors can bind to the defensin promoter (Figs.25a, 31a), so HeLa 

cells were co-transfected with GABPap and PU.l expressing vectors. The combined 

Ets factors transactivated the -240/+15 reporter construct more than the sum of each 

individual factor (Fig. 53). The -140/+15 construct, though showing reduced PU.l- and 

GABPap-induced activation, was strongly synergistically transactivated by the two 

factors together. This suggests that the FPy ets site may not be essential for this co- 

operativity. Transactivation of the -67/+15 promoter construct by PU.l and GABPap 

was less than additive, possibly due to a degree of competition for the same FPa ets
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Fig.52 Transactivation of the cdlH minimal promoter (cloned into the final growth 

hormone reporter vector) by GABP factors.

HeLa cells are transfected with the minimal cdlS  promoter-hGH construct (5pg) 

together with GABP expression vectors (2pg of each) and carrier plasmid up to 

lOftg of total DNA per transfection. PU. 1-expression vector (1 fig) is co-transfected 

in one case. Growth hormone levels are measured, means of three independent 

experiments are calculated and values expressed relative to that measured after 

transfection of the minimal promoter without co-expressed activators.
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Fig.53 Co-operative transactivation of defensin mutant promoter constructs in HeLa 
cells by PU.l and GABPap.
The cells were transfected as indicated to the left of the bars, with 5jig of each 

promoter construct, expression constructs (ljig of PU.l or PU.1-N.133; 2|ig of each 
GABP; 500ng of Ets-2) or empty expression vector, pcDNA (l|ig), and pBluescript 
to 10p,g. The mean growth hormone levels of four independent transfections was 
calculated and expressed relative to that for the -240/+15 promoter construct 
transactivated by GABPa and p(taken as 1.0).
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site. Therefore whilst FPy is not important for co-operativity, sites upstream of -67 

(possibly FPp which can bind GABPa) are required.

These experiments suggest that possibly GABPap and PU.l co-operativity is 

not solely dependent on direct PU.l binding to DNA. To study this, a deletion mutant of 

PU.l (N-133), which binds DNA at least as strongly as PU.l (See Fig. 31b) but which 

lacked PU.l transactivation domains, was used. When transfected together with 

GABPap into HeLa cells, PU.l mutant (N-133) markedly inhibited GABPaP-induced 

transactivation. This confirms that PU.l sequences outside the DNA-binding domain 

are essential for the co-operative promoter transactivation together with GABPap.

Unlike the co-operative effect between GABPap and PU.l, transactivation by 

GABPa alone was markedly inhibited by PU.l (Fig. 53). This inhibition is possibly due 

to binding-site competition between the two Ets factors for the same site, as has been 

shown to occur on other promoters (322). The PU.l (N133) mutant produced a similar 

inhibitory effect, confirming that this is likely to be due to DNA binding-site 

competition (Fig.53).

Though PU.l and GABPap co-operate in transactivating defensin promoter 

constructs, further increases in the amount of PU.l, once again reduced the level of 

transactivation (Fig. 54). This inhibition is not produced by increasing the amount of 

co-transfected pcDNA empty expression vector and is therefore not due to squelching 

by the pcDNA vector promoter. Excess PU.l may inhibit GABPap binding to DNA 

due to a competitive effect as seen with GABPa.

A possible explanation as to the cause of the co-operativity between GABP and 

PU.l can be derived from the EMSAs showing competitive binding on FPa in NB4 

cells (see Fig.37). In these experiments, removal of PU.l binding by a competitive 

oligonucleotide resulted in enhanced C/EBPe binding whilst competing away any
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Fig.54 Increased amounts of PU. 1-expressing vector repress GABPap- 
induced transactivation.
HeLa cells are transfected with -240/+15 reporter construct, GABP a  and P 
expression vectors (2pg of each ) and increasing amounts of PU. 1-expression 
vector or empty expression vector pcDNA (amount in jig, indicated to the left 
of the bar graph). Mean growth hormone values from 4 separate experiments 
are calculated and expressed relative to that for GABPap expression alone 
with the reporter (taken as 1.0).
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C/EBP binding to F P a , resulted in a number of clear bands indicating complexes 

bound to FPa, one of which seemed to be include GABPp. Since removal of PU.l 

enhances C/EBP binding, addition of extra PU.l will probably further reduce C/EBP 

binding to FPa. C/EBPp might inhibit GABPaP transactivation either by competing 

with the GABP heteromer for FPa binding, or by interacting with the GABP sub-units 

thereby inhibiting their interaction and co-operative DNA binding. Data presented 

further on supports this second hypothesis. PU.l, by interacting with C/EBPp, as has 

been recently shown (239), may disrupt interaction of this protein with the GABP sub

units, thereby allowing the latter to co-operatively interact.

The requirement for promoter sequences upstream of FPa for PU-1-GABP co

operation to occur suggests that the PU1-C/EBPP complex can compete for the same 

FPa site. This might prevent GABPap binding and transactivation unless there are 

alternative binding sites (such as possibly FPp). Addition of more PU.l will compete 

with the GABPap dimer for FPa binding therefore reversing the co-operative effect of 

a smaller dose of PU. 1.

13.5 Additive and co-operative transactivation of the defensin 

promoter by different transcription factors

CHOP-10 heterodimerises with many of the C/EBP family proteins and disrupts 

their binding to DNA thereby inhibiting C/EBP-dependant transactivation (154). 

CHOP-10, enhances GABPap-induced activation whilst co-transfection of exactly the 

same vector with a leucine zipper mutation in CHOP-10 (making it incapable of 

dimerisation) does not. It actually reduces GABPap transactivation somewhat, possibly
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by promoter competition as a result of the expression vector promoters squelching 

essential basal transcription factors (Fig. 55). CHOP had no such co-operative effect 

when co-transfected with GABPa alone, suggesting that, as in the case of PU.l- 

dependant co-operativity, only GABPap heteromer-dependant transactivation is 

enhanced. CHOP-dependant enhancement of GABPap promoter transactivation is also 

seen in the presence of PU.l. This co-operativity (CHOP-PU.l-GABPap) was inhibited 

by the addition of C/EBPe but not by the inhibitory C/EBP factor Ig/EBP (C/EBPy).

CHOP is an inhibitory factor which heterodimerises with C/EBP factors through 

their leucine zipper domain and inhibits their binding to DNA due to its own basic 

domain being defective in DNA-binding (154). Co-expression of this inhibitory factor 

causes an increase in GABPap-dependant promoter activation, just as it was seen to 

increase the activation of the promoter by C/EBPe and MYB. This suggests that CHOP 

is allowing GABPap to bind to DNA sites uninhibited by some C/EBP factor (most 

probably C/EBPP), and to transactivate the promoter. C/EBPe (which heterodimerises 

poorly with many C/EBPs (153)) might therefore not interact with CHOP-10 and can 

inhibit GABPap in C/EBPp’s place. The ability of C/EBPe to block the CHOP- 

GABPap synergism supports this hypothesis. Ig/EBP, though normally inhibitory, 

dimerises well and should therefore also interact with CHOP, which would explain its 

inability to block the synergism.

One other factor known to be involved in the expression of many early 

myeloid genes (185), is AML-1B (CBF-a). There is also evidence of this factor being 

capable of defensin transactivation (53). Co-transfected into HeLa cells with its partner 

CBFp, it can activate the defensin promoter and is clearly co-operative with 

GABPap (Fig. 55). It also enhances GABPa-dependent transactivation though in 

an additive, not synergistic, fashion. AML is also known to interact with C/EBPa, bind
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Fig.55 Co-operative transactivation of the defensin promoter in HeLa cells by different 
sets of transcription factors. The defensin -240/+15 promoter-hGH construct (5|ig) was 
transfected into HeLa cells with constructs expressing transcription factors as indicated: 
lOOng of each C/EBP including CHOP, the leucine zipper mutant of the latter factor 
CHOP-lz and the inhibitory C/EBP family member Ig/EBP, ljag of PU.l, 2jng of MYB, 
2pg of each GABP, lOOng of CBFa, lOOng of CBFp, and pBluescript to 10p.g.The mean 
expressed growth hormone levels for each experiment are calculated from four 
independent transfections and are presented relative to that obtained with co-expression 
of GABPap ( taken as 1.0).
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co-operatively with it, to the DNA(238). It may therefore enhance GABPap-dependent 

transactivation by a different mechanism than that hypothesised for CHOP-10. AML-1 

by co-operatively binding to the DNA with C/EBP at tandem aml-c/ebp sites elsewhere 

along the promoter would allow GABPap to bind to FPa and transactivate the 

promoter. This mechanism may be somewhat similar to that suggested for PU. 1.

C/EBPe and Myb, when co-transfected together with GABPa or with GABPap, 

increase defensin promoter activity additively (Fig.55). Myb and C/EBPe also enhance 

reporter activity in an additive fashion when co-transfected with PU.l. This suggests 

that C/EBPe binds independently and to separate sites from the Ets factors when in the 

presence of Myb without influencing their ability to transactivate the promoter.
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Chapter 14 : In vitro binding studies with HeLa nuclear

proteins

In order to try and understand the mechanisms involved in defensin promoter 

transactivation in HeLa cells, some EMSAs were performed.

14.1 GABP proteins in HeLa cells -Westerns and EMSAs

As in myeloid NB4 cells, western blotting of HeLa nuclear proteins was 

performed primarily to exclude that transfected GABPa was co-operating with 

endogenous GABPp which lacked a dimerisation partner (endogenous GABPa). This 

was clearly however not the case (Fig. 56b).

