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SUMMARY

The present study aimed to optimise mutation detection strategies for three 

autosomal dominant neurological diseases, myotonic dystrophy (DM), amyotrophic 

lateral sclerosis (ALS) and tuberous sclerosis complex (TSC).

(A) Myotonic dystrophy: After exploring different methods that have been used 

for the detection of CTG repeat expansions in DM patients, a strategy was chosen, 

optimised and applied to screen 49 DM families (86 DM affected and 96 apparently 

normal individuals). Using published primer sets, both radiolabelled and non-radiolabelled 

PCR amplification of the area containing the CTG repeat were optimised using the 

published conditions as a starting point. After PCR optimisation, DM alleles carrying up 

to 90 CTG repeats were properly amplified however, amplification of > 90 CTG repeats 

was not possible due to PCR limitations. To detect such expansions, Southern blot 

analysis using the BglI enzyme and the p5B1.4 DNA probe was optimised. The running 

time and the voltage used for gel electrophoresis were modified to get clear separation of 

the second band that represents the expanded CTG repeats. Meanwhile, normal 

individuals showed only a single band so that they were not confused with the affected 

persons. Using this strategy, all CTG repeat expansions between 50 and several 

thousands were detected. Analysis of the results obtained revealed the following: 1) A 

correlation between the intergenerational repeat expansion and the patient phenotype 

giving legitimacy to the phenomenon of anticipation. 2) Two cases of reduction of the 

repeat size upon paternal transmission. Since the age of both asymptomatic daughters 

were younger than the age at onset of the disease in their fathers, it was not possible to 

anticipate their clinical outcome. 3) Lastly, a severely affected child with mental 

retardation and onset in infancy was found to be paternally transmitted.

(B) Amyotrophic lateral sclerosis: Two mutations in the superoxide dismutase 

{SOD-1) gene, Ala4Val and Ilell3Thr, were previously shown to be prevalent among



familial amyotrophic lateral sclerosis (FALS) patients. These two mutations changed 

restriction enzyme recognition sites, so that restriction digestion of the appropriate PCR 

products was optimised and used to screen for their presence in the studied amyotrophic 

lateral sclerosis patients. SSCP analysis was also optimised and applied as a screening 

method for detection of unknown mutations in the SOD-1 gene using DNA samples from 

2 familial and 67 sporadic amyotrophic lateral sclerosis (ALS) patients. Any experiment 

with a positive SSCP screening result was repeated and a few false positive results due to 

PCR errors and/or errors in the gel preparations, loading or electrophoresis were 

detected.

A reproducible SSCP band shift was detected in exon 4 from one of the two 

familial cases. Sequencing of that exon revealed a G277->C point mutation which caused 

a Gly93Arg missense change. This mutation was confirmed to be present in all affected 

members of that family. Gly93 is a neutral and polar amino acid and is highly conserved 

among 18 different species and it was substituted by the basic arginine. Mapping of Gly93 

to the crystallographic structure of the SOD-1 gene revealed that it is one of the critical 

glycine residues that allow main chain conformation and packing interactions so that a 

mutation affecting this residue should have a deleterious effect on the conformation and 

stability of the enzyme dimer. In this FALS family, the affected members showed an early 

age of onset of the disease (26-40 years). Analysis of the results obtained revealed that: 

1) In the two FALS families screened one SOD-1 mutation was detected in the two 

screened FALS patients. 2) No SOD-1 mutations could be detected in any of the sporadic 

cases. These results suggested that other gene(s) may be involved in the familial form of 

the disease and make it unlikely that SOD-1 mutations are major determinants of sporadic 

ALS.

(C) Tuberous sclerosis: In order to screen the tuberous sclerosis complex (TSC) 

patients for point mutations within the TSC2 gene, chemical cleavage of the mismatch 

(CCM) analysis was optimised and applied to four RT-PCR amplified (from 22 patients)



and two DNA PCR amplified (from 32 patients for one segment and from 10 patients for 

the other segment) TSC2 segments. These segments were chosen as they include 

proposed important functional parts of the gene. Using this approach, nine cleavage 

products were detected from the screened patients. Sequence analysis of the 

corresponding cDNA and/or DNA segments revealed three missense mutations in three 

sporadic TSC patients and three polymorphic changes. No mutations could be detected in 

the screened promoter area of the gene.

The first mutation A4822-»G produced a missense Metl602Val change in the 

GAP-3 related domain which is proposed to be an important domain of the gene. Both 

methionine and valine are neutral and hydrophobic amino acids and this change would 

normally be considered a conservative one. However, there are known examples of 

conservative missense mutations that can result in a disease phenotype if they occupy 

sites in the protein that are key determinants of stability or function.

The second mutation T5161-^A produced a missense Serl715Thr change. In 

spite of the fact that both serine and threonine are neutral and polar amino acids this 

mutation was associated with a severe phenotype. The third mutation C5176—>T caused a 

missense Argl720Trp change which changed the basic arginine to the neutral and 

hydrophobic tryptophan which may affect the protein structure and function. Moreover, 

both Serl715 and Argl720 are in exon 40 of the gene which was found to be conserved 

among different species.

The three missense mutations modified restriction enzyme sites. This was used to 

confirm for their presence in the corresponding patients. None of these missense 

mutations could be detected upon the screening of 100 normal chromosomes, in view of 

this and the expected effect on protein they were predicted to be responsible for the TSC 

phenotype in these patients. Until more is known about the function and structure of 

tuberin it will be difficult to speculate about the exact function of these mutations and 

their effects both on tuberin and on patient phenotype.



Three polymorphisms were also detected in the screened cohort of TSC patients. 

Two of them C4098—>T and G5346—»C were silent. They did not change known 

restriction sites, so that screening of the normal chromosomes for their presence was not 

performed. G5346-»C was detected in four different patients and it may worth designing 

a technique to screen normal chromosomes for its presence. This may provide useful 

information for a linkage study analysis of the TSC2 gene. The third polymorphism was 

due to an AA deletion at positions 5433 and 5434 in one of the polyadenylation signals of 

the gene. It was detected in one of the familial cases but failure to detect it in other 

affected family members and its detection in one normal control led to the conclusion that 

it was a polymorphic change.

In conclusion, the most appropriate screening strategy for the detection of 

molecular pathology is influenced by the expected nature of the mutation, size and 

structure of the gene in question and the availability of mRNA. Therefore, for each of the 

three studied disorders, a different mutation strategy was chosen and optimised. SSCP 

analysis suited the small, well characterised SOD-1 gene. On the other hand, RT- 

PCR/CCM analysis allowed screening of a large part of the coding sequences of the 

TSC2 gene even before the complete genomic structure was known. For myotonic 

dystrophy the nature of the underlying molecular pathology of the expanded CTG repeats 

which could be detected as bands of different sizes made the PCR/Southern blot 

approach the appropriate mutation detection procedure.
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(1) INTRODUCTION

1.1 Genes and single gene disorders

Genes are the units of heredity. Genetic information is stored in the nucleus of 

cells in deoxyribonucleic acid (DNA) which is packaged into 23 pairs of 

chromosomes. Each gene is a nucleic acid sequence which determines the amino acid 

content of an enzyme or other proteins. Genes are situated at specific sites, or loci, on 

chromosomes. Like the chromosomes, genes exist in homologous pairs one from each 

parent.

Inheritance of single gene disorders follows a simple Mendelian form of 

transmission in families and it can be divided into autosomal dominant, autosomal 

recessive, sex linked dominant, sex linked recessive and mitochondrial inheritance 

(Thompson et al., 1991).

1.2 Molecular pathology of single gene disorders

An alteration of the structure of a gene is called a mutatioa As a result of 

mutation individual genes may exist in alternate forms, or alleles, only two of which 

can be present in one individual. The mutation may be present on only one 

chromosome of a pair (heterozygous) or on both chromosomes of the pair 

(homozygous). In either case, the cause is a single critical error in the genetic 

information.

1.2.1 Types and levels of abnormal gene expression

Gene action is mediated by a regulated flow of information reflecting the 

transcription of structural genes into messenger RNA (mRNA) precursors, a 

complicated series of steps involving processing of the large precursor molecules into 

definitive mRNAs and finally cytoplasmic translation of mRNA into a protein
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product. Mutations may manifest themselves at any of these levels. That is, there may 

be a reduced rate of transcription of a gene, a variety of abnormalities involving the 

processing of mRNA precursors, defects of initiation, translation or termination of the 

synthesis of the protein product on the cytoplasmic mRNA template, or an 

abnormality in the structure of the gene product.

Mutations that produce disease are manifest in two ways. First, a single base 

substitution or other rearrangement in a gene can lead to an abnormal protein 

product. The second group of mutations are those that cause a reduction or absence 

of a particular protein product. This kind of disorder may result from mutations that 

involve transcription or processing of mRNA or that act at the translation level by 

interfering with initiation, elongation or termination. Unfortunately no classification is 

entirely satisfactory. For example, it turns out that some disorders that appear to 

result from defective synthesis of a particular protein are actually caused by the 

production of a structurally abnormal protein which is so unstable that its level in the 

cell is markedly reduced.

(D Mutations causing synthesis of an abnormal gene product

Most of these mutations are due to single base substitutions ( point mutations) 

in the parent genes. There are a few examples of structural variants that are caused by 

major rearrangements that lead to the formation of fusion genes which code for novel 

protein products. The first example of this kind of protein was haemoglobin Lepore.

Point mutations, on the bases of codon change, can be classified into silent, 

non-sense, missense, and sense mutations. A silent mutation is a mutation that 

causes no change in the amino acid present in the corresponding protein. A missense 

mutation causes the substitution of one amino acid for another in a protein. The result 

of single amino acid substitutions in proteins or their subunits vary depending on the 

type of the amino acid that is substituted and the site of the substitution in the 

particular protein. Also, most proteins are folded into a complex tertiary structure and 

the substitution of a charged for an uncharged amino acid can disrupt this structure



and lead to molecular instability. On the above basis, missense mutations may or may 

not affect the function of the gene product. Sickle cell anaemia, an autosomal 

recessive disorder leading to a form of haemolytic anaemia and intravascular 

thrombosis is a result of a missense mutation in codon 6 of the beta globin gene 

changing GAG (Glu) to GUG (Val). Another missense change in the same codon 

GAG (Glu) to AAG (Lys) results in a condition known as haemoglobin C which is 

associated with mild clinical symptoms. A harmless haemoglobin variant 

(haemoglobin Makassar) results from missense change in the same codon changing 

GAG (Glu) to GCG (Ala) ( Weatherall, 1991).

(II) Mutations causing reduced output of a gene product

Many genetic disorders are caused by a reduced output of an enzyme or other 

type of protein and in some cases no product can be detected. These disorders result 

from mutations of the structural genes and the resulting defects are manifest at the 

levels of transcription, mRNA processing, translation or post- translational stability.

(A) Mutations that cause defective transcription: These mutations comprise:-

(i) Gene deletions and variation in gene number : Examples of this group 

are provided by the a  thalassaemias. Normally, there are two closely linked a  globin 

genes on chromosome 16. In many forms of a + thalassaemia there is a deletion 

involving this chromosome which leave a single functional a  gene. In most types of 

a °  thalassaemia both a  globin genes are lost.

(ii) Fusion genes : These result from chromosomal misalignment and 

abnormal crossing over. Examples of this are the genetic abnormalities that underlie 

red-green colour blindness. These appear to have resulted from unequal crossing-over 

between the red and green pigment genes that lie in a tandem array on the X- 

chromosome on which there is a single red pigment gene and variable numbers of 

green pigment genes.

3



(iii) Inversions : This term signifies that a region of DNA is back-to-front 

with respect to its normal orientation in the genome. A good example of this type of 

mutation has been shown in patients with 5p thalassaemia and in haemophilia A 

patients where half the serious cases have an intron 22 inversion.

(iv) Insertions : This mechanism underlies the molecular pathology of several 

varieties of Lesch-Nyhan syndrome, one form of Marfan's syndrome, lipoprotein 

lipase (LPL) deficiency and in several other conditions.

(v) Promoter box mutations : Examples of this kind of mutation have been 

found in several forms of P-thalassaemia and in haemophilia B Leyden type where 

mutations were found upstream from these genes either within or adjacent to 

promoter boxes. These mutations are associated with variable reductions in output 

from the adjacent gene loci.

(B) Mutations that cause defective mRNA processing: The primary mRNA 

transcript has to be processed by the removal of introns, joining together of exons and 

by polyadenylation. Normal splicing of mRNA is dependent on the presence of GT 

and AG dinucleotides at the 5' and 3' intron-exon junctions. Splice site mutations that 

affect the 5' donor (GT) or the 3' acceptor (AG) sequences will interfere with the 

normal splicing, resulting in an mRNA that retains an intron or is missing an exon. 

Examples of this are known in P° thalassaemia, phenylketonuria, acute intermittent 

porphyria, neurofibromatosis type 1, retinoblastoma and more other conditions. In 

addition to the GT/AG junctional sequences there are highly conserved sequences at 

the boundaries between introns and exons that must also be involved in splicing of 

mRNA. Several forms of (3+ thalassaemia have been described which result from the 

production of cryptic splicing sites within these consensus sequences (Weatherall, 

1991).

Polyadenylation signal site mutations also interfere with the normal processing 

of mRNA. Cleavage of the 3' end of the mRNA and addition of the poly A tail is 

controlled at least in part, by an AATAAA consensus sequence approximately 20
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base pairs before the polyadenylation site. For example a single base change 

AATAAA —> AATAAT, found in a  globin genes of patients with a  thalassaemia 

drastically reduces the production of a  globin chains from the 0 C2  globin gene. Some 

genes have a number of alternative polyadenylation sites, selection among which may 

influence the stability of the resulting mRNA and thus the steady-state level of the 

mRNA (Thompson et al., 1991).

(C) Mutations causing abnormal translation: These include

(i) Initiation codon mutations : Several mutations have been observed in 

patients with a  thalassaemia which involve either the initiation codon itself (ATG) or 

the sequences immediately adjacent to it leading to no a  chain production from the 

affected a  globin gene. Other examples have been seen in pseudohypoparathyroidsm 

and Tay-Sachs disease.

(ii) Non-sense mutations : Non-sense point mutations create stop codons 

and premature termination of translation with shortened gene products. These have 

been detected in a variety of genetic disorders such as Duchenne muscular dystrophy 

and neurofibromatosis type 1.

(iii) Frameshift mutations : Since proteins are encoded by a triplet code the 

loss or insertion of any number of nucleotides which are not three or its multiples will 

alter the reading frame of the message downstream of the change. The result is an 

anomalous amino acid sequence that is added to a normally initiated chain. 

Sometimes the altered base sequence generates a new termination codon leading 

either to premature termination of translation or elongation of the abnormal mRNA. 

Examples of this kind of mutation have been seen in p thalassaemia, Duchenne 

muscular dystrophy (DMD), haemophilia A and Christmas disease.

(iv) Termination codon mutations : Termination codon mutations were first 

described in the a  globin genes. These mutations produce a longer than normal 

protein by changing a termination codon into one that codes for amino acid. In 

haemoglobin Constant Spring the a- chain is elongated at its C- terminus due to
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single base mutation in the a- chain termination codon UAA to CAA (Gin) 

(Weatherall, 1991).

(v) Mutations that are distant from the structural genes : Most of the 

mutations that interfere with the production of peptide chains involve either the 

structural genes themselves or important regulatory sequences in their immediate 

flanking regions. However, there are other sequence elements that can markedly alter 

the efficiency of the transcription. The best characterised of these activating 

sequences are called enhancers. These are sequence elements that can act at quite a 

distance (often several kilobases) from a gene to stimulate transcription. Specific 

enhancer elements function only in certain cell types and thus appear to be involved in 

establishing the tissue specificity of many genes (Thompson et al., 1991). A so-called 

dominant control region (DCR) has been identified upstream from both the (3 like and 

a  globin gene clusters. Several deletions that involve this sequence have been found 

to inactivate the structurally normal a  globin genes in the same chromosome 

(Weatherall, 1991).

1.2.2 Mechanisms of mutagenesis

(!) Cytosine methvlation and hot spots for point mutations

Point mutations have so far been the most common type of mutation in coding 

DNA sequences. The category of mutations that includes deletions and insertions 

accounts for 5 to 10 % of all known mutations (Cummings, 1994). Nucleotide 

changes that involve the substitution of one purine for the other (A<-»G) or one 

pyrimidine for the other (T<-»C) are called transitions. The replacement of a purine 

for pyrimidine or vice versa is called transversion. If nucleotide substitutions were 

random, there should be twice as many transversions as transitions. In fact there is a 

higher frequency of transitions than transversions among a collection of mutant 

alleles. The excess of transitions can be explained with the finding that the major form
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of DNA modification in the human genome involves methylation of cytosine residues 

to form 5-methylcytosine, specifically when they are located immediately 5' to 

guanine i.e. as a dinucleotide 5-CG-3'. Spontaneous deamination of 5' methylcytosine 

to thymidine in CG doublet gives rise to C-»T or G-»A transitions (depending on 

which strand of DNA the 5-methylcytosine is mutated). More than 30 % of all single 

nucleotide substitution detected in many inherited disorders are of this type 

(Thompson et al., 1991). Thus the CG doublet represents a true hotspot for mutation 

in the human genome (Cooper and Krawczak, 1990).

(ID Insertions, deletions and gene duplication

Alterations of gene structure by insertions or deletions have been described in 

numerous inherited disorders. The observed frequency of such mutations differs 

markedly among different genetic diseases. Some disorders are characterised by a 

higher frequency of detectable deletions, whereas in others deletion is a very rare 

cause of mutation.

A frequent cause of mutation involves a large deletion or duplication mediated 

by recombination between highly similar DNA sequences. Many genes exist as 

members of multigene families (e.g. the a  and p globin gene clusters, immunoglobulin 

superfamily and colour vision gene family). When the members of such a gene family 

are located in a head-to-tail tandem fashion in the same chromosomal region, they 

sometimes misalign and pair out of register either in meiosis (when two homologues 

pair) or in mitosis after replication (when two sister chromatids often exchange 

DNA). Recombination with unequal crossing over occurring between mispaired 

chromosomes or sister chromatids can lead to gene deletion or duplication.

Recombination between homologous non-coding DNA sequences of the Alu 

family has been documented as the cause of duplication of several exons in the low 

density lipoprotein receptor gene in familial hypercholesterolaemia (Lehrman et al., 

1987). A similar example is the mutational event in a case of XX maleness resulting
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from aberrant exchange between an Alu repeat on the short arm of the X 

chromosome and one on the Y chromosome (Rouyer et al., 1987).

Examples of deletions of <20 bp and insertions of <10 bp of DNA sequences 

into human gene coding region were analysed by Cooper and Krawczak (1991). They 

stated that these events are not random and appear to be highly dependent on the 

local DNA sequence context. The majority of insertions can be explained by an 

endogenous replication mechanism of mutagenesis. This may be understood in terms 

of slipped mispairing due to direct repeats, runs of single bases, palindromes (inverted 

repeats) or the presence of symmetrical elements. Direct repeats are also a feature of 

a number of recombination, replication or repair based models of deletional 

mutagenesis. A significant excess of symmetrical sequence elements was found at 

sites of single base deletions. These elements were seen to possess an axis of internal 

symmetry ( e.g. CTGAAGTC, GGACAGG) and varied between 5 base pairs and 11 

base pairs in length. In addition a consensus sequence proposed to be a hot spot for 

deletions was drawn up : (TGA/GA/GG/TA/C).

(Ill) Expansion of trinucleotide repeats

The discovery of trinucleotide repeat expansion and instability in several 

inherited psychomotor disorders has provided a molecular explanation of the 

phenomena of anticipation where the disease shows increased clinical severity over 

successive generations in pedigrees (Richards and Sutherland, 1994). So far, 

expansion of trinucleotide repeat motifs, also referred to as dynamic mutations, have 

been found to be causally involved in several human genetic disorders including 

Fragile X syndromes (FRAXA & FRAXE) (Fu et al., 1991 and Knight et al., 1993); 

Myotonic dystrophy (DM) (Fu et al., 1992); Huntington disease (HD) (The 

Huntington's disease collaborative research group, 1993); Spinocerebellar ataxia type 

I (SCA1) (Orr et al., 1993); Spinal and bulbar muscular atrophy (SBMA, Kennedy 

disease) (La Spada et al., 1991); Dentatorubral and pallidoluysian atrophy (DRPLA) 

(Nagafuchi et al., 1994), Haw River syndrome (HRS) (Burke et al., 1994) and
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Machado-Joseph disease (MJD) (Kawaguchi et al., 1994). In each case, tracts of 

trinucleotide repeats undergo expansion to produce the disease phenotype with 

expansions of either CCG/CGG (FRAXA & FRAXE) or CAG/CTG (All the 

remaining diseases) core sequences. These repeat tracts occur in the coding (HD, 

SBMA, DRPLA/HRS, MJD) as well as non-coding (DM and FRAX) regions of the 

gene. The mechanisms by which these trinucleotide repeat expansions produce their 

phenotypic effects are not clear. In FRAXA & FRAXE syndromes the full mutations 

are associated with fragile mental retardation 1 (FMRJ) gene methylation leading to 

transcriptional suppression and an absence of the encoded protein (McConkie-Rosell 

et al., 1993). In DM there are conflicting reports of decreased (Fu et al., 1993 and 

Hofmann-Radvanyi et al., 1993) and increased (Sabourin et al., 1993) steady state of 

mRNA levels. In other disorders, where the repeat (CAG)n codes for polyglutamine, 

the expansion may confer some gain of function to the protein involved (Housman, 

1995).

When compared to other types of single gene defects the properties of 

dynamic mutation diseases afford distinct advantages and disadvantages for diagnosis. 

The dynamic mutation disorders are remarkably homogeneous. Apart from fragile X 

syndrome, no other mutations in the genes involved in dynamic mutation disorders 

have been recorded. This is a great advantage for the diagnostic laboratories where 

the primary diagnosis of these disorders can now be made with confidence. The major 

disadvantages relate to uncertainty over the relationship between genotype and 

phenotype. Somatic variation can mean that copy number, determined from peripheral 

blood lymphocytes, is not an accurate determination of the size of the repeat in the 

affected tissue(s). In addition (perhaps as a consequence) there can be overlap in the 

copy number for the different phenotypic categories. For example, in the Huntington's 

disease about 2 % of mutant chromosomes have copy numbers at the top of the 

normal range (Sutherland and Richards, 1993).

Recently a GAA repeat expansion is detected within an intron of a novel gene 

(X25) for Friedreich's ataxia (Campuzano et al., 1996). Unlike previously described
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neurological disorders involving triplet repeat expansions, in which a dominant mode 

of inheritance is the norm, Friedreich's ataxia is an autosomal recessively inherited 

disorder. As such, there is no evidence of anticipation within families and carriers of 

the Friedreich's ataxia mutation show no obvious adverse consequence.

DISORDERS STUDIED

1.3 Myotonic Dystrophy (DM, Steinert’s muscular dystrophy)

This disease is so called because patients who present to hospital on account 

of muscle weakness have a distinctive type of muscular dystrophy which is 

accompanied by myotonia of the tongue and hands (Bundey, 1992).

1.3.1 Clinical features

Myotonic dystrophy is the commonest adult form of muscular dystrophy, with 

an estimated incidence of 1 per 7,500, although this is likely to be an underestimate 

because of the difficulty of detecting minimal affected individuals (Harley et al., 

1992). The clinical features of this disease are myotonia, weakness, muscle wasting, 

frontal baldness, cataracts, hypogonadism and ECG changes. Typically, symptoms 

become evident in middle life. Initial symptoms are insidious and by time the patient is 

severely disabled, retrospective questioning will reveal that the disease has been 

present for 20 to 40 years. Moreover, some patients, particularly those with onset late 

in life, may be without muscular symptoms or signs and have only lenticular opacities 

(Bundey, 1992).

Unlike other muscular dystrophies, DM initially involves the distal muscles of 

the extremities and only later affects the proximal musculature. The muscle weakness 

affects firstly the face, sternomastoids, muscles of the forearms and tibialis anterior 

muscle leading to foot drop. Atrophy of masseters, sternocleidomastoids and the 

temporalis muscles produces a characteristic haggard appearance. Myotonia or 

delayed muscular relaxation following contraction is most frequently apparent in the
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tongue, forearm and hand. Myotonia is rarely as severe as in myotonia congenita and 

tends to be less apparent as weakness progresses (McKusick et al., 1994).

Mild endocrine and bony changes have been observed in DM patients. Males, 

particularly those with early onset, develop primary testicular atrophy and may 

present with impotence or infertility rather than with muscle symptoms. Females tend 

to suffer from menstrual irregularities, and they are predisposed to obstetric 

complications, such as prematurity, ante- and post-partum haemorrhage (Bundey, 

1992). DM patients may develop personality changes such as irresponsibility or 

aggression, and if onset is early in life they are often mentally retarded (Bundey,

1992).

Complications affecting different organs have, also, been reported. Schwindt 

et al. (1969) claimed that 25 to 50% of patients have abdominal symptoms due to 

cholelithiasis. Brunner et al. (1992a) pointed out that there are many reports of 

familial occurrence of specific complications of DM e.g. cardiac conduction 

disturbances, focal myocarditis, miteral valve prolapse, polyneuropathy, normal 

pressure hydrocephalus and urinary tract dilatation.

Congenital myotonic dystrophy (CDM) is an unusual and severe type of 

myotonic dystrophy which occurs in about 1 0 % of cases. Symptoms are present in 

the neonatal period and the ultimate prognosis is poor. It is characterised by 

respiratory distress and poor feeding after birth. A typical facial appearance due to 

bilateral facial paralysis and ptosis is present in the newborn. Hypotonia and talipes 

equinovarus are additional features. Respiratory difficulties are frequent and are often 

fatal (McKusick, 1994). The diagnosis is at times difficult if the family history is not 

known as the more characteristic manifestations of the disease (myotonia and 

cataracts) might not develop until much later. Those that survive the neonatal period 

initially follow a static course, eventually learning to walk but with significant mental 

retardation in 60 to 70% of cases. By the age of 10 year they develop myotonia and 

in adulthood develop the additional complications described for the adult onset 

disease. The mean IQ for those cases with neonatal respiratory distress was not
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different from those without distress, suggesting that the mental retardation is 

unlikely to be related to anoxia (Baraitser, 1990). The inheritance of the congenital 

form differs markedly from orthodox Mendelian ratios in that, with only rare 

exception, it is the mother who transmits the disease.

1.3.2 Genetics

Myotonic dystrophy is an autosomal dominant disorder with high penetrance 

and rare new mutations (Harper, 1989a; Meiner et al., 1995). Various studies agree in 

demonstrating that 50% of patients had developed the disorder by around 20 years of 

age, and that a significant number do not develop it until after 50 years of age. Many 

obligatory gene carriers are asymptomatic and Harper (1973) found that 18% of 

asymptomatic first-degree relatives showed unequivocal abnormalities on clinical and 

slit-lamp investigation illustrating the inaccuracy of relying on age at symptomatic 

onset as a basis for penetrance analysis. Variation in clinical picture between a pair of 

monozygous twins has been reported (Harper, 1989b). Unfortunately, there are few 

reports of twins with myotonic dystrophy and further twin data would be particularly 

valuable.

Ives et al. (1989) described possible homozygosity for the DM gene. The 

possible homozygotes were more severely affected than the heterozygotes. On the 

other hand, Cobo et al. (1993b) studied a consanguineous French-Canadian family in 

which two sisters possessed two alleles with repeat sizes normally seen in minimally 

affected patients but were asymptomatic and showed no evidence of myotonic 

dystrophy on extensive clinical examination.

The myotonic dystrophy locus was assigned to chromosome 19 (Eiberg et al., 

1983). Harley et al. (1991) concluded that the DM gene lies in region 19ql3.2-ql3.3. 

Linkage studies by Cobo et al. (1992) established the D19S63 marker as useful for 

prenatal and presymptomatic diagnosis and, as the closest marker to DM, in isolating 

the gene.
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1.3.2.1 Identification of an expanded triplet repeat:

Harley et al. (1992) isolated a human genomic clone that detected novel 

restriction fragments specific to persons with myotonic dystrophy. A 2-allele EcoKl 

polymorphism was seen in normal persons, but in most affected individuals one of the 

normal alleles was replaced by a larger fragment, which varied in length both between 

unrelated affected individuals and within families. The unstable nature of this region 

was thought to explain the characteristic variation in severity and age at onset of the 

disease.

The causative mutation in myotonic dystrophy has been found to be an 

expansion of unstable tandem repeat of the sequence CTG, located in the 3' 

untranslated region of a gene, with strong homology to the protein kinase family, on 

chromosome 19ql3.3 (Harley et al., 1992; Buxton et al., 1992; Aslanidis et al., 1992; 

Brook et al., 1992; Mahadevan et al., 1992 and Fu et al., 1992). In unaffected 

individuals the (CTG)n repeat number is polymorphic and ranges from 5 to 37 repeats 

(Brunner et al., 1992b) and is stably inherited. In DM, at least 50 copies are present in 

the minimally affected patients (Brook et al., 1992) with a dramatic increasing to an 

estimated 2000 copies in severely affected individuals (Fu et al., 1992 and Mahadevan 

et al., 1992). Expanded repeats are much more unstable, and there is a positive 

correlation between the length of the repeat and its instability (Lavedan et al., 1993a). 

Overall, there is an estimated 93 to 94% chance that the expanded allele will show an 

intergenerational enlargement on transmission from an affected parent to an affected 

child (Wieringa, 1994). Relatively stable behaviour of the repeat is most frequently 

found with alleles of less than 80 CTGs (Barcelo et al., 1993) and this could explain 

the persistence of an autosomal dominant disease such as DM, despite the presence of 

anticipation and low reproductive fitness of the severe DM phenotype. There is a 

relative paucity of alleles in the high normal range for the DM locus (Fu et al., 1992) 

and to date no transmission from a normal allele to a premutation allele has been 

observed.
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The factors affecting trinculeotide repeat stability, normal allelic variation and 

the generation of new disease alleles are not fully understood. Both meiotic expansion 

and contraction events may normally occur in the DM allele but expansion is favoured 

once a threshold size is reached (O'Hoy et al., 1993). Hypotheses of both meiotic and 

mitotic instability have been proposed to explain the intergenerational variation in the 

CTG repeat (Jansen et al., 1994 and Wieringa, 1994). At the higher allele range, loss 

of interrupting motifs within tracts of trinucleotide repeats leads to greater instability 

and predisposes alleles to expansion (Chung et al., 1993; Hirst et al., 1994 and 

Leeflang and Arnheim, 1995).

Regressed DM Allele: A reduction in CTG repeat number to within the 

normal range was reported in DM kindreds by many investigators (Shelbourne et al., 

1992; Brunner et al., 1993; O'Hoy et al., 1993 and Jansen et al., 1994). This can be 

either due to non-reciprocal crossovers or to gene conversion events that have been 

originally described in fungi (Orr-Weaver and Szostak, 1985). Cobo et al. (1993a), 

Lavedan et al. (1993a) and Ashizawa et al. (1994b) in their series of parent-child pairs 

showed that contraction rather than amplification of the CTG repeat was seen in the 

children of fathers with a repeat of 1 kb or greater. They also, concluded that for 

parents with large amplifications (1.5 kb or more), the likelihood that there will be 

further amplification as the gene is passed to affected offspring is less for fathers than 

for mothers. The tendency towards contraction of alleles on transmission through the 

male germline may be caused by selection of spermatozoa bearing smaller repeats 

(Giordano et al., 1994 and Jansen et al., 1994). Ashizawa et al. (1994b) also showed 

that the cases with the CTG repeat contraction clustered within sib sets more 

frequently than expected but the mechanism of this phenomenon is unknown.

Sex-related effect on CTG intergenerational expansion: At higher CTG- 

lengths the maternal transmission results in the larger average intergenerational 

increments (Harley et al., 1993). In contrast, careful inspection of the published data 

suggests that expansions of repeats at the lower end of the length spectrum ( < 1 0 0  

CTG) are more exaggerated when inherited from males (Brunner et al., 1993 and
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Wieringa, 1994). An apparently unexplained excess of male transmitters has been 

found in the ancestors' generation by many authors (Harper, 1989a; Harley et al., 

1993; Lavedan et al., 1993a; Brunner et al., 1993). This excess was observed 

whenever the disease was inherited from the father or from the mother. Thus, there 

appears to be a male bias in the generation of new alleles in DM (both contractions 

and expansions). Although ascertainment bias can not be rejected, this male excess 

could be due to the following biases : first, women with neonatal cases will not 

appear as grandmothers of affected patients; second, there are more children bom to 

an affected male than to an affected female (Lavedan et al., 1993a); and, third, it may 

simply reflects the larger number of cell divisions during spermatogenesis (Wieringa,

1994). In females the ovum-to-ovum sequence involves approximately 30 cell 

divisions, whereas the number of the cell divisions for male gamete production ranges 

between 50 and several hundred during the effective fertile life span (Edwards, 1989).

