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Summary

When used alone, LPS and IFN-y were weak stimuli for inducing 

production of nitrite by J774.7 macrophages, but when used together, a 

powerful synergistic rise in nitrite accumulation was seen. Nitrite was 

derived from the L-arginine/NO pathway since its production was reduced 

by the NO synthase inhibitors, L-NMMA and L-NAME. L-NMMA was 

much more effective than L-NAME but the reason for this was obscure. 

The peptide polymyxin B also reduced nitrite accumulation by inhibiting 

the action of LPS on the cells. It is likely that NO was synthesised by the 

inducible form of NO synthase since nitrite production was low in the 

absence of stimuli and was reduced by dexamethasone in the presence of 

stimuli. Dexamethasone reduced nitrite accumulation, though whether via a 

direct action on the transcription process or through the formation of 

lipocortin 1 is unknown.

Elevation of cyclic AMP levels reduced the production of nitrite by the 

cells, but only by a maximum of around 30 %. Most agents had little effect 

on nitrite accumulation when added after LPS and IFN-y, and produced 

most of their effects when added before the induction of NO synthase by 

LPS and IFN-y. Thus, cyclic AMP can only regulate the induction process, 

probably at the level of transcription, to a slight degree.

Elevation of cyclic GMP levels reduced accumulation of nitrite but only by 

around 30 %. The effects of GTN may be mediated both via toxic effects 

on the NO synthase enzyme by NO and via a cyclic GMP-dependent 

mechanism. It is unknown if elevated cyclic GMP levels can induce 

phosphorylation of the NO synthase enzyme and so modulate its activity.



It appears that both PKC and tyrosine kinase play a role in the induction of 

NO synthase by LPS and IFN-y, although evidence for the latter is more 

straightforward.

The smooth muscle relaxant released from J774.7 cells following 

stimulation by LPS and IFN-y was sensitive to attack from superoxide 

anions and blocked by haemoglobin. Furthermore, production of the 

relaxant was blocked following incubation with the inhibitor of NO 

synthase, L-NMMA. Thus, in all respects, this relaxant substance behaves 

like free NO. The mechanism by which macrophages protect themselves 

from the toxic effects of the high concentrations of NO they produce is 

unknown.

The release of superoxide anions from J774.7 cells was undetectable, 

although the cells appear to release spontaneously a powerful oxidant. The 

nature of this oxidant is unknown, but it appears not to be hydrogen 

peroxide, peroxynitrite, hydroxyl radical or hypochlorous acid.
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INTRODUCTION



CHAPTER 1

1.1 Macrophages

Macrophages are members of the mononuclear phagocytic family which, 

after lymphocytes, constitutes the second major cell population of the 

immune system. Macrophages are widely distributed throughout the body, 

displaying great structural and functional heterogeneity. They originate in the 

bone marrow where they mature to become monoblasts, and then circulate 

in the blood as monocytes or migrate into the tissues of the body as 

macrophages. Macrophages participate in a wide range of physiological and 

pathological processes and play a significant role in the host defence 

mechanism. Although murine macrophage cell lines, such as the J774.7 cell 

line used in this study, have the potential to express nitric oxide (NO) 

synthase and to produce cytotoxic quantities of nitric oxide, the ability of 

cytokines and other immune mediators to promote the induction of the 

enzyme in human macrophages remains problematic. Furthermore, the 

pathways concerned in the induction process in cells which express the 

enzyme remain uncertain. Macrophages are also known to release a variety 

of reactive oxygen intermediates in a process known as the 'respiratory burst' 

involving metabolism of large quantities of glucose and an increase in 

oxygen consumption. The respiratory burst results in the production of 

superoxide anion, hydrogen peroxide, hydroxyl radicals, hypochlorous acid 

and perhaps also peroxynitrite which are involved in the microbicidal 

activity of the cells.
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1.1.1 Macrophage origin and function

Macrophages originate in the bone marrow. In humans, the bone marrow 

contains resident macrophages as well as their precursors i.e. monocytes and 

promonocytes. The macrophage progenitor cell is called the colony-forming 

unit, granulocyte-macrophage (CFU-GM) which also has the ability to give 

rise to neutrophils (Metcalf, 1971). The CFU-GM gives rise to a monoblast 

cell which then develops to a promonocyte and further to a monocyte in the 

bone marrow (van Furth & Diesselhoff-den Dulk, 1970). Newly formed 

monocytes remain in the bone marrow for less than 24 hours before entering 

the circulation (Meuret & Hoffman, 1973). Monocytes circulate in the blood 

until they reach their target organ, where they differentiate into macrophages 

(van Furth & Cohn, 1968). Mononuclear phagocytes reside in a wide variety 

of tissues including the liver, where they are known as Kupffer cells, in bone 

as osteoclasts, in the brain as microglia and in the lung as alveolar 

macrophages.

Macrophages are relatively large cells whose diameter ranges from 25-50 

pm. The surface of the cells is covered with microvilli. The cytoplasm 

contains vacuoles, lysosomes and phagosomes. Mononuclear phagocytes 

provide a major defence against invading microbes. Although mononuclear 

phagocytes are effective at phagocytosis, neutrophils are generally more 

efficient. Mononuclear phagocytes have the ability to secrete over 100 

substances, ranging from those of low molecular weight, e.g. NO and 

superoxide anion, to fibronectin with a mass of 440 kD. Table 1.1 

demonstrates some of the substances that are secreted (Auger & Ross,

1992).
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Reactive oxygen intermediates
e.g. superoxide anion, hydrogen peroxide, hydroxyl radical_____
Complement components
e.g. C l, C4 and active fragments C3a, C3b , C5a______________
Cytokine and enzyme inhibitors
e.g. IL-1 inhibitors, phospholipase inhibitor, collagenase inhibitor 
Lipases
e.g. lipoprotein lipase, phospholipase A?______________________
Neutral Proteases
e.g. collagenase, elastase____________________________________
Lysosomal acid hydrolases
e.g. phosphatases, sulphatases, lipases________________________
Cyclo-oxygenase/lipooxygenase products
e.g. PGE7, thromboxane, leukotrienes, platelet-activating factors 

Cytokines
e.g. TNF-cx, transforming growth factor (3, IL-1, IL-6__________
Coagulation factors
e.g. tissue factor, plasminogen activators______________________
Miscellaneous
e.g. fibronectin, lipocortin, transferrin, NO____________________

Table 1.1 Examples of biologically active substances secreted by 

macrophages (modified from Auger & Ross, 1992).



1.1.2 Role of the macrophage in the host defence mechanism

Macrophages have the ability both to clear viral pathogens from the 

circulation and to inactivate the viruses. Macrophages identify virus particles 

by specific and non-specific viral receptors, and the virus is then taken up 

into the macrophage in a number of different ways including fusion and 

phagocytosis (Gendelman & Morahan, 1992). The virus is inactivated via 

the secretion of various hydrolytic cellular enzymes contained in the 

macrophage phagolysosomes (Mims, 1964). The ability of macrophages to 

secrete IFN-a and IFN-p contributes to their anti-viral effects as the 

interferons play a major role in restricting viral replication in infected 

macrophages and in neighbouring cells (Bukowski & Welsh, 1986). 

Interferons exert their anti-viral mechanism by inducing the host cell to 

produce enzymes capable of inhibiting translation of viral mRNA to viral 

protein, thus inhibiting reproduction of the virus.

Macrophages play an important role in the elimination of bacterial 

infections. Alveolar macrophages protect the lungs against inhaled 

microorganisms (Laskin & Pendino, 1995), whereas macrophages within the 

liver and spleen provide an effective defence against bacterial infection in 

the blood (Laskin & Pendino, 1995). Microorganisms may be susceptible to 

phagocytosis by macrophages, or may come under attack from oxidative or 

non-oxidative mechanisms. Macrophages release a wide variety of reactive 

oxygen species (see section 1.2) which exert bactericidal effects on the 

invading organism. Non-oxidative mechanisms include attack by lysosomal 

enzymes (Darte & Beaufay, 1983).

Parasites are also sensitive to attack by reactive oxygen and nitrogen 

intermediates produced by macrophages (Liew et al., 1990), and it is
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thought that macrophages represent one of the first lines of defence against 

neoplastic cell growth. When in contact with tumour cells, macrophages 

release reactive oxygen and nitrogen intermediates and inhibit DNA 

synthesis, aconitase and mitochondrial respiration in addition to other 

mechanisms. These events normally lead to destruction of the tumour cells 

(Rees & Parry, 1992).

Atherosclerosis, the principal cause of myocardial and cerebral infarction, 

accounts for the majority of deaths by cardiovascular disease in the western 

world. Atherosclerosis is a disease of the arteries where there is occlusion of 

the lumen by a thickening of the artery wall. The thickening consists of lipid 

deposits, extracellular matrix and cellular components. Cholesterol circulates 

around the body mainly in the form of low-density lipoprotein (LDL). 

Macrophages have the ability to take up LDL through high affinity and low 

affinity receptors. Overloading of the macrophage leads to the development 

of foam cells, and these are present around the edges of atherosclerotic 

plaques (Ball et a i,  1995). Thus macrophages appear to play an important 

role in the development of plaques as they constitute a route for 

transportation of LDL into the intima of arteries (Klurfeld, 1985). Once in 

the intima, macrophages secrete cytokines which act as chemoattractants for 

smooth muscle cells and monocytes. In addition, growth factors for smooth 

muscle cells are secreted, which leads to proliferation of these cells and thus 

thickening of the occlusion. Enzymes are also secreted, which render the 

plaque more thrombogenic and likely to calcify (Parums, 1992). 

Furthermore, reactive oxygen species are released which may modify LDL 

rendering it antigenic and able to damage membranes, cause necrosis and 

even damage the macrophage itself (Reid & Mitchinson, 1993). Thus, 

macrophages appear to be important mediators of cardiovascular disease.
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1.2 Free radical release

In addition to production of NO as a host defence mechanism, macrophages 

produce superoxide (#0 2"), hydrogen peroxide (H20 2) and hypohalous acids 

(HOX), for example hypochlorous acid (HOC1). Production of superoxide 

and hydrogen peroxide can lead to the additional production of singlet 

oxygen (10 2), hydroxyl radical (*OH“) and peroxynitrite (ONOO"). Each of 

these reactive oxygen species is needed for optimal microbicidal activity 

towards invading organisms (Rosen et a i,  1995).

1.2.1 Superoxide

Superoxide anions are generated by almost all aerobic cells and a major 

source is leakage of electrons from various components of the mitochondrial 

and endoplasmic reticulum electron transport chains (Salvemini & Botting,

1993). Superoxide is also generated during the 'respiratory burst' by an 

electron transport chain that transfers electrons from NADPH in the cytosol 

to oxygen to form superoxide and subsequently hydrogen peroxide and other 

oxidants in the phagocytic vacuole. This NADPH oxidase is most abundant 

in phagocytic cells i.e. neutrophils (Thelen et a i,  1993; Carreras et a i,

1994), eosinophils (Souness et al., 1991), monocytes (Landmann et al.,

1995) and macrophages (Assreuy et al., 1994). The electron transport chain 

in these cells consists of a flavocytochrome b located in the plasma 

membrane as well as in the membrane of specific granules (Segal, 1995). 

Superoxide can diffuse to different sites from its origin to produce toxic 

effects. It is likely that superoxide plays a role in endothelial dysfunction in 

endotoxaemic rats (Siegfried et al., 1992). Although superoxide has been 

shown to inactivate some bacterial enzymes, for example aconitase, most of
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its toxic effects are mediated via generation of hydroxyl radicals and 

hydrogen peroxide. Production of superoxide may inhibit NO synthase 

(Rengasamy & Johns, 1993b), a process which occurs via competition for 

oxygen between NO synthase and NADPH oxidase.

A variety of stimuli activate NADPH oxidase and thereby promote 

superoxide production. Examples of such stimuli include phorbol esters and 

calcium ionophores, and the combination of these synergistically stimulates 

superoxide release from neutrophils (Robinson et al., 1984). Moreover, LPS 

stimulates human monocytes to release superoxide via the CD 14 receptor 

and is dependent on binding with LBP (Landmann et al., 1995). TNF also 

stimulates activation of human macrophages to release superoxide anion 

(Bermudez & Young, 1992). Further, arachidonic acid (Sakata et al., 1987) 

and the chemotaxin, formyl-methionyl-leucyl-phenylalanine (fMLP)(Tumer 

et al., 1993), stimulates superoxide production in peritoneal macrophages. 

Protein kinase C (PKC) appears to be an important pathway in mediating 

activation of NADPH oxidase by a variety of stimuli in neutrophils including 

the phorbol ester, PMA, the chemotactic peptides, fMLP and C5a (Dewald 

et al., 1989), opsonised zymosan, heat aggregated IgG (Twomey et al., 

1990a & b), and fluoride (Twomey et al., 1991). Macrophages from guinea 

pigs are also stimulated with fMLP, PAF and opsonised zymosan (Turner & 

Wood, 1994) and those from rat lung are stimulated by PMA (Mayer et al.,

1993). Indeed, some isoforms of PKC activate NADPH oxidase at resting 

calcium concentrations (Sharma et al., 1991). In addition to PKC, 

superoxide production can be regulated by other second messengers. 

Superoxide production can be reduced by elevated cyclic AMP levels 

(Turner et al., 1993; Dent et al., 1994) and tyrosine kinase, whose 

stimulation is important in the induction of NO synthase, plays a role in 

modifying superoxide production. However, in contrast to the effects seen
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with NO synthase, activation of tyrosine kinase suppresses superoxide 

production (Conde et al., 1995). Thus, production of superoxide is 

controlled by a range of different regulatory systems.

1.2.2 Hydrogen Peroxide

At physiological pH, superoxide rapidly dismutates to give hydrogen 

peroxide (Halliwell & Gutteridge, 1984).

•O2" + *0 2 " + 2H+ —> H2O2 + O2

Hydrogen peroxide is also formed under the influence of superoxide 

dismutase, which speeds up the reaction by 104 times (Miller & Britigan, 

1995a).

•0 2- + 2H20  -> 2H20 2

Hydrogen peroxide induces peroxidation of membranes, oxidises cellular 

enzymes and mediates DNA damage and mutagenesis.

1.2.3 Peroxynitrite

Peroxynitrite is formed by the combination of NO and superoxide (Freeman,

1994).

NO* + *02" -> ONOO-

Peroxynitrite is a potent oxidant which can react by several oxidative 

mechanisms (Radi et al., 1991a), and it is likely that these mediate at least
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some of the cytostatic and cytotoxic action of NO. For example, 

peroxynitrite has been shown to catalyse membrane lipid peroxidation in an 

iron-independent manner (Radi et al., 1991b), oxidise DNA bases (Beckman 

et al., 1990) and react with metals or metalloproteins to form the toxic 

nitronium ion (Ischiropoulos et al., 1992a). Peroxynitrite also has been 

shown to inhibit epithelial ion channels (Bauer et al., 1992), inhibit cell 

motility, induce cellular swelling (Denicola et al., 1993) and play a part in 

mediating human lung injury (Kooy et al., 1995). Simultaneous production 

of superoxide and NO leading to peroxynitrite formation by J774 cells is 

reported to mediate the auto-inhibition of mitochondrial respiration in 

immunostimulated cells (Szabo & Salzman, 1995). Additionally, NO 

released from astrocytes, combining with superoxide to form peroxynitrite, 

may diffuse to neighbouring neuronal cells producing mitochondrial 

dysfunction and neurodegenerative effects (Bolanos et al., 1995). 

Furthermore, peroxynitrite has the ability to stimulate cyclic GMP formation, 

although it is less potent than NO at doing so (Tarpey et al., 1995), and this 

has been proposed to contribute to the profound hypotension of septic shock 

and may contribute to its deleterious effects (Szabo et al., 1995), in addition 

to mediating oxidative damage. Moreover, due to its ability to modify 

proteins by nitration of tyrosine residues, peroxynitrite has been shown to 

inactivate some important proteins including manganese-containing 

superoxide dismutase (SOD) (Ischiropoulos & Al-Medhi, 1995), thus 

compromising an important component of the intrinsic antioxidant defence 

mechanism of the cell.

1.2.4 Hydroxyl Radical

Hydroxyl radical is formed by the one-electron reduction of hydrogen 

peroxide.
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•0 2" + H20 2 -» •OH + OH- + 0 2

However, the rate of this reaction is slow, and a metal catalyst is needed to 

speed up the reaction. The presence of iron leads to hydroxyl radical 

formation via the Haber-Weiss reaction.

•02" + Fe3+ -> 0 2 + Fe2+

H20 2 + Fe2+ -> *OH + OH- + Fe3+

Almost all iron in vivo is tightly bound to binding proteins. Transferrin is the 

main iron-binding protein in serum, and lactoferrin binds iron at mucosal 

surfaces. It is unlikely that either lactoferrin or transferrin serve as the 

catalyst (Aruoma & Halliwell, 1987). It appears that the cell itself is the 

major source of iron for catalysis, where the iron is stored in the form of 

ferritin (Halliwell & Gutteridge, 1984). The mechanism by which the iron is 

released for catalysis is uncertain, however, superoxide is said to remove 

Fe3+ from ferritin as well as cause its release from protein as Fe2+.

Hydroxyl radical can also be generated by an iron-independent pathway, via 

the decomposition of peroxynitrite (Beckman & Crow, 1993).

ONOO- + H+ ONOOH 

ONOOH -► *OH- + NCV

Hydroxyl radical is reputed to be the mediator of most of the cell damage 

mediated by macrophage-derived oxidants (Miller & Britigan, 1995a). 

Hydroxyl radical is highly reactive, with a rate of reaction of 107-1010 mol s- 

l . A  major mechanism by which it produces cell injury is via the initiation of 

lipid peroxidation (Farber, 1994). This peroxidation of unsaturated fatty
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acids within a lipid membrane produces peroxyl radical which in turn can 

react with other lipid molecules to produced further lipid radicals (Halliwell,

1995). The new lipid radicals then react with other unsaturated lipids, and 

the cascade proceeds until a free radical chain reaction is established leading 

to membrane damage and cell death. Also, the amino acids tryptophan, 

tyrosine, phenylalanine, histidine, methionine and cysteine are prone to free 

radical-mediated modification (Freeman & Crapo, 1982). Moreover, 

hydroxyl radicals react indiscriminately with all components of the DNA 

molecule producing base-free sites, deletions, frameshifts, strand breaks, 

DNA-protein crosslinks and chromosomal rearrangements (Guyton & 

Kensler, 1993). Hydroxyl radicals also can mediate injury to pulmonary 

endothelial cells (Varani et al., 1985).

1.2.5 Hypohalous acid

Neutrophils and monocytes (perhaps also macrophages) release the enzyme 

myeloperoxidase (MPO) from cytoplasmic granules upon activation, 

whereas eosinophils release eosinophil peroxidase (EPO). Interaction of 

MPO and EPO with hydrogen peroxide forms hypohalous acid (Rosen et al.,

1995).

H20 2 + HX HOX + H20  

(where X= a halide)

Chlorine is the preferred halide for MPO which forms hypochlorous acid. 

Hypochlorous acid has been shown to disrupt cell membrane integrity via 

lipid peroxidation and decarboxylation of membrane proteins (Albrich et al., 

1986). It affects components of the bacterial respiratory chain by inhibiting
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succinate dehydrogenase (Rakita et al., 1989) and by inducing membrane 

peroxidation (Winterboum et al., 1992) and may in addition inhibit DNA 

synthesis (Rosen et al., 1990).

1.2.6 Priming for free radical release

IFN-y is known to stimulate the respiratory burst of phagocytes and thus 

enhance their cytotoxic activity. Macrophages enter a primed state following 

exposure to a macrophage activating factor (see 1.4.9). Pretreatment with 

IFN-y before exposure to a further stimulus, for example PMA, leads to a 

synergistic enhancement of superoxide production (Wolfson et al., 1993). 

Priming is thought to involve alterations in calcium levels and activation of 

protein kinase C (see 1.4.9; Celada & Schreiber, 1986; Somers et al., 1986; 

Forehand et al., 1989).

1.2.7 Defences against free radicals

As reactive oxygen species are continuously produced in animal cells, and 

the effects of these species can be damaging, defences against the radicals 

have evolved, and are called antioxidant defences. There are two main 

strategies of antioxidant defence; one is to prevent the production of free 

radicals and the other is to scavenge the radicals once they have been 

produced (Cotgreave et al., 1988). Transition metals can act as catalysts in 

the production of free radicals, and thus, the metals are held tightly bound to 

special binding proteins. Iron, for example, is bound to transferrin, ferritin 

and lactoferritin, and is not easily accessible to act as a catalyst (Miller & 

Britigan, 1995b). Scavenging free radicals once they have been formed is a
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further mechanism of antioxidant defence. Superoxide dismutase (SOD) 

converts superoxide to hydrogen peroxide. SOD exists in two forms; a 

manganese-containing enzyme found in the mitochondrial matrix of 

eukaryotic cells (Peeters-Joris et al., 1975) and a copper-zinc cytosolic form 

(Wilkins & Leake, 1994). Another defence mechanism is to remove the 

peroxides that react with transition metals to produce free radicals. Catalase, 

which is present in most mammalian cells, decomposes hydrogen peroxide 

(Salvemini & Botting, 1993).

catalase

2H20 2 2H20  + 0 2

In addition, glutathione peroxidase removes any lipid hydroperoxides that 

are formed during lipid peroxidation (Singh, 1981).

glutathione peroxidase

ROOH + 2GSH -» ROH + GSSG + H20

a-tocopherol, a low molecular weight molecule found in cell membranes, is 

the major member of the vitamin E family, a-tocopherol intercepts lipid 

peroxyl radicals thus terminating lipid peroxidation chain reactions 

(Halliwell, 1995). Ascorbic acid (vitamin C), a water soluble molecule found 

both intracellularly and extracellularly in most biological systems, has been 

shown to act as an antioxidant in the plasma and also within cells 

(Cheeseman & Slater, 1993). p-carotene, a metabolic precursor to vitamin 

A, has been shown to quench singlet oxygen and react directly with free 

radicals (Cotgreave et al., 1988).
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1.3 Nitric oxide

Endothelium-derived relaxing factor (EDRF), was first described in 1980 by 

Furchgott and Zawadzki, who demonstrated that the vascular relaxation 

induced by acetylcholine was dependent on the presence of the endothelium. 

By employing techniques such as cascade bioassay in which the effluent 

from perfused endothelial cells was used to reperfuse an artery denuded of 

endothelium (Cocks et al., 1985; Gryglewski et al., 1986a), it was 

established that EDRF was a very short-lived substance, with a half-life of 

only a few seconds. Endothelium-dependent relaxation occurs in response to 

a variety of substances in addition to acetylcholine, such as adenine 

nucleotides, thrombin, substance P and bradykinin, and these all cause the 

release of the same EDRF (Cocks et al., 1985). However, other agents such 

as the nitrovasodilators, atrial natriuretic factor and bovine retractor penis 

inhibitory factor, cause vascular relaxation by an endothelium-independent 

mechanism (Griffith et al., 1984; Furchgott, 1984). Nitrovasodilators e.g. 

sodium nitroprusside and glyceryl trinitrate, exert their effects via NO which 

is released from the parent compound by reductive enzymes (Ignarro, 1989). 

The nitrovasodilators mimic the effects of EDRF, and the NO released from 

the endothelial cells is indistinguishable from EDRF in terms of stability, 

biological activity and susceptibility to inhibitors and potentiators. Most 

importantly, however, using a chemiluminescence assay, it was found that 

NO is released from vascular endothelial cells in amounts sufficient to 

account for the biological action of EDRF (Palmer et al., 1987; Moncada et 

al., 1988). It was therefore suggested by these workers that EDRF may in 

fact be NO. NO has many diverse biological functions in the central and 

peripheral nervous systems, the immune system and the cardiovascular 

system.
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1.3.1 Mechanism of vascular relaxation by NO

NO causes relaxation in vascular smooth muscle cells by activation of 

soluble guanylate cyclase (Kukovetz et al., 1979). NO is lipophillic and can 

easily diffuse from the endothelial cell to smooth muscle cells where it binds 

to the haem group of soluble guanylate cyclase to yield the nitrosyl-haem- 

enzyme ternary complex which represents the activated state of guanylate 

cyclase (Ignarro, 1989). Binding of NO produces an immediate increase of 

50-200-fold in catalytic activity. NO activates the enzyme by pulling the iron 

molecule away from the enzyme and out of plane from the planar porphyrin 

ring configuration (Ignarro et al., 1984). The substrate, magnesium 

guanosine 5'-triphosphate is converted to guanosine 3',5'-monophosphate 

(cyclic GMP) (Ignarro, 1989), and it is widely accepted that the subsequent 

activation of protein kinase G induces a sequence of protein phosphorylation 

steps. Elevated cyclic GMP levels inhibit calcium mobilisation within the 

cells; the release of intracellular calcium is inhibited, calcium entry into cells 

is inhibited and the rate of calcium extrusion from cells is increased leading 

to a relaxation of the contractile elements (Wennmalm, 1994).

1.3.2 Synthesis of NO

It is well known that NO is synthesised from one of the terminal guanidino 

nitrogen atoms of the amino acid L-arginine by the enzyme NO synthase 

(Fig. l.l)(Marletta, 1994).
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H2N + H2N H2N

L-Arginine N G-hydroxy-L-arginine L-citrulline nitric
oxide

Figure 1.1 Reaction catalysed by the nitric oxide synthases. 

indicates intermediate steps still to be elucidated (modified from Marietta, 

1994).

The metabolism of L-arginine to L-citrulline and NO involves a five electron 

oxidation and requires the cofactors nicotinamide adenine dinucleotide 

phosphate (NADPH), tetrahydrobiopterin, flavin adenine nucleotide (FAD) 

flavin mononucleotide (FMN) (Nathan & Xie, 1994a). The activity of the 

constitutive isoforms of NO synthase is strictly regulated by calcium and 

calmodulin whereas, although the inducible isoform tightly binds 

calmodulin, its activity is independent of calcium (Marietta, 1994). The 

reaction to form NO is known to involve an initial hydroxylation of L- 

arginine to give NG-hydroxy-L-arginine, although the steps in the conversion 

of NG-hydroxy-L-arginine to NO and L-citrulline are not known (Marietta,

1994). It is thought that a haem group in the enzyme is directly involved in 

the oxidation of NG-hydroxy-L-arginine (Marietta, 1993).
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1.3.3 Isoforms of nitric oxide synthase

Three isozymes of nitric oxide synthase (NO synthase) have been identified 

and the corresponding genes have been cloned, sequenced and expressed 

(see Fig 1.2). Neuronal constitutive, endothelial constitutive and inducible 

NO synthase are the three main isoforms of the enzyme (Forstermann et al.,

1991). Flavins and biopterin are found bound to all three isozymes, with 

biopterin always found as the totally reduced biopterin derivative 6-(R)- 

5,6,7,8- tetrahydrobiopterin (Stuehr et al., 1991a). All three of the isozymes 

also contain haem (Forstermann et al., 1994). The activity of NO synthase 

found in endothelial cells and neuronal cells is regulated by calcium and 

calmodulin, and NO is released over several minutes (Malinski & Taha,

1992). On the other hand, the inducible isoform found in a variety of 

different cell types is not regulated by calcium, although it has calmodulin 

tightly bound, and requires activation of the cells by a variety of stimuli 

resulting in the de novo biosynthesis of the enzyme (Morris & Billiar, 1994). 

The inducible form generates large amounts of NO over periods as long as 5 

days as it is independent of intracellular calcium levels (Vodovotz et al.,

1994). Calmodulin appears to play a role in electron transport, as binding of 

calmodulin allows NADPH-derived electrons to pass onto the haem group of 

NO synthase (Abu-Soud & Stuehr, 1993). Across species, amino acid 

sequences are well conserved, with over 90 % homology for the neuronal 

and endothelial forms and over 80 % for the inducible isozyme (Forstermann 

e ta l ,  1994).
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Figure 1.2 Localisation of functional sites on the three isoenzymes of NO 

synthase. PKA, CaM and Myrist indicate the sites of consensus sequences 

for phosphorylation by protein kinase A, calmodulin binding and 

myristoylation, respectively. Amino acids are numbered from the N- 

terminus. (Modified from Zhang & Snyder, 1995).

1.3.4 Neuronal NO Synthase

The neuronal form of NO synthase is constitutively expressed in the central 

and peripheral nervous systems and also in some epithelial cells. It was first 

purified from rat cerebellum (Bredt & Snyder, 1990). This isoform is mostly 

a soluble enzyme that migrates with a molecular mass of 150-160 kD on 

SDS polyacrylamide gel electrophoresis (Bredt & Snyder, 1990; Schmidt et 

al., 1991) and the amino acid sequence appears to be highly conserved 

between species. It is a calcium and calmodulin-dependent enzyme that is 

inactive at 10-7 M calcium and fully active at 5x10-7 M (Forstermann et al., 

1990), which represent typical changes in intracellular calcium
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concentrations following action potential generation or receptor stimulation 

of excitatory cells such as neurones. This isoform is also present in 

peripheral non-adrenergic non-cholinergic (NANC) inhibitory neurones 

found for example in the rat anococcygeus (Gillespie et al., 1989) and the 

bovine retractor penis muscle (Martin et al., 1988). Unlike central neuronal 

tissue, the nerves in the bovine retractor penis muscle and the rat 

anococcygeus contain both soluble and particulate NO synthase 

(Forstermann et al., 1991). Garthwaite et a l, (1988) discovered that 

activation of a subtype of the glutamate receptor, the N-methyl-D-aspartate 

(NMDA) receptor, led to release of NO from cerebellar neurones. 

Furthermore, glutamate-induced cerebral vasodilatation is mediated by NO 

(Meng et al., 1995). In the CNS, the enzyme can be phosphorylated by 

calcium-calmodulin-dependent protein kinase II, protein kinase C and cyclic 

AMP-dependent protein kinase (Bredt et al., 1992). Phosphorylation by 

PKC leads to either an increase or decrease in activity (Nakane et al., 1991; 

Bredt et al., 1992) whereas phosphorylation by calcium calmodulin- 

dependent kinase decreases activity (Nakane et al., 1991; Schmidt et al., 

1992a). The activity of neuronal NO synthase is unaffected upon 

phosphorylation by PKA (Briine & Lapetina, 1991).

1.3.5 Endothelial NO Synthase

The endothelial form of NO synthase has been reported to be in the soluble 

and particulate fractions, but is 90 % particulate. This isoform has a 

molecular mass of 135 kD (Pollock et al., 1991), is calcium/calmodulin 

dependent and the amino acid sequence of bovine and human isoforms show 

94 % homology (Lamas et al., 1992, Nathan & Xie, 1994b). There is a 

consensus motif for N-terminal myristoylation, a feature which renders the
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enzyme particulate (Busconi & Michel, 1993). Substituting glycine with 

alanine in the sequence converts the isoform to a 92 % cytosolic enzyme 

(Sessa et al., 1993). The activity of endothelial NO synthase has been 

shown to be reduced by protein kinase C (Davda et al., 1994; Hirata et al., 

1995; Ohara et al., 1995).

1.3.6 Inducible NO Synthase

The inducible form of NO synthase is not normally present in cells. It is 

induced upon exposure to a number of different immunological stimuli and it 

is not dependent on calcium (Busse & Mulsch, 1990), although the enzyme 

has calmodulin tightly bound (Cho et al., 1992). Like the neuronal isoform, 

the inducible form of the enzyme is soluble, and the protein has a mass of 

130 kD when run on SDS polyacrylamide gels (Hevel et al., 1991). The 

inducible enzyme is expressed in cell types such as macrophages (Marietta 

et al., 1988), endothelial cells (Radomski et al., 1990a), cardiac myocytes 

(Balligand et al., 1994), vascular smooth muscle cells (Busse & Mulsch, 

1990), neutrophils (van Dervort et al., 1994), Kupffer cells (Billiar et al., 

1989) and hepatocytes (Curran et al., 1989).

Although the synthesis of nitric oxide from L-arginine has been 

demonstrated in a number of cell types, the pathway was first identified in 

the macrophage as a reaction involving the production of nitrite and nitrate 

(Iyengar et al., 1987; Stuehr & Marietta, 1987a; 1987b). Further work 

demonstrated that NO was the source of production of nitrate and nitrite 

(Hibbs et al., 1988; Marietta et al., 1988).

Macrophage NO synthase is a dimeric enzyme comprising two identical 130 

kD subunits, and contains 1 mole each of iron protoporphyrin IX (haem),
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FAD and FMN per subunit, variable amounts (0.1-1 mole/subunit) of 

tetrahydrobiopterin and an unspecified amount of tightly bound calmodulin 

(Ghosh & Stuehr, 1995). The proposal of a 'head-to head' arrangement in the 

structure of macrophage NO synthase from the RAW 264.7 cell line 

suggests the possibility that the N-terminal domain of each of the subunits of 

the polypeptide chain, representing the catalytic domains, lie side to side and 

contain binding sites for L-arginine, haem and tetrahydrobiopterin (Fig 1.3, 

Ghosh & Stuehr, 1995).

Fe "NH2

.COOHFe
NH2

Figure 1.3 Proposed 'head-to-head' structure of macrophage NO synthase 

(modified from Ghosh & Stuehr, 1995).

Tetrahydrobiopterin appears to be an essential cofactor for the formation of 

NO (Kwon et al., 1989), as its depletion by the drug, 2,4-diamino-6- 

hydroxy-pyrimidine, which blocks the synthesis of tetrahydrobiopterin, 

reduces the production of NO (Bogdan et al., 1995; Schoedon et al., 1993; 

Sakai & Milstien, 1993). In addition to their participation in catalysis, L- 

arginine, tetrahydrobiopterin and haem also help to form and maintain the 

dimeric structure of macrophage NO synthase (Baek et al., 1993). The 

precise role that tetrahydrobiopterin plays in catalysis, however, remains 

unclear.
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1.3.7 Pharmacological Manipulation of NO synthases and NO 
actions

Agents able to mimic the effects of NO include the organic nitrates. Since 

the discovery of nitroglycerin for the treatment of angina pectoris, organic 

nitrates have been used widely in the management of cardiovascular 

diseases (Fung, 1993). Some of the nitrovasodilators include nitroglycerin, 

sodium nitroprusside, isosorbide dinitrate, isosorbide mononitrate, 3- 

morpholinosydnonimine-N-ethylcarbamide (SIN-1) and amyl nitrite 

(Harrison & Bates, 1993). The organic nitrates act by being converted to 

NO by metabolic enzymes and evidence suggests that some of the organic 

nitrates, for example nitroglycerine and isosorbide dinitrate, are converted to 

NO by the same enzyme (Chung & Fung, 1992). Two of the favoured 

enzymes are glutathione S-transferase (Armstrong et al., 1980) and 

cytochrome P-450 (Schroder, 1992), but Feelisch (1991) has proposed that 

an enzyme may not be necessary and that reduction may take place by 

chemical interaction with tissue thiols i.e. L-cysteine and glutathione. 

However, the enzyme is not responsible for the conversion of non-nitrate 

nitrovasodilators e.g. sodium nitroprusside and the S-nitrosothiols (Kowaluk 

& Fung, 1991). The nitrovasodilators azide and hydroxylamine are 

converted to NO by catalase (Arnold et al., 1977). NO activates guanylate 

cyclase in vascular smooth muscle cells producing vasodilatation (see 1.3.1).

A variety of drugs can inhibit the enzyme NO synthase. Many are analogues 

of L-arginine and act as competitive inhibitors of the enzyme if added 

simultaneously with the substrate, L-arginine, but some, because their rate of 

dissociation is so slow, prove to be essentially irreversible if added in 

advance. One of the most widely used inhibitors is NG-monomethyl-L- 

arginine (L-NMMA)(Hibbs et al., 1987a). L-NMMA inhibits both
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Figure 1.4 Examples of substrate analogue inhibitors of NO synthase: NG- 

monomethyl L-arginine (L-NMMA); NG-nitro L-arginine (L-NOARG); NG- 

nitro-L-arginine methyl ester (L-NAME), together with L-arginine (L-ARG).
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constitutive and inducible isoforms of NO synthase; the former 

competitively, but the latter irreversibly (Olken et al., 1991). It is thought 

that L-NMMA undergoes oxidation catalysed by NO synthase to generate 

NG-hydroxy-N-methyl-L-arginine, which upon further conversion, generates 

an irreversible binding species (Feldman et al., 1993). Another analogue, 

NG-nitro-L-arginine acts as an irreversible inhibitor of the constitutive 

isoform both in endothelial cells and neurones, but its effects have been 

shown to be fully reversible on the inducible isoform (Furfine et al., 1993). 

Arginine analogues exhibit some degree of isoform selectivity. NG-amino-L- 

arginine and NG-nitro-L-arginine are about 100 times more potent that L- 

NMMA at inhibiting constitutive NO synthase in endothelial cells (Gross et 

al., 1990; 1991). However, the NG-amino and NG-methyl analogues are 

equally effective at inhibiting inducible NO synthase in macrophages, 

whereas the NG-nitro analogue is less potent (Gross et al., 1990; 1991). 

Another study demonstrated that the potency for inhibiting NO synthase in 

macrophages was NG-amino> NG-methyl »  NG-nitro, but for the 

constitutive enzyme, the order of potency was NG-nitro>NG-amino>NG- 

methyl (Lambert et al., 1991). N-cyclopropyl-L-arginine is 300-500 times 

more selective for the neuronal constitutive isoform, whereas N-amino-L- 

homoarginine exhibits similar potency for the neuronal constitutive and 

inducible forms in smooth muscle cells and macrophages (Lambert et al.,

1992). McCall et al. (1991) found that in J774 macrophages, N-iminoethyl- 

L-omithine was a more potent inhibitor of NO synthase than L-NMMA, and 

that NG-nitro-L-arginine and L-NAME were much more effective, producing 

inhibition of around 40 %. Thus, different substrate analogues exhibit 

varying selectivity for the different NO synthase isoforms.

Due to the need for a variety of cofactors, there are a number of mechanisms 

of inhibition to which both constitutive and inducible enzymes are
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susceptible. One such group are the cofactors, FAD and FMN. Therefore, 

inhibition of these cofactors would be expected to inhibit NO synthase 

activity. The drug diphenyleneiodium and several of its analogues, which 

inhibit flavoproteins, have been shown to inhibit both inducible and 

constitutive NO synthase activity (Stuehr et al., 1991b). Both forms of the 

enzyme also are haem containing proteins, where the haem group is needed 

for catalytic activity. Therefore, it would be expected that inhibition of the 

haem group would decrease activity. Carbon monoxide has indeed been 

shown to decrease NO synthase activity, as has cyanide (Klatt et al., 1992) 

and even NO itself may cause inhibition (Rogers & Ignarro, 1992). 

Tetrahydrobiopterin is a further cofactor required for activity of both the 

constitutive and inducible forms of NO synthase. Inhibition of 

tetrahydrobiopterin biosynthesis would therefore be expected to reduce NO 

synthase activity. In fact, it has been demonstrated that depletion of 

tetrahydrobiopterin by the drug, 2,4-diamino-6-hydroxy-pyrimidine, which 

blocks the synthesis of tetrahydrobiopterin, reduces the production of NO by 

both the inducible (Bogdan et al., 1995; Schoedon et al., 1993; Sakai & 

Milstien, 1993) and constitutive isoforms (Gross et al., 1991; Schmidt et al., 

1992b).

A variety of nitrogen containing compounds also have the ability to inhibit 

both the inducible and constitutive isoforms, although the mechanism by 

which they do so is not known. Aminotriazole is one such inhibitor (Fukuto 

& Chaudhuri, 1995). Another is aminoguanidine, which contains the guanido 

group of L-arginine linked to hydrazine; this has been shown to be 10-100 

times more potent at inhibiting the inducible isoform of NO synthase 

compared to the constitutive form (Griffiths et al., 1993; Misko et al.,

1993). Further, Nakane et al. (1995) demonstrated that two potent 

inhibitors, S-ethylisothiourea and 2-amino-5,6-dihydro-6-methyl-4//-l,3-
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thiazine were 10-40 times more selective for macrophage inducible NO 

synthase compared to neuronal and endothelial constitutive isoforms. The 

constitutive forms of NO synthase are dependent upon calcium and 

calmodulin for activity. It has been found that calmodulin inhibitors such as 

W-7 and fendiline, inhibited the activity of endothelial constitutive NO 

synthase but they have no effect on the inducible form of the enzyme in 

vascular smooth muscle cells (Schini & Vanhoutte, 1992).