Using defensin FPa and the Ets-binding site from the neutrophil elastase 

promoter as labelled probes, HeLa extracts were incubated with or without purified 

GABP proteins. As can be seen in Fig. 56a, purified GABP proteins bind more strongly 

both as GABPa monomers and as a heteromer to the FPa site. GABP binds to the 

neutrophil elastase promoter ets site only as an a|3 dimer. HeLa nuclear extract binds to 

both probes but a band of similar mobility as the GABPap dimer is visible only with the 

FPa probe. On addition of purified GABPa and p proteins to the nuclear extract, an 

important difference emerges. Whilst the ap  heteromer is still the primary form bound 

to the NE probe (if anything it is more strongly bound in the presence of extract), GABP 

binds mostly in bands indicative of GABPa alone to the FPa probe whilst the strong 

GABPap heteromer binding is absent. This therefore supports the hypothesis that in
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Fig. 56 GABP proteins in HeLa cells and their binding to the defensin promoter.
(a) 25ng of purified proteins GABPa and GABPp (G) 10|ig of HeLa nuclear extract 
(H), or HeLa extract with GABP proteins (GH) are incubated with labeled FPa probe in 
the presence of buffer 3. These sets of proteins are similarly incubated in other reactions 
also in buffer 3 with the radiolabeled ets site from the neutrophil elastase promoter as 
probe (G*, H* and GH*). Complexes formed are separated by electrophoresis through a 
4.5% polyacrylamide gel with a 0.25xTBE buffer to allow good GABP binding. Bands 
A and AB identify the complexes made by GABPa alone and the GABPaP dimer 
respectively with FPa.
(b) Western blotting analysis of lOjig of HeLa nuclear extract (He) and 25ng of purified 
GABPa (Ga) and GABPp(Gp). Following incubation with anti-GABP primary 
antibodies, protein is detected by chemi-luminescence using an-HRP-linked secondary 
antibody. Both GABP proteins are clearly well expressed in HeLa cells.
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the presence of HeLa nuclear factors, the GABPap heteromer does not bind strongly to 

FPa apparently because some factor within the HeLa nuclear extract binds to GABPp 

preventing it from interacting with GABPa. The same HeLa extract, however, does not 

disrupt the GABPa-GABPp interaction and binding when added to the neutrophil 

elastase (NE) Ets-binding site. One possible explanation for this difference is that strong 

GABPa binding to the DNA is required for this other factor to interact with GABPp in 

GABPa’s place.

14.2 GABPa forms a complex other than GABPap with HeLa 

extract

EMSAs where purified GABPa (25ng-0.75pl) was added to HeLa nuclear 

protein extract (5pg 2pl) and FPa probe (Fig. 57a) showed the formation of at least 2 

new complexes marked as band A (GABPa alone-see Fig.57b-right panel) and band AC 

(GABPa with another factor/s). As can be seen, the AC band can be competed away 

specifically by a C/EBP binding site oligonucleotide from the m-csf Receptor promoter. 

Anti-C/EBPp antibody, but not anti-C/EBPa antibody also reduces binding of this 

complex. GABPa binding (band A) is also inhibited by both antibodies (possibly a 

non-specific effect). Addition of GABPp (25ng-0.75pl) together with GABPa results 

in the formation of a very low mobility complex marked as BCX. The intensity of this 

band as well as that of the AC band was mildly reduced by two different C/EBP-binding 

oligonucleotides from different promoters. One of these oligonucleotides also reduced 

band A intensity.

265



Fig.57 Formation of complexes other than GABPap between GABP sub-units and HeLa 
nuclear proteins.
(a) 5|ig of HeLa nuclear protein extract are incubated together with labeled FPa probe 
and purified GABPa (Ga) and/or GABPP (GP) proteins (25ng), various oligonucleotide 
competitors and antisera (as indicated) in buffer 1. Complexes formed by these 
incubations are separated by electrophoresis through a 6% polyacrylamide gel with a 
0.5xTBE buffer. The panel on the right on the other hand represents 5p.g of HeLa nuclear 
extract incubated with 25ng of purified GABP proteins (as indicated ) in buffer 3 and 
separated by electrophoresis through a 6% polyacrylamide gel with a 0.25xTBE buffer 
to enhance GABP binding. It is interesting to note that unlike Fig 56 where there was a 
greater HeLa extract: GABP ratio, here, GABPap binds the DNA as a dimer despite the 
presence of HeLa proteins. Complexes A and AB, as in figure 56 indicate the likely 
position of the GABPa-DNA and GABPaP-DNA complexes. Complex AC is a complex 
apparently consisting of GABPa and C/EBPp, whilst band BCX identifies a complex 
containing GABPp and C/EBPp and probably some other factors.
(b) 5p,g of HeLa nuclear protein extract are incubated together with labeled FPa probe 
and purified GABP proteins (25ng), various oligonucleotide competitors and antisera (as 
indicated) in buffer 1. Bands A, AC and BCX represent the same factor complexes 
described in Fig 57(a).
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These results suggest that GABPa seems to be forming a complex with a C/EBP 

factor, most probably C/EBPp. This complex formation with C/EBPp may be 

responsible for the unexpected results obtained with regards to GABP-induced 

activation of the defensin promoter in HeLa cells. Recent studies on the eosinophilic 

EOS47 promoter have shown strong co-operative transactivation between Ets factors 

(primarily Ets-1) and C/EBP factors (C/EBPa and C/EBPP) (239). Co-operative 

binding between such factors was also observed when adjacent ets and c/ebp sites are 

present. GABPa is an Ets family member in the same family subgroup as Ets-1 and 

Ets-2 (390). It is not impossible to conceive therefore that a similar interaction may 

occur if GABPa is added in excess of its GABPP partner. The adjacent ets and c/ebp 

sites within FPa would allow such a complex to bind DNA.

14.3 A C/EBP-containing complex binds to FPa in the presence of 

GABPP

Further studies into the nature of these complexes indicated a complex picture as 

can be seen in the EMSA in Fig.57b. Again, addition of GABPa (lane2) results in 

formation of the band A and also enhances the intensity of a lower mobility band due to 

the formation of complex AC. Prior to addition of GABPa, this band may be due to 

the presence of GABPap bound to FPa as this would have the same mobility- band 

AB(see lane 3- right hand panel- Fig.57a). In other words, this band may represent 

both AC and AB complexes. A C/EBP-binding oligonucleotide from the M-CSF 

Receptor (M-CSFR-lane 4) promoter once again reduces the intensity of this band
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(probably by competing away complex AC). In order to distinguish better between the 

components of the complexes formed, a short version of the FPa oligonucleotide was 

also used as competitor. This included the core GGAA ets site and a few adjacent 

nucleotides on each side but excluded the c/ebp and ami sites downstream of this site. It 

reduced band AC intensity to some extent and also band A intensity, showing that 

GABPa was still binding to this shorter oligonucleotide. However, when this competitor 

was added to GABPap with HeLa extract (lane5) the result was a clear reduction in the 

intensity of band A associated with a very marked increase in the binding of the low 

mobility complex marked as band BCX ( lane 6). This suggests that band BCX does not 

include GABPa (despite being formed upon the addition of GABPP). On the other 

hand, competition with a C/EBP-binding oligonucleotide (M-CSFR promoter) resulted 

in a reduced intensity of this band BCX and increased binding of GABPa alone.

These results therefore suggest that GABPp is involved in a protein-DNA 

complex with a C/EBP factor (most probably C/EBPp) and probably without GABPa 

(due to increased binding after GABPa binding is competed away). This GABPp- 

C/EBPp-containing complex is prevented from binding to FPa due to the binding of 

GABPa to the FPa ets site.

These EMSA results form the basis of a hypothesis which might explain most of 

the functional results of the GABP transfections in HeLa cells (and also possibly in NB4 

cells). This hypothesis would depend on competition between GABPa and GABPp for 

C/EBPp forming a strongly active complex in the former case and an inactive complex 

in the latter. This is elaborated further in the discussion ( section 16.8).
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14.4 GABP sub-units bind to the minimal defensin promoter as 

complexes different from GABPap

The -67/+15 defensin promoter fragment was labelled with [y32P]-dATP and 

HeLa nuclear proteins were added to it together with purified GABP proteins (Fig.58). 

GABPa protein without HeLa extract binds to DNA weakly alone (band A) or as the 

GABPap complex (band AB) when GABPp is added. Both GABP sub-units bind DNA 

more strongly, however, as different-sized bands together with HeLa extract (Fig.58a, 

lanes 4 and 5). The DNA-protein complex formed when GABPa alone (AX) is added 

(Fig.58a, lane 4) is of higher mobility (and therefore probably smaller in size) than that 

formed when purified GABPap is added (lane 2 - longer exposure).

Since the AX complex has a greater mobility than the AB complex, it is 

unlikely to be the AC complex seen on FPa. Alternativley, AX may indeed be the FPa 

AC complex and the AB band seen on this longer promoter fragment may be the 

GABPa2P2 tetramer not the dimer explaining its lower mobility. GABPp added 

together with HeLa extract (lane5) also forms a DNA-bound complex (BX) which is 

distinct from that formed between GABPp and GABPa. This is particularly interesting 

since GABPp is incapable of binding DNA alone and is thought to require interaction 

with GABPa. Here it appears to be binding to DNA by means of an interaction with an 

alternative DNA-binding partner. Another alternative is that the band formed does not 

include GABPp at all but is caused by DNA-binding proteins which were previously 

bound to GABPa and which could not interact with the DNA and which have now been 

released by GABPp interacting with GABPa in their stead. Addition of both GABP 

sub-units (lane 6) results in formation of complexes similar to those seen with addition 

of each separate sub-unit as well as one (band ABX) of lesser mobility that the complex
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-70/+15

Fig.58 GABPa and (3 form complexes of the -70/+15 defensin promoter 

fragment with HeLa , distinct from those formed by GABPap.

