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ABSTRACT

The research presented in this thesis involves the development of both new and 

existing techniques in direct methods. All of the techniques investigated were 

integrated into a test version of the direct methods program MITHRIL94 and then 

tested on structures that are known to be difficult to solve. For every technique the 

results produced were compared to those obtained from the previous version of 

MITHRIL94.

Chapter 1 is an introduction to direct methods - the underlying principles of the 

method and a comprehensive summary of the techniques employed, some of which are 

discussed and expanded in later chapters. This chapter also contains a section on the 

limitations of direct methods and a flowchart of the modules which are present in the 

MITHRIL94 version of the program.

The reliability of the phase relationships used in direct methods is an essential step in 

obtaining the correct structure solution. Chapter 2 discusses the measure of reliability 

of the triplets ( k )  and quartets ( k ^ )  that exist in MITHRIL94. Since the use of K^q is 

relatively slow, this chapter investigates other methods of measuring the reliability of 

the quartets that are quicker but still produce an accurate measure. The two methods 

investigated were derived from the variable B, used in the conditional probability 

equation P ^ . These two methods, and B2 , differed in their treatment of the cross 

terms. Comparison of these methods with was achieved by plotting the average 

phase error against increasing reliability for each of k ^ ,  B  ̂and B2 , with k  also being 

plotted as a standard. To test the methods fully, negative and positive quartets were 

treated separately. This chapter provides details of the implementation of these 

methods into a test version of M1THRIL94 and presents the results for some of the 

structures tested. The results showed that all three methods provided an accurate 

measure of reliability, and since the use of B  ̂increased the speed of the program by an 

approximate factor of 10 it was used to measure the reliability of the negative quartets 

in subsequent investigations.

The third chapter details the principles of optimisation techniques, namely that of 

simulated annealing and discusses how this technique is applied to crystallography in 

the form of phase annealing. This chapter includes a detailed account of the



implementation of phase annealing into MTTHRIL94. Centric and acentric phases are 

treated differently during phase annealing and flowcharts for these processes are 

provided. The phase annealing algorithm was integrated into three of the tangent 

refinement modules in MITHRIL94 - FASTAN and SWTR, the principles of which 

are discussed in chapter one, and X-Y which is discussed in this chapter. The phase 

annealing code was tested on structures from the Sheldrick database of difficult 

structures. The results for each tangent refinement module employing phase annealing 

are displayed in separate tables. These show that phase annealing in MITHRIL94 was 

a definite success for FASTAN and SWTR, especially SWTR where phase annealing 

produced a dramatic improvement in results compared to the original module.

Phase permutation involves the assignment of values to the phases in the starting set of 

reflections. Various methods of phase permutation exist including those of magic 

integer and random phasing, both of which are discussed in chapter 1. Chapter 4 

discusses the use of error correcting codes as a phase permutation technique. The first 

part of this chapter details the background theory of error correcting codes, discussing 

their relevance to experimental design and the properties required of the error 

correcting codes for efficient phase permutation. Two error correcting codes were 

investigated - the Hadamard code and the binary [24,12,8] Golay code. Detailed 

descriptions of how they were used to permute phases is provided. The error 

correcting codes were incorporated into a trial version of MITHRIL94 and used with 

the FASTAN and SWTR tangent refinement modules. The results for each code, 

employed with each module, are displayed. Again the results are provided from tests 

on the Sheldrick database of difficult structures and are compared with the results 

produced using a previous version of MITHRIL94. The results show that the Golay 

and Hadamard error correcting codes are capable of producing structure solutions and 

are therefore viable phase permutation techniques.

Since the results gained from error correcting codes and phase annealing were 

successful the next obvious step was to combine these two techniques. Chapter 5 

discusses how these techniques were combined. Again this method was tested with the 

FASTAN and SWTR modules. The results produced from this investigation were very 

interesting; with the annealing-code combination in some cases literally working 

together and in other cases appearing to work against one another.



Chapter 6 discussed the implementation of phase annealing into the graphical user 

interface version of MITHRIL94, which is contained in the commercial computer 

program CRYSTAN 6.3. A summary of the facilities in CRYSTAN 6.3 is presented, 

along with a description of how to initiate phase annealing and the options available 

within the module.

Appendix A contains listings of subroutines in MITHRIL94 for phase annealing.

Appendix B contains subroutine listings in MITHRIL94 which implement error 

correcting codes.
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1.0 THE PHASE PROBLEM

When X-rays irradiate a crystal, diffraction occurs producing the characteristic 

diffraction pattern. The individual diffracted beams are known as reflections and the 

reflecting planes within the crystal are defined by the Miller indices (h,k,l). The 

diffraction pattern contains vital information which is used to determine the structure 

of the crystal.

The following information can be acquired from the pattern:

• By considering the symmetry of the x-ray diffraction pattern, certain physical 

properties of the crystal and the possible presence of systematic absences, 

information about the symmetry of the crystal is obtained.

• The geometry of the diffraction pattern is used to determine the shape and size of 

the unit cell.

• Information regarding the relative atomic positions is obtained by measuring the 

intensities of the reflections.

The intensity of a reflection is dependent on the positions of the atoms in the unit cell 

and the scattering power of the atoms and can be measured from the diffraction 

pattern. They are an important source of information about the structure, providing a 

direct link to the structure factor amplitudes. The relationship is shown by EQ 1.0.1

N  = N * *

(EQ 1.0.1)

where
Lp is the combined polarisation factor and Lorentz factor.

Ih is the measured intensity of reflection h

IFfal is the relative structure factor amplitude of reflection h.

Thus if the intensities are known the relative structure factor amplitudes can be 

determined. For structure solution the structure factor for each reflection must be 

known. These are complex numbers and are defined as:



Fh = 1^1 exp ^ i )

(EQ 1.0.2)

where
Fjj is the structure factor of reflection_h 

cph is the phase of reflection h

The electron density of the structure (therefore information about relative atomic 

positions) is related to the structure factors by a Fourier transform:

x is the vector for a point in the unit cell 

V is the volume of the unit cell

The summation is over all the observed reflections. The structure factors are the 

coefficients for the Fourier synthesis and the summation of terms will reconstruct the 

electron density of the crystal. Apart from the phase, every term in both EQ 1.0.2 and 

EQ 1.0.3 can be determined experimentally. Unfortunately the phase cannot be 

established by physical measurements and it must be calculated. Incorrect phases will 

lead to incorrect electron density and thus an incorrect structure, so the calculation of 

the phase values is extremely important. This is the Crystallographic Phase Problem.

(EQ 1.0.3)

where



1.1 Solutions to the Phase Problem

To overcome the phase problem several methods have been devised and are currently

used. A brief summary of some of the methods follow.

(i) Patterson Methods (Patterson, 1934) - The Patterson function is a Fourier series 

which is derived directly from the experimental data. This method is important as it 

revealed that the structure of a crystal could be derived from the initial data. The 

function is shown by EQ. 1.1.1

P  ( u )  =  ^ ^ \ P h \ 2 e x P  [ - 2 n i k  ' U ]

(EQ 1.1.1)

It is the interatomic vectors, not the atomic positions that are found directly by this 

equation. It is useful in two situations:

• When heavy atoms are present in the structure. The maxima of the Patterson can be 

used to find the position of the heavy atoms. The rest of the structure can then be 

found by Fourier techniques. This is known as the heavy atom method.

• When there exists a known arrangement of atoms displaying a characteristic vector 

pattern. This is known as the molecular replacement search technique. Again the 

rest of structure is found by refinement.

Drawbacks to the Patterson map are (i) It can really only be successful if a known

arrangement of atoms or heavy atoms exist in the structure and (ii) As the structure

increases in size the Patterson map decreases in efficiency.

(ii) Isomorphous replacement - this also uses a Patterson map. This technique involves 

the addition of a heavy atom to a crystal without changing the space group or unit 

cell in any way. Again once the heavy atom has been located an attempt is made to 

find the rest of the structure by the use of phase circles. A disadvantage is that it can 

be difficult to introduce the heavy atom into the structure without changing the 

crystal or molecular structure.

(iii) Direct methods - so called because a mathematical attempt is made to determine



the phases directly from the structure factor amplitudes. The existence of heavy 

atoms in the structure or knowledge of part of the structure are not required by 

direct methods. Being mathematical procedures, direct methods are readily applied 

as computer programs.

The remaining chapters will explain the development and integration of new 

techniques into the direct methods program MITHRIL94.

2.0 UNDERLYING THEORY OF DIRECT METHODS

Phases and structure factor amplitudes are not independent of one another and are 

linked by a degree of knowledge about the electron density. The structure factors are 

related to the electron density by a Fourier transform so any constraints on the electron 

density will automatically be constraints on the structure factors. The initial 

developments in direct methods are better described by considering some of these 

constraints. One constraint is that obviously the electron density must always be 

positive at every point within the crystal. This constraint was first applied to structure 

factor relationships by Harker and Kasper (Harker & Kasper, 1948). For a 

centrosymmetric space group the phases are restricted to 0 and 7t, and we can think of 

the phase cp^as a sign s^ of the structure factor, where cp^= 0 corresponds to S|j_= +1 

and cpjj_= 71 corresponds to s^ = -1. Harker and Kasper used the Cauchy -Schwartz 

inequality to prove that for a centrosymmetric crystal, if IF̂ I and IF2̂ I are both strong 

then IF21J is probably positive. This inequality is only useful when there is only a small 

number of atoms in the structure and if the crystal is centrosymmetric. Karle and 

Hauptman developed determinant inequalities (Karle & Hauptman, 1950) that would 

give a function a non-negative result everywhere for a Fourier summation. The 

inequality relationships could result in a reduction of the range of values for a phase 

only when the intensity of the phase was large (apart from the centrosymmetric case).

It is the development of the probability relationships between the structure factors that 

is the basis for direct methods .The following are applicable for centrosymmetric 

structures: Cochran (1952) proposed a constraint on the entire electron density on the 

unit cell stating that a correct distribution would have some near zero regions with the



electron density large at atomic positions. This eventually led Cochran to the triple 

product sign relationship (TPSR):

s ( h ) s ( k ) s ( h  + k) » 1

(EQ 2.0.1)

where ~ means probably equals.

Zachariasen (1952) extended this relationship, where the known signs give an 

indication of the unknown sign:

In the same issue of Acta Crystallographica that Cochran and Zachariasen proposed 

their work the Sayre equation (Sayre, 1952) was introduced:

f  ̂is the scattering factor for each atom

yh is the scattering factor of the squared atom and depends only on Ihl.

V is the volume of the unit cell.

This equation links the structure factors if the structure consists of equal resolved 

atoms. If the atoms are to be discrete the structure factors will not be affected by the 

atomic shape and will all be equal. In order to take advantage of this fact, the structure 

factors must be expressed as the normalised structure factors E .̂

(EQ 2.0.2)

0

(EQ 2.0.3)

where

(EQ 2.0.4)



3.0 NORMALISATION

3.1 The Normalised Structure Factor

The first stage of any direct methods procedure is the normalisation of the structure 

factors. It is important to note here that the phase of the reflection will not change 

during normalisation. The magnitude of the normalised structure factors IEhl influence 

every step in direct methods so every factor that could possibly affect the value of 

must be closely considered. Measured structure factors will decrease with an 

increasing diffraction angle since both the atomic vibration and the atom size exert an 

effect on X-ray diffraction. The size of the vibration is dependent on the atomic mass, 

the strength of the forces or covalent bonds holding it in place and the temperature. 

Thermal vibration obviously increases with temperature. As the atom vibrates the 

electron cloud spreads over a larger area with the consequence that the cloud will have 

a lower density, which in turn reduces the intensity of the diffraction of x-rays.

These effects must be corrected allowing the structure factors to correspond to point 

atoms at rest. The normalised structure factors Eh are defined by EQ. 3.1.1

fj is the scattering factor of the atom and X is the wavelength of radiation used.

£ is the epsilon factor which takes into account that some reflections may have an 

average intensity greater than that for general reflections. It is a consequence of point 

group symmetry.

K is the scale factor which places Fh on an absolute scale.

N

(EQ 3.1.1)

where

B is the isotropic temperature factor defined as:



B =  Sn2u j

(EQ 3.1.2)

where Uj2 is the mean squared amplitude of atomic vibration.

The observed intensities Irei (corrected for Lorentz and polarisation factors) are related 

to the intensities 1 ^ , calculated for atoms at rest:
j  — v - . j  p-25sin20/X2 
*rel ~  A 'abs6

(EQ 3.1.3)

Both B and K can be obtained from a Wilson plot (Wilson, 1942). Rearranging EQ

3.1.3 and multiplying both sides by the natural logarithm gives:

=  l n K - 2 B s i n  Q/X2M  I r e / Y J j )  =

(EQ 3.1.4)

When the left hand side of EQ 3.1.4 is plotted against (sin &)/X an approximate 

straight line is obtained. A least squares line is calculated and B can be obtained from 

the slope and K from the intercept at 0 = 0 degrees. An example of a Wilson plot for 

the centrosymmetric structure diamantane is shown below with K=0.8752 (ct=0.1299) 

and B=3.7286 (ct=0.7222)

FIGURE 1. The Wilson plot

R hoV s. ln(F(O bs)**2/sigfsq)

- 2. 0 - 1. 0 -0 . 5-1 , 5

W ilson 
■Best Fit

fi 05.

0. 10

0. 20

0. 25
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If the points plotted deviate greatly from a straight line then the K-curve method 

introduced by Karle and Hauptman (Karle & Hauptman, 1953) is used to determine K 

and B.

4.0 ORIGIN AND ENANTIOMORPH DEFINITION

4.1 Origin Definition

When a crystal structure has its atomic positions specified with respect to a frame of 

reference, then that crystal structure is said to be fully defined in real space. In order to 

achieve this its origin must be defined. In reciprocal space this is done by assigning 

phases to a small number of IEhl. If the origin is shifted in real space then the phases of 

the corresponding reflections in reciprocal space will also be altered as the two are 

related by a Fourier transform. Thus setting the origin creates a corresponding pattern 

of relative phases on the diffraction pattern.The structure factor is defined in terms of 

atomic coordinates:

Fh = ^Tfjexp (2nih • Xj)
j

(EQ 4.1.1)

If the origin is moved a distance of Ax the new structure factor can be defined as:
F'h = ^ f j e x p (2 n ih • (Xj -  Ax ) )

(EQ 4.1.2)

Thus if the origin is changed the corresponding shift in phase is:

27icp//l = 2n(ph -  2n (h • Ax)

where

(p'h is the phase at the new origin 

cpft is the phase at the old origin 

Ax = (Ax, Ay, Az )

(EQ 4.1.3)

9



EQ 4.1.3 is known as the shift theorem. Since the space group does not specify the 

absolute positions of the symmetry axis but only their direction, a situation arises 

where there is a choice of origin for each space group. The permissible origin defining 

reflections and the phases to be assigned are determined by the International Tables of 

X-ray Crystallography (IUCR, 1989). Reflections used to define the origin should be 

linearly independent and must not be structure seminvariants or invariants.

5.0 STRUCTURE INVARIANTS AND SEMINVARIANTS

5.1 Structure Invariants

The amplitude of Eh can be described as structure invariant as it does not differ when 

there is a shift in the origin. Unfortunately the phase of the structure factor depends on 

both the atomic positions and the origin, making it impossible to measure, and 

ultimately resulting in the phase problem. As the amplitudes are invariants then any 

phase derivation from them must lead to phase invariants, not single phases. Thus 

there exists certain linear combinations of reflections whose products are structure 

invariants. It is simple to show that products for EhlEh2...E^n are structure invariant 

if:
/&! + /?2 fan ~ ®

(EQ 5.1.1)

For example the product of the following three reflections:

E 'hE 'kE '_ h_k = Eheln i^ 1̂ ) x E ke2n‘U t e )  x E _ h_ke2ni<--i - ^ ' A t '>

(EQ 5.1.2)

reduces to:

E \ E ’P - h - k  =  W -A V ni(0
(EQ 5.1.3)

and finally to:

E\ E' P - h - k  = W - i - t

(EQ 5.1.4)
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The phase sum ^ cp  (&.) that is <ph + (pk + cp_h _k must also be a structure invariant. 

The linear combination of the phases will always have the same value regardless of the 

choice of origin. It is only the sum of the phases and not the individual phases that are 

origin independent and relate only to the structure. This makes the structure invariants
-j

a very powerful tool in direct methods. The simplest one is just IEJ . The type used in 

the example, the three phase invariants, are known as triplets or Z2  relationships.

5.2 Structure Seminvariants

There exists another set of linear combinations of phases that remain unchanged when 

the origin of the space group is shifted. The phases will remain the same only if the 

origin is shifted in a manner allowed by space group symmetry. They are known as 

structure seminvariants. Thus the following must be true for any structure 

seminvariant, where Ax is an origin shift from any permissible origin to the 

next: h- Ax = 0 or n, where n = integer.

Thus for space group P2j the linear combination of three phases

V h lk l l l  + Vh2k2l2 + §h3k3l3

(EQ 5.2.1)

is seminvariant only if (kl + k2 + k3) = 0, (hi + h2 + h3) and (11 +12 +13) are even 

integers when the origin is shifted between the allowable origins. In general any linear 

combination of phases that gives a product of (e,0 ,e), where e is an even integer, will 

also be a seminvariant. For example:

<Pet„ + <Pefo“ d<Pefo + Vete + <Pe0o

both the above linear combinations of phases are structure seminvariants in the space 

group P2X. There exist far more seminvariants than invariants and they can be single 

structure factors, a product of structure factors, a structure factor phase, or a sum of 

phases. The latter are called relationships and can be used in the phase 

determination process; in the starting set of reflections to cut down on the number of 

reflections and in the calculation of some figures of merit. They can also be used in 

enantiomorph definition.
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5.3 Enantiomorph

For non centrosymmetric structures in addition to just defining the structure we must 

also define the enantiomorph. The enantiomorph is simply the mirror image of the 

structure. This is done in theory by assigning a phase to a structure invariant or 

seminvariant which involves large E-magnitudes and whose sum is neither 0 or n. 

Then all the invariants and seminvariants become uniquely defined. In practise we can 

assign a phase to just one reflection with a large E-magnitude that belongs to an 

invariant or seminvariant whose sum is not 0 or n. A change in the enantiomorph will 

result in all the phases reversing i.e. cp̂  will become ~(ph and all the invariants and 

seminvariants will also reverse. The enantiomorph must be defined at the start of any 

structure solution or a situation may arise where different reflections are defining 

different enantiomorphs, creating both of them in the final electron density maps and 

ultimately confusion.

6.0 THE NEIGHBOURHOOD PRINCIPLE

Once the enantiomorph has been selected, the observed E-magnitudes can then define 

both the magnitudes and the phases of the structure invariants which are consistent 

with that enantiomorph. The phases of the structure invariants are not primarily 

determined by all the E-magnitude sets. Instead they are sensitive only to a small 

number of reflections which are known as the neighbourhoods of the invariant. The 

value of the invariant is determined primarily by the reflections within the first 

neighbourhood, followed by the second etc. The neighbourhoods are nested with the 

second neighbourhood containing all the reflections from the first plus additional ones.

If the E-magnitude for each reflection within the neighbourhood is known, then an 

estimate for the invariant can be given using the conditional probability distribution. 

This estimate is more likely to be correct if the variance of distribution is small. This 

has the effect that in favourable cases going from the first to the second neighbourhood 

sometimes increases the chance of a distribution with a small variance and a more 

reliable estimate for the phase can be obtained.
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So how can we estimate the values of the structure seminvariant by conditional 

probability and what types are used in the process of phase determination?

7.0 THREE PHASE STRUCTURE INVARIANTS

7.1 Triplets

Triplets are three phase structure invariants of the form:

^3 = 'Pj + 'Pt + tp/

(EQ 7.1.1)

where the sum of the indices:
h + k  + / — 0

(EQ 7.1.2)

For centrosymmetric structures this phase sum can only have a value of n or zero. The 

phase sum is usually referred to as the sign of the relationship with a value of zero 

being positive and n being negative. If the triplet contains two reflections of known 

phase with large E-magnitudes then the phase of the third reflection can be 

determined.

7.2 Conditional Probability Distributions

When the number and type of atoms in the unit cell and the magnitudes of the three Eh 

involved in the triplet are known, then the probability of the triplet, for the 

centrosymmetric case, having a value of zero is:

J \ ( ® 3 | K ) » i  + itanh5

(EQ 7.2.1)

(Cochran &Woolfson, 1955) 

where

K = 2  "1721 EhEkEh-k\ 
a 2

(EQ 7.2.2)
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and

o
N

= L z ‘
i =  1

(EQ 7.2.3)

and for the non-centrosymmetric case: (Cochran, 1955; Hauptman, 1976a)
1 KCOSO*

(EQ 7.2.4)

If the structure is comprised of equal 

_ _L_

J n

(EQ 7.2.5)

From EQ 7.2.5 it is obvious that as the structure complexity increases the strength of 

the probability distribution decreases. If we plot the probability versus the phase 

angle, then it becomes apparent that for a higher value of k , the probability that the 

triplet will equal zero is greater. This can be seen in Figure 2.

FIGURE 2. Cochran distributions for k  = 2,3 ,4

IG is a zero order modified Bessel Function.

atoms then:

” 3 / 2
CT3

k =3

k = 2

180-1 8 0 0 3

The maximum of the function occurs when 0 3 =0, corresponding to a large k  value. 

Also the larger the value of k  the smaller the variance of distribution, indicating a

14



more reliable estimate for the triplet. EQ 7.2.2 links k  to the E-magnitudes of the 

reflections, thus it is preferable that the triplets be composed of reflections with large 

E-magnitudes.

The first neighbourhood of a triplet consists of the three magnitudes:

\ h \ ’ N -  \El

(EQ 7.2.6)

while the second neighbourhood is formed by considering the following quintet (five 

phase invariant):

° 3  =  'P/! +  'P * + 'P ; + 'P p  +  <P-p

(EQ 12.1)

and is thus composed of:

IE I, \EU I, IEu L IEu |, |E h |, |E, \and\E,I £ I »+£ I -  ~£\ \ *+£\ \ l+2\ \ l-£

where p is a floating vector and lEgl must be large.

Figure3. illustrates the neighbourhoods in diagrammatic form. 

FIGURE 3. The first and second neighbourhoods for a triplet

(EQ 7.2.8)

'k+E

El+p
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8.0 FOUR PHASE STRUCTURE INVARIANTS

8.1 Quartets

Quartets are four phase structure invariants of the form:

0 4  =  <p4 +  cp* +  cp/ + c p !a

(EQ 8.1.1)

when

h + k + l + m = 0

(EQ 8.1.2)

The importance of quartets is their use in the solution of structures that crystallise in a 

symmorphic space group.

8.2 Conditional Probability Distributions

The conditional probability of the quartet using only the four magnitudes is:

P ( 0 4 |5 )
1 Z?cos<I>4

2nIJJB)

(EQ 8.2.1)

where

ct2

(EQ 8.2.2)

and
N

ft ¥-1 ryflo  = £ Z , .
1 = 1

(EQ 8.2.3)
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IG is a zero order modified Bessel Function. If the structure is comprised of equal 

atoms then:

^  = I
2 N  
2

(EQ 8.2.4)

A plot of the probability against the phase angle results in a curve where the 

largest value of B creates the greatest probability that the quartet is equal to zero.

Thus P  ( 0 4) is similar to P ( 0 3) except that B values of order 1/N tend to be less 

than k  values of order 1 /  (*Jn) . Ultimately then, the estimate of zero for the quartets 

is less reliable than the estimate for the triplets. To overcome this the reflections in the 

neighbourhood of the quartets are considered.

The second neighbourhood adds the cross terms:

(EQ 8.2.5)

The third neighbourhood is formed by introducing an arbitrary vector p and its 

associated vector q such that:

h + k + p  + <7 = 0

(EQ 8.2.6)

lEgl and IEfll are best to be large to ensure the probability of this quartet to be high.

The introduction of these vectors results in a second quartet invariant:

®pq = 'fy+'Pi+'Pg + 'Pj

(EQ 8.2.7)

which indirectly defines a third quartet invariant:

=  'P ; + 'P !B +  <P-E +  CP-3

(EQ 8.2.8)
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O has a second neighbourhood which consists of

N -  \E k\> N ’ \E p \’ \E h * \ '  \E k  + p \a n d \E h + p \

(EQ 8.2.9)

and has a second neighbourhood comprising of

N ’ |£ p|- N >  |£ / + m|- |£ m- p |a « ^ - p  + ,|

(EQ 8.2.10)

Because d>4  + 0  + d>/m = 0, d>4  can be estimated by 13 unique E-magnitudes 

and cross terms.

The terms are shown in Figure 4. in their appropriate neighbourhoods:

FIGURE 4. The first, second and third neighbourhoods for a quartet

'k+l

m+k

'k+ir
in-j>'1+m
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The probability that 0 4  is equal to zero can also be considered using the principle E- 

magnitudes and their cross terms (Hauptman, 1975a,b 1976b;

Giacovazzo, 1975,1976b).

P ^ A \ E b \ N \ E li\E m\\E i . ^ \ E k 4 \ E i + m \ > =

1 - 2 5  cos 

L e
(  2 a.

3 /2 \Eh 4 x n )
Vu 2

2 a.

\ ° 2
3 /2 \Ek 4 X:23

W  2 a ,  A
~T72\E! + m\X3i

Vu 2

where IG is the zero order Bessel function of the first kind.

L is a normalising constant

and

B = W ^ h ElEm\

x 23 = ( N 2l£ f + K c N 2+2N N I £ / I N C0S°4)

1 / 2

1 /2

* 3 1  =  ( | £ f N 2 + N 2 N 2 + 2 N N N N C 0 S ° 4 >

1 /2

(EQ 8.2.11)

(EQ 8.2.12) 

(EQ 8.2.13) 

(EQ 8.2.14) 

(EQ 8.2.15)

111“  ml i s l a r S e -The most reliable value for 0 4  occurs when the product \Eh 

Three types of quartet can occur:

• Positive quartets: When the three cross terms are large 0 4  «  0 , i.e. c o s0 4  »  +1 

(Schenk, 1973). Although these quartets do contain useful information they are not 

really used in phase determination procedure as they are highly correlated with 

triplets. Figure 5. illustrates the probability distribution for positive quartets.
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FIGURE 5. The probability distribution for a positive quartet

P

71/2
phase

Negative quartets: When the E-magnitudes of the cross terms are small then they 

can be described as negative quartets. The probability is that cosd>4  » - 1 ,  i.e. 

d>4  » n (Hauptman, 1974). They are very important in direct methods as they are 

used in the phase determination procedure and also in the calculation of the Figure 

of Merit, NQEST (DeTitta, Edmonds, Langs & Hauptman, 1975). Figure 6 . 

illustrates the probability distribution for negative quartets.

FIGURE 6. The probability distribution for a negative quartet

P

71/2

phase
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• Enantiomorph sensitive quartets: If the E-magnitudes of the cross terms have 

intermediate values, or the E-magnitudes are just a mixture of large and small then 

they are known as enantiomorph sensitive quartets (Hauptman, 1975a). They are 

the least reliable as their indications tend to be weak and they are therefore rarely
71used in phase determination. 0 4  has a predicted value of ± -  . Figure 7. shows the 

probability distribution for enantiomorph sensitive quartets.
P

71/2

phase

FIGURE 7. The probability distribution of an enantiomorph sensitive quartet

9.0 THE STARTING SET

Once the seminvariants and the invariants have been determined, a starting set of 

phases can be defined which will be used to generate new phases. This starting set 

consists of:

• The origin defining reflections.

