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ABSTRACT

Cis-dichlorodiammineplatinum(II) (cisplatin) is widely used as an 
anti-cancer agent to treat various tumours particularly ovarian, testicular, 
bladder cancers and tumours of the head and neck. Although the precise 
mechanism of cisplatin-mediated cytotoxicity remains elusive, DNA damage 
is thought to be the therapeutically important interaction. Cisplatin resistance 
is an obstacle to effective treatment of cancer patients. Such resistance may 
arise due to a variety of intracellular changes including enhanced repair of 
DNA lesions caused by cisplatin and reduced susceptibility to DNA damage- 
induced apoptosis. The tumour suppressor protein, p53 is required for DNA 
damage-induced apoptosis in certain cell types.

Cellular levels of p53 protein are increased subsequent to DNA 
damage due to post-translational alterations in p53. Induction of p53 protein 
levels by lpM cisplatin or transplatin peaks at 24 hours for the cisplatin 
sensitive human, ovarian adenocarcinoma cell line, A2780. Levels of p53 
protein increase in the cisplatin resistant derivative, A2780cp70 for at least 48 
hours following treatment with transplatin and at least 72 hours following 
treatment with cisplatin. Also, certain cisplatin resistant cell lines contain 
higher basal levels of p53 protein compared to the cisplatin sensitive parental 
cells from which they were derived. Results of Western blotting experiments 
show an 8 fold higher p53 concentration in the A2780cp70 cell line than 
A2780, the cisplatin sensitive parental line. This difference in p53 protein 
levels does not reflect a mutation of the p53 gene, as direct PCR sequencing of 
p53 from A2780 and A2780cp70 showed both lines to have a wild-type p53 
sequence. Furthermore, the p53 from A2780cp70 has less cross-reactivity with 
mutant-specific anti-p53 antibodies in immunoprecipitation experiments than 
cell lines with known mutations of the p53 gene. No evidence for increased 
MDM2 expression is observed in A2780cp70 suggesting that the p53 protein 
is not being stabilised by binding to the MDM2 protein in this cell line. 
Although increased levels of Hsp70 protein are observed in these cells, this 
may simply reflect a lack of transcriptional repression of the Hsp70 promoter 
in these cells due to the p53 being non-functional.

Altered p53-mediated transcriptional /rawsactivation in A2780cp70 
was examined by use of a luciferase reporter construct and by Northern 
blotting of endogenous genes, known to be transcriptionlly activated by p53. 
A2780cp70 cells have 10 fold lower WAF-1 mRNA levels than A2780 cells 
indicating reduced p53 transcriptional activity in the resistant cell line. 
Introduction of a mutant p53 gene into A2780 cells also provokes a reduction 
in basal p53 levels with a 3 fold decrease detected. Reduced function of p53 in 
the A2780cp70 cell line would be consistent with reduced entry to the 
apoptotic pathway in these cells. This may be one reason why A2780cp70 
cells are more cisplatin resistant than A2780 cells. The DNA damaging 
agents, cisplatin and transplatin, induced WAF-1 mRNA levels 4 fold by 24 
hours after drug removal in A2780 cells. Ionising radiation provoked a more 
rapid induction of 4.5 fold by 4 hours after drug removal in A2780 cells. This 
is consistent with induced p53 protein levels detected in A2780 after similar 
treatments. A2780cp70 cells, by comparison, showed only slight induction of 
WAF-1 following treatment with these agents. Clonogenic assay data shows 
that a pretreatment with cisplatin does not alter sensitivity to a second cisplatin 
dose. Thus intracellular alterations evoked by cisplatin treatment are not 
involved in a protective response.

DNA damage recognition proteins (DRPs) have been proposed to have 
a role in drug resistance, possibly by an involvement in DNA repair although 
other functions are possible. Partial purification of a DRP which binds to 
cisplatin-damaged DNA was carried out. Using nuclear proteins, soluble in 
2% tri-carboxylic acid for anion exchange chromatography and heparin 
column chromatography, this DRP was purified 183 fold. Using recombinant

xv



HMG proteins and using anti-HMG protein antibodies to retard protein-DNA 
complexes in the gel mobility shift assay, the DRP activity was shown to be 
identical to HMGI. Evidence is also presented showing that p53 does not 
directly bind to regions of cisplatin-induced DNA damage. However this does 
not eliminate a possible link between DRP-mediated DNA damage 
recognition and the p53 response to DNA damage.
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CHAPTER 1; INTRODUCTION

1.1 C/S-DIAMMINEDICHLOROPLATINUM II (CISPLATIN)

1.1.1 THE DISCOVERY OF CISPLATIN

Cisplatin was first synthesized in 1845 when it was known as 

"Peyrone's chloride" and its structure was elucidated in 1893 (Eastman, 1990). 

The toxic effects of cisplatin were first appreciated when an AC current was 

delivered through platinum electrodes to a culture of Escherichia coli bacterial 

cells. The cells stopped dividing and proceeded to form long filaments. At the 

electrodes, the responsible compound was found to be the planar cisplatin 

molecule (Rosenberg et al., 1965). Stereochemistry has important implications 

for these effects as the trans isomer does not inhibit division and merely 

functions as a bacteriocide. The structure of cisplatin, showing the reactive 

chloride groups is depicted below in figure 1.1.1. These chloride ions are 

stable in the extracellular environment but, on uptake to cells, the low 

intracellular chloride concentration causes them to be replaced by hydroxyl 

ions. This gives rise to a bifunctional, charged electrophile which is reactive 

with nucleophilic sites within the cell such as DNA, RNA and proteins. 

FIGURE 1.1.1

The Chemical Structure of Cisplatin

HsN
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1.1.2 CISPLATIN AS A CHEMOTHERAPEUTIC AGENT

Cisplatin was shown to have powerful anti-tumour activity when 

injected into mice with tumour implants. Platinum compounds were able to 

decrease the mass of Sarcoma 180 solid tumours and to increase the mean 

survival time of mice with leukemia L1210 compared to control mice 

(Rosenberg & VanCamp, 1969; Rosenberg & VanCamp, 1970). Cisplatin is 

now used in drug combination strategies to treat testicular, bladder, ovarian 

cancer and tumours of the head and neck (Loehrer & Einhom, 1984).

1.2 POSSIBLE MECHANISMS OF CISPLATIN MEDIATED CELL 

DEATH

1.2.1 CISPLATIN INDUCED DNA DAMAGE

Approximately 1% of the total cellular platinum binds to the DNA, 

forming a range of adducts which have been detected in vitro and in vivo. 

These lesions, which are represented pictorially in figure 1.2.1 include 

monofunctional, intrastrand, interstrand and intermolecular adducts involving 

a second molecule such as glutathione (GSH) or protein. The majority of 

cisplatin interactions with DNA take the form of intrastrand cross-links with 

65% between neighbouring guanines at the N7 position, i.e 1,2 d(GpG), 25% 

are between adjacent adenine and guanine residues, i.e 1,2 d(ApG), and the 

remainder are between guanines separated by another nucleotide i.e 1,3 

d(GpNpG) (Fichtinger-Schepman et al., 1984; Pinto & Lippard, 1985a; Eastman, 

1986).

Such DNA damage could result in reduced viability of cells which are 

unable to repair lesions before the genome is replicated at S phase of the cell 

cycle. Thus rapidly dividing cells, such as one often observes in tumours, 

would be targeted more efficiently. Indeed there is evidence that cisplatin 

preferentially kills proliferating rather than quiescent rat thymocytes (Evans et 

al., 1994). Damaged DNA might result in aberrant separation of the
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chromatids at M phase of the cell cycle, giving rise to daughter cells with an 

abnormal complement of chromosomes. It could also interfere with the 

progress of replicative enzymes along the DNA strand or with transcription of 

genes essential for cellular survival.

FIGURE 1.2.1

The Main Types of Cisplatin-DNA Adducts
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Transplatin is stereochemically incapable of forming the main 

cisplatin DNA adduct, the 1,2 d(GpG) intrastrand crosslink. This may account 

for the differential toxicities and anti-tumour capacities of these two isomers 

(Pinto & Lippard, 1985a). Within CV-1 cells given a continuous lOpM dose, 

of cisplatin or transplatin, transplatin lesions increased rapidly for 6 hours, as 

measured by atomic absorption spectroscopy (AAS), then declined suddenly. 

On the other hand cisplatin adducts rose steadily throughout the course of the 

48 hour experiment, indicating that cells are less proficient at repairing 

cisplatin-mediated damage (Ciccarelli et al., 1985). DNA damage is the most 

likely explanation for the cytotoxicity and anti-tumour activity of cisplatin and 

interactions with DNA would certainly have more drastic effects than
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interactions of cisplatin with more transient intracellular molecules such as 

proteins and mRNA.

1.2.2 MUTAGENESIS

In certain instances, cisplatin mediated DNA damage may be incurred 

in essential, "housekeeping" genes. Such mutations might cause the gene 

product to be inactive or to be abnormally expressed. This would result in 

reduced viability of affected cells and so represents a further mechanism by 

which cisplatin could kill cells. One would expect the majority of such 

mutations to occur at nucleotide sequences rich in guanines adjacent to either 

other guanines or adenines. Studies using the Chinese hamster ovary (CHO) 

aprt gene have shown 5AGG and 5'GAG sequences to be hotspots for 

cisplatin induced mutations and there is no apparent overlap with UV induced 

mutations (deBoer & Glickman, 1989).

1.2.3 INHIBITION OF DNA SYNTHESIS

Cisplatin may exert its effects by prevention of normal cellular 

functions such as DNA synthesis. DNA synthesis is impaired by cisplatin 

(Harder & Rosenberg, 1970) and this may be due to direct inhibition of 

polymerases. Progress of DNA polymerases has been shown to be halted in 

vitro by DNA intrastrand crosslinks (Pinto & Lippard, 1985b). An alternative 

means of DNA synthesis inhibition would be to block the cells in a cell cycle 

phase where DNA replication does not occur for example in G1 or G2 phases. 

Cisplatin has been shown to cause cell cycle blocks in both G2 (Sorenson & 

Eastman, 1988; Ormerod et al., 1994) and G1 phases (Brown et al., 1993).
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1.2.4 APOPTOSIS

Apoptosis is a form of programmed cell death which exhibits certain 

distinct morphological features (Kerr et al., 1972). Cells become rounded, 

membrane blebbing can be detected, and in some cases, non-random DNA 

fragmentation to multiples of 180-200bp occurs and, probably as a result of 

this, the chromatin becomes condensed. This is rapidly followed by separation 

of the nucleus into discrete masses of condensed chromatin and, finally, 

fragmentation of the cell into several membrane bound vesicles known as 

apoptotic bodies which are then phagocytosed by other cells such as 

macrophages. The process of apoptosis is involved in cell turnover within 

tissues, tumour regression, focal elimination during embryonic development 

and it also seems to occur in response to toxic substances.

Apoptosis is a thermodynamically uphill process and requires the 

expression of certain gene products. The c-myc protein is required for 

activation-induced apoptosis of T-cell hybridomas (Shi et al., 1992). 

Deregulation of the c-myc gene causes apoptosis of rodent fibroblasts 

following serum withdrawal (Evan et al., 1992). Apoptotic induction by c-myc 

occurs via its interaction with the splice variant products of the max gene 

(Amati et al., 1993). Apoptosis in response to DNA damage seems to require 

p53 protein (Lowe et al., 1993a) although p53 independent apoptotic pathways 

have been reported (see section 1.4.7 for further details). Another important 

protein is bcl-2, a 25KDa integral, inner mitochondrial membrane protein, 

which antagonises apoptotic death (Hockenberry et al., 1990). It forms 

heterodimers in vivo with bax, a protein which promotes apoptosis (Oltvai et 

al., 1993). The bcl-2 protein has 23% amino acid homology with the product 

of the ced9 gene from Caenorrhabditus elegans which suppresses the ced3 

and ce*/4-mediated programmed cell death in this worm species (Hengartner et 

al., 1994). The C.elegans cell death programme requires the ced3 and ced4 

genes to effect the regulated demise of 131 of the 1090 cells present in the
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developing worm. A mammalian homologue of the ced3 gene has been found 

(Yuan et al., 1993) which encodes a 45KDa protein, the interleukin B 

converting enzyme (ICE). Other genes implicated in the apoptotic pathway 

include TRPM-2/SGP and Fas/APO-1 (for a review see Martin et al., 1994).

Apoptosis can be induced by anticancer drugs including cisplatin (for a 

review see Dive & Hickman, 1991). This has been demonstrated in CHO cell 

lines which were proficient (AA8) or deficient (UV41) in DNA excision repair 

(Barry et al., 1990). The UV41 cell line was 100 fold more sensitive to a 2 

hour cisplatin dose. Treatment of either of these cell lines with a 90% lethal 

dose of cisplatin caused the DNA fragmentation, symptomatic of apoptosis, 

which was detected 48 hours after drug treatment and earlier for higher doses. 

The DNA fragmentation was followed by cell shrinkage and by loss of 

membrane integrity as measured by trypan blue exclusion. There appears to be 

a fairly linear relationship between drug dose and apoptosis for each of several 

cytotoxic drugs including cisplatin (Frankfurt et al., 1994).

Rat thymocytes, unlike hepatoma cells, did not seem to show 

sensitivity to cisplatin-induced apoptosis despite their extreme sensitivity to 

apoptosis induced by other conditions (Evans & Dive, 1993). However, this 

was probably due to 95% of the thymocyte population being quiescent. The 

minority sub-population of larger, proliferating thymocytes exhibited 

increased levels of apoptosis as detected by acridine orange staining of nuclei 

and agarose gel electrophoresis of fragmented DNA, upon treatment with a 2 

hour, 50pM cisplatin dose when compared to both untreated controls and 

quiescent thymocytes (Evans et al., 1994). As no differences in either cisplatin 

intracellular levels (AAS) or cisplatin-DNA adducts were detected (ELISA), it 

may be that cells must be in a certain cell cycle phase in order to succumb to 

cisplatin-induced apoptosis or that DNA replication is necessary to couple the 

induced DNA damage to the apoptotic response.
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1.3 MECHANISMS OF RESISTANCE TO CISPLATIN TREATMENT

1.3.1 THE ACQUISITION OF DRUG RESISTANCE

The development of drug resistance is a problem which has marred the 

progress of chemotherapy for many cancer sufferers. The ability to understand 

and hence modulate such resistance is one of the major goals of oncology 

today. In some large tumours drugs are not efficiently delivered to the 

cancerous cells. This is due to the extensive, collagen-enriched interstitium 

and the higher pressure and greater viscosity of the blood supply, which 

reduces blood flow and so, convection. Thus larger molecules which require 

the blood to "carry" them cannot reach cancerous cells as readily as small 

molecules which travel principally by diffusion (Jain, 1994). Therefore such 

tumours do not respond well to chemotherapy and so could be termed 

"resistant".

Certain cell types display increased tolerance of drugs than others and 

this is termed "innate" or "inherent" resistance. For example, bladder cells 

have a greater tolerance of cisplatin than testicular cells and this difference is 

maintained in cell lines derived from them (Walker et al., 1987). For instance 

testicular cell lines are generally 3- 5 fold more sensitive to cisplatin than 

bladder cell lines (Bedford et al., 1988 and many others). "Acquired" 

resistance on the other hand, is resistance which develops due to a phenotypic 

change in the affected cells. This can be mimicked in vitro by selection of 

spontaneous mutants by exposure of cell lines to high doses of the drug 

(Behrens et al., 1987; McLaughlin et al., 1991).

1.3.2 DRUG RESISTANCE DUE TO REDUCED INTRACELLULAR 

ACCUMULATION

One mechanism by which cells could become resistant to 

chemotherapeutic drugs is by decreasing the concentration of the drug in the 

cell either by lowering the uptake or by increasing efflux of the substance. A
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classic example of such a mechanism is the MDR phenotype where resistance 

to a multitude of hydrophobic, natural product, cytotoxic drugs develops due 

to overexpression of the MDR1 gene which encodes p-glycoprotein, a 170KDa 

membrane protein (Juliano & Ling, 1976). High levels of p-gly coprotein
I

expression lare sometimes detected in cancers derived from certain tissues. 

Increased p-glycoprotein expression has also been detected in acute 

leukemias, neuroblastomas ovarian and breast cancers which have relapsed 

after chemotherapy and in acute non-lymphocytic leukemia and chronic 

myelogenous leukemia. However the MDR1 gene does not confer resistance to 

cisplatin (Bradley et al., 1988; Deuchars and Ling, 1988). A gene has been 

identified which expresses its product, the ATP binding MRP , at relatively 

high levels in non-p-glycoprotein mediated MDR cells (Cole et al., 1992; 

Slovak et al., 1993). MRP is a 190KDa membrane protein which is located 

principally at the endoplasmic reticulum (Krishnamacery & Center, 1993).
i

I Another protein has been described which, like MRP, is associated with| MDR 

but not cisplatin resistance. This | llOKDa protein is overexpressed [in cells which 

have an ATP dependent | defect in drug accumulation! (Scheper et al., 1993).

Reduced accumulation of cisplatin has been reported for some 

cisplatin tolerant, human ovarian carcinoma cell lines although it does not 

appear to be a universal mechanism (Andrews et al., 1989; Schmidt and 

Chaney, 1993). A 200KDa protein, which displays increased expression in 

cisplatin resistant cell lines, has been detected by raising antibodies to the 

plasma membrane of murine thymic lymphoma cells (Kawai et al., 1990). The 

level of cisplatin resistance correlated with a decrease in intracellular 

concentration of the drug. Another manner by which cisplatin accumulation 

might be reduced, is by increased binding to extracellular proteins which 

would make cisplatin effectively impermeable to cells. Using a human cell 

line, NHIK3025, it has been demonstrated that the cytotoxicity of cisplatin can 

be decreased by binding to serum proteins (Melvik et al., 1992).
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1.3.3 INACTIVATION OF CISPLATIN BY CELLULAR COMPONENTS

If the reactivity of cisplatin were obliterated by increased interaction 

with nucleophilic molecules such as glutathione (GSH) or metallothioneins 

before it was able to carry out its destructive effects within the cell, resistance 

might arise. GSH, with a concentration within cells of 0.5-1 OmM, is the main 

intracellular thiol and is reactive with cisplatin. An association between 

increased GSH levels and cisplatin resistant cell lines have been detected in 

certain cases (Andrews et al., 1989). Incubation of cisplatin with GSH reduced 

its toxicity. Exposure of CHO fibroblast cell lines to 5mM buthionine 

sulphoximine caused a 90% reduction in cellular GSH levels resulting in the 

cells becoming sensitized to cisplatin treatment (Spitz et al., 1993). However 

there is scant evidence for GSH levels being a causative factor in modulation 

of cisplatin toxicity in vivo.

Metallothioneins are proteins of 6-7KDa in size, which are thought to 

be involved in zinc homeostasis and the detoxification of heavy metals in 

cells. In primates there are at least five MT-1, one MT-2 and one brain specific 

MT-3 genes which encode such proteins. A correlation between elevation of 

the cellular metallothionein content and transient cisplatin resistance in a 

murine fibrosarcoma cell line has been observed (Eichholtz-Wirth et al., 

1993). However this was not shown to be a cause-effect phenomenon and the 

transient nature of the resistance suggested that it was not due to a mutation or 

gene amplification event. Curiously, the cells used for these experiments 

became cisplatin resistant following irradiation yet exhibited no resistance to 

y-radiation. Overexpression of metallothioneins in cisplatin resistant, human, 

carcinoma cell lines following exposure to heavy metals was associated with 

resistance to cisplatin, chlorambucil and melphalan and transfection of cells 

with the human metallothionein-IIA gene conferred resistance to these drugs 

(Kelley et al., 1988). However transfection with a mouse metallothionein gene
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(MT-1) seemed to enhance cisplatin sensitivity, rather than resistance, of a 

CHO cell line (Koropatnick and Pearson, 1993).

An extensive study using three untreated ovarian, carcinoma cell lines 

including A2780 (a cell line which will be referred to in several subsequent 

sections), five A2780 derivatives selected for cisplatin resistance in vitro and 

five ovarian, carcinoma cell lines from patients who had been treated with, 

and acquired tolerance of cisplatin, has been performed (Schilder et al., 1990). 

There was no overall correlation between basal levels or inducibility of 

metallothionein II gene expression and cisplatin resistance.

1.3.4 INCREASED REPAIR OR TOLERANCE OF CISPLATIN- 

MEDIATED DNA DAMAGE

As DNA damage seems to be an important cytotoxic event following 

cisplatin treatment, enhanced repair of such lesions may represent the primary 

cause of cisplatin tolerance. In addition, increased tolerance of DNA adducts 

may occur for example, if DNA distortions are minimised due to binding of a 

protein which corrects the resultant kink in the DNA structure.

There are three classes of DNA repair and these are direct repair, 

recombinational repair and excision repair (Lindahl et al., 1982). Direct repair 

involves reversal of covalent modifications as occurs in the photoreactivation 

reaction of yeast where photolyase breaks the cyclobutane ring of pyrimidine 

dimers, caused by UV radiation, and restores the DNA to its native state. 

Recombinational repair happens when polymerases encounter DNA adducts. 

They cease replicating and initiate lOOObp beyond the adduct, where they 

continue, leaving a region of single stranded DNA which, in Escherichia colit 

is filled using the RecA protein. Excision repair consists of several stages 

which are, in chronological order, damage recognition, formation of the 

preincision complex, incision of the phosphate backbone at both sides of the
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adduct, excision of the abnormal nucleotide, repair synthesis, release of the 

post-incision complex and DNA ligation.

Cisplatin resistant cells show elevated DNA repair compared to 

sensitive cells as detected by loss of [3H]-cis-DEP adducts (Eastman & 

Schulte., 1988) or by elevated [3H] thymidine incorporation indicating 

increased repair synthesis (Lai et al., 1988). Cells which are sensitive to 

cisplatin are less able than resistant derivatives to repair a damaged 

chloramphenicol acetyl transferase (CAT) gene as measured by CAT activity 

in murine LI210 cells (Sheibani et al., 1989), human fibrosarcoma lines (Chu 

& Chang, 1990) and HeLa cells (Chao et al., 1991d). Gene specific, as 

opposed to total genome, repair of DNA interstrand crosslinks formed by 

cisplatin have been found to be increased in two cisplatin resistant cell lines 

when compared to their sensitive parentals (Zhen et al., 1992). This was 

demonstrated for the dihydrofolate reductase, y-globin and MDR1 genes using 

a denaturation-reannealing protocol then neutral gel electrophoresis, to 

separate crosslinked DNA from single stranded DNA, and subsequent 

Southern blotting. A comparison of sensitive SUSA bladder cells with the 

more resistant RT112 bladder cell line, using alkaline elution and ELISA, 

incorporating antibodies against cisplatin damaged DNA, revealed that 

although there was no overall difference in platinum adduct removal between 

these cell lines, SUSA cells had a defect in removal of intrastrand crosslinks 

involving two adjacent nucleotides (Bedford et al., 1988). This provides 

evidence that this is the main cytotoxic lesion formed by cisplatin and that 

repair of intrastrand crosslinks may be important in the development of 

cisplatin resistance.

1.3.5 OTHER FACTORS WHICH INFLUENCE CISPLATIN RESISTANCE 

Altered expression of the ras, fos and myc oncogenes have been 

implicated in cisplatin resistance, as have alterations in activity of protein
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kinase A, a cyclic AMP dependent enzyme which has a possible role in gene 

transcription, and protein kinase C inhibition or down regulation (for reviews 

see Andrews & Howell, 1990; Keith & Brown, 1991). Elevation of cyclic 

AMP has been shown to accentuate both cisplatin accumulation and 

sensitivity in 2008 cells probably by phosphorylation of a protein which 

modulates cisplatin influx or efflux. Also an increase in phosphorylation of 

32KDa and 20KDa proteins in cisplatin resistant PC-9/CDDP cells compared 

to sensitive PC-9 human, lung, adenocarcinoma cells has been detected by 

SDS/PAGE after 32P labelling, with no concurrent increase in protein levels 

(Nishio et al., 1992). The observation that tamoxifen increased the efficacy of 

a cisplatin combination therapy used against malignant melanoma cells, 

provoked a study demonstrating synergy between these two compounds in the 

T-289 melanoma cell line (McClay et al., 1992). No increase in uptake of a 

tritiated cisplatin analogue, dichloro(ethylenediammine)platinum II(DEP) 

could be determined by scintillation counting. ELISA showed no difference in 

metallothionein levels and, GSH levels, determined by a HPLC method, 

remained unaltered by tamoxifen presence. Also, tamoxifen had no affect on 

the repair of DEP-DNA adducts determined by the quantity of tritium in DNA 

samples prepared at various times after exposure of the cells to tritiated DEP. 

This suggests some novel form of cisplatin resistance is counteracted by 

tamoxifen. Thus the development of drug resistance is a complex process 

which cannot be accounted for by one, sole mechanism.

1.4 A ROLE FOR p53 PROTEIN IN CISPLATIN RESISTANCE ?

1.4.1 p53, THE TUMOUR SUPPRESSOR

The nuclear phosphoprotein, p53 was discovered by 

coimmunoprecipitation from SV40 transformed mouse cells, due to an 

association with SV40 large T antigen (Lane & Crawford, 1979). Association 

of p53 protein with viral proteins, such as SV40 large T antigen, adenovirus
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E1B and the E6 proteins of HPVI6 and 18 human papillomaviruses, indicates 

that it is an important regulatory protein whose function must be overcome in 

order to permit viral replication. Indeed, SV40 replication has been shown to 

be inhibited by wild type but not mutant p53 protein in vitro (Friedman et al., 

1990). Several nuclear localisation sequences are located in the C terminal 

region of p53 protein (Shaulsky et al., 1990). Expression of p53 can be 

discerned in many multicellular eukaryotic species and the gene is located on 

the short arm of chromosome 17 at 17pl3.1 in humans, a region which is often 

deleted in cancers. The sequence of the p53 protein has remained highly 

conserved throughout evolution indicating a critical function.

The wild type form is a tumour suppressor and mutations or deletions 

of the p53 gene are one of the most frequent genetic alterations observed in 

human cancer as determined by immunohistochemistry,^Western blotting and 

ELISA (Malkin et al., 1990; Srivastava et al., 1990; Brash et al., 1991; Hsu et 

al., 1991; Moll et al., 1992; Cunningham et al., 1992; Allred et al., 1993; 

Bums et al., 1993). Mutantp53 can cooperate with ras to transform primary 

embryonic rat fibroblasts and there was some initial confusion as to which 

form of p53 protein represented the native, wild type (Finlay et al., 1988).

There does appear to be a common conformational change of p53 

protein which occurs on mutation of the gene. This was suggested, as certain 

antibodies can bind a range of different mutant p53 proteins but not to the wild 

type protein (Gannon et al., 1990). Changes in p53 conformation have also 

been detected under different growth conditions (Milner and Watson., 1990). 

This protein has fundamental importance in the development of cancerous 

conditions and may, as will be discussed in subsequent sections, also have an 

effect on how well such diseases respond to chemotherapy and radiotherapy.
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1.4.2 EVIDENCE FOR AN INVOLVEMENT OF p53 IN CISPLATIN 

RESISTANCE

DNA damaging agents such as cisplatin, mitomycin C, etoposide and 

UV radiation have been shown to induce levels of intracellular, particularly 

nuclear, p53 protein in cells of both human and murine descent (Maltzman & 

Czyzyk, 1984; Kastan et al., 1991; Brown et al., 1993; Fritsche et al., 1993). 

Such an increase has also been detected in vivo in response to UV by 

immunohistochemistry of paraffin wax-embedded human, forearm biopsies 

(Hall et al., 1993). This implicates p53 protein in the response of cells to DNA 

damage, possibly as a mediator of signal transduction to downstream events 

such as altered gene transcription, cell cycle arrest or the decision to enter the 

apoptotic pathway. Bone marrow or spleen cells from transgenic mice with 

p53 mutations show an increased tolerance of ionizing radiation induced DNA 

damage compared to cells from wild type littermates (Lee and Bernstein., 

1993). Mutant p53 protein enhances, and wild type p53 represses, 

transcription of the MDR1 gene promoter placed upstream of a CAT reporter 

construct in SW13, human adrenocortical, carcinoma cells and NIH3T3 cells

resistance genes involved in cisplatin tolerance in a similar manner. Also 

cisplatin resistant cell lines selected using multiple exposures to cisplatin or 

one, single, chronic 15pM dose have an increased incidence of constitutive 

p53 protein elevation which cannot be accounted for by mutation of the p53 

gene (Brown et al., 1993).

1.4.3. STABILIZATION OF p53 PROTEIN

The enhanced levels of p53 protein detected in cisplatin resistant cells, 

and following exposure of cells to DNA damaging agents, could arise by 

elevation of p53 gene transcription. This is unlikely as drug induced p53 

protein stabilization has been shown to occur in the absence of any increase in

(Chin et al., 1992) and could theoretically alter transcription of!/ drug
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p53 mRNA levels (Kastan et al., 1991; Fritsche et al., 1993). It is also 

independent of the cell cycle phase which cells are in when exposed to DNA 

damaging agents.

Certain types of p53 gene mutations cause the p53 protein half life to 

increase from 15-45 minutes to 120-360 minutes, as determined by pulse 

chase experiments after transfection of cells with plasmids expressing p53 

(Finlay et al., 1988). It also shows increased binding to the heatshock protein 

Hsp70 from coimmunoprecipitation data and the region of p53 involved in this 

association has been elucidated (Hainaut & Milner, 1992; Lam & Calderwood, 

1992). SV40 large T antigen is also able to prolong p53 longevity without 

increasing p53 mRNA levels as can be seen by comparing pulse chase 

experiments in 3T3 cells and in the SV40 transformed cell line, SV3T3 (Oren 

et al., 1981) Binding to proteins such as Hsp70 and SV40 large T antigen may 

protect p53 from degradation by masking a protease recognition site on the 

p53 molecule. E6 viral proteins which complex with p53, on the other hand, 

destabilize p53 protein (Scheffner et al., 1990).

Other p53 interactive proteins include the phosphoprotein, MDM2 

which inhibits p53 mediated transcriptional /ra/isactivation (Momand et al.,

1992). It binds to a region from amino acids 18-23 of mouse and human p53 

proteins, which differ in one residue within this peptide sequence (Picksley et 

al., 1994). There appear to be several forms of this protein derived by 

alternative mRNA splicing. Four naturally occurring forms have been found in 

mice, of which one was unable to bind p53 protein possibly due to its lacking 

an N-terminal region (Haines et al., 1994). These variant forms may react with 

p53 protein in different circumstances and thereby provide fine tuning of p53 

function. Amplification of the MDM2 gene, found at the chromosomal region 

12ql3-14, is another frequent genetic alteration associated with cancerous 

disease (Oliner et al., 1992; Leach et al., 1993). Major 45KDa, 56KDa and
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70KDa proteins, as well as many minor proteins from non-small cell lung 

carcinoma lysates have been found to interact with the conserved p53 

conformational domain encompassing amino acids 115-295 and these 

associations were reduced by 40-80% after point mutations at codon 273 or 

175 of the p53 sequence (Maxwell & Roth., 1993). Quantitative differences in 

various p53 binding proteins were detected between cell lysates of different 

origins.