Interference of the L-arginine/NO pathway can be achieved via the targeting 

of NO. Haemoglobin can bind and inactivate NO (Martin et al., 1985) as 

can superoxide anion (Gryglewski et al., 1986b; Rubanyi & Vanhoutte, 

1986). As the vasorelaxant effects of NO are mediated through activation of 

soluble guanylate cyclase and subsequent elevation of cyclic GMP, this can 

be targeted as a means of inhibiting the effects of NO. Methylene blue is an 

agent which blocks soluble guanylate cyclase, and thus inhibits the actions 

of NO (Martin et al., 1985).

Expression of inducible NO synthase can be prevented by treatment with 

glucocorticoids such as dexamethasone (Di Rosa et al., 1990; Knowles et 

al., 1990; Assreuy & Moncada, 1992). Dexamethasone inhibits induction of 

NO synthase probably at the level of transcription of mRNA. Two receptors 

exist for glucocorticoids; the type I mineralocorticoid receptor where 

dexamethasone binds at low concentrations, and the type II receptor, which 

is subdivided into type Ha and Up, where dexamethasone will bind after 

saturation of the type I receptor (Wilckens, 1995). Type I and type II can 

lead to blockade of transcription enhanced by certain transcription factors 

(Wilckens, 1995).
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1.3.8 Physiological effects of NO

The endothelial form of NO synthase plays a major role in the physiological 

regulation of blood flow and pressure (Rees et al., 1989). The shear stress of 

the flowing blood not only increased acute NO release from the endothelial 

cells (Lamontagne et al., 1992), but also has been shown to up regulate the 

expression of the NO synthase enzyme (Nishida et al., 1992). In fact, with 

agonist activation, the enzyme translocates from the particulate to the 

cytosolic fraction of the cells (Michel et al., 1993). NO dilates all types of 

blood vessels by elevation of cyclic GMP levels in smooth muscle cells 

(Forstermann et al., 1986), and is a major endogenous vasodilator system 

counteracting the vasoconstriction produced by the sympathetic nervous 

system and the renin-angiotensin system. NO is also a potent inhibitor of 

platelet aggregation and adhesion to the vascular wall (Radomski et al., 

1990b). It has also been shown to inhibit leukocyte adherence to the 

vascular endothelium (Kubes et al., 1991). As leukocyte adherence is one of 

the early events in the development of atherosclerosis, NO may protect 

against the development of this disease.

The neuronal isotype of NO synthase is known to play a role in synaptic 

plasticity and learning (Bohme et al., 1991). It is thought that NO acts as a 

retrograde transmitter and is involved in long term potentiation (Schmidt & 

Walter, 1994), as excitatory amino acid-mediated transmission is 

accomplished when NO signals the adjacent neurones through a cyclic 

GMP-dependent mechanism (Garthwaite et al., 1988; Bredt & Snyder, 

1989). In addition, centrally released NO appears to play a role in regulating 

blood pressure by reducing sympathetic tone to blood vessels (Cabrera & 

Bohr, 1995). In peripheral neurones, NO can mediate relaxation in structures 

whose nerves release neither adrenergic nor cholinergic transmitters. The
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bovine retractor penis muscle (Martin et al., 1988) and the anococcygeus 

muscle (Gillespie et al., 1989) are two well-documented examples where 

NO plays an important role in the nerve-mediated relaxation of smooth 

muscle.

The inducible form of NO synthase is an important component of the 

immune system, where large amounts of NO produce cytostatic or cytotoxic 

effects. The ability of NO to produce cytostasis arises from its affinity for 

protein non haem-bound iron, by which NO attacks and inhibits a number of 

Jcey metabolic enzymes (Hibbs et al., 1988) (see Pathophysiological effects, 

1.3.9). One of the targets for macrophage killing is tumour cells (Stuehr & 

Nathan, 1989). Although the main mechanism by which monocytes mediate 

cell killing is through reactive oxygen intermediates, macrophages also kill 

using reactive nitrogen intermediates (Martin & Edwards, 1993).

1.3.9 Pathophysiological effects of NO

1.3.9.1 Neuronal NO synthase

Activation of the NMDA receptor in the central nervous system leads to 

release of NO (Garthwaite et al., 1988). Pathophysiological effects of NO in 

the CNS have been linked to this activation of the NMDA receptor. It is 

thought that NO is involved in NMDA receptor-mediated cell death, 

occurring for example during cerebral ischaemia and cerebrovascular stroke. 

Evidence for involvement of NO comes from the ability of haemoglobin and 

NO synthase inhibitors to prevent neuronal death (Dawson et al., 1991).

29



1.3.9.2 Endothelial NO synthase

NO plays an important role in maintaining the endothelium in an anti­

thrombotic state. Any reduction in the activity of constitutive NO synthase 

can lead to increased platelet aggregation as well as increased constriction 

due to the secretory products of aggregating platelets. 

Hypercholesterolaemia and atherosclerosis are associated with a reduction 

in vasodilatation mediated by the endothelium (Forstermann et al., 1988). It 

is possible that the lipoproteins present may limit L-arginine availability, or 

increase the breakdown of NO by free radicals formed during lipid 

peroxidation (Wennmalm, 1994). Reduced endothelium-dependent 

vasodilatation is also found in hypertensive animals (Calver et al., 1993). 

Decreased production or activity of NO in the cardiovascular system has 

thus been associated with the major cardiovascular disorders, i.e. 

vasospasm, thrombosis and atherosclerosis (Quinn et al., 1995).

1.3.9.3 Inducible NO synthase

Initial events suggesting the involvement of NO in the cytotoxicity of 

macrophages towards tumour cells came from Hibbs et al. (1987b, 1988). 

These investigators showed that activated macrophages produced inhibition 

of mitochondrial respiration in target cells and this was associated with 

large-scale production of nitrite and nitrate. Similarly, it appeared that the 

large amounts of nitrite and nitrate produced by macrophages, activated by 

BCG, were associated with fungistatic effects (Granger et al., 1990). 

However, later it was shown that it was the large amounts of NO released 

from macrophages that induced cytotoxic and cytostatic effects in target 

cells (Cui et al., 1994; deRojas-Walker et al., 1995).
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The cytostatic and cytotoxic effects of NO include inhibition of a number of 

enzymes. These include the oxidoreductases of complex I and II of the 

mitochondrial electron transport chain, aconitase of the Krebs cycle and 

ribonucleotide reductase, the rate-limiting enzyme for DNA synthesis 

(Klostergaard, 1993). The high concentrations of NO produced by activated 

cells also produce damage to the DNA of invading cells, with strand breaks 

and fragmentation resulting (Green et al., 1994).

Inhibition of certain mitochondrial enzymes occurs due to NO altering the 

configuration of the catalytic site by co-ordinating with iron at their iron- 

sulphur clusters (Pellat et al., 1990). Ribonucleotide reductase catalyses the 

reduction of ribonucleotides to their corresponding deoxyribonucleotides, 

thus supplying precursors for DNA synthesis. The mechanism for inhibition 

is thought to be due to nitrosation of a critical cysteine and a tyrosyl radical 

(Lepoivre et al., 1992; Roy et al., 1995). In addition to its effects alone, NO 

can react with molecular oxygen to form N20 3 or with superoxide anion (see 

1.2.3) to form peroxynitrite. Both of these species attack DNA and cause a 

variety of toxic effects leading to purine and pyrimidine deamination, DNA 

strand breaks and cross linking (deRojas-Walker et al., 1995). Macrophages 

also induce apoptosis, or programmed cell death, in tumour cells, and 

although NO plays a major role, it is likely that apoptosis occurs through 

more than one mechanism (Cui et al., 1994)(see 1.10).

Although the large quantities of NO produced by macrophages are aimed at 

invading organisms, the cells expressing inducible NO synthase have on a 

few rare occasions been found to be susceptible to the NO that they 

produce. For example, stimulation of macrophages with IFN-y and LPS 

produced inhibition of aconitase, NADH: ubiquinone oxidoreductase and 

succinate: ubiquinone oxidoreductase in the macrophage itself (Drapier &
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Hibbs, 1988). Also, inhibition of cytochrome C oxidase and succinate 

cytochrome C reductase, after prolonged incubation with LPS and IFN-y, 

resulted from the NO produced in rat astrocytes (Bolanos et al., 1994).

Over-production of NO synthase upon systemic exposure to Gram-negative, 

and also Gram-positive bacteria, leads to the syndrome of septic shock, 

which can prove rapidly fatal (see Section 1.4.6).

1.4 Factors promoting the induction of NO synthase

A large number of agents are able to promote the induction of NO synthase 

in a wide variety of cell types (see Table 1.2). Both Gram-positive and 

Gram-negative bacteria are able to induce increases in NO production. 

Lipopolysaccharide, i.e. endotoxin, the major component of Gram-negative 

bacterial cells walls, is a powerful activator either when used alone or in 

combination with cytokines including IFN-y, IL-1, IL-2, TNF-a or p.

1.4.1 Gram-positive bacteria

The cell wall of Gram-positive bacteria contains the peptidoglycan, muramyl 

dipeptide and teichoic acid, which can induce a number of 

immunostimulatory effects (Noso et al., 1988). In most cases, teichoic acid 

is a weaker stimulus than peptidoglycan (Mattsson et al., 1993). Gram- 

positive bacteria can induce the production of IL-1, IL-6 and TNF-a from 

human monocytes (Riesenfeld-Om et al., 1989; Heumann et al., 1994), 

which could promote NO production from the vascular wall and thus 

contribute to the septic shock induced directly by Gram-positive bacteria.
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CELL TYPE INDUCER REFERENCE

Macrophage LPS (J774)

IFN-y+LPS (J774)

IFN-y+TNF-a

(peritoneal)

Marotta et a l 1992 

Di Rosa et a l 1990 

Severn e/ al., 1992 

Lambert et al., 1991

Kupffer cell LPS Gaillard et al., 1992

Smooth muscle cell IFN-y+TNF-a

IL-ip

LPS+EL-lp

Geng et al., 1994 

Hirokawa et al., 1994 

Marczin et al., 1993

Endothelial cell TNF-a

LPS

LPS+IFN-y

Estrada et al., 1992 

Akarasereenont et al., 1994 

Kilboum et al., 1990

Neutrophil LPS+IFN-y van Dervort et al., 1994

Astrocyte LPS Feinstein et al., 1993

Hepatocyte LPS Hortelano et al., 1992

Cardiac myocyte IL-l+IFN-y

IL-l+IFN+TGF-p

Balligand et al., 1994

Microglia LPS+IFN-y Jun et al., 1994c

Mesangial cells IL-ip Mtihl & Pfeilschifter, 1994

Table 1.2 Examples of different cell types which express nitric oxide 

synthase in response to varying stimuli.
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1.4.2 Lipopolysaccharide

LPS is a well documented stimulus for inducing NO synthase in a wide 

variety of cells types (Marotta et a l, 1992; Gaillard et al., 1992; Marczin et 

al., 1993; Akarasereenont et al., 1994; Feinstein et al., 1993; Hortelano et 

al., 1992), but little is known regarding the signal transduction pathways 

involved. Changes in a number of intracellular signal transduction systems 

have been observed after exposure of cells to LPS. A pertussis toxin- 

sensitive guanine nucleotide binding protein (G-protein) has been identified 

which can couple the binding of LPS at the cell surface to the intracellular 

signal transduction pathway (Jakway & Defranco, 1986; Daniel-Issakani et 

al., 1989; Wang et al., 1988). However, some actions of LPS in cells are 

unaffected by pertussis toxin treatment (Dzarski, 1989), suggesting that 

some of the responses elicited do not utilise a G-protein-dependent 

mechanism. LPS produces an increase in the turnover of phosphatidyl 

inositol and hydrolysis of phosphatidyl inositol-4-5-bisphosphate, resulting 

in increases in inositol-(l,4,5)-triphosphate formation (Ogmundsdottir & 

Weir, 1979; Prpic et al., 1987). Stimulation of phospholipase D is further 

proposed as a mechanism by which LPS mediates its action in monocytes 

and macrophages (Natarajan & Iwamoto, 1994). Stimulation with LPS 

increases intracellular calcium levels in macrophages (Letari et al., 1991) 

but in other studies (Drysdale et al., 1987) calcium was found to play no 

role in activating cytotoxic activity in cells. Furthermore, protein kinase C 

seems to be part of the signal transduction pathway involved in the LPS- 

induced expression of NO synthase (see 1.7.1), as does activation of 

tyrosine kinase (see 1.6.1).
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1.4.3 Structure of lipopolysaccharide

Lipopolysaccharide mediates many of its effects through ligand-receptor 

interaction with a number of immune cells. The Gram-negative bacterial cell 

surface consists of an inner cytoplasmic membrane and a trilayer outer cell 

wall structure consisting of a mucopolysaccharide-peptidoglycan layer, a 

phospholipid protein layer, and an outermost lipopolysaccharide layer 

(Raetz et al., 1991). The term 'endotoxin' refers to the impure extract of LPS 

found in combination with different proteins. The active chemical moiety of 

LPS is the lipid A component, which is unique to each molecule of LPS 

(Watson et al., 1994), although the critical chemical component of lipid A 

that makes it immunostimulatory has not been identified. The primary 

structure of lipid A has been elucidated in great detail for a number of 

different types of LPS and, in fact, lipid A has been synthetically 

manufactured, based on the structure of Escherichia coli lipid A (Rietschel 

et al., 1993).

1.4.4 Receptors for LPS

There are three classes of receptor for LPS

(1) CD18 antigens, also known as p2 integrins or leukocyte integrins, bind 

particulate LPS when it is presented on the surface of bacteria or LPS- 

coated erythrocytes, and the receptors participate in phagocytosis of the 

particles. There are various forms of CD 18, which comprise ;

CDlla/CD18 

CD 1 lb/CD 18 

CDllc/CD18
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It is unlikely that CD 18 plays a role in signal transduction of LPS-mediated 

effects, as its main function is in adhesion events (Wright & Jong, 1986).

(2) A scavenger receptor for LPS exists which plays no role in the signal 

transduction of LPS mediated effects (Freeman et al., 1990). This receptor 

which also scavenges acetylated low-density lipoprotein (LDL) may 

function to remove endotoxin from the circulation and deliver it to 

lysosomes where it can be metabolised to less active substances (Hampton 

etal., 1991).

(3) A CD 14 receptor. Binding to CD 14 is required for macrophage cytokine 

production (see 1.4.5). This is the only well defined LPS receptor on 

macrophages that mediates cell activation.

1.4.5 CD14 and LBP

Lipopolysaccharide can stimulate monocytes and macrophages to release a 

wide array of proteins, free radicals and lipids. The interaction between 

macrophages and LPS seems to occur via the CD 14 receptor (Lee et al.,

1992). CD 14 is a 53 kD glycoprotein found in two forms; membrane bound 

and soluble. The two forms have masses of 53 and 48 kD respectively, with 

the membrane-bound form being anchored via a 

glycosylphosphatidylinositol link to the cell surface (Hailman et al., 1994). 

The soluble form of the receptor interacts directly with LPS and may 

activate cells which are deficient in the membrane-bound form of CD 14 

(Kielian & Blecha, 1995). The membrane-bound CD 14 represents the 

receptor for LPS and mediates its effects in monocytes, macrophages and 

polymorphonuclear phagocytes (Mathison et al., 1993). The receptor 

appears mobile in the plane of the membrane of these cells (Wright et al., 

1990). Although LPS can bind to CD 14 independently, a protein exists that
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renders LPS more accessible for recognition by CD 14. This protein, 

lipopolysaccharide binding protein (LBP), has been isolated from the serum 

of various animals (Dentener et al., 1993). LBP (isolated from rabbit and 

human serum) is a 60 kD glycoprotein that has a specific binding site and 

high affinity for the lipid A moiety of LPS. LBP is present in normal serum 

at <0.5 pg ml-1 and is synthesised in hepatocytes (Schumann et al., 1990), 

with 69 % homology in the amino acid sequence of rabbit and human 

versions (Tobias & Ulevitch, 1993). Although it appears that LBP is 

required for the interaction between LPS and CD 14, it has been shown that 

LPS can still mediate some effects in the absence of LBP, but only at high 

concentrations. This demonstrates that LBP may serve to bring the LPS-LBP 

complex close to the cell surface or allow the complex to interact with other 

cell surface proteins (Watson et al., 1994). Thus, as LBP serves to 

potentiate the effects of low levels of LPS, a principal function of LBP may 

be to enhance the ability of the host to detect LPS early in infection. Release 

of cellular products would then enhance the natural defence mechanisms that 

combat infection. However, LBP has been shown to play a role in mediating 

the effects of endotoxaemia (Gallay et al., 1993a), so a method to block the 

effects of LBP may have some therapeutic use in the treatment of endotoxin 

shock.

In addition to aiding the transfer of LPS to CD 14 to activate cells, LBP 

catalyses the transfer of LPS to reconstituted high-density lipoprotein (HDL) 

particles (Wurfel et al., 1994). Lipoprotein particles avidly bind LPS 

because of partitioning of the ampiphilic LPS molecule into the phospholipid 

surface of the lipoprotein. Binding of LPS to HDL neutralises its biological 

activity. LBP can also facilitate a third lipid transfer reaction involving LPS. 

This catalytic effect of LBP moves LPS from the LPS-CD14 complex to 

reconstituted HDL particles, neutralising its actions (Wurfel et al., 1995).
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Therefore, in addition to causing amplification of the effects of low doses of 

LPS, LBP also plays a role as an intermediate in the neutralisation of LPS 

under physiological conditions.

LBP amplifies the effects of LPS, but another protein,

bactericidal/permeability increasing protein (BPIP), decreases the

stimulatory effects of LPS, including TNF-a synthesis (Heumann et al.,

1993). BPIP also has bactericidal activity and permeabilises Gram-negative 

bacteria (Corradin et al., 1994).

1.4.6 Septic Shock and its treatment

Although NO serves as a key signalling molecule in physiological processes 

such as control of vascular tone and neuronal communication, excessive and 

unregulated production is thought to be the cause of several

pathophysiological conditions. One such condition is septic shock, where 

there is overwhelming evidence that LPS-induced increased NO production 

contributes to the vasodilatation and hypotension seen both in human cases 

and in animal models of endotoxin shock (Petros et al., 1991; Stoclet et al., 

1993; Goode et al., 1995). The majority of cases of septic shock result from 

infection with Gram-negative bacteria, where the prime initiator of the shock 

is endotoxin, the LPS component of the bacterial cell wall (Glauser et al.,

1994). However, Gram-positive bacteria can contribute from 20-40 % of 

cases of septic shock (see 1.4.1)(Nogare, 1991). Most of the effects and 

treatment of septic shock will be dealt with in relation to infection with 

Gram-negative bacteria since those are better understood than for Gram- 

positive.

38



1.4.6.1 Inhibitors of NO synthase

Due to over-production of NO in septic shock, inhibition of inducible NO 

synthase might be of benefit in this condition. In animal models, NO 

synthase is induced in smooth muscle cells, endothelial cells, hepatocytes 

and other cells types, whereas in humans, induction has been demonstrated 

in blood vessel walls and hepatocytes (Quinn et al., 1995). However, it is 

likely that the majority of NO contributing to the development of 

hypotension during septic shock is derived from vascular smooth muscle 

cells in the vessel wall (Forstermann et al., 1994).

When used at low concentrations, inhibitors of NO synthase produce a 

reversal of hypotension and increase the survival rate in animal models of 

septic shock (Kilboum et al., 1990; Thiemermann & Vane 1990; Nava et 

al., 1991). This was also the case in a human study where low doses of L- 

NMMA increased blood pressure in patients (Petros et al., 1994). Also, 

when administered to healthy patients, L-NMMA increased blood pressure 

and was well tolerated (Haynes et al., 1993). In mice and rabbits, high doses 

of L-NMMA led to increased mortality in experimental models probably 

because the drugs inhibited both the inducible and constitutive forms of the 

enzyme (Thiemermann, 1993; Wright et al., 1992). In other animal studies, 

conducted in mice (Minnard et al., 1994) and pigs (Robertson et al., 1994), 

administration of L-NAME increased mortality. However, Wang et al., 

(1994b) suggested that there are changes in the amount of endothelium- 

derived NO released over time after the onset of septic shock. It appears that 

endothelium-derived NO is elevated 2 hours after onset of septic shock, and 

decreases 10-20 hours later. Thus, the precise manipulation of NO levels 

required to treat septic shock is yet to be determined.
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As already noted, inhibitors of NO synthase have a role in the treatment of 

septic shock, although inhibition of both the inducible and constitutive 

enzymes leads to severe disruption of cardiovascular control, resulting in 

only a minor overall improvement in mortality (Calver et al., 1993). One 

potential means of improving survival in septic shock that has been proposed 

is to co-administer NO-donating agents with an NO synthase inhibitor so as 

to replace the constitutively-produced endothelial NO (Brady & Poole- 

Wilson, 1993). Alternatively, an inhibitor with a high degree of selectivity 

for the inducible form of NO synthase could be used thus minimising 

disruption of endothelial regulation of vascular tone (Griffiths et al., 1993; 

Misko et al., 1993). Although certain of the inhibitors discussed previously 

(1.3.7) have some degree of selectivity for the inducible isoform, compounds 

with a much higher degree of selectivity may be required to ensure that 

normal endothelial function is maintained.

1.4.6.2 Effects of glucocorticoids

Glucocorticoids, such as dexamethasone, are commonly used for the 

treatment of septic shock (Nogare, 1991). Their mechanism of action 

appears at least in part to involve blockade of NO production by inhibiting 

the expression of the inducible form of NO synthase in smooth muscle cells 

in the vessel wall (Rees et al., 1990). In rabbit and rat models of endotoxin 

shock, pretreatment with dexamethasone inhibited the drop in blood 

pressure and regional blood flow induced by lipopolysaccharide (Wright et 

al., 1992; Szabo et al., 1993). However, to be effective in the treatment of 

septic shock, glucocorticoids must be administered as rapidly as possible 

after the onset of sepsis (Nogare, 1991; Szabo et al., 1993). In human cases 

of septic shock, however, even early treatment with glucocorticoids is not 

always effective and may lead to complications such as infections due to the
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concomitant immunosuppression produced by the drugs (Nogare, 1991). 

Inhibition of expression of inducible NO synthase by glucocorticoids is not 

restricted to vascular walls, but may be a general phenomenon. For example, 

inhibition of expression has been found in J774 cells (Di Rosa et al., 1990), 

various tissues in the rat including lung and liver (Knowles et al., 1990) and 

peritoneal macrophages (Schoedon et al., 1993).

1.4.6.3 Inhibition of LPS-mediated effects

Agents that inhibit the actions of LPS, for example antibodies directed at the 

core region of LPS which is conserved in most forms (Baumgartner & 

Glauser, 1993; Battafarano et al., 1994; Glauser et al., 1994), have also 

been proposed to have therapeutic potential. However, when used to treat 

patients with Gram-negative sepsis, the anti core LPS antibodies did not 

show any definite benefit to patients (Baumgartner & Glauser, 1993). 

Polymyxin B, a peptide with high affinity for LPS, has often been used to 

inhibit the actions of endotoxins. However, polymyxin B has other actions 

including inhibition of PKC (Nel et al., 1985) and disrupts biochemical 

processes by membrane interactions (Lasfargues et al., 1989) which make it 

unsuitable for use in humans. Alternatively, structural analogues of LPS 

could potentially be used that exert competitive inhibition at the CD 14 

receptor (Watson et al., 1994). An LPS antagonist, B464, has already been 

shown to reduce LPS-induced production of NO, TNF and IL-6 by RAW 

264 cells (Wang et al., 1994a). Another antagonist of LPS, precursor la, 

otherwise known as compound 406, has been shown to inhibit LPS-induced 

production of IL-1 p, TNF and IL-6 by human mononuclear cells (Flad et al.,

1993) and may also prove of therapeutic value. CD 14 is the receptor through 

which LPS is proposed to mediate its effects. Antibodies to CD 14 may 

prove to be very effective at blocking activation of macrophages by LPS
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blocking cytokine production and expression of inducible NO synthase. 

Similarly, antibodies to LBP reduced LPS-mediated shock in mice, 

indicating they may have some therapeutic use (Gallay et al., 1993a). 

Furthermore, administration of bactericidal/permeability increasing protein, 

which competes with LBP for binding of LPS, can block-LBP mediated 

binding of LPS to monocytes, leading to suppression of TNF-a release 

(Heumann et al., 1993). Which of these strategies will prove to be effective 

in human septic shock remains to be determined.

1.4.6.4 Inhibition of cytokine-mediated effects

In addition to directly inducing NO synthase, LPS leads to the production of 

a broad array of cytokines from host macrophages. These include TNF-a, 

IL-1 and IL-6, and excessive secretion of these cytokines by macrophages 

contributes to the organ failure and death in Gram-negative sepsis. Of these, 

IL-1 and TNF-a are potent inducers of NO synthase in the vascular wall 

(Busse & Miilsch, 1990; Battafarano et al., 1994; Schultz & Triggle, 1994). 

TNF-a is one of the most potent secreted products of LPS-mediated 

macrophage activation (Beutler et al., 1985). It is implicated in the 

pathogenesis of many disease states including septic shock and 

inflammation, and has a role in the regulation of acute-phase protein gene 

expression, cellular proliferation and apoptosis (Laskin & Pendino, 1995). 

TNF-a alone mediates several biological effects which are important in 

Gram-negative sepsis including stimulation of neutrophil degranulation and 

increased endothelial permeability to serum proteins (Nogare, 1991). TNF-a 

stimulates the release of other mediators from macrophages including EL-1, 

IL-6, PAF, prostaglandins and NO (Beutler & Cerami, 1989), and therefore 

contributes to the development of septic shock by exerting positive feedback 

effects on cytokine production. Furthermore, TNF also exerts cytotoxic
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effects on endothelial cells and may increase the degradation of endothelial 

constitutive NO synthase mRNA, thus reducing the NO-mediated 

cardiovascular tone (Estrada et al., 1992; Yoshizumi et al., 1993). 

Antibodies to TNF-a protect against death from endotoxaemia in mice, rats 

and rabbits, and therefore may have a useful therapeutic role in humans 

(Beutler et al., 1985; Mathison et al., 1988; Thiemermann, 1994). LPS- 

induced secretion of IL-1 by macrophages can induce tachycardia and 

hypotension and acts synergistically with TNF to induce tissue damage. 

Consequently, antagonists of IL-1 could be used to reduce the lethality of 

LPS-induced septic shock in humans. Use of an IL-1 receptor antagonist, IL- 

lra, has already been shown to reduce the mortality of endotoxin-induced 

shock in rabbits and rats (Ohlsson et al., 1990; Thiemermann, 1994).

1.4.7 Tolerance to LPS

The development of a tolerant state to the pathological effects of LPS can be 

induced by pre-exposure of cells to low doses of endotoxin. This is a well 

recognised phenomenon which can develop within hours of LPS injection 

and requires the presence of the biologically active moiety, lipid A. There 

appear to be two phases of endotoxin tolerance: (1) an early phase tolerance 

which begins 24-96 hours after the initial exposure to endotoxin whose 

mechanism is unclear and (2) a late phase tolerance which develops over 

several weeks after the initial exposure, and is associated with the 

production of anti-endotoxin antibodies (Szabo et al., 1994). Down- 

regulation of CD 14 binding sites may also play a part in the desensitisation 

process, as pre-exposure to LPS can lead to a decrease of up to 70 % in the 

number of binding sites (Fahmi & Chaby, 1993). However, it is likely that 

only prolonged exposure to LPS can lead to down-regulation of CD 14 

receptors since the tolerance to LPS precedes down-regulation (Labeta et
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al., 1993). It is possible that different regulatory pathways control the 

response to endotoxin in tolerant and in naive macrophages since pre­

exposure of naive macrophages to LPS can prime the cells to release 

elevated levels of certain inflammatory mediators upon subsequent exposure 

to LPS. The findings of Seatter et al. (1994) demonstrate that pre-exposure 

to LPS inhibits TNF-a secretion by peritoneal macrophages, but actually 

increases IL-1 secretion. A similar action was also found by West et al. 

(1994), where pretreatment with LPS led to decreased release of TNF but 

increased release of NO. Zhang & Morrison (1993) demonstrated that 

varying the dose of LPS used for pretreatment selectively affects either NO 

or TNF-a production, depending on the concentration administered. The 

primary dose of LPS inducing down regulation of NO is lower than that 

needed for inducing down regulation of TNF-a. The findings of Severn et al. 

(1993) demonstrate that LPS pre-exposure can reduce the production of NO 

on subsequent exposure to LPS and IFN-y. One proposal for the mechanism 

of tolerance to LPS in vivo is elevation of plasma glucocorticoid levels 

which could suppress the effects of further exposure to LPS (Szabo et al.,

1994). However, this cannot explain the mechanism of tolerance in 

macrophages grown in cell culture. Pretreatment with the NO synthase 

inhibitor, L-NMMA, abolished the ability of microdoses of LPS to protect 

against further exposure, suggesting a role for NO in the process of 

tolerance (Rojas et al., 1993). Thus, repetitive exposure to LPS appears to 

elicit a complex process. LPS not only desensitises the cell to future 

stimulation, but can selectively orientate the macrophage towards a specific 

response.
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1.4.8 Mechanisms of activation by IFN-y

Interferons are a family of glycoproteins that, after interaction with specific 

receptors on the outer surface of target cells, induce a wide array of 

biological actions. There are three major classes of interferons; leukocyte or 

alpha interferon (IFN-a), fibroblast or beta interferon (EFN-p) and immune 

or gamma interferon (IFN-y) (Pestka & Langer, 1987). IFN-y interacts with 

a single class of cell surface receptor. In humans and mice, this receptor is a 

single chain glycoprotein which has extracellular and intracellular domains 

and both of these are involved in the binding of the IFN-y molecule (Szente 

& Johnson, 1994; Szente et al., 1994). Internalisation and receptor recycling 

form important components of the ability of IFN-y to induce non-specific 

tumouricidal activity in macrophages (Celada & Schreiber, 1987). There are 

a variety of proposals to explain the mechanisms by which IFN-y mediates 

its effects. It has been shown to increase protein kinase C activity (Hamilton 

et al., 1985; Fan et al., 1988), and this is required for the Fey receptor and la 

antigen expression (Politis & Vogel, 1990). IFN-y elevates intracellular 

calcium levels and, in addition to activating calcium calmodulin kinases, this 

may contribute to stimulation of PKC (Weiel et al., 1985). Alteration in the 

turnover of fatty acids in membrane phospholipids is increased by IFN-y 

(Darmani et al., 1993; Jackson et al., 1992), although other findings 

demonstrate that activation of PKC may be independent of 

phosphatidylinositol metabolism. Instead, it has been proposed that DAG 

may be generated only via phosphatidylcholine metabolism (Sebaldt et al., 

1990). However, in other studies, the involvement of PKC in IFN-y-induced 

activation appears doubtful (Radzioch & Varesio, 1988), as IFN-a and -p, 

but not IFN-y produced a rise in DAG and IP3 levels (Yap et al., 1986). In 

addition to activating macrophages as part of an inflammatory response,
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IFN-y enhances the adhesiveness of monocytes to endothelial cells (Wang et 

al., 1994c), by mechanisms involving a number of different adhesion 

molecules.

1.4.9 Combined stimulation by LPS and IFN-y

Macrophages resident in tissues in a resting state are relatively resistant to 

acquiring the ability to destroy neoplastic cells. There are, however, some 

cases when immature mononuclear phagocytes can respond to inductive 

signals. Upon exposure to a macrophage activating factor, now known to be 

IFN-y, macrophages enter a state where, although not yet cytolytic, they can 

be made to become so upon addition of a further stimulus. This is referred to 

as the primed state. Upon subsequent exposure to small amounts of LPS, the 

macrophages become fully activated and can carry out cytotoxic and 

cytostatic functions (Hamilton & Adams, 1987).

The sequence of stimulation with LPS and IFN-y can profoundly influence 

the extent to which inducible NO synthase is expressed. Either simultaneous 

exposure to both agents or pre-treatment for 2, 4 or 6 hours with IFN-y 

followed by stimulation with LPS results in NO production (Lorsbach & 

Russell, 1992; Walter et al., 1994). Exposure to LPS followed by 

stimulation by LFN-y 2 or 6 hours later gives little response (Lorsbach & 

Russell, 1992; Walter et al., 1994). Furthermore, pretreatment with IFN-y 

followed 24 hours later by stimulation with a mycobacterium 

(Mycobacterium bovis) produces high levels of NO, whereas if the order is 

reversed, NO production is very low (Hanano & Kaufmann, 1995). A 

possible mechanism to account for the co-operation between LPS and IFN-y 

is that LPS may be able to stabilise the increase in inducible NO synthase
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mRNA induced by exposure to IFN-y (Weisz et al., 1994). Furthermore, 

IFN-y may positively regulate the transcriptional activation of the gene for 

NO synthase in macrophages stimulated by LPS (Lorsbach et al., 1993). It

is known that LPS and IFN-y indirectly activate the promoter region 

of the mouse gene for NO synthase, and simultaneous activation of the two 

regions synergistically increases expression of the gene (Lowenstein et al.,

1993). In priming for tumouricidal activity which may at least partly involve 

NO, the effects of IFN-y are mimicked by the combination of a phorbol ester 

and a calcium ionophore, suggesting that IFN-y primes cells via alterations 

in calcium levels and PKC activity (Celada & Schreiber, 1986; Somers et 

al., 1986).

1.5 NO and human cells

NO represents an important part of the cytotoxic and cytostatic effector 

system of monocytes and macrophages in rodents, but there is doubt as to 

whether a similar system exists in human macrophages (McCall & Vallance, 

1992). Human monocytes and macrophages can be activated by LPS to 

produce cytokines such as TNF-a (Gallay et al., 1993b) and IL-6 (Gessani 

et al., 1993), but appear to lack the ability to produce NO. Stimulation of 

monocytes and macrophages with EL-ip (Schneeman et al., 1994), IFN-y 

(Martin & Edwards, 1994), LPS plus IFN-y (Murray & Teitelbaum, 1992), 

LPS, IFN-y and TNF alone and in combination (Zembala et al., 1994) or 

LPS, IFN-y, GM-CSF and TNF-a alone or in combination (Schneeman et 

al., 1993), were unable to stimulate the human macrophages or monocytes 

to produce NO. A possible explanation put forward to explain these findings 

is the inability of human macrophages to produce tetrahydrobiopterin, an 

essential cofactor for NO synthase. However, supplementation of the cells
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with tetrahydrobiopterin in combination with cytokines (IFN-y, TNF-a) still 

did not lead to production of NO (Sakai & Milstien, 1993). The lack of 

ability to release NO is also found in human polymorphonuclear leukocytes 

(Yan et al., 1994). Other studies have, however, demonstrated the ability of 

human monocytes or macrophages to express inducible NO synthase mRNA 

following stimulation by LPS and IFN-y (Reiling et al., 1994), to release 

nitrite following stimulation by IL-4 (Paul-Eugene et al., 1994), or TNF-a 

plus IFN-y (Munoz-Femandez, 1992) and to exhibit anti-parasitic effects 

upon stimulation with IFN-y (Gyan et al., 1994). Thus, there is conflicting 

evidence as to the ability of human monocytes and macrophages to produce 

NO upon stimulation by LPS and a variety of cytokines.

1.6 Tyrosine kinase

Protein tyrosine kinases play a central role in signal transduction pathways 

that regulate cell proliferation and differentiation. The kinases can be 

divided into two main groups based on their structures. One group which 

possesses extracellular domains is the receptor protein tyrosine kinases such 

as the receptors for platelet-derived growth factor (PDGF), epidermal 

growth factor (EGF), nerve growth factor (NGF) and insulin (Ullrich & 

(Schlessinger, 1990). The second major group is the non-receptor tyrosine kinases 

which lack extracellular sequences. This group of tyrosine kinases migrate to 

receptors which lack intrinsic tyrosine kinase activity (Bolen et a l, 1992).

1.6.1 LPS and tyrosine kinase

Activation of tyrosine kinase by cytokines is a key event in the signal 

transduction pathways that mediate some events induced by cytokines 

(Ullrich & Schlessinger, 1990). Lipopolysaccharide induces tyrosine
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phosphorylation in macrophages, and this process mediates many of the 

inflammatory effects produced by these cells (Dong et al., 1993a; Geng et 

al., 1993). Initial studies found that LPS rapidly increased tyrosine 

phosphorylation within 4-5 min of exposure (Weinstein et al., 1991). Further 

evidence for the involvement of tyrosine kinase arises from the findings that 

inhibitors of this kinase, including tyrphostin, herbimycin A and genistein, 

block LPS-induced production of TNF-a, IL-6 and IL-ip by human 

monocytes and murine macrophages (Beaty et al., 1994; Geng et al., 1993; 

Novogrodsky et al., 1994), as well as LPS-mediated tumouricidal activity of 

murine peritoneal macrophages (Dong et al., 1993a). Two of the proteins 

rapidly phosphorylated following exposure of macrophages to LPS have 

masses of 41 and 44 kD, and are isoforms of a mitogen-activated protein 

(MAP) kinase (Ding et al., 1993; Weinstein et al., 1992). In fact, tyrosine 

phosphorylation of MAP kinase is one of the earliest known responses of 

macrophages to LPS and, since MAP kinases appear to modulate cellular 

processes in response to extracellular signals, these kinases may be 

important targets for LPS action in macrophages (Dong et al., 1993b). There 

is evidence that the CD 14 receptor in human monocytes is involved in the 

LPS-mediated activation of MAP kinases (Liu et al., 1994a), as well as in 

the activation of tyrosine kinase resulting in TNF-a and IL -la  release 

(Stefanova et al., 1993). Furthermore, antibodies to the CD 14 receptor 

inhibit induction of protein tyrosine phosphorylation by LPS (Han et al., 

1993; Weinstein et al., 1993), suggesting that LPS-LBP binding to CD 14 

triggers intracellular protein phosphorylation, which may lead to the 

expression of anti-bacterial responses.
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1.6.2 IFN-y and tyrosine kinase

IFN-y signal transduction, which occurs following binding of IFN-y to cell 

surface receptors, involves activation of tyrosine kinases (Ralph et al., 

1995), which then phosphorylate transcription factors (Pellegrini & 

Schindler, 1993). Further evidence exists linking tyrosine kinase activity to 

activation of cells by IFN-y. For example, IFN-y has been shown to 

stimulate IL-12 production via stimulation of tyrosine kinase (Yoshida et al.,

1994), a process blocked by the tyrosine kinase inhibitors, herbimycin A and 

genistein. Further, stimulation of macrophages with IFN-y has been shown 

to induce an increase in tyrosine phosphorylation of MAP kinases (Ding et 

al., 1994). Such tyrosine kinases involved in the IFN-y-mediated activation 

include those belonging to the JAK  family of non receptor protein tyrosine 

kinases. Although classed as non receptor kinases, many members of this 

group can associate with some kinds of cell surface ligand binding protein 

(Bolen et al., 1992). This family comprises the JAK \ , JAK2 and Tyk2 

subtypes (Argetsinger et al., 1993; Silvennoinen et al., 1993), and it appears 

that the JAK\ and JAK2 subtypes play an essential role in IFN-y response 

pathways (Muller et al., 1993; Watling et al., 1993; Igrashi et al., 1994).

1.6.3 Tyrosine kinase and NO synthase

Evidence for the involvement of tyrosine kinase leading to the production of 

NO has been observed by many workers. Stimulation of J774.2 cells with 

LPS led to generation of NO, a process blocked by two inhibitors of tyrosine 

kinase, genistein and erbstatin (Akarasereenont et al., 1994). Moreover, the 

combination of LPS and IFN-y produced a tyrosine kinase-dependent 

increase in NO production in RAW 264.7 cells (Paul et al., 1995),
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astrocytes (Feinstein et al., 1994) and C3H/HeJ cells (Dong et al., 1993c). 

In these studies, activity of NO synthase was reduced by various inhibitors 

of tyrosine kinase, including genistein, herbimycin A and tyrphostin. 