GABPa (Ga), GABPp (GP) - 25 ng of each, and HeLa extract (5pig) are 

incubated in various combinations with radiolabelled defensin upstream 

sequences (-70/+15) in the presence of buffer 3. The complexes formed are 

separated by electrophoresis through a 4.5 % polyacrylamide gel. Band A 

(which is barely visible) and AB represent the complexes formed by the 

purified proteins alone. Complexes AX, BX and ABX indicate the 

interaction of other HeLa factors (X) with the different GABP sub-units.
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formed with purified GABPap. This would suggest that another factor is binding 

together with GABPap.

The exact components of the bands AX, BX and ABX are difficult to guess 

partly because they may include a number of factors bound to different sites along the 

length of the minimal promoter element. The intensity of these new formed complexes 

in comparison to those formed by HeLa extract alone or by the purified proteins does 

however suggest that they involve co-operative binding of sorts between GABP sub

units and HeLa cell factors.
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Discussion

Chapter 15 : Critiques of in vitro and transient transfection 

experiments

The various experimental systems made use of in this study allow clear and 

reproducible gathering of experimental data. Using this data one can extrapolate 

probable DNA-protein and protein-protein interactions and formulate hypotheses 

regarding the likely behaviour of the gene being studied in vivo. However, each of 

these methods is clearly artificial.

15.1 NB4 and HeLa cells as model systems for studying defensin gene 

regulation

I have used these two cell lines to carry out these studies due to their particular 

characteristics. The NB4 cell line had been previously shown to express defensin (96). 

Despite not being as widely used as HL60, it has been well characterised both as regards 

its genetic make-up and morphological/stage of differentiation characteristics and also 

regarding its in vitro differentiation potential. It was much more easily transfected than 

HL60, (in my experience) and thus a better choice for studying promoter activity during 

the differentiation process. Like any model cell line it differs to some extent from the 

primary myeloid tissue (see section 1.3.3).

272



Down-regulation of defensin gene expression with terminal differentiation, 

diverged from the complete down-regulation seen with primary myeloid cells (see 

section 1.1.6). There appeared a lack of concordance between the morphological 

appearance of the cells and related level of expression of the gene. For this reason, as 

well as other logistical reasons relating to the transfection of differentiating cells, I 

concentrated my studies on defensin up-regulation in early differentiation. Numerous 

controls were performed regarding the transfection of reporters into NB4 cells to ensure 

that the effects seen were specific to the test promoter and that they were not general 

effects due to cell changes with differentiation.

HeLa cells have been widely used as a cell line with a low level 

background of myeloid transcription factors. They have also been previously used 

when studying primary granule protein genes (321).

That transfections into both the HeLa cells and NB4 cells, produced similar (if 

unexpected) results with GABPa expression vectors was important. The similarity 

lends support to this being a real effect and not an in vitro culture-induced side effect 

on one clone of cells of a particular cell line. This concordance of results between 

different cell lines suggested that there was no change in our clones of NB4 and 

particularly HeLa cells from those used in previously published experiments, but that 

other differences in the experimental system might play a role in the unexpected results. 

The reporter system used was identified as one probable cause.

15.2 In vitro footprinting assay

This experimental system was very useful in studying the defensin promoter 

though results require caution in interpretation. The titration of the amount of nuclear
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stages of differentiation. The temptation to use large amounts of nuclear extract, thus 

obtaining more clear cut images of footprints should be tempered against the relevance 

of the footprints thus obtained to the in vivo situation. This point is clearly illustrated in 

our studies with differing amounts of nuclear proteins. Whilst more obvious footprints 

are obtained using larger amounts of nuclear proteins (200jig), it is clear that differences 

between the different extracts are more clearly seen when using smaller amounts of 

extract (40(ig). Therefore a titration using differing amounts of nuclear proteins 

(preferably more extensive than my limited one) should be performed and the results 

assessed in order to best extrapolate to the in vivo situation.

15.3 Electrophoretic mobility shift assays (EMSAs)

In order that EMSAs are informative, the experimental environement often 

needs be modified so as to optimise the particular interactions being studied. This may 

require changes to a reaction ( or running) buffer, as is often done for reactions with 

purified GABP proteins since these proteins need a low salt concentration in order to 

bind effectively to DNA in this artificial test environment (292;322). Similar 

modifications may also be essential to optimise particular antibody-antigen interactions. 

Different buffers or different acrylamide gel concentrations may be required to best 

observe the effects of competitor sequences (or other reaction additives) with a longer 

labelled probe sequence.

The variability in the resultant band patterns even when using the same probe 

sequence is not an indication of erroneous experimentation but an understandable side- 

effect of creating differing artificial environments to try and enhance various
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interactions. Within a single experiment, such variables as probe, nuclear extract type, 

separating gel density and reaction buffer should be kept constant. This allows 

significant differences between separate reactions (seen in different lanes) to be 

identified (as long as adequate controls are taken into consideration such as the use of a 

pre-immune serum control for polyclonal antibodies and a non-specific monoclonal for 

monoclonal antibodies).

For this reason, modifications of this experimental system (EMSA), so long as 

they result in experiments that are reproducable in themselves, need not be a cause for 

concern. Results obtained following such changes to the experimental system may be 

considered relevant since modification of an artificial system does not make this system 

any more foreign to the actual test (or target) gene or protein in vivo. It is the in vivo 

situation that all experiments are attempting to understand and upholding consistency of 

experimental methods for consistency’s sake is not any kind of scientific virtue (in my 

opinion).

Whilst indicating which factors within a particular nuclear extract can bind a 

particular site in isolation in a set of in vitro circumstances, EMSAs do not distinguish 

particularly well as to which of these sites are actually occupied in vivo. Some indication 

can be obtained, however, by the relative strength of such binding. C/EBPe appears to 

bind to FPp much more strongly than it does to FPa or FPy. However, due to the limited 

DNA template, transcription factors which would normally bind at another site in the 

promoter, may interact with other factors thereby attaching themselves to the test 

sequence in a manner not replicated in vivo.
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15.3 Transient transfections for studying promoter activity

Tethering a reporter gene onto promoters allows one to assay relatively easily 

the activity of the promoter in question, despite the fact that is only an indirect measure. 

This indirect quantification may introduce errors in the sense that the actual quantity 

measured (such as in this case the expression of the growth hormone molecule itself) 

may be effected by the procedures tested such as differentiation or the expression of 

some transactivating factor. This is particularly the case when the reporter gene used is 

not a protein which is foreign to the cell species tested (e.g. luciferase or 

chloramphenicol acetyl transferase in mammalian cells). Despite such potential pitfalls, 

reporter assays allow promoter mutations or co-expression of transactivators to be tested 

with relative ease unlike the much more direct, yet more difficult, nuclear run-on assays 

of promoter function.

With both the experimental systems, however, the promoter is not being studied 

in its natural environment. It is not embedded in chromatin nor is it next to the 

sequences that it normally lies adjacent to. It is becoming more apparent that chromatin 

plays a crucial role in the regulation of transcription (103).

In fact, the defensin promoter sequence tested in transient transfection reporter 

gene studies, showed considerable up-regulation upon differentiation but this did not 

equate with the marked increase in mRNA abundance seen on Northern blots 

(especially for longer promoter fragments). This suggests (assuming that changes in 

transcription are the major variable effecting defensin mRNA accumulation) that other 

factors possibly related to increased accessibility of the chromatin-embedded promoter, 

or due to distant enhancer sequences, play a major role.
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15.4 Reporter gene systems and promoter analysis

As mentioned before, the fact that GABPa produced a totally unexpected effect 

in two separate cell lines led me to believe that the difference was not in my particular 

grown clone of the cell lines in question, but in something common to both 

experimental setups, namely the reporter system. The initial test performed to assess 

this, confirmed these suspicions. The cdl8  promoter appeared to be up regulated by 

GABPa more strongly than by GABPap when cloned into the growth hormone 

reporter gene vector. In fact GABPap together did not activate the promoter at all 

whilst GABPP alone was actually inhibitory. These results differed clearly from those 

obtained with the same promoter cloned into a luciferase reporter vector (322).

In luciferase based reporters (which have been almost exclusively been used to 

date in studying GABP), GABPa and P only ever transactivate a promoter when co

transfected together. This activation is then enhanced tremendously by other 

transcription factors such as C/EBPs and Myb on the neutrophil elastase promoter 

(321). However different luciferase based reporter vectors have been used to study 

GABP-induced transactivation (317;391), always with the same results, suggesting that 

any differences were not due to vector sequences peculiar to one particular luciferase 

reporter construct but due to something common amongst them, possibly the luciferase 

gene itself. When scanned using a promoter-identifying neural network algorithm (392) 

the luciferase cDNA sequence, was found to contain four very strong hypothetical 

TAT A A box-dependant promoter sequences (each stronger by this reckoning than either 

the defensin or the cdl8  promoter). The growth hormone cDNA does not contain such 

strong hypothetical promoter sequences when analysed in the same way. Based on this 

finding and on our preliminary results, it is possible that in promoter studies using a
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luciferase reporter gene all TATAA-binding protein (TBP) is bound to the strong 

TATAA sites within the luciferase cDNA thereby competing it away from the test 

promoter TATAA box. If this is indeed so, any transactivators bound to associated 

enhancer elements would stabilise TBP binding to the alternative promoter start sites 

and would be unable to activate the basically non-functional test promoter unless a 

TATAA-independent alternative initiator were also present. A similar phenomenon has 

been seen to occur where TBP is drawn away from promoter sites to UV or otherwise 

damaged DNA which binds it more strongly resulting in repression of 

transcription(393). GABPap can initiate transcription independently of a TATAA box 

(325) and would therefore be able to substitute for the loss of TBP-dependent initiation. 