There may be several pathways by which p53 protein levels can be 

induced. Although a reduced or delayed ionising radiation p53 induction is 

apparent for cells from at least four complementation groups of ataxia 

telangiectasia (AT), induction of p53 protein following treatment with UV-B 

light is normal (Khanna & Lavin, 1993). Patients who suffer from AT are 

highly cancer prone and hypersensitive to ionising radiation but not UV-B 

light. Induction of p53 protein levels in response to both agents was inhibited 

by calphostin A, a protein kinase C inhibitor and by the serine/threonine 

phosphatase inhibitors, okadaic acid and calyculin A, indicating a role of 

protein kinase C and serine/threonine phosphatases in the stabilization of p53 

protein. Inhibitors of protein kinase A, tyrosine kinases or tyrosine 

phosphatases did not inhibit p53 induction.

Nuclear accumulation of p53 may arise due to excessive, unrepaired 

DNA damage in actively transcribed genes rather than due to damage which 

occurs randomly throughout the genome. Cells from patients with a defect in 

repair of transcribed genes for example, Cockayne's syndrome or xeroderma 

pigmentosum group A, showed induction of p53 protein at much lower doses 

of UV radiation than normal cells or cells with a defect in overall genome 

repair, such as those from xeroderma pigmentosum group C patients 

(Yamaizumi & Sugano, 1994).



1.4.4 INTRACELLULAR DEGRADATION OF p53 PROTEIN

Within cells, breakdown of proteins which have outlived their 

usefulness is carried out by lysosomal autophagy, various ATP dependent 

proteases or by the ubiquitin pathway. In w’/ro-translated p53 protein 

coimmunoprecipitates ubiquitin when ATPyS is used to inhibit HPV E6 

protein-stimulated p53 breakdown, indicating an involvement of ubiquitin in 

p53 degradation (Scheffner et al., 1990). Also, using a cell free degradation 

system followed by SDS/PAGE, the ubiquitin pathway has been shown to be 

involved in degradation of in vftro-synthesized, radiolabelled p53 protein 

(Ciechanover et al., 1991). Degradation of p53 does not occur in the absence 

of ATP, it can be inhibited by depletion of El, the ubiquitin activating protein, 

using immunoprecipitation and subsequently restored by addition of purified 

El.

The degradation of proteins by the ubiquitin pathway involves several 

proteins. After activation of ubiquitin by El, ubiquitin is transferred to a 

carrier protein, E2, El is recycled and then E2 conjugates ubiquitin to the 

protein to be destroyed, which has been recognised by the ubiquitin protein 

ligase, E3, of which there are four types. E2 is recycled at this point, multiple 

moieties of the 76 amino acid, ubiquitin become attached and ATP dependent 

degradation is carried out by the 26S protease complex. A free a  amino group 

is important in the recognition of proteins for rapid turnover by this system, 

also the identity of the N-terminal residue plays a role in its recognition and t- 

RNA seems to be involved in covalently modifying substrates for binding (for 

reviews see Hershko, 1988; Ciechanover, 1989). Modulation of p53 

recognition by the ubiquitin system may have implications for the p53 DNA 

damage response pathway.
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1.4.5 HOW p53 MAY BE INVOLVED IN THE DEVELOPMENT OF 

DRUG RESISTANCE

DNA damage caused by cisplatin and other cytotoxic treatments 

results in increased wild type p53 protein in the nucleus of cells exposed to 

these agents. This may, under normal circumstances, cause cell cycle arrest in 

response to DNA damage which then affects the decision of cells to 

commence apoptosis. Alternatively, p53 may influence the entry of cells to the 

apoptotic pathway, independently of any cell cycle affects. P53 probably 

mediates its effects by altering transcription of relevant genes. An aberration 

in a component of the p53 DNA damage response pathway could thus result in 

drug resistance due to inappropriate survival of cells following drug exposure.

1.4.6 THE INDUCTION OF CELL CYCLE ARRESTS BY p53 PROTEIN

Overexpression of wild type p53 protein in osteosarcoma cell lines 

blocks growth of osteosarcoma (Diller et al., 1990) and colorectal carcinoma 

cell lines (Baker et al., 1990) as determined by differences in the colony 

forming ability of these cells. The transfection of wild type p53 protein into 

Li-Fraumeni syndrome cells with mutant p53 alleles restored normal cell cycle 

control (Yin et al., 1992). Wild type, but not mutant p53 protein blocks growth 

of both S.pombe, when overexpressed from a thiamine inducible promoter 

(Bischoff et al., 1992), and S.cerevisiae, when expressed from a galactose 

inducible promoter (Nigro et al., 1992). In the latter case this was shown to 

involve a G1 phase block.

A glioblastoma cell line, T98G, when transfected with a 

dexamethasone inducible p53 gene, exhibits a dexamethasome inducible G1 

block and prevents entry to S phase following release from stationary growth 

by 86% (Mercer et al., 1990). Cycloheximide has been employed to 

demonstrate that protein synthesis is required in order to enter S phase of the 

cell cycle after release from a G1 phase cell cycle block resulting from
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overexpression of wild type p53 from a dexamethasone inducible promoter 

(Lin et al., 1992). It was also shown that the p53 induced block corresponded 

with the mammalian restriction point as determined by expression of genes 

known to be transcribed just before and after this cell cycle event. Using 

Northern blotting, B-MYB and DNA polymerase a  were found to be repressed 

but c-FOS, c-JUN, JUN-B and c-MYC, which are expressed earlier in the cell 

cycle, were not.

DNA damage induction of p53 protein levels by ionising radiation has 

been shown to correlate with acquisition of a G1 block in ML-1 and 

proliferating, normal bone marrow progenitor cells (Kastan et al., 1991). Also 

cycloheximide, a protein synthesis inhibitor, or caffeine, an inhibitor of 

phosphodiesterase which breaks down cAMP, were both shown to prevent the 

induction of p53 protein levels and G1 arrest. Cells which lack wild type p53 

protein did not arrest in G1 phase of the cell cycle but did show a G2 arrest. 

Cell lines derived from AT patients, which do not induce p53 protein, after 

ionising radiation exposure had a defect in their ability to arrest in G1 in 

response to ionising radiation suggesting that the AT gene products may be 

upstream of p53 in the p53 mediated response to DNA damage (Kastan et al.,

1992). In several cell lines, a strong correlation between ionising radiation- 

caused p53 inducibility, G1 arrest propensity and radiosensitivity has been 

demonstrated (McIlwrath et al., 1994). A direct relationship of p53 protein in 

causing the G1 arrest was shown because transfection of wild type p53 into 

HL60 cells, which lack p53, resulted in acquisition of a G1 arrest in response 

to ionising radiation (Kuerbitz et al., 1992). Also, loss of G1 arrest in response 

to ionising radiation, occurred when a mutant p53 gene was expressed in RKO 

cells which have endogenous, wild type p53. Similar experiments have been 

performed on A2780 cells (MCI1 wrath et al., 1994). Thus p53 protein is very 

important for normal, regulated cell growth in the cells of multicellular 

eukaryotic organisms.
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1.4.7 p53 AND THE INDUCTION OF APOPTOSIS

Thymocytes from 4.5-7 week old mice whose p53 genotype was either 

wild type, heterozygous or homozygous mutant were used to demonstrate an 

involvement of p53 in apoptosis. A wild type p53 function was necessary for 

radiation induced, but not glucocorticoid induced apoptosis as determined by 

electrophoresis of fragmented DNA (Lowe et al., 1993b). Ionising radiation- 

induced, p53-dependent apoptosis has also been reported for murine, intestinal 

crypt cells in vivo (Clarke et al., 1994). A requirement for p53 protein to carry 

out apoptosis in response to etoposide but not calcium influx, stimulated by 

use of a phorbol ester and a calcium ionophore, was demonstrated in a similar 

system using acridine orange staining of nuclear chromatin to assess the 

induction of apoptotic death (Clarke et al., 1993). Apoptosis in mouse embryo 

fibroblasts, resulting from treatment with anti-cancer agents such as 5- 

fluorouracil, etoposide, adriamycin or ionising radiation has been shown to 

require a functional p53 protein (Lowe et al., 1993a). The percentage of 

apoptotic nuclei in the embryonic mouse lens, resulting from a homozygous 

mutation of the retinoblastoma gene, was reduced by 94% in mice which were 

also homozygous mutants for the p53 gene, indicating that wild type p53 is 

involved in execution of the apoptotic programme in this situation 

(Morgenbesser et al., 1994). Prevention of p53 expression by transfection of 

antisense p53 mRNA into cells obtained from acute myeloblastic leukemia 

patients or a human erythroleukemia cell line, suppressed the growth factor 

deprivation-induced apoptosis which occurred in 21-54% of control cells (Zhu 

et al., 1994). It is apparent therefore, that p53 is involved in promoting 

apoptosis in certain situations, particularly in response to DNA damage and so 

it is likely to be influential in the response of cells to DNA damaging drugs 

such as cisplatin.
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Neither cycloheximide or actinomycin D prevented ionising radiation 

induced, p53 dependent apoptosis in GHFT1 cells (Caelles et al., 1994). Thus, 

it has been proposed that rather than activating genes involved in the 

promotion of apoptosis, p53 protein acts by repression of those necessary for 

survival. This is supported by the finding that wild type p53 represses 

expression of the bcl-2 gene (Myashita et al., 1994a & b), whose product is 

known to protect cells from apoptosis.

1.5 REGULATION OF TRANSCRIPTION BY p53 PROTEIN

1.5.1 THE CAPACITY OF p53 PROTEIN TO BIND DNA

An ability to regulate transcription of specific genes is one way by 

which p53 protein may mediate its affects and the first indication that this 

could be the case was the demonstration that p53 has affinity for DNA. Using 

DNase I footprinting, it has been shown that wild type human or murine p53 

proteins, but not mutant p53, can bind to SV40 DNA adjacent to the SV40 

origin of replication and this can be inhibited by SV40 large T antigen 

(Bargonetti et al., 1991). In vitro translated, wild type p53 proteins of mouse 

or human origin were shown to bind to calf thymus DNA, using 

electrophoresis of [35S]-methionine labelled proteins eluted from a DNA- 

cellulose column (Kern et al., 1991a). Several mutant p53 proteins had 

reduced binding affinity and enhanced binding of both mutant or wild type 

varieties occurred when p53 protein molecules were treated with potato acid 

phosphatase to remove phosphate molecules which indicates that 

phosphorylation may restrict DNA binding by p53. A DNA sequence, 

5'ACGTTTGCCTTGCCTGGACTTGCCTGGCCTTGCCTT3', which binds 

p53 specifically was isolated by incubation of 32P end-labelled DNA 

fragments with lysates of cells overexpressing p53 from a viral promoter 

(Kern et al., 1991b). Also a consensus sequence of nucleotides for p53 binding 

has been defined as 5'GGACATGCCCGGGCATGTC3' and this sequence is
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capable of binding to p53 protein specifically, as determined by gel mobility 

shift analysis in the presence of competitor DNA (Funk et al., 1992). Thus 

there is much evidence for an intrinsic DNA binding capability of p53 protein 

and this is probably relevant to the function of this protein in vivo.

Deletion of the 47 C-terminal amino acids, but not the 70 N-terminal 

amino acids, obliterated the ability of murine p53 protein to bind to calf 

thymus DNA in the South-western binding assay, although in both cases the 

protein conformation was defined as "wild-type" due to affinity for the 

antibody PAb 246 (Foord et al., 1991). Recombinant, human p53 protein was 

shown to require a domain within the 90 carboxy-terminal amino acids in 

order to bind specifically to the p53 consensus sequence in the gel mobility 

shift assay, as deletion of this region abolished binding (Hupp et al., 1992). 

Thus a DNA binding domain of the p53 protein seems to reside at the C- 

terminal end of the protein, which is highly basic although it has since been 

suggested that there are several regions of p53 protein which may mediate 

DNA binding. A peptide encompassing amino acids 80-320 of p53 protein is 

able to bind DNA specifically, in the gel mobility shift assay, and forms only 

monomers as determined by gluteraldehyde crosslinking then SDS/PAGE, 

whereas a peptide representing amino acids 280-390 binds DNA non 

specifically and can form tetramers (Wang et al., 1993). This data, if relevant 

to p53 protein conformation in vivo, may have implications for whether p53 

oligomerization is necessary for DNA binding to take place.

The ability of p53 protein to bind a consensus DNA sequence, in the 

gel mobility shift assay, has been shown to increase in response to several 

drugs such as hydrogen peroxide, actinomycin D, adriamycin, etoposide, 

camptothecin, 5-fluorouracil, mitomycin C, cisplatin and ionising radiation 

(Tischler et al., 1993). This lends further support to the theory that p53 has a 

role to play in mediating the effects of chemotherapy and radiation therapy.
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1.5.2 THE ABILITY OF p53 PROTEIN TO ACTIVATE TRANSCRIPTION

The DNA binding affinity of p53 protein could indicate one of several 

physiological roles. For example it could be taken to suggest that p53 was 

involved in maintaining the structure of the DNA, or it could mean that p53 

was associated with processes such as replication of the genome, repair of 

aberrant nucleotides or transcription of certain specific genes. The 

transcriptional control function of p53 was first examined by use of chimeric 

proteins formed by fusion of p53 segments to regions of DNA binding 

proteins. When placed in a p53 null background, this allowed the 

measurement of transcriptional control separately from DNA binding function 

and overcame the obstacle of having to find genes which respond to 

transcriptional control by p53.

The use of GAL4-p53 fusion proteins, containing the GAL4 DNA 

binding domains which do not activate transcription alone, and varying 

amounts of human p53 protein, showed that the first 73 N-terminal amino 

acids of p53 were sufficient to direct transcription in yeast (Fields and Jang, 

1990). This was assessed by |3-galactosidase activity, produced from the lacZ 

gene, in a yeast strain which lacked GAL4 and had an integrated lacZ gene 

with a GAL4-binding promoter. Transfection of plasmids containing the 

GAL4-p53 sequences into CHO cells along with CAT reporter constructs 

which direct transcription of CAT activity under control of GAL4 binding 

sites confirmed that such activity was also possible in mammalian cells. Also, 

the 73 amino terminal residues of p53 protein were as potent at activating 

transcription as the VP16 protein, a highly active transcriptional regulator, 

from herpes virus. A similar study using CHO cells demonstrated that whilst 

the N-terminal 160 amino acids can activate CAT 17 fold, the entire p53 

protein sequence activates CAT 13 fold and the C-terminal 233 amino acids 

provide negligible activation of transcription (O'Rourke et al., 1990). As the 

N-terminal region shows greater activity than the whole molecule, there may
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be regulatory regions also present in the p53 protein structure. The N terminus 

of p53 is 20% acidic and as such, resembles that of other transcription factors 

for example Fos, GAL4 and the glucocorticoid hormone receptor. This is 

followed by a proline rich stretch which is also characteristic of transcription 

factors, being found in CTF, Fos, Jun, Oct-2 and SRF which are all involved 

in transcriptional control.

Two transforming mutants of p53, when fused to GAL4 DNA binding 

domains and transfected into HeLa cells, were unable to activate transcription 

of a CAT reporter construct (Raycroft et al., 1990). This suggests that 

transcriptional control by p53 protein is required for a normal, untransformed 

phenotype and that the loss of this ability by p53 protein may be the event 

responsible for the unregulated growth of cells lacking wild type p53. Further 

experiments using a range of human and murine p53 fusion proteins to 

activate CAT reporter constructs, in HeLa, CHO and NIH 3T3 cell lines 

demonstrated that many mutant p53 proteins have lost the ability to activate 

transcription (Raycroft et al., 1991). One mutant p53 protein however, which 

is found in Li-Fraumeni syndrome sufferers, contains a substitution at amino 

acid 245 and retains the ability to activate the reporter gene.

After the discovery of a p53 DNA binding consensus sequence, it was 

possible to directly assess p53 transcriptional tfwisactivation by using reporter 

gene constructs inserted downstream of this in a plasmid vector. These studies 

demonstrate that intact p53 protein is able to direct transcription of genes 

alone and the transcriptional activity reported for fusion proteins is not an 

artefactual result of using an artificial system. A 33bp sequence, which had 

been shown to bind p53, was able to direct transcription of p-galactosidase in 

Saccharomyces cerevisiae when wild type human or murine p53 was also 

expressed, from a different plasmid (Scharer & Iggo, 1992). Cotransfection of 

a CAT reporter system with a human p53 expression plasmid, into the human 

colorectal cancer cell line, HCT 116, showed that wild type, but not mutant,
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p53 activates transcription from its binding site and that activity increases with 

increasing numbers of binding sites in the reporter construct (Kem et al.,

1992). A mutated p53 binding site was unable to direct transcription. The 

luciferase gene has also been placed downstream of a p53 DNA binding 

consensus sequence or the "fragment A" p53 binding sequence and luciferase 

activity was observed on transfection of such constructs into a p53 null cell 

line, HI 299. A requirement for the C-terminal DNA binding regions of p53 

protein in order to permit transcriptional /7ms,activation has been examined by 

the use of three human p53 deletion mutants incorporating amino acids 82- 

393,160-393 or 1-326, and found to depend on the binding site used (Zhang et 

al., 1994a).

1.5.3 REGULATION OF p53 MEDIATED TRANSCRIPTIONAL 

77MAtfACTIVATION

Regulation of the DNA binding and transcriptional tamsactivation 

functions of p53 protein may be performed by interaction with proteins or by 

post translational modifications such as phosphorylation. Proteins which 

complex with wild type p53 such as SV40 large T antigen and mutant p53 are 

able to prevent site specific DNA binding by wild type p53 protein as 

measured by gel mobility shift analysis (Bargonetti et al., 1992). A CAT 

reporter construct whose expression was driven by several copies of the p53 

binding motif, 5'TGCCT3', was used to show that wild type SV40 large T 

antigen or HPV-16 E6 oncoprotein were able to prevent p53 mediated 

transcriptional regulation probably by causing its rapid degradation before p53 

was able to carry out transcriptional transactivation (Mietz et al., 1992). 

Native cellular proteins may operate in a similar way to modulate p53 activity. 

It has also been reported that E6 proteins from HPV-6 and HPV-11 are able to 

prevent p53 mediated transactivation of CAT activity and that they may also 

interact with p53 protein, albeit more weakly than the "high risk" HPV viruses
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(Crook et al., 1994). These HPV viruses do not enhance degradation of the 

p53 molecule. MDM2 protein has been shown to inhibit p53 associated 

transcriptional control and, as mentioned in section 1.4.3, the different splice 

variants of this protein may be responsible for controlling p53 activity in a 

sophisticated manner.

It has been suggested that p53 requires activation for DNA binding, 

for example by CKII phosphorylation (Hupp et al., 1992). However mutation 

of the proposed CKII site on the p53 molecule did not alter its DNA binding 

affinity (Rolley and Milner., 1994). Reduced phosphorylation may be 

important as potato acid phosphatase activated DNA binding by p53 protein 

(Kern et al., 1991a). However, okadaic acid, a phosphatase inhibitor, was able 

to reduce p53 mediated transcriptional transactivation and yet increase DNA 

binding (Zhang et al., 1994b). Possibly such experiments are too crude to 

provide insights into the possibly contradictory effects of phosphate groups at 

different sites on the p53 molecule.

1.5.4 GENES WHICH BIND AND/OR BECOME 7KA/V5ACTIVATED BY 

p53 PROTEIN

activation of the transcription of specific genes by p53 probably 

occurs by p53 binding to a DNA site similar to the consensus sequence in 

vivo. This would then assist the binding of further proteins involved in the 

production of mRNA. A region from 3300-2800bp upstream of murine muscle 

creatine kinase (MCK) has been shown to respond to transcriptional 

/ra/zsactivation by wild type murine p53 protein (Weintraub et al., 1991). A 

50bp region within this element was identified as important for human and 

murine p53 binding by DNase I footprinting and, when placed upstream of a 

minimal promoter adjacent to a CAT gene, it conferred p53 responsiveness so 

CAT activity was induced by p53 (Zambetti et al., 1992). Wild type human 

and murine p53 proteins have been shown to activate transcription of a CAT
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construct placed downstream of a human ribosomal gene cluster (RGC) DNA 

sequence in vitro using transcription factors from HeLa nuclear extracts 

(Farmer et al., 1992). The region of this element to which p53 binds has also 

been mapped by DNase I footprinting.

The GADD45 gene, which is also induced by DNA damaging agents 

such as ionising radiation (Papathanasiou et al., 1991), has been shown to 

contain a p53 responsive element (Kastan et al., 1992). Normal lymphoblasts, 

fibroblasts and tumour cells with a wild type p53 gene showed between 2 fold 

and 9.9 fold induction of GADD45 mRNA following a 20Gy ionising 

radiation dose whereas cells lacking a wild type p53 protein due to point 

mutation or deletion do not exhibit greater than 1.4 fold induction. This 

correlated with the ability of these cell lines to arrest in G1 phase of the cell 

cycle following irradiation. A 20bp DNA sequence with identity to the p53 

consensus binding sequence in all but one nucleotide was found in the third 

intron of the GADD45 gene and this fragment was shown to have affinity for 

p53 by gel mobility shift and by coimmunoprecipitation of a radiolabelled 

oligonucleotide containing the putative p53 binding site. MDM2 mRNA is 

induced in fibroblast cells by ionising radiation so long as the endogenous p53 

gene is wild type, not mutated or deleted (Price and Park., 1994). Northern 

blotting shows that MDM2 transcription increases rapidly in cells containing 

a temperature sensitive mutant p53 protein when the temperature drops from 

37.5°C to 32.5°C, where p53 is in its wild type conformation (Barak et al.,

1993). This induction occurs even in the presence of cycloheximide, 

indicating a direct interaction with the p53 protein. A region downstream of 

exon 1 in the MDM2 gene has p53 binding activity as demonstrated by its 

ability to direct p53 dependent transcription of a CAT gene (Juven et al.,

1993). This may affect not only the level, but also the range, of MDM2 

transcripts. P53 protein was able to coimmunoprecipitate an end labelled 

oligonucleotide corresponding to this region.
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The p53 protein is able to bind to a region from +22 to +67 

nucleotides within its own gene in gel mobility shift assays and to direct 

transcription of a CAT reporter gene linked to thep53 promoter (Deffie et al.,

1993). A mutant p53 protein was found to lack this activity. The cyclin G gene 

also seems to respond to p53 protein. Mouse embryonic fibroblasts from a p53 

deficient mouse showed a more than 10 fold reduction in the level of cyclin G 

mRNA when compared to embryonic fibroblasts from a wild type mouse 

(Okamoto and Beach, 1994). A fragment from 1.5kb upstream of the cyclin G 

gene was shown to have affinity for p53 by coimmunoprecipitation of the end 

labelled oligonucleotide and by gel mobility shift analysis. It was also able to 

carry out p53 mediated transcription of a luciferase gene when inserted 

upstream of it in a plasmid construct. This may have implications for the 

effects of p53 protein on cell cycle regulation, although the specific function 

of cyclin G has yet to be elucidated.

Another cell cycle associated gene which p53 regulates is WAF-1 or 

CIP-1 as it is otherwise known. This gene was identified by a subtractive 

hybridisation approach using dexamethasone inducible p53 protein in a colon 

cancer cell line (El-Deiry et al., 1993). It was also simultaneously discovered 

due to the association of the gene product, p21, with cyclin dependent kinase 2 

(cdk2) when cDNA for the gene was expressed in yeast. This was detected 

using a system whereby binding of a protein to cdk2 activates transcription of 

HIS3 and lacZ genes on a reporter plasmid (Harper et al., 1993). WAF-1 

inhibits phosphorylation by cyclin A-cdk2, cyclin E-cdk2 and cyclin Dl-cdk4 

of proteins such as the Rb gene product, which behaves as a negative regulator 

of growth when hypophosphorylated. This may prove to be one manner by 

which p53 exerts its effects on the cell cycle as these cyclins are associated 

with the G1 to S phase transition. Induction of WAF1 seems to occur during 

p53 mediated G1 arrest and apoptosis as demonstrated using a dexamethasone 

inducible p53 gene, but not in cells with a mutant p53 gene or cells which
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undergo apoptosis by a p53 independent pathway (El-Deiry et al., 1994). 

During radiation induced G1 arrest, accumulation of cyclin A was blocked, 

cyclin E accumulated but was inactive as a kinase and the responsible 

molecule was shown to be the WAF-1 gene product (Dulic et al., 1994). 

Removal of p21 from irradiated cell lysates, using a p21 specific antibody 

attached to protein A beads, prevented inhibition of cyclin E activity as 

measured by phosphorylation of histone HI. Cyclin E is normally activated in 

late G1 and is thought to be involved in making the commitment to enter S 

phase. Thus the p21, WAF-1 gene product may be an important mediator of 

p53 function.

1.5.5 GENES WHICH ARE REPRESSED BY p53 PROTEIN

Certain genes respond to p53 transcriptional control by repressing the 

level of mRNA transcripts produced. Serum stimulation of the CAT gene, 

under control of the interleukin 6 (IL-6) promoter, in HeLa cells was repressed 

by transfection with wild type murine or human, but not mutant p53 

(Santhanam et al., 1991). Wild type mouse p53 has been shown to repress 

transcription from the SV40 enhancer promoter as determined by use of a 

CAT reporter gene in HeLa cells (Jackson et al., 1993). A temperature 

sensitive mutant p53 has been used to show that wild type p53 can repress 

transcription from c-fos as determined by Northern blotting and activation of a 

CAT gene downstream of the c-fos promoter (Ginsberg et al., 1991). Also data 

was presented showing that p53 repressed CAT constructs containing 

promoter regions from the p53, c-jun, |3 actin and hsc70 genes but not the 

MHC promoter. This agrees with other data showing p53 mediated repression 

of the gene encoding Hsp70 protein. It does conflict however, with data 

showing an activation of thep53 promoter by p53 protein (Deffie et al., 1993).

P53 protein can repress transcription from a minimal promoter 

probably by interfering with the action of the TATA binding protein (TBP).
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TBP, immobilised on Affi-Gel beads to produce an affinity column, was used 

to show that wild type p53 protein has TBP binding activity (Seto et al., 1992). 

The p53 protein is thereby able to inhibit the transcriptional transactivation 

activity of TBP. This was demonstrated by heat inactivation of the 

transcription factor, TFIID, in HeLa extracts. Human TBP could partially 

rescue the defective transcription which resulted but this rescue capacity was 

negated by incubation of wild type p53 protein with TBP prior to inclusion in 

the transcription reaction. Another transcriptional regulatory protein which 

p53 binds is the CAAT binding factor (CBF) as was shown using an affinity 

column consisting of glutathione S transferase-CBF attached to glutathione 

agarose (Agoff et al., 1993). Coimmunoprecipitation was also used to 

demonstrate this interaction.

The MDR1 gene has been shown, using CAT reporter constructs, to be 

activated 7-180 fold by mutant p53 protein but repressed by wild type p53 

protein (Chin et al., 1992). CAT constructs and a temperature sensitive p53 

mutant were used to demonstrate that p53 can repress transcription from the 

Rb gene (Shiio et al., 1992). Deletion of the Rb gene enabled the responsible 

cis acting element to be defined as the sequence, 5GGAAGTGA3'. Regions 

from both the amino and the carboxyl terminals of p53 were important for this 

transcriptional repression. Northern and Western blotting both demonstrate 

that wild type p53 protein enhances expression of bax and represses 

expression of bcl-2 in a murine leukemia cell line transfected with a 

temperature sensitive mutant p53 protein which is in the mutant conformation 

at 37°C and is functionally wild type at 32.5°C (Miyashita et al., 1994a). 

Immunohistochemistry and Western blotting confirmed that levels of these 

two proteins are altered in a consistent manner in tissues from mice which are 

deficient in wild type p53. Also a 195bp DNA sequence from a region 

comprising -279 to -85bp upstream of the bcl-2 transcriptional start site was
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able to confer p53 dependent repression when inserted adjacent to a CAT 

reporter gene on a plasmid (Myashita et al., 1994b).

1.6 DNA DAMAGE RECOGNITION PROTEINS (DRPs) IN 

CISPLATIN RESISTANCE

1.6.1 THE DNA BINDING SIGNAL

In order for ceils to respond to DNA damage either by repair of the 

damage or by apoptosis, the DNA adducts must be recognised. The p53 

protein might directly bind to the damaged DNA and this might effect some 

alteration in p53 activity. Alternatively another protein may transduce the 

signal from the site of damage to the p53 molecule. For example, p53 protein 

has been shown to be phosphorylated by a DNA dependent protein kinase 

(Lees-Miller et al., 1990) and this modification occurs within a region which 

is thought to be important in /raws-activation of transcription by p53 (Lees- 

Miller et al., 1992). Such a kinase could be the link between DNA damage and 

a p53 DNA damage response pathway. Proteins which recognise DNA 

adducts may be involved in the initial stages of such a pathway or may be part 

of an alternative DNA damage response mechanism.

Obvious roles for DNA damage recognition proteins (DRPs) in drug 

tolerance would be as repair proteins or proteins which can bind to both the 

site of DNA damage and a repair protein at once, thereby recruiting repair 

proteins to the region of damaged DNA. Also, proteins which bind to 

damaged DNA could be irrelevant proteins which serendipitously minimise 

the DNA distortion caused by the adduct thereby allowing the normal 

interaction of proteins involved in DNA replication and transcription. It is 

possible that certain DRPs are replicative or transcriptional proteins which are 

trapped on the DNA by the adduct. In which case they may be irrelevant to 

drug resistance although they may enhance toxicity of the drug by protecting 

the damage site from recognition by repair enzymes or they could be titrated
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away from their own natural site of action and this might affect cisplatin 

toxicity. Such proteins may include the human upstream binding factor 

(hUBF), a 94-97KDa protein involved in transcription of ribosomal RNA 

(Treiber et al., 1994). Proteins which are involved in maintaining the 

chromatin structure such as histones could also become attached to the 

damage site. Although such an interaction may not be significant for drug 

resistance, gross alterations in the levels or activity of such proteins might 

influence the access of drugs to the DNA and so affect the levels of DNA 

damage. However such proteins would be unlikely to show specificity for 

cisplatin-damaged DNA.

1.6.2 THE DETECTION OF DRPs

Proteins which recognise cisplatin-damaged DNA were detected by gel 

mobility shift analysis in the human, ovarian carcinoma cell lines A2780 and 

2008 but there was no increase of binding activity in cisplatin resistant 

derivatives of these cell lines compared to sensitive parentals (Andrews & 

Jones, 1991). Also, no differences in levels of cisplatin DRPs were detected 

between the CHO ceil line AA8 and cisplatin hypersensitive derivatives UV4 

and UV5. However, lower levels of DRP activity were detected in the kidney 

cell lines, MDCK and LLC-PK when compared to 2008 cells which are more 

cisplatin sensitive. DRPs of 26, 28 and 97KDa were detected with the same 

cisplatin-damaged probe on South-western blotting of 2008 cells and 

2008/Cl 3*, the cisplatin resistant derivative.

A cisplatin DRP of approximately lOOKDa was identified in human 

HeLa cell extracts by South-western blotting (Toney et al., 1989). This DRP 

has apparent specificity for the intrastrand d(GpG) and d(ApG) adducts 

(Donahue et al., 1990). In order to isolate the gene encoding this DRP, a 

library of DNA fragments prepared from human B cells was screened by 

expression of these fragments from X phage vector in Escherichia coli
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bacterial cells. Out of three hundred and sixty thousand phage plaques, only 

two showed affinity for a radiolabelled, cisplatin damaged DNA probe. These 

two contained regions of the same gene and this was used as a probe in 

Northern blotting of RNA from HeLa, hamster V79 and murine L1210 cells. 

