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SUMMARY
The emphasis of this thesis is on “Comparative Audit”, an area which has become 

increasingly popular in recent years. Firstly, the history of Surgical Audit is explored, 

from the first data collection to the publication of League Tables. It is evident that 

any comparisons of outcome measures must involve adjustments for patient case mix. 

This must be done using a statistical model. The features required of a model for this 

use are described, and a review of available predictive systems in medicine shows that 

none of the widely known predictive models satisfy all of the criteria which are 

appropriate for use in audit.

An interest in Comparative Audit has led to the acquisition of several large data sets. 

The first of these is from the Royal College of Surgeons of England (RCS) 

Comparative Audit Service. The methods of presentation they used originally did not 

utilise the full potential of the data. The change to presentation of death rates as 

relative mortality confidence intervals rather than ranked bar charts allows consultants 

to see at a glance whether their rates are significantly different from the mean value. 

Adjusting these for some aspects of case mix makes a substantial difference to the 

rank order and, at the very least, highlights the folly of publishing League Tables of 

raw mortality rates. The adjustments as they stand are crude for three main reasons. 

The data are of poor quality, and they were never intended for this type of analysis. 

Also, data are collected as totals for consultants rather than for individual patients, 

which limits the potential for modelling. Through a case study, the problems of 

extracting data in the format required by the RCS are investigated, and based on this, 

together with consideration of more technical issues related to statistical modelling, 

suggestions are made as to how the RCS data collection exercise could be improved. 

The issue of modelling based on aggregate data is also explored, using both case 

studies and simulated data. These investigations show that the analyses are still of 

worth, as the adjustments have the desired effect if there are a reasonable number of 

consultants and patients, and if there is no, or only weak, correlation between the 

explanatory variables.
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To progress from the methods introduced for the RCS, it has been suggested that the 

POSSUM system be used for adjustment. This is currently the most widely used 

system, but it fails to meet several criteria for models for use in audit. The second 

data set explored is from a large audit study in Portsmouth, in which the POSSUM 

variables were collected. It emerges that a greatly reduced model of only four 

variables performs as well as the POSSUM model. Using this would not only greatly 

facilitate data collection, but would substantially reduce the amount of missing data, 

and thus diminish the difficulties of bias which arise from this.

It may be that general surgery is too broad and heterogeneous to model, and that 

specific areas should be tackled separately. Analysis of colorectal cancer audit data 

shows that good models can be acquired, and used to compare surgeons. The 

relationship between patient volume and outcome, a related topical question, is also 

investigated with these data.
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1 INTRODUCTION

1.1 What is Surgical Audit?

The Government’s white paper Working fo r Patients (1989) defined medical audit as

The systematic, critical analysis of the quality of medical care, including the 
procedures used for diagnosis and treatment, the use of resources and the 
resulting outcome for the patient.

The word “audit” has its roots in accountancy and thus has connotations of financial

stringency. In fact, its primary concern is the effectiveness of care, rather than

efficiency or economy, although audit should help make the optimum use of the

resources available. Perhaps a preferable term would be quality control or health care

evaluation. The process of audit has been idealised as a loop (Dudley 1974, Shaw

1980, Crombie & Davies 1993). This audit “cycle” consists of three stages. First,

standards must be set, then care should be evaluated and compared with the

standards. Last, practice must be reviewed in the light of this and necessary changes

made. The standards must then be reviewed and the process begun again, completing

the loop. Audit involves collecting data on clinical practice, but differs from clinical

research in that it is a review of practice that may uncover problems which must then

be investigated if their cause is not obvious. Thus audit can lead to research but is not

the same thing.

Surgical audit, then, is the evaluation of the treatment given by surgeons with a view 

to making changes where necessary in the light of information gained.

1.2 Why audit?

The above mentioned white paper stipulated that audit be an integral part of medical 

practice. This goes hand in hand with the greater accountability being demanded of 

doctors. They are now expected to justify resource allocation, and also make 

decisions about future treatment priorities. Thus, information on the effects of 

interventions is necessary. In today’s society, hard facts are crucial for many reasons. 

Surgeons will need summaries showing surgical performance that is in line with their 

contemporaries in defence against litigation if malpractice suits become more
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common. If the Government introduces contracts for surgeons then the information 

will be necessary in the application for renewal.

Quite apart from the legal requirement, the process of audit is beneficial in itself. 

Firstly, it is educational. It promotes discussion, both of raw patient data and results, 

and thus communication of surgical knowledge, which should lead to better 

treatment. It also raises questions which can stimulate research projects. Secondly, 

the very act of recording data may encourage more diligence from surgeons.

Many surgeons are very interested in comparing their results with those of their peers. 

This could either reassure them that they are performing satisfactorily, or they may 

have to investigate the reasons for any discrepancies. Audit information can show up 

any weaknesses and thus should lead to investigation and so policy changes. In 

several cases audit data have been used as evidence by departments making cases to 

health boards for more resources. For example the team in Cambridge under DC 

Dunn was able to demonstrate a continued need for their intensive care unit when the 

authority wanted to transfer the funding to geriatrics (Dunn 1988). The Lothian 

Surgical Audit has successfully effected many policy changes. The data on breast 

disease provided concrete proof of a need for more staff in the unit, and a new 

vascular unit was established after data showed far lower death rates following 

ruptured abdominal aortic aneurysms if operations were carried out by specialists 

(Nixon 1992).

1.2.1 Audit as a way of evaluating interventions

The above mentioned data from the Lothian Surgical Audit on breast disease also 

showed that breast abscess was better treated by needle aspiration and antibiotics than 

by the traditional method of surgical drainage (Nixon 1992). This illustrates the value 

of audit data in comparing surgical interventions, as well as comparing surgeons or 

hospitals. In fact, it has been suggested that in certain circumstances (e.g. Pollock 

1993) careful audit could be a substitute for randomised controlled trials (RCT’s). 

There are many ethical problems in carrying out such trials, and these are particularly 

acute in the field of surgery (Pollock). For example, it is unlikely that a surgeon 

believes equally in, or is similarly expert in each procedure, and, unlike in a drugs 

trial, the implementation of blinding is impossible at the operative stage so bias from
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patient or surgeons’ attitudes can never be eliminated. When comparing two 

treatments, for example laparoscopic cholecystectomy versus the traditional method, 

patients in a trial have to be randomly assigned to one of the methods. However, as 

Neugebauer et al. (1990) found in their prospective trial of gall bladder removal the 

laparoscopic method was so much preferred by the time the surgeons had become 

competent at the technique that it was considered unethical to randomise people to 

the conventional treatment. For random allocation of a patient to a treatment, both 

doctor and patient should have no preference for either one. It has been argued that 

the probability that these two rare events occur simultaneously is so minute that 

RCT’s are ethically impossible. On the other hand, many people see it as unethical to 

introduce any new treatment without subjecting it to a controlled trial, and would go 

so far as to say that patients have a moral duty to participate for the common good 

(Baum 1993). The other reasons for randomisation to treatments, apart from avoiding 

assignment bias are, firstly to balance the treatment groups with respect to both 

known and unknown prognostic factors, and so avoid any other possible biases, and 

second, to provide a basis for performing statistical significance tests, (e.g. Byar et a l 

1976, Schwartz et a l 1980, Gore 1981). This point of view is not held by Bayesians, 

who disagree with the underlying logic of the statistical inference. They would 

advocate that a difference between treatment groups in a trial does not logically imply 

a treatment effect as there could be unknown factors correlated with the treatment 

(Urbach 1993). Thus, since all factors which could be associated with outcome 

should be considered, they do not see randomisation as necessary and would 

recommend historical trials using comprehensive databases. This is very difficult in 

practice however, as at the time of collection of data possible important contributory 

factors may not have been recognised. This problem is not so important for audit as it 

is for a clinical trial situation. As has been illustrated, the information contained in 

audit databases can be very useful in showing up treatment differences where they 

may previously have gone unnoticed, or in conclusively demonstrating very large 

effects, e.g. the introduction of penicillin. A difference between treatments may be 

shown, but there is no way of knowing whether this is caused by the motivation 

behind giving a certain treatment to a certain patient or if there was an actual effect 

(Byar 1980). For example, only patients with good prognoses may have been
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assigned the new treatment. The information recorded on a database is unlikely to 

include changes in diagnostic technology or nursing staff, or other variables which 

could influence results. Then comparisons over time (say the treatments were given in 

series) will involve large biases that cannot be corrected for. In an RCT, a specific 

treatment protocol is defined, whereas usually there are variations in surgical 

technique, the details of which are not recorded. Similarly, there is no way of 

accounting for observer variation when looking at data retrospectively. For example 

in a cancer trial, one pathologist will usually assess all the tumours, whereas a 

database could have input from a number of different experts and the amount of 

variation will remain unknown. As previously mentioned, the random allocation of 

treatments should minimise any differences caused by patient characteristics such as 

age and other contributory factors, both known and unknown. This means we can 

avoid the subjective judgements about important factors that would have to be made 

in order to analyse the database data. Often, a small difference can be clinically 

significant but this is unlikely to be spotted from audit data due to these large 

amounts of random variation in the data or inherent bias in the allocation of 

treatments to certain patients. RCT’s are still necessary to show these small but 

important differences. For audit, we are not usually interested in making a decision 

about treatment so most of the errors are not so important. If changes in technology 

for diagnoses, say, lead to improvements in outcomes these will be evident but it is 

not necessary to estimate the actual effect. The results of audit are more likely to lead 

to a randomised controlled trial than be a substitute for one, and the data from a trial 

could be part of the audit database. The two types of study must co-exist.

1.3 What should we audit?

The definition given in the white paper suggests that we can evaluate three different 

aspects of health care. These were first categorised by Donabedian in 1966, who used 

the following terms (Russell, 1987).

1. S tr u c tu r e .

This is best thought of as the resources available for treatment. It is probably the 

easiest to evaluate. An audit of structure would be, for example, an enquiry into the
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most senior surgeon available at each operation or an assessment of the availability of 

particular equipment. Structure was not included in the remit of the white paper.

2. P r o c e ss .

This is concerned with the actual administration of treatment. It is audited by 

assessing adherence of clinicians to standards, which are consensually agreed 

protocols defining “good” treatment. Process was considered most in the past 

because it is easier to collect data while patients are present rather than have to trace 

them for follow-up data.

3. O u tc o m e .

The final effect of treatment on the patient, and arguably the most important and 

relevant thing to evaluate. It is also the most difficult to define and measure, and it 

takes much more time and money to acquire the data. Examples of outcome measures 

include mortality rates, numbers of complications or patient satisfaction.

Several studies have shown structure and process to correlate poorly with outcome 

(Brook & Appel 1973). Obviously, better facilities and treatment are likely to lead to 

better outcomes, but the small details of medical care that are important in achieving 

good results in individual cases are not easy to measure or summarise. It is the 

inability to gauge accurately the process of care that causes the apparent poor 

relationship between it and outcome. This relationship between process and outcome 

can be compared to the one between explanatory and pragmatic clinical trials. The 

definitions of these are given elsewhere (Schwartz et al. 1980), but basically an 

explanatory trial is designed to answer a specific biological question while any other 

factors are kept as constant as possible as in a laboratory, whereas a pragmatic trial is 

to compare treatments in “real life” and requires many more subjects to achieve 

statistical power. Explanatory trials are required to evaluate individual mechanisms of 

treatment, for example a drug to lower blood pressure. This type of trial could show 

that the drug was effective, but would not show up any actual patient benefits, such 

as a reduced risk of stroke a few years later. Any such real life long term gains would 

have to be investigated using a pragmatic trial. So, just as explanatory and pragmatic 

trials must be undertaken in conjunction, audit of process and structure are
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complementary, depending on the desired purpose of the audit, but it cannot be 

assumed that one can represent the other.

This thesis is concerned with the overall benefit of treatment to patients, rather than 

the mechanics of treatment itself, and so is concerned only with outcome audit. The 

outcome of a treatment is difficult to define, and a relevant measure for an operation 

will depend on the type of procedure being performed. A commonly used outcome 

measure is mortality rate. This is particularly relevant for high risk procedures, but is 

not a good measure for those operations where death is very rare. Mortality is fairly 

easy to define, although there are still problems of whether to measure in hospital 

mortality or deaths within 30 days, say, and care must be taken to compare like with 

like. Other measures are even less clear-cut. There may not be agreement over what 

constitutes a complication, patients may be more easily lost to follow-up in a study of 

recurrence rates and patient satisfaction is very difficult to assess consistently. Raw 

mortality rates, however, are not a useful indicator of surgical calibre although they 

have often been quoted. For example, in 1986 the mortality rates of Medicare patients 

in 6000 US hospitals were published. Certain hospitals could boast exceptionally low 

rates whereas others seemed very high as no account was taken of any possible 

confounding factors such as diagnostic case mix or demographically different patient 

populations. It is well known that high mortality rates can be indicative of a highly 

skilled consultant who is willing to take more risks and, likewise, low rates of a 

technically incompetent one who rarely operates. (Pollock & Evans 1989)

1.4 History of Surgical Audit

1.4.1 Early history

As long ago as 1858, Florence Nightingale realised the importance of collecting 

information on hospital patients. She gathered statistics on the soldiers she was 

treating in the Crimean War, and compared them with statistics for Britain, to show 

the poor conditions in the British Army hospitals. In 1863 she proposed that a record 

be kept of all operations, including outcome, with a view to improving efficiency and 

effectiveness (Devlin, 1990). The first systematic recordings of outcomes after 

surgery were made in Europe in the 1890’s. Two separate studies of inguinal hernia 

repair operations are classic examples of the necessity of this type of work. In 1890
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Dr Haidenthaller published very poor results for Professor Billroth’s Vienna clinic; 

there were 11 deaths out of 195 patients and a 30.8% recurrence rate. As a contrast, 

in 1894, Professor Bassini of Padua published results of 262 operations with no 

deaths and only 7 recurrences in a four and a half year follow-up. These showed that 

large differences can exist, and prompted a rethink in treatment strategy for inguinal 

hernias.

1.4.2 Development in the USA

Most of the initial progress in surgical audit was made in the USA. Although the 

arrangement of medical care is very different from the UK, some important principles 

have been established in the American quest for quality improvement this century. It 

should be remembered that the standard of data collection in US medicine is much 

higher than in the UK, and that large amounts are spent on management. The original 

data collection was concerned with funding, and case notes are detailed and accurate 

and thus useful for audit. However, with the introduction of NHS Trusts and the 

demand for greater accountability in the UK, more similarities will exist with the 

American system.

The publication of the Flexner report on medical education in 1910 inspired the 

beginning of reforms in the United States that changed medical practice 

fundamentally. There were many untrained, incompetent surgeons operating 

unnecessarily for financial gain in poorly equipped hospitals, with no record being 

made of treatment outcomes. The main pioneer of surgical audit was Ernest Codman, 

who described the End Result Idea, i.e. that hospital care could be standardised and 

related to outcomes. He proposed that an independent regulatory body be established, 

and from this the American College of Surgeons (ACS) was formed in 1913. 

Following Codman, the ACS monitored outcomes but the initial survey reported that 

so few hospitals were up to standard that the data were destroyed immediately, and a 

new approach taken for evaluation. A ‘‘minimum standard” was defined and a list of 

establishments fulfilling this was published. The ACS controlled this Hospital 

Standardisation Program for over 30 years, and succeeded in greatly improving the 

care given by hospitals. In 1951, due to the increasing number of medical specialities, 

the Joint Commission on Accreditation of Hospitals (JCAH) was formed. This body
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continued the structure and process audit, approving hospitals attaining minimum 

standards, until 1970 when the Federal Government assumed this “policing” role 

following the introduction of the Medicare scheme. During the late 1940’s there were 

also many independent audits of the process of care, assessing the skill with which 

procedures were performed. A major problem in the USA was still unnecessary 

surgery, and previous studies could not be used as weapons against this as they were 

based on subjective judgements. In 1956, Lembcke took a very significant step 

forward in surgical audit when he introduced his scientific principles of auditing. 

These said that the audit should be carried out internally, with only occasional 

external checks. Objective, verifiable, uniform, specific, relevant and acceptable 

criteria were to be defined for particular procedures, and standards involving 

percentage compliance with these explicit criteria introduced. These standards were 

based on observed values. These principles of Lembcke were very effective in 

decreasing numbers of unnecessary operations, and if surgeons were repeatedly 

shown to be involved in these, their practice was restricted. Thus the ideas became 

associated with punitive action.

In 1972, surgical audit was made a legal requirement in the USA. The JCAH 

standards expanded to cover more quality assessment and several review bodies were 

formed, the most important being the Professional Standards Review Organisations 

(PSRO). In the 1970’s the emphasis was shifting from setting standards at the 

minimum acceptable level to the optimum achievable level. Since these standards 

relied on process of care, and there was no evidence of the effect of this on outcome, 

the evaluation of the end result again came into favour. There was a period of 

controversy over whether to use process or outcome for evaluation, but as the 

complexity of health care measurement became more evident it was realised that 

different objectives require different measures. This illustrates again the parallel with 

clinical trials. A treatment in its infancy must be tested on a small number of people, 

looking at its mechanics without too much consideration of long term outcome. 

Similarly, the process of care had to be satisfactory before it was relevant to assess 

outcome measures. The two types of audit have to co-exist. The PSROs were not 

very successful in improving quality, nor in fulfilling their main purpose which was 

cutting costs. Their main problem was getting doctors to agree with their standards.
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Poor outcome data were dismissed as being due to external factors and not 

themselves. Because the audit cycle was not being completed, i.e. there was no 

feedback, the audit by PSROs only succeeded in collecting large quantities of 

“orphan” data. These organisations were disbanded in 1984 and Peer Review 

Organisations introduced in their place. These “PRO’s” are groups of professionals 

who investigate the notes of all Medicare funded patients in a hospital and check them 

against specified criteria of quality of care and appropriateness of admissions. If they 

judge any procedure to be unacceptable they can withhold funding to the hospital. 

They have succeeded in curtailing spending in hospitals, but it is doubtful whether 

their punitive methods have done much for the improvement of quality. Coinciding 

with the introduction of the PRO’s was the payment of hospitals for their Medicare 

patients by Diagnosis Related Groups (DRG’s). These are 467 groupings which are 

defined by the type of patient, both clinically and in relation to their demand on 

resources. Each case can be allocated to only one of the groups on the basis of many 

factors. DRG’s were criticised for being too heterogeneous for severity of illness, and 

it was observed that there was financial incentive to admit patients at the less severe 

end of the groups, as the same amount of money would be allocated as for a more 

severely ill patient in the same group. For this reason, disease staging was proposed 

(Gonnella et al. , 1984). This was a complex way of assigning a severity stage to most 

diseases, depending on comorbidities present. The coding process was incorporated 

in a software package which could “stage” diagnoses in a hospital discharge database. 

While funding for Medicare patients has demanded development of audit techniques, 

private hospitals are also often evaluated by the state, and the results published. It has 

even been known for hospitals to advertise based on their superior success rates, even 

if these have not properly accounted for case mix.

1.4.2.1 C o m p a r is o n s  b e t w e e n  h o s p it a l s

The first attempt at modelling hospital mortality data was in 1968, when surgical 

death rates were adjusted for age, sex, operation and physical status, and a three-fold 

variation among hospitals was found (Moses 1968). There has been much interest 

since then in comparing hospitals, although not specifically in surgery. In 1986, it was 

made a statutory requirement for mortality rates of Medicare hospitals to be 

published. These were released by the Health Care Financing Association (HCFA) on
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an annual basis, with adjustments for case mix gradually growing in sophistication. 

They used a logistic regression model containing the patient’s age, gender and 

comorbidities, number of hospitalisations in the previous year and whether they had 

been transferred from another hospital. It did not have a measure of severity of 

illness. Dubois et a l produced a model in 1987 that accounted for 64% of variation in 

death rates between the 93 hospitals in their study. They claimed that this model was 

superior to the one used by the HCFA. They calculated ratios of observed to 

expected death rates and identified 11 of the hospitals where the predicted mortality 

rate was significantly less than the observed one, and 9 where it was significantly 

more. The outliers were then investigated further, with mortality rates being broken 

down by diagnosis. In a subsequent study of case notes, more deaths in the high 

outlier hospitals were judged to be ‘preventable’, a finding which had not been 

evident from standard analyses of process of care. Several other models for adjusting 

hospital mortality have been suggested, all authors claiming more predictive power 

than the HCFA method. For example, The Medicare Mortality Predictor System 

(MMPS) (Daley et a l 1988). This, however, was specifically for patients over 64 

years old admitted with stroke, pneumonia, myocardial infarction or congestive heart 

failure, and excluded most surgical patients. In 1990, Green et a l produced a model 

which was based on the HCFA model, but added a severity of illness measure based 

on staging. They found an R2 value of 2.5% for the HCFA model and 21.5% for their 

model, and concluded that it was far superior. It is recognised that higher death rates 

do not necessarily imply poorer quality of care, and that more severely ill patients or 

random chance all have a part to play. These methods are seen as ways to target 

hospitals for further investigation. For surgery, we can learn from the many attempts 

to compare hospitals, but we are interested in results of interventions rather than 

purely the outcome of hospital stay.

1.4.3 Development in the UK

The first attempt to introduce a national audit of outcome was made in 1908 by 

Ernest Groves. At that time the idea of any review of surgical treatment or enquiry 

into postoperative deaths was extremely unpopular with the establishment Groves 

suggested that all hospitals should collect statistics on operations with their immediate
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and remote numbers of deaths. He realised that the information would be invaluable if 

collated nationally on an annual basis, for knowledge on prognoses of procedures, 

incidences of diseases and operations and to show improvements over time. In his 

own survey he found the numbers of institutions collecting statistics to be very poor. 

After publishing his proposals there was no response to them at all and the topic lay 

closed for almost 50 years. Traditionally, there has been some regulation of the 

medical profession through its own institutions, such as the Royal College of 

Surgeons, but formal audit received very little attention until the mid 1970’s.

The earliest national audit in any field was in maternal mortality. Data on obstetric 

deaths have been collected since 1932 and reviewed by experts, greatly improving the 

standard of care in this area.

Anaesthetists have had considerable influence on the development of surgical audit. In 

1956 Edwards et al. published a report on anaesthetic deaths. The national enquiry 

carried out by the Association of Anaesthetists of Great Britain and Ireland in 1980 

concluded that very few deaths could be attributed to anaesthesia alone, and that 

surgeons and anaesthetists should co-operate. A major study in which this was 

achieved was the Confidential Enquiry into Perioperative Deaths (CEPOD) (Buck et 

a l 1987). This was started in 1986 with a pilot study, which pointed out the need for 

an improvement in audit methods. CEPOD found that data from the Hospital Activity 

Analysis (HAA) were rather inaccurate, as has been shown by many authors (Rees 

1982, Whates et a l 1982, Baron 1987). The Scottish equivalent of the HAA was the 

Scottish Hospital Inpatients Statistics (SHIPS). A major problem with these national 

audits is that the information is not available for 2-3 years and so becomes dated and 

of little use for practice (Ruckley 1984).

One of the strongest advocates of surgical audit in recent times was Dudley, who 

published a paper in the BMJ in 1974 entitled Necessity for Surgical Audit. The 

editorial in that edition was also devoted to the topic, and throughout the following 

years interest grew rapidly, with many publications in the literature. There was some 

opposition to the idea from various authors, and by 1980 there was still little evidence 

to show the effectiveness of audit. It was important that audit be seen as educational, 

rather than as a method to apportion blame, and the abrasive methods used in the US
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were looked at as a warning of how not to proceed in this country. Many early audits 

were concerned with workload, but results were compared between two hospitals by 

Gilmore et al. in 1980. Gough et al (1980) noted that computers could make audit 

easier than performing it manually. Probably the best example of a successful audit is 

that of the long running Lothian Surgical audit which was started in 1979. At first the 

data collection was done by hand, then it was transferred to computer. This is the first 

example of a regional audit, and also before this was set up most audits had been of 

process rather than outcome. Originally, only mortality was considered as an outcome 

measure, and then re-operations for complication or surgical failure. The Lothian 

audit team found the OPCS operation codes unsatisfactory, and developed a new 

coding system. The discussion of the mechanisms of audit by C.V. Ruckley in 1984 

was based on the Lothian experience. He pointed out that too much data should not 

be collected, and the importance of the audit cycle. He also stressed the importance of 

good data presentation: “Information must be intelligible, easily digestible and 

attractively presented.’* The report on five years of the Lothian audit (Gruer et al. 

1986) described the trends observed and the benefits achieved by the audit. There 

were significant falls in mortality over the observed period. The data were of great 

use for more than the immediate audit requirements.

Another important audit was started by D. C. Dunn in 1982 (Dunn 1988). He started 

collecting audit data on a microcomputer, along with a diary until it was decided 

exactly what variables were important. Dunnfile was developed gradually in the early 

1980’s, eventually incorporating a word processor for the automatic generation of 

discharge documents (Dunn & Dale 1986). It has since been renamed as the 

Cambridge Audit System and installed in other hospitals. The development of a 

different system for surgical audit has been described by Ellis et al. (1987). This has 

evolved into the Micromed package. Many computer systems have been developed 

and marketed since these original ones, and these will be discussed in more detail 

later.

During the 1980’s there emerged a general consensus as to the importance of audit 

and methods for data collection were much improved. However, the problems of 

simply using complication or mortality rates for comparisons were rarely tackled until 

the latter part of the decade. In 1987, Deans et al. proposed that deaths be classified
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as “avoidable” or “unavoidable”, as consensually agreed by a group of surgeons 

considering all the contributory factors. This was fairer than looking at raw mortality 

rates, but was time consuming and relied on subjective judgement rather than 

scientific methods. Similarly, Avoidable Mortality Rate’ (AMR) was studied in 

Zambia (Heywood et a l , 1989). It was concluded that regular audit meetings would 

help to reduce the rate and that the index AMR would show improvements in 

management over time. The definition of ‘avoidable’ mortality was where there was 

evidence of mismanagement that could account for a death. This type of audit is 

perhaps more appropriate for a developing country, as death rates are higher, and the 

types of mismanagement considered are far less subtle than those usually occurring in 

a country such as the UK. For example, almost 1/3 of the patients in this study who 

died were affected by some sort of administrative factor such as lack of blood. It is 

useful to label deaths as ‘unexpected’ or ‘avoidable’ for audit, as total numbers of 

deaths do not give any information as to how many patients were admitted for 

palliative care. As well as requiring personal judgement, categorising deaths as 

avoidable in this country could be highly politically sensitive, and it is unlikely that 

consultants would release this information themselves. The National Confidential 

Enquiry into Perioperative Deaths (CEPOD), however, released information on 

numbers of these for large samples of surgeons nationally, and response rates were 

very high. Details on every death were submitted to the Enquiry, and these were then 

judged by an independent team of experts as to whether they could have been 

avoidable. The initial study found that 8% of deaths analysed were due to deficiencies 

in surgical care, and between 8% and 25% of all deaths were avoidable. (Buck, 

Devlin & Lunn, 1987). The success of this study lies in the confidentiality. The data 

were all destroyed before publication, and no information on hospital, surgeon, or 

patient was attached to the pro-formas. The study also received “Crown Privilege”, 

whereby none of the data could be used as evidence in court. Very useful lessons 

have been learned from this study, and individuals were never referred to. There is, 

however, increasing demand for information on individual surgeons.

The British Medical Journal published an article at the start of 1989 (Mortensen) 

which recognised the need for audit and a standard definition for mortality, which 

should take into account the condition of the patient using a scoring method. The
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audit comparing four health regions using Dunnfile showed large differences in 

complication rates, but pointed out the variation in case mix and patient types that 

have to be taken into consideration (Dunn et al. 1992). This study was the fore­

runner of the Comparative Audit carried out by the Royal College of Surgeons. 

POSSUM is a scoring system which was specifically devised for use in audit 

(Copeland et al. 1991). It involves calculating scores for operative severity and 

physiological derangement, and including them in a logistic regression model. It will 

be discussed in more detail later. An alternative approach to standardising outcome 

measurements for use in comparisons was proposed around the same time as 

POSSUM by Cale et al. (1991). This involved constructing a “morbidity profile” 

rather than mortality rates.

Interest in comparative audit has grown in recent years, with the Royal College of 

Surgeons introducing their Comparative Audit service (Dunn & Fowler 1992). The 

originators of POSSUM have also been interested in this area (Copeland 1993), and 

have carried out comparative studies in the specific areas of vascular surgery 

(Copeland et al. 1993) and colorectal surgery (Sagar et al., 1994) as well as in 

General Surgery (Copeland et al., 1995). There is, however, still a risk of 

comparative audit data being misinterpreted in the media (Brindle 1994, Toynbee, 

1991,1993) and of them being used for the wrong purposes.

In September 1993, the first NHS hospital ‘league tables’ were published. These were 

of waiting times in the West Midlands. They caused uproar among doctors, who 

claimed that they were unfair and meaningless (Beecham 1993, Jones 1993). Long 

waiting times were blamed on lack of resources, rather than efficiency. There was 

anger at raw figures being published without explanation. The first official national 

league tables were published in June 1994. These awarded between one and five stars 

to hospitals in England on 23 performance measures of waiting time, speed of 

attention in casualty and out-patient departments, cancelled operations and use of 

day-case surgery. They were criticised as being flawed, irrelevant and only measuring 

efficiency rather than effectiveness of care. Purely administrative data have, however, 

inspired far less emotive journalism and public interest than the publication of death 

rates. Tables of mortality rates were released in Scotland in December 1994. The 

mortality rates from cardiac arrest, stroke and broken femur were given separately,
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and wide variations were observed. It was stressed that these were likely to be due to 

differences in patients, especially social class. The use of outcome figures rather than 

information on throughput was a step in the right direction, but there is still a long 

way to go before outcome measures will be sophisticated enough to give a reliable 

indication of quality. A recent study examined methodological issues related to 

mortality league tables, and attempted to adjust for age, emergency admission and 

disease stage (McKee & Hunter 1995). It highlighted several problems with analysing 

the data. The first is that sample sizes are often too small to allow conclusions to be 

drawn, if a particular disease is studied for a year. A longer time period renders the 

information irrelevant. Adjustment for severity is also a problem. These authors chose 

to use the American system of disease staging rather than develop their own model. 

The poor coding of data is also highlighted. A major issue in the discussion of audit 

recently has been the poor quality of data, and the difficulty of extracting information 

from databases (Cleary et al 1994). Much improvement is still required in the 

collection and standardisation of data.

A related area which has received much attention in the literature is the relationship of 

case load with outcome. Many authors have advocated that specialisation of surgical 

units leads to improved treatment, by looking at audit data on number of particular 

procedures carried out. There are some who do not agree that this relationship exists. 

The arguments have been reviewed recently (Houghton 1994). Although there are no 

data unequivocally supporting the need for increased specialisation, there are many 

practical reasons for it. For example patients can be near other people with similar 

illnesses, facilities can be more up to date, and specialists can work together rather 

than being alone in individual units.

1.5 How is audit effected?

The process of audit will obviously depend upon the level at which it is carried out. 

This could be local, as in a single department of surgery, regional as with the Lothian 

Audit, national, like CEPOD or even on an international scale. The level, or breadth 

of participation has been described as inversely proportional to the accuracy and 

usefulness of the audit (Ruckley 1984). This is because it is possible to collect more 

detailed information in a more thorough way from fewer surgeons, the results can be
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seen after a much shorter time and so more effective feedback can be instituted. 

However, the use of large data sets collected nationally can show up differences in, 

for example, mortality rates which could not be spotted on a smaller scale. In any 

case, a decision must be made about which information to collect. All experienced 

practitioners of audit would recommend keeping it as simple as possible to minimise 

workload and maximise accuracy (Pettigrew et a l 1991). The usual method of 

collecting surgical audit data is for surgeons to fill in a form for each patient, the 

information from which is fed into a computer. To illustrate this, we consider the 

following examples, where a national audit, a local audit of General Surgery and an 

audit of a specific disease are described in more detail. We shall return to these audits 

in proceeding chapters, where we shall investigate data from them and discuss the 

methods of collection and analysis.

1.5.1 The Royal College of Surgeons Comparative Audit
The Royal College of Surgeons of England started its Comparative Audit service in 

1990 (Emberton et al. 1991). Forms are sent out to consultant surgeons all over the 

country asking for data on their practice for the year. These involve sections on 

resources such as staff and beds, workload, i.e. numbers of operations and 

admissions, and clinical data which includes patient ages and diagnoses, operations 

and outcomes. There are also specific clinical enquiries into two different procedures 

each year. These have low response rates, but give very useful insights into current 

treatment methods. The information is requested in the form of total numbers in a 

particular category over the year so there is no individual patient data. This means we 

can not, for example, tabulate age by complications. There are many missing values 

due to the differing stages of development of computer data collection between 

hospitals. Not all hospitals have the available equipment to record data so 

participation in the scheme is voluntary. This ensures that the data are more accurate 

as the involved consultants will be interested in the results, and there is little incentive 

to falsify information.

The idea is for surgeons to gauge how well they are performing compared with their 

peers, and to see how local practice differs from that in other areas. Each consultant 

is assigned a confidential number and the data are mostly displayed as histograms in
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rank order. The consultant can then see where he lies in relation to everyone else. If 

for example he sees that his rates of a certain complication are particularly high he can 

go back and investigate the reason for this by looking at his rankings on other factors, 

which will either explain the adverse result or stimulate an investigation into practice 

to find the cause, which can then hopefully be rectified. In chapter 4, we will 

introduce new ways of displaying the data which remove the need for such 

subjectivity.

The comparative audit is designed to be informative and does not seek to incriminate 

people. The fact that the numbers are not traceable to individual consultants means 

there is no incentive to misquote any figures. Since only raw data are used, individual 

mortality rates, say, must remain confidential, as they could be open to 

misinterpretation by the public. If the rates could be standardised they would be more 

useful and would give a truer picture of performance (Dunn & Fowler 1992).

1.5.2 Audit at Glasgow Royal Infirmary

The University Department of Surgery consists of two firms, each with two 

consultants, working in General Surgery. Information on diagnoses, procedures and 

outcomes as well as patient details is entered onto a form by a junior surgeon and 

then the medical secretary transfers it to the computer audit system. The data are used 

to produce GP letters and discharge documents, as well as producing the required 

weekly reports. These list all the discharges and deaths for the week for each firm, 

giving patient name, age and length of stay and their diagnoses, procedures and 

complications. The lists are then discussed in the weekly audit meeting to check for 

accuracy of the information and to pick out any cases with unusual outcomes, or 

those where there is controversy as to the appropriateness of the procedure, for 

further discussion at the monthly meeting. The secretary notes which patients should 

be highlighted and also any data omissions or errors. The monthly meeting then 

consists of a discussion of the previously selected cases. The process is educational 

and should lead to a consensus agreement as to whether a particular outcome could 

have been avoidable, and perhaps stimulate research projects. The third type of audit 

meeting is the annual one, which should consist of a presentation of summary 

statistics for various operations. This could include information on numbers and ages
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of patients, lengths of stay and complication and death rates broken down into 

avoidable and unavoidable. Information can then be compared with previous years or 

other units to spot trends or problem areas. These can then be investigated and 

appropriate adjustments made to clinical practice.

We shall explore data collected from GRI later, in order to gain more insight into the 

problems of collecting and utilising audit data.

1.5.3 The Colorectal Cancer Study
This study is funded by the Clinical Resource and Audit Group (CRAG), which is a 

branch of the Chief Scientist’s Office. We will thus refer to it as the CRAG Study. It 

involves several consultants in Lothian and the West of Scotland, so is a large 

regional audit of a specific disease. Each of the two areas collate their data separately, 

although a standard audit form has been developed to use with every patient. In 

auditing a particular disease, more specific details can be collected than with General 

Surgery. Thus with this study, we have information on the histology of the tumour 

and other variables which are known to influence survival from colorectal cancer. A 

disadvantage of studying a specific area is that it takes longer to accumulate 

substantial amounts of data than with a general study. The purpose of this audit is to 

monitor the outcome from resection of colorectal cancer, and to compare consultants 

and hospitals. This will allow procedures used by those having the most successful 

results to be recommended as standard. The relationship of workload to outcome is 

also of interest. Some results of this study have been published (Consultant Surgeons 

and Pathologists of the Lothian and Borders Health Boards, 1995)

In chapter 6, we shall describe the data, and make comparisons between the 

consultants. We would expect to achieve better models from these data than from the 

RCS data as they are at patient level rather than consultant, and because they are 

from a specific disease rather than from general surgery.

1.6 Computer Systems for Surgical Audit

In the last decade, there have been many software packages developed specifically for 

clinical audit. There are three basic approaches to the set up of computers for audit. 

The first is to have the audit computers completely separate from any administrative
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or other information systems. The benefits of this are that it is cheap, and its 

introduction will not interrupt the day to day running of the department. The second 

approach is to have an audit system which also carries out managerial and 

administrative tasks. These tasks include scheduling and producing patient discharge 

letters and other documents. This type of package is the most common, with most 

commercially available packages falling into this category. These packages include 

Micromed (Medical Systems Ltd), Metabase (Metasa), Proton (Clinical Computing 

Ltd.) and Clinics (ICS). These are more likely to gather a comprehensive data set 

than the stand-alone type of system, as they are part of the administration of the 

department. The third, and most efficient way of running an audit is to integrate it 

with the overall Hospital Information System. This means there is no replication of 

data entry, and patient details are consistent throughout the hospital. However, it is 

expensive and complicated to get such a system in working order. The ideal situation 

would be when all information was entered directly onto computer by clinicians at the 

time of treatment. This will remove the need to fill in forms, and thus obviate the data 

errors that ensue.