However either GABP sub-unit alone would be unable to do this. Therefore promoter 

activity would only be detected in the presence of an alternative initiator sequence to the 

TATAA box and the presence of its requisite binding factors GABPap. With 

luciferase-based vectors, this would be the case both where GABP is possibly important 

for transcription initiation in vivo (like the TATAA-less cdl8  promoter) as well as in 

promoters where TATAA box-dependent transcription is normally the case (like the 

primary granule protein promoters -  as is neutrophil elastase). Thus despite the possible 

interaction of GABPa with a co-operative transactivating partner, no reporter activity 

would be detected due to the lack of a GABPap initiator.

Studies using non-luciferase reporter genes (CAT) have also shown co-operative 

transactivation by the two GABP sub-units whilst neither were active alone(329). This 

shows that other parameters apart from the reporter gene system are important in the 

massive GABPa-induced transactivation seen on the defensin promoter.
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Chapter 16 : Analysis of defensin promoter binding and 

activity

16.1 Factors binding to FPa

EMSAs performed using labelled FPa as a probe identified a number of factors 

that bound this site. These included GABPa, which clearly bound to the DNA in more 

than one complex in undifferentiated NB4 cells (see Fig. 25a). As the described 

complexes shifted by anti-GABPa antibody are not influenced by GABPp antibody, it 

seems that in undifferentiated NB4 cells, GABPa seems to bind DNA in the absence of 

its usual partner and possibly together with other factors (lower mobility band). In 

differentiated cells, GABPp-containing complexes (probably in combination with 

GABPa) are seen to bind FPa. The buffer system optimised for the function of anti- 

GABP antibodies resulted in the appearence of rather distinct bands with the 

FPa sequence. Other buffers showed more diffuse bands, but more clearly, an 

increased binding of granulocytic NB4 extract to FPa. Such increased binding is 

reminiscent of that seen by Ma et al (54)with almost the same probe sequence and using 

nuclear extract from another myeloid cell (HL60) induced with retinoic acid. This 

increased binding in HL60 cells was due to a phosphorylation-dependent Ets 

transcription factor. Our experiments suggest that this factor may well be GABP 

(probably as GABPap).

Mutation of the ets site shows the great functional importance of the Ets factor/s 

binding here, again confirming the report by Ma et al (54).

279



AML family members are also capable of binding to FPa DNA according to 

EMSA. The binding site for this factor is further downstream from the GABP-binding 

ets site, adjacent to a c/ebp binding site, and protein binding to this site is seen to 

increase (by DNAsel footprinting) with NB4 cell differentiation (be it monocytic or 

granulocytic). This correlates with the increase in AML-1 known to occur upon 

differentiation of myeloid cells (338;354).

C/EBPe is also seen to bind to FPa by EMSA analysis though this is only 

detected in undifferentiated cells. This is contrary to the effect seen by footprinting 

where increased protection of the potential c/ebp site is seen in differentiated as 

opposed to undifferentiated NB4 cells. This may indicate that, C/EBPe binding to FPa 

as detected by EMSA would not occur on a longer promoter fragement in 

undifferentiated cells due to binding at other preferred sites. In differentiated cells, 

C/EBPe may bind strongly to FPa in a manner inaccessible to antibodies (as may be the 

case on FPp mutated at the myb site). C/EBPa has been shown to bind to a rat defensin 

promoter fragment extending till just upstream of FPa as have been the AML family 

members AML-1B, AML-2 and AML-3(53). However co-operativity between C/EBPa 

and AML-1 on this promoter deletion mutant was not recognised. CBFa(AML) and Ets 

factors which both appear to bind FPa, are known to bind co-operatively with C/EBPs ( 

see section 3.4.2). Whilst C/EBPe in particular has not been shown to interact either 

with Ets or AML factors, it appears to be involved in low mobility (high molecular 

weight complexes) on FPa in which it interacts with other DNA-binding factors by 

means of its N-terminal domain (see Fig. 32). Both with FPa- and FPy-bound 

complexes, disruption of C/EBPe binding by anti-N-terminal antibody is not associated 

with appearance of higher mobility (lower molecular weight) complexes. This indicates 

that the factors C/EBPe interacts with, are unable to bind FPa, in its absence suggesting



that DNA binding requires a co-operative interaction. The C/EBPe C-terminal domain 

appears to be tightly bound to other proteins since addition of anti-C terminal antibody 

does not have any effect of these complexes suggesting it cannot access the protein. 

(The lack of any effect may be related to a relative weakness of this antibody-antigen 

interaction considering that the antibody to the C-terminal is raised against the rat 

homologue of C/EBPe, CRP1).

Further evidence of C/EBP binding to FPa came from competition EMSAs 

which indicate that numerous proteins can bind to this sequence (as was also suggested 

by computer analysis) but that these proteins bind to the DNA depending on an affinity 

hierarchy. Fig. 59 is a cartoon indicating possible binding interactions on FPa as seen 

by EMSA. In undifferentiated cells the rather non-descript or hazy bands seen, signify a 

state of continuous equilibrium with one or more complexes binding to, and dissociating 

from, the DNA. Competing away either PU.l {cdllb  oligonucleotide) or GABP (FPa 

short) results in the more intense appearance of a C/EBP band (as identified by antibody 

and competing oligonucleotides) as well as enhanced binding of complexes marked as 

“H”. These rather small factors/complexes (shown as high mobility bands) may 

possibly be Ets factors of a sort since they are competed away by the neutrophil elastase 

Ets-binding site. They are unlikely to be GABPa since their binding is also increased 

(and not competed away) by the FPa-short oligonucleotide competitor which binds 

GABPa ( see Fig. 35b). Factor “H” binding is also increased upon competing away 

C/EBPe.

Ets factors may inhibit C/EBPe binding in two ways, either by competing for 

binding to an overlapping ets-c/ebp composite site in FPa, or by interacting with the 

C/EBP factor’s DNA-binding domain (as they are depicted doing in Fig.59) and 

preventing its binding to FPa. Such DNA-domain interactions are known to occur
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Fig.59 Model for FPa competition EMSAs.
(a) FPa competition in the presence of undifferentiated NB4 cell nuclear extract. The 
dark black labeled line indicates a particular oligonucleotide of DNA. Reversible 
arrows indicate unstable binding whilst dark heavy arrows indicate the direction of 
the process during competition. DNA sequences to the sides of these heavy arrows 
indicate competitors and the complexes on them indicate the hypothetical factors 
and/or complexes they bind. Transcription factors are indicated by different shapes as 
described. GABPa (green triangle), PU.l (pink triangle), Ets (indiscriminate -  
pink/green hatched triangle),factors H from EMSA -Fig 36 (yellow ellipse), GABPp 
( complex shape with blue rectangle signifying the GABPa-interacting domain and 
the white ellipse the transactivation domain), C/EBPs (complex shape with a dark 
blue ellipse signifying the basic DNA-binding domain, a black zigzag, signifying the 
leucine zipper and two small ellipses signifying the repression domain - white ellipse 
- and the transactivation domain, the red ellipse). When these two small ellipses in 
C/EBPe are opposed as one larger ellipse, C/EBPe is taken to be inactive; when they 
are separated, it is derepressed.
(b) Oligonucleotide competition of differentiated proteins binding to FPa.
Model is based on the same figures as described for Fig. 59(a). AML is signified by a 
yellow hexagon whilst a large red arrow marked TA signifies a protein complex 
capable of transactivation in that it can interact with the basal transcriptional 
machinery.
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(394), and in certain cases can inhibit transcription factor-DNA binding. Whilst 

interactions between the DNA-binding domain of C/EBP and Ets factors have been 

described(239), their role (if any) in inhibiting C/EBP binding has not been investigated 

to my knowledge. Removal of both Ets and C/EBP factors results in loss of all binding 

except for complex “H” indicating that most factors bound to this site do so co

operatively with Ets and/or C/EBP factors.

EMSAs using differentiated NB4 extract show, a similar pattern of competitive 

binding of different factors with the main difference being that GABPP (probably with 

GABPa) now appears to bind to FPa in the absence of C/EBPs (modelled in Fig. 59b). 

The high mobility complex “FF’-factors are not included here for simplicity and because 

they seem to bind DNA less avidly in differentiated cell extract. When GABPa is 

released from the GABPap complex by GABPp antibody, the DNA binding of these 

factors increases (Fig. 37b). The released GABPa may displace the “H” factors from 

complexes with other transcription factors (possibly by substituting them) thereby 

allowing them to bind DNA.

16.2 Factors binding to FP p

EMSA analysis showed C/EBPe to be bound strongly to FPp when using 

differentiated extract. GABPa is also shown to bind FPp within NB4 granulocytic 

nuclear extract though it is not capable of binding the site as a purified protein (not 

shown). It is not clear whether GABPp is bound together with GABPa to FPp. The 

latter may be interacting with other proteins such as C/EBPs or AML in order to bind to 

this site. Competition EMSAs where FPp mutants compete away FPy-bound proteins,
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suggest that AML as well as C/EBP proteins are bound to the site. Computer analysis 

of the sequence suggest that Myb may also bind to this site despite the fact that anti- 

Myb monoclonal antibodies did not shift any complexes (not shown). A myb-site 

mutated FPP oligonucleotide is as poor a competitor of FPa-bound proteins (probably 

C/EBP) as the c/ebp site mutant(Fig.23a). This suggests that C/EBP binding onto FPp is 

co-operative with Myb (or at least with a protein binding the myb site) in 

undifferentiated NB4 cells. Whilst co-operative binding between Myb and C/EBP 

proteins has not been shown, this has not been well investigated in the case of C/EBPs, 

where this may be more likely, due to the monomeric nature of this protein. Both the 

lack of a supershift by anti-C/EBPs antibodies and the reduced C/EB Ps-dependent 

transactivation following myb site mutation support this hypothesis of co-operative 

binding.