A mRNA species of 2.8kb was detected in each case. This gene was shown to 

be expressed in brain, heart, ileum, jejenum, kidney, liver, muscle and spleen 

by Northern blotting of tissues derived from baboon but there was no increase 

of mRNA expression on acquisition of cisplatin resistance as determined by 

Northern analysis of HeLa cells selected in vitro for cisplatin resistance 

(Bruhn et al., 1992).

A 125KDa UV-damage specific nuclear protein, UVBP1, has been 

purified from HeLa cells by FPLC and phosphocellulose chromatography (van 

Assendelft et al., 1993). It seems to be specific for the 6-4' (pyrimidine-2'- 

one) type of pyrimidine dimer rather than the cyclobutane form as it binds 

more efficiently to a substrate containing one UV damage site at a TC pair of 

nucleotides rather than at a TT, CT or CC sequence. Also DNA photolyase 

was unable to reduce DNA binding by this factor when incubated with the 

DNA before addition of UVBP1. This protein exhibited no cross reaction with 

cisplatin-damaged DNA.

1.6.3 DRPs WITH ALTERED EXPRESSION IN CELLS RESISTANT TO 

CHEMOTHERAPY AND/OR RADIOTHERAPY

DRPs with altered expression on development of cisplatin resistance 

are of particular interest as this indicates a possible direct involvement in 

cisplatin resistance. DRPs whose expression is altered when they become 

resistant to other DNA damaging agents are also interesting as there may be 

some degree of cross-talk between different DRPs. The DRPs concerned may 

not necessarily be exclusive to one form of DNA lesion. Also effects 

downstream of damage recognition may converge to a similar response 

mechanism. Even if DRP levels are not significantly altered between resistant
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and sensitive cells, this does not mean that a DRP response mechanism is not 

involved in cisplatin resistance. If DRPs do not represent a rate limiting step 

in the damage response mechanism, it may be that factors involved in 

subsequent stages are altered in cisplatin resistant lines instead.

A cisplatin resistant HeLa derivative, selected by stepwise exposure 

to cisplatin doses up to 8pM, showed increased expression of two DRPs when 

compared to sensitive HeLa cells (Chao et al., 1991a). These proteins were 

130KDa and 95KDa in size and were identified by South-western blotting 

with a cisplatin treated DNA probe. These proteins were inducible with a 4 

hour, 3pM cisplatin dose and cross-reacted with UV damaged DNA. Also a 

25KDa protein band was detected with reduced expression in the resistant cell 

line and after cisplatin treatment of the sensitive cell line. Using the gel 

mobility shift assay two bands of retardation activity were seen for cisplatin 

damaged DNA and a further two bands were seen for a UV damaged DNA 

probe. These DRPs have been further characterised and found to be mainly 

nuclear, protease sensitive and independent of RNA (Chao et al., 1992). 

Increased DRP activity has been found by other investigators for cisplatin 

resistant, compared to sensitive, HeLa and HT1080 cell lines (Chu & Chang, 

1990).

A protein whose expression correlates with cisplatin sensitivity has 

been found in Saccharomyces cerevisiae (Brown et al., 1993). This protein is 

encoded by the IXR1 gene and inactivation of the gene conferred increased 

resistance to cisplatin. The mutant strain was twice as resistant to a 2 hour 

cisplatin dose in the concentration range 50-1000pM but no difference in 

transplatin toxicity was detected. This was probably due to reduced 

accumulation of cisplatin induced DNA lesions as these appeared to be 

reduced to a third of the levels seen in cells which contained an active IXR1 

gene. This yeast species appears to have several cisplatin DRPs of 100, 80, 55 

and 20KDa in size as detected by South-western blotting. The 80KDa protein
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is missing from an ixrl strain and thus probably represents the IXR1 gene 

product. The predicted amino acid sequence of this protein contains several 

long stretches of asparagine and glycine residues which is often seen for 

transcription factors and it has 56 identical residues to ABF2, the ARS- 

binding factor, in a 151 amino acid sequence.

A cisplatin resistant cell line contains increased levels of two UV 

specific DNA binding proteins by comparison to a cisplatin sensitive line 

using the gel mobility shift assay (Chao et al., 1991c). These cells also showed 

cross resistance to UV light compared to their parentals. The human ovarian 

carcinoma cell line, OvlP contains four DRPs of 25, 48, 70 and 97KDa from 

Western blotting and the levels of the 97KDa and 48KDa proteins are elevated 

in a cisplatin resistant derivative, OvlPDDP (McLaughlin et al., 1993). 

Several bladder and testicular cell lines were also examined for expression of 

these proteins as bladder cells are known to be more tolerant of cisplatin than 

testicular cells. Bladder cells expresses more 25KDa protein whereas testicular 

lines seem to express more 70KDa protein. Neither of these cell types 

expressed much 97KDa protein and the 25KDa DRP seemed to be present as a 

doublet rather than one discrete band.

South-western blotting of HeLa cells shows repression of a DNA 

binding protein along with induction of several DRPs in cisplatin resistant 

HeLa extracts compared to extracts from sensitive HeLa cells (Chao et al., 

1991b). Also 2 dimensional gel electrophoresis showed reduction of at least 

four nuclear proteins in the resistant and cells levels of these were relatively 

enhanced in cells which had reverted to a cisplatin sensitive phenotype and 

which had reduced repair capacity.
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1.6.4 DRPs ASSOCIATED WITH DNA REPAIR PROCESSES

An obvious reason why DRPs could be involved in cisplatin resistance 

is that they might be repair proteins or proteins which recruit repair proteins to 

sites of DNA damage so DRPs which are linked to repair processes are 

especially interesting. Cisplatin resistant HeLa cells selected by exposure to 

doses of cisplatin up to 8pM exhibit enhanced DNA repair activity as detected 

by their ability to repair a damaged CAT reporter gene and thus give rise to 

measurable CAT activity (Chao et al., 1991d). These cells also contained 

increased UV specific DRP activity as determined by an increase in the 

intensity of the band observed on gel mobility shift analysis. This factor did 

not cross react with cisplatin damaged DNA in competition experiments 

unless competitor was added at excessive levels, although another DRP was 

observed on gel mobility shift analysis using radiolabelled, cisplatin damaged 

DNA as a probe. Likewise this DRP activity could only be competed for by 

adding high levels of UV damaged probe. The increased repair in these cells 

was later shown to correlate with enhanced recognition and incision of DNA 

adducts but not elevated repair synthesis (Chao et al., 1993).

An absence of DRP activity has been found in cells from patients 

suffering from the disease xeroderma pigmentosum group E (Chu & Chang, 

1988). There are seven complementation groups for this DNA repair 

deficiency syndrome, which have been defined by the use of cell fusion 

studies. HeLa cell nuclear, but not cytoplasmic, extracts were shown to give 

rise to two retarded bands when subjected to the gel mobility shift assay using 

UV damaged DNA and they also had affinity for cisplatin damaged DNA 

from competition of DRP activity with unlabelled, cisplatin-damaged DNA. 

The upper band had 10 fold higher affinity for damaged than undamaged 

DNA and the lower band had 100 fold greater affinity for damaged DNA. 

Both of these bands were absent from xeroderma pigmentosum
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complementation group E cells but not from cells from the other 

complementation groups examined and so the binding activity was referred to 

as XPE binding factor.

It was postulated that the DRP activity which was missing in the 

human, xeroderma pigmentosum complementation group E cells might be a 

homologue of Saccharomyces cerevisiae photolyase. This was based on their 

similar affinities for DNA damaged by various agents, intracellular 

localisation, dependence on magnesium ions and their abundance relative to 

genome size (Patterson & Chu, 1989). Yeast nuclear extracts contained DRP 

activity which gave rise to two bands on gel mobility shift analysis, in a 

similar manner to that seen for HeLa nuclear extracts. This activity was not 

found for nuclear extracts from yeast cells mutant for the phrl gene. However 

the two bands differed in mobility between the two species and human DRP 

activity did not respond to light as yeast DRP did. When the yeast gel mobility 

shift assay was incubated in the presence of light, reduced DNA binding 

activity was detected compared to an assay incubated in the dark. This is 

consistent with dissociation of yeast photolyase from the DNA following light 

stimulated repair of DNA damage.

The photolyase enzyme uses visible light, absorbed through associated 

chromophores, as an energy source to repair pyrimidine dimers, a UV specific 

DNA lesion. Expression of this protein is induced by various DNA damaging 

agents as determined by use of a PHRl-lacZ fusion construct transfected into 

yeast cells and by Northern blotting (Sebastian et al., 1990). As yeast cells are 

more amenable to genetic manipulation than those of higher eukaryotes, 

elucidation of DNA damage response mechanisms within such organisms may 

provide information relevant to analogous mammalian pathways. The XPE 

binding factor showed increased expression in HeLa and HT1080 human 

fibrosarcoma cells selected for cisplatin resistance in vitro as compared to the 

original, sensitive cell lines (Chu & Chang, 1990). Resistant HT1080 cells
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were also examined for DNA repair capacity by use of a cisplatin damaged 

CAT reporter construct. They displayed increased CAT activity, indicative of 

increased repair, compared to the parental cell line. A further DRP was also 

identified in HeLa nuclear extracts. This factor, named CCD due to affinity for 

cisplatin crosslinked DNA had specificity for cisplatin damaged DNA and so 

neither UV damaged or single stranded DNA could compete for binding by 

this factor on gel mobility shift analysis. This was unlike the XPE binding 

factor which possessed affinity for all three of these DNA types but not for 

double stranded DNA. A DRP which is inducible by UV, mitomycin C or 

aphidicolin and absent in xeroderma pigmentosum group E extracts, was 

observed using the gel mobility shift assay (Hirschfeld et al., 1990). This 

factor was observed in the monkey kidney cell line, CV-1 and may be 

homologous to the XPE binding factor.

Another DRP associated with xeroderma pigmentosum has been 

identified (Robbins et al., 1991). This 40-42KDa protein has 1000 fold greater 

affinity for UV damaged than undamaged DNA as determined by retention of 

DRP-radiolabelled DNA complexes on nitrocellulose filters. Cell extracts 

were assayed for DNA damage repair ability by incorporation of radiolabelled 

ATP into UV-damaged plasmid DNA followed by electrophoresis of plasmid 

DNA. This was used to demonstrate that deficient repair in xeroderma 

pigmentosum group A extracts could be complemented by addition of the 

purified 40-42KDa protein.

The product of the DNA repair gene, ERCC1 has a helix-tum-helix 

motif indicating DNA binding capacity and this may represent another DRP. 

This gene appears to be expressed at 2.6 fold higher levels in patients with 

cisplatin resistant tumours compared to patients with cisplatin responsive 

tumours (Dabholkar et al., 1992). The ERCC1 gene was identified due to its 

ability to complement repair deficiency in UV sensitive CHO cells. The 

ERCC1 has some degree of homology to the RADIO gene from yeast which is
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involved in DNA repair (van Duin et al., 1986). There is therefore, a possible 

role for DRPs in cisplatin resistance and as such they warrant further 

investigation.

1.7 AIMS OF THIS THESIS

The aims of this thesis are to molecularly define some of the possible events 

leading from cisplatin-induced DNA damage to cell cycle arrest and cell 

death.

1) In this thesis an attempt will be made to examine differences in p53 

protein expression in cisplatin sensitive and resistant cells.

2) Alterations in p53 transcriptional activity in these experimental 

models will also be characterised as this may have relevance to DNA damage 

induced apoptosis and the development of cisplatin resistance.

3) A scheme for purification of a cisplatin DRP, which is active in the gel 

mobility shift assay, will be developed using extracts from human ovarian 

carcinoma cell lines.

4) The cisplatin DRP mentioned in 3) will be characterised in order to 

discover its identity and thus any possible relevance of this protein to cisplatin 

resistance.
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Chapter 2



CHAPTER 2: MATERIALS AND METHODS

2.1 MATERIALS

The following section lists routinely used materials. Less frequently 

used materials are described in the appropriate figure legends.

2.1.1 CHEMICALS

All chemicals were of the highest available quality and were obtained 

from BDH Chemicals Ltd, Gibco BRL, Pharmacia LKB or Sigma Chemicals 

except the following;

Acrylamide Severn Biotech, Kidderminster.

Phenol Rathbum, Walkerbum, UK.

2.1.2 RADIOCHEMICALS

(a32P)dCTP and (y32P)dATP for labelling probes were obtained from 

Amersham International pic.

2.1.3 EQUIPMENT

Routine equipment which would be an integral part of any laboratory is not 

listed.

1. Electroblotting System: Milliblot SDE, Millipore, Watford.

2. Gel Tanks: tanks for agarose & acrylamide gels were from IBI Ltd, 

Cambridge & Biorad Labs Ltd, Watford, Hertfordshire.

3. Hybridisation membranes: Hybond-N, Amersham International. 

Nitrocellulose 0.45um, Schleicher & Schuell via Anderman Lab Supplies, 

Kingston-upon-Thames. Immobilin-P, Millipore, Bedford.

4. Hybridisation Oven & Bottles: Hybaid Ltd, Middlesex.

5. Laser densitometer: autoradiographs were analysed at a SUN workstation 

using a Molecular Dynamic Densitometer and PDI Quantitation 1 software.
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6. Chromatographic protein separations were performed on FPLC equipment 

from Pharmacia Ltd or on a "Waters" HPLC system from Millipore Ltd.

2.1.4 RESTRICTION ENDONUCLEASES & OTHER ENZYMES 

Restriction Enzymes

The majority of restriction endonucleases (RE) were from Pharmacia 

Ltd, Boeringer Mannheim Corporation or Northumbria Biologicals. Bulk 

ordering of RE's by the Department meant that the same "brand" of RE could 

not be used throughout this work.

Other Enzymes

T4 Polynucleotide kinase Northumbria Biologicals

2.1.5 SIZE MARKERS

DNA size markers; Hind III digested phage X,BRL 

RNA size markers; 0.24 - 9.5kb RNA ladder, BRL 

Protein size markers; Prestained standards, 14,300-200,000, BRL.

2.1.6 BUFFERS, SOLUTIONS & MEDIA

Where mentioned, autoclaving was carried out at 121°C for 20 

minutes.

General Buffers & Solutions 

TMS

lOmM Tris (pH 7.5)

5mM MgCl2 

8.6% sucrose
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RNA Lysis Buffer 

0.3M Na acetate 

0.5% SDS

5mM EDTA. Made to pH8 with 10M NaOH then autoclaved.

TAE(lx) pH8 

40mM Tris base 

2mM EDTA 

20mM NaCl 

20mM Na Acetate

TBE(lx) pH8 

89mM Tris borate 

89mM Boric acid 

2.5mM EDTA

BLOTTO (lx)

50mM Tris (pH 7.5)

50mM NaCl 

ImMEDTA

Spacer gel Buffer 

0.5M Tris 

4% SDS

Running Buffer 

1.5M Tris
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4% SDS

Storage Buffer (SB)

50mM NaCl

20mM Hepes

5mM MgCl2

0. ImMEDTA

20% glycerol

ImM DTT (added fresh)

TE

lOmM Tris 

ImM EDTA

High Salt Lysis Buffer 

500mM NaCl 

1% NP-40 

50mM Tris (pH 7.5)

ImM DTT (added fresh) 

protease inhibitors lx (added fresh)

Protease Inhibitors (lOOx)

0.1 mg/ml aprotinin 

0.1 mg/ml pepstatin 

0.1 mg/ml chymostatin 

0.05M benzamidine 

0.05M PMSF 

0.1 mg/ml leupeptin 

These were stored at -70°C
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TNE-50 (lOx) 

lOmM Tris pH 7.5 

50mM NaCl 

ImM EDTA 

ImM DTT (added fresh)

Tank Buffer 

0.26M Tris 

2% glycine 

0.5% SDS

Phosphate Buffered Saline (PBS)

0.8% NaCl 

0.115% Na2H P04 

0.02% KC1 

0.02% KH2 P04

Denaturation Buffer (for Southern blotting) 

0.5M NaOH 

1.5M NaCl

Neutralisation Buffer (for Southern blotting) 

1M Tris 

1.5M NaCl 

pH to 7.4 with HC1

Formaldehyde Gel Running Buffer
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0.1M MOPS (pH 7)

40mM Na acetate 

5mM EDTA

Loading Buffers

Dye Mixture

30% w/v Glycerol

0.25% w/v Bromophenol blue

0.25% w/v Xylene cyanol

Formaldehyde Gel Loading Buffer (for Northern blotting) 

50% glycerol 

ImM EDTA (pH 8)

0.25% bromophenol blue 

0.25% xylene cyanol FF

Acrylamide Gel Loading Buffer

80% Formamide

lxTBE

ImMEDTA

0.1% Xylenecyanol

0.1% Bromophenol blue

Western Loading Buffer(x5)

0.25M Tris (pH 8)

10% SDS

lOmM EDTA

50% glycerol

0.25% bromophenol blue
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0.25% xylene cyanol FF 

Transfer solutions

Phosphate buffer "Genescreen"(20x), used to transfer both RNA & DNA. 

0.5M Na2HP04 

0.5M NaH2P04

Transfer Buffer (for proteins)

48mM Tris base 

39mM Glycine 

0.037% (v/v) SDS 

20% methanol

Hybridisation Solutions

Hybridisation mix (for Southern and Northern blotting)

50mM Pipes 

lOOmM NaCl 

50mM Na2PG4 

50mM NaH2P 0 4 

ImM EDTA 

5% SDS

South-western Binding Buffer 

30mM Hepes 

lOmM MgCl2 

2mM MnCl2 

0.25% marvel

Tissue culture media
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RPMI

88 ml RPMI-1640 (lOx) from Gibco BRL

800ml sterile distilled water

26.6ml 7.5% Na(C03)2

10ml lOOmM Na pyruvate

10ml 200mM L-glutamine

lml 1M NaOH

100ml foetal calf serum

Dulbecco's Modified Eagles media (DMEM)

50ml Dulbecco's MEM (10X) from Gibco BRL

400ml sterile distilled water

5ml lOOmM Na pyruvate

5ml 200mM L-glutamine

25ml 7.5% Na(C03)2

Special Liquid Medium | (Gibco BRL)

500ml Special Liquid Medium 

50ml 200mM L-glutamine 

50ml foetal calf serum

2.1.7 CELL LINES

A2780 A human, ovarian adenocarcinoma cell line obtained

from R.F. Ozols and T.C. Hamilton, Fox Chase Cancer Center, Philadelphia. 

A2780cp70 A cisplatin resistant derivative of A2780.

For a more complete description of A2780 and A2780cp70 see Behrens et al., 

1987.

OvlP A human, ovarian adenocarcinoma cell line obtained

from J. Benard, Institut Gustav Roussy, France.
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OvlPDDP A cisplatin resistant line derived from OvlP.

For further information concerning OvlP and OvlPDDP see Teyssier et al., 

1989.

2.1.8 MONOCLONAL AND POLYCLONAL ANTIBODIES AND 

IMMUNOLOGICAL REAGENTS 

Monoclonal Antibodies

PAb419 A control antibody reactive against SV40 large T antigen

(Harlow et al., 1981).

PAb 240 A p53 mutant-specific antibody.

PAb DO-1 A pantropic anti-p53 antibody.

The three antibodies listed above were used for immunoprecipitation of p53 

protein. For a more detailed explanation of these reagents see Vojtesek et al, 

1992.

AB-2 A pantropic anti-p53 antibody derived from mouse and

purchased from Oncogene Science, Cambridge, used as a primary antibody on 

Western blots at a 1 in 1000 dilution.

Anti-HMGl This was a gift from Dr P. Billings, University of Pennsylvania. 

Anti-HMGI This was donated by Dr R. Reeves, Washington State

University.

IF2 An anti MDM2 antibody from Oncogene Science, Cambridge

which was used at a 1 in 1000 dilution for Western blots.

Anti-PCNA This was obtained from Boeringer-Mannheim, Germany and 

was used at a in 1000 dilution as a control antibody for Western-blotting. 

Anti-Hsp70 This was obtained from Sigma, Dorset and was used at a 1 in 

1000 dilution for Western blots.

Polyclonal Antibodies
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CM1 A polyclonal anti-p53 antibody from rabbit which was used as

a primary antibody for Western blotting at a 1 in 200 dilution. See Midgely et 

al., 1992 for further details.

Immunological Reagents

Anti-mouse Ig Horseradish peroxidase conjugate (from sheep). This was 

obtained from Amersham International and was used at a 1 in 5000 dilution in 

Western immunoblots.

Anti rabbit Ig Horseradish peroxidase conjugate (from mouse). This was 

obtained from Dako Ltd, Aylesbury, and used at a 1 in 150 dilution as a 

secondary antibody for Western blotting.

2.1.9 MOLECULAR PROBES

WAF-1 This 12.4 kb cDNA fragment was used for Northern blotting

and was derived from the plasmid, pCEP-WAF-l-S (El-Deiry et al., 1993).

GAPDH This 7.2 kb cDNA probe was obtained by digestion of the

construct, pCRII GAPDH (a gift from M. Walker, BICR) , and was used to 

normalize for loading on Northern blots. For further information on GAPDH 

seeTso et al., 1985.

Both of these probes were prepared by digestion of the plasmid, using the 

appropriate restriction enzymes. The DNA fragments were separated out by 

electrophoresis through an 0.8% (agarose , lx  TBE gel containing 

0.25pg/ml ethidium bromide at 150v for 2 hours using lx TBE as a buffer. A 

fragment of the expected size was visualised under UV and the appropriate 

agarose slice was cut from the gel. The slice was sealed, along with 400pl lx 

TBE, in a piece of dialysis tubing which had been pre-boiled for 10 minutes 

in autoclaved water. This was then placed in a tank of lx  TBE and subjected 

to electrophoresis at 50V for 75 minutes. The current was reversed for 1 

minute then reversed again for 30 seconds. The lx TBE, containing the DNA,
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was removed from the tubing, the DNA was recovered by ethanol 

precipitation and resuspended in TE.

2aG7 This 54bp DNA probe was used in platinated and non-

platinated forms in the gel mobility shift assay. For a more detailed 

description see K. McLaughlin, PhD thesis, Glasgow University, also 

McLaughlin et al., 1993.

2.2 EXTRACTION OF NUCLEIC ACIDS & PROTEINS

All work with RNA & DNA was carried out using autoclaved 

solutions & where appropriate DEPC treated solutions & equipment. 

Disposable gloves & plasticware were used throughout. DNA & RNA 

quantitation was performed using a combination of visual assessment on a 

0.8% agarose, lx TBE, 0.25mg/ml ethidium bromide gel when run against 

known standards and spectrophotometrically using O.D.260.

2.2.1 RNA EXTRACTION

Monolayer cultures were lysed in the flasks with TRIzol™, BRL. The 

extraction procedure followed the manufacturers instructions.

2.2.2 DNA EXTRACTION

Cell lines were lysed with 0.3M Na Acetate equilibrated phenol pH7.6. 

lOmls of phenol was used per 175cm2. An equal volume of RNA lysis buffer 

and chloroform isoamyl alcohol was added & the samples mixed for 20 

minutes. The samples were then spun at 3000g for 20 minutes at room 

temperature. The upper aqueous phase was collected & precipitated with an 

equal volume of isopropanol at 4°C for at least one hour. The DNA was spun 

down at 3000g for 20 minutes at 4°C, airdried then resuspended in sterile 

water. This procedure simultaneously extracts DNA & RNA.
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2.2.3 EXTRACTION OF NUCLEAR PROTEINS FROM CELL LINES

This protocol was carried out at 4°C and was adapted from Emerson 

and Felsenfeld., 1984. Cells were harvested during exponential growth, 

washed with RPMI, then ice cold PBS, osmotically swollen with a TMS wash 

and lysed with 0.25% TRITON X-100. NaCl was added to 0.3M, followed by 

spinning at 3,500g for 20 minutes. To the supernatant, 1/5 volume Glycerol 

Brj 35 and DTT to 1M was added, it was dialysed against storage buffer 

overnight and pelleted. The supematent was collected and stored at -70°C. 

Protein estimation was carried out using the Biorad kit method.

2.2.4 LYSIS OF MONOLAYER CELLS

Unless otherwise stated, cells were washed with PBS, then lysed at 

4°C for 10 minutes using high salt lysis buffer supplemented with lx protease 

inhibitors (section 2.1.6). The lysate was spun at 12000g for 10 minutes and 

the supernatant stored at -20°C. Protein content was estimated using the 

Biorad kit method and by comparison of gels stained with coomasie stain 

(0.2% coomasie brilliant blue R250 in a 50:50:7 v/v ratio of 

methanol:H20:glacial acetic acid) then de-stained using a 25:68:7 v/v ratio of 

methanol:H20:glacial acetic acid.

2.3 PREPARATION OF 32P RADIOLABELLED PROBES

With the exception of end labelled 2aG7 (see 2.3.1), all other probes 

were separated from unincorporated ^P-labelled nucleotides using disposable 

Sephadex containing "NICK" columns from Pharmacia.

2.3.1 PREPARATION OF PROBES USING AGAROSE GELS

10 picomoles of oligonucleotide were incubated with 12 units of T4 

polynucleotide kinase and 1.85 MBq of 32P y-ATP in One-Phor-All-Buffer- 

Plus at 37°C for 45 minutes. Samples were then electrophoresed on a IX
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TBE,0.8% agarose, non-denaturing gel for 90 minutes at 150V. The gel was 

exposed to Kodak XOMAT-AR film and the developed film was used as a 

template to remove the labelled oligonucleotide. This gel fragment was placed 

in a Spinex tube with 400pl distilled H20  overnight. The contents of the 

Spinex tube were spun down to separate the oligonucleotide and the gel 

fragment.

2.3.2. RANDOM PRIMING OF dsDNA

32P labelled dsDNA probes were produced with the aid of the 

"Prime-it" random primer kit from Stratagene. Between 50ng and lOOng of
I

template DNA was used and random primed usingaStratagene-recommended 

protocol.

2.4 SEPARATION & HYBRIDISATION OF NUCLEIC ACIDS

2.4.1 DIGESTION, SEPARATION & SOUTHERN TRANSFER OF DNA

Separation and transfer of DNA was essentially as described by 

Southern., 1975. 20pg of genomic DNA was digested for at least 16 hours in a 

total volume of 150pl using 150 units of restriction enzyme. The

digested DNA was then ethanol precipitated with 0.1 volume of 3M Na 

Acetate and 1 volume of isopropanol at -20°C for 1 hour. The DNA was 

pelleted by centrifugation at 13,000g for 15 mins followed by air-drying and 

resuspension in 25pl of sterile water. Resuspension continued overnight at 

37°C and then transferred to 4°C until use (usually within one week). 5pi of 

Dye Loading Buffer was added to the DNA and this was run on a 0.8%-1.2% 

TAE gel. Gels were run overnight at 50V using a buffer recirculation system. 

The next morning, gels were stained with ethidium bromide for 20 minutes to 

allow polaroid photography on a UV transilluminator. DNA was denatured for 

20 minutes in 1.5M NaCl/0.5M NaOH followed by neutralization in 3M 

NaCl/0.5M Tris-HCl pH7.0 for 30 minutes. The gel was then rinsed in 

Genescreen buffer (lx) and transferred onto either Genescreen or Hybond N
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membranes overnight using Genescreen buffer. The membranes were exposed 

to UV for 6 seconds to fix the DNA onto the membrane.

2.4.2 SEPARATION & NORTHERN TRANSFER OF RNA

Methodology for separation and transfer of RNA followed instructions 

in Sambrook et al., 1989. 0.8% (w/v) agarose gels were prepared by 

dissolving 2.4g of agarose in 187.5mls of water then cooling to 60°C. 54mls 

of 37% formaldehyde plus 59mls of gel running buffer (5x) were then added, 

mixed and immediately poured.To 20pg of total RNA in 5pl, lOpl formamide, 

7pi formaldehyde and 2pl of RNA gel running buffer were added . The 

samples were heated to 65°C for 10 minutes then chilled on ice before 

addition of 2pi RNA gel loading buffer and subsequent loading onto the gel. 

Gels were electrophoresed for 3 hours at 200V. The gels were photographed 

then soaked in 50mM NaOH for 20 minutes. They were rinsed with RNAse 

free water and soaked in Genescreen (lx) for 45 minutes prior to transfer onto 

Hybond N using Genescreen as the transfer buffer. Membranes were rinsed & 

exposed to UV as previously described for DNA transfer.

2.4.3 HYBRIDISATION OF SOUTHERN AND NORTHERN BLOTS

Hybridisations in hybridisation buffer (recipe in section 2.1.6) were 

carried out at 65°C (for a minimum of 16 hours) using a Hybaid oven and 

Hybaid roller bottle system.

2.4.4 WASHING FILTERS

Following non-formamide hybridisation, membranes were washed at 65°C 

using 1 x SSC plus 5% SDS for at least 90 minutes with a minimum of 3 

changes of wash buffer.
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2.4.5 AUTORADIOGRAPHY

Following washing, filters were blotted dry, wrapped in clingfilm and 

exposed to Kodak AR film in a film cassette with fast tungstate intensifying 

screens. Loaded film cassettes were held at -70°C until developed.

2.5 GEL SEPARATION & IMMUNODETECTION OF PROTEINS

2.5.1 SAMPLE PREPARATION

Protein extracts were prepared & quantified as detailed in section 

2.2.3, 2.2.4 or 2.6.5. 50-200pg of total protein was loaded per lane in western 

loading buffer after boiling for 3 minutes to facilitate denaturation .

2.5.2 GEL & RUNNING CONDITIONS

Denaturing protein gels were cast and run in the Protean gel tank 

system (Biorad).

8% acrylamide gels were prepared as follows;

8.6ml acrylamide (30% acrylamide with 0.8% bis acrylamide)

1.6ml polyacrylamide (1%)

8ml running buffer 

12.2ml H20

90pl ammonium persulphate (10%)

20pl temed (from Biorad)

This mixture was poured leaving a 3-4 cm gap at the top for the stacking gel; 

1.6ml acrylamide (30% acrylamide with 0.8% bis acrylamide)

1.2ml polyacrylamide (1%)

3ml spacer gel buffer 

6.2ml H20

250pl ammonium persulphate (10%)

20pl temed
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The proteins were electrophoresed through the stacking gel at 200v 

then the gel was run overnight at 50v in lx Tank buffer.

2.5.3 WESTERN TRANSFER OF PROTEINS BY ELECTROBLOTTING 

(Kyhse-Andersen et al., 1984)

Electroblotting was performed using a millipore semi-dry 

electroblotter. The Immobilin-P, Millipore membrane was wetted in methanol 

then transfer buffer; 6 sheets of 3M Whatmans filter paper was sandwiched 

next to the anode and cathode with the membrane and gel layered in between. 

Transfer took place over 1 hour at 200mA. The gel was then stained in 

Coomasie stain overnight and destained as described in section 2.2.4 . This 

allowed a visual assessment to be made of the evenness of the transfer and the 

integrity of the proteins.

2.5.4 SILVER STAINING OF PROTEIN GELS

Proteins were separated on a 5-15% acrylamide concentration gradient 

gel, pre-fixed with 50% methanol, 10% acetic acid for 1 hour, fixed for 30 

minutes in 10% gluteraldehyde and then washed in H20  for 2 hours. They 

were sensitized with 1M DTT for 1 hour, stained with silver nitrate for 1 hour, 

rinsed with water and developed using 3% sodium carbonate, 0.05% 

formaldehyde. The reaction was stopped with 5% acetic acid.