Furthermore, in rat aortic smooth muscle cells, induction of NO synthase by 

LPS or IL-ip was blocked by the tyrosine kinase inhibitors genistein and 

geldanamycin (Marczin et al., 1993). Thus, protein tyrosine kinase activity 

appears to be involved in the signal transduction pathway for LPS and other 

immunomodulatory cytokines in the induction of NO synthase in a wide 

variety of cells.

1.7 Protein kinase C

Protein kinase C (PKC) plays an important role in a wide variety of cellular 

functions including cell proliferation, gene expression and signal 

transduction processes (Nishizuka, 1988). The gene structure of several 

isozymes have been established so far, namely a , pi, pil, y, 5, s, r\, 0, p, i/X 

and £ isoforms (Fujihara et al., 1994). Four of the isozymes, a , pi, p n  and 

y, require calcium and DAG for activation and are classified as conventional 

protein kinase C ’s. The novel isotypes, 5, s and 0 are calcium -independent and 

D A G -activated and the atypical isoform s i, X and C, are not D A G  activated (Parker 

et al., 1995).

1.7.1 LPS and protein kinase C

Wightman & Raetz (1984) demonstrated the ability of lipid A to activate 

PKC by measuring changes in the activity of the enzyme. As noted 

previously, LPS produces an increase in the turnover of phosphatidyl
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inositol and hydrolysis of phosphatidyl inositol-4-5-bisphosphate with 

corresponding increases in IP3 (Ogmundsdottir & Weir, 1979; Prpic et al., 

1987). Macrophages treated with LPS or lipid A exhibit a characteristic 

pattern of protein phosphorylation (Weiel et al., 1986); five distinct proteins 

are phosphorylated as shown by gel electrophoresis and radio labelling. 

Initiation of polyphosphoinositide hydrolysis triggers protein 

phosphorylation via PKC in many different cell types, as DAG, one of the 

products of polyphosphoinositide hydrolysis, is a potent activator of PKC 

(Nishizuka, 1984), and PKC is known to play a role in some of the 

inflammatory processes in macrophages mediated by LPS (Hamilton & 

Adams, 1987). Evidence for the involvement of PKC in LPS-mediated 

effects is fairly widespread. For example, blockade of PKC by the inhibitors 

H-7 and staurosporine, inhibited production of TNF-a and IL-ip by 

peritoneal macrophages (Nakano et al., 1993). Moreover, the PKC 

inhibitors staurosporine and sphingosine reduced LPS-induced TNF 

production by alveolar macrophages (Tschaikowsky, 1994). Further, H-7 

inhibited LPS-induced cytotoxicity in macrophage cell lines (Novotney et 

al., 1991) and H-7 and staurosporine inhibited LPS-induced increases in 

arachidonic acid metabolism leading to thromboxane B2 release by 

peritoneal macrophages (Geisel et al., 1991). However LPS-stimulated 

release of TNF-a by rat Kupffer cells was unaffected by H-7 or 

staurosporine (Weinhold et al., 1991), demonstrating that not all LPS- 

mediated inflammatory effects are mediated via PKC activation.

1.7.2 IFN-y and protein kinase C

As noted previously (1.4.8), IFN-y activates protein kinase C (Sebaldt et al., 

1990; Hamilton et al., 1985; Politis & Vogel 1990; Fan et al., 1988) as
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demonstrated by a direct increase in enzyme activity, and also by the ability 

of inhibitors, e.g. staurosporine and H-7, to reduce IFN-y-mediated effects. 

Thus, both LPS and IFN-y can initiate PKC activation.

1.7.3 Protein kinase C and NO synthase

In addition to tyrosine kinase, another pathway implicated in the induction of 

NO synthase is activation of PKC. Evidence for the involvement of PKC in 

the induction of NO synthase is widespread. Inhibition of PKC using the 

inhibitor Ro 31-8220 inhibited LPS- and LPS plus IFN-y-stimulated 

increases in NO synthase activity in the RAW 264 cell line (Paul et al.,

1995). In the J774 macrophage cell line, NO synthase activity stimulated by 

the combination of LPS and IFN-y was also reduced by the PKC inhibitor, 

Ro 31-8220 (Severn et al., 1992; Sands et al., 1994a). Similarly, treatment 

of peritoneal macrophages with the PKC inhibitor, staurosporine, abolished 

the synergistic co-operation between IFN-y and PMA to induce NO 

synthase (Jun et al., 1994a).

Activation of phosphatidylcholine-specific phospholipase C (PC-PLC) 

produces DAG and subsequently activation of PKC (Sands et al., 1994b). 

Inhibition of PC-PLC by the specific inhibitor D609, inhibited NO 

production in response to LPS, IFN-y or a combination of both 

(Tschaikowsky et al., 1994). Therefore, expression of NO synthase may 

involve the activation of a PC-PLC rather than a phosphatidyl inositol- 

specific PLC. Stimulation of J774 cells with LPS and IFN-y resulted in the 

translocation from the cytosol to the membrane of predominantly the epsilon 

form of PKC, suggesting that it is this isoform that is involved in the 

induction process (Sands et al., 1994a). However, Fujihara et al. (1994)
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suggested that the pH isoform is involved in the production of NO synthase 

\ by J774 cells, due to the down-regulation of the pH isoform and the 

reduction in NO production by prolonged exposure to PMA (see 1.7.5). 

Further, blockade of the 8 isoform of PKC by elevated NO levels (see 1.9) 

demonstrated a critical role of this isoform in the induction of NO synthase 

by LPS and IFN-y (Jun et al., 1994b).

1.7.4 Inhibitory effects of PKC activation on induction of NO 
synthase

From the above, it appears that PKC plays a role in the induction of NO 

synthase. In most cases, expression of NO synthase took place following 

activation of PKC by LPS alone or by LPS in combination with IFN-y. 

However, it has been reported that activation of PKC can produce inhibition 

of induction of NO synthase in certain circumstances. For example, in rat 

mesangial cells, either inhibition using the selective PKC inhibitor calphostin 

C, or down-regulation of PKC by prolonged exposure to phorbol ester (see 

1.7.5), potentiated the EL-ip-induced expression of inducible NO synthase 

(Mtihl & Pfeilschifter, 1994). Furthermore, in vascular smooth muscle cells, 

activation of PKC by a phorbol ester reduced cytokine-induced nitrite 

accumulation, an effect blocked by the PKC inhibitor, calphostin C (Geng et 

al., 1994). Moreover, in rat peritoneal macrophages (Hortelano et al., 1993) 

and rat hepatocytes (Hortelano et al., 1992), it has been shown that a clear 

antagonism exists between LPS and phorbol esters in inducing the 

production of NO. The LPS-stimulated increase in NO was reduced in the 

presence of a phorbol ester, although whether this was due to activation or 

down-regulation of PKC was not established.
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1.7.5 Down-regulation of PKC

Phorbol esters are poorly metabolised tumour promoters, but also have a 

wide range of biological effects through mimicking the effects of diacyl 

glycerol in activating PKC (Weiel et al., 1985). However, prolonged 

treatment with phorbol esters down-regulates PKC (Dieter & Fitzke, 1991). 

Phorbol ester-induced down regulation is caused by an increased rate of 

proteolysis (Young et al., 1987), without a change in the rate of synthesis. 

The proteases involved in the down-regulation process have not been 

defined, although a leading contender is the calcium-activated neutral 

protease otherwise known as calpain (Pontremoli et al., 1988). Calpain 

exists in two forms; type I which is active in the micromolar range of 

calcium, and type II, which requires a millimolar range of calcium for 

activity. In rat brain, calpain cleaves the a , p and y subtypes of PKC. This 

proteolysis may be the initiating step in the degradation of PKC (Kishimoto 

et al., 1989). For example, treatment of 3T3 mouse cells with a phorbol 

ester inhibited enzymatic activity of PKC almost completely after 24 hours 

(Rodriguez-Pena & Rozengurt, 1984). However, different isoforms of PKC 

in different cell types can be differentially down-regulated (Parker et al.,

1995). For example, in the J774 macrophage cell line, isoform pH was 

eliminated from the cell via prolonged exposure to phorbol esters (Fujihara 

etal., 1994).

1.8 Regulation of Induction of NO Synthase by Cyclic 
Nucleotides

1.8.1 Effects of cyclic AMP on inflammatory function

The ability of macrophages to participate in the inflammatory response is
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regulated by cyclic AMP. Cyclic AMP tends to suppress the inflammatory 

response, and does so by a number of different mechanisms. One such 

mechanism is to reduce NO production. For example, in J774 cells, 

prostanoids which stimulate adenylate cyclase, e.g. PGE2 and PGI2, inhibit 

LPS-induced nitrite production by the cells, indicating a reduced expression 

of the NO synthase enzyme (Marotta et al., 1992). Here, PGE2 and PGI2 

affected only the induction process, as they had no effect on enzyme activity 

once the NO synthase had been expressed. Furthermore, elevated cyclic 

AMP levels in J774 macrophages, achieved by incubating cells with 

phosphodiesterase inhibitors or 8 bromo cyclic AMP, a membrane permeant 

analogue of cyclic AMP, inhibited nitrite accumulation stimulated by LPS or 

by LPS and IFN-y in combination (Bulut et al., 1993). Again, the agents that 

elevated cyclic AMP were in contact with the cells when they were 

stimulated with LPS and EFN-y, indicating that they were probably affecting 

the induction process. Moreover, in mouse peritoneal macrophages, 

elevation of cyclic AMP levels during activation of cells, by the addition of 

8 bromo cyclic AMP or the phosphodiesterase inhibitor IBMX, inhibited 

LPS-mediated nitrite accumulation (Raddassi et'a l., 1993). In addition, 

elevation of cyclic AMP by noradrenaline in astroglia cells suppressed LPS- 

induced nitrite production, thus indicating reduced induction of NO synthase 

(Feinstein et al., 1993). Again, noradrenaline had to be present at the time of 

stimulation of the cells by LPS. In addition to induction of NO synthase 

being suppressed, elevated cyclic AMP levels can reduce the production of 

cytokines by cells. For example, in human monocytes, elevation of cyclic 

AMP levels by use of PDE inhibitors, including IBMX and rolipram, 

inhibited LPS-stimulated production of TNF-a (Endres et al., 1991; 

Prabhaker et al., 1994) and EL-1(3 (Verghese et al., 1995). Also, in human 

astrocytes, LPS-mediated production of EL-ip was inhibited by elevated 

cyclic AMP levels using 8 bromo cyclic AMP or forskolin, an agent that
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stimulates adenylate cyclase (Willis & Nisen, 1995). Further, expression of 

class II major histocompatibility complex (MHC) gene production induced 

by IFN-y was inhibited by elevated cyclic AMP levels using PGE2 

(Figueiredo et al., 1990). Moreover, unstimulated release of TNF-a from 

macrophages was inhibited by elevating cyclic AMP levels using PGE2 

(Renz et al., 1988) and in mice, cyclic AMP levels elevated by dibutyryl 

cyclic AMP reduced LPS-mediated TNF-a production (Inoue et al., 1995).

In contrast to inhibiting aspects of the inflammatory response, cyclic AMP 

can actually potentiate the response in certain cell types including smooth 

muscle cells. Following elevation of cyclic AMP levels using forskolin and 

prostaglandins, IFN-y-induced production of nitrite and expression of NO 

synthase mRNA levels in vascular smooth muscle cells were enhanced 

(Koide et al., 1993). Furthermore, dibutyryl cyclic AMP, forskolin and a 

PDE inhibitor enhanced IL-lp-induced NO production in rat aorta smooth 

muscle cells (Hirokawa et al., 1994). In rat aortic smooth muscle cells, 

forskolin and isoprenaline also enhanced IL-lp-induced nitrite production 

(Schini-Kerth et al., 1994) and using forskolin, IL-Ip-mediated nitrite 

production was enhanced (Scott-Burden et al., 1994). Even in the absence 

of IFN-y, forskolin produced a small increase in nitrite accumulation when 

used alone (Koide et al., 1993). Cyclic AMP has also been shown to 

potentiate NO synthase expression. In peritoneal macrophages, cholera toxin 

and dibutyryl cyclic AMP each enhanced LPS-stimulated nitrite production, 

and each also produced nitrite when used in the absence of LPS (Sowa & 

Przewlocki, 1994). Furthermore, in rat brain microvessel endothelial cells, 

nitrite production stimulated by IFN-y and IL-1 was potentiated by 8 bromo 

cyclic AMP or isoprenaline (Durieu-Trautmann et al., 1993). Finally in rat 

Kupffer cells, LPS-mediated nitrite production was enhanced in the presence 

of PGE2 (Gaillard et al., 1992).
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Thus, cyclic AMP is an important intracellular signalling agent involved in 

regulating expression of various proteins. Elevation of cyclic AMP has a 

dual role depending on cell type and conditions; it reduces the induction of 

NO synthase and suppresses the release of inflammatory mediators and 

cytokines from certain cells involved in the inflammatory reaction, but it can 

also positively regulate the expression of inducible NO synthase and thus 

enhance the production of NO in others.

1.8.2 Effects of cyclic GMP on NO production

Cyclic GMP is a mediator in eliciting diverse physiological responses and is 

especially important in mediating the effects of NO. NO causes relaxation of 

vascular smooth muscle cells by activation of soluble guanylate cyclase 

(Kukovetz et al., 1979). NO constitutively produced by endothelial cells 

diffuses to neighbouring smooth muscle cells where it binds to the haem 

group of soluble guanylate cyclase and activates it causing the production of 

cyclic GMP (Ignarro, 1989). There is great potential for cyclic GMP to 

regulate cell function via a cyclic GMP-dependent protein kinase following 

the production of NO (Pryzwansky et al., 1995). This is especially the case 

in vascular smooth muscle where elevated cyclic GMP levels lead to the 

activation of a protein kinase (PKG) which then lowers intracellular calcium 

levels by a number of mechanisms. The elevated level of cyclic GMP as a 

result of constitutively released NO is an important mediator in maintaining 

the NO dependent vasodilator tone that is essential for the regulation of 

blood flow and pressure (Vallance et al, 1989). Cyclic GMP is also 

important in maintaining platelets in an anti-aggregatory state via extrusion 

of intracellular calcium (Johansson & Haynes, 1992). Although elevation of

58



cyclic AMP levels can profoundly modulate expression of the NO synthase 

enzyme and can regulate the release of cytokines from cells, cyclic GMP 

does not appear to have the same modulatory effect. For example, 8 bromo 

cyclic GMP, a membrane permeant analogue of cyclic GMP has no effect on 

IFN-y-induced nitrite production in rat thoracic smooth muscle cells in 

culture (Koide et al., 1993), and has no effect on nitrite accumulation 

induced by the combination of TNF and IFN-y in rat brain microvessel 

endothelial cells (Durieu-Trautmann et al., 1993). Similarly, dibutyryl cyclic 

GMP, another membrane permeant analogue of cyclic GMP, has no effect 

on IL-induced production of nitrite in rat aortic smooth muscle cells 

(Hirokawa et al., 1994). Thus, cyclic GMP appears not to have the 

extensive modulatory role that cyclic AMP can command.

1.9 Negative Feedback Role of NO

The process of negative feedback provides an important regulatory system in 

cells. Such a system appears to exist for NO production by cells, where NO 

can regulate the extent of its own production. For example, in human 

mononuclear cells, SIN-1, a generator of NO, suppressed LPS-stimulated 

synthesis of IL-lp (Endres et al., 1991). Furthermore, the activity of 

constitutive endothelial NO synthase was reduced by the addition of NO or 

the NO donor S-nitroso-acetyl-penicillamine (SNAP)(Buga et al., 1993) and 

the activity of a crude bovine cerebellum NO synthase was inhibited by NO 

and by the NO donors, SNAP, sodium nitroprusside and GTN (Rengasamy 

& Johns, 1993a). Moreover, NO synthase induced by LPS plus IFN-y in 

alveolar macrophages had its activity reduced by the addition of NO or 

SNAP (Griscavage et al., 1993) and the activity of neuronal NO synthase 

from rat cortex was inhibited by the NO donors sodium nitroprusside,
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hydroxylamine and GTN (Vickroy & Malphurs, 1995). Further, the activity 

of muramyldipeptide-induced NO synthase in alveolar macrophages was 

reduced by the addition of the NO donors SIN-1 and nitrosoglutathione 

(Morin et al., 1994).

It is not known whether inhibition of NO synthase involves the activity of 

PKG via elevated cyclic GMP levels, or a direct inhibitory action by NO 

itself. The available evidence however, suggests that these inhibitory effects 

are independent of cyclic GMP. Assreuy et al. (1993) observed that in J774 

cells, NO synthase activity induced by LPS and IFN-y was inhibited by 

increasing levels of the NO donor, SNAP. However, this decrease in NO 

synthase activity was not mimicked by the cyclic GMP analogue, 8 bromo 

cyclic GMP, ruling out cyclic GMP as the cause of the drop in activity of 

NO synthase. Mechanisms proposed to explain the ability of NO to inhibit 

its own production include the possibilities that NO disrupts NO synthase 

mRNA or blocks transcriptional activity of the NO synthase gene by 

cytokines (Park et al., 1994a). Alternative explanations have been 

suggested, however, since NO can bind to the haem iron of nitric oxide 

synthase to form haem-nitrosyl complexes, leading to inhibition of the 

enzyme (Hurshman & Marietta, 1995). NO dissociates slowly once it has 

formed a haem iron-NO complex (Rengasamy & Johns, 1993a), and thus 

NO-mediated inhibition of NO synthase is relatively long lasting. Also, NO 

competes with 0 2 for nitric oxide synthase, and thus can inhibit the catalytic 

activity of the enzyme by reducing the availability of oxygen for formation 

of NO (Hurshman & Marietta, 1995). NO reversibly inhibits PKC 

(Gopalakrishna et al., 1993) and has been shown to inhibit the 5 isoform 

which is crucially involved in the process of expression of inducible NO 

synthase (Jun et al., 1994b).
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In addition to inhibiting NO synthase, NO has the ability to suppress the 

production of other biologically active compounds from cells. For example, 

the addition of the NO donor, SIN-1, inhibited the production of TNF by 

RAW 264.7 cells (Eigler et al., 1995). Similarly, the production of IL-3 

from spleen cells was inhibited by the NO donors SIN-1 and S-nitroso- 

glutathione (Marcinkiewicz & Chain, 1993). Moreover, the production of 

extracellularly released oxygen metabolites from activated neutrophils 

(Forslund & Sundqvist, 1995), the release of histamine from mast cells 

(Masini et al., 1991) and the chemotactic, degranulation and leukotriene 

producing functions of human polymorphonuclear leukocytes (Moilanen et 

al., 1993) were reduced by a variety of different NO donors.

Although most evidence indicates a suppressive feedback of NO on the 

inflammatory response, a few findings exist which contradict this. NO from 

the NO donor, sodium nitroprusside, has been shown to increase the release 

of TNF-a from human neutrophils (van Dervort et al., 1994). In addition, 

NO derived from the NO donor S-nitroso-glutathione, increased the release 

of TNF-a and IL -la  from peritoneal macrophages (Marcinkiewicz et al.,

1995), thus helping to augment the inflammatory response. Why these 

reports differ from the majority of findings where NO dampens down 

cytokine release remains to be established.

1.10 NO and Apoptosis

Apoptosis, a form of programmed cell death, involves condensation of the 

nucleus of the cell with intemucleosomal cleavage of DNA (Gerschenson & 

Rotello, 1992). NO is thought to be a trigger for apoptosis, and it has been 

proposed that the NO produced by macrophages induces apoptosis in these
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cells (Sarih et al., 1993; Albina et al., 1993). Both endogenously produced 

NO and exogenously added NO, via the NO donor, NOC-18, produced 

apoptosis in macrophages, although a far greater concentration of exogenous 

NO was needed (Shimaoka et al., 1995) . NO-induced apoptosis by four 

different NO donors was inhibited by activation of PKC with 10-O-tetra- 

decanoylphorbol-13-acetate, suggesting a role for PKC in the apoptotic 

process (Messmer et al., 1995). In addition to causing apoptosis in 

macrophages producing NO, NO has been shown to produce apoptosis in 

target cells. Tumour cells are one such target, and macrophage-induced 

apoptosis arises in these cells through both NO-dependent and NO- 

independent pathways (Cui et al., 1994). In contrast to the majority of 

findings where NO appears to contribute to the process of apoptosis, NO 

has been found to protect against apoptosis in human eosinophils derived 

from peripheral blood (Beauvais et al., 1995).

1.11 Aims of project

A major part of this thesis is concerned with an investigation of the 

induction of NO synthase in the J774.7 macrophage cell line, and of the 

stimuli and factors which promote or otherwise regulate its induction. A 

greater understanding of the mechanisms involved in the induction process 

may represent a way forward in the treatment of septic shock.

Free radical production represents both a damaging and a protective feature 

of certain cells of the immune system. Investigation of production of reactive 

oxygen intermediates by the J774.7 macrophage cell line constitutes a 

further part of this thesis.
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CHAPTER 2

Part 1 
Macrophages

2.1.1 MACROPHAGE CELL CULTURE

2.1.1.1 RAW 264 cells

The RAW 264 murine macrophage cell line was purchased from The 

European Collection of Animal Cell Cultures, Porton Down, Salisbury. On 

delivery, RAW 264 cells, suspended in bicarbonate buffered Dulbecco's 

Modified Eagle's Medium (DMEM) in a 25 cm2 flask, were placed in an 

incubator (NAPCO model no. 5410) at 37°C under an atmosphere of 5 % 

C 0 2 and left in the incubator overnight to recover from transport. Upon 

reaching confluence, the cells were removed from the flask by means of a 

cell scraper (Costar) and were transferred to sterile culture tubes (Falcon) 

where they were spun at 400g for 4 min at 10°C and the medium discarded. 

The cell pellet was then washed with 30 ml sterile saline (0.9 % sodium 

chloride, Baxter), spun at 400g for 4 min at 10°C, washed for a second time 

and then re-suspended in 60 ml of HEPES (20 mM, N-2- 

hydroxyethylpiperazine-N'-2-ethanesulphonic acid) - buffered DMEM 

supplemented with 10 % foetal calf serum, 2 mM glutamate, 200 u ml-1 

benzyl penicillin and 200 pg m l1 streptomycin. This is subsequently referred 

to as full growth medium. The cell suspension was split into three aliquots 

and each was seeded into a 80 cm2 flask (Costar/Nunc). The cells were 

placed in an incubator (Flow model no. 160) at 37°C under an atmosphere 

of air and grown until confluent.
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2.1.1.2 J774.7 cells

J774.7 cells (see Fig 2.1) were kindly donated by the Department of 

Immunology, University of Glasgow. On delivery, J774.7 cells suspended in 

bicarbonate-buffered DMEM in a 25 cm2 flask, were placed in an incubator 

(NAPCO model no. 5410) at 37°C and under an atmosphere of 5 % C 0 2 

and left in the incubator overnight to recover from transport. Upon reaching 

confluence, the cells were removed from the flask by means of a cell scraper 

(Costar), and were spun and washed with saline as described above. The 

cells were suspended in 60 ml full growth medium and were split into three 

aliquots and each was seeded into a 80 cm2 flask (Costar/Nunc). The cells 

were placed in an incubator (Flow model no. 160) at 37°C under an 

atmosphere of air and grown until confluent.

2.1.1.3 Preparation of macrophages for experiments

For each of the two cell lines, the medium was poured off every third day, 

the cells were then washed twice with 10 ml sterile saline, and 2 0  ml fresh 

full growth medium added. On reaching confluence, the cells were removed 

from the flask, again by means of a cell scraper (Costar), and were 

transferred to sterile tubes (Falcon) and spun at 400g for 4 min at 10°C and 

the medium discarded. The cell pellet was then washed with 30 ml sterile 

saline (Baxter), spun at 400g for 4 min at 10°C, washed for a second time 

and then re-suspended in 250 ml full growth medium. The cells suspension 

was transferred to a sterile, siliconised (Repelcote, Hopkin and Williams) 

Techne stirrer bottle. Here the cells were grown in a 250 ml suspension, 

stirred at 25 rpm, and incubated at 37°C (Techne biological water bath 

model no. MWB-10L and Techne Stirrer model no. 104L). The cells were
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32 pM

Figure 2.1 Photomicrograph of J774.7 cells grown in full growth medium. 

Note the calibration bar.
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grown in these bottles until they reached numbers that were sufficient to 

perform an experiment (approximately 3x105 cells m l1).

For experimentation, the contents of the bottle were vigorously pipetted to 

break up any clumps of cells. The cells were then counted by means of a 

haemocytometer. The number of cells in three of the nine large squares of 

the haemocytometer were counted, and this process was repeated so that 

cell numbers from at least 6 squares were counted. The average of the cell 

numbers was then taken. The appropriate volume of cell suspension was 

removed from the bottle, spun in sterile tubes (Falcon) at 400g for 4 min at 

10°C and the medium discarded. The cell pellet was then washed with 30 ml 

sterile saline, spun at 400g for 4 min at 10°C, washed for a second time and 

then re-suspended in the appropriate volume of fresh full growth medium to 

give a density of 106 cells m l1. If any cells remained in the stirrer bottle after 

removal of that needed for an experiment, they were harvested by spinning 

at 400g for 4 min at 10°C, washed twice with saline, re-suspended in 250 ml 

of fresh full growth medium and allowed to grow to provide sufficient 

numbers of cells for the next experiment.

2.1.2 Freezing and thawing of macrophage suspension

Some batches of macrophages were frozen as a convenient means of storing 

them for future use. For this purpose, the cells were removed from the 80 

cm2 flasks by means of a cells scraper (Costar), and the 20 ml cell 

suspension divided equally between two sterile tubes (Falcon). 

Dimethylsulphoxide (DMSO) was then added dropwise, and the tube 

agitated after each drop to give a 10% solution. The tubes were then 

repeatedly inverted for 5 min to ensure thorough mixing of the solution. The 

tubes were then spun at 400g for 4 min at 10°C. All but 1 ml of the
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supernatant was poured off, and the cell pellet was suspended in this 

remaining volume. The cell suspension was then transferred to a cryovial 

(Nalgene), which was then labelled and placed in the vapour phase of a 

container of liquid nitrogen in a bag of cotton wool to provide insulation. 

After approx. 24 hours the vial was transferred into a holder and placed 

under the liquid nitrogen.

For thawing, the vials were removed from the liquid nitrogen, and their caps 

immediately loosened to avoid build up of pressure. The vials were placed in 

a water bath at 37°C for approx. 2 min, after which the suspension had 

thawed. Once removed from the water bath, the vials were wiped with a 70 

% solution of ethanol. The suspension was then transferred to a culture tube 

containing 10 ml of full growth medium and spun at 400g for 4 min at 10°C. 

The cell pellet was then washed with 10 ml saline, spun again and the cell 

pellet suspended in 2 0  ml of full growth medium in a culture flask and 

placed in an incubator under an atmosphere of air until confluent.

2.1.3 Induction of NO synthase

2.1.3.1 Effects of drugs on induction of NO synthase

Induction of NO synthase was assessed by measuring the accumulation of 

nitrite, the major breakdown product of NO (Stuehr & Marietta, 1987a; 

Ignarro et al., 1993) in the medium bathing cells. For this purpose, 

macrophages suspended in full growth medium were seeded in 1 ml volumes 

into Costar 24-well plates at a density of 106 cells ml-1. Cells were pre­

treated with drugs at the concentrations and times as detailed in the Results 

section before the addition of agents known to induce NO synthase (Severn 

et al., 1992). Specifically, lipopolysaccharide (LPS, 1-100 ng ml-1) from
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Salmonella typhosa, mouse recombinant interferon-gamma (IFN-y, 1-100 u 

m l1) or combinations of LPS and IFN-y were added and incubation 

continued overnight (approx. 24 hours) in an incubator at 37°C under an 

atmosphere of air. At the end of this period, the medium was removed from 

each well and spun at 13,000 rpm for 1 min to remove any cells, and the 

supernatant was stored in a fresh Eppendorf tube for subsequent assay of 

nitrite content.

2.1.3.2 Effects of drugs following induction of NO synthase

In order to determine if the drugs used in the above experiments had indeed 

interfered with the induction as opposed to the activity of NO synthase, a 

separate series of experiments was conducted in which the drugs were 

added to cells in which NO synthase had already been induced. 

Macrophages suspended in full growth medium were maintained in a stirrer 

bottle at a density of 106 cells ml-1. Lipopolysaccharide (LPS, 100 ng ml-0 

and interferon-gamma (IFN-y, 10 u m l1) were added and left in contact with 

the cells for 12 hours to promote induction of NO synthase, after which time 

the cells were washed twice by spinning at 400g for 4 min. and reconstituted 

in 30 ml sterile saline to remove any trace of LPS and IFN-y. The cells were 

then suspended in fresh full growth medium and were seeded into Costar 24- 

well plates, again at a density of 106 cells ml-1. Drugs were then added as 

detailed in the Results section, and remained in contact for 24 hours in an 

incubator at 37°C under an atmosphere of air. At the end of this period, the 

medium was removed from each well and spun at 13,000 rpm for 1 min to 

remove any cells, and the supernatant was stored in a fresh Eppendorf tube 

for subsequent assay of nitrite content.
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2.1.4 Nitrite Assay

NO has a short half life of around 5 second, and decays to form the stable 

end products of nitrite and nitrate.

NO -» N 0 2" (nitrite) + NO3" (nitrate)

The majority of NO decays to nitrite in vitro (Stuehr & Marietta, 1987a & 

1987b). In vivo, NO is converted mainly to nitrate in whole blood, but in 

plasma, a ratio of 5:1 nitrite: nitrate is formed (Wennmalm et al., 1992). It is 

thought the presence of haemoglobin in blood is responsible for the 

conversion to nitrate. However, Ignarro et al. (1993) demonstrated that in 

aqueous solutions in the absence of any haem containing proteins, nitrite is 

the major oxidation product of NO.

2.1.5 Validation of measurement of nitrite

Although the literature suggested that it was most appropriate to measure 

nitrite accumulation into the medium bathing the macrophages, experiments 

were conducted by a colleague in our own laboratory to establish the 

relative proportions of nitrite and nitrate in samples.

For this purpose, two reducing systems were required to convert nitrite and/ 

or nitrate to NO before chemiluminescence detection could be applied. The 

first, a sodium iodide/glacial acetic acid reflux system, consisted of 25 ml of 

a 6 % solution of sodium iodide in 75 ml of glacial acetic acid under reflux at 

65°C. This reduces nitrite to NO (Cox, 1980). The second, a vanadium 

chloride/hydrochloric acid reflux system, consisted of 1.5 g of vanadium
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chloride in 100 ml of 2 N HC1 under reflux at 95°C. This reduces both nitrite 

and nitrate to NO (Braman & Hendrix, 1989). Samples were injected into 

the reaction vessel containing the appropriate reducing solutions. Any NO 

produced was carried through a condenser by a stream of N2 and was 

passed through a liquid trap then through an acid trap into the analyser 

(Dasibi model no. 2107). Once in the analyser, NO reacted with ozone to 

form NO#2 which breaks down to emit light. The light emitted was measured 

by a photomultiplier tube connected to a computer (see McKendrick, 1995). 

Using the above detection systems, it was found that nitrite content 

accounted for 82.0 ± 4.3 % (n=6 ) of the chemiluminescence signal generated 

by the medium bathing J774.7 cells stimulated for 24 hours with interferon- 

gamma (1 0 0  u mb1).

Although used to validate the measurement of nitrite as an indirect means of 

assessing NO production, chemiluminescence was too slow and tedious a 

technique to use routinely. Consequently, the Griess reaction was adopted 

since this permitted a more rapid analysis of a large number of samples.

2.1.6 Griess Reaction

The accumulation of nitrite, the major breakdown product of NO, into the 

growth medium was measured by the formation of a diazo product by a 

variant of the method of Green et al. (1982). Early experiments were 

conducted using a Shimadzu dual beam spectrophotometer (model no. UV 

240) but towards the end of the research, a Dynatech Microplate Reader 

(model no. DS 2000) was purchased, and this was used for the sake of 

convenience in place of the spectrophotometer. 96 samples could be read at 

one time when using the plate reader, whereas only individual samples could 

be read using the spectrophotometer. Briefly, 400 pi (when using the dual
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beam spectrophotometer) or 60 pi (when using the plate reader) of the 

sample was mixed with equal volumes of the Griess reagents (1% 

sulphanilic acid in 2M HC1 followed by 1% N-( 1 -napthyl)-ethylenediamine 

dihydrochloride in H20). The absorbance was read at 548 nm using the 

Shimadzu dual beam recording spectrophotometer or at 550 nm using the 

Dynatech Microplate Reader. Nitrite concentrations in samples were 

assessed using a range of standards consisting of sodium nitrite (0, 0.5, 1, 5 

and 10 pM) prepared in full growth medium (see Figs 2.2 & 2.3). In each 

case, the minimum detection limit for nitrite was 0.5 pM and a linear 

regression line of best fit was used to assess the nitrite content of 

experimental samples.

2.1.7 Cytochrome C assays for the production of oxidising or 
reducing species

Macrophages are known to produce a variety of reactive oxygen species as 

part of the host defence mechanism. Superoxide anions, produced both 

spontaneously and by activation of the NADPH-dependent oxidase system, 

are reducing agents (Miller & Britigan, 1995a). However, the other reactive 

oxygen species that they produce, i.e. hydrogen peroxide, hypochlorous 

acid, hydroxyl radical and peroxynitrite are all powerful oxidising agents, 

and are capable of mediating significant cellular damage (Rosen et al., 

1995).

Production of reactive oxygen species contributes to the killing of invading 

pathogens, and thus production of these species gives an indication of the 

activation state of the cells. Due to the ability of reactive oxygen species to 

reduce or oxidise compounds in cell targets, one way to assess their 

production is through their redox properties. This can be accomplished using
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Figure 2.2 Standard curve for measurement of nitrite accumulation in 
experimental samples using the Shimadzu dual beam spectrophotometer 
(model no. UV 240). Standards consisted of sodium nitrite in full growth 
medium. The concentration of nitrite is plotted against absorbance at 548 
nm. The instrument was zeroed using blanks consisting of full growth 
medium.
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Figure 2.3 Standard curve for measurement of nitrite accumulation in 
experimental samples using the Dynatech Microplate Reader (model no. DS 
2000). Standards consisted of sodium nitrite in full growth medium. The 
concentration of nitrite (pM) is plotted against absorbance at 550 nm. The 
instrument was zeroed using blanks consisting of full growth medium.
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cytochrome C. Cytochrome C, as commercially supplied, exists 

predominantly in its oxidised form, ferricytochrome C (Fe3+). Superoxide 

generation can be determined by the superoxide dismutase-inhibitable 

reduction of ferricytochrome C (Ischiropoulos et a i,  1992b).

Fe3+ + 0 2' -> Fe2+ + 0 2

Cytochrome C in the reduced form has a higher absorbance at 550 nm than 

its oxidised form (Figure 2.4). Since superoxide anion causes the reduction 

of cytochrome C, measurement of absorbance at 550 nm will therefore give 

an indication of the production of this free radical.

2.1.8 Validation of the assays involving cytochrome C

2.1.8.1 The hypoxanthine (HX)/xanthine oxidase (XO) superoxide 
generating system:

XO

HX <-» X + *02-
Ixo
uric acid + #0 2“

Hypoxanthine, in the presence of xanthine oxidase, is converted to xanthine 

and superoxide anion. Xanthine can be further converted to uric acid, with 

the production of another superoxide anion. This simple system allows for 

the convenient production of superoxide anions. Use was made of the 

HX/XO generating system to validate the use of our assay to detect 

superoxide production by macrophages. Figure 2.5a demonstrates the effects 

of HX (2x10-4 M) and XO (20 mu ml-1) on the absorbance of oxidised

75



3.0-1

CUOc:ra
. a
o
GO.a<c

Reduced

1.5

Oxidised

0
450 500 550 600 650

Wavelength (nm)

Figure 2.4 Absorption spectra of cytochrome C (10-5 M) in both its oxidised 
and reduced states. Cytochrome C is supplied mainly in the oxidised (Fe3+) 
state and was reduced using a 10-fold molar excess of sodium dithionite. An 
increase in absorbance of the oxidised form of cytochrome C was used as a 
means of assessing production of reducing species and a decrease in 
absorbance of the reduced fonn was used to assess production of an oxidant.
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Figure 2.5 Validation, of the use of cytochrome C to assess production of 
oxidising or reducing species. Traces demonstrate the absorption of 10-5 M 
cytochrome C at 550 nm following the addition of 2x10-4 M hypoxanthine (HX) 
and 20  mu ml-1 xanthine oxidase (XO) (a) alone, or in the presence of (b) 6000 u 
ml-1 superoxide dismutase (SOD), (c) 100 u ml-1 catalase (CAT) or (d) both 6000 
u m l1 superoxide dismutase (SOD) and 100 u ml-1 catalase (CAT). The increase 
in the absorbance in the presence of HX/XO indicates production of superoxide 
anions and this is blocked by SOD. The delayed fall in absorbance is due to 
production of the oxidant, hydrogen peroxide and this is blocked by catalase.
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cytochrome C (10-5 M). The presence of both XO and HX led to the 

generation of superoxide anions, producing a rise in absorbance. However, 

the absorbance fell with time due to the spontaneous conversion of 

superoxide anions into the oxidant, hydrogen peroxide (see below).

2.1.8.2 Superoxide Dismutase

Superoxide dismutase (SOD) scavenges superoxide anions by converting 

them to hydrogen peroxide. SOD is found within cells in two forms; a 

manganese-containing enzyme (Peeters-Joris et al., 1975) and a copper-zinc 

cytosolic form (Wilkins & Leake, 1994). The presence of SOD within cells 

is an important antioxidant defence mechanism in preventing the 

accumulation of superoxide anions which could lead to damage. The 

addition of SOD will thus remove the reductive influence of superoxide 

anions from the assay.

SOD
4

•02- + 2H20 ->• 2H20 2

This process can also occur spontaneously, but in the presence of SOD, the 

reaction takes place approximately 104 times faster (Salvemini & Botting, 

1993). Figure 2.5b demonstrates the effects of SOD (6000 u ml-1) on the 

absorbance of cytochrome C in the presence of HX (10^ M) and XO (0.2 

mu mb1). Only a very small transient rise in absorbance is seen, as the 

reducing ability of superoxide is lost by its conversion into the oxidising 

agent, hydrogen peroxide.
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2.1.8.3 Catalase

Catalase scavenges hydrogen peroxide by catalysing its conversion to 

oxygen and water. Catalase is present in most mammalian cells and acts as 

an important defence mechanism against the damaging effects of hydrogen 

peroxide (Salvemini & Botting, 1993).

catalase
4

2H20 2 -> 2 H20  + 0 2

The presence of catalase (100 u mb1), as demonstrated in Figure 2.5c, 

removes the oxidising effects of hydrogen peroxide, thus resulting in a 

sustained increase in absorbance of cytochrome C in the presence of the 

superoxide generating system, XO (20 mu ml-1) and HX (2x10^ M).

2.1.9 Experimental protocol for detection of a reducing agent

Macrophages were grown in stirrer bottles in full growth medium as 

described previously. On the day of use, cells were counted by means of a 

haemocytometer, transferred to sterile culture tubes (Falcon) and were spun 

at 400g for 4 min at 10°C and the medium discarded. The cell pellet was 

then washed with 30 ml sterile saline, spun at 400g for 4 min at 10°C, 

washed for a second time and then re-suspended in the appropriate volume 

of HEPES-buffered Krebs to give a density of 106 cells m l1. Cells were 

suspended in HEPES-buffered Krebs rather than DMEM, due to interference 

with the absorption of cytochrome C by the pH indicator (phenol red) 

present in the growth medium. HEPES-buffered Krebs consisted of (mM): 

HEPES 5, NaCl 118, KC1 4.8, CaCl 2.5, M gS04 1.2, N aH C03 2.4, glucose
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11 and KH2P 0 4 1.2, at pH 7.4. 500pi of the cell suspension was added to 

each well of Costar 24-well plates, followed by 450 pi of Krebs and finally 

an appropriate volume of drug solution or Krebs to give a final volume of 1 

ml in each well. Two well known activators of superoxide production by 

cells, the phorbol ester, PMA (Wolfson et al., 1993; Conde et al., 1995) and 

LPS (Landmann et al., 1995) were used to stimulate the cells. In 

experiments involving stimulation by PMA (10 7 M), the cells were in 

contact with the drug for 1 hour. In experiments involving stimulation by 

LPS (100 ng m l1), the cells were previously exposed to the drug in full 

growth medium for 24 hours. After these times, the medium was removed 

and was replaced with fresh Krebs. In each experiment, 10 5 M cytochrome 

C was incubated with the cells for 1 hour, after which the medium was 

removed from each well, spun at 13,000 rpm, and the absorbance read at 

550 nm on a Shimadzu dual beam recording spectrophotometer. The blanks 

used in this experiment consisted of HEPES-buffered Krebs. Any increase in 

absorbance detected was assumed to be due to superoxide anion if it was 

abolished by superoxide dismutase (1 0 0  u ml-1).

