
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Alnowaiser, Khaled Abdulrahman (2016) Garbage collection
optimization for non uniform memory access architectures.
PhD thesis.

http://theses.gla.ac.uk/7495/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format
or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/7495/

GARBAGE COLLECTION OPTIMIZATION

FOR NON UNIFORM MEMORY ACCESS

ARCHITECTURES

KHALED ABDULRAHMAN ALNOWAISER

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

JUNE 2016

© KHALED ABDULRAHMAN ALNOWAISER

Abstract

Cache-coherent non uniform memory access (ccNUMA) architecture is a standard design
pattern for contemporary multicore processors, and future generations of architectures are
likely to be NUMA. NUMA architectures create new challenges for managed runtime sys-
tems. Memory-intensive applications use the system’s distributed memory banks to allocate
data, and the automatic memory manager collects garbage left in these memory banks. The
garbage collector may need to access remote memory banks, which entails access latency
overhead and potential bandwidth saturation for the interconnection between memory banks.

This dissertation makes five significant contributions to garbage collection on NUMA sys-
tems, with a case study implementation using the Hotspot Java Virtual Machine.

It empirically studies data locality for a Stop-The-World garbage collector when tracing con-
nected objects in NUMA heaps. First, it identifies a locality richness which exists naturally
in connected objects that contain a root object and its reachable set— ‘rooted sub-graphs’.
Second, this dissertation leverages the locality characteristic of rooted sub-graphs to develop
a new NUMA-aware garbage collection mechanism. A garbage collector thread processes a
local root and its reachable set, which is likely to have a large number of objects in the same
NUMA node. Third, a garbage collector thread steals references from sibling threads that
run on the same NUMA node to improve data locality.

This research evaluates the new NUMA-aware garbage collector using seven benchmarks
of an established real-world DaCapo benchmark suite. In addition, evaluation involves a
widely used SPECjbb benchmark and Neo4J graph database Java benchmark, as well as
an artificial benchmark. The results of the NUMA-aware garbage collector on a multi-hop
NUMA architecture show an average of 15% performance improvement. Furthermore, this
performance gain is shown to be as a result of an improved NUMA memory access in a
ccNUMA system.

Fourth, the existing Hotspot JVM adaptive policy for configuring the number of garbage
collection threads is shown to be suboptimal for current NUMA machines. The policy uses
outdated assumptions and it generates a constant thread count. In fact, the Hotspot JVM
still uses this policy in the production version. This research shows that the optimal number
of garbage collection threads is application-specific and configuring the optimal number of
garbage collection threads yields better collection throughput than the default policy. Fifth,
this dissertation designs and implements a runtime technique, which involves heuristics from
dynamic collection behavior to calculate an optimal number of garbage collector threads for
each collection cycle. The results show an average of 21% improvements to the garbage
collection performance for DaCapo benchmarks.

I

Acknowledgements

All my praises be to Allah, the almighty, for granting me the strength and patience to com-
plete this research successfully.

I would like to express my deepest gratitude and appreciation to my supervisor, Dr. Jeremy
Singer, for his encouragements, guidance, and support. I am grateful for his advice and
inspiration. I also extend my gratitude to Dr. Paul Cockshott for all the interesting and
challenging discussion, which helped me shaping this research in a coherent way.

I am grateful to my sponsor, Prince Sattam bin Abdulaziz University for funding this PhD
research. I would like to thank the support team and colleagues in the School of Computing
Science for providing me with all help to complete this research.

Finally and most importantly, I offer my gratefulness to my family for their constant care,
encouragement, and support throughout my life. I am thankful to my wife and children for
their support and patience.

II

TABLE OF CONTENTS

Abstract I

Acknowledgments II

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Statement . 4

1.3 Contributions . 5

1.4 Publications . 5

1.5 Thesis Outline . 6

I STATE OF THE ART 8

2 Literature Survey 9

2.1 Basic Garbage Collection Algorithms . 10

2.1.1 Mark-Sweep Collection . 11

2.1.2 Mark-Compact Collection . 11

2.1.3 Copying Collection . 12

2.1.4 Reference Counting . 12

III

2.2 Parallel Garbage Collection . 13

2.3 Heap Partitioning . 17

2.3.1 Thread-local Heaps . 18

2.4 NUMA Heaps . 21

2.5 Object Locality . 23

2.5.1 Cache Locality Optimization . 24

2.5.2 Memory Page Locality Optimization 26

2.6 Object Clustering . 30

2.7 Data Placement Policies . 31

2.8 Conclusion . 33

3 Technical Background 34

3.1 Introduction . 35

3.2 Parallel Architectures . 36

3.2.1 Distributed Memory Architectures 37

3.2.2 Shared Memory Architectures . 38

3.3 Non-Uniform Memory Access Architecture 40

3.4 NUMA Memory Allocation Policies . 43

3.5 Virtual to Physical Memory Page Mapping 44

3.5.1 Memory Pages . 45

3.6 Java Virtual Machine and Garbage Collection 47

3.6.1 The Copying Collector . 49

3.6.2 The Mark-Compact Collector . 52

3.6.3 The Parallel Scavenge Optimizations for NUMA Machines 53

3.7 Conclusion . 54

4 Experimental System Infrastructure 55

4.1 Hardware Setup . 56

4.2 Benchmarks . 56

4.2.1 DaCapo Benchmark Suite . 57

4.2.2 SPECjbb (20XX) . 59

IV

4.2.3 GCBench . 60

4.2.4 Neo4j / LiveJournal . 60

4.3 Conclusion . 61

II CONTRIBUTIONS 62

5 A Study of Reference Locality 63

5.1 Introduction . 64

5.2 Rooted Sub-Graphs . 65

5.3 Implementation . 68

5.4 Limitations . 69

5.5 Experimental Setup . 70

5.6 Reference Locality Evaluation . 72

5.6.1 Locality-distributed Rooted Sub-graph 72

5.6.2 Rooted Sub-graph Locality Analysis 75

5.6.3 GC Impact on Rooted Sub-graph Locality 79

5.7 Related Work . 82

5.8 Conclusion . 84

6 NUMA-Aware Garbage Collector 86

6.1 Introduction . 87

6.2 Motivation . 88

6.3 NUMA-Aware Copying Collector . 89

6.3.1 Data Structures . 90

6.3.2 Algorithm . 91

6.3.3 Optimization Schemes . 92

6.4 NUMA-Aware Garbage Collector Evaluation 93

6.4.1 Evaluation Metrics . 93

6.4.2 Relative NUMA Locality Trace 94

6.4.3 Pause Time and VM Time Analysis 97

6.4.4 Scalability . 100

V

6.5 Related Work . 103

6.6 Conclusion . 105

7 NUMA-Aware Garbage Collection Thread Management 107

7.1 Introduction . 108

7.2 Hotspot GC Threads Management . 110

7.3 Impact of Varying the Number of Collector Threads on Throughput 112

7.4 Static Optimization . 116

7.5 Dynamic Optimization . 121

7.6 Related Work . 125

7.6.1 NUMA GC Characterization . 125

7.6.2 Causes of Congestion . 125

7.6.3 Reducing Congestion . 127

7.7 Conclusion . 127

III CONCLUSION 128

8 Conclusion 129

8.1 Thesis Statement Revisited . 130

8.2 Contributions . 131

8.3 Future Research Directions . 133

8.3.1 Experimental Setup Generalization 134

8.3.2 NUMA Architectures without Cache Coherency 135

A Gradient-Ascent Algorithm 137

Bibliography 141

VI

LIST OF TABLES

LIST OF TABLES

3.1 NUMA delay time between nodes. 36

3.2 First 290 virtual pages were mapped to memory nodes in a round robin order.
Then, transparent huge pages are used to map every 512 virtual page to a
memory node. 47

4.1 Benchmarks and heap configuration . 57

6.1 Optimization schemes for NUMA-aware garbage collection. 93

7.1 Optimum number of collector threads for minor and major collections . . . 118

VII

LIST OF FIGURES

LIST OF FIGURES

1.1 An example of a NUMA architecture . 2

3.1 The performance gab between processor and access to main memory. Source:
[Hennessy and Patterson, 2011a] . 36

3.2 A standard multicore UMA architecture diagram. 39

3.3 A standard multi-hop multicore NUMA architecture diagram. 39

3.4 AMD Opteron 6366 NUMA architecture topology. This diagram is gener-
ated by lstopo tool [Broquedis et al., 2010]. 41

3.5 AMD NorthBridge micro-architecture. Source [Conway and Hughes, 2007] 42

3.6 Memory Request . 43

3.7 Hierarchical Page table for 4KB page size on 64-bit x86 Linux. Source
[AMD, 2015] . 45

3.8 Hierarchical Page table for 2MB page size. Source [AMD, 2015] 46

3.9 JVM data areas . 48

3.10 A schematic view of the heap spaces: Eden and survivor spaces (the young
generation) and the old generation . 49

3.11 A diagram of the GCTask and thread-local data structure. 50

5.1 An example of a reference graph with different types of rooted sub-graphs . 67

VIII

LIST OF FIGURES

5.2 Rooted subgraphs for X and Y can be different depending on who first marks
the node Z. The result is non-deterministic. 70

5.3 An explanatory example of heat map results 71

5.4 A snapshot of GCBench rooted subgraph locality in a single collection. Ref-
erences point to objects that are distributed across multiple NUMA nodes. . 73

5.5 The correlation between Rooted sub-graph locality and the size of the sub-
graph for GCBench. Large-sized sub-graphs are more likely to cross multi-
ple memory nodes. 74

5.6 A snapshot of DaCapo and SPECjbb2005 rooted sub-graphs locality in all
collections. Locality of sub-graphs is represented by diagonal black squares,
which show that a high proportion of objects are located in the same root
memory node. The color key is the same as in Figure 5.4. 78

5.7 A snapshot of SPECjbb2005 rooted sub-graph locality in a single collection.
The GC pollutes sub-graph locality, though over 50% of references remain
in the root’s memory node. The Color key is the same as in Figure 5.4. . . . 81

6.1 Various topology-aware GC schemes. a) aggressive scheme only processes
thread-local tasks b) hybrid scheme distributes tasks across all nodes but
steals from local threads only. c) relaxed scheme processes random tasks
from any node . 90

6.2 Relative NUMA Locality Trace results for evaluated workloads. On average,
53% of objects are NUMA-local within rooted sub-graphs. 95

6.3 Relative NUMA Locality Traces for various root types: old-to-young, thread
stacks, and class loader roots. Old-to-young rooted sub-graphs exhibit rela-

tively low locality. 96

6.4 GC time (i.e. pause time) for our three optimization schemes. For small
heaps (e.g. DaCapo programs), hybrid scheme gives the best results, whereas
aggressive scheme is more effective for programs with larger heaps. (The
default JVM is labelled Org.) . 98

6.5 VM time (i.e. end-to-end execution time) for our three optimization schemes.
At least one scheme provides better VM execution time than default (labelled
Org) in most cases. 99

6.6 GC time and VM time comparison between local access, remote access, and
the default JVM. GC and VM times for remote access is higher than local
and the default JVM for LiveJournal benchmark. 101

IX

LIST OF FIGURES

6.7 GC time scaling with heap size for Neo4j/LiveJournal. GC time decreases
with heap size for our optimized versions, whereas the original implementa-
tion does not show any scaling. 102

6.8 VM time scaling with heap size for Neo4j/LiveJournal. VM time decreases
with increased heap size for our optimized versions, whereas the original
implementation does not show any scaling. 103

7.1 Hotspot JVM policy for setting a dynamic number of garbage collection
threads. 111

7.2 Minor collection throughput varies with number of collector threads (higher
is better) . 113

7.3 Major collection throughput varies with number of collector threads (higher
is better) . 114

7.4 Off-node memory events over interconnect links between nodes; each line
represents per-node average memory events over all four links (lower is better).117

7.5 Fitted quadratic curves for benchmark GC throughput observations for minor
collections . 119

7.6 Fitted quadratic curves for benchmark garbage collection throughput obser-
vations for major collection . 120

7.7 Garbage collection pause time comparison for various garbage collection
threading policies (lower is better) . 121

7.8 Comparison of overall application performance for various garbage collec-
tion threading policies (lower is better) . 122

7.9 Schematic diagram for adaptive runtime GC threads management system. . 123

7.10 Gradient ascent optimization searches for optimal value which is on the top
of the hill, where the slope is zero. At any point to the left, the slope value
is positive, indicating that optimal direction is forward. If the point is to the
right, the slope is negative and the direction is back. 123

7.11 Gradient ascent algorithm to optimize the number of GC threads 124

7.12 Illustrative graphs showing how the number of collector threads varies over
the first 100 collections with gradient ascent optimization 126

X

ACRONYMS

AMD Advanced Micro Devices

CPU Central Processing Unit

DCT DRAM Controller

DSM Distributed Shared Memory

JNI Java Native Interface

JVM Java Virtual Machine

LLC Last Level Cache

MCT Memory Controller

NUMA Non-Uniform Memory Access

PLAB Promotion Local Allocation Buffer

QPI QuickPath Interconnect

SMP Symmetric Multiprocessor Chip

SRI System Request Interface

THP Transparent Huge Page

TLB Translation Lookaside Buffer

XI

TLAB Thread Local Allocation Buffer

UMA Uniform Memory Access

XII

CHAPTER

1

INTRODUCTION

This chapter introduces the context of garbage collection optimization for non-uniform mem-
ory access architectures. It also presents the motivation to carry out this research followed
by the thesis statement. The chapter reports the main contributions and publications of this
research and concludes by outlining the dissertation structure.

1.1 Overview

The revolution in semiconductor technologies, marked by the prevalence of multicore pro-
cessors, has created high computational capacity resources to enhance program performance.
Programmers split the code into several segments and use a parallel programming model to
enable the execution of some segments in parallel. Today, data-intensive applications, for
example databases, data analytic engines, and application servers, have consumed available
CPU and memory resources on server-class machines. This increasing growth in applica-
tions’ computation needs has demanded a rapid expansion on hardware resources.

Since the transition from unicore to multicore processors [Sutter and Larus, 2005], the core
counts have increased consistently and an optimistic forecast suggests that the number of
cores will continue to follow Moore’s law [Moore, 2000] (the number of transistors is dou-

bled every 18 months). However, memory has an unequal technological development pace
as compared to multicore processors. The processor-memory performance gap means that

1

1.1. OVERVIEW

Figure 1.1: An example of a NUMA architecture

merely adding more cores to the processor does not improve program performance automat-
ically because the memory bandwidth is unable to handle the increased memory traffic. As a
result, this multicore architecture has hit the “memory wall” [McKee, 2004] and limited the
core counts. Therefore, increasing the memory bandwidth is a big challenge for multicore
processor designers.

One way to augment the memory bandwidth and reduce access latency is to distribute the
memory physically across the processors while maintaining a shared address space. This
architecture is called Distributed Shared Memory (DSM). Processors can access any memory
address, however, the access latency depends on the distance between data in memory and
the processor accessing it. Although DSM systems usually comprise a network of machines,
DSM can also be implemented in a single machine. This architecture is referred as Non-
Uniform Memory Access (NUMA) architecture [Hennessy and Patterson, 2011b].

NUMA systems involve multiple Central Processing Unit (CPU) sockets, each has a multi-
core processor chip. In this design, sockets are connected through a network of high speed
links, e.g. Intel QuickPath Interconnect (QPI) [Intel, 2016] and AMD HyperTransport tech-
nologies [AMD, 2016b]. A multicore processor and its memory forms a NUMA node, where
cores of the same NUMA node incur symmetric memory access latency to the local memory
and asymmetric access latency to the “remote” memory. Figure 1.1 depicts an example of
multicore-based multiprocessor NUMA architecture.

The implications of NUMA architecture for software design/development are significant.
A multi-threaded application may exhibit performance degradation when running on multi-
ple NUMA nodes. Application data can be allocated in any NUMA node and threads may
need to access remote memory to execute the code. A non NUMA-aware memory alloca-
tion policy could impair application performance by raising off-node communications and

2

1.1. OVERVIEW

increasing access latency, saturating some interconnection links, or by putting pressure on
the local-node’s memory hierarchy due to imbalanced allocation. There are several tools to
monitor these events (Chapter 4 describes the LIKWID tool).

Cache coherency for prevalent NUMA architectures participates into two issues. First, cache
coherency limits scaling up the number of cores due to the difficulties of managing cached
data across large number of cores. Second, a ccNUMA system incurs performance challenge
when multiple cores share a cache line but not data in the cache line. This “false sharing”
necessitate cache invalidation and cause performance degradation. However, this dissertation
shows that NUMA remote accesses are more serious problem than cache coherency. Section
6.4.3 discusses this issue in more detail.

Managed runtime systems, for example the Java Virtual Machine (JVM), abstract low-level
details such as memory management and hardware configuration. However, many runtime
system deployments manage program execution in a NUMA-agnostics fashion. In fact, they
usually devolve memory management, thread scheduling, and/or other components to the
operating system. Operating system’s tools for NUMA management, for example mem-
ory allocation policies, could be inefficient without programmer’s intervention. The default
memory allocation policy is to allocate memory from the NUMA node of first core touch-
ing it, however, applications could involve imbalanced memory allocations between nodes,
which may cause some node to saturate. Therefore, higher level of NUMA management
would be required to explicitly manage program execution.

Garbage collection is a performance critical component of managed runtime systems. A
garbage collector reclaims the memory occupied by dead (unreachable) objects, which is no
longer needed by the application. Detecting unreachable objects can be done by identifying
the reachable objects. To identify and preserve the reachable objects, a garbage collector
traverses the reference graph starting from “root” objects, for example global and static vari-
ables. The reference graph may contain references to objects that are distributed across
the NUMA nodes. Therefore, the garbage collection threads may incur additional overhead
when accessing remote NUMA nodes. Furthermore, a copying and a compacting garbage
collector could relocate a reachable object to a different NUMA node. Data locality, which
is keeping data close to the core accessing it, could be changed due to the relocation opera-
tion by the garbage collector. Consequently, application threads would access remote data,
causing the performance to degrade.

The goal of this research is to investigate improvements to the garbage collection of the
Hotspot JVM running on NUMA architecture. Previous research has reported inefficient
garbage collection performance when running on NUMA machines, for example [Gidra
et al., 2011]. There exist several techniques to improve NUMA garbage collection per-
formance [Tikir and Hollingsworth, 2005, Ogasawara, 2009, Gidra et al., 2015]. However,

3

1.2. THESIS STATEMENT

these techniques use a common mechanism, which involves inspecting every reachable ob-
ject’s location before processing it. This mechanism may require a complex heap layout or
expensive memory access samples. In addition, these techniques utilize the system’s full
computation resources to execute the garbage collection workload. In the NUMA context,
consuming all cores for garbage collection may increase off-node traffic, hence degrading
the garbage collection performance.

This dissertation provides novel approaches to improve NUMA garbage collection. Instead
of inspecting every reachable object, this research proposes inspecting a small set of the
reachable objects, the root set. This research hypothesizes that the majority of references in
the transitive closure of a root reference reside in the same NUMA node as the root (Section
5.2).

By exploiting this locality characteristic, garbage collection performance gains improve-
ment. In addition, this research proposes a runtime garbage collection thread management
policy. This policy responds to the changes of collection performance by dynamically chang-
ing the number of garbage collection threads. These NUMA-aware techniques are shown to
improve the garbage collection performance.

1.2 Thesis Statement

Given that NUMA systems partition the memory into multiple nodes, and a multi-threaded
application can allocate data in any NUMA node, parallel garbage collection involves off-
node communications costs when collecting garbage memory. This research asserts that
NUMA topology awareness can improve garbage collection performance. By obtaining data
location, garbage collection threads can process NUMA-local data. In addition, NUMA
congestion caused by the increased number of scheduled garbage collection threads can be
alleviated by dynamically adapting the number of threads.

This assertion is demonstrated by the following:

• The implementation of a NUMA-aware garbage collector, which takes into account
the object location when copying/promoting objects in a generational NUMA heap.

• The implementation of adaptive garbage collection thread management policy that dy-
namically adapts the number of scheduled threads based on the collection throughput.

• An evaluation of the NUMA-aware garbage collector and the adaptive garbage col-
lection thread management policy on seven benchmarks of an established real-world
DaCapo benchmark suite, a widely used SPECjbb benchmark, Neo4J graph database
Java benchmark, and an artificial benchmark.

4

1.3. CONTRIBUTIONS

1.3 Contributions

This work contributes to NUMA-based garbage collection in a number of ways:

• Development of the rooted sub-graph hypothesis [Alnowaiser, 2014], which states that
a high proportion of objects in a root’s transitive closure reside in the same NUMA
node as the root (Chapter 5). This hypothesis is evaluated and the results show that
80% of objects reside in the same node as root. The introduction of rooted sub-graph
notion and its use to make garbage collection NUMA-aware is a major contribution of
this research.

• Development of root reference classification and distribution strategy, which enables
garbage collection threads to process NUMA-local rooted sub-graphs [Alnowaiser and
Singer, 2016] (Chapter 6).

• Development of a NUMA-local work stealing strategy to allow garbage collection
threads to steal from NUMA local queues [Alnowaiser and Singer, 2016] (Chapter 6).

Our new garbage collection that uses NUMA-aware root classification and NUMA-
local work stealing performs 15% on average better than the default Hotspot JVM.

• An investigation of the impact of scheduling large number of garbage collection threads
on collection throughput and NUMA off-node traffic (Chapter 7).

• Development of an adaptive garbage collection thread policy to schedule an appropri-
ate number of threads (Chapter 7).

Our adaptive garbage collection thread management policy shows 21% and 5% on
average performance improvement for DaCapo and overall benchmarks, respectively.

