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Summary

This thesis describes a series of experiments comparing the electrical 

and acoustic signals recorded from the human tibialis anterior muscle.

Electromyography (EMG) is a widely used method of monitoring 

muscle activity. In many muscles its amplitude increases linearly with 

force and changes in the EMG/force ratio or shifts of the median 

frequency provide evidence of fatigue. However, in some circumstances 

it is difficult or impossible to record the EMG satisfactorily e.g. if there 

is sweat on the skin or in strong electrical fields or during electrical 

stimulation.

Acoustic myography (AMG) is a more recent development. It is a non- 

invasive technique which may also be used as an indicator of skeletal 

muscle activity. Transverse oscillations of the muscle surface are 

detected with microphones or accelerometers. Their performance is not 

affected by sweating or electrical stimulation artefacts. The AMG is a 

much simpler signal than EMG and because it has a very narrow 

bandwidth it is easy to filter out noise. Like EMG, it has been found that 

the AMG increases with force but it is also known that, contrary to the 

EMG, the amplitude of AMG declines with force during fatiguing 

activity.
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The experiments described here investigate the relationships between the 

EMG, AMG amplitude and force in normal muscles and during muscle 

fatigue. In addition, the characteristics of the frequency spectra of EMG 

and AMG were investigated. The effect of muscle length on EMG and 

AMG characteristics were also studied. The contribution of blood flow 

to the AMG was studied by comparing the signals recorded with and 

without blood flow in the lower limb.

A linear relationship was found between rectified integrated EMG 

(IEMG) and force in fresh and fatigued muscle. The slope of the 

relationship increased with fatigue. A similar relationship was found 

between the IAMG and force in the range 0-75% of maximum voluntary 

contraction in control conditions. However, the slope of the relationship 

between IAMG and force declined after fatiguing exercise.

The EMG spectra from the tibialis anterior contained frequencies 

between 0 and 400 Hz. The median frequency increased linearly as the 

force of muscle contraction increased. The EMG median frequency 

decreased during sustained contractions as fatigue developed. However, 

the AMG contained a range of frequencies between 0 and 45 Hz. The 

median frequencies of the AMG also increased linearly with increasing 

force. However, the AMG frequency content was not significantly 

changed if  fatigue developed at low forces such as 40% of maximum 

voluntary contraction but the median frequency declined significantly 

when the muscle was fatigued at forces above 60% of maximum.
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Changes in the length of tibialis anterior affected the force development, 

EMG and AMG characteristics. At shorter muscle lengths, the maximal 

voluntary force is reduced compared to the intermediate and longer 

lengths and the slope of the relationships between force and IEMG and 

IAMG increases. There were no significant differences in force or the 

relationships between force and IAMG and force and IEMG between the 

intermediate and longer lengths. There were no significant changes in 

the median frequencies of EMG and AMG at different muscle lengths.

There were no significant changes in the characteristics of AMG and 

EMG when the blood flow to the lower limb was stopped by inflating an 

pressure cuff. It can be concluded that the contribution of blood flow to 

the AMG and EMG was insignificant.

In conclusion, the AMG represents a mechanical counterpart of the 

electrical activity in muscle fibres. The IAMG and the AMG median 

frequency may be used to provide indirect information about force. 

Analysis of changes in the IAMG/force ratio or AMG median frequency 

might be used to identify the development of fatigue during contractions 

above 60% of maximum voluntary force.
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General Introduction

Evaluation of muscle function is one of the most important features of 

muscle and nerve pathophysiology. It is also important in rehabilitation, 

medicine and sports in which a therapist, clinician or trainer must be 

easily able to evaluate the muscle at rest or throughout remedial 

strengthening exercises. One of their aims is to prevent or minimise the 

side effects of exercises or harmful diagnostic testing.

Many diagnostic tests require considerable training of personnel or the 

use of expensive equipment or are painful and time consuming for the 

patient. Typical examples of the these are: intramuscular needle 

electromyography, electrical stimulation to establish the strength 

duration curve or nuclear magnetic resonance spectroscopy. Each of 

these has some advantages and some disadvantages or difficulties. For 

instance, intramuscular EMG study is unpleasant and may be harmful 

for the subject. In addition, direct force recording can be very difficult in 

some muscles e.g. erector spinae or some cranial muscles. There is a 

clear need for a better monitor of muscle function.

Acoustic myography (AMG) is the study of transverse mechanical 

oscillation from contracting skeletal muscle (Barry, 1987, Frangioni, 

Kwan-Gett, Dobrunz and McMahon, 1987, Wee and Ashley, 1989).

Its widespread scientific investigation started in the 1980s. In 

comparison with other testing techniques, AMG is non-invasive, cheap 

and may be easier to apply than EMG or force recording (Barry, 

Geiringer, and Ball, 1985, Barry, Leonard, Gitter and Ball, 1986).
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In this thesis human muscle function was investigated in different 

experiments with different aims. It was carried out in combination with 

two reliable tools associated with studies of muscle contraction, namely 

surface electromyography (EMG) and measurement of force.

The tibialis anterior muscle was investigated. It is one of main 

dorsiflexors of the ankle joint. This muscle is characterised by parallel 

muscle fibres, simple mechanics, a superficial location and high radius 

of surface curvature. In addition, the common peroneal nerve which 

supplies this muscle is accessible and easy to stimulate. Another reason 

which led to the selection of this muscle is the high incidence of injury 

which occurs in this muscle and its nerve. Physiotherapists will be better 

able to manage the rehabilitation of a patient if they can understand the 

nature of problem.

Three variables, force, EMG and AMG, were investigated before and 

after intermittent and during sustained fatiguing contractions. In 

addition, they were studied at different muscle lengths and during 

ischaemia.
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1. Review of literature

1.1. The background history of the study of acoustic myography

The first report about the generation of sounds by contracting skeletal 

muscle was by Francesco Maria Grimaldi, an Italian Jesuit priest, in his 

book Physicomatheis de Lummine (Grimaldi, 1665). His work was a 

treatise on light and he is famous for his description of the diffraction of 

light, but he was also interested in acoustics. He found that a low 

rumbling sound is audible when subject stops his ears with his thumbs 

and clenches his fist. He attributed this sound to “the hurrying motion of 

animal spirits”.

Nearly 150 years later, in 1810, another report of muscle sound was 

made by William Hyde Wollaston, a physicist, chemist and physician.

He attributed this sound to contraction of skeletal muscle and stated that 

the muscle sounds increased with strength of contraction. To estimate 

the frequency of sounds, he used two methods. The first method 

compared the muscle sounds he heard when he placed his thumb in his 

ears and clenched his fist with the noise generated by rubbing a round 

piece of wood over a notched board. The notches were of equal size, and 

by rubbing along them at different speeds, he was able to estimate the 

muscle sounds frequency by knowing the space of notch and rate of 

rubbing.
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In the second method, he was also able to estimate the frequency by 

comparing the muscle sounds with the rumbling sounds of a horse 

carriage drawn over the regularly spaced bricks of London’s streets at 

various speeds until the noise matched the rumbling sound he heard 

through his thumbs. The frequency range of muscle sounds from both of 

his methods, was between 14 and 36 Hz. He pointed out that all muscles 

of human body produce the same kind of sound. Another early report 

was by the German anatomist, Helmholtz in 1864. He stated that the 

rumbling sound appeared to relate to oscillations of muscle fibres and 

his estimation of muscle sound frequency was in the same range as that 

of Wollaston. Muscle sounds were recorded from jaw muscles by Marey 

(1874). He found that they were audible during clenching of teeth. He 

also pointed out that with increasing biting force, the intensity of sound 

increased.

In 1885, Herroun and Yeo compared the sounds from voluntary muscle 

contractions with those emitted during electrical stimulation of muscle. 

The first modem recordings were made by Gordon and Holbom (1948). 

They used a small piezo-electric microphone and suggested that the 

increase in diameter of muscle fibres during contraction was the origin 

of the muscle sounds. They believed that the radial expansion could 

cause a pressure wave that could spread to the skin surface.
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1.2. Scientific historical study of acoustic myography

After 1810 the phenomenon of muscle sounds was largely ignored for 

about a century and a half. Occasionally, some scientific publications 

described their presence as noise that interfered with listening to other 

sounds in the body. The reasons for this lack of investigation were:

1- Muscle sounds had been detected by mechanical stethoscopes which 

are maximally responsive to sounds at about 200 Hz but are practically 

unresponsive at about 20 Hz. Newer stethoscope designs solved this 

problem.

2- Detection of the muscle sound was usually contaminated and 

complicated by confusion with ambient vibrations. The low frequency 

sounds associated with machinery, footsteps, and traffic noises are more 

difficult to filter out than ’ are high frequency sounds (e.g. speech). 

These recording difficulties were solved by advances and availability of 

electronic sensors, e.g. piezoelectric transducers, condenser microphones 

and accelerometers. In addition, computerised signal processing 

techniques were introduced which allow time and frequency domain 

analysis of acoustic myogram signals.

The first report of scientific investigations into muscle sounds described 

experiments using an electronic stethoscope (Oster and Jaffe, 1980). The 

microphones in most electronic stethoscopes rely on piezoelectric 

crystals which can convert pressure waves directly into electricity. In the 

biceps brachii contracting under various loads they found the dominant 

AMG frequency was 25 ± 2.5 Hz.
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They also found that there was no difference between sounds which 

were recorded during voluntary contraction and during electrical 

stimulation. They pointed out that muscle sounds were not affected by 

microphones scraping on the skin, by blood flow or by temperature 

effects. They showed that the intensity of sounds increased with 

increasing force. They claimed that the most intense muscle sounds were 

emitted by fast twitch fibres. They found a linear relationship between 

AMG, EMG and force. In his second paper, Oster (1984) hypothesised 

on the origin of muscle sounds and suggested that muscle sounds might 

be responsible for heart sounds. In this paper he pointed out that the 

sound from soleus muscle, which contains predominantly slow twitch 

fibres (Johnson, Polgar, Weightman and Appleton, 1973), is nearly ten 

times more intense than that from the gastrocnemius during normal 

standing. This might reflect the extent of muscle activation rather than 

the fibre types.

1.2.1. Technical problems during acoustic myogram recording

Recording of any bio-electric signal e.g., EMG, presents some 

difficulties such as extraneous environmental noise. These noise 

sources need to be minimised to optimise the signal-noise ratio. The 

simplest techniques are shielding or filtering of signals. Recording 

AMG presents fewer problems than recording EMG but there are some 

factors which make the sounds difficult to detect. These include excess 

adipose tissue which muffles the muscle sounds and prominent bony
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edges which prevent a good skin-microphone coupling (Barry et al, 

1985).

Many different types of transducers have been used to record muscle 

sounds. The most important characteristic o f the recording apparatus is 

the frequency response of the transducers. It has to be sufficiently 

sensitive to frequencies between 1 and 100Hz since almost all the 

AMG signal is in this range (Bolton, Parkes, Clark and Sterne, 1989).

An important guideline in choosing a transducer to record muscle 

sounds is the ratio between its mass and that of muscle under 

investigation. The transducer mass must not interface with the 

oscillations at the muscle surface. Very light accelerometers such as 

the Entran EGAY-25D or Dytran 3115A which weigh about 0.5g, have 

been very useful, particularly in studying of small muscles (Barry, Hill 

and Im, 1992, Keidel and Keidel, 1989). Another advantage in using

accelerometers is that the measurement is made in physiological units
2

(m/s ) rather than transducer dependent units such as mV (Barry et al, 

1992).

The larger piezoelectric contact transducers such as the Hewlett- 

Packard 21050-A, weighing 44g, are often used over the muscles with 

greater mass (Orizio, Perini, Veicsteinas, 1989, Wee and Ashley,

1989). It is important to mention that the output of the contact sensor 

depends on the magnitude of the applied force coupling the transducer 

to the muscle surface. The optimum force is usually thought to be
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about 200 g (Barry, 1992, Orizio et al, 1989). The transducer 

frequency response is flat across the bandwidth of the acoustic 

myogram.

Secure attachment is needed to avoid any movement of the

transducer relative to the muscle surface (Stokes, Moffroid, Ruch and 

Haugh, 1988). Care has to be taken when the microphone or the sensor 

is strapped over the muscle. If the fixing band is applied too tightly, too 

much pressure may act on the sensor during muscle contractions, 

particularly at higher levels of force and this can cause saturation of 

microphone. These problems can be overcome by using a compliant 

strap.

Accelerometers are not influenced by contact pressure. However, they 

are less suitable than microphones for recording muscle sounds during 

sustained contractions because the AMG signals can be contaminated 

by limb tremor (Smith and Stokes, 1993). During repeated 

contractions, the variability of AMG is greater than that of EMG 

(Stokes et al, 1988; Lee, Stokes, Taylor and Cooper, 1992). The total 

signal intensity of AMG is much more variable than its frequency 

content (Orizio, Perini, Diemont, Figini and Veicsteinas, 1990).

The principal factors which can affect the magnitude of AMG 

signals are:
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1. the relative positions of microphone and muscle. When the sensor is 

placed over the tendon instead of the belly of muscle, the magnitude of 

the AMG is reduced (Bolton et al, 1989; Stokes and Dalton, 1991).

2. the contact pressure between sensor and the belly of muscle (Bolton 

et al, 1989; Orizio et al, 1989).

1.3. Skeletal muscle structure and function

Skeletal muscles maintain posture and cause movement. They are 

activated by their motoneurones. Muscle fibres vary in length from a 

few millimetres up to 2 0  centimetres and their diameter ranges between 

1 0  to 1 0 0  pm.

Anatomical muscles are formed by a number fibres bound together by 

connective tissue and usually connected to the bone via a bundle of 

collagen fibres, named tendons, which attach at either end of muscles. In 

some muscles, the muscle fibres may extend almost the entire length of 

the muscles. In most muscles the fibres are shorter than the apparent 

muscle length and may be oriented at an angle to long axis o f muscles. 

The longitudinal arrangement of muscle fibres is more suitable for 

movement than force generation. The oblique orientation is more suited 

for force generation. Muscles vary in shape and size but they share in a 

common operation, namely contraction. Most muscles have a shape in 

which their fibres converge rather than lying parallel to each other. This 

convergent arrangement of muscle fibres tends to produce fusiform or 

pennate muscle shape. Penniform muscles, which are flat and sometimes 

bipennate or multipennate, seem to have the most mechanically efficient 

shape for force generation. This configuration also restricts the operating
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range of muscle lengths. Force is transmitted from muscle to bone via 

the connective tissue and tendons.

The tibialis anterior muscle, which is located on the lateral side o f leg, 

arises mostly from the upper half of the lateral surface of the tibia and 

also from the adjoining part of anterior surface of the interosseous 

membrane. The fibres run downwards and terminate in a strong tendon 

on the anterior surface of the muscle at the lower third of the leg. The 

tendon reaches the dorsum of the foot. After passing through both 

extensor retinacula and turning round the medial side of foot it inserts 

into the medial and plantar surface of the medial cuneiform bone and 

into the base of first metatarsal bone of the great toe (Romanes, 1987, 

Gray, 1991).

The tibialis anterior muscle, which is one of main dorsiflexors of the 

ankle joint, can be fully activated by voluntary effort. Since its 

motoneurones receive relatively weak input from la fibres but relatively 

strong input from descending motor pathways, these can be completely 

activated during strong voluntary dorsiflexion (Belanger and McComas, 

1981; Bigland-Ritchie, Furbush, Frank, Gandevia and Thomas, 1992). 

The tibialis anterior is composed of about 73% slow twitch fibres 

(Johnson, et al, 1973). This composition is very similar to soleus muscle, 

which is composed of more than 85% slow twitch fibres. This suggests 

that tibialis anterior might have a postural role. Furthermore, 

biochemical analysis has shown that this muscle is fatigue resistant 

(Jones, Turner, Newham, and McIntyre, 1993).
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In an erect standing position, the line of gravity passes through a point 

just in the front of centre of the knee joints and also a point just in front 

of the ankle joints. To overcome and counteract this torque in the knee 

and ankle regions, the posterior capsule of the knee and soleus muscle, 

located in the posterior of leg, become tight and contract, respectively. 