2.1.10 Experimental protocol for detection of an oxidising agent

Experiments were also conducted to examine the production of oxidising 

agents by cells. In these, oxidation of reduced cytochrome C to the less 

absorbant oxidised form at 550 nm was used to assess production of 

oxidising species. The reduced form of cytochrome C was prepared adding a 

10-fold molar excess of sodium dithionite to cytochrome C (10-5 M). This 

was achieved by dissolving sodium dithionite in a small volume of distilled 

water to achieve minimum dilution, and this was added to the cytochrome C 

with thorough mixing. The cytochrome C (10-5 M) was added to the cells 

immediately after its reduction to minimise the spontaneous conversion to
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the oxidised form that occurs with time. Aliquots without cells were always 

included to determine the degree of spontaneous oxidation. The cells were 

suspended in HEPES-buffered Krebs at densities of either 106, 3x105 or 105 

cells m l1, as indicated in the Results section. 500 pi of the cell suspension 

was added to each well, followed by 480 pi of Krebs, 10 pi of drug solution 

and 10 pi of reduced cytochrome C (10-5 M). At various time points (5 min, 

30 min, 1 hour, 1.5 hours and 2 hours), the medium was removed, spun at

13,000 rpm for 1-2 min, and the supernatants read immediately at 550 nm on 

a Shimadzu recording spectrophotometer. Cell-mediated oxidation was 

obtained by subtracting the spontaneous oxidation (in the absence of cells) 

from the total oxidation obtained in the presence of cells.

PART 2 
Assessment of nitric oxide production by 

macrophages by bioassay on rat aortic rings

In addition to measuring nitrite as an index of NO production by 

macrophages using the Griess reaction, the production was also assessed 

from the relaxation produced by macrophages when added to rat aortic 

rings. In addition, this system permitted an investigation of the properties of 

the relaxant released from activated macrophages.

2.2.1 Preparation of aortic rings

Male Wistar rats of approximately 200-300 g were used throughout. Rats 

were killed by stunning and cervical dislocation. The thoracic aorta was 

dissected out, cleared of any adipose and connective tissue and any 

remaining blood in the lumen was removed. The vessel was cut into 

transverse rings 2.3 mm wide using a cutting device of parallel razors. In 

every experiment, the endothelium was removed, to ensure there was no
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contribution of constitutively produced NO. This was achieved by locating 

the aortic ring between two stainless steel hooks, placing a 2  g weight in the 

bottom hook and gently rubbing the intimal surface with a moist matchstick. 

The rings were then suspended on stainless steel hooks in 12 ml organ baths 

containing bicarbonate-buffered Krebs consisting of (mM): NaCl 117.8, KC1 

4.8, M gS04 2.5, KH2P 0 4 1.2, CaCl2 2, NaH C03 23.8 and glucose 11.1 

mM. The Krebs solution was gassed with 95% 0 2 and 5 % C 0 2. Resting 

tension was set at approximately lg  and was readjusted to this before 

starting each separate experiment. Rings were left to recover for approx. 30 

min before the addition of any drugs. A concentration-response curve to 

phenylephrine was carried out at the start of each day to sensitise the tissue 

and verify that the rings were responsive to contractile agents. A lack of 

relaxation following addition of acetylcholine (10-6 M) was used to verify 

the absence of endothelial cells. Tension was measured by Grass force 

displacement transducers (FT03C) and traces were displayed on a Grass 

polygraph via a transducer amplifier.

Phenylephrine (PE, 10-8-10-7 M) was used to induce tone in the rings. Once 

the contraction to PE had stabilised, the relaxant stimuli were added. 

Relaxation is expressed throughout as % relaxation of PE-induced tone.

2.2.2 Preparation of macrophages

The relaxant effects of NO released from macrophages on PE-induced tone 

was investigated. In each experiment, the relaxant effects of activated and 

unactivated macrophages were compared.

J774.7 macrophages were grown in stirrer bottles in full growth medium as 

described previously. On the day of use, the cells were counted by means of
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a haemocytometer. The appropriate volume of cell suspension was 

transferred to sterile culture tubes (normally four), spun at 400g at 10°C for 

4 min, washed twice with sterile saline, and the cell pellet in each of the four 

culture tubes suspended in 20 ml of full growth medium. Each of the 20 ml 

cell suspensions was then transferred to an 80 cm2 culture flask, two of 

which received lipopolysaccharide (LPS, 100 ng m l1) and interferon-gamma 

(IFN-y, 10 u ml-1) to provide activated cells and the others received no drugs 

to provide unactivated cells. The flasks were then placed in an incubator 

under an atmosphere of air at 37°C overnight. The following day, the flasks 

were removed from the incubator, and the cells removed from the flasks by 

means of a cell scraper (Costar). The cell suspensions were then spun at 400 

g at 10°C for 4 min, the medium was poured off and the cell pellet 

resuspended in the appropriate volume of prewarmed (to approx. 37°C) 

sterilised Krebs to give the appropriate cell concentration (8.4xl07-1.2xl06 

cells mb1). Krebs was sterilised by passing it through a Flowpore (ICN 

Biomedicals, 0.22 pm filter). The cell suspensions were then diluted further 

in sterile Krebs to give a range of cell concentrations that would allow for 

cumulative addition of cells into the tissue baths containing the aortic rings. 

The cells were placed in separate wells of a six-well plate (Nunc) at their 

appropriate densities (8.4xl07-1.2xl06 cells mb1), and stored in an incubator 

at 37°C under an atmosphere of 5 % C 0 2 and 95 % air until required.

2.2.3 Addition of macrophages to organ baths

Immediately prior to use, the six-well plates were removed from the 

incubator and the wells were scraped with the rubber end of a syringe 

plunger to remove the cells from the bottom of the well. The resulting cell 

suspensions were added to the organ baths in a cumulative fashion and 

relaxation was plotted as a function of cell concentration.
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Part 3 
Materials

2.3.1 Tissue culture materials

HEPES-buffered DMEM was obtained from ICN Biomedicals Ltd., Bucks, 

and bicarbonate-buffered DMEM from Life Technologies Ltd., Paisley. 

Foetal calf serum, glutamine and penicillin/streptomycin were obtained from 

Life Technologies Ltd., Paisley. Sterile saline (0.9 % sodium chloride) was 

purchased from Baxter Health Care, Hillington. All culture tubes (Falcon) 

were purchased from R&J Wood Laboratory Supplies, Paisley. 24-well and 

6 -well plates were purchased either from Nunc, Glasgow University 

Biochemistry stores or Costar, Costar (UK) Ltd., High Wycombe. Cell 

scrapers and culture flasks (25 and 80 cm2) were purchased from Costar 

(UK) Ltd., High Wycombe. Nalgene cryovials were purchased from Sigma, 

Poole.

2.3.2 Drugs

Lipopolysaccharide (LPS) from Salmonella typhosa (phenol extracted), 

polymyxin B sulphate, NG-nitro-L-arginine methyl ester hydrochloride (L- 

NAME), dexamethasone, cytochrome C (horse heart), hypoxanthine, 

superoxide dismutase (SOD, bovine erythrocyte), xanthine oxidase 

(buttermilk), catalase (bovine liver), phorbol 12-myristate 13-acetate (PMA), 

mannitol, dithiothreitol, interferon-gamma (IFN-y, mouse recombinant), 

ionophore A23187, herbimycin A (from Streptomyces hygroscopicus), 

genistein, acetylcholine chloride, phenylephrine hydrochloride, 

dimethylsulphoxide (DMSO), sulphanilic acid, N-(l-napthyl)- 

ethylenediamine dihydrochloride, trypan blue, dibutyryl adenosine 3', 5- 

cyclic monophosphate (sodium salt), 8 bromo guanosine 3', 5’-cyclic
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monophosphate (sodium salt), sodium orthovanadate and hydrogen peroxide 

were all obtained from Sigma, Poole (UK).

Staurosporine, chelerythrine chloride, genistein, forskolin and LY 83583 

were purchased from Calbiochem Novabiochem, Nottingham (UK).

Ro 31-8220 was kindly donated by Dr G. Lawton, Roche Research Centre, 

Welwyn Garden City (UK).

NG-monomethyl-L-arginme (L-NMMA) citrate was kindly donated by Dr 

Daryl Rees, Wellcome Research Laboratories, Kent (UK).

Dimethylthiourea, cycloheximide and sodium dithionite were obtained from 

Aldrich, Gillingham (UK).

SKF 94120, rolipram and zaprinast were obtained from Rhone Poulenc 

Rorer, Dagenham (UK).

Glyceryl trinitrate (GTN) was obtained from NAPP Laboratories, 

Cambridge (UK).

2.3.3 Preparation of haemoglobin

Methaemoglobin (Fe3+), the form of haemoglobin supplied by Sigma, 

requires a 10-fold molar excess of sodium dithionite (a reducing agent) for 

its conversion to haemoglobin (Fe2+). The reduction was achieved as 

follows. Dialysis tubing was boiled in distilled water for 20 min. 

Haemoglobin (1.29 g) was dissolved in 20 ml water to give a 10-3 M 

solution. Sodium dithionite (34.8 mg) was dissolved in 100 pi to give a 2M 

solution which was added immediately to the haemoglobin solution with 

vigorous mixing. The haemoglobin-dithionite solution was then dialysed
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against 5 litres of distilled water for 2-3 hours. The resulting solution of 

oxyhaemoglobin was either used immediately or frozen in aliquots and 

stored for use within 14 days.

2.3.4 Drug solutions

Sodium orthovanadate, LPS, L-NMMA, L-NAME, acetylcholine chloride 

and phenylephrine hydrochloride were dissolved in saline (0.9 %)

Cytochrome C, 8 bromo cyclic GMP, dibutyryl cyclic AMP, chelerythrine 

chloride, xanthine oxidase, mannitol, catalase, superoxide dismutase, 

cycloheximide and glyceryl trinitrate were dissolved in distilled water.

Hypoxanthine (10-2 M) was dissolved in 10 2 M NaOH and SKF 94120 (1 0 1 

M) was dissolved in 1M NaOH and subsequent dilutions made using saline.

LY 83583 (2 x l0-2 M), PMA (10-3 m), A23187 (10-2 M), rolipram (10-2 M) 

and zaprinast (10-2 M) were all prepared in 100% ethanol and subsequent 

dilutions made using saline.

Genistein (10-1 M), herbimycin A (1000 pg ml-1) , Ro 31 8220 (10-2 M), 

staurosporine (10-3 M) and forskolin (3x10-2 M) were all prepared in 100 % 

DMSO and subsequent dilutions made using saline.

In all studies, experiments were conducted to ensure that the solvents played 

no part in the responses seen. In some cases when a wide range of 

concentrations of a drug was used, high concentrations of solvent were able 

to affect the results, and this is stated in the corresponding Results section.
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All drug solutions prepared or diluted in distilled water or saline were 

sterilised by passage through a Flowpore (ICN Biomedicals Ltd) filter pore 

size 0 .2 2  pm.

Part 4 
Statistical analysis

Results are expressed throughout as the mean ± the standard error of the 

mean for n separate experiments. Statistical significance was determined by 

one-way analysis of variance followed by Fisher's test, or by a 2-sample t- 

test, as appropriate, using the Minitab (version B) statistical software 

package on an IBM compatible P.C. A value of P<0.05 was considered 

significant.
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CHAPTER 3

INVESTIGATION OF NITRITE 
PRODUCTION BY MACROPHAGE 

CELL LINES

Nitric oxide (NO) has a short half life of around 5 seconds under 

physiological conditions. It usually decays to the stable end products of 

nitrite and nitrate, with the majority in the form of nitrite in vitro (see 

Methods). Consequently, measuring nitrite accumulation into the medium 

bathing macrophage cell lines was chosen as a convenient way to measure 

NO production.

3.1 Investigation of nitrite accumulation stimulated by LPS

3.1.1 Effects o f LPS on nitrite production by J774.7 cells

The concentration of nitrite accumulating into the medium bathing 106 

unstimulated J774.7 cells during an 18 hour incubation was 5.1 ± 0.2 pM. 

This low basal level of nitrite accumulation was found in all experiments 

using the J774.7 macrophage cell line. The presence of bacterial endotoxin 

(lipopolysaccharide; LPS, phenol extracted from Salmonella typhosa) during 

the overnight incubation produced inconsistent effects. In one experiment, 

LPS (1-1000 ng mb1) produced a significant concentration-dependent rise in

89



A

14 1  
12 -

10 -

3  8 -

6 -

4 -

§  2 

0

B

2.5

I 2.0 H

£  1 .5 -

1.0 -

S  0.5 -

0.0

AAA AAA

f i
i i

C 1 3 10 30 100 300 1000

LPS (ng m l'1)

C 1 10 100 1000 10000

LPS (ng m l'1)

Figure 3.1 The inconsistent effects of lipopolysaccharide (LPS) from 
Salmonella typhosa (A) 1-1000 ng ml-1 and (B) 1-10000 ng ml-1 on nitrite 
accumulation into the medium bathing J774.7 cells (106 cells ml-1) over (A) 
18 and (B) 22 hours. Some batches of cells responded to LPS (A) but others 
did not (B). Each column represents the mean ± s.e. mean of 6 observations. 
*** P 0 .001  represents a significant increase from untreated control (C) 
cells.
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nitrite accumulation over 18 hours, with a maximum 2.5-fold rise to 12.6 ± 

0.9 pM at 300 ng ml-1 (Fig 3.1 A). In a separate experiment, LPS (0.1-10000 

ng ml-1) produced no rise in nitrite accumulation (Fig 3.IB).

3.1.2 Effects o f L-NMMA on basal and LPS-stimulated nitrite production

In order to determine if nitrite accumulating into the medium bathing 311 A.1 

cells was derived from the L-arginine/NO pathway, cells were pretreated for 

10 min with the NO synthase inhibitor, L-NMMA (5x10-4 M), before 

addition of LPS (100 ng m l1), and the incubation was continued for a further 

22 hours. L-NMMA significantly reduced basal nitrite accumulation by 68.9 

± 6.4 % (Fig 3.2). In this experiment, LPS induced a significant 2.1-fold rise 

in nitrite accumulation, reaching 8.0 ± 0.5 pM nitrite and L-NMMA also 

reduced this by 67.7 ± 1.9 %.

3.1.3 Effects ofL-NAME on basal and LPS-stimulated nitrite production

Confirmation was sought that nitrite accumulation into the medium bathing 

311 A.1 cells was derived from the L-arginine/NO pathway using another 

inhibitor of NO synthase, L-NAME. Cells were pretreated for 10 min with 

L-NAME (5x10-4 M) before the addition of LPS (100 ng ml-1), and the 

incubation was continued for a further 22 hours. L-NAME significantly 

reduced basal nitrite accumulation by 56.7 ± 7.7 % (Fig 3.3). LPS induced a 

significant rise in nitrite accumulation of 1.7-fold, and this too was blocked 

(49.9 ±3.3 %) following pretreatment with L-NAME.
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Figure 3.2 Effects of the nitric oxide synthase inhibitor, L-NMMA, on 
nitrite accumulation into the medium bathing J774.7 cells (106 cells ml-1) 
following stimulation with lipopolysaccharide (LPS) from Salmonella 
typhosa. Cells were pretreated with L-NMMA (NMMA, 5x1 CM M) for 10 
min before the addition of LPS (100 ng m l1) and the incubation was 
continued for a further 22 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** P<0.001 indicates a significant reduction from 
untreated control (C) cells. ### P<0.001 indicates a significant increase from 
untreated control (C) cells. +++ PO.OOl indicates a significant inhibition of 
LPS-stimulated nitrite levels by L-NMMA.
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Figure 3.3 Effects of the nitric oxide synthase inhibitor, L-NAME, on nitrite 
accumulation into the medium bathing J774.7 cells (106 cells ml-1) following 
stimulation with lipopolysaccharide (LPS) from Salmonella typhosa. Cells 
were pretreated with L-NAME (NAME, 5x1 (M M) for 10 min before the 
addition of LPS (100 ng m l1), and the incubation was continued for a further 
22 hours. Each column represents the mean ± s.e. mean of 6 observations. 
*** PcO.OOl indicates a significant reduction from untreated control (C) 
cells. ### PO.OOl indicates a significant increase from untreated cells. +++ 
P<0.001 indicates a significant inhibition of LPS-stimulated nitrite levels by 
L-NAME.
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3.1.4 Effects o f LPS on nitrite production by RAW 264 cells

Since LPS appeared to be a weak stimulus of nitrite production by 3114.1 

cells, the effects of this agent on a different macrophage cell line, the RAW 

264 cell line, were examined. In this cell line, incubation for 24 hours with 

LPS (100 ng mb1) from Salmonella typhosa produced a maximum increase 

in nitrite production of around 2-fold (Fig 3.4 and 3.5).

The effects of the NO synthase inhibitors, L-NMMA and L-NAME, were 

assessed to determine if the nitrite produced was derived from the L- 

arginine/NO pathway. RAW 264 cells were pretreated with L-NMMA (10- 

5-5xl0^ M) and L-NAME (lO -^x lO -4 M) for 5 min before the addition of 

LPS (100 ng ml-1) and the incubation continued for 24 hours in both cases. 

L-NMMA produced a concentration-dependent inhibition of nitrite 

accumulation, with a maximum inhibition of 92.4 ± 9.7 % at 5x10"* M (Fig 

3.4). L-NAME also produced a concentration-dependent inhibition, with a 

maximum inhibition of 98.6 ± 38.6 % at 5x10"* M (Fig 3.5).

Thus, LPS seemed no more powerful a stimulus of nitrite production in 

RAW 264 cells than in the original 3114.1 cell line. All subsequent 

experiments were therefore conducted using 3114.1 cells.

3.1.5 Effects o f polymyxin B on basal and LPS-stimulated nitrite production

The peptide polymyxin B binds and inactivates LPS (Lasfargues et al., 

1989). Polymyxin B would therefore be expected to inhibit the ability of
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Figure 3.4 Effects of the inhibitor of nitric oxide synthase, L-NMMA, on 
nitrite accumulation into the medium bathing RAW 264 cells (106 cells ml-1) 
following stimulation by lipopolysaccharide (LPS) from Salmonella typhosa. 
Cells were pretreated with L-NMMA (lO^-SxlO-4 M ) for 5 min before the 
addition of LPS (100 ng m l1) and the incubation was continued for a further 
24 hours. Each column represents the mean ± s.e. mean of 6 observations. 
*** PcO.OOl indicates a significant inhibition of LPS-stimulated nitrite levels 
by L-NMMA.
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Figure 3.5 Effects of the inhibitor of nitric oxide synthase, L-NAME, on 
nitrite accumulation into the medium bathing RAW 264 cells (106 cells ml-1) 
following stimulation by lipopolysaccharide from (LPS) Salmonella typhosa. 
Cells were pretreated with L-NAME (10-5-5xl04  M ) for 5 min before the 
addition of LPS (100 ng ml-1) and the incubation was continued for a further 
24 hours. Each column represents the mean ± s.e. mean of 6 observations. 
*** PcO.OOl indicates a significant inhibition of LPS-stimulated nitrite levels 
by L-NAME.
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Figure 3.6 Effects of the peptide polymyxin B on nitrite accumulation into 
the medium bathing J774.7 cells (106 cells ml-1) following stimulation with 
lipopolysaccharide (LPS) from Salmonella typhosa. Cells were pretreated 
with polymyxin B (POL B, 10 pg ml-1) for 10 min before the addition of 
LPS (100 ng mb1) and the incubation was continued for a further 22 hours. 
Each column represents the mean ± s.e. mean of 6 observations. *** 
P<0.001 indicates a significant reduction from untreated control (C) cells. 
### p<0 .001  indicates a significant increase from untreated cells. +++ 
P<0.001 indicates a significant inhibition of LPS-stimulated nitrite levels by 
polymyxin B.

97



LPS to stimulate nitrite production. To test this, J774.7 cells were pretreated 

with polymyxin B (10 pg ml-1) for 10 min before the addition of LPS (100 

ng m l1) and the incubation was continued for a further 22 hours. Polymyxin 

B significantly reduced basal nitrite accumulation by 40.8 ± 2.8 %, perhaps 

suggesting the presence of a slight endotoxin contamination of the medium 

(Fig 3.6). LPS produced a 1.9-fold rise in nitrite accumulation and this was 

reduced by polymyxin B by 65.6 ± 3.8 %.

3.2 Investigation of nitrite accumulation stimulated by LPS and 
interferon-gamma (IFN-y)

3.2.1 Effects o f IFN-y alone and in combination with LPS

Although LPS did stimulate nitrite accumulation in most experiments, it 

produced only very modest (2-3 fold) increases. An examination was 

therefore conducted into the ability of other agents to activate these cells.

Murine recombinant IFN-y had inconsistent effects on nitrite production by 

J774.7 cells during an overnight incubation. In some experiments, IFN-y (1- 

100 u mb1) produced small and inconsistent increases in nitrite production 

(Fig 3.7A), while in others, a concentration-dependent rise was seen (Fig 

3.7B).
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Figure 3.7 The inconsistent effects of interferon-gamma (IFN-y, 1-100 u ml- 
l) on nitrite accumulation into the medium bathing J774.7 cells (106 cells mh 
!) over (A) 23 hours and (B) 18 hours. Each column represents the mean ± 
s.e. mean of 4-6 observations. In some experiments, a weak and inconsistent 
rise in nitrite accumulation was seen (A), whereas in others, a powerful, 
concentration-dependent rise was obtained (B). ** P<0.01 and *** P 0 .001  
represent a significant increase from untreated control (C) cells.
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Figure 3.8 Effects of lipopolysaccharide (LPS) from Salmonella typhosa 
(1 0 0  ng ml-1) and interferon-gamma (IFN, 10 u ml-1) alone and in 
combination on nitrite accumulation into the medium bathing J774.7 cells 
(106 cells ml-1) over 22 hours. Each column represents the mean ± s.e. mean 
of 6 observations. ** P<0.01 and *** P<0.001 indicate a significant increase 
from untreated control (C) cells.
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3.2.2 Effects o f LPS and IFN-y in combination

Having established that LPS and IFN-y were each unable to stimulate 

reliably nitrite production by J774.7 cells during an overnight incubation, the 

effects of these stimuli in combination were examined. LPS (100 ng m l1) 

and IFN-y (10 u ml-1) alone and in combination, were added to J774.7 cells 

and the incubation was continued for 22 hours. In this particular experiment, 

LPS produced a significant increase in nitrite accumulation of around 4-fold, 

but IFN-y alone produced no rise (Fig 3.8). In contrast, the combined 

stimulus of LPS and IFN-y produced a synergistic increase in nitrite 

accumulation of 50-fold, reaching 33.1 ± 0.6 pM.

3.2.3 Time course o f nitrite accumulation

Having established that the combined stimulus of LPS and IFN-y was much 

more effective than either stimulus on its own, the time course of this effect 

was studied over 48 hours. Untreated J774.7 cells (106 cells ml-1) produced 

very little nitrite, with levels rising to only 8.1 ±0 .5  pM at 48 hours. Cells 

treated with LPS (10 ng ml-1) and IFN-y (2 u m l1) produced significantly 

more nitrite than untreated cells: an increase was first seen at 12 hours (5.5 

± 0.3 pM), and production continued to rise to 77.1 ± 1.9 pM at 48 hours 

(Fig 3.9). The almost linear production of nitrite throughout this period 

suggested that the substrate for the production of NO, L-arginine, had not 

become rate-limiting.

3.2.4 Effects ofL-NMMA on nitrite production

The inhibitor of NO synthase, L-NMMA, was used to assess whether or not 

nitrite produced by 311 A.1 cells during an overnight incubation with the
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Figure 3.9 Time course of nitrite accumulation into the medium bathing 
J774.7 cells (106 cells mb1) over 48 hours. Cells were untreated (■) or 
treated with lipopolysaccharide (10 ng ml-1) from Salmonella typhosa and 
interferon-gamma (2 u mWX#). Each point represents the mean ± s.e. mean 
of 6  observations. *** P<0.001 indicates a significant increase from nitrite 
accumulation at 0 time .
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combined stimulus of LPS and IFN-y was derived from the L-arginine/NO 

system. Cells were pretreated with L-NMMA for 10 min before the addition 

of LPS (100 ng ml'1) and IFN-y (10 u mb1), and the incubation was 

continued for a further 22 hours. L-NMMA (10-4 M) produced a significant 

reduction (52.2 ± 7.8 %) of basal nitrite accumulation (Fig 3.10). L-NMMA 

(10'6-3xlCM M) also produced a concentration-dependent inhibition of the 

increase in nitrite accumulation induced by the combined stimulus of LPS 

and IFN-y: a maximum inhibition of 72.6 ± 3.4 % occurred at a 

concentration of 3x10-4 M (Fig 3.10).

3.2.5 Effects ofL-NAME on nitrite production

The effects of a second inhibitor of NO synthase, L-NAME, were 

investigated on nitrite production by J774.7 cells in response to the 

combined stimulus of LPS and IFN-y. Cells were pretreated with L-NAME 

for 20 min before the addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1) 

and the incubation was continued for a further 23 hours. In this experiment, 

L-NAME (1(M M) had no effect on basal nitrite accumulation. L-NAME at 

concentrations of 10-6-3xl0-5 M, also had no effect on nitrite accumulation 

stimulated by the combination of LPS and IFN-y. It did, however, produce a 

slight concentration-dependent inhibition at concentrations of 1(M-1(M M: a 

maximum inhibition of 22.4 ± 0.7 % was achieved at 1(M M L-NAME (Fig

3.11).

These findings indicate that, following stimulation of J774.7 cells with the 

combination of LPS and IFN-y, L-NMMA is a much more effective inhibitor 

of nitrite production than L-NAME. This is in contrast to previous findings
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Figure 3.10 Effects of the inhibitor of nitric oxide synthase, L-NMMA, on 
nitrite accumulation into the medium bathing J774.7 cells (106 cells ml-1) 
following the combined stimulus of lipopolysaccharide (LPS) from 
Salmonella typhosa and interferon-gamma (IFN-y). Cells were pretreated 
with L-NMMA (10-6-3xl0-4 M) for 10 min before the addition of LPS (100 
ng ml-1) and IFN-y (10 u ml-1) and the incubation was continued for a further 
22 hours. L-NMMA (NMMA, 10-4 M) was also added to cells not 
stimulated with LPS and IFN-y. Each column represents the mean ± s.e. 
mean of 6 observations. ### P<0.001 indicates a significant decrease from 
control (C) cells. *** P<0.001 indicates a significant change by L-NMMA 
of nitrite levels stimulated by LPS and IFN-y.
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Figure 3.11 Effects of the inhibitor of nitric oxide synthase, L-NAME, on 
nitrite accumulation into the medium bathing J774.7 cells (106 cells mb1) 
following the combined stimulus of lipopolysaccharide (LPS) from 
Salmonella typhosa and interferon-gamma (IFN-y). Cells were pretreated 
with L-NAME (10~6-10~3 M) for 20 min before addition of LPS (100 ng mb1) 
and IFN-y (10 u ml-1) and the incubation was continued for a further 23 
hours. L-NAME (NAME, 10-4 M) was also added to cells not stimulated 
with LPS and IFN-y. Each column represents the mean ± s.e. mean of 6 

observations. * P<0.05 and ***P<0.001 indicate a significant inhibition by 
L-NAME of nitrite levels stimulated by LPS and IFN-y.
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with J774.7 and RAW 264 cells, where L-NMMA and L-NAME were 

equally effective at inhibiting nitrite accumulation stimulated by LPS alone.

3.2.6 Effects o f polymyxin B on nitrite production

Polymyxin B binds and inactivates LPS. It would therefore be expected to 

inhibit selectively the effects of LPS but not of IFN-y on nitrite production 

by J774.7 cells. Cells were pretreated with polymyxin B (10 pg ml-1) before 

addition of LPS (100 ng ml-1), IFN-y (10 u ml-1) or a combination of the two, 

and the incubation was continued for a further 22 hours. Polymyxin B had 

no effect on basal nitrite accumulation by the cells in this particular 

experiment (Fig 3.12). LPS alone produced a small rise (5.4-fold) in nitrite 

accumulation and this was inhibited by 8 8 .8  ± 45.9 % by polymyxin B. IFN- 

y alone also produced a significant rise (15-fold) in nitrite accumulation and 

this too was inhibited by 49.7 ± 2.7 % by polymyxin B. The combined 

stimulus of LPS and IFN-y produced around a 60-fold rise in nitrite 

accumulation and this was inhibited by 79.2 ± 3 .7  % by polymyxin B (Fig

3.12).

3.2.7 Effects o f dexamethasone on nitrite production

Dexamethasone inhibits the expression of inducible nitric oxide synthase (Di 

Rosa et al., 1990). It would therefore be expected to inhibit nitrite 

production by 311 A.1 cells stimulated by LPS and IFN-y. Cells were 

pretreated with dexamethasone (10 8-3xl0 -6 M) for 1 hour before the 

addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the incubation was 

continued for a further 23 hours. Dexamethasone (10-6 M) had no effect on 

basal production of nitrite (Fig 3.13). The effects on production stimulated
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Figure 3.12 Effects of the peptide, polymyxin B, on nitrite accumulation 
into the medium bathing J774.7 cells (106 cells ml-1) following the addition 
of lipopolysaccharide (LPS) from Salmonella typhosa, interferon-gamma 
(IFN-y) or a combination of the two. Cells were pretreated with polymyxin 
B (POL, 10 pg mb1) for 20 min before addition of LPS (100 ng ml-1) and 
IFN-y (10 u mF1) and the incubation was continued for a further 22 hours. 
Each column represents the mean ± s.e. mean of 6 observations. *** 
P<0.001 indicates a significant increase from untreated control (C) cells. ### 
P 0 .001  indicates a significant inhibition by polymyxin B.
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Figure 3.13 Effects of dexamethasone on basal nitrite accumulation into the 
medium bathing J774.7 cells (106 cells mb1) and accumulation following the 
combined stimulus of lipopolysaccharide (LPS) from Salmonella typhosa 
and interferon-gamma (IFN-y). Cells were pretreated with dexamethasone 
(10-8-3xl0-6 M) for 1 hour before the addition of LPS (100 ng mb1) and 
IFN-y (2 u ml-1) and the incubation was continued for a further 24 hours. 
Dexamethasone (DEX, 10 6 M) was also added to cells not stimulated with 
LPS and IFN-y. Each column represents the mean ± s.e. mean of 6 

observations. *** PO.OOl indicates a significant inhibition by 
dexamethasone of nitrite levels stimulated by LPS and IFN-y.
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by the combination of LPS and IFN-y were complex: inhibition was obtained 

at 10-7 M and 3x10-7 M, but higher concentrations of dexamethasone 

produced no inhibition; the maximum inhibition obtained was 2 1 .8  ± 1.2 % 

at 3x10-7 M.

The effects of dexamethasone were also examined on cells stimulated with 

LPS or IFN-y alone. Cells were pretreated with dexamethasone (10 6 M) for 

1 hour before the addition of LPS (100 ng mb1) or IFN-y (2 u mb1) and the 

incubation was continued for a further 24 hours. Dexamethasone 

significantly reduced by 45.4 ± 1.7 % the small (6 .8 -fold) increase in nitrite 

accumulation stimulated by LPS (Fig 3.14). IFN-y alone had no effect on 

nitrite accumulation, and this was unaffected by dexamethasone. As before, 

dexamethasone (106 M) had only a slight inhibitory effect (14.0 ± 0.1 % )on 

nitrite accumulation induced by the combined stimulus of LPS and IFN-y.

3.2.8 Effects o f hydrocortisone on nitrite production

Due to the poor ability of dexamethasone to inhibit nitrite production 

stimulated by LPS and IFN-y in J774.7 cells, the effects of the 

corticosteroid, hydrocortisone, were investigated. Cells were pretreated with 

hydrocortisone (l(b6 M) for 1 hour before the addition of LPS (100 ng mb1) 

and IFN-y (10 u mb1), and the incubation was continued for a further 22 

hours. Hydrocortisone had no effect on nitrite accumulation stimulated by 

the combination of LPS and IFN-y but it did reduce basal accumulation (Fig 

3.15).

3.2.9 Effects o f cycloheximide on nitrite production

Cycloheximide, which inhibits protein synthesis, has previously been shown
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Figure 3.14 Effects of dexamethasone on nitrite accumulation into the 
medium bathing J774.7 cells (106 cells ml-1) following stimulation with 
lipopolysaccharide (LPS) from Salmonella typhosa, interferon-gamma (EFN- 
y) or the combined stimulus of LPS and IFN-y. Cells were pretreated for 1 
hour with dexamethasone (DEX, 10~6 M) before the addition of LPS (100 ng 
m l1), IFN-y (2 u m l1) or a combination of both, and incubation was 
continued for a further 24 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** P<0.001 indicates a significant increase from 
untreated control (C) cells. ## P<0.01 and ### P 0 .001  indicate a 
significant inhibition by dexamethasone.
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Figure 3.15 Effects of the corticosteroid, hydrocortisone, on basal 
accumulation of nitrite into the medium bathing J774.7 cells (106 cells ml-1) 
and accumulation following the combined stimulus of lipopolysaccharide 
(LPS) from Salmonella typhosa and interferon-gamma (IFN-y). Cells were 
pretreated with hydrocortisone (HYD, 10-6 M) for 1 hour before the addition 
of LPS (100 ng m l1) and IFN-y (10 u mb1), and the incubation was 
continued for a further 22 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** P 0 .001  indicates a significant increase from 
untreated control (C) cells and ### indicates a significant decrease.
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to inhibit the expression of NO synthase (Oguchi et al., 1994). It was 

therefore expected that this agent would inhibit the production of nitrite 

following stimulation of J774.7 cells. Cells were pretreated with 

cycloheximide for 2 hours before the addition of LPS (100 ng ml-1), IFN-y 

(1 0  u mb1) or a combination of the two, and the incubation was continued 

for a further 23 hours. Cycloheximide had no effect on basal accumulation of 

nitrite but decreased the 3-fold and the 14-fold increases in nitrite 

accumulation stimulated by IFN-y alone and the combination of LPS and 

IFN-y, respectively (Fig 3.16). In this particular experiment, LPS alone did 

not affect the accumulation of nitrite. It was clear in this experiment, 

however, that cycloheximide was exerting a cytotoxic action, since all cells 

treated with this agent had detached from the tissue culture plate.
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Figure 3.16 Effects of the inhibitor of protein synthesis, cycloheximide, on 
basal accumulation of nitrite into the medium bathing J774.7 cells (106 cells 
ml-1) and accumulation following stimulation with lipopolysaccharide (LPS) 
from Salmonella typhosa, interferon-gamma (IFN-y) or a combination of the 
two. Cells were pretreated with cycloheximide (CYC, 10 pg ml-1) for 2 
hours before the addition of LPS (100 ng ml-1), IFN-y (10 u ml-1) or a 
combination of both, and the incubation was continued for a further 23 
hours. Each column represents the mean ± s.e. mean of 6 observations. *** 
P<0.001 indicates a significant stimulation of nitrite accumulation and ### 
indicates inhibition by cycloheximide of nitrite levels stimulated by LPS and 
IFN-y.
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CHAPTER 4

INVESTIGATION OF SECOND 
MESSENGER SYSTEMS 
REGULATING NITRITE 

PRODUCTION BY THE J774.7 
MACROPHAGE CELL LINE

Regulation of nitrite accumulation by cyclic
nucleotides

4.1 Effects of cyclic AMP on nitrite production

Cyclic AMP is well known to suppress activation of cells involved in 

inflammatory processes (Renz et al., 1988). Since induction of NO synthase 

is one of the mechanisms by which macrophages contribute to the 

development of inflammation, the possibility of regulation of induction of 

NO synthase by modulating cyclic AMP levels was therefore investigated.

4.1.1 Effects o f  dibutyryl cyclic AMP on nitrite production

The effects of dibutyryl cyclic AMP, a membrane permeable analogue of 

cyclic AMP capable of mimicking the effects of this second
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Figure 4.1 Effects of dibutyryl cyclic AMP on basal nitrite accumulation 
into the medium bathing J774.7 cells (106 cells ml-1) and accumulation 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated with dibutyryl cyclic AMP (dbcAMP, 
10-3 M) for 20 min before the addition of LPS (10 ng ml-1) and IFN-y (2 u 
m l1), and the incubation was continued for a further 22 hours. Each column 
represents the mean ± s.e. mean of 6 observations. *** P<0.001 indicates a 
significant increase from untreated control (C) cells. ### P<0.001 indicates a 
significant decrease by dibutyryl cyclic AMP of nitrite levels stimulated by 
LPS and IFN-y.
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messenger, were investigated on nitrite production by J774.7 cells. Cells 

were pretreated with dibutyryl cyclic AMP (10 3 M) for 20 min before the 

addition of LPS (10 ng ml-1) and IFN-y (2 u ml-1) and the incubation was 

continued for a further 22 hours. Dibutyryl cyclic AMP had no effect on 

basal (3.7 ± 0.4 pM) accumulation of nitrite, but inhibited that stimulated by 

the combination of LPS and IFN-y by 11.7 ± 2.8 % (Fig 4.1).

Elevation of cyclic AMP levels is known to suppress the induction of NO 

synthase at the level of transcription and/or translation (Marotta et al., 1992; 

Bulut et al., 1993). However, it is known that inducible NO synthase has a 

consensus sequence for phosphorylation by protein kinase A (Lowenstein et 

al., 1992), and agents which elevate cyclic AMP levels may therefore have 

an effect on enzyme activity by activating PKA. An attempt was therefore 

made to determine if dibutyryl cyclic AMP could affect activity of the 

already induced NO synthase, and this too was assessed by measuring nitrite 

accumulation. Cells were treated with LPS and EFN-y for 12 hours to induce 

the enzyme. After 12 hours the activating stimuli were removed and the cells 

were treated with dibutyryl cyclic AMP (10 3 M) and the incubation was 

continued for a further 24 hours. Dibutyryl cyclic AMP produced a 

significant inhibition (9.9 ± 0.8 %, n=6 ) of nitrite accumulation which did 

not significantly differ (P= 0.56) from that occurring (11.7 ± 2.7 %) when 

dibutyryl cyclic AMP was added to the cells prior to LPS and IFN-y (Fig 

4.1).
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Figure 4.2 Effects of forskolin on nitrite accumulation into the medium 
bathing J774.7 cells (106 cells ml-1) following the combined stimulus of 
lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells were 
pretreated with forskolin (10-7-10^ M) for 10 min before the addition of LPS 
(100 ng ml-1) and IFN-y (3 u ml-1), and the incubation was continued for a 
further 24 hours. Forskolin (FOR, 3xl0 -6 M) was also added to cells not 
stimulated with LPS and IFN-y. Each column represents the mean ± s.e. 
mean of 6 observations. * P<0.05 and *** P<0.001 indicate a significant 
difference by forskolin of nitrite levels stimulated by LPS and IFN-y.
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4.1.2 Effects o f forskolin on nitrite production

Forskolin activates the catalytic subunit of adenylate cyclase (Seamon & 

Daly, 1981), thus leading to elevated cyclic AMP levels. The effects of 

forskolin on nitrite production by J774.7 cells were therefore investigated. 

Cells were pretreated with forskolin (lOMCH M) for 10 min before the 

addition of LPS (100 ng ml-1) and IFN-y (3 u m l1) and the incubation was 

continued for a further 24 hours. Forskolin (3x10-6 M) had no effect on basal 

nitrite accumulation. Forskolin had no consistent effect on nitrite 

accumulation at concentrations of KFMO-5 M, but higher concentrations 

were inhibitory: the maximum inhibition produced by forskolin was 42.6 ±

1.4 % at 1(M M (Fig 4.2).