1.4 Publications

The work presented in this dissertation has led to the following publications:

1. Khaled Alnowaiser. A Study of Connected Object Locality in NUMA Heaps. In Pro-
ceedings of the Workshop on Memory Systems Performance and Correctness, MSPC
14, pages 1:1–1:9, New York, NY, USA, 2014. ACM. http://dx.doi.org/10.
1145/2618128.2618132. [Alnowaiser, 2014]

2. Khaled Alnowaiser and Jeremy Singer. Topology-Aware Parallelism for NUMA Copy-
ing Collectors, chapter Languages and Compilers for Parallel Computing: 28th Inter-
national Workshop, LCPC 2015, Raleigh, NC, USA, September 9-11, 2015, pages

5

http://dx.doi.org/10.1145/2618128.2618132
http://dx.doi.org/10.1145/2618128.2618132

1.5. THESIS OUTLINE

191–205. Springer International Publishing, http://dx.doi.org/10.1007/
978-3-319-29778-1_12. [Alnowaiser and Singer, 2016]

We intend to publish the outcomes of Chapter 7, which is the adaptive garbage collection
thread management policy, in the near future.

1.5 Thesis Outline

The remainder of this dissertation is organized as follows:

Chapter 2: Literature Survey

This chapter reviews related work that focuses on optimizing garbage collection. Various
approaches to deal with garbage collection in NUMA architectures, from graph traversal
order, object locality, heap partitioning, to several data placement policies are discussed. My
approach in this chapter is to combine description, discussion, and scrutiny of related work
on the context of this dissertation. This approach would shed light on my motivation to carry
out this research.

Chapter 3: Technical Background

This chapter provides a technical background on hardware and software systems used in
this research. It refers to manufacturers’ manuals, white papers, and illustrations explaining
processors and memory management in the Linux operating system. It also presents and
discusses NUMA architectural design and implementation for AMD processors. In addition,
this chapter includes detailed description of the garbage collection policies (including the
copying collector, minor collection and the mark-compact collector major collection) in the
Hotspot JVM of OpenJDK.

Chapter 4: Experimental System Infrastructure

The experimental system infrastructure used for the work in this dissertation is fixed to one
hardware and one software platform. In this chapter, I describe these system configurations.
The work in this dissertation has been evaluated with seven benchmarks of an established
real-world DaCapo benchmark suite, a widely accepted SPECjbb benchmark, Neo4J graph
database Java benchmark, and an artificial benchmark. For every benchmark, this chapter
describes the program and its memory allocation behavior. In addition, it show some of the
configurable options that are used in the experimentation.

6

http://dx.doi.org/10.1007/978-3-319-29778-1_12
http://dx.doi.org/10.1007/978-3-319-29778-1_12

1.5. THESIS OUTLINE

Chapter 5: A Study of Reference Locality

Chapter five reports an observational study for connected object’s locality when garbage col-
lector threads traverse the reference graph. Based on the results of this study, this chapter
(Chapter 6) develops the rooted sub-graph hypothesis, which is the basis for my optimiza-
tions presented in this research.

Chapter 6: NUMA-Aware Garbage Collector

This chapter utilizes rooted sub-graph hypothesis to improve garbage collection perfor-
mance. It applies NUMA awareness to the copying collector with three optimization schemes.
These schemes aim to enhance NUMA locality by processing NUMA-local objects and re-
duce NUMA congestion by utilizing off-node resources. Heap scalability is also discussed
with reference to the proposed optimization schemes.

Chapter 7: NUMA-Aware Garbage Collection Thread Management

This chapter investigates the correlations between the number of scheduled garbage collec-
tion threads and collection throughput. It also investigates NUMA congestion when varying
the number of garbage collection threads. The results lead to the creation of NUMA-aware
garbage collection thread management policy. This policy tracks collection throughput and
adapts, if needed, the number of threads at runtime.

Chapter 8: Conclusion

Chapter eight concludes the work presented in this thesis and explores opportunities for
further work.

7

Part I

STATE OF THE ART

8

CHAPTER

2

LITERATURE SURVEY

The garbage collector accesses memory intensively to reclaim dead memory and preserve
live objects that the application needs. This excessive access incurs latency overhead due
to the fact that the garbage collection exhibits poor temporal and spatial locality behavior
[Jones et al., 2011]. In fact, the garbage collector is shown to get worse locality behavior
when the heap is created in a system with NUMA architecture. The JVM can allocate objects
in any NUMA node. As the program execution pauses to reclaim memory, the parallel
garbage collection treats the live object set as a graph and each collector thread processes
multiple sub-graphs. Objects in a sub-graph could be dispersed across different NUMA
nodes; causing the garbage collector to pay additional remote memory access overhead. In
the context of generational heaps, objects may be relocated to new addresses, possibly on
remote NUMA nodes. When the program resumes execution, the new object layout could
impose remote accesses; hence causing additional latency overhead.

This chapter reviews state of the art garbage collection optimization on NUMA architectures.
It presents locality improvement research for garbage collection in a hierarchical order from a
cache line to the virtual memory space. This presentation includes the discussion of the effect
of improving object locality, in the virtual memory space, on the physical memory space
represented by NUMA architecture. Furthermore, this chapter discusses the advantages and
disadvantages of existing NUMA heap optimizations and identifies gabs that form the basis
of this research.

The outline of this chapter is as follows. Section 2.1 introduces this chapter with basic

9

2.1. BASIC GARBAGE COLLECTION ALGORITHMS

garbage collection algorithms. Section 2.2 presents parallel techniques applied to garbage
collection. Section 2.5 surveys various optimization schemes to improve object locality.
Object segregation techniques are reviewed in Section 2.6. Section 2.3 investigates several
heap partitioning strategies, whereas Section 2.4 explores NUMA partitioning schemes and
related techniques to improve object locality. Section 2.7 discusses various data placement
policies and Section 2.8 summarizes this chapter.

2.1 Basic Garbage Collection Algorithms

The virtual machines reserve a space for the heap which contains program’s dynamically
allocated data. A program may refer to any process that requires heap space. This includes
the kernel, file managers, network daemons, runtime systems and user applications. In this
dissertation, programs refer to Java-based applications. During program execution, threads
mutate the heap by allocating new objects or changing the connectivity between objects.
When a running program abandons access to some objects in the heap, those objects are
considered garbage and they become subject to reclamation. The space occupied by those
“dead” objects should return to the program for reuse or to the operating system.

The basic garbage collection functions consist of two parts [Wilson, 1992]:

1. It must distinguish between the live objects and the dead objects.

2. It reclaims the dead memory and makes it available to the program to use it.

Liveness is a global criterion that garbage collection uses to identify live objects. When
program execution pauses for garbage collection, the set of values that a program can ma-
nipulate directly are those held in the processor registers, those on the program stack that are
in the stack frames (these include the local variables), and those held in the global variables.
These globally visible variables are called the root set. Heap objects that are directly reach-
able from the root set or indirectly by traversing pointers from the root set are considered
live and must be preserved. Therefore, the live object set is treated as a directed path graph,
where nodes denote live objects and edges denote references. Any other unreachable object
is considered garbage and its space can be safely reclaimed. This is a conservative estimate
of live objects.

There are four algorithms, in which any garbage collection scheme relies on: mark-sweep
collection, mark-compact collection, copying collection, and reference counting [Jones et al.,
2011]. The following sections present the basic algorithms of these four garbage collection
schemes. They are meant to give a brief description of their sequential implementation prior
to consider parallel versions when running on multicore processors.

10

2.1. BASIC GARBAGE COLLECTION ALGORITHMS

2.1.1 Mark-Sweep Collection

Mark-sweep collection [McCarthy, 1960] operates recursively on the reference graph to
mark reachable objects as live and sweep unmarked objects. The two basic functions of
mark-sweep algorithm are as follows:

• Garbage Detection: Starting from the root set, garbage collection traverses the refer-
ence graph and objects that are reachable from the root set are marked live. Marking
is done by altering a field in the object header or using a bitmap side table.

• Garbage Reclamation: Unmarked objects are swept and their space is recycled and
returned to the allocator for reuse.

Memory fragmentation is a major problem with mark-sweep collection. Recycled space of
small object size may not be continuous to fit larger objects. In addition, object temporal
locality may change because new objects will be allocated in the reclaimed memory adja-
cent to different-age objects. Section 2.5.1 describes previous research on improving object
temporal locality. In the context of NUMA architecture, new objects may scatter across var-
ious NUMA nodes. In addition to the poor temporal locality, garbage collection threads may
incur additional overhead to process objects in remote NUMA nodes.

2.1.2 Mark-Compact Collection

Mark-compact collection [Saunders, 1964] overcomes the problem of fragmentation oc-
curred to mark-sweep collector. Live objects are moved and compacted into a continuous
space. The remaining “continuous” free space is returned to the allocator. Garbage detection
and collection is as follows:

• Garbage Detection: The marking phase traces the reference graph and marks the
reachable objects.

• Garbage Reclamation: Live objects are relocated and compacted such that they be-
come adjacent to the other live objects.

Object locality of the compaction order is important. Arbitrary order compaction does not
consider the original order or object connectivity, which may lead to poor spatial locality.
Alternatively, sliding compaction keeps object order as allocated by mutator threads. Modern
mark-compact collectors implement sliding compaction [Jones et al., 2011].

The major disadvantage of compaction collection is the need for multiple passes over the live
object set including the marking pass and the sliding pass. These multiple passes increase the

11

2.1. BASIC GARBAGE COLLECTION ALGORITHMS

time overhead. In addition, compaction for NUMA heaps is significant because object spatial
locality is likely to change after sliding live objects to heap sides. Section 2.4 describes
various improvements to object spatial locality.

2.1.3 Copying Collection

Copying collection remedies the heap fragmentation by moving the live object set to a con-
tiguous area. In contrast to the compaction collection, copying collection requires only one
pass over the live objects. In a semispace copying collector [Cheney, 1970b], live objects
in one space are moved to the other space, making subsequent allocations fast. The main
disadvantage is, it reduces the heap size by half and may change object locality. However,
several studies take advantage of moving objects by improving object temporal locality, for
example Huang et al. [2004], and spatial locality, for example Gidra et al. [2013] .

• Garbage Detection: The copying collector traverses the reference graph and it moves
an object to its new location as the collector reaches it (one pass).

• Garbage Reclamation: Once the live objects scavenged to the new space, the old
space is recycled and reused by the allocator.

2.1.4 Reference Counting

Reference counting algorithm operates directly on the heap objects to identify liveness prop-
erty of each object [Collins, 1960]. Instead of traversing the reference graph to determine the
live object set and infer garbage objects, each object has a counter that is incremented/decre-
mented whenever a reference to that object is created or destroyed. The basic functions of
reference counting algorithm are as follows:

• Garbage Detection: Since each object has a reference counter to keep track of the
amount of references to it, any object contains one or more references in its reference
counter is considered as live.

• Garbage Reclamation: Objects with zero reference are no longer reachable by the
running program and are subject to reclamation. Furthermore, when reclaiming a dead
object, garbage collection must decrement reference counters of objects referenced by
the dead object. This process may propagate through the reachable set of the reclaimed
object.

12

2.2. PARALLEL GARBAGE COLLECTION

Reference counting distributes memory management costs throughout program execution.
In addition, it can reclaim memory as soon as an object becomes dead. However, refer-
ence counting algorithm has several disadvantages. Firstly, it is unable to collect cyclic data
structures, which contain references to themselves, for example doubly-linked lists [McBeth,
1963]. Self-referential data structures are common in programming languages, although their
frequency varies between applications [Bacon and Rajan, 2001]. Second, reference count
manipulations must be atomic in order to avoid race conditions between mutator threads.
Third, the mutator threads exhibit time overhead when manipulating reference counters.
Fourth, the references size that a reference counter may have could be equal to the num-
ber of objects in the heap. This storage overhead can be significant in today’s application
large heap size.

There are several approaches to solve some of reference counting problems, for example
combining tracing algorithms with reference counting [Blackburn and McKinley, 2003]. The
next section will review the parallel garbage collection algorithms, which are implemented
to collect multicore processors.

2.2 Parallel Garbage Collection

Contemporary hardware provides abundant parallel processing units that can reduce the pro-
gram execution time. In a concurrent garbage collection, threads execute with the mutator
threads in the same time. However, parallel garbage collection is referred to the Stop-The-
world garbage collection, where mutator threads must halt to collect the heap. Parallel al-
gorithms and techniques are widely adopted and tracing garbage collection policies employ
parallelism to reduce pause time overhead. Essentially, the collection work must show that
there is enough work to be undertaken by multiple cores and that work is divisible between
the collector threads. This research considers a stop-the-world collector, in which the collec-
tion work includes four main tasks:

1. Enumerating the root set, which is a group of root references, e.g. static fields, threads
stacks, and globals

2. Scanning and tracing the root set to discover potential live objects

3. Processing the live object set

4. Reclaiming the garbage space

Details of individual task’s amount of work are described in Section 3.6.1.

13

2.2. PARALLEL GARBAGE COLLECTION

Parallelizing task (1) requires partitioning the potential root areas, where root references are
likely to be found. As described in Section 3.6, there are many root areas and each collector
thread scans one or more areas. The copying collector, in particular, divides the card table,
which records inter-generational references, into a number of chunks equal to the number of
garbage collection threads. The resulting scanned references constitute the root set. Task (2)
works on identifying live objects, which need to remain in the heap. Every root reference
may form a sub-graph of reachable objects. In this task, the garbage collector traces the
transitive closure of each root reference. Since task (1) is expected to generate many roots,
parallelism in task (2) is straightforward such that each garbage collector thread traces a
number of roots and their reachable object set. Once live objects have been identified, the
garbage collector in task (3) processes them in parallel. The copying collector copies the live
object set to a different space and the compaction collector compacts them to one side of the
space.

The reference graph may have references that are shared between multiple sub-graphs; hence,
caution is needed to avoid parallel threads re-processing those objects. The copying collec-
tor combines tasks (1) and (2), i.e. as a garbage collector thread discovers a live object, it
copies/promotes the live object to the target space immediately. In contrast, the compaction
collector requires multiple passes to process the live objects. Task (4) refers to the sweeping
or compaction phases. After processing the live object set, the garbage space becomes ready
for reclamation.

Parallel garbage collection algorithms encounter common parallelism issues, which could
minimize the parallel hardware utilization gains. For instance, garbage collection threads
need to synchronize on the root area tasks, i.e. task (1), which may lead to lock contention. In
addition, the transitive closure size of each root is likely to be different; thus, load balancing
is required to utilize the parallel hardware effectively.

The driving goal of many parallel collectors is to keep the processors busy processing the
workload. Few collectors consider the memory implications when designing the parallel
collection algorithms. In the next section, we will present processor-oriented and memory-
oriented parallel garbage collection algorithms.

Processor-oriented Parallel Collection

One of the earliest works on parallel garbage collection for Java is Flood et al. [2001] col-
lector. Various techniques have been incorporated in their parallel collector. Initially, the
parallel phase is preceded by a static task partitioning stage, task (1), where an augmented
number of tasks are prepared to enable the parallel phase to start with. These tasks are added
to a shared queue in order to distribute them across the garbage collection threads. However,

14

2.2. PARALLEL GARBAGE COLLECTION

this conventional parallel technique suits the systems with uniform memory access archi-
tecture. In NUMA architecture, garbage collection threads compete on the shared queue to
acquire tasks, which may direct threads to process remote memory. Additional time overhead
is expected when tasks are distributed without considering the memory locality.

When a garbage collection thread runs out of work, it peeks on other busy threads and steals

a reference. Work stealing aims at balancing the load over the collector threads. A thread
chooses two random queues and compares their sizes, then takes a reference from the larger
queue. Work stealing is facilitated with the Arora double ended queue [Arora et al., 2001]. A
thread uses one queue end to push and pop references and the stealing threads pop references
from the other end. All queue operations are performed in a thread-safe manner. Since the
work stealing algorithm randomly selects the queues, a non-local queue could be chosen.

Endo et al. [1997] propose a different mechanism to balance the load over marking threads.
They create a stealable mark queue for each thread and wrap it with a lock to synchronize
the access. A marker thread pushes references into its local queue and periodically checks
its stealable queue size, and if it is empty, the thread gives up all non-local reference to the
stealable queue. Once the local queue becomes empty, the marker thread acquires references
from its stealable queue, and if it is empty, it steals half of the references of another pending
stealable queue.

Instead of using work stealing for load balancing, Wu and Li [2007] implement a task push-
ing algorithm for parallel marking collection. Collector threads trace the reference graph
and push un-processed references into local marking stacks. Occasionally, each thread gives
up part of its references and pushes them into non-local queues. They choose to implement
N x N single producer/single consumer queues to accommodate pushed references, where
N is the total number of collector threads. Idle threads circulate over appropriate non-local
queues and acquire references. For instance, when thread i runs out of work, it searches for
references available in queue i of another garbage collection thread j , i.e. [j,i].

The task pushing design in this work aims for avoiding synchronization overhead on shared
queues. Every thread gets its local queue and N−1 non local queues. However, the memory
footprint of this design is proportional to the number of collector threads. In fact, as the
number of cores increases, we would expect a large space overhead to run the task pushing
algorithm. This dissertation proposes implementing a double-ended queue per NUMA node,
which is far less than per-thread queue.

Iyengar et al. [2012] study the scalability of the marking phase of the C4 algorithm [Tene
et al., 2011]. C4 is the continuously concurrent compacting collector, which is a concurrent
mark-compact collector. They report that the duty cycles of the marking phase get worse as
the number of threads increases. A primary source of this problem is the contention of work
sharing in marking tasks, where multiple threads attempt to atomically update words in a side

15

2.2. PARALLEL GARBAGE COLLECTION

bitmap. They modify the parallel marking algorithm of the mark-compact collection policy
to reduce the bitmap update contention overhead. The main idea is to split the bitmap into
N multiple sections and every section is processed by a single thread. The implementation
involves creating N queues for each thread participating in the marking work such that a
thread is able to push references to any queue but drain its own queue only. Every marking
thread participates in the reference graph traversal and distributes references according to
their bitmap section into the corresponding queue.

In the context of NUMA architecture, every bit in the bitmap maps to a word in the heap;
thus, the bitmap size is relatively small to fit in modern large cache sizes. In addition, the
cache line is big enough to accommodate multiple words; thus, false sharing would occur
with high probability. Furthermore, the JVM allocates the bitmap data structure at the ini-
tialization phase and it is likely to reside in a single NUMA node. Therefore, the collector
threads would saturate the bandwidth of that node.

Memory-oriented Parallel Collection

We have shown that processor-oriented parallel techniques for garbage collection attempt to
generate many units of work that are amenable for task working and task stealing. However,
memory locality is not generally taken into account in such algorithms. This section surveys
memory-oriented parallel techniques to improve the garbage collection locality.

Shuf et al. [2002b] implement a locality-based traversal algorithm. They devise a type-
affinity allocation scheme in which related objects of prolific (frequently instantiated) types
are co-allocated into clusters of parents and children. At collection time, the garbage collec-
tor threads exploit inherent locality of prolific types, and trace reachable object sets, which
are likely to be close to each other. They split the heap into several chunks and process local
objects in each chunk. References to remote objects are pushed into a shared queue to be
processed later on, possibly by other threads.

In their work, Shuf et al. take various implementation decisions to improve locality. For in-
stance, the chunk size is set to be equivalent to the TLB buffer size in order to minimize page
misses. In addition, garbage collection threads select roots in top-most stack frames because
they are likely to be in cache. For copying collectors, this locality-based traversal algorithm
reduces the pause time by 10%. However, for non-copying collectors, the algorithm does not
impact the garbage collection performance.

Chicha and Watt [2006] in similar work divide the heap into regions and create a trace queue
for each region. The garbage collection threads process local objects only in each region.
In contrast to Shuf et al. [2002b], remote objects are pushed into the trace queue of the
appropriate region. This mechanism improves the cache locality; however, they consider a
sequential case where there is no issue for load balancing.

16

2.3. HEAP PARTITIONING

Oancea et al. [2009] change the work granularity of parallel garbage collection threads to
heap partition level. They create a work list for each heap partition to store local objects and
a queue for each processor to hold off-partition objects that were discovered in each region.
In this way, a heap partition is owned by a single garbage collection thread at a time, which
obviates the need for queue synchronization. Since the heap partitions are not mapped to
NUMA topology, a collector thread may own a remote heap partition and increase off-node
traffic.

Zhou and Demsky [2012] implement master/slave architecture for parallel mark-compact
garbage collection. The master core manages the collection phases and distribute memory
to individual cores for allocation. At collection time, every core collects its local heap in-
dependently. Whenever there is a reference to remote object, the owner core sends a mark
message to the master core. The master core forwards the message to the appropriate core,
which adds the reference to its marking queue.

One of the key design decisions here is that the hardware, a Tilera processor, uses lightweight
messaging exchange support between cores. This feature minimizes queuing operations and
synchronizations as compared to Shuf et al. [2002b], Chicha and Watt [2006], and Oancea
et al. [2009].

Previous work discussed in this section does not study memory-oriented garbage collection
for NUMA architectures. In a recent work by Gidra et al. [2015], the heap is partitioned and
every partition is mapped to a NUMA node, similar to the Tikir and Hollingsworth [2005]
and Ogasawara [2009] heap layout. A garbage collection thread is allowed to collect its
local memory only. If a garbage collection thread encounters a reference to a remote object,
it sends a message to the appropriate NUMA node to process that object. In contrast to Zhou
and Demsky [2012] collector, the communication infrastructure contains a software channel
between each pair of nodes. For work stealing, idle garbage collection threads steal work
from any node, which could improve memory allocation imbalance between NUMA nodes.
Section 2.4 discusses NUMA aware garbage collection in detail.