2.5.5 IMMUNODETECTION OF PROTEINS ON WESTERN BLOTS 

(adapted from Harlow and Lane.,1988)

Chemiluminescence method

Blocking, and all antibody dilutions, were in IX Blotto, 5% Marvel, 

0.01% Tween-20, ImM DTT. Washes were in PBS,0.01% Tween-20. All 

procedures were carried out at 4°C. Block was applied overnight followed by 

incubation with primary antibody overnight. The first wash in PBS, 0.01%
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Tween-20 was for 25 minutes with 3 changes of buffer. The second antibody, 

was applied for at least 2 hours. The second wash, for 25 minutes, had a 

further 3 buffer changes. The membrane was then incubated with a 

chemiluminescense substrate (ECL kit from Amersham) as per manufacturers 

instructions and exposed to radiographic film.

2.5.6 SOUTH-WESTERN TRANSFER OF PROTEINS (Bowen et al., 1980)

This protocol was essentially the same as for Western blotting 

(sections 2.5.1-4) with the following exceptions: Samples were

electrophoresed through a 5-15% acrylamide concentration gradient gel; 

proteins were transferred onto nitrocellulose membranes (blocking solution did 

not contain tween-20). After blocking, the membrane was washed twice with 

lx TNE-50 then placed in south-western binding buffer with lOpg/ml of poly 

(dI.dC):(dI.dC) and radiolabelled oligonucleotide (2x104 d.p.m./ml) for 90 

minutes; membranes were washed for 9 minutes in 30mM Hepes (pH 7.5), 

0.25% marvel. Then autoradiography was carried out as in section 2.4.5.

2.6 PROTEIN SEPARATION TECHNIQUES

2.6.1 TCA TREATMENT

TCA was added to crude nuclear extracts (see

section 2.2.3) to give a final concentration of 2%. This was incubated on ice 

for 30 minutes then spun in the microfuge at 12000g for 15 minutes. The clear 

supernatant was removed and (3-mercaptoethanol added to lOmM.

2.6.2 ANION EXCHANGE CHROMATOGRAPHY

Samples were de-salted using a sephadex G25 column. Buffer A was 

0.1M NaCl, 0.02M Tris (pH 7.6); buffer B was 2M NaCl, 0.02M Tris (pH7.6). 

The MonoQ™ column (from Pharmacia) was washed with 100% buffer A, 

0% buffer B then 100% buffer B,0% buffer A and finally, 100% buffer A, 0% 

buffer B. A gradient of 0% buffer B to 100% buffer B was set up. Proteins
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were eluted at 25-50% buffer B. Fraction volume was 2ml, collected at a 

speed of 1 ml/minute.

2.6.3 HEPARIN COLUMN CHROMATOGRAPHY

Buffer A was 0.1M NaCl, 0.02M Tris (pH 7.6); buffer B was 2M 

NaCl, 0.02M Tris (pH 7.6). The heparin-sepharose column (Pharmacia) was 

washed with 100% buffer A, 0% buffer B, then 100% buffer B, 0% buffer A 

and finally 100% buffer A, 0% buffer B. Samples were prepared as for 2.6.2. 

A gradient of 0% buffer B to 100% buffer B was set up. Proteins were eluted 

at 25-50% buffer B. Fraction volume was 1ml collected at a speed of 

lml/minute.

2.6.4 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Buffer A was 0.1% TFA (tri-fluoro acetic acid) in H20  (pH 0.5); 

buffer B was 0.1% TFA in acetonitrile:H20  at a v/v ratio of 95:5 (pH 2.11). 

Buffers were degassed using helium. The Biorad Hipore butyl C4 silica-based 

reverse phase column (30nm pore, 4.6x250mm dimensions was equilibrated 

for 1 hour then purged. A gradient of 15% buffer B to 50% buffer B over 60 

minutes was set up. Buffer B then remained at 50% for 30 minutes. After the 

run was completed, buffer B rose to 100% over 30 minutes. A zinc lamp 

(214nm filter) was used for monitoring. Fraction volume was 1ml collected at 

a speed of lml/minute.

2.6.5 SEPARATION OF SPECIFIC PROTEINS BY 

IMMUNOPRECIPITATION (Harlow and Lane., 1988)

Monolayer cells were washed twice with PBS. 700pl of high salt lysis 

buffer was added per 175cm2 flask, cells were scraped off, mixed, left on ice 

for 30 minutes and mixed every 10 minutes then spun at llOOOg for 30 

minutes at 4°C. 15pl of protein G was added to the supernatant and this was
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rotated at 4°C for at least 40 minutes. After spinning at llOOOg for 5 minutes 

at 4°C, lpg of antibody was added to the supernatant and this was left 

overnight at 4°C. 20pl of protein G was added and after 40 minutes, it was 

spun at llOOOg for 1 minute at 4°C, the pellet washed three times with high 

salt lysis buffer then resuspended in lx western loading buffer. This was 

boiled for 8 minutes at 1 lOOOg and the supernatant stored at -20°C.

2.7 TISSUE CULTURE TECHNIQUES

2.7.1 GENERAL TECHNIQUES

Asceptic manipulations were performed using sterilised glassware in a 

class II microbiological safety cabinet with vertical airflow. Cells were grown 

at 37°C as monolayers in supplemented RPMI (Rosswell Park Memorial 

Institute) medium in the presence of 5% C 02. They were stored by freezing 

lxlO6 cells/ml, along with 10% di-methyl sulphoxide (DMSO), at -70°C then 

they were maintained in liquid nitrogen. For RPMI supplements see page 49.

2.7.2 CLONOGENIC ASSAY

103 cells were used per 75cm2 flask. Following drug treatment 

colonies were grown for 10-14 days then stained with lx Giemsa stain (BDH 

Ltd.) for 10 minutes and rinsed.

2.7.3 TRANSFECTION OF PLASMID DNA INTO CELL LINES

All solutions were filtered before use. 106 cells per 75cm2 flask were 

incubated with appropriately supplemented Special Liquid Medium. 5pg 

plasmid DNA and lpg G418 resistance marker plasmid, pHSG272, per 

sample were used, to which 2.5M CaC12 (Rf 1.401) was added giving a final 

concentration of 0.2M. This was added dropwise to an equal volume of 

280mM NaCl, 50mM Hepes, 0.5mM Na2H P04 (final pH 7.12) whilst air 

was bubbled through. This was incubated at room temperature for 30 minutes,
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mixed, added to cells and incubated at 37°C for 16-20 hours. After 48 hours, 

transfectants were selected with 1 mg/ml G418 and maintained in 400pg/ml 

G418.

2.8 GEL MOBILITY SHIFT ASSAY (Gamer and Revzin., 1981)

2.8.1. REACTION CONDITIONS

2pg of nuclear extract was incubated with 32P end labelled 

oligonucleotide (5x10^ d.p.m.), 2pg poly(dI.dC):(dI.dC) made up to 20 pi 

with storage buffer, for 30 minutes on ice.

2.8.2. GEL RUNNING CONDITIONS

The gel was pre-electrophoresed at 200V for 30 minutes. Reactions were then 

electrophoresed (at 200V for 2-3 hours) through the "retardation gel":

20ml aciylamide (30% acrylamide with 0.8% bis acrylamide)

4ml TBE (lOx)

56ml H2 O 

300pl APS (10%)

30pl temed

The buffer used was 0.5% TBE and dye mixture was placed in the end lane 

only. Once the dye front had reached the bottom of the gel, the gel was 

sandwiched between 3mm Whatman paper and clingfilm and dried under 

vacuum then subjected to autoradiography as detailed in section 2.4.5.

2.9 LUCIFERASE ASSAY

2.9.1 PREPARATION OF CELL LYSATES

All solutions were equilibrated to room temperature. 106 cells were 

lysed with 250pl of 25nM Tris phosphate (pH 7.8), 2mM DTT, 2mM 

diaminocyclohexane-N,N,N',N'-tetraacetic acid, 10% glycerol, 1% TRITON 

X-100. After 15 minutes they were scraped off and the lysate was spun briefly. 

The supernatant was removed to a separate tube.
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2.9.2 ASSAY OF LYSATES FOR LUCIFERASE ACTIVITY

To the cell lysates, 1.5 volumes of 20mM tricine, ImM (MgC0 3 ) 4 

MgC0H2.5H20, 2.7mM MgS04, O.lmM EDTA, 33.3mM DTT, 270pM 

coenzyme A, 470pM luciferin, 530pM ATP (final pH 7.8) was added then 

light production was measured for 1 minute in a luminometer.

2.10 MICROBIOLOGICAL TECHNIQUES

2.10.1 BACTERIAL CULTURE

Bacteria were maintained on Luria agar (1.5% agar in L-broth) plates 

at 4°C and stored for long periods in 50% glycerol in L-broth (1% tryptone, 

0.5% yeast extract, 1% NaCl) at -20°C.

2.10.2 TRANSFORMATION OF BACTERIAL CULTURES 

WITH PLASMID DNA

lOOpl of competent bacteria were added to 10-50ng of transforming 

DNA and left on ice for 30 minutes. 5 minutes after a 37°C heat shock, lml L- 

broth was added and the samples were vortexed before incubation for 1-1.5 

hours at 37°C. Appropriate dilutions were plated on selective medium (L-agar, 

lOOpg/ml) using glass beads to distribute transformed bacteria. Plates were 

incubated at 37°C.

2.10.3 RECOVERY OF PLASMID DNA FROM BACTERIAL CULTURES 

5ml of a 10ml culture was used to innoculate 500ml of L-broth

containing lOOmg/ml ampicillin (for selection) and this culture was grown to 

stationary phase overnight. The Quiagen Maxi Preparation kit, Quiagen Inc. 

was used according to manufacturers recommendations to obtain plasmid 

DNA.
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Chapter 3



CHAPTER 3: THE ROLE OF P53 PROTEIN IN CELLULAR

RESISTANCE TO CISPLATIN 

INTRODUCTION

3.1.1 WHY ONE SHOULD SUSPECT THAT p53 PROTEIN IS 

RESPONSIBLE FOR CISPLATIN RESISTANCE

DNA damaging agents such as cisplatin induce p53 protein levels via 

post translational means (Maltzman & Czyzyk, 1984; Fritsche et al., 1993) 

and this is inhibited by caffeine (Kastan et al., 1991). Also, when normal 

human skin is exposed to sunlight, p53 protein levels rise over a twenty four 

hour period (Hall et al., 1993). This evidence lends support to the theory that 

p53 is a component of a physiological DNA damage response pathway. 

Overexpression of wild type p53 protein in vivo has been reported for the 

normal tissue of an individual with a familial susceptibility to breast cancer 

(Barnes et al., 1992). Another in vivo situation where p53 protein levels are 

temporarily raised without mutation is in the cytoplasm of normal lactating 

breast tissue (Moll et al., 1992). Thus there are circumstances where p53 

protein concentration is enhanced in vivo and application of our in vitro 

knowledge to clinical scenarios would not be totally contrived. There are 

several possible means by which p53 could affect the cellular tolerance of 

cisplatin and these will be discussed in the ensuing sections.

3.1.2 G1 ARREST AS A POSSIBLE MECHANISM BY WHICH p53 

PROTEIN COULD MODULATE SENSITIVITY TO CISPLATIN

One hypothesis proposed was that raised p53 protein might cause cells 

to remain longer in G1 phase of the cell cycle thereby allowing more time for 

repair of DNA damage before DNA replication at S phase. DNA damage- 

induced p53 protein causes G1 arrest of cells (Kastan et al., 1991) and this 

appears to be dependent on expression of a wild-type p53 gene (Kuerbitz et
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al., 1992). Patients with the disease ataxia telangiectasia (A-T), who exhibit 

radiosensitivity and susceptibility to cancer, have altered induction of p53 and 

GADD45 in response to DNA damage (Kastan et al., 1992). Therefore, the A- 

T genes and GADD45 are implicated as elements of this pathway. There is a 

correlation between the ability to arrest in G1 phase of the cycle in a p53 

dependent manner after DNA damage, and the level of radiosensitivity in cell 

lines from a wide variety of tissues (McIlwrath et al., 1994) Suppression of 

growth is observed when a glioblastoma cell line conditionally overexpresses 

wild type p53 (Mercer et al., 1990) and p53 acts as a control protein in 

osteosarcomas (Diller et al., 1990). Even in the yeast, Schizosaccharomyces 

pombe, overexpression of wild type p53 from a plasmid inhibits growth 

(Bischoff et al., 1992). However, the observation that there is a loss of, rather 

than an increase in, the G1 checkpoint when A2780cp70 cells become 

resistant to cisplatin invalidates this as the method by which this cell line 

achieves resistance (Brown et al., 1993). The G1 arrest following DNA 

damage is one p53 mediated property which is amenable to quantitative 

analysis and so it provides us with a measure of p53 function.

3.1.3 GENE AMPLIFICATION AS A POSSIBLE MECHANISM FOR p53 

INDUCED DRUG RESISTANCE

Introduction of wild type p53 to cells with mutant p53 alleles results in 

inhibition of gene amplification (Yin et al., 1992). A defect in such a 

mechanism could give rise to amplification of drug resistance genes, leading 

to increased probability of cells acquiring a drug resistant phenotype.

3.1.4 p53 DEPENDENT APOPTOSIS AND DRUG RESISTANCE

At high concentrations, | chemotherapeutic drugs cause apoptosis
i

(Dive & Hickman, 1991; Eastman, 1990) and this may link p53 to drug 

resistance. Some cells, e.g. Ml clone S6 myeloid leukemic cells, require p53
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for progression to an apoptotic-like cell death (Yonish-Roach et al., 1993). 

There is no p53-inducible growth arrest in these cells but they are particularly 

vulnerable to cell death when in the G1 phase of the cell cycle. A fault in the 

p53 dependent apoptotic pathway would permit the survival of cells which 

would otherwise be eliminated following DNA damage and thereby allow 

resistance to drugs such as cisplatin. As described in section 1.4.7, genetic 

inactivation of p53 in mice causes increased resistance to DNA damaging 

agents such as ionising radiation and topoisomerase inhibitors (Lowe et al., 

1993b; Clarke et al., 1994).

3.1.5 THE IMPLICATIONS FOR DRUG RESISTANCE OF ALTERED 

TRANSCRIPTIONAL CONTROL BY p53

The functions performed by p53 leading to drug resistance could 

involve p53 protein acting directly on other regulatory or structural 

components of the cell. Alternatively p53 could bind to and alter the 

transcription of genes conferring drug resistance. Transcription of m drl, 

encoding a transmembrane pump known as p-glycoprotein, which when 

overexpressed causes MDR, is induced by a mutant jp53 containing an arginine 

to histidine substitution at amino acid 175. (Chin et al., 1992). However there seems to 

be scant evidence for a correlation between p53 mutations and p-glycoprotein 

overexpression in vivo at least in the case of advanced myelodysplastic 

syndromes (MDS), a clinically relevant situation for p-glycoprotein 

abnormalities (Preudhomme et al., 1993). Also p53 can function as a 

transcription factor when expressed in yeast (Scharer & Iggo, 1992). Site 

specific binding of DNA by p53 has been demonstrated (Kern et al., 1991; 

Zambetti et al., 1992) as has its intrinsic transcriptional frwzsactivation activity 

(Raycroft et al., 1990; Raycroft et al., 1991; Kem et al., 1992; Farmer et al.,

1992). Using GAL4-p53 fusion proteins transcriptional toms activation has
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been found to be associated with the N-terminal portion of p53 protein (Hupp 

et al., 1992). This arrangement is fairly common amongst transcription factors.

p53 mediated repression of the human hsp70 promoter (Agoff et al.,

1993) and the SV40 enhancer promoter (Jackson et al., 1993) has been 

reported. This also involves the N-terminus of p53. Proteins which have p53- 

binding affinity, such as SV40 large T antigen, HPV E-6 and mutant p53, can 

inhibit site specific binding to DNA (Bargonetti et al., 1992) and 

transcriptional activation by p53. The protein, p53 has been implicated in 

transcriptional Jra/tsactivation of MDM2 (Barak et al., 1993; Juven et al., 

1993; Price and Park., 1994), a putative transcriptional control protein in its 

own right and WAF-1 (El-Deiry et al., 1993) which may have a role in cell 

cycle control. If the major function of p53 protein were to enhance 

transcription of inherent, cellular "suicide genes", perturbation of the p53 gene 

cascade would result in inappropriate cell survival and drug resistance. Also if 

p53 were conformationally altered it might activate transcription of genes 

which when aberrantly expressed could inactivate cisplatin, pump cisplatin out 

of a cell, prevent entry of cisplatin to the cell or repair DNA damage more 

efficiently. Alteration of p53-mediated transcriptional /nms’activation is 

another means by which p53 functional activity can be assessed and this has 

been made use of in section 3.4 in order to compare p53 activity between cell 

lines.

3.1.6 AIMS OF THE WORK PRESENTED IN THIS CHAPTER

1) To examine the sensitivity of the cells used to cisplatin or transplatin.

2) To examine differences in p53 protein expression between cisplatin 

sensitive and resistant cell lines and to investigate possible mechanisms 

leading to any differences observed.
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3) To examine differences between cisplatin sensitive and resistant cells in 

p53 transcriptional /razzsactivation activity as determined by the level of 

expression of downstream targets such as the WAF-1 gene.

4) To examine whether there is any alteration in cisplatin sensitivity of the 

cells induced by prior cisplatin treatment during the time when one would 

expect p53 protein levels to have risen.

Cellular sensitivity assays performed in this chapter employ the 

clonogenic assay. This assay provides a very direct measure of cell survival. 

Also it has the advantage over other sensitivity assays in that one does not 

confuse growth arrested cells with dead cells.

Much use will be made in this section of a model system comprising a 

highly chemosensitive, human, ovarian, tumour cell line, A2780 and a more 

cisplatin tolerant derivative, A2780cp70. These cell lines are interesting 

because of their origin. Ovarian carcinomas are frequently treated with 

cisplatin regimes and sometimes develop cisplatin resistance. Using resistant 

and sensitive pairs such as A2780cp70 and A2780 is more relevant to 

acquisition of drug tolerance and patient relapse than the study of cells from 

tissues which have innate cisplatin resistance.

The p53 protein could theoretically be involved in cisplatin resistance 

due to one or all of the mechanisms outlined in section 3.1.1. A fuller 

comprehension of how p53 protein becomes stabilised and how its activity is 

altered in cisplatin resistant cells may increase our understanding of drug 

resistance. The knowledge gleaned from this research may ultimately assist in 

modulation of cellular sensitivity or at least help in the diagnosis of which 

tumours will respond to chemotherapy.
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RESULTS

3.2 STABILISATION OF p53 PROTEIN IN CISPLATIN RESISTANT 

CELL LINES

3.2.1 A COMPARISON OF DRUG SENSITIVITIES OF THE A2780 CELL 

LINE AND ITS CISPLATIN RESISTANT DERIVATIVE, A2780cp70

Several experiments, which will be described in subsequent sections, 

involve comparisons of the cisplatin sensitive A2780 cell line and its resistant 

counterpart, A2780cp70 following treatment with lpM cisplatin for 1 hour. It 

was therefore of interest to compare the sensitivities of these two cell lines to a 

1 hour cisplatin exposure. Also their sensitivities to a 1 hour dose of the trans 

isomer (transplatin), which lacks anti-tumour activity, were examined. As the 

ID50 value for A2780 cells treated with cisplatin for 24 hours is 0.6pM 

(McLaughlin et al., 1991), cisplatin doses of this order were chosen. 

Transplatin was anticipated to be less toxic than cisplatin so higher 

concentrations of this were used to treat the cells.

A2780 or A2780cp70 cells were seeded out at 103 per 75cm2 flask, left 

overnight and then given a 1 hour exposure to either cisplatin (0, 0.5, 1, 1.5, 2 

or 5pM) or transplatin (0, 0.5, 1, 1.5, 2, 5, 10, 15 or 20 pM). Three'replicates 

were performed at each dose and the results presented are the average of two 

such experiments. The cells were allowed to grow for 10 days, after which 

time they were stained with Giemsa stain, the colonies were counted and 

surviving fractions at the various doses were determined. The data obtained is 

represented graphically in figure 3.2.1.

As one can see, A2780cp70 is significantly more resistant to both 

cisplatin (fig. 3.2.1a) and transplatin (fig. 3.2.1b). Transplatin however, 

appears to be considerably less toxic to either of the two cell lines than 

cisplatin. The ID50 value determined for A2780 cells treated with cisplatin for 

1 hour is 2pM (table 3.2.1). As one would expect, this value is higher than 

those calculated for a 24 hour drug exposure as cells will have less total
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FIGURE 3.2.1 (legend overleaf)
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FIGURE 3.2.1

A2780cp70 (black circles, solid lines) or A2780 (white squares, dotted lines) cells 
were seeded out at 10^ cells/75cm^ flask in RPMI medium, cultured overnight, then treated 
with either cisplatin (a) or transplatin (b) for 1 hour. Doses were 0, 0.5,1,1.5, 2 or 5 pM for 
cisplatin and 0, 0.5, 1, 1.5, 2, 5, 10, 15, or 20 pM for transplatin. Cells were cultured for a 
further 10 days in drug free RPMI medium then stained with Giemsa stain and the colonies 
were counted. Each point is the average of at least 3 flasks/ experiment from 2 separate 
experiments. Surviving fractions are calculated from the ratio of number of colonies at a given 
dose /number of colonies at OpM of drug. Error bars shown represent standard deviations.

TABLE 3.2.1 Survival Of A2780 and A2780cp70 Cells After A 1 Hour 

Exposure To Cisplatin Or Transplatin

Cell T .ine Drug ID50
(pM)

ID20
(jiM)

Fold
Resistance

Percentage Degree of
Survival at Resistance

(from ID20 iuM to l^iM
values)

A2780 cisplatin 2 0.5 1 73 1
A2780cp70 cisplatin >5 2.7 6 92 1.3

A2780 transplatin 16 1 1 80 1
A2780cp70 transplatin >20 17 17 96 1.2
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accumulated cisplatin and therefore are less likely to be subject to its toxic 

effects.

The concentrations of drugs used were not high enough to determine 

ID50 values for A2780cp70 with any degree of accuracy so fold resistance was 

calculated from the ID2o concentrations. Using these values, A2780cp70 cells 

were found to be approximately 6 fold resistant to cisplatin and 17 fold 

resistant to transplatin as compared to A2780 cells (table 3.2.1). The 

A2780cp70 cell line has previously been calculated to be 4 fold more resistant 

to cisplatin than A2780 cells (Brown et al., 1993) but this figure was estimated 

from ID50 rather than ID2o concentrations and a 24 hour exposure time was 

used.

Certain experiments, which will be described later, involved a lpM, 1 

hour drug dose so it seemed relevant to determine the relative toxicity of drugs 

at this dose. The degree of resistance o f : ; A2780cp70, compared to A2780

cells is 1.3 for cisplatin and 1.2 for transplatin, following a lpM,

lhour drug treatment (table 3.2.1). The percentage survival of cells after such 

drug doses was 73% for A2780 and 92% for A2780cp70 in the case of 

cisplatin and on exposure to transplatin 80% of A2780 cells and 96% of 

A2780cp70 cells survived. It is important to know whether the majority of a 

cell population will survive a particular drug treatment as this affects the yield 

of lysate, protein, DNA or RNA obtained in an experiment. As the majority of 

A2780 and A2780cp70 cells do survive a lpM, 1 hour dose of either cisplatin 

or transplatin, it is feasible to prepare various cellular extracts after such a 

treatment in order to examine responses to these compounds at the 

intracellular level. The data presented in this section confirm that A2780cp70 

cells are more resistant to both cisplatin and transplatin than their parental line 

A2780 and that a lpM dose of either drug can be used without compromising 

experimental viability.
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3.2.2 INDUCTION OF p53 PROTEIN BY CISPLATIN AND 

TRANSPLATIN

It has been reported that p53 protein levels increase in response to a 

variety of DNA damaging agents (Kastan et al., 1991; Fritsche et al., 1993; 

Maltzman & Czyzyk, 1984). Due to its potential role in a DNA-damage 

response pathway, p53 is a likely target for alteration on acquisition of 

cisplatin resistance. Thus it seemed interesting to compare both basal and 

induced levels of p53 protein in cisplatin resistant and sensitive cell lines. This 

was carried out using either cisplatin or transplatin for induction. The effects 

of transplatin were interesting as this substance differs from cisplatin in that it 

is unable to form 1,2 d(GpG) adducts which represent the major cisplatin 

adduct.

A2780 and A2780cp70 cells were seeded out at 106 cells per 75cm2 

flask. The following day they were given a lpM dose of either cisplatin or 

transplatin for a period of 1 hour or a medium change for control cells. After 

this they were rinsed with PBS then incubated in drug-free medium. The cells 

were lysed in their flasks at 2, 4, 24, 48 or 72 hours after removal of the drug. 

The cell lysates were subjected to Western blotting and the blots probed with 

an anti-p53 antibody. Then relative p53 protein levels were quantified by laser 

densitometry after correction for protein loading.

On average, there was 8 fold more p53 protein in non-induced 

A2780cp70 cells than the cisplatin sensitive A2780 parental line (lanes 1 and 

7 of figs 3.2.2 and 3.2.3). Following cisplatin treatment (fig.3.2.2), p53 protein 

in the A2780 cell line increased from control levels (lane 1), to peak with a 9 

fold induction at the 24 hour time point (lane 4). It then decreased again to 

approach basal levels by 72 hours post-treatment, where a 1.6 fold induction 

was observed (lane 6). In the case of A2780cp70, the quantity of p53 protein 

increased steadily from control levels (lane 7) to a 4 fold induction at 24 

hours. It then, unlike for the A2780 line, continued to rise and was still on the
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FIGURE 3.2.2

a) A Western Blot Showing p53 Protein 
Induction bv Cisplatin

1 2 3 4 5 6 7 8 9 10 11 12

•  -  _  -p53

Time After A2780 A2780cp70

Treatment: C 2 4 24 48 72 C 2 4 24 48 72

b) Relative Levels of p53 Protein

Lane: 1 2 3 4 5 6 7 8 9 10 11 12
Relative p53
protein levels: 1 1.4 3 9 7 1.6 8 8 20 31 57 59

A2780 (lanes 1-6) and A2780cp70 (lanes 7-12) cells were seeded out at 10^/75cm^ 
flask and grown in RPMI medium overnight. Cells were then either given a medium change 
(lanes 1 & 7) or treated with 1 pM cisplatin for 1 hour and allowed to recover for 2 (lanes 2 &
8), 4 (lanes 3 & 9), 24 (lanes 4 & 10), 48 (lanes 5 & 11) or 72 (lanes 6 & 12) hours. High salt
lysis buffer was used to lyse the cells and large cell debris was removed by spinning in a 
microfuge. Protein concentration was determined by the Biorad kit assay, 50pg loaded/lane 
and proteins were separated on an 8% polyacrylamide gel. Western blotting (section 2.5) was 
carried out using Ab-2, an anti-p53 antibody, from Oncogene Science as primary antibody at a 
1/1000 dilution. Anti-mouse Ig horseradish peroxidase conjugate from Amersham 
International was used as secondary antibody at a 1/5000 dilution. Protein sizes were 
determined by comparison to prestained size markers from BRL. Relative p53 levels were 
estimated by densitometry.
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increase 72 hours after treatment, when p53 protein level was 7 fold higher 

than control levels (lane 12). Cisplatin can therefore induce p53 protein 

accumulation in A2780 and A2780cp70 cell lines, but although the former 

achieves maximum levels by the 24 hour timepoint, the latter still has 

increasing levels 72 hours after drug withdrawal.

A similar situation was observed on treatment with transplatin (fig. 

3.2.3). In A2780 cells induction occurred to a comparable degree to that seen 

for cisplatin. An exception was that the peak p53 protein level detected 24 

hours after transplatin removal was induced 14 fold (lane 4) which is 

somewhat higher than seen for cisplatin.

In the cisplatin resistant A2780cp70 cell line, induction with 

transplatin did not seem to occur to the same extent as one sees for cisplatin. 

By the 24 hour time point, p53 protein levels had doubled whereas following 

cisplatin induction, they would have quadrupled. A 2 fold peak induction was 

seen at 48 hours after which levels declined to a 1.3 fold induction at 72 hours. 

Levels of p53 protein were still rising at this timepoint following cisplatin 

treatment. This difference may be accounted for by the lower toxicity of 

transplatin resulting in the cells attaining confluency more rapidly and thus 

switching off expression of p53. An alternative explanation is that p53 

production is no longer being induced by transplatin due to repair of the 

transplatin-DNA adducts. Cisplatin-induced DNA damage accumulates for up 

to 48 hours but the number of adducts formed by transplatin only increase for 

6 hours after treatment and then begin to recede (Ciccarelli et al., 1985).

Transplatin is therefore able to induce p53 protein within A2780 and 

A2780cp70 cell lines in a similar manner to cisplatin, but not always to the 

same degree. In both experiments there was approximately 8 fold more 

uninduced p53 protein in the resistant line than in the sensitive cells.
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FIGURE 3.2.3

a) A Western Blot Showing p53 Protein 
Induction bv Transplatin

1 2 3 4 5 6 7 8 9 1011 12
-p53

A2780 A2780cp70
Time After
Treatment: C 2 4 24 48 72 C 2 4 24 48 72

b) Relative Levels of p53 Protein

Lane: 1 2 3 4 5 « 7 8 9 10 11 12
Relative p53
protein levels: 1 1.4 3 14 7 1.2 8 10 16 17 20 10

A2780 (lanes 1-6) and A2780cp70 (lanes 7-12) cells were seeded out at 10^/75cm^ 
flask and grown in RPMI medium overnight Cells were then either given a medium change 
(lanes 1 & 7) or treated with lpM  transplatin for 1 hour and allowed to recover for 2 (lanes 2 
& 8), 4 (lanes 3 & 9), 24 (lanes 4 & 10), 48 (lanes 5 & 11) or 72 (lanes 6 & 12) hours. High
salt lysis buffer was used to lyse the cells and large cell debris was removed by spinning in a
microfuge. Protein concentration was determined by the Biorad kit assay, 50pg loaded/lane 
and proteins were separated on an 8% polyacrylamide gel. Western blotting (section 2.5) was 
carried out using Ab-2, an anti-p53 antibody, from Oncogene Science as primary antibody at a 
1/1000 dilution. Anti-mouse Ig horseradish peroxidase conjugate from Amersham 
International was used as secondary antibody at a 1/5000 dilution. Protein sizes were 
determined by comparison to prestained size markers from BRL. Relative p53 levels were 
estimated by densitometry.
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3.2.3 THE p53 STATUS IN CISPLATIN RESISTANT AND SENSITIVE 
CELL LINES

OvlP is a human, ovarian adenocarcinoma cell line and OvlPDDP is a 

more cisplatin tolerant derivative (Teyssier et al., 1989). As in the case of 

A2780 and A2780cp70, the resistant cell line contains more p53 protein than 

the sensitive parental. Also several cisplatin resistant clones were selected by 

exposure of A2780 cells to 15 pM cisplatin (McLaughlin et al., 1991) and 

many of these exhibit increased p53 protein as compared to randomly selected 

A2780 clones (Brown et al., 1993). Although this does not suggest that 

increased p53 protein is the sole cause for cisplatin resistance, it does identify 

p53 as a potential contributory factor in the acquisition of cellular resistance to 

the drug.