Mosaicism: The amplified CTG repeat region shows both meiotic and mitotic 

instability. The differences in size within one generation of a DM family may be 

explained by meiotic instability of germline mosaicism (Meiner et al., 1995). On the 

other hand, smears of hybridisation in Southern blot analysis, reflecting somatic 

instability, have been reported for the majority of DM patients with a CTG repeat 

length >lkb, in males as well as in females (Mahadevan et al., 1992 and Fu et al.,

1992). Somatic instability has been demonstrated among a number of different 

tissues. Compared to leukocytes larger expansions have been described in several 

tissues including skeletal muscle, liver, testis, brain and may also be found in skin 

(Anvert et al., 1993; Ashizawa et al., 1993, Lavedan et al., 1993a; Zatz et al. 1995 

and Wohrle et al., 1995). Lavedan et al. (1993a) and Brunner et al. (1993) showed 

that somatic instability is not only limited to the larger DM alleles and the PCR 

analysis of the expanded alleles, up to 90 CTG repeats, appeared on the 

polyacrylamide gel as a mosaic pattern of DNA fragments differing by one or a few 

trinucleotide repeats. Wong et al. (1995) showed that somatic heterogeneity is a 

continuous process and seen to be age and size dependent. Martorell et al. (1995)



confirmed that the repeat length in peripheral blood cells of patients increase over a 

time span of five years indicating continuing mitotic instability of the repeat 

throughout life. They also, stated that repeat length progression does not appear to be 

indicative of clinical progression but age probably is. The degree of size heterogeneity 

correlates with the initial repeat size, however, obvious size heterogeneity is not 

observed in congenital cases, regardless of the size of the expansion (Wong et al., 

1995 and Martorell et al., 1995). This heterogeneity of expansions between tissues 

indicates that repeat expansion in vivo might be related to cell proliferation. Tissue- 

specific differences in the efficiency or availability of DNA repair systems may also 

account for the heterogeneity of expansions (Wohrle et al., 1995). Somatic 

heterogeneity in vivo could explain the overlapping in fragment sizes of the different 

clinical groups, especially in adults with classical DM.

Size of the unstable CTG repeat in relation to phenotype: There is a 

consensus among those working on DM that the size of CTG expansions in blood 

lymphocytes correlates to a reasonable degree with the age of onset and severity of 

the disease, although this is more readily observed within rather than between 

pedigrees (Redman et al., 1993). As seen from the typing of repeat sizes in blood 

from comprehensive cohorts of patients, minimally affected patients have repeat sizes 

of <0.45 kb (150 CTGs). Congenital cases have on average the largest repeat sizes, 

expansion of 1.5 to 6  kb or more with the majority in the 4.5 to 6  kb range (1500- 

2000 CTGs), and the classical cases with highly variable manifestation of clinical 

signs and age at onset in the 2nd to 3rd decade, have intermediate expansions. This 

correlation is by no means absolute, however, and overlap between clinical groups 

was present so that the CTG-length typing can not be reliably used as a diagnostic or 

prognostic criterion to predict the clinical status of patients (Hunter et al., 1992; 

Buxton et al., 1992; Mahadevan et al., 1992; Harley et al. 1993; Shelbourne et al., 

1993, and Lavedan et al., 1993a). Zatz et al. (1995) analysed the CTG expansion in 

muscle as compared to lymphocyte DNA in a sample of DM patients of different ages 

and degrees of clinical severity. Results from their study showed that in contrast to
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lymphocytes, no significant correlation was found between the size of the CTG 

expansion in muscle and age at onset of the disease. In addition, large expansions 

were observed in muscle from all adult symptomatic patients independently of the 

presence of muscle weakness, which raised the question of the value of analysing 

CTG expansions in muscle for predicting the severity of the phenotype.

1.3.2.2 Anticipation

The term anticipation has been used to denote the progressively earlier 

appearance of a disease in successive generations, generally with increasing severity 

(Harper, 1989b). Clinically, anticipation has been a strikingly consistent phenomenon 

in a large number of myotonic dystrophy families (Howeler et al., 1989 and Ashizawa 

et al., 1992). A positive correlation is seen between earlier onset/greater severity and 

increasing CTG repeat number (Buxton et al., 1992; Tsilfidis et al., 1992 and 

Lavedan et al., 1993a) and is considered to be the molecular basis for anticipation in 

DM.

Ashizawa et al. (1994b) showed that in about half of the reported cases of 

intergenerational contraction of the CTG repeat observed in lymphocyte DNA, 

clinical anticipation still occurred, despite the contraction and it was proportionally 

more frequent with maternal transmission than with paternal transmission. The most 

striking examples were the two cases in which anticipation resulted in congenital DM 

in offspring with contractions of the CTG repeat. The authors suggest that the 

presence of factors other than the CTG repeat size are responsible for the severity of 

the phenotype.

1.3.2.3 Genetics of congenital myotonic dystrophy

Congenital myotonic dystrophy (CDM) occurs in about 10% of cases and 

appears to be quite distinct from severe adult onset DM. Neither the mostly maternal 

transmission of the mutation nor the early onset of that form are fully explained. 

CDM is usually associated with large CTG triplet expansions in the mother or child or
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both. Tsilfidis et al. (1992); Harley et al. (1993) and Redman et al. (1993) found some 

congenital cases with alleles in the 500 to 999 repeats range and an overlap between 

the CDM and non-CDM patients in the 1300 to 2300 repeats range. The lack of 

CDM in paternal transmissions has been attributed to the limited expansion of the 

CTG repeat through the paternal line (Lavedan et al., 1993b and Mulley et al., 1993). 

However, there is a considerable overlap in the length of the expansion in the blood 

between cases with congenital and adult onset forms (Harley et al., 1993) and males 

do sometimes pass on expansions that, if they were transmitted through the maternal 

line, would probably have led to expression of CDM in the child (Ashizawa et al., 

1994b; Passos-Bueno et al., 1995). These findings indicate that size of the expanded 

CTG repeat sequence is not the only feature determining congenital onset of the 

disease.

Although genomic imprinting is one of the mechanisms that could explain the 

effect of parental sex in CDM, methylation patterns do not differ in offspring of 

maternal and paternal transmissions (Shaw et al., 1993a and Ashizawa et al., 1994a) 

and the DM kinase mRNA of paternal and maternal origins were equally expressed in 

CDM patients (Jansen et al., 1993). The picture is further complicated by the reports 

of CDM with a large CTG repeat of paternal origin (Nakagawa et al., 1994 and Ohya 

et al., 1994) and by the observations that a large expansion of a maternally 

transmitted CTG repeat does not always result in CDM (Abeliovich et al., 1993; 

Lavedan et al., 1993a and Redman et al., 1993). Furthermore, Cobo et al. (1993a) 

reported a case in which CDM is inherited despite a 3 kb contraction on transmission 

from mother to son. The finding that CDM can be paternally transmitted, even if the 

incidence of such cases is very low, casts doubts upon the interaction with 

intrauterine factors as possible mechanism previously postulated to explain the 

maternal transmission of the congenital form (Harper and Dyken, 1972). Poulton et 

al. (1995) have not found evidence that mtDNA is involved in CDM. The possibility 

that CDM may operate with a pathologic mechanism different than that in adult onset 

DM can not be excluded. Bundey (1982) and Lavedan et al. (1993a) put forward the
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hypothesis that the propensity to have neonatally affected offspring is familial. They 

noticed that transmitting sisters, whatever their clinical status or the repeat length, 

always gave birth to children affected with the same clinical type of disease i.e. mild 

form, adult form or congenital form.

1.3.2.4 Founder chromosome and the origin of the expansion mutation in

DM

Haplotype analysis of DM chromosomes has detected a striking total linkage 

disequilibrium in both Caucasian and Japanese patients, between the DM mutation 

and a two-allele insertion/deletion polymorphism located 5 kb upstream from the 

repeat, suggesting a single origin of the mutation (Harley et al., 1992; Mahadevan et 

al., 1992; Yamagata et al., 1992 and Lavedan et al., 1994). This finding was 

unexpected for a dominant disease which, in its severe forms diminishes or abolishes 

reproductive fitness. Such diseases are in general characterised by a high level of new 

mutations, which compensate for the loss of abnormal alleles due to the decreased 

fitness. Further work revealed that normal chromosomes with five and 19-30 repeats 

only carry insertion alleles, while those with 11-13 repeats are almost exclusively 

associated with the deletion alleles (Imbert et al., 1993). These results led to a model 

being proposed to describe the origin of the DM mutation. The initial predisposing 

event(s) leading to the formation of the DM chromosomes were proposed to be a 

limited number of duplication steps of a (CTG) 5  allele that resulted in generation of 

CTG (n > 19), with the lack of a predominant allele in the CTG (n = 19-30) range. 

The heterogeneous class of CTG (n = 19-30) alleles, which was found to have an 

overall frequency of about 10%, may constitute a reservoir for recurrent DM 

mutations. The CTG expansion beyond a certain threshold, approximately 50 repeats, 

would confer a rapid and irreversible instability, leading to increased severity or 

earlier onset of the disease (anticipation), or both. This model has been supported by 

the finding that differences between the frequency of large alleles in the high normal
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range of the allele size distribution (CTG > 19) in global human population are 

congruent with observed variation in prevalence rate of the disease (Watkins et al.,

1995). DM has a very low prevalence rate among ethnic Africans (Ashizawa and 

Epstein, 1991) and Goldman et al. (1994) reported fewer large DM alleles in South 

African Negroids than in Japanese or white subjects. Further support of the model 

proposed by Imbert et al. (1993) came from a report of a Japanese family (Yamagata 

et al., 1994) where the father (which is clinically normal) of the proband (with early 

adolescent onset DM) was found to have alleles containing 29 and 46 repeats and the 

grandmother had alleles of 5 and 44 repeats. From the evidence of the last case it 

seems that a premutation (as few as 44 repeats) can in two generations expand to 

give early adolescent onset DM and this finding is supporting the multistep model for 

the maintenance of the DM mutation in the population. The insertion allele is not a 

prerequisite for CTG expansion beyond 19 repeats or into the pathogenic range and 

suggest that the proposed increased mutability of large normal repeats is simply a 

function of their length. Moreover, it is possible that (CTG) 5  allele gave rise to 

(C TG )u_i3  alleles as the latter alleles found associated with the insertion 

polymorphism in African populations with the additional possibility that the (CTG) 1 9 . 

30 chromosomes may have been derived from the (CTG)] x_i3 chromosomes and the 

deletion event occurred on a (CTG)] j _ ] 3  background.

1.3.2.5 Myotonic dystrophy genet si

Three groups of collaborating DM-researchers simultaneously and 

independently recognised that the unstable CTG repeat element is in the 3' non

coding segment of a gene that belongs to the serine/threonine protein kinase family 

(Mahadevan et al., 1992; Brook et al., 1992; Fu et al., 1992). This gene is now 

commonly referred to as DM-protein kinase (DMPK) or myotonin protein kinase 

(Mahadevan et al., 1992, Fu et al., 1992).
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Characterisation of the DM region in mouse revealed another active gene 

designated (DMR-N9) that appeared to have a human homologue in close proximity 

to 5' prime end of the DMPK gene. Shaw et al. (1993b) described the human 

homologue of the mouse DMR-N9 gene and called it 59 gene. Transcripts of these 

genes, mainly expressed in brain and testis, possess a single, large open reading frame, 

but the function of its protein product is unknown. Two regions of the predicted 

protein show significant homology to tryptophan/aspartic acid (WD) repeats, highly 

conserved amino acid sequences found in a family of proteins engaged in signal 

transduction or cell regulatory functions. This led Jansen et al. (1995) to concluded 

that the DMR-N9 gene is a candidate for being involved in the manifestation of mental 

and testicular symptoms in severe cases of DM. Strikingly, the combined pattern of 

tissue specific expression of both DMPK and DMR-N9 genes from the DM region 

corresponds exactly to those sites where the clinical manifestations in DM patients are 

most prominent.

At the 3' end of the DMPK gene, there is a CpG island (Shaw et al., 1993b; 

Boucher et al., 1995) where the unstable CTG repeat is located within it. Extensive 

homology between the murine and human sequences 3' to the CTG repeat supported 

the hypothesis that another gene lies in this region and allowed Boucher et al. (1995) 

to identify candidate exons. A highly significant homology with the homeodomain- 

containing protein genes has been identified. Consequently, the gene was named DM 

locus-associated homeodomain protein (DMAHP). Using RT-PCR with primers from 

the putative homeodomain-encoding exonic sequences showed that DMAHP gene is 

widely expressed in a number of human tissues, including skeletal muscle, heart and 

brain. The identification of a gene immediately downstream of the CTG repeat 

supports a model of symptom development in which as the expansion increases in 

length, broader gene dysfunction occurs, correlating with clinical severity. This could 

involve DMPK, 59, DMAHP and possibly other as yet uncharacterised gene(s). It has 

been proposed that level of expression of the DM-kinase isoforms and/or the DMR- 

N9 (59) product(s), as regulated by cis influences on transcription, translation or
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mRNA stability, is affected differentially by the variation in length of the repeat, and 

so the clinical manifestation of DM. It is not inconceivable that other, yet unknown, 

gene(s) in the immediate vicinity of the CTG repeat are also affected at the level of 

expression (Jansen et al., 1992).

DMPK gene: DMPK gene encodes a protein of 624 amino acids with a highly 

conserved kinase domain encoded by exons 2 through 8 . A region showing significant 

homology to the a-helical (coiled-coil) domains of myofibrillar and filamentous 

protein is encoded by exons 9 through 12, with the strongest homology being 

contained in exons 11 and 12. Exon 15, the last exon, contains a relatively short 

region encoding for a hydrophobic, possibly transmembranous domain, and also 

contains the CTG repeat in the 3' untranslated region. Exons 13 and 14, which show 

no strong homology to any proteins or protein domains, are alternatively spliced out 

in several cDNA clones isolated from a human heart cDNA library. As a consequence 

of a shift in the open reading frame, an earlier termination codon (5 bp after the 

beginning of exon 15) is used. This results in loss of the hydrophobic region. 

Immediately following the region encoding the kinase domain there is a cryptic splice 

donor site that, if used, takes out five additional amino acids (VSGGG) from the 

human and mouse proteins. This peptide sequence forms an imperfect (and putative) 

glycoseaminoglycan addition site. Any potential function of this segment will remain 

elusive until more is known about the cellular location of the each of the different 

DMPK isoforms (Mahadevan et al., 1993; Shaw et al., 1993b; Wieringa, 1994). Fu et 

al. (1993) has proposed two alternative N-terminal forms both of which were shorter 

than those proposed by Mahadevan et al. (1993) and Shaw et al. (1993b). It remains 

to be seen which initiators are actually used in vivo. As shown from the above 

different DMPK mRNAs carry open reading frames ending in regions which differ in 

length and use of reading frame. As a consequence, different hydrophobic tail pieces 

are predicted for the putative protein kinase. The finding of alternatively spliced and 

species specific mRNAs with different 3' coding information make it tempting to 

speculate that the variable C-terminus of the protein has a regulatory fimction as a

22



kinase inhibitor site (Soderling, 1990) or functions in the differential anchoring of the 

kinase to cellular structures. A similar situation has been shown for muscle myosin 

heavy-chain gene (George et al., 1989).

Until now, not much data were available which address the structure-fimction 

relationship of the individual domains in the DMPK gene product(s) directly. The 

putative kinase may play a specific role in the regulation of excitation-contraction 

coupling or maintenance of cellular physiology via regulation of protein-protein 

interactions in ion channels (Roherkasten et al., 1988; Catterall, 1991) or insulin 

receptor signalling (Moxley et al., 1984). Abnormalities in phosphorylation of 

membrane proteins have been reported to be a characteristic finding in DM (Roses 

and Appel, 1974) and the application of protein kinase C modifier can evoke 

myotonia in mouse muscle (Brinkmeier and Jockusch, 1987). No clear evidence has 

been provided to indicate that the product of DMPK gene is the affected protein in 

DM, though the expression patterns of the gene (Jansen et al., 1992) suggest it is the 

most likely candidate. Antisera have been developed to peptide immunogene and 

fusion protein of the myotonin protein kinase. The antipeptide antibody detected 52- 

55 kd protein species (Fu et al., 1993; Brewster et al., 1993; van der Ven et al.,

1993). Brewster et al. (1993) showed that one of the antisera they developed also 

recognised a dominant 42 kd protein in brain. This smaller protein may result from 

alternative splicing or post-translational processing and be a genuine product of the 

DM-kinase gene. Van der Ven et al. (1993) found that the DMPK 53 kd protein is 

markedly concentrated at the sites of specialised membrane regions like 

neuromuscular junctions (NMJs) and myotendinous junctions (MTJs) in skeletal 

muscle, intercalated discs in the heart and dense plaques in smooth muscle cells. They 

also showed that Purkinje cells and several other neurones of the cerebellum and 

other parts of the brain have been stained by the anti-peptide antibody. The antifusion 

protein antibodies of the DMPK detected prominent protein species in heart, brain 

and skeletal muscle that were larger than the previously detected 52-55 kd species. 

These species (-74 and 82 kd) were more consistent with the size of the DMPK
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expressed in both bacteria and in insect from a full length cDNA. It is likely that the 

lower molecular weight species are detected through cross reactivity with the 

abundant kinases present in muscle and other tissues. This is supported by the fact 

that antibodies raised against the expressed C-terminal half of the DMPK only detect 

the larger species (Johnson and Siciliano, 1995). Using immunofluorescence, Whiting 

et al. (1995) found that the larger species of the DMPK were localised post- 

synaptically at the neuromuscular junctions of skeletal muscle, at intercalated discs of 

cardiac tissue and at the apical membrane of the ependyma and choroid plexus. 

Synaptic localisation of the DMPK in the cerebellum, hippocampus, midbrain and 

medulla was also noted. These results suggest that DMPK plays a specialised role in 

intercellular communications. While this is consistent with the abnormalities noted in 

the heart, the relationship between DMPK localisation at neuromuscular junctions and 

myotonia is uncertain. A selective action of this kinase within the central nervous 

system function has been suggested. However, what the function of DMPK may be in 

the brain is still a matter for speculation.

Studies of DM  kinase gene expression in myotonic dystrophy have provided 

discordant results. Both over-and under-expression, as well as unaltered DMPK 

expression have been reported (Jansen et al., 1993; Fu et al., 1993; Hofmann- 

Radvanyi et al., 1993; Roses et al., 1992; Sabourin et al., 1993; van der Ven et al., 

1993; Koga et al., 1994). Hofmann-Radvanyi et al. (1993) noted also decreased (20- 

30% of normal) expression of the unaffected allele.

Wang et al. (1995), using a new method for RNA quantitation and myopathic 

controls, suggested that the CTG expansion mutation has only a minor effect in the 

transcription and accumulation of the DM  kinase hnRNA from the diseased allele. 

Instead the mutation dramatically alters the ability of the mutant RNA to be processed 

into poly (A)+ mRNA. More importantly, the same expansion-containing hnRNA 

seems to affect the accumulation of the normal allele mRNA in trans. This 

interpretation suggests a dominant-negative RNA mutation model which is consistent 

with the dominant inheritance pattern observed in DM. Moreover, if the mutant RNA
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can affect alteration in the accumulation of the normal DM kinase mRNA, then it is 

possible that it can alter the accumulation of other species of mRNA sharing similar 

regulatory elements. This model could explain the tissue and development specific 

features of myotonic dystrophy. Each tissue has populations of stage specific RNAs, 

which could be affected differently by the expanded DM kinase RNA. However, a 

contrasting study has suggested that while post-transcriptional processing of the 

expansion allele mRNA is impaired, this has little effect on overall DMPK mRNA 

levels in heterozygous patient material (Krahe et al., 1995b).

It is still unclear if the DMPK gene is the only gene involved in DM. Although 

the mutation in the great majority of DM patients is expansion of the CTG repeat in 

the 3' region of the DMPK gene, there are a few cases in which this does not appear 

to be the case (Shaw and Harper, 1992). To my knowledge, there is no reported 

mutation in DMPK gene in such cases. Meiner et al. (1995) reported four such 

families, that fulfilled the criteria of DM diagnosis without CTG repeat expansion in 

the affected persons. Upon full sequencing of the coding region of DMPK gene in 

two of them they could not find any abnormal sequence alterations.

1.4 Motor neurone disease (MNP) [Amyotrophic lateral sclerosis 

(ALS)l

ALS is a progressive neurodegenerative disorder of adults resulting from 

variable combined degeneration of the lower motor neurones (LMN) and upper 

motor neurones (UMN). It is referred to as motor neurone disease (MND) in the UK 

and in some European countries, as amyotrophic lateral sclerosis (ALS) in the USA 

and as Charcot's disease in France. At least three types of the disease are recognised : 

classical sporadic disease, familial and usually dominantly inherited disease and the 

type seen in the high-incidence foci in the western Pacific Ocean (Guam, Kii 

Peninsula of Japan and West New Guinea) (Tandan, 1994).
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1.4.1 Clinical features of MNP [Amyotrophic Lateral Sclerosis (ALS)l

About 90 to 95% of cases of adult onset ALS that occur in Europe and USA 

are isolated. Males are twice as often affected as females. The annual incidence rate 

of classical sporadic MND has varied between 0.5 and 2.4 per 100,000 population, 

and the prevalence rate between 2.5 and 7 per 100,000 population world-wide in 

different studies (Kurtzke, 1991). There are no significant racial differences in the 

incidence, prevalence or death rate of the disease (Tandan, 1994). Onset is generally 

between 50 and 60 years though with a wide range, and mean duration of illness is 

three to four years. The early symptoms usually occur in the limbs or shoulders 

(Bundey, 1992).

Degeneration of the LMN typically produces focal or multifocal and often 

asymmetric muscle weakness and atrophy, cramps, prominent fasciculations, fatigue, 

dysarthria and dysphagia. Clinical involvement from UMN degeneration results in 

spasticity, pathological hyperreflexia, Babiniski sign, brisk jaw jerk and emotional 

lability. By the time of presentation, however, features of combined LMN and UMN 

degeneration are seen in the majority of classical MND patients.

Motor involvement is frequently asymmetrical, and at onset is more common 

in the hands and arms than in the legs and bulbar muscles. With eventual progression 

of the disease, bulbar weakness develops in almost 50% of patients, and respiratory 

muscle weakness occurs almost universally (Tandan, 1994).

About 5 to 10% of cases of ALS are familial (de Belleroche et al., 1995). The 

empirical risk of recurrence in a first degree relative is 1 to 2 %, that is about 1 0 0 0  

times commoner than in the population (Bundey, 1992). Horton et al. (1976) 

concluded that at least three forms of familial ALS (FALS) exist, each inherited as an 

autosomal dominant. In the most usual type, patients have a very similar illness to that 

seen in non-familial ALS, except that onset tends to be earlier ( 2 0  to 40 years), 

duration shorter (2 to 3 years), onset is generally with symptoms in the lower limbs 

rather than in the upper, and sensory symptoms are more frequent (Li et al., 1988).
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The second type, is about one-fifth as common as the first one, with identical clinical 

features but with more extensive pathological features. The third type is similar to the 

second type except for a much longer survival (usually beyond 1 0  and often 2 0  years) 

(Alberca et al., 1981). The initiation of the disease is usually focal and asymmetrical, 

lower motor neurone involvement is usually conspicuous in most cases whereas 

involvement of upper motor neurones is less marked.

There is incomplete penetrance being 0.8 at the age of 85 years. It is therefore 

not uncommon to see obligate carriers in a family who died without manifesting the 

disease (de Belleroche et al., 1995).

Phenotypic heterogeneity was seen in both sporadic and familial ALS. For 

example the age of onset may vary over 30 years within a family as can duration of 

illness (for example, 0.5 to 5 years) and signs at onset.

Although the overall median survival in classical MND is usually about 3 

years from onset of the disease, early diagnosis and more aggressive management 

have led to increased survival (Caroscio et al., 1987). It is generally agreed that, 

independent of the clinical variant of MND present, survival is greater in patients with 

onset of symptoms before the age of 50 years than after (Tandan, 1994). On the other 

hand Pradas et al. (1993) found that sex and age at clinical onset did not affect the 

deterioration rate in their studied group.

1.4.2 Genetics of ALS

1.4.2.1 Genetic linkage study of FALS

It is estimated that 5-10% of ALS cases have a familial aetiology. Siddique et 

al. (1989) presented preliminary data from genetic linkage analysis in 150 families 

with FALS. Two regions of possible linkage were identified on chromosome 11 and 

21. In 1991, a FALS locus was identified on human chromosome 21q22.1-q22.2 

(Siddique et al., 1991). Tests for heterogeneity in these families revealed a significant 

probability of locus heterogeneity. Therefore, it is clear that at least one other FALS
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gene is present in human genome. In 1993, a gene within this region encoding the 

protein cytosolic copper-zinc superoxide dismutase (SOD-1) was found to be in tight 

genetic linkage with FALS. Given this linkage and the potential role of free-radical 

toxicity in neurodegenerative disorders, Rosen et al. (1993) investigated SOD-1 as a 

candidate gene in FALS and identified 11 different missense mutations in different 

FALS families. Other workers failed to find linkage to chromosome 21 loci in their 

FALS families (King et al., 1993). This is to be expected because of the recognised 

heterogeneity. Moreover, the lack of mutations in SOD-1 gene in a number of FALS 

families confirm the genetic heterogeneity.

1.4.2.2 Conner-zinc superoxide dismutase gene (SOD-1) and its product

Cu/Zn SOD-1 is a cytoplasmic enzyme which is responsible for the conversion 

of the toxic free radical superoxide anion Oj~ to molecular oxygen and hydrogen 

peroxide. SOD-1 gene is one of three superoxide dismutase genes, each with a unique 

subcellular localisation; a second one Cu/Zn-containing SOD functions extracellularly 

and an Mn-containing SOD is found in mitochondria.

(11 Genomic structure of SOD-1 gene : The gene locus for human SOD-1 

was assigned to chromosome 21q2.2 (Tan et al., 1973). It has been shown that the 

SOD-1 gene has multiple polyA-addition signals and that there are two predominant 

mRNA species of 0.7 and 0.9 kb found in a variety of human cells. The major 0.7 kb 

species is approximately four times more abundant than the minor 0.9 kb mRNA 

(Sherman et al., 1983; Groner et al., 1986). Isolation of the human SOD-1 gene 

revealed that the two mRNAs are transcribed from a unique SOD-1 active gene on 

chromosome 21q2.2, and that sequence at the 3' untranslated region account for the 

difference between them (Hallewell et al., 1986). This has been further confirmed by 

detecting only one region of human DNA with nucleotide sequences identical to 

SOD-1 cDNA (Groner et al., 1986).

28



SOD-1 gene, which is present as a single copy per haploid genome, is known 

to have five exons spanning approximately 11 kb. of genomic DNA of chromosome 

21q2.2 and is interrupted by four introns. In the donor sequence of the first intron a T 

to C transition occurred and hence it deviates from 5' GT...AG 3' consensus, but few 

cases of such violation of the 5' GT...AG 3' consensus have been reported (Levanon 

et al., 1985). At the 5' end of the gene there are the 'TATA' and 'CAT' promoter 

sequences as well as four copies of the -GGCGGG- hexanucleotide. Two of these - 

GC- elements are contained within a 13 nucleotide inverted repeat that can fold into a 

stem-loop structure (Groner et al., 1986). In some cases such sequences appear to 

activate transcription (Hallewell et al., 1986).

(21 SOD-1 related pseudogenes: Four iSOD-Z-related pseudogenes have 

been described by Groner et al. (1986). All these four sequences are devoid of 

introns, which typifies pseudogenes of the processed type (Lewin, 1990). Although 

the overall sequence homology of two of them to the SOD-1 gene was extensive yet 

they contain multiple genetic lesions, such as insertions, deletions and base 

substitutions resulting in-frame termination codons, that preclude the translation of 

the normal SOD-1 polypeptides. These processed pseudogenes do not reside on 

chromosome 2 1 .

(31 SOD-1 enzyme: Superoxide dismutases are thought to be an important 

component of the cellular defence mechanisms against oxidative damage mediated by 

superoxide radicals produced as a by-product of oxygen metabolism (Groner et al., 

1986). SOD-1, which is a cytoplasmic enzyme, is a dimer of 32 kilo dalton (kd) 

composed of two identical non-covalently linked subunits. Each subunit contains one 

zinc and one copper atom, the latter being directly involved in the dismutation 

reaction as an electron acceptor.

(Al SOD-1 enzyme and the free-radicals; A free-radical (FR) is an atom, 

molecule or other chemical species that is capable of independent existence and which

29



has one or more unpaired electrons (Pall, 1994). They are usually short-lived as a 

consequence of being highly reactive, an effect resulting from their intrinsic need to 

gain an additional electron or to lose the unpaired one and hence achieve a stable 

electronic configuration. The oxygen-containing FRs include the superoxide (0 2*“) 

and the hydroxyl (OH*) radicals. Hydrogen peroxide (H2 0 2) is a reactive oxygen 

metabolite that is not a FR but which is capable of producing reactive FRs. Many 

biomolecules including DNA, polyunsaturated fatty acids and catecholamines are 

damaged by superoxide radicals (Halliwell and Gutteridge, 1989). Dismutation is the 

term applied to the reaction in which one superoxide radical reduces another to 

peroxide, itself becoming oxidised to oxygen in the process. This appears to be the 

function of the SOD enzymes. The hydroxyl radical (OH*) can also be produced from 

superoxide via hydrogen peroxide by low molecular weight/loosely bound complexes 

containing copper, iron and possibly manganese (fenton reaction). The superoxide 

anion can also react with nitric oxide to form peroxynitrite (Koppenol et al., 1992) 

(Figure 1.1).
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SOD-1
+H Glutathione

peroxidase;
Catalase

+NO*

ONOO" — OH’ + N02 OH’ + OH" +Fe3+
(Fenton Reaction)

0 2*- Proteins

ONOO- => (e.g. Neurofilaments) => Oxidative injury 

OH* DNA & Lipids

Figure 1.1 (Top) The superoxide anion (02*-) can react with SOD-1 to be detoxified to form 

hydrogen peroxide(H20 2) that, in turn, is converted to water through the action of catalase 

and glutathione peroxidase. Superoxide may also combine with nitric oxide (NO*) to form 

peroxynitrite (ONOO-) which may then breakdown non-enzymatically to produce hydroxyl 

radicals (OH*). OH* may also be generated from hydrogen peroxide via Fe2+ (Fenton 

Reaction).

These reactive oxygen species may cause oxidative degradation of DNA, lipids and proteins 

(Bottom).
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Crvstallographic structure of the SOD-1 enzyme: Human SOD-1 is a 

dimeric enzyme with ellipsoidal dimensions of about 30x40x70 A. Each identical 

subunit contains 153 residues, one copper and one zinc ion. The two metal ions are 

located in the bottom of a channel formed by the topography of the molecular 

surface. The polypeptide fold of the SOD subunit consists primarily of two large 

loops and eight extended antiparallel p-strands. The overall topology is characterised 

as a Greek-key P barrel (Getzoff et al., 1986). Greek-key p barrel structures tend to 

be structurally quite stable. Overall, there are seven loops in SOD, numbered in 

sequence order. Loops I and V are short P-hairpin connections between adjacent p- 

strands. Loop II (residues 24-27) form the P-hairpin containing the two residue 

insertion relative to bovine SOD. Loops III (residues 37-40) and VI (residues 102- 

114) form the two Greek-key p-barrel connections. The active site channel with its 

bound metal ions is formed between electrostatic loop VII (residues 121-144), 

implicated in substrate attraction, and loop IV (residues 49-84), made up of the 

disulphide and the zinc ligand subloop regions. Superposition of the human SOD-1 

and bovine SOD- 1  structures indicated that the sequence changes do not alter the P- 

barrel diameter, strand angles, or loop conformations except in the region of the two 

amino acid insertion at sequence position 25 (Parge et al., 1992).

At critical position within or near the loops, 14 sequence-conserved, 

structurally- conserved (Parge et al., 1992) side chains appear to play important roles 

in loop conformation and interactions. Most of the dimer contacts are made between 

adjacent strands around the barrel (Getzoff et al., 1986). Cross sections through the 

dimer interface showed the complementarity of fit between the two buried surfaces 

(due to dimer contact), the interdigitation of side chains from one subunit to the 

other, and the twist of the dimer contact. By pulling the two subunits of the dimer 

apart hydrophilic regions contributed by oxygen and nitrogen atoms are scattered 

throughout the interface. Electrostatic potentials calculated from partial charges 

assigned to each of the atoms in the structure can also be mapped into the molecular 

surface. At the dimer interface, the centre of the pattern is electrostatically neutral and
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only the edges show significant electrostatic potential. The surfaces are 

electrostatically complementary to one another and essentially seal the edges of the 

dimer contact at protein-water interface (Getzoff et al., 1986). The copper and zinc 

ions are in high peaks of electron density and one unique feature of this enzyme active 

site is the bridge formed between the zinc and copper ions by the His-63 side chain 

(Getzoff et al., 1986; Parge et al., 1992). This bridge can be seen to be made and 

broken as the reaction proceeds.

Finally, reconstructing the enzymatic dimer and showing the electrostatic 

fields around the two active sites in the dimer emphasises that the enzyme is 

extremely efficient in attracting superoxide radicals (Getzoff et al., 1986).

1.4.2.3 SOD-1 gene and ALS

Of all cases of ALS, 5-10% are familial. Of the familial cases, fewer than 20% 

map to the SOD-1 gene, so there is locus heterogeneity (Rowland, 1995). The SOD-1 

gene was found to be mutated in several FALS families (Rosen et al., 1993). 

Although new mutations must occur, remarkably few have been identified in people 

with the sporadic disease (Jones et al., 1993; Jones et al., 1994). At present at least 

31 ALS missense mutations and one deletion have been characterised in the SOD-1 

gene. Over the last two years, several studies have begun to define the effects of the 

FALS mutations on SOD- 1  function, although many critical questions remain 

unanswered. It is now clear that the mutations reduce total cellular activity of the 

enzyme by 25 to 70%, as analysed in red blood cells, lymphoblastoid cell lines and 

cerebrospinal fluid. (Deng et al., 1993; Bowling et al., 1993; Robberecht et al., 1994; 

Orrell et al., 1995b).