2.3 Heap Partitioning

The last section presented memory-oriented parallel garbage collection techniques, which
generally depend on partitioning the heap. There are many criteria to partition the heap.
Objects possess various characteristics which make them distinguishable and amenable to
different collection policies. For example, objects live for a spectrum of lifetimes, construct
different connectivity patterns, or occupy a wide range of memory sizes. Memory manage-
ment often produces benefits when discriminating objects and applying different collection
mechanisms on them [Blackburn et al., 2002, Jones et al., 2011]. These benefits include

17

2.3. HEAP PARTITIONING

reduced pause time, lower space overhead, and better locality. In this section, various heap
partitioning schemes that improve garbage collection locality will be presented.

2.3.1 Thread-local Heaps

One way to partition the heap is to split the heap into two partitions: one partition accommo-
dates objects that are accessible by many threads and the second partition contains objects
that have exclusive access by the thread creating them. Many techniques have been em-
ployed to classify objects according to their accessibility. The allocator executes specialized
allocation methods to allocate objects in a thread-local heaplet for single thread access or in
a global shared heap for multi-thread accesses.

This partitioning scheme enhances object locality by grouping objects that are accessible
by a thread in one heap section; hence better memory page and cache locality in return. In
addition, it enables the collector to pause an individual thread and collect the thread’s heaplet
without interrupting and pausing other threads. In fact, this scheme is proposed originally to
reduce the cost of synchronization between mutator and collector threads [Jones and King,
2005]. Garbage collection requires this synchronization for the entire collection time, in
stop-the-world collection, where all mutator threads must halt, and for a particular phase
in concurrent collection, which pauses the threads to scan the roots. As a result, allocating
singly-accessed objects in the heaplets improves locality of the mutator and the collector
threads, reduces synchronization and pauses costs as well.

Functional languages, for example Haskell, have the ability to distinguish, ahead of time,
between mutable and immutable objects. In addition, functional languages semantics enable
the runtime system to duplicate immutable objects. Researchers exploit these features to allo-
cate immutable and mutable objects into different heap sections and apply different garbage
collection policies to each section. However, these techniques entail many challenges and
several optimizations.

Doligez and Leroy [1993] design a concurrent generational garbage collector for ML type
system. The heap layout consists of two generations: the young, which corresponds to the
multiple thread-local heaplets and contain immutable objects, and the global, which con-
tains mutable and survived immutable objects. Copying collection is applied to the heaplets
to move live objects to the global heap and the global heap runs mark-sweep collection
mechanism.

This memory manager strictly prohibits pointers from the global heap to the heaplets or
between the heaplets. When a pointer is made pointing to an object in the heaplet, the
collector clones the object and places it in the global heap. In addition to copying the object,
the collector copies the transitive closure that descends from the object. Object(s) in the

18

2.3. HEAP PARTITIONING

heaplets will have the address of the new copies to avoid copying them in the next minor
collection.

Anderson [2010] partitions the heap similar to the Doligez and Leroy [1993] heap layout and
applies the same collection policies. Moreover, the memory manager forbids pointers from
the global heap to the thread-local heaplets and between heaplets to allow independent and
asynchronous heaplet collection. Although the Haskell language is able to determine object
mutability ahead of time, Anderson observes that mutable objects are subject to mutation for
short time then become immutable. In contrast to Doligez’s heap layout, Anderson allocates
mutable and immutable objects in the heaplets. However, he tackles the problem of pointers
between the heap sections in a different way. When a pointer to an object in a heaplet is
written to an object in the global heap, a write barrier is called to collect that heaplet and
copy live objects to the global heap. In this case, the pointer will point to an object in the
global heap.

Since access to mutable objects are expected, the number of heaplet collections would in-
crease. Two optimizations have been proposed to overcome this overhead. First, Anderson
analyses the root cause of the minor collection time overhead and found that the stackwalk-

ing work constitutes largely to the collection time. The stackwalking refers to traversing
the frames on the execution stack. Therefore, stackwalking optimization, for example data
caching, was able to reduce the overhead by 50%. Second, intuitively, the existence of mu-
table objects in the heaplets will frequently initiate garbage collection; thus the write barrier
clones and allocate objects in the global heap. In contrast to Doligez and Leroy, Anderson at-
tempts to optimize the cost of global heap space consumption, which is caused by the cloned
objects, and increases the number of major collections.

Mutable objects tend to be more common in object-oriented languages than functional lan-
guages. The ability to split objects according to their mutability and the management of
heaps’ cross-section pointers may require different techniques.

Steensgaard [2000] designs the heap layout to have generational partitions. The young and
old generations contain per-thread heaplet as well as a shared heap for shared objects. All
partitions are collected with a copying collector. The minor collection moves live objects,
whether private or shared, to the old generation. Nonetheless, all heap partitions are col-
lected in the same time. This limitation enforces the mutators to rendezvous and a single
thread copies live objects in the shared heap only to the old generation. After that, all threads
collect their heaplets concurrently and resume normal execution independently. Although
heaplets are collected concurrently, latency in Steensgaard’s collector does not benefit from
this parallelism since the shared heap is collected as well. Major collection works similarly
as the minor collection but objects are copied to a new section in the old generation.

The collector performs static escape analysis to distinguish between objects that have sole

19

2.3. HEAP PARTITIONING

accessors and shared objects. Escape analysis results enable specialized allocation methods
to create objects in the appropriate location, whether in the heaplets or in the shared heap.
However, static analysis imposes several drawbacks when classifying objects as shared or
private. On one hand, the decision is based on the allocation site; all objects created by this
site are considered shared whenever it contains a shared objects, no matter how many objects
are private. On the other hand, if an object lives long as private, and then becomes shared,
the analysis will treat it as a shared object till its death.

In contrast to the static analysis technique, Domani et al. [2002] determine that, at runtime,
the status of an object whether it is shared or private using write barriers. Object locality
state is indicated by a bit stored in a bitmap. Objects are initially allocated in local heaplets
except objects that are global by nature, for example Class objects; thus they are allocated
in the shared heap. When an update to a pointer is required, a write barrier is invoked to
check if a private object becomes a descendant of a shared object. A write or read barrier
is a mechanism for the garbage collector to execute memory management code when a read
or write to an object occurs. If this is true, the private object and its descendant objects are
marked as shared objects in the bitmap. The collector applies a mark-sweep algorithm to
collect the heaplets and the shared heap and the whole heap is compacted whenever there is
not enough space. A thread performs a minor collection independently from other threads
on local objects only when the heaplet is full. Major collection is initiated if the shared heap
is full or when the heaplets cannot satisfy local allocation requests.

A major drawback of Domani et al. is that the write barrier does extensive work in traversing
and marking globally accessible objects and their descending objects. Jones and King [2005]
avoid the write barrier overhead by taking a snapshot of the heap at runtime and incorporate
static analysis. Initially, objects are allocated in the shared heap. At certain point in the exe-
cution order, the runtime system takes a snapshot of the classes loaded up to that point. After
that, the snapshot is statically analysed and objects are classified as strictly local, optimisti-
cally local, and global. According to the analysis results, a number of specialized versions of
methods are generated and fed to the JIT compiler and to the interpreter to allocate objects
into appropriate heap sections. Pointers are forbidden from global objects to the heaplets
or between the heaplets; therefore, every thread collects its own heaplet independently from
other threads.

Marlow and Peyton Jones [2011] study the effect of promoting private objects to the global
heap. The results show that promoting the transitive closure of a pointer written to a shared
object incurs high cost. Consequently, instead of promoting the transitive closure of an
object, the memory manager accepts pointers from the shared heap to the private heaplets
and protects private object accesses by read barriers rather than write barriers. Whenever
an access to a private object is requested, the read barrier checks if the private object is
owned by the thread itself then it grants an access to the object directly. Otherwise, the read

20

2.4. NUMA HEAPS

barrier works as a guard asking the owner thread to move the object to the global heap. The
heap layout then consists of per-thread heaplets each with two parts. The first part acts as
a traditional nursery with a copying collector. The second part is called the sticky heap,
which contains objects that lack read barriers, hence are private and immovable and this part
is collected with mark-sweep collector. The shared heap is collected with a stop-the-world
collector.

Cohen et al. [2006] attempt to cluster the sub-heaps to reduce the number of thread-local
heaplets and the number of objects in the shared heap. The main idea behind this work is
that a number of threads share a sub-heap where allocated objects are accessed only by those
threads. At collection time, only these threads are suspended while other threads remain
executing. They use a clustering software module [Mancoridis et al., 1999, Harman et al.,
2005] technique, which is based on a hill climbing algorithm to find optimum heap clusters.

The clustering technique works by creating a Thread Dependency Graph (TDG), a directed
graph that represents threads as nodes and dependencies between threads as edges. The
dependency indicates threads’ accesses to an object. For instance, if object O is accessed by
Thread A and B, then a dependency is created between threads A and B. The graph is built
using system traces of previous runs and fed into parallel hill climbs. The results provide
the proposed heap layout which consists of a number of sub-heaps where each sub-heap is
mapped to one or more threads and a shared heap to accommodate objects that break the
heap clusters. Experiments show that heap clustering reduces the number of sub-heaps and
the total number of shared objects in the shared heap.

2.4 NUMA Heaps

The heap partitioning schemes described in the last section focus on various object charac-
teristics. This section surveys a physical memory heap partitioning criterion, the NUMA
heap. Heaps in modern machines are physically partitioned between NUMA nodes. There-
fore, object placement techniques for NUMA heaps have gained attention recently due to
the growing availability of NUMA machines. Moving objects between NUMA nodes can
potentially improve mutator threads performance by placing objects frequently accessed by
threads of a NUMA node into the same node.

Tikir and Hollingsworth [2005] study the impact of applying dynamic page placement tech-
niques, which are used for applications with regular memory access patterns, on Java ap-
plications. They examine three placement policies on the SPECjbb2000 Java application.
First, static-optimal: a technique that has the access information of each heap allocation.
Objects are placed in a memory page local to the processor accessing them. Second, prior-
knowledge: this technique knows the access information about surviving objects and mi-

21

2.4. NUMA HEAPS

grates them to memory pages local to the processor accessing them the most at garbage col-
lection time. Third, object-migration: measures the access frequency for each object since
the start of execution and the garbage collector uses this information to migrate objects to
the processor’s local memory pages.

The study results show that the prior-knowledge policy provides the best results in both the
young and the old generation. In addition, the object-migration technique reduces the non-
local memory accesses in the old generation. Therefore, the authors suggest to partition the
heap according to the system’s NUMA topology. The heap will have the following layout:
the Eden space of the young generation and the old generation are segregated into a number
of segments equal to the number of NUMA nodes. They did not partition the survivor space
because the experiments showed low memory accesses to the survivors; hence low potential
benefit from partitioning this space. This heap layout is implemented and evaluated using
a simulator. Calculating the memory access frequencies is the crucial component of this
research; however, the values were obtained from previous runs of the workload and fed to
the simulator in advance. The results show a reduction of non-local memory accesses by
40% compared to the original heap layout in the Hotspot JVM.

Ogasawara [2009] criticizes the method used to calculate the memory access information,
which was based on trace file processing. The inaccuracy of matching memory access events
with objects and the time consumed by the garbage collector to find out the preferred location

of an object in which it will be moved to; drive the researcher to consider an easier and
lower overhead technique to calculate the preferred object location. He employs heuristic
information to determine the preferred object location and calls this the dominant-thread
(DoT) information. Heuristics include the thread identifier that acquires the object lock or
reserves the object. This information is available in the object header and getting it incurs
very low overhead. In case an object does not hold this information, the object gets the
preferred location calculated for the object referencing it directly or indirectly.

Moreover, the heap layout is similar to Tikir’s heap, however, Ogasawara partitions the sur-
vivor space as well. The old generation consists of a number of segments matching the
number of NUMA nodes. The Eden space in the young generation consists of multiple seg-
ment groups. Each group contains multiple segments to reflect the NUMA topology. In
addition, the survivor space contains one segment group only. Mutators request memory
from the corresponding segment in the Eden space. The allocation policy is not strict so it
can extend the memory from the next segment as needed.

Garbage collector threads identify the preferred location of a survivor object using the dom-
inant thread information. First, the preferred location of objects directly pointed at from the
thread stacks is the NUMA node of the thread running on it and, which can be retrieved by
system calls. Second, for objects that are locked or reserved, the preferred location is the

22

2.5. OBJECT LOCALITY

thread identifier stored in the object header. Third, other objects use their parent’s preferred
location. The garbage collector moves the live object set to the preferred locations in the
survivor space or the old generation.

Gidra et al. [2013] relate NUMA heap partitioning to the memory allocation policy that pro-
vides potential scalability benefits over increased core counts. They study the memory allo-
cation behavior of multi-threaded applications and conclude that, as a common programming
practice, the initialization phase is done by a single thread. Given that Linux memory alloca-
tion policy for NUMA systems uses First-Touch policy [LinuxMemPolicy, 2015], memory
pages of the Eden space will be mapped to a single NUMA node; causing future allocation
requests to be satisfied from a single node, which saturates the memory bandwidth and the
cross-chip interconnection link of that node. Accordingly, they suggest to interleave mem-
ory pages of the Eden space to avoid memory imbalance issue, however, interleaved memory
policy ruins memory locality because objects will be scattered across all NUMA nodes. In
addition, the young generation accommodates short-lived objects that are mainly accessed
by the thread creating them; hence, fragmenting the young generation in correspondence to
the NUMA topology, similar to Tikir and Ogasawara studies, is likely to improve the mutator
and collector threads locality.

Another observation is that long-lived objects in the old generation benefit much from mem-
ory balanced allocation policy. When the garbage collector uses the interleaved memory pol-
icy, survivor objects would be distributed across the NUMA nodes, providing better memory
bandwidth of the memory controllers and the off-chip interconnect links. Gidra’s NUMA-
Aware Parallel Scavenge (NAPS), a stop-the-world throughput-oriented garbage collector in
the Hotspot JVM, employs fragmented space in the young generation and interleaved mem-
ory policy in the old generation and experimental results show that stop-the-world collector
is able to scale well.

2.5 Object Locality

Object oriented programming languages, for example Java, make extensive use of dynami-
cally allocated heap objects. The memory manager allocates an object in the heap and returns
a reference to it. Any access to that object is through its reference. This kind of memory
allocation gives the memory manager the ability and flexibility to allocate and relocate ob-
jects in any space within the runtime heap boundaries. The memory manager needs only to
ensure that the object’s reference is up to date since it is the only way to access the object.

The flexibility of object movement in the runtime heap challenges the garbage collector to
manage spatial and temporal locality. Therefore, a large body of research works on im-
proving object locality. It spans a wide range of subjects: from placing frequently accessed

23

2.5. OBJECT LOCALITY

objects adjacently in a memory page to placing frequently accessed fields of an object or
group of objects in a single cache line and from the reference graph’s traversal order to
NUMA heap partitioning.

This section reviews three optimization areas for object locality. These optimizations con-
sider different kinds of locality— based on physical, e.g cache lines, and logical, e.g. object,
components. First, the object traversal order and its impact on object locality are discussed
using static analysis techniques. Second, cache locality is studied using dynamic analysis of
object access patterns. Third, several optimization techniques used for multicore and NUMA
architectures are presented.

2.5.1 Cache Locality Optimization

Java objects are generally small in size [Bacon et al., 2002, Chilimbi et al., 1999a, Chilimbi
and Larus, 1998]. A cache line (usually 64 bytes in size) can accommodate multiple objects.
This feature attracts researchers to explore possible techniques to improve object temporal
and spatial locality at the hardware cache level. Obviously, frequently accessed objects are
potential candidates to live in the same cache line. In fact, literature goes further and explores
which fields of an object have higher access rate than the others. Object’s fields can be re-
organized such that “hot” fields placed next to each other. Consequently, frequently accessed
fields of an object placed together in the same cache line. A step further in the research
enables hot fields of multiple and different objects to reside in a single cache line.

The main challenge to the cache locality optimization is how to identify hot fields of an
object, so that they can be co-located in the same cache line. This section reviews a number
of cache locality optimization approaches. A fundamental technique in these approaches is
that they profile the program at runtime to record data access information and calculate the
hot fields.

Chilimbi and Larus [1998] develop a graph-based technique to identify hot objects and cre-
ate cache-conscious data structures. At program execution, a data profiling system records
the object’s base address for each load operation and enters it in an object access buffer.
The garbage collector uses the data profile buffers to construct a weighted undirected object
affinity graph. Nodes in the graph encode objects and edges encode temporal affinity. At
collection time, the collector uses the affinity graph to layout objects with high temporal
affinity next to each other. The outcome of this technique is high spatial and temporal cache
locality since frequently accessed objects would reside closely and the same cache line is
going to be used soon.

Nonetheless, the average overhead of runtime profiling constitutes up to 6% of a Cecil pro-
gram’s execution time. Since the object affinity graph is constructed at every collection, they

24

2.5. OBJECT LOCALITY

apply this technique on the old generation only because minor collections are triggered more
often which may cause significant overhead.

Calder et al. [1998] implement a different cache-conscious data placement technique. They
use a compiler-directed mechanism that assigns addresses for global variables, stacks, heap
objects, and constants to reduce data cache misses. Their technique requires a training run
to gather data access information. The collected information is fed to the compiler to map
proposed new virtual addresses for local and global variables and constants. For heap ob-
jects, they modify the memory allocator to assign the new addresses at runtime. The results
show substantial locality improvement for global variables and stack objects; however, heap
objects obtain insignificant performance improvement.

Novark et al. [2006] present an approach that enables programmers to change and control
the object layout at collection time. Programmers annotate the code and provide a custom
object layout for a class, which works as a hint to the runtime system to arrange objects in
memory. At garbage collection time, the collector invokes the custom object layout methods
to place objects into contiguous memory. Results show that a custom object layout reduces
cache misses by 50%.

For non-garbage collected environments, Chilimbi et al. [1999b] propose two techniques
for data reorganization: clustering and coloring. Clustering attempts to group data struc-
ture elements that have temporal affinity in a cache line. They target tree-like data structure
and develop a tool to reorganize the data structure elements into sub-trees that are laid out
linearly. On the other hand, the coloring technique organizes data in the cache to avoid re-
source conflicts. A cache has limited number of concurrently accessed data elements in a
cache block. Thus, coloring maps concurrently accessed elements to non-conflicting regions
of the cache to reduce cache conflict misses. However, these techniques require program-
mer’s intervention to select related objects. In addition, they target L2 cache to get larger
cache size and put many objects in the same cache line. When the cache line becomes full
and other objects cannot fit into it, the authors attempt to co-locate objects into the same
virtual memory page; hence, TLB misses will be minimal. The programmer has to intervene
here and add hints that these objects are likely to be accessed together.

The memory hierarchy and the large data structures divert the research on optimizing cache
locality to explore fine-grained techniques. Object fields often have different access frequen-
cies. Instead of wasting a cache line with rarely accessed fields, only frequently accessed
fields of objects should reside in the cache line.

Chilimbi et al. [1999a] suggest structure splitting to arrange internal organization of structure
instances. The main idea of structure splitting is that Java classes have different access
frequencies and that enables the class to be divided into hot (frequently accessed) and cold
(rarely accessed) portions based on field access profiling. This technique requires static

25

2.5. OBJECT LOCALITY

analysis to provide class information and dynamic analysis to measure class instantiation
and access statistics. Profile data are given to the compiler to generate code with structure
splitting optimization. Class splitting involves injecting a pointer from the hot class to the
cold class. Accordingly, hot class construction must create cold class instance first. The
results showed around 20% performance improvement.

Furthermore, internal organization of large structures that span multiple cache lines can also
be reorganized. Fields in a structure are ordered logically, which do not necessarily corre-
spond to the temporal access patterns. Consequently, this logical layout may incur unneces-
sary cache misses. Moreover, a few fields of each class instance are accessed by the most
active parts of the code [Truong et al., 1998]. Therefore, laying out these fields that are of-
ten referenced together into the same cache line improves the program performance [Panda
et al., 1997].

As in class splitting, Chilimbi et al. [1999a] employ static and dynamic analysis to construct
a field affinity graph of a structure and generate recommendations for field reorganization.
Fields with high temporal affinity are clustered in the same cache line. However, such class
splitting and field reordering techniques require substantial programmer effort.

The internal field reorganization of a class may still fill the cache line with unnecessary cold
fields. Truong et al. [1998] suggest filling the cache line with frequently accessed fields of
different instances of a class and call this technique instance interleaving. This is based on
an observation that the reference pattern of a program often accesses a few fields in each
instance and these fields are not enough to fill a cache line. In addition, their technique en-
sures that when interleaving many instances, these fields are likely to be contemporaneously
accessed, therefore, fields are mapped to different cache sets to eliminate conflict misses.

2.5.2 Memory Page Locality Optimization

A heap-allocated object is accessed through a pointer or a sequence of pointers. This form
of reachability does not imply locality, in general. Objects that have similar access patterns
may be allocated in distant memory locations. In addition, objects that survive a garbage
collection may change location. Various criteria can be used to improve object locality in
virtual memory. For instance, allocating objects that have been referenced together or objects
with high access frequency next to each other may obtain high spatial locality.

Static Object Reordering

One way to improve object locality in the virtual address space is the traversal order. The
garbage collector treats live objects that the application still accesses as a reference graph. A

26

2.5. OBJECT LOCALITY

traversal order may co-locate parent and children objects together or split them away. There
are many traversal orders discussed in the literature. Breadth-first is a common traversal
order and it slices the graph horizontally keeping nodes in the same level close to each other.
This traversal is simple and cheap using a few pointers that resembles a queue. Objects to be
processed are dequeued from the head of the queue, while their descendants are enqueued
into the tail of the queue. Cheney’s algorithm [Cheney, 1970b] employs breadth-first order
in his collector to copy objects between semi-space heap regions. A major effect of this
traversal is that parental objects are separated from their children. In fact, they could be
allocated in different memory pages, perhaps in different NUMA nodes. Objects in typical
data structures, e.g. linked lists, are likely to be referenced together; thus, breadth-first would
not satisfy optimal object locality for such data structures.