1.7 Some problems and limitations in surgical audit

1.7.1 Use of Resources
The audit procedure requires considerable resources, both human and financial, 

especially in the initial stages of setting up a system. Investment must be made in 

computer hardware and software, and perhaps in extra staff. Much thought must also 

be given to the organisation and format of the audit. As well as these, if the audit is to 

be successful, there must be sufficient enthusiasm for it

There have been many data accumulated over recent years on surgical patients, on 

various microcomputer systems. In many cases these data have not been used to their 

full potential, if at all. With all this information available, it seems a great waste of 

effort and money not to exploit it. This work involves looking at some such data to 

see how much information can be gained retrospectively from databases, with a view 

to interpreting any methods for use on an ongoing basis.
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1.7.2 Quality of data

The data are often incomplete and inaccurate but could still give some indication of 

trends in practice if explored. It is to be hoped that, with the introduction of more 

efficient computers and the growth in interest in audit, future data will be far more 

comprehensive. Not all surgeons are entirely enthusiastic about audit, and see it as an 

imposition on top of their workload. It is necessary that surgeons treat the process as 

important, otherwise the data collected is likely to be inaccurate (Ellis 1989). It 

should also be stressed that audit is an educational process and not a “witch hunting” 

one where poor results incur penalties. (Wilkin & McColl 1987). If an audit is 

approached confrontationally, doctors will be tempted to massage their figures for 

fear of recriminations. Entering the data into a computer from cards uses a 

considerable amount of secretarial time and so these cards should be filled in 

carefully. The coding of diagnoses and procedures has been a problem in surgical 

audit. Various systems exist such as the OPCS classifications and Read Clinical 

Coding. Some groups, for example the Lothian Audit found no codes detailed enough 

and invented their own (Gruer et al 1986). Accuracy of the codes is also a problem. 

People may assign a general code rather than looking up the precise one, and severity 

of illness within a particular disease classification can differ. Data are collected in the 

form of “Consultant Episodes”. This makes it difficult to obtain data on individual 

patients, and where patients are transferred within an admission, the number of 

episodes is increased and so the mortality rate appears lower. Record linkage is 

required so as outcome measures such as 5 year mortality can be ascertained more 

accurately.

1.7.3 Presentation of information

There is not much use made at present of graphics in displaying information on a 

regular basis. It would be favourable to use these more often in order that summaries 

could be digested at a glance and particular features of the data could be more easily 

spotted. Pictures would also be far more interesting to look at than the lists of figures 

which are presented currently at audit meetings.

i
i
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1.7.4 Analysis
As previously mentioned, it has not been uncommon for comparisons to be made 

between surgeons or hospitals using raw mortality rates or complication rates. These 

are obviously unfair as bias will be intrinsic due to the non random way in which 

patients are allocated to a particular surgeon. There could be systematic differences in 

the severity and type of operations, age, social class and illness of the patients and so 

on. An object of this research is to take relevant factors into account, by using 

statistical modelling either to adjust the rates for them or to compare observed with 

predicted values. There have been many attempts over the years to predict surgical 

outcome. We shall review some of them from the point of view of use for audit in 

chapter 2. There has been relatively little work done on using risk indices as a tool in 

audit to compare actual numbers of a specific outcome with expected numbers, 

although a need has been recognised since the mid 1980’s (Deans et a l 1987, 

Mortensen 1989). Most of the existing models are unsuitable for use in audit for 

various reasons which will be detailed later. If a good model can be found for a 

procedure that may give some representation of surgical skill, it could be 

incorporated into an existing audit package to give automatic adjusted values.

Surgery, it would seem, is an inherently unpredictable activity. If we consider an 

individual patient there are any number of unforeseen things that could go wrong. A 

statistical model is unlikely to be sensitive enough to predict individual outcomes, 

especially as there are always extreme cases. However, if a series of patients over a 

length of time is considered these things should balance out - the old person who 

makes a remarkable recovery and the teenager who has chronic illness - and the 

adjusted values can be expected to give a good idea of performance. It is important to 

realise that the whole health care process is so complex and that such a large number 

of immeasurable factors contribute towards outcome, that it is impossible to achieve 

total accuracy or even to say that results are completely accreditable to surgeons. 

Nonetheless, an attempt to adjust outcomes for contributory factors must surely be an 

improvement on the situation where people are allowed to judge by crude figures.
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2 PREDICTIVE MODELS FOR AUDIT

2.1  The need for models in audit

As stated in chapter 1, the aim of this thesis is to investigate ways to make 

comparisons between surgeons by studying outcomes. This has been done in the past 

by looking at raw mortality rates. In America, hospitals have been compared in this 

way, and resources allocated in the light of results. This is obviously an inappropriate 

method of assessment due to the large differences between the patient intakes of 

hospitals. This fact has been pointed out by many commentators. Poorer outcomes 

(for example, more patient deaths) may reflect that a more competent surgeon 

receives more complex patients, or it may reflect that a surgeon is not actually 

performing as well as he should. Many studies have shown up large differences 

between surgeons. An example of this is in Fielding’s 1980 study of large bowel 

cancer, where the rate of anastomotic leakage after resection varied among surgeons 

from 0. 5% to 30%. In the colorectal cancer study by McArdle & Hole (1991), Cox 

proportional hazards regression analyses were carried out on their data, and they 

found that the hazard ratios of the surgeons in the study were significantly different 

even after adjusting for significant prognostic factors. For curative resections, for 

example, these adjusted rates varied from 0.56% to 2.03%. In a study of post­

operative wound infection by Mishriki et a l in 1990, ‘surgeon’ was found to be a 

highly significant factor. Evidence of differences in surgical performance is abundant, 

but we require methods of quantifying these differences more objectively, by looking 

at data, and adjusting outcomes for case mix. The scoring of patients can help in 

evaluating quality of care if ‘unexpected’ deaths and survivals are considered (Schein 

1988). Thus, it is necessary to use some form of predictive system to adjust mortality 

rates by comparing observed with expected. The properties of a suitable model for 

audit will now be explored, followed by a review of some of the systems already 

published, with a view to assessing whether they are appropriate for our purposes.
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2.2 Properties required of a statisticai modei for audit

2.2.1 Weil defined and relevant outcome measures

The definition of the outcome measure is a major problem in health care evaluation 

(Delamothe 1994). It could range from a rating of patient satisfaction or quality of life 

through various morbidity measurements to mortality. The most appropriate 

measurement depends strongly on the type of disease and surgical procedure being 

audited. For example, there is no point in using mortality rate as the outcome measure 

for operations on ingrown toenails or varicose veins, but it is suitable for an audit of 

colorectal cancer. In order to achieve reasonable predictions of any outcome, it must 

be well defined and suitable for the population being considered. Although death is 

not subject to the ambiguities of other outcome measures, it is not always clear-cut 

which measure of mortality is appropriate. Postoperative mortality could be 

examined, which gives an idea of immediate technical success. This could be defined 

as death in hospital or within 30 days of operation, but it should always be clearly 

stated. For comparative purposes, 30 day mortality is a fairer measure, as it has been 

shown that in-hospital mortality depends largely on local discharge policies (Jencks et 

al., 1988). It may be more appropriate to study long term survival, say 5 years, as this 

will show the more important success of an operation, i.e. whether the patient had a 

substantial long term benefit. It is unclear how best to balance short term risk against 

the chance of a long term cure, and the shape of the entire survival curve is relevant 

to the evaluation of the outcome.

Definitions become even more difficult when they involve “softer” events such as 

complications. For example, different practitioners vary in what they would define as 

a wound infection. A scrupulous surgeon might record very minor signs of infection, 

and they would then appear to have a very high morbidity rate due to their 

conscientiousness. Complication rates can also reflect local discharge policies, as 

minor problems may go unrecorded if they develop after discharge from hospital.

To date, most well developed models have related to serious medical conditions 

where mortality is a relevant outcome measure. For example, severe head injury 

(Murray et al. 1986), intensive care (Lemeshow 8c Legall 1994) and surgical 

oncology (Deans et al. 1994). More research is required to establish standardised,
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objective measures of outcome in other less severe medical conditions if comparative 

audit is to be refined in these areas.

2.2.2 Easily obtainable and objective prognostic variables.

In order to make the predictions of outcome, a decision as to which variables should 

be included in the statistical model must be made. They should be easily measured and 

not subject to observer bias. For use in audit, it is essential that they should reflect the 

health status of the patient and not depend on their treatment. An extreme case of this 

can be seen in the various reports that the best predictor of outcome is the surgeon’s 

post-operative evaluation of the technical success of the operation. For example, 

Baker et al. (1982), Pettigrew & Hill (1986), Pettigrew, Bums and Carter (1987), 

Hirshberg & Adar (1990), Oguz et al. (1990) and Hartley & Sagar (1994). This is not 

only highly subjective, but could also mask incompetence. Following a technical 

disaster, the surgeon predicts a poor outcome, and not surprisingly the outcome is as 

predicted! Brenner et al. (1989), however, found that only the most experienced 

surgeon in their study could predict more accurately than the simple scoring system 

that they used. Whether or not this is true, for audit we need objective estimates of 

surgical risk in order that fair comparisons can be made, avoiding bias, whether 

conscious or unconscious. For example, any consultant who wished to make himself 

look superior could simply record poor prognoses for all his patients. A more subtle 

manifestation of this can be seen in McArdle and Hole’s paper of 1991 on colorectal 

cancer. A key factor in determining outcome was whether the resection was palliative 

or curative. A curative resection indicates that the tumour was not too far spread and 

that the patient’s health was not critical, and as such is a strong prognostic factor. On 

the other hand, the type of operation is at the discretion of the operating surgeon, and 

could mask differences in skill. One could envisage a situation where a more 

adventurous surgeon would undertake a curative resection resulting in the expected 

good outcome, where a more “timid” surgeon would choose a palliative one with less 

immediate risk, but poor long term outcome. Both surgeons could perform “as 

expected”, but clearly this would not be a sensible comparison.

Some variables measured during the operation would be suitable for inclusion in a 

model, such as size or stage of a tumour. Others, for example blood loss or length of
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time under anaesthetic are more debatable. They could reflect the severity of the 

surgery and so be relevant for the prediction of post operative morbidity. They could 

also be related to the competence of the surgeon and again would give the situation 

where observed performance is very close to expected. For this reason these types of 

observations should not be considered for inclusion in a prognostic index for audit.

A final example of the potential for bias relates to scores based on physiological 

measures. Often such scores are based on the most deranged value observed for each 

parameter over a certain period. With a good standard of care, a patient might be 

stable, whereas poor care may result in more variability. With such variability, the 

most deranged value observed will be more extreme than for a stable patient, and 

again the system inappropriately compensates for poor management. (Boyd & 

Grounds, 1993).

2.2.3 Calibration and Discriminatory Power

A statistical model for predicting outcome will depend to some extent on the intended 

type of audit. The purpose we are mostly concerned with is to use the model with a 

series of patients to compare surgeons or units with each other. In this case, the 

calibration of the model is of great importance. That is, that calculated probabilities of 

death, say, correspond to the actual probability of a patient dying. Thus when the 

predicted probabilities are averaged over a series of patients, this corresponds to the 

actual mortality rate, so that observed and expected rates can be compared.

The other application is to highlight individual patients for discussion, whose outcome 

is not as would be expected. A poorly calibrated model can still give a good idea of 

the relative probabilities of death and enable the patients to be ranked in order of 

survival prospects. This can then be employed in selecting individual cases meriting 

further discussion. An arbitrary cut off level can be chosen for risk, below which any 

unfavourable outcomes can be pinpointed, or above which any unexpected favourable 

outcomes occurred. A model such as this must have good discriminatory power, i.e. 

high sensitivity and specificity. We require a method of predicting what should 

happen so that performance can be assessed by comparing actual and predicted 

outcomes, and thus instigate investigation into the causes of any discrepancies. As 

stated above, accurate probabilities are not required for the purpose of selecting
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unexpected outcomes. It is necessary, however, to quantify the risk in some way so as 

to avoid subjective judgements as described above.

2.3 Statistical approaches to modelling general surgery

There are many statistical techniques that have been used to develop prognostic 

systems. The simplest of these involve using scores as predictors. Several factors are 

given scores for severity and summed to give a total risk score. The individual scores 

are often derived subjectively, using clinical knowledge of the important factors and 

their relative contributions to the risk. For example, the Fitness Score (Playforth et 

al., 1987) consisted of a sum of scores for four different factors, each with possible 

values from 0 to 4 depending on severity. This has been used in Scarborough, where 

patients who die with a score of less than 6 are picked out for discussion. The Fitness 

Score is not calibrated so it is not possible to use it to make comparisons in a series of 

patients. Other scores have been derived from the weights in regression equations, for 

example the physiological and operative severity scores which make up the POSSUM 

scoring system (Copeland et al., 1991). These consist of several factors which are 

given scores of 1, 2, 4 or 8 according to strict guidelines. Other types of systems take 

the actual values of variables such as age and physiological measurements, and 

combine them directly in a regression equation or in discriminant analysis. A classic 

example of this type of model was the Prognostic Nutritional Index of Buzby et al. 

(1980). This model gave risk of complication as a function of four nutrition related 

variables, for the specific area of gastrointestinal surgery. The variables to be 

included in the model are usually selected by a stepwise method.

The majority of work in modelling outcomes has been done using multivariate 

discriminant analysis or logistic regression. Many of the techniques that can be used 

were reviewed by Titterington et al. (1981). Since then more modem, computer 

intensive methods such as neural nets have been developed (Ripley 1994), which 

appear promising for prediction of outcome. Connectionist models have been 

compared favourably to traditional statistical techniques in Intensive Care (Buchman 

et al. 1994) and have successfully been employed predicting outcomes after liver 

transplantation (Doyle et al. 1994). A disadvantage of using neural networks is that 

they are “black box” systems, and the exact relationships between outcome and

41



!»•*r

Hayes CE, 1995. Predictive Models for Audit

prognostic variables cannot be determined. This means that it is not known which 

pieces of information are important, and could lead to wasted effort in collecting large 

amounts of data. An improvement in discrimination is traded for loss of insight (Hart 

& Wyatt, 1990). Most reports on predictive systems evaluate them using sensitivity 

analysis, showing Receiver Operator Characteristic curves. However, very few 

published reports evaluate the calibration of predictive systems, which is important if 

one wishes to compare the expected frequency of a particular outcome over a series 

of patients. I

2 .4  Review of predictive models in medicine

Many attempts to model the outcome of surgery have been made over the years, and 

we shall not endeavour to describe them all here. This review is a summary of the 

major areas of modelling, including some of the most important and interesting 

publications, assessing their suitability for our purposes.

2.4.1 Models in intensive care

Much work in clinical prediction has been done in the area of critical care. This area is 

easier to model than general surgery for two reasons. Firstly, the outcome measure of 

death is more relevant as it is more common. Also, critically ill patients have more 

extreme symptoms which make powerful prognostic factors. Aside from these, the 

data are likely to be more complete as the patients are constantly monitored.

Extremely accurate predictions were made in studies of severe head injuries (Murray 

1986). These facilitated comparisons between international centres which used 

different methods and had very different mixes of patients. The centres also had 

significantly different rates of survival. Using a predictive model calculated from one 

centre’s data on another centre’s patient mix, the exact number of deaths observed in 

that centre was predicted. The system works so well because the prognostic variables 

for recovery from coma are known to be very powerful, and the study population is 

well defined. Also, the short term mortality rate is approximately 50%, making this a 

relevant, sensitive and objective outcome measure. The severe head injury model is 

one of the few areas where good calibration has been demonstrated (Murray et al., 

1986), and where the model has been evaluated formally as a decision aid in the
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clinical context. (Murray et al., 1993). There are other models for prediction of 

outcome in intensive care where the condition is very specific. For example, the 

Abdominal Trauma Index is a score which predicts intra-abdominal sepsis based on 

which organs in the abdomen have been injured. (Moore et al., 1981).

The most widely used system in intensive care is APACHE II, which stratifies severity 

of disease (Knaus et al., 1985). It is calculated using scores for abnormal measures of 

twelve physiological variables, together with age and a score involving the patient’s 

history of chronic health problems. The risk of death is then calculated using a logistic 

regression equation. This has weights for diagnostic category, as death rates were 

found to differ between different diseases, and also a term for whether the treatment 

was emergency. For series of scores, the system is well calibrated and could be of use 

for comparing different units by looking at expected and observed death rates. This 

was done by Knaus in 1988, when he compared ratios of observed and expected 

mortality rates at 13 different hospitals and showed up large differences which were 

not evident from crude rates. The original version of APACHE was based on 34 

physiological variables, and was a subjectively assigned scoring mechanism. (Knaus et 

al., 1981). This was too complicated, as even in an intensive care unit this amount of 

data cannot reasonably be routinely recorded, and was never validated in different 

medical centres. The more recently developed APACHE III has more statistical 

accuracy, as weights were calculated by regression techniques rather than being 

subjectively assigned, and can be used to calculate risk estimates for individual 

patients (Knaus et al., 1991). In APACHE III the probability of death given a 

particular score is dependent on the diagnosis, and these are tabulated in detail.

A problem of modelling intensive care is that one is working with a dynamic problem 

with no “Time Zero” to act as reference. This problem does not arise with the head 

injuries studies, as time of injury gives a definite starting point to which subsequent 

assessments can be related. Timing of entry to the unit depends on local resource 

provision for ICU’s, so patients are not measured at the same point in their treatment. 

APACHE scores can be measured on entry to the unit, but usually the most severe 

score within 24 hours is taken. A small, under funded unit will tend to receive patients 

with more advanced illness, and thus more deranged physiology than a larger, well 

resourced one, where patients may be admitted sooner. If one assumes that early
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admission is crucial in terms of the patients’ prospects of survival, then the differences 

between the units will be masked. The large unit will receive fitter patients who will 

do well, as expected. The small unit will receive more critical patients, who will do 

badly, as expected. Alternatively, if admission to the ICU actually confers little benefit 

in terms of survival prospects, an artificial difference will emerge. The large unit, 

which admits patients with favourable APACHE scores, will achieve the same 

outcomes as the small one which admits patients with poorer values. In either 

situation, organisational differences cause a bias which makes the “adjusted” 

comparisons highly misleading.

It has been pointed out (Boyd & Grounds, 1993) that, since the most extreme values 

within 24 hours of admission are usually used in calculation of an APACHE type 

score, quality of treatment could have an effect on the score. Thus a patient receiving 

good, appropriate treatment could have a lower score than a similar one receiving 

poor inappropriate treatment. These two patients could then have the same 

standardised mortalities despite the difference in quality of treatment. Thus, the 

authors advocate that these types of models which use physiological measurements 

are not suitable for audit.

Accurate predictions of outcome for individual patients were gained from the 

Continuous APACHE Score which basically smoothes out the daily time series of 

APACHE values in an ICU. (Moser et al., 1989). This idea is good for intensive care, 

but could not practically be applied to general surgery as it involves too many 

measurements. Also, admission to ICU is during hospital treatment and not at the 

start, so modelling is quite different. There is an interest in the progress of the patient, 

rather than merely the effect of an intervention as in surgery. With general surgery we 

are dealing with pre-treatment measurements and so a continuous model would not 

be suitable.

2.4.2 General Surgery

We have seen that good predictive models are achievable in critical care medicine, 

although there are still problems with bias. Their overall success is promising, 

although it should be kept in mind that general surgery is very different from critical 

care. There is less difficulty with timing as we are interested in the result of a well
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defined intervention, although even here local organisational policies may be relevant. 

For example, a conservatively managed patient might deteriorate and require 

emergency surgery, when a more timely surgical intervention might have been 

appropriate. Preoperative predictions under either management strategy are likely to 

match outcome, and so, again, the comparison of adjusted outcomes could mask a 

difference in quality of care. Some of the predictive systems in use in Intensive Care 

are fairly complicated. This is acceptable in that field, as constant measurements are 

made, and it is a highly staffed area. For general surgery, simpler models are required. 

As stated previously, there are problems with general surgery in that outcomes are 

not so well defined, preoperative measurements less extreme and data more scarce. 

Even so, there have been many attempts to make predictions in general surgery for 

various reasons, but most often with treatment interventions in mind.

One of the earliest systems was to classify patients into five groups according to 

physical status. The American Society of Anaesthesiologists (ASA) system was 

devised in 1941 (Saklad 1941) and was subsequently updated (ASA 1963). The 

classes range from I (healthy) to V (moribund). They depend entirely on subjective 

observations by physicians and as such are fairly arbitrary. The relationship between 

these classes and postoperative mortality was shown in a very large study by Vacanti 

in 1970. The classifications are still often used, as an indicator of preoperative health 

status.

In 1977, Goldman et al. produced their index to determine risk of a cardiac 

complication or death from any non cardiac surgery. A discriminant analysis was 

carried out to find the significant variables, and a score calculated for use in treatment 

decisions. For audit, it may be of interest to only consider a specific type of morbidity, 

such as cardiac, but this should be related to a specific procedure. In this example, 

looking at the specific complication would not give a good measurement of the 

overall quality of care, but one could envisage circumstances where it would be a 

more sensitive measure.

In the early 1980’s there was much discussion in the literature about the prognostic 

value of variables associated with nutrition. These can be biochemical, anthropometric 

or clinical measurements. The correlation between nutritional status and outcome of
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surgery has been investigated many times (Dempsey et al., 1988). It is generally 

accepted that the relationship exists, although there have been disagreements (Ryan & 

Taft, 1980). In the cited paper by Ryan and Taft, only univariate comparisons were 

made between patients suffering postoperative complications and those who were 

not. The variables used were thought to represent nutritional status, but no actual 

nutritional assessment was made. It is not known whether the relationship is causal, 

or if the symptoms of malnutrition merely reflect the advanced state of the disease. 

This is not important for audit purposes. For example, if serum albumin is found to be 

a powerful predictive factor, it does not matter why its level is low, and if anergy is 

useful for prediction of outcome it is of no consequence to the results whether the 

disease suppressed the immune system or the patient was immunodeficient and thus 

more susceptible to disease.

The main work in prediction involved with nutrition was the calculation of the 

Prognostic Nutritional Index or PNI (Buzby et al., 1980). This model gave risk of 

complication as a function of four nutrition related variables, for the specific area of 

gastrointestinal surgery. It gave good predictions in the prospective trial carried out in 

the same hospital unit, with a sensitivity of 93% for prediction of mortality. The 

outcome measures were well defined and objective and the model may be suitable for 

the categorisation of patients into high or low risk for the purpose of highlighting 

unexpected outcomes. It does not appear to be very well calibrated, so would not be 

useful in predicting actual numbers of deaths. It is also based on a specific type of 

patient, that is those who were considered ‘nutritionally deficient’, although no rigid 

definition of this is given. In a trial in Germany (Kohler et al., 1988), the PNI did not 

seem useful for calculation of risk, although they used different outcome definitions 

for complications from the original study, and their patient population had a higher 

proportion of cancer patients. This suggests using presence of cancer as a predictive 

variable. It has also been suggested that age be included as a prognostic factor in an 

index such as the PNI (Wamold & Lundholm, 1984).

Another similar index, with coefficients calculated by discriminant analysis was 

developed by Harvey et al. in 1981. This included a variable for presence or absence 

of cancer. As with the PNI, it was developed on a specific, critically ill group of 

patients and considers risk of complications and mortality.
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Much of the controversy in this field has been around the suitability of particular types 

of variable for prediction of outcome. Some authors have claimed that morbidity is 

strongly related to anthropometric measurements (Klidjian et al., 1982) and others 

have concluded that they are not at all related (Ramsay et al., 1986 and Pettigrew & 

Hill, 1986). Even more contentious was skin testing with antigens (Meakins et al., 

1980; Christou et al., 1981; Ausobsky et al., 1982; Ottow et al., 1984; Schackert et 

al., 1986). The inclusion of anergy in a predictive index is not very practical from a 

clinical point of view, as it is inconvenient to carry out and thus not easily adopted 

into routine practice.

An easily calculable index involving only two variables was developed in Glasgow 

(Ramsay et al., 1986). The risk is of complication or death where the patients have 

undergone laparotomy, and is a function of age and lymphocyte count. The outcome 

measures are not rigidly defined and so accurate calibration is not likely. An index of 

this sort which had more predictive value would be ideal for audit as it is simple to 

calculate.

Another prognostic index for survival considers only surgical patients aged 80 or 

over. (Krenzien et al., 1989). The variables used are all dichotomous, with the 

exception of age which is grouped into five categories. When a prospective trial was 

carried out to test the model, two of the original variables were no longer significant. 

The predictive accuracy of the index is lower when it takes a high value.

The indices discussed so far were all calculated using discriminant techniques and 

validated using sensitivity and specificity analysis, as well as in prospective trials. 

Many other studies have used regression analysis in order to find the factors with the 

most significant effect on outcome, and thus produced linear predictors. Pederson et 

al. (1990) were mainly interested in the effect of anaesthetic on mortality, but 

naturally this cannot be separated from the surgery effect. Their multifactorial risk 

index can be used to estimate whether an individual’s risk in general surgery is high or 

low. With an overall mortality rate of only 1.2% in the study population, this outcome 

measure is too rare to model accurately.

The analysis of survival of patients after resection for large bowel cancer (Chapuis et 

al., 1985) predicts outcome in a very specific area. Most of the significant variables
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were measured during operation and were related to size and spread of the tumour. 

This type of survival analysis unfortunately demands more follow-up information than 

is routinely collected. However, the use of an area where mortality is more common 

means that it would be easier to model were the data available.

A study where logistic regression analysis was used on a specific population was on 

total gastrectomies for stomach tumours (Miholic et al., 1988). The outcome being 

considered was again mortality. Since the surgical field was so specific, the number of 

patients in the study was rather small (98). The fit was tested by counting the number 

of patients correctly classified as dead or alive. The numbers were quite high, but a 

probability of 0.1 was used as the cut off point, suggesting lack of calibration. The 

area is too small to achieve large enough numbers, and the model would not 

necessarily transfer to other hospitals.

The effect of psychological variables on postoperative length of stay was investigated 

by Boeke et al. in 1991. These include assessments of feelings of anxiety and 

inadequacy. The index involves variables measured after operation so is not suitable 

for our purposes. Using length of stay as an outcome measure can be an inaccurate 

measure of surgical success as it can depend heavily on social factors.

Regression analyses were also carried out by Mishriki et al. in 1990, to find factors 

associated with their chosen outcome of wound infection. This outcome was defined 

very precisely. They found that ‘operating surgeon’ was a significant factor, even 

when included with other explanatory variables. This type of study could be useful for 

an audit of wound infections, but for overall quality of surgical treatment one would 

wish to cover all types of morbidity.

The POSSUM (Physiological and Operative Severity Score for the enumeration of 

Mortality and morbidity) scoring system (Copeland et al., 1991) was specifically 

developed for use in audit, and has been adopted in several hospitals throughout the 

UK. It is fairly complex in that there are two scores - physiological and operative 

severity. Separate risks for mortality and morbidity are calculated from these scores, 

by logistic regression. The physiological score involves twelve factors, some of which 

are not routinely measured or recorded for all patients undergoing general surgery. It 

is also possible that these factors could be affected by treatment. The operative
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severity score consists of 6 items. Two of these are volume of blood lost in millilitres 

and peritoneal soiling, which may be a function of surgical ability as well as the 

technical difficulty of the operation. The models are fairly well calibrated, especially 

for mortality, when tested in the hospital of origin, although for low risk procedures 

the predictions are not good. In fact, the minimum possible value for the risk of death 

obtainable from the published POSSUM equation is 1.08%. This is very high for 

minor procedures, and thus leads to overestimation of the death rate (Whiteley et al., 

1995). This means that any general surgeon, working on a large number of low risk 

cases will have too many deaths predicted by the POSSUM system, leading to an 

unrealistically favourable picture of their performance. This is another potential bias 

which could mask poor performance.

2.5 Discussion

There have been many attempts over the years to predict outcome from surgery - 

some more successful than others. The main ones discussed in this chapter are 

summarised in table 1. Each system is rated according to its properties as required for 

use in audit, with three stars being good and one star poor.

For an optimistic view on surgical prediction see Knaus (1988) who pointed out that 

a few hundred years ago temperature was not seen as a quantifiable entity. Consider 

the following three factors that determine outcome:

• The patient’s ability to withstand the operation

• The severity of the disease and procedure

• The surgeon’s skill (Playforth et al., 1987)

If we predict outcome using data about the patient, while either adjusting for the 

second factor by including severity in the model, or by keeping it constant by 

considering one disease or operation at a time, then comparing observed and 

predicted outcomes should leave only an estimate of surgical skill.

It is important to avoid making comparisons using crude league tables, and rather to 

adjust the outcome rates in some way. As we have seen, this is not an easy task, and 

there is great danger of adjusted values actually masking real differences in quality of 

care.
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3 THE RCS COMPARATIVE AUDIT DATA

3.1 Introduction

The original Comparative Audit study was carried out by Medical Systems Limited, 

the originators of the MICROMED program. In mid 1990 they sent questionnaires to 

all users of the package asking for certain reports on surgical activity in 1989. The 

analysis included 45 general surgeons, covering 49 005 admissions. Each item was 

ranked and displayed in bar chart form. The work is described by Emberton et al. in 

their 1991 paper.

The objectives of the study were to gain an insight into current UK practice, to 

collect large amounts of data on an annual basis, and to allow local results to be 

compared with others. The study should also stimulate surgeons to collect data, and 

lead to some uniformity in data collection. Although it was never intended that this 

study should complete the audit cycle, it should result in quality improvement if 

consultants are motivated by the data to investigate why they are performing 

differently from their peers in any area.

In the above-mentioned paper it is stated that “Since no sampling takes place because 

every patient event is recorded there is little requirement for statistical analysis.”

The data collection process involves only summary data from each consultant and 

individual patient information is lost. Thus we can not relate factors to each other, nor 

do we have an idea of within surgeon variation. This does limit the scope for 

statistical analysis, but it is still necessary if we want to make fair comparisons. The 

practice of ranking rates and proportions gives some indication of performances, but 

the statistical significance of any differences will obviously depend on the numbers of 

patients involved.

This initial study was published in the anticipation that Comparative Audit would 

become more widespread in the future, and that methods of making the comparisons 

could be refined to include some form of standardisation.

Following the initial work by Medical Systems Limited, the Royal College of 

Surgeons of England adopted the cause of the Comparative Audit. They circulated
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forms among their Fellows in 1991, requesting audit results for the year 1990, and 

received 160 completed ones out of the initial 1025 which were sent out. These data 

covered 147 882 admissions, although there were several values missing, and so 

different information was available for each surgeon.

The details of these data have been published (Dunn & Fowler 1992). The paper 

stresses that the size of the database compensates for any irregularities in data 

collection, and that the raw data can be considered reasonably to represent current 

practice. It seems likely, however, that the consultants who return data, who have 

been making an effort to gather information, will be among the most conscientious 

and that their responses will therefore not be representative of the country at large.

One cannot attribute low response rates solely to a lack of interest from surgeons, as 

a more major limitation is the unavailability of the required data in most units. This is 

due to the small number of computer systems in operation, and the inability to extract 

the specified information from a system even if an audit is in place. Those units using 

MICROMED were at an advantage, as the data collection forms were originally 

based on this system and so all the data can easily be obtained using specific built-in 

reports.

The data were presented to a meeting of interested consultants in June of 1991, in the 

form of ranked bar charts for each variable. The participating consultants had each 

been assigned a confidential number, by which they could recognise their data. At the 

meeting they each received a summary printout, telling them where they lay in each 

category so as they could compare their positions with others. They could then, say, 

compensate for the fact that they had one of the highest mortality rates with the 

knowledge that their proportion of emergency admissions was also one of the highest. 

This was very subjective, however, as they could not know of the relationships 

between variables for any other consultants. This procedure of collecting the previous 

year’s audit data and presenting it at a meeting in June has since become an annual 

one.

After attending the Comparative Audit meeting in 1992, where the 1991 data were 

presented, it became apparent to us that there was much room for statistical input. 

The ranked charts gave an idea of the spread of totals, but no real conclusions could
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be drawn by anyone who had not personally contributed data. The organisers of the 

Comparative Audit Service had realised the requirement for some more analysis when 

we approached them with some suggestions of more effective presentation. We 

requested, and were given, the 1991 data, in order to work on the development of the 

methods and to explore their feasibility. Before the 1993 meeting, we acquired the 

1992 data, and analysed it using the new procedures. The data were officially 

presented in ranked charts, as had become customary, but the new ideas were put to 

the consultants present, who approved of using them in the future.

There have been several drawbacks of the data, in that there are many missing values, 

there are only aggregated figures for each consultant, and some of the data are of 

poor quality as information has not been recorded for every patient admitted. We 

should hope that some improvements in data collection can be made in the future so 

that we can have more confidence in the conclusions drawn from any analyses.

The aim of this work, then, is to explore the particular form of data generated by this 

audit and to find more rigorous ways of displaying some of the important factors, for 

use at a meeting of consultants. Individual printouts for each consultant, giving a 

personal summary of data must also be designed. An important step in the 

presentation of these data is to take random variation into account and show 

confidence intervals for mortality, rather than just the rates as has been previous 

practice. We have explored the relationship between the “case mix” variables and 

mortality, in the hope of finding a model with which to adjust these outcome values, 

in order to make fairer comparisons than simply looking at raw mortality. It will be 

shown that this task is rather complicated and that no one model emerges to describe 

the data perfectly. The adjustments do, however, make a substantial difference to 

consultants’ rankings and as such, at the very least, show the absurdity of making 

comparisons without any attempt at accounting for patient variation.

The data from 1991 and 1992 will now be described in more detail, and then, in the 

next chapter, some methods of analysis and presentation discussed.
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3.2 The data

3.2.1 Collection

The data collection forms for the 1991 and 1992 data consisted of the following 

sections.

A Resources

1. Manpower: Percentage of time worked by each grade, e.g. if a registrar
spends half his time working with a consultant he makes a 
contribution of 50% of a registrar to the unit.

2. Beds available
3. Theatre sessions

B Workload

1. Admissions: Total and numbers of emergency, elective and day case
2. Operations Severity defined by BUPA classifications (British United

Provident Association. 1989)
3. Stay nights 

C Clinical Data

1. Ages Number of patients aged in each decade for the 1991
exercise, collapsed to numbers aged 0 to 10,11 to 60 
and over 60 in 1992.

2. Diagnostic groups Number in each of 10 groups

3. Operative groups Number in each of 12 groups. In 1992 an “other
procedures” section was also included.

4. (a) Complications and mortality 
(b) Specific complications

In the above Clinical Data section, it should be noted that the data on age and 

diagnoses were requested for-all admissions, whereas the operative groups included 

only those patients who received surgery. This makes the modelling of postoperative 

outcomes difficult as there is no information on case mix of the operated patients.

There were also more specific clinical enquiries into Cholecystectomies and 

Abdominal Aortic Aneurysms in 1991, and into Colorectal Resections and Open and 

Laparoscopic Appendicectomies in 1992, as part of an ongoing scheme to study 

specific procedures in greater detail. Two procedures of interest are chosen each year 

and analysed in depth by a specialist in that field. It is planned to repeat these 

investigations intermittently so that comparisons can be made over the years. The 

data returned on these were very sparse and will not be considered here.
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It should be mentioned that there was a lack of standardisation in the data collection, 

with some definitions open to subjective interpretation. Also there may have been 

wide variations in the rigour with which information such as the number of 

complications were documented. Even the recording of deaths was not standardised 

at those within 30 days, but was in-hospital mortality which could vary greatly due to 

discharge policies and the type of hospital. This must be kept in mind when making 

any assertions about the data.

3.2.2 The 1991 data

The original data file, as received in ASCII and PARADOX database form from the 

Royal College of Surgeons, consisted of 255 fields, but this was reduced to 138 when 

those regarding the specific enquiries were discarded. This was then trimmed down to 

a file with 83 variables by removing those which could be calculated from others. 

There were 215 records in the file, although the report produced for the meeting in 

June 1992 was on 209 surgeons. The discrepancy was caused by the addition of late 

arrivals to the database, and so an attempt to reproduce the means and other summary 

statistics given in the original report did not produce identical results.

It was observed that several consultants had exactly the same values for every 

variable, and some had fractions of numbers of patients. These were where the data 

had been submitted from a unit as a whole and then divided by the number of 

consultants. Since this gives no more information, these were re-merged to make use 

of the larger numbers of patients. Following this adjustment there were 199 records.

There were many values missing from these 199 consultants’ data, some among 

potentially important variables. For our initial analyses, the outcome measure 

considered was overall mortality, so any consultant with no value for postoperative or 

non operative numbers of deaths had to be excluded. It was decided, also, to include 

only those consultants with complete data for certain variables which, as will become 

clearer later, are useful for modelling mortality. Table 2 shows the numbers of 

consultants left if we omit those with no data for these particular variables.

Another irregularity of the data was that many of the variables which gave numbers in 

separate groups did not correspond with the total number of admissions given for that
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consultant when summed over all the groups. This was especially noticeable for the 

numbers in the 10 diagnostic groups, none of which added to the total number of 

admissions. This is because the diagnostic groups used are not by any means 

comprehensive, and no consultants only treated patients who fitted into one of these 

categories. In fact, if we take the sum of the numbers of patients given in each 

diagnostic group as a percentage of the stated number of admissions for each 

consultant we find the values fairly evenly distributed around 65%, with a value as 

low as 3% and one as high as 127%. This shows that the fact that the groupings are 

not exhaustive does not account for all the discrepancies. It should be noted that the 

groupings were never intended to be comprehensive, but were chosen because they 

were of interest. The correspondences between the totals of the 10 age groups and 

numbers of admissions are better, with most values being fairly close to 100% and a 

mean of 93%. However there are even more extreme values than with the diagnoses, 

of 0% and 154%. Admission status has been most accurately recorded, with few 

totals being different from the stated number of admissions. The discrepancies may 

have been due to the incomplete recording of data, or they could have been due to 

mistakes in the initial hospital data collection, or misreading of figures in the data 

entry at the Royal College.

For analysis of proportions in each group, it had to be assumed that the distribution of 

those patients whose data were recorded was identical to that of those who were not,

i.e.

proportion in group i of variable j= number in group i/E all groups of variable j

This assumption is probably fairly reasonable for admission status and age as the 

differences are mostly very low and the proportion will be very close to the true 

value. For the diagnostic groups, it is rather doubtful as most have totals much lower 

than the number of admissions, due to other diagnoses. We are assuming firstly that 

the spread of risk in unrecorded groups is the same as the spread in the ones which 

have been considered, and less importantly, that the chance of a patient’s diagnosis 

not being recorded, and thus causing the total to be too low could be expected to be 

similar in each group so that the calculated proportions are representative. This is 

unlikely to be true, and this must be remembered when making inferences about
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diagnostic risk. These analyses are preliminary, and would obviously be refined in 

time. We would hope that data collection could be changed to incorporate all 

diagnoses, preferably based on severity rather than anatomy.