The vehicle used to dissolve forskolin was DMSO and this reached a 

concentration of 0.3 % when the highest concentration of forskolin (10-4 M) 

was used. The solvent alone at this concentration slightly (12.7 ± 5.7 %) 

reduced the accumulation of nitrite stimulated by LPS and IFN-y.

To assess its actions on nitrite accumulation when given after the activating 

stimulus, forskolin (3x10-5 M) was added to cells after an initial 12 hour 

stimulation by LPS and IFN-y and the incubation was continued for a further 

24 hours. In contrast to its effects when given before LPS and IFN-y, 

forskolin produced a significant (4.3 ± 1.5 %, n=6 ) increase in nitrite 

accumulation, which significantly differed (P<0.001) from the inhibition that 

occurred (24.5 ± 2.7 %) when it was added to the cells prior to LPS and 

IFN-y (Fig 4.2).
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Figure 4.3 Effects of rolipram on basal accumulation of nitrite into the 
medium bathing J774.7 cells (106 cells ml-1) and accumulation following the 
combined stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN- 
y). Cells were pretreated with rolipram (lO-MO-4 M) for 20 min before the 
addition of LPS (10 ng mb1) and IFN-y (2 u mb1), and the incubation was 
continued for a further 24 hours. Rolipram (ROL, 10-4 M) was also added to 
cells not stimulated with LPS and IFN-y. Each column represents the mean ± 
s.e. mean of 6 observations. ### P 0 .0 0 1  indicates a significant decrease 
from untreated control (C) cells. * P<0.05, ** P<0.01 and *** P<0.001 
indicate a significant increase by rolipram of nitrite levels stimulated by LPS 
and IFN-y.
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4.1.3 Effects o f rolipram on nitrite production

Rolipram inhibits type IV phosphodiesterase (Beavo & Reifsnyder, 1990), a 

cyclic AMP-selective isoform. The effects of rolipram on nitrite production 

by J774.7 cells were therefore investigated. Cells were pretreated with 

rolipram (lO-MO*4 M) for 20 min before the addition of LPS (10 ng mb1) 

and IFN-y (2 u m l1) and the incubation was continued for a further 24 hours. 

Rolipram reduced basal accumulation of nitrite but had no consistent effect 

on nitrite accumulation induced by the combination of LPS and IFN-y (Fig 

4.3). At some concentrations it produced an increase in nitrite accumulation, 

with a maximum increase of 30.4 ± 0.6 % at 3x10-7 M.

To assess its actions on nitrite accumulation when given after the activating 

stimulus, rolipram (3x10-6 M) was added to cells after an initial 12 hour 

stimulation by LPS and IFN-y and the incubation was continued for a further 

24 hours. In contrast to the 11.6 ± 2.6 % increase in nitrite accumulation 

when given before LPS and IFN-y (Fig 4.3), rolipram had no significant 

effect on nitrite accumulation when added 12 hours after stimulation with 

LPS and IFN-y.

4.1.4 Effects o f SKF 94120 on nitrite production

SKF 94120 inhibits type III phosphodiesterase (Beavo & Reifsnyder, 1990), 

another cyclic AMP selective isoform. The effects of SKF 94120 on nitrite 

production by 3114.1 cells were therefore investigated. Cells were 

pretreated with SKF 94120 (lO-MO-4 M) for 20 min before the addition of 

LPS (10 ng ml-1) and IFN-y (2 u mb1), and the incubation was continued for 

a further 24 hours. SKF 94120 (10^ M) had no effect on basal nitrite 

production (Fig 4.4). It also had inconsistent effects on nitrite accumulation 

stimulated by LPS and IFN-y: it produced a slight increase (37.5 ± 3.1 %) at
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Figure 4.4 Effects of SKF 94120 on basal accumulation of nitrite into the 
medium bathing J774.7 cells (106 cells mb1) and accumulation following the 
combined stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN- 
y). Cells were pretreated with SKF 94120 (lO-MO-4 M) for 20 min before 
the addition of LPS (10 ng ml-1) and IFN-y (2 u ml-1), and the incubation was 
continued for a further 24 hours. SKF 94120 (SKF, 10-4 M) had no effect on 
basal nitrite accumulation. Each column represents the mean ± s.e. mean of 
6 observations.* P<0.05 and ** P<0.01 indicate a significant difference by 
SKF 94120 of nitrite levels stimulated by LPS and IFN-y.
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3xl0 -7 M, whereas at 10 6 and 1(M M it produced a slight decrease with 

a maximum of 26.8 ± 1.3 % at 10-4 M.

To assess its actions on nitrite accumulation when given after the activating 

stimulus, SKF 94120 (10-6 M) was added to cells after an initial 12 hour 

stimulation by LPS and IFN-y and the incubation was continued for a further 

24 hours. SKF 94120 had no effect (2.4 ± 0.8 % inhibition, n=6 ) on nitrite 

accumulation, which differed significantly (P<0.05) from the inhibition 

occurring (23.8 ± 5.7 %) when SKF 94120 was added to the cells prior to 

LPS and IFN-y (Fig 4.4).

4.1.5 Effects o f the combination o f  forskolin and rolipram on nitrite 
production

Although forskolin, which activates adenylate cyclase, consistently inhibited 

nitrite production by the combined stimulus of LPS and IFN-y, the 

magnitude of the inhibition was low. An attempt was therefore made to 

determine if the magnitude of the inhibition could be increased by combining 

forskolin with the type IV phosphodiesterase inhibitor, rolipram. Cells were 

pretreated with forskolin (3x10 5 M) and rolipram (3x10 6 M) for 30 min 

before the addition of LPS (10 ng ml-1) and IFN-y (2 u ml-1), and the 

incubation was continued for a further 22 hours. When used alone, forskolin 

produced 12.8 ± 0.4 % inhibition of nitrite accumulation, and rolipram 23.6 

± 1.0 % inhibition (Fig 4.5). When used in combination, the inhibition (27.5 

± 0.9 %) was no greater than with rolipram alone.
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Figure 4.5 Effects of forskolin and rolipram alone and in combination on 
nitrite accumulation into the medium bathing J774.7 cells (106 cells ml-1) 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated with forskolin (FOR, 3xl0 5 M) and 
rolipram (ROL, 3x10-6 M) alone and in combination for 30 min before the 
addition of LPS (10 ng n r1) and IFN-y (2 u ml"1), and the incubation was 
continued for a further 22 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** P<0.001 indicates a significant decrease by 
forskolin and rolipram, alone and in combination, of nitrite levels stimulated 
by LPS and IFN-y.
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Figure 4.6 Effects of forskolin and rolipram alone and in combination on 
nitrite accumulation into the medium bathing J774.7 cells (106 cells ml-1) 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated with forskolin (FOR, 3x10-6 M) and 
rolipram (ROL, 3x10-7 M) alone and in combination for 20 min before the 
addition of LPS (10 ng ml-1) and IFN-y (2 u ml-1), and the incubation was 
continued for a further 23 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** PO.OOl indicates a significant decrease by 
forskolin alone, and in combination with rolipram, of nitrite levels stimulated 
by LPS and IFN-y.
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In view of the lack of additivity of forskolin and rolipram, a further 

experiment was conducted using sub-maximal concentrations of both drugs 

in an attempt to determine if additivity could be achieved. Cells were 

pretreated with forskolin (3x10 6 M) and rolipram (3xl0-7 M) for 20 min 

before the addition of LPS (10 ng mb1) and IFN-y (2 u mb1), and the 

incubation was continued for a further 23 hours. Forskolin alone produced

11.0 ± 0.4 % inhibition of nitrite accumulation, whereas rolipram alone had 

no inhibitory effect. The combination of the two drugs produced an additive 

inhibitory effect of 25.1 ± 1.2 % (Fig 4.6).

4.1.6 Effects o f the combination o f forskolin and SKF 94120 on nitrite 
production

A series of experiments was conducted to determine if the ability of 

forskolin to inhibit the accumulation of nitrite stimulated by LPS and bFN-y 

in J774.7 cells could be potentiated by the type III phosphodiesterase 

inhibitor, SKF 94120. Cells were pretreated with forskolin (3x10-5 M) and 

SKF 94120 (10-6 M) alone or in combination for 30 min before the addition 

of LPS (10 ng mb1) and IFN-y (2 u mb1), and the incubation was continued 

for a further 24 hours. When used alone, forskolin significantly reduced 

nitrite accumulation by 30.5 ± 1 .9  %, and SKF 94120 by 20.7 ± 0.8 % (Fig 

4.7). When the drugs were used in combination, the inhibition obtained 

(32.6 ±1 .5% ) was no greater than that obtained by forskolin alone.

In view of the lack of additivity of forskolin and SKF 94120, a further 

experiment was conducted using sub-maximal concentrations of both
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Figure 4.7 Effects of forskolin and SKF 94120 alone and in combination on 
nitrite accumulation into the medium bathing J774.7 cells (106 cells ml-1) 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated with forskolin (FOR, 3x10-5 M) and 
SKF 94120 (SKF, 10~6 M) alone and in combination for 30 min before the 
addition of LPS (10 ng ml-1) and IFN-y (2 u ml-1), and the incubation was 
continued for a further 24 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** P 0 .001  indicates a significant decrease by 
forskolin and SKF 94120, alone and in combination, of nitrite levels 
stimulated by LPS and IFN-y.
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Figure 4.8 Effects of forskolin and SKF 94120 alone and in combination on 
nitrite accumulation into the medium bathing J774.7 cells (106 cells ml-1) 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated with forskolin (FOR, 3x10 6 M) and 
SKF 94120 (SKF, 10-7 M) alone and in combination for 20 min before the 
addition of LPS (10 ng ml-1) and IFN-y (2 u ml-1), and the incubation was 
continued for 23 hours. Each column represents the mean ± s.e. mean of 6 
observations. * P<0.05 and *** P<0.001 indicate a significant decrease by 
forskolin and SKF 94120 alone, of nitrite levels stimulated by LPS and IFN- 
Y-
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drugs in an attempt to determine if additivity could be achieved. Cells were 

pretreated with SKF 94120 (10-7 M) and forskolin (3x10-6 M) for 20 min 

before the addition of LPS (10 ng ml-1) and IFN-y (2 u m l1), and the 

incubation was continued for a further 23 hours. When used alone, forskolin 

produced 11.0 ± 0.4 % inhibition of nitrite accumulation, whereas SKF 

94120 produced 7.0 ± 0.2 % (Fig 4.8). When used in combination, the drugs 

produced no additive inhibitory effect.

4.2 Effects of cyclic GMP on nitrite production

A number of reports have suggested that NO can exert a negative feedback 

role in controlling its own production (Assreuy et al., 1993; Buga et al., 

1993; Griscavage et al., 1993). Since NO leads to elevation of cyclic GMP 

levels via activation of soluble guanylate cyclase, the possibility that cyclic 

GMP may have a regulatory role in the induction of NO synthase was 

investigated.

4.2.1 Effects o f 8-bromo-cyclic GMP on nitrite production

The effects of 8-bromo-cyclic GMP, a membrane permeant nucleotide 

analogue of cyclic GMP capable of mimicking the actions of this second 

messenger, were investigated on nitrite production by J774.7 cells. Cells 

were pretreated with 8-bromo-cyclic GMP (3x10-4 M) for 15 min before the 

addition of LPS (10 ng m l1) and IFN-y (5 u m l1) and the incubation was 

continued for a further 24 hours. 8-bromo-cyclic GMP had no effect on 

basal accumulation of nitrite by the cells, but slightly increased (8.8 ± 0.2 %) 

that induced by the combination of LPS and IFN-y (Fig 4.9).
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Figure 4.9 Effects of 8-bromo-cyclic GMP on basal nitrite accumulation 
into the medium bathing J774.7 cells (106 cells ml-1) and accumulation 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated for 15 min with 8-bromo-cyclic GMP 
(8 br, 3x10-4 M) before the addition of LPS (10 ng ml-1) and IFN-y (5 u ml- 
l), and the incubation was continued for a further 24 hours. Each column 
represents the mean ± s.e. mean of 6 observations. * P<0.05 indicates a 
significant increase by 8-bromo-cyclic GMP of nitrite levels stimulated by 
LPS and IFN-y.
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4.2.2 Effects o f glyceryl trinitrate on nitrite production

The effects of glyceryl trinitrate (GTN), which is converted to NO by 

reductive enzymes located inside cells leading to elevation of cyclic GMP 

levels (Armstrong et al., 1980; Feelisch, 1991; Schroder, 1992), were 

investigated on nitrite production by J774.7 cells. Cells were pretreated with 

GTN (10-M0-5 M) for 10 min before the addition of LPS (100 ng ml-1) and 

IFN-y (3 u mb1), and the incubation was continued for a further 23 hours. 

GTN (10 6 M) had no effect on basal nitrite production. GTN produced a 

biphasic effect: at concentrations of 3x10 7 M and 10 6 M, it inhibited nitrite 

accumulation by 10.8 ± 0.7 and 18.6 ± 0.6 %, respectively (Fig 4.10). 

However, GTN increased nitrite accumulation by 20.5 ± 1.5 % at a 

concentration of 10-5 M.

4.2.2 Effects o f zaprinast on nitrite production

Zaprinast, which inhibits type I and type V phosphodiesterase isoenzymes 

(Beavo & Reifsnyder, 1990), would be expected to lead to elevation of 

cyclic GMP levels. The effects of this agent were therefore investigated on 

nitrite production by J774.7 cells. Cells were pretreated with zaprinast (10-7- 

10-4 M) for 20 min before the addition of LPS (10 ng mb1) and IFN-y (2 u 

m l1), and the incubation was continued for a further 23 hours. Zaprinast (10- 

4 M) had no effect on basal levels accumulation of nitrite (Fig 4.11). It did, 

however, at concentrations of 10-6 M or more, inhibit nitrite accumulation 

stimulated by LPS and IFN-y, with a maximum inhibition of 33.0 ± 2.4 % at 

3x10-5 M.
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Figure 4.10 Effects of glyceryl trinitrate on nitrite accumulation into the 
medium bathing J774.7 cells (106 cells ml-1) following the combined 
stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells 
were pretreated with glyceryl trinitrate (GTN, lO MO-5 M) for 10 min before 
the addition of LPS (100 ng m l1) and IFN-y (3 u m l1), and the incubation 
was continued for a further 23 hours. GTN (10 6 M) was also added to cells 
not stimulated with LPS and IFN-y. Each column represents the mean ± s.e. 
mean of 6 observations. * P<0.05, ** P<0.01 and *** P<0.001 indicate a 
significant difference by GTN of nitrite levels stimulated by LPS and IFN-y.
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Figure 4.11 Effects of zaprinast on nitrite accumulation into the medium 
bathing J774.7 cells (106 cells ml-1) following the combined stimulus of 
lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells were 
pretreated with zaprinast (10-7-10^ M) for 20 min before the addition of LPS 
(10 ng m l1) and IFN-y (2 u n r1), and the incubation was continued for a 
further 23 hours. Zaprinast (ZAP, 10-4 M) was also added to cells not 
stimulated with LPS and IFN-y. Each column represents the mean ± s.e. 
mean of 6 observations. *** P 0 .001  indicates a significant decrease by 
zaprinast of nitrite levels stimulated by LPS and IFN-y.
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4.2.4 Effects o f the combination o f glyceryl trinitrate and zaprinast on
nitrite production

The ability of zaprinast to inhibit type I and V phosphodiesterases should 

enable it to potentiate the actions of GTN mediated through formation of 

cyclic GMP. The effects of the combining zaprinast and GTN were therefore 

investigated on nitrite production by J774.7 cells. Cells were pretreated with 

zaprinast (10 5 M) and GTN (10-6 M), alone or in combination, before the 

addition of LPS (10 ng m l1) and IFN-y (2 u ml-1), and the incubation was 

continued for a further 24 hours. Neither zaprinast nor GTN had any effect 

on basal nitrite production (Fig 4.12). When used alone on cells stimulated 

with LPS and IFN-y, zaprinast produced a 17.4 ± 0.6 % inhibition of nitrite 

accumulation, whereas GTN produced 18.5 ± 1.1 % inhibition. The 

combination of zaprinast and GTN produced a similar degree of inhibition 

(16.0 ± 0.7 %) to that obtained with each drug alone.

Regulation of nitrite accumulation by calcium 
and protein kinase C

4.3 Stimulatory effects of PMA and A23187

Stimulation of protein kinase C is one of the proposed second messenger 

pathways involved in the induction of NO synthase (Hortelano et al., 1992; 

Severn et al., 1992). The phorbol ester, phorbol 12-myristate 13-acetate 

(PMA) is known to activate PKC, and elevation of calcium levels with the

133



35 -|

30 -

25 -
c o

E
13 Oo 
CD
CD
E 10 H

20  -

15 -

f
i i

5 -

0
ZAP GTN LPS LPS LPS LPS

IFN IFN IFN IFN
ZAP GTN ZAP

GTN

Figure 4.12 Effects of glyceryl trinitrate and zaprinast on basal nitrite 
accumulation into the medium bathing J774.7 cells (106 cells ml-1) and 
accumulation following the combined stimulus of lipopolysaccharide (LPS) 
and interferon-gamma (IFN-y). Cells were pretreated with zaprinast (ZAP, 
lO-5 M) and glyceryl trinitrate (GTN, 10-6 M) alone or in combination for 20 
min before the addition of LPS (10 ng ml-1) and IFN-y (2 u m l1), and the 
incubation was continued for a further 24 hours. Each column represents the 
mean ± s.e. mean of 6 observations. *** P<0.001 indicates a significant 
decrease by zaprinast and GTN, alone and in combination, of nitrite levels 
stimulated by LPS and IFN-y.
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calcium ionophore, A23187, also leads to activation of PKC, as well as of 

calcium-calmodulin-dependent protein kinase. This section is concerned 

with investigating if treatment with PMA and A23187 is sufficient to induce 

NO synthase.

4.3.1 Effects o f  A23187 and PMA on nitrite production

The effects of the calcium ionophore, A23187 and the phorbol ester, PMA, 

an agent which stimulates PKC, were investigated on nitrite accumulation by 

J774.7 cells. Cells were treated with A23187 (10-6 M) and PMA (10-6 M) 

alone and in combination, and also with LPS (10 ng ml-1) and IFN-y (2 u mb 

!) in combination for 24 hours. When used alone, A23187 and PMA had no 

effect on basal nitrite accumulation (Fig 4.13). The combination of A23187 

and PMA produced a small rise from 3.2 ± 0.2 to 5.4 ± 0.4 pM. However, 

this combination did not mimic the powerful stimulation of the cells induced 

by the combination of LPS and IFN-y (45.3 ± 0.9 pM).

4.3.2 Comparison o f  the effects o f PMA and A23187 with those o f  IFN-y in 
enhancing the effects o f  LPS

A23187 and PMA together have the ability to mimic the effect of IFN-y in 

priming the induction of tumouricidal activity by LPS in macrophages 

(Celada & Schreiber, 1986; Somers et al., 1986). The effects of 

pretreatment with A23187 and PMA were therefore compared with those of 

IFN-y on nitrite production stimulated by LPS in 3114.1 cells. Cells were 

pretreated with A23187 (10-6 M) and PMA (10-8 M) alone and in 

combination for 4 hours before the addition of LPS (10 ng mb1). Separate 

aliquots of cells received the standard stimulus of LPS (10 ng mb1) and IFN-
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Figure 4.13 Effects of the calcium ionophore, A23187, and the phorbol 
ester, phorbol 12-myristate 13-acetate (PMA) alone and in combination on 
accumulation of nitrite into the medium bathing J774.7 cells and a 
comparison of their effects with those of the combined stimulus of 
lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells were treated 
with A23187 (10-6 M) and PMA (10-6 M) alone and in combination and also 
with the combination of LPS (10 ng m l1) and IFN-y (2 u ml-1) and the 
incubation was continued for 24 hours. Each column represents the mean ± 
s.e. mean of 6 observations. ** P<0.01 and *** P<0.001 indicate a 
significant increase in nitrite levels from untreated control (C) cells.
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Figure 4.14 A comparison of the effects of A23187 and phorbol 12- 
myristate 13-acetate (PMA), alone and in combination, with those of IFN-y 
in enhancing the ability of LPS to stimulate the accumulation of nitrite into 
the medium bathing J774.7 cells (106 cells ml-1). Cells were pretreated with 
A23187 (10-6 M) and PMA (10-8 M) alone and in combination for 4 hours 
before the addition of lipopolysaccharide (LPS, 100 ng ml-1), and the 
incubation was continued for a further 24 hours. Separate aliquots of cells 
received the standard stimulus of LPS (100 ng ml-1) and IFN-y (10 u m l1). 
Each column represents the mean ± s.e. mean of 6 observations. *** 
P 0 .001  indicates a significant increase in nitrite levels from untreated 
control (C) cells.
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y (2 u ml-1), and the incubation was continued for a further 24 hours. In this 

particular experiment, when used alone or in combination, A23187 and 

PMA had no effect on basal accumulation of nitrite (1.4 ± 0.4 pM)(Fig 

4.14). LPS induced a significant rise in nitrite accumulation to 4.6 ± 0.8 pM. 

Pretreatment of cells with the combination of A23187 and PMA followed by 

exposure to LPS had no greater effect on nitrite accumulation (5.4 ±0 . 4  

pM) than LPS alone. Thus, the combination of A23187 and PMA with LPS 

did not mimic the powerful stimulation of the action obtained with the 

combination of LPS and IFN-y (34.8 ± 0.4 pM).

4.3.3 Effects o f a wide range o f concentrations o f PMA on basal nitrite 
production

The effects of a wide range of concentrations of PMA were investigated on 

basal production of nitrite by J774.7 cells as a prelude to establishing the 

effects of this agent on nitrite production stimulated by the combination of 

LPS and LFN-y. Cells were treated with PMA (3xl0-10-3xl0-6 M) and the 

incubation was continued for 22 hours. PMA had no consistent effect on 

accumulation of nitrite into the medium bathing the cells, with only a small 

increase arising due to experimental variability at 109 M (Fig 4.15).
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Figure 4.15 Effects of phorbol 12-myristate 13-acetate (PMA) on 
accumulation of nitrite into the medium bathing J774.7 cells (106 cells ml-1). 
Cells were treated with PMA (3 x l0 10-3xl0-6 M) and the incubation was 
continued for 22 hours. Each column represents the mean ± s.e. mean of 6 
observations. * P<0.05 indicates a significant increase in nitrite levels from 
untreated control (C) cells.
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4.3.4 Effects o f PMA on nitrite production stimulated by LPS and IFN-y

Although PMA had no effect on basal accumulation of nitrite by 311 A.1 

cells, the effects of PMA were investigated on cells stimulated with the 

combination of LPS and IFN-y. Cells were pretreated with PMA (10 9-3xl0- 

6 M) for 1 hour before the addition of LPS (10 ng mb1) and IFN-y (2 u ml-1), 

and the incubation was continued for a further 23 hours. PMA produced a 

concentration-dependent inhibition of nitrite accumulation, with a maximum 

inhibition of 27.3 ± 0.8 % at 10-8 M (Fig 4.16).

This inhibition could have been due either to inhibition of induction or 

activity of inducible NO synthase. The latter was investigated by examining 

the actions of PMA (10-7 M) 12 hours after stimulation with LPS and IFN-y. 

The incubation was continued for a further 24 hours and nitrite accumulation 

was then measured. In contrast to its inhibitory action when given before 

LPS and IFN-y (Fig 4.16), PMA produced a significant increase (58.8 ± 2.4 

%, n=6) in nitrite accumulation when added 12 hours after stimulation.

4.4 Inhibition of PKC

Although PMA inhibited nitrite production stimulated by LPS and IFN-y, it 

was not clear whether this was a result of stimulation or down-regulation of 

PKC.

In order to investigate further the involvement of PKC in the induction of 

nitrite production by 3114.1 cells, the effects of inhibition of this enzyme 

were investigated.
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Figure 4.16 Effects of phorbol 12-myristate 13-acetate (PMA) on 
accumulation of nitrite into the medium bathing J774.7 cells (106 cells mb1) 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated with PMA (10-9-3xl0-6 M) for 1 hour 
before the addition of LPS (10 ng m l1) and IFN-y (2 u m l1), and the 
incubation was continued for a further 23 hours. Each observation represents 
the mean ± s.e. mean of 6 observations. *** P 0 .001  indicates a significant 
decrease by PMA of nitrite levels stimulated by LPS and EFN-y.
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4.4.1 Effects o f staurosporine on nitrite production

Staurosporine inhibits PKC with a relatively low specificity, since it is also 

able to inhibit other protein kinases, e.g. protein kinase A (PKA) and myosin 

light chain kinase (MLCK)(Tamaoki et al., 1986). Nevertheless, the effects 

of this commonly used inhibitor of PKC were examined on nitrite production 

by J774.7 cells. Cells were pretreated with staurosporine (10 9-3xl0-6 M) for 

2 hours before the addition of LPS (100 ng ml-1) and IFN-y (10 u m l1), and 

the incubation was continued for a further 22 hours. Staurosporine produced 

a concentration-dependent inhibition of nitrite accumulation induced by the 

combination of LPS and IFN-y, with a maximum inhibition of 99.9 ± 44.0 % 

at 3x10-6 M (Fig 4.17). However, concentrations of 3xlO-? M and above 

appeared to exert a toxic action since they induced detachment of cells from 

the tissue culture plastic. Thus, the maximum inhibition of nitrite 

accumulation induced by the highest concentration of staurosporine (10 7 M) 

which did not induce detachment was 57.7 ± 1.1 %.

In order to determine whether the inhibitory effects of staurosporine resulted 

from inhibition of induction or activity of inducible NO synthase, it was 

necessary to assess the actions of the drug after stimulation with LPS and 

IFN-y. Cells were therefore treated with staurosporine (10*7 M) after an 

initial 12 hour stimulation with LPS and IFN-y and the incubation was 

continued for a further 24 hours. Staurosporine produced a significant (12.9 

±1.5 %, n=6) inhibition of nitrite accumulation, but this was much smaller 

than (P<0.05) that occurring (57.7 ± 1.1 %) when it was added to the cells 

prior to LPS and IFN-y (Fig 4.17).
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Figure 4.17 Effects of staurosporine on accumulation of nitrite into the 
medium bathing J774.7 cells (106 cells ml-1) following the combined 
stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells 
were pretreated with staurosporine (10*9-3xl0-5 M) for 2 hours before the 
addition of LPS (100 ng m l1) and IFN-y (10 u ml-1), and the incubation was 
continued for a further 22 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** P 0 .001  indicates a significant decrease by 
staurosporine of nitrite levels stimulated by LPS and IFN-y.
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4.4.2 Effects ofRo 31-8220 on nitrite production

The effects of Ro 31-8220, known to be a more selective inhibitor of PKC 

than staurosporine (Keller & Niggli, 1993), were investigated on nitrite 

production by 3114.1 cells. Cells were pretreated with Ro 31-8220 (3xl0-9- 

10-5 M) for 2 hours before the addition of LPS (100 ng ml-1) and IFN-y (10 u 

ml-1), and the incubation was continued for a further 23 hours. Ro 31-8220 

produced inconsistent effects when used in the concentration range 3x10-9- 

3x10-7 M, but concentrations of 10 6 and higher produced concentration- 

dependent inhibition of nitrite accumulation, with a maximum of 73.2 ±14.3 

% at 10'5 M (Fig 4.18). In contrast to staurosporine, Ro 31-8220 did not 

induce cell detachment at any concentration used.

It was important to establish if the inhibitory actions of Ro 31-8220 occurred 

as a consequence of inhibition of induction or activity of inducible NO 

synthase. Cells were therefore treated with Ro 31-8220 (10-5 M) after an 

initial 12 hour stimulation by LPS (100 ng ml-1) and IFN-y (10 u m l1) and 

the incubation was continued for a further 24 hours. Ro 31-8220 produced a 

significant (11.7 ± 2.0 %, n=6) inhibition of nitrite accumulation, but this 

was much smaller (P<0.05) than that occurring (70.9 ± 5.7 %) when it was 

added to the cells prior to LPS and IFN-y (Fig 4.18).

4.4.3 Effects o f chelerythrine chloride on nitrite production

Chelerythrine chloride is known to be a highly selective inhibitor of PKC 

(Herbert et al., 1990; Barg et al., 1992). The effects of chelerythrine 

chloride on nitrite production by 3114.1 cells were therefore investigated.
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Figure 4.18 Effects of Ro 31-8220 on accumulation of nitrite into the 
medium bathing J774.7 cells (106 cells ml-1) following the combined 
stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells 
were pretreated with Ro 31-8220 (3xl0_9-10-5 M) for 2 hours before the 
addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the incubation was 
continued for a further 23 hours. Each column represents the mean ± s.e. 
mean of 6 observations. * P<0.05 and *** P 0 .001  indicate a significant 
change by Ro 31-8220 of nitrite levels stimulated by LPS and IFN-y.

145



70 -|

60 -

* * *

-3r

50 -

|  40 J5
E
§ 30 
CD
0
1  20 -

10 -

0
C LPS -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 

IFN
log [chelerythrine] M

Figure 4.19 Effects of chelerythrine chloride on accumulation of nitrite into 
the medium bathing J774.7 cells (106 cells m l1) following the combined 
stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells 
were pretreated for 2 hours with chelerythrine chloride (10-8-3xl0-5 M) 
before the addition of LPS (100 ng mb1) and IFN-y (10 u mb1), and the 
incubation was continued for a further 23 hours. Each column represents the 
mean ± s.e. mean of 6 observations. ** P<0.01 and *** P<0.001 indicate a 
significant change by chelerythrine chloride of nitrite levels stimulated by 
LPS and IFN-y.
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Cells were pretreated with chelerythrine chloride (10-8-3xl0-5 M) for 2 hours 

before the addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the 

incubation was continued for a further 23 hours. Chelerythrine chloride had 

no consistent effect on nitrite accumulation, except at a concentration of 

3x1 O’5 M where it also induced detachment of cells (Fig 4.19).

To assess its actions on nitrite accumulation when given after the activating 

stimulus, chelerythrine chloride (10 5 M) was added to cells after an initial 

12 hour stimulation by LPS (100 ng m l1) and IFN-y (10 u m l1) and the 

incubation was continued for a further 24 hours. Chelerythrine produced a 

significant (17.2 ± 2.3 %, n=6) increase in nitrite accumulation which did 

not significantly differ (P= 0.79) from that occurring (13.1 ± 1.7 %) when 

chelerythrine was added to the cells prior to LPS and IFN-y (Fig 4.19).

4.4.4 Effects o f  the combination o f staurosporine and PMA on nitrite 
production

Due to the uncertainty as to which action of PMA mediates the inhibition of 

nitrite accumulation, the effects of PKC inhibitors in combination with PMA 

were examined. This combination may clarify whether the effects resulted 

from stimulation or down-regulation. If it resulted from the former, it should 

be blocked by inhibitors of PKC. Alternatively, if it resulted from down- 

regulation of PKC, then inhibitors of this enzyme should mimic this action

Cells were pretreated with staurosporine (10-8 M) and PMA (10 8 M) for 2 

hours before the addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the 

incubation was continued for a further 22 hours. When used alone, 

staurosporine produced no inhibition of nitrite accumulation stimulated by
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Figure 4.20 Effects of staurosporine and phorbol 12-myristate 13-acetate 
(PMA) on accumulation of nitrite into the medium bathing J774.7 cells (106 
cells m l1) following the combined stimulus of lipopolysaccharide (LPS) and 
interferon-gamma (IFN-y). Cells were pretreated with staurosporine 
(STAUR, 10 8 M) and PMA (10 8 M) alone and in combination for 2 hours 
before the addition of LPS (100 ng ml-1) and IFN-y (10 u ml*1), and the 
incubation was continued for a further 22 hours. Each column represents the 
mean ± s.e. mean of 6 observations. *** P<0.001 indicates a significant 
decrease by PMA and the combination of PMA and staurosporine of nitrite 
levels stimulated by LPS and IFN-y.
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LPS and IFN-y, whereas PMA produced a 34.9 ± 1.8 % inhibition (Fig

4.20). The combination of PMA and staurosporine produced a further 

degree of inhibition of 61.6 ± 4.0 %, demonstrating an additive inhibitory 

effect.

4.4.5 Effects o f  the combination o f PMA and Ro 31-8220 on nitrite 
production

The effects of the combination of PMA and Ro 31-8220 on nitrite 

production by J774.7 cells were investigated. Cells were pretreated with 

PMA (3x10-9 M) and Ro 31-8220 (10-6 M) alone or in combination for 2 

hours before the addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the 

incubation was continued for a further 22 hours. When used alone, PMA 

produced a 30.7 ± 0.5 % inhibition of nitrite accumulation stimulated by 

LPS and IFN-y and Ro 31-8220 produced an inhibition o f l 8 . 8 ± 0 . 3 %  (Fig

4.21). When PMA and Ro 31-8220 were used in combination the degree of 

inhibition was no greater than with either drug alone.

Involvement of the tyrosine kinase pathway

Protein tyrosine kinases play an important role in signal transduction 

pathways that regulate cell proliferation and differentiation. They are also 

thought to play a part in the pathway involved in the induction of NO 

synthase by cytokines (Marczin et al., 1993; Feinstein et al., 1994). This 

section outlines an investigation of the involvement of tyrosine kinase in the 

induction of nitrite production in J774.7 cells stimulated by LPS and IFN-y.
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Figure 4.21 Effects of Ro 31-8220 and phorbol 12-myristate 13-acetate 
(PMA) on accumulation of nitrite into the medium bathing J774.7 cells (106 
cells ml-1) following the combined stimulus of lipopolysaccharide (LPS) and 
interferon-gamma (IFN-y). Cells were pretreated with PMA (3x10-9 M) and 
Ro 31-8220 (Ro, 10 6 M) alone and in combination for 2 hours before the 
addition of LPS (100 ng ml-1) and IFN-y (10 u m l1), and the incubation was 
continued for a further 22 hours. Each column represents the mean ± s.e. 
mean of 6 observations . *** P 0 .001  indicates a significant decrease by 
PMA and Ro 31-8220 alone and in combination of nitrite levels stimulated 
by LPS and IFN-y.
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4.5 Inhibition of tyrosine kinase

4.5.1 Effects ofherbimycin A on nitrite production

The effects of herbimycin A, a selective inhibitor of tyrosine kinase (Satoh 

et al. 1992; Dong et al., 1993c), were investigated on nitrite production by 

J774.7 cells. Cells were pretreated with herbimycin A (0.003-1 pg ml-1) for 

4 hours before the addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and 

the incubation was continued for a further 23.5 hours. Herbimycin A 

produced a concentration-dependent inhibition of nitrite accumulation 

stimulated by LPS and IFN-y, with a maximum of 96.1 ± 10.3 % at 1 pg ml"1 

(Fig 4.22). This agent did not produce detachment of cells at any of the 

concentrations used.

It was important to establish if the inhibitory actions of herbimycin A 

occurred as a consequence of inhibition of induction or activity of inducible 

NO synthase. To assess its actions on nitrite accumulation when given after 

the activating stimulus, herbimycin A (0.3 pg ml-1) was added to cells after 

an initial 12 hour stimulation with LPS and IFN-y and the incubation was 

continued for a further 24 hours. Herbimycin A produced a significant (24.5 

± 2.0 %, n=6) inhibition of nitrite accumulation when added 12 hours 

following LPS and IFN-y, but the magnitude of this was much smaller 

(P<0.05) than that occurring (62.8 ± 1.0 %) when it was added to the cells 

prior to LPS and IFN-y (Fig 4.22).

4.5.2 Effects o f genistein on nitrite production

The effects of genistein, another inhibitor of tyrosine kinase, were 

investigated on nitrite production by J774.7 cells. Cells were pretreated with 

genistein (10-7-10-4 M) for 4 hours before the addition of LPS (10 ng ml-1)

151



5 0

40 -

30 -c  o
03
3
E
E
8 20 
0

10 -

0

***
-s-

LPS 0.003 0.010 0.030 0.100 0.300 1.000 
IFN

[herbimycin A] |jg m l1

Figure 4.22 Effects of herbimycin A on accumulation of nitrite into the 
medium bathing J774.7 cells (106 cells ml-1) following the combined 
stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells 
were pretreated with herbimycin A (0.003-1 pg m l1) for 4 hours before the 
addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the incubation was 
continued for a further 23.5 hours. Each column represents the mean ± s.e. 
mean of 6 observations. *** P<0.001 indicates a significant change by 
herbimycin A of nitrite levels stimulated by LPS and IFN-y.
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Figure 4.23 Effects of genistein on accumulation of nitrite into the medium 
bathing J774.7 cells (106 cells mb1) following the combined stimulus of 
lipopolysaccharide (LPS) and interferon-gamma (IFN-y). Cells were 
pretreated with genistein (10-7-10^ M) for 4 hours before the addition of 
LPS (10 ng mb1) and IFN-y (5 u mb1), and the incubation was continued for 
a further 22 hours. Each column represents the mean ± s.e. mean of 6 
observations. * P<0.05, ** P <0.01 and *** P<0.001 indicate a significant 
change by genistein of nitrite levels stimulated by LPS and IFN-y.
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and IFN-y (5 u ml-1), and the incubation was continued for a further 22 

hours. Genistein, in concentrations up to 3x10 6 M had no effect, but higher 

concentrations produced a concentration-dependent inhibition of nitrite 

accumulation stimulated by LPS and IFN-y. Cell detachment was observed 

with genistein at a concentration of 1(M M, but lower concentrations did not 

produce this effect. The maximum inhibition of nitrite accumulation 

produced by genistein at a concentration which did not induce detachment 

(3x10-5 M) was 51.2 ± 1.9 % (Fig 4.23).

The inhibitory effects of herbimycin A and genistein on nitrite accumulation 

stimulated by LPS and IFN-y were directly compared in a single log 

concentration-response graph (Fig 4.24). Although both drugs were effective 

in producing inhibition of nitrite accumulation, herbimycin A was more 

potent and more effective.

It was important to establish if the inhibitory actions of genistein occurred as 

a consequence of inhibition of induction or activity of inducible NO 

synthase. To assess its actions on nitrite accumulation when given after the 

activating stimulus, genistein (3x1 (M M) was added to cells after an initial 

12 hour stimulation with LPS and IFN-y and the incubation was continued 

for a further 24 hours. Genistein had no effects (0.6 ± 2.3 % inhibition, n=6) 

on nitrite accumulation when added 12 hours after stimulation with LPS and 

IFN-y, which differed significantly (P<0.05) from the inhibition (51.2 ± 1.9 

%) obtained when it was added to the cells prior to LPS and IFN-y (Fig 

4.23).
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Figure 4.24 Comparison of the inhibitory effects of herbimycin A and 
genistein on accumulation of nitrite into the medium bathing J774.7 cells 
(106 cells mb1) following the combined stimulus of lipopolysaccharide (LPS) 
and interferon-gamma (IFN-y). Cells were pretreated with genistein (■) or 
herbimycin A ( • )  for 4 hours before the addition of LPS (100 ng mb1) and 
IFN-y (10 u ml-1), and the incubation was continued for a further 23 hours. 
Each point represents the mean ± s.e mean of 6 observations.
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4.5.3 Effects o f  sodium orthovanadate on nitrite production

An alternative way to investigate the involvement of tyrosine kinases in the 

induction process is to inhibit tyrosine phosphatases, thus prolonging the 

duration of phosphorylation. The effects of sodium orthovanadate, an 

inhibitor of tyrosine phosphatase (Swarup et al., 1982), were therefore 

investigated on nitrite production by J774.7 cells. Cells were pretreated with 

sodium ortho vanadate (10-8-3xl0-5 M) for 3 hours before the addition of 

LPS (100 ng ml-1) and IFN-y (10 u m l1), and the incubation was continued 

for a further 23 hours. Sodium orthovanadate produced no consistent effect 

on nitrite accumulation induced by the combination of LPS and IFN-y (Fig 

4.25).