• The enantiomorph defining reflections (if appropriate).

• The Zi determined phases.

• Reflections of unknown phase which can be used in phase permutation and the 

symbolic addition procedure. They take on different values for each tangent 

refinement and are then permuted.

The reflections that are deemed suitable for addition to the starting set are chosen by 

the convergence procedure (Germain, Main & Woolfson, 1970). Firstly the value for 

a  (h) est is calculated for each reflection. This requires no prior knowledge of
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individual phase angles and is a measurement of reliability of each phase in regards to 

the remaining phases in the data set. Thus it is just a measure of the connectivity of 

single reflection to the other reflections through the invariants:

where k  (h, k) is defined earlier in EQ 7.2.2

The procedure is iterative and during each iteration, the least reliable phase is 

eliminated. This is the reflection which has the lowest value for a  (hest) • The 

reflections remaining are those which are strongly linked together, having maximum 

connectivity through the invariants. The value of a  (b ) is then recalculated for all 

the remaining reflections. Reflections which have values of a  (h t) = 0 will be 

chosen for permutation because their phase cannot be calculated from the phases of 

the remaining reflections. Also, when the last of the origin and enantiomorph defining 

reflections are found, they will not be eliminated from the list but kept for the starting 

set. This method does not select each reflection on its own merits but instead looks at 

how the reflections are linked together. The convergence procedure usually leads to 

strong phase development and multiple interactions, avoiding weak links in the 

convergence map. A weak link occurs where phase information comes from only one 

invariant. However, care must be taken as any change in the E-magnitudes can lead to 

a noticable difference in the phasing path. Invariants or seminvariants used in the 

generation or refinement of new phases are described as the active set, whilst the 

passive set are those used to calculate the figures of merit and are usually not active. 

Triplets were initially employed in convergence mapping but any invariant or 

seminvariant can be used (Freer & Gilmore, 1980).

The reflections in the starting set consist of those that are already phased and others 

which are unphased. The latter will be assigned a range of phase values and are then 

propagated each time through the convergence map to determine the rest of the phases

/ i f i c ( y ) } ' i ( K ( i , o )  
/(,{  K(&fc ) } /O{K( 6 , 0 }

(EQ 9.0.1)

10.0 PHASING THE STARTING SET
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in that phase set. Obviously it is important to find methods that reduce the number of 

phase sets actually calculated without losing the ability of finding the correct one. 

Usually the starting set of reflections is kept to a minimum and centric phases can only 

be permuted over the two values of n and zero, whereas acentric phases are not 

restricted, but for quadrant permutation we can permute over ±3n/4 or ±n/4. For n 

permuted reflections there will be 4n phase sets each of which then undergo tangent 

refinement. The options within this multisolution class of methods involve the use of 

magic integers or random phasing procedures. In Chapter 4 the development and 

technique of using error correcting codes will be discussed.

10.1 Magic Integers

The technique of magic integers (White & Woolfson, 1975: Declercq, Germain & 

Woolfson, 1975) can be used in direct methods programs to reduce the number of 

phase sets generated.

For a sequence of n integers mi,ni2 ,m3 , ,mn, n phases can be represented by the

equations:
<p. = m-x

(EQ 10.1.1)

where x is a variable in the range 0<x<27t.

The starting set of reflections are phased by assigning incremented values to x, that it x 

is incremented. Several sets are investigated by making x a suitable number of 

different values. The enantiomorph can be defined by assigning values to x in the 

range 0 ^ x <> n . Thus for each x there is a corresponding set of n phases, with the 

phase sets being as different from each other as possible. Magic integers are only used 

on phases that are unrestricted by space group symmetry. The set of integers are an 

approximation of the phases so it is vital to limit the root mean square (r.m.s.) errors to 

their smallest. To do this the most efficient set of magic integers is used (Main, 1977).
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These are shown in table 1 along with the r.m.s. errors and the number of 

corresponding permutations in a full factorial design.

TABLE 1. The most efficient sets of magic integers for up to eight phase permutations

n Sequence

Number 
of sets 
(M.I)

Number 
of sets 
(F.F.D.)

r.m.s.
error

2 2 3 1 2 16 26
3 3 4 5 2 0 64 29
4 5 7 8 9 32 256 37
5 8 11 13 14 15 50 1024 42

6 13 18 2 1 23 24 25 80 4096 47
7 2 1 29 34 37 39 40 41 128 16384 48
8 34 47 55 60 63 65 6 6 67 206 65536 49

11.0 PHASE EXTENSION AND REFINEMENT

11.1 The Tangent Formula

The extension and refinement of phases are two different processes which can both be 

carried out by tangent refinement (Karle & Hauptman, 1956; Karle & Karle 1966). 

The tangent formula in its weighted form is:

V wkw h -  k\E k\\E h +
tancp  ̂«  —----------------------------------------------

E wi wh -  k\E i \ Eh -  k\cos ( W P

(EQ 11.1.1)

where wk , wh _ k are weights of reflections k and h - k respectively.

The triplet invariants are used in EQ 11.1.1 to expand the number of phases with the 

result that there may exist several indications to the value of cp̂ . By considering all the 

appropriate invariant relationships the tangent formula is able to determine probable 

values of these new phases with the assumption that all the invariants are independent 

of each other. The various phase values are inserted on the right-hand side of the
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equation and an estimate for tancp  ̂ is produced. The reliability of tancp̂  is measured 

by the variance V((ph) which can be expressed as a function of a  (h) (Karle & 

Karle, 1966).

where K^is defined in EQ 7.2.2

This estimated value for the phase should be more reliable than the phase prediction 

using one invariant. If several invariants give a similar indication then the reliability of 

the phase, a h, will have a large value. This is illustrated in Figure 8 .

FIGURE 8. Combination of phase estimates

êst

where <|)el to ^  are the phase estimates with strengths kj to k4  combining to give an 

overall estimate (j)^ with strength a  (Woolfson, 1991).

Phase estimates that are produced early on in the expansion process are based on 

initial phase estimates and not on invariants involving phases whose values are still to 

be determined. When all the reflections in the system have phase estimates they can be 

updated by using tangent refinement. In this case a phase estimate is calculated by 

inserting all the remaining estimates on the right-hand side of the equation. Tangent 

refinement is an iterative process, continuing through each cycle until there are 

negligible shifts in the phase values.

(EQ 11.1.2)

<t>e4
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A weighting scheme is employed in the tangent formula as some invariants will have a 

greater contribution to the value of (ph than others. The reflections that appear at the 

bottom of the convergence map i.e. reflections with large E-magnitudes will have 

maximum connectivity through the triplets and a greater effect on the value compared 

to those further up the map. It is important that the reflections further up the map are 

used for the propagation of phase information but as they are poorly determined then 

they must not exert a large effect in the generation of new phases. Thus reflections at 

the bottom of the map are weighted atco »  1 , while reflections further up the map are 

assigned lower weights. The weighting scheme is vital in the initial stage of phasing 

but as refinement proceeds the weights eventually become unity so the scheme exerts 

little effect in the latter stages. One effective weighting scheme is:

With this weighting scheme the weights tend to reach unity too quickly. To prevent 

this another weighting scheme was introduced by Hull and Irwin (Hull & Irwin, 1978)

(EQ 11.1.4)

where a  ( h) and Khk and a  (h) est are defined in EQ 11.1.2, EQ 7.2.2 and EQ 9.0.1 

respectively.

If the a ( h )  increases to a value which is greater than a (h )  est then the weight is 

reduced resulting in the value of a  (h) remaining close to its expected value, 

producing more accurate phases. It is this weighting scheme that is used in the SWTR 

procedure in MITHRIL94. The graphical form of the Hull & Irwin weighting scheme 

is shown in Figure 9.

Wh = min

(EQ 11.1.3)

min
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FIGURE 9. Hull & Irwin weighting scheme

5
a(h)

It is found that this weighting scheme is useful in solving structures that contain heavy 

atoms, have pseudo-symmetry, or belong to a symmorphic space group.

11.2 Random Phasing

There exists two main methods of random phasing, developed in two computer based 

procedures:

11.2.1 YZARC - Linear Equations

An alternative to the use of the phase permutation method for phase refinement is the 

use of triple-phase relationships treated as linear equations with least squares 

refinement. This technique is applied in the program YZARC (Baggio, Woolfson, 

Declercq & Germain, 1978).

The method evolved around the triple-phase relationship where the phases are 

expressed in cycles with an appropriate weighting scheme. This is shown below by 

EQ. 11.2.1

K(ph ± K(pk ± Axpj ~ K (n  -  b)

(EQ 11.2.1)

where K is the weight of the invariant and n is an unknown integer. If the integers are 

known then the whole system of equations can be written in matrix notation

Acp = c
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Routine algebra give a least squares solution

cp = (A TA ) ~lA Tc

(EQ 11.2.2)

(EQ 11.2.3)

With an approximate set of phases nearest integers can be found resulting in cyclic 

refinement of the phases, terminating when the integer values reach stability.

During phase refinement an extremely important quantity is the radius of convergence. 

This is described as being the distance in phase space from which it is possible to 

converge to the correct solution. During the study of this refinement technique the 

radius of convergence was examined. A phase set with random errors added to the 

phases was refined to see it the r.m.s error could be reduced to a value below 30°.  This 

was the criterion set for a successful convergence (Baggio, Woolfson, Declercq & 

Germain, 1978). The results obtained from this experiment were surprisingly efficient. 

When totally random phases were used, a small number of phase sets were still refined 

to below 30° error. This result introduced the concept of random phasing for the 

starting set.

11.2.2 RANTAN

In the RANTAN program (Yao Jia Xing, 1981), a large number of phases are given 

random values and low weights and are then refined using the weighted tangent 

formula. The weights given to each phase are essential for the procedure to work. 

Origin defining phases are given weights of 1.0, enantiomorph phases with general 

values are given weights of 0.85 and random phases are given weights of 0.25. The 

initial random phase and its corresponding weight will not be changed unless a phase 

estimate with a higher weight is obtained allowing the phase to be refined.

11.3 Phase Annealing

Simulated Annealing (Kirkpatrick, Gelatt & Vecchi, 1983) is the tool applied to avoid 

the local minima of a system preventing the determination of the global minimum. For 

phase annealing the initial phases are random and the consequent “cooling” of the 

phase sets enables the system to reach its global minimum in phase space. This
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method of refinement has already been implemented in SHELX-90 (Sheldrick, 1990). 

Chapter 3 discusses this alternative refinement method and its implementation into the 

MITHRIL94 program (Gilmore, 1984; Gilmore & Brown 1988).

After phasing a situation arises where there are numerous phase sets, for example any 

number between 16 and 4000, all of which must be assessed and ranked so that the 

most plausible phase set can be determined. Once this set has been chosen an E-map is 

calculated and examined to see if it reveals the structure. Obviously it is not feasible 

for every phase set to have an E-map examined as this would be extremely time 

consuming. Thus the ranking of phase sets in a multisolution environment is vital and 

is achieved by the calculation of the figures of merit (FOMs).

Ideally, the FOM should be independent of the technique used to generate the phase 

set. One complication however is that a strong phase relationship is essential in both 

the derivation of phases and the calculation of the FOM and therefore should be 

applied in both. The resulting calculation of the FOMs involves a compromise 

between these two processes. The most widely used FOMs are described in the 

following sections.

12.1 ABSFOM

ABSFOM (Germain, Main & Woolfson, 1971) measures the extent to which the triple 

invariant’s internal consistency holds for those used in phase estimation.

12.0 FIGURES OF MERIT

ABSFOM  =

(EQ 12.1.1)

where

(EQ 12.1.2)
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< <x̂ ) and a h are defined by EQ 9.0.1 and EQ 11.1.2 respectively.

a est is the estimated value of a

otj. is the expected value of a  for random phases.

For random phases ABSFOM = 0, and if the estimated and measured values of a  are 

equal then ABSFOM has a value of 1.0. If the phase set is overconsistent then 

ABSFOM values are likely to be greater than unity whereas underconsistent sets yield 

low ABSFOM values. Typical values considered to be reasonable could be anything 

between 0.8 and 1.4; ABSFOM is not considered the most efficient discriminator 

between phase sets.

12.2 PSI-ZERO

This was defined by Cochran and Douglas (Cochran & Douglas, 1955; Main, 1977) as

The value of ¥  is independent of the tangent formula and can be used to discriminate 

between phase sets that have similar ABSFOM values. This is a measure of reliability 

of the small E magnitudes and therefore phase sets with small values of 'F0, 

usually < 1, are considered to be correct. If a situation arises where every other FOM 

calculated for a phase set is good but the \y0 »  1 it is possible that a fragment has 

been found but in the wrong position.

equation

(EQ 12.2.1)

12.3 RESID

RESID is defined by equation

Resid  =
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(EQ 12.3.1)

where(aA> and a h are defined by EQ 9.0.1 and EQ 11.1.2 respectively.

RESID is the residual between the estimated and actual values of a  and since it is 

dependent on a  it must also rely on tangent refinement. A correct phase set should 

have an approximate RESID value of 20%, however greater values could occur when 

there are a large number of atoms in the unit cell and smaller values could occur when 

heavy atoms dominate the diffraction.

12.4 NQUEST

This FOM utilises the negative quartets. It is defined as

£  WW = 0S(tP* + tP*+ 'P( + 'P!B)
nJrfmNQUEST  = bl

W hklm
m am

(EQ 12.4.1)

where for centrosymmetric structures

Whklm

(EQ 12.4.2)

and for non-centrosymmetric structures

Whklm = 1 / a 2

(EQ 12.4.3)

a 2  is the variance of the probability distribution, and the summation is over all of the 

negative quartets.

NQUEST is largely independent of the phasing process as it utilises the information 

from the small E-magnitudes. It is also independent of T/ 0 as the information is used 

in a different manner. A correct phase set will normally have a value < - 0.2, with the 

range of NQUEST between -1.0 and +1.0.
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12.5 CFOM (Combined Figure of Merit)

When the phasing procedure has finished, the separate FOMs are combined to give 

CFOM, the combined figure of merit. This is then used to rank the phase sets for the 

calculation of E-maps. The CFOM shown in EQ 12.5.1 is the one which exists in 

MITHRIL94 although other direct methods packages may have different FOMs and 

therefore different CFOMs.

r A B S F O M - A B S F O M min 

lABSFOM max -  ABSFOM min * (<?„) -  ( ¥ 0)

(R ° ) max- R a NQESTmax- N Q U E S T

3 <*«> -  <««) min QESTmax -  NQUESTmi

(EQ 12.5.1)

where each weight to W4  is normally set to unity but can be varied to enhance the 

information in one FOM. If a FOM has not been calculated for a structure then the 

corresponding weight will be set at zero. CFOM should be large for a correct phase set 

and the range is usually between 0 and 4. The maximum value of CFOM is the 

summation W1+W2+W3+W4.

13.0 ELECTRON DENSITY MAPS

As discussed earlier, the electron density map is related to the structure factors of a 

reflection by a Fourier transform. The electron density of a structure will be at its 

greatest around the atomic positions. Therefore by identifying regions of high electron 

density the elucidation of the relative atomic positions is achieved. The last stage of 

any direct methods procedure then is the calculation of the E-maps. When phasing is 

complete the phase sets are ranked according to their figures of merit and for the best 

phase sets an E-map is calculated and examined for structure information.
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13.1 E-maps

An E-map is so called because it is a Fourier synthesis of EQ 1.0.3 but the IF̂ obsl is 

replaced by IEhl (Karle, Hauptman, Karle & Wing, 1958). The reason for this arises 

from the normalisation procedure which illustrates that reflections with large IEJ are 

often those with high values of sin0 and low values of IFJ. Phases which are the most 

reliable are found to be those with large E-magnitudes so it is the normalised structure 

factor which is used to calculate the E-map. This results in the map being very sharp as 

it is illustrating point atoms at rest and it must be sampled at small grid spacings, 

usually of the order of 0.3A0 .

The interpretation of an E-map involves three stages:

• A peak search which gives a list of peak coordinates. Peak height should be used to 

assign atomic types to peaks and obviously requires some knowledge of the 

chemical nature of the structure.

• Possible bonding between the peaks.

• Identification of chemically reasonable fragments. There are two main methods of 

identification, (i) Manually by examining the peak list, (ii) Automatic interpretation 

of the peak list by computer (Main & Hull, 1978). This involves considering 

maximum and minimum bond angles and lengths in known molecular structure.

The user may need a high level of interaction at this stage to make sure that E-maps 

are interpreted correctly. Computer graphics have proved invaluable in this area, 

reducing considerably the period of time it takes for full examination and 

interpretation of the maps.
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14.0 THE LIMITATIONS OF DIRECT METHODS

Direct methods, although an extremely powerful tool in structure solution, will

sometimes fail to produce any interpretable E-maps. One reason for this can be that

the data collected from the diffraction experiment is of very poor quality. However

there are some factors which are intrinsic to the procedure.

• The reliability of the phase relationship - this can be undermined if there exist too 

many atoms in the unit cell. The reliability is also affected by the fact that the 

probability formula is based on randomly distributed atoms, when in reality the 

position of the atoms are determined by strict rules governing interatomic angles 

and lengths.

• The stability of the tangent formula - even when reliable phase relationships are 

used, they can become unstable during tangent refinement. This results in over 

refinement of the phases and ultimately E-maps which are useless. The instability 

can arise because of the assumption that the phase relationships are independent, 

which is not the case.

• Figures of Merit - in some cases there exists no clear discrimination between phase 

sets making it a difficult task to find a suitable E-map to examine.

• Large structures - typically they are in the region of excess of 1,500 Daltons. 

Structures of this size not only reduce the reliability of the phase relationships but 

the resulting E-maps are cluttered and difficult to interpret.

• The size of the starting set of reflections - the starting set must be efficient enough 

to produce strong phase development without using excessive computer time. If the 

reflections involved in the starting set are used in incorrect phase relationships then 

the process of phasing and refinement can be affected. This is only a problem in 

multi solution methods. In chapter 4 of this thesis a new method of phasing the 

starting set of reflections will be discussed.

• Assume Wilson statistics - that is, all the atoms are randomly and uniformly 

positioned in the unit cell.
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15.0 MITHRIL94

In the early 1980s it was decided to bring together all the important theoretical 

advances made in the 1970s into a single computer program. The result of this NATO 

funded project was the MITHRIL package (Gilmore, 1984; Gilmore & Brown, 1988). 

The name MITHRIL is an acronym for Multan with Interactive facilities, Iriplet 

checking, Higher invariants, Random phasing, Intelligent control of flow and options 

and Linear equations phasing. In 1988 it was decided to upgrade the MITHRIL 

package to reflect the theory developed during the 1980s, also to introduce some 

minor bug fixes and to make the package more user friendly.

The program itself is written in standard Fortran 77 in a modular form with each 

module having its own menu and user options. It is designed to be run in either batch 

or interactive modes with a great deal of flexibility in the user options for structure 

solution. The flowchart of the modules through the program is shown in Figure 12. 

The basic framework is based around a highly modified version of MULTAN80, that 

incorporates the major features from the following programs:

1. MAGEX (Hull, Viterbo, Woolfson & Shao-Hui, 1981; Shao-Hui & Woolfson, 

1982) a magic-integer based program that uses the primary-secondary method for 

the magic integer representation of the phases. This allows the use of a large 

number of reflections and relationships to be used from the start in a structure 

solution.

2. YZARC (Baggio, Woolfson, Declercq & Germain, 1978) is a procedure for the 

random assignment of phases to the starting set of up to 100 reflections. They are 

then refined and used for phase extension followed by further phase refinement. It 

is essentially a forerunner of the RANTAN procedure.

3. RANTAN (Yao Jia-Xing, 1981) is a program that assigns random phases to all 

reflections and then refines them using the tangent formula with a carefully 

controlled weighting scheme.

4. LSAM (Germain & Woolfson, 1968) a program to solve structures using a 

symbolic addition method.
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The program has a large number of options and techniques available for structure 

solution and has proved to be an efficient and powerful tool in the elucidation of many 

structures. The majority of structures can be solved by MITHRIL using the default 

options and it is only the most obstinate of data sets that have proved impossible to 

solve.
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REVIEW
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+ L.E.
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CONVERGE 
+ EDIT

QUARTETS 
2nd NEIGHBORHOOD 
3rd NEIGHBORHOOD

FIGURE 10. Flowchart of the modules of the MITHRIL package
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CHAPTER 2

ESTIMATING THE RELIABILITY OF
QUARTETS
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1.0 THEORY

1.1 Introduction

As described in Chapter 1, the reliability of the triplets is measured by k , a variable 

used in the conditional probability expressions F 1 /3  and P +3 . This variable 

determines which triplets will be used throughout the convergence mapping and 

tangent refinement. The conditional probability distribution F 1/3, utilising k  is the 

Cochran distribution (Cochran, 1955):
1 KCOS<t>, (h, k)

(EQ 1.1.1)

where k  is:

(EQ 1.1.2)

and
N

n ryfla  = £ Z , .  
1 = 1

(EQ 1.1.3)

To mix the quartets with these relationships, the quartets must also have an appropriate 

measure of reliability on the same scale as k  . The method used in MITHRIL94 (Freer 

& Gilmore, 1980) is a numerical integration of the full quartet formula. A 

disadvantage of this method is that it is relatively slow with P 1 / 7  being evaluated at 

every 45 degrees, to calculate the mode and variance of the distribution. Obviously it 

would be more efficient to use a method that was quicker and still produced an 

accurate measure of reliability for the quartets. The remainder of this chapter will 

compare the direct use of the quantity B, corresponding to k  , which is present in the 

conditional probability expressions P 1/7 and P + 7 (Hauptman, 1974) with the 

numerical integration method used in MITHRIL94 (Gilmore, 1984; Gilmore & 

Brown, 1988).
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1 .1 . 1  Kgq as an estim a te  o f  re liab ility  

T h e non-centrosymmetric case

The procedure that exists in MITHRIL94 for the non - centrosymmetric case is as 

follows:

• Firstly the relevant joint conditional probability distribution p  ( <t>) is calculated in 
45° intervals from 0° to 180° with P  (O) representing either P 1 / 7  or F 1/13.

• The maximum value of the P (O) , the mode |<X>m| , is then found.

• The distribution is normalised via numerical integration using Simpson’s rule, such 
that.

2n

J P (O )d 0 >= 1 

0

(EQ l.l.l.l)

Simpson’s rule is discussed in the next section.

• The associated variance V, where V= cr2  is also derived via numerical integration of 
the normalised distribution, such that

2rt

V= J (4>-|<I>m|) 2/> (<&)<*!>
0

(EQ 1.1.1.2)
• Each quartet is then assigned an equivalent k  value Keq related to V (in degrees2) 

by a best fit equation which is derived empirically

Keq = " ( ^ f )  + ( v )  " 24'0 + (0 3 5  X a > -  ( ( i ' S X  10"3) X O2)

+ 1-5exp(-O T o Xff) + L5exp("Ioioo><CT2)
(EQ 1.1.1.3)

By default only quartets with a Keq >0.6 are kept, although this is a user option. 

Centrosymmetric case

A procedure similar to the one described above is used in the centrosymmetric case
eq

however the probability P + is converted to k directly via the relationship 

shown below
k" = K  J / +/l- /> +J|

(EQ 1.1.1.4)
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In this section however, only the quartets and triplets of non-centrosymmetric 

structures will be tested since 1.1.1.4 is unambiguous and quick to compute.

1.1.2 Numerical Integration - Simpson’s rule

Simpson’s rule belongs to the group of classical formulas for integrating a function 

whose value is known at equally spaced steps. A function f(x) has known values at a 

sequence of abscissas
X q X 1 . . . , X n , X n +  x

(EQ 1.1.2.1)

which are spaced apart by a constant step h,
x- = jCq + ih

(EQ 1.1.2.2)

with i = 0 , 1 , . . . , N +  1 .

(EQ 1.1.2.3)

The integration of the function f(x) occurs between a lower limit a and an upper limit 

b. If the integration formula uses the value of the function at the endpoints f(a) or f(b) 

this is called a closed formula. An open formula is one where the integral is estimated 

using only the x/s  between a and b. This is seen is Figure 1 (Press, Flannery Teukolsky, 

Vetterling, 1986)

FIGURE I. Integration of functions - open and closed formulas

 ►
open formulas use these points

closed formulas use these points
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Simpson’s rule is an example of a closed Newton-Cotes formula:

X3 (  \
J / W  dx = h [ i / x + y 2 + i / 3]  + o { h 5f W )

(EQ 1.1.2.4)

In this case f ^  means the fourth derivative of the function f  evaluated at an unknown 

place in the interval and is the residual error.

1.1.3 The use of B as an estimate of reliability

The conditional probability equation for (Hauptman, 1975a,b, 1976b;
Giacovazzo, 1975,1976b) is:

1 -25 cos4>4 

1/7 * jJ* h
( 2  O,  >

f 2 °  3 1
( 2 0 ,  \

3/ 2^ 1 2 ^ 1 2 h ~J72R 23X 23 h 3/2^31*31
v a 2 ) l a 2 J

where B is:

B -  —3 7 2 ( ^ 2  ~ CT2CT4j^l^2^3^4

and R-i = lÊ I, R2  = IEjJ, R3 = IEJ, R4  = lE Î

(EQ 1.1.3.1)

(EQ 1.1.3.2)

(EQ 1.1.3.3)

From EQ 1.1.3.2 and EQ 1.1.2 we can see that B and k  are defined in terms of IEI 

along with the number of atoms in the unit cell and are thus dependent on the 

individual structures. As discussed in Chapter 1, to produce a more reliable estimate 

for the quartets, the 3 cross terms are used in the conditional probability distribution 

Pip. Thus if we are to use B directly as an estimate, then the cross terms should also 

be included in the expression. Two equations for B were tested, each one dealing with 

the cross terms in a different manner. These equations are
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B l ~  3 / 2 ( ^ a 2 a 2CT4) ^ 1 ^ 2 ^ 3 ^ 4 X ( l ’0  ^ 1 2  ^ 2 3  _ ^ 3 l )
a

(EQ 1.1.3.4)

(Hauptman, 1974)

^ 2  =  ~ 3 7 2 ^ ^ 2  “ CT2CT4)^ 1 ^ 2 ^ 3 ^ 4 X (^ 1 2  + ^23 + ^31 ” 2 .o j  
o

(EQ 1.1.3.5)

(Hauptman, 1976b)

where R12 = lE ^ I, R23 = IEk+jl, R31 = IEj+hl

(EQ 1.1.3.6)

To compare these two methods the average phase error is plotted against increasing 

reliability and the resulting trend in the graphs noted. The trend should be one of 

decreasing phase error with increasing reliability. These graphs will then be compared 

to decide whether the direct use of B as a measurement of reliability is viable or not. 