However FPP mutated at the myb site is an even better competitor of FPp 

protein binding by granulocytic NB4 extract than wild type FPp oligonucleotide, unlike 

the c/ebp-site mutant FPp. This suggests that C/EBPs may still be bound to FPP in the 

absence the myb site and that the protein interactions are more complex than can easily 

be resolved by such in vitro analysis. It is possible that in the absence of Myb, C/EBP 

may be able to bind strongly to FPp by co-operative interactions with other factors 

present only in differentiated nuclear extracts. Such FPp-bound C/EBP, though more 

strongly attached to the DNA, may be inaccessible to the antibodies and functionally 

inactive.

C/EBPs and Myb interact with each other through their respective DNA-binding 

domains (235) and they both interact functionally (and physically in the case of 

C/EBPs) with the same part of the AML-1 runt-homology domain (295;352). This 

triangle of interactions therefore suggests that C/EBP factors can only interact with
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Myb or AML at any one time. This may explain a situation where a C/EBP may interact 

more strongly to one factor (AML) resulting in strong co-operative binding yet such 

interaction may prevent synergism with Myb. A cartoon showing hypothetical 

transcription factor interactions on wild type and myb site-mutated FPp oligonucleotide 

with granulocytic NB4 extract is shown (Fig.60a).

16.3 Proteins binding to FPy

The main change in protein binding seen on FPy with granulocytic 

differentiation is that of increased PU.l binding (seen as the high mobility doublet 

usually marked as bands 3 and 4). Whilst AML proteins, C/EBPs and even GABP are 

all shown to possibly bind sequences around this footprint, the relatively weak binding 

seen with footprinting suggests that most transcription factors would bind to other sites 

in the presence of the whole promoter sequence. This suggests that many of the multi

protein complexes formed on the labelled FPy probe sequence are in fact artefacts of the 

experimental system, in the sense that they are seen due to the isolation of this particular 

binding site from other binding sites.

PU.l on the other hand appears to bind most strongly to this site (and possibly to 

a sequence close to the TATAA box (54)) within the promoter and such binding is 

probably responsible for the hypersite seen upon differentiation. Fig. 60b shows a 

model giving a possible explanation for the band complexes seen with GABP antibodies 

(Fig. 31c). Once again it is unlikely to represent the in vivo situation, as most if not all 

GABP would be probably bound to FPa which much more closely resembles the GABP 

consensus-binding site.
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Fig.60 Model of DNA-protein interactions on FP(3 and FPy. (a) C/EBPe binding to 
FPp and to FPp-mut-myb. Model based on similar representative symbols as Fig 63. 
Additionally, Myb is represented by a purple diamond shape and antibodies are 
represented by orange ‘Y’-shaped figures. The model attempts to show how 
enhanced DNA-binding can correlate with reduced transactivation activity therefore 
attempting to bring together disparate EMSA and functional data.
(b) Effects of GABPa antibodies on FPy EMSAs. Model is based on similar 
representative symbols as before. The trapezium N-133 signifies the PU.l proteolytic 
product shown in EMSAs as band 4 ( which is not necessarily the same protein as the 
in vitro produced N-133 at all). Heavy arrows indicate either addition of GABPa 
antibody or differentiation under the influence of the inducer all-trans retinoic acid 
(ATRA).
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In Fig.60b, the complex shown binding FPy by undifferentiated nuclear extract 

may represent the complex seen as one of the lower mobility bands such as bands 1 

and/or 2 in EMSAs (see Fig. 31c). Band 1 may (as has been mentioned) also involve 

the binding of some non-specific DNA-binding protein, which may be competed off by 

various different sequences (see Fig.30). C/EBPs is pictured as binding to the DNA via 

protein interactions through its N-terminal domain and with its C-terminal domain 

obstructed by protein- protein interactions as is suggested by antibody studies. Addition 

of a GABPa antibody would supershift a GABPa-DNA complex but would also 

disrupt interactions with the main FPy-bound complex. C/EBPs and PU.l interacting 

through their DNA-binding and other domains would be unable to bind DNA. PU.l 

lysis products lacking domains important for C/EBP interaction such as the N-terminal 

domain (240) other than the ETS domain, would be able to bind DNA left vacant by the 

disruption of the GABPa-containing complex. This would explain the appearance of 

band 4 in Fig. 31c.

With differentiated extract, the PU.l binds directly to DNA in preference of 

GABP as a result of changes in the abundance of other transcription factors with 

differentiation, (which explain the reduced supershifted band formed by GABPa 

antibody).

The model suggests that GABPa interacts with C/EBPs’s N-terminal domain. 

This interaction is only hypothetical and may in fact be between GABPa and any of 

several other bound/unbound transcription factors/factor complexes. Anti-GABPa 

antibody would inhibit such interactions thereby releasing the GABP co-operative 

partners for interactions with other Ets factors. The Ets factor PU. 1 fills this new role in 

the absence of the antibody-bound GABPa and in so doing does not bind DNA directly 

any longer, resulting in a reduction of the band 3 in Fig.31c-differentiated extract panel.
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16.4 Competition and/or co-operation between different sites in the 

same promoter

Competition EMSAs also show that the binding of one transcription factor to its 

particular site (such as PU.l to FPy), result in enhanced binding of other transcription 

factors to different sites (such as C/EBPe to FPa) (see section 9.3.2). Similarly removal 

of C/EBPe resulted in enhanced binding of GABPaP complex to FPa.

Therefore two important points emerge; firstly that different transcription factors 

can compete for the same binding site and secondly, that particular factors, bind to 

certain preferred sites within the promoter at limiting concentrations. Taking these 

points into consideration, the presence, number and distribution of binding sites for each 

particular factor within the upstream sequence of a gene may play a crucial role in 

optimising binding of that, and other factors, and subsequent promoter activation. It is 

a well recognised feature of myeloid promoters that binding sites for different factors 

seem to follow a particular pattem(185).

The binding of transcription factors in co-operative manner to DNA has been 

well investigated but the inhibitory effect of such factors on each other’s binding is less 

well recognised. In the interesting study on the EOS47 eosinophil promoter(239), the 

authors described the co-operative binding of C/EBPa and Ets-1 to a DNA sequence 

containing binding sites for both transcription factors. The same study clearly shows 

(though this is not described) that in the absence of a binding site for C/EBP, addition of 

this factor (DNA-binding domain only) in fact reduces the binding of Ets-1 DNA- 

binding domain. This correlates with my studies which suggest that unbound
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transcription factors (such as PU.l in relation to FPa), can prevent the binding of other 

factors (such as C/EBPe) to their binding sites.

This understanding allows the results of mutation analysis to be taken in a new 

light. Mutation may reduce promoter activity, not only as a result of a positively 

transactivating factor being unable to bind to DNA. This factor as a result of its non

adherence may inhibit the binding of other transactivating factors. A case in point may 

be pu.l binding site mutation analysis. In undifferentiated NB4 cells the -140/+15 

promoter fragment activated the reporter gene as strongly (at least) as the -240/+15 

fragment. However, mutating the PU.l -binding site in either of 2 ways, results in a drop 

in reporter activity. One way of looking at this is that PU.l, when bound to the DNA, is 

unable to interact with other factors like C/EBPe and inhibit their binding. 

Alternatively, the inability of PU. 1 to bind FPy might result in this mutated site binding 

other factors more strongly (see Fig.29). This may result in such factors being drawn 

away from sites where they may be transcriptionally active (yet less strongly bound) to 

a site where they may be inactive.

16.5 C/EBPe and GABP regulate defensin expression in NB4 cells

GABPa and C/EBPe had a clear transactivatory effect in NB4 cells. This 

indicates that the factors are in limiting concentration in these cells and increases in 

their abundance can result in upregulation of promoter activity (see section 12.3). This 

may be due to their binding to more sites along the length promoter or to more effective 

competition with other transcription factors for binding to the same sites. It may also be
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due to the factor being present in sufficient abundance to bind DNA over and above 

interactions with any inhibitory factors or unbound protein complexes.

C/EBPe is known to increase during early myeloid differentiation, so such co

transfection may mimic the differentiation process as regards this factor. On the other 

hand GABPa does not seem to increase with differentiation so that the GABP 

transfection-dependent up-regulation is likely to be due to another mechanism.

16.6 GABP-dependent defensin transactivation is enhanced by NB4 

cell myeloid differentiation

We have shown by Western blotting analysis that no great change in the 

abundance of the GABP sub-unit proteins occurs during early granulocytic 

differentiation of NB4 cells. According to functional co-transfections in myeloid cells, 

however, transfected GABPP synergises with GABPa in differentiated NB4 cells but 

does not appear to do so in undifferentiated ones. EMSA suggests that GABPp is not 

bound to FPa DNA in undifferentiated cells yet is, in differentiated cells. Purified 

GABPa and GABPp proteins made in E.coli, on the other hand, did bind as a GABP 

heteromer when added to a FPa probe sequence in the presence of undifferentiated NB4 

nuclear extract. This suggests that it is probably the abundance of these two proteins in 

relation to other myeloid transcription factors within the extract, which govern their 

interaction with each other and their subsequent binding to the defensin promoter.

Whether or not GABPa and p interact, they do not co-operate in 

undifferentiated NB4 cells as co-expression of GABPp with GABPa does not enhance
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the activity of the latter. The synergism that occurs upon differentiation is unlikely to be 

due to any small change in the relative abundance of the two sub-units. The synergism 

may possibly be due to post-transcriptional modifications (though these must be small 

since there is no clear changes in molecular weight visible on western). Such 

modifications may enhance the capability of the two sub-units to interact, or reduce 

their interaction with alternative partners.

One possible mechanism for such post-translational modification is 

phosphorylation. Changes in GABP phosphorylation are well recognised and are 

dependent on the MAP and other kinase cascades (329;395). MAP kinase activity is 

stimulated during early G-CSF-induced granulocytic differentiation on a myeloid cell 

line (396), a process similar to ATRA-induced granulocytic differentiation of NB4 cells. 