As opposed to the breadth-first order, depth-first traversal places parent and children objects
together. Sequential access to objects may benefit from this order since objects will be
next to each other. Many collectors involve depth-first traversal, e.g. [Courts, 1988, Moon,
1984, Stamos, 1984]. Although depth-first traversal keeps elements of lists close to each
other, Courts [1988] reports only 10%-15% performance gains. The reason behind this low
percentage was that the locality improvement targets system images, i.e. a copy of a system
utilities and libraries, and lists were not the common data structure incorporated in a system
image [Lam et al., 1992].

Wilson et al. [1991] argues that most data structures are tree-like and neither breadth-first nor
depth-first provide optimal locality. They implement a hierarchical decomposition traversal
algorithm and hypothesize that tree structures should be best grouped in sub-trees. This
technique will group together a node with its closest descendants, which is better than depth-
first which covers only one branch. However, this technique was tested on a program with
various data structures and the results did not provide better locality. They conclude that a
fixed traversal may not yield optimal ordering.

In a different, but related problem, the system image is mainly organized as library functions,
typically including compiler, browser, and editor [Andre, 1986]. These functions remain
live throughout execution of every program. To achieve better locality, functions should be
grouped according to a correlation aspect. One aspect to organize the library functions is the
creation order, which is the time functions are presented to the compiler. Another aspect is to
group functions according to the transitive call sequence [Lam et al., 1992]. Both techniques
gain better locality and fewer page faults.

Different object ordering can be combined to provide adaptive ordering according to various
object correlation factors. One way to implement adaptive ordering is to adapt the traversal
to the object type [Lam et al., 1992]. In this technique, the collector checks the object type
and applies an appropriate order to improve the locality of that object. For instance, objects

27

2.5. OBJECT LOCALITY

of list type are processed in a depth-first order and objects of tree type are traversed in a
hierarchical decomposition order.

All analysis techniques considered so far in this section are static, i.e. object layout strategy
is set ahead of time. Static analysis provides information about how objects can be ordered
not how objects will be accessed [Courts, 1988]. Programs often exhibit different execution
phases, in which access to objects changes from one phase to another. Static analysis and
offline profiling may provide misleading information or do not capture phase changes. A
dynamic (online) profiling would provide accurate measures.

Dynamic Object Reordering

Runtime systems may include Just-In-Time (JIT) compiler for fast code execution compared
to code interpreter. In contrast to the classic compiler, JIT compiler compiles the code at run-
time, and it usually compiles hot methods, which are frequently executed methods. Huang
et al. [2004] utilize method sampling, which is used by the adaptive JIT compiler to opti-
mize hot methods, to identify hot fields in the hot methods. The overhead of this profiling
is less than 2% since it piggybacks on the system’s method sampling. At garbage collection
time, the collector copies referents of the hot field with their parent. Furthermore, they im-
prove their online object reordering technique by changing the hotness threshold to respond
to phase changes.

Chen et al. [2006] combine cache and page locality optimizations in the same system. They
instrument the JIT compiler of the Common Language Runtime (CLR) to record object ac-
cesses in a buffer and insert monitoring code to gather certain metrics that guide locality
optimization. For cache locality, they use Chilimbi and Larus [1998] technique, which con-
structs an affinity graph to co-locate related objects in the same cache line. Objects that are
not moved during cache locality optimization and still have frequent accesses are grouped in
separate pages of the heap. One of the most advantageous contributions in their work is that
the locality optimization is decoupled from the normal garbage collector, which is a reaction
to the heap space constraints. Whenever the program’s data access pattern changes due to
program phase behaviour, the system triggers the garbage collection to respond to the data
locality changes. This proactive calling to the garbage collection is managed by the object
allocation rate, which is a reliable indicator of locality phase change. The results showed
17% improvement in the program performance.

Guyer and McKinley [2004] develop a dynamic object co-location algorithm to group con-
nected objects in the same heap space of a generational collector. One advantage of this
work is to eliminate cross-generational pointers, which incurs write barrier overhead. To
discover potential connectivity between objects, the algorithm employs static analysis to find
old objects that will reference new objects. At runtime, a new allocation routine puts newly

28

2.5. OBJECT LOCALITY

allocated objects in the same region as the old object. Co-locating dynamically connected
objects improves the garbage collection time by 50%, and the total execution time by 10%.

Wimmer and Mössenböck [2006] collect access profiles using read barriers inserted in the
machine code by the JIT compiler. For each class, whenever a field load instruction is ex-
ecuted, a counter that tracks this field is incremented. As the program executes, fields that
reach a load threshold are considered hot and added to a hot field table. This table is used by
the garbage collector to co-locate parent and child objects at collection time.

Another aspect of grouping related objects is the notion of prolific types. Shuf et al. [2002a]
observe that some object types frequently instantiate many objects and those objects tend
to live for short time. They suggest to partition the heap into two regions: one region for
prolific type objects and the other region for non-prolific objects, which are analogous to the
young and old generation of a conventional generational collection. The garbage collection
performs minor collections in the prolific region; however, survivor objects remain in the
same region and no object is promoted to the non-prolific region.

Yu et al. [2008] attempt to improve the identification method of prolific types at runtime.
They create two spaces: reusable and non-reusable space to co-locate prolific types. The
main difference to Shuf et. al is they locate prolific objects of the same type side-by-side
in the same memory block. When collecting the reusable space, the prolific objects in a
memory block are likely to be dead, hence the memory block is recycled. In contrast to Shuf
et. al, both spaces are collected every time.

Object Inlining

Objects in object-oriented languages often contain fields that point to other objects. This kind
of connection incurs field load overhead to access the referenced objects. Object inlining
is an optimization that embeds referenced objects into their referencing objects. The main
advantages of object inlining are to allocate objects in a consecutive memory addresses in the
heap and to substitute the reference in the parent object with address arithmetic. Accordingly,
object inlining optimization improves cache and page locality by co-locating objects next to
each other.

Typically, object inlining is performed by a static compiler; where static analysis and trans-
formations techniques pass through the code to spot possible inlining opportunities. When-
ever the compiler finds candidate inlinable objects, it replaces the allocation sites of these
objects with one site, which allocates inlined object. Research that explores this optimiza-
tion includes the work of [Dolby and Chien, 2000, Laud, 2001, Lhotàk and Hendren, 2005].

Instead of relying on the static compiler, Java provides a JIT compiler to dynamically com-
pile the bytecode into the machine code. This feature can improve the inlining decisions

29

2.6. OBJECT CLUSTERING

taken at compile time by inlining objects that are frequently accessed. In addition, since the
garbage collector moves objects around the heap, it can support object inlining optimization
by placing inlinable objects consecutively in the heap.

Wimmer and Mössenböck [2007] implement an automatic feedback-directed object inlining
optimization. Their algorithm involves a runtime monitoring system, which injects read
barriers to count field accesses and detect hot fields. The generational garbage collector uses
the profile data to find hot fields and co-locate the parent object and the child object that are
connected by the hot field in consecutive memory space in the young generation. Moreover,
when the parent object is eligible for promotion to the old generation, the garbage collector
moves the parent and the child objects together, which is considered as a form of object
pretenuring to the old generation.

Veldema et al. [2005] generalize object inlining optimization and suggest combining related
objects together if they are: eligible for object inlining, have similar access pattern, or if they
have similar life spans. The solution applies several static analysis techniques to find objects
where combining them might be beneficial. The results show reduction in the total execution
time by up to 34%.

2.6 Object Clustering

In a larger memory region, i.e. many memory pages, objects may exhibit certain character-
istics that can be utilized to improve garbage collection performance. For example, a group
of objects may have similar lifetimes or a particular object type could allocate objects with
high proliferation frequency. Such properties enable the garbage collector to apply different
optimizations on each object group.

Generational garbage collectors exploit the weak generational hypothesis [Stefanović et al.,
1999, Ungar, 1984], which states that most objects die young. Consequently, an age-based
object segregation scheme places an object according to its lifetime. The young generation,
which accommodates short lived objects that are often accessed frequently, can be collected
independently from other partitions. Collecting the young generation frequently would re-
duce pause time and the overall amount of work. Moreover, reclaimed memory space from
collecting the young generation is large (most objects die young) and that enables sufficient
memory space for future memory allocations.

However, the old generation does not exhibit the same properties as the young generation
[Hayes, 1991]. The space occupied by old objects is larger than for the young generation;
hence, collecting the old generation is time consuming. Several techniques have been pro-
posed to enhance the old generation collection, for example incremental collection [Hudson

30

2.7. DATA PLACEMENT POLICIES

and Moss, 1992] and object pretenuring [Ungar and Jackson, 1992, Blackburn et al., 2001,
Singer et al., 2007].

The connectivity between objects is another criterion for clustering objects. Both kinds
of connectivity: direct, where object A points to object B or transitive, where object B is
reachable from object A can reveal object grouping criteria. A study by Hirzel et al. [2002]
examines different connectivity patterns and object lifetime and deathtime. They conclude
that connected objects that are reachable only from the stack are shortlived; whereas, objects
that are reachable from globals live for long time, perhaps immortally. In addition, objects
that are connected by pointers die at the same time.

This object connectivity behavior can be utilized to improve the garbage collection perfor-
mance. The same authors, Hirzel et al. [2003] segregate the heap into many partitions, each
contains a set of connected objects. They use compiler analysis to determine the connec-
tivity of objects and eliminate write barriers by avoiding pointers between partitions. Since
connected objects usually die together, the garbage collector chooses some partitions where
much space can be reclaimed. To trigger the garbage collector, an estimator is used to anno-
tate the partitions with a high proportion of garbage to indicate the need for collection. They
developed a simulator gcSim to evaluate their solution and report improved performance over
other garbage collection implementations.

Once a garbage collector implements a policy that segregates objects based on certain object
properties, it would apply this policy on all objects regardless of the application behavior.
The user program usually exhibits different phases, in which the memory requirements are
different. The memory manager should recognize and exploit phased behavior. Jones and
Ryder [2008] study Java object demographics and find a relationship between allocation
sites, for example JIT compiler and the user program allocations, and both the program
phase behavior and object lifetime distribution. Objects allocated by these allocation sites
cluster strongly and are stable across different inputs. They conclude that allocation sites
create objects with consistent behavior; thus the garbage collector works on objects from
key allocation sites where objects are expected to die [Jones and Ryder, 2006].

2.7 Data Placement Policies

NUMA architecture increases the space of memory page mapping options. Data can be
allocated in a local or remote NUMA node relative to the thread’s node that accesses it. In
contrast to UMA architecture, data location may impact the access latency; hence, the overall
application performance.

Managed runtime systems reclaim garbage memory automatically and this implies a high
likelihood of object movement between NUMA nodes for generational heaps. In fact, an

31

2.7. DATA PLACEMENT POLICIES

object may live in multiple NUMA nodes during the course of its life. A memory placement
policy determines an initial object location for the application threads; however, the garbage
collector changes the object location and alters the memory placement policy. Furthermore,
programs exhibit different execution phases where data access characteristics at each phase
may be different; hence, a static data placement policy may be suboptimal.

Existing deployed data placement strategies consider two factors to provide optimal NUMA
machine performance. Firstly, threads and data are placed in the same NUMA node to
increase locality and avoid remote access overhead. Secondly, data is distributed across
the system’s nodes to avoid bandwidth saturation. This section will review various data
placement policies.

In the late 1990s, remote access overhead in NUMA systems took 3 to 5 times longer than
local access [Verghese et al., 1996]. This overhead was due to the legacy wiring techniques
which resulted in major delays in the interconnection links between nodes. To overcome this
issue, a large body of research attempts to improve locality by placing data in the local node
of the core accessing it.

Several techniques have been developed to improve data locality. To avoid the large re-
mote/local access latency ratio, memory pages can freely move between NUMA nodes to
enable local access. This technique is called memory page migration. A memory page that
is frequently accessed by a remote core is migrated to the core’s node.

Previous memory page migration policies were developed in the context of non-cache-coherent
NUMA systems, for example, Bolosky et al. [1991], LaRowe et al. [1991]. Kernel-based
NUMA management policies are modified to explicitly move memory pages in response to
page fault events. LaRowe et al. [1991] exploit page fault signals and modify operating sys-
tem memory management modules to implement a parameterized memory page migration
policy. For instance, a shared memory page between NUMA nodes may have temporal ac-
cess. Thus, the memory page may bounce between NUMA nodes and affect access latency.
To avoid actively-shared memory page bouncing between NUMA nodes, they set a freeze-

window to hold memory page migration for a certain period then defrost it. They concluded
that tunable dynamic memory page migration can have dramatic impact on application per-
formance.

Bolosky et al. [1991] use reference traces from a variety of applications to drive simulations
of different NUMA page placement policies. In addition, they employ a cost/benefit model
to decide whether the cost of moving a memory page outweighs the cost of remote memory
access overhead. Chandra et al. [1994] investigate the effectiveness of using TLB misses
as an indicator for memory page migration on cache-coherent NUMA systems. However,
they report that there is no improvement on the response time for the workloads due to
internal issues of their virtual memory system. Instead, they carried out a trace-driven study

32

2.8. CONCLUSION

to evaluate the usefulness of using TLB misses to migrate memory pages and found that TLB
misses can be used to improve application performance.

Verghese et al. [1996] employ a cache miss heuristic to create a decision tree for memory
page migration. Nonetheless, using cache misses captured by sampling or trace-driven tech-
niques to migrate memory pages does not gain any benefits. They report that the main causes
were due to the processor synchronization and TLB flushing overhead.

In contrast to high performance applications which gain performance from memory page
migration, object-oriented languages create small objects so a memory page can accommo-
date plenty of them. Therefore, memory page migration might not be beneficial for Java-like
programs [Tikir and Hollingsworth, 2005].

Shared data is likely to complicate memory page migration optimization. As described ear-
lier, memory pages may bounce between NUMA nodes if they contain intensive data sharing.
Alternatively, memory page replication attempts to duplicate highly shared memory pages
and enable different threads to access them.

2.8 Conclusion

This chapter has reviewed the general area of automatic memory management, with particu-
lar focus on identifying and exploiting memory locality. The literature survey of the existing
research in the field of garbage collection shows that most studies target UMA architectures.
A great deal of studies focuses on improving object locality (Section 2.5 and Section 2.3).

NUMA related garbage collection research have emerged in the last decade. Few studies
have examined optimizing garbage collection for NUMA architecture. The review of these
studies (presented in Section 2.4) shows that changing an object location due to copy/com-
pact collection may impact the application and the garbage collection performance. There-
fore, there are various techniques to calculate the new destination of an object. An object can
be relocated to the NUMA node of the core accessing it the most ([Tikir and Hollingsworth,
2005]), to the same NUMA node ([Gidra et al., 2013]), or using heuristics to identify the
appropriate NUMA node ([Ogasawara, 2009]).

A common mechanism to relocate objects to the appropriate NUMA node in those studies
is to partition the heap into segments and map them to the underlying system’s NUMA
topology. Managing NUMA segments is a non trivial task. Unbalanced memory allocation
may frequently fill some segments and increase the rate of garbage collection cycles. In
addition, a segment resizing policy may allow different NUMA memory pages to be in the
same segment.

33

2.8. CONCLUSION

Furthermore, garbage collection threads must know the original NUMA node of every object
before moving it. The cost of this operation is proportional to the live object set size. This
dissertation contributes to the field by investigating alternative techniques to the existing
ones by avoiding heap partitioning and minimizing the cost of object location retrieval which
could provide better performance gains.

The next chapter presents technical background of hardware and software components that
interact with garbage collection and may impact its performance.

34

CHAPTER

3

TECHNICAL BACKGROUND

This chapter presents a brief technical background on hardware and software components
related to my work in memory management. Since the goal of this dissertation is to opti-
mize garbage collection on NUMA architectures, it is important to know how the underlying
hardware and software execution stack interacts with memory. NUMA architectures present
complex topologies and a hierarchical memory subsystem. By comprehending such an in-
teraction, we will be able to understand and better predict the program’s performance.

This chapter discusses three main topics:

1. First, it describes the evolution of parallel architectures from unicore to multicore pro-
cessors. Since the experimental system of this research is based on AMD Opteron
processor, this chapter illustrates the memory components that affect data placement
decisions. Information is extracted from AMD developer manuals and various system
engineers’ articles.

2. Second, it highlights NUMA configurations and tools that Linux provide for memory
and thread management.

3. Third, based on the OpenJDK Hotspot JVM source code, this chapter describes the
implementation of the Parallel Scavenge: a Stop-The-World garbage collection policy.

35

3.1. INTRODUCTION

3.1 Introduction

Advanced technologies for the processor enable the clock rate to scale up until the time it
hits the power wall, where the heat and power dissipation impede clock frequency speedup
[Liu et al., 2009]. An architectural response to this problem has driven the processor archi-
tects to integrate multiple cores in a single chip. This new architecture forms the basis for
contemporary and prevalent multicore and manycore processors available for a wide range
of usage; from end-user mobile devices to large enterprise servers.

Over the past two decades, computer scientists have anticipated the memory wall phenomenon
[Wulf and McKee, 1995, McKee, 2004], where the memory bandwidth would be unable to
support the abundant memory access requests issued by an ever increasing number of cores.
This problem occurs as a result of the disparity between processor speed and memory access
latency [Hennessy and Patterson, 2011a]. Figure 3.1 depicts a single processor performance
in terms of memory requests per second compared with memory access performance per sec-
ond. Contemporary processors employ sophisticated and hierarchical data communication
channels between processing units and memory. Modern applications increasingly utilize
many parallel processing units to increase the performance. These parallel processors put
pressure on the memory bandwidth to access data but the bandwidth is limited, and its im-
provement is lagging behind the processor advancement. To address this issue, technologies
have been developed to expand memory bandwidth and reduce memory access latency.

Multicore processor’s design challenges the shared memory model, where all cores access a
shared memory space. It is observed that the memory bandwidth will be under pressure due
to the huge number of simultaneous memory access requests from integrated cores. There-
fore, the memory design response has shifted the shared memory model from a centralized
memory area to a distributed shared memory model. This design implies that memory is
distributed across the system while having a shared addressing scheme.

The implication of such a design is that cores can access any memory area in the system.
However, memory access latency is different from one memory area to another. Table ??
shows the relative memory access latencies for traffic between these four nodes.

This access latency variation is due to the interconnection delay between distant memory
areas. To take advantage of distributed shared memory architectures, operating systems
attempt to place data close to the processing units to avoid communication overhead. In
addition, they take into account different data placement factors, for example memory bal-
ance to distribute data across all the system’s memory banks. At more abstract software
execution layers, such as the virtual machine, data placement is usually devolved to the
operating system. However, program’s performance may be suboptimal due to features of
the system’s topology which are not tolerated by the OS’s memory policy. The OS default

36

3.2. PARALLEL ARCHITECTURES

Node 1 3 4 6
1 10 16 16 22
3 16 10 16 22
4 16 16 10 16
6 22 22 16 10

Table 3.1: NUMA delay time between nodes.

Figure 3.1: The performance gab between processor and access to main memory. Source:
[Hennessy and Patterson, 2011a]

memory allocation policy may separate data from processors and increase memory access
latency. Therefore, memory allocation policies need to be aware of the underlying hardware
to reduce the overhead of remote memory accesses.

This chapter describes related the hardware and software components that affect an appli-
cation’s data placement. Section 3.2 describes parallel architecture evolution. Section 3.3
highlights NUMA architecture and low level hardware specifications. In particular, this sec-
tion is dedicated to the AMD Opteron processor architecture, which is the platform used
for all experiments in this dissertation. An overview of Linux memory allocation policies is
provided in Section 3.4, then Section 3.5 discusses the virtual to physical memory page map-
ping mechanisms. Section 3.6 describes the implementation of garbage collection policies
in the OpenJDK Hotsopt JVM. Specifically, it considers the Parallel Scavenge collector: a
Stop-The-World garbage collector and reviews implementation details from the source code.

3.2 Parallel Architectures

The current trend to support scalable performance is to augment the number of cores per
processor. These cores can be organized in different ways according to their data flow and
control flow. Flynn [1972] identifies four categories of parallel architectures:

37

3.2. PARALLEL ARCHITECTURES

1. Single-Instruction stream, Single-Data stream (SISD): This architecture consists of a
single processing element and can access a program and data storage. For example,
unicore processors implement SISD architecture and represent conventional sequential
computers following the Von Neumann model.

2. Multiple-Instruction stream, Single-Data stream (MISD): There are multiple process-
ing elements, each executing its own program. However, they have single access to
data in the global memory. Processors may execute different instructions but they
have identical data as operand. For example, systolic arrays include a network of
hard-wired processor nodes to perform a specific operation such as parallel convolu-
tion tasks. This type of architecture is very limited and has not been built commercially
[Rauber and Rünger, 2010a].

3. Single-Instruction stream, Multiple-Data stream (SIMD): In this architecture, multiple
processing elements execute the same instruction stream but different data is loaded
from global memory with private access. Vector processors are good examples of this
category.

4. Multiple-Instruction stream, Multiple-Data stream (MIMD): Here, multiple processing
elements load separate programs and separate data from the global memory. They
work asynchronously. Multicore processors are example of MIMD category.