As a standard, the k  value will also be plotted against its corresponding phase error, to 

test its power as an estimate of reliability for the triplets for the same structure.
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2.0 EXPERIMENTAL

The quartets using Bj or B2  were integrated into the QUARTET subroutine. This 

subroutine was kept intact and the new equations added as options so the resulting 

subroutine contained both the original and the new expressions. The reliability of each 

quartet was then calculated using either the neq, or B2 methods described earlier. 

The known phases of each reflection were input with the Miller indices and the 

structure factors during normalisation and used to calculate the. true value of the 

quartet. To test all 3 equations fully, negative and positive quartets are treated 

separately. Apart from entering the command to read the known phases and the 

command for the generation of the positive quartets, the relevant modules of 

MITHRIL94 were run completely by default. The reliability of the quartet and its 

corresponding true value were stored in a file and used to calculate the average phase 

error. The whole procedure was repeated, until all methods had been tested. The 

general process can be seen in the flow diagram below.

Known phase values

Reliability calculated using 
either or Bi or B2

Quartet generated

True values of quartet along with 

reliability of quartet saved in file

True value of quartet calculated 
True (<J>4) = known(cpf1)+known(cpk)

+known(cpi)+known(cpm) + shift.

FIGURE 2. Flowchart for calculating the true value and the reliability of a quartet

47



The shift value used to calculate the true value of the quartet is a consequence of 

translational symmetry. The true value and the reliability of the quartet were stored in 

a computer file which was then accessed by a small FORTRAN program to calculate 

the average phase error of quartets at certain ranges of reliability. This process is 

shown in the below.

User selects equal ranges of 

or Bi or B2  values

The number of quartets 
in each range and the

phase error for each range are
incremented

The Kgq or Bj or B2 values enter program which 
calculates the average phase error

Quartet assigned to appropriate range and 
phase error is calculated
Negative Quartets:

Phase error = True value -180
Positive Quartets:
If True value >180  

Phase error = True - 360

1 f

Average phase error plotted against 

appropriate

Bi or B2  or values.

Average phase error for each range calculated 

Average= Total phase error /  Number of quartets

FIGURE 3. Flowchart for calculating the average phase error of a quartet
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A similar process was carried out for the triplets:

►

Reliability calculated 
using k

Triplet generated

User selects equal ranges of 
k  values

Values of True and k  for each triplet 

stored in a file

The number of triplets in each range 
and the phase error for each range 

are incremented

True value of triplet calculated 
True(<|>3 ) = known (cp^) +  

known (cp^ + known (cpj)

Triplet assigned to appropriate range 
and phase error calculated 

Phase error = Absolute(True)
If Phase error > 180 

then Phase error = Phase error - 360

Average phase error for each range calculated 

Average = Total phase error /  Number of triplets

Average phase error plotted against k  value

FIGURE 4. Flowchart for calculating the average phase error of a triplet



Graphs were constructed using the program XGRAPH which is a public domain 

graphics program written by David Harrison, the University of California. The graphs 

plotted the average phase error against K^q, B l5 B2  or k .

2.1 Smoothing the graphs

The data for the graphs were smoothed as a graphical technique and the program used 

was called SMOOFT from Numerical Recipes (Press, Flannery, Teukolsky, Vetterling, 

1986). This program smooths an array of ordinates (y’s) which in this case are the 

phase errors, in order of increasing abscissas (x’s) which in this case are the k^, Bj or 

B2 . Firstly the program removes any linear trend, then a fast Fourier transform is used 

to filter the data. The linear trend is re-inserted at the end. The amount of smoothing, 

that is the number of points the data must be smoothed over, is user controlled. This 

number must never be greater than half the number of original points as this results in 

the data losing features. For all the structures this was investigated thoroughly until 

smooth graphs were obtained. These test graphs were then compared to see which 

method gives the most reliable indication for the quartets.

2.2 Structures investigated

The structures used in the investigation were all chosen from the Sheldrick database of 

difficult structures, so called because direct methods have difficulty solving them or 

because they are in unusual high symmetry space groups. Reasons why some of the 

structures create a problem for direct methods are:

• Their space group symmetry.

• They contain heavy atoms.

• Poor quality X-ray data.

• Large number of atoms in asymmetric unit.

However for many of the structures it is impossible to quote just one definite reason 

which results in their failure to solve. From previous investigations it was discovered 

that quartets played an active role in the solution of some of the structures and four 

such structures were tested here. In total, six structures were investigated.
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These were:

TABLE 1. Difficult structures tested

Structure Space Group Formula
Azet Pca21 c 21h 16c in o

Bed 2 14 ^26H 26N 4^ 4
Loganin P212 121 C 17H 26°10
Gold2 Cc C28Hi6

Munich 1 C2 C2 0 H l6

Apapa P 4 & 2 C 30H 37N 15°16P2-6
h 2o

• Azet - The generation of quartets helped in the solution of this structure which is 
known to be unstable under tangent refinement.

• Bed - Quartets are used actively in the convergence mapping.

• Loganin - This structure does not cause MITHRIL94 any real problems.

• Goldman2 - Quartets again play an active role in solving the structure.

• Munich 1 - The reliability of the quartets is important as very few quartets 
produced.

• Apapa - Again, few quartet relationships were generated but they play an active 
role in solving the structure.

Obviously just using B* or B2  has the advantage that the process will be on the whole 

faster, but it must still provide an accurate measure of reliability. The graphs for only 

some of the structures are shown as most of the structures produced graphs showing 

the same trend. The results for all of the structures are shown in a table at the end of 

the chapter.
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3.0 RESULTS

3.1 Negative Quartets

FIGURE 5.

(a.) Azet k (

phase
error

(b.) Azet B

AZET
COORD94.00-
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1.00
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82.00

80.00

78.00-

7600

74.00

72.00-

70.00

68 Oil

66.00

64 00

1.90 2.00 2.10 2.20 2.30 2401.70 1.80

86.00

85.00

84.00

83 00

82.00

81.00

80.00

79.00

78.00

77.00-

0.600.40 0.50 0.70 0.80 0.90 1.00
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(c .) Azet B2

86.00 COORD

85.00-

84.00

83.00-

82.00

81.00-

80.00-

7900

78.00-

77.00

76.00

75.00
1.00 1 50 2.00 2.50 3.00 3.50

(d.) Azet 

Triplets

I 50

87.50

87.00

i 50

i 00

85.50-

85.00-

84 50

84.00

83 50-

83.00

82.50

82.00—

81.50-

81.00-

80.50

80.00-
2.500.50 1.00 1.50 2.00 3.00

The triplets for this structure behave as expected, exhibiting decreasing phase error as 

k increases. A decrease in phase error is more pronounced for followed by B 1? 

indicating that B ̂  and not B2 is a viable alternative method for scaling the reliability of 

this structure.
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FIGURE 6. BED

(a.) Bed Keq

(b.) Bed Bj
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(c.) Bed B 2

COORD
89 00

t.00

87 00

8 6 .0 0 '

85.00

84.00-

83.00-

82.00-

81.00-

80.00

79 00

78.00-
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74 00

3.00 4 00 5.00 7.00 8.001 00 2.00 60 0

(d.) Bed 
Triplets

COORD75.00

70.00

65.00

60.00-

55.00-

50.00-

45.00

40.00------

35.00

2.00 3.00 4.00 5.00 6.00 7.00 8.001.00

The triplets again follow the correct trend showing decreasing phase error. A decrease 

in phase error also occurs for k ^ ,  Bj and B2 indicating that all three methods would 

prove viable methods of estimation for this structure.
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FIGURE 7. MUNICH1

(a.) Munich] 
Keq

(b.) Munich 1
B,

COORD

84 00

82.00

80.00

78.00

76.00-

74.00

72.00

70 00

1.00

66  00 -

64.00

62.00

60.00

58 00

4 00300 3 502.502.00

COORD
81.00-

80.00-

79.00

78.00

77.00-

7600-

75.00-

74.00-

73.00-

72.00-

71.00-

70.00-

69.00-

6 8 .00 -

67.00-

66 00

1.601.20 1.400.80 1.000.60

56



(c.) Munich1
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All three methods have an overall decrease in phase error. This again is more pro

nounced with Kgq and B j, although the final phase error produced is smaller for k^ .
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FIGURE 8. APAPA
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(c.) Apapa
b 2
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Again, the best graph produced for the quartets is followed closely by Bj. 

graph for the triplets shows an increase in the phase error. This results in the 

convergence map for this structure having few contributors.

The
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3.2 Positive Quartets

FIGURE 9. AZET
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Azet Bi has a slight increase in phase error whereas B2 shows a decrease. The graph 

for Kgq shows a sharp increase then decrease, so for the generation of positive quartets 

B2 appears to produce the best variable to use.
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FIGURE 10.
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For this structure B2 again produces the best results, along with k ^ , with a consistent 

decrease in phase error. However produces the lowest value of phase error. The 

graph produced for Bj goes against the trend with an increase in phase error.
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FIGURE 11. Munich 1
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(c.) Munich 1
B 2
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The graphs again indicate that B2 and are viable techniques for scaling positive 

quartets.
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FIGURE 12. Gold2
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(c.) Go

b 2
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The graphs again indicate that B2 and are viable techniques for scaling positive 

quartets whereas the phase error increases with B ±.
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4.0 DISCUSSION
Table2 below shows a summary of results for all the structures, where + indicates a 

good result and - a poor result:

TABLE 2. Phase error with increasing reliability

Positive Quartets Negative Quartets Triplets

Structure Keq Bi b 2 Bi b 2 K

Munich 1 + - + + + + +

Loganin + + + + + + +

Gold2 + - + + + - -

Bed 2
+ - + + + + +

Azet + - + + + - +

Apapa + - - + + + -

By looking first at the results for the negative quartets it is obvious that, on the whole 

all three methods provided an accurate measurement of reliability. For most structures 

K̂ q produced the best graphs followed by so could be used as a quicker easier 

alternative for estimation of the negative quartets. B2  was a success for 4 of the 6 

structures so in some cases it could also be used as a alternative.

From the results produced by the positive quartets, it is obvious that and B2  

provide the most accurate measures of reliability. Bj is only able to produce an 

accurate measurement for loganin, a structure that has never caused MITHRIL94 any 

problems. Thus an alternative method for estimation for the positive quartets would be 

the use of B2 . From Table 2 we can also conclude that x^ , the method which is 

presently in MITHRIL94, produces a very accurate estimation of reliability. The use 

of B i and B2  increases the speed of the program by approximately a factor of 10 thus 

for the investigations discussed in the Chapters which follow, it is B ̂  that is used to 

measure the reliability of the negative quartets.
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CHAPTER 3

PHASE ANNEALING AS A METHOD 
OF REFINEMENT IN MITHRIL94
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1.0 OPTIMISATION TECHNIQUES

1.1 Theory

Optimisation techniques are used to find the value of those variables which maximise 

or minimise a function. This also permits the value of the function at these extrema to 

be calculated. Finding the maximum and minimum of a function is basically the same 

problem, as the value of x which maximises the function f(x) minimises -f(x). 

Functions to be optimised depend on one or more independent variables and the 

optimisation is described as being constrained or unconstrained depending on whether 

constraints on the variables exist. The constraints may be either linear or non-linear.

The global minimum is the lowest possible value of the function. This is the desired 

end point of an optimisation. However there also exist values of the function, 

described as local minima, where the value is the lowest in a finite neighbourhood. 

These can create problems as they make it more difficult to find the actual global 

minima.

f(x)

6.0
- 6.0 0.0

local
extremum global

extremum

FIGURE 1. Extrema of a function

There are two main strategies for finding the global minimum (Press, Fannery, 

Tuekolsky and Vetterling, 1986):
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• Begin from a large range of initial values for the variables and collate all 
information about local minima found. The global minimum is the smallest of these 
values.

Or

• Once a local minimum has been found, change its value slightly, optimise the 
function again and examine to see if the minimum found is the original one or a 
new better (lower) one.

There are various methods of optimisation for finding the minimum of a function, but 

one of the simplest and oldest is the Newton - Raphson method which involves the 

calculation of the first and second derivative. EQ 1.1.1 shows the technique

V = r / ( * )
new initial p

(EQ 1.1.1)

Firstly the variable x is given an initial value denoted x ^ ^  and the first and second 

derivatives are calculated. Using the above equation, a value of xnew is found which is 

now used as the new estimate for x and the whole process begins again. The Newton - 

Raphson method is an iterative technique, i.e. a technique that starts with a known or 

guessed initial value and is repeated until a new configuration is found. This new 

configuration becomes the new starting position and the process is repeated until the 

system shows no improvement. This technique is only viable when first and second 

derivatives exist for the function f(x). Another problem for this technique which is 

universal to all optimisation techniques is that if the function falls into a local 

minimum it is very difficult for it to escape and find the global minimum (Press, 

Fannery, Tuekolsky and Vetterling, 1986).
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2.0 CRYSTALLOGRAPHIC OPTIMISATION 
PROBLEMS

Various optimisation problems exist throughout the stages of crystal structure solution:

2.1 Parameter Refinement

When there exists several independent observations of some quantity x:

and where the xj do not agree, then it is convenient to pick the ‘best fit’ for xv Several 

different techniques could be used to calculate the ‘best fit’:

• If the probability of an error of a given size fell sharply to zero at some particular

the absolute error Ix-xjl. However experimental errors rarely fall in this category.

• If a few of the xj have large errors but the majority of the xt are highly accurate and 

Xj < x2 < ... < xn, then the best fit would be x +1 ̂  /2 if n is odd and 

|K > /2  + *(»/2 + l)] ^  “ is even.

The technique used to refine parameters in crystallography is the method of least 

squares. The simple form of least squares is represented by:

This is suitable when the xt are all expected to be equally accurate. In crystallography, 

the least squares equation is (Rollet, 1984):

xit i = 1,2 ,3 ,  . ..,n

(EQ 2.1.2)

size and x l < x2 < ... < xn, then the choice would be -  (jc1 + xn) . This minimises

n

i = l

(EQ 2.1.3)

(EQ 2.1.4)

where F̂ calc is a function of both atomic coordinates and thermal parameters and 

Wfc is a weight related to the variance of observation.

73



The relevant observations are non linear and the equations are linearised using the 

Taylor series. The unknown quantities are called the parameters. The solution of the 

linearised equations via matrix algebra produces a new set of parameters, which 

should be an improvement on the original. Iteration continues until the ‘best fit’ is 

produced. This technique has the disadvantage that it can be trapped in local minima.

2.2 Unit cell determination

The orientation matrix lies at the centre of the whole data collection process. The 

correct diffractometer angles can be calculated for any reflection, once this matrix has 

been determined. The matrix is seen below;

a'.. b'
X

a' b'y :
d z b\

FIGURE 2. The orientation matrix

where a \ b \ d  are the crystal fixed set of reciprocal lattice axes and the z axis is 

coincident with the diffractometer <|) axis.

x and y are defined as this second axis set.

These nine elements contain information about the unit cell and orientation of the 

crystals. The process of data collection involves finding reflections, assigning integer 

indices to them and then determining the unit cell and orientation. The initial matrix 

and cell are mostly determined from low-angle reflections and are not precise. The 

unit cell parameters must be optimised by refinement and checked. The most common 

method is linear least squares refinement of the nine elements from reflection indices 

and reciprocal space coordinates calculated from the observed diffractometer 

diffraction angles (Tichy, 1970).
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2.3 The tangent formula in direct methods

For most direct methods, random phases are input into the tangent formula and 

optimised using this formula:

V w k w h -  k\E i  |E h - t | s i n (  W P

tancpA « ------------------------------------
- i r a r  * ^\cos^k+^h- *)

(EQ 2.3.1)

where wk ,w h_k are weights.

With random phases the starting point can be a long way from the correct phases and 

the equations are non linear, so again there is a danger that the optimisation is stuck in 

a local minima. Simulated annealing is an optimisation technique that is able to escape 

local minima to find the global minimum. The technique of simulated annealing in 

phase refinement was introduced by Sheldrick (Sheldrick, 1990) as a method of 

improving the radius of convergence of the tangent formula. The latter parameter is 

described as the maximum distance between the sampling points and the remaining 

points of a full factorial design. Before discussing this technique (called phase 

annealing) and its implementation into MITHRIL94, the similarity between 

optimisation problems and statistical mechanics must be discussed to describe the 

relevance of simulated annealing to a non-thermodynamic system.
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3.0 Combinatorial Optimisation - The Travelling Salesman

Combinatorial optimisation applies to a situation where the space over which the 

function is defined is not N-dimensional space of N continuously variable parameters, 

but a large discrete configuration space where the numbers of elements in the space is 

so large that it is not possible to try every combination fully (Christofides, Mingozzi, 

Toth and Sandi, 1979). Phase space can be thought of to be both N-dimensional space 

of N continuously variable parameters (acentric reflections) and also a discrete large 

configuration space (centric reflections). One of the most famous combinatorial 

optimisation problems is that of the travelling salesman. The salesman has a list of N 

cities and the distances between them. He must then plan a route where he is able to 

visit each city just once, using the shortest mileage possible. Again, one of the two 

strategies explained earlier can be put into action, that is start from an initial point 

(solution) and change factors to get a better solution only stopping when no more 

improvements can be made. For example, the initial random route of a certain length L 

is changed by swapping the sequence the cities are visited in. This is shown 

diagrammatically in Figure 3 (James, 1989)

the process is continued, if not more cities from the original route are swapped to try 

and generate a shorter route. As usual though, by using this strategy, the danger of 

local minima still exists. This problem has been largely solved by simulated annealing.

travelling salesman route of length L route obtained by reversing 
order of cities.

5 5

FIGURE 3. The travelling salesman

If this new route is shorter than the original then it taken to be the new best route and
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4.0 Statistical Mechanics

Statistical mechanics describe a collection of methods for analysing the properties of 

atoms in their solid or liquid states (Kirkpatrick, Gelatt, Vecchi, 1983). The basis of 

simulated annealing is formed from an analogy with thermodynamics. At high 

temperatures, the molecules of a liquid are able to move freely with respect to each 

other. As the liquid is cooled, the stored heat energy is lost and the atoms start to align 

themselves to form either a crystalline solid or glass. The crystal is the minimum 

energy state for the atoms and the glass is a local energy minimum. The question that 

thus arises is how nature is able to avoid local minima and find the global minimum, 

i.e. to form crystals. The answer lies in the rate of cooling. If the temperature drops 

rapidly then the atoms do not have sufficient time to redistribute themselves correctly 

and the substance formed is a glass with no crystalline order and the system has not 

found its global minimum. This is called quenching the system. However, if the 

temperature is dropped slowly then the atoms do have time to reach an equilibrium 

and are able to redistribute themselves correctly. The particles then have a very high 

probability of solidifying in crystal form, the global minimum. This is called 

annealing. If the system does find itself in a local minimum, it can only reach the 

global minimum if its energy is increased slightly to escape the local minimum. Thus 

annealing does not follow a perfect continual decreasing of energy.

The main similarity between combinatorial optimisation and statistical mechanics is 

that in both cases the global minimum is sought. The method described earlier which 

attempted to solve the travelling salesman problem resembles the process of 

quenching. Obviously then if we know why nature is able to find its global minimum 

this information can be applied to optimisation problems. This results in the 

Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, 1953).
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5.0 Simulated Annealing - The Metropolis Algorithm

In nature, particles are able to arrange themselves by chance, into a higher energy state 

to escape local minima. This is achieved using the Boltzmann probability distribution.

P rob(E )  °c exp ( - E /  (kT) )

(EQ 5.1)

where

E is an energy state, T is the temperature and k is the Boltzmann constant.

When a system has reached thermal equilibrium at a temperature T, then its energy is 

said to be probabilistically distributed among all the different energy states E. At a low 

temperature there is still the slight chance that the system can be in a high energy state. 

This means that there must also be the chance for the system to escape this higher 

energy and find its global energy state. The system is therefore able to travel up and 

downhill in energy. However, as the temperature of the system falls even lower the 

chance that the particles will arrange themselves in any state apart from the global 

minimum decreases, although the possibility still exists. In an attempt to improve and 

therefore solve optimisation problems, Metropolis published a paper which 

incorporated nature’s annealing process. This reference contains an algorithm for the 

simulation of atoms at thermal equilibrium. Obviously for optimisation problems the 

concept of thermodynamic temperature is not applicable so an effective temperature of 

optimisation is introduced. It is this that is decreased during optimisation. The 

procedure is again iterative, however uphill movements, which are controlled, are 

incorporated. A brief outline of this process is as follows:

• A parameter is changed and the resulting change in energy AE is calculated.

• If AE <> 0 , the change is accepted and this new configuration becomes the starting 
point of the next step.

• If AE > 0 , then the probability of the new state relative to the old is calculated from 
the Boltzmann probability equation above. In this algorithm k is a constant but 
usually not the Boltzmann constant.

• A random number between 0 and 1 is generated.

• If Prob(E) is greater than the random number then the new configuration is 
retained.
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• If Prob(E) is less than the random number the original configuration is used in the 
next step.

• The effective temperature of optimisation T, the annealing schedule is slowly 
reduced throughout the steps to ensure that the last configuration is truly the global 
minima.

As discussed earlier, this process, when applied to the travelling salesman problem, 

largely solves it. The Travelling salesman problem belongs to a class known as the 

NP-complete (nondeterministic polynomial time complete) problems, whose 

computation time for an exact solution increases exponentially with N, the number of 

parameters. Theoretically, simulated annealing can also be applied to every NP- 

complete problem (James, 1989).

6.0 Phase Annealing

The tangent formula can be used to optimise random phases. To improve this 

optimisation simulated annealing can be applied. This is called phase annealing 

(Sheldrick, 1990). Again, because this optimisation cannot be described in terms of 

continuous motion, a Boltzmann distribution must be applied to allow the system to 

reach thermodynamic equilibrium. This is controlled by a temperature T, which 

throughout the optimisation is slowly lowered. The energy of the system is described 

as a combination of the potential and kinetic energy. The potential energy is the 

function that is to be minimised and the kinetic energy enables the system to escape 

from wide shallow minima. Allowing the temperature to drop slowly, further increases 

the possibility of finding the global minima. The following two sections describe the 

principles of the phase annealing process present in SHELX and then a description of 

how this process was integrated into MITHRIL94. Centric and acentric phases are 

treated differently during phase annealing.
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6.0.1 Centric Phases
71Centric phases are restricted with values of 0 , 7t or ± -  or as in trigonal space groups of

71± -  . For phase annealing a derivation of the Cochran and Woolfson formula must be 

applied (Cochran & Woolfson, 1955)

P = \  + ^tanhf ~
+ 2 2  V 2

(EQ 6.0.1.1)

where
1 /9

« =

(EQ 6.0.1.2)

and P+ is the probability that Eh takes the sign of a. When the sign of a  is +ve, P+ 

measures the probability of the lower energy state and P. where P_=l-P+, measures the 

probability of the higher energy state. This gives the ratio of

P .  - a

K  = e

(EQ6.0.1.3)

The next stage is then to simply multiply a  by a variable (3 which is inversely 

proportional to the temperature resulting in the Boltzmann ratio.
p - ar  - e

p + ~ p

In SHELX and MITHRIL94 this ratio has been slightly changed to
p -a

-  _  e
"  y

(EQ 6.0.1.4)

(EQ 6.0.1.5)
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It is at this stage that the Metropolis algorithm is applied to invert the phases. The 

tangent formula produces a phase for which the a  is calculated. This is used in the 

Boltzmann ratio. If

P

(EQ 6.0.1.6)

where R is a random number in the region 0 to 1, then the higher energy state P. is 

accepted as the new phase. If this equation does not hold then the lower energy state 

and thus the original phase is kept. Throughout this process the temperature factor is 

reduced slowly, by increasing (3, to anneal the system. In this case a  is associated with 

the potential energy of the system and p represents the kinetic energy of the system. 

Centric phases in a non-centrosymmetric structure are treated in exactly the same way.

6.0.2 Acentric Phases

In this case a parameter Acp is added to the phase produced by the tangent formula 

(Sheldrick, 1990)

cos (Acp) = [4pa  + In {R) ] /  [4& a-ln (R) ]

(EQ 6.0.2.1)

Where R is a random number in the range 0 to 1 and the sign of cos (Acp) is random. 

This formula is purely empirical, and the value of 4 (NDAMP) was chosen to give 

similar mean phase shifts for general and restricted phases at the beginning of phase 

determination.

MITHRIL94 contains three tangent refinement subroutines which were used in phase 

annealing

• FASTAN which uses the standard tangent refinement formula, described in chapter 
1.

• SWTR tangent formula which uses the Hull and Irwin weighting scheme, described 
in Chapter 1.

• X-Y which uses the x-y tangent formula.
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6.1 X-Y tangent formula

The possibility of X-Y as a random approach to the phase problem (Debaerdemaeker 

and Woolfson, 1989) was discovered by the same authors (1983) whilst researching 

the maximisation of various functions for the refinement of random phases. The 

process involves a parameter shift method which is also an optimisation method 

(Bhuiya & Stanley, 1963) and involves the x-y function seen below

¥  = £ [ * ( »  - Y ( h )  ]

(EQ 6.1.1)

where
X( h)  = (h) E (/?') E ( h -  /?') | cos [cp( /i )  -  cp (/?') -  cp { h - h ) ]

(EQ 6.1.2)

and

Y(h)  = ( £ ) £ ( & ' ) £ ( £ - # )  | sin [ c p (£ )  - < p ( f f )  -  cp { h - K ) ]

(EQ 6.1.3)

Although no logical explanation is available for its success in refinement, this method 

is found to be efficient in its task of phase extension and refinement. The tangent 

formula followed from the maximisation of (h) (Debaerdemaeker, Tate & 

Woolfson, 1985) and in this equation a correct phase set would also be expected to 

produce a large and positive ^ X ( h ) . Also for a correct phase set Y(h) would be 

small in magnitude and making its value equal to zero (its expectation value) mirrors 

the process by which Karle and Hauptman (1956) actually derived the tangent 

formula.

7.0 EXPERIMENTAL

The simulated annealing algorithm was integrated into the FASTAN, SWTR and X-Y 

tangent refinement subroutines. In MITHRIL94 each subroutine was kept intact and
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the annealing algorithm added so that the resulting subroutine contains the original 

tangent refinement formula and the new simulated annealing code as an option.

The simulated annealing algorithm was used to modify the phases calculated by the 

refinement subroutine. The relevant tangent refinement code was then used to finish 

the refinement. The exact number of cycles of phase annealing and tangent refinement 

needed to produce the optimum results was extensively researched. The results of this 

were to produce algorithms that defined different numbers of optimum cycles for 

phase annealing and tangent refinement. These are specific to each subroutine. Also 

the shift for acentric reflections was calculated using a variable called NDAMP seen in 

EQ 6.0.2.1. To investigate what value for NDAMP produced optimum results, many 

different values were tested. The different parameters used in each subroutine and the 

integration of the annealing process into M1THRIL94 will be discussed below.

7.1 The p value

The first stage concerned the value of p . This is the parameter that is inversely 

proportional to the temperature and is used in the Boltzmann ratio. The correct value 

of P depends on the structure being tested and is calculated using the following 

equation (Sheldrick, 1990).
l

P = - l n ( B ) / { a >

1 (EQ 7.1.1)
where . 2V 2 is over all reflections used and B is a constant 

( a  >

Again each subroutine was rigorously tested with various values for the initial B and 

the optimum value was established. In each cycle, P was increased to allow annealing. 