Increased phosphorylation-dependant binding of an Ets factor to the defensin FPa site 

(which may well be GABPap) has been shown to occur upon ATRA-induced HL60 

differentiation (54).

Another explanation for the increased co-operation of the GABPap sub-units 

with differentiation may be due to changes in the abundance of protein partners 

interacting with each sub-unit. These alternative partners may be down regulated with 

differentiation. Other factors which may in turn interact with these alternative GABP 

partners may also be up regulated with differentiation, thus releasing GABPa and p to 

interact with each other.

If the two GABP sub-units are not interacting with each other in undifferentiated 

NB4 cells, co-transfected GABPa might redress the ratios of interacting partners 

(modelled in Fig.61). The excess GABPa would be able to interact with GABPP as 

well as with its alternate partner/s resulting in formation of an active GABPap 

transcription factor complex and subsequent promoter transactivation. Adding more
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Fig.61 Model of GABP-dependent transactivation in NB4 cells.
Model based on the same descriptive symbols as Fig. 59. The elliptical factor X, 
signifies an unknown factor which may be interacting with GABPp, thus preventing 
its interaction with GABPa and with the DNA.
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GABPp would have no increased effect, since it would once again bind its alternate 

partner (shown as X). After differentiation, both GABP(3 and a  alternate partners are 

shown interacting primarily with other factors upregulated by differentiation. Excess 

GABPa can interact with GABP (3 and its own alternate partner causing strong 

transactivation as in undifferentiated cells. However, addition of GABPp would allow 

all the GABPa and P to interact and further transactivate the promoter.

16.7 Myb and C/EBPs synergistically trans-activate the defensin 

promoter

This study has shown clear-cut evidence of a strong synergism between c-Myb 

and C/EBPe on defensin promoter activation in HeLa cells. In other sudies, however, 

co-expression of Myb enhanced transactivation by wild type or repression domain- 

deleted C/EBPe to the same extent (224). This suggested that Myb was not synergising 

with C/EBPe by overcoming the effect of the latter’s repression domain. It also suggests 

that C/EBPe de-repression may require interaction with another factor. Ets factors have 

previously been shown to interact with the N-terminal domain of C/EBPs (240) where 

the activation and repression domains lie (153;224). They may be responsible for the 

de-repression of C/EBPe.

The mechanism of Myb-C/EBPe synergism seen on the defensin promoter is 

presently unclear. Co-operative binding to DNA was never shown between any C/EBP 

family member and Myb despite their interaction. FPp competition of FPa-bound 

undifferentiated NB4 proteins does indicate that both c/ebp and myb sites are required
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for effective competition suggesting the possibility of co-operative DNA binding. The 

relative inability of C/EBPe to homodimerise (370) or heterodimerise with most C/EBP 

family members (153) would lend itself to a hypothesis of co-operative binding with 

Myb.

In the presence of differentiated NB4 extract, however, possibly due to an 

increase in AML and for other co-operative binding partners of C/EBP, the myb site 

does not seem essential for strong FPp binding unlike the c/ebp and ami sites. Despite 

this, the presence or absence of myb sites seems to change C/EBPe binding since 

antibody-C/EBP interactions on FP|3 are lost with mutation of the myb site. In NB4 

cells, mutation of either the adjacent FPp c/ebp or myb sites strongly inhibit promoter 

activity.

On the other hand co-operative C/EBPe and Myb transactivation of the promoter 

in HeLa cells was independent of the FPp c/ebp site suggesting that co-operation 

between the two factors does not depend on an overlapping DNA binding site. Such co- 

operativity can occur with sites for the two factors being separated by at least 10 

nucleotides (FPal) in HeLa cells which argues against co-operative DNA binding as a 

mechanism of functional co-operation. This may occur, however, by means of a 

bridging interaction of CBP/p300 with the two factors, as has been hypothesised (209). 

Thus whilst compelling, the evidence for co-operative binding is incomplete at best.

In NB4 cells on the other hand, the Myb bound at FPp cannot co-operate with 

C/EBPe bound at alternate sites like FPa, a l  or y to transactivate the promoter. This 

difference may be due to other transcription factors present in NB4 cells (like AML-1) 

which may interact with the C/EBP through the same domain with which it interacts 

with Myb, thereby competitively inhibiting its interaction with the latter. The lack of
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such C/EBP-interacting factors in HeLa cells may allow C/EBPe bound at more distant 

sites to interact and co-operate with Myb despite the distance.

16.8 GABP proteins may interact physically and functionally with 

alternative partners

The HeLa cell experiments show a marked transactivation of the HNP-3 

defensin promoter by GABPa in excess of GABPp. These results suggest that GABPa 

is interacting functionally, if not also physically with other partner protein/s. EMSAs 

show bands upon the addition of GABPa, the formation of which is inhibited by the 

addition of C/EBP binding oligonucleotides as well as by the addition of anti-C/EBPp 

antibodies. These data suggest that GABPa may be binding to the FPa DNA sequence 

with C/EBPp.

Recent studies have shown strong co-operative transactivation by Ets factors 

(namely Ets-1) together with C/EBPa or p in the presence of adjacent binding sites for 

the two factors on the EOS47 promoter (239). Interactions were shown to be dependent 

on the ETS domain of the Ets factors and the basic zipper domain of the C/EBP. 

Therefore in the right circumstances, it is feasible that GABPa may interact with 

C/EBPp, which is present in HeLa cells. Addition of GABPp inhibits the marked 

transactivation produced by GABPa upon co-transfection. This inhibition is not so 

marked at all when GABPy is co-transfected. Since GABPp and GABPy are similarly 

capable of binding with the ETS domain of GABPa, the reason for this difference must 

relate to the GABPp homodimerisation/transactivation domain.
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Addition of purified GABPp in EMSA experiments did not result in the 

formation of the characteristic GABPap sized band, but a lower mobility complex 

(named BCX). This band was also reduced in intensity by two different recognised 

C/EBP binding oligonucleotides suggesting the possibility that GABPp was interacting 

with C/EBPp (this being the C/EBP found in HeLa). GABPa may itself form part of 

this complex (i.e. a GABPa-C/EBPp-GABPp complex). Competing away GABPa 

binding, by a FPa core ets site oligonucleotide, however, enhanced the binding of this 

complex, suggesting that the above is unlikely. An interesting hypothesis for GABPp- 

inhibition of GABPa-induced transactivation can therefore be formulated. By 

competing for the same C/EBPp interactive partner, GABPp prevents GABPa from 

forming an active complex resulting in an inactive one instead. The inactive GABPp- 

C/EBPp-X complex is probably primarily found in solution (or bound to a site other 

than FPa) since GABPa binds to the FPa site in preference to the BCX complex.

If there is indeed an interaction between GABPp and C/EBPp, this is most likely 

to occur via the leucine zipper regions of both proteins though no such interaction has 

yet been shown. GABPp’s leucine zipper is required for GABPp dimer formation(324). 

GABPy, on the other hand, lacks this dimerisation interface. This may therefore 

explain why GABPy does not inhibit GABPa-induced transactivation so much since it 

would not be able to interact with C/EBPp as would GABPp.

Within NB4 cells, interaction of GABPa with C/EBPs may be responsible for 

the marked transactivation of the defensin promoter seen upon co-transfecting GABPa, 

though we do not have any evidence to support this idea. GABPa may alternatively be 

interacting with some other factor like AML-1, another well-known co-operative partner 

for Ets factors.
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In these myeloid cells, co-transfected GABPp does not reduce the GABPa- 

induced activity. This may be for various reasons, the most important of which is that 

GABPa-induced transactivation may be occurring by a different mechanism as 

suggested by the models in Chapter 17. Differences in the C/EBP activators found in the 

different cell lines and their interactions with the two GABP sub-units may also be of 

importance

16.9 Incongruities between exogenous and endogenous promoter 

activation

Following these studies, T Jamieson, a colleague, transfected HeLa cells with 

different activators that transactivated the defensin promoter strongly in transient 

transfections. None of the transfected factors, including those known to strongly 

transactivate the promoter such as GABPa, or the combination of C/EBPe and Myb, 

increased endogenous defensin gene expression ( data not shown). Defensin mRNA was 

not detected in northern blots of any of the transfected HeLa cell populations.

The reasons for this difference are unclear, though endogenous gene up 

regulation has been shown vary rarely in heterologous cells (186). Since the 

transcription factor environment for both reporter gene or endogenous promoters is the 

same (HeLa cells), the main reason for these differences probably lies in their different 

chromatin structure. Reporter gene constructs provide an easily accessible promoter 

whilst the promoter of the endogenous gene in a non-expressing cell may be buried deep 

within the heterochromatin and not accessible to transactivators.
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Heterologous defensin expression was attempted in epithelial HeLa cells by co

transfection of transcription factors activating the promoter . A rare study where myeloid 

gene expression in heterologous cells was achieved, (186), used other mesenchymal 

cells like erythroid cells or fibroblasts as the test cell line . It is possible that the greater 

ontological diversity of the epithelial HeLa cell line from the tissue in which the gene is 

normally expressed may influence the extent to which that gene is inhibited by 

chromatin. HeLa cell have also been shown to be a poor background for C/EBP- 

induced transactivation on occasion (233).

These major differences between transient transfection promoter studies, and 

endogenous gene expression emphasise the limitations of this experimental system in 

studying gene regulation in vivo. Greater understanding of how chromatin structure 

influences transcription (as they so clearly do in transgenic animal experiments) may 

help translate transient transfection results onto endogenous genes in the future.
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Chapter 17 : Models of defensin promoter interactions

The knowledge gathered from in vitro experiments regarding the interactions 

between transcription factors on the defensin promoter can be used to construct models 

regarding the results of transient transfection experiments.