The original demonstration of SOD-1 mutations led Rosen et al. (1993) to 

hypothesise that FALS could raise either by an increase in SOD-1 monomer activity 

(dominant gain of function) or the heterozygous mutation could cause mutant 

monomers to be functionally defective and inhibit wild-type monomers in the

33



heterodimer (Dominant negative effect). A third possibility was that the mutation 

could cause a simple loss of function without any effect on the wild type monomer.

The elucidation of the structure of SOD-1 dimer by X-ray crystallography 

permits the localisation of the mutations in FALS (Denge et al., 1993). The majority 

of mutations detected to date lie in regions outside the active site affecting conserved 

regions of the enzyme at turns in the backbone of the protein (beta strands, Greek- 

key connections, turns of loop V) or in regions involved in the dimerisation of the 

two subunits. These mutations will affect the conformation or stability of the enzyme 

dimer (Deng et al., 1993). Overexpression of the normal SOD-1 gene inserted into 

transgenic mice resulted in increased lipid peroxidation (Elory-Stein et al., 1986) and 

distal tongue and hind limb motor deficits (Avraham et al., 1992) in such mice. These 

changes, which were not the classical FALS picture, may have been caused by 

overproduction of H2 O2  by SOD with subsequent paradoxical increase in OH* 

synthesis. In other mice transgenic for SOD-1 with more than 2 -fold overexpression 

of normal mouse SOD activity, paralytic disease has not been seen in animals 

followed to the adult life (Gurney et al., 1994).

Gurney et al. (1994) used transgenic mice to introduce either of two human 

mutant SOD-1 enzymes. The human enzyme was expressed, but at 50% of normal 

activity. The mouse genes also continued to function and, in one line of mice, there 

was overexpression of total SOD-1 nevertheless, the animals developed a clinical 

syndrome of hind limb paralysis, with histological signs of degeneration and loss of 

motor neurones in spinal cord. Similar results have been obtained by other 

investigators (Borchelt et al., 1994; Price et al., 1994). Ripps et al. (1995) 

supplemented Gurney et al. (1994) observations. By using site-directed mutagenesis, 

they introduce a missense mutation, Gly8 6 Arg, which corresponds to a human 

mutation observed in codon 85 (Rosen et al., 1993; Denge et al., 1993), into 

transgenic mice. SOD enzyme activity in these animals did not reveal a diminution of 

activity. However, in two lines of mice, that produce high levels of transgene mRNA
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in the CNS, motor paralysis developed and was associated with degenerative changes 

of motor neurones within the spinal cord, brain stem and neocortex.

More interesting has been the observation that in the case of some mutations 

enzyme activity is only minimally affected despite a normal clinical presentation of the 

disease (Esteban et al., 1994). In one of these mutations, Gly37Arg, it has been 

shown from transient expression of this mutant in primate cells that the mutation 

leads to full activity, in contrast to other SOD mutants studied under similar 

conditions (Borchelt et al., 1994). However, in all cases, including Gly37Arg, 

polypeptide stability of the mutant subunit was found to be reduced. Moreover, a 

mutation has been identified at the active site in codon 125 (Enayat et al., 1995) 

which led to a major charge effects. However, it is associated with a classical form of 

FALS with no evidence that this location of mutation has a greater effect on the 

course of the disease. A mutation in exon 2, His46Arg, was associated with a more 

benign form of the disease and had only slightly reduced (20%) levels of SOD-1 

enzyme activity (Ogasawara et al., 1993). This mutation was the first mutation to be 

detected in the active site, the residue histidine being important in copper binding 

which is essential to the catalytic activity of the enzyme. Recently, Enayat et al., 

(1995) reported a mutation His48Gln. Both His46 and His48 are highly conserved 

residues and are important for copper binding. However, His48 mutation was 

associated with a relatively severe nature of the disease which contrasts with the 

benign course of the His46 mutation.

The Ilell3Thr mutation has been detected in three out of 56 sporadic cases 

in the population based study of Scotland (Jones et al., 1993). A single case of an 

exon 1 mutation, Glu21Lys, has been detected in this cohort as well (Jones et al.,

1994). There are no other published reports of SOD-1 mutations in sporadic cases, 

although several hundred cases have been screened in North America and the 

possibility of incomplete penetrance within the families together with incomplete 

family history can not be ruled out in these cases (de Belleroche et al., 1995).
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How do SOD-1 mutations cause ALS?. Gurney et al. (1994) and others 

(Gurney, 1994; Rowland, 1995; de Belleroche et al., 1995; Brown, Jr., 1995) 

suggested some mechanisms to explain the pathogenetic effect of SOD-1 mutations 

on FALS. All the mechanisms they suggest were consistent with the idea that 

mutations in SOD-1 cause an acquisition of injurious properties by the mutant 

enzyme. The first explanation they suggest is that SOD-1 mutations potentiate 

catalysis of normally unfavourable side reactions to which motor neurones are 

selectively vulnerable. As it is known, in addition to the dismutation reaction 2H+ + 

02*“ —» H2 0 2 , SOD also catalyses several alternate reactions including : (1) the 

formation of the hydroxyl radical from hydrogen peroxide and (2 ) the nitration of 

proteins on tyrosine residues by peroxynitrite. Such side reactions might be facilitated 

by mutations, and to a lesser extent, by high expression of the wild-type enzyme. The 

rate limiting step in reactions (1 ) and (2 ) may be the access of reactants to the copper 

catalytic centre at the bottom of the active site channel. By relaxing constraints on the 

size of the active site channel, the mutation found in affected families might cause a 

"gain-of-function" by facilitating one or more of these alternative reactions. If this is 

true, then high expression of the wild-type enzyme may cause subclinical pathology 

(Gurney, 1994), but more work will need to be done to prove this.

Alternatively, the mutations might adversely affect the binding of copper and 

that cation, in local excess, might have toxic consequences (Rowland, 1995). Thirdly, 

the mutant enzyme may be so unstable that it precipitates to form toxic cytoplasmic 

aggregates. There may be more than one mechanism or a combination of mechanisms, 

some causing peroxidation but others having nothing to do with free radicals.

Glutamate, excitotoxicitv and motor neurone selectivity: The selective 

vulnerability of motor neurones in ALS may depend on specific features of these 

neurones. Motor neurones are seen to possess very high levels of SOD-1 mRNA 

(Tsuda et al., 1994). These neurones which may be critically dependent on SOD-1 for 

protection against superoxide may potentially become susceptible targets for 

additional adverse effects of the protein. On the other hand, an important feature
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distinguishing motor neurones from dorsal root neurones, which do not degenerate in 

ALS, is the presence of excitatory synapses on the former. Glutamatergic excitatory 

synaptic input was suspected to enhance the sensitivity of motor neurones to free 

radical injury. One popular hypothesis is that the activation of nitric oxide synapse by 

N-methyl-D-aspartate (NMD A) glutamate receptors leads to the generation of nitric 

oxide (NO) which reacts readily with superoxide to produce the toxic species 

peroxynitrite, which in turn releases hydroxyl free radicals (Lafon-Cazal et al., 1993). 

Following stimulation of NMDA-sensitive glutamate receptors, 0 2 m~ activated cell 

death was dependent on calcium (Ca2+) and release of arachidonate and was reduced 

by trapping 02*“ (Lafon-Cazal et al., 1993). The motor neurones may be particularly 

sensitive to increase in cytosolic calcium levels because, by comparison with other 

types of neurones, it is relatively poor in some calcium binding proteins (Ince et al.,

1993).

1.5 Tuberous sclerosis (Bourneville disease: Epiloia; TSC)

1.5.1 Clinical manifestations

Tuberous sclerosis complex (TSC) is a disease that affects all tissues. It is 

characterised by the growth of benign tumours (hamartomas) and malformations 

(hamartias) in one or more organs. Its prevalence is between 10 to 14 in 100,000 

persons, more common than previously thought (Hunt and Lindenbaum, 1984; 

Sampson et al., 1988; Sampson et al., 1989a), making it one of the most common 

autosomal dominant disorders. The common clinical picture of TSC is that of a 

mentally retarded epileptic patient with facial angiofibromas (adenoma sebaceum). 

However, milder manifestation may occur and, indeed, the manifestation of TSC may 

be very variable (Bundey, 1992). The organs most frequently involved , in addition to 

the brain and retina, are the skin, kidneys, heart and lungs.
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The full clinical picture evolves gradually and differences are to be expected in 

the presentation in children and adults. Skin lesions due to their accessibility often 

lead to diagnosis of TSC. Hypopigmented macules, which fluoresce under Wood’s 

(UV) light are the earliest signs of TSC. They are probably present at birth in most 

cases. They vary in shape and are only occasionally in the form of mountain ash leaf 

as described by Fitzpatrick et al. (1968). With the passage of time pigmentation does 

occur within the macules (Baraitser, 1990).

Facial angiofibromas (previously misnamed as adenoma sebaceum) are dome

shaped papules symmetrically distributed on the nasolabial folds, cheeks and chin, but 

with spare of the upper lip and philtrum. Only 50% of patients have this sign (Gomez,

1991). This hamartoma, rarely found before 3 years of age, is usually present by 5 

years and rarely appears after puberty. Two other hamartomas, the periungual 

fibromata and shagreen patches (flat or slightly elevated, flesh-coloured and wrinkled, 

like pigskin), do not develop until the second decade in approximately 20% and 40% 

of patients respectively, and both do not necessarily occur in the same patient. The 

ungual fibroma is pathognomonic, but the shagreen patch is not (Gomez, 1991). 

Pigmented nevi and sublingual fibromata are other cutaneous manifestations seen in 

TSC patients. If, by puberty, no skin lesions have appeared they are unlikely to 

develop in adolescence or adult life (Baraitser, 1990). Fibrous forehead, eyelid, 

cheek, or scalp plaque, can be found at a younger age than can the facial 

angiofibroma, and unlike the facial angiofibroma, it is often seen at birth. The large 

ones on the scalp tend to calcify after many years (Gomez, 1991).

Epilepsy (usually beginning with infantile spasms) occurs in about 80% and 

mental retardation occurs in 60-70% of TSC affected individuals. It is a useful rule of 

thumb that seizures might occur without mental retardation, but the diagnosis is 

unlikely in those with mental retardation without seizures (Baraitser, 1990). Mental 

retardation is of variable severity and may be profound and its pathogenesis is 

obscure. Although, Gomez (1979) suggested that there is a relationship between the 

severity of the seizures and mental retardation this might not be so simple. Central
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nervous system lesions are of two types (Baraitser, 1990), pale, hard gliotic areas in 

the convolutions known as tubers, and multiple tumour-like nodules which have a 

predilection for the subependymal region (giant cell astrocytoma) and project into the 

ventricles giving the radiological picture of candle guttering. The subependymal 

nodules usually calcify and are demonstrable by CAT scan in the brains of some 80% 

of affected individuals (Houser and Nixon, 1988).

Retinal phakomatoses are present in about half of the gene carriers at birth 

(Baraitser, 1990). They are glial cell hamartomas which may be flat or nodular. The 

nodular variety frequently calcify but significant visual impairment is unusual 

(Sampson, 1990).

Kidney lesions are in the form of angiomyolipoma (Anderson and Tannen, 

1969). Indeed, Van Baal et al. (1989) found renal angiomyolipomas in 23 of 38 

patients with proven tuberous sclerosis. Renal cysts are less commonly seen (15% of 

the cases) than renal angiomyolipomas (Gomez, 1991). Multiplicity and bilateral 

localisation were important differences between the TSC cases and the isolated, 

usually solitary, cases. Renal lesions are more common in females and usually 

asymptomatic but cystic disease, when florid, can lead to hypertension or chronic 

renal failure (Sampson, 1990).

Single or multiple (usually) rhabdomyomas occur in 30% of TSC patients 

coming to post-mortem (Baraitser, 1990). The lesions seem to regress by age and 

serious morbidity or mortality due to their presence is unusual after early childhood 

(Sampson, 1990). Most patients seem to be asymptomatic but it may lead to 

mechanical and conductive problems in infancy.

Pulmonary involvement is infrequent and almost exclusively confined to 

women with TSC in the third or fourth decade of life (Gomez, 1991). Angiolipomas 

of the liver and spleen which can be detected by ultrasound or CAT scan have been 

reported (Sampson, 1990).
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1.5.2 Genetics

A sufficient number of multigenerational families have been reported to make 

it clear that TSC is an autosomal dominant condition (Bundey and Evans, 1969; 

Gomez, 1991). Sixty to 90% of cases are isolated and many of these are likely to be 

new mutants. The mutation rate of TSC is estimated to be 2.5 x 10 s mutation per 

gene per generation (Hunt and Lindenbaum, 1984; Sampson et al., 1989a).

1.5.2.1 Phenotypic variability

TSC is notable for its phenotypic variability, which can range from clinical 

normality to dysfunction of multiple organs. Moreover, there is great variability 

within families, and many examples where a single lesion is the only manifestation of 

the disease. In addition, there have been reports of clinically normal parents who have 

had normal CAT scans, but who have two affected children (Wilson and Carter, 

1978; Connor et al., 1986). The probable explanation for those parents who have one 

sign only, or who have no signs but two affected children, is that they have mosaicism 

of their germ cells, with or without mosaicism of somatic cells (Hall and Byers,

1987). Webb and Osborne (1991) reported an instance of apparent non-penetrance in 

two successive generations, between a great-grandfather and his great-grandson. The 

great- grandfather developed a single fleshy ungual fibroma on 1 little toe as the only 

clinical sign; on echocardiography, he showed 2 probable rhabdomyomata in the right 

ventricular wall and right ventricular outflow tract. His daughter had no discernible 

features of the disorder.

1.5.2.2 Linkage studies and locus heterogeneity

Linkage studies have demonstrated locus heterogeneity for TSC. In 1987 a 

TSC locus (now termed TSC1) was assigned to 9q34 (Fryer et al., 1987). This finding 

had been confirmed by different groups of investigators (Sampson et al., 1989b;
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Haines et al., 1991a&b; Janssen et al., 1991; Northrup et al., 1992). The uncertain 

level of locus heterogeneity made it extremely difficult to exclude the possibility of 

subgroups of families linked to particular chromosome regions. Clark et al. (1989) 

described a t(l lq23.3;22ql 1.1) unbalanced translocation in livebom infant with TSC. 

A study indicating linkage between TSC and markers on distal 1 lq seemed to support 

an 1 lq locus (Smith et al., 1990). Subsequently more extensive studies under 

different models of heterogeneity proved inconclusive, leaving the provisional 

assignment in doubt (Kandt et al., 1992; Short et al., 1992). Fahsold et al. (1991) 

reported the association of TSC with a balanced translocation t(3;12)(p26.3;q23.3) 

followed by a report of linkage between TSC and PAH gene locus on 12q. Short et 

al. (1992) found little or no evidence for a TSC locus on 1 lq, 12q, or 14q. Sampson 

et al. (1992) collated data on 1,622 members of 128 tuberous sclerosis families. They 

estimated that the locus on 9q34 accounts for approximately 50% of families and 

concluded that there was no evidence of major loci on 1 lq or 12q. Meanwhile, 

indisputable evidence for linkage between TSC and marker at 16pl3.3 was 

established by investigation of five large families in which TSC was clearly unlinked 

to chromosome 9 (Kandt et al., 1992). Confirmation of a tuberous sclerosis locus on 

chromosome 16 was provided by Pericak-Vance et al. (1992), Short et al. (1992) and 

Smith et al. (1992). With the growing consensus that there is no form of TSC 

encoded by either chromosome 11 or chromosome 12, it seemed desirable to refer to 

the chromosome 16 form of tuberous sclerosis as TSC2. It was estimated that linked 

TSC families are evenly divided between these two loci (Kwiatkowski et al., 1993).

1.5.2.3 TSC genes as tumour suppressor genes

TSC is an autosomal dominant condition characterised by tumour-like malformations 

of different organs and tissues. Another autosomal dominant condition with some 

resemblance to TSC is neurofibromatosis type 1 (NF1) characterised by benign 

tumours of peripheral nerves, pigmented skin lesions and retinal hamartomas. The
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gene for NF1 has been cloned and a somatic deletion of the normal allele has been 

described in neurofibrosarcoma from a familial case of NF1 (Legius et al., 1993).This 

gave rise to the suggestion that NF1 gene acts as a tumour suppressor (Seizinger,

1993) which fits with the Knudson’s two-hit hypothesis (Knudson, 1971). There has 

been speculation that the lesions in TSC might arise in a similar way (Comings, 

1980). Loss of heterozygosity (loss of alleles at constitutionally heterozygous loci 

near the genes; LOH) at TSC1 and 7SC2-associated markers has now been 

demonstrated in hamartomatous lesions of some TSC patients (Green et al., 

1994a&b; Carbonara et al., 1994). The pattern of LOH at 16pl3.3 (TSC2 locus) is 

only 30 kb from the cloned TSC2 gene (The European chromosome 16 Tuberous 

Sclerosis Consortium). On 9q34 (TSC1 locus), LOH is consistent with the map 

position of TSC1 defined by haplotype analysis in TSC families and the segregation 

analysis showed that the 9q34 haplotype lost carried the putative normal TSC1 gene 

product in one family (Kwiatkowski et al., 1993; Carbonara et al., 1994). These data, 

together with the discovery of germline deletions in the TSC2 gene in 5% of TSC 

patients, support the hypothesis that TSC1 and TSC2 genes act as growth suppressor 

genes, analogous to the traditional tumour suppressor genes. Due to the well known 

benign, slow growth of the hamartomatous cells and because TSC is not considered 

as cancer-prone disease, the definition of TSCJ and TSC2 genes as anti-oncogenes 

seems inappropriate, and terms such as stem cell growth suppressors should better 

represent their putative function (Carbonara et al., 1994). Moreover, in the same 

astrocytoma (Carbonara et al., 1994) an additional region of LOH is present at 9p21. 

The possibility of the presence of another gene controlling tumour progression, 

differentiation and/or stem cell proliferation in that region needs further 

investigations.
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1.5.2.4 Positional cloning and characterisation of the TSC2 gene

(1)positional Cloning : Linkage studies have established locus heterogeneity 

with disease-determining loci on chromosomes 9q34 and 16pl3.3, leading to 

apparently indistinguishable phenotypes. The Genome Data Base Nomenclature 

Committee agreed that the loci on chromosomes 9 and 16 should be termed TSC I 

and TSC2, respectively. It was considered that as the TSC genes probably act as cell 

growth suppressors, and if a two-hit mechanism, as proposed by Knudson (1971), 

does apply to TSC, then constitutional deletions might be associated with the TSC 

phenotype in a proportion of cases, the same as that seen in the case of NF1 gene 

(Viskochil et al., 1990). TSC has not been noted in individuals with the chromosome 

16 a-thalassaemia/mental retardation syndrome (ATR-16), who have terminal 

deletions of 16p which extended into the TSC2 area. This suggested that TSC2 was 

localised to the proximal 300 kb of the candidate region. Using pulsed field gel 

electrophoresis (PFGE), The European Chromosome 16 Tuberous Sclerosis 

Consortium (1993) identified five tuberous sclerosis-associated deletions at 16pl3.3. 

These were mapped to a 120-kb region that was cloned in cosmids and from which 4 

genes were isolated. One gene, designated TSC2, was interrupted by all 5 PFGE 

deletions, and closer examination, using TSC2 cDNA subclones as hybridisation 

probes, revealed several intragenic mutations, including one de novo deletion. In this 

case, Northern blot analysis identified a shortened transcript, while reduced 

expression was observed in another TSC family, confirming the TSC2 as the 

chromosome 16 TSC gene.

(2) Characterisation of TSC2 gene : A zoo blot containing genomic DNA 

from various animal species revealed that the TSC2 gene was conserved throughout 

the higher vertebrates. TSC2 is widely expressed and both fibroblasts and 

lymphoblastoid cell lines represent good sources of RNA. The TSC2 transcript is 

composed of ~ 5.5 kb covering a genomic region of -4 3  kb. The cDNA contains an 

open reading frame extending from nucleotide 1 to 5370. The inframe AUG start
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codon was found at nucleotide position 19. At the 3' end are two potentially 

overlapping polyadenylation signals (AATAAA-TAAA) at nucleotide 5425. The 

occurrence of this doublet may cause differential polyadenylation, since there have 

been detected polyadenylation sites that differ by up to 15 bp in four different cDNA 

clones. In one family in which TSC has been shown to co-segregate with 

chromosome 16pl3.3 markers, but in which the deletion in TSC2 locus has not been 

identified, the affected members showed clearly reduced levels of TSC2 transcripts 

(The European Chromosome 16 Tuberous Sclerosis Consortium, 1993).

Maheshwar et al. (1996) characterised the exon/intron boundaries of the TSC2 

gene. It has been found that the gene comprises 41 exons, including the alternatively 

spliced exon 31 which was absent from the originally described human TSC2 

transcript. This exon has been found in one human foetal brain cDNA clone but was 

absent in RNA extracted from human lymphoblastoid cell line. Comparative analysis 

of the TSC2 gene in human and pufferfish (Fugu rubripes) showed 65% sequence 

homology at the nucleotide level.

OYTuberin. the protein product of the TSC2 gene : The total length of the 

predicted protein is 1784 (plus 23 from the alternatively spliced exon 31) amino acids, 

with a calculated molecular mass of -198 kd. Four potential transmembrane domains 

and four potential glycosylation sites were observed downstream of the last putative 

transmembrane domain. No sequence at the amino terminus of the predicted protein 

matched the signal peptide structure as defined by von Heijne (1985). However, the 

occurrence of several transmembrane domains without an apparent signal peptide was 

noted in cystic fibrosis-related protein (Riodran et al., 1989). A periodic array of 

leucine residues (the leucine zipper), a structure associated with protein-protein 

interaction was also observed. Of considerable interest, but undetermined functional 

significance, is a small region of homology to the GTPase activating protein rap 1 GAP 

(GAP3), which suggests that tuberin may itself have GAP activity, consistent with its 

proposed function as a tumour or a stem cell growth suppressor (Green et al., 1994a; 

Carbonara et al., 1994). After optimal alignment the protein product of the TSC2



gene in Fugu and humans revealed 60% identity of amino acid residues, with 79% 

similarity if conservative changes were included (Maheshwar et al., 1996). Four 

regions of high conservation were identified. These include the GAP-related domain 

(human residues 1593-1631) and the sequences flanking this, two small regions 

between residues 750 and 1100, and the N-terminal portion of the molecule. Using 

anti-sera against the N-terminal and the C-terminal portions of the tuberin, Wienecke 

et al. (1995) specifically recognised a 180 kd protein. A wide variety of human cell 

lines express the 180 kd tuberin protein, and subcellular fraction revealed that most 

tuberin is found in a membrane/particulate fraction. Small differences in migration 

rate of tuberin were observed in some cell lines. This might reflect post-translational 

modification or alternative splicing. Immunoprecipitates of native tuberin contain an 

activity that specifically stimulates the intrinsic GTPase activity of Rap la. Tuberin 

does not stimulate GTPase activity of Rap2, Ha-Ras, Rac, or Rho. These results 

suggest that the loss of tuberin leads to constitutive activation of Rap 1 in tumours of 

patients with tuberous sclerosis (Figure 1.2).
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Figure 1.2 (Top) Ras-related family of small GTP-binding proteins bind and hydrolyse 

GTP. They are active when bound to GTP and inactive in the GDP-bound state. Cellular 

regulatory proteins regulate guanine nucleotide binding Ras-related GTPases. GAP proteins 

act by stimulating the intrinsic GTPase of the GTP-binding proteins, keeping them in the 

inactive, GDP-bound state.

(Bottom) Rapla and Raplb GTPases were suggested to have negative effect on cell growth 

either by antagonising Ras through competitive binding of Rapl to Ras effector molecules or 

through transduction of growth-inhibitory signals. In accordance with this scenario, tuberin 

might function as an effector protein (as well as a GAP) for Rapl, and loss of tuberin 

expression would prevent transmission of the growth-inhibitory signals originating from 

Rapl. Alternatively, there is evidence that Rapl, like Ras, may mediate a positive growth 

signal and because tuberin is suggested to have a Rapl-GAP activity it may bind to the Rapl 

preventing it from interacting with its mitogenic effectors. Loss of tuberin expression in cells 

would free up Rapl, thereby allowing it to transmit a positive signal through its effectors.
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1.6 Methods for mutation detection

Detection of mutations and polymorphisms in DNA is an important feature of 

the investigation of gene structure and function. Furthermore, easy identification of 

specific sequences and sequence changes plays a central role in the diagnosis of 

human inherited diseases. Procedures for mutation detection can be separated into 

two distinct groups. The first consists of techniques which efficiently identify known 

disease alleles, e.g. population screening for carriers of the common cystic fibrosis 

mutations. The second group consists of methods to scan sequences for unknown 

mutations.

1.6.1 Methods to detect known sequence alterations

Once mutations or polymorphisms have been described they can be searched 

for using one of the following conditions

(1) Allele-specific oligonucleotide (ASOl

This is a hybridisation based method where sequence variants are 

distinguished by taking advantage of the difference in stability of hybrids formed 

between target sequence (usually amplified by PCR) and oligonucleotide probes that 

are perfectly matched or mismatched to the target sequence (Wallace et al., 1979). 

The original method involved probing separated bands which had been transferred to 

a membrane, but more recently the sample has been directly transferred to the 

membrane (the dot blot). Short oligonucleotide probes of about 19 nucleotides 

corresponding to a particular region of a gene are prepared. Two probes are made; 

one has the normal sequence, while the other is identical except for a single altered 

base corresponding to particular mutation. By carefully regulating hybridisation 

conditions, it is possible to arrange things so that the normal probe hybridises to the 

normal but not to the mutant DNA, while the mutant probe hybridises to the mutant 

but not to the normal DNA. Both radiolabelled and fluorescently labelled probes have
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been used. In the reverse blot (Saiki et al., 1989) different probes were spotted onto 

the membrane and the biotin-labelled target sample applied. The probes forming 

duplexes without mismatches and retaining the target became stained with HRP 

avidin. The main advantage of the current method is that it does not require 

electrophoresis and the method is non-radioactive. The main disadvantage is that two 

primers have to be synthesised for amplification and two more, mutant and wild-type, 

for mutation detection.

(2) Amplification refractory mutation system (ARMS)

The technique was first described by Newton et al. (1989). It is based on the 

concept that PCR primers with the 3' end complementary either to a mutant or a 

normal nucleotide sequence can be used to selectively amplify one or the other allele. 

This is due to the lack of 3' exonucleolytic proof reading activity of Taq DNA 

polymerase. Two target DNA samples, from each patient, were PCR amplified with a 

wild-type or mutant primer and a common primer. The mutant and the wild-type 

primers differ at their 3' ends by a single base which corresponds to the wild-type and 

mutant alleles. As a control, internal primers are added in the same reaction. Upon gel 

electrophoresis of the two target samples the presence of a band defines the presence 

of the corresponding allele. The main advantage of this method is that it requires only 

a single PCR reaction and a result is obtained in a matter of hours. Also, the 

technique can be automated for screening of large number of samples. This technique 

is very useful in screening for a common mutation in a gene such as AF508, the 

common cystic fibrosis mutation. PCR amplification of multiple specific alleles 

(PAMSA) has been shown to be possible by the use of primers that generate PCR 

products of different lengths. Mistry et al. (1992) have been used PAMSA technique 

to screen for 6 Gaucher's alleles in 12 patients.
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(3) Artificial introduction of restriction sites (AIRS)

When a mutation changes a restriction site, it can readily be sought in a 

genome. Unfortunately, most mutations do not change a restriction site. Cohen and 

Levinson (1988) developed a strategy to introduce a restriction site by mismatched 

primers in the region of a mutation for either the wild type or mutant sequence. In this 

method an artificial restriction site is introduced, by a primer that has one base 

mismatch near to the site of mutation. Presence of the mutation will make the proper 

recognition site for a specific restriction endonuclease. Digestion of the PCR products 

using this enzyme followed by gel electrophoresis will enable the identification of the 

absence or presence of the mutation in the sample. This method has been successfully 

used by researchers ( e.g. Ng et al., 1991; Taroni et al., 1993; and Grau and Griffais,

1994) to screen for common mutations in different genes.

1.6.2 Methods to scan sequences for unknown mutations

While several useful technologies for the detection of sequence heterogeneity 

exist, no single method is applicable for all situations. The most appropriate screening 

technology is influenced by the expected nature of the mutation, size and structure of 

the gene in question, degree of sensitivity required and resources available. The 

spectrum of mutations ranges from cytogenetically visible chromosome re

arrangements to micro-deletions and insertions and finally single base alterations.

1.6.2.1 Detection of large gene alterations

Large gene alterations are mutations in which substantial portions (>500 bp) 

of the gene are deleted, duplicated or otherwise rearranged (Grompe, 1993). 

Techniques used for this kind of mutation detection includes cytogenetic techniques, 

Southern blotting, pulsed field gel electrophoresis (PFGE) and multiplex PCR.
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(1) Cytogenetic techniques

Extremely large (> 4 megabases (Mb)) deletions and insertions can be 

detected by high resolution cytogenetics. The use of fluorescent in situ hybridisation 

(FISH) has improved the power of cytogenetic analysis. FISH uses fluorescently 

labelled DNA probes, which are hybridised to chromosome spreads, to detect both 

numerical and structural chromosome aberrations not only in metaphase, but also in 

interphase nucleus. FISH is particularly suited for the detection of aneuploidy, 

microdeletions or duplications and complex rearrangements (Lichter and Cremer, 

1992).

(21 Southern blot hybridisation

The Southern blotting technique, developed in 1975 by E. Southern, is the 

standard way of analysing the structure of DNA cleaved by restriction enzymes and 

agarose gel electrophoresed. It remains one of the fastest methods to quickly screen 

for mutations. No detailed knowledge of the structure and sequence of a gene is 

required and a preliminary screen can be carried out with a probe of interest 

immediately after its isolation. Large deletions and insertions may be detected by the 

presence of junction fragments or changes in band intensities (in case of autosomal 

dominant conditions and mutation carriers). Point mutations may be also detected, if 

they alter restriction sites. By using appropriate restriction enzymes and probes 

Southern blotting has been used successfully to detect trinucleotide repeat expansion 

in patients with FRAXA and myotonic dystrophy where a massive expansion of the 

repeats occurs in patients with full blown clinical presentation (Fu et al., 1991 and 

Harley et al., 1992).

(31 Pulsed field gel electrophoresis (PFGE)

The gels that have been used for traditional southern blotting can only 

separate DNA fragments of about 20 kb or less. Molecules of this size have linear 

dimensions comparable to the pore size of the gel. On the other hand very large
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molecules, of 100 to 500 kb for example, are much larger or longer than the pores. 

However, even they can move into a gel by finding a path that involves many pores 

simultaneously. In this type of migration the forward force is proportional to the 

electric charge of the molecule, that is its length, and the drag due to friction is 

proportional to the number of pores through which the large molecule is passing, 

again being related to its length. The overall effect is that large molecules of different 

sizes move at the same rate and are not separated (Weatherall, 1991).

The principle of PFGE is periodically to change the orientation of the electric 

field. Every time this happens the large extended molecules must re-orientate and find 

a path through the gel matrix in other direction. This process is size dependent, that is 

very large molecules will take more time to re-orientate than shorter ones. This 

allows the resolution of DNA fragments of 100 to 1000 Kb in size and, in some cases, 

even larger. The large fragments for PFGE are generated by using restriction enzymes 

which have infrequent cutting sites such as Notl and Sfil. The resultant gels can be 

Southern blotted and probed by standard methods. This technique allows the 

identification of major deletions and major chromosomal rearrangements in a single 

test (Weatherall, 1991).

14) Multiplex PCR for the detection of deletions

If a locus of interest is prone to deletions and if its genomic sequences are 

known, the simultaneous PCR amplification of several sequences throughout the gene 

is the most rapid and practical method for their detection. Deletions are indicated by 

the absence of some of the bands in the multiplex pattern in homozygotes. In 

heterozygotes, in spite of being technically difficult, deletions are seen as 50% 

reduction of band intensities in a quantitative analysis of the multiplex PCR reaction 

(Abbs and Bobrow, 1992). The introduction of dye labelled primers and automated 

computer analysis of the multiplex PCR products facilitates this technique. This 

method has been used widely in screening for deletions in Duchenne muscular 

dystrophy, in which 60% of cases represent deletions (Grompe, 1993).
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1.6.2.2 Detection of single base changes and small sequence alterations

Single base substitution and small sequence alterations are the most common 

type of mutation at most loci. A number of methods may be used for detecting these 

subtle changes. All the methods used are polymerase chain reaction (PCR) based 

detection methods using either genomic DNA and/or mRNA as a starting material for 

mutation analysis (Table 1.1). PCR is a technique for the in vitro amplification of 

specific DNA or RNA sequences. The PCR method was devised and named by Mullis 

and Faloona (1987) at the Cetus Corporation, although the principle has been 

described in details by Khorana and colleagues over a decade earlier (Taylor, 1993). 