Numbers left in study
Variable 1991 1992 both years
total mortality 142 157 188
age 151 189 234
admission status 182 200 256
diagnostic groups 146 195 241
all the above 96 132 163

Table 2: Numbers of consultants remaining when those with missing values for 
particular variables are omitted from the study

The number of admissions per consultant in 1991 ranged from 126 to 7297, with a 

median value of 1160. Seven consultants had no data on number of admissions. The 

median total number of deaths was 24, ranging from 0 to 213, on average evenly 

spread between non- and post- operative fatalities. These gave an overall mortality 

rate of 2.2% with the lowest being 0% and the highest 5.6%, suggesting quite a 

difference between surgeons. Figures 1(a) and 1(b) show the totals over all 

consultants in each age group and diagnostic group respectively, to illustrate the 

overall spread. The number of patients aged 0 to 10, for example, ranged from 0 to 

377 (median 55.5), whereas those in the middle age group numbered 64 to 4404 

(median 578.5) and those over 60 from 56 to 2858 (median 440). It seems that 10 is 

perhaps too low a cut off point for the lower age group.
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0 to 10 11 to 20  21 to 30  31 to 40 41 to 50 51 to 60  61 to 70 71 to 80  81 to 90  over 90

Figure 1(a): Spread of Age Groups (1991 RCS Data)

colorectal breast hepatobil urology arterial o e so p h  hernia appendix endocrine ven ou s

Figure 1(b): Spread of Diagnostic Groups (1991 RCS Data)
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3.2.3 The 1992 data

Similar data forms as were sent out for the 1991 data were circulated in 1993 to 

collect information on practice in 1992. 1004 of these were sent out, and replies 

received from only 208 consultants. The main difference between the pro forma for 

1991 and 1992 was that data were only requested for three age groups instead of ten. 

Only the numbers of patients aged under 10, 10 to 60 and over 60 were requested in 

1992, since they were the only details presented in bar charts the previous year. Also 

more information on outpatients was gathered.

After excluding those consultants with missing values for the required variables 

(mortality, age, diagnoses and admission status) there were 132 remaining so the 

quality of data appeared to have improved slightly from the previous year (see table 

2). One consultant was omitted because there was no value for number of patients 

with endocrine diagnoses, although the rest of the information was complete. The 

other options would have been to include the consultant and assume there were none 

in that category, or to assume the number was the difference between the total 

number of admissions and the total of the other diagnostic groups. As before, many of 

the totals for the age groups and diagnostic groups did not add up to the total 

numbers of admissions so the same assumption was required. The proportion of 

admissions accounted for by the sum of the age groups had a median value of 100%, 

whereas the median for diagnoses was only 63%.

The data were slightly different from the 1991 ones in that less consultant firms 

contributed their total results, but submitted them for individual consultants. This 

meant that the range of number of admissions was smaller (137 to 2776). The median 

number was 1260, and there was no information for 5 out of the 208 consultants. The 

mean mortality rate for the 157 with available data was 2.0%, ranging from 0.0% to 

6.0%. The diagnostic spread was similar to before, and again there were very few 

patients in the youngest age group, with most in the middle group.

3.2.4 The 1991 and 1992 data together

The data files for 1991 and 1992 were reduced to compatible files with the columns in 

the same order, then stacked and sorted in order of consultant number. Since several
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consultants had data for both years these had to be added together. This was done 

using a simple FORTRAN program. After those with missing values for any of the 

variables considered to be important were deleted there were 163 consultants 

remaining. The breakdown of this can again be seen in table 2.

3.3 Case Study: Glasgow Royal Infirmary

We have seen that there are many problems with the RCS data. In order to gain an 

understanding of why this is so, we will now study the audit data collected for 3 years 

from August 1990 in the University Department of Surgery at Glasgow Royal 

Infirmary (GRI). These data give an invaluable insight into the problems of collecting 

audit data in a hospital, and highlight some reasons for the poor quality of the data 

collected by the Royal College of Surgeons. There is a long way to go in the 

standardisation of data collection in hospitals before a national comparative audit will 

be reliable. However, the process is very worthwhile, even if it only serves to bring 

the large differences in data integrity to the attention of those concerned.

The GRI data were retrieved from a now obsolete audit system, which was based on 

the SQL database Oracle 5. There were four copies of the system, one for each 

consultant’s secretary. These had to be individually restored onto a computer, and the 

relevant data base files located and extracted. The files were copied into Paradox 

using the dbms/copy package. There were several technical problems with this as 

many of the files were too large, and so had to be manipulated in Oracle. A large 

proportion (approaching half) of the overall patient data was duplicated several times. 

The database after all four secretaries’ data were combined initially had almost 14000 

records. After the repeat entries and those with no information had been excluded, 

there were data on 7435 admissions. Selected variables were then transferred to an 

Excel worksheet and then analysed using Minitab.

A problem with these data is that a substantial number of patients were admitted 

several times, usually for the same complaint This means that there is a lack of 

independence in the data. It would perhaps be preferable to consider patient episodes, 

where a succession of admissions for the same problem would count as one treatment 

episode. In this way, only the final outcome would be considered, and a more 

accurate reflection of the treatment’s success would be achieved. These episodes
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would be difficult to determine from the current data. In some cases the same patient 

was assigned more than one identification number. Where this has obviously led to 

the same admission being recorded more than once, the extra ones were deleted. It is, 

however, not always possible to tell, so there could have been duplicates remaining in 

the data set.

There are 4 consultants in the team at GRI, and their total numbers of admissions can 

be seen in table 3. These numbers of admissions are the numbers which are available 

on the database, and may not reflect the actual numbers of patients treated during the 

time period, due to the phasing in of the audit system.

consultant # admissions
1 1547
2 2250
3 1610
4 2020

Table 3: Number of patient admissions by consultant - GRI data

The data were originally collected on a card which was designed for use with the 

Micromed system. One of them can be seen in Appendix 1. These cards were filled in 

on admission and the data entered into the computer. The records were then updated 

on discharge. It seems that this updating did not occur on every occasion, as much 

information is missing, and the diagnoses are often vague, for example ‘abdominal 

pain’ or ‘old age’. There are many missing values, due to the data not being entered 

into the computer, or perhaps never being recorded on the form in the first place. 

Table 4 gives the total numbers of missing values for some important variables.

Variable Number missing (% of admissions)
Sex 14 (0.2)
Age 120 (1.6)
Admission Priority 1778 (24)
Admission From 5 (0.1)
Discharge Code 163 (2.2)
Diagnostic Code (Read) 886 (12)

Table 4: Numbers of missing values in GRI Data
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3.3.1 Production of data required by RCS Comparative Audit

In an effort to explore the manageability of the data, and to give a feeling for the 

problems faced by hospitals supplying data to the RCS, it was attempted to rearrange 

the data so as to achieve the information requested by the RCS which are required for 

the presentation methods introduced in this thesis. This involved making several 

subjective judgements on categorisation of patients, which must also have been done 

by consultants around the country.

For example, the variable ‘admission status’ for the RCS data required numbers of 

day case, elective and emergency admissions. The GRI database had two variables 

which could have been related to this. Firstly, ‘admission priority’ which was 

categorised into routine, soon or urgent and secondly ‘admission source’ which 

consisted of 8 categories. These were day case, GP, inpatient, outpatient, re-booked, 

planned, Accident & Emergency and other. Each of these contains useful information, 

but admission priority contained many missing values. The method decided upon for 

classifying patients into the RCS categories is summarised in table 5. This gave only 3 

missing values for status overall. These definitions gave in total 623 day cases, 4382 

elective admissions and 2427 emergencies. These figures are not incongruous with 

those received by the RCS for consultants in England and Wales.

Admission
Priority

Another problem arose with diagnostic categories. Many of the common diagnoses 

do not belong to a group as defined by the RCS. The groups originally chosen by 

them were those thought to be “of some interest”, and are by no means 

comprehensive. Thus many patients are overlooked when diagnostic risk is included, 

for example, those with pulmonary or lymphatic disorders. The risk groups 

considered in the RCS study are likely to be highly inaccurate, as the types of

Admission From
status Day Case others A&E missing
Routine DC elective elective elective
Soon DC elective emergency elective
Urgent DC emergency emergency emergency
missing DC elective emergency emergency
Table 5: Definitions of Admission Status from GRI data
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diagnoses not included are important and could seriously affect the balance of risk 

groups. The diagnostic groups selected by the RCS are based strictly anatomically, 

and do not easily correspond with the Read Codes, which have many more sections 

and separate out cancer. The RCS diagnostic groups include too wide a range of 

risks. For example colorectal diagnoses can include anything from haemorrhoids to 

terminal cancer. With the GRI data, as seen in table 4, 886 patients had no diagnostic 

code given. A further 936 of the codes had no diagnosis in the diagnostic 

classification table. Often the diagnosis could not be categorised, and was unrelated 

to the operation, for example ‘old age’, ‘asthma’ and ‘confusion’. Some diagnoses 

were actually postoperative complications such as wound dehiscence or renal failure, 

and often occurred where no postoperative complication was recorded for that 

admission. This would make the analysis of morbidity rather difficult, as well as not 

providing diagnostic groups for several patients. In an attempt to produce the RCS 

diagnostic categories, new codes were assigned to each of the patients by looking at 

their data, including diagnosis and operation. These codes are as follows.

1 colorectal 6 oesophago-gastric 11 minor others

2 breast 7 hernia 12 pulmonary

3 hepatobiliary/pancreatic 8 appendix 13 lymphatic

4 urological 9 endocrine

5 arterial 10 venous

The first 10 are as used by the RCS, and the last three were created in order to 

include more of the patients. Category 11 includes nail and skin problems, and if no 

diagnosis was recorded, where the procedure was coded as minor. Category 12 

contains lung and respiratory disorders, and 13 incorporates diseases of the lymph 

glands, including cancers. The codes assigned were based mainly on the diagnoses, 

but also on the operations if a specific part of the anatomy was not apparent from 

this. In the 936 cases where no medical term was available for a code, the nearest 

code with a diagnosis was assumed. New codes were assigned to 6943 of the 

patients. Some could not be categorised, including septic shock and alcohol 

withdrawal syndrome. Leukaemia also did not fall into any of the above categories. A 

major problem was in categorising the diagnosis of diabetes mellitus. In some cases
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this seemed to be irrelevant to the procedure carried out, for example a gastro­

intestinal one. If this was the case, it was assumed that the operation gave a clue as to 

the main reason for admission. If no operation was recorded, the diagnosis was coded 

as an endocrine one. These types of coding problems must occur in every hospital, 

and lead to patchy and unreliable data.

This exercise has served to highlight the fact that data should be collected with a 

specific purpose in mind if they are to be of use. Although these data were never 

intended to be included in such a study, they have given an insight as to why the data 

received by the Royal College of Surgeons are so poor. The majority of surgical units 

do not collect data specifically for the RCS study, and so cannot produce the 

information they require. Likewise, the RCS request a large amount of data, mostly 

without a specific reason. If such a national comparative study is to be extended, 

individual hospitals should perhaps add the required categories to their data set so 

that they can easily obtain the values at the end of the year, and the data collected 

should also be changed. We will discuss this further in chapter 5.

In this case data were collected for the weekly audit. This is an audit of in-patients, 

and so, while the data would have been correct at that time, it is likely that the final 

diagnosis for many patients did not reach the computer database. Several problems of 

using these data for a more long term analysis have been shown, for example mistakes 

in diagnosis coding, and missing values, as well as patients with different hospital 

numbers and duplicate entries.

3.4 Original RCS data presentation methods

The 1991 and 1992 data were presented at meetings of surgeons in June 1992 and 

June 1993 respectively. All items, except diagnostic and operative case mix variables 

which were shown as means and ranges, were shown as bar charts with values in rank 

order. Figures 2 and 3 show the types of bar chart display used. A consultant could 

identify himself on the charts, as he had a personalised confidential printout of his 

position for each one. This meant that an individual consultant could assess his 

relative performance by looking at his ranks for different variables. For example, if he 

found his postoperative complication rate was exceptionally high, he could compare 

other factors like proportion of emergencies or patients over 60 to see if his ranking
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in these could explain his adverse outcomes. The presentation has the advantage that 

no one can identify the results of an individual consultant, and that no conclusions can 

be drawn by any external observers. Statistics were also calculated for the “Average 

General Surgeon”, but no mention of the amount of variation was given.

Although these presentation methods maintain absolute confidentiality, it seems that 

much more information could be gleaned from the data, for example analyses of 

relationships between variables and statistical assessments of outcome measures, 

taking into account the variation present. The next chapter deals with the data 

investigation and some new ways of showing the data more clearly and of actually 

making comparisons between consultants.
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4 NEW PRESENTATION METHODS FOR RCS 
AUDIT DATA

4.1 Introduction

In the preceding chapter, we described the data obtained from the Royal College of 

Surgeons of England, and highlighted some of its drawbacks. We also described the 

methods which were originally used to present these data to consultants. These were 

unsatisfactory as they meant little to outside observers, and did not consider numbers 

of patients when making comparisons. We now describe the methods of analysis 

which we have introduced in order to improve the presentation of these data. These 

methods show confidence intervals for relative mortality, triangle diagrams of case 

mix, and finally adjustments of the confidence intervals for case mix. Due to the 

drawbacks of the data, which were described in the last chapter, this work should be 

considered more as a presentation of ideas about how to deal with these data than as 

a definitive analysis of differences between surgeons.

4.2 Relative Risk Confidence Intervals

Instead of presenting raw mortality rates, relative mortalities were calculated for each 

consultant, by dividing their mortality rate by the mean rate of all the others. Here, we 

are concentrating on total mortality, both postoperative and non-operative.

We think of the data as being an outcome frequency in N groups of patients, i.e. the 

number of deaths for each consultant, and it can be expressed in a table as follows

Consultant

1   i   N

Dead d^ ...................... dj   djq

Alive ai   â    ajq

Tot Adm ni ...................... nj   njq
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or equivalently in N separate tables such as:

Consultant

noti

Dead

Tot Adm

Alive

Zdj (j*i) 

£aj (j*i) 

£nj (j*i)

The probability of death for a patient treated by surgeon i is estimated, then, as dj/nj,

An approximation to the variance of logR can be found using the first two terms of 

the Taylor expansion of the function. This gives the estimated standard error as

and thus an approximate 95% confidence interval for R can easily be obtained as

This method of calculating confidence intervals was recommended by Katz et a l in 

1978 and has since been endorsed several times in the medical literature, (e.g. 

Gardner & Altman 1989, chapter 6 p.51). The method has also been heavily criticised 

in the statistical literature. The estimate of the variance is unlikely to be precise, as it

been accused of being unstable and of having inaccurate coverage probabilities.

Several other methods for calculating these intervals have been proposed, all of them 

computationally more complex than the logarithm method, and some involving 

numerical procedures for solution. In the next section, we shall look at two of the 

methods which have claimed superiority over the one of Katz et a l , and, using the 

data from the Royal College of Surgeons, compare the three techniques.

and an estimate of R, the relative risk of death for consultant i compared with all the 

other consultants is

exp {(log R) ± 1.96 x se (log R)}.

is a linear approximation to a non-linear function, and the confidence intervals have
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We could, alternatively, use the odds ratio

O.R, = d,/ ai -  
Sdj/Sa;

/  j*i

as our measure to compare mortality. With data such as these, where n is large, and d 

is very small, this is practically the same as the relative mortality rate. This value is 

equivalent to the exponential of the coefficient obtained when a binary variable which 

takes the value 1 for consultant i and 0 for the others is fitted in a logistic regression.

Table 6 compares the intervals obtained for three consultants using the two methods. 

There is little difference between the relative mortality and odds ratio estimates. The 

relative mortality is preferable as it is intuitively easier to understand.

Method Consultant A Consultant B Consultant C
Ratio of mortality rates (1.13,1.86) (1.08,1.99) (0.20,0.89)
Odds Ratio (1.13,1.88) (1.08,2.02) (0.20,0.89)

Table 6: Confidence intervals calculated by two different methods for three
consultants (1992 data)

The values for each surgeon were easily calculated in MINITAB. They were arranged 

in rank order and the 95% confidence intervals plotted on a log scale against rank 

using the Splus “matplot” function. The plots are fairly accessible to surgeons as they 

are similar to the way meta-analysis data are presented. The calculations were 

performed for various subsets of surgeons, according to other variables which had to 

be present. Figure 4 shows the relative risk confidence interval plots for the 96 

surgeons in 1991 who had complete data on diagnostic groups, age and admission 

status, except for one who had zero deaths and therefore for whom a value could 

obviously not be calculated using the standard procedures. Looking at the plot, it can 

be seen that the majority of consultants have confidence intervals which contain 1, 

and so there is no evidence of them deviating from the norm. It should be borne in 

mind that these confidence intervals are not joint, but separate, and so we would 

expect, on average, 5% of them not to contain 1 purely by chance. However, 

approximately one quarter of the consultants have confidence intervals either entirely 

above or below 1, giving evidence that there are actual differences between the 

consultants with causes other than random variation. This may be explainable by 

differences in case mix as will be explored later. This step from displaying only simple
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mortality rates to showing the relative risk confidence intervals is a large one, despite 

being straightforward statistically. By plotting only ranks, individual confidentiality is 

maintained, and a printout of surgeon number and rank can be obtained in order to 

inform consultants of their position.
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Figure 4: Unadjusted Relative Risk Confidence intervals for ranked Consultants
(1991 RCS Data)
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4.2 Comparison of confidence interval estimation methods

As previously mentioned, there has been much criticism of the logarithm method of 

calculating relative risk confidence intervals. There have been several publications in 

the 20 years since the recommendation of this method by Katz et al. , advocating new 

methods which do not rely on such asymptotic theory. Every method suggested since 

the 1978 paper has made comparisons with the logarithm method, as it has become a 

standard. The other general approach taken is to use a likelihood scoring method, as 

summarised in 1988 by Gart and Nam, who concluded that this approach was 

preferable to taking logarithms of binomial proportions for small and moderate 

sample sizes. Koopman’s publication in 1984 was the first to use the Chi-square 

method, and the methods subsequently proposed by Gart, and Miettinen and 

Nurminen (both 1985) were very similar. Criticism of Koopman’s method came from 

Bailey in 1987, who suggested a direct formula for the calculation, rather than a 

method requiring iteration. The methods have all been compared in the literature, but 

never with the magnitudes of the sample sizes prevalent in the Royal College of 

Surgeons’ data. It is of concern that, although we have, in most cases, large sample 

sizes, the rates in question are very low. For this reason it is necessary to investigate 

the accuracy of estimation of different methods rising this particular data set. The two 

alternative methods chosen for comparison were those which appeared to be the 

strongest contenders with the logarithm method so far, and are representative of the 

work to date. These are

1. “Chi-square” Method (Koopman 1984)

2. “Power” Method (Bailey 1987)

These methods, which will be described below, were applied to the data from 1991 

and 1992 as well as the logarithm method, using a FORTRAN program.
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4.2.1 Notation

In this section, the notation used will be slightly different. The 2x2 table for 

consultant i would be

coni not con i

dead X y
alive m-x n-y

admits m n

Then x and y are binomially distributed on sample sizes m and n, with parameters px 

and p2 say. Then the relative risk R is pyp2.

4.2.2 Chi-square Method

This method is based on a test statistic for the null hypothesis that R is equal to some 

value Rq, versus the alternative that R equals some other value. This chi square test

statistic is given by

. (x-m p^2 (y-np2)2
(x,y) = .  ,

m p id - p , )  np2( l - p 2)

where pj and p2 are maximum likelihood estimators for pL and p2 under R=R0, as 

given in Koopman’s paper.

To calculate a 95% confidence interval (RL,Ru) for R we must solve 

U r l  ( x ,y )  =  U Ru (x ,y )  =  %2 d.o-95) =  3.841

U is a convex function of R so the graph of U versus R only crosses the line 

U(x,y)=3.841 twice; at the end points of the confidence interval. To find these points, 

we have to employ a numerical method as there is no explicit solution to the above. 

This has been done using repeated bisection separately for the lower and upper limits. 

The starting intervals used the estimates from the logarithm method and an easily 

found point known to have a value of U on the other side of 3.841. Sufficient 

iterations to achieve convergence to 4 decimal places were used and the values of the 

lower and upper limits output to a data file. These confidence intervals were then 

plotted in order of the relative risk and compared with those from the other methods.

72



Hayes CE, 1995. New Presentation Methods for RCS Audit Data

Asymptotically the methods are equally efficient, but we are interested in the 

efficiency for the data we have.

In the 1984 publication, this method was compared directly with the logarithm 

method by computing actual coverage frequencies for different choices of the 

parameters. Probabilities that the lower limit overestimated and that the upper limit 

underestimated the true value of R were also calculated. These should, of course, 

equal 0.025 for a 95% interval. The Chi-square method appeared to be far more 

accurate for most chosen values of the parameters. However for pi(=x/m) very small 

and n greater than m, the logarithm method was more accurate for the lower limit but 

not for the upper. These are the most similar conditions to our data, but Koopman 

only calculated values for a total sample size of 200 compared with our totals of 

288,488 for the two years of data.

4.2.3 Power Method

This method is based on a power of the observed ratio, and is claimed to be more 

stable than the logarithm method. The publication in which the method was 

introduced recommended a power of 1/3, and gave a formula to calculate the 95% 

confidence interval as

(R ,R ) -  {£■-) (l±l-96V(q1/x+q2/y-1.962qiq;/(9xy))/3 3 
L’ ° P2 l-L962q2/(9y)

These were easily calculated from the data in a FORTRAN program.

This method was also compared to the logarithm one in the original publication, again 

by looking at coverage probabilities for various parameter values. It was shown to be 

superior to the logarithm method, particularly for small sample sizes. The closest 

sample sizes to the RCS study in this publication were m=50 and n=200. This 

combination gave the smallest range of coverage probabilities for the log method than 

any of the other combinations considered.

4.2.4 Comparisons

Looking at the plots of the confidence intervals for the three methods (fig 5 (a)-5(c)) 

we can see a general agreement between them, especially at the top end. In fact,
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whichever method was used we would come to the same conclusions for almost every 

consultant. As we would expect, the few exceptions lie at the low risk end, where the 

upper limit reaches 1 in a few cases for one method but not the others.

160 '

150-------------------------------------------------------------------------------------------------------------------------------"--------. . ..

140 ; = = "

1 3 0     "

120 -  T—

1 1 0   =  ... —

100  I I ------------

9 0  ■------------  —

80 - = '

60

50 ........  ........  i - -------

40 "

30 _

20    ~

— I
0.01 0.1 0.5 1 2 3 4

C
CO
CL

Relative Risk

Figure 5(a): Unadjusted Relative Risk Confidence Intervals for Ranked Consultants -
Logarithm Method
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Figure 5(b): Unadjusted Relative Risk Confidence Intervals for Ranked Consultants
Power Method
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Figure 5(c): Unadjusted Relative Risk Confidence Intervals for Ranked Consultants
Chi-square Method
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To see the differences more easily, the corresponding limits have been plotted against 

each other to compare the three methods in a pairwise way. It can be seen (fig 6(a)) 

that, for the lower limit, the logarithm and Chi-square values correspond almost 

exactly, apart from two slight outliers. These are the consultants ranked 2nd and 11th, 

who had 1 death out of 302 admissions and 2 out of 265 respectively, so these two 

methods disagree for a combination of low death rate and low number of admissions. 

The power method, however, underestimates many of the values compared to the 

logarithm method (fig 6(b)), and does not conform to the Chi-square method nearly 

as closely (fig 6(c)). It remains unknown whether the estimates from the Power 

method with either small numbers of deaths or of admissions are too low or are in 

fact superior to those of the Logarithm and Chi-square methods. For the upper limit, 

there is more correspondence between the methods. Again, however, those with low 

death rates or numbers of admissions have lower estimates using the power method 

than the log method (fig 7(b)). The three outliers, who all have their upper limits 

estimated as much lower by the logarithm method, can be seen in fig 7(a). They are 

the two consultants (2 and 11) as described above for the lower limits and the 

consultant ranked 100, who had 4 deaths out of only 181 admissions. Again, the 

number of admissions appears to be the main factor in causing discrepancies between 

logarithm and Chi-square methods. These cases have the widest confidence intervals 

so the differences are not as important as one may initially think.

For these reasons, we conclude that the use of the logarithm method is justified for 

use in calculating relative risks for these data. Not only does it compare more 

favourably with the Chi-square method than the more recently proposed power 

method but it is far easier to calculate than any other option. In the cases where it 

does make the interval too narrow, there are very few deaths or admissions which is 

very rare. Since these cases do not tend to be in the high risk area, they are not so 

crucial, and we can be safe in the assumption that those with higher numbers of 

deaths, in whom more interest will be taken, will not have their confidence intervals 

wrongly estimated by using the logarithm method. For the majority of consultants, 

with “typical” workloads, there is no difference between the methods for the upper 

limit
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Plots comparing Lower Confidence Limits for log relative risk 
calculated using different methods
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4.3 Triangle Plots

Triangle Plots are a way of representing case mix graphically to show the variation 

among consultants. For example, a patient’s admission status could either be day 

case, elective or emergency, but the only information available is the total number of 

patients in each category for each consultant. So, using proportions in each group, we 

have a data set which has the property that the three values sum to 1, i.e. 

compositional data, and methods of analysis must be found which cope with this 

constraint. Triangle plots are a standard way of displaying this type of data. The plots 

use the property of an equilateral triangle that, taking perpendiculars from any point 

to each side of the triangle, the sum of the lengths of these lines from their respective 

sides to the point where they all meet is equal to the height of the triangle. So, with a 

triangle of height 1 unit, we make each comer represent a group and the length of the 

perpendicular from the opposite side represents the proportion of patients in that 

group for a particular consultant. Thus the nearer a point is to a comer of the triangle 

the higher the proportion of that surgeon’s patients are in that category.

B

CA

Figure 8: Drawing a Triangle Plot

In order to plot the triangles, we need to find the point P where the three lines 

intersect. If we take A as (0,0) then the co-ordinate of P is simply b (the proportion 

in category B) and the x  co-ordinate can be calculated using simple trigonometry to 

be (b+2c)/V3. They have been plotted in Spins, using the relevant line segments 

instead of axes.

Although the admission status data are naturally suitable for this type of display, it has 

also been done for age distribution and diagnostic distribution. With the 1991 data 

age proportions were first of all grouped into under 40, 40 to 60 and over 60, as
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these were thought to be appropriate low, medium and high risk categories. As can be 

seen in the triangle (Fig 9(a)), there is not a wide spread of age distributions. The 

pattern looks much the same, except the cluster is moved up more towards the middle 

group, if 20 and 70 are used as the cutpoints instead, and similarly if ages 10 and 60 

are used as the cutpoints (fig 9(b)). These latter groups will be used since the data for 

1992 only contains information on them. The age triangle for 1992 shows a similar 

pattern to the 1991 one. The diagnostic groups were collapsed into three risk 

categories, as consensually agreed by a group of surgeons. The groups are as follows

Low risk: breast and hernia

Med risk: urological, appendix, endocrine, nervous and hepatobiliary

High risk: colorectal, arterial and oesophago-gastric

Originally, it was unclear whether hepatobiliary diagnoses should be regarded as 

medium or high risk. It seemed sensible to include it in the middle group, in order that 

the overall proportion in the high risk category was not too large.

The triangle plots for admission and diagnoses show considerable spread among 

surgeons. These are shown for the two years’ data together in Figures 10 and 11. In 

the triangles, we would expect those consultants nearest the bottom right hand comer 

to have the worst outcomes. To illustrate the relationship between case mix and 

mortality, the points can be plotted using mortality rate quartiles, with 1 representing 

the consultants in the lowest 25% for mortality rate and 4 those with the highest 

proportions of deaths. It can be seen from figure 12 that those with the highest 

proportion of emergencies tend to have the highest mortality rates and similarly, from 

figure 13 those with most patients having high risk diagnoses.
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41 to 60

over 60under 40

Figure 9(a): Triangle Plot Showing Spread of Age Groups with Lower Cut-off 40 (RCS
1991 Data)

11 to 60

under 11 over 60

Figure 9(b): Triangle Plot Showing Spread of Age Groups with Lower Cut-off 10 (RCS
1991 Data)
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elect

DC emerg

Figure 10: Triangle Plot Showing Distribution of Admission Category (RCS Data from
1991 and 1992)

medrisk

•#

lowrisk highrisk

Figure 11: Triangle Plot Showing Distribution of Diagnostic Risk Category (RCS Data
from 1991 and 1992)

83



Hayes CE, 1995. New Presentation Methods for RCS Audit Data

elect

DC emerg

Figure 12: Triangle Plot Showing Distribution of Admission Category, labelled by 
Mortality Rate Quartile (RCS Data from 1991 and 1992)

medrisk

lowrisk highrisk

Figure 13: Triangle Plot Showing Distribution of Diagnostic Risk Groups, labelled by 
Mortality Rate Quartile (RCS Data from 1991 and 1992)
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Another way of showing the relationship of case mix with mortality is to divide the 

triangular diagram into several sub triangles and then calculate the mean mortality 

rate for each small triangle as in Figures 14(a) and (b). From these pictures we can 

see that both for admission status and diagnostic risk group, the mean mortality rates 

in general increase towards the higher risk categories. There is not an exact 

correspondence as one might hope, but those sub triangles with surprising results are 

those with the most sparse data, so that the numbers are small, and moreover that 

particular mixture of patients is unusual and the outcomes may be atypical. Also, 

there are many other factors which could be related to mortality which cannot be 

accounted for in this highly simplified way of looking at the data. It is possible that 

the reason for the inconsistencies with expectation is that surgical skill is an important 

cause of variation, and differences cannot be explained purely by looking at case mix. 

The triangular plots do, however, present these case mix factors in a way that is easy 

to digest, and show more information than the original bar charts could.
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Figure 14(a): Triangle Plot of Admission Category showing Mean Mortality Rates of
Consultants in Sub-Triangles

medrisk

1.26 2.28

«• ••

2 .4^1.29 1.64 1.82 2.18

lowrisk highrisk

Figure 14(b): Triangle Plot of Diagnostic Risk Category showing Mean Mortality 
Rates of Consultants in Sub-Triangles
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4.4 Adjusted Relative Risks

The relationship between case mix and mortality was explored using logistic 

regression. This was carried out using the BMDP program LR, with the number of 

deaths for each consultant representing the “success” count. This is rather an unusual 

method of performing logistic regression, as the response is the number of deaths 

rather than dead/alive as would be used with patient level data. This particular form of 

data means that the explanatory variables cannot be exactly related to the outcome. In 

chapter 6 we shall investigate how much information is lost by having only this 

summary data rather than having data on individual patients. This will be done using 

an actual data set from a study on colorectal cancer, and on simulated data.

A stepwise approach was taken at first, with forward selection of variables relating to 

age, diagnosis and admission status. Other variables were discarded because too few 

consultants had supplied information on them or because they applied only to 

operative patients as opposed to all patients, and so were not relevant for total 

mortality. Each of the two categories included for all three variables were entered into 

the equation. Although the pairs of variables are related, they are included in the 

model. This could be thought of as similar to fitting two indicator variables when 

there is a categorical variable with three possibilities, except here we have summed 

these up over the patients for each consultant. If under 40 is used as the low age 

group rather than under 10 with the 1991 data, then the over 60 term is not entered 

into the model. It would seem that under 40 is a more suitable low risk category for 

death than under 10, but the information is not available for 1992 so it is not so 

useful. The results of the logistic regressions on these variables for 1991, 1992 and 

the two years combined can be seen in table 7
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Term 1991 1992 both years
Proportion: 
aged 0 to 10 2.26
aged over 60 0.92 1.84 1.12
day case admissions -0.49 -1.26 -1.08
emergency admissions 0.62 1.24 0.87
low risk diagnoses 0.76 - -

high risk diagnoses 0.51 0.69 0.49

constant -4.53 -5.01 -4.48
Table 7: Coefficients of variables in logistic regression equations modelling total 

num bers of deaths for 1991,1992 and both years combined

It can be seen that the proportion of low risk diagnoses in 1991 has a positive 

coefficient, where we would expect it to have a negative contribution to the predicted 

log odds. This could be explained by the fact that the variables are correlated with 

each other. So, for example, since the proportion of low risk patients is negatively 

correlated with the proportion over 60, their coefficients in the model are positively 

correlated (r=0.495). If the proportion over 60 had been given less weight then the 

low risk diagnoses could have had a much smaller, or negative coefficient Another 

explanation for this could be that the broad categorisation of the diagnostic groups 

into risks is not accurate. For example, some high risk groups may contain a 

particular low risk diagnosis, although generally describing more serious conditions. 

This is, unfortunately, a disadvantage of the data and we will presume, for the 

moment, that the overall model fits the data and will work in adjusting individual 

consultants’ data.

The coefficients in the equations calculated from the 1992 data and from the 2 years’ 

data are more intuitively appealing. It may be that the data for 1992 were of greater 

quality, or that the higher numbers resulted in a more reasonable model than in 1991.

Having calculated a model, we then calculate the adjusted relative risks by taking the 

ratio of the observed and expected log odds, i.e. the estimate of the value for surgeon 

i is

£ad j  _______i / i _______
p(death)/(l-p(death)) ’
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where d[ and aj are as before and p(death) is the predicted probability of death for a

patient of surgeon i from the logistic regression equation. Thus the log of the adjusted 

value is simply the difference between the observed and predicted log odds. The 

observed values are easily calculated in MINITAB, and the predicted ones can be 

extracted from the BMDP output if the PRINT CELLS command is used. 

Alternatively, they can be calculated in MINITAB using the above equation.

The approximate standard error of the adjusted value is then obtained by

where x; is a vector of the data values for the significant variables for surgeon i, of the

form (DC, em, over60, hirisk, 1) and V is the covariance matrix of the regression 

coefficients. This is obtained from the BMDP output and, for the 1992 data, is 

approximately

“ 0.033 
0.023 0.046
0.001 0.001 0.008
0.001 0.007 -0.000 0.047

-0.018 -0.026 -0.004 -0.023 0.026

As can be seen these values are very small, and since the xj are all between 0 and 1, 

the variance accounted for by the denominator (predicted log odds of death) of the
T

adjusted relative risk (x. Vx.) is very small and so most of the variability comes from 

the numerator (observed log odds) and depends on the number of deaths. Exploration 

of the relative contributions to the total variance of the adjusted values by the 

numerator and denominator can give us an idea of how well the model is predicting. 

If the values for the denominator are very small, then little variability comes from the 

model and most depends on the actual number of deaths (the lower the number of 

deaths, the less faith we can have in our estimate of the relative risk). In table 8 the 

contribution from each part of the variance of the three consultants, “A”, “B” and “C” 

is summarised for each year. As expected, we can see that the number of deaths has 

the largest effect on the value of the variance of a consultant’s relative risk. For each 

of the consultants, the value of the variance of the predictive part (denominator) is
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smaller for 1992 than 1991, even if the number of admissions is less, suggesting that

the model may be a better fit.

year consultant # deaths # admits numerator var (%) denom var (%)
1991 A 56 2227 0.0183 (92.1) 0.0016 (7.9)
1992 A 61 2173 0.0169 (92.5) 0.0014 (7.5)
both A 137 4400 0.0088 (91.8) 0.0008 (8.2)
1991 B 5 222 0.2046 (99.4) 0.0013 (0.6)
1992 B 41 1438 0.0251 (98.3) 0.0004 (1.7)
both B 46 1660 0.0224 (98.8) 0.0003 (1.2)
1991 C 3 866 0.3335 (98.6) 0.0048 (1.4)
1992 C 7 838 0.1441 (98.5) 0.0022 (1.5)
both C 10 1704 0.1006 (99.0) 0.0010(1.0)

Table 8: Relative contributions to the variances of adjusted relative risks of the 
observed and predicted parts of the estimator, for three surgeons

In section 4.1, the calculation of confidence intervals using the coefficients from 

logistic regression equations was discussed. Fitting a separate equation for each 

consultant with a binary variable gave the unadjusted log odds for that consultant, 

which was approximately equal to the relative risk. If we fit a logistic regression 

model with the significant variables and consultant, this will give us the values 

corrected for these variables. Table 9 shows the adjusted confidence intervals for the 

relative risks of the same consultants A, B and C as before, as calculated by the two 

different logistic methods described. Again, fitting a separate regression equation for 

each consultant gives almost equivalent intervals to the method described above, of 

dividing the observed by the predicted log odds. This highly labour intensive method 

fits a slightly different equation for each consultant, whereas our ratio method uses 

the same coefficients of the significant variables for every one. This does not make 

much difference to the results because of the large numbers involved. The ratio 

method is easiest to carry out, and unlike the other method, computer time is not so 

dependent on the number of consultants.

Method Consultant A Consultant B Consultant C
Ratio
Separate equations

(0.88,1.50)
(0.89,1.51)

(0.93,1.73)
(0.93,1.74)

(0.25,1.13)
(0.25,1.12)

Table 9: Adjusted confidence intervals calculated by two different logistic methods
for three consultants (1992 data)
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The adjusted confidence intervals were plotted in the same order as the observed 

ones, again on a log scale, and as can be seen from figure 15(a), the adjustments have 

resulted in a moderate reduction in variability and the rank order of the consultants 

has changed. While, initially, 11 confidence intervals at the top end (high relative risk) 

and 13 at the bottom end did not contain 1, after adjustment 5 lay wholly above and 

10 completely below 1. If case mix accounted for all the differences between the 

surgeons, then we would expect 95% of the confidence intervals to contain 1. In fact 

almost 16% of the adjusted intervals exclude 1 and it seems fair to conclude that there 

is some other reason for the differences. This could be attributed to unknown factors, 

which may become clear after some investigation, for example, a unit may admit large 

numbers of patients for palliative care which shows up in a high total death rate. On 

the other hand the differences could actually be due to variation in surgical skill or 

even resources available and so it is important that they are discovered.
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0.5 1.0 2.0

Relative Risk
Adjusted using equation from 1991 data

Figure 15(a): Relative Risk Confidence Intervals for Ranked Consultants (1991 Data, 
adjusted using equation calculated from 1991 data)
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Looking in more detail, we can see that the direction of movement of the confidence 

interval on adjustment can usually be explained by the consultant’s position in one or 

more of the triangles. For example, in 1991, the surgeon ranked 90 originally had a 

very high relative risk but adjustment caused it to decrease considerably. This is 

because 60% of his patients were older than 60 years and almost 80% of the 

diagnoses were in the “high risk” category. As a contrast, the consultant ranked 79 

had an unadjusted confidence interval which just contained 1 at the lower end, but 

which on adjustment was considerably higher. This one had one of the lowest 

proportions (32%) of patients in the oldest age category. Thus when these factors are 

accounted for, this consultant appears to be performing worse than average. At the 

other end, a consultant who looked to be performing particularly well was ranked 26. 