4.6 Combined inhibition of protein kinase C and tyrosine 
kinase

The ability of LPS and IFN-y to induce a synergistic rise in nitrite production 

by J774.7 cells suggests that the two drugs act via distinct effector 

pathways. The experiments thus far have indicated a possible role for PKC 

and tyrosine kinase in the induction of nitrite accumulation. This section 

describes experiments in which the effects of combined blockade of tyrosine 

kinase and protein kinase C were investigated. In these experiments, 

herbimycin A was chosen as the common inhibitor of tyrosine kinase, and 

the effects of this together with three inhibitors of PKC, i.e. staurosporine, 

Ro 31-8220 and chelerythrine chloride were examined. In addition, since 

PMA may down-regulate PKC after an initial stimulation, experiments were
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Figure 4.25 Effects of sodium orthovanadate (vanadate) on accumulation of 
nitrite into the medium bathing J774.7 cells (106 cells ml-1) following the 
combined stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN- 
y). Cells were pretreated with vanadate (10-8-3xl0-5 M) for 3 hours before 
the addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the incubation 
was continued for a further 23 hours. Each column represents the mean ± 
s.e. mean of 6 observations. * P<0.05, ** P<0.01 and *** P<0.001 indicate 
a significant change by orthovanadate of nitrite levels stimulated by LPS and 
IFN-y.
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also carried out with this agent in combination with herbimycin A.

4.6.1 Effects o f the combination o f herbimycin and staurosporine on nitrite 
production

Cells were pretreated for 4 hours with herbimycin A (0.1 pg m l1) and for 2 

hours with staurosporine (3x10 8 M), alone and in combination before the 

addition of LPS (100 ng ml-1) and IFN-y (10 u m l1), and the incubation was 

continued for a further 23 hours. When used alone, herbimycin A produced a

30.3 ± 1.1 % inhibition of nitrite accumulation induced by the combination 

of LPS and IFN-y and staurosporine produced an inhibition of 33.6 ± 1.3 % 

(Fig 4.26). The combination of the two drugs produced a greater degree of 

inhibition of nitrite accumulation (67.1 ± 4.5 %) than either drug on its own.

4.6.2 Effects o f the combination o f herbimycin A and Ro 31-8220 on nitrite 
production

The combined actions of effective concentrations of Ro 31-8220 and 

herbimycin A were then investigated on nitrite production by J774.7 cells. 

Cells were pretreated for 4 hours with herbimycin A (0.1 pg m l1) and for 2 

hours with Ro 31-8220 (3x10-6 M) alone and in combination before the 

addition of LPS (100 ng ml-1) and IFN-y (10 u ml-1), and the incubation was 

continued for a further 23 hours. When used alone, herbimycin A produced a 

43.9 ± 2.2 % inhibition of nitrite accumulation stimulated by the 

combination of LPS and IFN-y, and Ro 31-8220 produced an inhibition of

35.7 ± 1.6 % (Fig 4.27). The combination of the two drugs produced a slight 

but significantly greater (51.1 ± 3.4 %) inhibition of nitrite accumulation 

than either on its own.
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Figure 4.26 Effects of herbimycin A and staurosporine on accumulation of 
nitrite into the medium bathing J774.7 cells (106 cells ml-1) following the 
combined stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN- 
y). Cells were pretreated for 4 hours with herbimycin A (HERB, 0.1 pg mb1) 
and for 2 hours with staurosporine (STAUR, 3x10-6) alone and in 
combination before the addition of LPS (100 ng ml-1) and IFN-y (10 u mb1), 
and the incubation was continued for a further 23 hours. Each column 
represents the mean ± s.e. mean of 6 observations. *** P<0.001 indicates a 
significant decrease by herbimycin A and staurosporine alone and in 
combination of nitrite levels stimulated by LPS and IFN-y. ### P<0.001 
indicates a significantly greater inhibition with the combination of 
herbimycin A and staurosporine than with either on its own.
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Figure 4.27 Effects of herbimycin A and Ro 31-8220 on accumulation of 
nitrite into the medium bathing J774.7 cells (106 cells m l1) following the 
combined stimulus of lipopolysaccharide (LPS) and interferon-gamma (IFN- 
y). Cells were pretreated for 4 hours with herbimycin A (HERB, 0.1 pg m l1) 
and for 2 hours with Ro 31-8220 (Ro, 3x10-6 M) alone and in combination 
before the addition of LPS (100 ng ml-1) and IFN-y (10 u m l1), and the 
incubation was continued for a further 23 hours. Each column represents the 
mean ± s.e. mean of 6 observations.*** P<0.001 indicates a significant 
decrease by herbimycin A and staurosporine alone and in combination of 
nitrite levels stimulated by LPS and IFN-y. # P<0.05 indicates a significant 
difference in the inhibition obtained between herbimycin A alone and 
herbimycin A in combination with Ro 31-8220. ### P<0.001 indicates a 
significant difference in the inhibition obtained between Ro 31-8220 alone 
and Ro 31-8220 in combination with herbimycin A.
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4.6.3 Effects o f the combination o f herbimycin A and chelerythrine chloride 
on nitrite production

3114.1 cells were pretreated for 4 hours with herbimycin A (0.1 pg m l1) and 

for 2 hours with chelerythrine chloride (10-5 M) alone and in combination 

before the addition of LPS (100 ng m l1) and IFN-y (10 u ml-1), and the 

incubation was continued for a further 24 hours. When used alone, 

herbimycin A produced a 38.9 ± 0.4 % inhibition of nitrite accumulation 

stimulated by LPS and IFN-y, whereas chelerythrine chloride produced an 

inhibition of 13.3 ± 0.2 % (Fig 4.28). The combination of the two drugs 

produced no greater inhibition (31.81 ± 0.36 %) than with herbimycin A 

alone.

4.6.4 Effects o f the combination o f  herbimycin A and PMA on nitrite 
production

The effects of down-regulation of PKC with PMA together with inhibition of 

tyrosine kinase with herbimycin A were investigated on nitrite production by

3114.1 cells. Cells were pretreated for 4 hours with herbimycin A (0.03 pg 

m l1) and for 2 hours with PMA (10 8 M) alone and in combination before 

the addition of LPS (100 ng m l1) and IFN-y (10 u m l1), and the incubation 

was continued for a further 23 hours. When used alone, herbimycin A 

produced a 44.3 ± 1.7 % inhibition of nitrite accumulation stimulated by 

LPS and IFN-y, whereas PMA produced an inhibition of 39.4 ± 1.2 % (Fig 

4.29). The combination of the two drugs produced no greater inhibition 

(43.7 ± 2.9 %) than with either alone.
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Figure 4.28 Effects of herbimycin A and chelerythrine chloride on 
accumulation of nitrite into the medium bathing J774 cells (106 cells ml-1) 
following the combined stimulus of lipopolysaccharide (LPS) and interferon- 
gamma (IFN-y). Cells were pretreated for 4 hours with herbimycin A 
(HERB, 0.1 pg m l1) and for 2 hours with chelerythrine chloride (CHEL, 10- 
5 M) alone or in combination before the addition of LPS (100 ng mb1) and 
IFN-y (10 u mb1), and the incubation was continued for a further 24 hours. 
Each column represents the mean ± s.e. mean of 6 observations. *** 
P0 .001  indicates a significant decrease by herbimycin A and chelerythrine 
chloride alone and in combination of nitrite levels stimulated by LPS and 
IFN-y.
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Figure 4.29 Effects of herbimycin A and phorbol 12-myristate 13-acetate 
(PMA) on accumulation of nitrite into the medium bathing J774.7 cells (106 
cells mb1) following the combined stimulus of lipopolysaccharide (LPS) and 
interferon-gamma (IFN-y). Cells were pretreated for 4 hours with 
herbimycin A (HERB, 0.03 pg ml-1) and for 2 hours with PMA (10-8 M) 
alone and in combination before the addition of LPS (100 ng ml-1) and IFN-y 
(10 u m l1), and the incubation was continued for 23 hours. Each column 
represents the mean s.e. mean of 6 observations. *** P<0.001 indicates a 
significant decrease by herbimycin A and PMA alone and in combination of 
nitrite levels stimulated by LPS and IFN-y.
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CHAPTER 5

EFFECTS OF J774.7 
MACROPHAGES ON TONE IN RAT

AORTIC RINGS

In previous chapters, NO release from J774.7 macrophages was assessed by 

measuring the accumulation of its stable product, nitrite, into the medium 

bathing the cells. In this chapter, an alternative way to assess NO production 

was sought by examining the effects of activated J774.7 cells on the tone of 

rings of rat aorta suspended in organ baths.

Since macrophages produce large quantities of NO which are clearly 

cytotoxic or cytostatic to other cells, it is possible that the macrophage has 

evolved mechanisms to protect itself from these actions. One possible 

protective action is for the macrophage to bind NO, thus preventing it from 

interfering with important cellular processes. Consequently, a number of 

pharmacological tools were used to determine if the relaxant produced by 

macrophages was NO per se or an NO-releasing molecule.

5.1 Effects o f activated and unactivated J774.7 macrophages on 
phenylephrine-induced tone in rat aortic rings

Sub-maximal phenylephrine-induced tone (0.7 ± 0.1 g) was generated in 

endothelium-denuded rings of rat aorta using a concentration range of 10-7- 

3x10-7 M. When tone had stabilised, J774.7 cells, which were either
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Figure 5.1a Traces demonstrating typical effects of addition of activated 
and unactivated J774.7 cells on phenylephrine-induced tone in rat aortic 
rings. Macrophages were treated overnight for approximately 18 hours with 
lipopolysaccharide (LPS, 100 ng ml'1) and IFN-y (10 u ml-1). They were then 
re-suspended in Krebs and added to the organ baths cumulatively. 
Concentrations of cells are given per ml of solution. Rings were contracted 
with phenylephrine (PE, 3x10-8 M) before the addition of cells.
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Figure 5.1b Effects of addition of unactivated and activated J774.7 cells on 
phenylephrine-induced tone in rat aortic rings. Macrophages were treated 
overnight with lipopolysaccharide (LPS, 100 ng m l1) and IFN-y (10 u ml-1) 
to induce activation, were suspended in Krebs and were added to the organ 
baths cumulatively. Rings were contracted with phenylephrine before the 
addition of stimulated ( • )  or unstimulated (■) cells. Each point represents 
the mean ± s.e. mean of 6 observations. ** P<0.01 and *** P 0 .001  indicate 
a significant difference between the relaxation induced with stimulated and 
unstimulated cells.
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unactivated or had been activated approx. 18 hours previously with the 

combined stimulus of LPS (100 ng ml-1) and IFN-y (10 u m l1), were added 

cumulatively and the effects on tone assessed. Activated J774.7 cells (104- 

106 cells m l1 final concentration) produced a rapid, cell number-dependent 

relaxation of phenylephrine-induced tone, reaching a maximum of 87.4 ± 

16.6 % with 106 cells m l1 (Fig 5.1a & 5.1b). In contrast, unactivated cells 

(104-106 cells ml*1) produced a far lesser degree of relaxation, and this was 

much slower to develop reaching a maximum of only 26.3 ± 6.9 % with 106 

cells ml-1.

It is apparent therefore that J774.7 cells when activated by LPS and IFN-y 

produce a factor which induces powerful relaxation (Fig 5.1b).

5.2 Effects o f superoxide dismutase on relaxation ofphenylephrine-induced 
tone by activated J774.7 macrophages

Superoxide dismutase (SOD), by removing destructive superoxide anions 

potentiates the vasodilator actions of NO (Gryglewski et al., 1986b). If 

activated J774.7 cells induced relaxation of rat aortic rings by releasing NO, 

then SOD should potentiate this action. The effects of SOD were therefore 

investigated on macrophage-induced relaxation of rat aortic rings. In the 

absence of SOD, J774.7 cells (104-106 cells ml-1 final concentration) 

activated by LPS (100 ng m l1) and IFN-y (10 u m l1) for approx. 18 hours, 

produced a cell number-dependent relaxation, with a maximum relaxation of

73.2 ± 13.9 % at 10* cells ml-1 (Fig 5.2a & 5.2b). When SOD (250 u ml-1) 

was added to the tissue baths, the relaxation induced by activated J774.7 

cells was potentiated with a maximum relaxation of 100.0 ± 4.6 %
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Figure 5.2a Traces demonstrating the ability of superoxide dismutase 
(SOD) to potentiate the relaxation induced by activated J774.7 cells on 
phenylephrine-contracted rings of rat aorta. Cells were treated overnight for 
approximately 18 hours with lipopolysaccharide (LPS, 100 ng ml-1) and 
interferon-gamma (IFN-y, 10 u ml-1). They were then re-suspended in Krebs 
and added to the organ baths cumulatively. Concentrations of cells are given 
per ml of solution. Rings were contracted with phenylephrine (PE, 3x10-8 
M) and cells were added in the absence or presence of SOD (250 u ml-1).
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Figure 5.2b Effects of superoxide dismutase (SOD) on relaxation of 
phenylephrine-induced tone in rat aortic rings produced by activated J774.7 
cells. Cells were treated overnight with lipopolysaccharide (LPS, 100 ng ml- 
]) and interferon-gamma (IFN-y, 10 u ml-1) and were added to the organ 
baths cumulatively. Ring were contracted with phenylephrine (10-8-10-7 M) 
and cells added in the presence ( • )  or absence (■) of SOD (250 u ml-1). 
Each point represents the mean ± s.e mean of 6 observations. * P<0.05 and 
*** PcO.OOl indicate a significantly greater relaxation in the presence of 
SOD.
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at 106 cells ml-1.

In view of the potentiating effect of SOD on macrophage-induced relaxation, 

all further experiments were conducted in the presence of this agent at a 

concentration of 250 u m l1.

5.3 Effects o f haemoglobin on relaxation o f phenylephrine-induced tone by 
activated J774.7 macrophages

Haemoglobin binds NO and inhibits its actions (Martin et al., 1985). If 

J774.7 cells produce their vasodilator action by releasing NO, then this 

effect would be expected to be blocked by haemoglobin. When haemoglobin 

(Hb, 3x10 6 M) was added to the tissue baths, the relaxing action of J774.7 

cells (104-106 cells ml-1 final concentration), activated by LPS (100 ng ml-1) 

and IFN-y (10 u ml-1) for approx. 18 hours, was powerfully inhibited; 

maximum relaxation was 100 ± 10.2 % in the absence of Hb falling to 10.3 

±3.2 % in the presence of Hb (Fig 5.3a & 5.3b).

5.4 Effects o f LY 83583 on relaxation o f phenylephrine-induced tone by 
activated J774.7 macrophages

LY 83583 is known to inhibit the actions of NO by generating superoxide 

anion both intracellularly and extracellularly (Mulsch et al., 1989). 

Consequently, its effects were examined on the relaxation of rat aortic rings 

produced by 311 A.1 cells that had been activated for approx. 18 hours with 

LPS (100 ng ml-1) and IFN-y (10 u mb1). Catalase was present in the baths 

to prevent the accumulation of hydrogen peroxide derived
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Figure 5.3a Traces demonstrating the ability of haemoglobin (Hb) to block 
relaxation induced by activated J774.7 cells in phenylephrine-contracted 
rings of rat aorta. Cells were treated overnight for approximately 18 hours 
with lipopolysaccharide (LPS, 100 ng ml-1) and interferon-gamma (IFN-y, 10 
u ml-1). They were then re-suspended in Krebs and added to the organ baths 
cumulatively. Concentrations of cells are given per ml of solution. Rings 
were contracted with phenylephrine (PE, 3x10-8 M), treated with superoxide 
dismutase (SOD, 250 u ml-1) and cells were added in the absence or 
presence of Hb (3x10-6 M).
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Figure 5.3b Effects of haemoglobin on relaxation of phenylephrine-
induced tone in rat aortic rings produced by activated J774.7 cells. Cells 
were treated overnight with lipopolysaccharide (LPS, 100 ng ml-1) and 
interferon-gamma (IFN-y, 10 u mb1) and were added to the organ baths
cumulatively. Ring were contracted with phenylephrine (10~8-10-7 M), 
treated with SOD (250 u ml-1) and cells were added in the presence ( • )  or 
absence (■) of Hb (3xl0-6 M). Each point represents the mean ± s.e mean 
of 6 observations. *** P<0.001 indicates a significant decrease in the 
presence of Hb.
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Figure 5.4b The ability of the superoxide anion generator, LY 83583, to 
reverse the relaxation of phenylephrine-induced tone in rat aortic rings 
produced by activated J774.7 cells. Cells were treated overnight with 
lipopolysaccharide (LPS, 100 ng ml*1) and interferon-gamma (IFN-y, 10 u 
mb1) and were added to the organ baths to achieve a final concentration of 
6x l05 cells ml-1. Rings were contracted with phenylephrine (10-8-10-7 M) 
and treated with SOD (250 u ml*1) to potentiate the effects of NO and with 
catalase (1000 u ml-1) to remove any hydrogen peroxide generated from 
superoxide anion, before the addition of cells. Each point represents the 
mean ± s.e mean of 6 observations.
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from superoxide anion. Addition of LY 83583 (10-7-3xl0-6 M) during an 

established relaxation induced by activated J774.7 cells (6x105 cells ml-1) 

led to a concentration-dependent reversal of relaxation (Figs 5.4a & 5.4b); 

maximum of 81.3 ± 13.6 %. SOD (250 u ml-1) was also present to potentiate 

the actions of NO. Although the presence of SOD might appear unwarranted 

since it would be expected to scavenge superoxide anion, it would only be 

expected to act extracellularly and not inhibit the principal intracellular 

actions of LY 83583.

5.5 Effects o f  L-NMMA on relaxation o f  phenylephrine-induced tone by 
activated J774.7 macrophages

If the relaxation of aortic rings produced by activated J774.7 cells results 

from release of NO, then this action would be expected to be blocked by 

inhibitors of NO synthase. The NO synthase inhibitor, L-NMMA, has 

already been shown to be effective in the J774.7 macrophage cell line (see 

3.2.4). The effects of L-NMMA were therefore investigated on relaxation of 

rat aortic rings induced by J774.7 cells activated by LPS (100 ng ml-1) and 

IFN-y (10 u ml*1). Phenylephrine (10*8 M)-contracted rings of rat aorta, 

treated with SOD (250 u ml-1) to protect the actions of NO, were relaxed by 

the addition of 104 activated cells. During this relaxation, L-NMMA (10^ 

M) was added and resulted in a partial reversal of the relaxation (Fig 5.5). 

This was often associated with the development of repeated transient 

relaxations. Addition of L-NMMA at a concentration of 3x10"* M, however, 

resulted in a complete reversal of the relaxation.
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5.6 Effects o f L-NAME on relaxation o f  phenylephrine-induced tone by 
activated J774.7 macrophages

Although L-NAME is an established inhibitor of NO synthase, it is not as 

effective as L-NMMA at inhibiting the inducible form of the enzyme in 

J774.7 cells (see Chapter 3, 3.2.5). The effects of L-NAME were therefore 

investigated on relaxation of rat aortic rings induced by J774.7 cells 

activated by LPS (100 ng ml-1) and IFN-y (10 u ml-1). Addition of activated 

cells produced immediate cell number-dependent relaxation (Fig 5.6). L- 

NAME (10^-3xl0-3 M) produced only a very slight degree of reversal of 

the relaxation induced by activated cells; maximum reversal 26.4 ± 19 % 

(n=3) at 3xl0-3 M.

Thus, all of the data obtained in this chapter are consistent with the 

macrophage-derived vasodilator being NO.
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CHAPTER 6

INVESTIGATION OF PRODUCTION 
OF REACTIVE OXYGEN SPECIES 

BY THE J774.7 MACROPHAGE
CELL LINE

6.1 Production of reducing species

As described in the Methods section, production of reducing species can be 

detected by the use of cytochrome C, whereby its oxidised (Fe3+) form is 

converted to the reduced (Fe2+) form, resulting in an increase in absorbance 

at 550 nm. Cells involved in inflammatory processes can be stimulated to 

produce superoxide anion, a reducing agent with cytotoxic actions. An 

attempt was therefore made to examine the production of superoxide anion 

by the J774.7 macrophage cell line.

6.1.1 Effects o f PMA and LPS on superoxide production

PMA and LPS are well documented for their ability to induce bactericidal 

and tumouricidal activity in macrophages (Amano et al., 1985; Mayer et al., 

1993). The ability to induce superoxide production by J774.7 cells was 

therefore investigated. Cells were treated with PMA (10-7 M) and the effects
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Figure 6.1 Effects of unstimulated and stimulated J774.7 cells (106 cells ml- 
!) on the absorbance of oxidised cytochrome C (10-5 M) at 550 nm during a 
1 hour incubation at 37°C. Cells were treated with phorbol 12-myristate 13- 
acetate (PMA, 107 M) during the 1 hour incubation, or were pretreated with 
lipopolysaccharide (LPS, 100 ng ml-1) for 24 hours and then washed prior to 
the 1 hour incubation. Catalase (100 u ml-1) was present in all cases to 
prevent the re-oxidation of cytochrome C. The effects of superoxide 
dismutase (SOD, 100 u ml-1) on absorbance in the presence of unstimulated 
cells (C) is also shown. Each column represents the mean ± s.e mean of 6 
observations. A standard reading from a 10 5 M solution of cytochrome C 
was subtracted from each reading.
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on the absorbance of cytochrome C assessed during a 1 hour incubation. In a 

separate experiment, cells were pretreated with LPS (100 ng mb1) for 24 

hours. They were then washed and their effects on the absorbance of 

oxidised cytochrome C assessed during a 1 hour incubation. Catalase (100 u 

m l1) was present in each case to prevent any hydrogen peroxide produced 

from re-oxidising cytochrome C. Unstimulated J774.7 cells and cells 

stimulated by PMA and LPS failed to induce reduction of cytochrome C (Fig

6.1), suggesting that superoxide anion was not being produced. Furthermore, 

J774.7 cells treated with SOD (100 u ml-1), a scavenger of superoxide 

anions, had no effect on the absorbance of cytochrome C, confirming that 

there was no basal production of superoxide anion.

Due to the apparent lack of both LPS and PMA to stimulate production of 

superoxide anion, verification was sought that the assay used to detect 

production was in fact functioning.

6.1.2 Effects o f the hypoxanthine/xanthine oxidase free radical generating 
system on oxidised cytochrome C in the absence and presence o f cells

The hypoxanthine/xanthine oxidase (HX/XO) system is commonly used for 

the generation of superoxide anion (Berman & Martin, 1993). An 

experiment was therefore conducted to determine if the cytochrome C assay 

could detect superoxide anion generated by this system. Addition of HX 

(2x1 (M M) and XO (20 mu ml-1) to cytochrome C in the absence of cells 

produced a large increase in absorbance during a 1 hour incubation (Fig

6.2). This increase was reduced in the presence of SOD (100 u ml-1) by
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Figure 6.2 The effects of the hypoxanthine (HX)/xanthine oxidase (XO) 
superoxide anion generating system on the absorbance of oxidised 
cytochrome C (10-5 M) at 550 nm in the absence and presence of J774.7 
cells during a 1 hour incubation at 37°C. HX (2x10^ M) /XO (20 mu mb1) 
produced a large increase in absorbance and this was reduced by superoxide 
dismutase (SOD, 100 u ml-1). The presence of cells resulted in an almost 
complete abolition of the rise induced by HX/XO. Each column represents 
the mean ± s.e. mean of 6 observations. * P<0.05 indicates a significant 
increase in absorbance from cells alone. indicates a significant rise in 
the absorbance of cytochrome C in the presence of HX and XO. +++ 
indicates a significant decrease by SOD of the increase in absorbance 
produced by HX/XO. Catalase (100 u m l1) was present in each case. A 
standard reading from a 10 5 M solution of cytochrome C was subtracted 
from each reading.
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47.8 ± 5.3 %. The assay therefore appeared to be functioning as expected. 

Surprisingly, when cells were added to a solution of cytochrome C the 

ability of HX/XO to reduced cytochrome C was almost completely 

abolished.

Clearly, some property of the cells was preventing the reduction expected by 

superoxide anion. The possibility that this action was due to production of a 

powerful oxidant by the J774.7 cells was investigated.

6.2 Production of an oxidising species

Upon activation by various stimuli, macrophages release a number of 

reactive oxygen species which play a role in the host defence mechanism. 

Although the superoxide anion released is a reducing agent, all the others 

including hydroxyl radical, hydrogen peroxide and peroxynitrite, are 

powerful oxidising species.

In Section 1, the reduction of oxidised cytochrome C was used as an index 

of production of the reducing agent, superoxide anion. In this section, the 

reduction in the absorbance of cytochrome C at 550 nm which accompanies 

oxidation of reduced cytochrome C was used as an index of production of an 

oxidising species by J774.7 cells.

6.2.1 Effects o f J774.7 cells on the absorbance o f reduced cytochrome C

Reduced cytochrome C was prepared by treatment with sodium dithionite 

(10^ M). Addition of J774.7 cells (105 cells ml-1) produced a time-
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Figure 6.3 The oxidising effects of unstimulated J774.7 cells (105 cells ml-1) 
on reduced cytochrome C (105 M) during an incubation at 37°C. Cells were 
added to reduced cytochrome C, and were left in contact for times of 5 min, 
30 min, 1 hr, 1.5 hr and 2 hours, after which absorbance was measured 
(open columns). In a parallel experiment, J774.7 cells were left in contact 
with cytochrome C for 30 min after which the solution containing 
cytochrome C was removed, and its absorbance measured for the duration of 
the 2 hour incubation (hatched columns). Each column represents the mean 
± s.e. mean of 6 observations. ### P<0.001 indicates a significant increase 
in the extent of oxidation compared with the 5 min time point.*** P<0.001 
indicates a significant decrease in the extent of oxidation compared to 
cytochrome C in the presence of cells at the respective time points.
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dependent oxidation of cytochrome C (105 M) during a 2 hour incubation at 

37°C, as assessed by a fall in absorbance at 550 nm (Fig 6.3). In a parallel 

experiment, cells were left in contact with cytochrome C for 30 min, the 

solution containing the cytochrome C was then removed and its absorbance 

monitored for the duration of the 2 hour incubation. Fig 6.3 shows that when 

the cytochrome C was removed from the cells, the process of oxidation 

stopped.

Clearly, either the cells have to be in contact with the cytochrome C or the 

cells release a labile oxidant which decays rapidly in the supernatant. An 

attempt was made to determine if the oxidising action of the cells was due to 

production of known macrophage-derived oxidants.

6.2.2 Effects o f catalase on oxidation o f cytochrome C

The effects of catalase, a scavenger of hydrogen peroxide, were investigated 

on the oxidation of reduced cytochrome C by J774.7 cells. Cells were 

incubated at 37°C with reduced cytochrome C (Iff5 M) and absorbance was 

monitored over the next 2 hours in the presence or absence of catalase (100- 

1,500 u m l1). Catalase (1,500 u m l1) did not block the oxidation of 

cytochrome C by J774.7 cells at any time during the 2 hour incubation (Fig 

6.4). Lower concentrations of catalase also failed to affect the oxidation of 

cytochrome C (data not shown). Cell-mediated oxidation of cytochrome C is 

therefore unlikely to be due to production of hydrogen peroxide.
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Figure 6.4 Effects of catalase (1,500 u ml-1) on the oxidation of reduced 
cytochrome C (10-5 M) by J774.7 cells (3x105 cells m l1). Cells were left in 
contact with cytochrome C for 5 min, 30 min, 1 hr, 1.5 hr or 2 hours in the 
presence (hatched columns) or absence (open columns) of catalase, after 
which times the absorbance of cytochrome C was measured at 550 nm. Each 
column represents the mean ± s.e. mean of 6 observations. *** P<0.001 
indicates a significant increase in the absorbance of cytochrome C in the 
presence of catalase.
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6.2.3 Effects o f L-NAME and L-NMMA on oxidation o f cytochrome C

Peroxynitrite is formed by the reaction of NO with superoxide anion 

(Freeman, 1994). Blocking NO synthase, thereby inhibiting the production 

of NO, should therefore prevent the formation of peroxynitrite. The effects 

of the NO synthase inhibitor, L-NAME, were therefore investigated on the 

oxidation of reduced cytochrome C by J774.7 cells. Cells were incubated at 

37°C with reduced cytochrome C (105 M) in the presence or absence of L- 

NAME (5x1 (M M) and the absorbance monitored over 2 hours. Although L- 

NAME reduced the oxidation of cytochrome C by J774.7 cells (106 cells ml- 

!) at 5 min, it had no effect at any other time point (Fig 6.5).

In this experiment the oxidation of cytochrome C by J774.7 cells was 

complete by approx. 30 min and it was therefore possible that this high 

degree of oxidation obscured a possible slight inhibitory action of L-NAME. 

To test this, further experiments were conducted using cells at lower 

densities (105 and 3x105 cells m l1) so that oxidation took place at a slower 

rate. Even at these lower cell densities, however, L-NAME was unable to 

block oxidation of cytochrome C by J774.7 cells (data not shown).

L-NMMA is known to be a more effective inhibitor the inducible form of 

NO synthase than L-NAME in the J774.7 macrophage cell line (see 3.2.4 

and 3.2.5). Therefore, the effects of L-NMMA were investigated on the 

oxidation of reduced cytochrome C by J774.7 cells. However, like L- 

NAME, L-NMMA (5x1 (M M) had no inhibitory effect on the oxidation of 

cytochrome C by J774.7 cells at any time during the 2 hour incubation (Fig 

6 .6).
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Figure 6.5 Effects of NG-nitro L-arginine methyl ester (L-NAME, 5x10-4 M) 
on the oxidation of reduced cytochrome C (10-5 M) by J774.7 cells (106 cells 
m l1) during an incubation at 37°C. Cell were left in contact with cytochrome 
C for 5 min, 30 min, 1 or 2 hours in the presence (hatched columns) or 
absence (open columns) of L-NAME, after which times the absorbance of 
cytochrome C was measured at 550 nm. Each column represents the mean ± 
s.e. mean of 6 observations. *** P<0.001 indicates a significant decrease in 
oxidation of cytochrome C by L-NAME.
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Figure 6.6 Effects of NG-monomethyl-L-arginine (L-NMMA, 5x10-4 M) on 
the oxidation of reduced cytochrome C (10-5 M) by J774.7 cells (3xl05 cells 
m l1) during an incubation at 37°C. Cells were left in contact with 
cytochrome C for 5 min, 30 min, 1 or 2 hours in the presence (hatched 
columns) or absence (open columns) of L-NMMA, after which times the 
absorbance of cytochrome C was measured at 550 nm. Each column 
represents the mean ± s.e. mean of 6 observations.
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These data suggest that cell-mediated oxidation of cytochrome C does not 

involve production of peroxynitrite.

6.2.4 Effects o f SOD on oxidation o f cytochrome C

An alternative means of preventing the formation of peroxynitrite is to 

remove superoxide anion using SOD. The effects of SOD were therefore 

investigated on the oxidation of reduced cytochrome C by J774.7 cells. Cells 

were incubated at 37°C with reduced cytochrome C (105 M) in the presence 

or absence of SOD (100 u ml-1) and the absorbance monitored over 2 hours. 

SOD had no inhibitory effect on oxidation of cytochrome C by J774.7 cells 

(Fig 6.7), again suggesting lack of involvement of peroxynitrite.

6.2.5 Effects o f mannitol and DMTU on oxidation o f cytochrome C

Mannitol and dimethythiourea (DMTU) are both scavengers of the oxidising 

species, hydroxyl radical (Fox, 1984; Wasil et al., 1987). Mannitol cannot 

permeate cell membranes, whereas DMTU is cell permeable. The effects of 

each of these agents were investigated on the oxidation of reduced 

cytochrome C by J774.7 cells. Cells were incubated at 37°C with reduced 

cytochrome C (105 M) in the presence or absence of mannitol (10 3 M) or 

DMTU (10-3 M) and the absorbance monitored over 2 hours. Although 

mannitol (Fig 6.8) and DMTU (Fig 6.9) appeared to enhance oxidation at 30 

min and 5 min, respectively, neither agent inhibited the oxidation of 

cytochrome C by J774.7 cells at any time point. These data suggest that the 

cell-mediated oxidation does not involve the production of hydroxyl radical.
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Figure 6.7 Effects of superoxide dismutase (SOD, 100 u m l1) on the 
oxidation of reduced cytochrome C (10-5 M) by J774.7 cells (3x105 cells ml- 
]) during an incubation at 37°C. Cells were left in contact with cytochrome 
C for 5 min, 30 min, 1 or 2 hours in the presence (hatched columns) or 
absence (open columns) of SOD, after which times the absorbance of 
cytochrome C was measured at 550 nm. Each column represents the mean ± 
s.e. mean of 6 observations.
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Figure 6.8 Effects of the hydroxyl radical scavenger, mannitol (10 3 M), on 
the oxidation of reduced cytochrome C (10-5 M) by J774.7 cells (3x105 cells 
m l1) during an incubation at 37°C. Cell were left in contact with cytochrome 
C for 5 min, 30 min, 1 or 2 hours in the presence (hatched columns) or 
absence (open columns) of mannitol, after which times the absorbance of 
cytochrome C was measured at 550 nm. Each column represents the mean ± 
s.e mean of 6 observations. ** P<0.01 indicates a significant increase in the 
extent of oxidation in the presence of mannitol.
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Figure 6.9 Effects of the hydroxyl radical scavenger, dimethylthiourea 
(DMTU, 10-3 M), on the oxidation of reduced cytochrome C (10-5 M) by 
J774.7 cells (3x105 cells ml-1) during an incubation at 37°C. Cells were left 
in contact with cytochrome C for 5 min, 30 min 1 or 2 hours in the presence 
(hatched columns) or absence (open columns) of DMTU, after which times 
the absorbance of cytochrome C was measured at 550 nm. Each column 
represents the mean ± s.e. mean of 6 observations. * P<0.05 indicates a 
significant increase in the extent of oxidation in the presence of DMTU.
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6.2.6 Effects o f  dithiothreitol on oxidation o f cytochrome C

The reducing agent, dithiothreitol, is commonly employed to inhibit the 

oxidising effects of hypochlorous acid (Eley et al., 1989). The effects of this 

agent were investigated on the oxidation of reduced cytochrome C by J774.7 

cells. Cells were incubated at 37°C with reduced cytochrome C (lO 5 M) in 

the presence or absence of dithiothreitol (3x10-3 M) and absorbance 

monitored over 2 hours. Dithiothreitol appeared to almost completely inhibit 

the oxidation of cytochrome C by J774.7 cells, suggesting that the oxidising 

species is hypochlorous acid (Fig 6.10). However, when the actions of 

dithiothreitol were examined further, it was found that it could promote 

reduction of cytochrome C even in the absence of cells (data not shown). 

The apparent inhibition of cell-mediated oxidation by dithiothreitol is 

therefore explained by its ability to reduce cytochrome C directly and not by 

inhibition of the oxidant action of hypochlorous acid.

These experiments therefore failed to identify the mechanism or mediator of 

the oxidation of cytochrome C by J774.7 cells.

6.3 Regulation of production of an oxidising species

In the previous section it was established that unstimulated J774.7 cells 

promoted oxidation of reduced cytochrome C, although the nature of this 

oxidation process was not established. In this section, the possibility was 

examined that the oxidising action of J774.7 cells could be
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Figure 6.10 Effects of dithiothreitol (3x10 3 M) on the oxidation of reduced 
cytochrome C (10-5 M) by J774.7 cells (3xl0-5 cells ml-1) during an 
incubation at 37°C. Cells were left in contact with cytochrome C for 5 min, 
30 min, 1 or 2 hours in the presence (hatched columns) or absence (open 
columns) of dithiothreitol, after which time the absorbance of cytochrome C 
was measured at 550 nm. Each column represents the mean ± s.e. mean of 6 
observations. *** PO.OOl indicates a significant reduction in the extent of 
oxidation induced in the presence of dithiothreitol at that time point.
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modulated by agents which are known either to activate or inhibit the 

activation of J774.7 cells.

6.3.1 Effects o f LPS and IFN-y on production o f  oxidising species

LPS and IFN-y are well characterised activators of inflammatory cells and 

their ability to stimulate expression of inducible NO synthase is discussed 

elsewhere in this thesis (see Chapter 3, 3.2.2). The possibility that treatment 

with LPS and IFN-y might affect the ability of J774.7 cells to promote 

oxidation of reduced cytochrome C was therefore investigated. Cells were 

incubated overnight (23 hours) with LPS (100 ng ml-1) and IFN-y (1 or 10 u 

m l1) alone and in combination. They were then washed and incubated in 

Krebs solution at 37°C for 30 min. When used alone, LPS and IFN-y (both 1 

and 10 u m l1) produced statistically significant but extremely small (<10%) 

increases in the extent of oxidation of cytochrome C by J774.7 cells (Figure 

6.11). In other experiments, LPS and IFN-y alone failed to affect the 

oxidation of cytochrome C by J774.7 cells (data not shown). The 

combination of LPS and IFN-y (1 or 10 u ml-1) also had no effect on the 

extent of oxidation.

6.3.2 Effects o f dexamethasone on production o f an oxidising species

Corticosteroids powerfully inhibit the inflammatory response, and their 

inability to inhibit the expression of the inducible form of NO synthase is 

discussed else where in this thesis (see Chapter 3, 3.2.7). The possibility 

that treatment with dexamethasone might affect the ability of J774.7 cells to 

promote oxidation of cytochrome C was therefore investigated. Cells were 

incubated overnight (23 hours) with dexamethasone (10-6 M). They were
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Figure 6.11 Effects of lipopolysaccharide (LPS) and interferon-gamma 
(IFN-y) on the oxidation of reduced cytochrome C (10-5 M) by J774.7 cells 
(105 cells m l1). Cells were incubated overnight (23 hours) with LPS (100 ng 
m l1) and IFN-y (1 or 10 u mb1) alone or in combination. They were then 
washed and incubated at 37°C in Krebs solution containing cytochrome C 
for 30 min, after which time the absorbance was measured at 550 nm. Each 
column represents the mean ± s.e. mean of 6 observations. ** P<0.01 and 
*** P<0.001 indicate a significant increase in oxidation from untreated (C) 
cells.
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Figure 6.12 Effects of dexamethasone (DEX) on the oxidation of reduced 
cytochrome C (10 5 M) by J774.7 cells (105 cells ml-1). Cells were incubated 
overnight with dexamethasone (10-6 M) and were then washed and 
incubated in Krebs solution at 37°C containing cytochrome C for 30 min, 
after which time the absorbance of cytochrome C was measured at 550 nm. 
Each column represents the mean ± s.e. mean of 6 observations. * P<0.05 
indicates a significant decrease in oxidation from untreated (C) cells.
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then washed and incubated in Krebs solution at 37°C for 30 min. Although 

dexamethasone produced a statistically significant reduction in the oxidation 

of cytochrome C produced by J774.7 cells, the magnitude of the inhibition 

was very small (12.6 ± 0.33 %) (Fig 6.12).

Thus, neither powerful activators of macrophages (LPS and IFN-y) nor an 

inhibitor (dexamethasone) had any convincing effect on the ability of J774.7 

cells to promote oxidation of cytochrome C.
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DISCUSSION



CHAPTER 7

Macrophages play a major role in the host defence mechanism by their 

ability to release both NO and reactive oxygen species. The aim of this thesis 

was to investigate in mouse macrophages: (i) the induction of NO synthase 

and (ii) the production of reactive oxygen species.

Macrophage cell lines provide a good model to study activation by LPS and 

cytokines, since they are homogeneous and free from cellular contaminants 

frequently found in isolated primary cultures. They may also be grown in 

large numbers, thus providing a convenient source of cells for analysis. 

Furthermore, in culture, a wide variety of drugs can be used with which to 

manipulate different enzyme cascades, a situation difficult to obtain in vivo 

due to the complex nature of the whole animal. However, there is also the 

disadvantage that the cells may differ in some way from native macrophages, 

and may differ in the way they respond to drugs in comparison to freshly 

isolated cells. For example, it was found in this particular study that once the 

J774.7 cells were passaged many times, they no longer responded to the 

combined stimulus of LPS and IFN-y, demonstrating that the characteristics 

of the cells changed over time. This had to be taken into consideration when 

comparing the results obtained from cells of a low passage number with 

those having a higher passage number. The practical way this was dealt with 

was that when a batch of J774.7 cells failed to respond well to LPS and IFN- 

y, new, low-passage batches of cells were thawed from storage in liquid 

nitrogen.
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A great deal of the work outlined in this thesis involves examination of the 

role of a variety of effector pathways that may result in the induction of NO 

synthase in murine macrophages. A limitation of the study is that it was 

carried out from a purely pharmacological perspective, using drugs known to 

block specific biochemical pathways. The additional use of biochemical and 

molecular biological techniques would certainly have provided a more 

comprehensive understanding of the mechanisms by which the drugs used 

produced their effects.