General-purpose computers largely adopt the MIMD model for parallelism. With its widespread
implementation, MIMD computers can be further classified into two categories according to
two aspects of their memory organization: the virtual and the physical memory. Proces-
sors in MIMD machines could have physically shared memory, called multiprocessors, or
physically distributed memory which are called multicomputers. From a virtual view of the
memory, MIMD computers could use shared address space or distributed address space. The
two views of the memory (physical and virtual) need not be the same; a system with shared
virtual address space can run on top of physically distributed memory.

3.2.1 Distributed Memory Architectures

A distributed memory system consists of a number of nodes, each node contains a process-
ing element, local memory, and possibly I/O elements. Nodes are connected via an inter-
connection network that communicates data between nodes. Data stored in local memory is
private to its processor. When a processor needs data from other nodes, it typically exchange
send/receive messages with the target node. Therefore, message passing is the preferred
parallel programming model for distributed memory systems [Rauber and Rünger, 2010b].

38

3.2. PARALLEL ARCHITECTURES

3.2.2 Shared Memory Architectures

A shared memory machine consists of a number of processing elements, a global shared
memory, and an interconnection network to connect processors with the global memory. The
global memory in modern machines is implemented as a set of multiple memory modules.
Data communication between processors is performed by writing or reading from shared
variables. Write operations to shared variables must not be concurrent; otherwise a race
condition would occur with an unpredictable result.

The shared memory model can form two different architectures with reference to the mem-
ory access latency: Uniform Memory Access (UMA) and Non-Uniform Memory Access
(NUMA) architectures. In UMA architecture, processors are connected to the shared mem-
ory via a central bus, Front-Side Bus. The distance between processors and the shared mem-
ory is uniform; therefore processors have equal access latency to the memory. This central
bus provides constant bandwidth to all processors; thus it increases access collisions and
causes additional access latency. In addition, there is no private memory for processors, but
they use a cache hierarchy to accelerate access to data. Hierarchical organization of pro-
cessors, cores, and caches imposes communication overhead between processing elements
based on the distance between each other [Cruz et al., 2010]. For instance, the AMD Bull-
dozer micro-architecture incorporates a shared L2 cache between every two cores. A data
placement policy should consider such a design to improve cache efficiency.

A Symmetric Multiprocessor (SMP) is an implementation of UMA shared memory archi-
tecture, where multiple processing elements “cores” are integrated in a single die [Gepner
and Kowalik, 2006]. Each core is considered as a processor and has its own resources. In
addition, each core has its own cache subsystem and may share part of the cache hierarchy
with other cores in the same die. SMPs usually employ a small number of processors be-
cause adding more processors to the SMP chip would increase memory access collisions on
the central bus. Consequently, scalability of SMP processors is limited [Esmaeilzadeh et al.,
2012]. The maximum number of processors in a bus-based SMPs is between 32 and 64
[Rauber and Rünger, 2010a]. Figure 3.2 depicts a standard multicore UMA architecture.

For more scalable SMP processors, a processor can integrate a number of cores in a single
chip and distribute the memory among the cores. The memory address space is shared be-
tween cores, however, the memory access latency is non-uniform. A core may exhibit long
access latency time to access remote memory. To minimize remote memory access overhead,
the cores may use a cache subsystem. Cores must ensure that a memory address contains
the most recently updated value by using a suitable cache coherency protocol. This kind of
architecture is called cache coherent NUMA (ccNUMA). Figure 3.3 presents an example of
multi-hop NUMA architecture.

The trend for modern chips is toward less memory per core [Vajda, 2011]. When multi-

39

3.2. PARALLEL ARCHITECTURES

Core

Memory

Core Core Core

B
U

S

Multicore Processor

Cache Cache Cache Cache

Shared Cache

Figure 3.2: A standard multicore UMA architecture diagram.

C
o
re

M
em

o
ry

C
o
re

C
o
re

C
o
re

M
u

ltico
re

 P
ro

cesso
r

C
ach

e

Core

Memory

Core Core Core

Multicore Processor

Cache

C
o
re

M
em

o
ry

C
o
re

C
o
re

C
o
re

M
u

lt
ic

o
re

 P
ro

ce
ss

o
r

C
ac

h
e

Core

Memory

CoreCoreCore

Multicore Processor

Cache

Figure 3.3: A standard multi-hop multicore NUMA architecture diagram.

40

3.3. NON-UNIFORM MEMORY ACCESS ARCHITECTURE

threaded applications consume per-core memory, the rate and time for freeing memory is
likely to be high. This research attempts to improve data locality for garbage collection to
reduce collection time. Therefore, improvement to garbage collection would have a greater
impact on modern processors.

The next section discusses the NUMA architecture in more detail, since it will be the focus
of this research.

3.3 Non-Uniform Memory Access Architecture

Modern multicore processors implement a distributed shared memory model that takes the
form of multi-node multi-socket system. Every node consists of a number of cores attached
to “local” memory banks. Usually, a processor socket represents a single node. An AMD
Opteron processor that we use in this research contains two nodes. Sockets are connected
by a network of links. The design of the processor’s interconnection is a processor manu-
facturer propriety. For instance, AMD uses HyperTransport™ technology and Intel® uses
QuickPath interconnection technology to connect nodes. In NUMA architectures, cores in
each node have uniform access latency time to the local memory. When a core accesses
non-local remote memory addresses, it incurs additional access latency due to the off-chip
interconnections delay between nodes.

NUMA architectures create opportunities to scale up the number of cores and the mem-
ory bandwidth. This research uses a NUMA AMD system, which consists of four sockets
and eight nodes. Each node contains eight cores and 64GB memory. It implements the
“Piledriver” micro-architecture, which has 2MB L2 cache shared by every two cores and
6MB L3 cache shared by all eight cores in a node. This hardware specification is taken from
Linux “/proc” files. Figure 3.4 depicts the AMD Opteron NUMA multi-core system.

AMD Opteron processors manage memory access transactions through a dedicated unit
called the NorthBridge (NB) [Conway and Hughes, 2007]. Figure 3.5 depicts a NB micro-
architecture design. This unit is responsible for routing the memory transactions originated
from cores and interconnect links to access core, cache, DRAM, or interconnect links. When
a memory access request misses the L3 cache, which is the Last Level Cache (LLC), the re-
quest is sent to the NB unit. Since memory banks are distributed, the physical address is
mapped to the normalized address. Memory is accessed by the normalized address only and
the NB unit is responsible for translating the physical to normalized addresses.

The NB unit includes various components:

1. System Request Interface (SRI): holds a table of physical to normalized address map-
ping.

41

3.3. NON-UNIFORM MEMORY ACCESS ARCHITECTURE

M
a
ch

in
e
 (

5
0

4
G

B
)

S
o
ck

e
t

P
#

0
 (

1
2

6
G

B
)

N
U

M
A

N
o
d
e
 P

#
0

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

0

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

1

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

2

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

3

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

4

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

5

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

6

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

7

N
U

M
A

N
o
d
e
 P

#
1

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

8

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

9

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

1
0

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

1
1

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

1
2

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

1
3

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

1
4

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

1
5

S
o
ck

e
t

P
#

3
 (

1
2

6
G

B
)

N
U

M
A

N
o
d
e
 P

#
6

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

1
6

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

1
7

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

1
8

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

1
9

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

2
0

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

2
1

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

2
2

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

2
3

N
U

M
A

N
o
d
e
 P

#
7

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

2
4

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

2
5

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

2
6

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

2
7

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

2
8

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

2
9

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

3
0

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

3
1

S
o
ck

e
t

P
#

1
 (

1
2

6
G

B
)

N
U

M
A

N
o
d
e
 P

#
2

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

3
2

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

3
3

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

3
4

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

3
5

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

3
6

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

3
7

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

3
8

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

3
9

N
U

M
A

N
o
d
e
 P

#
3

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

4
0

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

4
1

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

4
2

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

4
3

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

4
4

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

4
5

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

4
6

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

4
7

S
o
ck

e
t

P
#

2
 (

1
2

6
G

B
)

N
U

M
A

N
o
d
e
 P

#
4

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

4
8

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

4
9

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

5
0

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

5
1

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

5
2

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

5
3

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

5
4

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

5
5

N
U

M
A

N
o
d
e
 P

#
5

 (
6

3
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

0

P
U

 P
#

5
6

L1
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

5
7

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

5
8

L1
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

5
9

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

4

P
U

 P
#

6
0

L1
 (

1
6

K
B

)

C
o
re

 P
#

5

P
U

 P
#

6
1

L2
 (

2
0

4
8

K
B

)

L1
 (

1
6

K
B

)

C
o
re

 P
#

6

P
U

 P
#

6
2

L1
 (

1
6

K
B

)

C
o
re

 P
#

7

P
U

 P
#

6
3

P
C

I
1

4
e
4

:1
6

3
9

e
m

1

P
C

I
1

4
e
4

:1
6

3
9

e
m

2

P
C

I
1

0
0

0
:0

0
7

2

sd
a

sd
b

sd
c

sd
d

sd
e

sd
f

P
C

I
8

0
8

6
:1

0
c9

p
2

p
1

P
C

I
8

0
8

6
:1

0
c9

re
n
a
m

e
5

P
C

I
1

0
0

2
:4

3
9

0

P
C

I
1

0
2

b
:0

5
3

2

ca
rd

0

co
n
tr

o
lD

6
4

H
o
st

:
to

g
ia

n
.d

cs
.g

la
.a

c.
u
k

In
d
e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
T
u
e
 0

7
 J
u
n
 2

0
1

6
 1

3
:0

6
:4

1
 B

S
T

Figure 3.4: AMD Opteron 6366 NUMA architecture topology. This diagram is generated by
lstopo tool [Broquedis et al., 2010].

42

3.3. NON-UNIFORM MEMORY ACCESS ARCHITECTURE

Figure 3.5: AMD NorthBridge micro-architecture. Source [Conway and Hughes, 2007]

2. Memory Controller (MCT): is responsible for managing the data flow from and to the
main memory and contains the logic to read and write to DRAM.

3. DRAM Controller. (DCT) controls memory transactions to memory banks, for exam-
ple DRAM refresh operations.

4. HyperTransport link ports: The NB unit has three ports to connect to other nodes.

A typical memory access journey is as follows: suppose a core is executing an instruction
that needs to access data in the memory. If data is not in the cache hierarchy, the memory
access request is sent to the SRI component. The SRI decodes the physical memory address
to generate the normalized address. In addition, the SRI checks whether the memory address
belongs to its local memory ranges. If the memory access is to local memory, then the
SRI sends the memory request to the on-chip memory controller and waits for the memory
transaction to complete. Otherwise, it looks up the routing table and forwards the memory
access request to the appropriate HyperTransport link port and then awaits for the end of the
memory transaction.

The overhead of accessing remote memory location begins at the stage of looking up the
routing table to find the destination node. The remote access latency counts the round trip
of a complete memory transaction. In addition, the off-chip interconnection network in our
system involves multiple access hops. A memory transaction may get routed twice to reach

43

3.4. NUMA MEMORY ALLOCATION POLICIES

SRI decodes the

physical address

to normalized

address

A memory request misses LLC

SRI checks the

normalized address

location

Memory request is

sent to the on-chip

memory controller

Local Memory

SRI looks up the routing table and

sends the memory request to the

target s hypertransport port

Remote Memory

Figure 3.6: Memory Request

the final memory destination. This dissertation attempts to minimize this remote memory
access overhead by managing garbage collection threads to access local memory only.

3.4 NUMA Memory Allocation Policies

As discussed in Section 3.3, processors in a multi-hop NUMA system may access distant
memory locations and incur additional access latency time. NUMA-aware operating systems
provide various memory allocation policies. The default memory policy in Linux is called
First-Touch policy. Setting a memory policy for a process or a range of memory addresses
does not take effect until the page is hit by a memory transaction. Untouched memory pages
of a process are not allocated. If the untouched page is requested for access, the processor
issues a page fault. The Linux kernel handles this page fault and allocates the page according
to the configured memory policy, i.e. assigns the page to a NUMA node. The instruction that
requested an access to that page is restarted and is able to access the memory.

Two criteria influence memory allocation policies: locality and balance. Local node memory
allocation policy is the most common policy. The local node policy attempts to grant local
cores fast access to memory by allocating memory from the local node and avoiding off-chip
interconnection delay.

However, a multi-threaded program may allocate and access large amounts of memory in its
sequential code segment. Alternatively, it may be biased towards a small number of cores
enabling them to allocate much of the program’s memory needs from a few nodes. This

44

3.5. VIRTUAL TO PHYSICAL MEMORY PAGE MAPPING

imbalanced memory consumption may saturate the local node’s memory capacity and band-
width while other nodes still have enough resources. As a result, operating systems introduce
interleaved memory policy, which trades off the locality for memory balance. Interleaved
memory policy allocates memory from the system’s nodes in a round robin order.

Linux, since kernel 2.6, uses the interleaved policy as the default policy on boot-up for the
kernel processes. Since kernel structures are shared among running processes, it is advan-
tageous to distribute the kernel structures across all nodes. The interleaved policy avoids
excessive load on a single node when processes access kernel data structures. The default
policy changes to local node when the first userspace process is started [Lameter, 2013].

Processes inherit the default policy, which is local node, when they start running. The Linux
scheduler prefers to keep the process running on the same node to benefit from cache locality.
In particular, the scheduler leaves the process to run on cores that share L2 cache, then cores
that shares L3 cache of the last run. At last and for load balancing needs, the scheduler will
move the process to another node.

Operating systems provide tools to control processes with a specific NUMA execution en-
vironment. The main Linux tool is numactl, which can display the system’s NUMA con-
figuration and set a user-specified NUMA scheduling or memory allocation policy. When a
policy is set for a process, all its children inherit the same policy setting. The Linux man

numactl command displays the tool’s usage and examples.

3.5 Virtual to Physical Memory Page Mapping

Operating systems execute a computer program in an autonomous entity called a process,
which is a dynamic instance of a program. Modern computer machines provide physical
resources with high capacity, for example manycore processors, large memory space, and
video accelerators. Therefore, many processes can run simultaneously by sharing the system
resources. One of these resources is the memory, and operating systems incorporate many
techniques to organize the memory usage.

Since every process is an autonomous entity, a process creates its own linear and contiguous
virtual address space to allocate program code and data. The process treats its virtual memory
as if it is the sole owner of the physical memory. The main advantage of using virtual memory
is to enable many processes to run at the same time without any interference between the
processes.

45

3.5. VIRTUAL TO PHYSICAL MEMORY PAGE MAPPING

Figure 3.7: Hierarchical Page table for 4KB page size on 64-bit x86 Linux. Source [AMD,
2015]

3.5.1 Memory Pages

The physical memory is divided into chunks of memory called frames. Operating systems
set different sizes for memory frames. For instance, Linux sets the default physical mem-
ory frame size to 4KB. Bigger frame sizes are available and the system developers provide
various configurations to suit different needs. Linux also provides 2MB and 1GB memory
frames.

Processes allocate code and data in the virtual memory pages. When a process attempts
to access a memory location, the operating system needs to translate the virtual memory
address to a physical memory address. The virtual address is divided into two segments: a
virtual memory page and an offset address. The translation operation is done with the help
of a hardware cache component called Translation Lookaside Buffer (TLB), which stores the
recent memory mapping entries. If the virtual memory page is not cached in the TLB, the
operating system issues a page fault signal to retrieve the translation entry from the page table
(page walk), which contains virtual to physical mapping entries. The operating system walks
through the page table and searches for the mapping entry of the requested virtual memory
page. If the page is touched for the first time, the operating system allocates a physical page
and updates the page table. Once it retrieves the mapping entry, it updates the TLB cache
and restarts the memory transaction. This mechanism is called on-demand paging to manage
the physical memory efficiently between the running processes.

46

3.5. VIRTUAL TO PHYSICAL MEMORY PAGE MAPPING

Figure 3.8: Hierarchical Page table for 2MB page size. Source [AMD, 2015]

For 64-bit processor architecture, the address space is huge. AMD Opteron uses 48 bits
for physical address space and 48 bits for virtual memory address space. Walking the page
table of such a huge memory spaces incur space and time overhead. For example, for 48 bit
virtual memory page address and 4KB page size, we get 64GB (36 bits) of page table entries.
Therefore, operating systems incorporate a hierarchical page table, which implements multi-
level paging tables to manage the page translation entries in a more efficient way. AMD
Opteron processors implement four paging levels as described in Figure 3.7. The virtual
address contains the address offset (12 bits) and other paging level fields (36 bits). Thus,
walking the page table with a hierarchical page table requires less space when compared to
the flat paging mechanism.

Memory-intensive and big data applications require large memory capacity that the system
provides. These applications allocate large data structures, which cross the memory page
boundaries and use many memory pages. Although the virtual memory space for such data
structures could be contiguous, the physical memory space is unlikely to be contiguous. For
NUMA systems, these memory pages could be mapped to different NUMA nodes. In addi-
tion, every memory access requires a translation operation and if the page entry is not cached
in the TLB, accessing a data structure would require many page table walking operations.
This additional overhead may degrade the application performance.

Operating systems provide a solution to minimize memory page mapping and page table
walking. Instead of dividing the physical memory into frames of size 4KB, the frame size

47

3.6. JAVA VIRTUAL MACHINE AND GARBAGE COLLECTION

Memory Allocation policy No. of Pages
Interleaved 290 (4KB)

49 (2MB)

Table 3.2: First 290 virtual pages were mapped to memory nodes in a round robin order.
Then, transparent huge pages are used to map every 512 virtual page to a memory node.

could be of size 2MB or 1GB for large memory space. In the case of 2MB memory page
size, the virtual address contains the memory address offset (21 bits) and other paging level
fields (27 bits). Figure 3.8 depicts the virtual address fields.

Applications may use the hugetlbfs file system to allocate data in huge pages. Although
huge pages improve locality by co-locating data in the same page, they may impose internal
fragmentation when part of the page is not being fully utilized. Furthermore, operating
systems provide huge pages as an optional configuration, and the system administrator needs
to mount the file system to use huge pages.

Alternatively, Linux implements Transparent Huge Page “THP” mechanism to support auto-
matic promotion and demotion of frame sizes. If THP is enabled, the operating system maps
the virtual memory page to a huge frame without user intervention. In contrast to hugetlbfs,
THP does not need to reserve space for huge pages. In addition, applications require no
modification in the code to take advantage of THP.

To examine this mechanism on our target platform, a micro-benchmark is written to allocate
a large object and outputs the memory mapping results. The memory policy was set to
interleaved and the program allocates a 100MB object. At each 4KB page boundary, the
code retrieves the NUMA node of each memory page.

The results show that the operating system mapped the first 290 memory pages to the NUMA
nodes in a round robin order. Subsequent virtual memory pages were mapped to physical
frames using THP mechanism. Table 3.2 illustrates the results. Accordingly, the operating
system uses the remaining 4KB page entries in the current page directory then switches to
huge page entries for subsequent virtual memory pages. The remaining 4KB pages in a page
directory varies and each process may get different number of 4KB pages.

3.6 Java Virtual Machine and Garbage Collection

The Java Virtual Machine (JVM) is an abstract computing machine defined by the Java spec-
ifications “JAVA SE” [Gosling and Buckley, 2015]. Hotspot is an implementation of the
JVM released by Oracle Corporation. There are many JVM implementations, for example
IBM J9, Jikes RVM, and Android Runtime (ART). OpenJDK is an open source project by
Oracle to enable the Java community to contribute to Java standards and implementations.

48

3.6. JAVA VIRTUAL MACHINE AND GARBAGE COLLECTION

Figure 3.9: JVM data areas

OpenJDK Hotspot JVM implements many components, for example bytecode interpreter
and Just In Time (JIT) compilers and three garbage collectors. This dissertation extends and
modifies Hotspot JVM of OpenJDK version 8 [OpenJDK, 2015].

The JVM defines various runtime data areas. Each JVM thread has a stack which lives for
the duration of the thread lifetime. A thread’s stack holds the local variables and partial
results. All JVM threads share a runtime heap, where dynamically allocated data is stored.
They also share a method area, which stores per-class structures and code. The constant pool
area stores per-class or per-interface constants. Native methods that are written in different
languages are stored in native method stack area. Figure 3.9 depicts the JVM data areas

The runtime heap area implementation in the OpenJDK Hotspot JVM is a generational mem-
ory, where the heap is divided into age-based generations. General garbage collection con-
cept are presented in Section 2.1. The Hotspot JVM implements three different garbage
collection policies: Parallel Scavenge, Concurrent Mark-Sweep, and Garbage first. These
garbage collection policies use parallel threads to collect the heap. When the application
threads and the garbage collection threads execute in the same time, the garbage collection
is called “concurrent”. In this dissertation, we focus our optimizations on the Parallel Scav-
enge (PS) policy. PS collector is a Stop-The-World collector, where the application threads
need to pause before the garbage collector threads commence collection.

PS splits the heap into two generations [SunMicroSystems, 2006]. First, the young genera-
tion accommodates immature (young) objects and is exposed to minor collections in order
to preserve the live objects that are still needed by the application and reclaim the memory
occupied by garbage. It consists of two spaces: the Eden space, which accommodates newly

49

3.6. JAVA VIRTUAL MACHINE AND GARBAGE COLLECTION

Eden From To Old Perm

Objects are
instantiated here

Swappable areas
For survivor objects

Mature objects
live and die here

Classes and other immortal
Objects live here

Young Generation Old Generation

Figure 3.10: A schematic view of the heap spaces: Eden and survivor spaces (the young
generation) and the old generation

allocated objects and the semi-space survivor space to hold survivor objects of the minor
collections. Second, the old generation retains mature objects that live for long time. Jones
et al. [2011] explain garbage collection notions and concepts in more detail.