On adjustment, however, his relative risk became greater than 1 and his rank became 

52, although the interval still contained 1. This is due to the high proportion of day 

case patients and the particularly low (only 6%) proportion of high risk diagnoses 

seen. A consultant who performed rather better than one would have concluded from 

simply studying raw mortality was ranked tenth. His adjusted relative-risk is fifth * 

smallest, due to the fact that more than half of his admissions were emergency ones.

In contrast to the above examples, some confidence intervals did move in a 

counterintuitive direction on adjustment. For example, the consultant ranked 94 had 

his confidence interval decreased by adjustment so that it included 1. If we look at his 

case mix, we see that most of his patients (51%) were admitted electively, 25% of 

them were aged under 10 and 80% of them had low risk diagnoses. With this “easy” 

case mix, one would expect his predicted risk to be low, and thus his adjusted value 

to be higher. The reason for the strange result is the positive coefficient of low risk 

diagnoses. This made the predicted risk using the 1991 equation with the positive 

coefficient for low risk higher, and thus the adjusted value lower. All those 

consultants with a high proportion in the low risk diagnosis category had 

counterintuitive adjusted values. Perhaps the 1991 data were not sufficient to build a 

reliable model for adjustment and we would achieve more reasonable adjusted values 

using the model calculated from two years’ data. These have been calculated, and 

have been plotted against the values calculated from the 1991 equation in figure 16. It
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can be seen that most of the values correspond fairly well. The outliers are those 

consultants with particularly high proportions of low risk diagnoses.

The confidence intervals adjusted using the 2 year equation are plotted in figure 

15(b). The adjusted interval for the consultant ranked 94 is now much higher, as we 

would have expected from his case mix. Considering again, the consultant ranked 90, 

we can see that his relative risk is reduced even more by the 2 year equation than by 

the 1991 one due to his extreme case mix. These results seem more reasonable than 

before, and we would prefer to use the equation from both years to adjust these data.

A problem with using a model which is not calculated from the data set of interest to 

obtain adjusted relative risks is that the predicted values will be based on a different 

baseline mortality. The unadjusted risks are relative to the current group of 

consultants, and so depend on the overall case mix. The adjusted risks are compared 

with predicted and so the effect of case mix is removed and these values do not 

depend on the other consultants. Thus it is not strictly appropriate to compare the 

unadjusted and adjusted values, and counter-intuitive results may occur. The 

mortality rate of the" 1991 data is* very'close to that of the 2 years’ combined data, so 

this does not make a noticeable difference in this case, and we shall ignore it for the 

time being. In general, however, an adjustment should be made when using a model 

from a different data set to calculate adjusted relative risks, if it is desired to compare 

them with unadjusted values. We shall discuss this in more detail in section 5.6.
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0.5 1.0 2.0 4.0

Relative Risk
Adjusted using equation from 2 years’ data

Figure 15(b): Relative Risk Confidence Intervals for Ranked Consultants (1991 Data, 
adjusted using equation calculated from 2 years’ data)
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Figure 16: Comparison of log Relative Risks adjusted using 2 different equations
(RCS 1991 data)
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We turn now to the 1992 data. The adjusted intervals are plotted in figure 17, with 

arrows showing the change from the unadjusted to adjusted values. Of the unadjusted 

intervals, 48 did not include unity. This is over a third and would lead us to conclude 

that there are substantial differences between surgeons. Adjustment reduces this 

figure to 27, so some of the differences have been removed by including case mix. 

However, this figure is still much more than the expected 5% and suggests that there 

is still a difference between mortality rates of surgeons. As in the previous year some 

confidence intervals move to include 1, whereas others increase or decrease away 

from the average. An example where the adjusted confidence interval does not even 

overlap the unadjusted one is the consultant ranked 68. His original interval was 

centred on 1, and after adjustment his relative risk was fourth largest. This could be 

explained by the fact that more than half of this consultant’s patients were day case 

admissions and only 9% of them had high risk diagnoses. Thus the adjustment 

showed him to be performing much worse than average, considering his low risk case 

mix. In contrast, the consultant ranked 77 had the eighteenth lowest relative risk after 

adjustment. The confidence interval' moved ‘from being centred slightly above 1 to 

being wholly below 1. Looking at his case mix, it can be seen that 62% of his 

admissions were emergencies and 45% high risk diagnoses, thus his mortality rate for 

this difficult mix was actually very low.

This seems to be a good model, but the question of what should be done on an annual 

basis is not answered. Should we calculate a model using all available data or should 

we just adjust using the equation developed using that particular year’s data? It would 

obviously be a great administrative advantage if a model could be found which always 

gave reliable adjustments, but it may be fairer if the model with the best fit to that 

particular data set was used.

If we adjust the 1992 data using an equation calculated from data from two years, we 

find that the results correspond fairly closely with those calculated from the 1992 

equation. In Figure 18 we can see that discrepancies lie fairly evenly in both 

directions. Looking at some of the outliers we find that the reason for them is the 

extra weight given to admission status by the 1992 equation. For example, the point 

marked “3” on the plot has the biggest difference between the adjusted values
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calculated from the two models, with the 1992 value being larger. This consultant had 

69% of his patients admitted on a day case basis and so would have been predicted as 

being lower risk by the 1992 equation with its coefficient for day case of -1.26 than 

for the two year model with its day case coefficient of -0.63. Similarly consultant 6 

has his adjusted value reduced even more by the two year equation than the one year 

one. This is because he has 86% of his patients in the “high risk” diagnostic groups, 

but also 50% of them were day case groupings. Since relatively more weight is 

applied to diagnostic risk than admission category by the two year equation this 

consultant’s risk is considered higher. It is difficult to tell which model is making the 

most intuitively appealing adjustments, but due to the fairly arbitrary nature of the risk 

categorisations of the diagnoses and the more evident relationship between admission 

status and mortality, it would seem logical to favour the model which puts more 

emphasis on the emergency and day case proportions. Thus for 1992 it seems that the 

model calculated from that year’s data only provides a superior means of risk 

adjustment, whereas the 1991 model is inferior to the two year model. There may 

have been.a substantial improvement in the quality of the data from 1991 to 1992. • *

The fact that the analyses of the 1991 and 1992 data gave different results leads us to 

question the validity of the models and the data and suggests perhaps too small 

numbers, both in numbers of patients and numbers of consultants with complete data. 

In the following section we will investigate the effectiveness of models and compare 

results from year to year by looking at only those consultants having data for both 

1991 and 1992.
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Relative Risk
Dotted lines show adjusted confidence intervals

Figure 17: Change between unadjusted and adjusted relative risks for ranked
consultants (1992 data)
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Figure 18: Comparison of Adjusted Relative Risks for 1992 data, using 2 different
equations
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4.5 Comparisons between 1991 and 1992

In order to evaluate the techniques, and to give an idea of the changes in performance 

and case mix over the two years studied, those surgeons who submitted data in both 

years have been investigated separately. There were 64 of them, and again the data 

were summed for the two years using a FORTRAN program. The same triangle plots 

as before were drawn separately for each year, and then for the totals over the two 

years. To show the change in distributions over the two years, plots were drawn with 

arrows from the 1991 to the 1992 position in the triangle for each consultant. The 

total mortality rate for the two years was considered and then the plots split up into 

whether these rates were above or below the median (Figures 19 and 20). Those with 

higher mortality rates tend to lie further towards the right in each triangle. The 

variability in change in proportions in each category from year to year is quite high, so 

we cannot expect all the adjustments to have the same effect in 1991 and 1992, 

although if they make sense and give some idea of surgical competence we would 

hope for some degree of compatibility between the adjusted values from year to year.

If we consider the rank order of the consultants between the two years, we find that 

Spearman’s rank correlation coefficient is higher for the unadjusted values than for 

the adjusted ones (0.69 versus 0.56). Pearson’s correlation between the actual relative 

risks for the two years is also higher for the unadjusted values (0.64 versus 0.56). 

This is as one would expect, as mostly the case mix variables are fairly similar for 

each consultant from year to year, especially for distribution of admission status as 

can be seen from the prevalence of shorter arrows in Figure 19, and so adjusting for 

these will remove some of the correlation between mortality rates of the two years. 

The fact that the adjusted values are still highly correlated may tell us that the 

consultants have performed fairly consistently, or that the model has not accounted 

for some important characteristics of their patients. Most of the consultants had a 

change in adjusted relative risk from 1991 to 1992 of around 25% of their 1991 

value.
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Figure 19(a): Change of Admission Status Distributions from 1991 to 1992 for 
consultants with lower than median mortality rate over the 2 years
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Figure 19(b): Change of Admission Status Distributions from 1991 to 1992 for 
consultants with higher than median mortality rate over the 2 years
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Figure 20(a): Change of Diagnostic Group Distributions from 1991 to 1992 for 
consultants with lower than median mortality rate over the 2 years

medrisk

highrisklowrisk

Figure 20(b): Change of Diagnostic Group Distributions from 1991 to 1992 for 
consultants with higher than median mortality rate over the 2 years
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4.6 Discussion

Several new methods of presenting the Royal College of Surgeon’s Comparative 

Audit data have been described. There are many limitations of these data, which still 

require to be overcome. The first of these is quality of the data, in that values are 

completely missing for many consultants and that many have not recorded 

information on all patients. This problem should lessen in future years as computer 

packages become more user friendly and the input of data is adopted as a standard 

procedure. Also, having taken part in the audit, consultants would know what data to 

collect for the following year. Another area in which quality could be improved is in 

standardisation of the data. For example there is no standard definition of 

postoperative mortality, which could just have been recorded as death while still in 

the unit, or 30 day mortality. The second limitation is the quantity of data, where the 

number of consultants responding has been less than one fifth of those eligible, but a 

great amount of data has been requested from each one. As interest grows in the 

scheme, as it must with recent media publicity, and as more units acquire computing 

facilities, more consultants should participate, thus providing a larger database with 

which to calculate more reliable models. The third, and main, limitation of the data is, 

of course, the fact that it is pooled for each surgeon. This makes analysis difficult, and 

much less accurate than if patient level data were available, as was discussed in 

section 4.3.

We would recommend that, in order to improve data quality, less information should 

be requested, and the importance of accuracy stressed. Stricter definitions of the 

information required should be circulated with the questionnaire. It would be 

preferable to have some patient level information, or some sort of breakdown of 

information, for example giving patient diagnostic group by age. At the very least it 

would be useful to know the case mixes of patients undergoing surgery separately 

from those who do not.

Obviously, we can never account for all possible contributory factors, but these 

methods are a step in the right direction and go some way towards correcting for 

major sources of variation. The information that a surgeon is “performing worse”
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does not mean that they are negligent or less able, only that some investigation into 

why this is occurring should take place.

The outcome of this work is to present a meaningful summary of a large amount of 

data to a group of consultants. This involves giving their mortality rates, both 

unadjusted and adjusted for different factors, in order that they can receive some idea 

of their performance compared with their contemporaries. An example of the 

individual printout of the data, with which each surgeon at the meeting would be 

supplied can be seen in Appendix 3. The adjusted values for the variables on their 

own have been included in order to give information to those who did not have 

complete data for each factor. It will be necessary to continue with many of the old 

presentation methods, as there are many things, for example work load, which we 

have not considered, but which are of great interest. This work has been carried out 

for the 1993 data, and will be discussed in chapter 5, along with the consultants’ 

reactions to the methods described in this chapter.
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5 PRESENTATION OF RECENT RCS DATA

5.1 The 1994 Meeting

The data collected in 1993 were presented to a meeting of consultants in June 1994. 

The original RCS ranked bar chart presentation was given first, which consisted of a 

booklet of charts, as exemplified in figure 3, covering all the information submitted. 

We then introduced triangle plots of admission status, age and diagnostic risk groups, 

and confidence interval plots for unadjusted and adjusted relative mortality rates. A 

personalised printout was given to those who had submitted the necessary data. The 

consultants then had an opportunity to discuss the results, and were given a 

questionnaire asking their opinions on the new presentation methods. The 

questionnaire can be seen in Appendix 2. A similar form was sent to those consultants 

who did not attend the meeting, but who did receive a personal data sheet. The 

response rate to the questionnaire was approximately a quarter, with 39 consultants 

responding. The questionnaire asked for ratings from 1 (poor) to 5 (excellent) of the 

clarity and usefulness of the three above mentioned presentation methods, as well as 

comments on the results. The new presentation methods were described as 

experimental, as the results are by no means accurate and could easily be 

misconstrued. Each method will be discussed in turn, followed by a discussion of 

criticisms of the methods and how possible improvements could be made.

5.2 The Data

The data received from the Royal College of Surgeons contained 221 records, but 2 

of these were duplicates and a further 30 contained no information apart from a 

consultant number. The data collected were similar to those of previous years, except 

for some more detailed questions on outpatients, and ASA grades were requested for 

the first time. The ASA grades could be useful in modelling outcome, but only 45 of 

the consultants were able to submit this information. Of the 189 consultants 

remaining, 150 had reported the total number of deaths. Where only one type of death 

(non- or post- operative) was supplied, it has been assumed that there were no deaths 

in the other category. Of these 150 consultants with mortality data, 148 had complete
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data on admission status, 136 on age and 140 had diagnosis information. The mean 

number of admissions per consultant was 1314, ranging from 26 to 3115. It was 

questionable as to whether the consultant with only 26 admissions should be included, 

but there were no other irregular factors about his data to justify exclusion. The 

overall mortality rate was 2.0%, with a minimum of 0.0% and a maximum of 5.5%. 

Admissions were approximately evenly distributed between day case, elective and 

emergency, and again there were very few patients aged under 11. The most common 

diagnosis was colorectal with a mean of 169 admissions per consultant (20% of 

known diagnoses), closely followed by urological (15%), and the least common 

overall was endocrine, with a mean of only 23 admissions (under 3%), and a median 

of 7. In all cases the mean number in the diagnostic groups is much higher than the 

median, suggesting the distributions of numbers in each group are positively skewed.

As in previous years, there were several discrepancies in the data. The numbers in 

each of the admission status groups did not add up to the given number of admissions 

for approximately one fifth of the consultants. For age groups, this figure was over a 

half, and for diagnostic groups none of the figures added up due to the groupings not 

being comprehensive. The assumption that the known proportions represented the 

overall ones was made, as discussed in chapter 3. In several cases, the difference 

between the total of the three age groups and the given number of admissions was 

exactly equal to the number of day cases. The reason for this is probably that some 

systems (notably Micromed) do not include day cases as admissions, so this 

information is not available for these patients.

5.3 Triangle Plots

The triangle plots from the 1993 data can be seen in figures 21(a) to 21(c). The 

presentation slides were in colour, with red representing those below the median 

mortality rate and yellow representing those above it. The plot of admission status 

groups shows that most of those with the highest mortality rates lie towards the right 

of the triangle. They had more emergency admissions and less day cases. As in 

previous years, there is very little spread of age. There is a good spread of diagnostic 

groups, but these appear to bear little relationship to mortality. This is due to the 

large amount of heterogeneity within the diagnostic groupings. The triangle plots
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were not rated very highly by those consultants responding to the questionnaire. Most 

found them clear and easy to understand, but few found them particularly useful. This 

presentation method appears to be surplus to requirements and could reasonably be 

ignored in future.

elect

DC emerg

Figure 21(a): Triangle Plot Showing Admission Status Distribution for RCS 1993 Data

(1 = Mortality Rate Below Median, 2 = Mortality Rate Above Median)
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Figure 21(b): Triangle Plot Showing Diagnostic Group Distribution for RCS 1993 Data

(1 = Mortality Rate Below Median, 2 = Mortality Rate Above Median)

11 to 60

over 600 to 10

Figure 21(c): Triangle Plot Showing Age Group Distribution for RCS 1993 Data

(1 = Mortality Rate Below Median, 2 = Mortality Rate Above Median)
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5.4 Confidence Interval Plots

The plots of ranked unadjusted and adjusted confidence intervals were shown 

separately. They have been combined in figure 22 to show the movement from the 

unadjusted to the adjusted value by means of arrows. The confidence intervals shown 

are the adjusted ones. Complete data were available for 128 consultants. The intervals 

have not been plotted for the three consultants with no deaths, although values were 

estimated for their individual printouts, as will be described in the next section. The 

confidence interval plots were regarded as slightly less clear than the triangle plots. 

Some consultants did not grasp the concept of “relative mortality”, or how this could 

be related to case mix. However, the majority found them very clear. These plots 

were perceived as useful, and rated more highly than the triangle plots on this point

110



R
an

k

Hayes CE, 1995. Presentation of Recent RCS Data

Relative Mortality
adjusted Cl’s are shown

Figure 22: Change between Unadjusted and Adjusted Relative Mortality Confidence 
intervals for Ranked Consultants (1993 RCS Data)
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5.5 Personal Printouts

The 150 consultants who submitted mortality data were given a personalised printout 

of this experimental analysis. A specimen printout from 1994 can be seen in Appendix 

3. The printouts for the 1993 data were similar, except the numbers of non-operative 

admissions and deaths were not included, and rankings were only given for adjusted 

relative risks for all the variables. The adjusted values are the ratio of the observed 

and predicted log odds, as was described in chapter 4. The unadjusted ranking was 

out of the entire 150, whereas the adjusted one was out of the 128 with all the 

necessary data. The adjustments for individual variables were calculated using all the 

available data for those variables. The logistic regression equations used to calculate 

the predicted log odds are as follows.

1. Age 0.6xage61pl - 4.4Xage0tol0 - 3.9

2. Admission Status 0.8xemerg - l.Oxday case - 3.9

3. Diagnostic Risk 0.3xhighrisk - 0.4xlowrisk - 3.9

4. All Case Mix l.lXage61pl - 4.3xage0tol0+1.4Xemerg

- l.lxday case + 0.5xhighrisk - 4.5 

where age61pl and ageOtolO are the proportions of patients aged over 60 and under 

11 respectively, emerg is the proportion of emergency admissions, day case the 

proportion of day case admissions and highrisk and lowrisk refer to the proportions of 

known diagnoses in each of the risk groups as previously defined.

The proportion aged under 11 has a very high weighting, as the very small numbers of 

patients in this age group lead to high variability. The standard error of this coefficient 

is 0.8 whereas the other variables have coefficients with standard errors of around

0.2. Where a consultant has a relatively large proportion of patients in this age group, 

it has a disproportionately large effect on the adjustment. A cut off point of 40 years 

for the middle age group would be preferable. All the coefficients have the intuitively 

correct signs, and so have the expected effect on adjustment. The coefficients for 

diagnostic risk are very low, so adjusting by diagnosis did not change the rank order 

as much as by the other variables. The effect of these adjustments could still be 

surprising to some consultants. For example, if they had performed a large number of 

haemorrhoid operations, these would be included as colorectal, and thus high risk.
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The confidence intervals for those three consultants reporting no patient deaths were 

calculated using a binomial distribution result. If 0 is the probability of death for a 

consultant admission, the 95% Cl for 0 goes from 0 to the root of (l-0)n = 0.05. The 

upper limit for relative mortality was then calculated using the ratio of this solution to 

the overall mortality rate. The adjusted values were calculated by dividing by the 

predicted mortality rate obtained from the logistic regression equations.

The personal printouts were considered the easiest to digest and the most useful of 

the new methods by nearly all consultants. There was still some trouble with 

interpretation, with one person who did not understand what the confidence interval 

figures meant. Of the people answering the question, more than half said that they 

would perform some form of investigation in the light of their results, with all but one 

saying they would like to see the methods developed for future use.

5.6 The 1994 Data

The data received in 1994 were less complete than in previous years. Data were 

received from 128 consultants, of whom only 89 supplied data on numbers of deaths. 

Of these, 82 had data on admission status, age and diagnosis. The problem of 

categories not adding up to the total numbers of admissions had not diminished any 

from previous years. Several consultants had numbers in the three age groups 

summing to the number of admissions minus number of day cases, and others simply 

had data missing.

Individual printouts, as shown in Appendix 3, were presented at the meeting in June 

1995, and were met with some enthusiasm by those in attendance. Improvements to 

the printout from the year before were adding the numbers of non-operative patients 

and deaths for information, and ranking the adjusted values for all the case mix 

variables.

This time, models calculated from 3 years’ data (1992 - 1994) were used to adjust the 

relative risks. It was decided to use models from 3 years’ data rather than 1 because 

of the smaller number of consultants with data in 1994. The data were assumed to be 

independent, so a consultant who had submitted data each year would be included 

three times. This is in contrast to when the 1991 and 1992 data sets were combined as
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then the same consultants’ data were added together for the two years. This should 

not greatly affect the results, as most of the difference is caused by case mix, and 

increased numbers of consultants to model with is of benefit when calculating a 

model. The models are:

Some of the adjusted relative risks had counter-intuitive values, given the particular 

case-mix. The reason for this is the use of a different data set to calculate the model, 

so the adjustments are relative to a different mean mortality rate, as described in 

chapter 4. This effect was particularly noticeable for the diagnostic group 

adjustments, which were very sensitive to this due to the small coefficients in the 

model. For example, one consultant had an unadjusted relative mortality of 100%. 

With his diagnostic group case mix of only 28% high risk diagnoses compared to the 

average of 40%, one would have expected his value adjusted for diagnostic risk 

would be higher than the unadjusted one. However, without making any correction it 

was 93%. The mean mortality rate of those having data on diagnoses in 1994 was 

1.73%, whereas over the 3 years, the value was 1.96%. This means that the 

unadjusted relative risks were calculated relative to a lower mortality rate than the 

adjusted ones and thus the values are too high in comparison. Alternatively, we could 

say that the adjusted values are too low, because the predicted values are based on a 

higher mortality rate. We could therefore make a correction for this effect in two 

ways, either by changing the way we calculate the unadjusted risk, or by correcting 

the adjusted one.

The first of these approaches simply involves dividing the observed mortality rate by 

the mean predicted mortality rate instead of the mean observed mortality rate to 

obtain the unadjusted relative risk. This value does not depend on the particular case 

mix of the consultants in the study. The overall mean predicted mortality rate for the 

1994 data using the 3 year model was 2.00%. Thus our example consultant, who had

3. Diagnostic Risk

4. All Case Mix

2. Admission Status

1. Age l.lXage61pl - 4.4 

l.Oxemerg - l.Oxday case - 4.0 

0.4xhighrisk - 0.3xlowrisk - 4.0 

1.6xage61pl + 1.2Xemerg 

- 1.2xday case + 0.7xhighrisk - 4.9
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a mortality rate of 1.76% would have an unadjusted relative mortality of 88% instead 

of 100%, which makes sense when compared with the value adjusted for diagnostic 

mix.

Strictly speaking, we should have a different unadjusted value for each case mix 

variable as the different models give differing overall mortality rates due to the 

inclusion of different subsets of patients with available data. For example, the mean 

predicted probability of death considering only diagnostic casemix is 1.97%, which 

would give the above consultant an unadjusted relative risk of 89%. In most studies, 

however, there will only be interest in adjustment for overall case mix, so this 

technicality will be irrelevant

The other approach, which in this study removes the inaccuracy caused by using 

different models without having to consider separate unadjusted values for the subsets 

of patients with data on each case mix variable, is to correct the adjusted values. This 

can be done by multiplying the predicted probabilities by the ratio of the mortality 

rates from the current data and the model data set, which in this case is 0.881. Thus 

the adjusted relative risk for consultant i becomes the exponential of

In
V a i

-In f  0.881 x p. N 
l-0 .881xp .

where pi = predicted mortality rate for consultant i (obtained via above equation). 

Thus our example consultant would have a relative risk adjusted for diagnosis of 

106%.

In fact, an approximation to this is far easier to calculate, and gives very similar 

results. The adjusted relative risk is simply multiplied by 1/c, where c is the ratio of 

the two relevant mortality rates (current data/model data). The values of c for the 

above data are 0.876 for age, 0.887 for admission status, and 0.880 for the overall 

model. Using the approximation rather than the above value means the relative risk 

differs by a factor of (l-p)/(l-cp), which is very small. When we quote the results to 

the nearest percent, it gives the same value in almost every case as multiplying the 

probabilities. However, if there was a very large difference between the mortality 

rates of the two samples, this might make more of a difference. It is, however,
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unlikely that one would wish to model two such greatly differing groups of 

consultants in the same way.

If using a pre-existing model such as POSSUM or APACHE, one is unlikely to know 

the mortality rate of the population on which the model was calculated, and the 

second method would be inappropriate. An obvious extension of the first method is 

that individual consultants who are not include in a comparative audit study, could 

calculate their own values using the model.

5.7 Discussion

The main criticism of the results by the consultants was the lack of differentiation 

between “inevitable” and “preventable” deaths. However, as stated in chapter 2, this 

type of definition is highly subjective, and the information is likely to be very 

sensitive. If the consultants were to judge which deaths were inevitable, it would 

defeat the purpose of the audit, and of attempting to model outcome. It may be more 

instructive only to consider postoperative deaths, although this could still excuse 

differences in surgical skill. At any rate the data as they are collected at present do not 

allow for these to be considered separately. This is because the case mix information 

applies to all admissions, and there is no break down of characteristics into those 

having operations or not. It would be possible to consider operative groups and 

postoperative mortality or morbidity, but we would have to make the unlikely 

assumption that the overall spread of age and admission category represented the 

spread of those patients receiving operations. Also, the data for operations are 

collected as numbers of procedures, so one patient admission could feature several 

times. A more appropriate classification to use would be the BUPA classifications 

(minor,.....complex major) or the ASA grades. Most consultants are in agreement that 

diagnoses are inappropriate for this modelling. A change in data collection would be 

required in order that information was available separately for operative patients to 

make use of the BUPA classifications, and ASA values are very difficult for most 

units to collect. For the types of procedures, one is recorded per theatre visit per 

patient, so there is still the problem that numbers of operations for those receiving 

operations, exceed numbers of admissions. Considering operative procedures at 

present still excludes those patients attending for treatment such as chemotherapy or
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radiotherapy. Consultants are highly aware of the large differences in policies on 

admission of terminally ill patients, which depend on the adequacy of local hospice 

provision. Until some consideration is made of those patients having no operation, 

they will not have any confidence in the Comparative Audit results.

Most hospitals had some difficulty collating the data as requested by the RCS. The 

majority who responded to the questionnaire either had their own computer system or 

gathered the results from the HAA data. Some even did the work by hand, and many 

scraped the data together from a variety of sources. The most popular commercial 

system among respondents was Micromed. This could be because the original study 

was based on this package, so data collection is easier. Originally the Comparative 

Audit meeting was combined with the Micromed user group AGM, and this could 

have encouraged interested consultants to choose that particular package.

Of the consultants who answered, half said they thought the new presentation 

methods were more informative than the original method, and all the rest but one said 

that they were equally informative. There is a definite demand for these methods to be 

developed for future use, but there will need to be major changes in the data 

collection. A list of recommendations to the RCS can be seen in the following box. A 

review of data collection methods in individual hospitals is also required, and 

standardisation introduced.

Consultants were asked what information they would like to see presented in future, 

and if they had any suggestions or comments. These have been used in this discussion. 

A selection of quotes from the questionnaire are given in Appendix 4.

Recommendations for Royal College of Surgeons Comparative Audit future data 

collection, if methods are to be developed further.

• Collect case mix information separately for operative and non-operative patients.

• Diagnostic groupings should be comprehensive.

• Change diagnostic groups so that they are more homogeneous for risk

• Use age 40 as the cut off point for the low risk age group rather than 10.

• Include treatments which are not operative procedures (e.g. chemotherapy).

• Emphasise collection of data on BUPA classifications



6 INVESTIGATIONS OF AGGREGATE 
V E R S U S  PATIENT DATA

6.1 Introduction

The data collected by the Royal College of Surgeons Comparative Audit Service are 

in the form of totals for each consultant for the year. This means that there is no way 

of assessing the relationships between variables, for example it is unknown whether 

particular diagnoses are more common in patients in a certain age group, or if 

emergency admissions are restricted to particular types of operation. The associations 

between the case mix variables and outcomes can only be estimated using the 

proportions of patients in each category. Obviously, much information is lost from the 

original data on individual patients, and it would be informative to know the effect of 

this on the actual results of our analyses. This has been investigated in two ways, 

using an actual data set (Colorectal Cancer Study), and by simulating patient data.

6.2 Colorectal Cancer Study

We obtained the colorectal cancer data from the study organisers, who studied 

variability among surgeons in their publication (McArdle and Hole, 1991). The data 

were collected over six years at Glasgow Royal Infirmary, and had 10 year follow-up 

information. In the original publication, the 13 consultants were compared for patient 

survival using Cox’s proportional hazards to adjust for various factors. Significant 

differences were found between the surgeons, with three of their hazard ratios being 

significantly different from 1.

While the colorectal cancer study used survival up to 10 years as the outcome 

measure, for this investigation we use 30 day survival, as it is similar to the mortality 

information in the RCS data. This outcome measure was calculated from admission 

and death dates. Also, so that all the data could be utilised, patients of “consultant 

14” here are in fact all those patients for whom surgeon was unspecified.

In the proportional hazards analysis the patients were divided into groups depending 

on the type of operation they had (curative resection, palliative resection, palliative
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diversion) and the calculations done separately. We used all 645 patients in the study 

together for this investigation.

The unadjusted confidence intervals were calculated as with the RCS data, using the 

Logarithm method. These can be seen in Figure 23.

c
03

COco
O

14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.2 0.5 1.0 2.0 4.0

Relative Risk

Figure 23: Unadjusted Relative Risk Confidence Intervals for Consultants (Colorectal
Cancer Study)

The variables considered for inclusion in our model were those found to be significant 

for survival in the original study for any of the types of operation, that is sex, 

emergency admission, whether the patient was over 75, differentiation, Dukes’ stage, 

local invasion of the tumour, the presence of distant metastases and pre-existing 

cardiac or respiratory disease. Also included was whether the treatment was curative 

or not. It could be argued that a curative resection may be attempted by some 

consultants on some patients while other less skilful or adventurous surgeons might 

opt for palliative care, and so should not be considered strictly as a case mix variable. 

However, since it is a strong prognostic factor, we shall include it for the purpose of
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this investigation. All of these variables were binary for the patient data, and were 

summed for each consultant to obtain a summary data set with numbers in each 

category. Separate stepwise logistic regressions were carried out for the two data 

sets.

With the patient level data, the significant factors were whether the patient was male 

or over 75, had an emergency admission or a poorly differentiated tumour, as well as 

whether the resection was curative. With the summary data, only curative was entered 

into the equation. The coefficients resulting from these stepwise regressions can be 

seen in Table 10.

term Patient data Aggregate data
curative -1.676(0.264) -3.208(0.209)
over 75 0.522(0.255) 0
emergency 0.694(0.232) 0
male 0.502(0.233) 0
poor differentiation 0.543(0.296)* 0
constant -1.775(0.240) 0

* p=0.07
Table 10: Coefficients (and SE’s) of term s in LR equations

It can be seen, as expected, that relationships between case mix and outcome are not 

so well defined with the use of summary data. In the analysis of patient level data, 5 

variables and a constant came into the equation, whereas only one variable was 

significant with the summary data. However, “curative” explains much of the 

relationship between case mix and mortality. Had curative resection not been included 

as a candidate for stepwise selection in the logistic regression, no factor would have 

been significant with the summary data, and so the adjustments would not have been 

possible. With the patient data, the coefficients would have been as in Table 11. It can 

be seen that extra information is gained from the other variables, and most of the 

effect of “curative” is absorbed in the constant.
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term coefficient (SE)
over 75
emergency
male
poor differentiation 
Dukes’ C stage 
constant

0.59 (0.244) 
0.86 (0.224) 
-0.46 (0.241) 
0.50 (0.244)* 
0.50 (0.283)* 
-2.33 (0.231)

*0.05<p<0.08

Table 11: Coefficients of term s in LR equation for patient data, had curative not been
included for selection

Looking at the adjusted plots for the Colorectal Cancer data (Figures 24(a) and (b)), 

it can be seen that in both cases all the intervals have moved to include 1. The values 

for consultants number 1 and 10 are on different sides of unity for the two types of 

data, but these are all values very close to 1 and the confidence intervals show 

considerable overlap. In no case would different conclusions be drawn about a 

consultant if aggregate data were used rather than patient data.

This study has given fairly good predictive models from both patient and summary 

data, and we would hope to be able to achieve a reasonable model with the Royal 

College of Surgeons’ data. However, here only one type of procedure is being 

considered whereas in the RCS study we can be far less specific as we are dealing 

with the whole of general surgery. Also, the Colorectal Cancer study has a higher 

postoperative mortality rate than the one for general surgery (16% compared with 

2%) and so the outcome is more relevant and thus easier to model. However, the 

RCS data involves much larger numbers of patients and consultants so it should be 

possible to achieve a reasonable model. We did not have access to data from any 

study with patient level data on as many consultants as we have from the 

Comparative Audit Service so it is necessary to create some data which are 

comparable with those of the RCS, to explore the effect of having no patient 

information on this scale.

i
!
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Figure 24(a): Adjusted Relative Risk Confidence Intervals - Individual Patient Data
(Colorectal Cancer Study)
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Figure 24(b): Adjusted Relative Risk Confidence Intervals - Summary Data
(Colorectal Cancer Study)
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6.3 Simulated data

We wished to produce simulated patients who would give similar totals in each 

category as were present in the RCS data sets. In order to do this, we required some 

method of parameterising the relationships between the factors, so that the joint 

probability distribution could be obtained from the marginals. This was approached in 

two ways, firstly by log-linear modelling, and secondly by a far more simplified 

method involving contingency tables. In this section, the various approaches to 

generating patient data that were considered while developing an efficient method will 

be described, as well as some interim analyses. When the method was finalised, more 

analyses were carried out, and the differences between the adjustments using patient 

and aggregate data explored, as well as the effect on these of differing correlation 

structures.

For these simulations, only two case mix variables were considered; age group and 

admission status. This is because it was far easier to visualise the inter factor 

relationships with two than with three variables. Initially, marginal totals in each 

category were generated from Normal distributions based on the distributions of the 

1992 data. It was then decided to sample from the actual data and generate patients 

which could have given these totals.

6.3.1 Development of Methods

6.3.1.1  L o g -l in e a r  m o d e l l in g

With two factors (age and admission status) at three levels each, an ordinal log-linear 

model was fitted. For this each level of each factor is given a “score” of 1 to 3. So, 

for example, day case receives a score of 1, elective 2 and emergency admission 3, 

and similarly for the three age groups. The model is 

log(n,) = 0 + XIi +Xaj + p ( i-2 ) ( j-2 )  i,j = 1,2,3

where ng is the number of patients a consultant has with age group i and admission 

status j. This gives six independent parameters (0,XSi,X52,A.ai,Xai,|3) > and there are

six known marginal totals n* and n j. Thus six equations are obtained (as in Appendix 

5), which are solved for the above using a numerical algorithm. From the parameter 

estimates, estimates of the number njj in each of the 9 categories can be obtained. It
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was difficult to choose initial estimates for the parameters which would create 

convergence, for the particular numerical algorithm which was employed. 

Straightforward log-linear modelling was carried out using BMDP 4F to give an idea 

of the magnitude of the parameters.

If three variables were to be used, the model would involve 11 independent 

parameters, but only 9 marginal totals would be known, so the equations could not be 

solved. In order to estimate the parameters for three variables in the same way, the 

two-way marginal totals would be required.

Patients were generated by this method using a FORTRAN program. Firstly, suitable 

marginal totals were generated and used to estimate the parameters of the above log- 

linear model, using the NAG routine C05NBF which solves n non-linear equations in 

n unknowns. Unfortunately, this routine did not converge on every occasion, and the 

generation of patients by this method proved rather time consuming. Much 

exploration into the relationships between parameters and the marginal totals was 

carried out, but convergence occurred for some data which were very similar to those 

for which the algorithm diverged.

From each set of six totals, a proportion of patients in each of the nine cells could be 

estimated for each consultant. These proportions were summed successively in order 

to give a set of probabilities in the interval (0,1) so that a uniform random variable 

would allocate a patient to a particular category. Once a patient’s admission status 

and age group were determined, their probability of dying was calculated via the 

logistic regression equation

ln(p/(l-p)) = -1.5xdc + 1.25xemerg - 0.25xage0tol0 + 1.75xage60pl -4.5

where dc, emerg, ageOtolO and age60pl represent the binary variables for each 

patient. This equation was based on previous results, and gave reasonable death rates. 

Whether or not the simulated patient actually died was then determined by whether 

another random uniform variable was less than their predicted probability of dying.

A patient data file consisting of l ’s and 0’s for each variable, and a summed data file 

were produced. Several data sets were obtained by this method, using different 

numbers of consultants and patients. These were then analysed. Firstly, stepwise 

logistic regressions were carried out to find which factors were significant for
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mortality for both the patient and aggregate data. Table 12 shows the regression 

coefficients obtained from some of these data sets. Unadjusted and adjusted 

confidence intervals were calculated. For the aggregate data this was done in Minitab, 

and for the patient data, separate logistic regressions were performed in BMDP for 

each consultant, and their coefficients extracted manually. All of these confidence 

intervals were plotted, and it was evident that the adjusted intervals calculated from 

the aggregated data were often different from those calculated using the patient data. 

This effect was less noticeable when the number of patients and consultants were 

higher. Examples of the plots for the simulation with 70 consultants can be seen in 

figures 25(a) to (c).