Direct measurement of NO is difficult because of its short half-life. A simple 

indirect way to assess NO production is by measurement of its stable end 

products, nitrite and nitrate. It is known that the majority of NO in aqueous 

solution decays to nitrite (Ignarro et al., 1993), and thus measurement of 

accumulation of this into the medium bathing the macrophages was used as 

an index of NO production by the cells. Nitrite is relatively stable and the 

Griess reaction adopted is a simple and convenient assay to undertake. A 

more sensitive way in which to measure the effects of drugs on NO 

production would be to use chemiluminescence (Palmer et al., 1987) or 

measure output of L-citrulline (Paul et al., 1995). In fact, a Dasibi 

chemiluminescence detector was in use in our laboratory (threshold 

sensitivity of around 0.1 pM ) but it could process only 20 samples per day 

as opposed to two hundred or so that could be dealt with using the Griess 

reaction. Moreover, the amounts of nitrite formed by macrophages were so 

high that the additional sensitivity afforded by chemiluminescence was not 

required.
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7.1 Effects of LPS on nitrite accumulation

LPS is well established as an agent capable of inducing NO synthase not 

only in macrophages but in a variety of other cell types including Kupffer 

cells (Gaillard et al., 1992), endothelial cells (Akarasereenont et al., 1994), 

astrocytes (Feinstein et al., 1993) and hepatocytes (Hortelano et al., 1992). 

When used alone to stimulate J774.7 cells in this study, LPS proved to be 

rather ineffective, and produced inconsistent results. On some occasions, the 

cells produced a small rise (2.5-fold) in nitrite production following 

stimulation overnight, but on others, little response to LPS was seen.

7.2 Effects of drugs on LPS-stimulated nitrite accumulation
7.2.1 NO synthase inhibitors

The effects of two inhibitors of NO synthase, L-NMMA and L-NAME, were 

examined to determine if nitrite production by the cells in response to LPS 

alone arose from the L-arginine/NO system. Both L-NMMA and L-NAME 

when present during the overnight incubation slightly inhibited basal nitrite 

accumulation, suggesting a low basal activity of inducible NO synthase even 

in unstimulated cells. This may have been due to a slight endotoxin 

contamination of the medium bathing the cells. Alternatively, there could 

have been some constitutive NO synthase activity in this cell line that had so 

far gone unreported. Nevertheless, both L-NMMA and L-NAME reduced 

the increase in nitrite accumulation induced by LPS, indicating that it arose 

from induction of the L-arginine/NO pathway. L-NMMA appeared slightly 

more effective at inhibiting nitrite accumulation than L-NAME. In order to 

determine if this was generally the case, the effects of the drugs were 

investigated on an alternative macrophage cell line, i.e. RAW 264 cells.
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LPS was found to produce a 2-fold rise in nitrite accumulation during an 

overnight incubation. In contrast to their effects on J774.7 cells, L-NMMA 

and L-NAME were equipotent and equi-effective at reducing nitrite 

production by RAW 264 cells stimulated by LPS alone. In fact, using RAW 

264 cells, nitrite accumulation was almost completely abolished at the 

highest concentration of each drug used (5xl0-5 M for each), whereas, using 

J774.7 cells, the same concentration for each drug induced a far lesser 

degree of inhibition (67.7 ± 1.9% and 49.9 ± 1.9% for L-NMMA and L- 

NAME, respectively). Thus inhibition by these drugs demonstrates that 

nitrite produced in response to LPS alone arises from induction of the L- 

arginine/NO pathway in RAW 264 cells. These findings indicate a difference 

in the susceptibility of inducible NO synthase to inhibition in J774.7 cells 

and RAW 264 cells. Whether this results from differences in the nature of 

the NO synthase or to differential handling of the inhibitors, e.g. differential 

metabolism or uptake, by the two cell lines remains to be determined.

7.2.2 Polymyxin B

The question of whether contamination by endotoxin was responsible for the 

low but measurable basal production of nitrite by J774.7 cells was addressed 

using polymyxin B, an antibiotic which binds LPS with high affinity and 

blocks its actions (Lasfaragues et al., 1989). When present during the 

overnight incubation, polymyxin B reduced basal nitrite accumulation (by

40.8 ± 2.8 %). This finding, taken together with the ability of L-NMMA and 

L-NAME to reduce basal nitrite accumulation, suggested that despite our 

best efforts, the culture medium was sometimes contaminated with sufficient 

LPS to produce a low-level induction of NO synthase. Polymyxin B also 

significantly reduced the production of nitrite by the cells stimulated by LPS, 

confirming its effectiveness as an inhibitor of endotoxin.
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Thus, LPS alone appeared to stimulate expression of inducible NO synthase 

in J774.7 cells and RAW 264 cells. It was not, however, a powerful or 

reliable agent for induction.

7.3 Effects of IFN-y on nitrite accumulation

As LPS was not a reliable stimulus for inducing nitrite accumulation, it was 

decided that an alternative stimulus should be sought. IFN-y induces 

tumoricidal activity in macrophages (Celada & Schreiber, 1987) and it was 

hoped it would prove more effective than LPS in inducing NO synthase in 

J774.7 cells. However, in most cases, when used alone to activate J774.7 

cells, IFN-y proved even less effective than LPS, with very poor stimulation 

of nitrite production. In contrast, on isolated occasions, IFN-y induced a 

massive rise (to approx. 50 pM) in nitrite accumulation. It is likely, however, 

in those experiments where IFN-y appeared to be effective on its own that 

the rise in nitrite accumulation was in fact due to synergy between IFN-y and 

endotoxin contaminating the medium (see Section 7.4 below). Evidence for 

this came from experiments where the LPS-selective binding agent, 

polymyxin B, reduced the ability of IFN-y to stimulate nitrite production.

7.4 Effects of the combination of LPS and IFN-y on nitrite 
accumulation

The combination of LPS and IFN-y is well documented to produce a 

synergistic expression of NO synthase in murine macrophages (Stuehr & 

Marietta, 1987b) and this also proved true for J774.7 cells. As indicated 

above, both LPS and IFN-y alone produced very little stimulation of nitrite 

accumulation, but when they were used in combination, a massive increase 

was seen. Numerous possible mechanisms have been proposed to explain the
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synergy between LPS and IFN-y. For example, LPS can apparently stabilise 

the increase in inducible NO synthase mRNA expressed by exposure to IFN- 

y (Weisz et al., 1994). In addition, IFN-y may positively regulate the 

transcription activation of the gene for NO synthase in macrophages by LPS 

(Lorsbach et al., 1993). LPS and IFN-y are known to act at two distinct 

locations of the promoter region of the mouse gene for inducible NO 

synthase. LPS binds to region I and IFN-y to region II, and simultaneous 

activation of the two regions synergistically increases expression of the gene 

(Lowenstein et al., 1993).

The timing of stimulation with LPS and IFN-y can profoundly influence the 

extent to which NO synthase is induced. It has been shown that either 

simultaneous exposure to the two agents or pre-treatment for between 2 and 

24 hours with IFN-y followed by activation with LPS results in full NO 

synthase induction (Lorsbach & Russell, 1992; Walter et al., 1994; Hanano 

& Kaufmann, 1995). In all experiments performed in this study, LPS and 

IFN-y were added simultaneously, thus ensuring that optimum induction of 

NO synthase was produced.

7.5 Time course of nitrite accumulation

It has been reported that, following stimulation, NO synthase activity in J774 

cells peaks after 12 hours, decays to a low level by 48 hours, and is 

undetectable by 72 hours (Assreuy et al., 1993). This did not appear to be 

the case with J774.7 cells in this study, as nitrite production continued to rise 

in an almost linear fashion for at least 48 hours. Thus, enzyme activity in our 

J774.7 cells is maintained for longer periods than for the unspecified clone of 

J774 cells used by Assreuy et al. (1993). Whether this is due to a longer
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period of synthesis or slower rate of inactivation of NO synthase in this sub­

clone is not known.

It has been proposed that L-arginine, the substrate for NO synthase, can 

become rate limiting due to the high levels of NO that are produced by the 

inducible enzyme. The concentration of L-arginine can thus be critical for 

macrophage function at sites of tissue injury and infection, as levels can 

rapidly diminish (Albina et al., 1989). Transport of amino acids across 

plasma membranes occurs by diffusion and via specific membrane bound 

carrier proteins (White, 1985). It is likely that uptake of L-arginine into J774 

cells is mediated by the system y+ amino acid transporter (Bogle et al., 

1992a; Baydoun et al., 1994). Reports indicate that LPS, TNF and IL-1 up- 

regulate transmembrane L-arginine transport in endothelial cells (Cendan et 

al., 1995) and in J774 cells (Bogle et al., 1992b). The finding in this study 

that J774.7 cells produced nitrite in an almost linear fashion for up to 48 

hours suggests that L-arginine was not rate limiting. Thus, it is possible that 

increased L-arginine uptake by the y+ carrier system had allowed for 

adequate supply of substrate during the 48 hour incubation. Also, L- 

citrulline, the by-product of NO synthesis, is recycled to L-arginine by 

activated J774 cells (Baydoun et al., 1994), thus providing a further 

mechanism by which adequate L-arginine is provided for continuous NO 

synthesis. Thus, these two systems, in addition to the levels of L-arginine 

present in the medium (400 pM) bathing the cells, appear to maintain a 

sufficient supply of L-arginine to maintain a steady production of NO by 

J774.7 cells over 48 hours.
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7.6 Effects of drugs on the combined stimulus of LPS and IFN-y
7.6.1 NO synthase inhibitors

The NO synthase inhibitor, L-NMMA, when present during the overnight 

incubation, produced a concentration-dependent inhibition of nitrite 

accumulation into the medium bathing J774.7 cells stimulated by LPS and 

IFN-y, with a maximum inhibition of approx. 73 % at 3x1 (M M. Nitrite 

accumulation is therefore likely to have arisen from induction of the L- 

arginine/NO pathway. On occasion, L-NMMA (1(M M) also produced an 

inhibition (approx. 52%) of basal nitrite production by the cells, suggestive 

of a slight endotoxin contamination of the bathing medium. However, at a 

lower concentration (3x10-6 M), L-NMMA produced a paradoxical effect, 

i.e. it produced a 20% increase rather than a decrease in nitrite production. It 

has been shown that L-NMMA can, in addition to its ability to block NO 

synthase, function as an alternative substrate (Archer & Hampl, 1992; Olken 

& Marietta, 1993). Thus, where it produced an increase in nitrite 

accumulation, L-NMMA may have been acting as an alternative substrate to 

enhance nitrite accumulation, rather than producing its expected inhibitory 

effect. However, at higher concentrations, the overall action is a profound 

inhibition of NO production. In contrast to the effects of L-NMMA, L- 

NAME was much less effective at inhibiting nitrite accumulation stimulated 

by the combination of LPS and IFN-y, with a maximum inhibition of around 

25 %, compared to almost 75 % by L-NMMA. Similar observations have 

been made by McCall et al. (1991) using J774 cells. Why L-NAME is so 

ineffective at inhibiting nitrite accumulation stimulated by LPS and IFN-y is 

not known. It is possible that J774.7 cells destroy or inactivate L-NAME in 

some way. In addition, LPS mediates an increased expression of the y+ 

transporter in cells, including J774 cells, allowing for increased L-arginine 

transport. L-NMMA has been shown to inhibit the uptake of L-arginine into
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endothelial cells by the y+ transport system (Bogle et al., 1992a), whereas L- 

NAME has little effect. This is because L-NMMA is taken up into J774 cells 

via the y+ transporter system, whereas L-NAME enters J774 cells by a 

neutral transporter (Baydoun & Mann, 1994). These findings therefore 

provide a possible explanation of why L-NMMA is a more effective inhibitor 

of nitrite accumulation as it is more effectively taken up into J774 cells via 

the up-regulated y+ transporter. Also, L-NMMA, acting via inhibition of L- 

arginine uptake, may produce a situation where L-arginine becomes rate 

limiting, thus reducing NO production by the cells due to lack of substrate. 

With regards to inhibition of LPS-stimulated nitrite production by RAW 264 

cells, both L-NAME and L-NMMA were equally effective and therefore 

perhaps there is no selectivity in the uptake of the two inhibitors into this cell 

line.

7.6.2 Polymyxin B

Polymyxin B significantly reduced nitrite production by J774.7 cells 

stimulated by LPS and by the combination of LPS and IFN-y, thus 

demonstrating its utility as an inhibitor of LPS. In addition, polymyxin B 

reduced the stimulatory effects of IFN-y alone on nitrite production. 

Although the possibility has been discussed (see 7.3) that this action may 

have been due to loss of the synergistic action of IFN-y with a slight 

contamination of the culture medium by endotoxin, another action may 

contribute. Specifically, it has been suggested that the effector pathway for 

IFN-y to stimulate expression of NO synthase is through activation of PKC 

(Severn et al., 1992). Polymyxin B at concentrations such as those used in 

our experiments (10 pg ml-1), is known to have an additional action as a PKC 

inhibitor (Nel et al., 1985). Inhibition of PKC might therefore explain a
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component of the depression of IFN-y-induced nitrite accumulation seen 

upon treatment of J774.7 cells with polymyxin B.

7.6.3 Dexamethasone

Expression of the inducible form of NO synthase is time-dependent, involves 

de novo synthesis of protein and can be inhibited by glucocorticoids such as 

dexamethasone (Di Rosa et al., 1990; Knowles et al., 1990; Assreuy & 

Moncada, 1992). The NO production by J774.7 cells, detected as nitrite in 

this study, is almost certain to have come from the inducible form of NO 

synthase, as demonstrated by the inhibitory effects of dexamethasone. 

Dexamethasone inhibits induction of NO synthase probably at the level of 

transcription of mRNA. Two receptors exist for glucocorticoids; the type I 

receptor where dexamethasone binds at low concentrations, and the type II 

receptor, which is subdivided into type Ila  and lip, where dexamethasone 

will bind after saturation of the type I receptor (Wilckens, 1995). Type I and 

type II receptors interfere with transcription factors at a low affinity 

glucocorticoid response element with a binding site for a transcription factor, 

and can lead to blockade of transcription (Wilckens, 1995). Type I and type 

II receptors have been found to be functionally antagonistic (Wilckens, 1995) 

and thus may explain why a biphasic effect of dexamethasone was seen in 

this study, where inhibition was observed at concentrations of 10-7 and 3x10- 

7 M, whereas at higher concentrations, the inhibitory effect was lost. It is not, 

however, known at this time if J774.7 cells express both of these receptors 

for dexamethasone, or whether an alternative explanation is required to 

explain the biphasic effect of the drug. Glucocorticoids mediate some of their 

biological effects via formation of the 37 kD protein, lipocortin 1 (Flower & 

Rothwell, 1994). The findings of Wu et al. (1995) indicate that the 

suppressive effects of dexamethasone on induction of NO synthase by LPS
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may be due to modification of transcription regulators, thus producing a 

modulation of gene expression. Furthermore, it has been demonstrated that 

the promoter region for mouse macrophage inducible NO synthase does not 

contain a glucocorticoid response element (Lowenstein et al., 1993). Thus, it 

is likely that the inhibitory effects of dexamethasone in this system are 

mediated indirectly, perhaps by the induction of lipocortin 1 which may 

reduce expression of the NO synthase gene by reducing the effectiveness of 

transcription regulators. In this study, dexamethasone produced only a small 

inhibitory effect on nitrite production stimulated by LPS and IFN-y, with 

maximum inhibition of around 15-20 %. Dexamethasone was, however, 

more successful at inhibiting nitrite accumulation induced by LPS alone, 

where the level of inhibition was around 45 %. This is in contrast to the 

findings of Di Rosa et al. (1990) and Schoedon et al. (1993), who reported 

the ability of dexamethasone to inhibit by up to 80 % NO and nitrite 

production stimulated by LPS and fFN-y in J774 cells and murine peritoneal 

macrophages, respectively. However, our findings are similar to those of 

Baydoun et al. (1993), who found that dexamethasone completely inhibited 

nitrite production stimulated by LPS, but only slightly reduced that 

stimulated by the combination of LPS and IFN-y in J774 cells. Bryant et al. 

(1995) demonstrated that the inhibitory effects of dexamethasone on 

inducible NO synthase stimulated by LPS in J774.2 cells are partially 

mediated by lipocortin, but this was not the case for IFN-y. As lipocortin is 

the most likely mediator of dexamethasone's effects, this might explain why 

in this study, dexamethasone was more effective in inhibiting the effects of 

LPS alone than of LPS and IFN-y in combination. Furthermore, since LPS 

and IFN-y act synergistically at the level of transcription of NO synthase 

mRNA (Lorsbach et al., 1993), and LPS can stabilise the increase in 

inducible NO synthase mRNA induced by exposure to IFN-y (Weisz et al., 

1994), perhaps it is not surprising that the combined stimulus of LPS and
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IFN-y is not as susceptible to inhibition by dexamethasone as LPS used 

alone. In contrast to the majority of findings, Fantuzzi et al. (1995) reported 

that dexamethasone stimulated an increase in NO release from murine liver 

by inducing cytochrome P450 . Although J774.7 macrophages may not 

contain cytochrome P450, the possibility cannot be ruled out that 

dexamethasone may induce some other enzyme system that could result in an 

increased production of NO. This could therefore act as an alternative 

explanation for the loss of the inhibitory effects of dexamethasone seen at 

higher concentrations.

A further possible mechanism to explain the ability of dexamethasone to 

reduce nitrite production by J774.7 cells is via a post-transcriptional effect. 

Kunz et al. (1994) reported that dexamethasone inhibited NO synthase 

protein expression without inhibiting mRNA levels. Thus, it is possible that 

dexamethasone may have reduced nitrite accumulation by interfering with 

mRNA translation, or by inducing degradation of NO synthase protein. 

However, this is as yet an unsupported finding, and the favoured view of 

inhibition is via the interference of transcription by dexamethasone. A further 

factor which should be considered is that LPS has been shown to decrease 

dexamethasone binding sites on peritoneal macrophages (Jiayi & Chen 

1992). If this also occurs with the J774.7 cell line, it would certainly be 

expected to impair the suppressive effect of dexamethasone on NO synthase 

expression. In contrast, a study on RAW 264 cells reported that LPS led to 

an increase in receptors for glucocorticoids (Salkowski & Vogel, 1992), thus 

making difficult construction of a unified hypothesis on the effects of LPS on 

steroid binding sites.

Another glucocorticoid, hydrocortisone, had no effect on nitrite accumulation 

by the combination of LPS and IFN-y in this study, suggesting that this
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glucocorticoid was unable to affect transcription of inducible NO synthase. 

Inhibition expression of NO synthase by cycloheximide (Oguchi et al., 1994) 

has also been reported, thus demonstrating the need for de novo protein 

synthesis. In this study, cycloheximide was effective at inhibiting nitrite 

production in response to LPS and IFN-y in J774.7 cells. However, at all 

concentrations of the drug which reduced nitrite production, detachment of 

cells was observed, indicative of generalised toxicity.

7.7 Effects of cyclic nucleotides
7.7.1 Cyclic AMP

The second messenger, cyclic AMP, was first discovered in 1958. It is 

synthesised from ATP by adenylate cyclase, and is hydrolysed to 5-AMP by 

a family of phosphodiesterase enzymes. Cyclic AMP has a variety of effects 

on cellular function including regulation of the contractile state of smooth 

muscle, energy metabolism and cell differentiation. Many of the effects of 

cyclic AMP are mediated through the activation of protein kinase A. The 

adenylate cyclase/cyclic AMP system can be regulated by a variety of 

mechanisms. The binding of messengers to certain plasma-membrane 

receptors causes the receptors to activate, via a G-protein, the enzyme 

adenylate cyclase, which is located on the inner surface of the membrane. 

For example, prostaglandins E2 and I2 stimulate adenylate cyclase thus 

raising cyclic AMP levels (Marotta et al., 1992). Forskolin can activate the 

catalytic subunit of adenylate cyclase (Seamon & Daly, 1981), thus elevating 

intracellular cyclic AMP levels. A variety of analogues exist which mimic the 

effects of cyclic AMP, including the membrane permeant agent, dibutyryl 

cyclic AMP (Sowa & Przewlocki, 1994). There are five known families of 

phosphodiesterase enzyme, three of which hydrolyse cyclic AMP and the 

other two, cyclic GMP (Beavo & Reifsnyder, 1990). Drugs are available
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which selectively inhibit specific phosphodiesterase enzymes. For example, 

of those that hydrolyse cyclic AMP, the type III cyclic GMP-inhibited family 

and the type IV cyclic AMP-specific family, are inhibited by the drugs SKF 

94120 and rolipram, respectively (Beavo & Reifsnyder, 1990). Thus, 

inhibition of these enzymes would be expected to lead to elevated cyclic 

AMP levels within cells.

7.7.1.1 Effects of dibutyryl cyclic AMP

Elevation of cyclic AMP levels is known to suppress the induction of NO 

synthase at the level of transcription and/or translation in J774 cells (Marotta 

et al., 1992; Bulut et al., 1993). However, in our study, overnight pre­

treatment with dibutyryl cyclic AMP was only able to produce a small (12%) 

degree of inhibition of nitrite production by J774.7 cells. A possible 

explanation for this poor reduction in nitrite accumulation is that dibutyryl 

cyclic AMP was only partially able to penetrate the membrane of J774.7 

cells, or perhaps it was inactivated in some way within the cells.

It is known that inducible NO synthase has a consensus sequence for 

phosphorylation by protein kinase A (Lowenstein et al., 1992). Therefore, 

agents which elevate cyclic AMP levels may have the ability to regulate the 

activity of NO synthase by activating PKA leading to possible 

phosphorylation of the enzyme. Thus, it is possible that elevation of cyclic 

AMP in J774.7 cells mediates two effects; firstly, an effect on the expression 

of NO synthase and secondly, an effect on NO synthase activity mediated by 

PKA. Measuring nitrite accumulation over 24 hours would not separate these 

events, since only the overall effect would be seen. Thus, it was necessary to 

examine the effects of the various cyclic AMP elevating agents when they 

were added after NO synthase had been induced. By examining the effects of
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the drugs after the induction process was complete, it was hoped to 

determine if any of the agents affected enzyme activity.

An attempt was made to determine if dibutyryl cyclic AMP could affect 

activity of the already induced NO synthase. When added after NO synthase 

had been induced by LPS and IFN-y, dibutyryl cyclic AMP (10-3 M) 

produced a 10 % inhibition of nitrite accumulation, which did not differ 

significantly from that obtained (approx. 12 %) when it was added before 

LPS and IFN-y. These effects are therefore consistent with dibutyryl cyclic 

AMP mediating its inhibitory effect on nitrite accumulation via activation of 

PKA, inducing phosphorylation of NO synthase, thereby decreasing the 

activity of the enzyme.

7.7.1.2 Effects of forskolin

Although dibutyryl cyclic AMP produced little inhibitory effect on nitrite 

production by J774.7 cells, pre-treatment with forskolin, a drug which 

activates the catalytic subunit of adenylate cyclase (Seamon & Daly, 1981), 

inhibited nitrite accumulation stimulated by LPS and IFN-y much more 

effectively (by 43 %) when used at high concentrations (3xl0-5-l(M M). 

Thus, these findings are consistent with reports that elevated cyclic AMP 

levels suppress the induction of NO synthase in macrophages.

However, when used at relatively low concentrations, forskolin (10-7 & 

3x10*7 M) induced a slight (maximum of 15 % at 10-7 M) increase in nitrite 

accumulation. In some cell types, cyclic AMP has been shown to potentiate 

NO production. This appears to be a fairly common phenomenon in vascular 

smooth muscle cells. For example, following elevation of cyclic AMP levels 

using forskolin and prostaglandins, IFN-y-induced production of nitrite and
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expression of NO synthase mRNA levels were enhanced (Koide et al.,

1993). Furthermore, isoprenaline, dibutyryl cyclic AMP, forskolin and the 

PDE inhibitor, Ro 20-1724, all enhanced IL-lp-induced nitrite production 

(Hirokawa et al., 1994; Schini-Kerth et al., 1994; Scott-Burden et al., 1994). 

Potentiation of the inflammatory response has also been seen in rat peritoneal 

macrophages where cholera toxin and dibutyryl cyclic AMP each enhanced 

LPS-stimulated nitrite production, and each also led to production of nitrite 

when used in the absence of LPS (Sowa & Przewlocki, 1994). In fact, in 

vascular smooth muscle cells, forskolin induced an increase in nitrite 

accumulation in the absence of any other stimulus (Koide et al., 1993). The 

exact mechanism by which elevated cyclic AMP levels lead to increased 

expression of NO synthase is unclear, although it appears that direct 

activation of gene transcription and de novo synthesis of NO synthase 

protein occur. It is possible that the gene for inducible NO synthase belongs 

to a cyclic AMP-inducible family (Koide et al. 1993) since many other genes 

have been shown to contain a cyclic AMP response element. However, there 

is no evidence for a cyclic AMP response element on the mouse inducible 

NO synthase gene (Xie et al., 1993). Although forskolin appeared able to 

induce a slight rise in nitrite accumulation at low concentrations, these 

increases were small compared to the inhibition (43%) seen at higher 

concentrations, and thus it appears that forskolin produced an overall 

inhibitory action on nitrite production by J774.7 cells.

An attempt was made to determine if the inhibitory effect seen with forskolin 

(at 10-5 & 3x10-5 M) was due to suppression of the induction process or a 

decrease in enzyme activity. When added after NO synthase had been 

induced by LPS and IFN-y, forskolin (3x10-5 M) produced only a 4 % 

increase in nitrite accumulation, compared to a 24% inhibition when added 

before LPS and IFN-y. The slight rise in nitrite accumulation that resulted
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when forskolin was added after LPS and IFN-y suggests that forskolin may, 

like dibutyryl cyclic AMP, have induced phosphorylation of NO synthase 

resulting in an increase in enzyme activity. However, the rise in nitrite 

accumulation was so small it was probably due to random biological 

variation. Thus, it appears that forskolin mediates mainly inhibitory effects 

through suppression of the induction process rather than of enzyme activity.

7.7.1.3 Effects of phosphodiesterase inhibitors

The presence of the phosphodiesterase (PDE) type IV isoenzyme, inhibited 

by rolipram, has been demonstrated in both human (Dent et al., 1994) and 

guinea-pig (Dent et al., 1991) eosinophils, guinea-pig peritoneal

macrophages (Turner et al., 1993; Turner & Wood, 1994) and human 

monocytes (Prabhakar et al., 1994; Verghese et al., 1995). There is, 

however, no evidence in the literature concerning the presence of the type III 

isoenzyme in any of these cell types.

Pretreatment with the type IV PDE inhibitor, rolipram, produced a slight 

increase in nitrite production by J774.7 cells stimulated with LPS and IFN-y, 

with a maximum increase of 30 % at 3x10 7 M. This drug did not inhibit 

nitrite accumulation at any concentration used. The type III PDE inhibitor, 

SKF 94120 also produced a slight increase (37 %) in nitrite accumulation at 

3x10-7 M, but produced a decrease (26 %) at 104 M.

An attempt was made to determine if the effects produced by rolipram and 

SKF 94120 were due to an effect on induction of NO synthase, or an effect 

on enzyme activity. When added after NO synthase had been induced by 

LPS and IFN-y, rolipram (3x10-6 M) had no effect on nitrite accumulation, 

whereas when added before LPS and IFN-y, it produced a 12% increase in

217



nitrite accumulation. Thus, it appears that rolipram produced an increase in 

nitrite accumulation by enhancing the expression of NO synthase rather than 

by increasing the activity of the enzyme. When added after NO synthase had 

been induced by LPS and IFN-y, SKF 94120 (10-6 M) had no effect on nitrite 

accumulation whereas when added before LPS and IFN-y, it produced a 24% 

decrease in nitrite accumulation. Thus, it appears that SKF 94120 produced a 

decrease in nitrite accumulation by suppressing the induction process rather 

than by decreasing the activity of the enzyme.

Thus, the two PDE inhibitors appeared to have differing actions on nitrite 

production by J774.7 cells since common effects would have been expected 

if they each acted by elevating cyclic AMP levels in the cells. It is likely 

therefore that the effects of these drugs may have resulted from non-selective 

actions.

7.7.1.4 Combination of forskolin and PDE inhibitors

In combining forskolin with the two PDE inhibitors, it was expected that a 

greater elevation of intracellular cyclic AMP levels would occur than with 

either drug used on its own. Thus, it was anticipated that an additive effect 

would be seen on nitrite production by the cells. Combining a relatively high 

concentration of forskolin (3x10 5 M) with relatively high concentrations of 

rolipram (3x1 O'6 M) or SKF 94120 (10-6 M), led to no further inhibition. This 

may have been because the drugs were already exerting a maximum 

inhibitory effect when used alone. Combining submaximal concentrations of 

rolipram (3x10-7 M) and forskolin (3x10-6 M) did induce a slight degree of 

additivity, but the overall inhibition never exceeded around 30 %. 

Surprisingly, the combination of a submaximal concentration of SKF 94120 

(10-7 M) with forskolin (3xl0-6 M) led to an abolition of all inhibitory effects.
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A possible explanation for this antagonistic effect is that a submaximal 

concentration of SKF 94120 may stimulate transcription of the inducible NO 

synthase gene rather than suppress it. This would mask any suppressive 

effects of forskolin, and therefore result in no overall change in nitrite 

production. However, the reason why none of the agents, when used in 

combination, produced an increase in nitrite accumulation as when used 

alone, is unknown. A more complete explanation of the actions of PDE 

inhibitors on nitrite production in J774.7 cells must await more detailed 

analysis of levels of cyclic AMP, protein kinase A, inducible NO synthase 

mRNA and inducible NO synthase activity.

7.7.2 Cyclic GMP

Cyclic GMP is involved as a second messenger in a wide spectrum of events 

including renal ion transport, smooth muscle contractility and the retinal rod 

response to light (Schmidt et al., 1993). The two systems known to generate 

cyclic GMP are particulate (membrane bound) guanylate cyclase and soluble 

(cytoplasmic) guanylate cyclase. Both enzymes convert GTP to cyclic GMP. 

Particulate guanylate cyclase is activated by ligands such as atrial natriuretic 

peptide and brain natriuretic peptide. These bind to cell membrane receptors 

which then activate intracellular guanylate cyclase via transmembrane 

domains (Schmidt et al., 1993). Soluble guanylate cyclase is a cytoplasmic 

enzyme which has a ferrous haem moiety receptor for the binding of NO 

(Gerzer et al., 1981). Furthermore, cyclic GMP can regulate cyclic AMP 

levels by influencing the activity of the type II cyclic GMP-stimulated PDE 

or the type III cyclic GMP-inhibited PDE. Cyclic GMP itself is hydrolysed 

by the type I calcium-calmodulin-dependent family and the type V cyclic 

GMP-specific family of PDEs, both of which are inhibited by zaprinast.

219



Although NO leads to elevation of cyclic GMP levels via stimulation of 

soluble guanylate cyclase, little evidence has been presented for a role of 

cyclic GMP in modulating the activity of NO synthase. This is despite a large 

number of examples where NO appears to exert a negative feedback action 

on NO production. For example in J774 cells, NO synthase activity induced 

by LPS and EFN-y was inhibited by exposure to the NO donor, S-nitroso- 

acetyl-penicillamine (SNAP) (Assreuy et al., 1993). Furthermore, in 

endothelial cells the activity of constitutive NO synthase was reduced by the 

addition of NO or the NO donor, SNAP (Buga et al., 1993). In addition, in 

rat cortex the activity of neuronal NO synthase was inhibited by the NO 

donors, sodium nitroprusside, hydroxylamine and glyceryl trinitrate (GTN) 

(Vickroy & Malphurs, 1995). Moreover, in alveolar macrophages the 

activity of muramyldipeptide-induced NO synthase was reduced by the 

addition of the NO donors, SIN-1 and nitrosoglutathione (Morin et al., 

1994). Inhibition of NO synthase could potentially have been due to elevated 

cyclic GMP levels suppressing the induction of NO synthase. However, 

there is no evidence that a response element exists for cyclic GMP on the 

gene for inducible NO synthase. A further possible mechanism is that 

elevated cyclic GMP levels may have led to activation of a cyclic GMP- 

dependent protein kinase, found in human mononuclear phagocytes 

(Pryzwansky et al., 1995). If a consensus sequence for PKG exists on NO 

synthase, then this protein kinase will phosphorylate the enzyme, potentially 

modulating its activity. The feedback effect of NO in each of the above 

cases, however, appeared to be independent of cyclic GMP (Assreuy et al., 

1993; Durieu-Trautmann et al., 1993; Koide et al., 1993; Hirokawa et al., 

1994), and is therefore unlikely to have occurred as a consequence of 

phosphorylation by protein kinases. Instead, a likely mechanism for the 

inhibitory feedback effect of NO on NO synthase is an irreversible toxic
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effect on the enzyme resulting from the formation of haem-nitrosyl 

complexes (Hurshman & Marietta, 1995).

In our study, the membrane permeant analogue of cyclic GMP, 8-bromo- 

cyclic GMP, had little effect on nitrite production by J774.7 cells stimulated 

by LPS and IFN-y over 24 hours, with only a small rise (8.8 ± 0.2 %), 

probably due to biological variation. Glyceryl trinitrate (GTN), a drug 

converted intracellularly to NO via reductive enzymes (Armstrong et al., 

1980; Feelisch, 1991; Schroder, 1992), produced a biphasic effect on nitrite 

accumulation stimulated by LPS and IFN-y. Initially, at 3xl0-7-10-6 M, a 

decrease in nitrite accumulation occurred (max. 19% at 10-6 M), followed by 

an increase (max. 20% at 10-5 M). The most likely mechanism by which 

GTN led to a reduction in nitrite accumulation is via inhibition of NO 

synthase by NO, as discussed above (Hurshmann & Marietta, 1995). 

Although no evidence exists for a suppressive role for cyclic GMP on NO 

production, it is possible that GTN can mediate some of its effects through 

elevation of cyclic GMP and via nitration of NO synthase. As the 

concentration of GTN increased, we would have expected to see a more 

pronounced inhibition of nitrite accumulation, but in fact an increase was 

seen. It is likely that, as the concentration of GTN increased, the NO 

generated from it would have decayed to nitrite, thus adding to that produced 

by J774.7 cells. This large generation of nitrite would thus have masked any 

inhibitory effects of NO on NO synthase. Overall, it is likely in J774.7 cells 

that GTN exerts an inhibitory effect on nitrite accumulation via suppression 

of NO synthase activity through the generation of a nitrosyl-haem complex 

with the enzyme.

Zaprinast, which inhibits type I and type V PDE enzymes (Beavo & 

Reifsnyder, 1990), was used to potentially elevate cyclic GMP levels in

221



J774.7 cells by inhibiting hydrolysis of this cyclic nucleotide. Zaprinast 

produced a maximum reduction of nitrite accumulation of 33% at 3x10 5 M. 

These results were thus consistent with an inhibitory effect of cyclic GMP . 

However, no evidence exists to support the presence either of a cyclic GMP- 

dependent response element on the NO synthase gene or of a consensus 

sequence on NO synthase for PKG. Moreover, it is not known if J774.7 cells 

contain either the type I or type V families of PDEs. There is thus the 

possibility that zaprinast exerted its inhibitory effect via a non-selective 

action. However, this seems unlikely, as the degree of inhibition was so 

reproducible. No measurements of levels of cyclic GMP, inducible NO 

synthase mRNA or inducible NO synthase activity were made, so a firm 

conclusion cannot be made as to the mechanism by which zaprinast 

suppresses nitrite accumulation by J774.7 cells.

Combining zaprinast and GTN, it was hoped to raise maximally cyclic GMP 

levels and so enhance any action occurring via this pathway. Surprisingly, 

however, no greater degree of inhibition was produced when the drugs were 

used in combination, suggesting that GTN did not produce its inhibitory 

action via this cyclic nucleotide. As explained above, it is possible that the 

true extent of inhibition by the drugs may not be apparent, as the NO 

generated from GTN would decay to nitrite, and thus mask any inhibitory 

action taking place on NO synthase.

Thus, although the cyclic nucleotide, cyclic AMP, has the ability to affect 

both the induction and activity of NO synthase, there is less evidence to 

support a role for cyclic GMP in the regulation of nitrite production by 

J774.7 cells stimulated with LPS and IFN-y.
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7.8 Involvement of protein kinase C

The protein kinase C (PKC) family plays a key role in many cellular 

functions including cell proliferation, gene expression and signal transduction 

(Nishizuka, 1988). The gene structure of several isozymes have been 

established so far, namely a , pi, pH, y, 8, s, r|, 0, p, i/X and £ isoforms 

(Fujihara et al., 1994). Four of the isozymes, a , pi, pH and y, require 

calcium in the presence of phosphatidylserine and DAG for activation and 

are classified as conventional protein kinase Cs. The novel isotypes, 5, s, £ 

and 0 are calcium-independent and DAG-activated and the atypical isoforms 

i/X are not DAG-activated (Parker et al., 1995). The newly discovered PKC 

p has a long N-terminal region which has a potential transmembrane domain, 

a feature not found in other PKC isoforms (Gomez et al., 1995). Tumour 

promoting phorbol esters are often used to mimic the activation of PKC 

normally produced by DAG. Elevated calcium levels which contribute to the 

activation of certain isoforms of PKC, also lead to activation of another 

protein kinase, calcium/calmodulin-dependent protein kinase.

7.8.1 Effects of PMA and A23187 on induction of NO synthase

Activation of protein kinase C is one of the proposed pathways involved in 

the induction of NO synthase in macrophages (Severn et al., 1992; Paul et 

al., 1995). In an attempt to mimic the stimulation of PKC in the induction of 

NO synthase, the calcium ionophore A23187 and the phorbol ester, phorbol 

12-myristate 13-acetate (PMA), a widely used activator of protein kinase C 

(Rodriguez-Pena & Rozengurt, 1984; Hortelano et al., 1993), were used. 

However, neither treatment with PMA nor elevation of intracellular calcium 

with A23187, or even the combination of the two led to an increase in nitrite 

production by J774.7 cells over a 24 hour period. Thus, activation of PKC or
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of calcium/calmodulin dependent kinase either alone or in combination did 

not seem sufficient for induction of NO synthase in these cells. The inability 

of A23187 to induce any rise in nitrite accumulation also suggests the 

absence of any constitutive NO synthase activity in J774.7 cells, as this 

would have been expected to be stimulated by the calcium/calmodulin 

complex (Nathan & Xie, 1994a). In the development of tumoricidal activity, 

IFN-y primes macrophages and subsequent exposure to LPS leads to full 

expression (Celada & Schreiber, 1986; Somers et al., 1986). In this situation, 

IFN-y can be substituted by the combination of a phorbol ester and 

ionophore A23187, demonstrating the need for activation of protein kinase C 

and possibly also calcium/calmodulin-dependent protein kinase. By analogy, 

experiments were conducted in this study to examine if the stimulation of 

PKC using PMA, and raising calcium levels using A23187, could substitute 

for IFN-y in the induction of NO synthase in the J774.7 macrophage cell line. 

However, when each of these two stimuli was combined with LPS, the rise 

in nitrite accumulation obtained was similar to the small increase induced by 

LPS alone. Furthermore, the combination of PMA, A23187 and LPS also 

produced an increase in nitrite accumulation that was no greater than with 

LPS alone and did not mimic the large rise in nitrite accumulation induced by 

the combination of LPS and IFN-y. Thus, it seems that the factors regulating 

induction of NO synthase differ from those for tumoricidal activity (Celada 

& Schreiber, 1986; Somers et al., 1986) in that activation of PKC and 

elevation of intracellular calcium cannot substitute for IFN-y in induction of 

the former. In addition, a wide range of concentrations of PMA were unable 

to induce an increase in nitrite accumulation when used alone, findings in 

agreement with Jun et al. (1994a), confirming that activation of PKC alone is 

not sufficient to induce NO synthase.
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7.8.2 Effects of PKC on induction of NO synthase

7.8.2.1 Effects of phorbol ester

Phorbol esters have complex effects on the activity of PKC; they have the 

ability to activate and then down-regulate the enzyme (Rodriguez-Pena & 

Rozengurt, 1984; Dieter & Fitzke, 1991), although the different subspecies 

of PKC are not equally affected (Parker et al., 1995). Although phorbol 

esters can both stimulate and down-regulate PKC, more than only a very 

short period of exposure results in down-regulation (Dieter & Fitzke, 1991). 