The PS policy implements a copying collector that evacuates survivor objects from the Eden
space to the survivor space or from the survivor space to the old generation. For the old
generation, the PS implements a Mark-Compact collector. Live objects are marked first then
compacted to reclaim the garbage memory. Figure 3.10 illustrates the PS heap structure and
garbage collection policies for each generation.

Every mutator thread allocates a Thread Local Allocation Buffer (TLAB), a large, private
buffer in the Eden space. TLABs improve memory allocation performance because syn-
chronization on the global heap lock is minimal when large buffers are allocated. Moreover,
mutators co-allocate objects contiguously in the TLAB and this mechanism improves spatial
locality. The existing minimum buffer size is set to 8KB and the memory manager expands
and shrinks TLABs according to the JVM ergonomics.

Similarly, garbage collector threads use large buffers to place survivor objects. Every thread
allocates a Promotion Local Allocation Buffer (PLAB) in the survivors space and in the old
generation. The default PLAB size in the young generation is set to 16KB, whereas it is 4KB
in the old generation.

The next section discusses the copying collector in detail.

3.6.1 The Copying Collector

Short lived objects reside in the young generation, thus, many dead object are likely to fill
the young generation. When an allocation request fails due to the lack of free memory,
the memory manager triggers a minor collection operation to collect the Eden space and
evacuates surviving objects to the survivor space or to the old generation. The space left in

50

3.6. JAVA VIRTUAL MACHINE AND GARBAGE COLLECTION

Figure 3.11: A diagram of the GCTask and thread-local data structure.

the Eden space would be a large contiguous memory for future allocations.

Data Structures

The copying collector uses various data structures to manage the collection operations. First,
GCTaskQueue is a shared deque, which uses the Arora queue design [Arora et al., 2001]
Arora queue implements single producer/multiple consumers paradigm. From one end, only
one thread can enqueue, whereas, multiple threads can dequeue from the other end using
atomic operations. This queue implements the Arora design [Arora et al., 2001].

At one end, a thread called the Virtual Machine (VM) thread populates the queue with
GCTasks during the sequential phase. GCTasks are tasks with different functionalities and
the three main types are: root scanning, work stealing and finalizing tasks; these tasks are
explained later.

When the parallel phase begins execution, the collector threads may push GCTasks of other
types to manage the parallelism. Therefore, this queue’s end must be wrapped with a lock to
synchronize thread access. The other queue’s end is lock-free and the collector threads use
atomic operations to pop GCTasks.

Second, every collector thread creates a private deque to iterate over root closures. The Arora
queue enables the queue to push and pop from one end. The other end is left for starving
threads that run out of work to steal references and balance the load across participating
threads. To avoid space overflow, the Hotspot JVM creates a stack accessed by the owner
thread only to push references when the Arora queue is full.

Figure 3.11 depicts a schematic view of GCTasks and thread-local queues.

51

3.6. JAVA VIRTUAL MACHINE AND GARBAGE COLLECTION

Third, the VM thread pushes different types of GCTasks into the GCTaskQueue. There are
three main GC task types that manage the parallel collector thread execution.

Root Scanning Task: A root scanning task directs a garbage collector thread to a
memory area, where potential root references can be found. For example, root ref-
erences may reside in TLABs, Java Native Interface (JNI) handles, or card tables;
therefore, the VM thread creates many root scanning tasks and pushes them into the
GCTaskQueue. The card table refers to a table that records inter-generational refer-
ences. References from the old generation to the young generation is recoded in the
card table.

Work Stealing Task: The collector threads process references by the means of clo-
sures in which a root reference and its sub-graph are copied to other heap spaces.
However, the depth of root closures is not equal; deep closures require additional time
for processing. Consequently, the VM thread creates work stealing tasks to maintain
the load balance across the collector threads. The number of work stealing tasks is
equal to the number of the collector threads.

Finalizing Task: At the top of the queue, a unique task is used by the termination
protocol to synchronize the collector threads and hand over the control to the VM
thread.

Algorithms

The garbage collection begins with a sequential code phase executed by the VM thread
for preparing, bookkeeping and managing the collection operations. The collector threads
park at the GCTaskQueue monitor, waiting for GCTasks to process. As described earlier,
the GCTaskQueue is prepared in this phase and the VM thread hands in the control to the
parallel phase and sleeps.

The parallel phase starts by waking up the collector threads, notifying them that the GC-
TaskQueue has GCTasks ready for processing. The collector threads compete on the queue
lock and the successful thread pops a GCTask, which should be a root scanning task. Other
threads spin on the lock, trying to lock the queue and pop a GCTask. Once root scanning
tasks have been processed, every collector thread pops a work stealing task and attempts to
get work from busy workers. The remainder of this section focusses on two parallel tech-
niques: work processing and work stealing.

Work processing begins by popping a root scanning task from the GCTaskQueue. This task
directs the collector thread to a memory area and scans resident objects to find ones that have
a reference to the heap. These objects are considered as roots and are copied to the thread’s

52

3.6. JAVA VIRTUAL MACHINE AND GARBAGE COLLECTION

local Arora queue. When the collector thread completes scanning the memory area, the local
queue begins to be ready for processing the root references and their attached sub-graphs.

The collector thread pops a reference, copies it to the target heap space, and scans it if it has a
reference. References that are discovered while processing the root closure, are pushed into
the thread’s local Arora queue. The traversal order is depth-first, thus children and parents
are co-located together. If a collector thread comes across a referenced object that already
has been copied, it skips that object and pops another reference. Once all references in the
local queue have been processed, the collector thread pops another root scanning task, if any,
or a work stealing task.

A work stealing task enables the collector thread that has finished root scanning tasks to peek
on other threads’ queues. The existing stealing algorithm selects two queues randomly and
compares their sizes. The larger queue size is chosen and the stealing thread atomically pops
a reference from the end. The stolen reference is processed in the same way described for
root scanning task. In the case when a stealing thread fails to obtain a reference, it repeats the
process many times until it reaches a threshold. Hotspot sets the threshold equal to double
the number of participating threads.

While the collector threads work on root scanning and work stealing tasks, one thread pops
the finalizing task and gets promoted as a leader to terminate the parallel phase. Every
collector thread increases a global counter atomically to indicate that reference processing
work has been completed. The finalizer thread checks the counter and if all threads have
finished their work, it wakes up the VM thread and hands over control to it. All garbage
collector threads return and park at the GCTaskQueue monitor. The sequential code executes
the remaining collection operations and resumes application execution.

3.6.2 The Mark-Compact Collector

The old generation contains long-living objects and spans a large memory space compared to
the young generation. It is collected by a mark-compact garbage collector which eliminates
fragmentation and compact live object towards one side of the heap. The mark-compact
collection algorithm consists of four phases:

1. The Marking Phase: The heap is split into regions to divide the work across the com-
pactor threads. At each region, a marking thread marks all live objects and calculates
their total size.

2. Summary Phase: A single thread sequentially calculates the object’s size in each
region and sets each object’s destination. In addition, it calculates the dense prefix,
which is an area that holds old-enough objects that are likely to be eternal; hence,
cannot be moved.

53

3.6. JAVA VIRTUAL MACHINE AND GARBAGE COLLECTION

3. Compaction Phase: At this stage, live objects are moved to their new location and
reference addresses are updated. Updating the address of objects that cross two or
more regions are deferred to the last phase. Compaction is performed on a region basis;
regions that are ready to be filled are pushed into a shared queue and the compactor
threads atomically pop a region and compact objects into it.

4. Clean up Phase: It updates the references of deferred objects and re-initializes the
variables.

Data Structures

The mark phase uses the same data structures, i.e GCTasks, GCTaskQueue, and thread local
Arora queues, as in the copying collector. In addition, Hotspot uses a Mark Bitmap data
structure to mark the objects live using atomic operations. The compaction collector assigns
regions to the parallel collector threads by adding ready to fill regions in an Arora queue.

Algorithms

The marking phase performs the same operations as the copying collector except that instead
of moving objects to their new location, it marks objects live. When a marking thread pops a
reference from its local Arora queue, it sets the corresponding bit in the bitmap and calculates
the object size. The finalizing task maintains the parallel termination protocol and hands over
the control to the VM thread to execute the summary phase.

The summary phase prepares the heap regions to compact objects in the same region or in
other regions. At least one region is pushed into the shared Arora queue to begin the parallel
phase. The compaction collector attempts to create a dense prefix which contains mature-
enough objects that are likely to live for the duration of the program execution. This is done
gradually every time the major collection is triggered. Objects are moved and compacted
to one end of the heap. Objects in the dense prefix are not moved since they are already
compacted. However, references may get updated to reflect new object locations.

3.6.3 The Parallel Scavenge Optimizations for NUMA Machines

The Hotspot JVM extends the Parallel Scavenge garbage collector to take advantage of
NUMA machines [Oracle, 2016b]. The NUMA-aware allocator can be turned on with the
-XX:+UseNUMA flag. When it is enabled, the Hotspot JVM divides the Eden space of the
young generation into several segments and each segment is mapped to a NUMA node. Mu-
tator threads allocate objects in TLAB buffers and those buffers are placed in the mutator’s
local node. Objects instantiated by a thread are most likely to be accessed by the same thread.

54

3.7. CONCLUSION

Other heap spaces, the survivor spaces of the young generation and the old generation, have
pages interleaved from all NUMA nodes. The hypothesis behind this design is that threads
would have equal access latencies for mature objects. Accordingly, objects are distributed
across the memory nodes.

At the time of splitting the space into segments, the memory manager touches the memory
pages of each segment. This eager memory access to the segments is to ensure that segments
are mapped to the appropriate NUMA nodes. The heap resizing policy remains active to
comply with the application’s allocation rate; therefore, segments may expand or shrink as
needed.

The implementation code [Oracle, 2016a] includes additional sanity check methods for seg-
ment’s mapping correctness. For instance, it might happen that “remote” pages are placed in
a segment. This is due to the fact that the target NUMA node has a shortage in its memory.
Therefore, the memory manager scans every memory segment after each collection cycle
to free the segment from remote pages. The NUMA topology may change during the pro-
gram execution or threads are context-switched to another NUMA node. Consequently, after
each collection cycle, the memory manager re-initializes the Eden space and applies the new
changes.

3.7 Conclusion

This chapter has revised the technical details for the hardware and software infrastructure
relevant to my experiments. They include NUMA multicore processor architecture and oper-
ating system support. It also highlighted the state-of-the-art OpenJDK Java virtual machine,
with particular emphasis on the memory management system. All the details presented in
this chapter are well known features of commodity NUMA systems available off-the-shelf.
The next chapter will review in detail the academic research on NUMA platforms and JVM
garbage collection.

55

CHAPTER

4

EXPERIMENTAL SYSTEM
INFRASTRUCTURE

Throughout this dissertation, a variety of Java application workloads are evaluated. These
experiments ran on a system which is built and configured to exhibit NUMA effects. This
chapter describes the infrastructure used in the experiments, from both hardware and soft-
ware perspectives. The setup described in this chapter is the basis for all experiments, unless
explicitly stated elsewhere in the text.

The outline of this chapter is as follows: Section 4.1 details the hardware and operating
system configuration. Benchmarks and heap size configuration are described in Section 4.2.
Summary of this chapter is presented in Section 4.3.

This chapter provides the following contributions:

1. It describes the multicore machine used for this dissertation’s experiments.

2. It describes a number of real-world benchmarks along with other crafted and modified
benchmarks that give an understanding of program behavior.

56

4.1. HARDWARE SETUP

4.1 Hardware Setup

NUMA access latency overhead’s problem emerges when a system comprises several NUMA
nodes. In particular, the overhead manifests if NUMA architecture is hierarchical which in-
volves multi-hop communications between NUMA nodes. Such a system incorporates a
wide spectrum of data placement options and multiple access routes. Experiments in this
dissertation are being run on a machine with multi-hop eight-node NUMA architecture.

Our machine encompasses four AMD Opteron 6366 processors. A detailed view of the ma-
chine’s processors and NUMA connections is depicted in Figure 3.4, page 41. This proces-
sor’s family implements the Piledriver architecture which contains two cores in a compute
module. A core is clocked at 1.8 GHz and the two cores have shared access to L2 cache
(2MB). Each processor consists of two dies, each with 4 compute modules, making the total
number of cores sixteen and the overall system 64-core machine.

Every die in a processor integrates a memory controller. Therefore, a processor holds two
NUMA nodes and the system contains eight NUMA nodes in total. In addition, a memory
bank of size 64GB is attached to each NUMA node, and the overall system memory size is
512GB. The processors are connected via four HyperTransport 3.1 links with speed of 3.2
GHz and throughput of 6.40 GT/s per link.

The machine runs Linux 3.11.4 64-bit kernel. We use interleaved memory policy, which
implies that memory pages of size 4 KB are mapped to each memory node in a round-robin
order.

4.2 Benchmarks

This section presents the benchmarks that are used as workloads in our experiments. They in-
clude a variety of Java-based applications from three benchmark suites: DaCapo 9.12 [Black-
burn et al., 2006, 2008], SPECjbb2005 [SPEC05], and SPECjbb2013 [SPEC13]. These
selected benchmarks are established benchmarks and they can enable us to evaluate the ef-
fect of NUMA overhead because of their large memory footprint. Furthermore, they are
widely used and accepted in the field of memory management. There are other data inten-
sive benchmarks which are more recent and could represent future parallel and high perfor-
mance benchmarks, for example, graph500 benchmarks [Murphy et al., 2010] and Lonestar
benchmark suite [Kulkarni et al., 2009]. They include real-world applications that exhibit
irregular behavior and span various application domain such as meshing, clustering, and ma-
chine learning. However, these benchmarks target high performance systems and they are
mainly written in C and C++, which are not garbage-collected runtime systems.

57

4.2. BENCHMARKS

Benchmark Heap Size (MB) Input Size
SPECjbb2005 1000 (large) N/A
GCBench 900 (large) N/A
LiveJournal 100000 (large) N/A
Avrora 16 Large
Batik 50 Large
Fop 40 Default
Jython 40 Large
Pmd 88 Large
Sunflow 40 Large
Xalan 40 Large
Eclipse 200 Large
H2 200 Large
Luindex 40 Default
Lusearch 40 Large
Tradebeans 200 Large
Tradesoap 200 Large

Table 4.1: Benchmarks and heap configuration

Our performance evaluation involves other benchmarks which are crafted or modified to
widen the range of memory-intensive workloads. We modified Boehm’s GCBench bench-
mark [Boehm, 2000] to support multi-threading and give more pressure to the memory
[Singer, 2014]. Moreover, modern Java applications use graph-based back-end engines to
store heap data as a graph. Therefore, we process a huge dataset which contains over 68
million nodes in a graph-based database using Neo4J and implement a complex query to
find all possible paths between two randomly selected nodes.

The heap size is fixed close to minimum to invoke garbage collection many times. Table 4.1
summarizes the benchmarks and their configurations.

4.2.1 DaCapo Benchmark Suite

DaCapo benchmark suite is a tool for Java programming language and JVM benchmarking.
It contains a set of open source, real-world applications with intensive memory workloads.
There are two releases of DaCapo benchmark suite: 2006 and 2009. Benchmarks of Da-
Capo suite version 2006 with OpenJDK 7 are used for Chapter 5 and DaCapo suite version
2009 for the remaining chapters. The new version has more applications, which are multi-
threaded and support concurrency for thousands of threads. Furthermore, the benchmark
harness enables control over a range of input size for different evaluation needs. It also
allows a configurable execution environment, for example users can select number of ap-
plication threads, number of iterations to make the adaptive compiler to reach steady state

58

4.2. BENCHMARKS

before measuring the execution time, and the ability for application chaining to test phase
change. However, only seven benchmarks are compatible with JDK8, namely: avrora, h2,
pmd, jython, lusearch, sunflow, and xalan.

Avrora

Avrora simulates a number of programs run on a grid of AVR microcontrollers. It is driven
by a single external thread, but it is internally multithreaded with each simulated element
using a thread (i.e. each node in a grid of simulated nodes is threaded). Avrora demonstrates
a high volume of fine granularity interactions between simulator threads.

Pmd

Pmd analyzes a set of Java classes for a range of source code problems (18 code rules). It
is driven by a single client thread; it is internally multithreaded using one worker thread per
hardware thread. Pmd has irregular and complex object lifetime patterns.

Jython

Jython is a python interpreter written in Java which executes the pybench benchmark. It
allocates around 1.2GB and has highly regular behavior. Jython is driven by a single thread,
but internally it uses one thread per hardware thread. The tests performed are mostly single
threaded.

lusearch

Lusearch uses the lucene library to do a text search of keywords over a corpus of data com-
prising the works of Shakespeare and the King James Bible. Text size is about 10MB. Mul-
tithreaded, it is driven by one client thread per hardware thread, requiring little interaction
between the threads. Each thread searches a large index for about 3500 distinct words. Luse-
arch allocates around 8GB memory [Yang et al., 2011].

Sunflow

Sunflow renders a set of images using ray tracing. It is multithreaded, driven by a client
thread per hardware thread, each thread processing an available tile of work at a time and
another thread created due to the use of the Java2D library.

59

4.2. BENCHMARKS

Xalan

Xalan transforms an XML document which is the works of Shakespeare (5.3MB) and trans-
forms the document into HTML. It is multithreaded, explicitly driven by the number of hard-
ware threads available, each thread taking an element from a work queue. Xalan allocates
around 60GB memory.

H2

H2 runs a JDBCbench-like in-memory benchmark, which executes a number of transactions
against a model of a banking application. It replaces the hsqldb benchmark of the old DaCapo
benchmark version.

H2 is multithreaded and it is driven by one client thread per hardware thread and internally
has a server thread for each client thread as well as other support threads. The number of
client threads for the default benchmark size is set to one per hardware thread.

4.2.2 SPECjbb (20XX)

SPECjbb2005 [SPEC05] evaluates the performance of server side Java by emulating a three-
tier client/server system, which models an online shopping company. The benchmark exer-
cises the implementations of the JVM (Java Virtual Machine), JIT (Just-In-Time) compiler,
garbage collection, threads and some aspects of the operating system. It also measures the
performance of CPUs, caches, memory hierarchy and the scalability of shared memory pro-
cessors (SMPs). SPECjbb2005 provides an enhanced workload, implemented in a more
object-oriented manner to reflect how real-world applications are designed and introduces
new features such as XML processing and BigDecimal computations to make the bench-
mark a more realistic reflection of today’s applications.

The application consists of several warehouses, each contains 25MB data. Each thread rep-
resents an active user requesting goods from the warehouse. Threads are mapped one-to-one
to warehouses, in addition to the main method and the JVM functions threads. SPECjbb2005
measures throughput at a given number of warehouses. When the benchmark completes ex-
ecution, it reports throughput at every measurement interval in terms of business operations
per second (bops).

SPECjbb2013 [SPEC13] makes major changes over 2005 version. The new benchmark de-
sign involves multiple JVMs, which run concurrently, though it support a single JVM exe-
cution. The benchmark consists of three components: a controller which directs program’s
execution, one or more transaction injectors to issue transactions to the warehouses, and
backends that contain business logic code to process requests from the transaction injector.

60

4.2. BENCHMARKS

In this dissertation, we are going to use a single JVM configuration, which contains a single
controller, a transaction injector, and a backend. The performance is measured by max-jOPS
which is maximum number of successful jobs obtained. However, for both benchmark ver-
sions, we are more interested in the memory-intensive workload that frequently triggers the
garbage collection rather than the throughput achievement.

4.2.3 GCBench

GCBench is an artificial benchmark which attempts to model allocation request’s properties.
It was written to mimic the phase structure that has been conjectured for a class of application
programs for which garbage collection may represent a significant fraction of the execution
time. The benchmark obtains time required to allocate and collect a balanced trees of various
sizes.

Initially, GCBench warms up by allocating and then dropping a large binary tree. Allocated
objects are of the same size and the total memory allocation is 32MB. After that, it allocates
a large permanent tree and a permanent array of floating point numbers. Furthermore, it
allocates considerable tree storage in seven phases, increasing the tree size in each phase but
keeping the total storage allocation approximately the same for each phase. Each phase is
divided into two sub-phases. The first sub-phase allocates trees top-down using side effects,
while the second sub-phase allocates trees bottom-up without using side effects. GCBench
produces a large amount of objects, increasing the garbage collection workload to a consid-
erable extent.

In this thesis, GCBench is modified to test NUMA effect by enabling threads to allocate
memory from different NUMA nodes. When the program starts, it sets up global data struc-
tures and prepare execution of concurrent worker threads. The program execution comes
in three phases. First, every thread creates thread-local node objects. Second, at each tree
depth, nodes allocated in NUMA node i point to nodes in NUMA node i+1. In this phase,
pointers are shuffled between thread-local data structures. Third, threads exercises garbage
collection with thread-local short and long lived data structures. In the end, the program
reports the total execution time.

4.2.4 Neo4j / LiveJournal

Neo4j [Neo4J, 2015] is an open source, embedded, disk-based, fully transactional Java per-
sistence engine that stores data structures in graphs instead of tables [Webber, 2012]. It is
a scalable and high performance graph database that supports solving queries with complex
relationships to store data in the nodes and relationships. Neo4j is written in Java and adopts

61

4.3. CONCLUSION

client/server programming paradigm. The graph nodes and relationships are loaded in the
JVM heap.

Neo4j offers various robust mechanisms to store and retrieve individual nodes. In partic-
ular, it provides a fast traversal mechanism for a set of nodes based on their relationships,
whereas conventional relational databases would require complex and sophisticated rela-
tionships. Many optimized functions are built into Neo4j for retrieving all, shortest, and
user-defined path between two nodes.