In brief, PCR is based on the enzymatic amplification of a fragment of DNA that is 

flanked by two short oligonucleotides "primers" that hybridise to the opposite strands 

of the target sequence. A repetitive series of cycles involving template denaturation, 

primer annealing and the extension of the annealed primers by DNA polymerase 

results in the exponential accumulation of a specific fragment whose termini are 

defined by the 5' ends of the primers. Twenty cycles of PCR yields about a million 

fold amplification of the specific DNA fragment.
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Table 1.1 Genomic DNA versus mRNA as a starting material for mutation 
analysis (Grompe, 1993)

Genomic DNA mRNA

Advantages

Easily accessible (blood)

In autosomal loci both alleles 

are equally represented 

Mutations in the promoter and 

intronic splice junctions can be 

detected

First choice in autosomal 

dominant traits

Disadvantages

Genomic sequence and gene 

structure information are needed 

Only small segments of coding 

region (exons) are analysed 

More PCR reactions

Long segment of peptide coding 

region can be analysed 

Gene structure information not needed 

Fewer PCR reactions 

Aberrant mRNA size can be 

seen

First choice in X-linked traits

Gene may not be expressed in 

accessible specimens 

In autosomal loci only one allele 

may be represented 

Mutations in promoter and 

intronic splice junctions are not 

detected
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Some important strategies for mutation detection of unknown single base

changes and/or small sequence alterations are as follows :

(1) Single strand conformational polymorphism (SSCPI analysis

Of the various methods applied for the detection of unknown mutations SSCP 

is by far the easiest and cheapest procedure presently available. In 1989, Orita et al. 

first report the use of SSCP to detect mutations. Wild type and mutant target DNAs 

are amplified by PCR, denatured and then electrophoresed side by side through a non

denaturing polyacrylamide gel. The two single-stranded DNA molecules from each 

denatured PCR product assume a three-dimensional conformation which is dependent 

on their primary sequence. If a sequence difference (mutation) exists between wild- 

type and mutant DNA, this may result in differential migration of one or both of the 

mutant strands. PCR products with altered migration patterns can then be analysed by 

DNA sequencing to determine the exact nature of the alteration. In most published 

studies the amplification products are rendered radioactive by the addition of 32P 

dCTP to the PCR reaction (Glavac and Dean, 1993). However, non-radioactive 

detection by ethidium bromide staining and silver staining (Grade et al., 1994) have 

been successfully used. No adequate theoretical model is available for predicting the 

three dimensional structure of single stranded DNA under a given set of conditions. 

Accordingly, the effects of mutations on DNA mobility in an SSCP gel cannot be 

reliably predicted.

Different data concerning the efficiency of SSCP have been reported. In 

general, SSCP analysis detects 70 to 95% of mutations in PCR product of 200 bp or 

less (Grompe, 1993). The sensitivity of the method decreases with the size of the 

PCR product and is less than 50% when fragments of > 400 bp are analysed. Some of 

the size limitations of the method may be overcome by restriction digestion of a larger 

amplification product prior to electrophoresis (Iwahana et al., 1992). The use of RNA 

generated by in vitro transcription of PCR products also appears to improve detection 

of mutations in larger fragments (Sarkar et al., 1992a). This modification of SSCP
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requires longer primer (to include phage RNA promoters) and extra experimental 

steps, so it may be less desirable for general mutation detection. There are many 

parameters other than the size of the PCR product that can affect the informativeness 

of SSCP method. Physical factors such as temperature, type of the gel matrix and 

ionic strength is very important such that sequence changes that have little or no 

effect on conformation in one set of conditions can have a dramatically different effect 

under other conditions (Hayashi and Yandell, 1993). A useful consequence of this is 

that it enables empirical optimisation of SSCP sensitivity for a given fragment by 

varying these conditions.

Based on the experience of a number of laboratories, electrophoresis at room 

temperature (20-25°C) with 5-10% glycerol or 4°C without glycerol seems to be a 

good starting point for detection of most mutations (Hayashi, 1991).

Choice of the gel matrix is a second important area for optimisation. 

Complementary single strands are separated more effectively using a polyacrylamide 

matrix containing a low percentage of crosslinker (%C) (the percentage of N,N'- 

methylenebisacrylamide in the total acrylamide monomer). Most investigators have 

found that SSCP gels with 2% C or less are best for detection of single nucleotide 

substitution (Hayashi and Yandell, 1993). New gel products (e.g. MDE™ gel, AT 

Biochem.) are now available and seems to be more appropriate for SSCP analysis.

Overloading of the gel sometimes results in abnormal migration of the bands 

and reduced resolution. For this reason, radioisotopic or fluorescent labelling of the 

PCR products to a high specific activity is highly recommended. Samples can then be 

diluted so that DNA concentrations are sufficiently low in the loading solution, yet 

detectable either by autoradiography in a reasonable exposure time (few hours to 

overnight) or with fluorescent DNA sequencer (Hayashi and Yandell, 1993).

The way the bands are shifted by mutation can be different depending on the 

flanking sequences, and changing primer positions bracketing the region suspected to 

have a mutation is one effective way of enhancing mobility shift.
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Sarkar et al. (1992b) have proposed a dideoxy-termination reaction using 

PCR-amplified fragments followed by SSCP analysis. In this method, DNA fragments 

having various sequences flanking the mutated site can be examined in a single gel. 

This approach, however, involves extra steps of experiments and may be not suitable 

for general mutation detection.

(21 Heteroduplex analysis

This technique is based on the differing electrophoretic mobility between a 

perfectly matched duplex DNA fragment compared with a similar DNA fragment that 

contains a mismatch (a heteroduplex) when analysed side by side. Heteroduplexes 

formed of one mutant strand and one wild type strand migrate at a different rate 

through regular polyacrylamide gels, because the region of mismatch forms a "kink" 

in the DNA. Thus, a heteroduplex frequently appears on the gel as a distinct band, 

separate from the homoduplex DNA (Nagamine et al., 1989). New gel matrices 

(Hydrolink and MDE™ from AT Biochem.) have become available which markedly 

enhance the ability to detect mutation induced mobility shifts in heteroduplex 

molecules (Grompe, 1993). This simple technique was reported to be able to identify 

different types point mutations and minor deletions or insertions in PCR fragments of 

different size. Studies indicate a level of sensitivity similar to SSCP analysis (80-90%) 

in small DNA fragments (<300bp) (Perry and Carrell, 1992; White et al., 1992). This 

technique is simple to perform, does not require complex chemical or temperature 

gradients, bands can generally be detected without radioactive labels and has been 

applied successfully to the study of a number of human genetic disorders (Grompe, 

1993; Friedle et al., 1993 and Schreiber et al., 1995).

(3) Denaturing gradient gel electrophoresis (DGGE1

The denaturing gradient gel electrophoresis is acknowledged to detect almost 

100% of mutations (Dianzani et al., 1993). The mutation-resolving power of DGGE 

relies on a physical separation between similar DNA fragments differing in melting
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properties due to difference in nucleotide composition. The separation is based on the 

fact that DNA molecules differing by a single base change have slightly different 

melting properties, which cause them to migrate differently in a polyacrylamide gel 

containing a linear gradient of DNA denaturants (urea and formamide) (Fischer and 

Lerman, 1983 and Myers et al., 1987). There are two types of denaturant gradient 

gels : (I) Parallel gels, which contain a linearly increasing gradient of DNA 

denaturants from top to bottom in the gel and (II) perpendicular gels, which contain 

a linear gradient of denaturants from left to right across the gel. Both gel types can be 

used independently to screen for point mutation in PCR-amplified DNA products. 

Parallel denaturing gradient gels have the advantage of being useful for analysis of 

multiple samples in a single gel (Sheffield et al., 1990). Two modifications greatly 

increased the sensitivity of the technique : (1) Attachment of a thermostable GC- 

clamp to one PCR primer (Sheffield et al., 1989) and (2) Analysis of heteroduplex 

molecule i.e. hybrids formed between mutant and wild-type strands (Myers et al., 

1985a). Mutations can be found most reliably when sequence heterogeneity lies 

within a domain of relatively low melting temperature. This can be achieved for 

virtually any sequence of interest by the use of computer programs to predict 

theoretical melting profiles and design PCR primers (Grompe, 1993). Base changes in 

the region of the highest melting temperature normally can not be resolved since 

melting of this domain leads to the generation of single strands with loss of the 

sequence-dependant mobility. Introduction of a GC-clamp at one end of the 

sequence, leads to an improved sensitivity of about 90% of all DNA polymorphisms. 

As in SSCP analysis, DGGE detects the presence of sequence difference between 

mutant and wild type DNA fragments but not its location within the fragment, which 

has to be determined by sequencing.

The denaturing gradient can also be generated by temperature. Temperature 

gradient gel electrophoresis (TGGE) allows the separation of molecules depending 

on their different melting behaviour in temperature gradients and has been 

successfully applied to separation of HLA alleles (Meyer et al., 1991) and screening
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of Tp53 mutations (Scholz et al., 1993). Like DGGE, after parallel TGGE wild-type 

conformation is characterised by one single band, whereas mutations are 

demonstrated usually by the presence of four bands corresponding to the four 

different double strands (one homoduplex wild-type, one homoduplex mutant and 

two heteroduplex mutant/wild-type). Using thermal instead of a chemical denaturant 

gradient, the preparation of gradient gels is avoided and only one gel condition is 

sufficient for TGGE (Scholz et al., 1993).

Both DGGE and TGGE require a special apparatus to control gel temperature 

and long PCR primers which include a 30 to 50 bp high melting temperature GC- 

clamp (Grompe, 1993).

(51 Cleavage of mismatch analysis

The principle of mismatch cleavage is based upon the cleavage of 

heteroduplexes between strands of nucleic acid mismatched at one or more 

nucleotides. Three different techniques adopting this strategy are now known, 

chemical cleavage of mismatch (CCM), RNaseA cleavage and enzyme mismatch 

cleavage (EMC).

(A) Chemical cleavase o f mismatch (CCM) : This technique has been 

described by Cotton et al. (1988). In CCM, a heteroduplex between a radiolabelled 

wild-type DNA molecule and mutant DNA (or RNA) is created by boiling and 

reannealing. Hydroxylamine and osmium tetroxide react to modify mismatched or 

unmatched cytosine or thymine residues, respectively. Sites modified by 

hydroxylamine and osmium tetroxide are more susceptible to cleavage by piperdine 

than unmodified base pairs. Cleavage occurs in one strand of the helix only. Products 

are resolved by denaturing polyacrylamide gel electrophoresis to allow the 

identification and location of the mutation sites. CCM is very sensitive, detecting 

more than 95% of mismatches when only the wild type DNA are labelled and 100%, 

when both wild-type and mutant DNA are labelled (Grompe, 1993). It was shown to
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be an excellent method for the detection and location of mutations, particularly 

because it can easily scan up to 1.7 kb segments of DNA at a time, DNA or RNA 

templates may be used and the precise location and nature of the change is also 

indicated by the size of the cleavage band and the cleaving reagent (Grompe, 1993). 

Improved resolution of larger cleavage products is possible by using of 35S-labelled 

dATP probes rather than 32PdCTP-labelled probes. 35S labelled cleavage products 

are more discrete and therefore more easily identified than those obtained with 32P 

(Saleeba and Cotton, 1991). Saleeba et al. (1992) described a method for unlabelled 

CCM which detect the cleavage products by silver staining. This procedure is thought 

best applied to heteroduplexes < 600 bp long (Cotton, 1993)

The main drawbacks of the technique is that many manipulations need to be 

performed in the fumehood to reduce exposure to toxic chemicals, the use of 

radioactive probes and the need for a two-step reaction and treatment with three 

reagents.

(B) RNase A cleavage : This was first described by Myers et al. (1985b). The 

method is based on the observation that RNase A is frequently able to cleave a 

mismatched base in an RNA probe hybridised to an experimental target containing a 

point mutation. As originally described, the substrates for RNase A digestion were 

RNA/DNA duplexes made by hybridising a radiolabelled wild-type RNA probe to a 

double-stranded DNA target. The enzyme will recognise and cleave single-stranded 

RNA at the points of mismatch. The reaction is analysed by denaturing 

polyacrylamide gel electrophoresis and autoradiography. RNase A can only detect 

-50% of mismatches (Grompe, 1993). It has therefore been largely replaced by the 

similar CCM technique. The recent non-radioactive version developed by Ambion 

laboratories may improve the popularity of the technique. Two different transcription 

promoters are used to produce both sense and anti-sense strands of an RNA duplex 

which gives each mutation two chances of being detected but the detection rate is still 

to be determined.
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(C) Enzyme mismatch cleavage (EMC) : Mashal et al. (1995) and Youil et 

al. (1995) have described a method that may prove superior to existing techniques in 

the search for an elusive mutation. Bacteriophage resolvases, whose function in vivo 

is to cleave branched DNA, have the property of recognising mismatched bases in 

double stranded DNA and cutting the DNA at the site of mismatch. Radiolabelled 

DNA is cleaved by the resolvases at the site of mismatch in heteroduplex DNA and 

digestion products are resolved on a denaturing polyacrylamide gel. Thus, both the 

presence and the estimated position of an alteration is revealed. EMC has the 

potential to be as easy and inexpensive as SSCP and as sensitive as DGGE, with the 

added advantages of predicting the precise position of an alteration and of being 

applicable to fragments 1 kilobase or larger. Both research groups (Mashal et al., 

1995 and Youil et al., 1995) analysed all possible mismatch types as well as several 

deletion mutations and obtained very comparable results with a 94% detection 

sensitivity. However, several improvements need to be made before EMC replaces 

existing methods.

(6) Protein truncation test (PTT)

Having made the effort to identify the mutation, the question often still 

remains :"Does this mutation actually cause disease?". This is where the functional 

assays come into their own right and for some genes they are now considered as the 

first mutation screening test to be performed. The PTT identifies mutations that result 

in premature termination of protein synthesis. This method has been reported by 

Roest et al. (1993) and the technique is based on the combination of RT-PCR, in 

vitro transcription and translation with incorporation of 3H-leucine to detect 

translation products after SDS-polyacrylamide gel electrophoresis. This technique is 

mainly applied to the disorders where protein termination mutations account for a 

significant proportion of mutations. For example the dystrophin gene, four genes for 

hereditary non-polyposis colon cancer, the breast cancer gene (BRCA1) and the gene 

for familial colorectal cancer ((APC), in which translation terminating mutations



account for about 70% of the mutation identified ( Miyoshi et al., 1992)). Compared 

to other point-mutation detection techniques, PTT allows the analysis of relatively 

large stretches of coding sequences of 2.4 kb or even more. The site of the mutation 

is identified so that only a small part of the gene needs to be sequenced.

(7) Direct sequencing

Sequencing can be used either as a screening and/or a diagnostic method. 

Sequencing defines precisely the location and nature of the change and therefore is a 

necessary final step of any mutation detection method. Two methods are used. One 

uses end labelled probe and partial chemical cleavage is achieved at all bases with 

particular chemicals. Size of fragments and the chemicals which produced them can 

then be used to define the sequence (Maxam and Gilbert, 1980). The other method 

uses enough nucleotide analogue (dideoxy) to allow some chain termination at each 

base, and again the base used and the length of the fragments defines the sequence 

(Sanger et al., 1977). The latter method is most frequently used.

In order to sequence PCR products successfully by the conventional dideoxy 

termination protocol, it is essential to convert the double-stranded PCR product into 

a single-stranded sequencing template. Several methods have been described to 

achieve this. In the first technique, termed asymmetric PCR (Gyllensten and Erlich,

1988) one primer is 1 : 50 to 1 : 100 diluted and used for a second round PCR. In the 

second method one biotinylated PCR primer is used to create a 5' biotinylated DNA 

strand which is then magnetically captured on an avidin-coated magnetic beads (Gibbs 

et al., 1990). In a third approach termed genomic amplification with transcript 

sequencing, the original PCR primers carry T7 RNA polymerase binding sites and in 

vitro transcription is then used to generate single-stranded RNA template for 

sequencing (Stoflet et al., 1988).

Cycle sequencing is a newly developed sequencing technique where the DNA 

template is simultaneously amplified and sequenced by the addition of dideoxy 

terminators to a PCR reaction. Recently, a new protocol based on cycle sequencing
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and fluorescence detection technology has been developed (Rosenthal and Charnock,

1992). Fluorescently labelled dideoxy terminators are used with different fluorescent 

dye coupled to each of the four dideoxy nucleotide triphosphate (ddNTPs). A 

computer software analysis of fluorescent cycle sequencing data is used. This method 

appears especially useful when high throughput automated sequencing is available 

(Grompe, 1993).
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1.7 Aims of the present project

The aims of the present project were to optimise and apply strategies for 

detection of mutations in three different autosomal dominant neurodegenerative 

conditions, myotonic dystrophy (DM), amyotrophic lateral sclerosis (ALS) and 

tuberous sclerosis complex (TSC). These diseases were chosen because of their 

differences with regard to known molecular pathology (CTG trinucleotide repeat 

expansion in DM patients, point mutations in ALS patients and point mutations and 

gene deletions in TSC patients), available gene information (only cDNA sequence of 

the TSC2 gene was available) and/or the availability of study materials (RNA was 

available from TSC patients only). These constraints made it necessary to optimise 

different mutation detection strategies for each of them.

Specifically this involved:

(1) Optimisation of PCR and Southern blot analysis to screen for CTG repeat 

expansion in DM patients

(2) Optimisation of PCR , restriction digestion and SSCP analysis to screen for both 

known and unknown point mutations in the SOD-1 gene in both familial and sporadic 

ALS patients.

(3) Optimisation of PCR, RT-PCR of the TSC2 gene cDNA, Southern blot and 

chemical cleavage of the mismatch analysis to screen for mutations in the TSC2 gene 

in patients with tuberous sclerosis complex.

(4) Characterisation of the detected point mutations with direct sequencing of cDNA 

and/or genomic DNA.
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(2) MATERIALS AND METHODS

2.1 Patients

Forty nine myotonic dystrophy (DM) families (86 DM patients and 96 

apparently normal individuals) were studied for the status of the CTG repeat 

expansion in the 3' untranslated part of the DM  locus on chromosome 19ql3.3. All 

the families were ascertained by the clinical diagnosis of the proband; an expanded 

DM  allele was identified afterward in each of these individuals.

Two patients from ALS families and 67 sporadic ALS cases were studied for 

the presence of mutations in the copper/zinc superoxide dismutase (SOD-1) gene on 

chromosome 21q2.2. All patients were diagnosed clinically by the presence of a 

progressive neurodegenerative disease of combined upper and lower motor neuron 

features and confirmed by doing some electrophysiologic studies of the muscle and 

nerve.

12 familial and 20 sporadic patients with tuberous sclerosis were studied for 

the presence of mutations in the TSC2 gene on chromosome 16pl3.3. The linkage 

status for all the familial cases, except one, are unknown. One familial case was found, 

later on, to be linked to chromosome 9 markers. All patients were diagnosed 

according to the revised Gomez criteria (Gomez, 1991).

2.2 DNA extraction

From all the patients studied, DNA was extracted from peripheral blood 

leukocytes using a modification of the method described by Kunkel et al. (1977).

In 50 ml Falcon centrifuge tubes, 40 ml of cold lysis buffer was added to each 10 ml 

of patient's blood and mixed gently. Tubes were then centrifuged for 15 minutes at 

4°C and 2500 rpm in an DEC DPR-6000 centrifuge. The resulting pellets were then 

resuspended in 3 ml nuclei lysis buffer, 200 pi 10% SDS and 100 pi proteinase K (10 

mg/ml) and incubated at 37°C for overnight. After incubation, 1 ml of 6M sodium
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chloride was added to each tube and shaken vigorously for few seconds and then 

centrifuged for 15 minutes at 15°C and 2500 rpm. Carefully the supernatant was 

transferred, using a plastic pastette, to a fresh 5 ml Falcon tube and gently mixed, by 

inversion, for 1 minute, with 1 ml buffered phenol/chloroform followed by 

centrifugation at room temperature and 2500 rpm for 15 minutes. The upper aqueous 

phase was transferred to a 20 ml universal tube and the DNA was precipitated by 

addition of two volumes of absolute ethanol. The DNA was then spooled out using a 

sealed glass Pasteur pipette, washed in 70% ethanol, air dried and suspended in 500 pi 

autoclaved T.E. buffer and kept overnight at 4°C to insure its complete dissolution.

Determination of DNA concentration

To determine the concentration of the DNA samples, optical density (O.D.) 

reading at 260 nm, using dual beam spectrophotometer, was performed. An O.D. 

reading of 1 corresponds to 50 pg/ml of DNA.

2.3 Total cellular RNA extraction from peripheral blood lymphocytes

RNA was extracted from 22 patients with tuberous sclerosis using two 

different methods.

2.3.1 Acid-guanidinium thiocvanate method

A modification of Chomczynski and Sacchi (1987) acid-guanidinium 

thiocyanate method was used to extract RNA from peripheral blood lymphocytes. The 

technique involved initial separation of lymphocytes from whole blood, followed by 

the acid-guanidinium thiocyanate phenol/chloroform extraction. The RNA must be 

protected from degradation by ribonucleases. Therefore, all the solutions used (except 

organic solutions) were prepared with 0.1% diethyl pyrocarbonate (DEPC) in distilled 

water and then autoclaved. The tubes and tips required for handling and storing of the
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RNA were treated in 0.1% DEPC in water for 14-16 hours before being autoclaved. 

All plastic-ware were kept aside from general use. Gloves were changed frequently 

during the steps of RNA extraction. Isolated RNAs were stored in aqueous solution at 

-70°C and repeated freeze and thaw cycles were avoided.

fa! Separation of lymphocytes from whole blood: 5 ml of heparinised or 

EDTA treated, freshly collected, whole blood was carefully layered over 5 ml of 

Histopaque (Sigma) in a 20 ml universal tube. Tubes were centrifuged at room 

temperature and 1400 rpm for 30 minutes. The opaque (buffy) interface was 

transferred to a fresh tube and washed, twice, in 15 ml of cold phosphate buffered 

saline (PBS, Gibco BRL), then pelleted by centrifugation at 1400 rpm and 4°C for 15 

minutes and the supernatant was discarded.

(b) The acid guanidinium thiocyanate phenol/chloroform extraction: The 

pellet was re-suspended in 500 pi solution D (37 pi 2-mercaptoethanol, Sigma, was 

added to each 5 ml solution D just before use) by repeated slow pipetting and 

transferred to an autoclaved, DEPC treated, 1.5 ml Eppendorf tube on ice. To the 

dissolved pellet the following ice-cold solutions were added: 50 pi 2 M sodium 

acetate (pH 4), 500 pi water saturated phenol and 100 pi chloroform/isoamyl alcohol 

(98 : 2). Tube contents were mixed by inversion after each reagent addition and the 

final mix was shaken vigorously for 15 seconds and kept on ice for 15 minutes. The 

tubes were centrifuged for 20 minutes at 4°C and 14000 rpm. The upper aqueous 

phase was carefully transferred to another fresh 1.5 ml Eppendorf tube and to it 600 

pi of isopropanol was added and mixed by repeated inversion. Tubes were incubated 

at -20°C for a minimum of one hour then centrifuged for 20 minutes at 4°C and 

14000 rpm. The supernatant was discarded and the pellet was dissolved in 300 pi 

solution D. To the dissolved pellet 300 pi isopropanol was added and the tubes were 

kept at - 20°C for at least one hour. Tubes were then centrifuged for 20 minutes at 

4°C and 14000 rpm. The supernatant was discarded and the pellet was washed in 500 

pi 75% cold ethanol (diluted by DEPC treated autoclaved distilled water) and air 

dried. The pellet was dissolved in 50 pi DEPC treated water and stored at - 70°C.
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2.3.2 TRIzol™ Reagent extraction

TRIzol™ reagent (Life Technologies) is a ready-to-use reagent for isolation 

of total RNA from cells and tissues. The reagent, a mono-phasic solution of phenol 

and guanidine isothiocyanate, is used as a modification to the single-step RNA 

isolation method developed by Chomczynski and Sacchi (1987). Lymphocytes were 

separated as before and only once washed with cold PBS. The pellet was dissolved in 

one ml of TRIzol reagent by repetitive pipetting and then transferred to 1.5 ml DEPC 

treated Eppendorf tube and kept for 5 minutes at room temperature permit the 

complete dissociation of nucleoprotein complexes. After the incubation 0.2 ml of 

chloroform was added to the dissolved pellet and the tube was shaken vigorously for 

15 seconds and incubated at room temperature for 2 to 3 minutes. The samples were 

then centrifuged at no more than 12000 g for 15 minutes at 4°C. The upper aqueous 

phase was transferred to a fresh tube and to it 0.5 ml of isopropanol was added and 

mixed well. The sample was incubated at room temperature for 10 minutes and 

centrifuged at no more than 12000 g for 10 minutes at 4°C. The supernatant was 

discarded and the RNA pellet was once washed with 1 ml of 75% ethanol by brief 

vortexing and then centrifuged at no more than 7500 g for 5 minutes at 4°C. The 

pellet was then briefly air dried for 5-10 minutes and dissolved in 50 pi of DEPC 

treated water by passing the solution a few times through a pipette tip, and incubating 

for 10 minutes at 60°C. Dissolved RNA samples were then stored at -70°C.

Determination of RNA concentration

To determine the concentration of the RNA samples, an optical density (O.D.) 

reading at 260 nm, using a dual beam spectrophotometer, was taken. An O.D. 

reading of 1 corresponds to 40 pg/ml of the RNA. The integrity of the RNA was 

assessed by comparing the ratio of O.D. at 260/280 nm. A good quality preparation 

should give a value of 2 .
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Qualitative assessment of the RNA

To assess the quality of the extracted RNA 1 pi of it was checked by agarose 

gel electrophoresis. The RNA checking gel was prepared by boiling 0.45g agarose in 

2 2  ml distilled water (dH20 ) until dissolved. The evaporated amount of water was 

restored and the gel was cooled to 55°C. Under the fiime hood, 5 ml of 37% 

formaldehyde and 3 ml of 10X MOPS were added to the gel which was then rapidly 

poured and left to set. The RNA sample was prepared by mixing 1 pi total RNA with

1.3 ptl dH20, 5 pi formamide, 1.7 pi 37% formaldehyde and 1 pi 10X MOPS. The 

sample was heated in a 60°C water bath for 1 0  minutes and rapidly quenched on ice. 

To this 2 pi of 10X RNA loading buffer was added and the sample immediately 

loaded alongside 1 pg of E. coli ribosomal RNA (Boehringer Mannheim) as a marker 

and electrophoresed in IX MOPS buffer at 70 to 80 volts for 40 to 60 minutes (till 

the bromophenol dye reached the bottom of the gel). The gel was then rinsed in water 

to wash out the formaldehyde and stained for 5 minutes in 5 pg/ml solution of 

ethidium bromide. The gel was destained in water for 2 to 16 hours and viewed under 

the U. V. light to check for the integrity of ribosomal RNA bands.

2.4 Oligonucleotide design

Oligonucleotides were designed to amplify both DNA and cDNA sequences. 

Seven sets of primers were designed to amplify exon 3 of the SOD-1 gene and exon 1, 

and exons 38-41 (as a single amplification product )of the TSC2 gene. Four cDNA 

segments of the TSC2 gene were also amplified. Moreover, six sequencing primers 

were designed. The computer program Oligo™ version 3.4 (Medprobe) was used for 

primer designing with the following guidelines: 1) The length of the primer was in the 

range of 18 to 30 bases. 2) PCR primers should be free of significant complimentarity 

at their 3’ termini as this promotes the formation of primer-dimer artifacts that reduce 

product yield. 3) Avoidance of hairpin loop forming primers (self-complementarity). 

A hairpin loop forming primer is troublesome when its 3' end is "tied up," since this
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can cause internal primer extension. Hairpins near the 5' end, however, do not 

significantly affect the PCR. 4) The ability of the primer to form a stable duplex (by 

calculating the free energy of duplex formation, AG) with the specific site only on the 

target DNA. 5) The Tm (melting temperature) difference between both primers and 

between the template and the less stable primer is kept to a minimum. 6 ) Avoidance of 

runs of C's or G's at the 3' ends of the primers.

2.5 Synthesis, deprotection and purification of oligonucleotides

All primers, either published or newly designed, were synthesized in-house on 

an ABI 391-DNA synthesizer with "Trityl off'. When synthesis was finished, the 

product exists as phosphate-protected, base-protected phosphotriesters. Complete 

deprotection was necessary to produce biologically active oligonucleotides.

Cleavage and phosphate deprotection

Following synthesis, the primer remains covalently attached to the support and 

it has to be cleaved by a one hour treatment with fresh, concentrated ammonium 

hydroxide and collected in a vial fitted with a Teflon-lined cap. Phosphate 

deprotection (removing of cyanoethyl protecting groups) requires treatment with 

ammonium hydroxide and occurs at the same time as cleavage.

Base deprotection

Base deprotection is an ammoniolysis reaction and the benzoyl and isobutyryl 

base protecting groups are removed by placing the vial containing the oligonucleotide 

at 55°C for 8  to 15 hours. After completion of deprotection, the ammonium 

hydroxide-oligonucleotide solution is cooled at room temperature for 30 minutes. 

Primers are stored in ammonia eluant, which stays liquid at -20°C, enabling the 

dispensing of them without repeat freeze-thawing.
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Purification of the primer

To remove the ammonia, Aliquots from the ammonia stock were left in 

opened tubes under the fume hood for 16-24 hours. Alternatively, the butanol 

extraction method was used. 1 0 0  pi of the ammonia stock was mixed with 1 ml n- 

butanol in a 1.5 ml microcentrifuge tube, vortexed vigorously for 20 seconds and then 

centrifuged at full speed microcentrifuge for 10 minutes. The resulting supernatant 

was discarded, the pellet was air dried and dissolved in 50 pi sterile double distilled 

water and its OD was detected by UV spectroscopy at 260 nm. As a useful 

approximation, 1 OD unit of single-stranded oligonucleotide consists of about 33 

micrograms, by mass. A micromole of oligonucleotide has a number of OD units 

equal to 1 0  times the number of bases e.g., a micromole of a 2 0  mer would be 2 0 0  

OD units.

2.6 Reverse transcriptase PCR (RT-PCR)

2.6.1 Reverse transcription

Because RNA cannot serve as a template for PCR, reverse transcription of 

RNA followed by the polymerase chain reaction is an extraordinarily sensitive method 

to detect as few as 1-100 copies of a specific RNA. Reverse transcription was 

accomplished in a final volume of 20pl. A 2X reverse transcription master mix was 

prepared containing multiples of: 4 pi 5X first strand buffer (Gibco BRL), 2 pi 

dNTP's mix (10 mM each), 2 pi of the 0.1M DTT (dithiothreitol), and 1 pi of M- 

MLV reverse transcriptase (200 u/pl; Gibco BRL). 1 pg of total RNA was made up 

to 9 pi by DEPC treated water, denatured at 95°C for 5 minutes then kept on ice. 2 pi 

(20 pmol) of the downstream primer or 2 pi (200 ng) of oligo (dt)i2-is (Pharmacia 

Biotech.) was added to the denatured RNA, the mixture was heated at 65°C for 10 

minutes and quenched on ice for 5 minutes to anneal the primer. To the annealed 

RNA-primer mix (11 pi), 9 pi of the reverse transcription master mix was added,

70



pipetted up and down several times to mix and incubated at 42°C for one hour. After 

reverse transcription tubes were heated at 95°C for 5 minutes to inactivate the M- 

MLV enzyme then stored until used for PCR at -20°C.

2.6.2 Second-strand synthesis and PCR amplification

PCR was performed in a final volume of 50 pi. A PCR master mix was made 

consisting of multiples of: 5 pi 10X GeneAmp PCR buffer (Perkin Elmer/Cetus), 4 pi 

dNTP's mix (200 pM of each dNTP, Boehringer Mannheim), 3 pi of each primer (30 

pmol each), 0.3 pi (1.5 units) Ampli-Ta# polymerase (Perkin Elmer/Cetus) and sterile 

double distilled water up to 45 pi. To each 0.5 ml Eppendorf tubes 45 pi of the PCR 

master mix was aliquoted and covered by 50 pi mineral oil. 5pi of the reverse 

transcription reaction mixture was added under the oil to the PCR master mix and 

mixed by pipetting up and down several times and then centrifuged briefly to obtain a 

clean oil/aqueous interface and to remove air bubbles. Tubes were transferred to a 

pre-heated PCR block at 94°C and incubated for 3 minutes for the initial 

denaturation. 35 PCR cycles were then started at Ta°C for 1 minute annealing (Ta 

determined for each primer set), 72°C extension for 1.5 minutes and 94°C 

denaturation for 1 minute and a final extension step of 72°C for 10 minutes.

2.7 Methods for mutation screening

2.7.1 Southern blot analysis

(Al Probe preparation for Southern blotting

(I) Probe v5B1.4 to detect CTG expansion in myotonic dystrophy patients

The DNA probe p5B1.4 is a 1.4 kb BamHl fragment in a pBluescript plasmid. 

This probe was kindly supplied as plasmid DNA by Dr. Kevin Kelly, Department of 

Medical Genetics, Aberdeen Royal Hospitals NHS Trust. This probe detects a human 

genomic Bgtl fragment of 3.4 kb from individuals with the normal range of CTG
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repeats. Individuals with expansions of the CTG repeats (50 repeats or more) showed 

extra bands with varying sizes. The probe was transformed into bacterial cells, grown 

up and stored as a glycerol stock.

Transformations of the plasmid DNA to competent cells

Plasmid DNA (pBluescript) containing the p5B1.4 probe was transformed to 

DH5 oc™ (Gibco BRL) competent E. Coli cells according to the supplier protocol 

with some modifications. The competent cells were removed from -70°C and thawed 

on wet ice. The required number of autoclaved 1.5 ml Eppendorf tubes were placed 

on ice. The cells were gently mixed and 50 pi were aliquoted into each chilled tube 

using chilled, sterile pipette tips. 10 pi of the plasmid DNA (containing 10 ng of 

DNA) were added to all tubes except the negative control by moving the pipette tip 

through the cells while dispensing. Tubes were gently shaken for 5 seconds 

immediately after addition of DNA and then were incubated on ice for 30 minutes. 

The cells were then heat-shocked at 42°C water bath for 2 minutes without shaking 

and then rapidly placed on ice for 2  minutes. 800 pi of SOC medium was added to all 

tubes and the cells were incubated for one hour at 37°C with mild shaking ( 1 0 0  

r.p.m.). 200 pi of the reaction were spread onto LB agar plates (with 100 pg/ml 

ampicillin) and left at room temperature until the excess moisture has been absorbed. 