Thus, the soleus muscle has to be a predominantly fatigue resistant, slow 

twitch fibre and tonic muscle. In contrast, from the bio-mechanical 

viewpoint the tibialis anterior might be expected to be used relatively 

little and so might be expected to have fast twitch and a majority of 

fatigable motor units. However, in situations which lead to a changed 

line of gravity in the lower limbs for a long time, the muscle may play 

an anti-gravity role. Perhaps co-contracting with soleus to stabilise the 

position of the ankle (Basmajian and De Luca, 1985). Dorsiflexingthe 

ankle at about the time of heel strike during walking may contribute 

to its fatigue resistant nature.

1.3.1. Electrical activity in muscle

The surface of a resting skeletal muscle fibre displays no differences in 

electrical potential. However, the inside of the fibre is maintained at a 

negative potential of about -lOOmV. When the muscle membrane is 

depolarised a regenerative action potential is initiated in the muscle fibre 

membrane. This propagates along the length of the muscle fibre down 

the T tubules into the interior of muscle. An interaction with the 

sarcoplasmic reticulum causes release of calcium ions. This forms an 

important link in the chain of events leading from action potential in the
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surface membrane to the interaction of the actin and myosin and force 

development.

1.3.2. Motoneurone Size Principle

Motoneurone size plays an important role in the recruitment of motor 

units. The size of motoneurone refers to size of nerve cell body, which is 

usually correlated with the diameter of the its axon and does not refer to 

size of the motor units which it controls.

In most circumstances, motor units are recruited according to size, so 

that small units become active at low forces and larger units at higher 

forces. The recruitment sequences is maintained throughout a broad 

range of motor activity including isometric and isotonic contractions.

During weak effort small units are recruited, adding small force 

increments. During stronger efforts larger units are recruited so adding 

larger force increments. The different excitabilities of motor units ensure 

that the smaller units are active more often than the large units. 

Henneman, Somjen and Carpenter (1965) stated the Size Principle as:

1. The small force, slow twitch motor units are innervated by small 

alpha motoneurones while larger, faster twitch muscle units are supplied 

by correspondingly larger motoneurones.

2. In a mixed muscle, recruitment gradually proceed from the 

smallest neurones, recruited first, to progressively larger neurones.

The human tibialis anterior muscle has about 445 motor units (Enoka 

and Stuart, 1985). The behaviour of motor units in the tibialis anterior 

has been studied in considerable detail (Macefield, Gandevia,
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Bigland-Ritchie, Gorman and Burke, 1993, Bigland-Ritchie, Furbush, 

Gandevia and Thomas, 1992). It seems that during isometric voluntary 

dorsiflexion two distinct neural mechanisms control the force 

development in the tibialis anterior, namely recruitment and firing rate. 

During isometric dorsiflexion, the motor unit which was recruited at the 

lowest force had a firing rate of 7.3 Hz. At 50% and 75% of maximal 

effort, its mean firing rate was 16.5 Hz and 22 Hz, respectively. At 

maximal voluntary contraction it was 28.2 Hz.

1.4. EMG characteristics during non-fatiguing contractions

The electromyogram recorded from active skeletal muscle results from 

summation of motor unit action potentials within range of the recording 

electrodes. Larger motor units make larger contributions to the EMG. 

Motor units farther from the recording site make only a small 

contribution to the surface signal. The EMG always increases with force 

but its relationship with force varies in different muscles. The presence 

of complex relationships between EMG and force can be due to 

physiological differences rather than differences in methodology 

(Woods and Bigland-Ritchie, 1983). The physiological phenomena 

contributing to the EMG/force relationship are the fibre type 

composition, fibre architecture, electrical cross-talk from adjacent 

muscles, or co-contraction of agonist and antagonist muscles. Motor unit 

recruitment patterns, firing rate properties and location of fast twitch 

fibres within a muscle can also alter the EMG force relationship.
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Analysis o f the EMG signal is complicated by the complex waveform of 

some motor unit action potentials.

Rectification of the EMG signal produces a uni-directional version of 

the original source signal and this simplifies the measurement of 

activity. Full-wave rectification is preferred because this method ensures 

that all the signal information is available for analysis. By combining the 

positive and negative halves of the source, any subsequent signal 

processing or analysis will take account of all variations in magnitude 

and shape of the elements contained in the source. Integration methods 

have been widely used for a considerable time (Basmajian and De Luca, 

1985).

Complex waveforms such as EMG can be represented as a sum of sine 

waves with different frequencies. The Fast Fourier Transform (FFT) is 

commonly used to determine the frequency content of signals 

(Bergland,1969, Diemont, Maranzana-Figini, Orizio, and Veicsteinas,

1988). EMG has a wide frequency band, ranging from 0-400Hz. The 

precise frequency spectrum depends on the type of muscle under 

investigation (De Luca, 1984). In contrast, AMG contains a relatively 

narrower range of frequencies, between 0-50Hz (Orizio, et al, 1990, 

Mealing and McCarthy, 1991). Several parameters are already being 

used to analyse myoelectric signals. These are median, mean, mode and 

band frequency. The median frequency is defined as the frequency at 

which power spectrum is divided into two regions containing equal 

power.
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The mean frequency is the average frequency and the mode frequency is 

the frequency at which peak energy is found in the spectrum. The 

median and mean frequency parameters were found to be most reliable 

and of these two the median frequency is preferred because it is less 

sensitive to noise (Stulen and De Luca, 1981). In the frequency bands 

analysis the energy concentration between twoJ defined frequencies is measured.

The frequency bands analysis seems to be reliable and can be more 

informative than the other parameters when working with complex 

waveforms.

1 .5 .1AMG and force relationship

The origin of muscle sounds is not yet known, but it is thought to reflect 

intrinsic mechanical activity of muscle (Oster and Jaffe, 1980; Barry et 

al, 1985) perhaps from transverse mechanical oscillations of muscle 

fibres (Barry et al, 1987; Frangioni et al, 1987). The relationship 

between AMG and force seems to vary in different muscles, but it is 

generally accepted that there is a positive correlation between IAMG 

and increasing contraction. This is shown in Table 1.
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Table 1 shows a summary of the previous studies of the AMG-force 

relationship (1976-1993).

Author Muscle Transducer %MVC Relationship Year

Stokes AP Microphone 0-100 Curvilinear 1992

Lammert BB Accelerometer 20-100 S-shaped 1976

Oster BB Microphone 0-50 Linear 1980

Barry BB Phonocardiograph 0-50 Linear 1985

Orizio BB Microphone 10-100 Parabolic 1989

Maton BB Microphone 10-100 Quadratic 1990

Zwarts BB Microphone 20-100 Linear 1991

Stokes ES Microphone 10-100 Quadratic 1988

Stokes QF Microphone 20-100 Linear 1991

Zhang QF Accelerometer 20-80 Linear 1992

Smith QF Microphone 20-100 Linear 1993

Smith QF Microphone 20-100 Non-Linear 1993

Rouse TB Microphone 20-100 Linear 1991

Table 1. The relationship between IAMG and force in different muscles. 

AP, BB, ES, QF and TB indicate adductor pollicis, biceps brachii, 

erector spinae, quadriceps femoris and triceps brachii, respectively.
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The relationship between integrated AMG or root mean square AMG 

(rmsAMG) and force is described in several different ways by the 

authors listed in Table 1 on the previous page. There are 7 reports of a 

linear relationship and 6  of non-linear relationships of various sorts. This 

may be partly explained by experimental conditions, particularly by the 

type of transducer used. Many experiments were performed on the 

biceps brachii. In almost all experiments, subjects made isometric 

forearm flexion contraction between 0-100% MVC. Different 

AMG/force relationships were still reported. One major reason for this 

difference is the usage of different transducers with different 

characteristics and performance. The difference in AMG/force 

relationship may be also depend on a uniform or mixed composition and 

distribution within muscle. Several experiments were performed in a 

narrow range of contraction force (Oster and Jaffe, 1980, Barry et al, 

1985). They found linear relationship between AMG and force. These 

results differ from some other experiments which carried out in 

whole range of contraction force of the same muscle. Thus, the range of 

contraction force can be the other reason for the AMG/force 

relationship. The AMG and force relationship seems to be less 

predictable in a smaller muscle, e.g., jaw elevator muscles. Stile and 

Pham (1991) showed that the amplitude of AMG of masseter and 

anterior | temporalis increased to a maximum value at 5 or 10% MVC, 

and remained constant or decreased at higher forces. In general, all
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authors agree that AMG increases as force increases. The nature of the 

relationship is variously described as simple linear or more complex.

The increase in IAMG with force is thought to be due to recruitment |of 

new motor units and increasing motor units firing rates (Orizio et al, 

1989, Dalton and Stokes, 1991). The most controversial feature is the 

existence of a maximum in AMG at about 80% of MVC.

1 .6 . AMG frequency changes

The analysis of AMG frequency began early, by Wollaston (1810). He is 

the first one who estimate AMG frequency to be 14-36 Hz. The 

frequency range of the AMG was estimated by a frequency analyser and 

found that the greater part of the signal energy was below 100 Hz 

(Cerquiglini, Figura, Marchetti and Salleo, 1973). This result was 

reported for the gastrocnemius and quadriceps femoris.

With recent advances in laboratory instrumentation and computers more 

information has been obtained about AMG frequency content. The 

frequency content of AMG has been investigated by several authors. 

These are listed in Table 2 .
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Table 2 shows the summary of the previous studies in the AMG 

frequency characteristics of various muscles.

Author Muscle Transducers MVC (%) Frequency (Hz) Year

Oster BB Microphone 10-50 25 ± 2.5 1980

Rhatigan BB Angiograph 0-100 15 ±4.2 1986

Maton BB Microphone 0-100 15.5-22.2 1989

Wee BB Microphone 0-20 11.3 1989

Orizio BB Microphone 10-100 10-22 1990

Dalton BB Microphone 0-50 6-14.1* 1993

Dalton BB Microphone 0-50 6.9-10** 1993

Mealing 0 0 Microphone MVC 22 ±5 1991

Dalton QF Microphone 10-100 7.1-16.9 1993

Zhang RF Accelerometer 20-80 11-19 1992

Herzog RF Accelerometer 70 25 ± 9 1994

Mealing RF Microphone 80 7.5-10 1990

Mealing S Microphone MVC 10.8 ±3 1991

Rouse TB Microphone 20-100 12-15 1990

Herzog VL Accelerometer 70 40 ± 7 1994

Table 2. The frequency measurement of AMG1 in different muscles.

BB, 0 0 ,  QF, RF , S, TB and VL reveal biceps brachii, orbicularis oris, 

quadriceps femoris, rectus femoris, soleus, triceps brachii and vastus 

lateralis, respectively. * and ** indicate concentric and eccentric 

contractions.
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The differences in the AMG frequency measures between various 

investigations may be partly explained by experimental conditions, 

particularly by the type of transducer used. The difference may also be 

partly due to differences in muscle size which leads to a difference in 

resonant frequency. Alternatively, differences in fibre composition and 

distribution within muscle may be important. Variation in the AMG 

frequency content can also be explained by different types of frequency 

analysing software and different time windows. Several frequency 

parameters such as bands, mean, peak and median frequencies, were 

used by authors. In addition, using different types of contractions and 

different contraction forces led to different AMG frequency contents. 

Keidel and Keidel (1989) showed that during maximal isometric 

voluntary contraction of tibialis anterior, biceps brachii, masseter and 

wrist extensor muscles, the AMG frequency spectrum is spread from 

1-49 Hz. They also found several peaks in this range which do not 

support the concept “of just one stable frequency of, e.g., 10 Hz”.

The frequency of the AMG signal, may be affected by a combination of 

factors, including the physical properties, stiffness of muscle, the force 

developed, the motor unit firing rate, physiological tremor, the density 

and elasticity of tissue, muscle temperature and distortion of sound wave 

at the tissue/air interface.
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1.7. Skeletal muscular fatigue

The term fatigue is itself complex and has a number of different 

meanings. Fatigue was defined as “failure to maintain the required or 

expected force ” (Edwards, 1981). The definition which is most 

generally accepted in human exercise is “the failure to maintain an 

expected power output”. Fatigue is also defined as “any reduction in the 

force-generating capacity of the entire neuromuscular system, regardless 

of the force expected” (Bigland-Ritchie and Woods, 1984). Vollestad, 

Serjersted, Bahr, Woods and Bigland-Ritchie, (1988) suggested a 

distinction between fatigue and exhaustion. Their definition of 

exhaustion was “ an inability to sustain contractions/exercises at the 

target force/intensity”.

Several experiments were performed to find the answer of two general 

question about fatigue:

1. Where is the site of failure during ithe contraction process?

2. What is the nature of change that causes the impairments in force 

development?

Fatigue can be caused by impairment of any one of, or combination of, 

the links in the command chain between CNS and muscle.

In general, fatigue has been subdivided into central and peripheral 

components. Central fatigue is the failure of neural drive which causes a 

reduction in the numbers of active motor units or a reduction in the 

firing rate of active motor units. Peripheral fatigue is the failure of force 

generation in muscle. It results from the failure of neuromuscular
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junction, muscle action potentials or impaired excitation-contraction 

coupling. Localised muscular fatigue has been defined by Chaffin 

(1973) as “ an inability to maintain a desired force output with 

augmented muscular tremor and localised pain”. This definition 

differentiates peripheral fatigue from central fatigue. Merton (1954) 

showed that fatigue can be the result of processes occurring entirely 

within muscle fibres. Peripheral fatigue can be divided into low and high 

frequency fatigue categories. These are associated with direct muscle 

stimulation frequencies of 20 and 80 Hz, respectively (Edwards, Hill, 

Jones, and Merton, 1977). Low frequency fatigue (LFF) thought to be a 

result of excitation contraction coupling failure. It is generally long 

lasting and also more pronounced after eccentric contractions. The 

activities of every day life are mostly the result of submaximal 

contractions induced by low frequency activity of motor units. High 

frequency fatigue processes have a more rapid onset and the force 

recovers more rapidly than that in low frequency fatigue. High 

frequency fatigue is most probably due to neuromuscular junction block 

(Stephens and Taylor, 1972) or impairment of muscle action potential 

propagation (Bigland-Ritchie, Jones, and Woods, 1979, Jones, Bigland- 

Ritchie and Edwards 1979).

During all voluntary contractions the higher motor centres are active so 

that failure of some central mechanism during the course of sustained 

contraction can lead to a sense of fatigue or exhaustion. Motivation of 

subject and the provision of visual feedback during exercise is crucial.
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Twitches or tetani superimposed on the voluntary contraction have been 

very useful to investigators for differentiating peripheral muscular 

fatigue from lack of motivation (Merton, 1954).

1.8. IEMG and IAMG changes during muscle activity

It has been shown for several skeletal muscles that as fatigue develops 

during submaximal isometric contractions, the amplitude of the rectified 

integrated EMG signals increases in order to maintain the same force 

output (Edwards and Lippold, 1956, Merlleti et al, 1990). This increase 

in amplitude is more pronounced near the end of sustained contraction 

and is a result of either recruitment of fresh motor units (Edwards and 

Lippold, 1956), or synchronisation of motor unit action potentials 

(Milner-Brown, Stein and Lee, 1975). The relationship between IEMG 

and force is shifted to the left when muscle becomes fatigued as 

EMG/force ratio rises (Komi and Vitasolo, 1977). Stephens and Taylor 

(1972) showed that the smoothed EMG of first dorsalis interosseous 

(FDI) declined with force during sustained MVC. They concluded that 

the decrement was due to neuromuscular junction failure.

Similar experiments have been performed to investigate the AMG during 

sustained contractions. In these experiments, subjects made isometric 

contractions of biceps brachii of an initial force of 75% MVC (Barry et 

al, 1985). This was sustained until fatigue had reduced the force to 35%
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of the initial MVC. The AMG with surface EMG were compared to 

detect any dissociation of electrical from mechanical events, i.e. a loss 

of excitation-contraction coupling. They stated that the imsAMG 

amplitude was affected and declined in parallel with the force, whereas 

the rmsEMG did not change. Their EMG results are in contrast with 

most generally accepted literature which describes an increase in 

EMG/force ratio with fatigue. They concluded that the rmsAMG 

correlates better with force, than does rmsEMG during sustained 

contractions. They also found that during prolonged intermittent 

exercise, the rmsAMG increases. They claimed that the increment in the 

rmsAMG during prolonged intermittent fatigue activity can be attributed 

to increased physiological tremor, better efficiency of the AMG 

transmission or perhaps recruitment of new motor units.