The initial value of B used in each subroutine, along with the appropriate number of 

cycles of phase annealing and the number of cycles of tangent refinement per phase set
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and the optimum value of NDAMP is shown in Table 1.

TABLE 1. Optimum values for parameters used in phase annealing

Subroutine Value of B
Cycles of 
annealing

Cycles of 
refinement

Value of 
NDAMP

FASTAN 0.8 40 3 4

SWTR 0.9 80 5 4

X-Y 0.3 30 4 8

7.2 Phase Annealing in MITHRIL94

Phase annealing code was integrated into all three subroutines with the parameters 

shown in table 1. and the phases were annealed in a similar manner to the process in 

SHELX.

7.2.1 Centric Phases

The value of p was incremented each cycle of annealing, to mimic the lowering of the 

temperature of the system. The flow diagram shown on the next page displays the 

events that occur for each cycle of annealing per phase set.
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Phase calculated enters the 
annealing process

f
a  calculated

P+ calculated

P. calculated 

P = 1 - P

(3 calculated from B l

P =  -In (B)  / < ( a 2» 2 
(3 incremented each cycle of 

annealing for each phase set.

Boltzmann ratio calculated

P_

I P

- a

P

Random number R 
generated in the range 

0 to 1

If P_
2P

>R

original phase is flipped 

O -------- ► 0 + 1 8 0

FIGURE 4. Flowchart for annealing of centric phases per phase set
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As the temperature factor was lowered, the Boltzmann ratio decreased, resulting in 

fewer phases being flipped. This is equivalent to the system finding its global 

minimum. A figure of merit was then calculated for each phase set. If the temperature 

is slowly lowered then the well defined phases (high a) will tend to become 

established more quickly whilst the remaining phases are free to explore phase space. 

This means that phases linked by strong phase relationships will be fixed faster and if 

a good, but not necessarily correct solution is found, it will remain more stable than a 

phase set which has low mean a  (Sheldrick, 1990). The number of phases flipped in 

the first cycle was usually around 120 and decreased to approximately zero by the time 

the annealing finished.

7.2.2 Acentric Phases

For each phase set the following procedure occurred during each cycle of annealing:

►

a  calculated

Random number 
R generated 

between 0 and 1

Random number 
R generated 

between 0 and 1

Phase calculated enters the 
annealing process

new phase = phase + cos (Acp)

If R > 0.5 then cos (Acp) -ve cos (Acp)

Shift to be added to the phase calculated 
cos (Acp) = [4pa + In (R) ] /  [4|3a + -In (R) ]

P calculated from B l

P = - l n ( B ) / { { a » 2

P incremented each cycle of 
annealing for each phase 
set._____________________

FIGURE 5. Flowchart for phase annealing of acentric phases per phase set
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Again the P increases each cycle and therefore the shift added to each phase set should 

decrease each cycle. The shift usually starts in the region of 180 and decreases to 

around 10 degrees. If phase annealing is performed with a p of zero (this is an infinite 

temperature) the phases will remain random therefore as the P increases the 

temperature decreases as this corresponds to phase annealing.

8.0 RESULTS

The phase annealing code was tested on structures from the Sheldrick database of 

difficult structures which were known to be difficult to solve and these results were 

compared to those obtained from testing the original code on the same structures. The 

results produced from each subroutine with phase annealing were compared to the 

results obtained from the original code. These results are shown in 3 different tables:

• Table 2- FASTAN with annealing and without annealing.

• Table 3- SWTR tangent refinement with annealing and without annealing.

• Table 4- X-Y with annealing and without annealing.

This sort of iterative process should end with the global minimum for phase space; 

however, the structure solution may not be at this minimum, as the function we are 

minimising may not define accurately enough the phase space. Because of this it is 

best to approach the problem with a multisolution approach, with many random 

starting positions chosen. Therefore 1000 phase sets were produced for each structure, 

irrespective of whether phase annealing was in operation or not. Thus the numbers 

shown in the tables correspond to the number of correct phase sets produced from a 

total of 1000 phase sets.
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TABLE 2. FASTAN with and without annealing

Structure Space Group
FASTAN 

with anneal

FASTAN
without
anneal

Diamantane P42/n 574 649
Quinol R3 150 72
Selenid P2i 3 2

Azet Pca2i 1 0
Tursch 10 P6322 63 33

Bed 14 126 14
Loganin P212121 79 49

Diol I42d 0 0
Apapa P4!2!2 0 0
Tpala P 2 i 10 12
Tval PI 0 1

Newqb Pi 2 2
Goldman2 Cc 98 44
Munich 1 C2 8 0
MBH2 PI 2 3
PGE2 PI 7 2
SUOA P212121 0 0
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TABLE 3. SWTR with and without annealing

Structure Space Group
SWTR with 

anneal

SWTR
without
anneal

Diamantane P V n 325 274
Quinol R3 91 53
Selenid P2j 9 7

Azet Pca2j 10 6
Tursch 10 P6322 85 15

Bed 14 101 23
Loganin P212121 84 8

Diol I42d 0 0
Apapa P41212 2 0
Tpala P2i 14 12
Tval PI 33 74

Newqb Pi 0 0
Goldman2 Cc 30 2
Munich 1 C2 6 0
MBH2 PI 53 19
PGE2 PI 1 1
SUOA 2 0
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TABLE 4. X-Y with and without annealing

Structure Space Group
X-Y 

with anneal

X-Y
without
anneal

Diamantane P V n 301 149
Quinol R3 17 15
Selenid P 2i 10 11

Azet Pca2j 1 0
Tursch 10 P6322 5 2

Bed 14 47 9
Loganin P 212 12 1 11 3

Diol I42d 1 0
Apapa P 4 j2 !2 0 0
Tpala P 2j 12 7
Tval PI 0 0

Newqb p T 0 0
Goldman2 Cc 0 1
Munich 1 C2 0 0
MBH2 PI 0 0
PGE2 PI 1 1
SUOA P 212 12 1 0 0
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9.0 DISCUSSION

9.1 Table 1 - FASTAN with or without phase annealing

From the 17 structures tested, the results of 9 have improved with phase annealing, 3 

have worsened with phase annealing and 4 have stayed the same.

Of the 4 structures that remained the same, 3 did not produce any correct phase sets 

with or without annealing. These were:

• Diol

• Apapa

• SUOA

The 4th one, Newqb produced 2 correct phase sets for both phase annealing and 

normal tangent refinement. This structure has always caused MITHRIL94 problems 

and does not normally solve using defaults. Using random numbers for FASTAN 

therefore increases the chances of finding correct phase sets for this structure.

The results for 4 structures showed no improvement using phase annealing. This was 

not too disappointing as the results for 3 of the structures were still very close:

• Diamantane still managed to produce 574 correct phase sets from 1000 (compared 
to 649 from 1000 without annealing).

• MBH2 produced 2 phase sets compared to 3 correct phase sets with normal 
FASTAN.

• Similarly Tpala only produced 2 correct phase sets less than normal FASTAN.

• Tval was the only structure that could be considered disappointing as it did not 
solve at all with phase annealing, whereas normal FASTAN found 1 correct phase 
set.

The results for 9 of the structures improved with phase annealing. Most notable were:

• Quinol - this centrosymmetric structure produced double the number of correct 
phase sets with phase annealing.

• Azet - this structure is unstable under regular tangent refinement and produced 
onlyl correct phase set with annealing, however without annealing Azet was not 
solved.

• Bed - the results for Bed were quite outstanding with the annealing improving the 
results by a factor of 9.
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• Munich 1 - 8 correct phase sets were produced with phase annealing. This structure 
was not solved without annealing.

FASTAN with phase annealing has made a definite improvement for most of the test 

structures, managing to solve 2 structures that normal FASTAN using random 

numbers could not.

9.2 Table2 - SWTR with or without phase annealing

The results produced by this subroutine were excellent, with 13 of the 17 structures 

tested increasing the number of correct phase sets when phase annealing was used. 

Most of the improvements were quite outstanding with some structures increasing 

correct phase sets by a factor of 10:

• TurlO - 85 correct phase sets with phase annealing compared to 15 when phase 
annealing is not used.

• Bed - again the results for this structure improved dramatically when phase 
annealing was employed, in this case 101 correct phase sets with annealing 
compared to only 23 without.

• Loganin - this structure although not usually a problem to MITHRIL94 produced 
only 8 correct phase sets for normal FASTAN, compared to 84 with phase anneal
ing.

• Goldmann2 - when no annealing was used only 2 correct phase sets were produced 
compared to 30 correct when annealing was employed.

The best results however for this subroutine were those for Apapa and SUOA. Both 

structures produced no correct phase sets with FASTAN however with SWTR they 

both solved, producing 2 correct phase sets each. SWTR without annealing was unable 

to solve them. The result for Apapa was particularly pleasing as MITHRIL94 has 

never been able to solve this structure before using only default parameters.

The structures which were not solved by SWTR irrespective of whether phase 

annealing was used were:

• DIOL - this was not solved by FASTAN either.

• Newqb - this was solved by FASTAN.

• Tval - the results for this structure again worsened when annealing was used, but 
phase annealing was still able to produce 33 correct phase sets (without annealing - 
74 correct phase sets).
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Overall, phase annealing with SWTR produced a dramatic improvement in results 

compared to normal SWTR.

9.3 Table3 - X -Y with or without phase annealing

The results for this subroutine may look disappointing at first as out of 17 structures 

only the results for 8 improved. However of the other structures, 5 could not be solved 

at all by X-Y, with annealing making no improvement on this. Only the results for 2 of 

the structures worsened:

• Goldman2 - no correct solutions were found using annealing compared to 1 correct 
solution without.

• Selenid - the results only decreased by 1 correct phase set when annealing was 
used.

The best results were for:

• Diamantane - the number of correct solutions produced by annealing was 301 
compared to only 149 without.

• Azet - X-Y was unable to solve this structure unless phase annealing was used.

• Bed - the results for Bed were again highly successful for phase annealing with 49 
correct solutions being produced, compared to only 9 without.

The best result for X-Y however was for a structure that the previous subroutines 

failed completely to solve:

• Diol - Phase annealing produced 1 correct solution whereas normal X-Y could not 
solve this structure.

The results for X-Y are not as clear cut as the results for the other 2 subroutines. On 

the whole annealing did make some improvements, namely for diol. However the fact 

that it was unable to improve the results for those structures which the original 

program was unable to solve was quite disappointing. However X-Y is the least used 

of the refinement subroutines.

Phase annealing has been incorporated into a commercial version of MITHRIL94 

which is discussed in chapter 6.
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CHAPTER 4

ERROR CORRECTING CODES AS A 
PHASE PERMUTATION TECHNIQUE

IN MITHRIL94
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1.0 THEORY

1.1 Introduction

The convergence procedure introduced by Germain, Main & Woolfson (1970) 

determines the starting set of reflections to be used in phase permutation, symbolic 

addition or random phasing. This set consists of the origin and enantiomorph defining 

reflections (if appropriate), the phased reflections and reflections of unknown

phase. These reflections are selected for permutation to ensure multiple interactions 

and strong phase development via triplets. Phase permutation involves the assignment 

of values to the phases in the starting set. As discussed earlier there exists various 

phase permutation methods including those of magic integers and random phasing.

Bricogne (1993) has shown how certain error correcting codes can be used to sample 

phase space efficiently and hence be used as a phase permutation technique. To test 

this alternative permutation method, the use of error correcting codes has been 

investigated and added into the MITHRIL94 program (Gilmore,1984; Gilmore & 

Brown 1988). The remainder of this chapter will discuss the background theory and 

experimental results of this new method.
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2.0 THE RELEVANCE OF EXPERIMENTAL DESIGNS 
TO ERROR CORRECTING CODES

Experimental designs are used to provide information simultaneously about the effects 

of a variety of possible factors. They are efficient, accurate and complete. The use of 

experimental designs is already seen in protein crystallography, for example in the 

screening of heavy atom derivatives and in finding the optimum conditions for 

crystallisation (Carter, 1992,1994). For phase permutation we require a method that is 

able to sample phase space as efficiently and uniformly as possible. The relevance of 

error correcting codes to experimental design (Hill, 1993) is shown by the following 

example:

Seven brands of fertiliser are to be tested on seven types of crops, noting the effect 

pairs of fertiliser have on each crop. Obviously one method would be to test every 

combination of fertilisers on every crop but this is time consuming and the results may 

not always be easy to interpret. Instead a more economical method would be to design 

an experiment where

• each crop receives the same number of fertilisers

• each pair of fertilisers are compared on the same number of crops.

Mathematically all that is involved is a set S of varieties (the fertilisers) and subsets of 

S (consisting of fertilisers tested on each crop). The subsets are called blocks. In this 

experiment

• each block has the same number of entries

• each pair of varieties is contained in the same number of blocks

Take S={ 1,2,3,4,5,6,7} as the 7 varieties of fertiliser. 7 subsets of S (B1-B7) can occur 

so that each pair of fertilisers only appears once.

FIGURE 1. Subsets B1 to B7 of set S

B1 B2 B3 B4 B5 B6 B7 
{1,2,4} {2,3,5} {3,4,6} {4,5,7} {5,6,1} {6,7,2} {7,1,3}
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This experimental design is a balanced block design as it consists of a set S of v 

elements, called points or varieties and a collection of b subsets of S, called blocks, 

such that, for some fixed k,r and A,

• each block contains exactly k points

• each point lies in exactly r blocks

• each pair of points occurs together in exactly X blocks.

These designs are referred to as (h,v,r,£,A,)-designs (Hill, 1993).

The subsets form the blocks of a (7,7,3,3,1) balanced block design as there are 7 

blocks (fields), 7 varieties(fertiliser), each block contains 3 points and each point lies 

in 3 blocks. The comparison between the pairs of fertilisers is balanced with each pair 

of points (fertiliser) occurring together in exactly 1 block.

There is a simple geometric representation of this design known as a seven-point plane 

or Fano plane.

1

4 7

FIGURE 2. The seven - point plane

The fertilisers 1,2....,7 are represented by points and the blocks are represented by 

lines (6 straight lines and a circle)
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Alternatively this (7,7,3,3,l)-design can be displayed in matrix form.This is known as 

the incidence matrix of the design as shown in Figure 2.

FIGURE 3. The Incidence Matrix of the design.

BLOCKS
B 1  B 7 ►

V 1. 1 0 0 0 1 0 1
A 1 1 0 0 0 1 0
R 0 1  1 0 0 0 1
I 1 0 1  1 0 0 0
E 0 1 0 1 1 0 0
T 0 0 1 0 1  1 0
I 7 . 0 0 0 1 0 1  1
E
S r

Each column of the matrix represents one block and each row provides information 

about a particular variety, for example the first row shows that fertiliser 1 is tested on 

crop 1(B1),5(B5) and 7(B7) and column one shows that crop 1 is tested with the block 

varieties {1,2,4}

The advantages of using balanced block designs are:

• the work load of the experiment is reduced.

• time spent on experiment reduced.

• potentially the balanced block design gives better results than non-systematic 
methods.

The advantages of using the incidence matrix to describe the design are:

• the structure of the design is visibly clearer with no irrelevant information

• it is easy to scan the columns of the matrix to retrieve information

Error correcting codes are linked to experimental design by the incidence matrix of the 

design. Each row of the incidence matrix is composed of a sequence of 0 ’s and l ’s. 

These are binary error correcting codewords.
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3.0 ERROR CORRECTING CODES

Error correcting codes are used to correct errors when messages are transmitted 

through a noisy communication channel.

The channel may be:

• telephone line

• high frequency radio link

• satellite communication link

The noise may be

• human error

• thermal noise

• imperfections in equipment

If errors do occur in transmission then the received message could be different and 

have a different meaning from the original message causing disruption and confusion.

FIGURE 4. Transmission of messages

message put message message message
into code --------► transmitted ------► received  ► decoded

1
possible
error

Error correcting codes are used to encode data by adding redundancy to a message so 

that if errors do occur they can be identified and corrected and the original message 

can be recovered.

A q-ary code is a given set of sequences of symbols where each symbol is chosen from 

a set Fq of q distinct elements.

The set Fq is called the alphabet and in the binary case it is denoted F2. If q is a prime 

power then we take the alphabet Fq to be the finite field of order q. This is defined as a 

field which has a finite number of elements, this number being called the order of the

100



field. (Fq)n is the set of all ordered n-tuples a=aia2  and the elements of (Fq)n are

called vectors or words. For example, the (7,7,3,3,l)-design can be denoted (F2)7. The 

error correcting codes discussed later in this chapter are binary codes thus this 

investigation occurs in the finite field F2.

The main purpose of coding theory is to send messages quickly with as much accuracy 

as possible. The concept of “parity” is simple use of this. An n-block of binary digits 

has even parity if the sum modulo 2 of the digits is zero (in other words, there are an 

even number of l ’s).Otherwise the n-block has odd parity. The parity check is just the 

addition of the digits and using the parity check enables us to detect any single error 

that may have occurred in transmission.

Example: For 1100 and 1101 add redundancy so that the resulting vectors have even 

parity.

1 1 0  0 ------► 1 10  0 0 and 1 1 0  1 -----► 1 1 0  11

Any single error in the transmission of these vectors makes the parity of the 

codewords odd thus the parity check fails so a single error must have occurred in the 

codeword. These are single error detecting codewords.

For example if a single error was to occur in one of the codewords so that the vector 

received was 11010:

1 10  0 0 ---------► 1 1 0  10 and 1 1 0  11 -------► 1 1 0 1 0

In this case the error can be detected but not corrected as the error could have occurred 

in either of the codewords. This would cause the receiver difficulty if retransmission of 

the vectors is impossible. For correction to occur the received vector would have to be 

“closer” to one of the codewords than to any other.

The concept of one codeword being “closer” to another is made precise by introducing 

a legitimate distance function on (Fq)n called the Hamming distance.

The Hamming Distance between two vectors x and y of (Fq)n is the number of places 

in which they differ denoted d(x,y). This was introduced by Hamming in 1950 using a
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unit cube in Euclidean ^-dimensional space En. The vertices of the cube are the 2n n- 

tuples of Os and Is. Thus a subset of the vertices will be a binary code of length n.

Figure 5. illustrates a single error detecting code.

FIGURE 5. A single error detecting code

;o,o,D
(0,1,1)

( i , i ,(1,0 ,1)

(0,0,0)

(1,0,0)

The darkened vertices are the codewords 000, 011,101 and 110 and they represent a 

code with four codewords of length three. The light vertices show the three codewords 

formed when a single error occurs in the transmission of codeword 101. In this case 

again the single error can be detected but not corrected, i.e. the received codeword 001 

could have been formed from single errors in the transmission of codewords 101,000 

or 011 and is therefore impossible to correct.The Hamming distance between the 

codewords 101 and 011 denoted d(101,011) = 2, as does d(101,000). This is also the 

number of edges in shortest route between the two vertices of the cube (Thompson,

1983).

The minimum distance of a code is the smallest of all the distances between two 

different codewords of the code and is denoted d(C). In this case d(C) = 2. Single 

errors can be detected if d(C) = 2 but for single error correction to occur d(C) must at 

least ̂  3.

This is illustrated by Figure 6.
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FIGURE 6. A single error correcting code

(0 ,0 ,1)

(1,1,1)

(0,0,0)
(0,1,0)

(1,0,0)

In this case the darkened vertices are the codewords 000 and 111 and they represent a 

code with two codewords of length three. The minimum distance d(C) between the 

two codewords is three. The light vertices show the three codewords received when a 

single error occurs in the transmission of codeword 000. The error can be detected by 

parity check and it can be corrected by considering the Hamming distance 

d(000,001)=l and d(lll,001)=2. The received vector can be corrected to its nearest 

codeword by considering the smallest of the Hamming distances .In this case the value 

is 1 and the vector can be corrected to the original 000. This example only applies for 

the occurrence of single errors. If two errors occurred then they would be detected but 

not corrected as the receiver would not be able to tell from which codeword the 

received vector originated and how many errors had actually occurred. In general a 

code with minimum distance d will detect up to d/2 errors and correct up (d-l)/2 

errors.

The codes investigated for their use in phase permutation can be described as (n,M,d)- 

codes where n is length of code, preferably small for fast transmission, M is the 

number of codewords in the code which is preferably large for transmission of as 

many messages as possible and d, the minimum distance is preferably large. 

Obviously a good code will have a large minimum distance to correct many errors.
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The above requirements for the formation of a successful code unfortunately conflict 

with each other and usually one of the parameters n, M or d is optimised for given 

values of the other two. Frequently M is optimised for given values of n and d.

Error correcting codes are linked to experimental design by the incidence matrix of the 

design and specific properties of the codes are required for phase permutation, to 

sample phase space efficiently so giving good results and saving computer time.

4.0 PROPERTIES REQUIRED OF ERROR 
CORRECTING CODES

The error correcting codes investigated for their use in phase permutation were chosen 

to provide efficient covering of phase space and to have a balanced structure for 1- 

phase, 2-phase and 3-phase interactions. Two questions must be addressed before 

discussing these codes and the manner the codes were used in phase permutation:

• what is efficient covering of phase space?

• how do the codes produce efficient covering?

4.1 Efficient Covering of Phase Space

As discussed in chapter one, multisolution methods involve assigning approximate 

numerical values to the unknown phases in the starting set. Centric phases can take the
71 71values 0 and n or ± -  or ± -  . For acentric phases the value is not restricted but for 

quadrant permutation we can permute over the values ±3tt/4 or ±71/4. Thus the total 

number of combinations n, to be permuted by the tangent formula is:

n = 4^“ x 2Nr

(EQ 1.4.1.1)

where Nu is the number of acentric reflections and Nr is the number or reflections with 

restricted phases.

Looking at this equation, it is clear that the number of combinations increases 

dramatically as Nu and Nr increase and it is obviously not feasible to examine all the 

combinations in a full factorial phase permutation design when Nu is large. Usually 

there is a limit put on the number of reflections allowed in the starting set. Using
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magic integers this limit can be reduced. Table one shows the comparison between the 

number of phase sets produced by quadrant permutation of phases and magic integer 

permutations.

TABLE 1. Number of phase sets produced by quadrant permutation compared to number 
produced by magic integer permutation

QUADRANT MAGIC INTEGERS

no of no of
n permutations n permutations
1 4 1 4
2 16 2 12

3 64 3 20
4 256 4 32

5 1024 5 50

6 4096 6 80

7 16384 7 128

As seen from this table magic integers reduce the number of permutations 

dramatically (Giacovazzo, Monaco, Viterbo, Scordari, Gilli, Zanotti, Catti, 1992). The 

question still to be addressed though is how efficiently magic integers are able to 

sample the phase space.

The following examples show how we could permute two acentric reflections and the 

covering of phase space that each produces.

Figure 7. illustrates permuting every possible value for the reflections so that the entire 

phase space is sampled:
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FIGURE 7. Sampling the phase space (A)

3 1 5

2 2 5

135

4 5

x x

X X x  X

X X X X

X X X x

4 5  135  2 2 5  3 1 5

The covering generated by this sampling is seen below:

FIGURE 8. Covering of phase space (A)

The covering shown in this example is similar to the covering expected from a full 

quadrant permutation factorial design (full factorial design)

If however we do not permute every value for the phases but sample the phase space in 

the manner shown in Figure 9, the covering in Figure 10 is generated.
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FIGURE 9. Sampling the phase space (B)

J

3 15  

2 2 5  

135  

45

45  135  2 2 5  31 5

the following covering is generated: 

FIGURE 10. Covering of phase space (B)

This is a denser and hence more efficient covering and is similar to that expected from 

a magic integer permutation.
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4.2 The covering of phase space and error correcting codes

For the codes to produce efficient covering they must fulfil a sphere packing bound. 

This means that for a t-error correcting code, the M spheres of radius t centred on 

codewords fill the whole of (Fq)n without overlapping. This is the definition of a 

perfect code (Hill, 1993). If the spheres centred on the codewords are not disjoint then 

the codewords are not effective at error correcting. This is shown diagrammatically in 

Figure 11 below where y is a vector received when t or fewer errors occur in codeword 

x where a sphere of radius t and centre x is denoted S(x,t).

FIGURE 11. Sphere packing bound

(B.)

Very simply in example A, the received vector y occurs in the overlap, that is in both 

S(x,t) and S(x’,t) and it cannot be corrected to its closest codeword, whereas in 

example B the received vector may be different from the centre of the sphere S(x,t) but 

it cannot escape from it and is thus corrected to the nearest codeword x. So for error 

correcting properties we require the code to be perfect. For phase permutation we 

require the code to be perfect for much the same reasons. If the spheres centred on the 

codewords are not disjoint then the covering created would not be efficient as 

duplicate phase information could be contained in the overlap. For phase permutation 

we require a code that creates efficient covering of phase space. It is the code which 

generates the covering, not the opposite way round. Designs using error correcting 

codes for phase permutation take advantage of the periodicity of the phase angles and 

display this efficiency.
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5.0 CODES USED IN PHASE PERMUTATION

The use of two different error correcting codes was investigated

• The Hadamard code

• The Golay code

5.1 The Hadamard Configurations

Hadamard configurations are (v,k,X)-designs in which v=4m-l, k=2m-1 and A,=m-1 

for an integer m>2 (Street, Street, 1987). The seven-point plane illustrated earlier is a 

design for m=2. The designs are useful because knowledge of one design can lead to 

the formation of many others. Hadamard configurations are closely related to 

Hadamard matrices (Hadamard codes). The Hadamard matrix is an nxn matrix 

comprising the integers ±1. If we change all the -1 to 0 the resulting matrix is similar 

to the incidence matrix of the design.

1 1 - 1 1 1 1 0  1

1 - 1 - 1 1 ^ ------------------- ► 1 0  0 1

-1 -1 -1 1 0 0 0 1

_ !  - !  1 1_ \ 0 1 1_

HADAMARD INCIDENCE
MATRIX MATRIX

FIGURE 12. Hadamard and Incidence matrices

Large Hadamard matrices are generated by the repetition of smaller matrices. By using 

the 4x4 matrix above, the 8x8 matrix can be formed by simply repeating the matrix in 

the following manner where the original matrix is A.

The resulting matrix B can be used to form the 16x16 matrix in the same way.



5.2 The Hadamard Code and Phase Permutation

An nxn Hadamard matrix is generated with each row comprising +1. The starting set 

of reflections are assigned phases from the information contained in each row of the 

Hadamard code. This is done in the following manner:

71 7tCentric reflections are generally given a value of 0 or n or ± -  or ± -  so they have one 

degree of freedom and a single sign is used for phase permutation:

• + 1 = 0  degrees or +90 degrees

• -1 = 180 degrees or -90 degrees

Acentric reflections have a choice of four phase values, one from each quadrant. They 

have two degrees of freedom and two signs are required to define the relevant 

quadrant:

• -1,-1 =225 degrees

• -1,+1 = 315 degrees

• +1,+1 = 45 degrees

• +1, -1 = 135 degrees

Each row of the Hadamard code defines one phase set which is input into the phase 

extension and refinement subroutines in MITHRIL94 (Gilmore, 1984;Gilmore & 

Brown 1988) and figures of merit for that phase set are calculated and produced. The 

next phase set is just the complement of the above row, thus 2n phase sets are 

generated. One property of Hadamard matrices is that by definition multiplication of 

rows and columns by -1 and also swapping of rows and columns does not change the 

matrix.
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5.3 The Hadamard Code and the Covering of Phase Space

The Hadamard code gives a sparse, but economical and efficient covering of phase 

space. The Hadamard code produces a covering similar to the covering produced by 

the magic integers in that all phase values are sampled but certain combinations are 

not fully permuted. The code is also efficient, as a Hadamard code of 16 phase sets 

will have one phase set with, at the most, only one wrong phase. The following sign 

combinations for phase permutation were introduced by Woolfson (Woolsfson, 1954) 

This is shown in table 2.