The plates were then inverted and incubated at 37°C oven for 12-16 hours then stored 

in 4°C (cold room) for up to one month. Discrete colonies were observed in all plates 

except the negative control.

Isolation of recombinant plasmid DNA and formation of glycerol stocks

The agar plates were removed from the cold room and a single colony was 

picked by autoclaved pipette tip and thrown into 5 ml of LB with ampicillin (100 

pg/ml) in a universal tube. The colony was grown for overnight at 37°C shaker (225 

r.p.m.). Glycerol stock was made by adding 0.7 ml of the growth to 0.3 ml glycerol, 

mixed by brief vortexing and immediately stored at -70°C. To recover bacteria from
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the glycerol stock, the frozen surface of the stock was scraped with sterile inoculating 

loop and streaked out into LB/ ampicillin agar plate to obtain isolated colonies. The 

remaining amount of the culture was used to isolate recombinant plasmid DNA using 

the Insta- Prep™ kit.

Isolation of recombinant plasmid DNA using the INSTA-PREB™ kit (5
®Prime—>3 Prime, Inc. )

The unopened INSTA-PREB™ tube was prepared by centrifuging in a 

microcentrifuge at full speed ( 1 2 , 0 0 0  g or greater) for 1 0  seconds to pellet the 

INSTA-PREB™ gel. To a sterile 1.5 ml Eppendorf tube 1.5 ml of the bacterial 

culture was transferred and centrifuged for 30 seconds at 12,000 to 16,000 g. The 

supernatant was discarded and additional 1 ml of the culture was added to the 

bacterial pellet and centrifuged as before. Virtually all the supernatant was aspirated 

carefully taking care not to disturb the pellet. The pellet was resuspended into 50 pi of 

sterile T.E. (10 mM Tris-Cl, 1 mM EDTA, pH 8 ) by brief vortexing. 300 pi of 

shaken PCI solution (phenol:chloroform:isoamyl alcohol, 50:49:1) was added to the 

tube containing the resuspended pellet and mixed by repeated inversion. The entire 

aqueous and organic contents of the tube were carefully transferred to the pre-spun 

INSTA-PREB™ tube using a large bore pipette tip. The INSTA-PREB™ tube 

(containing bacterial lysate) was then centrifuged in a microcentrifiige at full speed 

(12,000 g or greater) for 30 seconds at speed. 300 pi of Cl solution 

(chloroform:isoamyl alcohol, 49:1) was then added to the spun tube and mixed briefly 

by repeated inversion then centrifuged for another 30 seconds at full speed in a 

microcentrifuge. The topmost phase (containing the plasmid DNA) was recovered by 

pipetting to a fresh sterile microcentrifiige tube and stored at -20°C until used.

Releasing insert probe from plasmid

To release the insert probe from plasmid DNA a 50 pi digest was set up. 14 pi 

of plasmid DNA, obtained by using INSTA-PREP™, along with 4 pi BamHl
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restriction endonuclease, 5 pi 10X enzyme buffer and 27 pi ddH20  were mixed by 

pipetting and incubated at 37°C water bath for 2 hours. The digest was loaded 

alongside 1 kb ladder (Gibco BRL) on 1% low melting agarose gel (SeaKem agarose, 

FMC bioproducts) in IX TAE buffer and electrophoresed at 100 volts for ~ 2 hours. 

The gel was visualised on a UV transilluminator and the 1.4 kb insert band was cut by 

a sterile scalpel blade and placed in a pre-weighed Sarstedt 1.5 ml tube. The weight of 

the insert was then determined and to it a volume of sterile T.E. buffer 2 times the 

weight was added. The insert was then boiled for 5 minutes and stored at -20°C until 

required.

(2) Probes El. 6 and E2.5 to detect major structural rearrangements in patients 

with tuberous sclerosis

Two TSC2 cDNA probes were kindly supplied by Dr. M. Nellist, Institute of 

Medical Genetics, University Hospital of Wales, Cardiff. These probes were EcoRi 

fragments (1.6 kb and 2.5 kb) in pBluescript SK- plasmid. The E2.5 probe contains 

the 3' end of the TSC2 gene while the El . 6  probe covers a 1.6 kb of the TSC2 cDNA 

starting about 0.5 kb from the 5' end of the gene. The probe El. 6  detects 4 and 18 kb 

fragments of EcoRI digested normal genomic DNA while the E2.5 probe detects 3 

and 7.5 kb fragments of Hindlll digested normal genomic DNA. Both probes were 

supplied as cDNA clones in agarose and needed only to be grown up. These two 

probes were grown up, glycerol stocks were made and recombinant plasmid DNAs 

were isolated using the same protocol as for probe p5B1.4. The inserts were released 

from the plasmid DNAs by digestion with EcoRA as previously mentioned for probe 

p5B1.4.

Southern blotting

(1) P i2estion o f genomic DNA

7 to 10 pg of genomic DNA was digested using the appropriate restriction 

endonuclease in a total volume of 40 pi containing IX appropriate enzyme buffer and
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40 units of the specific enzyme. The digests were incubated for overnight in a water 

bath set at the recommended temperature. Digests were either loaded on an agarose 

gel or stored at -20°C for later use.

(2) Agarose gel electrophoresis

The digests were resolved in 20 cm 0.8% agarose gels (FMC bioproducts) 

prepared in IX TAE buffer and containing 0.5 fig/ml ethidium bromide (10 mg/ml). 

Samples were prepared by adding 8  pi of 6 X agarose gel loading buffer (0.25% 

bromophenol blue, 40% (w/v) sucrose in IX TBE buffer) to the 40 pi digest. Samples 

were then loaded alongside 1 kb ladder (Gibco BRL) in the gel and electrophoresed at 

2 volts/cm for 18 hours. After electrophoresis the gel was visualised and 

photographed under UV light and the wells were then cut off. A ruler was always 

photographed alongside the gel so that the mobility of the marker fragments can be 

easily determined. The gel was then transferred to a plastic box, upside down and 

rinsed several times in water, it was then treated in a depurination solution for 15-20 

minutes then rinsed in water. The gel was then transferred to the denaturation solution 

for 30 minutes then rinsed in water and neutralized in two changes of neutralization 

solution for 15 minutes each.

(3) Setting up the transfer ayparatus and Southern transfer o f digested DNA

The transfer apparatus comprised a tray with a raised platform for the gel to 

set on. The tray was half filled with 1.5 liters of 10X SSC. The platform was covered 

by double layer of 3MM Whatman paper wick with its ends dipped into the SSC. The 

3MM paper was left to soak the SSC and became completely wet. Any air bubbles 

between the paper and the platform were smoothed out. After the neutralisation step 

the gel was placed on the wick on the platform and again any air bubbles between the 

gel and the 3MM wick paper were smoothed out. The gel was surrounded by a plastic 

wrap which let out to cover the transfer apparatus. A gel-size Hybond N membrane 

was cut, marked using a permanent pen, wet in 2 X SSC and layered on to the gel

75



taking care to get rid of any air bubbles that were trapped between the membrane and 

the gel. A gel-size double sheet of 3MM paper was wet in 2X SSC and layered on to 

the membrane followed by a stack of absorbent paper (paper towels). A glass plate 

and a weight of -  500 g were laid on top of the absorbing paper stack. The blotting 

was carried out for 12-16 hours at room temperature. After the transfer was complete 

the gel was stained in ethidium bromide (0.5 pg/ml in water) to check the efficiency of 

transfer. The Hybond N membrane was rinsed in 5X SSC to remove residual agarose 

and placed between two sheets of 3MM paper and backed for 3 hours at 80°C oven 

to crosslink the DNA fragments to the Hybond N membrane. Filter was then wrapped 

in a Saran wrap and stored in the cold room (4°C) until hybridization.

(C) Hybridization of DNA blot

(1) Prehvbridization o f filter

The filter was soaked in 2X SSC and placed, face to face, onto a mesh then 

rolled up and placed in a hybridization bottle containing 5 ml of 2X SSC. The bottle 

was closed securely, laid flat and gently rolled to unfold the mesh and the filter so as 

they stuck to the wall of the bottle. The bottle was then opened and the SSC was 

discarded. To a pre-warmed 10 ml of prehybridization solution (at 65°C oven for few 

minutes till it became clear) a 1 0 0  pi denatured (by boiling for 1 0  minutes) sonicated 

salmon sperm DNA (10 mg/ml) was added. The mixture was then added to the filter 

in the bottle and placed in 65°C hybridization oven for a minimum of 6  hours. This 

step of prehybridization was carried out to prevent non-specific binding of 

radiolabelled probe to the filter.

(2) Probe labelling

While prehybridization of the filter, the probe was radioactively labelled using 

the random primed DNA labelling kit (Boehringer Mannheim) according to the 

manufacturer protocol. 24 pi of the probe (in low melting agarose) was boiled for 6  

minutes then incubated at 37°C for one minute. The probe was then added to a mix of
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2 pi each of dATP, dGTP and dTTP, 4 jul of the reaction mix, 1.5 pi of Klenow 

enzyme and 5 pi (50 pCi) of oc-32P dCTP (Amersham) and mixed by repeated 

pipetting. The tube was then incubated at 37°C for two hours and the reaction was 

then stopped by addition of 2 pi of 0.5M EDTA. The labelled probe was then 

separated from the unincorporated qc-32P dCTP using NICK™ columns (Pharmacia 

Biotech.) which were prepacked columns containing sephadex G-50 DNA grade. The 

column was rinsed once by 3 ml IX SSC by allowing them to drip through by gravity. 

The labelled probe (~ 40 pi) was added to the top of the suspended column and then 

400 pi IX SSC was added to the column and allowed to drip through. A Sarstedt 

tube was then placed under the column and a further 400 pi IX SSC was added to the 

top of the column and collected. This had the labelled probe after its separation from 

the unincorporated oc-32P dCTP.

(3) Hybridization o f filter

After at least 6  hours of prehybridization of the filter the prehybridization 

solution from the hybridization bottle was poured into a universal tube and to it the 

denatured (boiled for 6  minutes, and kept on ice for 2 minutes) probe was added. The 

contents of the universal tube were mixed gently and transferred back into the 

hybridization bottle and the bottle was returned to the hybridization oven at 65°C for 

overnight incubation.

(4) Washing the filter after hybridization

After hybridization the hybridization solution was discarded and the filter was 

rinsed in 2 X SSC/0.1% SDS while inside the bottle. The filter was washed once by 

adding 10 ml of 2X SSC/0.1% SDS to the bottle and returning it to the 65°C 

hybridization oven for 10 minutes. The filter was then taken out from the bottle and 

placed in a plastic tray with 0.5X SSC/0 .1 % SDS and washed by shaking at 65°C for 

a further 5 minutes. The filter was monitored using a series 900 minimonitor and if a 

signal greater than 1 0  cpm (count per minute) was detected it was then washed at
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increasing stringency (65°C, 0.25X SSC/0 .1 % SDS then 0 .1 X SSC/O.1 % SDS) 

taking care not to over wash it (filter was frequently monitored every 3 minutes).

(DI Autoradiography

After washing the filter, it was briefly dried and covered by a plastic wrap. It 

was then placed in an autoradiography cassette with intensifying screens and exposed 

to Kodak Diagnostic AR Imaging film with the DNA side of the filter facing the film. 

The position of the upper border of the filter was marked on the film surface so that a 

ruler could be used to estimate the size of the bands detected. The cassette was stored 

in a -40°C freezer for 2  to 7 days before developing the film.

2.7.2 PCR amplification of the unstable CTG repeat in the PM-Kinase eene and 

CAG repeat in the androgen receptor gene from genomic DNA

(A) Radiolabelled PCR

Radiolabelled PCR was optimised and used to amplify DNA containing CTG 

repeats in the DM-Kinase gene from patients with myotonic dystrophy (DM). PCR 

reactions were performed in a 15 pi PCR reaction mix containing IX GeneAmp PCR 

buffer, 100 pM of each dNTP, 15 pmol of each primer (409 and 410, Table 2.1), 100 

ng genomic DNA and 2 pCi oc-32P dCTP (Amersham). The reaction was overlaid 

with 25 pi mineral oil, vortexed and centrifuged briefly. Tubes were heated to 95°C 

for 5 minutes then held at 90°C where 1 unit of AmpliTaq DNA polymerase was 

added to each tube under the oil. Immediately after Taq polymerase was added 32 

PCR cycles were started at 95°C for 1 minute, 65°C for 30 seconds and 72°C for 1 

minute each and was then followed by a final extension step of 72°C for 5 minutes.

(B) Non-radiolabelled PCR

Non-radiolabelled PCR reactions to amplify both genomic DNA that contains 

the CTG repeats at the 3' end of the DM-Kinase gene in DM patients (primer set
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409/406; Mhadevan et al., 1992) and the CAG repeat (primer set 1/2; Allen et al., 

1992) in the first exon of the androgen receptor gene in patients with amyotrophic 

lateral sclerosis (Table 2.1) were optimised. PCR reactions were performed in 30 pi 

PCR reaction mix containing IX GeneAmp PCR buffer, 200 pM of each dNTP, 25 

pmol of each primer and 1 pg genomic DNA. The reaction was overlaid with 50 pi 

mineral oil, vortexed and centrifuged briefly. Tubes were heated to 95°C for 5 

minutes then held at 90°C where 2 units of Ampli7a<y DNA polymerase was added to 

each tube under the oil. Immediately after the addition of Taq polymerase PCR cycles 

were started as follows: 1) For CTG repeat amplification, 32 cycles of 95°C for 1 

minute, 64°C for 1 minute and 72°C for 1.5 minutes followed by a final extension 

step of 72°C for 5 minutes. 2 ) For CAG repeat amplification, 30 cycles of 95°C for 1 

minute, 62°C for 1 minute and 72°C for 1 minute without the final extension step. 

Non-radiolabelled PCR products were resolved using agarose gel electrophoresis.

Table 2.1 Primers used for PCR amplification

Primer Name Primer Sequence Comments

409 (Forward) 5'-GAAGGGTCCTTGTAGCCGGGAA-3' For CTG repeat

410 (Reverse) 5 AGAAAGAAATGGTCT GT G ATCCC-3' For CTG repeat

406 (Reverse) 5'-GGAGGAT GGAACACGGACGG-3' For CTG repeat

Primer 1 5-GCTGTGAAGGTTGCTGTTCCTCAT-3' For CAG repeat

Primer 2 5'-TCCAGAATCTGTTCCAGAGCGTGC-3' For CAG repeat

(C) Polyacrylamide gel electrophoresis

(1) Gel preparation

To detect the CTG repeat expansion in DM patients, radiolabelled PCR 

products were resolved on 8 % denaturing polyacrylamide gels (20cm x 50cm x
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0.4cm) with 7M urea prepared and electrophoresed in IX TBE buffer. 30 pi TEMED 

and 300 pi freshly prepared 10% ammonium persulphate were added to the prepared 

gel solution (60 ml) to allow its polymerisation. The gel was then rapidly poured in a 

pre-assembled, clean and bottom sealed Sequigen sequencing gel apparatus (Biorad) 

and a 20 well, 0.4 cm comb was inserted in place. The gel was left to polymerise for a 

minimum of one hour before electrophoresis.

(2) Labelling a DNA size marker

The 1 kb ladder (Gibco BRL) was radioactively end labelled at the 5' ends 

using T4 polynucleotide kinase (Pharmacia Biotech) and [y-32P] ATP. A 10 pi mix of 

1 pi ladder (~ 1 pg), 1 pi One-Phor-All Plus buffer (Pharmacia Biotech), 6  pi sterile 

distilled water, 1 pi [y-32P] ATP (10 pCi of 3000 Ci/mmol) and 1 pi of T4 kinase 

enzyme, was made in 0.5 ml microcentrifuge tube and incubated at 37°C for 45 

minutes. 80 pi of formamide loading buffer (95% formamide, 10 mM NaOH, 0.05% 

bromophenol blue and 0.05% xylene cyanol) was then added to the reaction. The tube 

was stored at -20°C and the labelled ladder can be used for up to 15 days.

(3) Samvle preparation, gel loadins and eel electrophoresis

After the gel has set, it was assembled within the gel kit and the well forming 

comb was removed. Buffer chambers were filled with IX TBE buffer and the wells 

were rinsed thoroughly with buffer. 1 pi of the PCR product was mixed with 5 pi 

formamide loading mix and denatured at 96°C for 2 minutes and immediately 

quenched on ice for few minutes. 3 pi of labelled 1 kb ladder were denatured in the 

same way and loaded alongside prepared samples. Samples were electrophoresed at 

2000 volts for about 2 hours (till the xylene cyanol dye moved 2/3 of the gel length).

(4) Autoradio2raphv

After gel electrophoresis, the glass plates were opened and the gel was 

transferred to 3MM *Whatmann paper, covered with Saran wrap and dried under
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vacuum for 30 minutes at 80°C on a gel dryer (Biorad model 583). The gel was 

autoradiographed in an autoradiographic cassette with intensifying screens using X- 

Omat diagnostic AR imaging film (Kodak), with the DNA side facing the film for 5 to 

16 hours at -40°C.

(D) Agarose gel electrophoresis

Agarose gel electrophoresis was carried out to detect both CTG and CAG 

repeat expansions after non-radiolabelled PCR amplification of the repeat. 1.5%, 15 

cm agarose gels were prepared in IX TBE buffer with 0.5 pg/ml ethidium bromide. 

30 fil of PCR product was mixed with 6  \i\ of 6 X agarose gel loading buffer and 

loaded alongside 1 kb and 100 bp (Gibco BRL) ladders. Gels were electrophoresed at 

170 volts for 3 hours and then visualised and photographed under UV light.

2.7.3 Single strand conformational polymorphism (SSCP) analysis

SSCP analysis allows the detection of a single base change. Wild type and 

mutant target DNAs are amplified by PCR, denatured and then electrophoresed side 

by side through a non-denaturing polyacrylamide gel. The two single-stranded DNA 

molecules from each denatured PCR product assume a three-dimensional 

conformation which is dependent on their primary sequence. If a sequence difference 

(mutation) exists between wild-type and mutant DNA, this may result in differential 

migration of one or both of the mutant strands.

(Al PCR amplification of the SOD-1 gene exons from genomic DNA

Radiolabelled PCR amplification of the SOD-1 gene exons 1, 2, 4 and 5 were 

optimised and carried out using primer sets designed by Rosen et al. (1993) and Deng 

et al. (1993). To amplify exon 3 a primer set was designed using the computer 

program Oligo™ (Medprobe) and the PCR conditions for this primer set was 

optimised. Table 2.2 shows the sequence of the used primer sets. 15 |il PCR reaction
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mix was set up containing IX GeneAmp PCR buffer, 50pM of each dNTP, 15 pmol 

of each primer, 100 ng genomic DNA and 2 pCi oc-32P dCTP. The reaction was 

overlaid with 25 pi mineral oil, vortexed and centrifuged briefly. Tubes were heated to 

95°C for 2 minutes then held at 90°C where 1 unit of AmyXiTaq DNA polymerase 

was added to each tube under the oil. Immediately after the addition of Taq 

polymerase, 28 PCR cycles were started at 95°C for 1 minute, 61°C for 1 minute and 

72°C for 45 seconds each and was then followed by a final extension step of 72°C for 

6  minutes.

Table 2.2 PCR primers used in analysis of the SOD-1 gene

Exon Primer Sequence (5’ to 3' end) Product Size Reference

I ’F’ 

1 fR’

TTCCGTTGCAGTCCTCGGAA

CGGCCTCGCAACACAAGCCT

158 bp Deng et al., 

(1993)

2 set a ’F' 

2 set a ’R’

ACTCTCTCCAACTTTGCACTT

CCCACCTGCTGTATTATCTCC

132 bp Rosen et al., 

(1993)

3 ’F

3 ’R’

T AAAT AGGCT GT ACC AGT GC A 

ATGAACTCCAGAAACGTATCG

130 bp Designed for 

this study

4 set a *F’ 

4 set a ’R*

CAT AT AAGGC AT GTT GG AGACT 

TCTT AGAATTCGCGACT AAC AATC

214 bp Rosen et al., 

(1993)

5 ’F

5 ’R’

AGT GATT ACTT G AC AGCCC A 

TTCT AC AGCT AGC AGGAT AAC A

216 bp Deng et al., 

(1993)

'F' stands for forwards and 'R' stands for reverse primers.
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(B) Sample preparation

After thermal cycling, 1 pi PCR product was mixed with 9 pi formamide 

loading buffer, heat denatured at 95°C for 3 minutes then quenched on ice for at least 

5 minutes before loading 3 pi of it into SSCP gel.

(Q  Gel types and conditions of electrophoresis used in SSCP analysis

(1) MDE™ gel (FMC Biovroducts) electrophoresis:

The MDE™ gel is a polyacrylamide-drived matrix designed to improve the 

resolution of conformationally different DNA molecules. 0.5X MDE™ gel (20 cm x 

40 cm x 0.4 cm) containing 5% glycerol was prepared in 0.6X TBE buffer. The gel 

was left to set for at least one hour before sample loading. 3 pi of each prepared 

sample was loaded and electrophoresis was carried out at 5 watts for 16 hours at 

room temperature.

(2) Polyacrylamide eel electrophoresis (PAGE):

Three different conditions using 8 % non-denaturing PAGE in IX TBE buffer 

were tried. The first was by running gels containing 5% glycerol at 5 watts at room 

temperature. The second was by running gels containing 10% glycerol at 8  watts at 

room temperature and the third by running gels without glycerol at 1 2  watts in cold 

room (4°C).

(D) Autoradiography

Autoradiography was carried out by placing the dried gel with X-Omat 

diagnostic AR film (Kodak) in a cassette with intensifying screens. The gel was 

autoradiographed for 5 to 16 hours at -40°C.
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2.7.4 Screening for known mutations by digestion of PCR products

Patients with amytrophic lateral sclerosis (ALS) were screened for three 

known mutations in the SOD-1 gene using restriction endonuclease digestion of PCR 

products. These mutations were the Ala4Val in exon one, Gly93Ser and Ilell3Thr in 

exon four. Moreover, 100 normal chromosomes were screened for the presence of 

three missense mutations in the TSC2 gene, Ml602V (TSC2 cDNA segment III), 

S1715T and R1720W (TSC2 cDNA segment IV).

(Al Non-radiolabelled PCR

Non-radiolabelled PCR amplifications were optimised and carried out for both 

exons 1 and 4 using the above mentioned primer sets (Table 2.2). A 50 pi reaction 

mix was set up containing IX GeneAmp PCR buffer, 200 pM of each dNTP, 25 pmol 

of each primer and 1 pg genomic DNA. The reaction was overlaid with 50 pi mineral 

oil, vortexed and centrifuged briefly. Tubes were heated to 95°C for 2 minutes then 

held at 90°C where 2 units of Ampli7 hr<7 DNA polymerase was added to each tube 

under the oil. Immediately after the addition of Taq polymerase, 32 PCR cycles were 

started at at 95°C for 1 minute, 61°C for 1 minute and 72°C for 1 minute each and 

was then followed by a final extension step of 72°C for 6  minutes. TSC2 cDNA 

segments III and IV were amplified as described before (2.6).

(B) Testing the non-radiolabelled PCR

After completion of the PCR reaction 5 pi of the PCR product was aliqouted 

from each tube, mixed with 1 pi loading mix (0.25% bromophenol blue, 40% (w/v) 

sucrose in IX TBE buffer) and resolved on a 1% agarose minigel containing 0.5 

pg/ml ethidium bromide and prepared and electrophoresed in IX TBE buffer at 100 

volts for 30 minutes. The gel was visualised on a UV transilluminator to check for the 

efficacy of the PCR amplification. Single, correctly sized bands were detected from
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most of the PCR reactions. If otherwise, the PCR reaction for the specific product 

was repeated.

(O  Ethanol precipitation of the PCR products

Ethanol precipitation of the PCR products was carried out for the remaining 

45 pi PCR reaction. 4.5 pi 3M Na acetate (pH 5.2), 90 pi absolute ethanol and 2 pi 

glycogen (20 mg/ml) were added to each 45 pi PCR reaction and mixed by brief 

vortexing. Tubes were kept at -70°C for 15 minutes then centrifuged in a 

microcentrifuge at full speed (12,000 g or greater) for 15 minutes. Pellets were 

washed in 70% ethanol and centrifuged for 5 minutes as before. Ethanol was then 

discarded and the pellet air dried for 5 to 10 minutes then dissolved in 15 pi ddH20.

(D) Restriction endonuclease digestion of the PCR products

10 pi of the ethanol precipitated PCR amplification products were digested 

using the appropriate restriction endonuclease according to the supplier recommended 

buffer and temperature, for 2 hours. For one of them, Bsrl enzyme, after 2 hours of 

incubation at 65° C, an extra 1 0  units of the enzyme were added to each reaction tube 

and the whole reaction was incubated at 65° C for overnight. The digested products 

were resolved by 8 % or 12% polyacrylamide gel electrophoresis in IX TBE buffer for

2.5 to 6  hours at 280 volts (constant) then either silver or ethidium bromide stained 

and photographed.

(Et Silver staining

During all the steps the gel was gently shaken. It was first fixed in two 

changes of solution 1 (10% ethanol, 0.5% acetic acid) each for 5 minutes. To stain the 

gel, it was incubated for 15 minutes in freshly prepared 0 .1 % silver nitrate (solution 

2). The gel was rinsed briefly with distilled water and developed by incubation in 

solution 3 (1.5% NaOH, 0.1% formaldehyde, mixed just before use) for 20-30
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minutes. It was then treated with 0.75% Na2CC>3 solution for 10 minutes, sealed in a 

plastic bag and photographed.

2.7.5 Chemical cleavage of mismatches (CCM1 analysis

To screen for mutation sites within the amplified PCR products from TSC2 

cDNA and DNA, the CCM method described by Cotton et al. (1988) was used with 

some modifications. In this technique, mutant DNA was allowed to form a duplex 

with a radiolabelled wild type control DNA (probe) obtained by PCR amplification. 

Where mutations were present, mismatches were chemically modified and cleaved 

leading to detection of different-sized radioactive fragments. The protocol involved 

the following steps: -

(Al Preparation of test DNA

(1) RT-PCR and DNA-PCR

Four RT-PCR segments were optimised and amplified from the TSC2 cDNA 

using four home-designed sets of primer (Table 2.3) and the previously mentioned 

method (2 .6 ).

Two DNA-PCR segments were also optimised and amplified from the same 

gene. The first one gave amplification product from exon 1, 325 bp from the upstream 

promoter area and part of intron 1. The second segment produced amplification 

products from exons 38 to 41 with the intervening intronic sequences. The primer sets 

used for the DNA-PCR were home-designed (Table 2.3) and the PCR amplification 

was accomplished in a 50 |ul reaction mix using standard PCR protocol (2 .7.4-A) with 

32 cycles and a final 5 minutes extension step at 72°C.
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Table 2.3 PCR primers used in amplification of DNA and cDNA segments of the 

TSC2 gene. (F= forward, R= reverse)

Segment/exon Primer Sequence (5* to 3' end) Annealing

Temp.

Product 

size (bp)

Seg. I 'F' 

Seg. I R'

5 ’ -CATC ACC AGGCTC ATC AAGC-3 ’

5 ’ - AG AAAC AGGAAGT C AAAGGC-3 ’

60 °C 837

Seg. II 'F 

Seg. II 'R'

5 ’ -CCT GGACGGGGAAAGT GCT G-3 ’ 

5 ’ -TGGCGATGTGGAAGACGGCT-3 ’

59 °C 602

Seg. Ill F  

Seg. Ill 'R'

5’-ATCGCCGTCCTGTATGTTGG-3’

5 ’ -T AGGCT GGGGTTGGAGT AGG-3 ’

60 °C 663

Seg. IV F  

Seg. IV R'

5 ’ -TC ACCCCGCTGGACT ACGAG-3 ’ 

5’-ATCTGTGCCTCTATGTCTGTGC-3’

63 °C 505

Exon 1 F  

Exon 1 R'

5 ’ -GGGT AGAGGAGAGACGGC AA-3 ’ 

5 ’ -C ACCC AGATCCT GACTTT CG-3 ’

60 °C 663

Exon 38-41 F  

Exon 38-41 R

5 ’ -CCCC AGC AATT AGAGGTGTC-3 ’ 

5 ’ -GC ACC AAGC AGAC AAAGT C A-3 ’

63 °C 1 1 2 0
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(2) Identification o f  PCR products

10 pi aliquots from PCR products were electrophoresed on 1% agarose gels in 

IX TAE buffer with 0.5 pg/ml ethidium bromide. They were visualised with a UV 

transilluminator to confirm the size and to detect any abnormal alterations in it (for 

RT-PCR, where exon skipping and small intragenic insertions or deletions could cause 

alteration of the PCR product size). The bands were then excised from the gels, 

covered with 50 pi sterile double distilled water and stored at -20°C for later use. The 

remaining 40 pi PCR products were cleaned for use in CCM analysis.

(3) Cleanine o f  PCR products

Geneclean™ purification kit (Bio 101 Inc.) was used to purify DNA 

amplification products (the remaining 40 pi) directly from the PCR mixture. If there 

was non-specific amplification products, the whole PCR product was electrophoresed 

on 1% low melting point agarose gel (NuSieve) in TAE buffer and the required band 

was cut out and the DNA was recovered using the same kit. The cleaning procedure 

was as follows:-

To the PCR product (or the excised band) 3 volumes of 6 M Nal (supplied with the 

kit)was added. If purifying DNA from excised gel band, tubes were kept at 55°C for 5 

minutes, with mixing after one minute, to ensure gel dissolving. 7 pi glassmilk (silica 

matrix in water) was added to each tube, vortexed briefly every two minutes for ten 

minutes at room temperature then pelleted by centrifugation in a microcentrifuge at 

full speed for 5 seconds. The resulting pellet was washed two times with 300 pi NEW 

wash solution (14 ml of the NEW concentrate, 280 ml dH20 , 310 ml 1 0 0 % ethanol) 

Pellet was then dissolved in 10 pi double distilled water and incubated at 65°C water 

bath for 10 minutes. DNA was recovered by centrifugation in microcentrifuge at full 

speed for 2 minutes and the supernatant (containing the recovered DNA, ~ 10 pi) was 

transferred to a fresh tube and stored at -20°C until used. 1 pi of the recovered DNA 

was tested on 1% agarose gel to judge for the efficacy of the recovery. The 

purification results in removal of both PCR primers and unincorporated nucleotides
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which are likely to affect mismatch signal by serving as additional targets for chemical 

modification.

(B) Preparation of labelled probes

A probe is a PCR product obtained from wild-type DNA for the segment of 

interest. Internal labelling of the PCR was carried out by direct incorporation of 2  pCi 

[a-32P] dCTP in the PCR reaction mix. PCR was carried out in 50 pi reaction mix 

using standard PCR conditions and PCR cycles as the non-radiolabelled one. The 

labelled probe was isolated from low-melting-point agarose using Geneclean™ 

purification and its specific activity was determined (approximately 1 0 7c.p.m./pg).

Alternatively, 5' end labelling of the probe (both strands) was done by mixing 

100 ng of the probe DNA (after Geneclean™ purification), 10 pCi [y-32P] ATP, IX 

One-Phor-All buffer Plus (Pharmacia Biotech), ~10 units of polynucleotide kinase 

FPLCpure (Pharmacia Biotech.) and up to 1 0  pi ddfbO. The mixture was incubated 

at 37°C for 45 minutes then stored at -20°C until later use. Probes were stored for a 

maximum of two weeks before radiolysis rendered them impractical.

(Cl Formation of the hybrids (heteroduplexes)

To minimise the formation of probe homoduplexes, hybridisation between 

probe and target were set up in which the target DNA was present in 10 to 20 fold 

molar excess over probe DNA. Approximately 5 ng of probe DNA per target sample 

per modification reaction was needed. A premix containing IX hybrid buffer and the 

appropriate quantity (-10 ng/ test DNA sample) of labelled probe in T0.iE. buffer was 

made. 9 volumes of this premix was added to one volume of test DNA (-100 to 150 

ng) in 0.5 ml Eppendorf tubes, topped with 50 pi mineral oil and then placed in a 

boiling water bath for 5 minutes. Immediately, after boiling, the tubes were transferred 

to 65°C water bath and incubated for 5 to 16 hours to allow hybrid formation to 

occur. Tubes were then transferred on ice and the aqueous phase from each tube 

(containing the hybrids) was equally divided between two 1.5 ml siliconized
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Eppendorf tubes (one for each chemical modification). To each tube, 3 pi of 20 mg/ml 

mussel glycogen (Boehringer-Mannheim) and 750 pi of the stop precipitation mix was 

added, mixed well and chilled on dry-ice for 10 minutes. Tubes were spun in a 

microcentrifuge at full speed (~ 14000 g) for 1 0  minutes. Supernatants were discarded 

and the pellets were washed in 70% ethanol, air dried and resuspended in 7 pi To.iE 

buffer. Samples were either used immediately or stored for no more than 16 hours at 

-20°C for later use.

(D) Mismatch analysis

(1) Chemical modification m itts hvdroxvlamine and osmium tetroxide

Approximately 6.5M solution of hydroxylamine hydrochloride (BDH) pH 6  

(adjusted with diethylamine, BDH) was made and stored at 4°C for up to one week. 

1.39 g of hydroxylamine was dissolved in 1.6 ml double distilled water and its pH was 

adjusted to 6  by approximately 1.5 ml diethylamine. 20 pi of this solution was added 

to 7 pi hybrid, mixed well and incubated at 37°C for 2 hours.