Patient Data Coefficients
number
consultants

average no. 
patients

dc emerg ageOtolO age60pl constant

10 200 -1.51 1.31 0 2.15 -6.02
10 900 -1.11 1.47 -0.67 1.67 -4.56
25 200 -1.48 1.23 0 1.95 -4.62
30 600 -1.25 1.41 -1.32 1.57 -4.49
50 500 -1.66 1.14 0 1.92 -4.55
70 1000 -1.46 1.26 -0.46 1.79 -4.54
100 250 -1.55 1.28 -0.62 1.69 -4.66
Actual Values
Coefficients in program -1.5 1.25 -0.25 1.75 -4.5
Aggregate Data
10 200 0 2.56 0 0 -4.00
10 900 -2.85 0 -4.79 0 -1.78
25 200 0 0 0 3.79 -4.26
30 600 0 2.44 -1.37 1.29 -4.10
50 500 0 1.32 -1.01 0 -3.31
70 1000 -0.62 2.05 -1.13 1.00 -3.72
100 250 0 2.33 -1.61 0 -3.56

Table 12:Coefficients of variables for sample patient and aggregate data sets 
simulated by log-linear modelling method
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Figure 25(a): Unadjusted Relative Risk Intervals for Simulated Consultants
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Figure 25(b): Adjusted Relative Risk Intervals for Simulated Consultants -
Patient Data
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Figure 25(c): Adjusted Relative Risk Intervals for Simulated Consultants •
Aggregate Data
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For the patient data, it seems that the increased number of consultants is more 

important for accurate estimation of the regression coefficients than the increased 

patient numbers, as the data sets with 70 and 100 consultants gave values closest to 

those used for generation of death probability in the original program. With the 

aggregate data, the set with 70 consultants with an average of 1000 patients each was 

the only one which had all four factors significant. This size of data set is the most 

realistic of those considered above. However, the coefficients were markedly different 

from those originally used. As can be seen, much information has been lost by using 

the aggregated data. This is reflected in the confidence interval plots, which show the 

adjusted values for the aggregate data as quite different from those of the patient data 

in several cases. For example, one would have drawn differing conclusions from the 

two data sets for 4 of the above 70 consultants, as their confidence intervals are 

adjusted to include 1 with the patient data, but not with the aggregate data. (Figures 

6.3(a) to (c)).

The log linear model approach was rather time consuming, and the relationship 

between the variables was dependant on the marginals rather than being controlled 

externally. The (3 value could have been specified, thus controlling the correlation, but 

this would have been rather difficult as |3 is not constrained and was usually estimated 

somewhere between -1 and 4. To combat these problems of data generation, a 

different approach was then adopted.

6.3.1.2 Us in g  p r o p o r t io n s  o f  t h e o r e t ic a l  m a x im u m  c o r r e l a t io n  a n d

INDEPENDENCE CONTINGENCY TABLES.

This method was far simpler and faster to use than the log-linear approach, and 

advantageously did not rely on any external routines.

The idea is to generate from the marginal distributions a set of probabilities for each 

cell which would arise with maximum correlation (pcorr), and a set which would arise 

from complete independence (pind). The independence model is simply the product of 

the marginals, and the correlation probabilities are calculated from a contingency 

table, by putting the maximum possible values on the diagonal and filling in the rest 

on the off diagonals.
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For example, the following tables show the independent and maximum correlation 

probabilities which would result from the marginal probabilities shown.

pind________________  pcoir_______________
0.025 0.03 0.045 0.1 0.1 0 0
0.15 0.18 0.27 0.6 0.15 0.3 0.15
0.075 0.09 0.135 0.3 0 0 0.3
0.25 0.3 0.45 0.25 0.3 0.45

A coefficient, a , can then be specified, which gives the size of contribution of the 

independence model, and so the probability of any cell p(i,j) is calculated from 

p(i,j) = apind(i j) + (l-a)pcorr(i,j) (0 < a  £ 1).

Patients can then be allocated to cells using random variables as before. Initially, this 

type of simulation was performed using marginals generated from particular Normal 

distributions, as with the log-linear method, and the results of 4 simulations using 150 

consultants each with their total number of patients from a distribution N(1200,400) 

can be seen in Table 13. The first two were generated using a=0.75, and the second 

two with a=0.25.

Patient Data
simulation emergency day case under 11 over 60 constant

1 1.25 -1.40 -0.49 1.74 -4.49
2 1.25 -1.53 -0.55 1.79 -4.53
3 1.23 -1.36 -0.56 1.71 -4.45
4 1.21 -1.51 -0.55 1.77 -4.50

Aggregate Data
simulation emergency day case under 11 over 60 constant

1 0.87 -0.69 0 2.36 -4.04
2 1.45 0 0 2.66 -4.42
3 0.55 0 0 2.70 -3.91
4 0.84 0 0 2.60 -3.99

Table 13: Coefficients of variables in LR equations for 4 data se ts

Again, the patient data give fairly consistent estimates over the data sets, and they 

correspond well with the original equation whereas, even with these large numbers, 

the aggregate data lose the information, and the variables with positive coefficients 

are favoured over the low risk ones, as they are more common. These equations 

would not, then, make equivalent adjustments to the patient and aggregate data
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mortality rates. The effect of a  on the adjustments must also be explored in more 

detail.
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Figure 26: Example of plot showing change between unadjusted and adjusted 
relative risks for simulated consultants
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6.3.2 Final Analyses

It was decided to base marginal totals on the actual data rather than generating them, 

and so for the definitive simulations random samples were taken from the 1992 data. 

Up until this point, the coefficients of each consultant variable had been extracted 

manually from the BMDP output of separate logistic regressions for each one. This 

was a rather tedious and time consuming process, but BMDP has no facility to extract 

the required coefficients and their standard errors. These could, however, be 

extracted from the summary of the output from the glm function with a binomial link 

and with the total number in the category as a weight in Splus. The coefficients were 

then written out to data files, and the required ones extracted using a FORTRAN 

program. This was a far more efficient method of acquiring the data required to plot 

the confidence intervals. The generation of the main data sets and analyses of them 

will now be described.

The number of consultants was kept at 75, and 5 sets of data were generated at each 

of 5 levels of a. For all of these, the changes in relative mortalities on adjusting were 

plotted in the form of arrows, along with the adjusted confidence intervals. An 

example of such a plot is given in Figure 26. The general pattern evident in these plots 

is that the intervals tend to move towards unity, but we would hope that the intervals 

behave the same for the patient and aggregate data. Since no inherent difference 

between consultants was introduced in data generation, approximately 95% of these 

relative risk intervals should contain 1. We could thus consider whether the interval 

for log R contains 0 as a Binomial variable with n=75 and p=0.05. Under this 

distribution, there is almost no probability of achieving a value greater than or equal 

to 10, and by chance we could expect about 3 or 4 of the adjusted intervals to lie 

away from 1 if the adjustments are working.

In order to summarise the results, and to see the effect of correlation between the 

variables, a z value was computed for each consultant, where

logR
z = -------— —.

s.e. (logR)

The number of confidence intervals for R not including 1 could easily be found by 

counting the number of the | z | values greater than 1.96. The numbers of intervals in
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the five simulations at each level of a  which do not contain 1 are summarised in Table 

14. If there were no difference between the consultants, we would expect the z values 

to have a N(0,1) distribution. Since there has been no inherent difference between 

surgeons included in the simulation, one would expect this to be the case for the 

adjusted values.

Patient data Aggregate data
a unadjusted adjusted unadjusted adjusted
0 26.2 6.4 26.2 7.6
0.25 26.8 4.6 26.2 6.4
0.5 22.6 6.0 22.2 6.8
0.75 23.8 4.0 23.8 2.8
1 24.6 4.6 24.6 3.8

Table 14: Average numbers of confidence intervals for R not containing 1 for
simulated data sets

The first thing to observe from Table 14 is that the adjustments have removed a large 

proportion of the variability for patient and aggregate data. For the lower values of a  

(most correlation), more confidence intervals for R from patient data than aggregate 

data contain 1, whereas with the independent data, the aggregate data adjustments 

appear to be just as, if not more, effective. It is difficult to tell whether there is any 

trend, but numbers of intervals not containing 1 appears to decrease with decreasing 

dependence with the aggregate data, suggesting the model gained from these data 

may be more sensitive to correlation between the variables.

The sum of squared z values, as given in Table 15, would be expected to follow a y? 

distribution with 75 degrees of freedom if the z values were distributed as N(0,1). The 

values of £ z 2 should then be around 75, with an approximate 98% prediction 

interval in which X^(75) should lie being (70.1,106.4). It can be seen that all the 

adjusted J  z2 values are contained within this interval, whereas the unadjusted ones 

are much higher. The values calculated from the patient data are less variable, and 

closer to 75, suggesting that their z values follow more closely an N(0,1) distribution 

than those calculated from the aggregate data. However, the totals obtained from the 

aggregate data are not significantly different from this distribution, and as such it can 

be concluded that the adjustments are having the required effect overall.
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Patient data Aggregate data
a unadjusted adjusted unadjusted adjusted
0 386.97 77.61 384.35 101.30
0.25 426.30 78.89 423.35 93.34
0.5 306.54 82.25 304.73 99.66
0.75 313.04 76.27 314.80 70.43
1 352.29 81.32 347.25 77.94

Table 15: Mean values of ]£z2 for simulated data

By exploring these standardised values, we have investigated the deviation from 0 of 

the log relative risks, and can see that the adjusted values are, as we would expect, 

not significantly different from 0 overall. However, an important effect of adjusting 

which has been overlooked here is the direction. The regression equations used to 

adjust the patient and aggregate data sets were quite different, but they could in 

general give the same results overall. If we look at the diagrams showing direction of 

movement from unadjusted to adjusted values, we can count how many move in 

opposite directions for the two types of data to give an idea of the similarity in 

adjustment effects. Table 16 gives the mean numbers of simulated consultants at each 

value of a  where the differences between the unadjusted and adjusted risks had 

opposite signs for the patient and aggregate data. This does not take magnitude into 

account and some of the differences are very small.

a mean
0 8.2

0.25 10.0
0.5 8.0
0.75 8.0

1 4.2
Table 16: Mean num bers of adjustm ents going in opposite directions for patient and

aggregate data se ts

The number of times out of 75 the adjustment goes in different directions appears 

from these simulations to be approximately halved when no correlation is present

The above summaries have all suggested that aggregate data performs best when the 

factors are uncorrelated, but with only 5 data sets with each value of a  the results are 

unclear. In order to try to identify a trend more clearly, the simulations have been
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repeated. The results from the next simulations are given in tables 17, 18 and 19. 

These are again for 5 data sets, each with 75 consultants at each of the 5 levels of a.

Patient data Aggregate data
a unadjusted adjusted unadjusted adjusted
0 19.4 4.4 19.2 6.4
0.25 24.4 4.6 24.6 7.8
0.5 23.4 3.0 23.4 4.4
0.75 26.0 2.8 26.2 3.4
1 23.8 1.8 24.0 2.4

Table 17: Average numbers of CPs for R not containing 1 for second set of 5
simulated data se ts

Patient data Aggregate data
a unadjusted adjusted unadjusted adjusted
0 271.17 76.30 270.14 93.78
0.25 333.17 86.84 331.69 96.99
0.5 331.37 71.50 327.22 79.26
0.75 342.71 72.00 338.42 72.18
1 302.02 63.79 299.70 57.01

Table 18: Mean values of £ z 2 for second se t of 5 simulated data sets

a mean
0 12.8

0.25 9.6
0.5 7.2

0.75 4.4
1 3.4

Table 19: Mean num bers of adjustments going in opposite directions for patient and 
aggregate data for second 5 simulated data sets

Similar results can be seen for the second set of 25 simulations as for the first, 

although these have shown that there is great variability present. The basic trend that 

is evident is that inter “surgeon” variation is reduced more by adjustment if there is 

less dependence between the explanatory variables. For a  = 0, there were less initial 

differences between the unadjusted values than for the rest of the values of a, so the 

adjusted values have a lower mean £ z 2 than we might expect from the trend. With 

the average numbers of adjustments going in opposite directions for patient and
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aggregate data sets, a clear trend appears. When there is no correlation, the number is 

very small.

Looking at the averages over all 10 simulations (Tables 20 - 22), the pattern is more 

visible. The number of confidence intervals not containing 1 and the number moving 

in opposite directions decrease as the level of dependence between the variables 

decreases. Even with independence, there are still more than three adjustments on 

average over the 10 simulations which have opposite effects. Sometimes, however 

these adjustments are as small as to be negligible. It may be more instructive to look 

at the significant values only, and observe how many of them do not match for the 

patient and aggregate data. Table 23 shows the mean numbers of significant adjusted 

confidence intervals for three values of a. It can be seen that for a  = 0 (complete 

dependence) there were on average 4.5 consultants under the aggregate data whose 

confidence intervals excluded 1, compared with only 0.9 for a  = 1. In fact, 3 of the 10 

simulations with a  = 1 had no consultants in this category, whereas for a  = 0 and a  = 

0.5, all of the simulations had at least one consultant with the aggregate data 

confidence interval significant when the patient data one was not. This shows that 

when the variables are independent, the quality of information achieved from the 

aggregated data is almost as good as that from the patient data. The number of 

relative risk confidence intervals which have moved in opposite directions for the 

different data sets, and are significantly different from 1, is very small. On average 

only one tenth of a consultant per 75 in the simulated study has a confidence interval 

which is significant with one data set and not the other, and has moved in the 

opposite direction.

Patient data Aggregate data
a unadjusted adjusted unadjusted adjusted
0 22.8 4.9 22.7 7.0
0.25 26.1 4.6 24.5 6.6
0.5 23.0 4.0 22.8 6.6
0.75 24.8 3.4 24.5 3.1
1 24.2 3.2 24.3 3.1

Table 20: Average numbers of Cl’s for R not containing 1 for ail data sets
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Patient data Aggregate data
a unadjusted adjusted unadjusted adjusted
0 329.07 76.96 327.25 97.54
0.25 379.24 82.14 464.14 95.17
0.5 318.46 77.19 316.98 89.46
0.75 317.36 73.63 326.61 71.31
1 327.16 72.56 323.48 67.48

Table 21: Mean values of £ z 2 for all simulated data

a mean
0 10.5

0.25 10.0
0.5 7.6

0.75 6.2
1 3.8

Table 22: Mean numbers of adjustm ents going in opposite directions for patient and
aggregate data se ts

a # significant with 
patient data only

# significant with 
aggregate data only

# significant with 
both data sets

0 2.4 4.5 2.5
(0.3) (0.7) (0.3)

0.5 1.5 3.1 2.5
(0.1) (0.3) (0.3)

1 1.0 0.9 2.2
(0.1) (0.1) (0.2)

Table 23: Mean numbers of significant confidence intervals for patient and aggregate 
data sets.(Number of adjustm ents going the opposite way)

6.4 Conclusions

The simulations have shown that adjustments of aggregate data are almost as efficient 

as those of patient data, provided the numbers of consultants and patients are large 

enough. This is not a problem where our particular data are concerned, as they are 

larger than those considered here. The results of the 10 simulations looking at 

different amounts of correlation between the explanatory factors show that 

independence gives more satisfactory adjustments, especially for aggregate data. If 

the value of a  as used above could be measured in a data set, it would have to be 

greater than 0.75 to give reliable results. While the actual relationships between 

variables cannot be estimated using only aggregate data, it would seem that it is
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reasonable to assume only weak dependence. It is not obvious, for example, whether 

a young person is more likely to be admitted to hospital as an emergency than an old 

person.

While patient level data are obviously preferable for accuracy of achieving a model, 

and are usually to be recommended, the problems of working with a data set of 

several hundred thousand records should be remembered. It has been demonstrated 

by these simulations that surprisingly good results can be achieved from aggregate 

data using these methods, and so we can be fairly confident in our interpretation of 

the results, if we can find a good model for outcome. This is, of course more difficult 

with real data, as many different factors will affect outcome, including unknown ones. 

It seems, however, that although a more accurate model can be found using patient 

data, the ones from aggregate data do not seriously lead us to different conclusions 

about the surgeons.
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7 INVESTIGATION OF POSSUM SCORES ON 
A LARGE DATABASE: THE DATA

7.1 Introduction

We have seen that, while useful results were gained with the RCS data, they are not 

entirely satisfactory, due to the collection of only aggregate data. If, in future, patient 

data were to be collected, they should be geared towards risk adjustment. Currently, 

POSSUM (Physiological and Operative Severity Score for the enumeration of 

Mortality and morbidity) is the most generally accepted and widely used predictive 

system for audit of general surgery, and its use has been suggested by the RCS. In 

chapter 2, we discussed some of the system’s drawbacks. It is rather complex to 

calculate, and requires a large amount of data to be collected. It is not well calibrated 

for low risks, and so tends to overestimate mortality rates, thus potentially masking 

poor surgical performance. It also contains variables which could be interpreted as 

being a function of surgical skill, so does not meet some of the criteria for a model for 

use in audit. We were approached by consultants from Portsmouth at the 1994 

meeting of the RCS Comparative Audit Service, where our presentation methods as 

described in the last chapter were presented. They were very interested in the ideas 

and wanted to further the research by considering POSSUM. They were collating a 

large amount of patient data on the variables required by POSSUM, which they have 

allowed us to use. We wish to use these data to test the POSSUM scoring system on 

a large set of general surgical data, which shall be described in this chapter.

We also wish to explore further improvements which could be made to the POSSUM 

system. These could be made by changing the logistic regression coefficients or the 

method of scoring. It may also be possible to find a simpler scoring system by 

discarding those variables which do not contribute substantially to the discriminatory 

power of the system. We investigate this using the POSSUM scores, and individual 

variables. We will also investigate the effect of missing data, and look at possible 

ways in which it can be treated. It is also of interest to assess whether possible 

surgeon-related variables are necessary. These questions will be addressed in chapter
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8, and after selecting the “best” model, we shall use it to compare the consultants in 

this study in chapter 9.

7.1.1 The Portsmouth Data

The data from the Portsmouth NHS Hospitals Trust General Surgical Database 

consisted of 143 fields on 11231 patient episodes. Of these episodes, only 8123 

involved a surgical procedure. For independence, it was decided to include each 

patient once only, and so the first episode for which there is an operation has been 

considered. This left 6714 patients. The data included admission, physiological, 

operative severity and outcome variables, as well as the calculated POSSUM scores 

and derived risks of morbidity and mortality. The POSSUM scores are calculated as 

stipulated in the original publication by Copeland et al. (1991). These are detailed in 

Appendix 6. We shall refer to the individual components of the Physiological and 

Operative severity scores as “weights”. These weights can take the value 1, 2, 4 and 

8. For the purpose of the initial analyses, a training data set consisting of a random 

sample of approximately half the patients has been used. This is so that any models 

developed can then be tested on the test data set of the remaining patients. The 

training data set consists of 3381 patients, with 101 postoperative deaths. The test set 

has 3333 patients and 85 deaths.

The data set has been used essentially as it was received, except for changes to very 

obvious data entry errors. For example, a value for pulse rate of 556 was considered 

to be a data entry error, and changed to 56. A pulse rate of 7 was changed to 70. For 

sodium concentration, two values of 12 and 14 were assumed to be 120 and 140. On 

several occasions, cells had obviously run into each other. For example, a value of 

sodium of 1384, followed by potassium concentration 0.2 were changed to 138 and 

4.2. Other, less obvious errors have been left as they were, so could affect the results.

7.2 Preliminary Analyses

7.2.1 Outcome measure

The outcome measure of estimated 30 day mortality has been used. The data actually 

reported in-hospital mortality and there were not complete follow-up data. There is
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thus likely to be under reporting of deaths due to patients who were discharged and 

subsequently died within 30 days. Where patients had multiple episodes, it was 

possible to check whether they had died within 30 days of their first procedure, and to 

include this as a postoperative death. Patients who were known to have died after 30 

days are considered to have survived for the purpose of these analyses. Complications 

data were considered too unreliable to be used, and there was no longer term follow- 

up information.

7.2.2 Variables

Firstly, we shall introduce the variables which are involved in the POSSUM score. 

The first stage was to study their relationship with 30 day mortality, in order to see 

how well the POSSUM weights appear to fit the data, and also to consider the form 

in which they might be included in a model based on the variables rather than scores.

7.2 .2 .1  C o n t in u o u s  Va r ia b l e s

These were divided into groups of similar numbers of patients, and the mortality rate 

plotted for each group. The patterns of these plots could then be studied. Missing 

data is a considerable problem, and will be discussed in more detail later.

Age

From the plot (Figure 27), it can be seen that the mortality rate generally increases 

with age, as one would expect. It would thus be reasonable to include age as a 

continuous variable in a logistic regression. The mean age of patients in the data set 

was 57, ranging from 14 to 100. Three patients had missing values for age. The 

POSSUM weights are shown on the plot, and in general are appropriate. A patient 

scores 4 if they are aged over 70, although from these data we would conclude that a 

more suitable cut-off point is age 75. The following table investigates the relationship 

of the POSSUM scores with mortality.
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Figures 27-30: Mean mortality rates for grouped continuous variables. Sections show 
POSSUM Physiological Score. (POSSUM Study, training data set).
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Age POSSUM Deaths(%) if Deaths (%) if
Weight cut-off 71 cut-off 75

1 11 (0.63) 11 (0.63)
2 19 (2.94) 32 (3.34)
4 71 (8.02) 58 (10.1)

Table 24: Death Rates by POSSUM and Experimental Weightings for age

The mortality rate for patients aged 71 to 74 was 4.18% (13/311). The decision as to 

where to categorise these patients is fairly arbitrary, but they lie closer to the lower 

age group than the higher one.

Pulse

Mortality rate also increases with an increase in pulse (Figure 28). There may also be 

an increase with very low values of pulse rate. It is difficult to tell, as this is fairly 

rare. The mean value was 79, with range 32 to 240 but with the bulk of patients 

having values between 60 and 100. As with age, we do not have any mean values 

occurring at the extreme values which achieve high risk POSSUM weights, so it is 

difficult to assess whether they are valid. If we look at mortality categorised by 

POSSUM weight, we get the following table.

Pulse POSSUM Weight Deaths (%)
1 46 (1.97)
2 40 (4.50)
4 9 (8.33)
8 4 (40.0)

Table 25: Death Rate by POSSUM Weights for Pulse Rate

This appears to validate the scores, with the mortality rate increasing exponentially. 

While pulse could be included as a continuous variable, it would perhaps be more 

appropriate to use a categorical variable with cut-off 100 (and perhaps less than 50) 

or to transform the variable to take account of low values, using lpulse-701. There 

were 30 missing values, which had a much higher than average mortality rate.
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Systolic Blood Pressure

Figure 29 shows that by far the highest mortality rate occurs at very low blood 

pressures (below 100). Medical opinion, as suggested by the POSSUM scoring 

system would also attribute a higher risk to very high pressures. The plot suggests 

grouping the patients into above or below 100, but a better transformation may be 

ISBP-1301, as 130 appears to be in the centre of the groups whose mortality rates are 

all below average. The mean value was 135, ranging from 60 to 260. A table of 

POSSUM score and postoperative mortality is given below. From Table 26, it is 

apparent that not enough weight is given to the extreme values of blood pressure, and 

that there is not much to distinguish between the two lowest scores. This leads us to 

believe that perhaps two categories would be sufficient here.

SBP POSSUM Weight Deaths (%)
1 33 (2.11)
2 43 (3.12)
4 15 (6.17)
8 6 (75.0)

Table 26: Death Rates by Systolic Blood Pressure POSSUM Weights
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Urea

Figure 30 shows an increase in mortality rate with increasing urea concentration. The 

values fluctuate around a low value for urea less than about 7 mmol/1, and increase 

dramatically above a concentration of 10 mmol/1. This suggests using a categorical 

variable for above/ below 10. There were 647 missing values, which corresponded to 

a very low mortality rate. The mean value was 6, and the range was 1.4 to 41.8. The 

relationship between urea and mortality can be easily seen in the following table.

Urea POSSUM Weight Deaths (%)
1 45 (1.99)
2 16 (5.82)
4 21 (16.41)
8 14 (21.87)

Table 27: Death Rates by Urea POSSUM Weight

Haemoglobin

The following table shows numbers of deaths for each POSSUM 

weight value. There is no distinction with these data between 1 and 2, 

been expected from Figure 31.

Hb POSSUM Weight Deaths (%)
1 43 (2.26)
2 17(2.25)
4 17 (6.67)
8 20 (14.1)

Table 28: Death Rates by Haemoglobin POSSUM Weight

It can be seen from the plot that very low concentrations of Haemoglobin correspond 

to a marked increase in mortality rate. There is likely to be an increase in mortality 

rate for high values, so a transformation of the type used above would be appropriate. 

It is not obvious from the plot which value should be subtracted in the transformation. 

The median value of 13.5 could be used. However, since low values appear to have 

much higher mortality, a larger value, say 15 would perhaps be more appropriate. 

Alternatively, a value of 14.5 corresponds to the midpoint of the group in the original

Haemoglobin 

as could have

146



Hayes CE, 1995. Investigation of POSSUM Scores on a Large Database

POSSUM score with a weight of 1. In fact, 13.5 appears to give a slightly more 

significant coefficient in logistic regression than either of the higher values tried. 

Missing values, of which there were 334, corresponded to a low mortality rate. Given 

the information in Table 28, a categorical variable where “high risk” is less than 

twelve or greater than 16, and “low risk” from 12 to 16 may also be suitable.

White Cell Count

Table 29 shows a strong relationship between the POSSUM scores for White Cell 

Count and mortality. With a maximum weight of 4, perhaps not enough emphasis is 

given to this variable, as the mortality rate for this group is fairly high. Looking at 

Figures 30 and 31, we can see that a group scoring 2 here has a similar mortality rate 

to the group scoring 8 in the Haemoglobin plot (Figure 32).

WCC POSSUM Weight Deaths (%)
1 35 (1.62)
2 48 (5.98)
4 14(18.2)

Table 29: Death Rates for WCC POSSUM Weights

The plot of WCC against mortality rate suggests a logistic relationship, and that WCC 

would be included in a model as a continuous variable. Perhaps there is a slight 

increase in mortality for very low values below 4 which is difficult to see from this 

plot due to the small number of patients with very low counts. POSSUM gives a 

weight of 2 for values from 3.1 to 4, and 4 for counts of less than 3. To take this into 

account, we could use a transformation such as |WCC-7|. The data had a mean count 

of 7.05 and ranged from 0.4 to 47.8. There were 338 patients with no data for this 

variable, of whom 4 died.

Sodium

Mortality rate shows a steady reduction with increased sodium concentration (Figure 

33). There is a marked increase for very low values, and a categorical variable of less 

than or greater than 132 appears to describe the situation. There are 137 patients with 

a value below this threshold. The average value was 138, with a minimum of 93 and a
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maximum of 192. Looking at the following table, we can see that the relationship 

between the sodium weight and mortality is a strong one.

Na POSSUM Weight Deaths (%)
1 53 (2.35)
2 29 (7.67)
4 10 (11.6)
8 4 (23.5)

Table 30: Death Rates by POSSUM Weights for Sodium Concentration

Potassium

The plot of mortality rate for grouped potassium data (figure 34) shows a marked 

increase in mortality for high and low values, with fluctuation about the mean in the 

middle of the range. The transformation IK-4.21 has also been plotted (Figure 35), and 

shows an increase in mortality with increased values of this transformed variable 

above 0.6. There is fluctuation for smaller values, and a categorical variable which 

takes the value 1 if the potassium concentration is between 3.5 and 5, and 2 otherwise 

seems appropriate. There were 661 missing values, corresponding to a very low 

mortality rate. The mean value of potassium in this group of patients was 4.2, 

ranging from 2.4 to 7.7.

K POSSUM Weight Deaths (%)
1 72 (2.89)
2 13 (8.39)
4 8 (13.3)
8 2 (13.3)

Table 31: Death Rates for Potassium POSSUM Weight

The above table of POSSUM weight by mortality shows that any abnormal value 

(outwith 3.5 - 5) constitutes a higher risk, providing evidence for the above 

categorical variable and backing up the tight “V” shape of the plot. This suggests that 

the POSSUM scoring for this variable could be less detailed.
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Figure 35: Transformed Potassium Data versus Mean Mortality Rates (POSSUM
Study, Training Data Set)

Glasgow Coma Score

The data on GCS were not particularly helpful, as only 18 of the patients had scores 

of less than the maximum possible score of 15. Of the 5 patients with the lowest 

scores none died. It is likely that most patients with a low GCS will be in Intensive 

Care, and so this variable is not of use for modelling in a general surgical setting.

7.2 .2 .2  Ca t e g o r ic a l  Va r ia b l e s  

Dyspnoea

The data for this variable are summarised in Table 32. The POSSUM weights 

contribute to the “respiratory history” section of the Physiological score. Since 

patients with dyspnoea on exertion and those with limiting dyspnoea do not differ in 

mortality rate, perhaps 1, 2 and 4 would be more appropriate weights, with the 

middle two groups both scoring 2. Combining the three groups having dyspnoea 

gives a mortality rate of 6.2% for 655 patients.
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no
dyspnoea

dyspnoea on 
exertion

limiting dyspnoea 
(one flight)

dyspnoea 
while at rest

missing

POSSUM score 1 2 4 8 1
Number of patients 2604 471 146 38 108

Mortality rate 1.9% 5.7% 4.1% 13.2% 11.5%
Table 32: Mortality rates for levels of Dyspnoea

Cardiac Drugs

In calculating the POSSUM weight for “Cardiac signs”, any therapy for cardiac 

problems is taken into account. Their contributions to this score are shown in Table 

33.

Drug POSSUM
weight

Number of 
patients

Mortality Rate

Diuretic 2 248 8.06%
Digoxin 2 91 10.99%
Antianginal 2 128 5.47%
Hypertensive 2 320 3.44%
Warfarin 4 28 7.14%

Table 33: Mortality Rates for Cardiac Drugs

There were 140 patients receiving two drugs, the most common combination being 

diuretic and hypertensive therapies, 33 patients received three drugs and 1 four. It 

was relatively uncommon for digoxin to be administered with any other treatment

If we carry out x2 tests of association on these data, two of the drugs are significantly 

related to mortality. The drug which is most highly related to postoperative mortality 

is digoxin. Diuretic is also significantly related. Based on these data, one might 

increase the weights for diuretic and digoxin to 4.

Oedema

The mortality rate for those without oedema was 2.9%, compared with 4.9% for 

those with. This difference is only just significant at the 5% level (x2=4.017). 

Strangely, 9 of the 67 with missing data died within 30 days, giving a rate of 11.8%. 

This also contributes to the POSSUM “Cardiac signs” score, providing a weight of 4 

if present Based on these mortality rates, this is rather a high weight
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Jugular Vein Pressure

Those patients experiencing JVP had a mortality rate of 7.7% (7/72) compared with 

2.6% for those who did not. Again, the missing data have a high mortality rate 

associated with them of 12.2% (10/82). This variable is also part of the “Cardiac 

signs” score, gaining a weight of 8 if present. Again, this appears rather high given 

these data.

ECG

The data on electrocardiograms were fairly sparse, as over two-thirds of patients 

either did not have these carried out, or the data were not recorded. The patients who 

had an ECG done had a higher mortality rate than those who did not (4% versus 

2.3%, p<0.005). The data are summarised in Table 34.

ECG Reading POSSUM Score Number of patients Mortality Rate
Normal 1 625 2.4%
AF 60-90 4 31 7.7%
AF>90 8 16 18.8%
>5 ectopics/min 8 18 5.8%
Q or ST/T wave 8 164 3.7%
Other abnormal 8 176 5.7%

Table 34: ECG Data, POSSUM scores and mortality rates

These data suggest that the weights given to abnormal ECG readings are too high, 

and that they should be assigned 4 instead of 8, except perhaps for an atrial fibrillation 

rate of greater than 90. Since all these categories contain few patients, when 

considering variables, we shall construct a binary summary variable for ECG with 

normal versus abnormal.

Chest X-ray

For chest X-ray, again over two-thirds had no information. Those who had an X-ray 

had a higher mortality rate than those who did not (4.7% versus 1.7%). Heart X-rays 

contribute to the cardiac score and lung X-rays to the respiratory history score. The 

information is summarised in tables 35a and 35b.
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POSSUM Score Number of patients Mortality Rate
Normal 1 831 3.5%
Borderline Cardiomegaly 4 93 5.4%
Cardiomegaly 8 64 10.9%
Missing/ not done 1 2393 2.5%

Table 35(a): Heart X-rays, POSSUM weights and mortality rates

POSSUM Score Number of patients Mortality Rate
Normal 1 811 2.8%
MildCOAD 2 55 3.6%
Moderate CO AD 4 25 16.0%
Fibrosis/ Consolidation 8 57 10.5%
5 1 29 13.8%
Missing/ not done 1 2393 2.6%

Table 35(b): Lung X-rays, POSSUM weights and mortality rates

For the heart X-ray data, again weights of 1, 2 and 4 may be more appropriate than 1, 

4 and 8 as the mortality rates are not particularly high. The “5” in the lung X-ray data 

has not been explained, but has been given a weight of 1 for the purpose of the 

POSSUM analyses. When considering lung x-ray as a categorical variable, normal 

versus abnormal, “5” has been included as abnormal due to the high mortality rate.

Malignancy

This makes up part of the Operative Severity rather than Physiological POSSUM 

score. The data are summarised in the following table.

POSSUM Score Number of Patients Mortality Rate
None 1 2642 2.6%
Primary only 2 335 2.7%
Nodal Metastases 4 173 2.3%
Distant Metastases 8 69 10.1%
Missing 1 162 7.4%

Table 36: Malignancy, POSSUM Weighting and Mortality Rates

From these data, it appears that only the presence of distant metastases carries an 

increased risk of postoperative mortality. Thus perhaps primary tumour and nodal 

metastases should be weighted the same as no malignancy. For consideration of
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variables, it seems appropriate to split this into two groups: distant metastases versus 

no distant metastases.

Mode o f Surgery

The mode of surgery is whether the operation was elective, urgent (within 24 hours 

of admission) or emergency (within 2 hours). Mortality rate increased through these 

categories, with 1.2% of elective patients, 5.4% of urgent patients and 37.7% of 

emergency patients dying within 30 days. The POSSUM weights for these three 

groups are 1, 4 and 8. There were 500 urgent patients and 85 emergencies, with 135 

patients having their mode of surgery unrecorded. The mortality for this missing 

group was 7%. There is not a significant difference between the elective and urgent 

operations when other factors are accounted for, so these will be grouped together in 

our analysis of individual variables.

Multiple Procedures

The patients were categorised as having one, two or more than two procedures. The 

corresponding mortality rates in these categories were 2.7%, 3% and 4.6% 

respectively. The POSSUM weights for these categories are 1, 4 and 8, so they do 

not fit these data very well. A combined category of two or more procedures has a 

mortality rate of 3.2%. This variable does not discriminate well for survival. The 125 

patients with missing data had a mortality rate of 7.4%.

Operative Severity

The POSSUM system has four categories for operative severity: minor, moderate, 

major and major+. Thus we get the following table of mortality rates by POSSUM 

categories. With these data, this does not appear to be the most useful method of 

grouping.

POSSUM score Deaths (%)
1 17 (2.23)
2 6 (0.45)
4 20 (3.05)
8 52 (7.81)

Table 37: Death rates for POSSUM groupings of operative severity

The data for operative severity are summarised in the following table.
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Category Patients Deaths Mortality Rate
minor 761 17 2.23%
intermediate 1320 6 0.45%
major 655 20 3.05%
major + 367 30 8.17%
comp major D 50 1 2.00%
comp major C 65 7 10.77%
comp major B 46 14 30.43%
comp major A 2 0 0.00%
(com£ major total) 163 22 13.50%
missing 115 6 5.22%
Total 3381 101 2.99%

Table 38: Mortality rates by Operative Severity category

Perhaps a more effective way of assigning the weights, based on these data, would be 

to give 1 for minor or intermediate procedures, 2 for major, 4 for major+ and 8 for 

complex major. If considering a categorical variable, one would be inclined to have 2 

categories with major included in the lower risk category, and major+ and complex 

major together. Alternatively, a 3 category variable may be suitable with major+ and 

complex major as two separate categories.

Blood Loss

As discussed in chapter 2, this is a dubious variable to include in a model for audit as 

it could depend on surgical skill as much as the severity of the procedure. However, it 

is very highly related to postoperative mortality, which increases as volume of blood 

lost increases, as shown in the following table.

Volume Patients Deaths Mortality rate
<100 ml 2565 43 1.68%
101-500 ml 487 18 3.70%
501-999 ml 93 8 8.60%
>1000 ml 93 20 21.51%
missing 143 12 8.39%
Total 3381 101 2.99%

Table 39: Death Rates for Blood Loss Groupings

POSSUM gives weights of 1, 2, 4 and 8 respectively to the above four volume 

categories. For inclusion in a model it could be kept as 4 categories, or split into 2 

(less or greater than 0.5 litres). This variable is very highly correlated with operative
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severity, as can be seen in Table 40. Calculating the correlation between the values 

gives 0.63, and a x2 test of association gives a test statistic of 4608 on 32 degrees of 

freedom, which is very highly significant

Blood loss (ml)
Operative
Severity

missing <100 101-500 501-999 >1000 Total

missing 115 0 0 0 0 115
minor 8 748 4 0 1 761
intermediate 3 1214 95 6 2 1320
major 9 423 195 19 9 655
major + 5 156 148 36 22 367
comp major D 0 9 12 9 20 50
comp major C 2 10 23 18 12 65
comp major B 1 3 10 5 27 46
comp major A 0 2 0 0 0 2
Total 143 2565 487 93 93 3381

Table 40: Relationship between Operative Severity and Blood Loss

Peritoneal Soiling

This is another variable which can depend on surgical skill and which we would thus 

rather not include. There was an increase in mortality rate with increased severity of 

peritoneal soiling, from 1.8% with none to 6.2% for minor, 9.2% for local pus and 

13.7% for free bowel contents, bile or pus. The POSSUM weights for the four 

categories are 1, 2,4 and 8, which do not fit these data too well. Combining the last 3 

categories gives a mortality rate of 8.1% for any peritoneal soiling. Of the 143 with 

missing data here, 12 (8.4%) died.

The preceding variables are all required to make up the POSSUM Physiological and 

Operative Severity Scores. The following two variables are not included in the score, 

but are available in the data set, and are very useful.

Emergency

This refers to the type of admission, and patients were either emergency admissions 

or not. Note that this is not the same as mode of surgery, and is not strongly related 

to it. It is strongly related to postoperative mortality, with a rate of 8% for
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emergencies and 1% for others. Approximately 28% of the admissions were 

emergency. There were no patients with missing data for this variable.

Myocardial Infarction

This was in three categories: those who had never had a myocardial infarction, those 

who had had one over 6 months ago, and those who had had one in the preceding 6 

months. Mortality rate increased over these 3 groups from 2.4% to 8.9% to 17.9%. 

The 103 patients with this information missing had a mortality rate of 9.7%. Since 

there were only 28 patients with an infarction in the last 6 months, this group could be 

combined with those having one before.