Increased intracellular p53 protein is frequently indicative of a mutant 

p53 gene (Bartek et al., 1990). The p53 status within the cisplatin sensitive 

cell lines A2780 and OvlP was compared to that of their resistant partners, 

A2780cp70 and OvlPDDP respectively, by immunoprecipitation using 

antibodies specific for p53 in the mutant conformation. A semiconfluent 

175cm2 flask (2x107 cells) of each cell line was harvested using high salt lysis 

buffer. The lysate was precleared to reduce background, then divided into 

three aliquots of equal volume which were each subjected to 

immunoprecipitation using one of three antibodies, PAb DO-1 which reacts 

with all forms of p53 protein, PAb 240 which binds to p53 protein in the 

mutant conformation and PAb 419, a control antibody reactive with SV40 

large T antigen (Vojtesek et al., 1992). The immunoprecipitated p53 protein 

was then subjected to Western blot analysis (fig. 3.2.4).

No p53 protein was precipitated by the control antibody (lanes 1, 4, 7 

and 10). An increased amount of p53 protein was immunoprecipitated with 

PAb DO-1 from the resistant lines, A2780cp70 (lane 6) and OvlPDDP (lane 

12) than from the sensitive parental lines, A2780 (lane 3) and OvlP (lane 9)
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FIGURE 3.2.4 Immunoprecipitation Of p53 Protein From Cisplatin Sensitive 

And Resistant Cell Lines

Immunoprecipitation (section 2.6.5) was performed followed by separation of 
proteins on an 8% polyacrylamide gel and Western blotting (section 2.5) of p53 protein from 
A2780 (lanes 1-3), A2780cp70 (lanes 4-6), O vlP  (lanes 7-9) and O vlPDDP (lanes 10-12). 
Extracts were immunoprecipitated with the antibodies PAb DO-1 (lanes 3, 6, 9 & 12), PAb 
240 (lanes 2, 5, 8 & 11) and PAb 419 (lanes 1, 4, 7 & 12). PAb DO-1 is a pantropic anti-p53 
antibody, PAb 240 is specific for mutant p53 and PAb 419 is an irrelevant control antibody. 
For Western blotting, the primary antibody was CM1 at a 1/200 dilution and the secondary 
antibody was anti rabbit Ig horseradish peroxidase from Dako, Aylesbury, at a 1/150 dilution. 
Protein sizes were determined by comparison to prestained size markers from BRL.
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consistent with increased levels of p53 protein in these cell lines. The mutant- 

specific 240 antibody precipitates detectable amounts of p53 protein from both 

resistant lines but, whilst this antibody reacts with a similar level of p53 

protein to the pantropic DO-1 antibody in the OvlPDDP line, substantially 

less p53 is reactive with the 240 antibody compared to the DO-1 antibody in 

the case of the A2780cp70 cell line.

A2780cp70, like the A2780 cell line from which it was selected, has a 

wild type p53 genotype as determined by direct sequencing of PCR products 

derived from cDNA (Brown et al., 1993). Examination of the entire coding 

sequence of the p53 gene in the OvlP and OvlPDDP cell lines revealed no 

difference between them although both possessed a cystine to tyrosine 

substitution at codon 126 (Brown et al., 1993). From this data, one can see that 

the increased p53 protein observed in cisplatin resistant cells cannot be 

explained by mutation in the p53 gene, thus some other cellular constituent 

which interacts with p53 must be involved.

3.2.4 ANALYSIS OF POSSIBLE MEDIATORS OF p53 PROTEIN 

ACCUMULATION IN CISPLATIN RESISTANT CELL LINES

The raised p53 protein levels observed in cisplatin resistant cell lines 

are not due to a mutant p53 gene, so it was of interest to examine other factors 

which could influence p53 protein stability. This section contains an initial 

analysis of possible mechanisms leading to increased p53 protein 

accumulation in the resistant A2780cp70 cell line.

The protein, p53, is phosphorylated by at least four protein kinases 

(Milne et al., 1992a). These could modulate the half life of p53 by altering its 

ability to be recognised by proteases. In order to examine the effect of 

phosphorylation on p53 protein stability, nuclear extracts were prepared from 

A2780 and A2780cp70 cell lines in the presence or absence of the 

phosphatase inhibitors (3-glycerol, sodium orthovanadate, sodium fluoride,
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okadaic acid and microcystin LR. These extracts were subjected to 

electrophoresis then Western blotting and the blot was probed for p53 

immunoreactivity (fig. 3.2.5).

The p53 protein levels in the A2780 line are so low as to be 

undetectable (lanes 1, 2, 3 and 4). This is not unexpected as basal p53 protein 

concentration in the nucleus of this cell line, and most other cell lines with a 

wild type p53 genotype, are generally fairly low. There is much more nuclear 

p53 protein in the A2780cp70 cell line, with three apparent isoforms, but no 

obvious difference in p53 protein quantity between extracts prepared in the 

absence (lanes 5 and 7) or presence (lanes 6 and 8) of phosphatase inhibitors. 

This does not however eliminate the possibility that phosphorylation is 

involved in controlling p53 protein accumulation. Possibly kinases as opposed 

to phosphatases are responsible for targeting p53 protein for degradation. 

These, being more specific than phosphatases, would be more difficult to 

inhibit. Or perhaps the phosphatase inhibitors were simply not allowed 

sufficient time to cause any noticeable affect on p53 protein levels. Also there 

do not appear to be any differences between phosphorylation patterns of p53 

protein as determined by 2 dimensional gel electrophoresis of p53 isoforms 

(L. Gallagher, CRC Dept. Medical Oncology, Glasgow University personal 

communications). It is interesting to note that in the nuclear extracts of these 

two cell lines, differences between p53 protein levels seem to be even more 

extreme than for total cell lysates. This argues against nuclear exclusion of 

p53 protein being the manner in which p53 activity is disrupted in A2780cp70 

cells.

Proteins which interact with p53 protein might protect it from 

degradation by masking a site recognised by proteases. The nuclear 

transcription factor, MDM2 binds to p53 and prevents p53 mediated 

transcriptional transactivation (Momand et al., 1992). An attempt was made to 

probe Western blots of A2780 and A2780cp70 lysates with a monoclonal anti-
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FIGURE 3.2.5 Levels Of p53 Protein In Nuclear Extracts Prepared In The 

Presence Or Absence Of Phosphatase Inhibitors

Nuclear extracts were prepared (section 2.2.3) from A2780 (lanes 1-4) and 
A2780cp70 (lanes 5-8) cell lines in the presence (lanes 2, 4, 6 & 8) or absence (1, 3, 5 & 7) of 
the phosphatase inhibitors (3-glycerol, sodium orthovanadate, sodium fluoride, okadaic acid 
and microcystin LR. Extracts were subjected to electrophoresis on an 8% polyacrylamide gel 
then Western blotting (section 2.5). Crude cell lysate from HT29 cells (20pg) was used as a 
positive control (lane 9). The blot was probed for p53 immunoreactivity using AB2 from 
Oncogene Science at a 1/1000 dilution as a primary antibody. Anti-mouse Ig horseradish 
peroxidase from Amersham was used at a 1/5000 dilution as a secondary antibody. Protein 
sizes were determined by comparison to prestained size markers from BRL.

1 2 3 4 5 6 7 8 9
- + - + - + - +  C

A2780 A2780cp70

81



MDM2 antibody, IF2. However, no binding by this antibody was detected for 

either cell line, probably because MDM2 is normally expressed at quite low 

levels and the antibody may be intended for use with cell lines which 

overexpress this protein. The level of MDM2 mRNA is lower in A2780cp70 

cells than A2780 cells as will be detailed in section 3.3.3 and this may have 

implications for steady state levels of p53 protein.

The heatshock protein, Hsp70 has been shown to bind p53 protein, 

particularly mutant p53 which it then sequesters out of the nucleus of the cell 

and into the cytoplasm (Pinhasi-Kimhi et al., 1986; Martinez et al., 1991 ). It 

can prolong the half-life of p53 protein and so an increase in Hsp70 protein 

concentration could potentially be responsible for the enhanced p53 protein 

levels detected in A2780cp70 cells. It therefore seemed worthwhile to 

investigate differences between Hsp70 levels in A2780 and A2780cp70 cells.

Each of these two cell lines were seeded out at 106 cells per 75cm2 

flask. After 24 hours the cells were lysed with high salt lysis buffer and the 

lysates were electrophoresed through an 8% polyacrylamide gel then assessed 

for Hsp70 protein levels by Western blotting then probing of the blot with an 

anti-Hsp70 antibody (fig. 3.2.6a). Lane 1 contains lysate prepared from A2780 

cells and lane 2 contains lysate from A2780cp70 cells. The relative level of 

p53 protein contained in each of the cell lines was estimated after correction 

for protein loading (fig.3.2.6b) and there was found to be 4 fold more Hsp70 

in the cisplatin resistant A2780cp70 cells than the sensitive A2780 line. Thus 

in this example of cisplatin sensitive and resistant counterparts at least, there is 

more Hsp70 protein in the resistant derivative. This provides some clues as to 

why there may be a greater accumulation of p53 protein in resistant than 

sensitive cell lines although it is not necessarily the only, or even the major, 

causative factor. It is possible that the increased p53 protein may be stabilising 

the Hsp70 protein, but wild type p53 has been shown to negatively regulate
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FIGURE 3.2.6

a) A Western Blot Showing Hsp70 Protein 
Levels in A2780 and A2780cp70 

cell lines

1 2
A2780 A2780cp70

w  -Hsp70

b) Relative Levels of Hsp70 Protein
Lane: 1 2
Relative Hsp70 
protein levels: 1 4

A2780 (lane 1) and A2780cp70 (lane 2) cells were seeded out at 10^/75cm^ flask 
and grown in RPMI medium overnight. High salt lysis buffer was used to lyse the cells and 
large cell debris was removed by spinning in a microfuge. Protein concentration was 
determined by the Biorad kit assay, 50pg loaded/lane and proteins were separated on an 8% 
polyacrylamide gel. Western blotting (section 2.5) was carried out using, an anti-Hsp70 
antibody, from Sigma as primary antiboby at a 1/1000 dilution. Anti-mouse Ig horseradish 
peroxidase conjugate from Amersham International was used as secondary antibody at a 
1/5000 dilution. Protein sizes were determined by comparison to prestained size markers from 
BRL. Relative p53 levels were estimated by densitometry.
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Hsp70 protein levels, at least at the transcriptional level (Agoff et al., 1993). If 

p53 functional activity was inactivated in A2780cp70 cells, increased Hsp70 

protein could be due to reduced repression of transcription.

3.3 ARE THERE DIFFERENCES IN p53 ACTIVITY BETWEEN 

CISPLATIN SENSITIVE AND RESISTANT CELL LINES ?

3.3.1 INDUCTION OF WAF-1 mRNA BY VARIOUS DNA DAMAGING 

AGENTS IN CISPLATIN RESISTANT AND SENSITIVE CELLS

As there are noticeable differences between p53 protein concentration 

in certain cisplatin sensitive and resistant cell lines, it seemed important to 

find out whether there were also differences in p53 protein activity. An 

alteration in p53 protein activity could affect downstream events which might 

have a bearing on whether cells became resistant to cisplatin. WAF-1, also 

known as CIP-1 or p21, is a 21KDa nuclear protein whose expression is 

induced on transcriptional frawsactivation by p53 (El-Deiry et al., 1993). As 

such, WAF-1 mRNA levels provide a convenient way of measuring 

differences in p53 mediated transcriptional frays'activation activity. 

Differences in WAF-1 mRNA levels between resistant and sensitive cells were 

quantified as was the induction of WAF-1 mRNA by cisplatin.

Alteration in WAF-1 mRNA levels in response to cisplatin was 

assessed by seeding out 4x106 A2780 or A2780cp70 cells per 175cm2 flask. 

These flasks were left overnight then given a lpM, 1 hour treatment with 

cisplatin or, in the case of control cells, a medium change to drug-free RPMI 

medium. At timepoints of 4 hours and 24 hours post-treatment, RNA was 

extracted from the cells, and this was used for Northern blotting. The resultant 

blot was probed with WAF-1 DNA (fig.3.3.1a) and then with GAPDH DNA 

(fig.3.3.1b) in order to control for RNA loading. These probes hybridized to 

RNA of the expected sizes, 2.4Kb and 1.2Kb respectively.
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FTGIJRE 3.3.1 Induction Of WAF-1 mRNA By Cisplatin

1 2 3 4 5 6 7 8
^  A2780 A2780cp70 A2780 A2780cp70

WAF-1- • ' *1
b)

GAPDH- I  | | M l |

4 HOURS 24 HOURS

A2780 (lanes 1, 2, 5 & 6) and A2780cp70 (lanes 3, 4, 7 & 8) were seeded at 4x 10^ 
cells/ 175cm^ flask and grown overnight in RPMI medium. Cells were given a medium 
change (lanes 1, 3, 5 & 7) or treated with lp M  cisplatin for 1 hour (lanes 2, 4, 6 & 8) and 
grown for a further 4 (lanes 1-4) or 24 (lanes 5-8) hours in drug-free RPMI. Total RNA was 
extracted with TRIzol^M  and Northern blotting carried out (section 2.4) using WAF-1 and 
GAPDH DNA probes. RNA sizes were determined by comparison to 0.24-9.5kb size markers 
from Gibco, Paisley.
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Basal levels of WAF-1 mRNA were higher in A2780 (lanes 1 and 5) 

than A2780cp70 (lanes 3 and 7) indicating greater p53-mediated 

transcriptional transactivation capacity in the sensitive cell line in spite of its 

lower p53 protein level. Following induction with cisplatin, WAF-1 mRNA 

levels increased 1.3 fold after 4 hours (lane 2) and 4 fold by the 24 hour 

timepoint (lane 6) in A2780 cells (table 3.3.1). In the A2780cp70 cell line 

there was a slight induction of 1.2 fold at 4 hours (lane 4) but none 24 hours 

after cisplatin removal (lane 8). Thus not only are basal WAF-1 mRNA levels 

lower in the resistant cells, but they are also less inducible with cisplatin.

A similar experiment was performed using lpM  transplatin rather than 

cisplatin and the Northern blot obtained is depicted in figure 3.3.2. Again one 

sees more WAF-1 mRNA in uninduced A2780 (lanes 1 and 5) than 

A2780cp70 cells (lanes 3 and 7). Transplatin treatment of cells caused 

induction of WAF-1 to a similar degree as was seen following a cisplatin dose 

of the same concentration. In A2780 cells, WAF-1 was induced 1.8 fold after 4 

hours (lane 2) and 4 fold 24 hours after transplatin treatment (lane 6). With 

A2780cp70 cells there was some induction but not to such an extent as for the 

sensitive parental line. At the 4 hour timepoint, a 1.1 fold induction was 

recorded (lane 4) and this had risen to 1.3 fold by 24 hours after drug 

withdrawal (lane 8). Therefore, one can observe similar effects on WAF-1 

mRNA levels after transplatin treatment as following cisplatin treatment of 

A2780 and A2780cp70 cells. That is, levels of WAF-1 mRNA increase by 4 

hours after drug treatment and rise to a more noticeable extent by the 24 hour 

timepoint in the sensitive A2780 cell line. In the resistant line, there is less 

WAF-1 mRNA in uninduced cells and induction is not so striking.

Ionising radiation is also capable of inducing an increase in WAF-1 

RNA in these two cell lines (fig. 3.3.3). Again, 4xl06 A2780 or A2780cp70 

cells per 175cm2 flask were grown up overnight. These were either exposed to 

2Gy ionising radiation from a 60cobalt source or in the case of control cells,
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FIGURE 3.3.2 Induction Of WAF-1 mRNA By Transplatin

a)

WAF-1

A2780 A2780cp70 A2780 A2780cp70

4 H O U R S  24  H O U R S

A2780 (lanes 1, 2, 5 & 6) and A2780cp70 (lanes 3, 4, 7 & 8) were seeded at 4x 10^ 
cells/ 175cm^ flask and grown overnight in RPMI medium. Cells were given a medium 
change (lanes 1, 3, 5 & 7) or treated with lpM  transplatin for 1 hour (lanes 2, 4, 6 & 8) and 
growN for a further 4 (lanes 1-4) or 24 (lanes 5-8) hours in drug-free RPMI. Total RNA was 
extracted with TRIzol^M  and Northern blotting carried out (section 2.4) using WAF-1 and 
GAPDH DNA probes. RNA sizes were determined by comparison to 0.24-9.5kb size markers 
from Gibco, Paisley.
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FIGURE 3.3.3 Induction Of WAF-1 mRNA By Ionising Radiation

a) 1 2 3 4 5 6 7 8
A2780 A2780cp70 A2780 A2780cp70

YVAF-1

b)

GAPDH-

4 HOURS 24 HOURS

A2780 (lanes 1, 2, 5 & 6) and A2780cp70 (lanes 3, 4, 7 & 8) were seeded at 4x 10^ 
cells/ 175cm^ flask and grown overnight in RPMI medium. Cells were either exposed to 2Gy 
ionising radiation from a co b a lt^  source or left untreated (lanes 1, 3, 5 & 7) and growN for a 
further 4 (lanes 1-4) or 24 (lanes 5-8) hours in drug-free RPMI. Total RNA was extracted with 
TRIzol^M and Northern blotting carried out (section 2.4) using WAF-1 and GAPDH DNA 
probes. RNA sizes were determined by comparison to 0.24-9.5kb size markers from Gibco, 
Paisley.
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left untreated. Then RNA was prepared either 4 hours or 24 hours later and 

used for Northern blotting. At the 4 hour timepoint, there was 4.5 fold more 

WAF-1 RNA in A2780 cells which have been exposed to ionising radiation 

(lane 2) than control A2780 cells (lane 1) and at the 24 hour timepoint there 

was a 4 fold induction (lanes 5 and 6). In A2780cp70 cells WAF-1 mRNA was 

induced 2.4 fold at 4 hours (lanes 3 and 4) and 1.9 fold at 24 hours after 

irradiation (lanes 7 and 8). When ionising radiation is used to treat these cell 

lines one can observe induction of WAF-1 mRNA in both cell lines, although 

not so strongly in the cisplatin resistant A2780cp70 line which also has lower 

uninduced levels of WAF-1 mRNA. The induction is more immediate than 

that seen with transplatin or cisplatin and this may reflect the fact that there is 

no time lost on transport into the cells as is the case for cytotoxic drugs.

In this section we have seen how WAF-1 mRNA expression, which is 

induced via transcriptional fra/wactivation by p53 protein, increases once cells 

have been treated with DNA damaging agents. These agents cause a rise in 

intracellular p53 protein so one would expect to see a concurrent increase in 

p53 activity as measured by its ability to activate transcription of a dependent 

gene, namely WAF-1. A summary of WAF-1 induction data is provided in 

table 3.3.1.

In summary, differences in p53 mediated transcriptional 

tams'activation between the cisplatin sensitive, A2780 cell line and 

A2780cp70, the resistant cell line selected from A2780 by multiple cisplatin 

exposures, were detected. A2780 cells contain 10 fold more basal WAF-1 

mRNA than A2780cp70 cells (table 3.3.2) although they have less p53 

protein, indicating that the p53 protein in the resistant line is somehow less 

active as a transcriptional regulator. Also WAF-1 mRNA is not so powerfully 

induced in the resistant line. Alteration in the transcriptional frmsactivation 

properties of p53 might be due to changes in the sequence of the binding site
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TABLE 3.3.1 Induction Of WAF-1 mRNA Bv DNA Damaging Agents

Cell Line Drue/Radiation Fold Induction Fold Induction
Dose of WAf-1 mRNA 

at 4 Hours
tf..WAF-lmRNA 

at. 24 Hours

A2780
cisplatin (lpM, 

1 hour)
1.3 4

A2780cp70
tf 1.2 1

A2780
+vector

ft 1.9 4

A2780 
+mutant p53

tt 1.7 3.5

A2780
Transplatin 

(lpM, 1 hour)
1.8 4

A2780cp70
it 1.1 1.3

A2780
Ionising

Radiation
<2Gv)

4.5 4

A2780cp70
ff 2.4 1.9
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TABLE 3.3.2 Basal WAF-1 mRNA Levels In A2780 And A2780cp70

Cell Line Relative Level of
WAF-1 mRNA

A2780cd70 1
A2780 10

TABLE 3.3.3 Basal WAF-1 mRNA Levels In A2780 Transfected With A 

Mutantp53 Gene

Cell Line Relative Level of
WAF-1 mRNA

A2780+mutant p53 1
A2780+ vector 3

TABLE 3.3.4 Basal MDM2 mRNA Levels

Cell Line Relative Level of
MDM2 mRNA

A2780cp70 1
A2780 4
ZR-75 1.5
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at the p53 responsive gene or because of altered post-transcriptional 

modifications to p53 protein resulting from mutant modifying proteins.

3.3.2 ALTERATION OF BASAL AND INDUCED WAF-1 mRNA LEVELS 

IN A2780 CELLS FOLLOWING TRANSFECTION WITH A MUTANTp53 

GENE

In order to demonstrate dependence of WAF-1 mRNA levels on the

presence of active p53 protein, induction of WAF-1 mRNA in the presence of

a mutant p53 protein was analysed. Dominant P53 mutants bind wild type

p53 forming heterodimers which abrogate wild type p53activity (Milner & Medcalf, 1991). 
! A2780 cells which had been
transfected with the plasmid pC53-SCX3 (Baker et al., 1990), which expresses 

mutant p53 with a valine to alanine substitution at codon 143, or control cells 

transfected with the vector alone were set up at a concentration of 4X106 cells 

per 175cm2 flask. The following day, experimental cells were treated for 1 

hour with lpM cisplatin and control cells were given a medium change to 

drug-free medium. RNA was extracted at 4 hours and 24 hours after drug 

removal and used for Northern blotting. The blot was probed for WAF-1 and 

GAPDH (fig. 3.3.4).

Introduction of the mutant p53 gene into A2780 cells reduced 

uninduced WAF-1 mRNA 3 fold (table 3.3.3) compared to cells containing the 

vector alone. This difference was not so profound as the difference between 

A2780 and A2780cp70 cell lines where the sensitive line contains 10 times the 

level of WAF-1 mRNA as the resistant line. Also there was very little 

difference in WAF-1 induction between cells containing mutant p53 and 

vector alone controls. Cells transfected with the vector alone exhibited a 1.9 

fold induction at 4 hours after cisplatin treatment (fig. 3.3.4, lanes 1 and 2) and 

a 4 fold induction 24 hours after drug removal (lanes 5 and 6) whereas those 

with the mutant p53 protein showed a 1.7 fold induction after 4 hours (lanes 3 

and 4) and a 3.5 fold induction after 24 hours (lanes 7 and 8). This data is
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FIGURE 3.3.4 Induction Of WAF-1 mRNA In The Presence Of A Mutant p53 

Gene

8

a)

WAF-l-

b)

GAPDH-

vector alone mutant vector alone mutant

4 HOURS 24 HOURS

A2780 cells transfected with vector alone (lanes 1, 2, 5 & 6) and A2780 cells 
transfected with a mutant p53 expressing plasmid (lanes 3, 4, 7 & 8) known as pC53-SCX3 
(Baker et al., 1990) were seeded at 4x 10® cells/ 175cm^ flask and grown overnight in RPMI 
medium. Cells were treated with lpM  cisplatin for 1 hour and grown for a further 4 (lanes 1- 
4) or 24 (lanes 5-8) hours in drug-free RPMI. Total RNA was extracted with TRIzol^M  and 
Northern blotting carried out (section 2.4) using WAF-1 and GAPDH DNA probes. RNA sizes 
were determined by comparison to 0.24-9.5kb size markers from Gibco, Paisley.
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summarised in table 3.3.1.

Decreased WAF-1 mRNA was observed in A2780 cells when a mutant 

p53 was introduced. This indicates that WAF-1 expression in these cells is p53 

dependent. The presence of mutant p53 does not entirely abolish WAF-1 

mRNA nor does it effectively prevent its induction by cisplatin. This is 

probably due to residual wild-type p53 protein which is not complexed to the 

mutant form.

3.3.3 DIFFERENTIAL EXPRESSION OF MDM2 mRNA IN CISPLATIN 

RESISTANT AND SENSITIVE CELL LINES

Expression of the MDM2 gene is also transcriptionally /rawsactivated 

by p53 and so, differences in MDM2 mRNA levels between A2780 and 

A2780cp70 cells were also interesting as being indicative of p53 protein 

activity. RNA was prepared from the cell lines A2780, A2780cp70 and ZR-75 

(a breast tumour derived cell line which overexpresses MDM2 protein). The 

RNA obtained was analysed by Northern blotting (fig. 3.3.5). After correction 

for loading, there was found to be 1.5 fold more MDM2 mRNA in ZR-75 cells 

than A2780cp70 cells and 4 fold more in A2780 cells than A2780cp70 cells 

(table 3.3.4). This reduced amount of MDM2 in A2780cp70 cells, compared 

with its parental line, provides further circumstantial evidence for a lower 

level of transcriptional control by p53 protein in these cisplatin resistant cells. 

It also suggests that these effects are not limited to WAF-1.

3.3.4 THE USE OF A LUCIFERASE REPORTER SYSTEM TO MEASURE 

TRANSCRIPTIONAL CONTROL BY p53 PROTEIN

In order to measure p53 mediated regulation of transcription more 

directly, an attempt was made to use a reporter gene downstream of a known 

p53 binding site. The plasmid pGUP.PA.8 (fig. 3.3.6a), which contains the 

gene encoding firefly luciferase, was used either alone or with the fragment A
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FIGURE 3.3.5 Levels Of MDM2 mRNA In A278Q. A2780cp70 And ZR-75 

Cell Lines

a)

\IDM 2-

b)

GAPDH-

A2780 A2780cp70 ZR75

A2780 (lane 1), A2780cp70 (lanes 2) and ZR-75 cells were grown to semi- 
confluency in RPMI medium. Total RNA was extracted with TRIzol^M  and Northern 
blotting carried out (section 2.4) using an MDM2 DNA probe. RNA sizes were determined by 
comparison to 0.24-9.5kb size markers from Gibco, Paisley. This work was performed in 
collaboration with L.Gallagher, CRC Department of Medical Oncology, Glasgow University.
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sequence (fig. 3.3.6b) inserted upstream of the luciferase gene i.e Frag.A- 

pGUP.PA.8 (Funk et al., 1992). Fragment A is a 36 bp fragment of a human 

genomic clone known as CBE772 to which p53 binds specifically (Seto et al., 

1990). Luciferase enzyme activity involves oxidation of beetle luciferin via an 

intermediate, luciferyl-CoA in this case, with subsequent chemiluminescent 

photon production.

Either Frag.A-pGUP.PA.8 or the vector alone, pGUP.PA.8, were 

stably transfected into A2780cp70 cells along with a plasmid known as 

pHSG272 (Brady et al., 1984) which contains a selectable marker, the G418 

resistance plasmid. An attempt was also made to transfect these plasmids into 

A2780 cells, however this failed due to the susceptibility of this line to the 

toxic effects of calcium phosphate. Transfectants were selected for G418 

resistance and Southern blotting was employed to conclude whether 

transfection had occurred successfully. A clone which had been transfected 

with Frag.A-pGUP.PA.8 (FA) and one which contained the vector alone (V) 

were then used in induction experiments with DNA damage-inducing agents.

The clones FA and V were seeded out at 106 cells per 75cm2 flask and 

left overnight. They were then given a 1 hour, lpM dose of cisplatin or a 

change of growth medium for control cells. At 4, 24, or 48 hours later the 

cells were lysed and lysates were later assayed for luciferase activity (light 

production) in a luminometer using an empty tube as a control in order to 

estimate background luminescence. The results of this experiment, after 

subtraction of background activity, are depicted graphically in figure 3.3.7. 

Cells containing the vector alone showed approximately background levels of 

activity whether untreated (V-) or treated with cisplatin (V+) at all 3 

timepoints. Cells containing Frag.A-pGUP.PA.8 have above background 

levels of luciferase activity before cisplatin treatment (FA-) at the timepoints 

examined and levels are induced by cisplatin treatment with the greatest 

induction 4 hours after cisplatin removal when luciferase activity is induced 4
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FIGURE 3.3.6a) The Plasmid. pGUP.PA.8
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' FIGURE 3.7.7

Induction Of Transcription By Cisplatin In A2780cp70 Cells

A2780cp70 cells transfected with the vector, pGUP.PA.8 alone (V) or containing 
fragment A DNA sequence (FA) were seeded out at 10^ cells/ 75cm^ flask and grown 
overnight in RPMI medium. They were then either given a medium change to fresh medium 
(-) or given a lpM  dose of cisplatin for 1 hour (+). At 4 hours (a), 24 hours (b) and 48 hours 
(c) after drug removal cells were lysed, and assayed for luciferase activity in a luminometer 
(section 2.9). Relative luminescence is the luminescence/ sample tube after subtraction of the 
luminescence/ blank tube.

FIGURE 3.7.8

Induction Of Transcription By Transplatin In A278Qcp7Q Cells

A2780cp70 cells transfected with the vector, pGUP.PA.8 alone (V) or containing 
fragment A DNA sequence (FA) were seeded out at 10^ cells/ 75cm ̂  flask and grown 
overnight in RPMI medium. They were then either given a medium change to fresh medium 
(-) or given a lpM  dose of transplatin for 1 hour (+). At 4 hours (a), 24 hours (b) and 48 hours 
(c) after drug removal cells were lysed, and assayed for luciferase activity in a luminometer 
(section 2.9). Relative luminescence is the luminescence/ sample tube after subtraction of the 
luminescence/ blank tube.
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FIGURE 3.3.8 Induction Of Transcription Bv Transplatin In A2780cp70 Cells
(legend on previous page)
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fold (fig. 3.3.7a). As luciferase activity must be directly proportional to the 

quantity of luciferase enzyme which is in turn, directly proportional to the 

level of transcription from the luciferase plasmid, this shows that p53 

transcriptional /razzsactivation activity can be assessed using a reporter system 

such as this and that p53 protein activity can be induced by cisplatin.

A similar experiment was performed with transplatin rather than 

cisplatin and the results of this are shown in figure 3.3.8. Again there is little 

luciferase activity displayed by cells transfected with the vector alone either 

with (V+) or without a drug dose (V-). Cells containing the Frag.A- 

pGUP.PA.8 plasmid showed some luminescence activity in the absence of a 

transplatin dose (FA-) and showed an induction of this luciferase activity after 

transplatin treatment (FA+) with the greatest induction at the 4 hour timepoint 

(fig. 3.3.8a) when luciferase activity was 7 fold greater in treated than 

untreated cells. This again demonstrates how p53 mediated transcriptional 

frwwactivation can be induced by a DNA-damaging agent.

It is interesting to note that in both cases of induction with transplatin 

or with cisplatin, the p53 mediated transcriptional transactivation activity was 

induced to a greater extent at the 4 hour timepoint than the 24 or 48 hour 

timepoints. This suggests that p53 activity peaks earlier than p53 protein 

levels which are still increasing until at least 48 hours after drug treatment in 

this line.

3.3.5 ARE CELLS WHICH HAVE BEEN GIVEN ONE CISPLATIN DOSE 

MORE RESISTANT TO A SECOND CISPLATIN TREATMENT?