TABLE 2. Sign Combinations

Term 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 + + + + + + + + -
2 - - - - + + + + - - - - + + + +

3 + + - - + + - - + + - - + + - -
4 - + - + - + - + - + - + - + - +

5 + - - + + - - + - + + - - + + -

6 + + - - - - + + - - + + + + - -

7 - + - + + - + - + - + - - + - +

The combinations above are extremely useful as, irrespective of what the correct sign 

combination actually is, each of the 128 possible 7-sequences differs from one of this 

set in at most one sign. Good (Good, 1954) extended this to a set S of 2048 possible 15 

bit sequences, where each of the 32,768 possible 15-sequences differs in at most one 

sign from one of the set of 2048. This theory is described as Woolfson 

substantialisation as one member of S must be substantially correct. Substantialisation 

can be described as the maximum distance between the correct solution is the 

complete factorial design and the nearest sampling point (Carter, 1994). In this case 

the number of permutations have been reduced by a factor of 16, with the acceptance 

of one wrong sign.

The Hadamard codes generated and tested in this investigation were:

• The n=32 matrix, producing 64 phase sets instead of the 232 produced from a full 
factorial design.
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• The n=64 matrix, producing 128 phase sets instead of the 2 produced from a full 
factorial design,

• The n=128 matrix, producing 256 phase sets instead of the 2128 produced from a 
full factorial design.

The best results produced were from n=64, and these results will be discussed later in 

this Chapter.

5.4 The Binary [24,12,8] Golay Code

This code was devised in 1949 by Marcel J.E.Golay (Hill, 1993) and it generates 4096 

codewords of length 24. The actual Golay code is the [23,12,7] code and the [24,12,8], 

the (iextended Golay code) is obtained from this by adding a parity check. The 

[23,12,7] can be regained by puncturing, that is removing the last digit from each 

codeword. It is the extended code that formed the basis of this investigation.

5.5 The Golay Code and Phase Permutation

Again phase information was extracted from the code and each row of the code, that is 

each codeword was translated into one phase set. The translation was similar to that of 

the Hadamard, with centric restricted reflections using one bit and acentric reflections 

using two bits of codeword to define the relevant quadrant.

5.6 The Golay Code and the Covering of Phase Space

The efficiency of covering of the [24,12,8] Golay code is quite staggering. The starting 

set is comprised of a maximum of 24 reflections. A full factorial design would 

therefore require 2 ^  (16,777,216) permutations. The use of the Golay code reduces 

this to 4096, but it is guaranteed that one of these phase sets will have at the most only 

4 wrong sign indications. The [23,12,7] Golay code will have one codeword with only 

3 wrong sign indications. The covering produced by the Golay code is not too 

surprising as this code is used in the construction of the Leech lattice, and it is of 

interest to discuss this here.
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5.7 The Golay Code and the Leech Lattice

As discussed before, the codes investigated for their use in phase permutation can be 

described as (n,M,d)-codes where n is the code length, preferably small for fast 

transmission, M is the number of codewords in the code which is preferably large for 

transmission of as many messages as possible and d, the minimum distance is 

preferably large (Conway & Sloane, 1988). Keeping the codewords short enough for 

fast transmission whilst maintaining a large minimum distance is equivalent 

geometrically to packing spheres around an origin as densely as possible (Sloane,

1984). This is described as the sphere packing problem and involves finding the 

densest way of arranging spheres in space by packing as many spheres as possible into 

a large volume, assuming them to be rigid, non overlapping and all the same size.

In 1965 at Glasgow University, John Leech constructed a lattice packing spheres in 24 

dimensional space. This lattice is based on the Golay code and it is described as the 

densest known packing of spheres in 24 dimensions (Sloane, 1984). It is known as the 

Leech lattice. In mathematics 24 dimensional space just consists of points with 24 

coordinates instead of 3. Each sphere in the lattice is able to “kiss” 196,560 others. 

This means that the spheres are arranged in such a way that a central sphere is touched 

by 196,560 surrounding ones. The centres of the spheres in the Leech lattice all have

the form 2C+4X or I+2C+4Y where I is the point (1,1............ 1) and X and Y range

over all the points that are integers. The Leech lattice is used in many diverse areas of 

mathematics for example in topology, group theory and polynomial work. The 

covering of the Golay code must be extremely efficient if it is able to help construct 

such a dense packing of spheres and the formation of the lattice emphasises the 

remarkable power that the codes possess.
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6.0 EXPERIMENTAL AND RESULTS

The use of the Hadamard and Golay codes for phase permutation was tested on the 

Sheldrick database of difficult structures. The reasons why these structures are difficult 

to solve are discussed in a previous chapter. However, as discussed before, for some of 

the structures it is impossible to say exactly why they are difficult to solve using direct 

methods. It is for this reason that the database was used to investigate the use of error 

correcting codes.

The investigation was carried out in the following manner:

1. The error correcting codes were incorporated into a trial version of MITHRIL94 and 

the starting set of reflections phased using either the Hadamard or the Golay code by 

the method described previously.

2. In both cases the convergence subroutine was modified to allow for the starting sets 

to be larger. It is also believed, within certain limits, that it is more beneficial to 

permute a larger starting set of reflections than to sample more finely with fewer 

reflections as the additional reflections are said to provide a larger “dynamic range” 

(Carter, 1994).

(i) The Golay code is composed of 24 digits with each digit having one degree of 

freedom. Centric reflections have one degree of freedom and are defined by one digit 

from the code, thus the starting set for centrosymmetric structures contained 24 

reflections. Acentric reflections have two degrees of freedom and are equivalent to two 

signs of the code. Thus the starting set for noncentrosymmetric structures contained 

less than 24 reflections, the exact number depending on how many centric and acentric 

reflections were present.

Two other extended forms of the Golay code having degrees of freedom of 96 and 192 

were also investigated in the following manner:

• A random number was generated and multiplied by 4096 with the resulting integer 
formed equalling a row of the Golay code.

• When this row had been used to assign phases to the starting set of reflections 
another row was randomly picked.
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• This continued until a maximum of 96 or 192 reflections had been chosen, 
depending on which code was being investigated. Again centric reflections required 
one piece of code and acentric reflections required two bits of the code. The results 
produced from the two extended forms of the Golay code were promising but only 
the results from the original [24,12,8] code will be discussed, as overall they 
achieved the best results.

(ii) The Hadamard code has 64 degrees of freedom, thus structures with a 

centrosymmetric space group had a starting set of reflections containing 64 reflections. 

Structures with a non centrosymmetric space group had less than 64 reflections 

depending on the mixture of acentric and centric reflections.

3. The phases were then expanded and refined using one of two weighted tangent 

refinement subroutines, the MULTAN weighting scheme or the Hull-Irwin statistically 

weighted tangent refinement subroutine (Hull & Irwin, 1978). As discussed in Chapter 

1, this can be useful in cases of psuedosymmetry, symmorphic space groups, over- 

consistent phase sets and if the structure contains heavy atoms.

4. Figures of merit were produced for each phase set and the number of phase sets that 

were “correct” and solved the structure were noted. For the Golay code figures of 

merit for 4096 phase sets were produced. The Hadamard code produced figures of 

merit for 128 phase sets.

5. The structures were then tested on MITHRIL94 without using the error correcting 

codes to phase the starting set, but instead by using magic integers.

6. To compare the magic integer results with the results obtained for the Golay code 

the appropriate number of reflections in the starting set were chosen to produce 4096 

or as near to 4096 phase sets as possible. For comparison with the Hadamard code the 

starting set of reflections had to produce 128 or as near to 128 phase sets as possible.

7. The results can be seen in four tables:

• Table3 - MITHRIL94 with or without the Hadamard code

• Table4- MITHREL94 with or without the Golay code

• Table5 - MITHRIL94 with or without the Hadamard code(SWTR)

• Table6 - MITHRIL94 with or without the Golay code (SWTR)
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TABLE 3. The Hadamard code

STRUCTURE
SPACE
GROUP

MITHRIL94 
WITH H(64) 
FROM 128 

FIGS

MITHRIL94
WITHOUT

H(64)

DIAM P42/n 8 18
QUINOL R3 3 5

SELENID P2i 11 25
AZET Pca2j 3 1
TUR 10 P6322 0 1
BED 2 14 6 5

LOGANIN P212121 1 7
DIOL I42d 0 3

APAPA P4!2j2 0 0
TPALA P2i 6 3
TVAL PI 2 0
NEWQB P i 1 0
GOLD 2 Cc 4 12
MUNICH 1 C2 1 0

MBH2 PI 4

00t—H

PGE2 PI 0 5
SUOA P21212j 0 25
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TABLE 4. The Golay code

STRUCTURE
SPACE
GROUP

MITHRIL94 
WITH THE 

GOLAY 
CODE FROM 

4096 FIGS

MITHRIL94 
WITHOUT 

THE GOLAY 
CODE

DIAM P42/n 309 430

QUINOL R3 314 341

SELENID P2i 110 80

AZET Pca2! 5 6

TUR 10 P6322 44 48

BED 2 14 207 278

LOGANIN P212 121 97 57

DIOL I42d 1 10

APAPA P4i2i2 0 0

TPALA P2i 2 1

TVAL PI 4 5

NEWQB pT 5 1

GOLD 2 Cc 505 278

MUNICH 1 C2 3 20

MBH2 PI 554 20

PGE2 PI 21 16

SUOA P212121 6 13
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TABLE 5. The Hadamard code with SWTR

STRUCTURE
SPACE
GROUP

MITHRIL94 
WITH SWTR 

AND H(64) 
FROM 128 

FIGS

MITHRIL94 
WITH SWTR 

AND 
WITHOUT 

H(64)
SELENID P2i 12 17

AZET Pca2j 4 1
TURIO P6322 0 1
TPALA P2i 7 3
TVAL PI 1 0

MUNICH 1 C2 1 1
MBH2 PI 3 0
PGE2 PI 12 3
SUOA P212121 0 0
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TABLE 6. The Golay code with SWTR

STRUCTURE
SPACE
GROUP

MITHRIL94 
WITH SWTR 

AND THE 
GOLAY 
CODE 

FROM 4096 
FIGS

MITHRIL94 
WITH SWTR 

AND 
WITHOUT 

THE GOLAY 
CODE

SELENID P2i 1 0
AZET Pca2j 6 0
TUR10 P6322 61 52
TPALA P2i 1 2
TVAL PI 13 9

MUNICH 1 C2 1 2
MBH2 PI 8 3
PGE2 PI 10 6
SUOA P212121 4 6
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7.0 DISCUSSION
For every structure MITHRIL94 was run with default parameters, that is no attempt 

was made to try and solve the structure by utilising any of the non-default options 

available in MITHRIL94. This was done to test the power of the codes. It is 

impossible to explain why the codes worked well for some structures and not for 

others just as it is impossible to say why one code is successful on one structure whilst 

the other code is not. The results will be discussed therefore in view of whether the 

error correcting codes can be used as a viable phase permutation technique.

7.1 Table3 - MITHRIL94 with and without the Hadamard Code

The results in this table do not look outstanding at first glance, but the very fact that 

structures are solved by the codes is the proof that this code does work. Also as 

discussed before the Hadamard (64) code produces an extremely sparse economical 

covering and only 128 solutions. From the seventeen structures tested, six of the 

structures gave good results, namely:

• Azet - MITHRIL94 with the Hadamard code produced 3 correct solutions from 128 
figures of merit, without the Hadamard code only 1 was correct.

• Tval - This structure has an incomplete data set. MITHRIL94 without using the 
Hadamard code failed to solve this structure, with the code 2 complete structures 
were found from the 128 figures of merit.

• Newqb - MITHRIL94 with the Hadamard code produced one correct solution 
whereas without the codes the structure was not solved. This is the structure with 
very low symmetry and a lack of phase relationships and has always been a 
problem for MITHRIL94 to solve. The results produced from using the codes were 
therefore pleasing.

• Munich 1 - MTTHRIL94 with the Hadamard code produced one correct solution 
whereas again without the codes the structure was not solved.

• Tpala - MITHRIL94 with the Hadamard code produced six correct solutions 
whereas MITHRIL94 without produced only one.

A few of the results were disappointing namely for those structures that the codes 

could not solve, yet without using the codes did solve. However for most of the 

remaining structures, MITHRIL94 using error correcting codes could solve the 

structure although MITHRIL94 without the codes seemed to perform better.
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7.2 Table5 - MITHRIL94 with and without the Hadamard Code 
(SWTR)

Nine structures were tested using the SWTR subroutine which incorporates the Hull 

and Irwin weighting scheme. From the structures tested, five of them gave better 

results using the error correcting codes. The best of these was:

• PGE2 - this structure was not solved by the Hadamard code using the standard 
Multan weighting scheme. However using the Hadamard code with SWTR 
produces 12 solutions compared with the 3 solutions produced without using the 
code.

7.3 Table4- MITHRIL94 with and without the Golay Code

On the whole the Golay code appeared to produce better results than the Hadamard, 

this is not surprising as the covering produced by the Golay code is much more 

efficient and much less sparse than the Hadamard. The most notable successes of the 

Golay code were:

• Loganin - 97 structures produced by the code, compared to only 57 without using 
the code.

• Newqb - This was an extremely good result for Newqb with 5 solutions produced 
using the Golay code compared to only 1 being produced without the code.

• Goldman2 - 505 solutions produced by the Golay code compared to only 278 being 
produced without the code.

• MBH2 - This structure produced the best results for the Golay code with the 
solution being found 554 times compared to only 20 times when the code was not 
used.

Although the results produced by MITHRIL94 without the Golay code were 

sometimes better, the Golay code using the Multan weighting scheme was always able 

to find at least one solution for each structure.

7.4 Table6 - MITHRIL94 with and without the Golay Code (SWTR)

Nine structures were tested using the SWTR subroutine which incorporates the Hull 

and Irwin weighting scheme. From the structures tested, six of them gave better results 

using the error correcting codes. The best of these was:
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• Tur 10 - This structure is included in the database as it has an unusual space group. 
The result for MITHRIL with SWTR and using the Golay code was the best result 
gained for this structure.

8.0 Summary

The previous results clearly show that the Golay and Hadamard error correcting codes 

are capable of producing structure solutions. The codes are therefore viable phase 

permutation techniques. The use of the codes for phase permutation also provides a 

significant improvement in the results for some structures where conventional direct 

methods either fails or is poor. Thus the results from this experiment prove that coding 

theory is a useful tool in multisolution direct methods and shows potential for further 

development.
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CHAPTER 5

ERROR CORRECTING CODES AND 
PHASE ANNEALING COMBINED
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1.0 THEORY

1.1 Introduction

As discussed in chapter 4, error correcting codes are able to sample phase space 

efficiently and hence they can be used as a phase permutation technique 

(Bricogne,1993). Furthermore, the results from chapter 3 illustrate that phase 

annealing is also successful, flipping the phases until the “global” correct phase set is 

found (Sheldrick, 1990). In view of these results, the next obvious step must be to 

combine these methods, with the error correcting codes phasing the starting set 

followed by annealing to refine the phases. The remainder of this chapter will discuss 

how these techniques were combined and the results they produced.

2.0 EXPERIMENTAL

Based on the analysis of the results gained from the coding theory investigation it was 

decided that the code to be applied with simulated annealing would be the Golay code, 

as overall it seemed to produce the best results. From the results produced from the 

phase annealing research, the use of the Golay code-annealing combination was 

applied only in the FASTAN and SWTR subroutines. By this stage, both phase 

annealing and coding theory techniques existed as options in MITHRIL94 (Gilmore, 

1984; Gilmore & Brown, 1988) so mixing them was relatively simple, involving only 

a small amount of programming. The flow diagram on the next page illustrates the 

basic procedure:
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Golay code generator called

Random phase generator called and all reflections 
are assigned random phase.

The Golay code assigns phases to the starting set of 

reflections

Reflections enter the phase annealing 
process

where their phases are flipped

Starting set of reflections chosen during convergence 

Centric reflections have 1 degree of freedom, acentric 2 thus 

Starting set comprised of < 24 reflections

The reflections are assigned weights 

origin defining/known /starting set = weight of 1 

all other reflections = weight of 0.25

FIGURE 1 . Flowchart for phase annealing and coding theory combined

The origin defining, known and starting set of reflections were all assigned a weight of 

1 so that they were not initially flipped by the phase annealing process and would 

retain their original assigned phases. The rest of the reflections were assigned weights 

of 0.25 and their original random phases were refined as required. Figures of merit 

were produced for each phase set and these were analysed to see if they represented a
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“correct” phase set. The number of phase sets produced was 4096. The structures used 

to investigate the mixing of these techniques were again taken from the Sheldrick 

database of difficult structures. The results can be seen in two Tables:

• Table 1 - FASTAN with phase annealing and the Golay code

• Table 2 - SWTR with phase annealing and the Golay code

Each table compares the results from the Golay code only, annealing only and the 

results produced from mixing them both.

3.0 RESULTS
TABLE 1. FASTAN with annealing and the Golay code

Structure

The Golay 
Code 

(from 4096)
Annealing 

(from 1000)

Annealing 
and Golay 

code 
(from 4096)

Diam 309 574 751

Quinol 314 150 138

Selenid 110 3 98

Azet 5 1 3

Tursch 10 44 63 6

Bed2 207 126 250

Loganin 97 79 130

Diol 1 0 2

Apapa 0 0 0

Tpala 2 10 7

Tval 4 0 6

Newqb 5 2 10

Gold2 505 98 161

Munich 1 3 8 15
PGE2 21 7 6

Suoa 6 0 3
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TABLE 2. SWTR with annealing and Golay code

Structure

The Golay 
Code 

(from 4096)
Annealing 

(from 1000)

Annealing 
and Golay 

code 
(from 4096)

Selenid 1 9 155

Azet 6 10 70

Tursch 10 61 85 0

Bed2 42 101 280

Loganin 31 84 163

Apapa 0 2 0

Tpala 1 14 13

Tval 3 33 46

Newqb 1 0 1

Gold2 17 30 132

Munich 1 1 6 19

PGE2 4 10 12

Suoa 4 2 14



4.0 DISCUSSION

The tables shown do not contain results for MITHRIL94 run on default, without 

annealing or the use of the codes, since what is being investigated here is just the 

cumulative effect of applying both techniques simultaneously. The results will be 

discussed in view of whether the joint use of the methods is better or worse than the 

results from each individual method.

4.1 FASTAN with annealing and the Golay code

From the 16 structures tested, 7 increased their correct solutions. A few are discussed 

below:

• Diam - this structure performed very well under both annealing and the Golay code 
and when these techniques were mixed it produced 751 correct phase sets from 
4096, more than doubling the success rate produced from the use of the Golay code 
alone.

• Diol - the Golay code produced 1 correct phase set and annealing was unable to 
solve the structure at all. However the combination of these techniques produced 2 
correct phase sets, indicating that for this structure the mixing of these methods 
gives better results.

• Tval - this structure produced results which were similar to diol; 4 phase sets were 
correct with the Golay code, whereas with annealing no correct phase sets were 
produced. However, when both techniques were applied, 6 correct phase sets were 
found.

• Newqb - the result for newqb was the best for this structure in this entire study, with 
10 correct phase sets being produced.

For the rest of the structures:

The decrease in correct solutions when both techniques were applied was not very 

significant, with the overall correct phase sets being greater than one technique and 

less than the other and all the structures producing correct phase sets. However there 

are 2 structures whose results are worth discussion:

• Tursch 10 - annealing produced 63 correct phase sets and the Golay code produced 
44 correct phase sets. However the annealing-codes combination drastically 
decreased the correct phase sets, producing to only 6.

• SUOA - the Golay code produced 6 correct phase sets, annealing produced zero. 
Only 3 phase sets were produced when the techniques were combined.
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4.2 SWTR with annealing and the Golay code

From the 13 structures tested, nine increased the number of correct phase sets pro

duced quite dramatically. A few of these are discussed below:

• Selenid - only 1 solution was produced from 4096 for the Golay code and 9 
solutions for annealing. However when the techniques were applied together 155 
correct phase sets were created.

• Azet - 6 correct phase sets were generated for the Golay code and 10 for annealing, 
however 70 correct solutions were created with the combination of these 
techniques.

• Loganin -163 solutions produced when the techniques were combined, which is 
double the number of correct solutions for annealing and over 5 times more than the 
results for the Golay code.

In only one case was there a decrease in the number of correct solutions with the 

combination of both techniques.

• Tval - the number of correct solutions was 1 less than the annealing result and 12 
more than in the Golay code case.

Two structures produced results that are worth discussion:

• Apapa - this structure has only been solved by using SWTR with phase annealing 
and the combination of techniques in this investigation was unable to produce any 
correct phase sets.

• Tursch 10 - again the results produced for this structure were very strange. 61 and 
85 correct phase sets were produced for the Golay code and annealing respectively, 
however the combination of these techniques failed to generate any correct phase 
sets. This is probably a consequence of the mode of sampling phase space.

4.3 Conclusions

Overall the combined application of these two techniques has produced very 

interesting results. When the annealing-codes combination was a success it seemed 

that the techniques literally worked together to produced a definite increase in correct 

phase sets. This increase was far greater than the number of correct phase sets 

produced from either of the individual methods. In a few cases however, the opposite 

could be said, as the number of correct phase sets decreased with the annealing-codes 

combination. In view of these results the combined use of codes and annealing is a 

viable phase permutation technique and another useful tool in multisolution direct 

methods.
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CHAPTER 6

IMPLEMENTING ANNEALING IN
CRYSTAN 6.3
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1.0 INTRODUCTION

As discussed in Chapter 3, phase annealing was implemented into three of the tangent 

refinement modules in MITHRIL94

• FASTAN which uses the standard tangent refinement formula, described in Chapter 
1.

• SWTR tangent formula which uses the Hull and Irwin weighting scheme (Hull & 

Irwin, 1978), described in Chapter 1.

• X-Y (Debaerdemaeker and Woolfson, 1989) which uses the X-Y tangent formula, 
described in Chapter 3.

This version of MITHRIL94, containing the phase annealing facility, has been adapted 

for CRYSTAN 6.3 which has a graphical user interface (GUI). The commands entered 

by the user for phase annealing are exactly the same as the earlier line based 

commands except phase annealing is controlled by buttons and selectors making the 

program more user friendly. This version of the program also has the added advantage 

of producing graphical output. The GUI version of MITHRIL94 is contained in a 

commercial computer program, CRYSTAN 6.3 (MAC Science, 1995).

1.1 CRYSTAN 6.3

CRYSTAN is a powerful, state-of-the art computer program for solving, refining and 

publishing crystal structures automatically from X-ray diffraction data. It works in a 

windows environment with SUN and Silicon Graphics computers and offers the 

following facilities:

• SG-Merge: A computer program to automatically assign space groups, merge 
intensity data and correct for crystal decomposition.

• Test i to test for centrosymmetric non-centrosymmetric structures.

• An AUTO option to solve and refine crystal structures including H atom addition.

• A program, MODEL, to manipulate structures during the process of solution and 
refinement.

• A real-time, graphical least squares program, RTG-LSQ, that interactively refines 
crystal structure.

• A structure factor program.

• A multi-optional Fourier program, FOURIER.

• Five different absorption correction methods in the ABSORB module.
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• MOPAC for calculating theoretical charges on refined structures.

• A PUBLISH program for generating tables, CIF files and a report for publishing the 
final structure.

• Five different colour graphics options:

Interactive ORTEP

PLUTO

PLOTQ for drawing contoured Fourier maps.

XXM OL for three-dimensional colour graphics.

PReDS for 3d viewing of density maps & models.

CRYSTAN, as well as offering the facilities listed above, also contains five programs 

to solve crystal structures automatically. They are SIR, MITHRIL94, SHELXS-86, 

DIRDIF and M onte-Carlo MULTAN. All of these programs have been adapted to have 

a graphical user interface (GUI). The current version of MITHRIL94 available in 

CRYSTAN 6.3 contains exactly the same features as before, the only difference being 

the interface.

1.2 Interface to Crystan

To initiate MITHRIL94, select SOLVE from the main Crystan-GM menu, then 

M IT H R IL -94 and EX EC. The CRYSTAN window is seen below:

FIG URE 1. The CRYSTAN window:
Crystan {C jopyrtg& l 1335 MA C S c ie n c e  Dtt* L&O

.'£%.• :.jirot;. pi ®:. frfetefc F s a r w A t e  AteSte: M epss. - iSragijtisi Syn-Fngrf :! ; | | H t t p  |

MITHRIL94 is loaded and reads the reflection and model information from the files 

created by Crystan. W hilst loading, the cursor changes to a small clock to indicate that 

MITHRIL94 is busy. When it reverts to an arrow, MITHRIL94 is ready to interact 

with the user. Buttons, selectors and menus operate in the normal OPEN LOOK 

manner. All MITHRIL94 commands are accessed through these menus, buttons and 

selectors. The MITHRIL94 interface is shown by Figure 2. on the next page.
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FIG URE 2. The M ITHRIL94 interface
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2.0 Using MITHRIL94

To use simulated annealing in the GUI version of M ITHRIL94 the annealing options 

are present in the RANTAN and X-Y modules.

By entering RANT the RANTAN module is initialised.

2.1 RANTAN (Yao Jia-Xing, 1981)

In one respect the RANTAN module is similar to TANGENT in that it refines phase 

angles. The difference is that RANTAN uses random phases for all the unknown 

phases and refines them using the tangent formula, rather than using the phase 

permutation techniques of TANGENT. RANTAN is never called automatically.

FIG U R E 3. The RANTAN dialog box
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The following commands, apart from the first, may be entered in any order:

RANTan NO. OF PHASE SETS TO GENERATE.

Calls and initialises the RANTAN module. The number of phase sets to generate is 

entered. The default is:

No. of phase sets = 100 + 50 * Idif + 100 * Ivdif

where:

Idif = 0 /  1 for Standard /  Hard structure.
Ivdif = 0 /  1 for Standard /  Very hard structure.

SWTR [NO]

This command causes the Hull - Irwin weighting scheme to be used rather than the 

traditional MULTAN80 weights. This is a default when Karle recycling is used, 

otherwise the standard procedure is used. If for some reason the Hull - Irwin scheme is 

to be used but the user wishes to revert to the standard weighting method, then the 

command:

SWTR NO where “NO” is a keyword is used.

SKIP N

This command is usually used for restarts. It causes the first N phase sets to be skipped 

before starting tangent refinement.

WTMIn WEIGHTS OF UNKNOWN REFLECTIONS.