To use Neo4j, we fill the graph with a data set from the LiveJournal social network. Live-
Journal is a free online community with around 10 million members which allows members
to maintain journals, individual and group blogs, and it also enables people to declare friend-
ships. The data set consists of around 5 million nodes and 68 million edges [Leskovec and
Krevl, 2014].

We implement a Java complex query program that embeds Neo4j 2.2.1 as a library and
queries the database to find all possible paths between two randomly selected nodes. The
program uses 64 threads to drive the workload and reserves 150GB heap size. The all-paths
operation is repeated twice and the mean of N runs is reported.

4.3 Conclusion

In this dissertation, the hardware platform used for experimentation consists of eight NUMA
nodes. It is selected to expose NUMA effect on application performance. Systems with few
NUMA nodes might not be suitable for testing NUMA issues.

Benchmarking NUMA machines requires representative applications that have memory-
intensive workload. The DaCapo benchmark suite obtains large memory footprint and pro-
vides flexible execution environment. However, DaCapo programs exhibit small heap sizes
and modern NUMA machines employ massive memory capacity. Therefore, we include
SPECjbb, GCBench, and Neo4J applications to widen our range of workloads. Recently,
data-intensive benchmarks, for example Graph500, have emerged but they are maily written
in C and C++ which are non garbage collected languages.

62

Part II

CONTRIBUTIONS

63

CHAPTER

5

A STUDY OF REFERENCE LOCALITY

Existing NUMA optimizations are applied at the granularity of individual objects, for exam-
ple [Ogasawara, 2009, Zhou and Demsky, 2012, Gidra et al., 2015] . In these approaches,
the garbage collector must track the NUMA node location of every live object at runtime.
Therefore, the garbage collector incurs extra overhead which is proportional to the live object
set size. The challenge is to reduce this overhead while maintaining NUMA awareness.

This chapter introduces a potential solution to minimize the NUMA awareness overhead.
It presents a newly observed locality-rich characteristic exhibited by real-world application
heaps. From the details of how the parallel tracing garbage collector traverses the reference
graph, it is possible to describe the graph traversal mechanism in terms of a set of sub-
graphs. Each sub-graph contains a root and some reachable objects. We call these sub-graphs
rooted sub-graphs. Instead of inspecting every object, the intrinsic locality of rooted sub-
graphs enables the garbage collector to retrieve NUMA node locations of a small object set,
the roots. In this way, the garbage collector incurs less overhead as compared to previous
approaches and this overhead is proportional to the root set size.

The main contributions of this chapter are as follows:

1. It introduces a previously unremarked locality feature in connected objects. Rooted
sub-graphs exhibit natural locality that the garbage collector can leverage to improve
its performance on NUMA architectures.

64

5.1. INTRODUCTION

2. It studies heaps for a wide range of real-world applications to provide empirical evi-
dence demonstrating that rooted sub-graphs exhibit high NUMA locality.

5.1 Introduction

When a program’s heap space is exhausted, the runtime system invokes a garbage collector
cycle to reclaim space occupied by the dead objects and move live objects to a different
space. Live objects are those objects that are needed to continue program execution. The
garbage collector treats live objects as a graph, the reference graph, where nodes denote
objects and edges denote references between the objects.

Since the live object set is processed as a graph, object traversal and processing, i.e. copy
or compact operations, can change the object location. As described in Section 2.5.2, graph
traversal order plays an important role in object ordering and locality. The Hotspot JVM’s
Parallel Scavenge collector uses a depth-first algorithm to trace the reference graph. Depth-
first algorithm co-locates children and parent objects in a single or continuous virtual mem-
ory pages. Although the garbage collector appears to improve object locality for an applica-
tion, there are four issues that emerge in the context of NUMA architectures:

1. In NUMA architectures, the operating system could map virtual memory pages to
different NUMA nodes; hence, objects that appear to be adjacent in the virtual memory
pages, may be physically separated.

2. A garbage collector thread may traverse an object that is located in a remote NUMA
node. There is neither enforcement nor preference for the garbage collection threads
to process the local objects.

3. A garbage collector thread could move local objects (relative to the garbage collec-
tor thread) to a different NUMA node (relative to the application thread), which may
cause application threads to incur remote access overhead, possibly for the rest of the
program execution time. This counter-locality interest over the object location, clashes
between the application and garbage collection threads.

4. The garbage collector processes the reference graph in units of sub-graphs. Each sub-
graph represents a number of connected objects. However, parallel garbage collection
involves work stealing as a parallel technique to speed up the processing. This tech-
nique could scatter connected objects across NUMA nodes if they are processed by
remote garbage collector threads.

Existing NUMA-aware garbage collection techniques assist the garbage collector to preserve
object locality interest for the application threads. In fact, the garbage collector may work

65

5.2. ROOTED SUB-GRAPHS

proactively and move an object to a NUMA node where it issues high volume of memory
access requests to that object. Section 2.4 presents several techniques to move objects for
the application benefit. Nonetheless, remote memory access burden may be incurred by the
garbage collector threads.

A conflict of object locality interest between the application and the garbage collector threads
can be mediated. Previous work, for example [Gidra et al., 2015, Zhou and Demsky, 2012],
proposes that every garbage collector thread should process local objects only. This means
that garbage collector must retrieve the NUMA node for every live object and communicate
with another remote thread to process remote objects. Such a locality approach relies on
message passing protocols, which usually incur additional overhead and may decrease the
performance gains.

This chapter integrates both hardware and software technical knowledge to comprehend the
reference graph locality. It studies the parallel garbage collection tracing algorithm and
provides empirical evidence that modern NUMA machines tend to use huge memory pages
(THP). Therefore, a high number of connected objects in a sub-graph reside in the same
NUMA node. In addition, this chapter introduces a new locality heuristic, the root location
that can reveal the NUMA node of a sequence of connected objects. Instead of inspecting
every live object, this locality heuristic requires examining a subset of the live object set, the

root set. Once a NUMA node of a root is retrieved, a large number of reachable objects from
this root, reside in the same NUMA node as the root. Results from our benchmarks, which
are described in Section 4.2, show that the percentage is 80% on average, with ± 7.9 error
rate, see Section 5.6.2. The overhead incurred by object location inspection of the root set is
low as compared to the default mechanism.

The outline of this chapter is as follows: Section 5.2 makes the case for rooted sub-graphs as
an appropriate work unit for the garbage collector, which can show locality richness between
their objects. In addition, it introduces a hypothesis that objects in a rooted sub-graph have a
high likelihood to be in the same NUMA node as the root and this can be used as a heuristic
to improve garbage collector locality. Section 5.3 and 5.4 describe our code modifications to
evaluate the rooted sub-graph locality hypothesis. In Section 5.6, the root location heuristic
is evaluated and empirically studied over a variety of benchmark applications. Section 5.7
contrasts our work with previous research and Section 5.8 summarizes this chapter.

5.2 Rooted Sub-Graphs

The garbage collector views live objects that require evacuation to other spaces in the heap as
a reference graph. The reference graph is a type of directed graphs. Here are three definitions
quoted from Rosen [1999]:

66

5.2. ROOTED SUB-GRAPHS

Definition 1 “A directed graph (V,E) consists of a set of vertices V and a set of edges

E that are ordered pairs of elements of V ”.

For the garbage collection, the set of vertices is the live object set and the edges are the
references. The relation function in the reference graph is reachability.

Definition 2 “Let G be a directed graph, and let v,u ∈ V (G), we say that u is reachable

from V if there exist a path from u to v in G”.

Initially, the only information known to the garbage collector prior to collection is a set
of pre-defined memory regions, for example thread-local buffers and statics fields, where
potential roots that have pointers into the heap can be found. Each garbage collector thread
is assigned to one or more root areas to discover roots. The garbage collector, at this stage, is
building the root set which contains the discovered roots. Once a garbage collection thread
finishes the root scanning, it pushes its root references to a local queue.

A root object may have one or more descendant objects which form the transitive closure or
the reachable set of a root.

Definition 3 “Let R be a relation on a set A, the transitive closure Rn consists of the

pairs (a, b) such that there is a path between a and b in R.

Where Rn is a path of length n from a to b

Every object that belongs to a reachable set is called a live object. A shared live object can
be reached from one or more roots. However, a live object is processed once, i.e. by only
one garbage collection thread. At this stage, the garbage collector scans all discovered roots’
transitive closures. More details of the Hotspot JVM’s garbage collection implementation
are presented in Section 3.6 47.

From the aforementioned description of reference graph processing, we can distinguish and
cluster live objects into two groups: the root set, and the transitive closure of each root.
Existing NUMA-aware garbage collection implementations treat live objects equally and
inspect every live object to retrieve its NUMA node. In contrast, the reference graph can be
viewed from a different angle. Each root from the root set is processed with its reachable set
as a unit. We call this work unit a rooted sub-graph.

This research define rooted sub-graph as:

67

5.2. ROOTED SUB-GRAPHS

Global Variables Statics

Rooted Subgraph

Runtime
heap

Thread Stack Root Set

Figure 5.1: An example of a reference graph with different types of rooted sub-graphs

Definition 4 A rooted sub-graph is a set of references, R, containing a root reference,

rroot, with the condition that every reference r ∈ R is reachable from rroot.

A reference graph consists of a number of rooted sub-graphs. Figure 5.1 depicts an example
of a reference graph with different types of rooted sub-graphs.

The setR is not necessarily maximal with respect to the reachable set formed by the transitive
closure since some references are reachable from multiple root references. Intuitively, a
rooted sub-graph denotes the set of references traced by a garbage collection thread from a
root reference.

The garbage collection’s graph traversal mechanism drives us to develop a hypothesis that
a root reference with its reachable set has a common NUMA node location. The intuitions
behind this hypothesis are two-fold:

1. The Hotspot JVM allocates buffers, i.e. TLABs, to every application thread to place
data locally. The default TLAB size is less than 4KB, a virtual memory page size,
which means that data allocated by an application thread is likely to be in the same
memory page.

2. Even with a larger TLAB size, modern NUMA machines use transparent huge pages
(THP) to reduce TLB buffer size, as described in Section 3.5. Therefore, a large virtual
memory space, i.e. 2MB in our system, will be mapped to a single NUMA node.

68

5.3. IMPLEMENTATION

The memory manager may allocate consecutive memory space for TLABs and these
memory pages are likely to be in the same NUMA node.

Although these facts motivate in developing our hypothesis, there are other factors that af-
fect the reference locality. The Hotspot JVM’s parallel garbage collection implementation
enables each root to be processed with its reachable set, up to a certain level. Thread-local
Arora queues allow the root’s owner thread, i.e. the thread that has pushed the root, to scan
the transitive closure and push discovered references into the queue. However, if there is
a garbage collector thread that has run out of work, it will try to steal work from any non-
empty queue. In this case, part of the reachable set of a root will be processed by a different
garbage collection thread, possibly mapped to a remote NUMA node.

To test the rooted sub-graph hypothesis, we need to obtain reference locality of the reachable
set of each root for all rooted sub-graphs. The reference location information determines
how wide/narrow is the reference distribution across NUMA nodes for each rooted sub-
graph. Results can be summarized using mathematical and statistical means. In the next
section, we will present our implementation to collect rooted sub-graph locality. Subsequent
sections describe a locality metric that shows how a rooted sub-graph possesses a locality
richness.

5.3 Implementation

The Parallel Scavenge garbage collection policy consists of a copying collector for the young
generation and a mark-compact collector for the old generation. Rooted sub-graphs live
initially in the young generation and then move to the old generation after several minor
collections. Rooted sub-graphs may have references that cross the generations; however,
the existing Hotspot implementation enables such references to be processed during minor
collection. In this chapter, we analyse rooted sub-graphs that reside in the old generation
only. The old generation is larger than the young generation, which may provide a variety
of different NUMA-mapped memory pages. In addition, references in the old generation are
amenable to several location changes due to the compaction algorithm, i.e. objects may live
temporarily in multiple NUMA nodes throughout their life.

As a part of the major collection, the marking phase identifies live objects and calculates
the live object set size. We have modified the marking phase to retrieve and report rooted
sub-graph locality. Results are dumped into trace files, which contain objects’ location distri-
bution information. The reference graph during the marking phase is an artifact of previous
copying and compaction operations. Therefore, different locality results are expected after
each major collection cycle. This section will extend the marking phase implementation
described in Section 3.6.2 and illustrate code modifications to generate the trace files.

69

5.4. LIMITATIONS

In contrast to the copying collector, which scans an object and moves it to a different space,
a marker thread scans an object and mark it as live without move operations. The Hotspot
JVM uses a bitmap side table to store mark bits of heap objects. A marker thread that pops
a reference from its local queue checks first whether this reference is for an already marked
object. If that object is marked, the marker thread ignores the reference and terminates sub-
graph marking, otherwise, it sets the corresponding bit in the bitmap table.

A rooted sub-graph’s trace file is generated by adding an intermediate stage into the marking
phase. In this stage, roots and their reachable set are classified according to NUMA node
location. However; the existing implementation enables the collector threads to combine
roots and their reachable object sets in the same data structure. To distinguish roots from
their reachable sets, we make the runtime system to create as many Arora queues as NUMA
nodes the underlying system has in order to store root references only. For instance, if
the system consists of four NUMA nodes, the runtime system creates four NUMA queues.
These root queues are created at the JVM initialization phase. When the JVM executes a
major collection, marker threads scan root areas and before pushing roots to local queues,
our code enables the marker threads to classify roots and push them into the corresponding
NUMA queue. Once a marker thread completes root scanning tasks, it pops a root reference
from its corresponding NUMA queue, retrieves its NUMA node, and records it in the trace
file. After that, it scans the root’s transitive closure (using a thread-local queue) and record
the number of objects located in every NUMA node. The process is repeated until finishing
all the roots. Stealing from non-empty queues is disabled to preserve the rooted sub-graph
integrity. The generated trace file indicates the NUMA locality distribution for every rooted
sub-graph.

5.4 Limitations

Tracing a rooted sub-graph that has a reference to a shared object would make a race between
multiple marking threads. Only one marker thread wins a shared reference processing, which
terminates other rooted sub-graphs at this reference. The winner marker thread carries on
processing the remaining references in the sub-graph. In this scenario, our code may create
different rooted sub-graphs for every run. Figure 5.2 illustrates an example of how marker
threads create different sub-graph sequences. Rooted sub-graph for Rx and Ry intersect at
node Z. All references that are reachable from Z will either be in the sub-graph for Rx or
for Ry, which is a non-deterministic result. However, the set Rx∪Ry is deterministic which
constitutes the live object set.

It is important to record reference locality for all possible sub-graphs even if shared sub-
graphs exist. To tackle this problem, our experimental methodology ensures that test-bed

70

5.5. EXPERIMENTAL SETUP

Global Variables Statics

Runtime
heap

Thread Stack Root Set

X Y

Z

Figure 5.2: Rooted subgraphs for X and Y can be different depending on who first marks the
node Z. The result is non-deterministic.

applications run for several times to minimize the effect of non-determinism. We emphasise
the point that even part of the reachable set is set to one sub-graph, the other sub-graph
still has a root reference and holds the definition of a rooted sub-graph. This scenario may
continue to occur if the reference graph contains such connectivity, though we disable work
stealing that truncates the sub-graph.

5.5 Experimental Setup

The modifications described in Section 5.3 are applied to the OpenJDK Hotspot JVM version
jdk7u6. The Parallel Scavenge garbage collection policy, a stop-the-world collector (more
details are described in Section 3.6.1), is used to generate rooted sub-graph locality trace
files. The application and garbage collector thread count are set to 64 (the number of cores).
Benchmarks run for five times to record rooted sub-graph locality measurements, and results
are plotted with heat maps, as explained in Figure 5.3. The experiment reports the proportion
of objects in each NUMA node instead of local / non-local nodes because the distance, and
therefore the access latency, is different from one NUMA node to another. For example, to
access NUMA node 1 from NUMA node 0, the memory access requires only one hop but
from NUMA node 0 to NUMA node 3 it requires two hops. However, the effect of node
distance is beyond the scope of this dissertation.

In addition to the heatmap presentation, we summarize quantitatively the NUMA locality of
rooted sub-graphs with a scaler value. The proposed evaluation metric represents the locality
richness in each rooted sub-graph. We retrieve the NUMA node of the root reference and
also the NUMA node of each traced reference in the corresponding rooted sub-graph, then

71

5.5. EXPERIMENTAL SETUP

76543210

7
6

5
4

3
2

1
0 N

U
M

A
 r

eg
io

n
 in

 w
h

ic
h

ro
ot

 r
ef

er
en

ce
s

ar
e

 lo
ca

te
d

NUMA region in which rooted subgraph
references are located

N

M

Value in a box at grid square (M,N) denotes, for

rooted subgraphs with root node in NUMA region

M, the proportion of reachable references in the

rooted subgraph located in NUMA region N

Figure 5.3: An explanatory example of heat map results

we calculate the percentage of NUMA-local objects in a rooted sub-graph.

For each workload, the locality of processed rooted sub-graphs is recorded in an n-by-n
square matrix, where n represents the number of NUMA nodes. Matrix element aij repre-
sents the percentage of connected objects residing in node j that can be reached from a root
in node i. We use the Matrix Trace property from Linear Algebra to calculate the NUMA
locality of a workload. By definition, the trace of an n-by-n square matrix A is the sum of
the elements on the leading diagonal, i.e.

tr(A) = a11 + a22 + ...+ ann =
n∑

i=1

aii, 0 ≤ tr(A) ≤ n× 100 (5.1)

To illustrate how we can use matrix trace in our problem, let us take an example of the
two extreme trace values. Our system has eight nodes; thus the trace value tr(A) = 800

represents perfect NUMA locality, where all references in the rooted sub-graphs reside in the
same NUMA node as the root. For the other extreme, tr(A) = 0 means that all references in
the rooted sub-graphs are in different NUMA node(s) from the root.

Due to the memory allocation policy and the workload behavior, some NUMA nodes might
not be used at all. Therefore, we define the Relative NUMA Locality Trace metric such that:

loc(A) =
tr(A)

n× 100
, 0 ≤ loc(A) ≤ 1 (5.2)

where n is the number of nodes that contain roots.

72

5.6. REFERENCE LOCALITY EVALUATION

For instance, a program p uses six nodes for object allocation and we calculate tr(p) = 450;
thus loc(p) = 0.75 and we interpret the result as 75% of objects are allocated in the same
node as the root.

5.6 Reference Locality Evaluation

In this section, we will evaluate the rooted sub-graph locality hypothesis on our chosen real-
world benchmarks. These benchmarks include: multi-threaded GCBench micro-benchmark,
various applications from DaCapo benchmark suite, and SPECjbb2005 benchmark. We have
explored these workloads in Section 4.2. In addition, we will discuss the effect of garbage
collection on rooted sub-graphs of SPECjbb2005 in more details.

5.6.1 Locality-distributed Rooted Sub-graph

Rooted sub-graph locality takes two forms. First, a homogeneous sub-graph consists of
references, which point to objects located in one NUMA node. Second, a scattered sub-

graph contains references to objects located in multiple NUMA nodes. This section analyzes
rooted sub-graph locality of the multi-threaded GCBench micro-benchmark. For the purpose
of this study, GCBench is modified to create locality-distributed sub-graphs. It instantiates
64 deep and long-living tree data structures. Objects at every tree depth are provided from an
object pool in a remote memory node. The resulted sub-graphs contain references to multiple
remote NUMA nodes.

Figure 5.4 depicts the results. The color scheme of the heat maps is shown on the right
bottom corner of the graph. We can see two different locality-based groups of sub-graphs.
First, scattered sub-graphs that have references to objects distributed across multiple memory
nodes. In GC cycle 1, objects referenced by rooted sub-graphs touch almost all memory
nodes. NUMA locality trace of this group is under 40% for nodes R 0, R 1, R 3, R 6, and
R 7 , and around 80% for nodes R 4 and R 5. Second, a group of homogeneous sub-graphs
in node R 2, which contain references to objects located in memory node 2 only.

To understand the locality of these groups, we examine two attributes: the size of the rooted
sub-graph and the root type. The rooted sub-graph size is the total number of references a
collector thread will process. The rooted sub-graph locality is the percentage of references
located in the same root’s NUMA node. Figure 5.5 depicts the correlation between the
mean rooted sub-graph locality and the size of the rooted sub-graph. We can observe that
rooted sub-graphs of size under 512 reference tend to have good locality; i.e. a large number
of objects live in the same root’s NUMA node. On the contrary, larger rooted sub-graphs
are likely to spread across NUMA nodes, especially rooted sub-graphs with size over 16K

73

5.6. REFERENCE LOCALITY EVALUATION

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

GCBench program
 GC Cycle 1

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

GCBench program
 GC Cycle 2

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

GCBench program
 GC Cycle 3

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

GCBench program
 GC Cycle 4

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

GCBench program
 GC Cycle 5

Figure 5.4: A snapshot of GCBench rooted subgraph locality in a single collection. Refer-
ences point to objects that are distributed across multiple NUMA nodes.

74

5.6. REFERENCE LOCALITY EVALUATION

Rooted Subgraph Size

100000001000000100000100001000100101

R
o

o
te

d
 S

u
b

g
ra

p
h

 L
o

ca
lit

y
(%

)

100.00

80.00

60.00

40.00

20.00

.00

Page 1

Figure 5.5: The correlation between Rooted sub-graph locality and the size of the sub-graph
for GCBench. Large-sized sub-graphs are more likely to cross multiple memory nodes.

references. However, the proportion of large-sized rooted sub-graphs is less than 10% of
the total number of rooted sub-graphs in the reference graph. Adversely, small-sized rooted
sub-graphs, which provide good locality constitute to the majority of rooted sub-graphs.
GCBench allocates huge memory in several phases as described in Section 4.2.3. Large-sized
rooted sub-graphs span much of the program life cycle and are exposed to many garbage
collection cycles. Therefore, objects would be relocated to different NUMA nodes.