Fresh solution of osmium tetroxide (Aldrich) and pyridine (BDH) was made 

on ice by mixing 6.75 pi pyridine with 1.5 pi osmium tetroxide (4% solution stored at 

4°C for up to 2 months) and 154 pi T0.iE buffer. 18 pi of this solution was added to 

the other 7 pi hybrid, mixed well and incubated at 37°C for two hours.

Modification reactions were stopped and precipitated by adding 750 pi stop/ 

precipitation solution to each tube, mixing them well, incubating the tubes on dry ice 

for 1 0  minutes and centrifugation in a microcentrifuge at full speed (-14000 g) for 1 0  

minutes. The pellets were washed in 70% ethanol and air dried.

(2) Piperdine cleavage o f the chemically modified mismatches

1M (10%) freshly made solution of piperdine (Fluka) was made in ddH20  and 

50 pi of it was added to each pellet and the tubes were vortexed for 1 minute to 

resuspend the pellet then briefly centrifuged. Tubes were incubated at 90°C for 30 

minutes then kept on ice for few minutes and precipitated by 750 pi stop/precipitation
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solution as above. The pellets were washed in 70% ethanol, air dried and resuspended 

in 10 pi formamide loading buffer (95% deionized formamide, lOmM EDTA, 10 

mg/ml bromophenol blue and 1 0  mg/ml xylene cyanol).

(3) Denaturing volvacrvlamide sel electrophoresis and autoradiography

6 % denaturing polyacrylamide gel (20cm x 50cm x 0.4cm) with 7M urea was 

prepared in IX TBE buffer and cast in a sequencing gel apparatus (Biorad) as before. 

Samples were denatured by heating at 95°C for 5 minutes and quenched on ice for 

few minutes then loaded (5 pi) alongside a labelled ladder (1 kb ladder) and 

electrophoresed at 2000 constant volts for approximately 3 hours (until the 

bromophenol blue dye reached the bottom of the gel). Gel was dried and 

autoradiographed for 1 2  to 16 hours as before.

2.8 Sequencing of the PCR products

After screening for point mutations or minor sequence alterations using either 

SSCP or CCM analysis, samples that gave positive screening results were subjected to 

sequencing of the PCR products from the corresponding exon(s) or cDNA segments 

to detect any sequence alterations. Three different sequencing strategies were used in 

this study. (1) Direct sequencing of the asymmetric PCR products, (2) PCR 

sequencing using PRISM™ Ready Reaction DyeDeoxy™ Terminator Cycle 

Sequencing Kit (Perkin Elmer) and (3) Sequencing of cloned PCR products. Any 

alterations in the normal sequence were confirmed by sequencing of the opposite 

DNA strand.

2.8.1 Direct sequencing of the asymmetric PCR products

In this technique asymmetric PCR amplification of the genomic DNA or 

cDNA template to be sequenced was followed by dideoxynucleotide sequencing of

91



the PCR products (Sanger et al., 1977) using US Biochemicals sequanase version 2.0 

kit.

(A) Asymmetric PCR

Asymmetric PCR was performed according to the protocol developed by 

Mgone et al. (1992). The templates used for asymmetric PCR reaction were the PCR 

products of the corresponding regions. DNA or cDNA was amplified normally by 

PCR. PCR products were resolved by agarose gel electrophoresis and bands were cut 

out of the gels, placed in 1.5 ml Eppendorf tubes with 50 pi TE buffer and frozen at - 

20°C for overnight. 5 pi aliquots were then used for asymmetric PCR amplification 

using standard protocol of 40 cycles, unequal primer ratios (1/50 to 1/100) and the 

same conditions as symmetric PCR for that region. Two PCR reactions were 

performed for each segment where the second reaction used a reversed primer ratio 

so that both single strands could be generated. 5 pi aliquots from each reaction was 

tested by agarose gel electrophoresis alongside a DNA size marker and a double 

stranded control PCR. The remaining PCR volumes were cleaned prior to sequencing 

to remove excess dNTPs, salt and primers. Equal volume of 4M ammonium acetate 

and two volumes of isopropanol were added to each reaction, mixed by brief 

vortexing and incubated at room temperature for 1 0  minutes then centrifuged in 

microcentrifuge at full speed (-14000 g) for another 10 minutes. Pellets were washed 

in 70% ethanol, air dried and resuspended into 7 pi of ddH20  and used directly in 

sequencing reaction.

Sequencing protocol using USB seauenase version 2.0 sequencing kit

T7 DNA polymerase (sequenase version 2.0) was diluted by mixing the whole 

amount of the enzyme (25 pi) with 25 pi inorganic pyrophosphatase and 150 pi of 

glycerol enzyme dilution buffer. This diluted the polymerase 8  folds to its working 

concentration of 1 . 6  units/pl.
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7 pi of the cleaned asymmetric PCR product was mixed with 2 pi 5X 

sequenase buffer to give a final concentration of 40 mM Tris-HCl pH 7.5, 50 mM Na 

Cl and 20 mM MgCl2 and 1 pi (1 pmol) of sequencing primer complementary to the 

synthesised single strand. Primer concentration was determined using the arbitrary 

formula: Concentration (pmol/pl)= primer OD at 260 nm/ (0.01 x number of primer 

bases). The tube was vortexed and centrifuged briefly then incubated at 65°C in a 

PCR block for 2 minutes and slowly cooled to less than 35°C over 15 to 30 minutes 

then quenched on ice for few minutes. To each tube 1 pi of 0.1M DTT, 2 pi of a 1/5 

dilution of labelling mix (1.5 pM of each dNTP except dATP), 0.5 pi of [a-35S]dATP 

(1000 Ci/mmol; lOpCi/pl) and 2 pi of a 1/8 dilution of T7 DNA polymerase were 

added, mixed well, briefly centrifuged and incubated at room temperature for 2-5 

minutes. Once the labelling reaction was completed 3.5 pi of the mix was transferred 

to a prewarmed (at 42°C ) 2.5 pi of each termination mix and continued the 

incubation at 42°C for 5 minutes. There were four termination mixes contained 80 

pM of each dNTP and 8  pM of the appropriate dideoxyribonucleoside triphosphate 

(ddNTP). The reaction was then terminated by the addition of 4 pi formamide dye 

stop solution. Tubes were then stored at -20°C until further need.

{Q  Gel electrophoresis

8 % denaturing polyacrylamide gels containing 7M urea were prepared and run 

in IX TTE buffer (glycerol tolerant buffer) as before (2.7.2). Gels were pre-run for 

variable periods of time (30 to 60 minutes) at 2500 volts to heat it to 50°C then the 

volts was reduced to keep this temperature constant. Samples were denatured at 75°C 

for 3 minutes, quenched on ice and 2.5 pi from each termination reaction was loaded. 

Electrophoresis was carried out at 50°C for 2-4 hours depending how far was the 

area of interest. After electrophoresis the gel was taken out and dried in a vacuum gel 

dryer then exposed to Kodak X-Omat AR film using a cassette with intensifying 

screens for 16 to 40 hours at -40°C.
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(D) Sequencing close to the primer

To read sequences close to the primer (few bases) some modifications were 

done in the sequencing protocol. One of these was to add 1 pi of Mn buffer (0.15M 

Na isocitrate, 0.1M MnCh) to the labelling mix before adding sequenase enzyme. Mn 

reduces the average length of DNA synthesised in the termination step, intensifying 

the sequencing ladder close to the primer. Mn buffer is supplied with the USB 

sequencing kit. Other modification was to use a higher dilution of the labelling mix 

(1/10 or 1/20) instead of the ordinary 1/5 dilution. It was important to have a 

sufficient quantity of the PCR template and to double the amount of the sequencing 

primer to read sequences close to the primer. The gel running time of such samples 

was around two hours.

(E) Sequencing far from the primer

To read sequences more than 200 bp from the primer it was essential to make 

some modifications in the sequencing protocol. These changes were recommended by 

the 'Step-by-Step' protocol 9- edition supplied with the sequanase version 0 . 2  kit, by 

using more nucleotides in the labelling reaction, by adding undiluted labelling mix and 

by lengthening the labelling time to 5 minutes. Altering the nucleotide mixture in the 

termination mix was another recommendation. This was achieved by using the 

sequence extending mix. 1.5 pi of the termination mix was mixed with 1 pi of the 

extending mix to replace the usual 2.5 pi termination mix. Gels were usually run at a 

lower temperature (40°C ) for a longer time ( 8  hours).
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2.8.2 Automated sequencing of PCR products using PRISM™ Ready Reaction

DveDeoxv™ Terminator Cycle Sequencing Kit (Perkin Elmer)

(A) DNA preparation and cycle sequencing

Double stranded PCR products were obtained from areas of interest as 

mentioned before. The products were cleaned using the Geneclean™ kit (2.7.5) or by 

ethanol precipitation (2.7.4). A 10.5 pi PCR mix was made containing 2 pi of the 

cleaned PCR product, 3.2 pmol of one of the primers used for the initial PCR and 

ddH20  and kept on ice. 9.5 pi of the terminator premix (Prism™ Ready Reaction 

DyeDeoxy™ Terminator Cycle Sequencing Kit, Perkin Elmer) was added to each

10.5 pi PCR mix on ice, mixed well, overlaid with one drop of mineral oil (-40 pi) 

and placed on 96°C preheated PCR block (Perkin Elmer/Cetus PCR model 480). 

Immediately a 25 PCR cycles of 96°C for 30 seconds, 50°C for 15 seconds and 60°C 

for 4 minutes was started. The PCR cycles were then followed by a rapid thermal 

ramp to 4°C and held.

(B) Purification of the extension products

At the end of thermal cycling 80 pi of ddH20  was added to each 2 0  pi 

reaction volume under the oil and mixed by pipetting. The whole 100 pi volume was 

transferred from under the oil to a fresh 0.5 ml Eppendorf tube. The terminators were 

extracted two times with 100 pi phenol:water:chloroform (68:18:14) at room 

temperature. The extension products were precipitated by adding 15 pi of 2M Na 

acetate, pH 4.5, and 300 pi of absolute ethanol followed by incubation at -70°C for 

15 minutes and centrifugation in microcentrifuge at full speed for another 15 minutes 

at room temperature. Pellets were washed in 70% ethanol and vacuum centrifugation 

dried for 5 minutes.
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(Cl Running of the sequencin2 reaction on the automated sequencer (ABI Prism

373 automated sequencing apparatus)

6 % denaturing polyacrylamide gels with 8 M urea was prepared and run in IX 

TBE buffer according to the parameters suggested by the ABI. Gel plates were 

carefully cleaned to avoid smearing and background noise which could interfere with 

data analysis. The plates were scanned for any signal artifacts caused by dirt. If such 

artifacts were present, the gel-scanning area was cleaned once with a damp tissue then 

re-scanned. The gel was pre-run before loading for 10 minutes and re-scanned for 

signal artifacts as before. 4 jliI of gel loading mix was added to each sample pellet. 

Samples were denatured at 92°C for 2 minutes, rapidly quenched on ice then loaded 

into the gel.

(DI Result analysis

Analysis of the results obtained from each gel run was done by the Mackintosh 

computer attached to the prism 373 DNA sequencer system using 373A software 

version 1.2.1 (ABI). The sequencer which has a fluorescence detection system sends 

the collected data to the computer. The computer processes the data and presents it as 

a chromatogram with four coloured peaks, each representing one of the four bases 

(A,T,C & G). Base designation is also given above each peak. Heterozygosity is 

represented by two superimposed peaks and designated as an N'. Heterozygosity was 

always confirmed by sequencing the other DNA strand.

2.8.3 Sequencing of cloned PCR products

(Al Cleaning of the PCR products

PCR products were obtained as previous. To prepare the PCR products for 

cloning, each product was mixed thoroughly with SDS and EDTA, pH 8.0 to a final 

concentrations of 0.5% and 5 mM respectively in a 0.5 ml microcentrifuge tube. 

Proteinase K was added to each tube to a final concentration of 100 fig/ml and the
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tubes were incubated for 30 minutes at 56°C. DNA was precipitated by 0.1 volume 

3M Na acetate, pH 7.0 and 2 volumes ethanol at -20°C for 15 minutes. DNA was 

recovered by centrifugation at 1 2 0 0 0  g for 15 minutes at 4°C in a microcentrifuge. 

Pellets were washed with 70% ethanol at 4°C and recentrifuged. Pellets were then air 

dried and redissolved in 30 pi sterile T.E. buffer, pH 7.6.

(B) PCR cloning using pGEM -T vector systems (Promegal
® ®

The pGEM -T vector is prepared by cutting Promega's pGEM -5Zf(+)

vector with EcoK V and adding a 3' terminal thymidine to both ends. Ligation of these

single 3'-T overhangs at the insertion site takes advantage of the non-template

dependent addition of a single deoxyadenosine to the 3' end of PCR products by
®certain thermostable polymerases. A 1:1 molar ratio of the pGEM -T vector to a

®PCR product was used in the ligation reaction. The pGEM -T vector is about 3 kb in 

length and to calculate the appropriate amount of PCR product the following equation 

was used:
ng of vector x kb size of insert .
 ——:-----   x insert: vector molar ratio = ng of insert

kb size of vector
®Following the protocol supplied by Promega, the pGEM -T vector and

®pGEM -T vector control DNA tubes were briefly centrifuged to collect contents at 

the bottom of the tube. A 10 pi ligation reaction was set up in two 0.5 ml 

microcentrifuge tubes, one tube for the control reaction and the other for the standard 

reaction as follows:

Standard Reaction Control Reaction

T4 DNA ligase 10X Buffer 1 pi 1 pi

pGEM@-T vector (50 ng) 1 pi 1 pi

PCR product (or pGEM°-T vector control) x pi 2  pi

T4 DNA ligase (1 Weiss unit/pl) 1 pi 1 pi

dH20  to a final volume of 1 0  pi 1 0  pi
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The reactions were incubated overnight at 15°C and 2  pi of each reaction was used 

for the transformation reaction as described in 2.7.1 with only one difference. The 

transformation culture was grown on LB/ampicillin/IPTG/X-gal plates equilibrated to 

room temperature prior to plating. 100 pi of 0.1M IPTG and 20 pi of 50 mg/ml X- 

Gal were spread over the surface of LB/ampicillin plate and allowed to absorb for 30 

minutes at 37°C prior to use. Insertional inactivation of the a-peptide coding region 

of the enzyme (3-galactosidase of the ligation vector allowed recombinant clones to be 

directly identified (white colonies) by colour screening on indicator plates. Colonies 

containing (3-galactosidase activity (usually has no insertion of the PCR fragment) will 

produce blue colonies.

(Cl Isolation of recombinant plasmid DNA

Recombinant plasmid DNA was grown up and isolated using INSTA-PREB™ 

kit as described in 2.7.1 with only one modification where the plasmid DNA was 

extracted with an additional 200 pi of PCI solution. After the first PCI extraction, 200 

pi of PCI solution was added to the spun tubes, mixed briefly by repeated inversion 

and spun again. This was followed by the standard addition of 300 pi of Cl solution 

and the standard protocol was continued. Recombinant plasmid DNA was isolated 

from at least 10 single white colonies for each target PCR DNA.

(D1 Double stranded sequencing of the recombinant plasmid DNA

Prior to sequencing, using the USB sequenase version 2.0 sequencing kit, 4 

pg of plasmid DNA was alkaline-denatured. 20 pi of plasmid DNA (~4 pg) was 

mixed with 2 pi of 2M NaOH/2mM EDTA solution and incubated at 37°C for 30 

minutes. Denatured DNA was then precipitated by 0.1 volume 3M Na acetate, PH 

4.5-5.5 and 3 volumes 100% ethanol at -70°C for 15 minutes. DNA was recovered by 

centrifugation in a microcentrifuge at full speed for 15 minutes. Pellets were washed 

with 70% ethanol, air dried and redissolved in 7 pi ddH20. Sequencing and sequence
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analysis were carried out as described before (2.8.1). For each insert-PCR, sequencing 

of 1 0  colonies was carried out and any sequence abnormalities were confirmed by 

sequencing the opposite DNA strand.

99





(3) RESULTS

3.1 Screening for the CTG repeat expansion in DM families

3.1.1 Radiolabelled PCR amplification of the DNA sequence containing the 

(CTGln repeat

The status of the DM locus was surveyed in 49 DM families ( 8 6  DM patients 

and 96 apparently normal individuals). All the families were ascertained by clinical 

diagnosis of the proband; an expanded DM allele was identified afterwards in each of 

these individuals. Primer set 409/410 (Mahadevan et al., 1992) was used and the PCR 

conditions were optimised to amplify the region of the myotonic dystrophy protein 

kinase (DMPK) gene that contains the unstable CTG repeat sequence. 32P dCTP was 

used in the PCR reaction mix to internally label the PCR products. The products of 

the PCR reactions were resolved in 8 % denaturing polyacrylamide gels. Gels were 

exposed to Kodak X-AR5 film and autoradiographed at -70° C for 16 hours. PCR 

amplified products from subjects of the same family were electrophoresed in the same 

gel to avoid electrophoresis variability.

The size of the amplified products from the normal chromosome varies 

between 64 bp (for the 5 repeats) and 140 bp (for the 37 repeats). Expanded alleles 

containing up to -83 repeats could be amplified from DM chromosome. The 

expanded alleles always show a multiple band pattern which may reflect somatic 

mosaicism or stuttering during the PCR reaction (Figure 3.1)
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F ig u r e  3.1

(a) Size distribution o f  C T G  repeats in a DM  family using ' P-labelled PCR products  

analysed by denaturing polyacrylamide electrophoresis. Lanes 1 and 12 are 

radiolabelled 1 kb ladder. Lanes 2, 4, 6, 9 and 10 show PCR products  from 

individuals with one allele (either normal hom ozygous for that allele or heterozygous 

with the second allele too large to amplify). Lane 7 shows PCR products  from a DM 

patient with one normal allele (5 repeats) and one expanded (~  59 repeats) allele 
(arrow ).

(b)  Zoom -in  o f  som e C T G  expanded alleles to show the multiple band pattern o f  
amplification
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3.1.2 Non-radiolabelled PCR amplification of CTG repeats

Non-radiolabelled PCR amplification of DNA sequences containing CTG 

repeats was optimised in a subset of DM families using primer set 406/409 

(Mahadevan et al., 1992). PCR products were resolved in 1.5% agarose gels stained 

with ethidium bromide then visualized and photographed under UV light. The size of 

the amplified products from the normal chromosome varied between 149 bp (for the 5 

repeats) and 245 bp (for the 37 repeats). Expanded alleles containing up to 90 repeats 

were detected (Figure 3.2).

3.1.3 Southern analysis to detect CTG expansion in DM chromosome

CTG repeats of more than 90 repeats are not usually visible upon PCR 

amplification although the unaffected alleles are readily amplified. These large 

expansions can be seen on Southern blots of BglI digested genomic DNA hybridized 

with the p5B1.4 genomic probe. Some of the expanded alleles were seen as diffuse 

hybridization signals (Figures 3.3 & 3.4).
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F ig u re  3.2

Example o f  PCR products  resolved in 1.5% agarose gels and stained with ethidium 

brom ide (a) Products  obtained by PCR amplification o f  D N A  from DM patients with 

minimal symptoms. The upper bands represent expanded DM  alleles (lane 1= - 9 0  

repeats, lane 2= -7 1  repeats, lane 3= - 8 7  repeats, lanes 4 & 5 -  - 7 0  repeats). The 

lower bands are the normal alleles in these individuals ( - 1 5 ,  25, 5, 5 and 21 repeats 

respectively).

(b)  P roducts  obtained by PCR  amplification o f  D N A  from a DM family Lane 1 

shows p roduc ts  from an individual with one normal allele ( - 5  repeats, either normal 

h om ozygous  for that allele or heterozygous with the second allele to o  large to 

amplify). The other lanes(2-4) show  normal heterozygous individuals ( -1 3 /2 8 ,  5/28 

and 13/28 repeats  respectively). M =  1 kb ladder
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Figure 3.3

A restriction map of the region containing the CTG polymorphism, showing the 

position of the genomic probe p5B1.4 and the relevant restriction sites (Shelboume et

al. 1992).
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Fig ure  3.4

Example o f  Southern blot analysis, using Bgfl enzyme and the p5B 1.4  probe, showing 

varying degrees o f  allelic expansion (upper bands) in DM-aflfected individuals. The 

lower band ( - 3 .4  kb) show s the normal size allele in these individuals. Lanes 1,2 and 

3 are from affected siblings with variable degrees o f  allelic expansions ( -3 3 0 ,  1200 

and 1320 repeats respectively). Lanes 8 and 9 are from a father (lane 8) carrying an 

expanded allele o f -1 9 0 0  repeats  and a daughter carrying - 5 8 0  repeats (lane 9) w here 

a reduction in repeat size occurred during paternal transmission Lanes 10, 11 and 12 

are from a father (lane 12) with a smear o f  expansion ( - 3 7 0  repeats), a daughter (lane 

1 1) with an expansion o f  - 4 0 0  repeats and a g randdaughter (lane 10) who did not 

inherit the expanded maternal allele, she only carries normal alleles o f - 3 .4  kb
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3.1.4 Size of the expanded CTG repeat sequence in relation to phenotype

The clinical status of the DM patients was classified according to the method 

of Harley et al. (1992b). Five categories of the patients can be recognized (1) mild 

disease, in individuals presenting in later life with minimal features of the disease (e.g. 

cataracts) and asymptomatic obligate carriers (grandparents); (2 ) classic adult-onset 

type; (3) childhood type; (4) young carriers without symptoms and (5) congenitally 

affected individuals. In all of the studied patients the DM expansion mutation was 

associated with the disease. Table 3.1 shows the range of repeat sizes in each clinical 

category, separated by the sex of the individual. The only obvious difference observed 

between the sexes was in the minimally affected group, with an excess of males having 

the smallest repeat size (<0.25 kb; -85 repeats), which is not statistically significant 

(p>0.05). The correlation between the disease severity and CTG repeat size is weak in 

spite of the general trend of the more severe the phenotype, the larger the repeat size 

(r = 0.42, p < 0.01, 95% confidence limits = 0.23 to 0.58) and overlapping between 

the various clinical groups does exist (Figure 3.5).

Figure 3.6 shows the relationship of repeat size to apparent age at onset. A 

significant correlation was observed when repeat size was plotted on a logarithmic 

scale (r = -0.62, p < 0.001, 95% confidence limits = -0.48 to -0.75).
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Table 3.1 Range o f  C T G  repeat sizes in kilobase (kb) am ong different clinical categories o f  
myotonic dystrophy (D M ) patients divided by the sex o f  the affected individual.

Male Female

Minimal Change DM

j a. 15-0 25 kb H B H B

0.25-0 ,35  kb 1 i

Classical D M

0.25-2 ,0  kb 14 18

2 0-3 5 kb 4 7

3 .5-6 .0  kb 5 5

C hildhood onse t D M

LI kb 2 IS l l l l l l l l l l l i l

3 .0  kb 2 i

Yaa&sg. asym ptom atic  D M  ;

0 ,5 -1 .4  kb 3 2

1.5-2 0 kb 1 1

Congenital DM

1,7-2,9 kb 1 2

2 .9 -6 .0  kb ■ l I l l M l l i H l B m u  i
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Figure 3.5

Size distribution of the CTG repeat expansion in different DM phenotypes. An 

overlap between different clinical groups is clearly present.
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Figure 3.6

Age at onset for DM patients, plotted against CTG repeat length (logarithmic scale)
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3.1.5 Intereenerational instability of the CTG repeats

To study the intergenerational instability of the CTG repeats 31 parent-child 

pairs, 10 maternal-child and 21 paternal-child pairs, were analyzed. In most cases 

there was an increase of the repeat size during parental transmission with only two 

exceptions (Figure 3.7 and Figure 3.8)

There were two cases where the repeat size has decreased during paternal 

transmission. The first one (Figure 3.9) showed a decrease from the paternal 5.7 kb 

(1900 repeats) to 1.7 kb (-565 repeats). The second one (Figure 3.10) showed a 

decrease from the father (DNA tested in another laboratory, and shown to have a 

moderate expansion, but was not available for this study) to his daughter (0.27 kb; 90 

repeats). The CTG repeat inreased again during the transmission to the grand son 

(350 CTG repeats) and the grand daughter (450 CTG repeats).
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CTG repeat size for 31 parent-child pairs. Points above the diagonal indicate repeat 

size greater in child than in parent.
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Change in repeat size (in bp) on transmission from mothers to 1 0  offspring 

(top) or on transmission from fathers to 2 1  offspring (bottom) plotted against 

repeat size of parent.
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(a)

Moderate 
(1900 repeats)

n  in
Asymptom atic 
(~ 580 repeats)

l!l:2

( b )

2

F ig ure  3.9

Reduction of the C T G  repeat length during paternal transmission (a)  Family 

pedigree, (b) Southern analysis o f  the father, II: l (lane 1, —3.4/5.7 kb) and the 

daughter. III 4 (lane 2, -3 .4 /5  14 kb) using Bgfl enzyme and p5B 1.4
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(a)

0~ -
1:1

i—o
1:2

f—n--O J
Moderate Expansion 

(Tested in Cardiff)

D -
111:2

11-2 11:3

1 1 :1
AsymptomaticA
(90 Repeats)

I
IV.1 IV:2

Asymptomatic Asymptomatic
(-3 5 0  Repeats) (-4 5 0  Repeats)

11:4
(500 Repeats)

( b )

2 3

M
*

(C)
L 1 2  3

3 9 4  b p ^

fI iP»

F ig u r e  3 .10
Reduction o f  the C T G  repeat length during paternal transmission followed by increase 
o f  the C T G  repeat upon transmission from the daughter to  the grand offspring, (a) 
Family pedigree, (b)  Southern analysis o f  III: 1 (lane 1, -3 .4 /3 .7  kb), IV 1 (lane 2, 
- 3  4 /4 .4  kb) and IV:2 (lane 3, - 3  4/4.7 kb) using Bgl\ enzyme and p5B l 4 probe (c) 
PCR amplification o f  this family. Lane 1 shows III 1 alleles o f  15 and 90 repeats, lanes 
2 and 3 show  IV. 1 and IV 2 normal alleles (15 and 13 repeats) only, their expanded 
alleles are to big too be amplified by PCR L =  1 kb ladder.
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One family showed a stable transmission of the CTG repeat in two generations 

(Figure 3.11a&b). The grand mother had cataracts at the age of 60 years, died at the 

age of 80 years from head injury, (DNA not available). Her daugther inherited an 

allele with 63 repeats (~0.2 kb) and had cataracts only at the age of 55 years. The 

latter had passed her 63 repeat (-0.2 kb) allele unchanged to her son and a slightly 

increased allele (73 repeats; -0.22 kb) to her daughter.
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1 2  3 4 5

(73 repeats)—> ■ m  298  bP

<—(63 repeats) 

-<220 bP

I

F ig u r e  3.1 l b

' P-labelled PCR product from the previous family (Figure 3 .11a) showing the 

expanded  alleles (arrows). Lane 1 (V:6), lane 2 (V:5) and lane 4 (IV:3) Lane 5 shows 

labelled 1 kb ladder.
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3.1.6 Severe infantile myotonic dystrophy of paternal origin

A case of severely affected mentally retarded child with onset in the first year 

of life was found to be due to paternal transmission of an expanded CTG allele (500 

repeats) to his daughter who carried a 700 CTG allele (Figure 3.12).
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(a)

Age 85 years

Cataract 
(-1 0 0  Repeats)

!1!:2

(-5 0 0  Repeats)

IV l
Severe Infantile 
(-7 0 0  Repeats)

(b)

2 3

F ig u re  3.12

Paternal transmission o f  severe infantile onset DM. (a) Family pedigree (b)  Southern  

analysis o f  II I (lane 1, -3 .4 /3 .7  kb), III: I (lane 2, -3 .4 /4  9 kb) and I V : 1 (lane 3, 

- 3  4/5.5 kb) using Bgll enzyme and the p5B1.4 probe

119



3.2 Screening of ALS patients for mutations in the SOD-1 gene

3.2.1 PCR amplification of the SOD-1 gene in ALS patients

DNA samples from 2 familial and 67 sporadic ALS cases were subjected to 

polymerase chain reaction (PCR) amplification of the all five exons of the SOD-1 gene 

(Figure 3.13a). For exon 3 a primer set was designed using the computer program 

Oligo™ (Medprobe) and the PCR reaction was optimised by trying different 

concentrations of DNA, primers and dNTPs and by applying different annealing 

temperatures. Published primer sets (Rosen et al., 1993; Deng et al., 1993) were used 

for PCR amplification from the remaining exons (1, 2, 4, and 5) after optimisation of 

the published conditions. Non-radiolabelled PCR products from the five exons were 

checked on 1% agarose gel in IX TBE buffer (Figure 3.13b).

3.2.2 Screening for the Ilell3Thr mutation in ALS patients

Ilell3Thr mutation creates a new restriction site for the enzyme Bsrl so that 

the PCR product from the normal SOD-1 exon 4 allele will be digested into two 

fragments of 124 and 90 bp while the mutant one will be digested into three fragments 

of 113, 90 and 11 bp respectively (Rosen et al., 1993). This enzyme was used to 

digest the PCR amplification products of the SOD-1 exon 4 from all the studied ALS
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Figure 3 . 13b

PCR  amplification o f  exons 1 to 5 in the SO D -l gene, (a) Amplification products  

from: exon 1 (lanes 1&2, 158 bp), exon 3 (lanes 3&4, 130 bp), exon 4 set a (lanes 

5&6, 214 bp) and exon 5 (lane 7, 216 bp), (b) Amplification products  from: exon 2 

set a (lanes 1-3, 132 bp) and exon 2 set b (lanes 4-6, 207 bp). M l =  100 bp ladder. 

M 2=  1 kb ladder



patients. The digestion products were resolved by denaturing 8 % polyacrylamide gel 

electrophoresis in IX TBE buffer alongside a ladder marker for 4 hours at 280 

constant volts then silver stained. Only normal digestion products were present in the 

screened patients (Figure 3.14).

3.2.3 Screening for the Ala4Val mutation in ALS patients

Ala4Val mutation abolishes a HaeIII restriction site thus producing an 

additional larger restriction fragment of 49 bp in the heterozygous mutants. PCR 

amplifications of SOD-1 exon 1 from all studied-ALS patients have been subjected to 

Haelll restriction endonuclease digestion. The digested products were resolved by 

running them on 8 % denaturing polyacrylamide gel alongside a ladder marker for 2.5 

hours at 280 constant volts then silver stained. This mutation could not be detected 

either in the two familial or the 67 sporadic screened ALS patients (Figure 3.14).

3.2.4 Screening for the CAG repeat expansion in exon 1 of the androgen 

receptor gene

CAG repeat expansion in the exon one of the androgen receptor gene has been 

reported in patients with spinal and bulbar muscular atrophy (SBMA, Kennedy 

disease) (La Spada et al, 1991). A primer set flanking the CAG repeat site in exon 1 

of the androgen receptor gene (Allen et al., 1992) was used and the PCR conditions 

were optimised to amplify DNAs from sporadic ALS patients. The products of PCR 

amplification were resolved by running on 1.5% agarose gels in IX TBE buffer. 

Amplification from the normal chromosomes gave PCR products o f -280 to 310 bp. 

Abnormal chromosomes, with CAG repeat expansion, produce PCR products o f -350 

to 390 bp with no overlap between normal individuals and affected patients. No 

expansion of the CAG repeat could be detected in the tested (67) DNA samples 

(Figure 3 .15).
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(a) (b)

F ig u re  3.14

Screening for the lie 1 13Thr and the Ala4Val mutations, (a) Screening for the exon 1 

Ala4Val mutation  using restriction enzyme (HaeIII) digestion o f  the PCR products  

N o  abnormal (49 bp) product has been seen LI = 75 bp band o f  1 kb D N A  marker

(b )  Screening for the exon 4 lie 113Thr mutation using restriction enzyme (Bsrl) 

digestion o f  the PCR  products  reveals a normal digestion pattern (no abnormal 113 bp 

p roduc t could be seen). L2 = 100 bp band o f  the DNA  marker. A rrow s point to the 

digestion products. N um bers beside the arrow s indicate the size o f  the products  in 

base pair (bp)
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2 3 4 5 6 7 8 9  10

3 9 4  bP^ 

2 9 8  bP ►

Figure 3.15

Screening for the C A G  repeat expansion in exon 1 o f  the androgen  receptor gene in 

sporadic ALS patients. N o C A G  repeat amplification could be detected in the 

screened patients (lanes 2 to  8) Lanes 9 and 10 show the C A G  repeat expansion 

( -3 9 0  bp) in an affected K ennedy’s disease male patient and in a female carrier 

(a rrow ) Lane 1 shows 1 kb D N A  ladder
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3.2.5 PCR-SSCP screening for mutations in the SOD-1 gene in ALS patients

In this technique radiolabelled PCR-amplified products were obtained from the 

five exons of the SOD-1 gene. The SOD-1 gene was screened in two familial and 67 

sporadic ALS patients. With each radiolabelled-PCR set of reactions (20 reactions) 

two non-radiolabelled PCR reactions were done and tested on 1% agarose gel to be 

taken as a guide for the condition of the radiolabelled reactions. Aliquots of 1 pi PCR 

product were mixed with 9 pi SSCP loading mix, denatured by heating for 3 minutes 

at 95° C, quenched on ice for at least 5 minutes and then 3 pi of aliquots were loaded 

into: (1) 0.5 X MDE gel in 0.6 X TBE buffer. The gels were run at 5 watts for 16 

hours at room temperature. (2) 8% non-denaturing polyacrylamide gel with the 

following conditions: (a) 5% glycerol, running at 5 watts for 16 hours at room 

temperature, (b) 10% glycerol, running at 8 watts for 12 hours at room temperature 

and (c) without glycerol, running at 12 watts for 12 hours at 4°C.