In other studies of sustained exhausting activity in a series of 

contractions at 20, 40, 60, or 80% MVC of biceps brachii, three 

different trends were identified (Orizio et al, 1989). EMG/force ratio, 

increased at all four force levels, which clearly showed fatigue had 

developed. However, the authors found that it is difficult to make any 

single statement about AMG/force ratio. During contractions at 20% 

MVC, the IAMG increased though the force remains constant. The 

IAMG fluctuated around a steady value during contractions at 40% of 

MVC. During higher force contractions, they observed that the IAMG 

decreased in a non-linear fashion. After exhaustion at 20% MVC, the 

AMG amplitude was 5 times greater than its control values, whereas 

after exhaustion at 60% and 80% MVC it was about 4.5 times less than
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their control values. These results show that if  fatigue develops slowly, 

for instance at 2 0 % MVC, the AMG amplitude tends to increase but if  

fatigue develops rapidly, e.g., at 60% MVC, the AMG reduces.

It has been found that the electro-mechanical dissociation is evident “not 

only when the force decreases with time as was shown by Barry et al 

(1985), but also when force output is maintained constant” (Orizio, et al,

1989).

The AMG changes were investigated during contractions at 10% (Keidel 

and Keidel, 1989) and 50% MVC (Zwarts and Keidel, 1991) in the 

biceps brachii sustained until exhaustion. These results were similar to 

Orizio’s in that, at lower forces, the amplitude of the AMG increased 

but at higher forces it did not change significantly. In a study of the 

abductor digiti minimi (Goldenberg, Yack, Cemy and Bunton, 1991), 

the AMG was recorded during contractions at 15, 25, 50, and 75% MVC 

sustained to exhaustion. They reported a considerable increase in the 

rmsAMG at 15 and 25% MVC, whereas a clear reduction was shown at 

50% MVC. There was only slightly decrement in the rmsAMG at 75% 

MVC.

Stokes and Dalton (1991) studied the IAMG and IEMG during 

intermittent fatiguing activity of rectus femoris. Fatigue was induced by 

repeated voluntary contractions, initially at 75% MVC continued until 

only 40% MVC could be maintained. The contractions each lasted 10 

seconds with a 10 second interval. At the end of the period of activity,
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the slope of the regression lines between force and IEMG increased 

which confirmed fatigue had developed. However, the slope of 

regression line between force and IAMG was unchanged. Cooper, 

Stokes, and Jayson (1991) recorded the AMG and EMG during 

sustained contractions of the lumbar erector spinae. They showed that 

the AMG remains unchanged in the normal and low back pain groups, 

whereas the values of EMG increased significantly.

It can be concluded that a comparison between AMG and EMG may 

also supply reliable information about electro-mechanical dissociation 

during sustained and intermittent fatiguing activity at different force 

levels. It could be used as an indirect fatigue index.

1.8.1. The EMG and AMG frequency changes

It is clear that as fatigue develops there is a shift in the surface EMG 

median frequency towards lower values (Stulen and De Luca, 1982, 

Merletti et al, 1990). The frequency shift in EMG can be used to identify 

muscular fatigue. In particular, it has been shown that the frequency 

spectrum of the EMG signal becomes narrower with fatigue, losing parts 

of the high-frequency content and so shifting towards a lower frequency 

range. This phenomenon can be quantified by calculating the median or 

mean frequency. This shift is most pronounced near beginning of a 

sustained contraction. The decrease may be up to 50% in value from the 

beginning to the end of a sustained constant contraction. It is attributed
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to slowing of the muscle conduction velocity which is related to 

muscular fibre diameter and also to intramuscular pH.

Changes in EMG median frequency have also been shown to be 

influenced by blood flow occlusion within the sustained contracting 

muscle (Merletti, Sabbahi, and De Luca, 1983). The reduction of median 

frequency in contractions under ischaemic conditions is related to the 

accumulation of acidic by-products. There is a similar trend between the 

decrease o f EMG median frequency and muscle pH during sustained 

contractions (De Luca, Sabbahi, Stulen and Bilotto, 1982). They also 

showed that the shift of the median frequency in slow twitch muscle is 

less than in fast twitch muscle. When blood flow is restored to the 

muscle, median frequency recovers quickly (Merletti et al, 1983).

IAMG has also been used to measure force and monitor fatigue (Barry et 

al, 1985; Frangioni et al, 1987; Goldenberg et al, 1991; Orizio et al,

1989, Stokes and Dalton, 1991). However, there are few study which deal 

with the effect of fatigue on the AMG frequency content. Keidel et al 

(1989) observed an increase of the AMG power frequency in the 

bandwidths of 8-18 and 20-30 Hz during isometric contraction of biceps 

brachii. Goldenberg et al, (1991), showed a frequency shift in the AMG 

towards lower values from the beginning up to the end of 50% MVC of 

abductor digiti minimi sustained to exhaustion.

A new investigation of frequency content during sustained isometric 

exhausting contraction was carried out on the biceps brachii (Orizio,
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Perini, Diemont and Veicsteinas, 1992). In this study the mean 

frequency of the AMG was calculated at different forces.

During sustained contractions at 20% of MVC the mean frequency of 

the AMG remains unchanged. At higher force levels (e.g., 80% MVC), 

after an initial increase in its frequency content, the AMG spectrum 

shifted towards lower values. They observed that the changes in the 

AMG frequency spectrum are similar to changes in motor units firing 

frequency during contraction.

Zwarts and Keidel, (1991) did not find a clear frequency shift in the 

AMG during contractions of 50% MVC of biceps brachii sustained to 

exhaustion . However, at maximal voluntary contraction, they showed a 

shift in mean frequency of the AMG to lower values. Similar 

experiments were recently performed at 70% of MVC sustained 

isometric contraction in the quadriceps femoris (Herzog, Zhang, Vaz, 

Guimares and Janssen, 1994). The median frequency of AMG shifted 

towards lower values from the onset to the end of contractions. The 

average shift was from 40-19 Hz for rectus femoris and from 25-12 Hz 

for vastus lateralis.

1.9. Aims of investigation:

The present study is to extend the previous works by investigating the 

amplitude and frequency changes of the AMG and EMG over the human 

tibialis anterior.
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The aims of investigation are as follow:

1. To study the relationship between force, IAMG and IEMG in fresh 

and fatigued muscle.

2. To investigate the relationship between AMG and EMG median 

frequency and force.

3. To investigate the changes of EMG and AMG amplitudes during 

intermittent and sustained contractions.

4. To study the EMG and AMG frequency during sustained 

contractions.

5. To investigate the EMG and AMG amplitude and frequency spectra at 

different muscle lengths.

6* To study the effect of blood flow on the amplitude and frequency 

spectra of EMG and AMG.



MATERIALS and METHODS
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2. Materials and methods

2.1. Experimental subjects:

The experiments were performed on 46 subjects aged 19-44 years, both 

male and female, with no history of neurological disease or 

musculoskeletal abnormality. Each subject did not perform all 

experiments. Details of numbers of subjects in each type of experiments 

are given at the appropriate places in the result section. All subjects gave 

their informed consent in accordance with a protocol approved by the 

Western Infirmary research ethics committee.

2.2 Experimental set up:

Each subject was comfortably seated in a chair with their right leg held 

in a rigid frame. The leg was immobilised by adjustable clamps with the 

tibia vertical and the ankle and knee at 90°. The general experimental set 

up is shown in Figure 1.

A force transducer was mounted underneath the foot plate. This allowed 

the dorsiflexion force developed by the subject to be measured directly. 

The whole force frame was fixed to a heavy metal plate to stop 

any movement.
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Figure 1. The general experimental set up. The instruments which 

include: 1. PC, 2. 1401 interface unit, 3. Force amplifier, 4. Opto- 

isolation EMG system, 5. Neurolog, 6. Multi channel chart recorder, are 

shown in the left side. The position of subject and the microphone and 

EMG electrodes are seen in the right side. The left leg of subject was 

fixed to a supporting rigid frame. The knee and the ankle were 

positioned at 90° by two clamps.
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2.3. Instructions to subjects and visual feedback:

Prior to any experiments, the purpose of the work and the type of 

contractions required were described to subjects. They were also taught 

to use the monitor screen or oscilloscope to enable them to maintain the 

required force for a specified time. "Target" forces were indicated either 

on a monitor or on a storage oscilloscope or chart recorder to provide 

visual feedback for the subjects. In addition to the visual feedback the 

subjects were encouraged strongly to maintain the required contraction 

of muscle.

2.4. Recording protocol

Throughout of all experiments force, EMG and AMG from the anterior 

tibial muscle were recorded simultaneously.

2.4.1 Force

The isometric dorsiflexion torque at the ankle joint was measured with a 

load cell (maximum load 250 Kg, RS Components, UK).

At the beginning of all experiments the maximal voluntary dorsiflexion 

force was measured. Subjects were asked to perform three maximum 

isometric contractions, each of which should be maintained at least for 2 

seconds (Edwards et al, 1977). The greatest force was identified as the 

maximal voluntary contractions (MVC) and then the submaximal 

contractions were expressed as percentages of MVC.



33

The strain gauge was calibrated to confirm its linearity. The temperature 

of the lab was controlled between 22-25°C. Figure 2 shows the 

calibration curve obtained.

2.5 Volts

0.5

350 5 3010 15 20 25

Force (Kg)

Figure 2- The calibration curve of the strain gauge.



34

2.4.2. Electromyogram

EMG was recorded using three surface metal foil electrodes (Littman 

2325VP 3M Ltd). These are disposable single use adhesive electrodes 

for diagnostic purposes.

Figure 3 shows the locations of these electrodes. The skin lying over 

tibialis anterior was shaved, cleaned with alcohol and abraded with fine 

sand paper. Two recording electrodes were placed immediately adjacent 

to the sensor and one earth electrode was placed over the head of fibula. 

The EMG signal was pre-amplified (xlOOO) by an optically isolated 

amplifier. The pre-amplifier was placed close to the subject so as to keep 

the wires from the EMG electrodes as short as possible.

2.4.3. Acoustic myogram

The acoustic myogram was recorded with a Hewlett Packard (21050-A) 

heart sound microphone (Figure 3). This is a relatively large 

microphone, and contains a piezoelectric, crystal microphone. It has a 

contact surface about 14mm in diameter and weighs about 44 grams.

The microphone is sensitive in the frequency range 0.02-2000 Hz. The 

subject was asked to contract the tibialis anterior and the middle of 

muscle belly was identified and marked. The middle of the of belly the 

muscle was the best point to obtain good contact between the sensor and 

the skin which lies over the muscle (Bolton et al, 1989, Stokes and 

Dalton, 1992). The microphone was strapped over the middle of the 

tibialis anterior using a rubber band. The surface of tibialis anterior is 

not greatly curved, neither does the profile change much on contractions.
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Thus, microphone position is not much changed during isometric 

contractions. The microphone records transverse accelerations of muscle 

during activity.
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Figure 3- Shows the location of the microphone and the recording 

electrodes of EMG on the belly of the tibialis anterior muscle.
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2.5. Signal processing and analysis:

The raw signals of force, EMG and AMG !werei stored on magnetic 

tape using a PCM-8. FM tape recorder. This provided a bandwidth of 

DC-3.5kHz in the 8-channel mode and DC-7kHz in the 4 channel mode.

In addition, data was conditioned by further amplification and filtering 

before being analysed on line or offline using a CED 1401 interface unit 

and a Viglen 25MHz PC.

2.5.1.Force

Earlier experiments used a PC26AT card (Amplicon Liveline Ltd) to 

digitise signals. Later experiments used a CED 1401. Isometric force 

was displayed on a chart recorder or after a 12 bit A/D digitisation, 

stored in a PC. The minimum resolution of time and force was 8psec 

and 0.005% MVC, respectively. Forces were measured using a cursor 

positioned on the force record of the computer screen.

2.5.2. EMG

EMG signals were subjected to two different types of analysis,

a. Rectified Integrated EM G

The EMG signal was band pass filtered between 10Hz-3kHz bandwidth and 

amplified using Neurolog NL 106 and NL 125 modules. A 50Hz notch 

filter could be switched into circuit to reduce unwanted mains noise.
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The amplified EMG was subsequently full wave rectified and integrated 

using a Neurolog NL703 integrator unit. The time constant was set to 

0.5 seconds. The rectified integrated signal was then digitised with a 

PC26AT A/D card (Amplicon Liveline UK Ltd) and displayed on a PC. 

The cursors were used to measure the amplitude of the rectified 

integrated EMG during periods when the muscle force was stable.

b. EM G frequency spectrum

Frequency spectra were calculated offline using CED Waterfall 

software.

Unfiltered EMG signals were stored on a PCM-8 magnetic tape recorder 

and replayed to a CED 1401 interface unit where they were digitised at 

1024 Hz. The Waterfall package uses the Fast Fourier Transform ( FFT) 

to establish the frequency content. The expected upper frequency limit 

of the EMG was about 400 Hz. A section of EMG lasting about 0.5 sec 

was selected for analysis using the vertical cursors.

The FFT calculation was performed on 512 points. A specimen spectrum 

is shown in Figure 4. Two variables were measured from the frequency 

spectrum: the median frequency and the bands frequencies.

The median frequency is defined as the frequency at which the spectrum 

is divided into two parts with equal power.

The median frequency was found to be less sensitive to noise and this 

was particularly useful for the signals that are recorded at low force
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level. | In the frequency band analysis the energy concentration between two 

defined frequencies is measured.

The area of the spectra to be used for bands and median frequencies 

were specified with two vertical cursors. These frequencies lay between 

0-500Hz. The percentage of energy in 50Hz bands was calculated so 

that the distribution of the energy at different frequencies could be 

displayed.



40

£  2.5-
o  0.0^1 

>  2.5-

2 sec

0.4- 

I?  0.3-
c  0.2.

Median

0.4 -j
Q
£  0.3-

H  o - 2 - 

0 . 1-

24.0 32.6

0 300 4001 0 0 200
Hz

Figure 4. Typical spectral analysis of EMG. The upper panel shows two 

seconds of unfiltered, raw EMG data. Middle panel shows the median 

frequency at the cursor. The EMG frequency bands analysis is shown in 

the lower panel .The figure show the percentage of energy spectrum of 

EMG in each frequency bands.
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2.5.3. AMG

Two different kinds o f analysis were carried out on the AMG signals. 

They will be described in sequence.

a. Rectified Integrated AMG

The AMG signal was band pass filtered between 2 and 160Hz and 

amplified using Neurolog NL 106 and NL 125 modules. The filtered, 

amplified AMG was subsequently full wave rectified and integrated 

using a Neurolog NL703 integrator unit. The time constant was set to

0.5 seconds.

The rectified integrated signal was then digitised with a PC26AT A/D 

card (Amplicon Liveline UK Ltd) and displayed on a PC. The cursors 

were used to measure the amplitude of the rectified integrated AMG 

during periods when the muscle force was stable (Stokes and Dalton, 

1991).

b. AMG frequency spectrum

The energy spectrum of unfiltered AMG signal was processed and 

analysed in the similar way to the EMG which was described in the 

2.5.2 EMG (b) section.

Since the expected upper frequency limit of the AMG was below 50Hz 

(Goldenberg et al, 1991, Dalton and Stokes, 1993), a sampling rate of 

256 Hz was chosen.
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A section of AMG lasting about 0.5 sec was used for analysis using the 

vertical cursors. The FFT calculation was performed on 128 points. A 

specimen spectrum is shown in Figure 5.

Two parameters, the median frequency and the band pass filtered 

frequencies, were measured from the AMG frequency spectrum.

The area of the spectra to be used for bands and median frequencies 

were specified with two vertical cursors, this area was between 0-60Hz. 

The median frequency of the AMG was calculated and displayed as 

described by Marchetti, Felici, Bemardi, Minasi, and Di Filippo (1992). 

The percentage of energy in 5Hz bands was calculated so that the 

distribution of the energy at different frequencies was displayed (Orizio 

et al, 1990).
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Figure 5. Typical spectral analysis of AMG is shown. The upper panel 

shows two seconds of unfiltered, raw AMG data. The middle panel 

shows the median frequency at the cursor. The AMG frequency bands 

analysis is shown in the lower panel. The figure show the percentage of 

the AMG energy spectrum in each frequency band.
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2.6. Pattern of muscle activity

Several types of isometric muscle activity were investigated. Short 

periods of contraction lasting a few seconds with long rest periods at 

different force levels (25-100% MVC) were used to avoid fatigue. 