Having described the data set and the individual components of POSSUM, we go on 

in the next chapter to use them for modelling. We will rise the scores, individual 

weights and the actual variables in models, as we attempt to improve on the present 

POSSUM system.
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8 MODELLING THE POSSUM DATA

8.1 POSSUM Scores

The Physiological and Operative Severity scores which make up POSSUM are 

calculated by adding the weights assigned to the twelve physiological and six 

operative severity variables separately. We would expect an increase in both of these 

scores to be associated with an increase in mortality. Table 41 shows that this 

generally is the case. The scores have been grouped together for easy presentation, 

and also because many of the combinations of scores do not contain any patients. The 

17 patients with no data for any of the operative severity score categories are 

assumed to have a value of 1 for each, and so are included as 6.

Physio­
logical
Score

6 7,8 9 10,11 12-16 17-34 total
12 n 215 47 80 31 32 7 412

m.r. 0 0 0 0 0 0 0
13 n 241 90 97 57 42 14 541

m.r. 0 0 0 0 0.024 0.071 0.004
14 n 161 47 54 52 47 13 374

m.r. 0.006 0 0 0 0 0.077 .005
15,16 n 241 62 90 62 67 40 562

m.r. 0.004 0 0 0 0.015 0.125 0.013
17-19 n 199 67 51 71 65 35 488

m.r. 0.005 0 0 0.014 0.031 0.057 0.012
20-22 n 152 38 52 27 53 41 363

m.r. 0.026 0.026 0 0 0.075 0.171 0.044
23-28 n 149 48 38 61 73 55 424

m.r. 0.027 0.021 0.026 0 0.082 0.236 0.059
29-62 n 84 25 19 24 35 30 217

m.r. 0.119 0.04 0.105 0.125 0.343 0.5 0.198
Total n 1442 424 481 385 414 235 3381

m.r. 0.015 0.007 0.006 0.010 0.063 0.187 0.029
Table 41: Mortality Rates by POSSUM Scores

The two scores were included in a logistic regression model. This gave the model 

ln{R/(l-R)} = 0.16XP.S + 0.17xO.S.S - 8.98.

The published report (Copeland et al., 1991) gives the model
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ln{R/(l-R)} = 0.13XP.S + 0.16xO.S.S - 7.04.

The minimum possible predicted mortality obtainable from the published model is 

1.08%, which as has previously been pointed out is very high for many general 

surgical patients. The minimum predicted probability of death from the above 

equation calculated from the Portsmouth data is 0.24%. Thus we would hope it 

would be better calibrated. We can compare the models using Receiver Operator 

Characteristic (ROC) curves, which plot the true positive rate (sensitivity) against the 

false positive rate (1-specificity). Figures 36(a) and 36(b) show the ROC curves 

when the above models are used to predict outcome on the training and test data sets 

respectively. The predicted values from the test set for the two equations have been 

plotted against each other in Figure 37. It can be seen that the published equation 

consistently estimates higher probabilities than the one calculated here. This means 

that more patients are predicted to die at every cut-off point, and the false positive 

rates are higher. Thus the ROC curves for the published model have points further to 

the right than the ones for our calculated model. ROC curves are not the ideal method 

of judging models when there are very low mortality rates, as we are dealing with 

here, but they give an idea of the relative performance of the models.
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Figure 37: Comparison of Predicted Probablilities of Mortality from Two POSSUM
Models (Test Data Set)

A measure of the efficiency of a model is the average quadratic, or Brier, score. For 

Logistic Regression, the quadratic score for each patient is calculated from

Q = 2(observed - predicted)2,

where “observed” is either 0 or 1 depending on whether the patient died, and 

“predicted” is the predicted probability of death from the regression equation. 

(Titterington et al., 1981). This assesses both the discrimination and the calibration of 

the model. The averages of these have been calculated for the models discussed here, 

and are presented in Table 42. Note that a “baseline” value of this score, calculated by 

assuming that every patient has a probability of death equal to the mean mortality 

rate, is 0.0580 for the training data set., and 0.0497 for the test set. Thus it is 

desirable to have values smaller than these. Very small differences can mean a great 

improvement in the model.
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Model Data set Q
Published POSSUM training 0.0547

test 0.0591
Calculated POSSUM training 0.0488

test 0.0493
Table 42: Average Quadratic Scores for POSSUM equations

We can see, then, that the published POSSUM model is performing worse than the 

null model when we assess it in this way. The model we have calculated is only a very 

slight improvement However, if the model were performing as poorly as the null 

model, the ROC curve would simply be the line y = x. Since this is far from the case, 

we would not get the entire picture by simply considering the quadratic score. It does 

however give a good summary measure to use for comparisons.

8.1.1 Experimental POSSUM Scores

Keeping in mind the criticisms of the individual POSSUM scores in section 7.2.2, 

some changes have been made to fit in with the evidence from the data. The 

experimental adjustments of the scores from the initial POSSUM values can be seen 

in Table 43. The original scores are as given in Appendix 6.

If new physiological and operative severity scores are calculated from the scores 

changed as in Table 43, we obtain the model

In {R/(l-R)} = 0.18xP.S + 0.17xO.S.S - 8.11.

The minimum possible predicted probability for this model is 0.27%. The values of Q 

obtained are 0.0468 for the training data set and 0.0478 for the test data, so we have 

made a substantial improvement on the original POSSUM scores. It can be seen that 

when the model with experimental scores is tested on the test data set its ROC curve 

lies slightly outside the one for the original scores (Figure 38).
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Physiological Score

Age Score 4 for > 75 instead of > 71

Cardiac Signs Score 4 instead of 8

Score 4 for diuretic or digoxin therapy

Score 2 instead of 4 for oedema

Respiratory History Score 2 instead of 4 for limiting dyspnoea

Score 4 instead of 8

Blood Pressure Score 8 for <100 or >170, else 1

Haemoglobin Score 4 instead of 8

Score 1 instead of 2

White Cell Count Score 8 instead of 4

Potassium Score 4 if outwith 3.5-5

Electrocardiogram Score 4 instead of 8

Operative Severity Score

Operative Severity Minor/ Intermediate scores 1

Major scores 2

Major + scores 4

Complex major scores 8

Multiple Procedures More than 1 scores 2

Peritoneal Soiling Minor scores 4

Malignancy Primary or nodal metastases scores 1

Table 43: Changes to original components of POSSUM Scores for “experimental”
analysis

We can gain an idea of how well these models are performing by looking at how 

many patients actually die within ranges of predicted mortality. These are summarised 

for the three models considered so far in Table 44 for the training data and Table 45 

for the test data.
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Published POSSUM Calculated POSSUM Experimental POSSUM
Predicted Numb­ Numb­ Mort­ Numb­ Numb­ Mort­ Numb­ Numb­ Mort­

probability er of er of ality er of er of ality er of er of ality
of death patients deaths Rate patients deaths Rate patients deaths Rate
<0.25% 0 0 - 215 0 0.00% 0 0 -

0.25%-0.5% 0 0 - 1052 2 0.19% 1341 2 0.15%
0.5%-l% 0 0 - 756 4 0.53% 744 1 0.13%
l%-2% 1247 2 0.16% 555 6 1.08% 516 9 1.74%
2%-3% 639 3 0.47% 178 6 3.37% 186 4 2.15%
3%-5% 507 5 0.99% 206 9 4.37% 227 12 5.29%

5%-10% 446 10 2.24% 195 14 7.18% 155 13 8.39%
10%-20% 284 17 5.99% 99 22 22.22% 105 21 20.00%
20%-50% 194 41 21.13% 96 26 27.08% 74 20 27.03%

>50% 64 23 35.94% 19 12 63.16% 33 19 57.58%

Table 44: Comparisons of Predicted and Actual Mortality Rates for 3 POSSUM
Models: Training Data

Published POSSUM Calculated POSSUM Experimental POSSUM
Predicted Numb­ Numb­ Mort­ Numb­ Numb­ Mort­ Numb­ Numb Mort­

probability er of er of ality er of er of ality er of -er of ality
of death patients deaths Rate patients deaths Rate patients deaths Rate
<0.25% 0 0 - 226 0 0.00% 0 0 -

025%-0.5% 0 0 - 1059 3 0.28% 1352 3 0.22%
0.5%-1% 0 0 - 762 2 0.26% 744 0 0.00%
l%-2% 1263 3 0.24% 548 6 1.09% 528 8 1.52%
2%-3% 648 1 0.15% 173 7 4.05% 166 6 3.61%
3%-5% 502 6 1.20% 180 10 5.56% 202 12 5.94%

5%-10% 419 8 1.91% 164 20 12.20% 136 13 8.56%
10%-20% 263 26 8.89% 102 8 7.84% 95 15 15.79%
20%-50% 153 17 11.11% 80 15 18.75% 66 13 18.70%

>50% 85 24 28.24% 39 14 35.90% 44 15 34.09%

Table 45: Comparisons of Predicted and Actual Mortality Rates for 3 POSSUM
Models: Test Data

From Table 44, we can see that the published model is performing worst, with only 

one category of predicted probability of death having the observed mortality rate 

contained within it. It looks as though the model recalculated from the original 

POSSUM scores performs slightly better than the one from the experimental scores 

because it has most patients predicted as very low risk, where they should be. 

Looking at the test data in table 45, there does not appear to be much to choose 

between the original and new scores.
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Figure 38: ROC Curve for Model containing experimental POSSUM Scores (Test Data)
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8.2 Individual POSSUM components

Two of the problems with POSSUM are that there are many variables to consider and 

that some of them are associated with surgical skill. Although there are 18 

components of the score, these rely on several more clinical variables as some scores 

e.g. ‘cardiac signs’ require several pieces of information. Using a stepwise selection 

procedure on the individual variable weights, it can be shown that not all of these are 

necessary for prediction.

Logistic regression was used in Splus. The criteria used for assessing a model are as 

follows:

• Initially, the stepwise selection procedure minimises the value AIC = D+2p, 

where D is the deviance and p the number of parameters in the model. This 

tries to achieve a balance between a good fit and parsimony. We assume here 

that there is no over-dispersion.

• We aim for a small value of the residual Deviance

• The coefficients should be significant, as should their Deviance contributions. 

However, with such a large data set, conventional significance levels will 

probably bring too many variables into the model, and one should pay more 

attention to measures of performance.

• The proportion of the total sum of squares which can be accounted for by the 

adjustment. This (from Smith 1994) is SSTa = SSTy-SSTd, where SSTy =

Z (yij - y ) 2 and SSTd is the sum of the squared differences between the

observed values of y (0 or 1) and those predicted under the model. In order to 

satisfy the assumption that p = y , the predicted probabilities pjj are multiplied 

by p/y for the purpose of these calculations.

• Receiver Operator Characteristic Curve (ROC curve) for the fitted values from 

the model.

• Quadratic Score (Q)

• Testing the model on the test data set.

We use the same assumption as the original POSSUM here, that missing values are 

“normal” and are coded as 1. The first term to be dropped in the stepwise regression
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is the weight for “multiple procedures”. This is not surprising given the very weak 

relationship in the data between this and mortality. The second term to be dropped is 

blood loss, which is rather fortunate since this is a variable one would prefer not to 

include. After this we lose Glasgow Coma Score, which did not look good for 

discrimination as 98.5% of the patients had the maximum score of 15. This is 

followed by the weight for the other variable about which we had misgivings, 

peritoneal soiling. Thus, after potassium and ECG are dropped from the model, we 

are left with 12 of the original 18 POSSUM variables. This model can be seen in 

Table 46. None of the cardiac drug variables are significant when included with the 

other information.

Note that the weights have been fitted as continuous rather than categorical variables. 

If we were to fit them as categorical variables, we would lose the information given in 

the coding. However, if we do fit these, the same seven variables turn out to be most 

significant as when they are treated as continuous. Furthermore, the terms for blood 

loss and peritoneal soiling are still dropped from the model.

Term Coefficient Std. Error t value
Constant -8.74 0.54 -17.32
Mode Surgery 0.42 0.05 8.53
Age 0.62 0.10 6.04
0|3 Severity 0.26 i 0.05 1 5.48
Pulse 0.29 0.09 3.08
WCC 0.39 0.14 2.71
SBP 0.24 0.09 2.64
Hb 0.13 0.05 2.58
Cardiac 0.13 0.06 2.18
Urea 0.14 0.06 2.45
Malignant
Respiratory
Na

0.12
0.09
0.14

0.07
0.06
0.09

1.64
1.49
1.46

Table 46: Model for Individual POSSUM weights achieved by stepw ise selection

The ROC curves for this model are shown in Figure 39(a). It can be seen that the 

predictions are fairly accurate, with some predictive ability being lost, as we would 

expect, when the model is applied to the test data. Reduced models have been fitted, 

with 9 weights (removing the bottom 3 above), with 5 weights and then 3, cut off at
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the dotted lines in the table. An analysis of Deviance of these 4 models shows that the 

difference between the model containing 12 variables’ weights and the one containing 

9 is 7.12. This is less than %2 (3;0.95) so there is no evidence of a better model with 

malignant, respiratory and sodium left in. However, removal of the next 4 terms does 

significantly increase the Deviance, by a further 28.4. Likewise, removing pulse and 

WCC from the model makes a highly significant difference in Deviance. However we 

should judge the models also by their performance in prediction. Their ROC curves 

can be seen in figures 39(b) to 39(d). We can see that the curves deteriorate as the 

number of variables decreases, and that the test data always give a curve inside the 

one for the training data. The curves for twelve and three scores appear closer 

together than for five or nine scores. The average quadratic scores (Q) are given in 

Table 47, along with the amount of the total variation among patients which is 

accounted for by the models. It can be seen from these scores that, as we reduce the 

number of variables in the model, the values of Q for the training and test data sets 

become closer together. For the training set, better predictions are made with more 

variables, and as we remove variables, Q increases. However, for the test set, the 

values decrease, suggesting that a simpler model is more easily transferred to new 

data. This effect was investigated by Murray (1977), who concluded that larger 

numbers of variables in discriminant analysis do not necessarily reduce the error rate, 

due to the bias associated with the choice of subset which happens to give the best 

discrimination for a given data set. The ROC curves for the four models on the test 

data set are shown in Figure 40. These show a decreasing predictive ability with 

reduction in the number of terms in the model.
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Figure 39(a): ROC Curves for Model containing 12 Individual POSSUM Weights
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Figure 39(b): ROC Curves for Model containing 9 Individual POSSUM Weights
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Figure 39(c): ROC Curves for Model containing 5 Individual POSSUM Weights
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Figure 39(d): ROC Curves for Model containing 3 Individual POSSUM Weights
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Model Data set Q SSTa (% of SSTy)
12 weights 
(Mode surg - Na)

training
test

0.0437
0.0487

24.39 (24.9) 
6.21 (7.7)

9 weights
(Mode surg - Urea)

training
test

0.0443
0.0494

23.47 (24.0) 
5.08 (6.3)

5 weights
(Mode surg- WCC)

training
test

0.0455
0.0507

21.38 (21.8) 
3.37(4.2)

3 weights
(Mode surg-Op Sev)

training
test

0.0461
0.0489

20.56 (21.0) 
3.89(4.8)

Table 47: Summary Performance Measures for Models based on Individual Weights

It would be informative here to look at the actual mortality rates within regions of 

predicted mortality, to see whether the extra predictive power gained by using 12 

variables’ weights is substantial enough to merit using this rather than the simple 

model with 3 terms which had the second smallest Q value for the test data. The 

values for the test data set only are given in Table 48.

Three Term Model Twelve Term Model
Predicted Number Number Mortality Number Number Mortality

probability of death of patients of deaths Rate of patients of deaths Rate
<0.25% 0 0 - 1150 1 0.09%

0.25%-0.5% 1267 2 0.16% 500 4 0.80%
0.5%-1% 557 9 1.62% 504 3 0.60%
l%-2% 427 4 0.94% 469 5 1.07%
2%-3% 567 11 1.94% 191 6 3.14%
3%-5% 183 11 6.01% 152 6 3.95%
5%-10% 113 8 7.08% 168 21 12.50%
10%-20% 146 19 13.01% 94 12 12.77%
20%-50% 33 8 24.24% 60 11 18.33%

>50% 41 13 31.71% 45 16 35.56%
Table 48: Comparisons of Predicted and Actual Mortality Rates for two models 

containing individual POSSUM weights: Test Data

From the table, it appears as though the model incorporating 12 weights is performing 

substantially better than the one containing 3. This model accounts for 24.9% of the 

total variation in the training data set and for 7.7% in the test set.
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8.2.1 Stepwise selection of experimental weights

If the modified scores as described in Table 43 are included in a stepwise logistic 

regression, the model obtained is very similar to the one obtained from the original 

scores. The residual Deviance is reduced by 4.3 from before. The modified age score 

is slightly less significant, whereas the operative severity one is improved. Modified 

potassium score now stays in the model instead of sodium. White blood cell count 

contributes less to the deviance than before, but haemoglobin and cardiac are more 

important, as are respiratory history and presence of malignancy. The model achieved 

by stepwise regression is given in Table 49.

Experimental Weight Coefficient s.e.(coeff) t
(Intercept) -8.55 0.55 -17.41
Mode Surgery 0.42 0.05 8.60
Age 0.59 0.10 5.87
Operative Severity 0.29 0.05 6.07
Pulse 0.31 0.09 3.39
Cardiac 0.26 0.10 2.72
Hb 0.13 0.05 2.66
WCC 0.13 0.06 2.19
SBP “ 1.11 0.05 2.42
Urea 0.12 0.06 2.27
Respiratory 0.29 0.13 2.19
Potassium 0.22 0.11 2.12
Malignant 0.12 0.07 1.92

Table 49: Model from stepwise logistic regression of experimental POSSUM weights

The coefficient for malignant is not significant at the 5% level, but we shall leave it in 

the model at present. The ROC curves for this model of 12 weights are plotted in 

Figure 41 for the training and test data sets. The curve for the model containing 12 

original weights is also included for comparison. From this it appears that the model 

containing experimental scores is performing only very slightly better than the one 

containing the original scores. The values of Q obtained are 0.0464 for the test data 

and 0.0432 for the training set. These are the lowest values obtained for any model so 

far, and suggest that a model using the modified scores may be best. The model 

accounts for 11.7% of the variation in the test data set, which is the highest for any
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model we have explored. We should again look at the predictive accuracy of the 

model by categorising the probabilities. This can be seen in Table 50.

framing Data Test Data
Predicted 

probability of death
Number 

of patients
Number 
of deaths

Mortality
Rate

Number 
of patients

Number 
of deaths

Mortality
Rate

<0.25% 925 0 0.00% 953 0 0.00%
0.25%-0.5% 737 3 0.41% 983 4 0.41%

0.5%-1% 538 3 0.56% 571 2 0.35%
l%-2% 435 4 0.92% 441 9 2.04%
2%-3% 190 7 3.68% 167 5 2.99%
3%-5% 172 7 4.07% 167 7 4.19%
5%-10% 167 14 8.38% 143 15 10.49%
10%-20% 108 18 16.67% 79 10 12.66%
20%-50% 70 20 28.57% 73 14 18.18%

>50% 39 25 64.10% 46 19 41.30%
Table 50: Com parisons of Predicted and Actual Mortality Rates for experimental 

POSSUM Score Model (twelve variables1 weights)

This model performs well, although again, the predictive accuracy in the test data is 

not nearly as good as in the training data. We now investigate what happens when we 

use various subsets of these experimental scores. We will separate the variables at the 

dotted lines in Table 49. This was based on the analysis of deviance as well as the 

significance of the coefficients. The least significant term was removed individually at 

each stage. We consider four models, with eleven scores, seven scores, five scores 

and three scores. The ROC curves for the training and test data sets for each of these 

four models are given in Figure 42. From these we would conclude that the 11 score 

model is preferable. This can be seen more clearly in Figure 43, where the curves for 

the test data set for each of the four models are plotted. Table 51 shows the values of 

Q and of SSTa for each of these models when used to make predictions on both the 

training and test data sets.
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Figure 42(a): ROC Curves for Model containing 11 experimental weights
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Figure 42(b): ROC Curves for Model containing 7 experimental weights
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Figure 42(c): ROC Curves for Model containing 5 experimental weights
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Figure 42(d): ROC Curves for Model containing 3 experimental weights
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Figure 43: ROC Curves for four Models containing experimental weights (Test
Data Set)

Model Data Set Q SSTa (% of SSTy)
11 scores training 0.0430 25.61 (26.1)

test 0.0470 8.65 (10.7)
7 scores training 0.0451 21.95 (22.4)

test 0.0485 6.83 (8.4)
5 scores training 0.0456 21.43 (21.9)

test 0.0494 5.28 (6.5)
3 scores training 0.0462 20.44 (20.9)

test 0.0467 6.47 (8.0)
Table 51: Summary Statistics for comparison of Four Experimental Weight Models

From table 51, one would choose either the model with 11 weights or the one with 3 

weights. The Q values are all lower than the corresponding ones achieved from the 

original POSSUM scoring (Table 47). The percentage of variation accounted for by 

the model in the test data set is also improved by using these changes in scoring 

method. In order to compare these two models further, we again examine the 

predicted probabilites. From table 52, it is apparent that the eleven scores give
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superior predictions. The three variables do not place anyone in the lowest category, 

and the actual mortality rates do not increase with predicted. Thus we can conclude 

that the “favourite” model so far is the one with 11 experimental POSSUM scores.

Bleven Scores Three Scores
Predicted Number Number Mortality Number Number Mortality

probability of death of patients of deaths Rate of patients of deaths Rate
<0.25% 958 0 0.00% 0 0 -

0.25%-0.5% 647 4 0.62% 1267 2 0.16%
0.5%-l% 599 4 0.67% 652 12 1.84%
l%-2% 443 11 2.48% 561 8 1.43%
2%-3% 176 5 2.84% 36 0 0.00%
3%-5% 165 5 3.03% 506 17 3.36%
5%-10% 148 14 8.46% 142 9 6.34%
10%-20% 84 11 13.10% 100 16 16.00%
20%-50% 66 12 18.18% 32 8 25.00%

>50% 47 19 40.43% 37 13 35.14%
Table 52: Comparisons of Predicted and Actual Mortality Rates for two experimental

POSSUM Score Models: Test Data

8.3 Modelling actual or transformed variables

It may be the case that by giving weights to the variables we are losing valuable 

information, so now, rather than model the POSSUM weights, we include actual 

measurements of the variables, or transformations of them, as were described in 

section 7.2.2. Categorical variables are fitted as “treatment” contrasts. This means 

that each level of the variable is compared with the first level. This, in effect sets the 

coefficient of the first level to zero. This is sometimes known as the “Comer Point 

Constraint” and is the default method used by BMDP LR. Missing values of 

continuous variables are given the mean value of the data set, and transformed 

variables are assumed to be 0. For categorical variables, patients with missing data are 

assumed to belong to the low risk or normal category. Again, a stepwise procedure 

has been used in order to select the most significant variables.

The model selected is shown in table 53. Malignant and Haemoglobin were also 

selected, but with very low deviance values they did not make a significant 

contribution to the model and could be removed. The analysis of deviance considers 

the terms added in the order they are given in Table 53. This model has a residual
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deviance of 543.64 on 3367 degrees of freedom. This is significantly lower than the 

value of 568.46 obtained from the model using the POSSUM weights. Two reduced 

models have also been fitted, with cut off points for the variables at the dotted lines in 

the Table 53.

ROC curves have been plotted for all three of these models on the training (Figure 

44(a)) and test data sets (Figure 44(b)). From these plots, the 8 variables model 

appears to perform best on the training data set, but there does not appear to be much 

difference between the curves of the 11, 8 and 4 variable models when they are 

applied to the test data set. The average quadratic scores and amounts of variation 

accounted for by the models are given in Table 54. The models for variables are doing 

worse on the test data set than the null model, and much worse than any of the 

models using scores. The predictions on the training data set are rather good, with 

lower Q values and more of the variation accounted for than any of the score models. 

However, the models with variables do not transfer as well to new data as those with 

scores. This is likely to be because models with variables are very specific to the 

variability in the training data set and so do not generalise well.

Term Coefficient Std. Error t Deviance (Pr(Chi))
Constant -10.03 1.15 -12.79
Age 0.06 0.01 5.92 108.53 (0.000)
Emerg 1.29 0.28 4.69 93.45 (0.000)
Mode Surg 2.21 0.34 6.54 64.91 (0.000)
Op Severity: 1.51 . 0.28 5.32 41.91 (0.000)
Major+
Op Severity: 1.78 0.35 5.12
Comp Major
IWCC - 71 0.06 0.02 2.82 1 11.95 (0.001)
Myocard 1.04 0.36 2.87 8.45 (0.004)
IPulse - 701 0.03 0.01 3.29 8.64 (0.002)
Urea >10 0.83 0.28 2.92 10.43 (0.001)
K < 3.5 or >5 0.77 0.30 2.53 5.66 (0.017)
JVP 1.24 0.51 2.42 4.28 (0.039)
ISys BP -1301 0.01 0.01 2.38 5.28 (0.021)

Table 53: Model for variables selected by stepw ise logistic regression
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Figure 44(a): ROC Curves for Models from Variables (Training Data)
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Figure 44(b): ROC Curves for Models from Variables (Test Data)
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Model Data set Q SSTa (% of SSTy)
11 variables 
(Age - Sys BP)

training
test

0.0418
0.0531

27.61 (28.2) 
7.11 (8.8)

8 variables 
(Age - Urea)

training
test

0.0433
0.0536

25.22 (25.7) 
5.5 (6.8)

4 variables 
(Age - Op Sev)

training
test

0.0454
0.0562

21.79(22.2) 
4.27 ( 5.3)

Table 54: Summary m easures of Model Performance for Variables Models

In order to assess the effect of the extra variable for emergency admission available 

here, but which is not part of the POSSUM scoring system, a model has been fitted 

using the data for age, mode of surgery and operative severity. This is a far poorer fit 

than the model containing emergency, as can be seen in the ROC curves for “3 

variables” in figures 44(a) and (b), and as shown by the increased average quadratic 

scores of 0.047 for the test data set and 0.058 for the training data.

8.4 The Best Model

We have seen that weights provide more robust models that perform more 

satisfactorily on the test data set than do the raw variables. The experimental 

POSSUM weights provided more accurate predictions than the original ones, and the 

individual weights in a model were superior to using totals in the form of operative 

severity and physiological scores. Thus we should be able to choose an improved 

model which requires less data than the published POSSUM system. A variable which 

has no missing values, is highly significant and yet is not incorporated into the 

POSSUM score is whether the admission is emergency. We have seen that this 

variable made a great improvement to the predictive ability of a model containing 

other variables. Perhaps we could include a weight for this when modelling the other 

weights. We could assign 1 to elective admissions and 8, say, to emergency in 

keeping with the POSSUM style of weighting. Of course the choice is arbitrary since 

we are dealing with a variable which can take only 2 values, and its value will simply 

be reflected in the coefficient in the model. If we add our weight for emergency 

admission to the previous model of experimental weights, we find it is the next most 

significant term after operative severity, mode of surgery and age. Potassium is no 

longer significant when emergency is included. A model with 11 terms is given in
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table 55. Again we shall consider models of subsets of the weights, split at the broken 

lines in the table.

Term Coefficient s.e. (coeflf) t
(Intercept) -8.55 0.54 -17.60
Operative Severity 0.32 0.05 6.58
Age 0.58 0.10 5.82
Mode Surgery 0.32 0.06 5.75
Emergency 0.21 0.06 3.47
Pulse 0.26 0.09 2.77
Cardiac 0.26 0.10 2.76
Haemoglobin 0.14 0.05 2.91
SBP 0.10 0.05 2.22
White Cell Count 0.12 0.06 2.06
Urea 0.13 0.06 2.29
Respiratory 0.31 0.13 2.35

Table 55: Model with new POSSUM Weights, including em ergency adm ission

To compare these four models we can look at the summary statistics in table 56, and 

the ROC curves. Surprisingly, the model with four teims has the lowest value of Q 

for the test data. In fact, this is the only model where the value of Q for the test data 

set is lower than the one for the training data. Again we have a choice between 

including a fairly large number of terms and a minimal number. Figure 45 shows the 

ROC curves for the training and test data for these four models. The predictive power 

in the training set decreases with the number of variables in the model, and the curves 

appear to move closer together. This is confirmed if we compare the ROC curves for 

the models applied to the test data in Figure 46, which overlap. The effect of adding 

emergency score to the model can be seen in Figure 47, where the ROC curves for 

the two best models here, and without emergency are plotted. The model with 4 

weights including emergency is performing almost as well as the one with 11 without 

emergency, but is not as good as the model with 11 including emergency.
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Figure 45(a): ROC Curves for Model Containing 11 Experimental Weights including
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Figure 45(c): ROC Curves for Model Containing 6 Experimental Weights Including
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Model Data Q SSTa (% of SSTy)
11 scores Training

Test
0.0436
0.0464

24.75 (25.3) 
8.13 (11.3)

9 scores Training
Test

0.0442
0.0477

23.48 (24.0) 
7.73 (8.6)

6 scores Training
Test

0.0454
0.0484

21.66 (22.1) 
6.69 (8.3)

4 scores Training
Test

0.0460
0.0457

20.77 (21.2) 
8.06 (10.0)

Table 56: Summary statistics for models with experimental POSSUM Weights,
including emergency admission

We need to balance the loss in predictive ability with the increased simplicity of the 

model. In order to compare the two models further, we again study the mortality 

rates in categories of predicted probability of death. These can be seen for these two 

models in table 57(a) for the training data and 57(b) for the test data. The model with 

four scores has the observed mortality rate contained within the category of predicted 

rate 7 times for the training data, compared with 5 times for the model with 11 

scores. However, the observed values in the smaller model tend to fluctuate, whereas 

the ones in the larger model increase monotonically throughout the categories, 

suggesting superior calibration. The same is true of the test data set, although here, 

both models have five categories containing the observed mortality rate. It makes 

sense here to choose the simplest model, as it does not perform considerably worse 

than the one with eleven variables.

Eleven Scores Four Scores
Predicted Number Number Mortality Number Number Mortality

probability of death of patients of deaths Rate of patients of deaths Rate
<0.25% 1146 1 0.09% 839 0 0.00%

0.25%-0.5% 575 1 0.17% 719 2 0.28%
0.5%-1% 490 4 0.82% 410 2 0.49%
l%-2% 446 4 0.90% 504 16 3.17%
2%-3% 174 2 1.15% 372 4 1.08%
3%-5% 168 10 5.95% 145 5 3.45%
5%-10% 156 17 10.90% 167 15 8.98%
10%-20% 114 15 13.16% 119 19 15.97%
20%-50% 77 24 31.17% 72 16 22.22%

>50% 35 23 65.71% 34 22 64.71%

Table 57(a) :Comparisons of Predicted and Actual Mortality Rates for two 
experimental POSSUM Score Models including emergency admission: Training Data
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Eleven Scores Four Scores
Predicted Number Number Mortality Number Number Mortality

probability of death of patients of deaths Rate of patients of deaths Rate
<0.25% 1201 2 0.17% 899 1 0.11%

0.25%-0.5% 521 1 0.19% 706 5 0.71%
0.5%-1% 478 6 1.26% 346 3 0.87%

l%-2% 469 7 1.49% 484 12 2.48%
2%-3% 155 6 3.87% 396 5 1.26%
3%-5% 145 6 4.14% 130 6 4.62%

5%-10% 157 15 8.55% 172 13 7.56%
10%-20% 98 12 12.24% 105 10 8.52%
20%-50% 63 12 18.05% 57 17 28.82%

>50% 46 18 38.13% 38 13 34.21%

Table 57(b)Com parisons of Predicted and Actual Mortality Rates for two 
experimental POSSUM Score Models including em ergency adm ission: Test Data

The “best” model is thus as follows.

Operative Severity:Minor/Intermediate ->1
Major —» 2
Major+ 4
Complex Major -» 8

Age: Under 60 ->1
61-74 ->2
75 and Over —> 4

Mode of Surgery: Elective ->1
Urgent —> 4
Emergency 8

Admission: Not emergency -»1
Emergency -» 8

These scores are then incorporated in the model

ln{RJ(l-R)} = 0.31x0perative Severity Score + 0.74xAge Score + 0.33xMode 

Surgery Score + 0.19xAdmission Score - 7.71,

where R is the expected risk of mortality.

The minimum expected risk from this model is 0.21% and the maximum is 87%. We 

can compare this new model tested on the test data set with the published POSSUM 

model by looking at the proportions dying in categories of predicted probability of 

death (Table 58). It is clear that the new model is a great improvement, with 5 

categories containing the observed values compared with none for the published 

model.
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Published POSSUM “Best” Model
Predicted 

probability of 
death

Number
of

patients

Number
of

deaths

Mortality
Rate

Number
of

patients

Number
of

deaths

Mortality
Rate

<0.25% 0 0 - 899 1 0.11%
0.25%-0.5% 0 0 - 706 5 0.71%

0.5%-l% 0 0 - 346 3 0.87%
l%-2% 1263 3 0.24% 484 12 2.48%
2%-3% 648 1 0.15% 396 5 1.26%
3%-5% 502 6 1.20% 130 6 4.62%

5%-10% 419 8 1.91% 172 13 7.56%
10%-20% 263 26 8.89% 105 10 8.52%
20%-50% 153 17 11.11% 57 17 28.82%

>50% 85 24 28.24% 38 13 34.21%

Table 58: Comparisons of Predicted and Actual Mortality Rates for published 
POSSUM Model and “best” model (Test Data)
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8.5 Missing Values

Missing values are a great problem in this type of work, as ideally, one would wish to 

calculate a risk for all patients and not just those for whom a complete data set was 

available. In this data set almost one third of patients have data missing for some 

variable that is required to calculate the POSSUM score. To include these patients, 

one must make certain assumptions. The easiest one is that a value which is not 

recorded is assumed to be “normal”. This is the approach used by POSSUM, where 

missing measurements score 1, and the above analyses have all been carried out 

including missing values with normal. When considering data rather than scores, if a 

continuous variable is missing it is assigned the mean value of the data, and with 

categorical data the patient is included in the first category, i.e. the condition is 

assumed to be absent. For the continuous variables which were transformed by 

subtracting some value, missing observations were assigned the value 0, i.e. they were 

assumed to be “normal”. The problem with this approach is that, for several of the 

variables, notably pulse, myocardial infarction, dyspnoea, oedema and JVP the 

missing values correspond to high mortality rates. This information could lead us to 

include missing values for certain variables in a higher risk category rather than in the 

normal one. This strategy, however, does not appeal, as it would assume patients had 

a fairly rare characteristic rather than that they were similar to the majority. It is 

important to consider why the data may be missing. It could be the case that the data 

were collected but never entered into the database, or the information may never have 

been recorded or measured. If they were never recorded, this could point to 

overworked staff who did not have time to write things down, or a particularly ill 

patient at an inconvenient time who was a drain on resources. It could also mean that 

they were never measured, which may point to defects in the quality of care.

We shall explore ways of accounting for missing data in a model, to gain an insight 

into the effect of missing data. However, incorporating a term for “missing” in a 

predictive system is likely to limit the applicability of that system to centres other than 

the one from whose data is devised. This is because if data are missing systematically 

due to the collection methods and clinical routine, it is highly unlikely that practice
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will be identical in another centre under different management, where a different bias 

will arise.

One could attempt to impute the missing values using conditional expectations based 

on other known values. With these data, however, values tend to be missing for 

several variables at once. As can be seen in table 59, only 131 patients have only 1 

piece of data missing. The most common number of items missing is 3. This is 

because many patients have no information on sodium, potassium and urea. Almost as 

frequently, 5 items of data are missing, mainly due to patients also having no 

information on Haemoglobin and White Cell Count. Similarly, for the POSSUM 

Operative Severity Score data, all the patients who have no information on severity of 

the operation have none on any other aspects of the score either.

iNumber missing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2364 133 108 327 21 266 88 29 11 11 2 8 0 2 2 6 2 1

T Number of patients 

Table 59: Numbers with missing data

8.5.1 Investigations of Missing data

8.5 .1 .1  I n c l u d e  m is s in g  v a l u e s  i n  a  s e p a r a t e  c a t e g o r y

This approach to missing values involves treating all variables as categorical, and to 

include “missing” as a separate category. This gives a coefficient to use for missing 

data, but is still generalising, in a different way from before, about the type of patient 

who has no data recorded. The variables were categorised, with “high risk” as 2, “low 

risk” as 1 and “missing” as 0, based on the exploratory analyses described previously. 