One might wonder whether increased p53 protein levels, or other such 

factors which alter on treatment with DNA-damaging agents, would serve to 

prepare cells for further assault with cytotoxic substances. Such a situation
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FIGURE 3.3.9 The Effect Of Cisplatin Pretreatment On The Sensitivity Of 

A278Q Cells To A Second Cisplatin Dose (legend overleaf)
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FIGURE 3.3.9 (previous page) The Effect Of Cisplatin Pretreatment On The

Sensitivity Of A2780 Cells To A Second Cisplatin Dose

A2780 cells were seeded out at 10^ cells/75cm^ flask in RPMI medium, cultured 
overnight, then treated with lpM cisplatin for 1 hour (black circles, solid lines) or given a 
medium change (white squares, dotted lines). 4 (a), 24 (b) and 48 (c) hours later, a second 
cisplatin dose of 0, 0.5, 0.75, 1 or 2 pM was given for 24 hours. Cells were cultured for a 
further 10 days in drug free RPMI medium then stained with Giemsa stain and the colonies 
were counted. Each point is the average of at least 2 flasks/ experiment from 2 separate 
experiments. Surviving fractions are calculated from the ratio of number of colonies at a given 
dose /number of colonies at OpM of drug. Error bars shown represent standard deviations.

FIGURE 3.3.10 (overleaf) The Effect Of Cisplatin Pretreatment On The 

Sensitivity Of A2780cp70 Cells To A Second Cisplatin Dose

A2780cp70 cells were seeded out at 10^ cells/75cm^ flask in RPMI medium, 
cultured overnight, then treated with lpM cisplatin for 1 hour (black circles, solid lines) or 
given a medium change (white squares, dotted lines). 4 (a), 24 (b) and 48 (c) hours later, a 
second cisplatin dose of 0, 0.5, 1, 2, 4 or 10 pM was given for 24 hours. Cells were cultured 
for a further 10 days in drug free RPMI medium then stained with Giemsa stain and the 
colonies were counted. Each point is the average of at least 2 flasks/ experiment from 2 
separate experiments. Surviving fractions are calculated from the ratio of number of colonies 
at a given dose /number of colonies at OpM of drug. Error bars shown represent standard 
deviations.
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FIGURE 3.3.10 The Effect Of Cisplatin Pretreatment On The Sensitivity Of

A2780cp70 Cells To A Second Cisplatin Dose (legend on previous page)
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TABLE 3.3.5 The Effect Of Pretreating Cells With Cisplatin On Their

Sensitivity To A Second Cisplatin Dose

Cell Lins Time Between 
Pretreatment and

IBSlLflf
Pretreated Control

Fold
Difference

Second Cisnlatin 
Dose (in hours)

Cells
([iM)

Cells
(jiM)

A2780 4 0.62 0.62 1
A2780 24 0.69 0.57 +1.2
A2780 48 0.28 0.2 +1.4

A2780cp70 4 3.3 3.6 -1.1
A2780cp70 24 4 4 1
A2780cp70 48 4.3 4.5 -1.1
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would be analogous to the immune response system where a pool of "memory 

cells" are retained following infection in order to provide a more rapid 

response when the organism is invaded a second time by a similar foreign 

body.

In order to ascertain the validity of this theory, A2780 or A2780cp70 

cells were either pretreated with lpM cisplatin for 1 hour or, in the case of 

control cells, given a medium change. They were then allowed to recover for 

either 4, 24 or 48 hours before their cisplatin sensitivity was determined by 

clonogenic assay involving a second exposure to cisplatin for 24 hours. The 

range of cisplatin doses used for A2780 cells was lower (0, 0.5, 0.75, 1, 1.5 or 

2 pM) than for A2780cp70 cells (0, 0.5, 1, 2, 4 or 10). The data obtained for 

A2780 cells is depicted in figure 3.3.9 and that for A2780cp70 cells in figure 

3.3.10. Pretreated cells are denoted by black circles and solid lines whereas 

control cells are represented by white squares and dotted lines. There appears 

to be no significant difference between pretreated and control cells and this is 

borne out by comparisons of ID50 values (table 3.3.5). At the 4 hour timepoint 

there is no difference in ID50 value for A2780 cells and a 1.1 fold decrease in 

A2780cp70 cells when pretreated with cisplatin. At 24 hours after 

pretreatment, A2780 cells show a 1.2 fold increase and A2780cp70 cells show 

no difference and at the 48 hour timepoint A2780 ceils exhibit a rise of 1.4 

fold and A2780cp70 cells a 1.1 fold difference in favour of control cells. 

Bearing in mind the confidence limits of this experiment, these small 

alterations in cell survival are not significant. Pretreating cells with cisplatin 

does not significantly protect them from a second cisplatin dose.
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3.4 DISCUSSION

3.4.1 STABILISATION OF p53 PROTEIN IN CISPLATIN RESISTANT 

CELL LINES

Increased levels of p53 protein are seen following cisplatin treatment 

of the A2780 and A2780cp70 cell lines. Higher amounts of this protein are 

also found in cells selected for cisplatin resistance in vitro e.g. A2780cp70 

compared to A2780 cells, from which they originate. This suggests that p53 

protein could be instrumental in causing cisplatin resistance. Using ID2q 

values obtained from clonogenic assay the A2780cp70 cell line was found to 

be 6 fold resistant to a 1 hour cisplatin dose and 17 fold resistant to a 1 hour 

treatment with transplatin when compared to the parental line, A2780. A 4 

fold cisplatin resistance was previously found using a 24 hour dose clonogenic 

assay (Brown et al., 1993) and a 39 fold resistance recorded using a soft agar 

assay (Behrens et al., 1987). This demonstrates the importance of specifying 

the duration of drug exposure and the assay used when quoting data 

concerning drug sensitivity. Also more importantly, a 1 hour, lpM dose of 

either cisplatin or transplatin did not kill more than 30% of a population of 

either cell line. Therefore an adequate yield of various extracts could be 

prepared following such treatments and there was not a significant danger of 

selecting out a more resistant subpopulation of cells.

Induction of p53 protein occurred following transplatin or cisplatin 

exposure in A2780 cells, where peak levels were detected 24 hours after 

cisplatin treatment. In A2780cp70 cells cisplatin-induced p53 protein was still 

rising 72 hours after drug removal but a drop in p53 induction was seen after 

72 hours for transplatin. This discrepancy may be accounted for by the 

observation that transplatin-DNA adducts accumulate for only 6 hours 

compared to 48 hours for cisplatin-DNA adducts (Ciccarelli et al., 1988). 

Another possible explanation could be that transplatin, being less toxic, 

permits overcrowding of cells which attain a quiescent state and switch off
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expression of the p53 gene. To control for this, lysates could be prepared at 

the same time but drug treatments given at different times prior to this. 

Alternatively, cells could be treated with equitoxic drug doses.

As p53 mutations frequently cause enhanced stabilization of the p53 

protein, it was important to investigate the p53 genotype in the cell lines used. 

A common conformation for mutant p53 proteins has been proposed due to 

the ability of the antibody PAb 240 to bind to several different mutant p53 

proteins (Gannon et al., 1990). Immunoprecipitation with this mutant specific 

antibody, followed by Western blotting of precipitated proteins, showed that 

although some p53 was precipitated from the cisplatin resistant cell line 

A2780cp70 this was not as much as for the pantropic DO-1 antibody. 

OvlPDDP contained a p53 protein which was precipitable to equal degrees 

with both antibodies. The implication that A2780cp70 contained a wild type 

p53 gene whereas OvlPDDP contained a mutant p53 gene was borne out by 

direct PCR sequencing of the entirep53 cDNA (Brown et al., 1993).

The p53 protein stabilisation attained in these cisplatin resistant lines 

A2780cp70 and OvlPDDP, is not the result of a mutant p53 gene. Induced 

p53 protein levels do not correlate with induced mRNA levels (Kastan et al., 

1991; Fritsche et al., 1993). Other possible causes are differences in post 

translational modification or binding to a protein which protects it from 

recognition by the ubiquitin protein degradation system. No difference was 

detected between p53 protein concentration in A2780cp70 nuclear extracts 

which had been prepared in the presence or absence of phosphatase inhibitors. 

This may indicate that insufficient time was allowed for these inhibitors to 

exert their effects also phosphorylation of p53 at different sites may have 

opposing affects on stability or activity.

Phosphorylation does appear to be important in the control of p53 

protein activity. There are at least four protein kinases active against p53 as 

demonstrated by fractionation of SV3T3 cells (Milne et al., 1992a). Serine 389
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of p53 protein is phosphorylated by casein kinase II (Meek et al., 1990; 

Herrman et al., 1991). Also a casein kinase like enzyme which separates from 

casein kinase I (CKI) itself on a phosvitin-sepharose affinity column, 

phosphorylates serines 4, 6 and 9 of murine p53 protein. Within the nuclear 

localisation domain of human p53, at serines 312-323, serine 315 is 

phosphorylated by p34cdc2 (Addison et al., 1990). Both interphase and M- 

phase forms of the enzyme are active and p53 is probably phosphorylated at 

this site throughout most of the cell cycle except G1 (Bischoff et al., 1990), 

although two to three fold more 32P is incorporated into p53 protein during G1 

than either G2, S or M phases. Mitogen activated protein (MAP) kinase has 

also been shown to have activity against p53 protein (Milne et al., 1994) as 

has the c-jun kinase, JNK1 (Milne et al., in press). A DNA activated protein 

from HeLa cells phosphorylates p53 (Lees-Miller et al., 1990) at serines 15 

and 37 in the /r<msactivation domain of human p53 (Lees-Miller et al., 1992) 

and serines 7, 9 and 18 of mouse p53 protein (Wang & Eckhardt., 1992).

A change in activity of one of these kinases could profoundly alter p53 

protein stability or activity. This is borne out by the observation that mutation 

of the serine 15 phosphorylation site within human p53 protein to an alanine 

residue reduces the ability of p53 to mediate a G1 phase block (Fiscella et al.,

1993). A mutation of the CKII site of mouse p53 at serine 386, prevented p53 

mediated growth suppression activity as measured by inhibition of colony 

formation in SV3T3 and SV40 transformed baby hamster kidney cells (Milne 

et al., 1992b). Also, it has been shown that okadaic acid can reduce 

transcriptional frvms'activation by p53 protein (Zhang et al., 1994b). This is in 

agreement with the finding that potato acid phosphatase enhances DNA 

binding by p53 (Kern et al., 1991a). It might be possible that a signal which 

serves to activate p53 for transcriptional /ra/wactivation could also be 

responsible for its subsequent destruction thus ensuring dispersal of p53 

protein after carrying out its effects. This idea seems attractive in view of the
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characteristics of p53 protein in A2780cp70 cells where it has greater stability 

but lower activity than in the cisplatin sensitive counterpart, A2780.

Unfortunately it was not possible to obtain results from an 

investigation into MDM2 protein levels in A2780 and A2780cp70 cells. This 

would have been an interesting area for experimentation as this 95KDa protein 

has affinity for p53 protein which can stabilize p53 protein and prevent p53 

mediated transcriptional /ra«sactivation (Momand et al., 1992). An increase in 

MDM2 levels or affinity for p53 protein, again would account for both the 

reduced activity and increased concentration of p53 protein in A2780cp70 

cells relative to the parental line. The reduced levels of mdm2 mRNA in 

A2780cp70 cells would suggest that this theory is unlikely to prove correct but 

there is some evidence for regulation of MDM2 protein levels at the 

translation stage so decreased mRNA would not necessarily correlate with 

decreased MDM2 protein (Landers et al., 1994).

The comparatively high levels of the heatshock protein Hsp70 which 

one detects in the A2780cp70 line could explain why p53 protein exhibits 

reduced activity in this line as this protein has the ability to bind p53 protein 

(Pinhasi-Kimhi et al., 1986). It can therefore remove it to the cytoplasm of the 

cell (Martinez et al., 1991), away from the transcription sites which p53 

protein tfwzsactivates. However this seems an unlikely explanation for 

A2780cp70 cells, bearing in mind the levels of p53 protein seen for nuclear 

extracts of this cell line. The region of p53 protein responsible for this 

interaction has been narrowed down to the 28 amino acids at the N-terminus 

(Hainaut & Milner, 1992; Lam & Calderwood, 1992). The high levels of 

Hsp70 protein which one sees in A2780cp70 cells may result from reduced 

p53 activity, as p53 is able to repress the Hsp70 promoter (Agoff et al., 1993). 

This indicates increasing evidence of a reduced p53 activity in A2780cp70 

cells relative to A2780 parental cells.
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Heatshock proteins are induced following various forms of cellular 

stress including heat exposure. The Hsp70 protein is serum stimulated and is 

normally expressed in late Gl/early S phase of the cell cycle. Certain 

members of the heatshock protein family have been postulated to be involved 

in cisplatin resistance. For example, three isoforms of Hsp25 are induced by 

cisplatin in Erlich ascites tumour cells (Oesterreich et al., 1991). Also 

overexpression of Hsp60 is associated with reduced survival in ovarian 

carcinoma patients and both Hsp60 mRNA and protein can be induced by 

cisplatin (Kimura et al., 1993). Cisplatin and hyperthermia only seem to have 

an additive rather than synergistic effect against ovarian carcinoma cells in 

vitro (Kimura & Howell, 1993).

3.4.2 ALTERED ACTIVITY OF p53 PROTEIN IN CISPLATIN 

RESISTANT CELL LINES

Despite the problem that the overall function of p53 in cells is not 

known, several measurable activities of p53 protein have been found. These 

include its ability to activate transcription from certain promoters (Weintraub 

et al., 1991; Farmer et al., 1992; Zambetti et al., 1992; Okamoto & Beach, 

1994). One promoter which responds to transcriptional /riz/wactivation by p53 

protein is WAF-1 (El-Deiry et al., 1993). I observed an induction of WAF-1 

mRNA expression using various DNA damaging agents. This is consistent 

with similar data from other laboratories (El-Diery et al., 1994). Induction of 

this promoter was more rapid following treatment with 2Gy ionising radiation 

than after exposure to cisplatin or transplatin, probably due to its more direct 

penetration of cells. This would be expected as p53 protein itself is induced 

with faster kinetics using this DNA damaging agent, showing peak p53 

protein level after 8 hours rather than 24 hours after cisplatin treatment. Also 

10 fold lower uninduced levels of WAF-1 mRNA were detected in the 

cisplatin resistant A2780cp70 cell line than the sensitive A2780 cells
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suggesting that p53 protein has lower activity in the resistant cells. 

Transfection of a mutantp53 gene into A2780 cells has the effect of causing a 

3 fold reduction in the basal level of WAF-1 mRNA however it does not 

eradicate WAF-1 expression or prevent WAF-1 induction. This could be due to 

non-p53 mediated transcription from the WAF-1 promoter which has been 

shown to be induced by serum or certain growth factors in fibroblasts from 

mice which lack thep53 gene (Micheili et al., 1994). Alternatively it might be 

caused by the mutant p53 being unable to bind to all wild type p53 protein 

within the cells. Also activation of p53 protein for DNA binding might result 

in post-translational modification which prevents the formation of 

heterodimers with mutant p53 protein due to the binding site on wild type p53 

protein being obscured. The use of cells lacking any p53 gene would be 

required in order to demonstrate conclusively that WAF-1 mRNA 

transcription and its induction by DNA damaging drugs relies on p53 protein 

activity.

Reduced MDM2 mRNA expression in A2780cp70 cells compared to 

A2780 cells is interesting as it provides evidence that decreased expression 

from p53 responsive promoters is not restricted to WAF-1. This negates the 

explanation that reduced activation of transcription could result from a 

mutated p53 binding site upstream of the coding region as it would be unlikely 

for this to occur at two p53 binding sites at once. The implications of reduced 

MDM2 expression were discussed in the previous section.

A luciferase expression system can be utilised to measure p53 

mediated transcriptional /ra/isactivation following stable transfection with the 

plasmids, pGUP.PA.8 or Frag.A.pGUP.PA.8. Some drug-induced expression 

of luciferase from the p53 responsive DNA sequence, fragment A, was 

observed in A2780cp70 cells however, relative luminescence levels were not 

very high and a direct comparison with A2780 was not possible. This is 

congruous with other data which suggest that A2780cp70 has reduced p53
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activity with respect to its parental line, A2780. The data obtained by Northern 

blot analysis is perhaps more meaningful as it involves activation of an 

endogenous gene rather than exogenously transfected DNA.

Another measure of p53 activity is the ability to cause arrest in the G1 

phase of the cell cycle in response to DNA damage inducing agents. This can 

be measured by flow cytometric analysis of BUdR incorporation along with 

propidium iodide staining. An example of an experiment which used the G1 

arrest in response to 2Gy or 4Gy ionising radiation to measure the differential 

p53 activity between A2780 and A2780cp70 cells is provided in figure 3.4.1 

(taken from Brown et al., 1993). In this figure, A2780 cells are represented by 

squares, A2780cp70 by circles. Also the open symbols signify cells treated 

with 4Gy and the closed symbols cells given a 2Gy dose. Following 

irradiation there was a rapid drop in the percentage of A2780 cells entering S 

phase (fig. 3.4.1a) and the percentage of cells in S phase (fig. 3.4.1b) 

compared to untreated control cells. Also the fraction of cells responding to 

DNA damage with a G1 block, rose when the radiation dose was increased. In 

the case of A2780cp70 cells, there was not such a pronounced drop in the 

fraction of cells entering S phase or actually in S phase. Thus transition from 

the cisplatin sensitive cell line, A2780 to resistant A2780cp70 cells involved 

loss of the capacity to arrest in G1 phase of the cell cycle after exposure to 

DNA damage inducing agents. This loss of G1 arrest in A2780cp70 cells is 

symptomatic of reduced p53 activity. Transfection of a mutant p53 gene into 

A2780 cells abrogates G1 arrest in response to ionising radiation (McIlwrath et 

al., 1994). It also prevents G1 and G2 arrests in response to cisplatin 

treatment.

There does appear to be a link between the ability to arrest in G1 phase 

of the cell cycle in response to DNA damage, as determined by flow 

cytometric analysis after treatment with ionising radiation, and the sensitivity
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FIGURE 3.4.1 The Ability To Arrest In G1 Phase After DNA Damage
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of cells to DNA damaging agents (O'Conner et al., 1993; McIlwrath et al.,

1994). However there are likely to be other mechanisms which predominate in 

different cell types which explains why some investigators (Slichenmeyer et 

al., 1993) do not find such a correlation.

It has been shown that transfection of a mutant p53 gene with a valine 

to alanine substitution at codon 143 into A2780cp70, but not A2780 cells, 

raises cisplatin sensitivity 2-3 fold compared to vector alone controls (Brown 

et al., 1993). This suggests that possession of a wild type p53 protein is 

relevant to drug resistance in this cell line at least, despite its reduced activity. 

It is feasible that some factor of a DNA damage response pathway, which 

incorporates p53 protein, has been mutated in this cell line so that p53 protein 

is no longer able to recognise it. The mutant p53 protein conformation might 

be altered in such a way as to restore affinity for this component and "mend" 

the "broken link" in the damage response pathway.

As p53 protein is required for apoptosis in certain circumstances 

(Lowe et al., 1993a; Lowe et al., 1993b; Yonish-Roach et al., 1993; Clarke et 

al., 1993; Lee & Bernstein, 1993), reduced p53 activity might in turn reduce 

the frequency of drug-induced apoptosis thereby permitting greater cell 

survival after DNA damage. Indeed there does appear to be reduced 

susceptibility to apoptosis, as determined by DNA fragmentation 72 hours 

after exposure to y-ray radiation, in A2780cp70 cells when compared to 

A2780 cells (A.McIlwrath, CRC Department of Medical Oncology, Glasgow 

University personal communications).
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CHAPTER 4: DNA DAMAGE RECOGNITION PROTEINS AS

POTENTIAL MEDIATORS OF CISPLATIN RESISTANCE

4.1 INTRODUCTION

4.1.1 THEORETICAL ROLES OF DNA DAMAGE RECOGNITION 

PROTEINS IN DRUG RESISTANCE

In the previous chapter, I have shown that a signal pathway leads from 

cisplatin-induced DNA damage to p53 induction. DNA damage might be 

recognised directly by p53 but it is likely that the signal is transduced by other 

factors. Proteins which bind to lesions of the DNA i.e damage recognition 

proteins are likely candidates for this task. They are of interest anyway as they 

could be involved in alternative DNA damage signal pathways. They may 

prove to be repair proteins or proteins which minimize damage-related DNA 

distortions and thereby be capable of counteracting cisplatin-induced DNA 

damage. However they could simply be trapped because the lesion prevents 

their dissociation from, or progression along, the DNA and may have a 

function unrelated to cisplatin DNA damage metabolism.

An example of DRP involvement in cell survival after DNA damage is 

provided by the Uvr endonuclease-mediated excision pathway. This occurs in 

the prokaryotic organism, Escherichia coli when the DRP, Uvr A binds as a 

dimer to UvrB and this multimeric complex associates with UV-induced DNA 

adducts. Then the UvrC protein becomes associated with and nicks the 

damaged DNA facilitating its removal (Orren & Sancar, 1989). The UvrA 

protein is not involved in incision and functions as a DRP in order to recruit 

the other proteins to the damage site.
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4.1.2 DNA DAMAGE RECOGNITION PROTEINS FOUND USING THE 

GEL MOBILITY SHIFT ASSAY

The gel mobility shift assay operates on the principle that DNA- 

binding proteins will complex to and retard the progress of radiolabelled DNA 

through a non-denaturing polyacrylamide gel. This results in the formation of 

further "bands" on exposure of the gel to photographic film. UV specific 

DRPs have been detected by gel mobility shift analysis in HeLa cells (Chao et 

al., 1991c; van Assendelft et al, 1993), and CV-1 monkey cells. DRPs which 

have affinity for cisplatin-modified DNA have been found in extracts from 

human HeLa cells (Chu & Chang, 1988; Chao et al, 1991c). Also cisplatin- 

DRP activity has been detected using this technique in CHO hamster cells, 

2008 human ovarian, MDCK and LLC-PK kidney tubule cells (Andrews & 

Jones, 1991) and in S. cerevisiae yeast cells (Patterson & Chu, 1989).

Using a cisplatin-damaged, 54 base-paired oligonucleotide (2aG7) in 

the gel mobility shift assay with nuclear extracts prepared from human, 

ovarian tumour cell lines, two complexes designated "Bl" and "B2" were 

detected (K.McLaughlin PhD thesis, Glasgow university). Binding of 2aG7 to 

the damage recognition proteins which form Bl and B2 can be competed out 

using platinated calf thymus DNA but not unplatinated calf thymus DNA 

demonstrating their specificity. Similar complexes can be seen for human, 

murine and feline extracts so the proteins involved appear to be conserved 

amongst mammals. Complex Bl has been found to involve human single 

stranded binding protein (hssB), also known as RPA and RFA, which 

participates in DNA replication (Clugston et al., 1992). However no difference 

in levels of hSSB between the cisplatin sensitive cell lines, OvlP, SuSa, 

A2780 and RT112 and their resistant counterparts could be detected by 

Western blotting. The protein, hSSB, has been demonstrated to be required for 

human DNA excision repair in a cell free system using HeLa cell extracts
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(Coverley et al., 1991). In this chapter the B2 complex will be analysed and 

its identity elucidated.

4.1.3 DNA DAMAGE RECOGNITION PROTEINS FOUND USING 

SOUTH WESTERN BLOTTING

South-western blotting involves the separation of proteins on a 

denaturing concentration gradient gel followed by blotting of the proteins onto 

a nitrocellulose membrane. Proteins attached to the membrane are then 

examined for their DNA hybridization capacity by incubation in the presence 

of a radiolabelled oligonucleotide (see section 2.5.6 for further details). From 

HeLa cells, DNA-damage inducible DRP proteins of 130KDa and 95KDa 

have been detected by South-western blotting (Chao et al., 1991a). Also in 

HeLa cell extracts a cisplatin-DRP doublet of 40-42KDa (Robbins et al.,

1991) and an 81KDa cisplatin DRP (Toney et al., 1989; Bruhn et al., 1992) 

have been found using this modified Western blotting procedure. Using this 

method DRP activity has also been seen for the IXR1 yeast protein (Brown et 

al., 1993) and proteins of 26, 28 and 97KDa in the 2008 ovarian carcinoma 

cell line (Andrews & Jones, 1991).

When South-western blotting was employed to identify cisplatin-DNA 

DRPs in nuclear extracts from the human ovarian carcinoma cell lines A2780, 

OvlP and their cisplatin resistant derivatives, there seemed to be four such 

proteins of 97KDa, 70KDa, 48KDa and 25KDa (K. McLaughlin, PhD thesis, 

Glasgow University). The 97KDa and 48KDa proteins exhibit increased 

expression in the cisplatin resistant OvlPDDP cell line compared to the 

cisplatin sensitive OvlP cells from which they were selected. However there 

is no difference in detectable levels of these proteins between A2780 cells and 

the cisplatin resistant derivative, A2780cp70. This does not however rule out 

the possibility of differential activity of these proteins as DNA damage signal 

transducers. None of the four proteins could be induced by cisplatin exposure
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(McLaughlin PhD thesis, Glasgow university). These proteins could be 

identical to those observed using the gel mobility shift assay or they may be 

entirely different proteins with novel damage recognition sites exposed by 

denaturation. One might wonder whether the 70KDa protein detected on 

South-western blots could represent the 70KDa hSSB subunit, however this 

seems unlikely as the 70KDa DRP was unable to bind to single-stranded DNA 

on South-western blotting. The hSSB protein probably needs to be in a 

complex, constituting 70KDa, 34KDa and 13KDa subunits, in order to show 

DNA binding capacity. This would not happen in South-western blotting as 

the denaturing conditions cause separation of the components of multimeric 

protein complexes.

4.1.4 WHAT ARE HMG PROTEINS AND COULD THEY BE 

RESPONSIBLE FOR B2 COMPLEX FORMATION?

HMG (High Mobility Group) proteins are all less than 30KDa and 

include HMG1 (28KDa), HMG2 (27KDa), HMG 14 and 17 (10-20 KDa) , 

HMG 20 also known as ubiquitin and HMGI/Y, the lOKDa splice variants 

which differ in 11 amino acids which are lacking in HMGY (Eckner & 

Bimstiel, 1989). They interact with DNA and are soluble in 2% TCA (Einck 

& Bustin, 1985). This latter property is not the case for most other proteins. 

Also as HMG1 has been shown to interact with cruciform DNA (Bianchi et 

al., 1989), it seemed feasible that such proteins might have affinity for other 

structural distortions such as cisplatin-damaged DNA. HMG proteins contain 

a high proportion of acidic and basic residues (Einck & Bustin., 1985). They 

have a well conserved primary sequence and can be extracted from nuclei and 

chromatin with 0.35M NaCl.

The B2 complex detected by gel retardation analysis of cisplatin 

treated oligonucleotides could be formed by a protein containing a "HMG 

box", a region of homology to HMG proteins. Examples of such proteins are
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the transcriptional regulators, LEF-1 (Giese et al., 1991) and hUBF (Jantzen et 

al., 1990). The ACP2 gene from the yeast, Saccharomyces cerevisiae has 19% 

amino acid homology with HMG1 (Haggren & Kolodrubetz, 1988). In fact, 

members of the HMG superfamily can be found in organisms as diverse as 

plants, yeast and animals (Laudet et al., 1993).

4.1.5 AIMS OF THIS CHAPTER

1) In this chapter a purification scheme for the protein involved in B2 complex 

formation will be developed using the gel mobility shift assay to determine 

DRP activity.

2) The identity of the B2 forming protein will be determined.

3) The protein, p53 will be shown to have no intrinsic DRP activity as 

measured by the gel mobility shift assay.



RESULTS

4.2 METHOD DEVELOPMENT FOR PURIFICATION OF A DNA 

DAMAGE RECOGNITION PROTEIN

4.2.1 USE OF THE GEL MOBILITY SHIFT ASSAY TO ASSESS DNA 

BINDING ACTIVITY

The gel mobility shift assay has often been used to detect proteins 

which bind to DNA either non-specifically or to DNA of a particular shape or 

sequence. An example (taken from K.McLaughlin., Phd. thesis, Glasgow 

University) is given in figure 4.2.1 of a typical gel mobility shift assay used to 

examine proteins which have affinity for cisplatin-damaged DNA. Lanes 1 

and 2 were control lanes, loaded with radio-labelled oligonucleotide alone. A 

single band representing free oligonucleotide probe can be seen in these lanes. 

Lanes 3-10 were each loaded with reaction products obtained by incubating 

lpg of HeLa cell nuclear extract with the radioactive oligonucleotide, 2aG7. 

In lane 3, unplatinated 2aG7 (DS) was used and no complex observed. When 

2aG7 that had been platinated (PDS), and had thus acquired cisplatin-DNA 

adducts, was used instead (lane 4), 2 other major bands were seen which were 

named Bl and B2. This chapter is concerned with analysing the B2 complex. 

The Bl complex has been shown to contain hSSB protein (Clugston et al.,

1992).

Lanes 5, 6 and 7 were loaded with similar components to lane 4 but 

with the inclusion of increasing amounts of "cold" calf thymus (CT) DNA 

which had no effect on formation of either complex. When "cold" calf thymus 

DNA containing cisplatin-DNA adducts was used as a competitor (lanes 8- 

10), there was a disappearance of both Bl and B2 complexes. This 

demonstrates that the proteins involved in formation of these complexes have 

specific affinity for cisplatin-damaged DNA.
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FIGURE 4.2.1 An Example Of A Gel Mobility Shift Assay
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This example of a gel mobility shift assay (section 2.8) is adapted from K. 
McLaughlin PhD thesis, Glasgow University. 5x 1(F d.p.m. of 2aG 7 either treated with 
cisplatin (lanes 2 & 4-10) or untreated (lanes 1 & 3) was incubated on ice for 30 minutes in a 
final volume of 20pl. lp g  HeLa nuclear extract (section 2.2.3) was included in lanes 3-10. 
Untreated calf thymus DNA was included in lanes 5 (2.5pg), 6 (7.5pg) & 7 (12.5pg). 
Cisplatin treated calf thymus DNA was included in lanes 8, (2.5pg), 9 (7.5pg) & 10 (12.5pg). 
Reaction products were separated out by non-denaturing polyacrylamide gel electrophoresis. 
The gel was dried and exposed to photographic film.
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4.2.2 ASSESSING THE VALIDITY OF ANION EXCHANGE 

CHROMATOGRAPHY AS A METHOD OF DRP PURIFICATION

Anion exchange chromatography was tried out as a method for 

separating the protein involved in B2 complex formation from other nuclear 

constituents. So as to quantify B2 complex formation, the arbitary units "ba" 

(binding activity) will be used, where lba is equal to the binding activity 

found in 8.6mg of crude extract. A large scale nuclear extract (196 mg total) 

was prepared from OvlPDDP cells (see section 2.2.3) and this had a specific 

activity of 0.116ba/mg and a protein concentration of 8.6mg/ml. Anion 

exchange chromatography was carried out as described in section 2.6.2 using 

172mg of this crude nuclear extract as a starting material, a total of 32 

fractions were collected. An equal volume (3pl) of each fraction was assayed 

by comparison to extracts with known B2 complex-forming ability using the 

gel mobility shift assay (section 2.8). Lanes 1-18 contain fractions 3-7 then 

20-32, a negative control which lacks cellular extract was contained in lane 21 

and positive controls of OvlPDDP TCA supernatant and crude nuclear 

extract were loaded on lanes 20 and 22 respectively. Fractions were chosen for 

inclusion in this assay based on the elution profile obtained during anion 

exchange chromatography.