17.1 Model of transcription factor interactions on promoter deletion 

mutants transfected into NB4 cells

Fig. 62 shows a cartoon depicting how transcription factors may interact on the 

different deletion mutants of the defensin promoter transfected into NB4 cells. On the 

shortest inactive (-30/+15) promoter fragment, there are few if any binding sites for 

transcription factors. TBP binding to the TATAA box is not in itself enough to tether 

the RNA polymerase complex to the promoter and initiate transcription. The binding 

of factors to sites present in this short deletion mutant, such as the functionally 

important (possible c/ebp) site identified in HL60 studies (-30/-20), and the PU.l- 

binding site at position (-23/-17), may be limited, due to interactions with other 

unbound factors which prevent their interaction with the DNA(as indicated).

Inclusion of FPa (-67/+15) increases the number of transcription factor binding 

sites and may indirectly enhance binding to other sites as suggested by competition 

EMSA experiments (see Figs. 36,37). This may result in GABPa (green triangle) 

binding to DNA at one site (FPa) and PU.l (pink triangle) binding at another site (-18) 

with C/EBPs bound next to either of the Ets factor. Interaction between the Ets factor 

and the adjacently bound C/EBP’s DNA-binding domain and possibly its repression
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Fig.62 Model of transcription factor binding to defensin promoter deletion mutants. 
The model is based on the same representative transcription factor symbols as in Fig. 
59 The orange ellipse signifies the TATAA-binding protein TBP whilst the black and 
white hatched large ellipse signifies the rest of the basal transcriptional machinery. 
The model expounds the hypothesis that including new DNA sequences can alter 
the distribution of transcription factor binding on the exposed DNA. This may 
enhance or inhibit the formation of active complexes by these different sites within 
the same promoter competing for particular factors. Differentiation is shown to 
enhance the expression of numerous transcription factors such as to allow occupation 
of both inactive and active DNA binding sites.
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domain may result in de-repression of its activation domain. This would allow the 

DNA bound complex to interact with the transcription machinery, recruiting the 

polymerase and enhancing promoter activation.

Inclusion of sequences upstream of FPa till nucleotide -105 includes strong 

c/ebp-aml binding sites. This may result in C/EBPe being drawn away from the Ets 

factors with which it was co-operating to another site where it is inactive. AML-1 is 

known to bind DNA and transactivate promoters co-operatively with C/EBPa (see 

section 3.6.4). Such co-operative interaction, however, may also require Ets and/or 

Myb proteins(352;397). C/EBP bound to the F Pal c/ebp-aml site would not be able to 

interact with adjacent DNA-bound Myb or Ets factors within the context of the defensin 

-105/+15 promoter.

Inclusion of the FPp incorporates a Myb-binding site. The effect of this is 

modelled here with C/EBPs being held to the DNA by means of a co-operative 

interaction with Myb (purple diamond). Such co-operative interaction may be indirectly 

using such bridging factors as CBP/p300. Meanwhile, an adjacent Ets factor (shown 

here binding to the DNA through a co-operation with AML-1) interacts with the C/EBP 

repressor domain (white ellipse) releasing the activation domain (red ellipse) to interact 

with the polymerase complex and recruit it to the defensin promoter. Here the Ets factor 

shown binding FPp (in a co-operative manner with AML-1) is PU.l whilst EMSAs 

showed GABPa to bind this site. However, FPa (the strong GABPa-binding site) is 

present (in the -140/+15 promoter fragment) whilst FPy (the strong PU.l binding site) is 

absent. Therefore in the context of this promoter fragment it is possible that PU.l 

rather than GABPa will be bound to this site.

Inclusion of the sequences up till -180 incorporates FPy, which introduces 

another strong C/EBP- and AML-1-binding site thereby luring C/EBP from the active
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complex formed on FPp. The added ets site may also sequester ets factors from FPp 

(such as PU.l) also resulting in an inactive complex. Now there are two binding sites 

(FPal and FPy) which could bind C/EBPe in an inactive mode (away from Myb) as 

opposed to only one potential active site (FPp). Inclusion of the sequences up to 

nucleotide -240, include another potential myb-c/ebp combined site restoring the 

balance of active to inactive C/EBPe binding sites (not shown in model).

Upon differentiation, the amount of C/EBP and AML-1 is increased such that 

enough is present so as to occupy both the inactive and the active sites, and the 

increased PU.l binds strongly to FPy thus possibly preventing C/EBP binding to this 

site. The increased PU.l may also interact with C/EBPe in place of GABPa thereby 

enhancing GABPp co-operation with GABPa whereupon they can also bind the 

polymerase and transactivate the promoter. This combination of changes may explain 

the increased promoter activity due to far better recruitment of the basal transcription 

machinery.

Whilst the cartoon model depicts the promoter here as a straight line, recent 

studies have shown that multiple transcription factors, bound to DNA, bend the DNA 

around the polymerase complex thus enhancing the interaction between each factor and 

the basal machinery and stabilising the initiation complex (353). DNA-bending proteins 

like LEF-1 play an important role in such complex formation. By mutating the binding 

site for such a protein, promoter activity may be markedly reduced despite it not having 

much transactivating potential in itself.

The FPa ets site-bound protein/s (including possibly GABPa) may play a 

similar role apart from having an important role in transactivation. A clear hypersite, 

which may be associated with DNA bending, is seen just upstream to this ets site and 

Ets factors have been shown to bend DNA to a considerable degree. Mutation of this
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ets site results in the total loss of activity of the promoter even when the factors 

activating the promoter bind DNA totally independent of this site (such as C/EBPe and 

Myb in HeLa cells). In view of the fact that this FPa ets site appears essential for 

activation in all circumstances, it is possible that factors bound here bend the promoter 

DNA. This would allow improved interaction of factors bound along the length of the 

promoter to the TATAA box-bound basal machinery thus stabilising the complex and 

better activating the promoter.

17.2 Interactions on the defensin promoter in HeLa cells

As in myeloid NB4 cells, within the HeLa cellular environment, interactions 

between different sites may play an important role in the promoter activity of different 

constructs co-expressed with different activators. Mutation of the c/ebp site in FP|3 is 

not at all deleterious to promoter activity induced by C/EBPe and Myb in HeLa cells. In 

NB4 cells, both c/ebp and myb FP|3 sites are crucial for activity. A likely explanation is 

that C/EBPe not bound adjacent to Myb in NB4 cells, is likely to interact strongly with 

other factors such as AML family proteins bound to other sites along the promoter. 

C/EBPs physically interact with Myb through the same domain with which it interacts 

with AML(295). Both C/EBP and Myb functionally interact with the same domain 

protein sequence of the AML-1 factor. Therefore in NB4 cells, stearic constraints may 

prevent more than two of these proteins from interacting optimally with each other and 

the separation of the DNA binding sites for these different factors might dictate which 

interactions predominate. In HeLa cells, this three-way competition for interaction does 

not occur since AML-1 is not expressed to any great extent. Therefore Myb bound to 

FP(3 could interact with C/EBP bound to FPa or more likely to FPal.
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In the case of GABPa-induced transactivation, mutation of the FPa ets site 

clearly effects GABPa binding. Mutation of the FPp c/ebp site (which also reduces 

GABPa-induced transactivation) may reduce the potential binding sites for a GABPa- 

C/EBP complex (FPp was shown by antibodies to be able to bind both C/EBPe and 

also GABPa in NB4 cells). Alternatively, C/EBPe, being unable to bind FPp might 

interact with and inhibit GABP binding to FPa. Mutation of the core ets site in FPy also 

reduces another site where C/EBP and GABPa may bind adjacently. Similarly, 

removal of the sequences upstream of FPa reduces the potential binding sites for such a 

complex. All site-specific of deletion promoter mutants may therefore reduce GABPa- 

induced activity.

Fig. 63 shows a cartoon outlining a likely model of the co-operativity between 

the GABPap heteromer and various other factors such as AML-l/CBFp, PU.l or 

CHOP-10. The top panel shows the -140/+15 promoter fragment schematically in the 

presence of excess GABPa with GABPa-C/EBPp active complexes forming on the 

promoter. The middle panel shows the situation with GABPp added resulting in 

C/EBPp bound to GABPp together with another protein marked as X.

Addition of CHOP-10 would result in C/EBPp-CHOP-10 dimers forming, these 

being incapable of binding DNA. GABPa and p having had their alternate partner 

removed are free to interact and bind to the vacant FPa ets site thus transactivating the 

promoter. PU.l if added in to a shorter promoter fragment (-67/+15), whilst interacting 

with C/EBPp would probably bind to the FPa ets-c/ebp site in a co-operative manner. 

This would prevent the reformed GABPap complex from efficiently binding DNA and 

transactivating. On the other hand, within the longer promoter sequence, this newly 

formed Ets-C/EBP complex may bind to FPp (or FPy) allowing the GABP heteromer
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Fig. 63 Model showing interactions between the GABPa and (3 sub-units and other 
factors. C/EBPp is pictured as was C/EBPe but all in red, otherwise the same 
symbols as in Fig 59 are used.
(a)Shows the hypothetical situation with GABPa expression resulting in strong 
activation by co-operation with C/EBPp. This co-operative complex may bind both 
FPa and FPp.
(b)Shows the situation with GABPp complexing together with C/EBPp and 
possibly other factors ( here indicated as X). This complex will be unable to bind 
strongly to DNA in the presence of GABPa as well as possibly being inherently 
inactive. The lowermost panel shows the situation when PU.l, AML-1 or CHOP-10 
are added to GABPap.
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to transactivate the promoter through FPa. AML-1 may co-operate with GABPa |3 in a 

very similar fashion.