Contractions at 75% of MVC lasting a few seconds with short rest 

periods were performed to produce intermittent fatigue. Longer 

sustained contractions lasting up to 330 seconds were also used to 

investigate fatigue. In addition, contractions were made at different 

muscle lengths at different forces (20-100% MVC). Each of these will 

be described in detail in turn.

2.7. Isometric contractions of fresh muscle

After a period of familiarisation with equipment, an ascending series of 

contractions were made at 25, 50, 60, 75, and 100% of MVC. This was 

followed by a descending series at the same force levels. Each 

contraction lasted 6 seconds with 30 to 90 seconds intervals allowed for 

complete recovery. Longer rest periods were used with higher force 

levels to avoid fatigue. The absence of fatigue was confirmed by a 

constant EMG/force ratio.

2.8. Fatiguing activity:

Two types of fatiguing exercise were studied: intermittent and 

continuous contractions.
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2.8.1. Intermittent fatiguing exercise at 75% MVC

The subject was asked to perform isometric dorsiflexion contractions at 

an initial target force of 75% of MVC. The contractions were held for 6 

sec with 4 sec rest. The exercise continued after the subject could no 

longer maintain 75% of the starting MVC and was stopped when the 

force reduced 60% of initial MVC. The duration of this exercise was 

between 5 and 8.5 minutes. After the period of activity, a series of 

graded contractions, as described in 2.7, was repeated. Then, the 

AMG/force and EMG/force relationships was compared in fresh and 

fatigued muscle. Fatigue development was confirmed by increasing 

EMG/force ratios.

2.8.2. Continuous fatiguing exercise

Subjects were also asked to make sustained isometric contractions to 

exhaustion at different starting forces. Every volunteer visited the 

laboratory on 4 days over 2 weeks. At least 3 days of recovery was 

allowed between experiments. Good co-operation and motivation from 

the subjects was essential.

The experiments were performed on 8 healthy volunteers, aged 19-41 

years. Each subject made three pre-trial tests to to determine the 

maximal voluntary contraction.

The subjects were required to exert and maintain a force corresponding 

to 40%, 60%, 80%, of their own MVC up to exhaustion. The 

contractions sequences were randomised. Each effort was sustained up
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to exhaustion and the subject was strongly encouraged to keep the force 

within 5% of given value. The experiment was repeated whenever 

greater fluctuations were present The contraction was stopped when 

subject was unable to maintain the required force.

2.9. Effect of blood flow

The blood flow in the lower limb could be stopped by inflating a blood 

pressure cuff placed around mid-thigh to 200mmHg. This was used to 

speed up the rate of onset of fatigue or to delay recovery after periods of 

exercise. A series of contractions, described in 2.8.1, was again 

repeated. Then, the relationships between EMG/force and AMG/force 

were compared in fresh and the occluded muscle.

2.10. The influence of muscle lengths

Experiments were performed using isometric dorsiflexion contractions at 

different muscle lengths to investigate any changes in EMG or AMG 

associated with longer or shorter muscle lengths.

2.10.1. Position of subject during experiments

The subject sat in the chair with left leg hanging freely and the other 

mounted inside a modified device for supporting the lower limb rigidly. 

A photograph of this is shown in Figure 6. The isometric dorsiflexion 

force of ankle joint was measured with the load cell, as described in
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section 2.4.1. The load cell is securely housed underneath a rectangular 

steel/aluminium footplate which is capable of moving through angles of 

75°, 90° and 105° to the horizontal. The footplate is fixed into a very 

strong and rigid steel angle frame by two bearings which allow the 

footplate to swing and lock to the required angle for experimentation. 

The subjects’ foot is securely strapped into the footplate by a strong 

leather band. The subjects lower leg is held at a 90° angle to the ankle 

by means of uprights which lock into place at the subjects’ knee. 

Additional clamps to prevent the knee moving antero-posterior when 

knee is held at 90° and tibia is vertical. The subjects’ right lower leg is 

now firmly locked into place and all voluntary motion of limb is 

negated.

The exercise protocols already described for the ankle at 90°, were 

repeated with the joint locked in the plantar or dorsiflexed positions.
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Figure 6- The experimental set up for experiments at different muscle 

lengths. The subject was seated comfortably and the left leg was 

secured in a rigid supporting frame. The knee was fixed at 90° 

throughout of experiments and the angle of ankle joint could be fixed at 

90° or 75° dorsiflexion or 105° plantarflexion.
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2.11. Statistical methods:

Force, IAMG and IEMG were normalised to control values for each 

individual, expressed as percentages and then, the data from all trials at 

each level were combined to produce an overall mean value. Values 

indicated means ± SEM of the IAMG and IEMG and force for all 

subjects. During sustained contractions, force, EMG and AMG values of 

the beginning, midpoint and the end of contraction time were normalised 

to the maximum value of unfatigued muscle for each individual. Thus, 

the IAMG and IEMG were normalised to normal values at 80% and 

100% of MVC, respectively.

In addition, when the ankle position is changed, the EMG, AMG and 

force are normalised to those at 90°. An analysis of variance (ANOVA) 

was applied to compare the results obtained during different muscle 

lengths.

Coefficient of correlation analysis was used to examine the IAMG/force 

and IEMG/force relationships before and after intermittent fatiguing 

exercise. The analysis was then performed to determine the relationship 

of AMG to force and EMG to force before and after arterial occlusion in 

fresh and fatigued muscle. The Student’s paired t test was used to 

compare results obtained before and after exercise. Analysis of variance 

also was used to compare results obtained at different muscle lengths or 

to compare frequency spectra at different bandwidths. The formula 

Y= aX+b provides a method of determining the slope, where a is 

gradient and b is constant.



RESULTS
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3. Results

Results will be presented for 8 types of experiments:

1. The relationship between isometric force, AMG and EMG.

2. The extent to which muscle blood flow sounds contribute to AMG.

3. IAMG and IEMG changes during fatiguing exercises

4. Analysis of the frequency content of EMG and AMG in fresh muscle.

5. Analysis of frequency content of EMG and AMG in occluded muscle.

6. Analysis of frequency content of EMG and AMG in fatigued muscle.

7. Influence of different muscle lengths on the AMG and EMG.

8. A comparison of the performance of two types of transducers.

3.1 The relationship between isometric force, EMG and AMG

Seven healthy adult male subjects took part in this series of experiments. 

They gave their informed consent to the research and agreed fully to 

participate with the understanding that they could withdraw at any point 

during experiments. Experiments were performed after subjects had 

became familiar with the techniques. The design of the experiments is 

described in section 2.2 of the Materials and Methods. Each contraction 

lasted 6 seconds. The signals were filtered and full wave rectified and 

integrated with a time constant of 0.5 seconds.

Typical records of force, EMG and AMG as the subject makes a series 

of contractions up to maximal voluntary contraction, are shown in 

Figure 7.
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Figure 7. Simultaneous force (A), EMG (B) and AMG (C) recordings 

during a series of graded isometric contractions in one subject. 

Contractions were made at 25, 50, 60, 75 and 100% MVC. Each 

contraction lasted 6 seconds. Movement artefacts are seen at the 

beginning and the end of each contraction in the AMG trace. Arterial 

pulse waves can be seen between muscle contractions.
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In this case the subject maintained the required force well in the lower 

force range. But at the highest force level some small oscillations were 

seen. The raw EMG peak to peak amplitude rises with increasing force 

up to MVC.

Before the first contraction begins, small regular oscillations 

synchronised with the heart beat, and probably with arterial pulse wave 

can be seen. The pulses at the end of contractions are larger than those at 

beginning of contractions. At onset of contraction, there is a rapid 

transient artefact as the muscle begins to move. This passes off in about 

one second and is then followed by the AMG. This is superficially very 

similar to EMG. There is a second movement artefact at the end of the 

contraction. Similar events can be seen in each of the subsequent 

contractions. The peak to peak amplitude of AMG increases with force 

up to 75% MVC so that the biggest AMG can be seen at 75% of MVC 

but beyond this force the amplitude of AMG declines.

The rectified integrated EMG and AMG were calculated at the 

mid-portion of isometric forces where they expected to be stable.

Typical measurements of force, IEMG and IAMG are shown in Figure 

8 .
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Figure 8. Typical measurement of force (A), IEMG (B) and IAMG (C) 

at 50% MVC. To avoid transient movement artefacts, the first and the 

last two seconds of 6 the seconds contractions were discarded. Section 

of EMG and AMG signals lasting 2 seconds were selected near 

the middle of contraction. This provides the most stable records for the IEMG 

and IAMG analysis.
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The relationships between IEMG, IAMG and force in one subject are 

shown in Figure 9. The IEMG rises monotonically with force up to 

100% MVC. The IAMG rises progressively up to 75% MVC and it 

declines when a maximal contraction is made.

Figure 10 shows summary data of mean (± SEM) of IEMG and IAMG 

for 14 contractions in 7 subjects. It shows a linear relationship between 

force and rectified integrated values of IEMG with correlation 

coefficient of 0.999.

The IAMG rises with increasing force up to 75% MVC and then it falls 

with larger force. There is a linear relationship between IAMG and force 

up to 75% MVC with correlation coefficient of 0.973. The IAMG 

includes an increased frequency of AMG spikes as well as the increased 

amplitude as seen in Figure 7.
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Figure 9. Plot shows the rectified integrated EMG (A) and AMG 

(B) against MVC in a series of contractions in one subject. The 

amplitude of IEMG and IAMG rise progressively up to 75% of 

MVC. At MVC, the IEMG increases whereas the IAMG declines.
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Figure 10. Mean of IEMG (A) and IAMG (B) plotted against 

force. Pooled data obtained from 14 contractions in 7 subjects. 

The error bars represent the SE of the mean. There was a linear 

relationship between IEMG and force up to MVC. The 

IAMG/force relationship also showed up to 75% of MVC. 

Beyond this force the IAMG declined.
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3.2 Effect of blood flow on IEMG and IAMG

Figure 11 shows typical recordings of raw EMG as the muscle contracted 

at different forces before and after arterial occlusion. The contraction 

lasted 6 seconds with appropriate rest to prevent fatigue. The peak-peak 

amplitude of raw EMG signals increases continuously with force under 

both conditions.

Typical recordings of raw AMG with normal blood flow and in 

occluded conditions are shown at Figure 12. Arterial pulse waves can be 

seen between contractions in the AMG traces in Figure 12A. When 

blood flow to the muscle is stopped the arterial pulse waves disappears. 

There are two movement artefacts at the beginning and the end of 

contractions. The amplitude of raw AMG rises in parallel with 

increasing force up to 75% of MVC. Above this force the amplitude of 

AMG decreases in both conditions. After blood flow occlusion the peak- 

peak AMG amplitude is reduced. Figure 13 shows the IEMG and IAMG 

during a series of isometric contractions in one subject with normal 

blood flow and during occlusion. The IEMG rises with increasing force 

monotonically under both conditions. However, at all force levels there 

is a decrease in IAMG after occlusion but slopes of regression lines 

between IAMG and force are similar (p > 0.05). Figure 14 shows the 

mean IEMG and IAMG for 14 contractions in 7 subjects.



MVC (%)

Figure 11. Typical recordings of raw EMG in normal muscle (A) and 

after blood flow has been stopped (B) are shown. Each contraction 

lasted 6 seconds. Contractions were made at 25, 50, 60, 75 and 100% 

MVC. When blood flow stopped to the muscle, the peak to peak 

amplitude of the raw EMG decreased at higher forces.

48
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Figure 12. Typical recordings of raw AMG in normal muscle (A) and 

when blood flow to the muscle stopped (B). Each contraction lasted 6 

seconds. Contractions were made at 25, 50, 60, 75 and 100% MVC. 

Arterial pulsation can be seen when the muscle is relaxed but it tends to 

disappear after blood occlusion. There are also two movement artefacts 

at onset and the end of contractions.
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Figure 13- Rectified integrated EMG and AMG in a series of 

contractions before and after arterial occlusion are shown for one 

subject. A- IEMG increases continuously with force in fresh and 

occluded muscle. B- IAMG shows the similar trends up to 75% MVC 

under both conditions. It declines after this force level. Contractions 

were made at 25, 50, 60, 75 and 100% MVC.
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Figure 14- Mean (± SEM) of IEMG (A) and IAMG (B) plotted against 

force for 14 contractions before (open square) and after (closed square) 

arterial occlusion in 7 subjects. The similar slope of regression lines 

between IEMG, IAMG and force was found under both conditions. 

Contractions were made at 25, 50, 60, 75 and 100% MVC.
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The IEMG increases linearly with force but the slopes of regression 

lines between IEMG and force did not change significantly when blood 

flow was stopped to the lower limb. There is a linear relationship 

between mean IAMG and force up to 75% MVC in normal condition 

and after blood flow occlusion. The mean IAMG declines at maximal 

voluntary contraction. No significant difference was found between 

IAMG in normal and occluded flow conditions.

3.3. IEMG and IAMG changes during fatiguing exercises

Experiments were performed to investigate how IEMG and IAMG 

change during or after fatiguing activity of tibialis anterior. The effects 

of intermittent and continuous fatiguing exercises were investigated. 

They will be described in sequence.

3.3.1 The effect of intermittent fatiguing exercises

As described in section 2.8.1 of the methods section, the muscle was

fatigued by repeated contractions at 75% of MVC.

Fatigue was developed by repeated isometric dorsiflexion initially at 

75% MVC, (6sec on, 4sec off), continued until only 60% MVC could be 

maintained. Then, EMG, AMG and force were re-investigated at 

different forces.

Typical recordings of raw EMG obtained during a series of 

progressively stronger contractions in fresh and fatigued muscle are 

shown in Figure 15. The peak-peak EMG amplitudes were increased
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after fatiguing exercises. The increment is considerable, particularly at 

higher forces. Figure 16 shows typical recordings of raw AMG in fresh 

and fatigued muscles. At similar forces, peak-peak AMG amplitudes 

were reduced after fatiguing exercises. This reduction is evident even at 

75% of MVC where the AMG is normally most intense.

The amplitudes of IEMG and IAMG were measured at the mid-part of 

each contraction where the signal was most stable and the effect of 

movement artefacts were diminished. The IEMG and IAMG amplitude 

were normalised to maximal values in unfatigued muscle. The 

relationships between IEMG, IAMG and force were investigated.

Figure 17 shows IEMG and IAMG during a series of contractions from 

one subject before and after muscle fatigue. At similar force levels after 

fatiguing activity, the IEMG was increased but IAMG was reduced.

The mean IEMG and IAMG were then calculated for 14 contractions in 

7 subjects and plotted against force. These data are shown in Figure 18. 

There is a strong linear relationship between IEMG and force in fresh 

and fatigued muscle. The slope of the regression line between IEMG and 

force is significantly greater after fatiguing exercises (p < 0.05).

A linear relationship between IAMG and force at submaximal 

contractions was found. A significant difference in the IAMG between 

fresh and fatigued muscle was found at 75% of MVC (p < 0.05).
cLT*0

However, when all the data considered, the slope of regression line 

between IAMG and force showed a significant reduction after fatiguing 

activity (p < 0.05).
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Figure 15. Typical recordings of raw EMG in fresh (A) and fatigued (B) 

muscle. The intermittent exercises were performed at 75% of MVC. 