The random phases have weights of 0.25 assigned to them before refinement begins, 

but if a different value is wanted, then this command can be used. Some 

experimentation with these weights can be useful in difficult cases.

EFOM [ALl]/[NOne] or EFOM NO., CUT; EFOM NO., CUT; EFOM NO., CUT

This invokes the early figures of merit. There are three EFOMs numbered as follows:

(1) +  Resid (Rxarle)
(2) NQEST.

(3) \[/0 alone (applied later in refinement than (1) above).
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These are the numbers used on the EFOM command. The cut values listed on the 

command are the maximum values that the early figure of merit may have when 

tested; any solution with values greater than these cut-offs are rejected. The defaults 

are: (1)1.8 (2) 0.0 (3)1.6

Usually the EFOMs are not used. The command:

EFOM NONE

also has this effect, and can be used to switch off EFOMs already invoked. If you wish 

to use all three early figures of merit then the command:

EFOM ALL CUT(l) CUT(2) CUT(3)

can be used, where CUT(l), CUT(2) etc. refer to the cut-off parameters discussed 

above. If all three cut-offs are absent then the default values are used for all these 

parameters. If only one appears, it is presumed to apply to the first EFOM; two 

parameters are assumed to apply to the first two etc. A zero parameter gives defaults. 

E.g.

EFOM ALL 1.2 0.12.0

applies cut-offs of 1.2, 0.1 and 2.0 respectively; whereas:

EFOM ALL 0 0 2.0

will give defaults (1.8 and 0.0) for the first two EFOM’s and a cut-off of 2.0 for the 

third. If only certain EFOM’s are wanted, then do not use the “ALL” keyword. Instead 

enter the EFOM number followed by the required cut-off. In these circumstances, only 

the specified early figures of merit are invoked. E.g.

EFOM 2 0.1 3 2.0 or EFOM 3 2.0 2 0.1

invokes the second EFOM with a cut-off of 0.1 and the third with a cut-off of 2.0; the 

first EFOM is not used. Note that all the EFOM requirements must appear on a single 

EFOM command.

It is quite difficult to devise suitable defaults applicable to all situations, and some 

parameter tuning may be necessary. EFOMs are not available with the Hull-Irwin 

weighting scheme.
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WTFOM W l, W2, W3, W4

This command defines the relative weights of the five figures of merit used by the 

RANTAN module when calculating a combined figure of merit (CFOM). The defaults 

are as follows:

Figure of 
Merit Weight Default

Default in 
symmorphic cases

ABS FOM W l 1.0 0.6

\p-ZERO W2 1.0 1.2

RESID W3 1.0 0.6

NQEST W4 1.0 1.3

TABLE 1. Weight defaults for FOM’s

If there are no appropriate relationships for a particular figure of merit then a weight of 

zero is assigned. The relative weights are normalised such that the maximum CFOM 

value is equal to the total number of figures of merit contributing to it. The LOGLIK 

figure of merit, if calculated, is not used in the combined figure of merit.

NOSTop

If the RANTAN module finds a solution with figures of merit that satisfy the following 

conditions:

• Resid (Rxarle) less than 20.0

• \po less than 1.25

• NQEST less than-0.15

• The figures of merit above are within 5% of the best so far.

(assuming that these figures of merit are available), then the module assumes that this 

is the correct solution and exits. Users in the interactive modes will be questioned first 

if they wish to accept this solution, but batch users will not. The command NOSTOP 

switches off these tests. So do the HARD and VERY_HARD options.

SETS N l, N2, N3, N4..................etc.

With this option only the phase sets with numbers N l, N2 etc. are investigated via the 

RANTAN module. This is useful for re-runs. Unlike the SKIP command, the other 

phase sets do not need to be on file 11.
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STARt IX, IY

Two odd integers used to seed the random number generator. The default values are 1 

and 1 (cf. YZARC).

As usual, the commands TITLE, END, MENU, LEVEL, NOPRINT, PRINT, 

DEFAULT, HARD, VERY_HARD, MODEL, SHOW and X are available as 

appropriate.

ANEA

Requests simulated annealing. If the traditional MULTAN80 weights are being used 

then the default parameters are 40 cycles of annealing followed by 3 cycles of 

refinement. If the Hull-Irwin weighting scheme is used the default parameters are 80 

cycles of annealing followed by 5 cycles of refinement.

NOAN

Switches off simulated annealing.

By entering RANT followed by SWTR followed by ANEA initialises the use of 

phase annealing with the Hull-Irwin (Hull & Irwin, 1978)weighting scheme or by 

entering RANT followed by ANEA initialises the use of phase annealing with the use 

of traditional MULTAN80 weights (Main, Fiske, Germain, Hull, Declercq, Lessinger 

& Woolfson, 1980).
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2.2 X-Y(Debaerdemaeker and Woolfson, 1989)

This is an alternative to tangent refinement and is accessed by entering X-Y in the 

MITHRIL94 interface.

FIG URE 4. The X-Y dialog box
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The options are:

NOSTop

If the X-Y module finds a solution with figures of merit that satisfy the conditions:

• Resid (RKarle) êss l^an 20.0

• \|/o less than 1.25

• NQEST less th a n -0.15.

• The figures of merit above are within 5% of the best so far

Then the module assumes that this is the correct solution and exits. Users in the 

interactive mode will be questioned first if they wish to accept this solution, but batch 

users will not. The command NOSTOP switches off these tests. So do the HARD and 

VERY_HARD options. NOSTOP is often worthwhile as the correct solution can often 

be missed under the early stop algorithm.

ANEA

Requests simulated annealing. The default parameters are 30 cycles of annealing 

followed by 4 cycles of refinement.
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NOAN

Switches off simulated annealing.

SETS

Defines the number of phase sets to be produced.

STARt IX, IY

Two odd integers used to seed the random number generator. The default values are 1 

and 1 (cf. YZARC).

WTFOm W l, W2, W3, W4

This command defines the relative weights of the four figures of merit used by the 

TANGENT module when calculating a combined figure of merit (CFOM). The 

defaults are as follows:

TABLE 2. Weight defaults for FOM’s

Figure of 
Merit Weight Default

Default in 
symmorphic cases

ABSFOM Wl 1.0 0.6
\|/-ZERO W2 1.0 1.2
RESID W3 1.0 0.6

NQEST W4 1.0 1.3

If there are no appropriate relationships for a particular figure of merit then a weight of 

zero is assigned. The relative weights are normalised such that the maximum CFOM 

value is equal to the total number of figures of merit contributing to it. The LOGLIK 

figure of merit, if calculated, is not used in the combined figure of merit.

By entering X-Y followed by ANEA allows phase annealing to be used with the X-Y 

module.
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APPENDIX A

LISTINGS OF SUBROUTINES IN MITHRIL94: 

PHASE ANNEALING
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INTRODUCTION TO APPENDIX A

This appendix contains the source code for the subroutines

• FASTAN

• SWTR

which contain the phase annealing code from MITHRIL94 and are described fully in 

Chapter 3 of this thesis. The source code for X-Y is not included in this appendix as 

the phase annealing code is very similar to the two subroutines listed.
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fastan2.F

SUBROUTINE FASTAN(IREJ,SIGD) F A S T A N
LOGICAL TEST 
DIMENSION CTABLE(3()0)
COMMON /ANNEAL /ANEA 

GENERATE STARTING SETS OF PHASES FROM CONVERGENCE RESULTS 
COMMON /IO /NSPEC.NIN.NOUT.NTAPEAJNTAPEB ,NTAPEC.NTAPED.NTAPEE.

1 NTAPEF.NTAPEGJH(200).A(200)TCH1(I0)JCII2(10)JILE(68)JR(68).
2 ICALL.NRC.NCIUNREADJENDtNREF,PI.DTOR,MAXHJSPI:LG.ZERO.LK(32),
3 IDEFJCHKJSYMP,LEVEL,IFLOW(25),KUSE(40).INXT,IRDY.RTOD.NULL.
4 IDIFJVDIFTCARLE,IHVY,IGPFLJNDIFFJSPCII(30)JNTAPEM.IVERB 

COMMON /BLK1 /IND2(80000)JND3(80000).IND4(80000)JND5(80000).
1 EEE(80000),
1 SUMNUM(800) ,SUMDEN(800) .ALPI IA(800), WT(800) .IP! I AZ(800).
2 IORDE( 1300) .MKG(800) ,PALF(800) JZ(800) ,MKANG(800) ,EALF( 800).
3 LIM(1301).MAXHKL(3),SUMN(800).SUMD(800).E(800)

COMMON /BLK2 /IS(2,3,24),TS(3.24).P(6).CX(9),NSYM.ICENT,
1 NEX,LATT,LAT,PTS1KSYS,IAPX,NGP.NTOT.NASU,NRD.AMX(5),
2 AMN(5).LlNE(17)fliNEX(17),WTFOM(5),IMKfITAN,IPUB.ISKIP,NLIM,WLIM
3 ,PAD2(1302)

COMMON /BLK3 /STABLE(450).NQ1(500),NQ2(500)(AQ(500).NQTOT.NQ4.NQ5.
1 FOM(400) ,14J5 .IQTOT.CFOM.RN4 ,RN5,ISTP,C VR( 10), V VR( 10) J4 A( 10).
3 NW(10)JTO(IO).NK.SIGMA.PAD3(170)

COMMON /BLK4 /TALF(800)JIALF(800)JSPZRO(500).PAD4(448)
COMMON /BLK5 /NUMB,NUMSET,NRAL,N ANT(4).

1 ALFRAN^SXJEF3.IEF4JEF5.NDETJ4ATJFOM(3)JEFOMJZROJXRAN.
2 IYRAN.IRAND,WMIN.IWMIN,NSREQfCirrr(3)JCCJMP.PAD5(5)

LOGICAL ANEA
EQUI VALENCE (STABLE(91),CTABLE( 1)),(LK 10,LK( 10)) ,(LK5 .LK(5)).

1 (I JK17 ,LK( 17)) ,(LK16.LK( 16)) ,(UK6.LK(6)) ,(LK29.LK(29)).
1 (LKl.LK(l))

C’**** II /I0 (BESSEL FUNCTION)
VEC(U)=U*(U+0.4807) /((U-t0.8636)+U+1.3943)

C**+* CONTROL CHARACTER FOR EFOMS 
ICC=IH(13)

IF(IRAND.EQ. 1.AND.IEFOM.EQ.0) ICC=IH(45)
RN4=0.0
RN5=0.0
CFOM=0.0

C CODE TO INITIALISE THE BOLTZ VALUE
IF(ANEA)THEN 

BOLTZ=0.8

C CODE TO SET THE MAX NUMBER OF CYCLES
MAXCY=40

C CODE TO INITIALISE THE TOTAL SHIFT AND NUMBER TIMES SHIFr CALCUL.
TSIHF=0.0 
NSIBF=0.0 
ENUIFIF 
MARK-0
NNN = MIN0(100. NDET)

IF(ERAND.EQ.l) NNN-NDET 
C CODE TO CALCULATE THE VALUE OF SHELDRICKS BETA

IF(ANEA)THEN
BETAS=-ALOG(BOLTZ) /SQRT((ALFRAN**2) /NNN)
ENDIFIF

CUT = 25.0 
SALF = 0.0 
NCYCLE=0 
NCYCLE2=0 

IF ( ICENT EQ. -1 ) IABSCENT-0
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C**** CLEAR ARRAYS AT START OF DETERMINATION 
DO 990 1=1.NUMB

EALF(I)=0.0 
TALF(I)=0.0 
PALF(I)=0.0 
SUMN(I)=0.0 
SUMD(I)=0.0 
SUMNUM(I)=0.0 

990 SUMDEN(I)=0.0 
C**** START OF NEXT CYCLE 

1000 SUMALF-SALF 
TSHIF-0.0 
NSHIF=0.0 
MSHIF=0.0 
FLIPHAZ-0.0 
SALF-0.0

C CODE TO INCREMENT THE ANNEALING CYCLES 
NC Y CLE=NC Y CLE+1 
N C Y CLE2=N CY CLE2+1

IF (NCYCLE2 .LE .25..AND.ANEA ) BETAS=BETAS+0.002 
IF(NCYCLE2.GT.25.AND.NCYCLE2.LE.35.AND.ANEA)BETAS=BETAS+0.03 
IF (NCYCLE2 .GT.35.AND. NCYCLE2 .LE. 40.AND.ANEA)BETAS=BETAS+0.05

IABSCENT-ICENT

C**** TEST = TRUE IF EXPECTED ALPHA IS TO BE CALCULATED 
C**** I.E. 2 CYCLES BEFORE FIRST EFOM AND FINAL 2 CYCLES 
C**** IN THE CASE OF RANTAN TEST IS TRUE 2 CYCLES BEFORE FIRST 
c **** e f o m  OR FINAL 2 CYCLES 

IF(IRAND.EQ.l) THEN
TEST=((NCYCLE.EQ.5.0R.NCYCLE.EQ.6).AND.IEFOM.GT.O).OR.MARK.GT.O
ELSE
TEST=(CUT.LT.3.0.AND.CUT.GT.1.5.AND.IEFOM.GT.O).OR.MARK.GT.O
ENDIFIF
IF(ANEA)THEN
TEST- .TRUE.
ENDIFIF 

DO 1500 1=1, NNN 
LL=IORDE(I)
U=UM(LL)+1
LS=UM(LL+1)
IF(U.GT.LS) GO TO 1200 
DO 1100 JJ-LI.LS 
IMA-0 
IEF-0
IL=IND3(JJ)
ILA=IABS(EL)
W=ABS(WT(BLA))
IF(W.LT.WUM) GOTO 1100 
IRK-END2(JJ)
IRA-IABS(ERK)
WW-ABS(WT(IRA))
IF(WW.LT.WUM) GOTO 1100 
W=W+WW

C**** IS THERE A POSSIBIUTY OF A QUARTET ?
IF(IEF3.NE.0) THEN 

0 **=*=* YES
C+*** QUARTET POSSIBLY PRESENT 

IM=IND4(JJ)
IMA=IABS(IM)
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IF(IMA.EQ.O) GOTO 110 
WW=ABS(WT(IMA))
IF(WW.LT.WLIM) GOTO 1100
w = w *w w
1PI=IND5(JJ)
ENDIFIF 

110 EE=EEE(JJ)*W
IF(IMA.GT.O) GOTO 9110 

IF(TEST)TIIEN 
VECX=EE*VEC(EEE(JJ))
EALF(LL)=EALF(LL)+VECX 
T ALF(LL)=T ALF(LL)+EE*EE-VECX* VECX 
ENDIFIF 

9110 IP=IND5(JJ)+21G0
I F(IABSCENT.EQ.O) THEN 

c +*** NON-CENTROSYMMETRIC 
IP=IP+ISIGN(IPHAZ(ILA)JL)

C write(*,*)IPHAZ(ILA)JNCYCLEJP
IF(IRA.GT.O) IP=IP+ISIGN(1 PI 1AZ(IRA),IRK)
IF (IEF3.NE.0 .AND. IMA .GT. 0) IP=IP+ISIGN(IPHAZ(IMA)JM) 
I ARG=MOD(IP,360)+1 

C write(*.*) IP.NCYCLE
SUMNUM(LL)=SUMNUM(LL)+EE*STABLE(IARG)
SUMDEN (LL)=SUMDEN(LL)+EE* CT AB LE(I ARG)

IF(IMA.GT.0) THEN
SUMN(LL)=SUMN(LL)+EE*STABLE(IARG)
SUMD(LL)=SUMD(LL)+EE*CTABLE(IARG)
ENDIFIF

ELSE
C**** CENTROSYMMETRIC 

150 IP=IPHAZ(ILA)+IP
IF(IRA.GT.O) IP-IP+IPI LAZ(IRA)
IF(IMA.GT.O) IP=IP+IPHAZ(IMA)
IF(MOD(IP,360) .NE.O) EE=-EE 
SUMNUM(LL)=SUMNUM(LL)+EE 
IF(IMA.GT.O) SUMN(LL)=SUMN(LL)+EE 
ENDIFIF 

1100 CONTINUE 
1200 ID=15*IABS(MKANG(LL))-14

IF(ID.EQ.l.OR.IABSCENT.EQ.l) GO TO 1300
T2=SUMNUM(LL)+STABLE(ID)+SUMDEN(LL)*CrABLE(ID)
SUMNUM(LL)=T2*STABLE(ID)
SUMDEN(LL)=T2*CT ABLE(ID)

1300 ALFA=(SUMNUM(LL>-SUMN(LL))+*2+(SUMDEN(LL)-SUMD(LL))+*2 
IF(ALFA.EQ.O.O) GOTO 1490 
IF (MKANG(LL).LE.O) GOTO 1320 
SALF-SALF+ALFA
IF(ALFA.LT.CUT.ANDIRAND.EQ.O) GOTO 1490 
WATE=1.0
IF(ALFA.LT.25.0) WATE-0.2+ SQRT(ALFA)
IF(WT(LL) .LT. 0.0 .AND. WATE .LT. (-WT(LL))) GO TO 1320 
WT(LL)=AMAX1(W ATE,0.15)

1111 IF(IABSCENT.NE.l) THEN
PHAZ=RTOD*ATAN2(SUMNUM(LL),SUMDEN(LL))
ELSE
PI IAZ=90.0-SIGN(90.0,SUMNUM(LL))
ENDIFIF

I F(PI IAZ.LE.0.0) PHAZ=PHAZ+360.0 

IPI IAZ(LL)=PI IAZ+0.5
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CODE TO MISS OUT THE FOLLOWING TANGENT REFINEMENT
IF(NCYCLE2.GE. 1 .AND. NCYCLE2 LE. MAXCY.AND.ANEA)GOTO 3333 
IF(NCYCLE2.GT.MAXCY.AND.NCYCLE2.LE.MAXCY+3.AND.ANEA )GOTO 1320 

END OF CODE 
IF(ANEA)THEN 
GOTO 3333 
ELSE
GOTO 1320 
ENDIFIF

TO DETERMINE WHETHER USE CENTRO /NONCENTRO CODE 
3333 IF(ABS(MKANG(LL)).EQ.l)GOTO 4444

SIMULATED ANNEALING CODE FOR CENTROSYMMETRIC CASE 
CODE TO CALCULATE RANDOM NUMBERS BETWEEN O AND 1 

RNUMB=RAND(IXRAN JYRAN)
CODE TO WORK OUT SHELDRICKS PROBABILITY 

PR1=ABS(SUMNUM(LL)*SIGD*0.5) /2 
PROBPL=0.5*TANH(PR1)+0.5 

IF (PROBPL LT. 0.5) PROBPL=l-PROBPL

CODE TO CALCLATE (1-PROB) AND THUS RATIO 
PROBMI=( 1-PROBPL)

CODE TO CALCULATE BOLTZMANN RATIO 
RATIO=0.5*((PROBMI /PROBPL)) /(EXP(BETAS))

CODE TO DETERMINE WHETHER PHASES SHOULD BE FLIPPED 
IF((IPHAZ(LL).EQ. 180) .AND. (RATIO .GT. RNUMB))IHEN 

COUNT NUMBER OF FLIPPED PHASES 
FUPHAZ=FUPHAZ+1

IPHAZ(LL)=0
SUMNUM(LL)= -SUMNUM(LL)

ELSE
IF((IPHAZ(LL) .EQ. 0) .AND.(RATIO.GT.RNUMB))THEN
FLIPHAZ=FUPHAZ+1
IPHAZ(LL)=180
SUMNUM(LL)= -SUMNUM(LL)

ELSE
IF((IPHAZ(LL).EQ.360) .AND.(RATIO .GT.RNUMB))THEN 
FLIPHAZ=FLIPHAZ+1

IPHAZ(LL)=180
SUMNUM(LL)= -SUMNUM(LL)

ELSE
IF(IPHAZ(LL) .EQ.360) THEN
IPHAZ(LL)=0
ENDIFIF
ENDIFIF
ENDIFIF
ENDIFIF

TO MISS OUT THE NONCENTROSYMMETRIC CODE 
GOTO 1320

SIMULATED ANNEALING CODE FOR NONCENTROSYMMETRIC STRUCTURES

CODE TO CALCULATE RANDOM NUMBER BETWEEN O AND 1 
4444 RANON=RAND(IX RAN JYRAN)

CODE TO DETERMINE SHIFT
UPPER=(4*BETAS*ALFA)+(ALOG(RANON))
DENOM =(4*BETAS*ALFA)-(ALOG(RANON))
SHIFT=UPPER /DENOM 

CODE TO CONVERT SHIFT INTO DEGREES 
SHIFT=RTOD*ACOS(SHIFT)

CODE TO DETERMINE THE SIGN OF THE SHIFT 
RSIGN=RAND(IXRAN,IYRAN)
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C CODE TO CONVERT SHIFT INTO INTEGERS

SHHrr=AINT(SHIFO

C CODE TO ADD SHIFT ONTO RANDOM PHASE
IPII AZ(LL)=IPI IAZ(LL)+SHIFT 

C CODE TO CALCULATE TOTAL SHIFr
TSHIF=TSI nF+ABS(SHIFT)

C CODE TO CALCULATE NUMBER OF SIHFrS
NSIBF=NSinF+l

1320 ALPI !A(LL)=ALFA

IF ( TCST ) P ALF(LL)=EALF(LL)*EALF(LL)+TALF(LL)

IF(LI.GT.LS) GO TO 1490 
WLL=ABS(WT(LL))
DO 1450 JJ=LI,LS
IPI=0
IMA=0
IFR=0
IFM=0
WR=1.0
WM=1.0
m=i
IL=IND3(JJ)
ILA=IABS(IL)
WL=ABS(WT(ILA))
IFL=ISIGN(IPI IAZ(ILA),IL)
(F(WL.GE.WLIM) BI=2 
IRK=IND2(JJ)
IRA=IABS(IRK)
WR=ABS(WT(IRA))
if (w r .g e .w u m ) m =ra+i
IF(m.LT.2) GOTO 1450 
1FR=ISIGN(IPHAZ(IRA)J[RK)
IF(IEF3,EQ.0) GOTO 215 
I F(IND4(JJ).EQ.O) GOTO 215 

C**** POSSIBLE QUARTET 
IM=IND4(JJ)
IF(IM.NE.O) THEN 

IMA=IABS(IM)
WM=ABS(WT(IMA))
i f (w m .g e .w l im ) n i= in+ i
IF(III.LT.3) GOTO 1450 
IFM=ISIGN(IPHAZ(IMA)J(M)

ENDIFIF 
215 IP=IND5(JJ) + i n  

c ***+ p a r t  1 : PHASE OF IL
IF(WR.LT.WLIM) GOTO 260 
IF(WM.LT.WUM) GOTO 300 
EE=EEE(JJ)*WR*WLL*WM 
IF(IMA.GT.O) GOTO 9215 

IF(TEST)THEN 
VECX=EE* VEC(EEE(J J))
EALF(ILA)=EALF(ILA)+VECX 
T ALF(ILA)=T ALF(BLA)+EE* EE-VECX* V ECX 
ENDIFIF

9215 IF(IABSCENT.EQ.l) GOTO 270 
C**** NON-CENTROSYMMETRIC

IARG=MOD(2160-(IFR-IPHAZ(LL)+IFM+IP)+ISIGN( 1 ,IL).360)+1 
SUMNUM(ILA)=SUMNUM(ILA)+EE* ST AB LE(IARG) 
SUMDEN(ILA)=SUMDEN(ILA)+EE*CTABLE(IARG)



IF(IMA.GT.O) THEN
SUMN(ILA)=SUMN(ILA)+EE*STABLE(IARG)
SUMD(ILA)=SUMD(ILA)+EE*CTABLE(IARG)
ENDIFIF 

GOTO 260 
C**** CENTROSYMMETRIC

270 IARG=IPHAZ(IRAHPHAZ(LL)+2160
IF(IMA.GT.O) IARG=IARG+IPHAZ(IMA)
IF(MOD(IARG+IP,360).NE.O) EE=-EE 
SUMNUM(ILA)=SUMNUM(ILA)+EE 
IF(IMA.GT.O) SUMN(ILA)=SUMN(ILA)+EE 

c **** PART2 PHASE OF IR
260 IF(WL.LT.WLIM) GOTO 1450 

IF(WM.LT.WUM) GOTO 300 
EE=EEE(JJ) *WLL* WL* WM 
IF(IMA.GT.O) GOTO 9260 

1F(TEST)THEN 
VECX=EE* VEC(EEE( J J))
EALF(IRA)=EALF(IRA)+VECX 
TALF(IRA)=TALF(IRA)+EE* EE-VECX* VECX 
ENDIFIF

9260 IF(IABSCENT.EQ.O) THEN 
C**** NON-CENTROSYMMETRIC

IARG=MOD(2160-(IFLr-IPHAZ(LL)+IFM+IP)*ISIGN (1 JRK),360)+1 
SUMNUM(IRA)=SUMNUM(IRA)+EE*STABLE(IARG) 
SUMDEN(IRA)=SUMDEN(IRA)+EE* CT AB LE(IARG) 
IF(IMA.GT.0) THEN

SUMN(IRA)=SUMN(IRA)+EE*STABLE(IARG)
SUMD(IRA)=SUMD(IRA)+EE*CTABLE(IARG)
ENDIFIF

ELSE
C**** CENTROSYMMETRIC

250 I ARG=IPHAZ(ILA)+IPHAZ(LL)+IP+2160
IF(IMA.GT.O) IARG=IARG+IPHAZ(IMA) 
IF(MOD(IARG,360)JNE.0) EE=-EE 
SUMNUM(IRA)=SUMNUM(IRA)+EE 
IF(IMA.GT.0) SUMN(IRA)=SUMN(IRA)+EE 

ENDIFIF 
C**** PART3 :PHASE OF IM

300 IF(WR.LT.WUM) GOTO 1450 
IF(IMA.EQ.O) GOTO 1450 

330 EE=EEE(JJ)*WLL*WL*WR
IF(IABSCENT.EQ.O) THEN 

c **** NON-CENTROSYMMETRIC
I ARG=MOD(2160-(IFL-IPHAZ(LL)+IFR+IP)*ISIGN( 1 ,IM) ,360)+1 
SUMNUM(IMA)=SUMNUM(IMA)+EE* ST AB LE(IARG) 
SUMDEN(IMA)=SUMDEN(IMA)+EE*CTABLE(IARG) 
SUMN(IMA)=SUMN(IMA)+EE*STABLE(IARG) 
SUMD(IMA)=SUMD(IMA)+EE*CTABLE(IARG)
ELSE

C**** CENTROSYMMETRIC
350 I ARG=IPHAZ(ILA)+IPHAZ(LL)+IPHAZ(IRA)+IP+2160

IF(MOD(IARG.360) .NE.0) EE=-EE 
SUMNUM(IMA)=SUMNUM(IMA)+EE 
SUMN(IMA)=SUMN(IMA)+EE 
ENDIFIF 

1450 CONTINUE 
1490 SUMNUM(LL)=0.0 

SUMDEN(LL)=0.0 
SUMN(LL)=0.0 
SUMD(LL)=0.0 
EALF(LL)=0.0 
TALF(LL)=0.0 

1500 CONTINUE
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C CALCULATE THE AVERAGE SHUT
M smr=TSinr /n s i i i f

C CODE TO STOP 11 IE REFINEMENT AND GET 1'OMS PRODUCED
IF(NCYCLE2 LE. MAXCY+2. AND. ANEA) GOTO 1000 
IF(NCYCLE2 .GT.MAXCY+2.AND. ANEA)GOTO 980 