Operative severity had 3 categories plus missing and blood loss had 4 categories plus 

missing. Table 60 gives the analysis of deviance of the model resulting from a 

backwards stepwise elimination process.
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Variable df Deviance Pr(Chi)
Age 2 77.76 0.0000
Admission 1 86.03 0.0000
Mode Surgery 2 76.65 0.0000
Operative severity 3 57.47 0.0000
w c c 2 11.42 0.0033
Pulse 2 7.85 0.0197
Myocard 2 11.95 0.0025
Urea 2 16.10 0.0003
JVP 2 8.36 0.0153
Sys BP 2 11.37 0.0034
Chest X-ray: Lung 2 6.28 0.0433
Malignant 2 14.01 0.0009

Table 60: Model with all variables categorical, with 'm issing1 a separate category

This model was more significant than the one obtained when missing values were 

included as normal, with a residual deviance of 522.8. Thirteen variables were entered 

into the model, but Potassium has been discarded as it did not contribute substantially 

to the Deviance. The four most important variables were the same as previously, but 

there were some differences with the less significant terms. For example, malignant is 

the next most significant variable if missing is included as a separate category, but was 

discarded from the model when the missing values were assumed to be non malignant 

This is due to the high mortality rate of the patients with this information missing. The 

other significant variables were as before, but chest X-ray of the lungs was also kept 

in the model. The ROC curves for this model can be seen in Figure 48. The area 

under the curve is large for the training data, suggesting a very good fit For the test 

data, however, there is not much improvement on the curve of the model with the 

missing values coded as normal for the test data. This model is by far the best fit to 

the training data set, with a Q value of 0.0393 and accounts for 32.9% of the total 

variation present. For the test data, Q is 0.0476 and 11.3% of the variation is 

accounted for. Table 61 gives the classified predicted and actual mortality rates. This 

suggests that the treatment of missing data as separate provides a model which is too 

specific to a particular training data set. Moreover, it is unlikely that such a model 

would travel well between centres.
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’raining Data Test Data
Predicted 

probability of death
Number 

of patients
Number 
of deaths

Mortality
Rate

Number 
of patients

Number 
of deaths

Mortality
Rate

<0.25% 1323 2 0.00% 1350 3 0.22%
0.25%-0.5% 465 1 0.22% 433 2 0.46%

0.5%-1% 630 5 0.79% 652 6 0.92%
l%-2% 335 3 0.90% 322 9 2.80%
2%-3% 91 3 3.30% 106 10 8.43%
3%-5% 187 8 4.28% 153 7 4.58%

5%-10% 131 12 8.16% 115 9 7.83%
10%-20% 99 14 14.14% 77 7 8.09%
20%-50% 71 17 23.94% 73 11 15.07%

>50% 49 36 73.47% 52 21 40.38%

Table 61: Predicted and actual mortality rates for model where all variables are 
categorical, with separate categories for “missing’'.
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8.5.1.2 INCL UDE A VARIABLE ON COMPLETENESS OF THE DATA 

An alternative approach involves assuming all the missing values are “normal” as 

described previously, but including an indicator variable showing whether data were 

missing. A stepwise regression was carried out using an indicator variable which took 

the value 1 if any of the variables considered for inclusion in the model were missing 

(except for chest X-rays and ECG). There were 1012 patients with this variable equal 

to 1, who had a mortality rate of 4%, compared with 3% for the 2369 patients with 

complete data. This yielded a similar model to before, with 12 significant variables 

including the missing value indicator. By far the largest contributions were again 

made by age, mode of surgery, emergency admission and operative severity. The 

indicator variable was the eighth most important, with a p-value of 0.004 in the 

analysis of deviance. The coefficient was 0.78, implying that those with any data 

missing have approximately double the mortality rate of those who do not, when the 

other variables are accounted for. If the variable is then modified to include only the 

patients who have a missing value for those variables included in the model, it is 

slightly less important with a p-value of 0.01. This time there are 962 patients with 

missing data, having a mortality rate of 3%. However, with a coefficient of 0.71, we 

can still see that risk is increased on average for those with missing data when the 

other factors are included. Considering simply the 4 most important variables, with 

another indicator variable for whether any of these 4 are missing, we get this indicator 

to be more significant than if we consider the ones including other physiological 

measurements. There are only 136 patients with missing data for these four variables, 

just one of whom has information for mode of surgery. Of these, 9 (7%) died, 

explaining the high significance of the variable even if it is included in the fuller 

model. In order to assess the performance of this model we can look at Q values, 

proportions of variation explained by the model and compare actual and predicted 

values as before. We find a value of SSTa of 28.6 for the training data set which is 

28.6% of SSTy. This is the second highest value we have achieved, after the above 

model with missing as a separate category for each variable. This corresponds to a 

very low Q value of 0.0415. Thus again, by taking missing data into account we are 

improving the predictive ability of the model. However, looking at the test data set,
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we see that the model does not transfer so well, with a Q value of 0.0517. Also, we 

can see that the ROC curves in figure 49(a) are rather far apart. However, this could 

be caused by the fact that we are modelling variables rather than scores. The 

predictive accuracy can be seen in table 62. We can see that the model is only a slight 

improvement on the model with 11 variables without the missing indicator.

’raining Data Test Data
Predicted 

probability of death
Number 

of patients
Number 
of deaths

Mortality
Rate

Number 
of patients

Number 
of deaths

Mortality
Rate

<0.25% 1237 1 0.08% 1156 2 0.17%
0.25%-0.5% 598 1 0.17% 520 3 0.58%

0.5%-1% 471 4 0.85% 449 5 1.11%
l%-2% 363 2 0.55% 378 7 1.85%
2%-3% 149 4 2.68% 190 7 3.68%
3%-5% 191 13 6.81% 185 5 2.70%

5%-10% 161 11 6.83% 156 6 3.85%
10%-20% 94 14 14.89% 126 10 7.94%
20%-50% 73 21 28.77% 118 23 18.49%

>50% 44 30 68.18% 55 17 30.91%
Table 62: Predicted and actual mortality rates for model with twelve variables 

including Indicator Variable for Missing Data

Since the poor predictions made above could be due to the fact that we are 

considering variables, we should check it using scores. If we fit the indicator variable 

for missing along with our “favourite” model of the modified POSSUM scores for 

operative severity and age, mode of surgery and emergency, the variable turns out to 

be highly significant. The residual deviance of this model is 17.1 less than the one 

without the indicator variable, and we account for 21.9% of the total variation in the 

training data set compared to 20.6% before. The value of Q for this model is 0.0452, 

which is also an improvement However, if we apply this model to the test data set, 

we get a Q value of 0.0836, the highest for any model we have seen. However, the 

ROC curves (Figure 49(b)) for the training and test data sets are closer together than 

for the variables model, and the area under them is larger than for the model without 

the missing value indicator (Figure 45(d)). The minimum predicted probability in the 

test data set with this model is 1.25%, whereas without the indicator variable it is 

0.21%. Thus we are gaining sensitivity with more patients predicted to die, but losing 

specificity. The model assumes too high a mortality rate for missing data, based on
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the peculiarities of the training data set. The mortality rate for patients with one of 

these 4 variables missing is 6.6% in the training data set and only 3.8% in the test set. 

Thus, the generalisation made for missing data using this method does not even 

transfer to the other half of the same data set, so it would not be reasonable to try to 

apply it to a different hospital’s data.

Similarly, a continuous variable of the number of missing values from all variables 

which were included as candidates for a model, excluding the chest X-rays and ECG, 

was included. The number missing ranged from 0 to 17. The numbers having each 

value missing can be seen in Table 59. This turned out to be highly significant, with 

the third most significant coefficient after age and mode of surgery, and a p-value of 

0.0001 after all the other variables had been accounted for. When a variable ranging 

from 0 to 10 was used for the 11 variables remaining in the model, it was still highly 

significant (p=0.001). The model achieved from logistic regression had a residual 

Deviance of 506.5. This is not significantly better than the model achieved using an 

indicator variable. In fact the models are practically the same, with the same factors 

being entered and a difference in residual deviance between them of only 0.25. Thus 

we are not gaining any information by using the count of number missing rather than 

the indicator variable.

Thus patients with missing data tend to be different from those without, and in this 

data set they have a higher risk of postoperative mortality in general than those with 

full data. The effect obviously depends on what variables are included in the model, 

and what variables are included as missing. For example, due to the high mortality 

rate of patients whose status with respect to malignancy is unknown, the inclusion of 

this variable makes the missing indicator more significant (p = 0.001 c.fi p = 0.01). 

Including missing variables separately will not give a model that transfers well to 

different situations.

The question is, should a model for audit include a term for missing data? It could be 

argued that missing data is one symptom of poor care, and as such should not be 

accounted for. Because it is an unknown, it may be very foolish to try and generalise 

about the behaviour of missing values from one person to the next. But, since these 

missing terms are significant, and so missing patients are not the same as “normal”

195



Hayes CE, 1995. Modelling the POSSUM Data

ones when it comes to outcome (except perhaps in the biochemical measurements), 

any model including these patients as “normal” will have higher expected mortality 

rates than should be the case. Perhaps the only answer is to work to encourage 

medical workers to collect fully comprehensive data. This would be facilitated by a 

reduction in the amount of data required, for example by using the “best” model here 

which contains only four, very easily elicited scores. It is worth noticing that using 

this model greatly reduces the problem in itself. For the four variables in the model 

there are 136 patients with data missing, whereas for the POSSUM model there are 

1822.
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9 COMPARISONS BETWEEN SURGEONS IN 
THE POSSUM STUDY

In chapter 8, we explored a large surgical data set, and arrived at a “favourite” model. 

To investigate the usefulness of this model, and compare its effectiveness with the 

other best candidates, we will compare predicted and observed mortality rates for 

consultants. We will then explore the effect of adjusting individual consultants' 

relative risks. The models chosen to do this are:

(1) Derived from the POSSUM Physiological and Operative Severity Scores
(2) The “favourite” model, as described in the previous chapter
(3) The model containing 11 experimental weights, which was discarded in favour 

of (2)

Firstly the predicted mortality rates have been plotted against the observed ones for 

each consultant. These can be seen in figures 50 and 51 for the training and test data 

sets respectively. Note that the outlier, consultant 3, had only 14 patients, so any 

estimates are not likely to be accurate, and the small number of patients with only 1 

death gives a misleadingly high observed rate. The other consultants tend to lie close 

to the line of equality for all three models. This is, as would be expected, more 

evident in the training data set. In this data set, consultant 1 is consistently predicted 

to have more deaths than he actually did. This could mean that he is performing 

better, or that the models are missing something. Note that the rank order of the 

consultants’ observed mortality rates is not the same in each of the data sets, although 

7 and 10 have the lowest rates each time, and 1 and 3 the highest. The change in 

positions of the other six consultants suggests that there is no real difference between 

them, and that any differences seen are caused by random variation. In the test data 

set, we can see that the predicted mortality rate for consultant 3 is close to the 

observed only with the POSSUM scoring model. The two models containing weights 

make almost identical predictions, despite one of them having seven more included.
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Dotted lines show 95% Confidence Intervals for Mortality Rates

Figure 50(a): Consultants’ Actual Mortality Rates versus expected for Model 
calculated from POSSUM Scores (Training Data)
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Figure 50(b): Consultants’ Actual Mortality Rates versus expected for Model 
calculated from 11 Experimental Weights (Training Data)
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ju re 50(c): Consultants’ Actual Mortality Rates versus expected for “Best” Model
(Training Data)
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Figure 51(a): Consultants’ Actual Mortality Rates versus expected for Model 
calculated from POSSUM Scores (Test Data)
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Figure 51(b): Consultants’ Actual Mortality Rates versus expected for Model with 11
Experimental Weights (Test Data)
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Figure 51(c): Consultants’ Actual Mortality Rates versus expected for “Best” Model
(Test Data)
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The next stage is to calculate relative risk confidence intervals as has been done in 

previous chapters. The easiest way to do this using patient data is to fit a logistic 

regression model with an indicator variable separately for each consultant. The 

unadjusted risks are the coefficients obtained by fitting the indicator variable alone, 

and the adjusted ones are the coefficients of the variable when the relevant other 

variables are included. The models were fitted in Splus, and the coefficients extracted. 

Since the coefficients are determined when fitting the model, we cannot use this 

method for the test data set, as this will mean fitting a different model. The ordered 

unadjusted intervals can be seen in Figure 52. It can be seen that they all include 

unity, so there is no evidence of a significant difference between the mortality rates. 

Recall that these are individual interval estimates, so simultaneous ones would be 

even wider. The adjusted confidence intervals using the models as described above 

can be seen in figures 53(a) to (c). The different models tend to have very similar 

effects on the intervals, and none of them move so that they do not straddle the line. 

We require data on more consultants in order to fully see the effect of adjustments. 

The ranks on adjustment for each model are given in table 63.
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4 ---------------1--------------
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Relative Risk

Figure 52: Unadjusted Relative Risk Confidence Intervals for Consultants in POSSUM
Study (Training Data)
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Figure 53(a): Adjusted Relative Risk Confidence Intervals for Consultants in POSSUM
Study (Training Data)
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Adjusted using model with 11 experimental scores

Figure 53(b): Adjusted Relative Risk Confidence intervals for Consultants in POSSUM
Study (Training Data)
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Adjusted using ’best’ model 
Figure 53(c): Adjusted Relative Risk Confidence Intervals for Consultants in POSSUM

Study (Training Data)

Rank after Ad justment
Unadjusted Adjusted Adjusted Adjusted Aggregate

Rank by Model 1 by Model 2 by Model 3 Data
1 4 2 3 3
2 3 8 8 4
3 2 6 4 2
4 6 7 6 5
5 8 4 7 8
6 9 9 9 7
7 7 5 5 6
8 5 3 2 9
9 1 1 1 1
10 10 10 10 10

Table 63: Consultants’ Rankings

Note that, although there are appear to be no significant differences, all the models 

move the consultant ranked ninth (consultant 1 in the previous plots) to first place 

due to his high predicted mortality. It is not surprising that there is variation among 

the rank orders of the consultants in the middle, as there is no evidence of any real 

difference between them.
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9.1 Aggregate Data

The data were aggregated for each consultant and the proportion having each 

condition were calculated and put up for selection in a stepwise regression. If the 

operative severity categories were included separately, the only factor to enter the 

model was the proportion of intermediate procedures, which had a highly negative 

coefficient. If the operative severity categories were then grouped into “low risk” 

(minor and intermediate), “medium risk” (major) and “high risk” (major plus and 

complex major), the only factor to enter is emergency surgery. The model using this 

was used to adjust. With so few consultants this method does not work too well, but 

it is interesting to note that the adjusted relative risk of consultant 1 still came out 

first, although the model was rather weak. We can see from Figure 54 that many of 

the adjustments using aggregate data do not have much effect.

It would be of interest to adjust the aggregate data using a model similar to the one 

calculated from patient data. However, if we tried to fit four variables with only 10

consultants, the model is over-specified and the confidence intervals would be

ridiculously wide.
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Relative Risk

Figure 54: Adjusted Relative Risk Confidence Intervals for Consultants in POSSUM
Study (Aggregate Data)
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Figure 55: Consultants’ Observed Mortality Rates versus Rates Predicted using
“Best” Model (Whole Data Set)

9.2 Using all the data

In order to gain a definitive model, we put together the training and test data sets and 

carried out a logistic regression including the scores in the best model with all the 

data. The model is as follows:

ln{RJ(l~R)} = 0.25xOperative Severity Score + 0.76xAge Score +

0.26xMode Surgery Score + 0.19xAdmission Score - 7.46.

This model is very similar to the one achieved from the training data set alone, and so 

gives us more confidence in the model. The predicted rates using this model are 

plotted against the actual rates in figure 55. Again we see that consultant 3 has his 

estimate too low. But the 95% confidence interval for his mortality rate is very wide 

due to the fact that he only treated 31 patients, and it does include the predicted 

mortality rate. This model accounts for 16.6% of the total variation between patients, 

and has an average quadratic score of 0.0453. We can also calculate the amount of 

variation between consultants which is accounted for by the model from
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SSBa = SSBy - SSBd, where SSBy = Zn^yj  - y ) 2, and SSBd = Xn t(y4 — pj)2.
i i

(Recall yjj is the observed mortality for patient j of consultant i, and py is the predicted 

value for that patient from the model). Then SSBa accounts for 43.7% of SSBy. If, 

however, we omit consultant 3 from this calculation, the amount of variation between 

consultants which is accounted for by the model increases to 60.7%. This suggests 

that this method should not be used for consultants with very low numbers of 

patients, as the results are unreliable. Our model predicts that consultant 3 should 

have 0.8 deaths when in fact he has 3 out of 31. We cannot know whether he is 

actually performing worse than expected, or if the model is not sensitive enough to 

predict such a rate from a small number of patients.

We can now use the above model to find adjusted confidence intervals for the 

consultants using all 6714 patients. These can be seen in figure 56(a). The unadjusted 

intervals are plotted in figure 56(b). With the whole data set, the consultant ranked 1 

(consultant 10)’s unadjusted relative risk is significantly less than the others’, but on 

adjustment moves to straddle the line of unity.
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Adjusted using best model calculated on all patients’ data

Figure 56(a): Adjusted Relative Risk Confidence Intervals for Consultants in POSSUM
Study (Whole Data Set)
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Figure 56(b): Unadjusted Relative Risk Confidence Intervals for Consultants in
POSSUM Study (Whole Data Set)

If we fit a categorical variable “consultant” along with the variables in the model, we 

find that it is not significant (p=0.6). Thus, considering the multiple comparisons 

aspect, there is no evidence of a difference between the surgeons in this study, when 

other factors are taken into account. In fact, if we fit this variable alone we still have 

no evidence of a difference between consultants. Thus we must conclude that the 

failure of the confidence interval for consultant 3 to include 1 is due to chance.

Adjusted Rank
Unadjusted Rank Best Model POSSUM Model

1 1 1
2 4 5
3 6 6
4 9 8
5 7 7
6 2 3
7 8 9
8 3 2
9 5 4
10 10 10

Table 64: Consultant Rankings from all patient data
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If we compare the results of this model calculated from all the data, from one 

calculated from all the POSSUM scores (equivalent to model 1 above), they are 

favourable. The model we achieve for the POSSUM scores is

/«{r/(l-r)} = 0.15xPhysiological Score + 0.13xOperative Severity Score 

-8.34

The Q value from this model when used to predict outcomes from all the data is 

0.0477, and it accounts for 11.4% of the variation between patients. From these 

statistics, it would seem that our model is superior. However, if we look at the 

variability between consultants, this score model accounts for 58.1%. This is because 

it predicts a higher mortality rate for consultant 3 than our model. If consultant 3 is 

ignored, this model explains 58.6% of the variation between the other consultants 

compared to 60.7% by the ‘best’ model. For consultant 3, the POSSUM model 

predicted 1.6 deaths. This is because it consistently estimates higher probabilities of 

death.

In table 60, we can see that the models do not make a substantial difference to the 

rankings. Looking at the Confidence Interval plots in figure 56 however, it can be 

seen that the interval for the consultant ranked 10 (consultant 3) moves to include 1 

when adjusted using the POSSUM model, but not with the new model. Similarly, the 

consultant ranked 7 (consultant 4) moves entirely above 1 with the POSSUM model, 

but not with the new one. Thus we would come to differing conclusions depending on 

the model used. However, looking more closely we can see that consultant 4 has a 

predicted mortality rate of 0.026 from the new model and of 0.024 from the 

POSSUM model. This small difference with a large number of patients makes a 

substantial difference to the position of the confidence interval.

9.3 Conclusions

While none of the models we have found are accurate at patient level, overall they 

tend to perform satisfactorily. A small set of variables is better for prediction on a 

new data set than many variables, so it is hoped that the need for less data will 

facilitate more accurate collection, thus removing the missing values problem. Missing 

values are a great problem, in that their presence is a significant predictor of
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mortality, but accounting for them in a model reduces the transferability of the model 

due to differences in collection mechanisms. It was found that scores provide more 

robust models than using actual variable measurements. The POSSUM Operative 

Severity and Physiological Scores perform well, but involve a large amount of often 

unavailable information. Changing some of the scores so that they tie in with the 

observed mortality rates improves the model. The model with the altered scores for 

age and operative severity, the POSSUM score for mode of surgery, and a score for 

emergency admission performed almost as well as one with many more variables 

included, and was chosen as the ‘best model’. This has been used to compare 

consultants. Using the POSSUM score model on all the patients gives slightly 

different conclusions. Our model does not perform well with few patients. Overall, 

however, it performs similarly to the POSSUM model for consultants, although not 

for patients. This is illustrated in figures 57(a) and 57(b), where the patient 

predictions do not correspond at all for the two models, but on average for the 

consultants they correspond very well. As Smith (1994) said, if a model existed which 

could accurately predict outcome for a single patient, the way medicine is carried out 

would be completely different, as prediction of death in an individual is very difficult, 

even with highly detailed information.
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Figure 57: Comparison of Patients’ Predicted Probabilities of Mortality from Two
Models (All Data)
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10 COMPARISONS USING AUDIT DATA ON A 
PARTICULAR DIAGNOSIS

10.1 Introduction

Up until now, we have been concentrating on modelling General Surgery. This is an 

area which has received much attention, and where work needs to be done. However, 

while we have obtained some reasonable results, it may be that we will never achieve 

very powerful predictive systems due to the vary wide range of patients being 

considered. Overall at a consultant level the models are good, but at a patient level, 

predictions are very inaccurate. We have used the very rare outcome measure of 

postoperative mortality as there are no other reliable measurements in data sets which 

we have been able to acquire. It may be that the way forward for surgical audit is to 

consider one diagnosis or procedure at a time, and compare consultants’ performance 

in these. The advantages of doing this are that there will be more specific prognostic 

variables, and more relevant outcome measures. In this chapter, then, we consider a 

large audit of colorectal cancer patients, and compare the consultants involved in this 

study.

10.2 The CRAG Study

The CRAG Study was set up in Lothian and the West of Scotland, as a large scale 

continuation of the Colorectal Cancer Study described in chapter 6, after large 

differences were found between participating consultants’ survival. We obtained data 

from the Study, which covered admissions for colorectal cancer from 1991 until 

1994. There were 1622 patients from 5 Lothian hospitals and 1807 patients from 8 

hospitals in the West of Scotland. These included data on 76 consultants.

The variables from these two area studies which were considered to be important 

were put together in one data file. These included the variable “class” which we 

derived. This was an indicator of the type of operation combined with severity of the 

cancer, derived from available data. It had six categories. These are shown in table 

61, with the numbers of patients in each. Dukes’ stage was either given, or based 

upon pathological variables such as the presence of metastatic spread or fixity. Any 

resected patient with Dukes’ D was considered to have received a palliative resection.
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Numbers in Class
Class Description Lothian West

0 Curative - Dukes’ Stage Unknown 10 106
1 Curative - Dukes’ A 159 58
2 Curative - Dukes’ B 577 620
3 Curative - Dukes’ C 356 358
4 Palliative Resection 489 387
5 Palliative- other treatment 29 74
6 No Operation 2 204

1622 1807
Table 65: Numbers of patients in each “class”

For our analyses, we have used only patients with resections and whose pathology is 

known, i.e. classes 1 to 4. This gave a total of 3004 patients, 1581 from Lothian and 

1423 from West Scotland.

The other variables considered were age, sex, presentation (elective or emergency), 

site, surgeon’s status, city, hospital and consultant. Unfortunately, there were no 

available data on social class. The outcome measures were mortality within 30 days of 

operation and the presence of any leak or abscess.

10.3 Analysis

10.3.1 Modelling

Logistic Regression was carried out for 30 day mortality, and for any poor outcome 

(leak, abscess or death) to investigate which variables were significant. In the original 

study of 645 patients by McArdle and Hole (1991), the overall postoperative 

mortality rate was 16%, and varied among surgeons from 8% to 30%. This, however, 

included those patients with no resection. Including only those with resections, the 

rates varied from 0% to 20%. In this data set, the postoperative mortality rate varied 

among consultants from 0% to 24%. We have modelled postoperative mortality for 

the McArdle and Hole data in chapter 6 when looking at aggregate data. In this study, 

the variables Dukes’ Stage, differentiation and local spread have been combined in the 

variable “class” along with type of resection.
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10.3.1.1 P o st - o p e r a t iv e  m o r t a l it y

Stepwise Logistic Regression for postoperative mortality arrived at a model 

containing presentation (emergency versus elective), class, age and sex (males being 

higher risk), although sex only entered with a p value of 0.08. It was found that a 

categorical variable of whether the patient was over 75 gave a better fit than age as a 

continuous variable. Presentation was the most important factor. It was also found 

that, once the other factors are accounted for, there is no significant difference 

between classes 1, 2 and 3. Thus this factor was reduced to two classes, curative and 

palliative resection. Of the 2990 patients with data on these factors, there were 164 

deaths, a rate of 5%.

10 .3 .1 .2  A l l  p o o r  o u t c o m e s

For any adverse outcome, which includes postoperative death, and any leak or 

abscess, there were more significant variables. There were 270 poor outcomes (9%). 

The most important predictor of this was again presentation, followed by age over 75. 

The next variable to be entered was whether or not the site of the tumour was the 

colon. This reflects the fact that the colon is lower risk than the rectum for 

anastomotic leakage. Sex and palliative resection were also included in the model, 

with all factors being highly significant. The terms in the model are given in the Table 

66 .

Term Coefficient Standard Error
Presentation 0.738 0.13
Sex (female = 1) -0.413 0.13
Over 75 0.549 0.13
Colon. -0.477 0.14
Palliative 0.325 0.14
Constant -2.543 0.13

Table 66: Coefficients in the Logistic Regression Model for all Poor Outcomes

In our comparisons, we shall consider this variable, as we have obtained a more 

satisfactory model, and poor outcome is more appropriate as an outcome measure for 

comparing surgical success.
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10.3.2 Comparisons of hospitals

In order to compare the thirteen hospitals in the study, relative risks of poor outcome 

for each hospital have been calculated. Hospital 5 (Lothian) is excluded as it had only 

8 patients, with no poor outcomes. These were calculated by fitting binary variables 

for each hospital in separate logistic regressions, on their own to obtain the 

unadjusted values and with the above explanatory variables to obtain the adjusted 

ones. The confidence intervals can be seen plotted in Figures 59 and 60. These show 

that the adjustments have made very little difference to the rank order of the 

hospitals, and seem to show that the hospital ranked twelfth is performing worse than 

the rest. We must, however take the fact that these are individual interval estimates 

into account. If we fit “hospital” as a categorical variable in a logistic regression along 

with the other variables, it is not significant in the analysis of deviance. It is therefore 

possible that the difference is due to chance. Otherwise there could either have been 

some unaccounted for factor causing this hospital to have almost double the average 

failure rate of the other hospitals, or it could actually be administering a poorer 

quality of care.
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Figure 59: Unadjusted Relative Risk Confidence Intervals for Poor Outcome for 
Hospitals (CRAG Study Resection Data)
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Figure 60: Adjusted Relative Risk Confidence Intervals for Poor Outcome for 
Hospitals (CRAG Study Resection Data)
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10.3.3 Comparisons of consultants

Unadjusted and adjusted relative risks for consultants were calculated in the same 

way as for hospitals. The confidence intervals have been plotted in Figures 61 and 62. 

All the consultants who treated less than 10 patients have been included together as 

one “consultant”, giving a total of 67. Of these, 10 had no poor outcomes so have not 

been included in the plots. The “consultant” representing those with less than 10 

patients was ranked 35 (25 on plots) for its unadjusted value, having 6 poor outcomes 

out of a total of 70 patients. On adjustment, its rank moved up to 27 (17). This is, 

perhaps, a surprising result as one might expect those consultants treating very few 

patients to do worse. The relationship between volume and outcome will be explored 

in more detail in the next section.

The adjustments of consultants’ relative risks had more effect than the hospitals’. 

Most of the unadjusted intervals (88%) contained 1. This figure is the same as for the 

adjusted intervals, although the same consultants do not have significant intervals 

each time. The movements are very slight compared with the RCS results. This could 

be due to the relatively small number of patients per consultant. To check whether 

there are actual differences between the consultants, we can fit it as a categorical 

variable in logistic regression as we did with the hospital data. This time, the variable 

is highly significant in the analysis of deviance, giving strong evidence that a 

difference exists even after adjustment. We may conclude that one consultant is 

performing significantly better in terms of numbers of poor outcomes than any of the 

others. The reasons for this should be investigated, and any beneficial aspects of 

practice noticed. Six consultants appear to be performing significantly worse than the 

others given their case mix, and should also investigate the reasons for this.
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Figure 61: Unadjusted Confidence Intervals for Relative Risk of Poor Outcome for 
Consultants (CRAG Study, All Resections)
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Figure 62: Adjusted Confidence Intervals for Relative Risk of Poor Outcome for 
Consultants (CRAG Study, All Resections)
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10.4 Relationship of number of patients treated with outcome

This area is important, as current thinking suggests that there is a case for having 

increased specialisation in treatment of cancers, as a larger volume of patients is seen 

as being related to higher success rates. McKee and Hunter (1995) produced a plot of 

mortality rate versus number of episodes per year for carcinoma of the colon, and 

suggested a threshold of about 400 episodes above which survival is higher. This was 

a study of 22 hospitals, and data were at a hospital level. Looking at their plot, it can 

be seen that only 3 hospitals had a volume of episodes greater than 400, and the 

spread of mortality rates among the other hospitals is very wide. If we plot our data 

for consultants (Figure 63), a similar pattern can be seen, where there appears to be a 

downward trend in mortality rate with increasing patient numbers. The plot has, 

however, been divided into quartiles of number of patients, so that approximately a 

quarter of patients treated lie in each section. The crosses show the mean mortality 

rate for each quartile, which are all around 0.05. This seems to show that the pattern 

in the plot is an illusion caused by larger variance with smaller numbers. Figure 64 

shows a similar plot, but for all poor outcomes. The uniformity of patient quartile 

failure rates is even more striking than for mortality.
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Figure 63: Postoperative Mortality Rate versus number of Patients Treated
(CRAG Study)
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Figure 64: Postoperative Failure Rate versus Number of Patients Treated
(CRAG Study)

In order to see whether the failure rates may be attributable to case mix, we could 

look at the predicted failure rates rather than the observed ones. These can be seen 

plotted against the number of patients in Figure 65. They were calculated using the 

logistic regression equation above to get predicted probabilities of adverse outcome 

for each patient, which were averaged to get the consultant’s value. If it was the case 

that the consultants with the most patients also received the most difficult patients, 

their predicted failure rate would be far higher than the others. This is not the case.
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Figure 65: Predicted Rates of Poor Outcomes versus Numbers of Patients Treated
(CRAG Study)

As well as these plots, investigation of the effect of patient volume was carried out by 

including number of patients as a variable in stepwise logistic regression. This was not 

entered into the model. If number of patients is fitted to postoperative poor outcome 

alone, it has a coefficient of -0.001 (s.e. = 0.001), so has a negligible effect. 

Categorical variables of whether the patient was treated by a consultant with under 20 

patients or under 10 patients were also not significant. The quartile of number of 

patients into which the patients’ consultant fell was also tried, but did not produce a 

significant result.

A factor which has not been accounted for here, but could affect the conclusions we 

have reached about the relationship between volume and outcome, would be the late 

entry to or early withdrawal from the study by any surgeons. We did not have the 

relevant data to assess whether this is an issue.
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10.5 Discussion

In these analyses we have concentrated mainly on the outcome measure of 

postoperative failure, which includes mortality or any leak or abscess. We have shown 

up differences between consultants for this measure, but no significant difference 

between hospitals in the study. This outcome measure is, however, not the most 

important end result of resection for colorectal cancer. The ultimate survival of the 

patient, i.e. that they are cured by the treatment, is the key indicator of success of the 

surgery. It could be that a poor short term outcome rate is the result of a tendency to 

more aggressive surgery, which may achieve more favourable results in the long term. 

Audit of a specific procedure rather than all of general surgery would allow specific, 

relevant outcome measures such as longer term survival to be measured. Although 

consideration of long term outcome measures does render the analyses somewhat out 

of date, they are still very important for comparing surgical performance, as was 

shown by McArdle and Hole (1991).

As well as relevant outcome measures, studies of specific procedures allow more 

appropriate prognostic factors to be included. For example, Dukes’ grade or site of 

the tumour are important variables in an audit of colorectal cancer, but it would not 

make sense to collect them on a general surgical data base. Any procedure one could 

choose would have specific prognostic factors which would allow simpler, more 

powerful statistical models to be found, and thus more accurate adjustments to 

outcome measures than are possible for general surgery. It is encouraging to note, 

however, that here presentation is, as in our modelling of general surgery, the most 

significant factor.
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11 DISCUSSION
We set out to discuss statistical aspects of Surgical Audit. The majority of work has 

been concerned with what has become known as “Comparative Audit”, where 

surgeons or units are compared with each other. It was stressed that the reasons for 

these comparisons should be to improve the quality of treatment rather than to 

reward and punish. Demand for comparative audit data is increasing, and large tables 

of performance figures are now published for hospitals, the latest being for England 

and Wales in June 1995. These statistics covered numbers of patients and lengths of 

waiting lists, but there is demand for more comparisons of outcome measures rather 

than process. Publication of mortality rates is a very sensitive area, which demands 

much care. If this type of outcome measure is to be released, it should be adjusted for 

patient severity. The data should also always be presented as confidence intervals, so 

as significant differences can be separated from those which could simply be due to 

random variation. In order to adjust outcome rates, we require predictive models. 

These should be well calibrated and have high sensitivity and specificity. We need 

well defined and relevant outcome measures with easily measured, objective 

prognostic factors that depend on the patient and not the clinician.

We have modelled mortality, which is not a particularly relevant outcome measure, 

for general surgery in two large studies. There are several reasons for this. Firstly, 

there is a need to look at general surgery and attempt to compare consultants. While 

mortality is not the best indicator of surgical skill, it is still sensitive enough to show 

up large differences between surgeons, and it is a measure that people understand and 

are interested in. Secondly, data on other outcome measures, such as complications, 

are poorly defined and notoriously poorly recorded, and as such are not yet reliable 

enough to use. It is difficult to obtain good quality data on individual procedures, 

such as we have for the colorectal cancer study, unless they have been collected for 

this sort of specific study. Large amounts of data are constantly being gathered on 

audit systems, which it is rather a shame to waste. The types of analyses we have 

considered are suitable for use on even the most general of surgical databases. We 

have highlighted some of the drawbacks of comparing surgeons by looking at general 

surgery mortality rates. The problems include the difficulty of modelling and the lack
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of sensitivity with such a rare outcome, as well as the irrelevance of the measure to 

the majority of patients. However, overall it is possible, and can discriminate between 

consultants given large amounts of accurate data. In many surgical departments, the 

data collected are very poor, often with wrongly coded or missing diagnoses. A 

recent study of hospital databases found that the records were unacceptably 

incomplete and inaccurate (Cleary et a l, 1994). This situation is improving, but until 

there are reliable audit data the models will not have much credibility. We first met 

this problem in our analyses of the data from the Royal College of Surgeons of 

England. These annual totals are submitted by some of the keenest advocates of 

audit, and yet many of the data are incomplete. It was hoped that this would improve 

as computer systems became established, but from the evidence of the 1994 data, this 

is not yet the case. The difficulties of obtaining the necessary data were only fully 

realised when we came to deal with a real hospital data base. The problems 

encountered with the Glasgow Royal Infirmary data could well be replicated around 

the country. The data from the Portsmouth hospitals, which were gathered for an 

investigation of the POSSUM system were another illustration of the difficulties of 

data collection. Many of the variables were missing, so several assumptions had to be 

made about the patients. This highlights the major drawback of the POSSUM system, 

which is currently the most popular predictive model for use in general surgery. That 

is that it relies on a large amount of data which is not routinely collected. The work in 

this thesis should be regarded as an exploration of the methodology, and its value in 

practice, rather than a source of definitive models for hospital use.

Logistic regression is a standard method of modelling binary outcomes, such as 

mortality, and is the “obvious” choice of method for the work done here. Presentation 

of mortality data as relative risks rather than simple mortality rates is a new way of 

approaching data presentation in this area. This allows one to immediately see 

whether a particular consultant’s rate is different from average, where mortality rates 

do not. The “logarithm method” proposed by Katz et al. of calculating the unadjusted 

risks is as good as any other proposed method for the numbers involved in the RCS 

audit. Adjusting these relative risks is also an innovative step in this field. Previously, 

predicted mortality rates have been quoted (McKee and Hunter, 1995), and ratios of 

observed to expected mortality rates (Copeland et al., 1995), but without suitable
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confidence intervals. While the plots are perhaps a little difficult to understand, most 

surgeons who attended the RCS comparative audit meeting found the confidence 

intervals given on their individual printouts very useful. If the data were improved and 

the methods refined to include an adjustment for operative severity rather than the 

inaccurate diagnostic risk groupings which we have used here, these could be of some 

use for future audits of this type.

We saw that with large enough numbers of consultants and patients, aggregate data 

can give almost as reliable adjustments as patient data, but superior analyses can 

always be done using patient level data. With the increase in computer power, it 

should be possible for data to be collected without the use of extensive paper forms, 

either on disk or via the internet, and so collection of patient details on a national 

basis should be possible. The prospect of collecting patient data has been suggested 

by consultants at recent RCS comparative audit meetings, and the comparative audit 

organisers are considering the possibilities.

If it is preferable to collect aggregate data, it could be that it would be more useful to 

collect scores rather than numbers in categories. For example, a consultant could 

score each patient on age, and then calculate the average age score for all his patients. 

This could be done for the POSSUM variables, or a subset of them. We saw in 

chapter 8 that scores gave more reliable models than actual measurements when 

considering patient data. We have not explored whether average scores would be any 

more powerful for modelling aggregate data than proportions in groups. It would, 

however, have the advantage that there was only one term in the model for each case 

mix variable.

We have shown that it is not necessary to collect all the data that are required by 

POSSUM to obtain a reasonable predictive system. In fact, our model containing only 

four scores was just as effective for adjusting consultants’ risks. Thus, perhaps, the 

way forward is to gather large volumes of data, accurately on a limited number of 

variables, in order to make comparisons between consultants. A few variables could 

easily be collected as routine. The models could even be incorporated into a computer 

audit system, although it should be stressed that individual patient predictions will not 

be accurate.
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Having described these analyses of general surgery, it should be acknowledged tha t. 

this is perhaps not an ideal way to compare surgeons. A major problem with 

modelling general surgery is that there is such a wide range of operations, with so 

much difference in risk between them. The relationship between severity of the 

procedure or illness and risk of complication or death could be so strong that it 

dominates the model, so while there is overall accuracy, underlying details are hidden. 

As already stated, the outcome measure has to be relevant, and for general surgery 

the mortality rate is often very low. Different outcomes may be relevant for different 

procedures. If, instead of considering general surgery, we were to consider one 

particular procedure, the range of values of the risk would be greatly reduced and we 

would effectively ‘stretch’ a small section of the overall risk scale. If we considered 

only cholecystectomies for example we would be looking at a different scale of 

outcomes than for major laparotomies. The predictions should thus depend totally on 

characteristics of the patients and we could expect to spot more subtle differences in 

outcome due to management. Another advantage of considering only one operation in 

a predictive model is that the predictive variables can be more specific to the 

particular surgery, for example Dukes’ grade for Colorectal Cancer. Also a few of 

them can be more powerful for prognosis. This makes measurement and calculation 

easier, as well as the prediction more precise.

Obviously, every type of operation carried out by general surgeons could not be 

covered, but an idea of overall performance could be gained by comparing observed 

and expected outcomes in a few indicator areas. Different types of procedure could 

be studied in a succession of audits. The ‘indicator procedures’ used would have to 

be fairly common so as enough were performed to make regular comparisons and so 

that a reasonable amount of data was available from which to draw conclusions. They 

would also have to be taxing enough to reflect surgical skill. A possible drawback of 

observing particular procedures could be that surgeons may, consciously or 

unconsciously, make more effort with those operations that ‘count’, at the expense of 

other operations not included in the exercise. Also, we can never obtain the large 

volumes of data which are available for general surgery. This leads to wide 

confidence intervals and less discrimination between consultants.
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Mortality data on individual diagnoses were published for hospitals in Scotland in 

December 1994. They were part of a larger publication of 17 clinical outcome 

indicators. Mortality rates were published for heart attacks, strokes and fractured 

femurs, and large differences were shown between different hospitals. It was stressed 

that these differences could have been due to differences in patient case mix and not 

differences in quality of care. The only surgical outcome data produced were on 

reoperation for prostate surgery. The publication of outcome indicators is an 

improvement on the previous figures, which dealt with managerial and not medical 

aspects of care. If hospitals were found to have poorer outcome rates, they conducted 

investigations into why this was happening. It is important that the published figures 

are meaningful, and that case mix adjustments are used in future, as this type of 

information will be used by fundholders in future to decide where to send their 

patients. Data on social class and smoking, as well as improved measures of disease 

severity will be essential if realistic adjustments are to be made.