EMG was recorded at 25, 50, 60, 75 and 100% of MVC. Each 

contraction lasted 6 seconds. Progressive increase in the EMG can be 

seen with force in fresh and fatigued muscle. At similar forces the peak- 

peak EMG amplitude is greater after exercises.
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Figure 16. Typical raw AMG recordings in fresh (A) and fatigued (B) 

muscle are shown. Each contraction lasted 6 seconds. Contractions were 

made at 25, 50, 60, 75 and 100% MVC. The peak to peak amplitude of 

raw AMG increased progressively with force up to 75% of MVC in 

fresh and fatigued muscle. After intermittent fatiguing activity at 75% of 

MVC, the peak-peak raw AMG amplitude decreases at the similar 

forces. Arterial pulse waves and movement artefacts can be seen under 

both conditions.
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Figure 17. IEMG (A) and IAMG (B) in a series of contractions in fresh 

(open bar) and fatigued (dotted bar) muscle in one subject. IEMG 

increases progressively up to MVC whereas IAMG rises up to 75% of 

MVC and it declined with further force. At similar forces, after fatiguing 

exercises IEMG increases but IAMG decreases.
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Figure 18. The mean ± SEM of IEMG (A) and IAMG (B) in 

fresh (open square) and fatigued (closed square) muscle are 

shown. After fatiguing activity, the IEMG rises above control 

values and IAMG falls below control values. The slope of 

regression lines between IEMG and force increases in fatigued 

muscle in compare with that in fresh muscle (p < 0.05). The slope 

of regression lines between IAMG and force in fatigued muscle in 

compare with that in fresh muscle decreases (p < 0.05). In graph 

A, the dotted line represents the 100% MVC.
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3.3.2. The changes of the IEMG and IAMG during sustained 

fatiguing contractions

The design of these experiments was described in the section 2.8.2 of 

the Methods. The subjects sustained a contraction at 40%, 60%, or 80% 

MVC until exhaustion. During contractions, force was maintained 

within ± 5% of given value. EMG and AMG were recorded throughout 

the experiments.

Figure 19 shows a typical recording at 80% of MVC. Prior to the 

contraction, the EMG trace is silent and its amplitude increases at the 

beginning of contraction. During activity, the EMG amplitude rises 

progressively though the force remains constant. The rise in EMG/force 

ratio is a clear indication of the development of muscle fatigue. Before 

the onset of muscle contraction, the AMG trace has a low background 

level. The peak to peak AMG amplitude reaches a maximum within a 

few seconds of the beginning of the contraction. After this it falls 

progressively throughout the contraction. Thus, during an isometric 

contraction at 80% MVC the IEMG rises whereas the IAMG decreases.

IEMG and IAMG and force were calculated at the beginning, middle 

and the end of each trace, and then normalised to values obtained in 

control conditions. Data were collected from 8 subjects with different 

endurance levels.
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Figure 19. Force (A), EMG (B) and AMG (C) during a voluntary 

contraction at 80% of MVC. The peak to peak amplitude of raw EMG 

increases from the middle of contraction time but the peak to peak 

amplitude of raw AMG progressively decreases throughout the 

contraction. The contractions sustained 56 seconds to exhaustion.
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The IEMG and IAMG in a series of contractions in one subject at 80% 

of MVC are shown in Figure 20. The mean and SEM of the IEMG and 

IAMG during a sustained contraction at 80% of MVC were calculated 

and plotted as functions of contraction duration. Figure 21 shows these data. 

The IAMG declined by about 60% of initial values, whilst the IEMG 

had risen by 40%. The differences in IEMG and IAMG between the 

beginning and middle and beginning and end of the contraction were 

investigated by analysis of variance. There were statistically significant 

differences (p < 0.03) in the mean amplitudes of both IEMG and IAMG 

between the beginning and the end of contractions. When the 

experiment was repeated with the subjects sustaining a force of 40% or 

60% MVC, the IEMG showed the same behaviour. Figures 22 and 23 

show the progressive rise in raw EMG as time passes. However, the raw 

AMG at 40% MVC behaves differently. The mean rectified integrated 

EMG and AMG at lower forces were also calculated. The differences in 

IEMG and IAMG between the beginning and middle and beginning and 

end of the contraction were investigated by analysis of variance. There 

were statistically significant differences (p < 0.05) in the mean 

amplitudes of both IEMG and IAMG between the beginning and the end 

of contractions at 60% MVC. However, no significant differences were 

detected in mean of IAMG amplitude throughout the 40% fatiguing 

contractions, even though the significant difference in the mean IEMG 

amplitude between beginning and the end of contractions at 40% MVC 

(p < 0.05) provides a clear indication that the muscles are fatiguing.

These data are shown in Figure 24 and 25
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Figure 20. IEMG (A) and IAMG (B) at the beginning, middle 

and end of a sustained contraction at 80% of MVC in one subject. 

Each signal is normalised to 100% at the beginning of the 

contraction. The IEMG increases above control values whereas 

the IAMG decreases below control values.
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Figure 21- Mean ± SEM of IEMG (A) and IAMG (B) plotted against 

time. At 80% of MVC exhaustion, the IEMG rises and IAMG falls. The 

increment in the IEMG and decrement in the IAMG were significant 

between onset and the end of contractions (p < 0.03). No error bar is 

shown at the beginning of the IAMG because whole data was 

normalised to 100% at the start of each contraction. N = 8.
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Figure 22. Typical recording of force (A), EMG (B) and AMG (C) 

during sustained contraction at 60% MVC. The peak to peak amplitude 

of raw EMG rises but the peak to peak amplitude of raw AMG falls. The 

changes are more pronounced at the end of contraction.
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Figure 23• Typical recording of force (A), EMG (B) and AMG (C) 

during sustained isometric contraction at 40% MVC. The peak to peak 

amplitude of EMG tends to rise but the peak to peak amplitude of AMG 

tends to be constant.
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Figure 24« Mean ± SEM of IEMG (A) and IAMG (B) at the beginning, 

middle and end of a sustained contraction at 60% of MVC. The 

amplitude of IEMG increases above control values but the amplitude of 

IAMG decreases below control values. The changes in amplitude of 

IEMG and IAMG between the beginning and the end of contractions 

were significant (p < 0.05). N = 8.
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Figure 25* Mean ± SEM of IEMG (A) and IAMG (B) at the beginning, 

middle and end of a sustained contraction at 40% of MVC. The 

amplitude of IEMG shows a significant difference between the 

beginning and the end of contractions (p < 0.05) whereas the amplitude 

of IAMG remains constant. N = 8.
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3.3.3. Exhaustion times of IEM G and IAMG

Figure 26 shows mean of exhaustion times as function of different 

forces. The exhaustion times declined at higher force levels.

Contractions at 40% of MVC were sustained on average for 330 ± 75 

seconds. At 60% MVC the mean duration was 178.8 ± 42 seconds and 

this fell again to 81 ± 53 at 80% MVC. Attempts to sustain higher forces 

were always problematic. The force oscillations were unacceptably large 

and this introduced artefacts into the AMG and EMG records which 

prevented the calculation of worthwhile integrated values.
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Figure 26- Mean ± SD - of exhaustion times plotted against different 

forces. Higher forces are sustained for about one minute whereas lower 

forces held to exhaustion more than 5 minutes. N = 8.
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3.4. Analysis of the frequency content of EMG and AMG

In addition to studies of the raw and integrated acoustic and 

electromyograms a second series of experiments was performed to 

investigate the characteristics of the frequency spectrum of both signals. 

The experimental protocols are essentially similar to those described in 

sections 3.1-3.3, but the analysis of EMG and AMG is quite different. 

Details of the calculation of the frequency spectra are given in the 

Materials and Methods section 2.5.2b and 2.5.3b. Briefly the spectra 

were analysed in two ways:

1. to identify the median frequency, i.e. that frequency which divides the 

spectra into two equal energy components.

2. to identify the energy associated with specified frequency bands with 

the spectrum. The bandwidth analysis provides a more detailed 

description of the spectrum. The median frequency analysis is less 

informative but quicker to do. Its application to EMG signals for the 

early identification of fatigue is well established (De Luca, 1984). The 

frequency analysis of the EMG and AMG were performed with normal 

blood flow to the muscle and with the blood flow occluded, in fresh and 

fatigued muscle and at different muscle lengths. These will be described 

in turn.

3.4.1. EMG and AMG median frequencies in unfatigued muscle

The median frequencies were calculated for sections of the EMG and 

AMG signals lasting 2 seconds which were selected near the middle of
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contractions lasting 6 seconds. This provides the most stable records for 

analysis. Details of the data sampling are shown in Figure 27.

EMG yields a spectrum with components between 0-400 Hz. The 

spectrum was calculated using an FFT. A typical EMG spectrum is 

shown in Figure 28 A. The median frequency is just above 100 Hz. The 

median frequency of the AMG was calculated in similar way except 

that the AMG was digitised at 512 Hz because its bandwidth is 

narrower. It also has a relatively simpler spectrum ranging between 0-50 

Hz. Figure 28D shows a typical AMG spectrum. The median frequency 

of the AMG is about 11Hz.

The median frequencies of EMG and AMG were calculated at various 

forces between 20-100% MVC. Mean ± SEM of the median frequencies 

of EMG and AMG are shown in Figure 29. The EMG median frequency 

ranging from 71 Hz at 20% of MVC to 112 Hz at 100% of MVC. The 

median frequencies of EMG increased linearly with increasing force.

The correlation coefficient of the fitted line is 0.976. The AMG median 

frequencies were between 5 Hz at 20% MVC and 15 Hz at 100% MVC. 

There is also a strong linear relationship between AMG median 

frequency and force. The correlation coefficient of fitted line is 0.981. 

Thus, the median frequency of EMG spectrum is about 10 times greater 

than the median frequency of AMG spectrum.
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Figure 27. Typical simultaneous recordings of force (A), EMG (B) and 

AMG (C) at 80% of MVC. Sections of EMG and AMG signals lasting 2 

seconds which were selected near the middle of contractions lasting 6 

seconds.
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Figure 28. A typical analysis of the median frequency of EMG (B) and 

AMG (D). The raw EMG (A) and AMG (C) are also shown. The 

vertical lines in B and D indicate the median frequency of the signals. 

The EMG frequency range is wider than the AMG. The EMG median 

frequency is about 10 times greater than in the AMG.
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Figure 29. Mean ± SEM of the median frequencies at different forces 

are shown. A- Median frequency of the EMG. B- Median frequency of 

the AMG. The EMG median frequency is about ten times higher than in 

the AMG. The relationship between EMG, AMG median frequencies 

and force are linear. The larger SEM in the EMG median frequency 

reveals higher inter-subject variations.
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3.4.2. Frequency bands analysis of EMG and AMG in unfatigued 

muscle

The percentage of total signal energy of the EMG was measured in 

frequency bands of 50 Hz between 0 and 400Hz. Figure 3OB shows a 

typical bands analysis. Frequency, measured in Hertz (Hz) is shown 

along the x axis and the linear amplitude of signal (volts) is along y axis. 

About 95% of energy spectrum of EMG is concentrated below 200 Hz. 

The AMG frequency analysis was done using narrower bands of 5 Hz 

up to 50Hz. A typical bands analysis of the AMG signal is shown in 

Figure 30D. The energy above 35 Hz is negligible. The principle 

concentration of the AMG energy is between 5-15 Hz. The frequency 

bands analysis was carried out at different forces.
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Figure 30. The distribution of energy in the EMG (B) and AMG (D) in 

a range of frequency bands. The frequency bands analysis were applied 

to two seconds of the raw EMG (A) and AMG (C). The percentage of 

EMG energy mostly concentrated below 200Hz whereas the AMG 

energy is mostly distributed below 30Hz.
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Table 3 shows distribution of mean ± SEM of percentage of EMG 

frequency spectrum in a series of isometric dorsiflexion contractions in 

fresh muscle in different bands. These results were obtained from 

experiments in 5 subjects.

MVC 0-50 Hz 100 Hz 150 Hz 200 Hz 250 Hz 300 Hz

20% 33.9 ±5.5 40.6 ± 1.8 16.4 ±3.7 5.2 ±1.2 1 ± 0.4 0.2 ±0.1

40% 29.7 ±5.4 34.9 ±5.6 20.5 ±3.9 6.9 ± 2 2.5 ±0.9 1.2 ±0.2

60% 28.4 ±5.5 35.2 ±3 20.7 ± 4 9.3 ±2.5 3.3 ± 1.1 1.4 ±0.4

80% 26.4 ±5.5 35.6 ±4.8 20.7 ±4.5 11.2 ± 3.5 3.6 ± 1.3 1.3 ±0.5

100% 25.5 ±5.8 34.1 ±5.2 23.2 ±4.6 11.5 ± 3.6 4.4 ±1.9 1.1 ±0.4

Table 3. The distribution of energy in the EMG in a range of frequency 

bands. Each cell contains the mean (± SEM) energy expressed as a 

percentage of the total energy recorded.

As shown in Table 3, the EMG frequency spectrum shifted towards 

higher frequency range as force increases. The greater concentration of 

EMG energy spectrum occurs between 0-150 Hz. The differences in the 

EMG energy during contractions at different forces were not significant.
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The distribution of energy in the AMG across a range of frequency 

bands was also calculated. The bands are narrower in this case due to 

the much’ tighter distribution of AMG frequencies. These data are 

shown in Table 4.

MVC 0-5 Hz 10 Hz 15 Hz 20 Hz 25 Hz 30 Hz

20% 52 ±10 29.6 ± 2 14 ±4.3 2.1 ±0.8 1.1±0.0 0.4 ±0.1

40% 40 ± 6.5 34.6 ± 2 17.4 ±5 5.4 ± 1.5 1.1 ±0.2 0.5 ±0.1

60% 31 ±4.5 33 ±4.5 20.5 ± 2 8.6 ±3 2.5 ±0.5 1 ±0.2

80% 28 ±3.4 39.6 ± 4 20 ±2.1 7.1 ± 1 3 ±  1.1 1 ± 0.2

100% 25± 3.6 28 ±5.4 24 ± 2.6 13.2 ±3 4.3 ±0.9 1.3 ±0.3

Table 4. The distribution of energy in the AMG in a range of frequency 

bands. Each cell contains the mean (± SEM) energy expressed as a 

percentage of the total energy recorded.

Table 4 shows a stronger concentration of AMG energy in lower 

frequency bands than for EMG. Like EMG, as force increases the AMG 

frequency spectrum is shifted towards higher frequency. As force 

increases the AMG energy distributes in a wider range bandwidths. 

Dominant energy in the AMG spectrum is below 20Hz. The reduction in 

energy in the 0-5 Hz is statistically significant at the higher forces. 

Analysis of variance confirmed that the energy in the 0-5 Hz band at 

80% and 100% MVC was less than at 20% (p < 0.05).
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The difference in AMG energy was non-significant among other forces 

or bands. The energy of AMG spectrum was always negligible beyond 

35 Hz.

3.5. The effect of blood flow on EMG and AMG frequency spectra.

The design of experiments was described in section 2.9 of the Materials 

and Methods section.

3.5.1. EMG and AMG median frequency in occluded muscle

Section 3.4 showed that the EMG and AMG median frequencies 

increase linearly with increasing force. Similar experiments were 

performed to measure the median frequency of the EMG before and 

after blood flow was occluded. The data is shown in Figure 31 A. No 

significant difference was found in the EMG median frequency when 

blood flow was stopped. The median frequency of the AMG in the two 

conditions was also measured. As shown in Figure 3 IB the AMG 

median frequency was not significantly different when blood flow was 

stopped.

3.5.2. EMG and AMG frequency bands analysis.

The frequency bands analysis was applied to the data shown in Figure 

29 and no significant differences were found when blood flow was 

temporarily stopped.
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Figure 31. The mean ± SEM of the EMG (A) and AMG (B) median 

frequencies in normal condition (open square) and after (closed square) 

blood flow was stopped. No significant differences were found in the 

EMG or AMG median frequency after blood flow occlusion at similar 

forces. Larger SEM in the EMG median frequency indicate higher inter­

subject variations. N=7.
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3.5.3. Sounds from resting muscle

The experiments were performed on 5 male subjects with no history of 

cardiovascular or neuromuscular problems. The Hewlett-Packard 

microphone (21050-A) was strapped over the midpoint of the tibialis 

anterior. Experiments were carried out in three stages:

1. Sounds were recorded from the relaxed muscle, the frequency 

spectrum was calculated and its area was expressed as 100% (control).

2. The recording was repeated when a blood cuff pressure was applied at 

mid-thigh and inflated to 260 mmHg. This was expected to occlude 

blood flow in the leg.

3. After deflation of the cuff and during a period of recovery.

The area under the frequency spectrum during these three stages was 

normalised to control values. Typical data are shown in Figure 32. The 

dominant frequencies in resting muscle lie below 5 Hz. After cuff 

inflation, the signals were almost all abolished. During the recovery 

period, the sounds re-appeared and the area became about two times 

larger than in controls. This is probably due to the reactive hyperaemia.
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Figure 32. Shows changes of sounds of muscle: A. at resting muscle. B. 

after inflating blood cuff pressure. C. After deflation and during period 

of recovery.
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3.6. Changes in the frequency spectrum with fatigue.