A patient from one of the two studied FALS families (Figure 3.16a and table 

3.2) showed an altered migration of the SOD-1 exon 4 PCR product on SSCP 

analysis. The same altered pattern was detected in all affected family members as 

compared with controls (Figure 3.16b).
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11:1 ll:4 ll:6

1 1 1 : 1 lll:3lll:2

IV:1

Figure 3.16a
Diagrammatic representation of the FALS family where an altered SSCP pattern of 

the SOD-1 exon 4 has been observed in the affected family members. Arrow points to 

the proband. DNAs were tested from all the affected members. Individual 11:4 showed 

some manifestations of ALS but refused to be further investigated.

Table 3.2_____________________________________________________________
The age at onset, age at death and duration of the disease process in FALS 
family members who showed the Gly93Ser mutation in exon 4 of their SOD-1 genes.

Patient's
Number

Age at onset Age at death Duration of the disease

1.2 36 years 48 years 12 years
II. 1 40 years 43 years 3 years
II.2 36 years 39 years 3 years
II. 6 28 years 33 years 5 years
III.l 26 years 1 year
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(a)

F ig u r e  3 . 16b

(a) The result o f  SSCP analysis o f  SOD-1 exon 4 in one FALS family (Figure 3 . 16a) 

using M D E  gel. Lane 1 show s results obtained from individual 1:2, lane 2 from 

individual II: 1 and lane 5 from individual 11:2 Lanes 3, 4 and 6 are from individuals 

II:3, 11:5 and a normal control respectively, (b)  The same analysis using 8% non

denaturing polyacrylamide gel run at 12 w atts  for 12 hours at 4°C. The arrow 

indicates the presence o f  a band shift in the affected family m embers P = patient; N = 

normal.
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3.2.6 Sequencing of the SOD-1 exon 4 from FALS patients showing the 

G277^C mutation which caused the missense Glv93Arg change.

To detect the cause of the band shift in SSCP analysis of this family, direct 

sequencing of both DNA strands of the asymmetric PCR products from the affected 

family members and a normal control were performed. A point mutation (G277 to C) 

was detected in all affected family members but not in a normal control. This caused a 

missense mutation Gly93Arg (Figure 3.17).
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(a)

(b)

P N

T C G A I C G A

F ig u r e  3.17

(a) Asymmetric PCR amplification p roduc ts  from exon 4 o f  the SOD-1 gene from a 

FALS patient and a normal control Reactions which give good  single strand yield 

(a rrow ) have been used for subsequent sequencing procedure  SS = single strand; DS 

=  double strand, L =  D N A  ladder (b)  Sequence analysis o f  the SOD-1 exon 4 in a 

FA LS patient w ho show ed a band shift with SSCP analysis. The arrow indicates the 

presence o f  the G 277 to  C change in the patient P =  patient, N  =  normal control.
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3.2.7 The G277 to C change in SOD-1 exon 4 creates a new restriction site for

the enzyme Sau5A\

To find if the G277 to C mutation caused changes in the restriction map of 

SOD-1 exon 4, the GCG package from the Unix computer was used. It showed that 

this mutation has creates a new restriction site for the enzyme <Sazf3AI. PCR 

amplification products from the normal chromosome were cut into two fragments of 

135 bp and 79 bp while that from the mutated chromosome were cut into three 

fragments of 135 bp, 44 bp and 35 bp (Figure 3.18).

To screen for the presence of the G277 to C mutation in other ALS patients 

PCR amplification products of SOD-1 exon 4 from 67 sporadic and one familial ALS 

have been subjected to restriction enzyme (Sau3M) digestion. The digestion products 

were resolved in 12% acrylamide gels using IX TBE buffer. The gels were stained 

using ethidium bromide, visualised and photographed under UV light. No such change 

could be detected in any of the screened patients (Figure 3.18)
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F ig u r e  3 .18

(a )  San 3 AI digestion o f  the SO I)-/ exon 4 PCR amplification products  from a G 277 

to C m utant patient and a normal control Arrows point to the presence o f  tw o  extra 

digestion product from the patient. P =  patient; N = normal control (b) Screening for 

the G 277  to C m utation in o ther ALS patients using the Sau3Al restriction enzyme 

digestion. No abnormal products  could be detected
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3.2.8 SSCP analysis showing band shifts due to electrophoresis and/or PCR

errors

When abnormal SSCP band shifts were observed in a patient the analysis was 

repeated for confirmation. In some instances the abnormality would disappear upon 

the second gel run (Figure 3.19).

In one sample the abnormality was expected to be due to PCR error (band 

shift disappeared upon second gel run of newly made PCRs from the whole pannel of 

patients (20 patients) tested before but not from the old one), sequencing of the 

abnormal PCR product detected a PCR incorporation error (Figure 3.20). Subsequent 

sequencing of a newly amplified PCR product failed to detect this abnormality.
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N O R M A L PA T IE N T

F ig u r e  3 .20

Sequence analysis o f  the PCR product which gave abnormal SSCP band shifts. 

Sequence analysis o f  exon 1 o f  the SO D-/ gene shows a G 34 to A mutation in the 

patient but not in the normal control. This mutation, if real would lead to a missense 

G ly12Ser change
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3.3 Screening for germline mutations in the TSC2 gene

32 patients with tuberous sclerosis (TSC), including both sporadic and 

inherited cases were analysed for germline mutations within ~ 40% of the TSC 2 

coding sequence and 325 bp of the upstream promoter area. All patients were 

diagnosed as TSC according to the revised Gomez criteria (Gomez, 1991).

3.3.1 Screening for structural rearrangements bv Southern blot analysis

To screen for major structural rearrangements (deletions and/or insertions) all 

patients’ DNAs were digested twice by Hindlll and EcoRl restriction endonucleases 

and transferred to Hybond N nylon membranes. The EcoRl membrane was probed 

using the cDNA probe E l.6 and the Hindlll membrane was probed using the cDNA 

E2.5 probe kindly supplied by Dr. M. Nellist, Institute of Medical Genetics, University 

Hospital of Wales, Cardiff. No major structural rearrangements were detected.

3.3.2 Amplification of the TSC2 cDNA bv RT-PCR

Total cellular RNA from whole blood lymphocytes of TSC patients (22 

patients) was used to synthesise cDNA using oligo dT or oligonucleotide primers with 

nucleotide sequences complementary to various regions of the TSC2 mRNA. Four sets 

of PCR primers were designed and PCR conditions were optimised to amplify four 

segments of the TSC2 coding sequence. The first segment spans positions 1041 to 1857 

of the cDNA and contains a possible membrane-spanning regions. The second to the
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fourth segments span positions 4215 to 5471 of the cDNA and contain the GAP3- 

related domain and the polyadenylation signals (Figure 3.21 & 3.22a).

3.3.3 Amplification of exon 1 and exons 38-41 of the TSC2 gene from genomic 

DNA

One PCR primer set was designed and PCR conditions were optimised to 

amplify exon 1, part of intron 1 and 325 bp of the promoter area of the TSC2 gene 

from all patients’ DNAs (32 samples). For a subset of patients (10 patients) only 

DNAs were available and another PCR primer set was designed and optimised to 

amplify TSC2 exons 38-41 (numbering according to Maheshwar, et al. 1996) as one 

amplification segment of 1120 bp (Figure 3.22b).
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8 0 0  bP ►

S e g m e n t  I 
(837 b p )

6 0 0  b P M

S eg m e n t  II 
(602 bp )

6 0 0  bP

S e g m e n t  III 
(663 bp )

5 0 0  b

S e g m e n t  IV 
(505 bp )

F ig u r e  3 .22a

R T -P C R  amplification products  (a rrow s) from the TSC2 cDNA. Four sets o f  PCR 

primers w ere used to amplify 2.072 kb o f  the cD N A  as been shown in the previous figure 

(F igure 3.21). The PCR products  w ere run on 1% agarose gels, stained with ethidium 

brom ide and visualised under the UV  light. L= 100 bp D N A  ladder
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E X O N S  38 to 41 (1120 bp)EXON 1 (663 bp)

Figure 3.22b

PCR amplification o f  exons 1 and 38 to 41 o f  the TSC2 gene L =  100 bp D NA  ladder
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3.3.4 Mutation screening using chemical cleavage of mismatch (CCM) analysis

After initial amplification by PCR, the products were electrophoresed on 1% 

agarose gels to check for any abnormal size alterations. If no alteration was seen, the 

amplification products were analysed by CCM to detect and locate the presence of 

point mutations and small sequence alterations within the amplified parts of the TSC2 

gene. CCM analysis was used to screen all cDNA fragments (I to IV), exon 1 (with 

325 bp of the promoter area and part of intron 1) and exons 38-41 (with their introns) 

from patients with tuberous sclerosis (TSC). Figure 3.23 shows examples of positive 

screening results.

3.3.5 Sequencing of the samples that showed positive screening results

Any mismatch detected by CCM analysis was then confirmed by sequencing of 

the corresponding exon or cDNA segment. Three different sequencing techniques were 

used. Asymmetric PCR amplification of the segment or exon of interest and direct 

sequencing by the Sanger dideoxy chain termination method using USB sequenase 

version 2 sequencing kit was performed to characterise most of the detected mutations. 

For few samples direct sequencing of the PCR, using PRISM™ ready reaction 

Dyedeoxy™ terminator cycle sequencing kit and ABI prism 373 automated sequencer 

and/or double stranded sequencing of cloned PCR segments were performed. Each 

change found on sequencing was confirmed by sequencing the complementary strand. 

Any change found on sequencing the cDNA was confirmed, if possible, by sequencing 

the corresponding exon at the DNA level. For cloned PCR, sequencing of 10 colonies
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F ig u r e  3 .23

An example o f  chemical cleavage o f  mismatch analysis. Osmium tetroxide and 

hydroxylamine are the chemicals used to  modify either T o r C mismatches 

respectively. “L ” stands for labelled 1 kb ladder, (a)  C leavage products  o f  - 3 3 0  bp 

(a rrow s) from PCR products  o f  TSC2 cD N A  segment IV upon both hydroxylamine 

and osm ium  tetroxide modifications, (b)  Cleavage product o f - 3 2 0  bp (arrow ) from a 

PCR product o f  TSC2 cD N A  segment III (c) C leavage product o f -2 4 0  bp (arrow ) 

from a PCR product o f  TSC2 exons 38-41
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was done and the change was confirmed in four of them. If sequence alteration was 

detected in familial case, analysis of other family members for this change was also 

done. Every sequence change seen was analysed, using the GCG package 'MAP' 

program, to see if it created or abolished a restriction enzyme site. If alteration of a 

restriction site was found it has been used as a further confirmation of the sequence 

change.

Using this technique 5 point mutations and one 2 base pair deletion were 

characterised. Of these, three point mutations caused missense amino acid changes 

and the other three mutations were proposed to be polymorphisms.

3.3.6 S1715T missense mutation in exon 40 of the TSC2 gene

One sporadic, mentally handicapped, TSC patient showed a cleavage product 

of his RNA segment IV upon osmium tetroxide modification. To characterise the 

cause of this cleavage, asymmetric PCR of the patient's cDNA (segment IV) and 

DNA (exons 38-41) were performed followed by direct sequencing using the USB 

sequenase version 2 sequencing kit. The cleavage was due to a T5161-»A base 

change converting serine to threonine (S1715T) (Figure 3.24). This mutation creates 

new restriction sites for the enzymes PflML and Dralll. The screening of 100 normal 

chromosomes with these restriction enzymes revealed no further examples of this 

mutation.
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m

F ig ure  3.24

(a) Chemical cleavage analysis o f  cD N A  segment IV revealed a cleavage product 

(a rrow ) upon osmium tetroxide modification (b )  sequencing analysis o f  an asymmetric 

PCR product from segment IV revealed a T 5161~»A  (arrow ) change which produces 

a S1715T missense mutation.
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3.3.7 R1720W missense mutation in exon 40

A second missense change was detected, in a sporadic TSC patient, a few 

amino acids downstream of the previous one. Cleavage products were detected upon 

hydroxylamine modification of cDNA segment IV. To characterise the cause of this 

cleavage three sequencing techniques were used. First by direct sequencing of the 

PCR product using the PRISM™ ready reaction Dyedeoxy™ terminator cycle 

sequencing kit and testing the sequencing products on an ABI prism 373 automated 

sequencer. Secondly, the PCR product from patient's cDNA segment IV was cloned 

in a plasmid vector followed by double stranded sequencing by the Sanger dideoxy 

chain termination method using the USB sequenase version 2 sequencing kit. Thirdly, 

asymmetric PCR amplification of cDNA segment IV and exons 38-41, followed by 

direct sequencing using the USB sequenase version 2 sequencing kit. All three 

techniques revealed the same result. Cleavage was due to a C5176—>T base change 

producing a C mismatch of the wild-type DNA producing a cleavage product upon 

hydroxylamine modification (Figure 3.25). This change causes a missense R1720W 

mutation and creates a new restriction site for the enzyme £coRII. Using this enzyme 

to screen for the presence of that mutation in 100 normal chromosomes revealed no 

further examples of this change.
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F ig u r e  3.25

(a) Chemical cleavage analysis o f  cD N A  segment IV revealed a cleavage product 

(a rrow ) upon hydroxylamine modification (b) Sequencing analysis o f  an asymmetric 

PC R  product from  segment IV revealing a C 5 1 7 6 ^ T  change (arrow) and producing 

the missense m utation R 1720W  (c) Double stranded sequencing o f  the cloned PCR 

segm ent IV show s T 5176  instead o f  C at that position (d) A utom ated  D N A  

sequencing o f  the PCR product from segment IV o f  the patient and normal control 

At position 'N' o f  the pa tien t’s sample, a C (blue) to T (red) change is observed
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3.3.8 Missense mutation M1602V in exon 37 of the TSC2 gene

Screening of segment III by CCM revealed a cleavage product in a 25 years 

old sporadic, mildly affected TSC patient. Cloning of the patient's segment III PCR 

product followed by sequencing of the plasmid with the insert showed an A4822-»G 

change and produced a missense M1602V mutation (Figure 3.26). This is the only 

mutation detected in the GAP3-related domain of the TSC2 gene and it creates a new 

restriction site for the enzyme £coRII. The screening of 100 normal chromosomes 

with the enzyme revealed no further examples of this mutation.
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Figure 3.26

(a) Chemical cleavage analysis o f  cD N A  segment III revealed cleavage product 

(a rrow ) upon hydroxylamine modification (b) Sequencing analysis o f  the cloned PCR 

product from segment III revealed a G instead o f  A4822 (arrow ) which produces an 

M 1 6 0 2 V  missense mutation (c) Sequencing analysis o f  the same segm ent from normal 

control.
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3.3.9 Two base pair deletion in one of the polvadenvlation signals

One patient from a TSC family showed a cleavage product on modification 

with osmium tetroxide in RNA segment IV. Direct sequencing of the asymmetric PCR 

from that segment revealed a complex sequencing pattern. Analysis of this pattern 

revealed that it was due to a two base pair deletion (AA numbers 5433 & 5434) of the 

second polyadenylation signal of the TSC2 gene (Figure 3.27). This change was also 

confirmed by sequencing PCR product from exons 38-41 of that patient. This family 

has been proved to be linked to TSC locus on chromosome 9 (data not shown) and 

sequencing of other affected family members did not reveal such change confirming 

that it is a polymorphic one. This change does not change any restriction sites, so 

screening of normal chromosome was done by direct sequencing of asymmetric PCR 

which detected this change in one normal sample.
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(a )  Asymmetric PCR o f  R N A  segment IV from a TSC patient w ho showed a CCM  

cleavage product ss= single strand; ds= double strand (b) Chemical cleavage analysis 

o f  the patient's cD N A  segment IV on modification with osmium tetroxide Cleavage 

produc t is indicated by an arrow, (c) Direct sequencing o f  the asymmetric PCR 

revealed a com plex sequencing pattern due to an AA deletion (indicated by arrow ) o f  

one o f  the TSC 2 polyadenylation signals.
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3.3.10 Silent mutations in exons 37 and 41

Two silent mutations affecting two different serine residues (SI630 and 

SI776) were detected upon screening of segments III and IV of the TSC2 cDNA by 

CCM analysis. The first one (S1630 in exon 37) was detected in one patient and is 

due to a C4908-VT change (Figure 3.28). The second one (SI776 in exon 41) was 

detected in four (-12%) out of the screened 32 patients and is due to a G5346->C 

change (Figure 3.29).
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F ig u re  3.28

(a) Chemical cleavage analysis o f  cD N A  segment III revealed a cleavage product 

(a rrow ) upon hydroxylamine modification (b)  Sequencing analysis o f  an asymmetric 

PC'R product from segment III revealed a C 4 9 0 8 -> T  (arrow ) mutation which is silent 

(S I 630).
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(a) (b)

H Y D R O X Y L A M I N E

Figure 3.29

(a) Chemical cleavage analysis o f  cD N A  segment IV revealed a cleavage product 

(a r ro w ) upon hydroxylamine modification and was detected in four different patients.

(b) Sequencing analysis o f  asymmetric PCR products  from tw o different patients 

revealing a G 5 3 4 6 —»C m utation (arrow s) which is silent ( S I 776)

153





(4) DISCUSSION

Easy identification of specific sequences and sequence changes plays a central role 

in the diagnosis of human inherited diseases. In the present study three autosomal 

dominant neurodegenerative diseases (myotonic dystrophy, amyotrophic lateral sclerosis 

and tuberous sclerosis), with different underlying molecular pathologies, were studied. To 

each one of them a different mutation detection strategy was optimised and applied to 

screen for the underlying molecular pathology.

4.1 (CTG)n repeat instability in patients with myotonic dystrophy

Myotonic dystrophy (DM) is the most common form of adult muscular dystrophy. 

The disease is transmitted in an autosomal dominant manner with the phenomenon of 

anticipation. The DM locus was mapped to the chromosome 19ql3.3 and an expanded 

(CTG)n trinucleotide repeat in the 3' untranslated region of a protein kinase (DMPK) 

gene family member has been identified as the mutation that causes myotonic dystrophy.

In the present study, a screening strategy for 49 DM families, based on PCR 

testing followed by Southern blot for the suspected cases was adopted.

For the DM families who sought genetic counselling, DNAs of the family were 

screened by PCR amplification of the 3' untranslated region of the DMPK gene that had 

the polymorphic CTG repeats. At the beginning of that study radiolabelled PCR using the 

primer set 409/410 (Mahadevan et al., 1992) was optimised and used as a screening test. 

PCR products were resolved by running on 8% denaturing polyacrylamide gels and 

autoradiographed by exposure to Kodak AR film for 5 to 16 hours. Normal 

chromosomes (carrying 5 to 31 repeats) gave PCR products in the range of 64 bp to 152 

bp and were detected. Chromosomes carrying minimally expanded CTG repeats (-56 to 

83 repeats) were easily distinguished from those carrying the upper normal CTG repeats.
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These expanded CTG alleles always appeared on the gel as mosaic pattern of DNA 

fragments. Similar results were obtained by different groups of investigators and the 

mosaic pattern of the expanded CTG repeat was attributed to be due to the presence of 

somatic instability of the expanded repeat (Lavedan et al., 1993a; Brunner et al., 1993). 

In spite of the reliability and accuracy of that test, it required handling of hazardous 

materials (radioisotopes and polyacrylamide) and it was time consuming (~ 24 hours to 

get the result). To overcome these drawbacks, non-radiolabelled PCR using the primer 

set 409/406 (Mahadevan et al., 1992) was optimised and applied to screen 22 DM 

families. First, the test was applied to some previously radiolabelled-screened samples and 

it gave the same conclusions, reached previously, regarding an individual CTG repeat 

expansion status. Using non-radiolabelled PCR followed by agarose gel electrophoresis, 

the discrimination between the upper normal CTG repeat size and the smallest detected 

CTG repeat expansion was not confusing. The technique was easy to perform, cheap, less 

time consuming (results obtained within few hours) and did not deal with any hazardous 

materials. The only difference was that, by using non-radiolabelled PCR less accurate 

sizing (± few repeats) of the normal or expanded CTG repeats was achieved. But as 

stated by Harper et al. (1992), "We currently have no knowledge of the risk of genetic 

instability in the offspring of minimal mutation carriers, nor do we know the likelihood of 

such individuals later developing cataract or other clinical features". Such reduced 

accuracy should not affect the result of the patient's counselling so that it seemed 

reasonable to adopt the non-radiolabelled PCR screening as a first step in the screening 

strategy of DM families. Comparable results were obtained by different group of 

investigators using the same or different primer sets and using either radiolabelled or non 

radiolabelled technique (Brook et al., 1992; Fu et al., 1992; Mahadevan et al., 1992; 

Barcelo et al., 1993; Abeliovich et al., 1993; Ashizawa et al., 1994b; Goldman et al., 

1995; Krahe et al., 1995a).
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Limitation of PCR amplification of the expanded CTG repeats was detected. It 

preferentially amplifies alleles that carry smaller CTG repeat expansions but reasonable 

amplification could not be achieved of alleles with more than 90 repeats. Similar 

limitation has been reported by other investigators who could not efficiently amplify 

alleles with large CTG repeat expansions (between 80 and 150 repeats) (Brook et al., 

1992; Barcelo et al., 1993). For individuals who showed only one band within the normal 

range upon PCR amplification of their DNAs, it was not possible to tell if they were 

normal homozygous for that allele size or affected heterozygous with the second 

expanded allele too large to amplify. To solve this ambiguity, the second step of the 

screening strategy was to perform Southern blot analysis to detect the presence or 

absence of the expanded allele. To avoid ambiguity, it is preferable that the resolution of 

the system cannot distinguish between normal alleles of the CTG polymorphism but can 

distinguish these from minimal expansions (50 CTG repeats and above).

In the present study BglI digested genomic DNA from all DM family members 

were analysed by Southern blot using p5B1.4 32P-labelled genomic probe. Unambiguous 

discrimination between normal homozygous and DM affected heterozygous was 

achieved. Normal individuals showed only one band while affected members showed 

second band of varying degrees of expansion (-56 to several thousand repeats).

It has been demonstrated that Southern analysis using EcoRl, Hindlll and Ncol- 

digested DNA does not detect small DM-specific expansions (Brook et al., 1992; 

Aslanidis et al., 1992 and Fu et al., 1992). Using enzymes generating smaller target 

fragments containing the CTG polymorphism should increase the resolution of the 

technique. Shelbourne et al. (1992) compared the resolution efficacy of three enzyme 

systems. They used EcoRl, BamHl and Bgli to digest DNAs from normal individuals and 

DM patients with varying repeat sizes. Minimal expansions of the CTG repeats were 

detectable in Bgli and BamHl digests but not in EcoRI digests. They described two 

drawbacks of using BamHl digests. First, its ability to clearly distinguish between two
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normal CTG alleles when one of them is in the upper normal range. This may lead to 

confusion especially in the diagnosis of isolated cases. Second, many of the large 

expansions were detected as smears with both enzymes, but in BamHl digests, these 

smears were barely distinguishable from background hybridisation. The large fragments 

generated in BglI digests were unambiguously detected.

Goldman et al. (1994) reported a Bgli polymorphism, in normal Southern African 

Negroids, which could lead to erroneous diagnosis of DM in people from this population. 

To exclude the possibility of the presence of such a polymorphism in the DM families in 

the present study, Southern analysis using EcoRl digested genomic DNA from patients 

who showed an expanded allele, upon Bgli digestion, was performed. No single case was 

found to have such a polymorphism. It is possible therefore that this polymorphism is 

specific to Negroes (Goldman et al., 1994).

After applying this screening strategy to all studied DM families collected data 

were analysed. All DM affected members showed a varying degree of CTG repeat 

expansion. CTG repeat sizes in DM patients revealed that minimally affected patients 

have repeat sizes of < 0.4 kb (-130 CTG repeats). Congenital cases had on average the 

largest repeat sizes (3.3 ± 1.4 kb) while the adult onset cases (classical DM) showed on 

average intermediate expansions with a wide range of CTG repeat sizes (1.99 ± 1.37 kb) 

which overlapped with the repeat sizes of all other clinical phenotypes. Moreover, there 

was a significant correlation between the size of the CTG repeat expansion and the age at 

onset of the disease. The larger the repeat the earlier the age at onset (r = -0.62; 

p<0.001). These data are in accordance with the previously published data. Nearly all 

cases of DM (98%; Mahadevan et al., 1992) displayed expansion of the CTG repeat 

region. Moreover, in DM patients the size of CTG expansion in blood lymphocytes 

correlates to a reasonable degree with the age at onset and severity of the disease but it is 

by no means absolute and cannot be reliably used as a single diagnostic or prognostic
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criterion to predict clinical status of the patient (Harley et al., 1993; Nokelainen et al., 

1993 and Lavedan et al., 1993a).

Somatic mosaicism due to mitotic instability was observed in the majority of DM 

patients (Mahadevan et al., 1992; Lavedan et al., 1993a; Wong et al., 1995). Smears of 

hybridisation in Southern blot analysis and the presence of multiple PCR alleles(observed 

in the present study and previous studies) are reflections of this mosaicism. Tissue- 

specific differences in the efficiency or availability of DNA repair systems may account 

for the heterogeneity of CTG expansions (Wohrle et al., 1995). Somatic heterogeneity 

could explain the overlapping in fragment sizes of the different clinical groups, especially 

in adults with classical DM. Lavedan et al. (1993a) raised the possibility that somatic 

mosaicism may explain the absence of a strict correlation between the size of the 

mutation observed in patient lymphocytes and the severity of the disease and it is that 

different degrees of expansion may cause varying phenotypic effects in other more 

relevant tissues (Harley et al., 1993). On the other hand, Zatz et al. (1995) showed that 

no significant correlation was found between the size of the CTG expansion in muscle 

and age at onset of the disease. Moreover, large expansions were observed in muscle 

from all adult symptomatic patients independently of the presence of muscle weakness. 

More studies will be needed to solve this dilemma.

In the present study an apparently unexplained excess of male transmitters was 

found in the ancestors' generation. This has been reported before by many authors 

(Harper, 1989b; Harley et al., 1993; Lavedan et al., 1993a; Passos-Bueno et al., 1995). 

Although ascertainment bias can not be rejected, this male excess could be because 

women with neonatal cases will not appear as grandmothers of affected patients.

A reduction in repeat size upon paternal transmission was detected in two 

child/paternal pairs in the present study. In one of them, the father had an adult onset 

classical DM (age at onset 35 years) and an expanded CTG allele of 5.7 kb (-1900 

repeats). His daughter had inherited a reduced allele of 1.7 kb (-565 repeats) and was
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asymptomatic at the age of 25 years. In the second case, the father, also, had a classical 

adult onset DM (age at onset 42 years). His DNA was tested in Cardiff, before the 

discovery of the CTG repeat instability as the molecular pathology underlying DM, and 

was shown to have a moderately expanded allele. At that time his daughter's DNA did 

not show this expansion and she was told that she did not inherit the affected father's 

allele. In the present study, PCR amplification of the daughter's DNA revealed an 

expansion of ~ 90 CTG repeats which was confirmed by Southern analysis using 

BgtUySBlA  system. She, also, requested testing of her 9 years old asymptomatic son and 

7 years old asymptomatic daughter. Both of them showed expanded alleles of 350 and 

450 repeats respectively. It seemed that the paternal regressed allele had re-acquired its 

ability to expand when transmitted through his daughter's line to his grandchildren. Since 

the two affected fathers had late onset and their daughters are still young, it is not 

possible to assess if their clinical picture will be milder than that observed in their DM 

fathers or not.

Both meiotic expansion and contraction events may occur in the DM  allele but 

expansion is favoured (Jansen et al., 1994). A reduction in CTG repeat number to 

within the normal range was reported before by many investigators (Wieringa et al., 

1994). It was mostly seen upon paternal transmission especially in fathers with a repeat of 

1 kb or greater (Ashizawa et al., 1994b), as was seen in the aforementioned cases. The 

tendency towards contraction of alleles on transmission through the male germline may 

be caused by selection of spermatozoa bearing smaller repeats (Jansen et al., 1994).

Ashizawa et al. (1994b) reported that clinical anticipation still occurred in about 

50% of cases that showed intergenerational CTG repeat contraction. On the other hand, 

Harley et al. (1993) and O'Hoy et al. (1993) reported few cases where the reduction of 

repeat size was accompanied by a later age at onset or less severe phenotype.

In the present study six child/parent DM pairs showed either no change (3 cases) 

or minimal increase (< 9 CTG repeats) upon transmission of the CTG repeat from the

159



parent to his/her offspring. In four of these pairs (2 child/maternal and 2 child/paternal) 

the parent repeat sizes were between 52 and 83 repeats. In the other two pairs (parent 

were fathers) the parental repeat sizes were 1.1 (-365 repeats) and 1.25 (-417 repeats) 

and showed no change upon transmission. Relatively stable behaviour of the repeat was 

observed with transmission of alleles less than 80 CTGs (Barcelo et al., 1993) and this 

could partially explain the persistence of this autosomal dominant disease in the 

population despite the presence of anticipation and low reproductive fitness.

A case of uncertain diagnosis of congenital myotonic dystrophy (CDM) was seen 

to be paternally transmitted. She was a 12 years old girl with mental and physical 

retardation, hypotonia, sluggish reflexes and weak musculature. She was an outcome of a 

normal pregnancy with no complications. At birth, she presented with cleft palate, a heart 

murmur and mild talipes deformity of the right foot but there has been no respiratory 

problems or severe hypotonia. She has been slow to reach milestones. She could roll over 

and sit if supported by the age of 10 months and she did not walk until she was almost 

two and half years old. The absence of facial weakness, neonatal hypotonia and neonatal 

respiratory distress in that case weaken the diagnosis of CDM. On the other hand the 

presence of neonatal right talipes and delayed milestones in the first year of life are 

concomitant with the diagnosis of CDM. These data put that case on the border line 

between congenital and early onset DM.

Her mother is normal but her father, who seemed to be an active man and not 

aware of having any health problems, was found to have a mild DM. The grandfather was 

a 65 years old male who had cataract but no muscle weakness or myotonia either 

clinically or by EMG. DNA analysis from this family revealed that the grandfather had a 

small repeat expansion (-100 repeats), the father had an expansion of 1.5 kb (-500 

repeats) and the affected daughter had a 2.1 kb expansion (-700 repeats). These were 

detected by Southern blot analysis using the Bglllp5B\A  system.
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Congenital myotonic dystrophy (CDM) is the most severe form of the phenotype 

which results in significant foetal loss and death in the perinatal period (Harper, 1989b). 

Transmission of that form of the disease has been nearly exclusively maternal with few 

exceptions (Wieringa, 1994). CDM patients usually have large CTG triplet expansions 

although some congenital cases with alleles in the 500 to 999 repeats range were reported 

(Tsilfidis et al., 1992; Harley et al., 1993 and Redman et al., 1993). The finding that 

CDM can be paternally transmitted, even if the incidence of such cases is very low, casts 

doubt upon certain mechanisms previously postulated to explain the maternal 

transmission of the disorder e.g. imprinting and the presence of an intrauterine factor. The 

possibility that CDM may operate with a pathologic mechanism(s) different than that 

adult onset DM can not be excluded and more studies are needed to solve this dilemma.

4.2 Mutation detection in the SOD-1 gene in patients with amyotrophic 

lateral sclerosis (ALS)

Screening for mutations in the SOD-1 gene in 2 familial and 67 sporadic ALS 

cases was performed. Single strand conformation polymorphism (SSCP) analysis was 

optimised to screen the 5 exons of the gene in all cohort of the studied patients. Different 

types of gel matrices and different running conditions were used for the analysis. 0.5X 

MDE™ gel with 5% glycerol running at room temperature and 8% polyacrylamide gels 

with or without 5-10% glycerol running at different watts and temperatures (at room 

temperature and at 4°C) were used along the study. A band shift was detected upon 

analysis of exon 4 from one familial patient. It was detected upon MDE™ analysis and on 

polyacrylamide gel without glycerol running at 12 watts and 4°C. Sequencing of the 

asymmetric PCR of that exon from the corresponding patient revealed a G277-^C 

mutation which caused a missense Gly93Arg change and created a new restriction site for 

the enzyme Sau3Al. This SSCP pattern and its causative mutation were confirmed to be
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present in all other affected family members while it could not be detected upon SSCP 

analysis and restriction enzyme screening of the remaining familial and 67 sporadic ALS 

cases.

Of the various methods applied for the detection of unknown mutations, SSCP is 

by far one of the easiest and cheapest procedures presently available. This technique was 

efficiently used by many investigators to screen for SOD-1 mutations in ALS patients 

(Rosen et al., 1993, Deng et al., 1993, Jones et al., 1995, Deng et al., 1995) where ~ 20% 

of the screened familial cases showed point mutations, nearly all of them caused missense 

amino acid changes. In general, SSCP analysis detects 70 to 95% of mutations in PCR 

product of 200 bp or less (Grompe, 1993). The SOD-1 gene is a single copy gene which 

is known to have five small exons encoding for 153 amino acids. This makes it ideal to 

use single stranded conformational polymorphism (SSCP) analysis as a screening method 

for point mutations or minor sequence alterations in that gene. There are many 

parameters other than the size of the PCR product that can affect the efficacy of the 

technique. Physical factors such as temperature, type of gel matrix, and ionic strength is 

very important such that sequence changes that have little or no effect on conformation in 

one set of conditions can have dramatically different effects under other conditions. A 

new gel matrix (MDE™, AT Biochem.) was used by most of the investigators who 

screened the SOD-1 gene for mutations in ALS patients. This matrix offered a good 

detection rate and did not require many gel condition variations. Overloading of the gel 

sometimes results in abnormal migration of the bands and reduced resolution. For this 

reason, radioisotopic or fluorescent labelling of the PCR products to a high specific 

activity is highly recommended so as samples can then be diluted so that DNA 

concentrations are sufficiently low in the loading solution, yet detectable (Hayashi and 

Yandell, 1993). In the present study a mutation was detected in exon 4 of the SOD-1 

gene using the MDE™ gel and polyacrylamide gel running at 4°C but not at room 

temperature. This emphasises the importance of using different gel conditions if
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polyacrylamide gel is going to be used for SSCP analysis in the SOD-1 gene as had been 

stated by different investigators for other genes (Grompe, 1993).