Having compared hospitals, it is only a matter of time before there will be demands to 

publicly compare individual consultants. While most consultants perform well, there 

are some who are recognised by their peers as substandard. Reliable data are required 

to objectively show up these consultants so that steps can be taken to improve their 

performance.

Comparing surgeons would be pointless if we did not act on the information gained. 

The problem is, what should be done, and how? There are many ethical problems 

involved. A consultant may be shown to be under performing compared with his 

peers. Although, by adjusting, we have tried to account for the major factors, we can 

never be sure that there is not some other reason, apart from surgical skill, for any 

differences. However, the data will in future be used to judge surgeons’ ability. It is 

possible that a licensing system will be introduced, whereby only those who perform 

adequately will be permitted to perform specific operations.

The idea of licensing provokes a problem with emergency surgery, which is often 

carried out by the only available surgeon at the time. This is probably in the middle of 

the night when the surgeon is tired. An unlicensed surgeon may through necessity 

have to undertake the procedure, but it would be likely to have a poor outcome, due
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to lack of practice in an elective setting. This system would breed bad feeling among 

surgeons put in this position. They could be justified in refusing to carry out 

operations for which they did not have a licence.

Making comparative audit results public brings difficult ethical issues from the patient 

point of view. They would then be entitled to ask why they had been operated on by a 

substandard surgeon, and why the initial training had not been good enough. While 

these questions must be answered for quality to improve, there is a real danger that 

more litigation will result. This could lead to an atmosphere of fear, and a reluctance 

for surgeons to take risks. Those performing best would see their waiting lists grow, 

and the less successful surgeons would find themselves with only the difficult 

emergency patients to treat, thus keeping their ratings at the bottom of the table. 

Another problem is the sensitivity of using figures such as mortality as measures to 

compare surgeons. This is often seen as distasteful by the general public, and figures 

are often blown out of proportion by the media.

Obviously, by the nature of lists, someone must be top and someone must be bottom. 

Positions in a list will not stay constant over time. It is essential that confidence 

intervals are used to show comparative audit data, so that differences due to chance 

are separated from differences which are highly unlikely to be merely random 

variation.

One could question whether it is legitimate at all to compare surgeons, who on the 

whole increase patients’ survival prospects. Comparisons could lead to increased 

competition, and thus less communication of new ideas. In every field, from artists to 

engineers, there are people who are more skilled than others. They are all permitted 

to practise and improve. It is because of the life and death nature of surgeons’ work 

that their performance is seen as critical. But with long hours and limited resources, it 

may be unreasonable to expect that each patient is treated perfectly.
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APPENDIX 1: Micromed Clinical Record Card
M i c r o M e d C L I N I C A L  R E C O R D  C A R D

BO O K IN G  & R E G ISTR A TIO N

Hospital No: 

Last N am e:

First N am e: 

Title:

Previous nam e. 

D ate of birth: 
A ddress:

P o st C ode: ___ _____
H om e te lephone no: _  
Daytim e te lephone no: 
NHS No; _______

S pecial patien t code:

S ex M/F

GP N am e:_____

G P C o d e :______

Fundholder Y/N

Booking d a t e ____
Consultant f i r m :_____
New C a se  Y/N

C ontract n o : _________
R eason  for adm ission:

Initials:

P artner Code:

Day C a s e  Y/N

DHA code:

ADMISSION PRIORITY 

Routine 
Soon 

U rgent 

P lanned  
Pending

Available at short 

notice? Y/N 
P hone: H om e/D ay

Private No: Additional Information:

E ntered b y : __

ADMISSION DATE ____:____ :_
ADMISSION SOURCE
OPD ref: Routine / Soon / Urgent
A & E self referral
A & E GP referral
GP referral____________________
In—patient referral 
Domiciliary visit 
Planned
Other hosp ita l____

CLINICAL INFORMATION DIAGNOSES (ind relevant History) 
(Note side: irrel / L / R / Bil / Mid / Ant / Post / Unspec)

v Main: ____________________________________________ __
2 _________________________________________
3 ___________________________________________________ _

____  4 _________________________
________  5 ___________________________________________________ _

Diagnosis pending? Y/N 
R easo n :_______________

Date

OPERATIONS (Note side, irrel / L / R / Bil / Mid / Ant / Post / Unspec)

Main: Side:

DATE

Comment:

Side:

Side:

Side:.
Comment: ___________
Prophylactic Antibiotics:. 

DVT Prophylaxis:
POST OPERATIVE COMPLICATIONS: Present / None (see  reverse of card) 
POINTS FOR REVIEW. Delay / Diagnosis / M anagement / Complications / Death
C om m ents:_______________________________________________________________

SURG1
Performed by: 

S SURG 2 ANAE ,ASA URG.

. «r
- 1

.
' ' • t e ! &

M  .2  *

*■ S i f

. sr. v t m
h l-

-  * ft*  - ••
S ■ supervised . Y / -1  

■'A SA code 5, n o n e ' L v  
L Urgency; 1 hr /  24hri7T—3 wk/ 

elective
■ . <<r;

DISCHARGE DATE 
DISCHARGE METHOD 
Home
Relative / Friend
Convalescent home _____
Long term / Terminal care
Transfer a s  In-patient ___
Transfer to other hospital
Self discharge
Died cause  ____________

SPECIAL ANALYSIS CODES 
Special follow up: Y /N  
R ea so n :___________________

Date due

DISCHARGE DETAILS
D rugs on d ischarge D ose F requency

INFORMATION TO: 
Patient:
Relative / Friend:

"as diag" Other: 
“a s  diag '. O ther:

Who: H usband / Wife / Son / D aughter / P aren ts  / M other / O ther:. 
Follow-up: N one /  1 wk / 10 d ay s  / 2, 4, 6 wks / 2 m nths / O ther:.

i D  2  C U  3  E D  4 Q  7 L U  . □  9 C H  t o  I I

A d d i t i o n a l  I n l u r m a l i u n :

Additional S ignature: C opies t o :__

E ntered by: 
Date

C o p y r ig h t M e d ic a l S y s t e m s  Ltd. 1 9 9 2 . T o  o rd e r  t e l e p h o n e  0 2 4 0 6  6 0 3 1  r e f e r e n c e  c r c v lO g s



Complications of Operation or Treatment
W o u n d

I D eep infection 
1 H aem atom a 
I Cellulitis 
I O th e r________

R e sp ira to ry
Sputum  R etention 
Aspiration
Pneum onia /C o llapse

C a rd io v a s c u la r
i Arrhythmia 
I M.l.

, I C .C .F.
1 I L.V.F.

G a s tro in te s tin a l
l I A nastom otic Leak (clinical)
I I A nastom otic Leak (x-ray) 
l ; I F istula Form ation 
I I Intraperitoneal A b scess  
I 1 Bile Leak

G-U a n d  R en a l
I I UTI (P ost Op)
I I H aem aturia  
I I Urinary Leak

M etabo lic
I I H epatic failure 
t I G lucose  in to lerance 
D  H yponatraem ia

N e rv o u s  S y s te m
I I C onfusion
I I Alcohol W ithdraw al P rob lem s

M isc e lla n e o u s
I I P re s su re  S o re s  
I ] H aem orrhage 
I I Ischaem ia
i I O th e r_________________

□  Superficial Infection 
Tl Serious Collection 
I I W ound S inus

I I Pneum othorax  
LI R espiratory  A rrest 
L~1 R espiratory  Failure

f j  D.V.T.
□  C.V.A.
□  P.E .
□  H ypovolaem ic shock

L) Ileus
□  Jau n d ice
□  C holangitis
□  O bstruction
□  P ancreatitis

□  R etention
□  Clot R etention
□  Urinary Fistula

□  H yperosm olar S ta te s
□  H ypoalbum inaem ia
□  T race  e lem en t deficiency

□  D epression

□  Septic
□  Allergic R eaction
□  S ep ticaem ia

LI Incisional hern ia
□  Ischaem ic w ound failure
□  D eh iscence

□  S hock Lung
□  A.R.D.S.
D  O th e r______

□  T.I.A.
□  C ard iac  A rrest
□  Graft failure
□  O th e r________

LI G-l B leed
□  Antibiotic A ssocia ted  Colitis
□  P seu d o m em b ran o u s  Colitis
□  O th e r_________________

□  Urinary incontinence
□  T.U.R. S yndrom e
□  O th e r______________

□  R enal Failure
□  A cid /base d iso rder
□  O th e r_____________

□  O ther

□  Clotting D isorder
□  S ide effec ts of D rugs
□  I.V.I. R e la ted  S ep s is

S teps in m anagem ent and  re su lts  of major investigations

R eorder from M edical S y stem s Ltd. (02406) 6031 Ref. c rcv lO gs
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APPENDIX 2

Royal College of Surgeons of England 14th June 1994. Questionnaire to 
assess response to new Comparative Audit presentation methods.

Please fill in your personal identification number___________

What is your position? Consultant Other (please state).

How did you collate the data?l. Commercial audit package (please specify)

2. Hospital Activity Analysis (HAA) system
3. Hospital Audit Department
4. Other____________________

Did you receive a new style personal printout? Yes No

Presentation Methods
There were three new methods presented: triangle plots showing case mix, confidence 
interval plots of unadjusted and adjusted relative mortalities and a personal sheet 
giving case mix and confidence interval figures.

1. Clarity
Please circle a score to indicate how clear and easy to understand each of the methods 
of presentation was to you.

Completely clear........................ Incomprehensible

Triangle Plots 5 4 3 2 1

Confidence Intervals 5 4 3 2 1

Personal Information 5 4 3 2 1

2. Usefulness
Please circle a score on the scale to indicate how useful each of the methods of 
presentation was to you.

Highly informative.......................Useless

Triangle Plots 5 4 3 2 1

Confidence Intervals 5 4 3 2 1

Personal Information 5 4 3 2 1

PTO

2 3 2



Will you carry out any investigations in the light of your results? (please circle)

Yes No

Would you like to see further development of these methods for future use?

Yes No

Are there any other pieces of information you would like to see presented in future?

How did these methods compare with those used in previous years? (please circle) 

more informative equally informative less informative

Any other comments/ suggestions

Please leave your completed questionnaire in one of the boxes provided. 

Thank you very much for your help.



APPENDIX 3: Example Consultant Printout

COMPARATIVE AUDIT 1994 Consultant XXX

Total deaths: 19 Total admissions: 1343

Mortality rate: 1.4% Overall mean: 1.7% (range 0.0% to 3.95%)

Relative mortality: 80% (95% Cl 51% to 126%) Rank: 34 out of 89 

Number of admissions with no operation: 437 

Number of non-operative deaths: 11

Case Mix (percent of total with information supplied)

1. Age
10 and under 11 to 60 over 60

your data 8% 63% 28%
overall mean 5% 55% 40%

Relative mortality adjusted for age: 95% (95% Cl 60% to 150%)
Rank: 42 out of 88

2. Admission category
Daycase Elective Emergency 

your data 15% 31% 53%
overall mean 37% 32% 31%

Relative mortality adjusted for admission:59% (95% Cl 37% to 92%)
Rank: 15 out of 89

3. Diagnostic risk category
Low Medium High

your data 37% 31% 33%
overall mean 20% 40% 40%

Relative mortality adjusted for diagnosis: 87% (95% Cl 56% to 139%)
Rank: 43 out of 83

Relative mortality adjusted for all of the above: 72% (95% Cl 43% to 121%) 
___________________ Rank after adjustment: 22 out of 82_____________
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APPENDIX 4

Quotes from Questionnaire to Royal College of 
Surgeons on New Presentation Methods

Other information requested
* “Relate to complexity of operation - better reflection of case mix”

* “Include ASA data for a much better handle on case mix”

* “Categorisation of expected vs. unexpected deaths”

* “Mortality should indicate deaths from terminal disease”

* “Post op/ non operative deaths separated”

* “Analysis by operator as well as consultant”

* “How many hospitals responded?”

* “Relative mortalities within main specialist groups (e.g. vascular)”

Comments and Suggestions
* “Non operative mortality should not be included because it may just reflect lack of 

local hospice provision”

* “We have a commitment to palliative care and terminal care”

* “Collecting mortality data without any other items is meaningless UNLESS one 

can categorise whether the death was ‘inevitable’ or ‘preventable’. Our audit 

system does not provide such a split in the data and many of our deaths were 

‘inevitable’ and occurred because of terminal disease. This must apply to other 

units as well!”

* “Leave out the BUPA classification of operations and ASA grades as almost 

impossible to collect”

* “Data collection package”

* “Without in-house audit, I find collection of data extremely difficult”

* “Identification of patients remains a problem. How many of us identify patients for 

audit ourselves and how many rely on the hospital information system?”

* “Evaluation of methodology needs to be discussed. It might help next year to ask, 

say, 5-6 surgeons to present their methods of data collection.”

235



* “Is the data validated by another method? One should be sceptical of e.g.

Micromed data collected for a fee (£250). Valuable data will only come from

interested surgeons, who are interested in accurate data retrieval.”
*

* “Unfortunately in our case the case mix data collected does not provide any 

information on the illness or severity of the patients treated, nor does it collect all 

the operations formed since the list of codes used was incomplete”

* “Separate categories for day case surgery, outpatient and inpatient cases”

* “Diagnostic groups could be further split to separate high/ low risk groups” 

“Include ‘Abdominal Pain’ (7890) as a separate diagnostic category”

* “Can ASA grading be included in mortality computations? (VERY important)”

* “I am unconvinced about the use of diagnostic risk category as helpful - it might be 

better to use high risk procedures”

* “The adjustments for age, mode of admission and diagnostic category are an 

improvement over the raw data, but still have great potential for abuse. The more 

refined methods of risk adjustment (i.e. POSSUM) would be difficult, however, at 

present throughout the country, but may be more applicable”

* “Would like to review against POSSUM”

* “Need to encourage more responders - perhaps newsletter type information to all 

hospitals /  consultants to emphasise the positive information that has come from 

Comparative Audit studies”

* “The comments from presenters and the audience suggest extremely over­

confident interpretation. This probably means ‘that’ when the quality of ‘this’ is 

completely unknown”

* “Can you clarify the figures given - there seem to be two percentages - which is 

the most important? E.g. a% (b% Cl d% to e%). Which of a% or b% is the figure 

to give more weight to and what are the two different figures representing?”

* “I find it difficult to comprehend the ‘relative mortality’ concept and cannot see 

how it has been related to age or case mix!”

“Delighted with results - keep it up!”
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APPENDIX 5

Equations used for log-linear model Simulations

The data for two variables are of the form

age

1 2 3 total

1 nn ni2 ni3 nsi

status 2 n2i n22 n23 ns2

3 n3i n32 n33 n«3

total n«i n«2 n*3 N

We have the model

log(E(njj)) = 0 + A.Sj + A.a. +(3(i- 2) (j — 2)

We know the marginal totals ns, = b

and n-l == i « si=l

Since E(nSj) = nSi and

i=l,2,3

j=l,2,3

E drijj) = I E ^ )  = n5j => log(£ E in^) = log(nSj)
j j j

From the model, E(n4) = e9eXS|eXaie|i(l-2)(j_2) so

nSi = S E (n fl) = e0eXsleXAle_|i(i"2) +e0eXsleXi2 +e0eXs‘eXa3eP(i-2) 
j

na = ZE(nij) = e0eXSleXaje_p(j~2) +e0eXS2ex*i +e0eXS3ex*ieP(j' 2>
1 i

which give the six equations which must be solved.



APPENDIX 6: Calculation of POSSUM Scores
The score consists of two parts: Physiological and Operative Severity. These consist 

of separate factors which are given weights of 1, 2, 4 or 8 depending on their 

severity. The weights are then summed to obtain the two scores, which are 

incorporated in a logistic regression equation. The scores are assigned as follows.

Physiological Score______________________________________________________
Score
1 2 4 8

Age (years) <60 61-70 >71
Cardiac Signs No failure Diuretic, digoxin, Peripheral oedema; Raised jugular

anti anginal or warfarin therapy venous pressure
hypertensive therapy

Chest radiograph Borderline
cardiomegaly

Cardiomegaly

Respiratory History No dyspnoea Dyspnoea on exertion Limiting dyspnoea 
(one flight)

Dyspnoea at rest (i 
> 30/min)

Chest radiograph Mild COAD Moderate COAD Fibrosis or 
consolidation

Blood Pressure (systolic) 110-130 131-170 >171 <89
(mmHg) 100-109 90-99
Pulse (beats/min) 50-80 >121

<39
Glasgow coma score 15 12-14 9-11 <8
Haemoglobin (g/lOOml) 13-16 11.5-12.9 10.0-11.4 <9.9

16.1-17.0 17.1-18.0 >18.1
White cell count (xl012/l) 4-10 10.1-20.0 

31.-4.0
>20.1
<3.0

Urea (mmol/1) <7.5 7.6-10.0 10.1-15.0 >15.1
Sodium (mmol/1) >136 131-135 126-130 <125
Potassium (mmol/1) 3.5-5.0 3.2-3.4 2.9-3.1 >2.8

5.1-5.3 5.4-5.9 >6.0
Electrocardiogram Normal Atrial fibrillation 

(rate 60-90)
Any other abnon 
rhythm or > 5 
ectopics/min 
Q waves or ST/T 
wave changes

COAD= Chronic Obstructive Airways Disease

Operative Severity Score

Operative severity Minor Moderate Major Major+
Multiple procedures 1 2 >2
Total blood loss (ml) <100 101-500 501-999 >1000
Peritoneal Soiling None Minor Local pus Free bowel conn

(serious fluid) pus or blood
Presence of malignancy None Primary only Nodal metastases Distant metastases
Mode of surgery Elective Urgent (<24 hours) Emergency(<2 hoi

Any variable with missing data is given a weight of 1.

Score
1 2 4 8

238



REFERENCES
American Society of Anesthesiologists, 1963. New classification for physical status. 
Anesthesiology; 24: 111

Ausobsky JR et al, 1982. Delayed hypersensitivity testing for the prediction of 
postoperative complications. BrJSurg;69:346-8

Bailey BJR.1987. Confidence Limits to the Risk Ratio. Biometrics ;43:201-5

Baker JP, Detsky AS, Wesson DE, Wolman SL, Stewart S, Whitewell J, Langer B, 
JeejeebhoyKN, 1982. Nutritional assessment - a comparison of clinical judgement and 
objective measurements. N Engl J  Med.;306:969-72

Baron JH, 1988. Quality control and audit - Annual General Meeting of the Royal 
College of Surgeons of England, 9 December 1987, London. The or Surg ;3:27-&

Baum M, 1991. New approach for recruitment into randomised trials. Lancet 
1993;341:812-3 Boeke S et al. Psychological variables as predictors of the length of 
postoperative hospitalization. JPsychosom /?es;35:281-8

Beecham L, 1993. Consultants outraged by league tables. BMJ;307:699

Boeke S, Stronks D, Verhage F, Zwaveling A, 1991. Psychological variables as 
predictors of the length of postoperative hospitalization. J  Psychosom Res;35:281-8

Boyd O, Grounds RM, 1993. Physiological Scoring Systems and Audit 
Lancet;341:1573-4

Brenner U, Walters U, Muller JM, 1989. A simple point system for preoperative 
assessment of operative risk. TheorSurg;4:17-21
Brindle B, 1994. NHS to run death rate leagues. Guardian 23 Nov;l

British United Provident Association 1989. BUPA Schedule of Procedures. London: 
BUPA.
Brook RH, Appel FA, 1973.Quality of care assessment:choosing a method for peer 
review. New Engl J  A/e*/;288:1323-9

Buchman TG, Kubos KL, Seidler AJ, Siegforth MJ, 1994. A comparison of statistical 
and connectionist models for the prediction of chronicity in an intensive care unit. 
Crit Care Med.;22:750-62

Buck N, Devlin HB, Lunn JN, 1987. The Report of a Confidential Enquiry into 
Perioperative Deaths. Nuffield Provincial Hospitals Trust and the King's Fund, 
London

Buzby GP, Mullen JL, Matthews DC, Hobbs CL, Rosato EF, 1980. Prognostic 
Nutritional Index in Gastrointestinal Surgery. Am J  •S,wr<g.;139:160-7

Byar DP, 1980. Why Data Bases Should Not Replace Randomized Clinical Trials. 
Biometrics;36:337-42

Cale ARJ, King PM, Macleod DAD, 1991. Practical surgical audit: a morbidity 
profile. J  R Coll Surg Edin;36:41-4

239



Chapuis PH et al., 1985. A multivariate analysis of clinical and pathalogical variables 
in prognosis after resection of large bowel cancer. BrJSurg.;72:698-702

Christou NV et al., 1981. The predictive role of DH in preoperative patients. Surg 
Gynecol Obstet.; 152:297-301

Cleary R, Beard R, Coles J, Devlin B, Hopkins A, Schumacher D, Wickings I., 1994. 
Comparative hospital databases: value for management and quality. Quality in Health 
Care;3:3-10

Consultant Surgeons and Pathologists of the Lothian and Borders Health Boards, 
1995. Lothian and Borders large bowel cancer project: immediate outcome after 
surgery. Br J  Surg.;82:888-90

Copeland GP, Jones D, Walters M, 1991. POSSUM: a scoring system for surgical 
audit Br J  S'wr£\;78:356-60

Copeland GP, Jones D, Harris PL, Wilcox A, 1993. Comparative Vascular Audit 
using the POSSUM scoring system. Anns R Coll Surg Engl;75:175-7

Copeland GP, 1993. Comparative Audit: fact versus fantasy. BrJSurg.;80:1424-5

Copeland GP, Sagar P, Brennan J, Roberts G, Ward J, Comford P, Millar A, Harris 
C, 1995. Risk-adjusted analysis of surgeon performance: a 1-year study. Br J  
Surg.;%2\4M-4ll

Crombie DC, Davies HTO, 1993.Missing link in the audit cycle Quality in Health 
Care; 2:47-8

Daley J, Jencks S, Draper D, Lenhart G, Thomas N, Walker J, 1988. Predicting 
hospital associated mortality for Medicare patients, 7AM4;260:3617-24

Deans GT, Odling-Smee W, McKelvey STD, Parks GT, Roy DA, 1987. Auditing 
perioperative mortality Anns R Coll Surg Engl;69:183-7

Deans GT, Heatley M, Patterson CC, Moorehead RJ, Parks TG, Rowlands BJ, 
Spence RAJ, 1994. Colorectal carcinoma: importance of clinical and pathological 
factors in survival. Anns R Coll Surg Engl;76:59-64

Dempsey DT, Mullen JL, Buzby GP, 1988. The link between nutritional status and 
clinical outcome: Can nutritional intervention modify it? Am J  Clin Nutr.;47'352-6
Devlin B, 1990. Audit and the quality of clinical care. Anns R Coll Surg 
Engl.; 72: supp3 -14

Doyle HR, Dvorchik I, Mitchell S, Marino ER, Ebert FH, McMichael J, Fung JJ, 
1994. Predicting outcomes after liver transplantation - a connectionist approach. Anns 
Surg.;219:408-15

Dudley HAF, 1974. Necessity for Surgical Audit BMJ (i):275-7

Dunn DC, Dale RF, 1986. Combined computer generated discharge documents and 
surgical audit BMJ;292:816-8

Dunn DC, 1988. Audit of a surgical firm by microcomputer 5 years experience. 
Z?Af7;296:687-91

Dunn DC, Fowler S, 1990. Comparative audit: an experimental study of 147,882 
general surgical admissions during. BrJSurg  1992;79:1073-6

240



Dunn DC, Dale RF, Gumpert JRW, Duffy TJ, 1992. Combined surgical audit by 
microcomputer involving units in four health regions. Anns R Coll Surg Engl,74:47- 
53

Editorial 1974: Towards medical audit. BMJ:255

Editorial 1976: Separating the sheep from the goats. BMJ: 1218

Edwards G, Morton HJV, Pask EA, Wylie WD, 1956. Deaths associated with 
anaesthesia. Anaesthesia;11:194-220

Ellis BW, Michie HR, Esufali ST, Pyper RJD, Dudley HAF, 1987. Development of a 
microcomputer-based system for surgical audit and patient administration: a review. J  
Roy Soc Med',SO: 157-61

Ellis BW, 1989. How to set up an audit BMJ;298:1635-7

Emberton M, Rivett R, Ellis BW, 1991. Comparative Audit: A new method of 
delivering audit Anns R Coll Surg £>zg/.;73:suppl. 117-20

Fielding LP, Stewart-Brown S, Blesovsky L, Kearney G, 1980. Anastomotic integrity 
after operations for large bowel cancer: a multicentre study. i?M/;288:411-4

Gardner MJ, Altman DG, 1989. Statistics with Confidence. BMJ

Gart JJ, Nam J, 1988. Approximate Interval Estimation of the Ratio of Binomial 
Parameters: A Review and Corrections for Skewness. Biometrics',44:328-38

Gilmore OJA, Griffiths NJ, Connoly JC, Dunlop AW, Hart S, Thomson JPS, Todd 
IP, 1980. Surgical audit: comparison of the workload and result of two hospitals in 
the same district. BMJ',281:1050-2

Goldman L, Caldera Dim, Nussbaum SR, Southwick FS, Krogstad D, Murray B, 
Burke DS, O’Malley TA, Goroll AH, Caplan CH, Nolan J, Carabello B, Slater EE, 
1977. Multifactorial index of cardiac risk in noncardiac surgical procedures N Engl J  
A/erf.;297:845-50

Gonnella JS, Hombrook MC, Louis DZ, 1984. Staging of Disease. A Case-Mix 
Measurement. JAMA',251:637-44

Gore SM, 1981. Assessing clinical trials - Why randomise? BMJ',282:1958-60

Gough MH, Kettlewell MGW, Marks CG, Holmes SJK, Holdemess J, 1980. Audit: 
an annual assessment of the work and performance of a surgical firm in a regional 
teaching hospital. Z?M/;281:913-918

Green J, Winfield N, Sharkey P, Passman LJ, 1990. The importance of severity of 
illness in assessing hospital mortality. 7AM4;263:241-6

Gruer R, Gordon DS, Gunn AA, Ruckley CV, 1986. Audit of surgical 
audit. Jjincetii) :23-6

Hartley MN, Sagar PM, 1994. The surgeon’s ‘gut feeling’ as a predictor of post­
operative outcome Anns R Coll Surg £>i<g/.;76:suppl. 277-8

Harvey KB, Moldawer LL, Bistrian BR, Blackburn GL, 1981. Biological measures 
for the formulation of a hospital prognostic index. Am J  Clin Nutr.;34:2013-22

241



Hart A, Wyatt J, 1990. Evaluating black-boxes as medical decision aids: Issues arising 
from the study of neural networks. Med 7h/;15:229-36

Heywood AJ, Wilson IH, Sinclair JR, 1989. Perioperative mortality in Zambia. Anns 
R Coll Surg Eng\71:185-7

Hirshberg A, Adar R, 1990. Preoperative prediction of postoperative complications. 
IsrJM edSci]26:123-4

Houghton A, 1994. Variation in outcome of surgical procedures. Br J  Surg]81:653- 
60

Jones DR, Copeland GP, Decossart L, 1992. Comparison of POSSUM with 
APACHE II for prediction of outcome from a surgical high dependency unittfr J  
Surg-,79:1293-6

Jones J, 1993. Doctors condemn NHS league table. Independent. September 10: 2

Jencks SF, Williams DK, Kay TL, 1988. Assessing Hospital-Associated Deaths From 
Discharge Data: The Role of Length of Stay and Comorbidities. 7AM4;260:2240-6

Jencks SF, Daley J, Draper D, Thomas N, Lenhart G, Walker J, 1988. Interpreting 
hospital mortality data. The role of clinical risk adjustment. 7AM4:260:3611-6

Katz D, Baptista J, Azen SP, Pike MC, 1978. Obtaining Confidence Intervals for the 
Risk Ratio in Cohort Studies. Biometrics]34:469-74

Kennedy RH, Al-Mufti RAM, Brewster SF, Sherry EN, Magee TR, Irvin, TT, 1994. 
The acute surgical admission: is mortality predictable in the elderly? Anns R Coll Surg 
Eng]76:342-5
Klidjian AM et a l , 1980. Relation of anthropometric and dynamometric variables to 
serious postoperative complications. BMJ]281:899-901

Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE, 1981. APACHE 
- acute physiology and chronic health evaluation: a physiologically based classification 
system. Crit Care Med:9:591-7

Knaus WA, Draper EA, Wagner DP, Zimmerman JE, 1985. APACHE II: a severity 
of disease classification system. Crit Care Med.] 13:818-29

Knaus WA. The science of prediction and its implications for clinicians today. Theor 
Surg 1988;3:93-101

Knaus WA, Wagner DP, Draper EA, Zimmerman JE, et al., 1991. The APACHE III 
Prognostic System. Chest] 100:1619-36

Kohler L, Viell, B, Bode C, Vestweber K-H, Troidl H, 1988. A prospective trial of 
the Prognostic Nutritional Index in prediction of postoperative morbidity and 
mortality. Theor Surg.;3:3-7

Koopman PAR, 1984. Confidence Intervals for the Ratio of Two Binomial 
Proportions. Biometrics] 40:513-7

Krenzien J, Roding H, Mummelthey R, 1989. Operative risk in octogenerians - a 
statistical prognostic index and its prospective validation. Theor Surg]4:10-16

242



Le Gall JR, Lemeshow S, Saulnier F, 1993. A new simplified acute physiology score 
(SAPS - II) based on a European Nort American multicenter study. J  AMA;270:2957- 
63

Lemeshow S, Le Gall JR, 1994. Modeling the severity of illness of ICU patients - a 
systems update. JAMA',272:1049-55

Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J, 1993. Mortality 
Probability Models (MPM-II) based on an international cohort of intensive care 
patients. JAAL4;270:2478-86

McArdle CS, Hole D, 1991. Impact of variability among surgeons on postoperative 
morbidity and mortality and ultimate survival. BMJ;302:1501-5

McKee M, Hunter D, 1995. Mortality league tables: do they inform or mislead? 
Quality in Health Care;4:5-V2

Meakins JL et al., 1980. Predicting surgical infection after operation. World J  
Surg.;4:439-50

Miettinen O, Nurminen M, 1985. Comparative analysis of two rates. Statistics in 
Medicine;4:2\3-26

Miholic J, Haumer M, Moeschl P, Schemper M, 1988. Risk factors for mortality after 
total gastrectomy, evaluated by logistic regression analysis. Theor Surg;3:78-82

Mishriki SF, Law DJW, Jeffrey PJ, 1990. Factors affecting the incidence of 
postoperative wound infection. J  Hosp Inf;16:223-30

Moore EE et al., 1981. Penetrating Abdominal Trauma Index. J  Trauma;21:439-45

Mortensen N, 1989. Wide variations in surgical mortality. BMJ;298:344-5

Moser K-H, Bouillon B, Troidl H, Koppen L, 1989. Validation of the Continuous 
APACHE Score (CAPS) for a better prediction of outcome in surgical ICU patients. 
Theor Surg;3:192-7
Moses LE, Mosteller F, 1968. Institutional differences in postoperative death rates. 
JAMA;203:\50-2
Murray GD, 1977. A Cautionary Note on Selection of Variables in Discriminant 
Analysis. J  R Statist Soc C(Applied Statistics). ;26:246-50
Murray GD, 1986. Use of an international data bank to compare outcome following 
severe head injury in different centres. Statistics in Medicine;5:103-12
Murray GD, Murray LS, Barlow P, Teasdale GM, Jennett WB, 1986. Assessing the 
performance and clinical impact of a computerised prognostic system in severe head 
injury. Statistics in Medicine;5:403-10

Murray LS, Teasdale GM, Murray GD, Jennett B, Miller JD, Pickard JD, Shaw 
MDM, Achilles J, Bailey S, Jones P, Kelly D, Lacey J, 1993. Does prediction of 
outcome alter patient management? Lancet;34\:\4K7-9l

Murray GD, Hayes C, Fowler S, Dunn DC, 1995. Presentation of Comparative Audit 
Data. BrJSurg;82:329-32

243



Neugebauer E, Troidl H, Spangenberger W, Dietrich A, Lefering R and the 
Cholecystectomy Study Group, 1991. Conventional versus laparoscopic 
cholecystectomy and the randomized controlled trial. Br J  Surg;7S:150-4

Nixon, SJ, 1990. Defining essential hospital data. 2?M/;300:380-l

Nixon SJ, 1992. Does audit result in change of practice? The Lothian surgical 
experience. Quality in Health Care; 1 supp:S25-S27

Oguz M, Sayar A, Yalin R, 1990. Preoperative prediction of postoperative 
complications Jsr J  Med Sci;26:147-9

Ottow RD et al., 1984. Clinical judgement versus delayed hypersensitivity skin testing 
for the prediction of postoperative sepsis and mortality. Surg Gynecol 
Obstet.;159:475-7

Pedersen T, Eliasen K, Henriksen K, 1990. A prospective study of mortality 
associated with anaesthesia and surgery: risk indicators of mortality in hospital. Acta 
Anaesthesiol Scand;34:176-82

Pettigrew RA, Hill GL, 1986. Indicators of surgical risk and clinical judgement. Br J  
Surg.;73:47- 51

Pettigrew RA, Bums JG, Carter, 1987. Evaluating sugical risk: the importance of 
technical factors in determining outcome^r J  Surg.;74:791-4

Pettigrew RA, McDonald JR, van Rij AM, 1991. Developing a system for surgical 
audit. Aust NZ J  Surg;61:563-9

Playforth MJ, Smith GMR, Evans M, Pollock AV, 1987. Preoperative assessment of 
Fitness Score. BrJSurg.;74:890-2

Pollock AV, Evans M 1989. Surgical Audit. Butterworths

Pollock AV, 1993. Surgical evaluation at the crossroads. BrJSurg; 80:964-6

Ramsay G, McGregor JR, Murray GD, Neithercut D, Ledingham IMcA, George 
WD, 1986. Prediction of surgical risk in adults. Surg Res Comm.;3:95-103

Rees JL, 1982. Accuracy of hospital activity analysis data in estimating the incidence 
of proximal femoral fracture. BMJ;284:1856-7

Ripley BD, 1994. Neural Networks and Related Methods for Classification. J  R 
Statist Soc B.\ 56;409-437

Ruckley CV, 1984. Mechanisms of audit:discussion paper .J  Roy Soc Med;77\4Q-44

Russell I, 1987. Lecture Notes on Methods for Health Care Evaluation. Health 
Services Research Unit, University of Aberdeen, Occasional Paper No. 1 (reprint).

Ryan JA, Taft DA, 1980. Preoperative nutritional assessment does not predict 
morbidity and mortality in abdominal operations. Surg Forum;31:96-8

Sagar PM, Hartley MN, Mancey-Jones B, Sedman PC, May J, MacFie J, 1994. 
Comparative Audit of Colorectal Resection with the POSSUM scoring system. Br J  
Surg.;81:1492-4

Saklad M, 1941. Grading of patients for surgical procedures. Anesthesiology;2\28\-4

244



Sarmiento J et al., 1991. Statistical modelling of prognostic indices for evaluation of 
critically ill patients. Crit Care Med,:, 19:867-70

Schackert HK et al., 1986. The predictive role of delayed cutaneous hypersensitivity 
testing in postoperative complications Surg Gynecol Obstet:, 162:563-8

Schein M, 1988. Acute surgical disease and scoring systems in daily surgical practice. 
Br J  Surg:,15:131-2

Schwartz D, Flamant R, Lellouch J, 1980. Clinical Trials. Academic Press

Secretaries of State for Health, Wales, Northern Ireland and Scotland, 1989. Working 
fo r Patients. London:HMSO

Smith CW, 1994. Evaluating risk adjustment by partitioning variation in hospital 
mortality rates. Statistics in Medicine; 13:1001-13

Shaw CD, 1980. Acceptability of Audit BMJ;281:1443-5

Titterington DM, Murray GD, Murray LS, Spiegelhalter DJ, Skene AM, Habbema 
JDF, Gelpke GJ, 1981. Comparison of Discrimination Techniques Applied to a 
Complex Data Set of Head Injured Patients. J  R Statist Soc A;144:145-75
Toynbee P, 1991. Nervous Surgeons’ Best Kept Secret: Their rate of success. Daily 
Mail: 9 November
Toynbee P, 1993. Opinion. Radio Times: 26 June;22

Urbach P, 1993. The value of randomization and control in clinical trials. Statistics in 
Medicine',12:1421-31
Vacanti CJ et al., 1970. A statistical analysis of the relationship of physical status to 
postoperative mortality in 68,388 cases. Anesth Analg;49:564-6
Whates PD, Birzgalis AR, Irving M, 1982. Accuracy of hospital activity analysis 
operation codes. BMJ;2S4:1857-8
Whiteley MS, Prytherch D, Higgins B, Weaver PC, Prout WG, 1995. Comparative 
audit of colorectal resection with the POSSUM scoring system (letter to the editor). 
Br J  Surg.;82:425

Wilkin A, McColl 1,1987. Surgical audit: the clinician's view. Theor Surg;l: 195-206

Wamold I, Lundholm K, 1984. Clinical significance of preoperative nutritional status 
in 215 non-cancer patients. Ann Surg.; 199:299-305

245



BIBLIOGRAPHY
BMDP Statistical Software, Inc. BMDP Manual, 1990.

Crombie DC, Davies HTO, Abraham SCS, du V Florey C. The Audit Handbook. 
Wiley, England, 1993.

Minitab Inc. MINITAB 9 Reference Manual, 1993

Pollock A, Evans M. Surgical Audit. Butterworths, London 1989.

Statistical Sciences, Inc. S-PLUS Reference Manual, Version 3.2, Seattle: StatSci, a 
division of MathSoft, Inc., 1993.

246