Most B2 complex forming activity is eluted in fractions 27-32 (lanes 

13-18) with peak activity in fraction 28 (lane 14). The total protein content of 

these 6 fractions was estimated as 16.8mg and the total activity was 9ba as 

quantified by comparison to crude nuclear extract. Therefore specific activity 

of these 6 fractions once pooled, was 0.54ba/mg indicating a 5 fold 

purification. Use of an anion exchange column can be used to separate the B2 

complex forming activity although it is not especially efficient.
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FIGURE 4.2.2 A Gel Mobility Shift Assay Of Anion Exchange Fractions
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The proteins in 172mg of crude OvlPDDP nuclear extract (section 2.2.3) were 
separated using a gradient of 100% buffer A (0.1M NaCl, 0.02M Tris -pH 7.6) to 100% buffer 
B (2M NaCl, 0.02M Tris-pH 7.6) on a MonoQ^M column (section 2.6.2). Gel mobility shift 
analysis was carried out (section 2.8): 5x 10^ d.p.m. of 2aG7 treated with cisplatin was 
incubated for 30 minutes on ice in a final volume of 20pT 3pil of fractions 3-7 then 20-32 
were included (lanes 1-18). 3pil of an anion exchange fraction with known DRP activity was 
included in lane 19 as a positive control. 3 pi of 2% TCA soluble OvlPDDP nuclear proteins 
(lane 20) and 3 |wl of crude, nuclear extract (lane 22) were also used as positive controls. 
Reaction products were separated out by non-denaturing polyacrylamide gel electrophoresis. 
The gel was dried and exposed to photographic film.
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4.2.3 THE USE OF TCA TREATMENT AS AN INITIAL CLEAN UP 
STAGE FOR DRP PURIFICATION

Due to an apparent similarity in certain properties between the B2 

complex forming protein and the HMG class of proteins, which are soluble in 

2% TCA unlike most proteins, solubility in TCA was examined as a possible 

method of separation. TCA treatment of nuclear extracts was carried out as 

described in section 2.6.1 and proteins were analysed for DRP activity by gel 

mobility shift assay. The results of such an assay using a TCA treated 

A2780cp70 nuclear extract are depicted in figure 4.2.3. Lanes 1 and 2 are 

control lanes with lane 1 containing unplatinated 2aG7 and lane 2 containing 

platinated 2aG7. No complex is detected in these lanes. In lanes 5 and 6, 1 pi 

of TCA supernatant was incubated with unplatinated or platinated 

oligonucleotide respectively. Binding was only seen when platinated 

oligonucleotide was included indicating that this binding activity was specific 

for cisplatin-damaged DNA. In lanes 3 and 4, lpl of resuspended TCA 

precipitate was included instead of supernatant. It was expected that the 

pelleted proteins would represent all other nuclear proteins except for the TCA 

soluble varieties and so no B2 complex forming activity would be present. On 

the contrary 12 fold more activity was seen in lane 4 compared to lane 6 but 

due to the concentrated nature of the pelleted proteins, this accounts for a 

fraction of total nuclear activity. Some non-specific binding to unplatinated 

oligonucleotide was seen in lane 3 but this had a lower mobility than the 

cisplatin-damage specific activity observed with the supernatant in lane 6. 

Thus most, but not all of this DRP is found in the TCA soluble fraction of a 

nuclear extract.

When 17.2mg of crude nuclear OvlpDDP extract was treated with 

TCA, the supernatant had an affinity for cisplatin-damaged DNA of 6.4ba/mg 

representing a 55 fold purification when compared to crude nuclear starting 

material (table 4.2.1). The DRP activity of this supernatant displayed a
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FIGURE 4.2.3 DRP Activity In A TCA Supernatant
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The proteins in a crude A2780cp70 nuclear extract (section 2.2.3) were treated with 
2% TCA (section 2.6.1) and TCA soluble proteins (2ml) separated out by spinning in a 
microfuge. The pellet was resuspended in 20pl. Gel mobility shift analysis was carried out 
(section 2.8): 5x 1(P d.p.m. of 2aG7 either treated with cisplatin (lanes 2, 4 & 6) or untreated 
(lanes 1, 3 & 5) was incubated for 30 minutes on ice in a final volume of 20(al. 1 (̂ 1 of TCA 
pellet was included in lanes 2 & 3 and 1 [il of TCA soluble proteins were included in lanes 5 & 
6. Reaction products were separated out by non-denaturing polyacrylamide gel 
electrophoresis. The gel was dried and exposed to photographic film.
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similar mobility (fig. 4.2.2 lane 20) to that of crude nuclear material (fig.

4.2.2 lane 22) and to the anion exchange fraction used as a positive control 

(lane lp), when these extracts were concomitantly subjected to gel mobility 

shift analysis. Also one can discern no Bl complex formation by the TCA 

supernatant. When 4.5pg of this TCA supernatant was loaded and run on a 

20% polyacrylamide gel only 2 bands close to the 18KDa and 28KDa size 

markers were discernible following coomasie and silver staining. TCA 

treatment of nuclear extract was thus selected as the initial stage in the 

purification scheme and OvlPDDP TCA supernatant was subjected to further 

separation protocols.

4.2.4 USING CHROMATOGRAPHIC TECHNIQUES TO FURTHER 

PURIFY A DRP FROM OTHER TCA SOLUBLE PROTEINS

The OvlPDDP TCA supernatant detailed in section 4.2.3 was loaded 

onto an anion exchange column and proteins were eluted as described in 

section 2.6.2. Fractions were examined for activity by gel mobility shift assay 

(fig. 4.2.4). Lane 1 contains platinated oligonucleotide alone, lane 2 contains 

platinated 2aG7 incubated with crude nuclear OvlPDDP extract as a positive 

control and lanes 3-15 contain fractions 1-13. Activity was found to be in 

lanes 7-13, which when pooled had a specific activity of 7.5ba/mg giving a 64 

fold purification compared to crude extract. These 5 pooled fractions were 

then used for a further purification strategy, heparin column chromatography.

Heparin column separation was performed as recorded in section 2.6.3 

using pooled anion exchange fractions of an OvlPDDP nuclear TCA 

supernatant. 16 fractions were collected and analysed by gel mobility shift 

assay (fig. 4.2.5 lanes 1-16) using an extract-free incubation as a negative 

control (lane 19), also positive controls of OvlPDDP TCA supernatant (lane 

17) and crude nuclear extract (lane 18). Specific activity was 21.2ba/mg thus 

use of this scheme resulted in a 183 fold purification.
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FIGURE 4.2.4 DRP Aclivitv In TCA Treated Anion Exchange Fractions
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The proteins in 17.2mg of crude OvlPDDP nuclear extract (section 2.2.3) were 
treated with 2% TCA (section 2.6.1) and TCA soluble proteins separated out by spinning in a 
microfuge. Proteins were further separated using a gradient of 100% buffer A (0.1M NaCl, 
0.02M Tris -pH 7.6) to 100% buffer B (2M NaCl, 0.02M Tris-pH 7.6) on a M onoQ ™  
(Pharmacia) anion exchange column (section 2.6.2). Gel mobility shift analysis was carried 
out (section 2.8): 5x 10^ d.p.m. of 2aG7 treated with cisplatin was incubated for 30 minutes 
on ice in a final volume of 20pl. Lane 1 was loaded with a negative control which contained 
no cell extract, 3pl of OvlPDDP nuclear extract was included in a positive control reaction 
(lane 2) and 3pl of fractions 1-13 were included in lanes 3-15. Reaction products were 
separated out by non-denaturing polyacrylamide gel electrophoresis. The gel was dried and 
exposed to photographic film.

*

«
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FIGURE 4.2.5 DRP Activity In Fractions Which Have Been TCA Treated 
Then Purified By Anion Exchange And Heparin Column Chromatography
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Anion exchange fractions of 2% TCA soluble, OvlPDDP nuclear proteins, which 
had DRP activity (figure 4.2.4) were separated further by heparin-sepharose column 
(Pharmacia) chromatography (section 2.6.3) using a gradient of 100% buffer A (0.1M NaCl, 
0.02M Tris -pH 7.6) to 100% buffer B (2M NaCl, 0.02M Tris (pH 7.6). Gel mobility shift 
analysis was carried out (section 2.8): 5x 10^ d.p.m. of 2aG 7 treated with cisplatin was 
incubated on ice for 30 minutes in a final volume of 20pil. 5 pi of fractions 1-16 were included 
in reactions loaded on lanes 1-16 respectively. Also, as positive controls lp l of 2% TCA 
soluble, OvlPDDP nuclear extract and lp l of crude nuclear extract were included in a 
reactions (lane 17 and lane 18 respectively). Lane 19 was a negative control lane containing 
no cell extract. Reaction products were separated out by non-denaturing polyacrylamide gel 
electrophoresis. The gel was dried and exposed to photographic film.
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TABLE 4.2.1 Partial Purification of A DRP

Eudfteatton
Stage

Total
iVctmty:
units (ba) 

defined below

totein
Concentration

(mg/ml)

totem
Content

(mg)

Specific
Aefiyite

(ba/mg)

M 4
Purification

crude
nudear

2 8.6 17.2 0.116 1

TCA
supernatant

1.91 0.15 0.3 6.4 55

anion
exchange

1.49 0.02 0.2 7.5 64

heparin
column

0.38 0.018 0.018 21.2 183
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4.3 CHARACTERISATION OF A DAMAGE RECOGNITION
PROTEIN (DRP)

4.3.1 ANALYSING THE SPECIFICITY OF THE B2 COMPLEX- 

FORMING ACTIVITY FOR CISPLATIN DAMAGED DNA

It was important to know that the activity responsible for the B2 band 

was specific for cisplatin-damaged DNA rather than being a more general 

DNA binding protein as this affects how relevant the activity is to cisplatin 

resistance. To confirm specificity, partially purified DRP activity obtained by 

HPLC separation of TCA soluble proteins (see section 4.3.2 for details) were 

examined by inclusion of competitor oligonucleotides in a gel mobility shift 

assay (section 2.8).

The results of this assay are presented in figure 4.3.1. Lane 1 contains 

platinated 2aG7 incubated with a known B2 complex-forming activity as a 

positive control. Lanes 2-21 were all loaded with lpil of pooled positive HPLC 

fractions from a TCA soluble portion of an OvlPDDP nuclear extract. No 

competitor was included in lanes 2,3 and 15 and so the retarded band observed 

in these lanes represents the full B2 complex-forming capacity of this semi- 

pure extract. Either lOOng, 500ng or 5pg of "cold" calf thymus DNA were 

included in the incubations loaded on lanes 4, 5 and 6 respectively. The B2 

band seen in each of these lanes does not appear to be diminished by the 

presence of calf thymus DNA . This indicates that the DNA binding activity 

has a preference for the cisplatin treated, radiolabelled DNA as opposed to the 

"cold" DNA without damage. Lanes 7, 8 and 9 were loaded with incubations 

containing lOOng, 500ng or 5pg respectively of "cold", UV treated DNA. 

Some reduction of the B2 band can be detected in lane 9 indicating that B2 

forming activity also has some degree of affinity for UV mediated DNA 

damage.

This competition is not nearly so dramatic as that seen on inclusion of 

cisplatin-treated, "cold" calf thymus DNA. Although 2ng of this (lane 10)
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FIGURE 4.3.1 Specificity Of Semi-Pure DRP Activity For Cisplalin-

Damaged DNA (legend overleaf)

1 33



FIGURE 4.3.1 Specificity Of Semi-Pure DRP Activity For Cisplatin- 

Damaged DNA

2% TCA soluble, OvlPDDP, nuclear proteins were separated by reverse phase 
HPLC (section 2.6.4) on a Biorad Hipore butyl C4  silica-based column (30nm pore, 
4.6x250mm dimensions using a Waters HPLC unit (Millipore, Herts). A zinc lamp with a 
214nm filter was used for monitoring. A gradient was set up of 15%-50% then 50%-100% 
buffer B (0.1% trifluoroacetic acid in acetonitriler^O at a v/v ratio of 95:5 -pH 2.11) was set 
up. Buffer A was 0.1% trifluoroacetic acid in H2 O (pH 0.5). Gel mobility shift analysis was 
carried out (section 2.8): 5x 1 0  ̂ d.p.m. of 2aG7 treated with cisplatin was incubated on ice 
for 30 minutes in a final volume of 20pl. HPLC fractions with DRP activity were pooled and 
lpl included per reaction (lanes 2-21). An anion exchange fraction was included as a positive 
control (lane 1). Competitors were lOOng (lane 4), 500ng (lane 5) or 5pg (lane 6 ) of calf 
thymus (CT) DNA, lOOng (lane 7), 500ng (lane 8 ) or 5pg (lane 9) of UV-treated CT DNA, 
2ng (lane 10), 20ng (lanes 11 & 16), lOOng (lane 12 & 17), 500ng (lanes 13 & 18) or 5pg 
(lane 14) of cisplatin-treated CT DNA and 20ng (lane 19), lOOng (lane 20) or 500 ng (lane 21) 
of transplatin-treated CT DNA. No competitor was included in reactions loaded in lanes 1-3 
or 15. Reaction products were separated out by non-denaturing polyacrylamide gel 
electrophoresis. The gel was dried and exposed to photographic filmjThis work was carried out 
in collaboration with Dr Donald Bisset, CRC Dept, of Medical Oncology.
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produces no marked effect on the B2 band intensity, when 20ng of cisplatin- 

damaged DNA are included (lanes 11 and 16), there is a sharp decrease in B2 

forming activity. When lOOng (lanes 12 and 17), 500ng (lanes 13 and 18) or 

5pg (lane 14) of "cold", cisplatin-damaged DNA are used as competitor, no 

apparent B2 complex can be discerned which suggests that virtually all the 

damage recognition activity is competed out by this DNA due to its higher 

concentration in these incubations. DNA treated with the trans isomer is 

ineffective as a competitor (lanes 19-21) demonstrating how specific this 

affinity is for cisplatin-induced DNA damage. Thus the B2 complex forming, 

damage recognition protein shows a preference for cisplatin-treated DNA 

rather than untreated, transplatin-treated or UV-treated DNA.

4.3.2 IS THE B2 COMPLEX-FORMING DAMAGE RECOGNITION 

PROTEIN A MEMBER OF THE HMG CLASS OF PROTEINS?

As discussed in section 4.1, there are certain similarities between the 

damage recognition protein responsible for the B2 complex seen in gel 

mobility shift assays and members of the HMG class of proteins. Reverse 

phase HPLC can be used to separate out HMG proteins from each other (Elton 

& Reeves., 1986). Therefore this seemed to be an appropriate point to begin 

analysis into the identity of the B2 complex-forming protein.

HPLC separation of 37.3pg of TCA soluble proteins from an 

OvlPDDP nuclear extract was done as described in section 2.6.4 and fractions 

were assayed for cisplatin-DNA damage affinity by gel mobility shift analysis 

as detailed in chapter 2.8. The elution profile is given in figure 4.3.2a and the 

result of the subsequent assay of fractions is shown in figure 4.3.2b. The 

cisplatin-DNA damage recognition activity seen was presumed to be identical 

to that found in the starting material. However a more objective investigation 

into this activity was given in figure 4.3.1.
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FIGURE 4.3.2 HPLC Separation of TCA Soluble Proteins (legend overleaf)
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HPLC Separation of TCA Soluble Proteins

TCA soluble, OvlPDDP, nuclear proteins were separated by reverse phase HPLC 
(section 2.6.4) on a Biorad Hipore butyl C4  silica-based column using a Waters HPLC unit 
(Millipore, Herts.). Monitoring was carried out using a zinc lamp with a 214nm filter. A 
gradient was set up of 15%-50% then 50%-100% buffer B (0.1% trifluoroacetic acid in 
acetonitrile:H2 0  at a v/v ratio of 95:5 -pH 2.11) was set up. Buffer A was 0.1% trifluoroacetic 
acid in H2 O (pH 0.5). The trace obtained is shown (a). Gel mobility shift analysis was 
carried out (section 2.8): 5x 10  ̂ d.p.m. of 2aG7 treated with cisplatin was incubated for 30 
minutes on ice in a final volume of 20pl. Fractions 53-79 (lOp.1 of one fraction/reaction) were 
included in reactions (lanes 1-27 respectively). Reaction products were separated out by non
denaturing polyacrylamide gel electrophoresis. The gel was dried and exposed to 
photographic film (b).



From comparison to similar HPLC traces, the 2 large peaks seen 

between fractions 58 and 66 of the elution profile bore some resemblance to 

HMG1 and HMG2 peaks whereas the region representing DRP activity 

(fractions 53-63) had a similar appearance to a HMGI peak. This indicated 

that the DRP under investigation might be identical to HMGI.

4.3.3 IS HMGI RESPONSIBLE FOR THE B2 COMPLEX DETECTED BY 

GEL MOBILITY SHIFT ANALYSIS?

Due to the result obtained in the previous section, it seemed reasonable 

to further investigate whether the B2 complex was caused by HMGI binding 

to cisplatin-damaged DNA. In order to do this, anti-HMGI antibodies were 

used to examine whether they could bind to the complex, reducing its 

mobility and causing a supershift of the complex to a region further up on the 

gel.

Prior to gel mobility shift analysis (chapter 2.8), 1.5pg of TCA soluble 

proteins (per lane) were incubated for 30 minutes either alone, with 

preimmune serum or with anti-HMGI antibody then for a further 30 minutes 

with protein A. Also 500ng of recombinant HMGI were used in a gel mobility 

shift incubation. The products of these incubations were loaded and run on a 

gel (section 2.8.2) and results of this are shown in figure 4.3.3.

Lanes 1, 2 and 3 were negative control lanes containing unplatinated, 

platinated 2aG7 DNA or unplatinated 2aG7 incubated with TCA soluble 

proteins respectively. Lane 4 contained 1.5pg of TCA supernatant which had 

been incubated with platinated 2aG7, giving rise to a B2 band, as a positive 

control. Lanes 5 and 6 were essentially the same as lanes 3 and 4 but with the 

inclusion of protein A which made no difference to the number or intensity of 

any bands observed. Lanes 7-14 all contained 1.5p.g of TCA soluble nuclear 

proteins incubated with platinated 2aG7. Of these, lanes 11 and 13 also 

contained preimmune serum, lanes 7 and 9 contained preimmune serum and
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FIGURE 4.3.3 HMGI Does Not Bind To Cisplalin-Damaged DNA (1)

z complex-

B2 complex-

free oligo.{
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1.5pg/lane of 2% TCA soluble, OvlPDDP, nuclear proteins were incubated alone 
(lanes 3 & 4), with 25pl of protein A (Amersham International) for 30 minutes (lanes 5 & 6), 
with 2pl of either preimmune serum (lanes 11 & 13) or anti-HMGI (lanes 12 & 14) for 30 
minutes or with 25pl protein A for 30 minutes followed by a further 30 minutes with either 
2pl of preimmune serum (lanes 7 & 9) or 2pl of anti-HMGI (lanes 8 & 10). Gel mobility shift 
reactions were then set up (section 2.8): 5x 10^ d.p.m. of 2aG7 either untreated (lanes 1, 3 & 
5) or treated with cisplatin (lanes 2, 4 & 6-15) was incubated for 30 minutes in a final volume 
of 45pl. Also 500ng of HMGI protein in 5pl of TMS buffer was included in a gel mobility 
shift reaction in the absence of cell extract (lane 15). All incubations were carried out on ice. 
Reaction products were separated out by non-denaturing polyacrylamide gel electrophoresis. 
The gel was dried and exposed to photographic film. Anti-HMGI and pre-immune serum were 
each stored at a 1/500 dilution in PBS, 0.02% sodium azide. AH incubations were carried out 
on ice.
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FIGURE 4.3.4 HMGI Does Not Bind To Cisplalin-Damaged DNA (2)
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0.8pg/lane of 2% TCA soluble, OvlPDDP, nuclear proteins were incubated alone 
(lanes 3 & 4), with lp l of preimmune serum (lane 5) or with lp l (lane 6), 0.1 pi (lane 7), 
0.01 pi (lane 8) or 0.001 pi (lane 9) of anti-HMGI for 30 minutes. Gel mobility shift reactions 
were then set up (section 2.8): 5x 10^ d.p.m. of 2aG7 either untreated (lanes 1, 3 & 10) or 
treated with cisplatin (lanes 2, 4-9 & 11-13 ) was incubated for 30 minutes in a final volume 
of 20pl. Also 500ng of HMGI protein/reaction was included in gel mobility shift reactions 
without cell extract and either without antibody (lanes 10 & 11), with lp l preimmune serum 
(lane 12) or with lp l anti-HMGI (lane 13). All incubations were carried out on ice. Reaction 
products were separated out by non-denaturing polyacrylamide gel electrophoresis. The gel 
was dried and exposed to photographic film. Anti-HMGI and pre-immune serum were each 
stored at a 1/500 dilution in PBS, 0.02% sodium azide.
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protein A, lanes 12 and 14 contained anti-HMGI and lanes 8 and 10 contained 

anti-HMGI along with protein A. There was no difference in the number of 

retarded bands seen in any of these lanes, although they all possessed a band 

not seen for TCA supernatant alone (lane 4). This band has been designated 

the "z complex". As there was no difference in the number of complexes seen 

for incubations including preimmune serum or anti-HMGI, as the B2 complex 

is not diminished in any of these lanes and as recombinant HMGI alone is 

unable to retard the platinated oligonucleotide (lane 15), one must conclude 

that the B2 complex does not involve HMGI.

The results of a similar experiment are depicted in figure 4.3.4. Again 

no shift of 2aG7 oligonucleotide DNA was detected for negative control lanes 

(1-3) but a B2 complex was seen for the positive control, lane 4, which 

contained an incubation of 0.75pg of TCA soluble proteins with platinated 

2aG7. When preimmune serum (lane 5) or anti-HMGI (lane 6) were incubated 

with TCA supernatant before addition of 2aG7, the z complex was seen again 

and this disappeared on dilution of anti-HMGI (lanes 7-9). Recombinant 

HMGI was examined for its capacity to retard platinated oligonucleotide by 

incubation with unplatinated 2aG7 (lane 10), platinated 2aG7 (lane 11), 

platinated 2aG7 and preimmune serum (lane 12) or platinated 2aG7 and anti- 

HMGI (lane 13). Although the entire free oligonucleotide band seems to have 

been shifted upwards in each of these lanes, it is streaky, forms no discrete 

band indicating no specific affinity and there is no evidence for recombinant 

HMGI being capable of forming a B2 complex. Thus HMGI does not seem to 

be the protein involved in B2 complex formation.

4.3.4 HMGI IS INVOLVED IN FORMATION OF THE B2 COMPLEX

To examine whether HMGI might be responsible for the B2 complex 

which one detects with the gel mobility shift assay, a similar experiment to
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FIGURE 4.3.5 HMGI Binds To Cisplatin-Damaged DNA
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0.75pg/lane of 2% TCA soluble, OvlPDDP, nuclear proteins were incubated with 
lp l of anti-HMGI for 30 minutes on ice before addition of radiolabelled DNA (lanes 7 & 8). 
Gel mobility shift reactions were then set up (section 2.8): 5x 10-̂  d.p.m. of 2aG 7 either 
untreated (lanes 1 ,3 , 5, 7 & 9) or treated with cisplatin (lanes 2, 4 , 6, 8 & 10) was incubated 
for 30 minutes in a final volume of 20pl. 0.75mg of 2% TCA soluble nuclear extract was 
included in reactions without antibody (lanes 3 & 4) and with lp l anti-HMGI added at the 
same time as DNA (lanes 5, 6). Also lOpg of HMGI protein was included in gel mobility 
shift reactions (lanes 9 & 10). All incubations were carried out on ice. Reaction products were 
separated out by non-denaturing polyacrylamide gel electrophoresis. The gel was dried and 
exposed to photographic film.
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FIGURE 4.3.6

a) A South-Western Blot b) A South-Western Blot 
Probed with Probed with
Unplatinated 2aG7 Platinated 2aG7

f 28 KDa

17.5 KDa
15.5 KDa

HMGI HMG2 A2780 HMGI HMG2 A2780

1 2  3 1 2  3

South-western blotting (section 2.5.6) was carried out on lp g  of HMGI (lane 1), lp g  
of HMG2 (lane 2) and 50 pg of A2780 nuclear extract (lane 3): Proteins were separated on a 
5-15% polyacrylamide gradient gel and transferred to a nitrocellulose filter which was probed 
with 2x10^ d.p.m/ml of either untreated (a) or cisplatin-treated 2aG 7 (b). Protein sizes were 
estimated using prestained molecular weight standards, BRL.
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those described in section 4.3.3 was carried out using an anti-HMGI antibody 

and recombinant HMGI. Results of this are presented in figure 4.3.5. Lanes 

1, 2 and 3 are negative control lanes loaded with unplatinated 2aGl, 

platinated 2aG7 or unplatinated 2aG7 which had been incubated with 0.75pg 

of TCA soluble proteins. Lane 4, the positive control lane, was loaded with an 

incubation of 0.75pg of TCA soluble proteins and platinated 2aG7 and this 

clearly demonstrates B2 complex formation. When anti-HMGI was included 

in the incubation at the same time as 2aG7, no additional complex was 

detected (lane 6). However, when anti-HMGI was incubated with the proteins 

for 30 minutes prior to 2aG7 being added, a supershift of the B2 complex was 

perceived (lane 8). Also lpg of recombinant HMGI was able to retard the 

platinated 2aG7 (lane 10) but not the unplatinated version (lane 9). This data 

suggests that HMGI is the protein responsible for the B2 complex attained by 

gel mobility shift analysis of nuclear proteins.

Recombinant HMGI and HMG2 proteins were also examined for their 

affinity for platinated DNA by South-western blotting (section 2.5.6). Either 

lpg HMGI, lpg HMG2 or 50pg crude A2780 nuclear extract were 

electrophoresed through a polyacrylamide gel, blotted onto nitrocellulose and 

the blot was probed for binding by unplatinated 2aG7 (fig. 4.3.6a) then re

probed with platinated 2aG7. No binding was detected with the unplatinated 

oligonucleotide but a faint band was seen in the 25KDa region for A2780 

extract (lane 3 of fig. 4.3.6b) and a more intense band observed for HMGI 

(lane 1) and HMG2 (lane 2). The HMGI band has slightly slower mobility 

than the HMG2 band or the band in the A2780 lane but small differences in 

mobility between nuclear extract proteins and recombinant proteins could be 

accounted for by post translational modification. This data suggests that 

HMGI and HMG2 are able to bind specifically to platinated DNA under 

denaturing conditions.
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4.3.5 AN INVESTIGATION INTO WHETHER p53 HAS AFFINITY FOR 

CISPLATIN-INDUCED DNA DAMAGE

In order to examine whether p53 or proteins which bind to p53 have 

affinity for cisplatin-damaged DNA, immunoprecipitated p53 protein was 

analysed for DNA damage recognition capacity. Also in the hope of co- 

precipitating any proteins responsible for transducing the DNA damage signal 

to p53 protein and thus causing induction of p53 protein levels, lysis was 

carried out with and without a prior cisplatin treatment. Semi-confluent A2780 

or A2780cp70 cells were lysed with high salt lysis buffer in 175cm2 flasks 

immediately after a lhour, lpM cisplatin dose or a medium change in the case 

of control cells. Lysates were split into 3 equal portions and each of these was 

used for immunoprecipitation reactions (section 2.6.5) with one of the 

following antibodies, PAb419 (a control antibody), PAb240 (reactive with 

mutant p53 protein) or PAb DO-1 (reactive against both mutant and wild-type 

p53 protein).

Immunoprecipitated proteins were separated and examined by Western 

blotting as described in chapter 2.5. The results of this are shown in figure 

4.3.7. No p53 immunoreactivity was detected for A2780 cells (lanes 1-6). This 

was expected as A2780 has very low levels of p53 protein. No p53 was 

detected for A2780cp70 proteins immunoprecipitated with the control 

antibody (lanes 7 and 8). Some p53 protein was precipitated from A2780cp70 

cells by the mutant specific antibody (lanes 9 and 10) but not as much as with 

the pantropic DO-1 antibody (lanes 11 and 12). There was no difference 

between levels of p53 protein precipitated from cisplatin untreated and treated 

cells (lane 9 compared to lane 10 and lane 11 compared to lane 12 

respectively) as p53 protein levels had not been given sufficient time to 

respond to the DNA damage. Thus detectable levels of p53 protein were 

precipitated from A2780cp70 cells by PAb 240 and PAb DO-1 but not 

PAb419 or from the A2780 cell line.
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FIGURE 4.3.7 Immunoprecipitation Of p53 Protein

1 2 3 4 5 6 7 8 9 10 11 12 13 
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A2780 A2780cp70 HT29

Immunoprecipitation (section 2.6.5) was performed on cells which had been given a 
lpM , 1 hour cisplatin dose an hour beforehand (lanes 2, 4, 6, 8, 10 & 12) or control cells 
(lanes 1, 3, 5, 7, 9 & 11) followed by separation of proteins on an 8% polyacrylamide gel. 
Western blotting (section 2.5) of immunoprecipitated p53 protein from A2780 (lanes 1-6), 
A2780cp70 (lanes 6-12) and lOOpg of crude cell lysate from HT29 cells (lane 13) as a 
positive control was carried out. Extracts were immunoprecipitated with the antibodies PAb 
DO-1 (lanes 5, 6, 11 & 12), PAb 240 (lanes 3, 4, 9 & 10) and PAb 419 (lanes 1, 2, 7 & 8). 
PAb DO-1 is a pantropic anti-p53 antibody, PAb 240 is specific for mutant p53 and PAb 419 
is an irrelevant control antibody. For Western blotting, the primary antibody was CM1 at a 
1/200 dilution and the secondary antibody was anti rabbit Ig horseradish peroxidase from 
Dako, Aylesbury, at a 1/150 dilution. Protein sizes were determined by comparison to 
prestained size markers from BRL.
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FIGURE 4.3.8 DRP Aclivity Of p53 Immunoprecipitates
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Gel mobility shift analysis (section 2.8) was carried out: 5x 1(P d.p.m. of 2aG7 
treated with cisplatin was incubated for 30 minutes in a final volume of 20pl. 8pg of O vlP  
nuclear extract was included as a positive control (lane 1). Immunoprecipitated proteins from 
A2780 (lanes 2-7) and A2780cp70 (lanes 8-13) cells were included. A 1 hour, lp.M cisplatin 
dose had been given to certain cells, 1 hour before immunoprecipitation (lanes 3, 5, 7, 9, 11 & 
13). Extracts were immunoprecipitated with PAb 419 (lanes 2, 3, 8 & 9), PAb240 (lanes 4, 5, 
10 & 11) or PAb DO-1 (lanes 6, 7, 12 & 13). All incubations were carried out on ice. Reaction 
products were separated out by non-denaturing polyacrylamide gel electrophoresis. The gel 
was dried and exposed to photographic film.
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The immunoprecipitated proteins were then assessed for the ability to 

bind platinated 2aG7 DNA by gel mobility shift assay (section 2.8). The 

results of this experiment are depicted in figure 4.3.8. Lane 1 contained the 

positive control, an incubation of a crude nuclear OvlP extract with known 

DRP activity and platinated 2aG7 oligonucleotide. Lane 14 contained the 

platinated oligonucleotide alone as a negative control. All of the 

immunoprecipitates obtained contained a DRP with similar mobility to the B2 

complex and another DRP activity designated the "x complex". These 

proteins have probably been precipitated as background proteins, due to their 

relative abundance, by binding to the G protein used in the 

immunoprecipitation protocol. No difference in DRP bands can be discerned 

between those precipitates which showed p53 protein immunoreactivity (lanes 

10-13) and those which did not (lanes 2-10). Therefore this experiment 

provides no evidence for a cisplatin-DNA damage recognition capacity 

inherent to p53 protein or any proteins tightly complexed to p53 protein.
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4.4 DISCUSSION

4.4.1 PURIFICATION OF A DNA DAMAGE RECOGNITION PROTEIN

Progress was made in developing a purification scheme for separating 

the protein responsible for the B2 complex seen on gel mobility shift analysis, 

from other nuclear components. TCA treatment was the most efficient stage, 

giving a 55 fold purification fold with respect to crude nuclear extract. The 

subsequent anion exchange chromatography and heparin column 

chromatography gave a final 183 fold purification compared to crude, nuclear 

extract. A heparin column was used as it is thought to mimic DNA in shape 

and should therefore be relevant to purification of a DNA binding protein. In 

retrospect, the use of reverse phase HPLC and custom made cisplatin- 

damaged DNA affinity columns may have been worth further investigation as 

possible purification stages. However, once the protein of interest had been 

identified as a HMG protein, purification was no longer a priority. Partially 

purified activity retains specificity for cisplatin damaged DNA as shown by 

competition gel mobility shift assay. At times faint bands could be observed 

either just above or below the main B2 complex. These may be other DRPs 

which are not usually detected due to their low intracellular concentration, 

degradation products or multimers of the major B2 forming protein or bands 

formed when oligonucleotide is bound by the protein and released as it 

progresses through the gel.