In the present study, a missense Gly93Arg change was detected in the SOD-1 

gene in one of the two familial patients with ALS. Mutations in Gly93 were previously 

detected in familial ALS patients where Gly93Ala and Gly93Cys were described in one 

report (Deng et al., 1993). This amino acid was shown to be highly conserved among 18 

different species (Pramatarova et al., 1995). Moreover, mapping of the Gly93 to the 

crystallographic structure of the SOD-1 enzyme revealed that it is one of the critical 

glycine residues that allow main chain conformation and packing interactions, closing one 

end of the P barrel structure of the enzyme (Deng et al., 1995). Mutations affecting this 

amino acid should have a deleterious effect on the conformation and stability of the 

enzyme dimer. These together with the detection of the Gly93 Arg mutation in all affected 

family members and not in the other screened patients make it to the most probable cause 

of the disease in that family.

All family members carrying the previously determined missense mutation 

(Gly93Arg) showed an earlier age at onset of the disease (26-40 years) compared to an 

average of about 50 years seen for other mutations. On the other hand, while the disease 

was rapidly progressive in three of them (3 to 5 years till death), one member showed a 

slower disease course (10 years). In screening erythrocytes for SOD-1 enzyme activity in 

27-UK families with FALS (the aforementioned family was one of them), Orrell et al. 

(1995a) found that the previously discovered Gly93Arg mutation showed evidence of a 

dominant negative effect, where the tested proband had only 30% of wild-type enzyme 

levels.

Previous studies showed a variable degrees of reduction in SOD-1 enzyme levels 

associated with different SOD-1 mutations. Moreover, it was apparent that there was no 

relation between the disease phenotypes and the level of the SOD-1 enzyme and 

considerable phenotypic variation occurs within a family among affected members bearing
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the same mutation (Ogasawara et al., 1993; Esteban et al., 1994; Borchelt et al., 1994; 

Gurney et al., 1994; Enayat et al., 1995; de Belleroche et al., 1995). The mechanism(s) by 

which SOD-1 mutations could cause FALS disease is not well understood. The most 

acceptable explanation among investigators working in the SOD-1 /FALS relationship is 

that FALS is caused by a toxic property present in the Cu/Zn SOD-1 enzyme which is 

produced by the mutations (Gurney et al., 1994; Rowland, 1995; de Belleroche et al., 

1995; Brown, Jr., 1995). In the present case, the very low enzyme level together with the 

earlier age at onset of the disease arose by probably two, at present indistinguishable, 

mechanistic possibilities for Gly93Arg: reduced enzyme activity is contributing to the 

disease or Gly93Arg is more toxic than the other mutants and the reduced activity is 

incidental. But, if disease severity was a simple function of SOD-1 toxicity, more toxic 

mutants would be expected to have early onset and short duration. The finding that onset 

and duration appear to act independently suggests that another property of the mutant 

proteins, in addition to toxicity, is involved in the disease mechanism.

Artefacts detected during SSCP analysis

During this study, in some instances, variant bands, which were interpreted as 

mobility shifts, were detected upon SSCP analysis of the PCR products from different 

exons of the SOD-1 gene. In all of them, except one, reloading of the same PCR product 

on a newly made gel was associated by the disappearance of such bands. There is no clear 

explanation for this observation, but errors in sample loading (over loading), gel 

polymerisation, improperly flushed gel wells, uneven gel running or a combination of 

these may play a role in producing such observations. Differentiation among polymorphic 

molecules by SSCP is not entirely predictable and the method can result in false 

negatives, ambiguous results and experimental artefacts (Sheffield et al., 1993).

In one case, the abnormal band shift pattern persisted upon re-running of the same 

PCR product while it disappeared upon electrophoresis of a newly amplified product
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from the same exon from the same patient. To assess for the cause of this condition, the 

radiolabelled PCR which showed this band upon SSCP analysis was recovered out of low 

melting point agarose gel and stored until its radioactivity decayed to a safe level. After 

that l|al aliquots were used in asymmetric PCR amplification reactions to create single 

stranded DNA for sequencing. Sequencing of this product revealed the mis-incorporation 

of a single base, most probably due to a PCR error. The DNA polymerase currently used 

in most PCR assays is isolated from Thermus aquaticus. It lacks 3' to 5' proof-reading 

activity and has an error rate of approximately 1/10 000 bases (Shibata, 1992). In the 

previous case, such a PCR error must be produced early in the PCR amplification to 

make sufficient PCR products detectable by SSCP analysis and DNA sequencing.

SOD-1 mutations in sporadic ALS patients

Because both sporadic and familial ALS have a very similar phenotype with minor 

differences, it was thought that the molecular pathology operating in both of them might 

be similar. In that respect it was decided to screen the present cohort of 67 sporadic ALS 

patients for both unknown and previously known common mutations in the SOD-1 gene. 

For the unknown mutations, SSCP analysis was used as described before. For two known 

mutations, Ala4Val and Ilell3Thr, screening of the PCR products from the 

corresponding exons using restriction enzyme digestion was performed. No abnormal 

SSCP pattern suggestive of the presence of unknown sequence alterations or abnormal 

restriction digestion products were detected in the cohort of the studied patients.

Ala4Val was known to be the most common familial ALS mutation detected in 

SOD-1 exon one (Siddique et al., 1993). This mutation abolishes a,Haelll restriction site 

producing an additional restriction fragment upon the digestion of the PCR product of 

that exon. Using HaeIII to screen for that mutation should be very sensitive with no 

possibility of false negative results. The Ilell3Thr mutation in SOD-1 exon 4 is the 

second most frequent mutation identified in FALS patients (Deng et al., 1995).
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Moreover, it was identified in 3 apparently sporadic ALS patients (Jones et al., 1995). 

This mutation creates a new restriction site for the enzyme Bsrl so that the PCR product 

from the normal SOD-1 exon 4 allele will be digested into two fragments while the 

mutant one will be digested into four fragments. The presence of a Bsrl recognition site 

in the normal exon 4 PCR product served as an internal control for the efficacy of the 

digestion make it unlikely that the digestion products due to such a mutation could be 

missed.

SSCP analysis is a sensitive technique and it was already used to detect mutations 

in ~ 20% of the familial ALS cases studied by different investigators. Moreover, it 

detected a mutation in one of two studied familial cases in the present study.

No data has been published regarding the detection of SOD-1 mutations in 

sporadic ALS although several hundred cases have been screened in North America (de 

Belleroche et al., 1995). The only exception is the published data by Jones et al. (1993; 

1994 and 1995). They detected the Ilel 13Thr mutation in three apparently sporadic ALS 

patients and the Glu21Lys in one other patient. Ilel 13Thr was described before to be the 

second most common mutation in FALS and is known to have a low penetrance 

estimated to be less than 50% by the age of 60 years (Suthers et al., 1994). Because of 

this, Ilell3Thr probably masquerades as a new mutation in apparently sporadic ALS, 

especially when the family history is incomplete (Deng et al., 1995). The inability to 

detect mutations in any of the screened 67 sporadic ALS patients, in spite of using 

reasonable screening techniques, and in other sporadic ALS patients from different 

centres raises the possibility that the molecular pathology is different for the two forms of 

the disease i.e. sporadic and familial ALS. Linkage studies of FALS families revealed 

locus heterogeneity with at least one other FALS gene present in the human genome. It 

may be also the case for sporadic ALS or it may be of non-genetic aetiology. 

Investigators are searching for other candidate genes for ALS and in that respect
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Figlewicz et al. (1994) described mutations in the C-terminal region of the human gene 

for the neurofilament heavy subunit in five patients with sporadic ALS.

4.3 Screening for mutations in the TSC2 gene in patients with tuberous 

sclerosis (TSC)

In the present study, 32 patients with either apparently sporadic TSC or from 

families non-informative for linkage analysis (except one that was later confirmed to be 

chromosome 9 linked) were screened for the presence of germline mutations in the TSC2 

gene using two-step strategy. To screen for deletions and/or other structural 

rearrangements, all patients included in this study were examined by Southern blot 

hybridisation with two TSC2 cDNA probes. Second, to screen for point mutations and/or 

minor sequence alterations, part of the TSC2 gene, expected to be functionally important 

(The European Chromosome 16 Tuberous Sclerosis Consortium, 1993), was examined 

by chemical cleavage of the mismatch (CCM) analysis. Four cDNA segments (spanning 

positions 1041 to 1857 & 4215 to 5471) and one DNA segment (325 bp of the promoter 

area, exon 1 and part of intron one) were amplified by PCR from 22 patients. In another 

10 patients, only DNA was available and from them two DNA segments (exons 38-41 as 

one segment and 325 bp of the promoter area, exon 1 and part of intron 1 as another 

segment) were PCR amplified. All PCR amplification products were analysed by CCM 

analysis.

Using this strategy, no deletions or other structural rearrangements were detected 

on Southern analysis while CCM analysis revealed nine mismatch bands due to 

differences between the target and the normal reference probes. Sequencing of the 

appropriate PCR products from the observed CCM mismatch bands showed three 

missense mutations (in three sporadic TSC patients), two silent mutations (in five 

sporadic TSC patients) and two base pair deletion in one of the polyadenylation signals 

(in one TSC patient).
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Some 5% of germ-line mutations in the TSC2 gene appear to be deletions 

detectable by pulsed field gel electrophoresis (PFGE) or conventional Southern analysis 

(The European Chromosome 16 Tuberous Sclerosis Consortium, 1993). In the present 

study, only 32 patients were screened for the presence of such mutations so it was 

expected to find 1-2 patients with such deletions. This is a quite small number and may 

not be present among the studied group because of chance. Moreover, big deletions that 

could be easily detected upon PFGE will not be detected using conventional Southern 

analysis due to deletion of the whole probe area from the affected chromosome.

At commencing of the present study (1994), only cDNA sequence of the TSC2 

gene was published and there was no available information regarding the number of the 

exons and the exon/intron boundaries. Moreover, there were no reports of point 

mutations in that gene and areas that are hot spots for such mutations. An approach, 

using RT-PCR amplification of -40% of the expressed coding sequence of the gene 

combined with chemical cleavage of mismatch (CCM) analysis, was adopted as a 

mutation screening strategy. Approximately 1.3 kb from the 3' end and 0.8 kb from the 5' 

end of the TSC2 gene were RT-PCR amplified in four segments. The 5' end segment was 

expected to have a possible membrane-spanning regions and the 3' end segments contain 

the GAP3-related domain and the polyadenylation signals. These RT-PCR amplified 

segments were expected to represent critical areas of the gene toward which mutation 

analysis could be directed.

The principle of mismatch cleavage is based upon the cleavage of heteroduplexes 

between strands of nucleic acid mismatched at one or more nucleotides. Chemical 

cleavage of mismatch (CCM) analysis was known to be very sensitive mutation screening 

technique, detecting > 95% of mismatches when only wild-type DNA is labelled and 

100%, when both wild-type and mutant DNA are labelled. It was shown to be an 

excellent method for the detection and location of mutations as it can easily screen up to 

1.7 kb segments of DNA at a time (Grompe, 1993). Using this strategy to screen for
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mutations in the TSC2 gene in 22 TSC patients, 3 missense mutations and three 

polymorphisms were detected. TSC shows locus heterogeneity with two disease- 

determining genes on chromosome 9q34 (TSCI) and on chromosome 16pl3.3 (TSC2). 

Estimates from linkage studies in families suggest that about 50% of the TSC cases are 

related to each gene (Kwiatkowski et al., 1993). If this distribution is the case in the 

studied patients as well, then it was expected to detect 11 mutations if the whole TSC2 

gene was screened. As only 40% of the gene was screened and as there was no apparent 

clustering of mutations within the TSC2 gene according to recently published data 

(Wilson et al., 1996), so it was expected to find ~4 mutations, if the detection rate is 

100%. The RT-PCR/CCM approach adopted in the present study seemed to be effective 

(detected 3 of the assumed 4 mutations). A small percentage of mutations is expected to 

be missed when this approach is used. This may be due to one of the following causes: I) 

Some mutations might affect RNA expression or stability, RT-PCR approach would only 

amplify the normal mRNA and not detect the mutant form. 2) Some of the mutations lies 

outside of the coding sequence that has been amplified by the RT-PCR.

Additional mutations in the TSC2 gene might be detected by screening each exon 

from genomic DNA, but unfortunately, the complex genomic structure of the human 

TSC2 gene with many small exons will make any exon screening approach to mutation 

identification labour-intensive.

When some information of the exon/intron boundaries of the TSC2 gene was 

kindly supplied by Dr. A. Green, Addenbrooke's NHS Trust, Cambridge, screening for 

mutations in the promoter area of the gene was adopted. 663 bp segment was PCR 

amplified from the DNA of 32 patients (including the 22 patients previously screened by 

RT-PCR). This segment included the TSC2 exon 1, part of intron 1 and 325 bp of the 

promoter area. CCM analysis was used to screen for mutations in this segment as before 

but no sequence changes could be detected. In general, mutations in the promoter area

169



are not common and it may be necessary to screen more patients to detect such 

mutations.

In 10 patients, only DNA was available as a study material. A primer set was 

designed and the PCR conditions were optimised to amplify the TSC2 exons 38-41 

(numbering according to Maheshwar, et al. 1996) as one segment of 1120 bp. The 

amplified PCR products were screened by CCM analysis and two silent nucleotide 

changes were detected, resulting in no change to the predicted amino acid. No 

conclusions could be derived from these results as the number of the screened patients 

were small and only -12% of the their TSC2 gene was screened.

Missense mutations in the TSC2 gene

In the present study, three missense mutations were detected. First (Ml602V), in 

the GAP3-related domain and second and third (S1715T and R1720W), in the N-terminal 

of the tuberin, the TSC2 gene product. These mutations are novel and the Ml 602V is the 

first mutation to be detected in the GAP3-related domain of the protein. Comparison of 

the predicted human and pufferfish (Fugu rubripes) peptide sequences identified four 

regions of high conservation. These include the GAP3-related domain (human residues 

1593-1631) and an area of -200 amino acid residues which surrounds this, two small 

regions between residues 750 and 1100, and the N-terminal portion of the molecule 

(Maheshwar et al., 1996). This placed these missense mutations in an important part of 

the gene. Moreover, as these changes were not found upon restriction enzyme screening 

of normal controls (100 chromosomes), these mutations likely contribute to the TSC 

phenotype in these patients.

In contrast to what might be expected, Ml602V mutation in the GAP3-related 

domain was not associated with severe phenotype. GAPs act by stimulating the intrinsic 

GTPase activity of the Ras-related encogens, keeping them in the inactive, GDP-bound 

state (Lowy and Willumsen, 1993). The GAP3-related homology of the tuberin suggested

170



that tuberin may itself have GAP activity, consistent with its proposed function as a 

tumour or a stem cell growth suppressor (Green et al., 1994a; Carbonara et al., 1994) 

and mutations in that part should be associated with the severe phenotype. This patient 

had the skin manifestations of TSC (fibrous forehead plaque, adenoma sebaceum, peri

ungual fibromata) and seizures which is now under control and patient's recent EEG was 

normal. This mutation changed methionine to valine and both are neutral and 

hydrophobic amino acids. Such change may not have severe effects on the protein 

stability and function. If this is case it was expected that the second missense mutation 

R1720W, which changed the basic arginine to the neutral and hydrophobic tryptophan, 

will be associated with a more severe phenotype. This is still also not the case. The 

patient that carried R1720W was presented with mild phenotype with skin manifestations 

and seizures as it is the case in most TSC patients. Finally, the missense mutation 

S1715T, which is very close to the previous R1720W, was associated with the most 

severe phenotype. The patient who is 18 years old is mentally handicapped and he is a 

resident of a hospital for the mentally handicapped. The S1715T would normally be 

considered to be a conservative change, both serine and threonine are neutral and polar 

amino acids. However, there are known examples of conservative missense mutations 

that can result in a disease phenotype if they occupy sites in the protein that are key 

determinants of stability or function (Deng et al., 1993).

Until more is known about the function of tuberin and until additional mutations 

have been characterised pin-pointing critical areas, it is difficult to speculate about the 

exact effects these mutations have on tuberin's function. Moreover, until mutations are 

defined in a large set of patients, correlation between genotype and phenotype will be 

difficult to perform.

To date, the mutations that have been identified in the TSC2 gene include the five 

large-scale deletions and five intragenic deletions defined in the original report describing 

the cloning of the TSC2 gene (The European Chromosome 16 Tuberous Sclerosis
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Consortium, 1993) and a further six patients that were described in a subsequent report 

with deletions including both the TSC2 and the PKD1 genes (Brook-Carter et al., 1994). 

In addition, 13 other mutations have been described (Table 4.1). A high percentage of 

apparently expressed missense mutations (50%) is apparent rather than the expected 

nonsense mutations with prematurely truncated protein products (Figure 4.1). The 

proportion of missense mutations is comparable to that seen in the p53 tumour 

suppressor gene where missense mutations have been reported at a relatively high 

frequency (Chiba et al., 1990), but it is quite different from the mutations found in the 

other phakomatoses where truncation mutations are far more prevalent (Legius et al., 

1993; Trofatter et al., 1993; Latif et al., 1993). In p53 the wide spectrum of the missense 

mutations have been shown to disrupt both DNA binding and the stability of the protein 

which may also be the case for tuberin (Wilson et al., 1996).
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Table 4.1 TSC2 mutations detected in different studies in both familial and 

sporadic TSC patients

Serial Sequence Change Codon Change Type of 

Mutation

Reference

1 5110 delA M1698 fs ->stop at codon 

1801

Frame Shift (fs) Kumar etal., 1995a

2 4590/4591 delC V1524/L1525 fs-»stop at 

codon 1553

Frame Shift Kumar etal., 1995b

3 156+1G->A Splice Junction Splice mutation Kumar et al., 1995b

4 C3616-»T R1199W Missense Wilson etal., 1996

5 G1365-+C M449I Missense Wilson etal., 1996

6 C5075-»T P1686L Missense Wilson etal., 1996

7 C5084->A A1689E Missense Wilson et al., 1996

8 C1849-»T R611W Missense Wilson etal., 1996

9 C1531-*T R505Stop nonsense Wilson etal., 1996

10 1112/1113

del(TC)

1365 fs->stop at codon 

385

Frame Shift Wilson et al., 1996

11 4474/4476

del(TTC)

F1486 In Frame 

Deletion

Wilson etal., 1996

12 4519/4547 29 bp 

tandem duplication

L1510 fs-»stop at codon 

1541

Frame Shift Wilson et al., 1996

13 A52-»T K12Stop nonsense Vrtel et al., 1996

14 T5161—>A S1715T Missense Present Study

15 C5176—>T R1720W Missense Present Study

16 A4822—>G Ml602V Missense Present Study

Numbering of the bases and codons is given relative to the published cDNA sequence (The European 

Chromosome 16 Tuberous Sclerosis Consortium, 1993). fs= frame shift.
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Nonsense
13%

Splice Junction 
6%

In-frame deletion 
6%

Frame Shift 
25%

Missense
50%

Fieure 4.1

Percentage distribution of point mutations and minor sequence alterations within the 
TSC2 gene.
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Polymorphisms in the TSC2 gene

Two silent mutations, C4098—»T and G5346—»C caused silent Seri630 and 

Seri 776 changes respectively, were detected in five out of the screened 33 patients. One 

of these mutations, G5346—>C change, was detected in four patients. This change seems 

to be frequent as it has been also reported in one TSC patient (Wilson et al., 1996). 

Unfortunately, this mutation does not change a commercially available restriction site so 

it was not able to screen the normal chromosomes for its presence. Designing a primer set 

to introduce a restriction site, use of ASO or ARMS analysis could be useful to screen 

normal population for that polymorphism which may be used later (if proved useful) for 

linkage studies in the TSC2 gene.

The third polymorphism was due to an AA deletion at positions 5433 and 5434 in one of 

the two partially overlapping polyadenylation signals of the gene. It was detected in one 

of the familial cases, which proved, later on, to be linked to markers on the chromosome 

9q34 (TSC-J locus). Sequencing of the relevant part of the TSC2 gene in other affected 

family members failed to detect this mutation. Moreover, sequencing of 20 normal 

chromosomes detected this mutation in one of them. Kumar et al. (1995b) reported a 

polymorphic 4 base pair deletion, 5425del4, in the two partially overlapping 

polyadenylation signals in one TSC family and in six of 72 African-American control 

chromosomes examined. The role of polyadenylation signals at the 3' untranslated region 

of the genes is well documented. Deletion and/or substitution of any nucleotide in the 

conserved AATAAA polyadenylation signal can result in abnormal processing of mRNA 

(Lewin, 1990). The TSC2 gene has two partially overlapping polyadenylation signals that 

may cause differential polyadenylation (The European Chromosome 16 Tuberous 

Sclerosis Consortium, 1993). As the AA deletion still leaves one completely functional 

polyadenylation signal and as it could not be detected in other affected family members 

but detected in one normal chromosome, it is reasonable to consider it as a polymorphic 

change.

175



4.4 Conclusions and future work

Mutation detection strategy is influenced by the expected nature of the mutation, 

size and structure of the gene in question, availability of mRNA and the degree of 

required sensitivity. Taking this into consideration, three different mutations strategies, 

each for a different gene, were optimised and proved to be useful screening techniques 

for the detection of mutations within the DMPK, the SOD-1, and the TSC2 genes.

When the mutation in a gene like DMPK is due to the new molecular mechanism 

of trinucleotide repeat length expansion, PCR amplification to detect this change in length 

aided by Southern blot analysis, when the PCR fails to amplify large repeat expansions 

will, theoretically, be the ideal mutation detection method. Nearly all trinucleotide repeat 

expansions that are known to be associated with disease conditions are GC rich and using 

high annealing temperature and hot start for PCR will improve the PCR results. When 

accurate number of CTG repeats is important to know (e.g. in the upper normal range of 

the repeat size), radiolabelled PCR resolved by denaturing polyacrylamide gel 

electrophoresis is mandatory. On the other hand, non-radiolabelled PCR proved to be a 

useful first step screening technique. Southern blot analysis is needed to confirm PCR 

results and to detect alleles that carry more than 80-150 repeats. Choosing proper 

enzyme/probe system for Southern analysis is very important to provide an unambiguous 

detection of both normal (homozygous or heterozygous) and affected individuals.

The mechanism by which the expanded trinucleotide repeat in the 3' untranslated 

region of the DMPK gene leads to the clinical features is unclear. The DM region of 

chromosome 19 is gene rich, and it is possible that the repeat expansion may lead to 

dysfunction of a number of transcription units in the vicinity, perhaps as a consequence of 

chromatin disruption. Further work will be needed to study different genes in the vicinity 

of the CTG trinucleotide repeat to clarify the role of this repeat expansion in the disease
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process. Moreover, intensive study of DM patients who did not show CTG repeat 

expansions (-2% of DM patients) might be of importance in that respect.

The SOD-1 gene is a small well-characterised gene with few exons. It is known 

that nearly all expected mutations within the gene in FALS patients will be point 

mutations causing missense amino acid changes, so that using DNA as a template for 

PCR/SSCP analysis seems to be a reasonable mutation detection strategy. In the present 

study SSCP analyses of the SOD-1 gene were performed to screen for mutations in both 

familial and sporadic ALS patients. Different gel matrices and different running conditions 

were tried and it was shown that using MDE™ gel with 5% glycerol running at room 

temperature was the most suitable choice to screen this gene for mutations. One missense 

mutation was detected in one familial ALS patient (out of two screened familial cases) 

but no mutations were detected in any of 67 screened sporadic ALS patients. In this 

study, false positive results upon SSCP analysis were obtained and careful result 

interpretation and repeating of the experiments which show positive band shifts are 

mandatory to exclude possible errors.

Only 5% of ALS cases are familial, and of these, fewer than 20% map to the 

SOD-1 gene, so there is locus heterogeneity (Rowland, 1995). Failure to detect mutations 

in the sporadic ALS cases (67 patients) in the present study may be simply because the 

SOD-1 gene is not the gene responsible for that disease phenotype. As this gene is very 

small, direct sequencing of the gene (100% detection rate) in sporadic ALS may prove or 

disprove such a possibility. Linkage study analysis of more FALS families is 

recommended to detect other genes responsible for the disease process. This will help in 

more understanding of ALS molecular pathology and will improve genetic counseling of 

ALS patients.

RT-PCR and CCM analysis for the detection of sequence variations in PCR 

fragments is an ideal mutation detection method for genes with big transcripts and 

multiple small exons, especially if the gene mRNA can be easily obtained from peripheral
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blood lymphocytes and when the genomic organisation of the gene is not yet known. 

Using this strategy to screen the TSC2 gene allowed the amplification and screening of a 

large area of the coding sequence of the gene (-40%) using only 4 sets of PCR primers. 

Moreover, by using mRNA as a template it was possible to begin screening for mutations 

in the TSC2 gene before the genomic organisation was known (exon/intron boundaries 

were recently published, Maheshwar et al., 1996). CCM analysis allowed accurate 

localisation of the mutation thus enabling sequencing of a limited area instead of the 

whole product. Moreover, the nature of altered bases was predicted depending on the 

modifying chemical. Osmium tetroxide modifies T mismatches and hydroxylamine 

modifies C mismatches. This further confirms the nature of the mutation in sequencing. In 

the present study, 3 missense and two silent mutations and one two base pair 

polymorphic deletion were characterised and the adopted mutation detection strategy 

proved to be useful.

Since 60% of the gene is still to be screened, little is known about the function of 

tuberin and only few mutations were characterised so far, a clustering of mutations in the 

yet unanalysed part of the TSC2 gene cannot be ruled out. Moreover, it will be difficult to 

speculate about the exact effects these mutations have on disease phenotype and on 

tuberin's function. Using CCM analysis to screen the whole TSC2 cDNA in more patients 

is highly recommended to clarify some of these unknown queries. To decrease the 

hazards of radioactivity and to improve mutation detection rate from 95% to 100%, 

optimising a silver staining technique of CCM analysis is also recommended.
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APPENDIX!

Solution used for DNA extraction from peripheral blood

(1) Lysis Buffer

(2) Nuclei Lysis Buffer

(3) Phenol/Chloroform

(4) T.E. Buffer

(5) ProtinaseK (lOmg/ml)

0.32M Sucrose 
lOmM Tris-HCl, PH 7.5 
5mM MgCl2 
1% Triton X-100

0.4M NaCl
lOmM Tris-HCl, PH 8.2 
2mM EDTA

Water Saturated Phenol one volume 
lMTris, PH 7.5 
0.1% 8-hydroxyquinoline 
Chloroform one volume

lOmM Tris-HCl, PH 7.5 
ImMEDTA

Boehringer Mannheim

Solutions used for RNA extraction

(1) Histopaque '1077f

(2) Solution D

(3) 2MNa acetate, PH 4.0

(4) Water-saturated phenol

(5) Chloroform.isoamyl alcohol (49:1)

(6) Phosphate buffered saline, PH 7.2 
(PBS, GibcoBRL)

(7) diethylpyrocarbonate (DEPC), 0.1%

Sigma

4M guanidinum thiocyanate (Fluka) 
25mM Sodium citrate, PH 7.0 
0.5% Sarcosyl (Sigma)

0.14MNaCl 
3mM KC1
0. ImM sodium hydrogen phosphate 
ImM potassium dihydrogen phosphate



Solutions for RNA sample electrophoresis

(1) 10XMOPS 200mM MOPS
50mM Na acetate, PH 7.0 
lOmMEDTA

(2) 37% formaldehyde solution

(3) Formamide

(4) Loading mix

(5) E. Coli ribosomal RNA 

Reagents used for reverse transcription

(1) SXfirst strand buffer (Gibco BRL)

(2) D TT (0.1M dithiothreitol

(3)M-ML V reverse transcriptase

(4) oligo (dt)12.i8

(5) dNTPs (dTTP, dATP, dCTP, dGTP) 

Reagents used for PCR

(1) 1 OX GeneAmp PCR buffer 
(Perkin-Elmer/Cetus)

(2) AmpliTaq DNA polymerase

(3) dNTPs (dTTP, dATP, dCTP, dGTP)

2g Ficoll
lml 2.5% bromophenol blue 
lml 2.5 xylene cyanol 
0.2ml 0.5MEDTA 
8ml water

Boehringer Mannheim

250 mM Tris-HCl, PH 8.3 
375 mM KC1 
15 mM MgCl2

Gibco BRL

200 units/pl (Gibco BRL)

Pharmacia Biotech.

lOOmM each, Boehringer Mannheim.

500mM KC1 
lOOmM Tris-Cl, PH 8.3 
15mMMgCl2 
1000 (ig/ml gelatin

5 units/pl, (Perkin-Elmer/Cetus)

lOOmM each, Boehringer Mannheim.

b



Reagents used in plasmid work

(1) Luria broth (LB), 1 litre
(PH 7.5, adjusted by 5MNaOH)

(2) LB-agar

(3) SOC Media, 1.020 litre
(PH 7.0, adjusted by SMNaOH)

Reagents used for Southern blotting

(1) T.A.E. buffer SOX

(2) Depurination solution

(3) Denaturation solution

(4) Neutralization solution

(5) 20X SSC (standard saline citrate)

(6) 100XDenhardt's solution

(7) Prehybridization solution

(8) 6X agarose gel loading buffer

lOg bactotrypton 
5g bacto yeast extract 
5g NaCl

Like LB + 5g bacto agar/litre

20g bactotrypton 
5g bacto yeast extract 
0.5g NaCl
10 ml of 250mM HC1
20 ml of 1M filter sterile glucose

242g Tris base 
57.1 ml glacial acetic acid 
100 ml 0.5M EDTA, PH 8.0 
Up to 1 litre by dH20

0.25M HC1

0.5M NaOH 
1.5M NaCl

3M NaCl
0.5M Tris-HCl, PH 7.4 

3M NaCl
300 mM Na citrate, PH 7.4

2% (w/v) BSA (bovine serum albumin) 
2% (w/v) Ficoll
2% (w/v) polyvinylpyrrolidone (PVP)

5XSSC 
1% SDS (v/v)
5X Denhardt's solution

0.25 bromophenol blue 
40% (w/v) sucrose 
IX TBE buffer

c



Reagents used for chemical cleavage of mismatches

(1)ToiE

(2) 10X hybrid buffer

(3) Stop/precipitation mix

(4) 10X One-Phor-All buffer plus 
(Pharmacia Biotech.)

(5) T4 Polynucleotide kinase

lOmM Tris-HCl, PH 7.4 
0. ImM EDTA

3M NaCl
1M Tris-HCl, PH 8.0

63mM Na acetate 
20|iM EDTA 
80% ethanol

lOOmM Tris-acetate 
lOOmM Magnesium acetate 
500mM potassium acetate

~ 10 units/pl (Pharmacia Biotech.)

Solutions used for sequencing (all supplied with Seauenase version 2.0 kit, USB)

(1) 5X sequenase buffer 200mM Tris-HCl, PH 7.5 
lOOmM MgCl2 
250mM NaCl

(2)5X labeling mix (dGTP) 7.5pM dGTP 
7.5pMdCTP 
7.5pM dTTP

(3) Termination mix (ddG,T,C or ATP) 8pM ddG,T,C or ATP 
80(j,M dNTPs 
50mM NaCl

(4) Stop solution

(5) 20XT.T.E buffer

95% formamide 
20mM EDTA 
0.05% bromophenol blue 
0.05% xylene cyanol

216 g Tris base 
72 g taurine 
4 g EDTA
distilled water up to 1 litre

d



(6) Glycerol enzyme dilution buffer 20mM Tris-HCl, PH 7.5
2mM DTT 
0.ImM EDTA 
50% glycerol

(7)Sequenase version 2.0 T7 DNA 13 units/p.1 
polymerase

Solution used for fluorescent automated sequencine

(1) Terminator premix 
(Prism™ Ready Reaction 
DyeDeoxy™ Terminator Cycle 

Sequencing Kit, Perkin Elmer)

(2) Phenol:water: chloroform 
(68:18:14)

(3)gel loading mix

(4) 10XT.B.E. buffer

1.58pM A-DyeDeoxy 
94.47|iM T-DyeDeoxy 
0.42|jM G-DyeDeoxy 
47.37|oM C-DyeDeoxy 
78.95^M dITP
15.79pM of each dATP,dCTP & dTTP 
168.42mM Tris-HCl, PH 9.0 
4.21mM (NH4)2S04 
42.10mM MgCl2
0.42 units/fil AmpliTaq DNA polymerase

86 ml of water saturated phenol 
14 ml chloroform

5 parts deionized water 
1 part of 50mM EDTA, PH 8.0 
30 mg/ml blue dextran (Sigma)

108 g Tris base 
55 g boric acid 
9.3 g EDTA
Distilled water up to 1 litre

Reagents used for ligation of PCR products (all supplied by Promega)

(1) 10X ligase buffer 300mM Tris-HCl, PH 7.0
lOOmM MgCl2 
lOOmM DTT 
lOmM ATP

(2) T4 DNA ligase 1 Weiss unit/fil
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(3) p G E h f'-T  vector 50 ng/pl

(4) p G E I^ f-T  vector control DNA 4 ng/fil

(5) IPTG stock solution (0.1M) 24 mg/ml

(6) X-Gal (100 mg) was dissolved in 2 50 mg/ml 
ml o f  N ,N ' dimethylformamide