The ability of phorbol esters to inhibit induction of NO synthase has 

previously been reported in J774 cells, where 4 hours' (Fujihara et al., 1994) 

or 48 hours' (Severn et al., 1992) exposure to PMA reduced nitrite 

production by the cells. In our work, since S U M  cells were exposed to 

PMA for 24 hours, it is likely that this length of time would have resulted in 

down-regulation of PKC. In these experiments, pre-treatment with PMA 

inhibited by about 30 % nitrite accumulation stimulated by the combination 

of LPS and IFN-y . It is possible therefore that this inhibition of nitrite 

accumulation arose as a consequence of down-regulation of PKC by PMA. 

Thus, this finding provides evidence for the involvement of PKC in the 

induction process of NO synthase in J774.7 cells stimulated by LPS and 

IFN-y.

PKC has been shown to decrease neuronal NO synthase by phosphorylation 

(Nakane et al., 1991). It is possible therefore that a consensus sequence may 

exist on inducible NO synthase for phosphorylation by PKC. However, there 

is as yet no evidence to suggest that such a consensus sequence exists. 

Nevertheless, the effects of PMA on nitrite accumulation were investigated 

after NO synthase had been induced by LPS and IFN-y to determine if post­

translation modification of the enzyme was possible.
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When added 12 hours after NO synthase had been induced by LPS and IFN- 

y, PMA (10-7 M) produced a 59 % increase in nitrite accumulation, 

compared to a maximal 27 % inhibition when PMA was added before the 

activating stimuli. This enhancement is likely to have resulted from a post- 

translational action of PKC on NO synthase activity. The nature of this post- 

translational action, whether due to stimulation of PKC activity or to its 

down-regulation, is unknown. This increase in nitrite accumulation would 

confirm that the inhibition produced upon pre-treatment with PMA was due 

to suppression of induction rather than to inhibition of NO synthase activity.

7.8.2.2 Effects of PKC inhibitors

7.8.2.2.1 Effects of PKC inhibitors on expression of NO synthase

PKC can be inhibited by a number of agents including staurosporine 

(Tamaoki et al., 1986; Dieter & Fitzke, 1991), Ro 31-8220 (Keller & Niggli, 

1993; Walker & Watson, 1993) and also by the highly selective inhibitor, 

chelerythrine chloride (Herbert et al., 1990; Barg et al., 1992). Further 

investigation of the involvement of PKC was therefore carried out using a 

variety of inhibitors of this protein kinase. Pre-treatment with either 

staurosporine or Ro 31-8220 produced a concentration-dependent inhibition 

of nitrite accumulation stimulated by LPS and IFN-y, in agreement with the 

findings of Paul et al. (1995), Severn et al. (1992) and Jun et al. (1994a). 

The maximum inhibitory effect produced by staurosporine (at non-toxic 

concentrations) was 58% at 10-7 M, and by Ro 31-8220 was 73 % at 10-5 M. 

It must be pointed out, however, that staurosporine is not entirely selective 

for PKC since it has been shown to inhibit other protein kinases including 

protein kinase A, tyrosine kinase, protein kinase G and myosin light chain 

kinase (Tamaoki et al., 1986; Persaud & Jones, 1994). Ro 31-8220,
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however, is regarded as being more selective than staurosporine (Keller & 

Niggli, 1993).

Surprisingly, pre-treatment with chelerythrine chloride, a highly selective 

inhibitor of PKC, produced a maximum inhibition of only 20 % at the highest 

concentration used (3x10-5 M), where the drug was in fact toxic to the cells 

and induced detachment. This poor inhibitory effect thus casts doubt on the 

role of PKC in the induction of NO synthase. It has been shown that J774.7 

cells possess a variety of isoforms of PKC (Fujihara et al., 1994). Although 

the (311 and 8 isoforms are present and are suspected to play a role in the 

induction process (Fujihara et al., 1994), it is possible that chelerythrine is 

unable to inhibit the appropriate isoform of PKC. Staurosporine, on the other 

hand, is fairly effective at inhibiting all the isoforms of PKC with the 

exception of the £ subtype (Hoehn et al., 1995). However, at some 

concentrations, chelerythrine chloride produced an increase in nitrite 

accumulation. In addition to the proposal that stimulation of PKC is involved 

in the induction of NO synthase, there is evidence to suggest that activation 

of PKC may suppress NO synthase expression. This hypothesis has 

previously been presented by Miihl & Pfeilschifter (1994) who demonstrated 

that short-term activation of PKC by a phorbol ester for less than one hour in 

rat mesangial cells reduced cytokine-induced nitrite production, and down- 

regulation of PKC resulted in super-induction of inducible NO synthase 

mRNA. A similar effect was also observed in rat aortic smooth muscle cells 

(Geng et al., 1994), where PMA antagonised cytokine-induced nitrite 

production, and this antagonism was blocked by the PKC inhibitor, 

calphostin C, demonstrating that the inhibitory effect of PMA was mediated 

via PKC activation. Additionally, Hortelano et al. (1992; 1993) demonstrated 

a clear antagonism between NO production induced by LPS or by PMA in 

rat hepatocytes and peritoneal macrophages. The findings of Hortelano et al.
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could be explained by the phorbol ester activating PKC, and thus inhibiting 

the ability of LPS to induce NO synthase. In our study, both chelerythrine 

chloride (3x10-8, 10-6 & 10-5 m) and Ro 31-8220 (10-8 & 3x io-7 m) 

produced a slight enhancement of nitrite accumulation by J774.7 cells, with a 

maximum increase of 23% at 3x10-5 M with Ro 31-8220, and 23 % at 10-6 M 

with chelerythrine chloride. With regards to the reduction in nitrite 

accumulation produced by PMA, it is possible, but unlikely, that this resulted 

from stimulation of PKC, rather than down-regulation. If PKC activation did 

have an inhibitory effect on NO synthase induction, we would have expected 

that use of PKC inhibitors would universally potentiate NO production. In 

fact, the majority of findings (Fujihara et al., 1994; Paul et al., 1995) show 

that inhibition of PKC in fact blocks the expression of NO synthase.

7.8.2.2.2 Effect of PKC inhibitors on activity of NO synthase

An attempt was made to determine if staurosporine had any effect on the 

activity of the already induced NO synthase. When added 12 hours after NO 

synthase had been induced by LPS and IFN-y, staurosporine (10-7 M) 

produced only a slight degree of inhibition (13 %) of nitrite accumulation 

compared to that (58%) when it was added before LPS and IFN-y. Thus, it 

appears that staurosporine exerts its inhibitory action by suppressing 

induction of NO synthase rather than directly inhibiting NO synthase activity. 

An attempt was also made to determine if Ro 31-8220 had any effect on the 

activity of the already induced NO synthase. When added 12 hours after NO 

synthase had been induced by LPS and IFN-y, Ro 31-8220 (10-5 M) 

produced only a slight degree of inhibition (12 %) of nitrite accumulation 

compared to that (71%) when it was added before LPS and IFN-y. Thus, it 

appears that Ro 31-8220 also exerts its inhibitory effect on nitrite 

accumulation by suppressing induction of NO synthase rather than directly
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inhibiting NO synthase activity. Thus, these effects are consistent with 

staurosporine and Ro 31-8220 exerting inhibitory effects via induction of NO 

synthase in J774.7 cells. When chelerythrine chloride (10-5 M) was added to 

the cells 12 hours after LPS and IFN-y, it produced a slight increase in nitrite 

accumulation (17.2 %) which was no different from that which occurred 

upon addition of the drug prior to LPS and IFN-y. Thus, it appears that 

chelerythrine chloride may produce a slight increase in nitrite accumulation 

via a direct stimulatory effect on the activity of NO synthase.

7.8.2.3 Combination of PMA and PKC inhibitors

Although, as was discussed above, it was felt that the inhibitory effect of 

PMA on nitrite accumulation resulted from down-regulation of PKC, 

additional experiments were conducted in which the effects of this agent 

were examined in combination with the inhibitors of PKC, staurosporine and 

Ro 31-8220. The rationale for these experiments was that if stimulation of 

PKC was the mechanism by which nitrite accumulation was reduced, the 

effects of PMA would be blocked by PKC inhibitors which act via inhibition 

of the catalytic site (Budworth & Gescher, 1995). Alternatively, if down- 

regulation accounted for the actions of PMA, then PKC inhibitors could 

possibly mimic or even potentiate the action of PMA.

The combination of staurosporine (10-8 M) with PMA (lO*8 M) produced an 

additive inhibitory effect (62%) on nitrite accumulation compared to no 

inhibition by staurosporine and 35 % inhibition by PMA when used alone. 

Thus, this would suggest that the mechanism by which PMA induced 

inhibition of nitrite accumulation is via down-regulation of PKC activity. The 

combination of PMA (3x10-9 M) with Ro 31-8220 (10-6 M) produced no 

additive inhibitory effects. In fact, it was found that relatively high
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concentrations of Ro 31-8220 (10-6 & 3x10-6 M) blocked the inhibitory 

effects of PMA. If the PMA concentration was increased (10-8 M and 

above), however, the suppressive effect of Ro 31-8220 was lost. This 

antagonistic effect was not seen when PMA was combined with 

staurosporine. As the degree of inhibition induced by PMA was less than that 

in the presence of Ro 31-8220, modification of PKC at the catalytic subunit 

by Ro-31-8220 may render PKC less susceptible to down regulation by 

PMA. PKC is cleaved by a neutral protease, calpain, a process thought to be 

responsible for down-regulation. However, phorbol esters are thought to 

increase the susceptibility to proteolysis through exposure of a linker region 

between the regulatory and catalytic domains (Kishimoto et al., 1989). 

Therefore modification of the catalytic site by Ro 31-8220 may not directly 

interfere with the proteolytic process. Alternatively, this decrease by Ro 31- 

8220 in the ability of PMA to inhibit nitrite accumulation may indicate that 

PMA exerts a component of its inhibitory effects via stimulation of PKC. As 

levels of PKC activity were not measured it is thus difficult to explain 

precisely the mechanisms by which each of these agents produced their 

effects on nitrite accumulation. Overall, it appears that PMA produced a 

reduction in nitrite accumulation by inducing down-regulation of PKC. The 

majority of findings in this work suggest that PKC is involved in the 

induction of NO synthase in J774.7 cells by LPS and IFN-y.

7.9 Involvement of tyrosine kinase

Tyrosine kinases play a central role in signal transduction pathways 

involving regulation of cell proliferation and differentiation. The kinases can 

be divided into two main groups based on their structures. One group, which 

possesses extracellular domains, is the receptor protein tyrosine kinases such 

as the receptors for platelet-derived growth factor (PDGF), epidermal growth
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factor (EGF), nerve growth factor (NGF) and insulin (Ullrich & Schlessinger, 

1990). The second major group is the non-receptor protein kinases which 

lack extracellular domains (Bolen et al., 1992). There are a variety of agents 

available which selectively inhibit tyrosine kinase, including herbimycin A 

(Fukazawa et al., 1991; Satoh et al., 1992), erbstatin (Akarasereenont et al., 

1994) and genistein (Akiyama et al., 1987). Alternatively, levels of tyrosine 

kinase activity can be increased by inhibitors of phosphotyrosyl-protein 

phosphatase, such as the drug sodium orthovanadate (Swarup et al., 1992).

Tyrosine kinase is another second messenger candidate proposed to be 

involved in induction of NO synthase in J774 cells (Akarasereenont et al.,

1994), where stimulation of the cells with LPS led to generation of nitrite, a 

process blocked by two inhibitors of tyrosine kinase, genistein and erbstatin . 

This protein kinase has also been suggested to be involved in the induction of 

NO synthase stimulated by the combination of LPS and IFN-y in a variety of 

other cell types including C3h/HeN cells (Dong et al., 1993c), astrocytes 

(Feinstein et al., 1994), and RAW 264 macrophages (Paul et al., 1995), In 

these studies, the activity of NO synthase was reduced by various inhibitors 

of tyrosine kinase, including genistein, herbimycin A and tyrphostin. Also, in 

rat aortic smooth muscle cells, induction of NO synthase by LPS or IL-ip 

was blocked by the tyrosine kinase inhibitors, genistein and geldanamycin 

(Marczin et al., 1993).

7.9.1 Effects of herbimycin A on nitrite production

In our work, it was found that pre-treatment with herbimycin A, a selective 

and irreversible inhibitor of tyrosine kinase (Fukazawa et al., 1991; Satoh et 

al., 1992; Dong et al., 1993b), produced an almost complete inhibition of 

nitrite accumulation stimulated by LPS and IFN-y in J774.7 macrophages.
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This finding suggested an involvement of tyrosine kinase in the induction of 

NO synthase in J774.7 cells. In contrast to every other concentration used, 

0.01 gg m l1 herbimycin A induced an increase (17%) rather than a decrease 

in nitrite accumulation (max. 96% at 1 gg ml-1) suggesting the possibility of a 

dual action. There have, however, been no other reports of tyrosine kinase 

inhibitors increasing NO production, and it can only be assumed that at this 

concentration, herbimycin A was affecting other processes in the cell which 

culminate in either an increase in expression of NO synthase or an increase 

in its activity.

An attempt was made to determine if herbimycin A could affect activity of 

the already induced NO synthase. When added 12 hours after NO synthase 

had been induced, herbimycin A (0.3 gg m l1) produced only a 24 % 

inhibition of nitrite accumulation, which was significantly smaller than that 

(63%) obtained when it was added before LPS and IFN-y. Thus, it would 

appear that herbimycin A mediated most of its inhibitory effect on nitrite 

accumulation via inhibition of the induction of NO synthase by inhibiting 

tyrosine kinase. A lesser effect by directly suppressing NO synthase activity 

also appears to be taking place.

7.9.2 Effects of genistein on nitrite production

Pre-treatment with genistein, which competitively inhibits ATP binding to 

tyrosine kinase (Akiyama et al., 1987), prior to stimulation with LPS and 

IFN-y, also produced powerful concentration-dependent inhibition (max. 

51% at 3x10-5 M). It was, however, around 100-fold less potent than 

herbimycin A. Thus, the inhibitory effect of genistein supports the view that 

tyrosine kinase is involved in the induction of NO synthase in J774.7 cells 

stimulated by LPS and IFN-y.
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As with herbimycin A, an attempt was also made to determine if genistein 

could affect activity of the already induced NO synthase. When added 12 

hours after NO synthase had been induced, genistein (3x10-5 M) had no 

effect on nitrite accumulation, compared to the 51% inhibition obtained when 

it was added before LPS and IFN-y. Thus, it would appear that genistein 

mediated all of its inhibitory effect on nitrite accumulation via inhibition of 

induction of NO synthase, rather than via a direct suppressive effect of NO 

synthase activity.

7.9.3 Effects of sodium orthovanadate on nitrite production

Pretreatment of J774.7 cells with sodium ortho vanadate, an inhibitor of 

tyrosine phosphatase activity (Swarup et al., 1982), had little effect on nitrite 

accumulation stimulated by LPS and IFN-y. This might suggest that 

inhibition of tyrosine phosphatase is not important in the induction process. 

However, it is more likely that sodium orthovanadate either is unable to 

permeate the cell membrane, or perhaps an isoform of tyrosine phosphatase 

exists in these cells which is resistant to inhibition by this drug.

Thus, from the findings of this section, it appears that tyrosine kinase has an 

important role in the induction of NO synthase in J774.7 cells stimulated 

with LPS and IFN-y.

7.10 Involvement of both tyrosine kinase and protein kinase C

Due to the synergistic stimulation of the cells by LPS and IFN-y, we 

suspected that at least two pathways, perhaps tyrosine kinase and PKC, must 

be working in concert to induce NO synthase. If so, combining inhibitors of
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tyrosine kinase with inhibitors of PKC might be expected to result in 

enhanced inhibition. In this study, when concentrations of herbimycin A and 

staurosporine that were effective on their own were combined, additive 

inhibition of nitrite production by J774.7 cells was obtained, consistent with 

this hypothesis. However, this may have resulted from a non-selective action 

of staurosporine (Tamaoki et al., 1986), since the more selective inhibitors of 

PKC, Ro 31-8220 and chelerythrine chloride failed to augment the inhibitory 

action of herbimycin A. The lack of additivity when inhibiting both tyrosine 

kinase and PKC makes it unlikely that the two pathways are acting in 

parallel. Activation of tyrosine kinase may sequentially produce activation of 

PKC somewhere down the line in the pathway leading to activation of the 

inducible NO synthase gene. For example, activation of tyrosine kinase can 

lead to activation of phospholipase C and generation of DAG and thus 

activation of PKC (Ullrich & Schlessinger, 1990). This may explain why no 

further inhibition was produced when blocking PKC, as inhibition of tyrosine 

kinase would automatically render PKC inactive, if tyrosine kinase was 

required for activation of PKC. Thus, more in-depth analysis involving 

examination of kinase activities would be necessary to explain fully the 

complex interplay between these two second messenger pathways in the 

regulation of NO synthase expression.

7.11 Effects of J774.7 macrophages on rat aortic rings
7.11.1 Production of NO or a NO-containing complex

Although it is generally excepted that EDRF is NO, it has been suggested 

that a dinitrosyl-iron-cysteine complex (Vanin, 1991), S-nitrosocysteine 

(Myers et al., 1990; Rubanyi et al., 1991), nitroxyl ion or hydroxylamine 

(Feelisch et al., 1994) may also account for its action. For example, in 

cultured bovine aortic endothelial cells, it was suggested that EDRF was

234



more likely to be the nitrosothiol, S-nitrosocysteine than NO (Myers et al., 

1990) as the amount of NO released was insufficient to account for the 

vasorelaxant activities of EDRF. Also, it was proposed that the EDRF 

released from canine femoral arteries was more likely to be S-nitrosocysteine 

than NO (Rubanyi et al., 1991), as free NO could not account for the 

bioactivity of the relaxant agent, whereas S-nitrosocysteine apparently could. 

The identity of the bovine retractor penis inhibitory factor has also been 

questioned, with the proposal that it is in fact an S-nitrosothiol rather than 

NO (Kerr et a l , 1992), and it has been shown that S-nitrosothiols are potent 

relaxants of the mouse anococcygeus (Gibson et al., 1992). Furthermore, it 

has been proposed that S-nitrosothiols mediate the relaxation of smooth 

muscle by certain nitrovasodilators (Ignarro et al., 1981).

Although macrophages are known to release large amount of NO to induce 

cytostatic or cytotoxic effects on invading organisms, there appear to be very 

few reports of damage to the macrophage itself. It is possible therefore that 

macrophages have evolved a means of protecting themselves against the high 

concentrations of NO they produce. One potential means of protection could 

be by binding NO in the form of a complex, thus inhibiting its toxic actions 

to the host cell. In endothelial cells, it has been shown that NO generated by 

constitutive NO synthase is incorporated into dinitrosyl iron complexes 

(Miilsch et al., 1993). Also, in macrophages, it has been shown that NO 

produced following stimulation with LPS reacts with proteins carrying iron- 

sulphur clusters to form dinitrosyl ferrous iron complexes, which are released 

from the cells and can yield NO (Vanin et al., 1993). Thus, it is possible that 

NO released from our J774.7 macrophages may not be in a free form, but 

may be released as a complex. In order to investigate this possibility, the 

effects of J774.7 cells were investigated on the tone of rat aortic rings. Also, 

these experiments provided additional information to those in which the

235



Griess reaction was used as a means of assessing NO production by J774.7 

cells.

7.11.2 Relaxation of aortic rings by activated and unactivated J774.7 

cells

J774.7 macrophages were stimulated with LPS and IFN-y for around 18 

hours to induce NO synthase within the cells. The cells were then added to 

rings of rat aorta which had been denuded of endothelium, thus preventing 

constitutive NO from exerting any effect. Addition of activated J774.7 cells 

produced a powerful, rapidly-developing, cell number-dependent relaxation 

of the pre-contracted aortic rings. This powerful relaxation is consistent with 

the production of large amounts of NO by the cells. Unactivated cells were 

much less effective in inducing relaxation, as we would expect, since such 

cells release only small amounts of nitrite over 18 hours. The relaxation 

produced by these unstimulated cells was also very slow in developing. 

Perhaps the small amount of nitrite accumulating was enough to induce a 

slight relaxation of the rings, as nitrite itself is a weak relaxant.

7.11.2.1 Effects of superoxide dismutase

NO in an unprotected state is sensitive to attack by superoxide anions 

(Rubanyi & Vanhoutte, 1986; Rosen et al., 1995), leading to loss of its 

vasodilator actions and the simultaneous production of the powerful oxidant, 

peroxynitrite. (Beckman et al., 1990; Denicola et al., 1993; Carreras et al., 

1994; Szabo & Salzman, 1995). Thus, in the case of NO regulating blood 

flow and blood pressure, production of superoxide anion would disrupt its 

normal homeostatic role. It has been shown that superoxide dismutase (SOD) 

can prolong the actions of NO produced in both isolated blood vessels
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(Rubanyi & Vanhoutte, 1986) and cultured vascular endothelial cells 

(Gryglewski et al., 1986b). Furthermore, it has been proposed that 

superoxide dismutase may protect vascular tissue by preventing the 

formation of peroxynitrite (Beckman et al., 1990). However, although SOD 

has been shown to potentiate the effects of endothelial-derived NO, its 

effects on the large amounts of NO generated by activated macrophages may 

be of less significance. Flicker et al. (1995) demonstrated that addition of 

SOD to RAW 264 macrophages stimulated with LPS and IFN-y had no 

effect on the extent of tumour cell killing by the cells, or on the level of 

nitrite produced. Thus, it appears that superoxide anion is not an important 

factor in the immunological effects of NO, whereas it is a major factor to 

consider when only small amounts of NO are released by the endothelium.

On the basis of the above, SOD was used as a tool to determine if the 

smooth muscle relaxant released from activated J774.7 cells had properties 

similar to NO. The presence of SOD, which dismutates superoxide to 

hydrogen peroxide, resulted in a significantly greater relaxation of the aortic 

rings upon addition of activated J774.7 cells. This suggests that the relaxant 

released from J774.7 cells, like NO, is sensitive to attack by superoxide 

anion. These superoxide anions may have been generated by the tissue or by 

the high oxygen tension in the tissue bath.

7.11.2.2 Effects of LY 83583

An alternative way to examine the susceptibility of the macrophage-derived 

relaxant to superoxide anion is to examine the inhibitory effects of drugs 

known to generate the free radical. The compound, LY 83583, is a 

superoxide anion generator, and it has been shown to inhibit the effects of 

NO released from rabbit aortic strips (Mulsch et al., 1988) and rabbit aortic
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rings (Diamond, 1987). We therefore investigated the effects of LY 83583 

on macrophage-mediated relaxation. When the precontracted aortic rings had 

been fully relaxed by addition of the activated J774.7 cells, LY 83583 

induced an almost complete reversal of relaxation. This reversal confirmed 

that the relaxation induced by the activated cells was due to an NO-like 

vasodilator.

7.11.2.3 Effects of haemoglobin

Haemoglobin has the ability to bind NO, and will therefore inhibit its actions 

(Martin et al., 1985). In the presence of haemoglobin in the tissue bath, the 

relaxation produced by the addition of activated macrophages to aortic rings 

was almost completely blocked. However, this inhibitory effect of 

haemoglobin does not tell us if the NO released form macrophages is in an 

unprotected form since haemoglobin can also inhibit the actions of NO 

donors such as nitrovasodilators and S-nitrosothiols (Martin et al., 1985; Liu 

et al., 1994b). Haemoglobin may have had an additional action which was 

not studied in our experiments. Specifically, NO has the ability to feed back 

and inhibit NO synthase (Morin et al., 1994; Vickroy & Malphurs, 1995). 

One way of preventing this inhibition would be by the addition of 

haemoglobin, which will bind NO, and therefore prevent it from exerting its 

negative feedback effects. Such an action explains why addition of 

haemoglobin increases the rate of formation of NO from L-arginine by NO 

synthase (Hurshman & Marietta, 1995). Thus, addition of haemoglobin may 

exert two effects in this system: firstly, the rate of production of NO might 

increase due to suppression of any negative feedback effect, and secondly, 

the scavenging of NO by haemoglobin would prevent it from relaxing the 

smooth muscle cells. Thus, although the enzyme may be more efficient at 

generating NO in the presence of haemoglobin, any enhanced relaxation of
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smooth muscle would not be observed due to the scavenging abilities of this 

protein.

7.11.2.4 Effects of inhibitors of NO synthase

Many analogues of L-arginine act as competitive inhibitors of NO synthase. 

One of the most widely used inhibitors is NG-monomethyl-L-arginine (L- 

NMMA)(Hibbs et al., 1987a), which inhibits both constitutive and inducible 

isoforms of NO synthase. L-arginine analogues exhibit some degree of 

isoform selectivity. For example, NG-amino-L-arginine and NG-nitro-L- 

arginine are about 100 times more potent that L-NMMA at inhibiting 

constitutive NO synthase in endothelial cells (Gross et al., 1990, 1991). 

Furthermore, McCall et al. (1991) found that in J774 macrophages, N- 

immoethyl-L-ornithine was a more potent inhibitor of NO synthase than L- 

NMMA, and that L-NAME was much less effective at inhibiting inhibition 

of platelet aggregation induced by the cells. In our work on measuring nitrite 

production, we had already demonstrated that L-NMMA is a much more 

effective inhibitor of inducible NO synthase in J774.7 cells than L-NAME. 

Thus, the effects of the two NO synthase inhibitors, L-NAME and L-NMMA 

were investigated on J774.7 cell-mediated relaxation of rat aortic rings. We 

found that L-NMMA almost completely reversed the macrophage-mediated 

relaxation whereas L-NAME had very little effect. Thus, due to the 

inhibitory effect of L-NMMA, it appears that NO is the agent responsible for 

mediating relaxation of rat aortic rings upon the addition of J774.7 cells. 

Furthermore, the greater effectiveness of L-NMMA over L-NAME found in 

these experiments is consistent with the findings obtained when measuring 

nitrite production by J774.7 cells.
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Thus, J774.7 macrophages release a smooth muscle relaxing factor, formed 

by the L-arginine/NO pathway which is sensitive to attack by superoxide 

anion and to inhibition by haemoglobin. These properties are consistent with 

the relaxant being free NO, and not an NO releasing compound such as an S- 

nitrosothiol or a dinitrosyl ferrous iron complex. Whether J774.7 

macrophages have an intracellular system to protect themselves against 

attack by the high concentrations of NO they produce remains to be 

determined.

7.12 Release of reactive oxygen species

Different cells of the immune system, including macrophages, Kupffer cells, 

and neutrophils, produce and release a number of reactive oxygen species, in 

addition to NO, as part of their anti-microbial effector system. These include 

superoxide anion (#0 2"), hydrogen peroxide (H20 2) and hypohalous acids 

(HOX), for example hypochlorous acid (HOC1). Production of superoxide 

and hydrogen peroxide can lead to the additional formation of singlet oxygen 

(!0 2), hydroxyl radical (#OH_) and peroxynitrite (ONOO-). Superoxide is 

generated by NADPH oxidase which transfers electrons from NADPH in the 

cytosol to oxygen to form superoxide and subsequently hydrogen peroxide 

and other oxidants in the phagocytic vacuole. This NADPH oxidase is found 

for example in monocytes (Landmann et al., 1995) and macrophages 

(Assreuy et al., 1994) and can be stimulated by phorbol esters and calcium 

ionophores (Robinson et al., 1984). Most of the toxic effects of superoxide 

are mediated via generation of hydroxyl radicals and hydrogen peroxide. 

Hydrogen peroxide is formed by the dismutation of superoxide anion and can 

oxidise cellular enzymes and mediate DNA damage and mutagenesis. 

Peroxynitrite, formed by the combination of NO and superoxide anion can 

catalyse membrane lipid peroxidation in an iron-independent manner (Radi et
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al., 1991b), oxidise DNA bases (Beckman et al., 1990) and react with metals 

or metalloproteins to form the toxic nitronium (N 02+) ion (Ischiropoulos et 

al., 1992a), making it one of the more damaging species. Hydroxyl radical is 

also a damaging macrophage-derived oxidant (Miller & Britigan, 1995a), as 

it is highly reactive, and can induce the initiation of lipid peroxidation 

(Farber, 1994). Hypochlorous acid, formed by the enzyme myeloperoxidase 

in mononuclear cells, has been shown to disrupt cell membrane integrity via 

lipid peroxidation and decarboxylation of membrane proteins (Albrich et al., 

1986) and may also inhibit DNA synthesis (Rosen et al., 1990).

Measurement of production of oxygen-derived reactive species would 

therefore give an insight into the activity of J774.7 cells with respect to their 

ability to kill invading organisms.

7.12.1 Release of superoxide anions

Superoxide anions are produced by a variety of leucocytes via the NADPH 

oxidase system during the respiratory burst where large quantities of glucose 

are metabolised by way of the hexose monophosphate shunt (Segal, 1995). 

Assays using cytochrome C allow for the presence of superoxide anion, a 

reducing agent, to be assessed due to the increase in absorbance at 550 nm 

that takes place upon reduction. Phorbol myristate acetate (PMA) is a 

phorbol ester which activates protein kinase C, and is a well characterised 

stimulus for inducing the production of superoxide anions by cells (Wolfson 

et al., 1993; Conde et al., 1995). Both LPS and PMA are very effective at 

inducing superoxide production by cell types known to exhibit the respiratory 

burst, e.g. neutrophils (Maridonneau-Parini et al., 1986), rat liver 

macrophages (Dieter et al., 1991) and mouse peritoneal macrophages 

(Conde et al., 1995). It appeared that PMA was not effective as a stimulus

241



for production of superoxide anions by J774.7 macrophages in this study as it 

failed to induce reduction of cytochrome C over 1 hour. No effect was also 

seen when cells were stimulated overnight with LPS, an agent well known 

for its ability to induce superoxide production in monocytes and 

macrophages (Amano et al., 1985; Landmann et al., 1995). It is possible that 

the subclone of cells used in this study (J774.7) is unable to synthesise 

superoxide anion upon stimulation by LPS or PMA. An alternative 

possibility is that the cells were producing superoxide, but for an unknown 

reason, the system was unable to detect its production.

The hypoxanthine (HX)/xanthine oxidase (XO) system, commonly used for 

the generation of superoxide anions (Berman & Martin, 1993), was added to 

J774.7 cells to determine the efficiency of our technique for the measurement 

of the radical. In the absence of cells, a significant increase in absorbance 

was observed, which was reduced by 100 u m l1 SOD. This confirmed that 

the HX/XO system was effective in producing superoxide anions in a cell 

free environment. Surprisingly, addition of HX/XO in the presence of 

unstimulated J774.7 cells failed to result in the reduction of cytochrome C. 

One possible suggestion to explain this observation is that J774.7 cells were 

releasing an agent which scavenged superoxide anions produced by the cells. 

An alternative possibility is that the macrophages produced an agent that 

prevented the reduction of cytochrome C by superoxide anions. This could 

be an oxidising substance, which opposed the reduction of cytochrome C by 

superoxide anions. To investigate this, the reduced form of cytochrome C 

was prepared and used as a tool to investigate the presence of an oxidising 

agent. This indeed provided the answer since reduced cytochrome C was 

actually oxidised in the presence of unstimulated J774.7 cells. Further 

experiments were therefore conducted to determine the nature of the 

oxidising species derived from J774.7 cells.
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7.12.2 Production of an oxidising species

It was apparent that unactivated J774.7 cells produced complete oxidation of 

reduced cytochrome C within 1-2 hours. Cells left in contact with 

cytochrome C for 30 minutes induced a slight degree of oxidation and on 

removal of cells from the cytochrome C, the degree of oxidation did not 

increase for the next 90 min. When comparing the degree of oxidation 

obtained upon the removal of cells to the degree of oxidation when cells 

were present throughout the 90 min incubation, it was apparent that the 

presence of the cells was vital for oxidation of cytochrome C to take place. 

One possible explanation for this observation is that the cells produce a 

short-lived oxidant. Alternatively, some aspect of the macrophage cell 

surface may have to remain in contact with the cytochrome C in order to 

oxidise it. For example, the plasma membrane of eukaryotic cells contains an 

NADH oxidase, responsible for the transfer of electrons across the 

membrane (Crane et al., 1994). It is therefore possible that any cytochrome 

C which comes into contact with the surface of the J774.7 cells would be 

oxidised as a result of redox reactions occurring at the cell surface, but this 

would only be the case if the enzyme system was sufficiently externalised. 

No experiments were conducted to test this hypothesis. A series of 

experiments was, however, undertaken to determine if the oxidation of 

cytochrome C occurred as a consequence of the actions of known 

macrophage-derived oxidants.

7.12.2.1 Hydrogen peroxide as the oxidising species

One such oxidising species released from phagocytic cells is hydrogen 

peroxide, which is formed from the dismutation of superoxide anions. 

Potential toxic effects of hydrogen peroxide include lipid peroxidation, and
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DNA damage (Miller & Britigan, 1995a). In order to test for the presence of 

hydrogen peroxide, the anti-oxidant enzyme, catalase, was used. Catalase 

removes hydrogen peroxide by converting it to oxygen and water. Catalase 

was unable to significantly affect the ability of J774.7 cells to oxidise 

cytochrome C over 2 hours, suggesting that H20 2 is not the oxidising species 

released by the cells.

7.12.2.2 Peroxynitrite as the oxidising species

Peroxynitrite, a strong oxidising agent, is formed from the simultaneous 

production of NO and superoxide anion (Beckman & Crow, 1993). 

Peroxynitrite is one of the more toxic reactive oxygen species released from 

macrophages with actions including lipid peroxidation (Radi et al., 1991b), 

protein modification (Ischiropoulos & Al-Mehdi, 1995) and oxidation of 

DNA bases (Beckman et al., 1990). Thus, the possibility that peroxynitrite 

was the macrophage-derived oxidant was tested using the NO synthase 

inhibitor, L-NAME. The basis for these experiments is that blocking NO 

production by the cells should prevent peroxynitrite formation. This was 

unsuccessful, however, as the addition of L-NAME was not effective in 

blocking the oxidation of cytochrome C by J774.7 cells to any extent over 2 

hours. A slight degree of inhibition of oxidation of cytochrome C by J774.7 

cells occurred after 5 min, but this inhibition was lost after 30 min. In this 

experiment, it was thought possible that the large number of cells used (106 

cells mb1) produced so much peroxynitrite that inhibition by L-NAME may 

have been difficult to detect. Thus, lower numbers of cells (105 cells and 

3x105 cells mb1) were used to produce a smaller degree of oxidation, and 

thus make any inhibitory effect of L-NAME easier to detect. However, the 

use of lower cell numbers failed to reveal any ability of L-NAME to inhibit 

oxidation. Thus, it was likely either that the oxidising agent was not
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peroxynitrite, or L-NAME was not able to inhibit NO synthase sufficiently to 

prevent the formation of peroxynitrite. This latter possibility was worthy of 

consideration since L-NAME appeared to be much less effective in blocking 

NO synthase in J774.7 cells than L-NMMA (see 3.2.4 & 3.2.5). Therefore, 

L-NMMA would be expected to be a more reliable inhibitor of production of 

peroxynitrite. However, L-NMMA was also unable to prevent the oxidation 

of reduced cytochrome C by J774.7 cells at any point over 2 hours. An 

alternative mechanism to prevent peroxynitrite production would be to 

remove superoxide anion by the use of SOD. However, SOD was also 

completely ineffective in reducing oxidation of reduced cytochrome C by 

J774.7 cells at any point over 2 hours. Criticism can be levelled at this 

experiment, however, since SOD is unable to permeate the cell membrane. It 

may therefore have been unable to prevent intracellular formation of 

peroxynitrite by J774.7 cells. However, due to the fact that L-NMMA (and 

L-NAME) did not inhibit the oxidation of cytochrome C by J774.7 cells, it 

seems unlikely that peroxynitrite is the oxidising species produced by the 

J774.7 cells.

7.12.2.3 Hydroxyl radical as the oxidising species

Peroxynitrite decomposes to form nitrogen dioxide radical and hydroxyl 

radical. Hydroxyl radical is one of the most potent oxidants released from 

cells and, due to its high reactivity, can react with many different molecules, 

leading to injury (Freeman & Crapo, 1982; Varani et al., 1985; Guyton & 

Kensler, 1993). It can also be generated from hydrogen peroxide, but 

requires the presence of an iron catalyst (Halliwell & Gutteridge, 1984). It 

was therefore important to investigate if hydroxyl radical was the oxidising 

species released from J774.7 cells. Both dimethylthiourea (DMTU) and 

mannitol are scavengers of hydroxyl radical (Fox, 1984; Wasil et al., 1987).
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The former is able to permeate the membranes of cells and act intracellularly, 

but the latter is unable to enter cells and can therefore act only in the 

extracellular space. In our experiments, DMTU was unable to significantly 

reduce the oxidation of reduced cytochrome C by J774.7 cells. This was also 

the case for mannitol. Thus, it appears unlikely that hydroxyl radical is the 

oxidising species produced by J774.7.

7.12.2.4 Hypochlorous acid as the oxidising species

It is believed that monocytes but not macrophages contain the enzyme 

myeloperoxidase (Miller & Britigan, 1995a), and therefore perhaps 

hypochlorous acid should not be regarded as a possible candidate to explain 

the ability of J774.7 cells to oxidise cytochrome C. Nevertheless, 

experiments were conducted to determine if hypochlorous acid was 

responsible. These experiments made use of dithiothreitol, a general anti­

oxidant which has been used previously to inhibit the actions of 

hypochlorous acid (Eley et a l , 1989). Dithiothreitol appeared to almost 

completely inhibit the oxidation of cytochrome C by J774.7 cells, initially 

suggesting that hypochlorous acid was the oxidising species. Upon closer 

inspection, however, dithiothreitol was found to promote the reduction of 

oxidised cytochrome C in the absence of cells. Its actions as a reducing agent 

probably accounted for this effect and consequently, it was not possible to 

determine if the oxidising agent released by J774.7 cells was hypochlorous 

acid. The lack of myeloperoxidase in macrophages (Miller & Britigan, 

1995a), however, makes hypochlorous acid an unlikely candidate.

Due to the inability of any of the above agents, i.e. catalase, L-NMMA, L- 

NAME, SOD, mannitol or DMTU to inhibit oxidation, the oxidising species 

produced by cells has not been identified. None of the reactive oxygen
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species known to be released from cells involved in the inflammatory 

process, namely hydrogen peroxide, peroxynitrite, hydroxyl radical or 

hypochlorous acid, seem to be responsible. Perhaps a novel oxidising agent 

is released from J774.7 cells that has yet to be characterised.

7.12.3 Attempted modulation of the oxidising activity of J774.7 cells

Although identification of the oxidising species proved difficult, further 

experiments were conducted to determine if, in addition to being released 

spontaneously by cells in the resting state, production of the oxidising 

species could be regulated. LPS and IFN-y are known to stimulate the 

induction of NO synthase in J774.7 cells. Therefore, experiments were 

conducted to determine if these stimuli could regulate the production of the 

oxidising species by J774.7 cells. Treatment of cells for 23 hours with the 

combination of LPS and IFN-y, which has been shown to be effective at 

inducing nitrite production by J774.7 cells, had no effect on their ability to 

oxidise cytochrome C. When LPS and IFN-y were used alone, i.e. conditions 

that produce very little effect on nitrite accumulation, slight (<10%) but 

significant increases in oxidation of cytochrome C by J774.7 cells were 

produced. These small effects, however, were likely to have arisen from 

biological variation. In separate experiments, the peptide polymyxin B which 

has high affinity for LPS, and the corticosteroid, dexamethasone, produced 

slight decrease in oxidation. The magnitude of the reductions of oxidation 

produced by these agents were, however, so small that they too were likely 

to have arisen from biological variation

Thus, J774.7 cells appear to release spontaneously a very powerful oxidant 

which induces almost complete oxidation of cytochrome C over 30 min. We
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are unable to identify the species, and assume therefore that it is not one of 

those already characterised as being released from inflammatory cells.
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