4.4.2 THE DISCOVERY THAT THE B2 COMPLEX-FORMING 

ACTIVITY IS A HMG PROTEIN

TCA treatment followed by reverse phase HPLC indicated that HMG 

1, 2, 14 and 17 were unlikely candidates for the DRP involved in B2 complex 

formation, from comparison with other HPLC traces of HMG proteins. 

However this can only be used as a rough guide-line rather than firm evidence 

as different cell lines will obviously give varying HPLC traces. Antibodies
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specific for a particular HMG protein were utilised to show that the protein 

was a genuine HMG protein. Using an anti HMGI antibody in the gel mobility 

shift assay did not result in a supershift of the B2 complex. Therefore this 

antibody did not recognise the protein involved. An extra band was seen on 

inclusion of either preimmune or immune serum and this was presumed to 

represent another DRP native to the preimmune serum rather than a supershift 

of the B2 complex.

An antibody which recognises HMGI however, was able to give a 

supershift of the B2 complex when included in a gel mobility shift assay. As 

no preimmune serum was available this is not conclusive alone but taken with 

the fact that recombinant HMGI protein displayed affinity for cisplatin- 

damaged DNA this suggests that HMGI is the protein which causes B2 

complex formation. Furthermore HMGI has been shown to have specific 

binding activity for 1,2-intrastrand crosslinked d(GpG), d(ApG) adducts and 

l,3-d(GpTpG) adducts (Pil & Lippard., 1992). HMG 1 and 2 can be purified 

using a combination of ion exchange chromatography and cisplatin-damaged 

DNA affinity chromatography (Hughes et al., 1992) and HMG2 is able to bind 

DNA damaged by cisplatin, carboplatin or iproplatin (Billings et al., 1992). 

Also human cDNA clones encoding a protein of predicted MW 81 KDa which 

contains a HMG box comprising 75 amino acids with 47% homology to 

HMGI have been isolated (Bruhn et al., 1992). This protein, named SSRP1 

recognises cisplatin induced DNA distortions. The murine homologue of 

SSRP1 is thought to be involved in immunoglobulin recombinational 

signalling (Shirakata et al., 1991). Other proteins which posses a HMG box 

and have cisplatin-DNA damage affinity are the 80KDa yeast protein encoded 

by the Ixrl gene (Brown et al., 1993) and the human transcriptional control 

protein hUBF (Treiber et al., 1994). This latter protein exhibits a similar 

affinity for cisplatin-damaged DNA as it does for its natural target, the 

ribosomal RNA promoter. It has been suggested therefore that cisplatin
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adducts may titrate hUBF away from its site of action thereby representing 

another mechanism by which cisplatin mediates cellular toxicity.

HMGI and 2 are thought to be involved in maintaining chromatin 

structure but a requirement for these proteins in transcription of class II genes 

such as trout protamine, human B-globin, adenovirus 2 major late promoter 

and herpes simplex virus (HSV) thymidine kinase has been demonstrated 

(Singh et al., 1990). Also by binding to cruciform structures caused by 

negative supercoiling, HMGI alters the DNA conformation. This may allow 

RNA polymerase to continue along its route thereby permitting transcription 

to occur. Possibly, tolerance of cisplatin could be attained in a similar manner 

if HMGI were able to bend cisplatin damaged DNA to resemble undamaged 

DNA in shape. The ability of both HMGI and HMG2 to recognise cisplatin- 

damaged DNA under the denaturing conditions of South-western blotting 

lends support to the theory that the 25KDa protein observed in human, nuclear 

extracts using this technique, is also involved in B2 complex formation.

4.4.3 NO CISPLATIN-DRP ACTIVITY CAN BE DISCERNED FOR P53 

PROTEIN

Gel mobility shift analysis of immunoprecipitated p53 protein suggests 

that p53 does not have inherent cisplatin-damage recognition capabilities nor 

do proteins tightly complexed to p53 protein. If they did, when p53 specific 

antibodies were used in the gel mobility shift assay, one would expect to see 

additional bands to those where immunoprecipitates of the irrelevant antibody, 

PAb419 were used. This does not happen but such findings do not eliminate 

the possibility that DRPs bind p53 transiently or that several intermediate 

signal transducers convey the DNA-damage message to p53 protein which 

then becomes stabilized. Also the gel mobility shift assay may not be sensitive 

enough to detect proteins with DRP activity that are expressed at a low level.
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CHAPTER 5: GENERAL DISCUSSION

5.1 DNA DAMAGE RESPONSE PATHWAYS AND CISPLATIN 

SENSITIVITY

5.1.1 DNA DAMAGE RESPONSE INE.COLI

The bacterium, Rcoli is able to repair DNA damage which could 

prove toxic, by various means , the best characterized being the "ABC 

exinuclease". In this response pathway, a dimer of UvrA forms, which then 

binds to a UvrB molecule and the complex reacts with DNA. UvrA dissociates 

from the DNA and it has been postulated that the UvrB which is bound to the 

DNA permits UvrC association (Orren & Sancar, 1989). UvrC nicks the DNA 

strand and excised nucleotides are then replaced using UvrD, polymerase I 

and DNA ligase. This response pathway is effective in removal of a variety of 

DNA adducts including cisplatin induced d(GpG) lesions. Mutant strains of 

E.coli such as uvrA6, uwB5 or uvrC34 which are defective in excision repair 

of cisplatin-damaged plasmid DNA, are also highly sensitive to cisplatin but 

not transplatin (Beck et al., 1988). It would seem that DNA damage response 

is important in determining cisplatin sensitivity in this organism.

5.1.2 DNA DAMAGE RESPONSE IN S. CEREVISIAE

Many genes with an involvement in DNA damage repair have been 

found for the yeast S.cerevisiae by the use of mutants which were 

hypersensitive to UV or ionising radiation. These genes have been categorized 

into three epistasis groups on the basis of whether double mutants were 

synergysticaly sensitive. The RAD 3 epistasis group is involved in nucleotide 

excision repair. The RAD 52 group is responsible for recombinational repair 

and the RAD 6 group of gene products carry out post-replication repair. For a 

review of the genes involved in DNA repair in S. cerevisiae see Freidberg et

1 53



al., 1988. Also in S.Cerevisiae, an enzyme known as photolyase exists which 

catalyses the removal of pyrimidine dimers from the DNA in a light dependent 

reaction. The gene encoding the apoenzyme, PHR1, is induced in response to 

certain DNA-damaging agents (Sebastian et al., 1990). Also yeast photolyase 

has been demonstrated to have DRP activity (Patterson & Chu, 1989). Again 

DNA repair is vital to the survival of this organism after exposure to DNA 

damaging agents.

5.1.3 DNA DAMAGE RESPONSE IN HIGHER EUKARYOTES

In multicellular organisms such as humans, the survival of individual 

cells is no longer a priority. Indeed unwarranted cell survival would be 

detrimental to the health of the organism. Thus DNA damage response 

pathways in multicellular organisms would probably have additional functions 

to those of single-celled organisms. As well as repairing DNA damage, it 

would be beneficial to the organism to have a means of aborting cellular 

survival in the incidence of excessive damage.

Analysis of diseases such as xeroderma pigmentosum provides some 

clues concerning the DNA damage response in humans. Extreme sensitivity to 

UV light, pigmentation abnormalities and a high incidence of cancer are 

characteristic symptoms of this autosomal, recessive disorder. XP cells are 

deficient in DNA repair including repair of cisplatin mediated lesions as 

measured by reactivation of a cisplatin-damaged CAT reporter construct (Chu 

& Berg, 1987). Cell lines derived from xeroderma pigmentosum patients are 

also more sensitive to cisplatin than normal human cells (Plooy et al., 1985). 

Thus sensitivity to cisplatin in eukaryotic cells also correlates with cellular 

repair capacity and one could extrapolate from this that resistant cells would 

have particularly efficient DNA repair mechanisms. Enhanced repair has been 

reported for certain cisplatin resistant cell lines. For instance the cisplatin 

resistant human, ovarian adenocarcinoma line A2780cp70 cells been shown to
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incorporate 2-3 fold more 3H thymidine, a measure of unscheduled DNA 

synthesis, than their more sensitive parental cell line, A2780 (Lai et al., 1988).

In response to insurmountable DNA damage, mammalian cells are 

proposed to undergo apoptosis and a possible pathway by which this may 

occur is represented below in figure 5.1.1. If cells were able to by-pass this 

pathway in some way, then resistance to DNA-damage inducing agents such 

as cisplatin would arise.

FIGURE 5.1.1. A Hypothetical DNA Damage Response Pathway
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In this mechanism, DNA damage such as that elicited by cisplatin 

would cause changes in a signal pathway culminating in induction and 

activation of p53 protein and subsequent p53-dependent apoptosis. The 

response pathway may involve DRPs in the initial stages of DNA-damage 

signal transduction. The signal pathway could also have elements in common 

with repair pathways. DRP binding to DNA could stimulate activation of 

enzymes or kinases within the cell, which at a low level would enhance repair 

and once a threshold level were surpassed an apoptotic death programme 

would be initiated. The products of the AT genes could also be involved in 

early stages as cells from AT patients show a delayed or reduced induction of 

p53 protein following DNA damage (Kastan et al., 1992). The final events in 

the DNA response pathway may be carried out by the products of genes 

subject to p53-mediated transcriptional control.

5.2. p53, THE DNA DAMAGE RESPONSE PATHWAY AND 

CISPLATIN RESISTANCE

5.2.1 p53 STABILIZATION FOLLOWING DNA DAMAGE

Induced levels of p53 protein causes cells to arrest in G1 phase of the 

cell cycle in response to DNA damage (Kastan et al., 1991; Kuerbitz et al.,

1992). This may allow time for DNA repair before the genome is replicated at 

S phase in cells which are only mildly damaged. It could also allow 

accumulation of signaling proteins involved in the promotion of apoptosis in 

severely damaged cells. Perhaps such proteins would be titrated out or 

destroyed if cell cycling were permitted to continue.

In this thesis, Western blotting data is presented showing an induction 

of p53 protein in the human, ovarian, adenocarcinoma line A2780 and its 

cisplatin resitant derivative A2780cp70 by both cisplatin and transplatin. Peak 

p53 levels were attained 24 hours after drug removal in both cell lines. The
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lpM, 1 hour dose of these drugs did not result in less than 70% survival, as 

determined by clonogenic assay, so was not overly toxic to the cells. Basal 

levels of p53 protein were 8 fold higher in the resistant line.

High levels of p53 protein are often observed when the p53 gene is 

mutated (Bartek et al., 1990). Immunoprecipitation of p53 from A2780cp70 

was greater with a pantropic antibody (PAb DO-1) than a mutant specific 

antibody (PAb 240). This was not the case for another cisplatin resistant 

human ovarian adenocarcinoma cell line, OvlPDDP, from which equal levels 

of p53 were precipitated by the two antibodies. Direct PCR sequencing 

confirmed that p53 in the A2780 and A2780cp70 cell lines was wild-type 

whereas in the OvlPDDP line and its cisplatin sensitive parental, OvlP, there 

was a mutation at codon 126 giving a cystine to tyrosine substitution. Other 

situations where p53 protein levels are enhanced in the absence of a mutant 

p53 gene have been reported. For instance, high p53 protein levels have been 

detected in the normal tissue of a patient suffering from a familial 

susceptibility to breast cancer (Barnes et al., 1992). Also unusually high p53 

protein concentration has been observed in the cytoplasm of normal, lactating 

breast tissue (Moll et al., 1992) and in normal human skin after exposure to 

UV light (Hall et al., 1993).

Induction of p53 protein by DNA damaging agents, in the absence of 

a concommitentp53 mRNA increase, has been observed (Kastan et al., 1991; 

Fritsche et al., 1993). As p53 protein stabilisation is generally carried out by 

post-translational means, p53 protein stability in A2780 and A2780cp70 

nuclear extracts prepared in the presence or absence of phosphatase inhibitors 

was examined but no difference was detected between these conditions. The 

levels of other cellular proteins known to interact with p53 were also 

examined. Hsp70 has been shown to bind p53 and may remove it from its 

nuclear site of action (Pinhasi-Kimhi et al., 1986; Martinez et al., 1991). 

Western blotting with a Hsp70 specific antibody showed 4 fold higher levels
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of Hsp70 protein in A2780cp70 cell lysates than A2780 lysates. However the 

observation that nuclear extracts of A2780cp70 cells contained extremely high 

levels of p53 protein would suggest that Hsp70 is not responsible for 

stabilising p53 by removing it to the cytoplasm. The altered level of Hsp70 

protein in the A2780cp70 cell line compared to the parental A2780, is 

probably due to reduced p53 protein activity since p53 has been shown to 

repress transcription from the Hsp70 promoter (Ginsberg et al., 1991; Agoff et 

al., 1993). Induction of certain heatshock proteins has been implicated in 

cisplatin resistance. This does not however include Hsp70 as neither Hsp70 

protein (Oestereich et al., 1991) or the mRNA (Vikhanskaya et al., 1993) are 

induced by cisplatin exposure.

The high levels of p53 protein detected in A2780cp70 cells may be due 

to interaction with some other nuclear protein which may also prevent p53 

from interacting with its natural targets. By interacting with the N-terminal 

region of p53, another protein would prevent recognition of the amino 

terminal residues by the ubiquitin protein degradation system which is 

probably responsible for the rapid turnover of p53 protein (Scheffner et al., 

1990; Ciechanover et al., 1991). Binding to the N-terminal region would also 

directly interfere with p53 mediated transcriptional activation as N- 

terminal regions are responsible for this activity (O'Rourke et al., 1990; Fields 

& Jang, 1990; Jackson et al., 1993). The MDM2 protein is a possibility but 

the reduced MDM2 mRNA detected in A2780cp70 cells relative to A2780 

cells would argue against such an involvement. Interactions of p53 with other 

cellular proteins has been observed (Maxwell & Roth, 1993) and any one of 

these may be involved in stabilising p53 protein in A2780cp70 cells. Post 

translational modifications of p53 protein may be necessary to activate p53 

and to stimulate p53 degradation and this may involve subtle changes in 

phosphorylation. Also association of p53 protein with other intracellular 

molecules such as RNA could be involved in its recognition by proteases.



5.2.2 DISRUPTION OF p53 MEDIATED APOPTOSIS IN CISPLATIN 

RESISTANCE?

Apoptosis has been reported to be involved in the cyotoxicity and anti

tumour activity of cisplatin and circumvention of the apoptotic machinery may 

result in cisplatin resistance (Eastman, 1990; Barry et al, 1990; Dive & 

Hickman, 1991; Evans et al., 1994; Frankfurt et al., 1994; Ormerod et al., 

1994). p53 is required for apoptosis in certain cell types and in response to 

certain stimuli particularly DNA-damaging agents (Yonish-Roach et al., 1993; 

Lowe et al., 1993a & b; Clarke et al., 1993; Morgenbesser et al., 1994; Zhu et 

al., 1994). This may be due to p53-mediated cell cycle arrest or may be an 

entirely different function of p53. Both p53 induced cell cycle arrest and 

apoptosis are likely to involve the ability of p53 to modulate transcription of 

certain genes. These transcriptional control functions are summarised in table 

5.2.1.

It has been demonstrated that p53 is able to induce apoptosis in the 

absence of transcriptional activation thereby indicating that transcriptional 

repression may be of greater importance in p53 stimulated apoptosis (Caelles 

et al., 1994). Thus the ability of p53 protein to inhibit bcl-2 transcription 

(Myashita et al., 1994a & b) provides an attractive explanation for the effects 

of p53 on apoptosis. Bcl-2 is involved in preventing apoptosis (for a review 

see Korsmeyer, 1992) and so, reduction in the levels of this protein caused by 

p53 mediated transcriptional repression would allow apoptosis to take place. 

Likewise, perturbation of p53 activity would allow cells to avoid apoptosis 

and become resistant to cisplatin. j Also, p53 transcriptionally transactivates 

the box gene, whose product interacts j with bcl-2 and promotes j  apoptosis

j (Miyashita et al., 1994a). The (decision to enter apoptosis mayjdepend on whether

bcl-2 or bax levels j  predominate and p53 seems to J  be directly responsible for

regulating the j balance between these two J proteins.
I 1
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TABLE 5.2.1 Genes Which Respond To p53-Mediated Transcriptional

Regulation

Gene or 
promoter

Activated 
bv wild- 
tvpe p53

Repressed 
bv p53 

wild-tvDe

Gene product 
function

Reference

hRGC + - ribosomes for 
protein translation

Farmer et al (1990)

MCK + - murine muscle 
creatine kinase

Weintraub et al 
(1991)

cyclin G + - ? (probably cell 
cycle control)

Okamoto & Beach 
(1994)

p53 + - tumour suppressor Deffie et al (1993)
GADD45 + - DNA-damage

induced
Kastan et al (1992)

MDM2 + - possible 
transcription factor

Juven et al (1993)

WAF-1 + - inhibits cyclin 
dependent kinases

El-Deiry et al 
(1993)

bax + - promotes apoptosis Myashita et al 
(1994)

minimal
promoter

- + none Seto et al (1992)

hsp70 + "heatshock" stress 
response protein

Ginsberg et al 
(1991) ;Agoff et al 

(1993)
c-fos + AP-1 mediated 

transcription in 
response to serum 

stimulation

Ginsberg (1991)

c-jun - + II If
p53 - + tumour suppressor II

B-actin - + cellular structural 
protein

tt

IL6 - + interleukin 6, a 
cytokine

Sanantham et al 
(1991)

mdrl - + p-glycoprotein 
membrane pump

Chin et al (1992)

Rb - + tumour suppressor Shiio et al (1992)
bcl-2 • + antagonizes

apoptosis
Myashita et al 

(1994)
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5.2.3 ALTERED p53 ACTIVITY IN CISPLATIN RESISTANT CELLS

Transfection of a p53 responsive luciferase construct into A2780cp70 

cells, demonstrated that although there was very little p53 transcriptional 

transactivation by p53 in this cell line, p53-mediated transcription could still 

be induced by DNA damage inflicted using lpM cisplatin or transplatin for 1 

hour. Transcriptional trans activation by p53 can be determined by Northern 

blot analysis of p53 responsive genes such as WAF-1 relative to a control gene 

such as GAPDH. Induction of WAF-1 mRNA in A2780 and A2780cp70 cell 

lines has been examined in this thesis. Cisplatin or transplatin doses of lpM 

for 1 hour caused induction of WAF-1 mRNA which was detectable 4 hours 

after drug treatment and which was increased further up to a 4 fold induction 

by 24 hours after drug removal. Treatment with ionising radiation evoked a 

more rapid response with a 4.5 fold peak induction 4 hours after exposure. 

This is consistent with data from elsewhere showing induction of p53 DNA 

binding activity after DNA damage (Tischler et al., 1993) and induction of 

WAF-1 mRNA by DNA damage (El-Deiry et al., 1994). Also it demonstrates 

that p53 activity is not impaired when p53 protein levels are induced in 

response to DNA damage. WAF-1 mRNA basal levels were 10 fold lower in 

the cisplatin resistant cell line A2780cp70 than in the sensitive line A2780. 

This indicates that there is reduced p53-mediated transcriptional control in the 

resistant cell line.

Transfection of A2780 cells with a mutant p53 expression plasmid, 

pC53-SCX3 (Baker et al., 1990) did not severely alter WAF-1 inducibility by 

p53, however there was a reduction in basal levels of WAF-1 expression by 3- 

fold compared to A2780 cells transfected with the vector alone. Thus 

transfection of A2780 cells with mutant p53 gives a WAF-1 mRNA reduction 

similar to, but not as strong as that seen for A2780cp70 compared to A2780 

cells. Also a 4 fold reduction in levels of mRNA from another p53 responsive
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gene, MDM2 were detected in the cisplatin resistant, A2780cp70 cells 

compared to A2780 cells.

This reduced p53 activity in the cisplatin resistant cell line A2780cp70, 

compared to the sensitive line from which it was derived, may allow survival 

of these cells following DNA damage levels which would be toxic to sensitive 

cells. Reduced p53 transcriptional regulation activity may affect other p53 

functions such as inhibition of cell cycle progression in response to DNA 

damage and p53-dependent apoptosis particularly if one considers that these 

effects are transduced by genes downstream of p53 in the response pathway. 

Examination of the functions of p53 responsive genes summarised in table

5.2.1 would indicate that this may indeed be the case.

A2780cp70 cells also have a reduced capacity to arrest in G1 phase of 

the cell cycle in response to ionising radiation doses of 2Gy or 4Gy as 

determined by FACS analysis. This ds consistent with reduced p53 activity 

in cisplatin resistant cells. Also recent data shows that there is a greater 

induction of non-random DNA fragmentation after ionising radiation exposure 

in the A2780 cells than the cisplatin resistant derivative, A2780cp70. This is 

indicative of reduced DNA damage-induced apoptosis in the resistant cell line 

which may permit resistance of these cells to DNA damaging agents such as 

cisplatin (A.McIlwrath, CRC Dept, of Medical Oncology,personal communications).

It would be interesting to determine how this reduced activity and 

enhanced level of p53 protein is attained. As mentioned in section 5.2.1, this 

may be mediated by mutation of a p53 post-translational modifying enzyme or 

altered expression of a p53 interactive protein. Perturbation of the p53 DNA 

damage response pathway by mutation of the p53 gene or by transfection of 

mutant p53 into cells has been examined elsewhere. A significant correlation 

between the ability to arrest in G1 phase of the cell cycle and the degree of 

sensitivity to DNA damage induced by ionising radiation has been detected in 

various cell lines (McIlwrath et al., 1994). Also transfection of mutant p53 into
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A2780 cells reduced both the ability to arrest in G1 phase of the cell cycle in 

response to ionising radiation induced DNA damage and the cellular 

sensitivity to such damage. Thymocytes from transgenic mice with a mutant 

p53 gene were more sensitive to ionising radiation induced apoptosis than 

thymocytes from wild-type littermates, demonstrating the importance of a 

wild-type p53 gene for DNA damage induced apoptosis (Lee & Bernstein,

1993). Although DNA damage sensitivity of some cell lines seems to be 

indifferent to changes in the p53 signal pathway other mechanisms may 

predominate in different cell types. The lack of correlation between G1 arrest 

and sensitivity following DNA damage in colorectal carcinoma cell lines with 

wild-type or mutant p53 genes (Slichenmeyer et al., 1993) may be related to 

these cell lines expressing particularly high levels of Bcl2 protein and being 

more intrinsically resistant to cisplatin. Analysis of several Burkitts lymphoma 

and lymphoblastoid cell lines showed that there was a significant correlation 

between p53 status, ability to arrest in G1 phase of the cell cycle in response 

to DNA damage and sensitivity to ionising radiation (O'Conner et al., 1993). 

Even so, certain exceptions exist such as the P3HR1 Burkitt's lymphoma cell 

line which is sensitive to DNA damage but lacks wild-type p53 or a radiation 

induced G1 arrest. Some of this data is summarised in table 5.2.2.

Also in this thesis the sensitivity of A2780 and A2780cp70 cells to a 

second cisplatin treatment after an initial pretreatment with lpM cisplatin for 

1 hour was investigated. It was reasoned that a pretreatment might elicit 

changes in cellular compnents such as p53 protein which might protect the 

cells from further DNA damage or prime them for apoptosis in response to 

further DNA damage. No difference in sensitivity was detected between 

pretreated and control cells when the second dose was given at 4, 24 or 48 

hours following the first dose. These are times when one would expect p53 

protein to be induced following the first cisplatin exposure so it would seem
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that the induced p53 protein levels have no bearing on sensitivity to further 

DNA damage elicited after p53 induction.

TABLE 5.2.2 A Summary Of Data From our Laboratory And Others Showing 

The Correlation Between p53 Activity And DNA-Damage Sensitivity 

(ND= not determined)

Cell line p53
status

G1 arrest Sensitivity Waf-1
after DNA to ionising expression

damage radiation level
A2780 (human, ovarian 

adenocarcinoma).
wild-type +++ +++ ++++

A2780cp70 (a cisplatin resistant 
derivative of A2780).

wild-type - + +

A2780 + pC53-SCX3 (a mutant 
p53 expressing plasmid-Baker et 

al, 1990).

mutant p53 
from 

plasmid

+ ++

SW480 ( human, colorectal 
carcinoma-Slichenmeyer, 1993).

mutant - ++ ND

RKO (human, colorectal 
carcinoma-Slichenmeyer, 1993).

wild type +++ -H- ND

RKO +HPV E6 (Slichenmeyer, 
1993).

functionally 
null due to 
HPVE6 

expression.

++ ND

WMN, AG876, SHO (Burkitt's 
lymphoma-O'Conner et al, 1993).

wild-type +++ +++ ND

JLP119, EW36 """. wild-type + + ND
AKAU, ST486 """. wild

type/mutant
- + ND

CA46, Ramos, SG568, Namalwa, 
MCI 16, HWL, JD38

mutant - + ND

P3HR1,M"'. mutant - -H-+ ND
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5.3 DRPs IN DNA DAMAGE RESPONSE AND CISPLATIN 

RESISTANCE

5.3.1 HOW DRPs MAY AFFECT CISPLATIN SENSITIVITY OF CELLS

As mentioned in section 5.1.3, DRPs may be interlinked with the p53 

apoptotic pathway or they may be| involved in a separate response pathway 

concerned with DNA repair. In either case, alteration in their activity or 

intracellular concentration might alter cisplatin-induced cytotoxicity. Even if 

DRPs themselves are not the rate limiting stage in a DNA damage response 

pathway, they merit investigation as possible response pathway constituents. 

Alternatively they may be irrelevant proteins which are trapped by the 

cisplatin molecule and are unable to dissociate from the DNA. This too may 

have an effect on cell survival if cisplatin lesions impede the normal function 

of the DRP.

Data concerning partial purification of a DRP which binds to cisplatin- 

damaged DNA giving rise to the "B2 complex" in the gel mobility shift assay 

has been presented in this thesis. A strategy was developed using treatment of 

nuclear extracts with 2% TCA followed by anion exchange and heparin 

column chromatography. At each stage, binding activity was assessed by gel 

mobility shift analysis. This led to a final purification fold of 183. Other 

purification stages which may have proved useful in purifying the DRP further 

are HPLC and affinity chromatography using cisplatin modified DNA 

immobilised on cellulose. Specificity of partially purified DRP activity for 

cisplatin-damaged DNA over UV damaged or untreated DNA was 

demonstrated by competition gel mobility shift analysis.

5.3.2 HMG PROTEINS AND CISPLATIN RESISTANCE

In this thesis the protein responsible for the "B2 complex" seen on gel 

mobility shift analysis was examined for identity with members of the HMG
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class of proteins. Antibodies reactive with HMGI were unable to give rise to a 

supershift of the "B2 complex" on gel mobility shift analysis, however 

antibodies reactive with HMGI were. Furthermore, recombinant HMGI 

bound to cisplatin-damaged DNA in the gel mobility shift assay, retarding the 

DNA to a similar extent as one would observe for the "B2 complex" itself. 

Both HMGI and HMG2 were able to bind cisplatin-damaged DNA in the 

South-western binding assay. This is consistent with data from other 

laboratories demonstrating an affinity of HMGI and HMG2 for cisplatin- 

damaged DNA (Pil & Lippard., 1992; Billings et al., 1992; Hughes et al.,

1992). DRPs with HMG-homologous regions (HMG boxes) have also been 

reported. These include the 81KDa SSRP1 (Bruhn et al., 1992), the human 

ribosomal upstream binding factor, hUBF (Treiber et al., 1994) and the IXR1 

protein of S.cerevisiae (Brown et al., 1993).

It is feasible that HMG proteins have a role to play in cisplatin 

resistance. They may reduce the DNA distortion caused by the cisplatin-DNA 

adduct allowing increased tolerance of cisplatin damage. They may prevent 

recognition by a DNA damage response pathway leading to apoptosis. The 

mouse homologue of SSRP1 is involved in recombinational control (Shirataka 

et al., 1991) and so, HMG protein interaction with cisplatin-damaged DNA 

may have implications for recombinational repair.

5.3.3 ARE DRPs INVOLVED IN THE p53-MEDIATED DNA DAMAGE 

RESPONSE PATHWAY?

It was of interest to determine whether p53 is able to recognise 

cisplatin-damaged DNA. If p53 or proteins which interact with p53 were able 

to bind to cisplatin adducts, one could envisage a situation where cisplatin 

damage was directly transduced to the p53 mediated apoptotic response 

pathway. In this thesis, p53 immunoprecipitates were assessed for cisplatin- 

recognition by the gel mobility shift assay. Cisplatin treated cells were also
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used in immunoprecipitation reactions in order to determine whether DRPs 

would be induced to interact with p53 protein immediately after cisplatin 

treatment. No difference in DRPs precipitated with p53 specific antibodies or 

a control antibody could be discerned. This does not eliminate the possibility 

that DRPs are involved in the p53 DNA damage response, however. DRPs 

may become altered in conformation upon binding to cisplatin damage and 

this may result in modification of an intermediary protein which transduces 

the DNA damage distress signal to p53 protein.

5.4 THE FUTURE FOR CISPLATIN CHEMOTHERAPY

The indication that an altered p53 response pathway prevents apoptosis 

in response to DNA damage has depressing implications as p53 mutations or 

deletions are common occurances in cancer (Srivastava et al., 1990; Malkin et 

al., 1990; Cunningham et al., 1992; Allred et al., 1993; Bums et al., 1993). 

Thus, mutations of the p53 gene would not only be instrumental in causing 

cancer but would also prevent response to chemotherapy. A greater 

understanding of the apoptotic mechanisms and how p53 activity is modulated 

in vivo will eventually lead to means of modulating the cytotoxicity of 

cisplatin. The use of the genetic supressor element strategy (Gudkov et al.,

1993) may show which domains of p53 are involved in prevention of cisplatin 

resistance and may lead to the discovery of more genes which determine 

efficacy of chemotherapy. A deeper knowledge of the signal transduction 

events linking DNA damage to p53 induction is required. Also the role of 

DNA repair in influencing susceptibility of cells to apoptosis should be 

addressed. Meanwhile hope of circumventing cisplatin resistance is provided 

by the synergistic effect of tamoxifen on cisplatin activity (M^lay et al., 

1992).
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