17.3 Stage-specific expression of defensin as a function of changes in 

the abundance of various transcription factors

All this data, together with previously published information, makes it possible 

to present a model of how transcription factor interplay on the defensin promoter may 

cause the increased expression of the gene during early myeloid differentiation and the 

subsequent down-regulation later on (Fig.64). Prior to defensin expression during 

myeloid commitment, the chromatin around this gene locus may be modified to allow 

for improved access of the genomic DNA by transcription factors. In previous cell 

divisions during myeloid differentiation, the FPa CpGGAA site is demethylated, 

thereby allowing the binding of GABPa to this site. The binding of this factor may 

allow low level defensin gene expression, possibly as a result of DNA bending within 

the promoter resulting in co-operative interactions between other bound factors.

Early myeloid cells (myeloblasts/promyelocytes) express good levels of c-Myb 

and also C/EBPa together with some C/EBPe. These factors may co-operate with Myb 

at FPp and transactivate the promoter. The C/EBPs may also bind to FPy together with 

PU.l and to FPa together with GABPa though the role of such complexes in 

transactivation is uncertain. Other factors important in transactivation, like GABPp, 

may be complexed to alternate protein partners preventing them from playing an active 

role in transactivation. Following myeloid differentiation into myelocytes, an increase in 

C/EBPe will occur, together with a decrease in C/EBPa and an increase in AML-1 and 

possibly in PU.l.
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Fig. 64 Model to show the up regulation and subsequent down regulation of the 
defensin promoter with differentiation. The same representative symbols are used as 
in previous figures. C/EBPa and P are represented by yellow and red versions of the 
same C/EBP symbol.
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The change in the relative abundance of the C/EBP factors should result in 

improved synergism with Myb on FPp. The increase in AML will probably allow 

enhanced co-operative Ets binding to FP(3 resulting in a possible active AML-Ets- 

C/EBPs-Myb complex. Increased PU.l will bind to FPy, where it itself may aid in 

transactivation and in so doing may displace the C/EBP and AML factors to other sites 

where they may be more active.

GABPa can better interact with GABPp now that the alternate partners of both 

sub-units (including possibly the C/EBPs) can interact with other factors such as PU.l 

and AML-1 instead. The GABPaP dimer can now therefore further transactivate the 

promoter through FPa. C/EBP proteins, at this stage, are abundant enough so as to bind 

to c/ebp-aml sites on FPy and a l  (inactive) as well as to FPp (active) together with 

AML and possibly with PU.l.

Upon further differentiation, C/EBPs is down regulated (according to some 

studies (374) but remains strongly expressed according to others (386)). Myb (also see 

Fig. 38) and AML-1 are also down-regulated with differentiation, whilst PU.l is further 

up regulated as is C/EBP|3(21). GABPa and (3 are probably relatively unaffected.

These changes can in themselves indicate a probable mechanism of defensin 

mRNA down-regulation. Switching C/EBPs for C/EBPp results in a family member, 

which does not appear capable of co-operating strongly with c-Myb on myeloid 

promoters(218). Even if C/EBPe is still expressed, the down regulation of Myb will 

result in the co-operative transactivation potential of this transcription factor partnership 

being lost. In the absence of protein partners like c-Myb and AML-1, C/EBPp 

(and possibly C/EBPe) will begin to interact with alternative factors. Through 

its interaction with GABPp, C/EBPp will split the active GABPaP complex 

forming a situation similar to that in HeLa cells with GABPa bound alone to an
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inactive promoter. The abundant PU.l present at this stage can compete (either alone or 

co-operatively with C/EBP(3) for binding to the FPa core ets site. This may result in 

displacement of GABPa which may result eventually in methylation of FPa and 

permanent repression of the gene.

Most of the factors mentioned here which appear to be responsible for defensin 

expression are also present in lymphoid cells (255). However, the presence of a 

methylated cytosine nucleotide in the FPa core ets site, detected in lymphoid lineage 

leukemia cells (A. Philips/T Jamieson unpublished results) probably inhibits GABPa 

binding and promoter transactivation, thereby limiting defensin expression to the 

myeloid lineage.
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Chapter 18 : General conclusions and future work prospects

A number of very interesting findings have resulted from these studies on the 

defensin promoter, not the least of which is the possibility of novel transactivating and 

interacting partners for the GABP factors sub-units. However, a considerable amount of 

work can yet be done.

18.1 Completing the picture - EMSAs and further functional 

analysis of the minimal promoter

Many of the EMSAs performed gave rise to very interesting results. As a result 

of following up certain such results, analysis of other sequences was not as thorough, 

occasionally, as it could have been. Adding AML antibodies to EMSA studies on all 

footprints would have been most interesting, as would have been western analysis to 

document changes in the abundance of this factor specifically duriong the granulocytic 

maturation of the NB4 cells. More uniform and detailed analysis of each footprint by 

competition EMSA with both undifferentiated and differentiated NB4 extracts is also 

important.

Any number of transient transfection experiments could be proposed to help 

complete the picture, yet two stand out as rather essential. Firstly, co-transfecting 

C/EBPp (and the different C/EBPs) together with GABPa into NB4 cells should help 

discover whether this combination of factors is indeed responsible for the massive up- 

regulation in promoter activity seen upon GABPa transfection into HeLa cells. NB4 

would make an ideal background, as they do not express C/EBPs other than C/EBPe.
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Similarly, co-expressing C/EBPe and GABPa in HeLa cells without Myb might help 

explain the mechanism of GABPa-dependent up-regulation seen in NB4 cells.

The second important experiment would be to perform more extensive 

mutational analysis on the minimal promoter sequence in order to identify the sequences 

required for optimal promoter activity in differentiated NB4 cells. This minimal 

promoter whilst not very active in undifferentiated cells is just as active as the longer 

promoter fragment constructs in differentiated cells. Thus it is of interest to identify 

functionally important sequences other than the FPa ets site by mutagenesis. These may 

include the c/ebp and ami sites within FPa itself or the PU.l-binding site or the 

functionally important (potentially C/EBP-binding) site identified by Ma et al (54). 

Such transfection studies, due to the numerous factor binding-sites within a relatively 

short DNA sequence might provide valuable insights into how the myeloid factors on 

this core promoter interact in promoting transcription.

18.3 Understanding intra-promoter binding site competition and co

opera tivity

Few publications in the literature describe competition between different 

transcription factor binding sites within the same promoter ( or adjacent promoters in 

the DNA) and the effects of such competition on transcription (398-400). More describe 

the competition of different factors for the same binding site within the promoter(401).

Competitive transcription factor binding to FPa was analysed as part of this 

study. Extending the same kind of studies to the other footprints would be very 

interesting. One can further extend these studies by assessing the effects of
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oligonucleotide competitors on DNA-protein complex formation, when they are added 

in equimolar quantities (thereby mimicking the promoter template) and not at 50-200 

fold the molar concentration used in these EMSAs.

Transfection studies with co-transfected decoy oligonucleotides representing 

particular transcription factor binding sites may also help elucidate factor-factor 

interactions on the promoter. Such co-transfectoins should mimic the effect of mutating 

the site if such mutation removes a positive transactivator from the promoter. 

However, if mutation relaeses a factor which when unbound to DNA inhibits the DNA- 

binding or activity of other factors, a decoy should not replicate this negative effect.

18.3 Further analysis on the luciferase and growth hormone reporter 

genes

There is a clear difference in the transactivation of promoters by GABP factors

depending on whether the promoter in question is cloned into our growth hormone

reporter construct or a luciferase based one. I have argued (based on computer analysis

of sites within the reporter gene sequences) that this may be as a result of TATAA

binding protein (TBP) being competed away from the test promoter TATAA box to a

number of different spurious “promoter” sequences within the luciferase cDNA. A

reduction in transcription has been shown to happen when TBP is competed away from

the TATAA box and onto UV-damaged DNA(393). To understand whether such a

mechanism was responsible for the reporter gene differences, mutating the TATAA-

dependent promoter sequences within the luciferase cDNA without disrupting the

functional luciferase molecule would be helpful. If this was achieved, according to the

proposed hypothesis, GABPa (within a suitable cellular background) should
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transactivate promoters in this modified luciferase construct just as strongly as in our 

growth hormone reporter construct. Adding excess TBP (and possibly other basic 

transcription factors) together with co-transfected GABPa, might also allow strong 

GABPa-dependent transactivation from the standard luciferase vector.

18.4 Could GABP sub-unit imbalances result in the abnormal gene 

transcription?

Assuming that the GABPa effects we have discovered are not artefacts of our 

experimental system, are they ever of any significance in vivo? As described previously, 

GABPp is ubiquitously expressed in most tissues together with GABPa despite the fact 

that they are expressed from two different chromosomes. Therefore the scenario we 

have shown in HeLa cells of a positive imbalance of GABPa as compared to GABPp is 

probably unlikely to occur in normal circumstances.

Tumorigenesis however is well known to result in karyotypic instability 

especially in malignant tumours mutated in the p53 locus (402). Loss of chromosomes 

and amplification of others may occur resulting in such an imbalance. Here up- 

regulation of the defensin promoter is seen in an epithelial tissue not known to express 

this gene. Similarly, karyotypic anomalies leading to GABPa-p imbalances may result 

in the expression of genes in an inappropriate manner and this may further contribute to 

the malignant phenotype.

Possibly more significant is the fact that the human gabpa gene is located on the 

chromosome 21 (403), whose trisomy results in the condition known as Down’s
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Syndrome. This in itself produces a chromosomal imbalance between GABPa and 

GABPp-carrying chromosomes, and could provide a clear mechanism for inequalities in 

the abundance of the two sub-units of this ubiquitous transcription factor. 

Abnormalities in gene expression secondary to such an imbalance especially if 

occurring at early stages of foetal life could easily play a role in the developmental 

abnormalities characteristic of this condition. These are fertile grounds for further 

research.
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