Spectral analysis of EMG and AMG signals was performed during 

sustained fatiguing activity. The changes in the EMG frequency 

spectrum are already well established as an important index of fatigue 

(De Luca, 1984). Any shift of the median frequency to lower values is 

an early indication of fatigue.

The spectra of the EMG and AMG was analysed in two ways: a. median 

frequency analysis, b. frequency bands analysis. They will be described 

in turn.

3.6.1. Analysis of EMG and AMG median frequency in fatigued 

muscle

The median frequencies of EMG and AMG were measured at the 

beginning , middle and the end of a sustained constant force 

contractions. During contractions at 40% of MVC, the EMG median 

frequency shifted towards lower frequencies indicating a fatigue of the 

muscle even though the force was constant. The mean EMG median 

frequencies measured in experiments in 8 subjects is shown in Figure 

3 3 A. Analysis of variance showed that differences in the median 

frequency between at onset and the end of contraction was significant 

(p < 0.05).

However, in the same experiments the AMG median frequency was not 

significantly different at the end of the contractions. AMG data are 

shown in Figure 33B. This is similar to the earlier observation in
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Figure 25, that during sustained contractions at 40% MVC, IEMG rose 

but IAMG was unchanged.

The experiments were repeated at 60% and 80% of MVC. Figure 34A 

shows that the mean of EMG median frequency shifted towards lower 

values during contractions at 60% of MVC. The difference between the 

beginning and the end of fatiguing contractions was significant 

(p < 0  .01). However, the AMG median frequencies also drifted towards 

lower frequencies during 60% of MVC. A significant difference in the 

AMG median frequency was found between onset and the end of 

sustained contraction (p < 0.05). The mean AMG median frequency 

changes are shown in Figure 34B.

The changes in mean of median frequency of EMG during 80% of MVC 

are shown in Figure 3 5A. The EMG median frequencies shifted towards 

lower values. The changes of EMG median frequency were significant 

during contraction (p < 0. 01).

As shown in Figure 35B, mean of the AMG median frequency also 

drifted towards lower frequency at 80% of MVC. The difference in 

AMG median frequency between the onset and the end of contraction 

time, was significant (p < 0.01). The magnitude of this shift in AMG 

median frequency is greater than that seen during contractions at 60% 

MVC.
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Figure 33# Mean (± SEM, n=8) of the EMG (A) and AMG (B) median 

frequency changes during a sustained contraction at 40% of MVC. The 

EMG median frequency shifted towards lower values significantly 

(P< 0.05), whereas the AMG median frequency was unchanged.
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Figure 34* The changes of median frequencies of EMG (A) and AMG 

(B) during a sustained contraction at 60% of MVC are shown. The EMG 

and AMG median frequencies were shifted towards lower values. The 

changes in the EMG and AMG median frequencies between the 

beginning and the end of contractions were significant.

(PO .01 and P<0.05 for EMG and AMG, respectively). n=8.
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Figure 35* Changes of median frequencies of the EMG (A) and AMG 

(B) during a sustained contraction at 80% of MVC. The EMG and AMG 

median frequencies shifted towards lower values during contraction. The 

changes in the EMG and AMG median frequencies between the 

beginning and the end of contractions were significant (p < 0.01, n=8).
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3.6.2. EMG and AMG bands frequency analysis during fatiguing 

contractions.

Bands frequency analysis is more informative than median frequency in 

the description of signals spectra. The percentage of the total signal 

energy present in each frequency band of the EMG was measured at the 

beginning, middle and the end of fatiguing contractions at different 

forces.

During sustained contractions at 40% MVC, the changes in frequency 

bands of EMG from 8 subjects were calculated. The data are shown in 

Table 5.

Bands 0-50Hz 100Hz 150Hz 200Hz 250Hz 300Hz

Begin 23.5 ± 5 23.2 ± 2 23.6 ±3 16.6 ±3 6.9 ± 1 3.1 ±0.8

Middle 27.8 ± 7 24.9 ± 2 26.4 ± 4 12.7 ±3 4.1 ± 1 2.3 ±0.5

End 38.4 ± 6 31.2 ± 3 15.5 ± 2 9.5 ±3 2.9 ±0.7 1.5 ±0.4

Table 5. The distribution of energy in the EMG in a range of frequency 

bands during 40% of MVC. Each cell contains the mean (± SEM, n=8) 

energy expressed as a percentage of the total energy recorded.

As indicated earlier in the median frequency analysis, during fatiguing 

contractions at 40% of MVC, the EMG frequency spectrum shifted 

towards lower values.
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There is an increase in energy in the 0-50 Hz band from the beginning to 

the end of the contraction. This increase is significant (P< 0.05). There 

is a similar but smaller rise in the 50-100 Hz band, but this is not 

significant.

Frequency band analysis was applied to the AMG data at 40% of MVC 

and no significant difference was found with fatiguing contraction 

during this force level. The changes of AMG frequency spectrum during 

sustained contraction at 40% MVC were calculated. Table 6 shows the 

mean of the energy in AMG frequency bands at 40% of MVC.

Bands 0 -5 H z 10 H z 15H z 20 H z 25 H z 3 0 H z

Begin 33  ± 3 . 8 4 0 .5  ±  5 16 .4  ± 3 7 .±  1.4 1.5 ± .4 0 .4  ± .1

Middle 3 9  ± 4 4 0  ± 3 . 5 15.3 ± 3 3 .5  ±  1 1 ± 0 . 2 0 .5  ± .1

End 4 0 .3  ±  7 4 1 .5  ±  5 12 ± 2 . 8 3 .8  ± 2 1 .4  ± .6 0 .5  ± .2

Table 6. The distribution of energy in the AMG in a range of frequency 

bands during 40% of MVC. Each cell contains the mean (± SEM, n=8) 

energy expressed as a percentage of the total energy recorded.
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The frequency bands analysis was applied to EMG data at 60% MVC. 

Table 7 shows the changes of energy spectrum of EMG during a series 

o f contractions at 60% of MVC.

Bands 0-50Hz 100Hz 150 Hz 200Hz 250Hz 300Hz

Begin 2 6 .8  ±  6 2 3 .3  ± 2 2 1 .9  ±  2 15 ± 2 1.1 ± 2 3 ± 0 . 8

Middle 3 4 .4  ± 8 2 5 .9  ± 2 2 1 .6  ±  4 1 1 .4  ±  3 3 .7  ±  1 2  ± 0 . 5

End 4 1 .3  ± 7 2 7 .6  ±  3 17 ± 3 8 .4  ± 2 . 7 3 .3  ±  1 1 ±  0 .4

Table 7. The distribution of energy in the EMG in a range of frequency 

bands during 60% of MVC. Each cell contains the mean (± SEM, n=8) 

energy expressed as a percentage of the total energy

The EMG frequency spectrum changes and shifts towards lower values 

during 60% of MVC. The pattern of changes is similar to that in Table 

5.

ANOVA showed that the change within 0-50 Hz bands was significant 

(P< 0.05) between the beginning and the end of contraction.

The frequency band analysis was applied to the AMG data at 60% of 

MVC. The changes of AMG frequency spectrum were calculated during 

sustained contraction at this level.
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The mean of changes of AMG frequency spectrum is shown in Table 8. 

Whilst no changes in the AMG were seen at 40% MVC, when the 

sustained force was 60% there were significant changes in 0-5 Hz band 

energy (p <0.01).

Bands 5Hz 10 Hz 15Hz 20Hz 25Hz 30Hz

Begin 2 9 .3  ±  3 4 6 .2  ±  4 17.8  ± 4 4 .5  ± 0 . 8 1.1 ± 0 . 5 0 .5  ± 0 . 2

Middle 3 7 .4  ± 3 3 8 .2  ± 4 17.5 ± 3 4 .1  ± .9 1.7 ± .5 0 .4  ± .1

End 4 5 .3  ± 7 3 2 .3  ±  3 15 .7  ± 2 3 .9  ± .8 1.3 ± .4 0 .8  ± .3

Table 8. The distribution of energy in the AMG in a range of frequency 

bands during 60% of MVC. Each cell contains the mean (± SEM, n=8) 

energy expressed as a percentage of the total energy

This will contribute to the fall in median frequency of the AMG reported 

earlier. There must be a fall in the energy in the higher bands but this is 

too small to be significant on statistical testing.

The frequency bands analysis was applied to the EMG median 

frequency data. The changes of EMG frequency spectrum were 

calculated during sustained contractions at 80% MVC.
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The changes in the EMG frequency spectrum are shown in Table 9.

Bands 0-50Hz 100 Hz 150 Hz 200 Hz 250 Hz 300Hz

Begin 24 ± 4 32.5 ± 4 20.4 ± 2 13.9 ±3 5.2 ± 1.1 1.9 ±0.4

Middle 36.7 ± 4 29.4 ± 2 19.3 ± 3 10 ± 2 2.3 ±0.3 1.1 ±0.2

End 46.6 ± 5 30.2 ± 2 14.7 ± 3 5.3 ± 1.2 1.7 ±0.2 0.8 ±0.2

Table 9. The distribution of energy in the EMG in a range of frequency 

bands during 80% of MVC. Each cell contains the mean (± SEM, n=8) 

energy expressed as a percentage of the total energy

The frequency spectrum shows similar but greater changes to those seen 

in Tables 5 and 7. A significant difference in the EMG energy spectrum 

was found between beginning and end of contraction within the 0-50 Hz 

band (p < 0.001). There were no significant differences between the 

other bands.
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The changes of AMG frequency spectrum during sustained contractions 

at 80% MVC were also calculated. These are shown in Table 10.

Bands 0-5 Hz 10 Hz 15 Hz 20 Hz 25 Hz 30 Hz

Begin 2 2 .6  ±  2 4 9 .8  ±  6 16.8  ± 4 4 .6  ±1 1.5 ± 0 . 3 0 .6  ± 0 . 1

Middle 4 1 .8  ±  3 3 1 .6  ±  3 14.4  ± 2 4  ± 0 . 4 1.8 ± .4 1 ±  0 .2

End 5 4 ±  3 .2 2 6  ± 4 . 2 11.8 ±  2 2 .5  ± 0 . 3 1.1 ±  0 .2 0 .7  ± 0 . 2

Table 10. The distribution of energy in the AMG in a range of frequency 

bands during 80% of MVC. Each cell contains the mean (± SEM, n=8) 

energy expressed as a percentage of the total energy

The concentration of the energy in the 0-5 Hz band is prominent at the 

end of contractions. ANOVA showed that significant differences 

between the beginning and the end of contractions in the 0-5 and 5-10 

Hz bands. The p values for these differences in the 0-5 Hz and 5-10 Hz 

bands are 0.001 and 0.01, respectively.

3.7. Analysis of EMG and AMG median frequency at different 

muscle lengths

Experiments were performed to investigate how EMG and AMG 

changed with changing of muscle lengths. The experiments were carried 

out on nine subjects at ankle joint angles of 75°, 90° and 105°.
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The design of the experimental protocol was described in section of 2.10 

of Methods.

The maximum voluntary contraction was significantly reduced by 33% 

when the experiments were performed at the shorter muscle lengths. 

Longer muscle lengths did not significantly change the voluntary force 

developed. The IEMG and IAMG did not show any change as muscle 

shortened or lengthened when they were normalised to values obtained 

in optimal length. This is shown in Figure 36. Linear relationships 

between IEMG, IAMG and force were found at three different muscle 

lengths.

The process of normalising forces conceals a change in the EMG/force 

and AMG/force relationships with muscle length. This shift is seen more 

obviously in Figure 37 where data were plotted against absolute force 

rather than MVC. The slope of the regression lines between IEMG, 

IAMG and force at shorter lengths with respect to optimal muscle length 

increased significantly (p< 0.05) whereas at the longer length it was not 

significant. The relationship between IEMG, IAMG and force are still 

linear at three muscle lengths.

The spectral analysis was similar to those detailed in section of 3.4.

In spite of significant differences in force between the optimal muscle 

length and the shorter length, the EMG median frequency was similar. 

This was true for submaximal forces as well as at MVC. At the longer 

length the force was unchanged as was the EMG median frequency. 

These data are shown in Table 11.
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Figure 36- Mean (± SEM) of IEMG (A) and IAMG (B) at 75° (■), 90° 

(□ )  and 105° (O ) of the ankle joint plotted against MVC. Each 

contraction lasted 6 seconds. Contractions were made at 20, 40, 60 and 

80% MVC. The IEMG and IAMG show the similar trends with 

increasing force at three muscle lengths. The relationship between 

IEMG, IAMG and force was linear at three muscle lengths.
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Figure 37* Means (± SEM) of the IEMG (A) and IAMG (B) plotted 

against absolute force at 75° (■), 90° (□ ) and 105° (O ) of the ankle 

joint were shown. Contractions were made at 20, 40, 60 and 80% MVC. 

At the shorter lengths forces are decreased by one third of their maximum 

values, and the IEMG and IAMG values are shifted to the left in spite of 

increasing amplitude.



106

Table 11 shows the mean of median frequency of EMG for 9 subjects.

%MVC EM G Median Frequency (Hz)

75°
oOO

N 105°

20 78.8 ± 8.2 71.5 ±8.1 72.1 ± 7 .6

40 86.3 ± 8.2 79.6± 9.4 78.6± 8.8

60 94.4 ±10.2 91.6 ±9.8 85 ± 9.4

80 102.3 ± 10 96.9 ±13 92.3 ± 9.6

100 107 ± 11.5 102.5 ± 13 95.5 ± 9.5

Table 11. The EMG median frequency at three muscle lengths. Each cell 

contains the mean (± SEM, n=9) EMG median frequency at various 

forces between 20-100% MVC.

The EMG median frequency increases with force at different muscle 

lengths. Analysis of variance showed that there is no significant 

difference in EMG median frequency at different lengths.

The AMG median frequency also was measured. These data are shown 

Table 12. It behaved in a similar way to EMG median frequency, except 

that the frequency was substantially lower. Despite reducing absolute 

force at the shorter length, the AMG median frequency remained similar 

to that at optimal length. At longer lengths, the AMG median frequency 

was also not significantly changed.
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Table 12 shows mean of AMG median frequency changes at different 

muscle lengths.

%MVC AMG Median Frequency (Hz)

75° 90° 105°

20 6.3 ± 0.2 5.6 ±0.2 5.2 ±0.2

40 7.9 ±0.3 7.4 ± 0.3 7 ±0.4

60 9.2 ± 0.3 8.4 ± 0.3 8.5 ± 0.4

80 9.9 ± 0.4 9.2 ± 0.2 9.5 ± 0.4

100 11.7 ±0.4 10.9 ±0.5 10.8 ±0.5

Table 12. The AMG median frequency at three muscle lengths. Each 

cell contains the mean (± SEM, n=9) AMG median frequency at various 

forces between 20-100% MVC.

3.8. A comparison of the performance of two types of transducers:

In almost all the experiments described in this thesis, the acoustic 

myogram was recorded by the Hewlett-Packard heart sounds 

microphone. The results show that IAMG increases linearly with force 

up to 80% of MVC. It declined at higher force.

The response of this microphone was compared with that of a newer 

type of transducer.
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The experiments were performed on 5 normal subjects. The AMG was 

recorded using the microphone and an Entran (EGAX-F-100) 

accelerometer. Prior to the experiments, two points over the belly of 

tibialis anterior muscle were chosen and marked. The transducers were 

placed at these points during successive non-fatiguing isometric 

contractions at different forces. After four trials the transducers were 

swapped with each other. Each contraction lasted 6 sec with a 30-90 

seconds interval between contractions. At least 10 minutes were allowed 

between each set of trials to avoid fatigue. The signals were band pass filtered 

(2-160 Hz) and where necessary amplified using NL 106, 125 modules 

and then full wave rectified and integrated. The mean and standard error 

of mean of the rectified, integrated values for each point for both sensors 

was calculated and plotted against force.