C+**+ FAS I AN CONTROL STATEMENTS 
981 IF(IRAND.NE.l) 11IEN

CUT=AMAX1(0.65+CUT.0.05)
IF(CUT.GT.1.5) GO TO 1000 
IF (NNN.EQ.NDET) GOTO 1530 

ELSE
C++** RANTAN CONTROL PARAMETERS SET 

IF(NCYCLE-6) 1000.340.1530 
ENDIFIF 

340 IF(IEFOM.EQ.O) GOTO 1520
IF(IFOM(1).EQ.O) GOTO 1540 

c **** CALCULAIE FIRST EARLY FIGURE OF MERIT 
CALL EFOM(NNNJREJ,VALUE)
IF (IREJ.EQ.l) GOTO 5000 

C**** 2ND FIGURE OF MERIT WHICH IS BASED ON NQEST 
1540 IF(IFOM(2).EQ.O) GOTO 1520 

CALL NQEST 
IF(IQTOT.EQ.O) GOTO 1520 

I F(CFOM.GT.CUTT(2)) THEN 
IREJ=1 
GOTO 5400 
ENDIFIF

1520 IF(IRAND.EQ.l) GOTO 1530 
NNN=NDET 
GO TO 1000

1530 IF((IFOM(3).EQ.0.OR.CUT.GT.0.34.OR.CUT.LT.0.33) AND.IRAND.EQ 0)
1 GOTO 1550

IF(.N0T.(IF0M(3).EQ.1.AND.(NCYCLE.EQ.6.0R.NCYCLE.EQ.9)).AND.IRAND 
1 .EQ.l) GOTO 1550 

C**** CALCULATE THIRD EARLY FIGURE OF MERIT 
CALL EFOM(NDETJREJ.VALUE)
IF (IREJ.EQ.l) GOTO 5200 

1550 IF((SALF-SUMALF) /SALF.GT.0.02.AND.MARK.EQ.0) GO TO 1000 
IF (MARK.NE.0) GOTO 1700 
DO 1600 LU1.NUMB  

1600 MKANG(LL)=IABS(MKANG(LL))
1700 MARK=MARK+1 

C**** 2 CYCLES OF REFINING ALL PHASES AT END 
IF(MARK.LE.2) GO TO 1000 

C + + * *  CALCULATE FINAL F.O.M.S AND OUTPUT RESULTS 
980 RESID = 0.0 

SUMEO = 0.0 
SUMALF = 0.0 
NUNDET = NDET-NUMB 
ALFEST=0.0 
DO 4920 LL=1.NUMB 

IF (WI(LL) .EQ. 0.0) THEN 
NUNDET = NUNDET + 1 
GOTO 4920 
ENDIFIF 

ALPHA(LL) = SQRT(ALPHA(LL))
C write(*,*)ALPHA(LL)

PALF(LL) = SQRT(PALF(LL))
ALFEST = ALFEST + PALF(LL)
SUMALF = SUMALF + ALPHA(LL)

C write(+.*)SUMALF,ALPHA(LL)
C IF (IPHAZ(LL) .LE. 0) IPHAZ(LL) = IPHAZ(LL) + 360

SUMEO = SUMEO + PALF(LL)
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4920 CONTINUE 
C**** CALCULATE ABSOLUTE FIGURE OF MERIT 
C write(*,*)SUMALF,ALFRAN, ALFEST

ABSFOM = (SUMALF -  ALFRAN) / (ALFEST -  ALFRAN)
C**** CALCULATE FINAL PSI ZERO FIGURE OF MERIT 

CALL EFOM(NDETJ.PSIZRO)
PSIZRO = PSIZRO / AMINl(1.3,ABSFOM)

C**** CALCULATE A SCALED RESIDUAL 
SC = 1.0
IF (IHVY.GT.O) SC = AMIN1(1.3.SQRT(AMAX1(ABSFOM,1.0)))
DO 4930 LL=1,NUMB 

IF (WT(LL).NE.0.0) THEN 
RESID=RESDD+ABS(SC*PALF(LL)-ALPHA(LL))
ENDIFIF 

4930 CONTINUE
IF (SUMEO.LE.O.l) THEN
RESID = 100.0
ELSE
RESID = 100.0 * RESID / SUMEO 
ENDIFIF 

CALL NQEST
C++++
C++++ CALCULATE THE NEW FIGURE OF MERIT AS A FINAL F.O.M.
C++++

CALL MYFOM(NUMSET,RFT,RMS.GLIK,STABLEJTLE)
C++++
C++++ WRITE OUT THE NEW FIGURE FIGURE OF MERIT IN PLACE OF NQEST AND
C++++ PUT LOGUK AT THE END
C++++

5555 WRITE(NOUT.4950)NUMSET.ABSFOM.PSIZRO.RESID.RN4.GLIKNUNDETNCYCLE 
4950 FORMAT(lH+,I4,F8.4JF7.3,2F8.2,F9.2J4/('>I2 ,y )

IF(LEVEL.GT.O) WRITE(NSPEC,7002) NUMSET.ABSFOM.PSIZRO,RESID,
1 RN4 .GLIKNUNDETNC YCLE 

CALL FLUSH(NSPEQ 
7002 FORMAT(lH J4.F7.2IF8.3,F8.2JT.2,F8.2J11,112)

C**** PACK WEIGHTS AND PHASES IN TO ONE WORD 
DO 4935 LL=1,NUMB 
IF(WT(LL).LT.WMIN) IPHAZ(LL)=360 

4935 IPHAZ(LL)=IPHAZ(LL)*LK10+INT(WT(LL)* 100.0)
WRITE (NTAPED) NUMSET.ABSFOM,PSIZRO.RESID,RN4.GLIK,aPHAZa).

1 1=1,NUMB)
C**** TEST FOR A VERY PROMISING SOLUTION 

IF(ISTP.EQ.l) RETURN
IF (PSIZRO.LT.AMN(2)) AMN(2) = PSIZRO + 0.05 
IF (RESID.LT.AMN(3)) AMN(3) = RESID + 0.5 
IF (PSIZR0.GT.1.3.0R.PSIZR0.GT.AMN(2)) RETURN 
IF (RESID.GT.20.0.0R.RESID.GT.AMN(3)) RETURN 
IF (CFOM.GT.-.15.AND.NQTOT.GT.O) RETURN 

C**** LOOKS LIKE A GOOD MINIMUM IN PHASE SPACE 
IREJ = -1  
RETURN

C**** OUTPUT RELEVANT REJECTION MESSAGE 
5000 WRITE (NOUT.5100) ICC.NUMSET.VALUE 
5100 FORMAT (A1 .I4.10X/ Rejected because 1st. EFOM=',F6.3)

IF(LEVEL.GT.O) WRITE(NSPEC,7050) NUMSET.VALUE
CALL FLUSH(NSPEC)

7050 FORMAT(lH J4.10X,' Rejected because 1st. EFOM=',F6.3)
RETURN

5200 WRITE (NOUT.5300) ICCJWMSET,VALUE
5300 FORMAT (A1 .I4.10X/ Rejected because 3rd. EFOM=\F6.3)

IF(LEVEL.GT.O) WRITE(NSPEC,7051) NUMSET.VALUE
CALL FLUSH(NSPEC)

7051 FORMAT(lH J4.10X,' Rejected because 3rd. EFOM=\F6.3)
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RETURN
5400 WRITE(NOUT,5500) ICC.NUMSET.CFOM 
5500 F0RMAT(A1 J4.10X,' Rejected because 2nd. EFOM=',F6.3) 

IF(LEVEL.GT.O) WRITE(NSPEC,5600) NUMSET.CFOM 
CALL FLUSH(NSPEC)

5600 F0RMAT(1H J4.10X,' Rejected because 2nd. EFOM=\F6.3) 
RETURN 
END
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SUBROUTINE SWTR(IREJ.SIGD) S W T R
C**** STATISTICALLY WEIGinED TANGENT FORMULA 

DIMENSION CTABLE(360)
COMMON /ANNEAL /ANEA
COMMON /IO /NSPEC.NIN.NOUT .NTAPEA.NTAPEB .NT APEC NT APED NT AFEE.

1 NTAPEFNTAPEG,IH(200).A(200).ICHl(10),ICH2(10)rITLE(68).IR(68),
2 ICALLNRCNCHNREAD.IENDNREF.PI.DTOR.MAXIUSPFLGZERO.LK(32).
3 IDEF,ICHKJSYMP,LEVELJFLOW(25).KUSE(40).INXTIIRDY.RTOPJ4ULL.
4 IDIF.IVDIF.KARLE.il IVY .IGPFLNDIFF.ISPCH(30)NTAPEM.I VERB 

COMMON /BLK1 /IND2(80000)JND3(80000).IND4(80000)JND5(80000).
1 EEE(80000),
1 SUMNUM(800),SUMDEN(800), ALPI IA(800) ,WT(800) JPI I AZ(800).
2 10RDE(1300).MKG(800).PAI.F(800),IZ(800).MKANG(800).EALF(800).
3 LIM(1301),MAXUKL(3),SUMN(800)(SUMD(800),PAD1(346)

COMMON /BLK2 /IS(2.3,24),TS(3.24)fP(6),CX(9)JNSYMfICENT.
1 NEX,LATT,LAT,PTS.KSYS,IAPXNGP,NrOTNASUNRD,AMX(5).
2 AMN(5).UNE(17).UNEX(17).WTFOM(5)JMKfn'AN.IPUBJSKIPjnJM.WLIM
3 .PAD2(1302)

COMMON /BLK3 /STABLE(450)NQ1(500).NQ2(500).AQ(500),NQTOTNQ4.NQ5.
1 FOM(400) J4J5 .IQTOT.CFOM .RN4 ,RN5 JSTP.CVR( 10). V VR( 10) N  A( 10).
2 NW(10)NO(10),NK,SIGMA,PAD3( 170)

COMMON /BLK4 /TALF(800).RALF(800).ISPZRO(500).PAD4(448)
COMMON /BLK5 /NUMB,NUMSETJNRAL.NANT(4).

1 ALPRAN.NSXJEF3 JEF4 JDEF5 JNDET.NAT JFOM(3) JEFOM JZRO JXRAN.
2 IYRAN4RAND,WMINJWMIN.NSREQ.CUTr(3).ICC.lMP.PAD5(5)

LOGICAL ANEA
EQUIVALENCE (STABLE(91).CTABLE( 1))
EQUIVALENCE (LK16.LK(16)).(LK10.LK(10)).(LK5.LK(5)).(LK2.LK(2)).

1 (LK17,LK( 17)) ,(LK6,LK(6))
C**** II /I0 (BESSEL FUNCTION)

VEC(U)=U*(U+0.4807) /((U+0.8636)*U+1.3943)
RN4=0.0
RN5=0.0
CFOM=0.0
SCALE=SIGMA /0.09 
NCYCLE=0 
MARK = 0
NNN = MINOUOO. NDET)
IF(IRAND.EQ.l) NNN=NDET 
IF (KARLE.EQ.l) NNN=NDET 
CUT=12.5
IF(KARLE.EQ.l) CUT=2.0

C CODE TO INITIALISE THE BOLTZ VALUE
IF(ANEA)THEN 

BOLTZ=0.9

C CODE TO CALCULATE THE VALUE OF SHELDRICKS BETA
BETAS=-ALOG(B0LTZ) /SQRT(( ALFRAN* *2) /NNN)

C CODE TO SET THE MAX NUMBER OF CYCLES
MAXCY=80

C CODE TO INITIALISE THE TOTAL SHIFT AND NUMBER TIMES SHIFT CAI
TSHIF=0.0 
NSHIF=0.0 

C END OF ADDITON
NDAMP=4

C CODE TO INITIALISE THE NUMBER OF FLIPPED PHASES
FUPHAZ=0.0 

ENDIFIF

NCYC=-2*KARLE
C**** DO NOT REFINE STARTING PHASES IF HEAVY ATOM(S) PRESENT 

IF(IHVY.GT.O) NCYC=0 
SALE = 0.0
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NNIN=0

C**** INTIIALISE ARRAYS AT START OF EACH CYCLE 
1000 DO 1010 1=1 NUMB 

FUPHAZ=0.0 
SUMNUM(I)=0.0 
SUMDEN(I)=0.0 
SUMDa)=0.0 
SUMNa)=0.0 
EALF(I)=0.0 
TALF(I)=0.0 
RALF(I)=0.0
IF(NCYC.LT.0) MKANG(I)=IABS(MKANG(I))
IF(ABS(WT(I)).LT.WLIM) IPHAZa)=-l 

1010 CONTINUE
SUMALF=SALF
SALF=0.0
NCY CLE=NCY CLE+1

C CODE TO CALCULATE THE BETA FOR NON /CENTRO STRUCTURES 
IF (ICENT .EQ.l .AND. ANEA)THEN 

B ETAS=BETAS+0.03 
ELSE

IF(NCYCLE .LE.5 .AND. ANEA) BETAS=BETAS+0.001 
IF(NCYCLE.GT.5.AND.NCYCLE.LE. 15 .AND. ANEA)BETAS=BETAS+0.03 
IF(NCYCLE.GT.15 .AND. NCYCLE .LE. 40 .AND. ANEA)BETAS =BETAS+0.4 
IF(NCYCLE.GT.40.AND.NCYCLE.LE.60 .AND. ANEA)BETAS=BETAS+1.0 
IF(NCYCLE .GT.60.AND.NCYCLE.LE.80 .AND. ANEA) BETAS=BETAS+1.5 

ENDIFIF 
NEXT=NNIN 
NNIN=0

C**** CALCULATE TOP & BOTTOM OF TANGENT FORMULA FOR EACH REFLEXION 
DO 1250 1=1 NNN  
LL=IORDE(I)
U=UM(LL)+1
LS=UM(LL+1)
IF(U.GT.LS) GO TO 1250
DO 1100 JJ=LI,LS
IMA=0
IFR=0
IFM=0
WTIMA=1.0
KN=7
IF(IPHAZ(LL).GE.O) KN=KN-1 
IL=IND3(JJ)
ILA=IABS(IL)
IF(IPHAZ(ILA).GE.O) KN=KN-2 
IF(KN.EQ.7) GO TO il0 0  
IRK=IND2(JJ)
IRA=IABS(IRK)

C*** AT LEAST A TRIPLET 
1047 I F(IPHAZ(IRA) .GE.0) KN=KN-3 

IF(KN.GT.4) GO TO 1100 
WTIRA=ABS(WT(IRA))
IF(IEF3.EQ.0) GOTO 1041 
IF(IND4(JJ).EQ.O) GOTO 1041 

C*** QUARTET
IM=END4(JJ)
IMA=IABS(IM)
KN=KN+4
IF(IPHAZ(IMA) .GE.0) KN=KN-4 
IF(KN.GT.6) GOTO 1100 
IFM=ISIGN( 1 .IPHAZ(IMA))
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WTTMA=ABS(WT(IMA))
1041 IP=IND5(JJ)

VECE=VEC(EEE(JJ))
IF(IEF3.EQ.O.OR.IRA.EQ.O) GOTO 1043 
IF(IMA.EQ.O.OR.KN.NE.l) GOTO 1043 

1043 GOTO( 1040,1040,1060,1050.1070) JKN 
C**** PHASE OF LL TO BE DETERMINED 

1040 EE=EEE(JJ)*ABS(WT(ILA))*WTTRA**WTIMA 
IF(IMA.LE.O) THEN 
VECX=EE* VECE 
EALF(LL)=EALF(LL)+VECX 
TALF(LL)=TALF(LL)+EE*EE-VECX*VECX 
RALF(LL)=RALF(LL)+EE*EE 
ENDIFIF

1042 IFL=ISIGN(IPHAZ(ILA) ,IL)
IFR=ISIGN(IPHAZ(IRA)JRK)
IARG=MOD(IFL+IFR+IFM+IP+2520,360)+1
SUMNUM(LL)=SUMNUM(LL)+EE*STABLE(IARG)
SUMDEN (LL)=SUMDEN(LL)+EE* CT AB LE(I ARG) 

IF(IMA.GT.0)THEN
SUMN(LL)=SUMN(LL)+EE*STABLE(IARG)
SUMD(LL)=SUMD(LL)+EE*CTABLE(IARG)
ENDIFIF 

IF(KN.NE.l) GO TO 1100 
C**** PHASE OF IL TO BE DETERMINED

1060 EE=EEE(JJ)*ABS(WT(IRA)*WT(LL))+WTIMA
IF(IMA.LE.O) THEN
VECX=EE* VECE
EALF(ELA)=EALF(ILA)+VECX
TALF(ILA)=T ALF(ILA)+EE*EE-VECX* VECX
RALF(ILA)=RALF(ILA)+EE* EE
ENDIFIF

1061 1 F(KN.NE. 1.AND.IRA.GT.0) EFR=ISIGN(IPHAZ(IRA)JRK)
IARG=MOD(2520-(IFR+DFM-IPHAZ(LL)+IP)*ISIGN( 1 JL).360)+1 
SUMNUM(ILA)=SUMNUM(ILA)+EE*STABLE(IARG)
SUMDEN(ILA)=SUMDEN(ILA)+EE*CTABLE(1 ARG)

IF(IMA.GT.O) THEN
SUMN(ILA)=SUMN(ILA)+EE*STABLE(IARG) 
SUMD(ILA)=SUMD(ILA)+EE* CTABLE(IARG)
ENDIFIF 

IF(KN.NE.l) GOTO 1100 
IF(IRA.EQ.0) GOTO 1100 

C**** PHASE OF IRK TO BE DETERMINED
1050 EE=EEE(JJ)*ABS(WT(ILA)*WT(LL))*WTIMA

IF(IMA.LE.O) THEN
VECX=EE*VECE
EALF(IRA)=EALF(IRA)+VECX
T ALF(IRA)=TALF(IRA)+EE* EE-VECX* VECX
RALF(IRA)=RALF(IRA)+EE*EE
ENDIFIF

1051 IF(KN.NE.l) IFL=ISIGN(IPHAZ(ILA)JL)
IARG=MOD(2520-(IFL+IFM-IPHAZ(LL)+IP)*ISIGN(1 JRK),360)+1 
SUMNUM(IRA)=SUMNUM(IRA)+EE*STABLE(IARG)
SUMDEN(I RA)=SUMDEN(IRA)+EE1'CTABLE(IARG) 

IF(IMA.GT.O) THEN
SUMN(ERA)=SUMN(IRA)+EE*STABLE(IARG)
SUMD(IRA)=SUMD(IRA)+EE*CTABLE(IARG)
ENDIFIF 

IF(KN.NE.l) GOTO 1100 
IF(IMA.EQ.0) GOTO 1100 

C**** QUARTET 
1070 EE=EEE( J J)* AB S( WT(LL) * WT(ILA)) * WHRA

IARG=MOD(2520-(IFL+IFR-IPHAZ(LL)+IP)*ISIGN( 1 ,IM) ,360)+1 
SUMNUM(IMA)=SUMNUM(IMA)+EE*STABLE(IARG)
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SUMDEN(I MA)=SUMDEN(IMA)+EE*CTABLE(I ARG)
SUMN(IMA)=SUMN(IMA)+EE*STABLE(IARG)
SUMD(IMA)=SUMD(IMA)+EE*CTABLE(IARG)
IF(KN.NE.l) GOTO 1100 

1100 CONTINUE 
1250 CONTINUE 

C**** UPDATE PHASES AT END OF CYCLE 
DO 1500 1=1,NNN 
LL=IORDE(I)
IF(NCYC.EQ.(-2).AND.IPHAZ(LL).LT.O) GO TO 1500 
IF (MKANG(LL).LE.O) GOTO 1490 
ID= 15*MKANG(LL)-14 

IF(ED.NE.l) THEN
T2=SUMNUM(LL)*STABLE(ID)+SUMDEN(LL)*CTABLE(ID)
SUMNUM(LL)=T2*STABLE(ID)
SUMDEN(LL)=T2*CTABLE(ID)
ENDIFIF

1300 ALFA=(SUMNUM(LL)-SUMN(LL))**2+(SUMDEN(LL)-SUMD(LL))*+2 
IF(ALFA.EQ.O.O) GOTO 1500 
WATE=1.0
IF(ALFA.LT.25.0) WATE=0.2*SQRT(ALFA) 
PALF(LL)=TALF(LL)+EALF(LL)*EALF(LL)
WX1= ALFA / PALF(LL)
IF (WX1.GT.1.03) WX =1.03-(WX1-1.03)*SCALE 
IF(WX1.GT.1.03)WX=WX /((1.2178*WX-1.0698)*WX+0.858)
IF(WX.LT.WATE.AND.WX1.GT. 1.03) WATE=WX 
IF(WT(LL).LT.0.0.AND.ALFA.LT.ALPHA(LL)) GO TO 1500 
SALF = SALF + WATE 
WT(LL)=AMAX1 (W ATC.0.15)
PHAZ=RTOD*ATAN2(SUMNUM(LL),SUMDEN(LL))
IF(PHAZ.LT.0.5) PHAZ=PHAZ+360.0 
IPHAZ(LL)=PHAZ+0.5 

C CODE TO MISS OUT THE FOLLOWING TANGENT REFINEMENT
IF(NCYCLE.GE.1.AND.NCYCLE.LE.MAXCY .AND. ANEA)GOTO 3333 
IF(NCYCLE.GT.MAXCY.AND.NCYCLE.LE.MAXCY+5.AND.ANEA)GOTO 1320

IF(ANEA)THEN 
GOTO 3333 

ELSE 
GOTO 1320 

ENDIFIF

C TO DETERMINE WHETHER USE CENTRO /NONCENTRO CODE
3333 IF(ABS(MKANG(LL)).EQ.l)GOTO 4444

C SIMULATED ANNEALING CODE FOR CENTROSYMMETRIC CASE

C CODE TO CALCULATE SHELDRICKS PROBABILITY
PR1=ABS(SUMNUM(LL)*SIGD) /2 
PROBPL=0.5*TANH(PR1)+0.5 

IF (PROBPL .LT. 0.5) PROBPL=l-PROBPL 
C CODE TO CALCLATE (1-PROB) AND THUS RATIO

PROBMI=( 1-PROBPL)
C CODE TO CALCULATE BOLTZMANN RATIO

RATTO=0.5*((PROBMI /PROBPL) /EXP(BETAS))
C CODE TO CALCULATE RANDOM NUMBERS BETWEEN O AND 1

RNUMB=RAND(IXRAN JYRAN)
C CODE TO DETERMINE WHETHER PHASES SHOULD BE FLIPPED

IF((IPHAZ(LL).EQ. 180) .AND. (RATIO .GT. RNUMB))THEN 
C TO KEEP A COUNT OF THE FLIPPED PHASES

FUPHAZ=FLIPHAZ+1

IPHAZ(LL)=0
SUMDEN(LL)= -SUMDEN(LL)

ELSE
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IF((IPHAZ(LL) .EQ. 0) .AND.(RAI10.GT.RNUMB))THEN 
FLIPI IAZ= FLIPI IAZ+1 
IPI IAZ(LL)=180
SUMDEN(LL)= -SUMDEN(LL)

ELSE
IF((IPHAZ(LL).EQ.360) .AND.(RATK) GT.RNUMB))THEN
FLIPI L\Z=FLIP1 IAZ+1
IPIIAZ(LL)=180
SUMDEN(LL)= -SUMDEN(LL)

ELSE
IF(IPHAZ(LL).EQ.360) THEN 

IP1LAZ(LL)=0 
ENDIFIF 
ENDIFIF 
ENDIFIF 
ENDIFIF 
GOTO 1320

C CODE TO CALCULA1E RANDOM NUMBER BETWEEN O AND 1
4444 RANON=RAND(IXRANtIYRAN)

C SIMULATED ANNEALING CODE FOR NONCENTROSYMMETRIC STRUCTURES
C CODE TO DETERMINE ALFA

ALFA=SQRT((SUMNUM(LL)-SUMN(LL))**2+(SUMDEN(LL)-SUMD(LL))**2)
C CODE TO DETERMINE SHIFT

UPPER=(ND AMP* BET AS*ALFA)+(ALOG(R AN ON))
DENOM =(ND AMP* BET AS* ALFA)-( ALOG( R ANON))
SI BFT=UPPER /DENOM 

C CODE TO CONVERT SHIFT INTO DEGREES
SHIFT=RTOD*ACOS(SHIFr)

C CODE TO DETERMINB HIE SIGN OF HIE SHIFr
RSIGN=RAND(IXRANJIYRAN)
I F(RSIGN.LT.0.5)SI BFT=-SI nFT 

C CODE TO CONVERT SHIFT INTO INTEGERS
SI IIFT=AINT(SHIFT)
IPI IAZ(LL)=IPHAZ(LL)+SI BFr

C CODE TO CALCULATE TOTAL SHIFr
TSI HF=TSHIF+ABS(SI HIT)

C CODE TO CALCULATE NUMBER OF SIBFIS
NSIHF=NSHIF+1 

1320 ALP1 IA(LL)=ALFA
IF(KARLE.EQ.1.AND.WT(LL).GT.0.9) MKANG(LL)=-IABS(MKANG(LL))

1490 NNIN=NNIN+1 
1500 CONTINUE 

C CALCULATE THE AVERAGE SHIFr
MSHIF=TSinF /NSIBF 

C CODE TO STOP THE REFINEMENT AND GET FOMS PRODUCED
IF(NCYCLE .LT. MAXCY+5 .AND. ANEA) GOTO 1000 
IF(NCYCLE .EQ. MAXCY+5 AND. ANEA)GOTO 1620

981 IF(KARLE.EQ.O.OR.IRAND.EQ.1)GOTO 1540 
C**** KARLE RECYCLING CONTROL STATEMENTS 

NCYC=NCYC+1 
!F(NCYC.LE.0) GO TO 1000 
IF(MARK.GT.O) GO TO 1520
!F(NNIN.GT.NEXT.AND.NCYC.LT.4.AND.NNIN.LT.NUMB-5) GO TO 1000 
DO 1515 LL=1W M B  

1515 MKANG(LL)=IABS(MKANG(LL))
1520 MARK=MARK+1

IF(MARK.LE.2) GO TO 1000 
IF(IRAND.EQ.l) GOTO 1620 
WRTTE(NOUT,1530) NNIN 

1530 FORMAT( / /26X.' Number of phases generated for Fourier =',I6)
RESID=0.0

Page 5 o f swlr2.F



swtr2.F

ABSFOM=1.0 
PSIZRO=1.0 
RN4=-1.0 
RN5=-1.0 
NUMSET=1 
ISTP=1 
GO TO 1890 

C**** SWTR CONTROL STATEMENTS 
1540 CUT=AMAX1 (0.5* CUT ,0.05)

LF(CUT.GT.O.l) GOTO 1000 
IF(NNN.EQ.NDET) GO TO 1550 
NNN=MIN0(NNN+NNN /2.NDET)
GOTO 1000

1550 1F((SALF-SUMALF) /SALF.GT.0.02.AND.MARK.EQ.0) GO TO 1000 
IF (MARKEQ.3) GOTO 1620 
DO 1600 LL=1 JTUMB 

1600 MKANG(LL)=IABS(MKANG(LL))
MARK = MARK+1 
GOTO 1000

C**** CALCULATE AND OUTPUT FINAL FIGURES OF MERIT 
1620 ALFEST=0.0 

ALFRAN=0.0 
SALF=0.0 
SUMEO=0.0 
RESID=0.0
NUNDET=NDET-NUMB 
DO 1700 1=1,NUMB
IF (ABS(WT(I)).LT.0.05.0R.(IRAND.EQ.1.AND.INT(100.0*WT(I)).EQ

1 (-WMIN)))NUNDET=NUNDET+1 
IF (ABS(WT(I)).LT.0.05) GOTO 1700 
ALPHA(I)=SQRT(ALPHA(I))
PALF(I)=SQRT(PALF(I))
ALFEST=ALFEST+PALF(I)
ALFRAN=ALFRAN+SQRT(RALF(I))
SALF=SALF+ALPHA(I)
SUMEO=SUMEO+PALF(I)

1700 CONTINUE 
C**** CALCULATE ABSOLUTE FIGURE OF MERIT

ABSFOM = (SALF-ALFRAN) /(ALFEST-ALFRAN)
C**** CALCULATE FINAL PSIZERO FIGURE OF MERIT 

CALL EFOM(NDETJ.PSIZRO)
PSIZRO = PSIZRO / AMIN1(1.3,ABSFOM)

C**** CALCULATE A SCALED RESIDUAL 
SC = 1.0
IF (IHVY.GT.0) SC = AMIN1(1.3.SQRT(AMAX1(ABSFOM,1.0)))
DO 1720 LL=1MJMB
IF (WT(LL).EQ.O.O) GOTO 1720
RESID=RESID+ABS(SC*PALF(LL)-ALPHA(LL))

1720 CONTINUE
IF (SUMEO.LE.0.1) RESID = 100.0
IF (SUMEO.GT.0.1) RESID = 100.0 * RESID I SUMEO
CALL NQEST

C++++
C++++ CALCULATE THE NEW FIGURE OF MERIT AS A FINAL F.O.M.
C++++

CALL MYFOM(NUMSET.RFTfRMS,GUK.STABLE.ITLE)

C++++
C++++ WRITE OUT THE NEW FIGURE FIGURE OF MERIT IN PLACE OF NQEST AND
C++++ PUT LOGLIK AT THE END
C++++

5555 WRITE(NOUT,1880)NUMSET,ABSFOM,PSIZRO,RESID ,RN4.GUK,NUNDET,NCYCLE
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SUBROUTINE PHASE(MARK.ISETX.XP,DX) P H A S E
C**** GENERATE STARTING SETS OF PHASES FROM CONVERGENCE RESULTS

INTEGER GOL GEN, GOL COD 
DIMENSION IZ2(800),ALPHA2(800)

C COMMON BLOCK FOR THE GENERATION AND USE OF GOLAY CODE
COMMON / GOLAY C / GOL GEN ( 24, 0:11 ) .