Figure 38 shows that the IAMG recorded by the Entran rises with 

increasing force as does the IAMG recorded with a Hewlett-Packard 

sensor up to 80% of MVC. After this force the latter declines. There was 

a linear relationship (r2 = 0.978) between force and the IAMG recorded 

by Entran . A linear relationship between force and IAMG recorded by 

the microphone was found up to 80% of MVC (r2 = 0.979).
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Figure 38* A comparison of the performance of the Hewlett-Packard 

heart sounds microphone (■) and the Entran accelerometer (□ ). Each 

contraction lasted 6 seconds with 30-90 seconds rest between 

contractions. Contractions were made at 20, 40, 60, 80, and 100% MVC. 

The IAMG recorded by the Entran increases with force linearly up to 

MVC (r2=0.978). The similar linear relationship between IAMG, 

recorded by the microphone, and force up to 80% of MVC was found 

(r2=0.979). Above 80% of MVC the IAMG declines.



DISCUSSION
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4. Discussion

The EMG and AMG were recorded from the tibialis anterior during 

isometric contractions. These recordings have been made in unfatigued 

muscle at different force levels and different muscle lengths and also 

during a range of fatiguing contractions. The EMG and AMG have been 

subjected to conventional analysis to show changes in intensity and 

frequency content during various types of muscle contraction. These 

data have been used to address several previously unanswered questions 

about AMG characteristics and muscle performance:

1. What are the relationships between IEMG, IAMG and force during 

isometric contractions?

2. What are the relationships between EMG, AMG median frequencies

and force?

3. Can AMG be used as an indicator of muscle fatigue?

4. Are EMG and AMG characteristics influenced by changes in muscle 

length?

5. Are the EMG and AMG characteristics affected by blood flow?

Experiments in this thesis were performed to obtain answers to these 

questions.
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4.1. The relationship between IAMG, IEMG and force in the 

unfatigued tibialis anterior.

The tibialis anterior muscle, which is one of main dorsiflexors o f the 

ankle joint, can be fully activated by voluntary effort. Since its 

motoneurones receive relatively weak input from la fibres but relatively 

strong input from descending motor pathways, these can be completely 

activated during strong voluntary dorsiflexion (Belanger and McComas, 

1981; Bigland-Ritchie, Furbush, Frank, Gandevia and Thomas, 1992). 

The tibialis anterior is composed of about 73% slow twitch fibres 

(Johnson, et al, 1973). This composition is very similar to soleus muscle, 

which is composed of more than 85% slow twitch fibres. This suggests 

that tibialis anterior might have a postural role. Furthermore, 

biochemical analysis has shown that this muscle is fatigue resistant 

(Jones, Turner, Newham, and McIntyre, 1993).

Muscle is composed of motor units, the number of these depend on the 

size and type of muscle. The number of muscle fibres in each motor unit 

depends on how the muscle is controlled. They can be as few as 3-6 in 

the muscles of the hand and face where fine and delicate movements are 

made or as many as 2000 in the gastrocnemius muscle where the control 

is coarse. Motor unit activity is controlled by the interaction of afferent 

inputs causing them to be recruited or changing their firing rate in 

relation to the required force. Two neural mechanisms control the force 

output. These are recruitment of motor units and modulation of firing
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rate of active motor (Milner-Brown, Stein and Yemm, (1973a, b), De 

Luca, Lefever, McCue and Xenakis, (1982a, b)).

During relatively low force isometric contractions the smaller, slower 

contracting motor units are activated (Burke, 1980). As force output 

increases, in addition to an increase of firing rate of smaller motor units, 

a number of larger faster motor units are recruited. This orderly 

recruitment of motor units is known as the ‘Size Principle’ (Henneman 

et al, 1965). When the force of contraction is reduced voluntarily, motor 

units are derecruited in the reverse sequence (De Luca et al, 1982a,b). 

It has to be noted that the contribution of recruitment and firing rate are 

different in different muscles. Smaller muscles such as those in the hand, 

recruit their motor units between 0-50% MVC and beyond this force 

level the firing rate of active motor units is the sole mechanism for the 

increase of force output. In the larger muscles, e.g., the soleus muscle, 

the increase in force is mainly due to a recruitment of additional motor 

units and depends less on changes in the rate of firing.

The EMG is the summation of all the action potentials from the muscle 

fibres contracting within the muscle and clinically is used as an index of 

force measurement.

Although the relationship between force and EMG is known to vary in 

different muscles it has been well documented in biceps brachii, first 

dorsal interosseous, deltoid, quadriceps femoris, triceps brachii and 

soleus muscles (Basmajian and De Luca, 1985).
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Different relationships between AMG and force have been reported in 

different muscles (Oster and Jaffe, 1980; Stokes et al, 1988; Orizio et al, 

1989 et al, 1989; Stokes and Dalton, 1990; Rouse and Baxendale, 1990). 

These differences can be related to several factors e.g., different types of 

the transducers, muscles, contractions and range of forces were being 

used.

In the experiment s described in this thesis, the middle of the belly of the 

tibialis anterior was chosen to obtain a good contact between the AMG 

detector and the skin which lies over the muscle. Furthermore, it is 

consistent with the theory that AMG reflects the mechanical events of 

muscle contraction, with the majority of the fibres bundled together in 

the middle of muscle belly. In addition, if AMG signal is spreading out 

like a wave from active muscle fibres to the surfuce of the leg, the best 

postion for recording AMG with larger magnitude will be around the 

middle of the muscle.

The raw EMG and AMG were frill wave rectified and integrated to 

overcome some transient movement artefacts of raw signals. Inman, 

Ralston, Sanders, Feinstein. and Wright, (1952) found a linear
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relationship between IEMG and isometric tension of the tibialis anterior 

but they could not find the similar relationship between IEMG and 

muscle power. To date, there have been no reports concerning the AMG 

and force relationship in the tibialis anterior.

The results described in this thesis show that EMG and AMG behave 

similarly at submaximal contractions. Figure 7 shows that during a series 

of graded isometric contractions, the peak-peak amplitude of raw EMG 

increases progressively with force but the amplitude of raw AMG 

increases up to 75% of MVC. The amplitude of the AMG declines 

between 75% and 100% of MVC. During investigations of isometric 

contractions, the experimental set-up permitted certain amount of 

movements of the muscles at the beginning and end of the contractions. 

These movement artefacts at both ends of contraction were the result of 

the muscle shortening to pull the tendon taught from slack state. This is 

evident in Figures 7, 12, 16, 23 and 27.

Figure 10 clearly presents the relationships between IEMG, IAMG and 

force. These results are in agreement with those were reported by 

Orizio et al (1989) using the Hewlett-Packard heart sounds microphone 

in experiments on the biceps brachii. They found that IEMG rose 

linearly with force, as did IAMG up to 80% of maximal voluntary 

contraction, but it declined thereafter as isometric force increased. The 

variability in the IAMG above 75% of MVC might be due to the 

performance of the Hewlett-Packard microphone since it is not seen in 

the experiments with Entran accelerometer shown in Figure 38.
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The progressive increment in the EMG magnitude with force is due to 

the recruitment of motor units and increased firing rate in active motor 

units (Edwards, 1981).

The increment in the AMG magnitude with force may be due to the 

same mechanisms. The force output of tibialis anterior seems to rely on 

both neural mechanisms, namely recruitment and firing rate of active 

motoneurones (Macefield et al, 1993). In addition, force and AMG are 

both mechanical characteristics of muscle, and the IAMG is quite similar 

to force in total time course. Bolton et al (1989) pointed out that 

following electrical stimulation of the thenar muscles at shorter or longer 

muscle lengths, the force tended to decrease but the amplitude and 

duration of muscle sounds seemed to be more constant. They speculated 

that the series elastic properties may act only for force recording 

whereas, the sound recording is influenced by the contractile and 

parallel elastic components.

In other words, during contraction, longitudinal and transverse 

oscillation would be produced. The former is detected by the strain 

gauge and the latter is recorded by the microphone. They concluded that 

the transverse mechanical oscillations of muscle fibres during 

contractions could produce the muscle sounds. This was first suggested 

by Barry, (1987) and Frangioni et al, (1987). Transverse oscillations 

might occur at a frequency related to the resonant frequency of the 

muscle (Barry and Cole, 1990). The resonant frequency of the muscle is 

determined by several parameters such as mass, length, geometry and
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stiffness. During isometric contraction the change in the stiffness is 

much greater than the change in any of the other parameters (Dobrunz, 

Pelletier and McMahon, 1990).

There are several other possible origins of muscle sounds. Artefacts and 

non-myogenic sources such as heart sounds and arterial pulse waves, 

microphone movements on the skin, body movements and tremor might 

contribute.

In the present study a high-pass filter at 2 Hz was chosen to eliminate 

low frequency noise related to the external environment such as low 

frequency vibration generated in the walls and floor of building. This 

filter setting also reduced some of low frequency physiological signals 

caused by body and lower limb displacement unrelated to the 

contraction in the anterior tibial muscles.

Since the microphone was strapped over the muscle with a rubber band, 

there should have been minimal relative movement of the transducer 

with respect to the surface of muscle. As described in the Material and 

Methods in this thesis, any gross movement of lower limb of subjects 

during experiments was prevented by a very rigid and heavy frame.

Any significant movement generated audible, scraping sounds and these 

were very effectively cut off by the upper limit of the band pass filter at 

160Hz.

Tremor is a low frequency shaking of the limb. It is produced by 

oscillation of muscular force. Therefore the AMG and tremor both 

originate from muscle. The AMG frequencies recorded during voluntary



117

contractions are similar to physiological tremor frequencies i.e. about 10 

Hz (Lippold, 1957) and 6-12 Hz (Allum, Dietz and Freund, 1978). In 

addition, both AMG and tremor increase as contractions become 

stronger (Rhatigan et al, 1986; Goldenberg et al, 1991). Thus, the role of 

tremor in the origins of AMG must be considered. Whilst the frequency 

ranges of tremor and AMG are similar it is clear that AMG contains 

many frequency components which are not associated with tremor. 

During fatiguing contractions it is well known that tremor increases but 

the results shown in Figure 18 show that AMG amplitudes decrease.

Both AMG and tremor tend to shift towards lower frequency ranges as 

fatigue develops i.e., 4-6 Hz for tremor (Lippold, 1981) and 4.5-6 Hz for 

AMG shown in Figures 33, 34 and 35.

In addition, there are other factors which support the belief that tremor 

makes little contribution to the results reported in the thesis. Tremor is 

an oscillation in force developed along the long axis of a muscle whilst 

AMG is a transverse oscillation. Tremor is mostly associated with the 

unsupported upper limb whilst the records shown here come from 

rigidly supported lower limbs.

None of the subjects displayed any resting tremor and AMG is recorded 

even in low force, non-fatiguing contractions where tremor is unlikely to 

be significant.

On the occasions where tremor was observed, most usually at high 

forces, its contribution to the AMG was obvious and the records were 

discarded. Thus it is safe to conclude that tremor makes at most a very 

small contribution to AMG in some circumstances.
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The changes to the AMG signal when blood flow to lower limb was 

temporarily stopped is shown in Figure 12. The background noise was 

reduced by 200 mmHg of cuff pressure. The abolition of sounds after 

inflation of the cuff and its re-appearance during the period of reactive 

hyperaemia suggest that the background noise in the muscle is due to 

blood flow. This can be seen in Figure 32. Figure 14 confirms that the 

difference in the AMG was not significant in normal flow and when 

blood flow stops to muscle. Thus, it can be concluded that muscle 

sounds during contraction do not have a vascular origin. This finding 

agrees with the observations of Oster and Jaffe, (1980) and Keidel and 

Keidel (1989).

The amplitude of the AMG declines as the force increases from 75- 

100% MVC in spite of increasing EMG. Such a reduction in the raw and 

IAMG above 75% MVC, was also reported by some other investigators 

(Orizio et al, 1989; Smith and Stokes, 1992). The reduction in the AMG 

magnitude may be related to some of following factors:

1. It could be due to completely fused tetanic contractions. Thus, force 

output fluctuations and the transverse mechanical oscillation, implicated 

in the generation of the muscle sounds are reduced (Gordon and 

Holboum, 1948; Brozovich and Pollack, 1983).

2. From 75% to 100% MVC, force output is controlled mainly by 

increasing motor unit firing rate (Freund, 1983, Macefield et al, 1993) 

since no new motor units remain to be recruited in this range. Therefore, 

the firing rate of motor units increases. As well as increasing force this
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also increases the stiffness of the muscle The increase of muscular 

stiffness may reduce or eliminate muscle sounds, or increase their 

frequency. This last possibility might explain the increase in AMG 

median frequency seen in Figure 29.

3. The decrease in the IAMG above 75% MVC might indicate a greater 

synchronisation of motor units reducing transverse mechanical 

vibrations in this range.

4. The reduction may be due to difference in applied pressure between 

the contact transducer and the skin over muscle (Smith and Stokes,

1993). This might change the efficiency with which muscle oscillations 

are transferred to the transducer.

5. The reduction of the IAMG at MVC could be the increased 

intramuscular pressure and reduced muscle compliance (Sadamoto et al, 

1983).

6. The reduction in the AMG might be due to the contact transducer 

characteristics. It is commonly found that the acoustic myogram 

recorded by heart sounds microphones falls in amplitude between 

75-100% MVC (Orizio et al, 1989; Smith and Stokes, 1992). This may 

be due to a relative insensitivity to lower amplitude or higher frequency 

oscillations. However, during isometric voluntary contraction of the 

biceps brachii, a similar variability in IAMG has been seen when an 

accelerometer was used (Zwarts and Keidel, 1991).

In the pilot experiments described in this thesis the AMG recorded 

concurrently with a heart sounds microphone and an accelerometer 

deviated at forces above 75%. This suggests that the fall in AMG when
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the microphone is used may be an artefact introduced by the sensor 

characteristics rather than a true feature of the muscle. Thus it is safe to 

conclude that the performance of heart sounds microphone (HP 21050A) 

makes a large contribution to fall of IAMG at higher forces. However, 

other factors may still be significant.

4.2. Analysis of the frequency components of EMG and AMG

Recent developments in computers and analysis programs have led to 

further investigation of myoelectric signals.

The analysis of frequency content in the biological signals seems to 

offer additional information about tissue function.

The results described in this thesis show that the EMG median 

frequency rises progressively with increasing force in unfatigued 

muscle. The shift in the median frequency of EMG can be explained by 

an increase in the conduction velocity of action potentials along the 

muscle fibres. The increase in the conduction velocity is accompanied 

by a reduction of action potential duration (Stulen and De Luca, 1981). 

The recruitment of larger motor units activate larger muscle fibres with 

faster conduction velocities and shorter action potential duration.

The AMG median frequency also shifts toward higher frequencies at 

higher forces. This is shown in Figure 29. The AMG median frequency 

showed a linear relationship with force up to 100% MVC. In addition, 

the intra- and inter-subject variability in median frequency is less than
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that in the IAMG. The strong linear relationship and reduced variability 

make median frequency a better monitor for force than IAMG. The 

increase in the AMG median frequency could be due to higher motor 

unit firing rates or changes in muscle contractile properties e.g., muscle 

stiffness (Barry and Cole, 1988, Orizio et al, 1990). The present study 

was not able to show a steeper increase in the AMG median frequency 

in the range 75-100% MVC at which IAMG reduces. This finding is not 

in agreement with the observation of Orizio et al, (1992).

When EMG and AMG median frequencies at different isometric forces 

were compared, the results showed that the AMG median frequency was 

about 10 times lower than that in the EMG. The range of median 

frequency was variable between 5 and 15 Hz whereas, the median 

frequency of EMG was between 71 and 112 Hz. This indicates the 

origins of the EMG and AMG are different and each represents different 

features of contracting muscle.

More useful information was obtained when a frequency band analysis 

was applied to the AMG data. Figure 39 shows a similarity between the 

distribution of the AMG energy spectrum and motor units firing rates. 

The motor unit firing rates are taken from a recently published by 

Bigland-Ritchie et al, (1992). Both values rose with increases in force 

and they are both distributed between 0 and 35Hz. However, their 

distributions are different. This could be explained by the fact that of 

motor units of different sizes fire at different frequencies (Henneman et 

al, 1965, Macefield et al, 1993). Thus small units, which make little
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contribution to the force, might reach the highest rates whilst larger 

units, which contribute more force, might be expected to fire more 

slowly. Whatever the cause, there is no simple relationship between 

motor unit firing rates and AMG frequency content other than that they 

share a common frequency range.

In summary, there are linear relationships between IEMG, IAMG and 

force although at higher forces the variability of the IAMG became 

rather high. The EMG and AMG median frequencies also showed a 

clear linear correlation with force.
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Figure 39. The mean motor units firing rates (left-hand figures) and 

AMG frequency distributions (right-hand figures) during a series of 

voluntary contractions in tibialis anterior muscle. The motor units firing 

rates are reported from work recently published by Bigland- 

Ritchie et al, (1992).
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4.3. Changes of the AMG and EMG in fatigued muscle.

Changes of EMG and AMG were investigated in two different types of 

fatiguing exercises. Time and frequency domains analysis were 

performed. They will be discussed in turn. In addition, changes of IEMG 

and IAMG after intermittent and during sustained contractions will be 

described.

Intermittent fatiguing activity

During fatigue produced by submaximal intermittent isometric 

contractions, the loss of force is thought to result mainly from failure of 

the muscle contractile apparatus (Bigland-Ritchie, Furbush and Woods, 

1986).

Figure 18 shows that the relationship between force and IEMG was still 

linear after fatiguing exercise but the slope of the regression line had 

increased. This increase confirmed the presence of fatigue. The increase 

in EMG amplitude has been attributed to recruitment additional motor 

units, since more motor units are activated to achieve the given force, 

(Edwards and Lippold, 1956). It seems that low frequency fatigue 

develops because of impairment of excitation-contraction coupling, and 

this explains the dissociation of force and IEMG.

Therefore, the IEMG alone is not accurate enough to be used as a 

indicator in fatigue which develops with intermittent exercise though the 

IEMG/force ratio still can be used as a fatigue index.
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There is a clear reduction in the slope of IAMG/force relationship after 

intermittent fatiguing exercise shown in Figure 18. This reflects the 

changes in raw AMG shown in Figure 16. This reduction in AMG might 

be a consequence of fatigued motor units contracting and relaxing more 

slowly and so being more fully tetanised even at lower forces. There are 

the additional possibilities that motor units could fire more slowly, 

though still maintaining a fused tetanus (Bigland-Ritchie et al, 1983) and 

changes in muscle stiffness, due to swelling of muscle fibres, changing 

the AMG transmission characteristics. Thus, it can be noted that similar 

reasons may explain the force reduction and the IAMG reduction.

The results described in this thesis are in agreement with those during 

the early stages of fatigue intermittent activity of the quadriceps reported 

by Dalton, Comerford and Stokes (1991). They examined the AMG 

during intermittent contractions repeated until a profound fatigue 

developed. The contractions began at 75% of the initial MVC and 

continued until only 35% of the initial MVC could be developed. They 

described reductions in IAMG amplitude with force reductions during 

the early stages of fatigue, until the force falls to 60% MVC. In the later 

stages of fatigue the IAMG rises again.

The reduction in force in early fatigue must mean that even though a 

force of 60% of the initial MVC is produced, the same force is now the 

maximum which that muscle can produce. Thus, the decline in the 

IAMG may have the same origins as those described earlier for the



126

AMG reduction at higher forces, i.e., complete fusion of motor unit 

contraction, slowing of force rise times and stiffening of the muscle.

It is interesting to note that Stokes and Dalton (1991) did not observe a 

shift in the slope of the IAMG/force relationship in fatigue. This shift in 

slope is clearly found in the experiments described in this thesis (Figure 

18). This difference is most probably due to a delay of 15 minutes 

between the fatiguing exercise and the AMG measurements in their 

experiments. It is likely that the quadriceps will have recovered 

significantly in this time. The experiments described here did not 

continue the fatiguing process for the same duration as Stokes and 

Dalton (1991). Their exercise period lasted longer and produced much 

greater fatigue. In these circumstances the AMG is likely to be severely 

affected by fatigue tremor, reducing the significance of any observation. 

In addition, subjects often recruit additional muscle groups to help 

maintain the force and the possibility exists that sounds associated with 

gross body movements and AMG from other muscle groups might also 

influence the recorded signals (Wee and Ashley, 1990). All o f the 

factors might help to explain the rising AMG seen in late fatigue in 

Dalton’s experiments.

Sustained fatiguing contractions

The results in this thesis show that IAMG and IEMG behave differently 

during sustained contractions. Figure 19 shows that when a force o f 80% 

MVC is maintained the EMG increases after 20 seconds whereas the 

AMG falls progressively during the contraction. These trends are clearly
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present in all subjects tested and Figure 21 confirms that the changes are 

statistically significant.

When lower forces are sustained, the behaviour of the AMG is quite 

different. Figure 23 shows a sustained contraction at 40% MVC during 

which the AMG does not appear to change. Figure 25 illustrates 

summary data for eight subjects which shows that even though fatigue 

clearly developed, as seen by a rising EMG/force ratio, the IAMG was 

not significantly changed. The explanation for these observations might 

lie in the motor units contractions remaining unfatigued even after 

several minutes activity at 40% MVC and so maintaining the AMG 

signal. In the higher force range the muscle must be almost maximally 

contracted. 80% of initial MVC must be close to maximal force quite 

soon after the contraction begins .

Thus the fully fused tetanic contractions and increased muscle stiffness 

which explained the reduced AMG at 100% MVC in fresh muscle 

probably also apply in the later stages of fatigue at 80% MVC. The fall 

in AMG during high force contractions also suggests that fatigue 

induced tremor was not a problem during these experiments.

The reduction in AMG during these experiments is in agreement with 

data from similar experiments reported by Barry et al (1985), during 

contractions at 75% MVC and by Orizio et al, (1989) during 

contractions at 60% and 80% of MVC in the biceps brachii.

It has to be noted that the EMG/force ratio, which is a clear indication of 

fatigue, increased during sustained constant forces at different levels.
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The increase in amplitude of IEMG, was greater at higher force which 

indicates more recruitment of larger, faster contracting fibres. Voluntary 

contractions in the higher force range are associated with higher 

percentage activation of larger motor units. Henreksson-Larsen et al, 

(1985) have reported that the larger motor units are located in the deeper 

portions of the human tibialis anterior. This does not agree with the 

observation of Burke (1981) that smaller motor units have deeper 

locations in muscle.

As seen in Figure 26, the duration of exercise is progressively shortened 

as contraction intensity increases. The IEMG rises up to exhaustion 

regardless force levels. The IEMG/force ratio tends to increase with 

exhaustion and this ratio is already used as an indicator of muscle 

fatigue. This increase can be attributed to the recruitment of larger fresh 

motor units, synchronisation and slowing of conduction velocity 

(Bigland-Ritchie and Woods, 1984).

In summary, the IEMG and LAMG indicate two different features of 

fatigue during sustained contractions especially at higher forces.

During isometric sustained contractions, the recording of EMG and 

AMG can be helpful to identify the electromechanical dissociation. The 

IEMG alone will not be an accurate monitor of sustained contraction, 

whereas the LAMG, particularly at higher force levels, could be 

considered as a reliable indicator of localised muscular fatigue.



129

It is well known that the median frequency of EMG shifts towards lower 

frequencies during sustained contractions and this change is already 

widely used as an indicator of localised muscle fatigue (De Luca, 1984). 

The median frequency may decrease by more than 50%. However, the 

decrement depends on the muscle being investigated (De Luca et al, 

1983).

In this thesis, the changes of EMG frequency spectrum were studied at 

the beginning, middle and the end of sustained contractions at different 

forces.

The EMG median frequency shifted to lower values at all forces tested 

but its reduction was more pronounced at higher forces. Figure 33 shows 

that when a force of 40% MVC is sustained the EMG median frequency 

shifts progressively towards lower values from the beginning of 

contraction. Frequency bands analysis seems to be much more valuable 

than median frequency during fatiguing activity particularly in 

fluctuating signals. Under these conditions, the median frequency does 

not describe the spectrum as well as the frequency band analysis does. 

The shift of EMG energy spectrum from higher frequency bands into 

lower frequency can be seen in Tables 5, 7 and 9. This confirms that 

fatigue developed at all forces. It agrees with Merletti, Knaflitz and 

De Luca (1990) who showed that during submaximal prolonged 

voluntary contractions of the tibialis anterior the mean and median 

frequencies of the EMG spectra decreased. It is likely that the range of 

muscle conduction velocities is compressed during the fatigue process.
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The significant leftward shift of EMG median frequency at all force 

levels seen in Figures 33, 34 and 35 could be due to change in shape of 

muscle action potentials and slowing conduction velocity of muscle 

fibres. The slow conduction velocity could be related to accumulation of 

some types of metabolites such as the hydrogen ions in the muscle. The 

greater reduction in the EMG median frequency at higher forces could 

be due to the larger motor units which are faster but more fatigable than 

the smaller motor units.

There are relatively few descriptions of changes in the AMG frequency 

spectrum during fatigue available in the literature (Zwarts and Kiedel, 

1991, Goldenburg et al, 1991 and Orizio et al, 1992). The study of AMG 

frequency spectrum in this thesis, showed a different behaviour at 

different sustained forces. Figure 35 shows that when a force of 80% of 

MVC is maintained the median frequency of AMG shifts significantly 

towards lower values.

Figure 33 illustrates pooled data from 8 subjects which shows even 

though fatigue clearly developed, as seen by rising EMG/force ratio and 

shift of EMG median frequency towards lower values, the AMG median 

frequency was not changed. Frequency bands analysis of AMG also 

shows the similar trends of AMG median frequency during higher and 

lower force sustained contractions. A shift of AMG median frequency 

towards lower values might be related to the decreased firing rate of 

motor units (Barry et al, 1985, Orizio et al, 1992). A greater reduction in 

the AMG median frequency at higher forces can be related to the use of 

larger motor units which are easily fatigable. Perhaps, only small motor 

units, remain active at high frequency to maintain the required force.
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One possibility for the stability of AMG frequency spectrum during 

contractions at lower forces could be due to stability of firing rate of 

active motor units (Maton and Garnet, 1989).

In summary, it appears that analysis of IAMG and IEMG and their 

frequency spectra during isometric sustained contractions gives 

additional information about feature of muscle fatigue. The presence of 

fatigue was confirmed by three well known indicators. They were the 

increase of EMG/force ratio, IEMG (particularly at higher force of 

intermittent activity or at the end of sustained contractions) and the 

decrease and shift of median and bands frequency towards lower values. 

Under these conditions, the AMG/force ratio or IAMG decreased and 

the frequency spectrum shifted towards lower values. This was more 

pronounced at higher force levels. However, in fatigued muscle the 

IEMG rises but the IAMG falls, which indicates an electromechanical 

dissociation and failure in excitation-contraction coupling.

4.4. Changes of AMG and EMG at three muscle lengths.

The changes in AMG and EMG characteristics at three different muscle 

lengths was investigated.:

a- IAMG and IEM G changes

At the shorter muscle length, the absolute force decreased by 33%. This 

is in agreement with data reported by Marsh, Sale, McComas and
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Quinlan (1981). The reduction of force at shorter muscle length 

indicates a mechanical disadvantage. For a given submaximal force the 

muscle under investigation needs to recruit more motor units or increase 

the firing rate of active motor units to compensate. When muscle 

shortens more muscle fibres moves close to the surface EMG electrodes. 

Thus, despite the force reduction at the shorter length, the amplitude of 

IEMG rose.

This probably explains a steeper IEMG/force relationship at shorter 

muscle lengths shown in Figure 37. At longer muscle lengths, the slope 

o f regression line between IEMG and force was similar to that in the 

optimal length. This differs from the results reported by Inman et al 

(1952). The increase in slope of regression line between IAMG and 

force at the shorter length when compared to that at the optimal length 

suggests that more fresh motor units are recruited to compensate 

mechanical deficiency. It is interesting to note that tibialis anterior can 

be maximally activated by volitional effort in spite of changes in its 

overall mechanical behaviour (McKenzie and Gandevia, 1986). The 

similarity of slopes between IAMG and force between longer and 

optimal lengths might be due to activation of the same motor units.

b- Frequency changes

The similarity of the relationship between EMG median frequency and 

force in the shorter or longer and optimal lengths suggests that muscle 

action potential duration and conduction velocity are little affected by 

the muscle length changes.
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The similarity of the relationship between AMG median frequency and 

force at the optimal, longer and shorter muscle lengths suggests that the 

muscle does not resonate at a different frequency as it lengthens or 

shortens. It is interesting to note that there is no change of motor unit 

firing rates at different lengths of the tibialis anterior (Bigland-Ritchie et 

al, 1992). There is also no clear correspondence between the AMG 

median frequency and motor units firing rates. The nature of the AMG 

mechanism, is still unknown but it is not a simple resonance 

phenomenon.

4.5. The influence of blood flow on EMG and AMG

The results shown in Figure 31 indicate that there is no significant 

difference between EMG median frequency under normal and occluded 

conditions. The explanation may be that the EMG median frequency is 

not affected by occlusion during brief non-fatiguing isometric 

contractions. This finding differs from the observation of Merletti et al, 

(1983) and De Luca (1984). Their experiments were performed with 

longer periods of contraction. The difference between the results 

described in this thesis and theirs can be related to the duration of 

muscle contraction or could be due to the effect of fatigue and type of 

muscle under investigation. But the similar slopes between IEMG and 

force under normal and occluded conditions, shown in Figure 14, 

indicate that results in this thesis were obtained from non-fatigued muscle
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The similarity of the IAMG/force relationship in normal and occluded 

muscle, suggests that the effect of blood flow on the AMG is negligible.

In the AMG and EMG, the similarity of relationship between median 

frequency and force in normal and occluded conditions, indicates that 

the motor units are little influenced by lack of blood flow during brief 

isometric contractions.

4.6. Potential applications:

Although there are many unknown factors concerning the AMG, there 

are several practical applications for its use in medicine, sports sciences 

and rehabilitation:

1. The AMG could be used as an indicator of mechanical activity, 

particularly in those muscle groups in which force measurements are 

difficult, e.g., in paraspinal muscles that are often involved in 

myopathies, and used to estimate their electro-mechanical efficiency.

2. The AMG is already being used as a monitor of muscular fatigue. If 

during the fatigue process, the EMG and AMG are recorded 

simultaneously, the IEMG rises but the IAMG decreases. This can 

indicate an excitation-contraction coupling failure.
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3. The AMG characteristics might play a role in distinguishing muscle 

fibres types, i.e., the dominant frequency of orbicularis is about 22 Hz 

whereas in soleus it is about 11 Hz. This possible advantage of the AMG 

can be used in sport medicine.

4. AMG can be used as a non-invasive method for diagnosis of 

peripheral neuropathy. In addition, it is useful for assessment of the 

functional state of the nerve terminal and end plates (Hufschmidt, 

Schubnell and Schualler, 1987).

5. AMG is already being used as an externally powered prosthesis in 

rehabilitation (Barry, Leonard, Gitter, and Ball, 1986).

6. AMG might be used in the assessment of muscle function in cardiac 

muscle and paediatric investigation in health and disease.

4.7. Future plan

Parts of the results in this thesis, even if  related to a biological signal 

which is still in its ‘infancy” indicate that the acoustic myogram is an 

important low frequency signal with a mechanical origin which can be 

detected from a contracting skeletal muscle. The most important feature 

of the AMG is that these studies can be made on muscles whose 

anatomical position makes access difficult.

Guidelines for appropriate use of AMG need to be established before it 

can be used to assess muscle function.
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Different force/AMG relationship may be due to technical factors rather 

than physiological differences between muscles and individual subjects. 

Technical considerations such as the type detector used, different types 

o f contraction, different ranges of joint motion, analysis of signals, 

coupling with the skin and repeatability of recording are necessary 

before AMG can be accepted for clinical use, either as a diagnostic and 

monitoring tool, or for rehabilitation research.

The present work will be extended by looking at the AMG in the tibialis 

anterior following electrical stimulation and dynamic contractions. It 

will be also considered in different types of muscle contraction in other 

muscles. Further work is required to determine the effect o f type of 

recording used and the method of securing the sensor to the skin. The 

performance of various types of transducers will be compared. The 

pressure with which the AMG detector is applied over the muscle 

influences the amount of AMG activity recorded. This pressure has to be 

standardised to reduce variability during repeated recordings.
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