GOL COD ( 24. 4096 ). CODE

C COMMON BLOCK FOR THE GENERATION AND USE OF HADAMARD CODE
COMMON / HADAM R / H 2 ( 2, 2) , H 4 ( 4, 4) , H 8 ( 8. 8).

H12 (12,12) , H16 (16,16) . H32 (32.32),
H64 (64,64),H128 (128,128)

INTEGER H2, H4, H8, H12, H16, H32, H64.H128
COMMON /IO /NSPEC.NIN.NOUT.NTAPEA.NTAPEB.NTAPEC.NTAPED.NTAPEE.

1 NT APEF ,NT APEGJH(200), A(200) JCH 1(10) ,ICH2( 10) JTLE(68) ,IR(68),
2 ICALL,NRC,NCH,NREAD.IEND,NREF,PI,DTOR,MAXH,ISPFLG,ZERO,LK(32),
3 IDEFJCHKJSYMP,LEVELJFLOW(25)^USE(40)JNXTJRDY,RTOD,NULL,
4 IDEFJVDIF,KARLEJHVYJGPFL,NDIFF.ISPCH(30)JTTAPEMJ[VERB 

COMMON /BLK1 /IND2(80000),IND3(80000) JND4(80000) ,IND5(80000),
1 EEE(80000),
1 SUMNUM(800),SUMDEN(800),ALPHA(800),WT(800)JPHAZ(800)JORDE(1300) 
2,MKG(800) ,PALF(800) JZ(800) ,MKANG(800) ,EALF(800) ,UM( 1301).
3 MAXHKL(3),SUMN(800),SUMD(800).E(800)

COMMON /BLK2 /IS(2.3,24),TS(3.24),P(6).CX(9)^fSYMJCENT,
1 NEX,LATT,LAT.PTS,KSYS,IAPX,NGP.NTOT,NASU.NRD.AMX(5),
2 AMN(5),LINE(17),UNEX(17).WTFOM(5)JMKJTANJPUBJSKIPHUM.WLIM
3 ,PAD2(1302)

COMMON /BLK3 /STABLE(450)JNQ 1(500),NQ2(500),AQ(500),NQTOT.NQ4.NQ5.
1 FOM(400) ,14,15 JQTOT,CFOM,RN4,RN5 JSTP.C VR( 10), W R ( 10) ,N A( 10),
3 NW(10),NO(10),NK,SIGMAJ)AD3(170)

COMMON /BLK5 /NUMB,NUMSET,NRAL,NANT(4),
1 ALFRAN.NSX JEF3 J[EF4,IEF5 .NDET.N AT JFOM(3),IEFOM,IZRO,IXRAN,
2 IYRANJRAND,WMINJWMINJ^SREQ,CUTT(3).ICCJMP,PAD5(5)

LOGICAL CODE
NAN = IABS(NANT(1))

1000 MARK = 0

IF (CODE)THEN 
CALL GOLAY 

ENDIFIF
IF(IRAND.EQ.O) GOTO 1300 

C*+** GENERATE NEXT SET OF RANDOM PHASES FOR RANT AN 
IXS=IXRAN 
IYS=IYRAN
IF(NUMSET.GT.NSREQ) RETURN
NNN=NDET
MS=0
MARK=1
IF (MS.EQ.l) GO TO 2040 

2010 DO 1035 1=1 .NUMB
IF (MKG(I)) 2020,2020,1030 

2020 IF (IABS(MKANG(I)).EQ.l) GO TO 1025 
MPH=15*IABS(MKANG(I)-1)
IRA=360t;RAND(IXRAN,IYRAN)+0.5 
IF (IRA.GT.180) MPH=MPH+180 
IZa)=MPH* 1000+IWMIN 
IF (I.EQ.NAN) IZa)=MPH* 1000+99 
GO TO 1035 

1025 MPH=360*RAND(IXRANJYRAN)+0.5 
IZ(I)=MPH* 1000+IWMIN 
IF (I.EQ.NAN) IZa)=MPH* 1000+85

Page 1 o f  golay.F



golay.F

GO TO 1035 
1030 IZ(I)=MKG(I)
1035 CONTINUE

WRITE(NOUT.1321) IXS.IYS 
1321 FORMAT(57X,' Random numbers IX.IY are: '.2112) 

MS=1
GO TO 1070 

2040 J=2+ICENT
DO 1045 I=J,4 
IF (NANT(I)) 1045,2060,1050 

1045 CONTINUE 
GO TO 2060 

1050 DO 1055 K=JJ
NANT(K)=-NANT(K)
NN=IAB S (N ANT (K))
IZ(NN)=-(IZ(NN)-200)+360200 

1055 CONTINUE 
GO TO 1070 

2060 DO 1065 I=J,4
NANT(I)=IABS(NANT(U)

1065 CONTINUE 
MS=0
GO TO 2010 

1070 DO 2300 LL=1NUMB 
I=IORDE(LL)
IF (LL.GT.NNN) GO TO 1081 
IWT=IZ(IH000*(IZ(I) /1000) 
ALPHA(I)=0.0025*IWT*IWT 
IF (IWT-100) 1080,2200,2200

1080 WT(I)=-0.01 * FLO AT(IWT)
GO TO 2180

1081 WT(I)=0.0
GO TO 2300 

2200 WT(I)=1.0
MKANG(D=-IABS(MKANG(I))

2180 IPHAZa)=MODaABS(IZa) /1000)+360.360)
IF (IPHAZa) EQ. 0) IPHAZ(D = 360 

2300 CONTINUE 
RETURN

IF(CODE)GOTO 1300

C**** GENERATE NEXT SET OF PHASES FOR REGULAR PHASE PERMUTATION 
1300 IF (NRAL .EQ. 0) GO TO 1010 

XP = XP -  DX 
IF(CODE)GOTO 1006 
IF (XP+720.1) 1004,1004,1006 

1004 XP = XP + 360.0 
GO TO 1010 

1006 MARK = 1

1010 NDF=0
NNDF=0
IF (CODE) THEN 

NCODE=10000 
ELSE 

NCODE=NUMB 
ENDIFIF 

ICODE=l

DO 1200 1=1,NUMB 
C CODE TO CALCULATE RANDOM NUMBERS BETWEEN O AND 1
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ALPHA(I) = 0.0 
IF (IZ(I)) 1100,1020,1040 

*+** UNKNOWN PHASE 
1020 WT(I) = 0.0

C TO MAKE SURE ONLY THE STARTING SET OF PHASES USES GOLAY CODE 
IF(CODE)GOTO 7777 

GO TO 1180 
7777 IF(CODE)GOTO 1200

c **** ORIGIN FIXING OR KNOWN PHASE 
1040 IWT=IZ(I)-1000*(IZ(I) /1000)

ALPHA(I)=0.0025* FLO AT(IWT*IWT)
1F(IWT-100) 1060,1170,1170

1060 WT(I)=-0.01 * FLO AT(IWT)
IF(IZa) .GT. 0 .AND. CODE)GOTO 1180 

C TO MAKE SURE ONLY THE STARTING SET OF PHASES USES GOLAY CODE 
IF (CODE) GOTO 8888 

GO TO 1180 
8888 IF (CODE) GOTO 1200

C**** HAS STARTING SET PHASE BEEN INCREMENTED 
1100 IF (MARK) 1170,1120,1170 

IF (MARK) 1170,1120,1170 
1120 IF (IABS(MKANG(I)) .EQ. 1) GOTO 1170 

IZ(I) = IZ(I) -  180000 
IF(IZ(I)+720000) 1140,1140,1160 

1140 IZ(I)=IZ(I)+360000 
GO TO 1170 

1160 MARK = 1 
1170 WT(I) = 1.0 

C write(*,*) IZ(I)J
MKANG(I) = -IABS(MKANG(D)
IF (IZ(I) -GT. 0.AND. CODE) GO TO 1180

C USING THE GOLAY CODE TO ASSIGN PHASES
C TO CONTROL THE ROW OF GOLAY CODE

IF(CODE) NOR=NUMSET 
C CENTROSYMMETRIC

IF(ABS(MKANG(I)) .NE. 1 .AND. CODE)THEN 
C TO CONTROL THE COLUMN OF GOLAY CODE

NDF=NDF+1
IF (NDF.GT.24)GOTO 4444 
IF( GOL COD(NDF,NOR).EQ.O) IPHAZ(I)=360 
IF(GOL COD(NDF,NOR) EQ. 1 )IPHAZ(I)= 180 

ENDIFIF

C NON CENTROSYMMETRIC
IF(ABS(MKANG(I)) .EQ. 1 .AND. CODE)THEN 

NDF=NDF+2 
IF (NDF.GT.24)GOTO 4444
IF(GOL COD(NDF-l JNOR).EQ.O.AND.GOL COD(NDF.NOR).EQ.O)

1 IPHAZ(I)=45
1F(G0L COD(NDF-1,NOR).EQ.O.AND.GOL COD(NDF,NOR).EQ.l)

1 IPHAZ(I)=135
IF(GOL COD(NDF-l ,NOR).EQ. 1 .AND.GOL COD(NDF.NOR).EQ.O)

1 IPHAZ(I)=315
IF(GOL COD(NDF-lJSrOR).EQ.l.AND.GOL COD(NDF,NOR).EQ.l)

1 IPHAZ(I)=225

ENDIFIF

IF(CODE)GOTO 1200
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IF (IABS(MKANG(I)) .NE. 1) GO TO 1180 
IF (IZ(D .GT. 0) GO TO 1180 
IPHAZ(I) = AMOD((FLOAT(IZ(I))*XP). 360.0) + 0.5 

GO TO 1190 
1180 IPHAZ(I) = MOD(IABS(IZ(I) /1000), 360)
1190 IF dPHAZd) .EQ. 0) IPHAZ(I) = 360

1200 CONTINUE

4444 IF (ICENT.NE.0) GOTO 1220 
IF(MARK.EQ.O) GO TO 1220 
IF (CODE)GOTO 1220

IF (NANT(l)) 1210,1220.1215 
1210 IF (COS(DTOR * FLOATdPHAZ(NAN)))) 1000.1000,1220 
1215 IF (SIN(DTOR * FLOAT(IPHAZ(NAN)))) 1000,1000,1220 
1220 IF (MARK) 1230.1230,1270 
1230 J = 2 + ICENT 

DO 1240 I=J,4 
IF (NANT(I)) 1240,1360.1250 

1240 CONTINUE
IF (CODE) GOTO 1250 

GO TO 1360 
1250 DO 1260 K=JJ

NANT(K) = -NANT(K)
NN = IABS(NANT(K))
IZ(NN) = -(IZ(NN) -  200) + 360200 

IF (CODE) GOTO 1260 
IPILAZ(NN) = MODdABSdZ(NN) /1000), 360)

1260 CONTINUE

MARK = 1

1270 IF (NUMSET .LE. ISKIP .OR. NUMSET .LT. ISETX) RETURN 
C**+* OUTPUT STARTING POINT 

J = 0

DO 1340 1=1 NUMB 
IF (IZd) .EQ. 0) GOTO 1340 
J = J + 1 
LINEX(J) = IPHAZ(I)
IF (J .LT. 17) GO TO 1340 
WRITE(NOUT,1320) UNEX  

1320 FORMAT(57X.17I4)
J = 0 

1340 CONTINUE 
800 continue

IF(J .GT. 0) WRITE(NOUT,l 320) (LINEX(K)K=1 J)
1360 RETURN 

END
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SUBROUTINE PHASE(MARKJSETX,XP.DX) P H A S E
C**** GENERATE STARTING SETS OF PHASES FROM CONVERGENCE RESULTS

INTEGER GOL GEN. GOL COD 
C COMMON BLOCK FOR THE GENERATION AND USE OF GOLAY CODE

COMMON / GOLAY C / GOL GEN ( 24, 0:11 ) .
GOL COD ( 24, 128 )

C COMMON BLOCK FOR THE GENERATION AND USE OF GOLAY CODE
COMMON / HADAM R / H 2 ( 2. 2) , H 4 ( 4. 4) , H 8 ( 8. 8).

H12 (12,12) , H16 (16,16) . H32 (32,32),
H64 (64,64).CODE 

INTEGER H2, H4, H8. H12. H16, H32, H64
common no /nspec,mnnoutntapea,ntapeb,ntapecntapedntapee.

1 NTAPEF NT APEG JH(200), A(200) JCH 1(10) JCH2( 10) ,ITLE(68) ,IR(68),
2 ICALL,NRCNCHNREADJENDNREF.PI,DTOR.MAXH.ISPFLGZERO.LK(32).
3 IDEFJCHK.ISYMP,LEVEL,IFLOW(25)KUSE(40)JNXTTRDY,RTOD.NULL.
4 IDIFJVDIF,KARLEJHVYJGPFL,NDIFFJSPCH(30)NTAPEMJVERB 

COMMON /BLK1 /IND2(80000)JND3(80000),IND4(80000)JND5(80000),
1 EEE(80000),
1 SUMNUM(800) ,SUMDEN(800) ,ALPHA(800) ,WT(800) ,EPHAZ(800) ,IORDE( 1300) 
2,MKG(800),PALF(800) JZ(800),MKANG(800).EALF(800).UM( 1301).
3 MAXHKL(3),SUMN(800),SUMD(800),E(800)

COMMON /BLK2 /IS(2.3.24),TS(3,24),P(6).CX(9)NSYM.ICENT.
1 NEX,LATT,LAT,PTSKSYSJAPXNGPNTOT.NASUNRD.AMX(5),
2 AMN(5),LINE( 17),LINEX( 17),WTFOM(5)JMKJTANJPUB .ISKIPNLIM,WUM
3 ,PAD2(1302)

COMMON /BLK3 /STABLE(450)NQ1(500),NQ2(500),AQ(500),NQTOTNQ4.NQ5,
1 FOM(400) ,14,15 JQTOT,CFOM,RN4,RN5 JSTP,CVR( 10), W R ( 10) N  A( 10),
3 NW(10)NO(10)NK.SIGMA,PAD3(170)

COMMON /BLK5 /NUMB .NUMSETNRAL,NANT(4),
1 ALFRANNSX,IEF3JEF4JEF5.NDETNAT,IFOM(3).IEFOM,IZROJXRAN.
2 IYRANJRAND,WMIN,IWMINNSREQ,CUTT(3)4CCJMP,PAD5(5)

LOGICAL CODE
NAN = IABS(NANTO))

1000 MARK = 0
IF (CODE)THEN 

CALL HADAM 
ENDIFIF
IF(IRAND.EQ.O) GOTO 1300 

C**** GENERATE NEXT SET OF RANDOM PHASES FOR RANT AN 
IXS=IXRAN 
IYS=IYRAN
IF(NUMSET.GT.NSREQ) RETURN
NNN=NDET
MS=0
MARK=1
IF (MS.EQ.l) GO TO 2040 

2010 DO 1035 1=1 NUMB
IF (MKG(D) 2020,2020,1030 

2020 IF (IABS(MKANG(I)).EQ. 1) GO TO 1025 
MPH=15*IABS(MKANG(I)-1)
IRA=360*RAND(IXRANJYRAN)+0.5 
IF (IRA.GT,180) MPH=MPH+180 
IZ(I)=MPH* 1000+IWMIN 
IF (I.EQ.NAN) IZ(I)=MPH* 1000+99 
GO TO 1035 

1025 MPH=360*RAND(IXRAN,IYRAN)+0.5 
IZa)=MPH* 1000+IWMIN 
IF (I.EQ.NAN) IZ(I)=MPH* 1000+85 
GO TO 1035 

1030 IZ(I)=MKG(I)
1035 CONTINUE

WRITE(NOUT,1321) IXSJYS 
1321 FORMAT(57X,' Random numbers IXJY are: '.2112)
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MS=1
GO TO 1070 

2040 J=2+1 CENT
DO 1045 I=J,4 
IF (NANT(I)) 1045.2060,1050 

1045 CONTINUE 
GO TO 2060 

1050 DO 1055 K=J,I
NANT(K)=-NANT(K)
NN=IABS(NANT(K))
IZ(NN)=-(IZ(NN)-200)+360200 

1055 CONTINUE 
GO TO 1070 

2060 DO 1065 I=J,4
NANT(I)=IABS(NANT(I))

1065 CONTINUE 
MS=0
GO TO 2010 

1070 DO 2300 LL=1,NUMB 
I=IORDE(LL)
IF (LL.GT.NNN) GO TO 1081 
IWT=IZ(I)-1000*(IZ(D /1000)
ALPHA(I)=0.0025*IWT*IWT 
IF (IWT-100) 1080,2200,2200

1080 WT(I)=*-0.01*FLOAT(IWD
GO TO 2180

1081 WT(D=0.0
GO TO 2300 

2200 WT(R=1.0
MKANG(I)=-I AB S(MKANG(I))

2180 IPHAZ(D=MOD(IABS(IZ(I) /1000)+360,360)
IF (IPHAZ(I) .EQ. 0) IPHAZd) = 360 

2300 CONTINUE 
RETURN

C**** GENERATE NEXT SET OF PHASES FOR REGULAR PHASE PERMUTATION

1300 IF (NRAL .EQ. 0) GO TO 1010 
XP = XP — DX 
IF(CODE)GOTO 1006 
IF (XP+720.1) 1004,1004,1006

1004 XP = XP + 360.0 
GO TO 1010 

1006 MARK = 1

1010 NDF=0
NNDF=0
IF (CODE) THEN 

NCODE=10000 
ELSE 

NCODE=NUMB 
ENDIFIF 
ICODE=l

DO 1200 1=1 NUMB 
ALPHA(I) = 0.0 
IF (IZ(I)) 1100,1020,1040 

**** UNKNOWN PHASE 
1020 WT(I) = 0.0

C TO MAKE SURE ONLY THE STARTING SET OF PHASES USES GOLAY CODE 
IF(CODE)GOTO 7777 

GO TO 1180 
7777 IF(CODE)GOTO 1200
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C**** ORIGIN FIXING OR KNOWN PHASE 
1040 IWT=EZ(I)-1000*(IZ(I) /1000)

ALPHA(I)=0.0025*FLOAT(IWT*IWT)
IF(IWT-100) 1060,1170,1170

1060 WT(I)=-0.01*FLOAT(IWT)
IF(IZ(I) .GT. 0 .AND. CODE)GOTO 1180

C TO MAKE SURE ONLY THE STARTING SET OF PHASES USES GOLAY CODE 
IF (CODE) GOTO 8888 
GO TO 1180 

8888 IF (CODE) GOTO 1200

C++** HAS STARTING SET PHASE BEEN INCREMENTED 
1100 IF (MARK) 1170,1120,1170 

IF (MARK) 1170,1120,1170 
1120 IF (IABS(MKANG(I)) .EQ. 1) GOTO 1170 

IZ(I) = IZ(I) -  180000 
IF(IZ(I)+720000) 1140,1140,1160 

1140 IZ(I)=IZ(I)+360000 
GO TO 1170 

1160 MARK = 1 
1170 WT(I) = 1.0

C write(V) EZ(I)J
MKANG(I) = -IABS(MKANGd))
IF (IZ(I) .GT. 0.AND. CODE) GO TO 1180

C USING THE HADAMARD CODE TO ASSIGN PHASES
C CENTROSYMMETRIC

IF(ABS(MKANG(I))NE.l.AND.CODE.AND.NUMSET.LE.64)THEN
C TO CONTROL THE COLUMN OF HAD CODE

NDF=NDF+1

C TO CONTROL THE ROW OF THE HADAMARD CODE
NOR=NUMSET
IF( H64(NDFNOR).EQ.-l) IPHAZ(I)=360 
IF(H64(NDF,N OR). EQ. 1 )IPHAZ(I)= 180 

ENDIFIF

C ASSIGN PHASES TO THE COMPLEMENT OF THE HADAMRD CODE
IF(ABS(MKANG(I)).NE.l.AND.CODE.AND.NUMSET.GT.64.AND.

1 NUMSET .LE. 128)THEN
C TO CONTROL THE COLUMN OF THE HAD CODE 

NDF=NDF+1
C TO CONTROL THE ROW OF THE HADAMARD CODE 

NOR=NUMSET-64 
IF(NDF .GT.128)GOTO 4444 
IF( H64(NDFNOR).EQ-l) IPHAZa)=180 
IF(H64(NDF,NOR).EQ.1)IPHAZ(I)=360 

ENDIFIF

C CODE FOR ACENTRIC
IF(ABS(MKANG(I)).EQ. 1 .AND.CODE. AND.NUMSET.LE.64)THEN 

NDF=NDF+2 
NOR=NUMSET 

IF(H64(NDF-1N0R).EQ.-1.AND.H64(NDFN0R).EQ.-1)
1 IPHAZ(I)=45

IF(H64(NDF-lNOR).EQ.-l.AND.H64(NDFNOR).EQ.l)
1 IPHAZ(I)=135

IF(H64(NDF-1 NOR) .EQ. 1. AND.H64(NDF,NOR).EQ.-l)
1 IPHAZ(I)=315

IF(H64(NDF-1 NOR).EQ. 1. AND.H64(NDF,NOR).EQ. 1)
1 IPHAZ(I)=225

ENDIFIF
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C ASSIGN PHASES TO THE COMPLEMENT FOR ACENTIC

IF(ABS(MKANG(I)).EQ. 1. AND.CODE. AND.NUMSET.GT.64 
1 .AND.NUMSET .LE.128)THEN 

NDF=NDF+2 
NOR=NUMSET-64 
IF(NDF .GT.128)GOTO 4444 

IF(H64(NDF-l,NOR).EQ.-l.AND.H64(NDF,NOR).EQ.-l)
1 IPHAZ(I)=225

I F(H64(NDF-1 .NOR) .EQ.-l ,AND.H64(NDF,NOR) .EQ. 1)
1 IPHAZ(I)=315

IF(H64(NDF-1 ,NOR).EQ. 1. AND.H64(NDF,NOR).EQ.-l)
1 IPHAZ(I)=135

IF(H64(NDF-l,NOR).EQ.l.AND.H64(NDF,NOR).EQ.l)
1 IPHAZ(I)=45

ENDIFIF 
IF(CODE)GOTO 1200

IF (IABS(MKANG(I)) .NE. 1) GO TO 1180 
IF (IZ(D .GT. 0) GO TO 1180 
IPHAZ(I) = AMOD((FLOAT(IZ(I))*XP), 360.0) + 0.5 

GO TO 1190 
1180 EPHAZ(I) = MOD(IABS(IZ(R /1000), 360)
1190 IF (IPHAZ(I) .EQ. 0) IPHAZ(I) = 360

1200 CONTINUE

4444 IF (ICENT.NE.0) GOTO 1220 
C write(*,*)IPHAZ

IF(MARK.EQ.O) GO TO 1220 
IF (CODE)GOTO 1220

IF (NANT(1)) 1210,1220,1215 
1210 IF (COS(DTOR * FLOAT(IPHAZ(NAN)))) 1000,1000,1220 
1215 IF (SIN(DTOR * FLOAT(IPHAZ(NAN)))) 1000,1000.1220 
1220 IF (MARK) 1230.1230,1270 
1230 J = 2 + ICENT 

DO 1240 I=J,4 
IF (NANT(I)) 1240,1360,1250 

1240 CONTINUE
IF (CODE) GOTO 1250 

GO TO 1360 
1250 DO 1260 K=J,I

NANT(K) = -NANT(K)
NN = IABS(NANT(K))
IZ(NN) = -(IZ(NN) -  200) + .360200 

IF (CODE) GOTO 1260 
IPHAZ(NN) = MOD(IABS(IZ(NN) /1000), 360)

1260 CONTINUE 
MARK = 1

1270 IF (NUMSET .LE. ISKIP .OR. NUMSET .LT. ISETX) RETURN
IF (NUMSET .LE. ISKIP .OR. NUMSET .LT. ISETX) RETURN 

C**** OUTPUT STARTING POINT 
J = 0

DO 1340 1=1,NUMB 
IF (IZ(I) .EQ. 0) GOTO 1340 
J = J + 1
LLNEX(J) = IPHAZ(I)
IF (J .LT. 17) GO TO 1340 
WRITE(NOUT,1320) LINEX 

1320 FORMAT(57X.17I4)
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j = o 
1340 CONTINUE

IF(J .GT. 0) WRITE(NOUT,l320) (LINEX(K)JC=1 J) 
1360 RETURN 

END
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