The sample is quite noisy and not normally distributed; therefore, we calculate the Spear-
man’s rank correlation coefficient. This correlation examines the monotonic relationship
between the number of references in a rooted sub-graph and its NUMA locality trace. The
resulted coefficient yields a moderate negative correlation (rs = -0.553), which means that as
the number of references in a rooted sub-graph increases, NUMA locality trace decreases.

Next, we would explore whether certain root types contribute to form locality-distributed
rooted sub-graphs. When a marker thread generates a record for every rooted sub-graph it
processes, we add a field that reports the root type. The results show that there are different
root types associated with poor locality rooted sub-graphs. They range from internal JVM
classes and Java language classes to the running application classes. Many other applica-
tion’s classes and some Java language’s classes contribute to form locality-distributed rooted
sub-graphs. For instance, rooted sub-graphs with application class GCBenchRunner, and

75

5.6. REFERENCE LOCALITY EVALUATION

Java language class java.lang.ThreadGroup creates rooted sub-graphs with references
to multiple NUMA nodes.

The first collection cycle represents rooted sub-graphs locality of the mutator threads allo-
cations in the early program’s execution time. This means that the young generation space
consumes memory from all NUMA nodes. Based on the transparent huge page mapping
mechanism of the operating system, the Eden space and the survivor spaces in the young
generation are mapped to all NUMA nodes. Therefore, objects were allocated and moved to
different NUMA nodes.

Subsequent GC cycles provide better NUMA locality trace. The major collection cycle en-
tails a compaction operation which compacts the objects into a part of the heap. As a result,
rooted sub-graphs will be packed into continuous memory pages and these memory pages
are likely to be mapped to the same NUMA nodes. Accordingly, in Figure 5.4, GC cycles 2
through 4 graphs show better NUMA locality trace, which indicates that more than 60% of
references in the rooted sub-graphs point to the same root node. In the last GC cycle, NUMA
nodes 3 and 4 do not contain objects. We notice that the number of rooted sub-graphs has de-
creased, which indicates that many rooted sub-graphs have died and will be collected during
the compaction phase.

To sum up, this study gives insights on different locality forms of the rooted sub-graphs.
Large-sized sub-graphs and certain root types contribute to form non-local references; whereas,
small-sized sub-graphs provide good locality. Garbage collection changes the location of ob-
jects and may improve rooted sub-graph locality. Next, rooted sub-graph locality is explored
for real-world applications.

5.6.2 Rooted Sub-graph Locality Analysis

In this section, we will analyze the rooted sub-graph locality of DaCapo and SPECjbb2005
benchmarks. Figure 5.6 depicts, for all GC cycles, the average percentage of references in
each rooted sub-graph with respect to its root NUMA node. The results provide a strong
locality relationship between references in a rooted sub-graph. This is represented by diag-
onal black squares, which indicate that NUMA locality trace is about 80%,i.e. objects are
co-located in the same root’s NUMA node.

Avrora, fop, luindex and tradebeans programs contain missing—i.e., 0%— references in
some NUMA nodes. This is due to the lack of live objects in these NUMA nodes at the time
of collection. Scattered sub-graphs are present in these heat maps, in particular sunflow,
xalan, SPECjbb2005, and GCBench benchmarks. We would further analyze the locality
results of SPECjbb2005.

76

5.6. REFERENCE LOCALITY EVALUATION

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

avrora program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

batik program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e
fop program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

jython program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

pmd program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

sunflow program

77

5.6. REFERENCE LOCALITY EVALUATION

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

xalan program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

luindex program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e
lusearch program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

eclipse program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

h2 program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

tradebeans program

78

5.6. REFERENCE LOCALITY EVALUATION

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

tradesoap program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R−7

R−6

R−5

R−4

R−3

R−2

R−1

R−0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program

N
od

e_
0

N
od

e_
1

N
od

e_
2

N
od

e_
3

N
od

e_
4

N
od

e_
5

N
od

e_
6

N
od

e_
7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

GCBench program

Figure 5.6: A snapshot of DaCapo and SPECjbb2005 rooted sub-graphs locality in all col-
lections. Locality of sub-graphs is represented by diagonal black squares, which show that
a high proportion of objects are located in the same root memory node. The color key is the
same as in Figure 5.4.

79

5.6. REFERENCE LOCALITY EVALUATION

Root references allocated in memory node 0, 5, 6, and 7 contain rooted sub-graphs with poor
locality. However, 40%, on average, are allocated in the same root’s memory node. Rooted
sub-graphs in memory node 1 through 4 form well-organized local references with more than
80% located in the root’s NUMA node.

The size attribute of locality-distributed rooted sub-graphs holds for SPECjbb2005 bench-
mark. It contains few rooted sub-graphs with a large number of references located in mul-
tiple NUMA nodes. A root type that contributes to locality-distributed rooted sub-graph is
spec.jbb.Transaction class and its sub-classes. SPECjbb2005 issues many business
payment and order transactions that deal with multiple warehouses using these classes. We
would expect such behavior when running 64 warehouses.

Both attributes, size and root type, influence rooted sub-graph locality. In addition, garbage
collection’s moving algorithms cause changes to object location. The next section discusses
the impact of garbage collection on rooted sub-graph locality.

5.6.3 GC Impact on Rooted Sub-graph Locality

Garbage collection has an impact on rooted sub-graph locality because it moves objects
around the heap during copying and compaction phases. We have observed the rooted sub-
graph locality changes at the marking phase, which involves multiple copying and com-
paction collections. We set the heap size of SPECjbb2005 benchmark to 2.5GB, and that
triggers the major collection 11 times. Figure 5.7 illustrates the GC impact on the rooted
sub-graph locality.

In the first two GC cycles, only three NUMA nodes participate in object allocation and
evacuation from the nursery space. We analyzed the program execution and we noticed that
this behavior is a result of the garbage collection’s triggering time. The first two GC cycles
are called in the beginning of the program run. In fact, SPECjbb2005 tests the garbage
collection before running the actual program. Thus, we see that objects live in only three
NUMA nodes.

In addition, the thread mapping technique implemented by the JVM determines which NUMA
nodes can be used to allocate objects. We modified the thread mapping technique in the
Hotspot JVM to map the first core first, i.e., mapping threads to the first core, then the sec-
ond core, and so on. This technique provides memory pages from a few nodes. For instance,
an eight-thread application runs on a machine with two NUMA nodes, each of the eight cores
would allocate memory from one NUMA node since the application threads will be mapped
to the same NUMA node. Therefore, in early program’s execution phases, a small number
of mutator threads run and allocate objects, which appears to occupy three NUMA nodes.

80

5.6. REFERENCE LOCALITY EVALUATION

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 1

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 2

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e
SPECjbb2005 program

 GC Cycle 3
N

_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 4

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 5

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 6

81

5.6. REFERENCE LOCALITY EVALUATION

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 7

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 8

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 9

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 10

N
_0

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

R_7

R_6

R_5

R_4

R_3

R_2

R_1

R_0

Reference Node

R
oo

t N
od

e

SPECjbb2005 program
 GC Cycle 11

Figure 5.7: A snapshot of SPECjbb2005 rooted sub-graph locality in a single collection. The
GC pollutes sub-graph locality, though over 50% of references remain in the root’s memory
node. The Color key is the same as in Figure 5.4.

82

5.7. RELATED WORK

While the program executes, the GC degrades the rooted sub-graph locality, especially in the
last two cycles. There, we see gray squares around the heat map; however, there are still
more than 50% of objects co-located with their root object.

Large-sized sub-graphs are amenable to work stealing; i.e. idle collector threads attempt to
steal work from these sub-graphs. A stolen object and its descendant objects will be moved
to the stealing thread’s NUMA node. Existing work stealing implementation in the Hotpot
JVM directs the stealing threads to steal from array objects as a first priority. The reason
is that array objects take long time processing and include many objects. This mechanism
anticipates disconnecting objects and displacing them off their original location.

From the above discussion, we can observe that the garbage collection contributes positively
(e.g. compaction) and negatively (e.g work stealing) to the rooted sub-graph locality. Po-
tential improvements would include mapping rooted sub-graph to local collector threads and
restricting work stealing to local threads. By organizing the root set according to the NUMA
location, GC threads would trace rooted sub-graphs with maximal locality. Moreover, re-
stricting or setting stealing preferences of threads to acquire objects from their sibling threads
would enhance work stealing locality. These optimizations will be investigated in Chapter 6.

5.7 Related Work

The shape of the object graph may cause problems when exploiting hardware parallelism. In
particular, it may be hard to exploit deep and narrow data structures—for example linked-
lists and arrays [Barabash and Petrank, 2010, Eran and Petrank, 2013]. Such data structures
lead to an unbalanced load assigned to parallel threads. We have shown that deep rooted sub-
graphs contain locality-distributed references to multiple NUMA nodes. Thus, tracing deep
rooted sub-graphs would impact the garbage collector performance due to remote memory
access overhead.

Several optimizations have been provided to improve the parallel garbage collection tracing
techniques. Processor-oriented techniques attempt to balance the load over garbage collector
threads and keep them busy tracing live objects. Endo et al. [Endo et al., 1997] develop a
parallel mark-sweep garbage collection algorithm with work stealing technique. A collec-
tor thread fills an auxiliary queue to enable idle threads to steal half of the work. Flood et
al. [Flood et al., 2001] implement parallel garbage collectors with statically over-partitioned
root tasks as well as work stealing technique. The granularity of work stealing is set to the ob-
ject size. These optimizations provide arbitrary work partitioning that discard object locality.
However, we propose a partitioning scheme in which root references are clustered according
to their NUMA node and direct garbage collector threads to consume their corresponding
queues.

83

5.7. RELATED WORK

In contrast, memory-oriented optimizations focus on improving object locality by tracing
per-memory-region objects. Memory is segregated into segments and each segment is as-
sociated with a work list of local objects only. Remote objects are transferred to a shared
queue or to the local queue of the remote region. Shuf et al. [Shuf et al., 2002a,b] exploit the
prolific types placement technique and collect local objects in each memory region. Garbage
collector threads insert remote objects in a shared work list, and provide work stealing at
object granularity. To reduce shared work list synchronization, Chicha and Watt [Chicha
and Watt, 2006] transfer remote objects to their respective region. Oancea et al. [Oancea
et al., 2009] partition the memory and create a work list per region. A processor must own
a work list to trace the local objects; consequently, load balancing is achieved by stealing a
complete work list. The locality improvement in this work is associated with local objects in
each heap region; however, object connectivity may be changed if objects are processed by
threads mapped to remote NUMA node. We attempt to exploit rooted sub-graph locality and
propose partitioning the root set and directing garbage collector threads to the appropriate
queue. For work stealing technique, we propose restricting the garbage collector threads to
steal from sibling cores to benefit from local memory access and to preserve rooted sub-graph
locality.

The order of tracing the object graph is important to object locality [Jones et al., 2011].
Objects traversed in breadth-first order—for example Cheney algorithm [Cheney, 1970a]—
tend to be separated from each other. In contrast, depth-first traversal order provides better
locality since it co-locates its parent and its children objects [Wilson et al., 1991]. Other
techniques attempt to group objects based on function order such as creation order, that
is, the time objects being created [Wilson et al., 1991]; hierarchical decomposition order
based on object types [Lam et al., 1992]; or online object reordering that copies hot fields of
objects with their parents [Huang et al., 2004]. These researchers attempt to increase object
locality for optimizing processor cache access time— i.e. improve spatial locality. Similar
techniques may be applicable to improve NUMA locality.

Locality optimizations for mutator threads attempt to improve data placement techniques.
Local and newly instantiated objects are allocated in thread-specific heaplets since they are,
with high probability, accessed by the thread itself [Domani et al., 2002, Steensgaard, 2000,
Marlow and Peyton Jones, 2011, Anderson, 2010, Jones and King, 2005, Auhagen et al.,
2011]. Furthermore, heaplets can be collected independently since objects are local and
there is no need to synchronize all mutator threads. Shared objects are allocated in the
NUMA node of the thread accessing them the most, see Tikir and Hollingsworth [2005],
Ogasawara [2009]. We observed that without NUMA awareness, garbage collection would
change the object locality.

Zhou and Demsky [Zhou and Demsky, 2012] implement a master-slave paradigm for mutator
and collector locality optimization. Every thread has its private heap space for allocation

84

5.8. CONCLUSION

and collection. At collection time, if there is any pointer to non-local object, the garbage
collector thread sends a message to the master thread and instruct the target thread to process
that object. They manage the cost of message passing by hardware support; otherwise, it
could harm the performance [Gidra et al., 2013]. While this study attempts to improve
object locality, Majo et al. [Majo and Gross, 2011] suggest that accessing remote memory
could reduce cache contention in local NUMA nodes. Rooted sub-graphs in our benchmarks
provide evidence that they combine local and remote objects such that they can be used to
balance remote and local memory accesses.

Object connectivity has been studied to explore object lifetime property. Hirzel et al. [Hirzel
et al., 2002] explore various kinds of connectivity and analyze their correlation with object
lifetime and deathtime. They suggest that placing connected objects close to each other is
beneficial because they have similarities in deathtime. We observe object connectivity from
a locality aspect and find that rooted sub-graphs have a strong correlation with locality.

5.8 Conclusion

This chapter has demonstrated the advantage of partitioning the reference graph into rooted
sub-graphs. The memory affinity relationship between a root reference and its reachable
set, which is represented here by rooted sub-graph, tend to be strong. A high percentage of
references in a rooted sub-graph reside in the same NUMA node as the root.

Constructing rooted sub-graphs should not incur additional computational or space overhead.
The reference graph that the garbage collector traverses supports reference discrimination
between roots and their transitive closures. Our hypothesis emphasises that by preserving
this reference discrimination, garbage collector would be able to create rooted sub-graphs
and preserve the intrinsic locality.

Huge transparent pages, as supported by some operating systems (Section 3.5), are a key fac-
tor in increasing rooted sub-graph locality. A majority of rooted sub-graphs can fit in a single
huge memory page. With both reference graph partitioning and huge transparent pages, the
garbage collector can benefit from locality gains available in the rooted sub-graphs.

To test rooted sub-graph locality, we conducted an empirical study on DaCapo benchmarks
as well as GCBench, which is a micro benchmark designed to demonstrate cross-node refer-
ence impact. Since the system’s memory size is huge (512GB), we would expect no effect
from memory swap or shortage when other processes run on the same time, though the ex-
periments were performed while there is minimal background load on the system.

Our evaluation suggests that, on average, NUMA locality trace of rooted sub-graph is 80%
with 7.9% error rate, which means that 80% objects in a rooted sub-graph are allocated in

85

5.8. CONCLUSION

the same NUMA node as the root. We analyse two factors for locality-distributed rooted
sub-graphs: size and root type. We find that locality-distributed rooted sub-graphs tend
to be large in size; thus, become exposed to load balancing parallel techniques, i.e. work
stealing. Stealing an object from a rooted sub-graph may result in placing it—and possibly its
descendants— into a remote NUMA node. In addition, some internal JVM and application
classes contribute to create locality-distributed rooted sub-graphs. These two factors could
help programmers and developers to deal with peer locality of references they create.

We conjecture that there may be potential benefits when using the root’s NUMA node as a
locality heuristic to improve garbage collection performance. In the next chapter, we will
modify the Hotspot JVM to take advantage of the rooted sub-graphs locality heuristic.

86

CHAPTER

6

NUMA-AWARE GARBAGE
COLLECTOR

The intrinsic locality of rooted sub-graphs, which is discussed in Chapter 5, can be utilized to
improve the garbage collector performance. When a garbage collector thread traces a rooted
sub-graph, it is likely to spend most of its tracing time in a single NUMA node. This chapter
aims to implement a NUMA-aware garbage collector. This implementation consists of three
stages. First, a collector thread scans a root area where root references are located, classifies
roots with reference to their NUMA node, and pushes them into the corresponding shared
NUMA queue. Second, a collector thread acquires a root reference from a NUMA-local
queue and traces its transitive closure. Third, for work stealing, a collector thread looks for
work from pending queues in the local NUMA node.

This chapter makes the following contributions:

1. It modifies a stop-the-world copying collector algorithm and makes it NUMA-aware.

2. It proposes various optimization schemes that take into account NUMA topology in
task processing and work stealing.

3. It measures the performance gains of the optimization schemes by examining a range
of workloads that span a wide spectrum of heap sizes.

87

6.1. INTRODUCTION

6.1 Introduction

The parallel techniques incorporated in collecting the heap focus on generating, partition-
ing, and stealing tasks to speed up collection. Many of these techniques are designed with
temporal locality considerations. For moving garbage collection algorithms, e.g. copying
and compaction garbage collection, object are co-located in the same virtual memory page
to improve locality. Object co-location is performed by various graph traversal techniques,
for example depth-first, see Section 2.5. However, these techniques may be not sufficient for
NUMA systems. Heap allocated objects may be placed closely in the virtual memory pages
but not necessarily in physical memory.

At a higher program execution layer, many operating systems, for example Linux and BSD,
support a huge memory address space. In such a situation, a large TLB buffer size is required
for paging. To reduce TLB buffer size and improve its performance, huge page tables are
used, more details in Section 3.5.

Hardware and software techniques for tackling specific issues may cause further problems
when they are integrated together. JVMs and other runtime systems, for example Common
Language Runtime (CLR) which is the virtual machine for .NET framework, abstract such
low-level platform-specific details. In addition, evolving technologies and diversity in hard-
ware deployments as well as rapid development efforts in operating systems may hinder
runtime systems from gaining expected advantages, if these technology advancements are
not successfully integrated. Devolving some virtual machines’ services such as memory al-
location management to the operating system might not be effective as described in Section
3.4. Moreover, cache coherency for NUMA systems suffers from false sharing problem,
where multiple cores share a cache line without sharing data, thus it impacts multi-threaded
application performance [Berger et al., 2000]. Therefore, future systems may not employ
cache coherency protocols, and virtual machines should response to such changes, see Sec-
tion 8.3.2.

NUMA systems distribute memory banks across processors and connect them via high speed
links to improve memory access bandwidth. A multi-threaded application running on a
NUMA machine may place data in any NUMA nodes; thus threads may need to access
remote memory. In this architectural layout, individual processor cores are likely to in-
cur non-uniform memory access latency. For non NUMA-aware managed runtime systems,
multi-threaded applications may exhibit unpredictable and suboptimal application perfor-
mance.

Previous research pays considerable attention to improve garbage collection locality by allo-
cating data close to the core most frequently accessing it Ogasawara [2009] and Gidra et al.
[2015]. However, such data placement policies could conflict with NUMA’s intrinsic design

88

6.2. MOTIVATION

(distributed memory) because locality may direct traffic to some NUMA nodes and cause
their interconnection links to saturate. Furthermore, improving locality may stress the local
cache hierarchy, while off-node resources could provide abundant memory capacity. There-
fore, allocation balance is significant for NUMA architectures, [Dashti et al., 2013, Majo and
Gross, 2011]. There should be a technique that balance the need for improving data locality
while maintaining available resources in the system.

Chapter 5 has shown that there is an opportunity to improve garbage collection locality by
utilizing the rooted sub-graph hypothesis. By exploiting huge page tables, which co-locate
objects in the same NUMA node, the work scope, i.e. individual rooted sub-graphs, for a
garbage collector thread is likely to be within a single NUMA node.

This chapter proposes three optimization schemes to improve garbage collection perfor-
mance (Section 6.3.3). First, the aggressive scheme enforces collector threads to process
local rooted sub-graphs only. Second, the hybrid scheme enables work stealing threads to
steal from off-node rooted sub-graphs. Third, the relaxed scheme allows collector threads to
process any reference from any rooted sub-graph.

The copying collector of the Hotspot JVM is modified to implement a NUMA-aware parallel
copying collector. This algorithm is evaluated with various workloads, see Section 4.2. The
results show that leveraging rooted sub-graph’s locality characteristic improves substantially
of the garbage collection performance (15%) on average.

6.2 Motivation

Hotspot JVM uses three-phase garbage collection in the existing Parallel Scavenge pol-
icy, see Section 3.6. The copying collector incorporates conventional techniques to manage
the parallel phase. The following list describes these techniques and pinpoint potential op-
timizations, where we can gain better performance using the rooted sub-graph hypothesis
5.2.

1. Root classification: the serial phase of the copying collector prepares a list of memory
areas where root references can be found, for example static areas, mutator stacks,
and JNI handlers. Each collector thread processes at least one memory area. The
discovered root references are enqueued in a local queue of the task-generating thread.
Memory areas may have different number of roots. In this design, whenever a collector
thread completes processing its rooted sub-graphs, it attempts to steal from a non-
empty queue to balance the load.
Optimization: instead of entering the work stealing phase, stealing a root is better
than stealing a descendant reference which would destroy sub-graph integrity. Thus,

89

6.2. MOTIVATION

this research proposes to enqueue root references in shared queues to allow collector
threads to process roots before stealing non-root from other queues.

2. NUMA-local reference processing: each collector thread enqueues root references in
a thread-local queue. These root references may refer to objects in any NUMA node;
thus, a collector thread could process a remote sub-graph.
Optimization: We propose creating a per-node shared queue to store roots. Each task-
generating thread classifies discovered root references and pushes them into appropri-
ate NUMA queues.

3. NUMA-local work stealing: after processing all the references in the local queue, a
collector thread selects a random pending queue and steals a single reference.
Optimization: to improve locality, we propose stealing only from NUMA-local thread
queues with reference to the underlying NUMA topology. In this proposal, a stealing
thread avoids crossing off-node links to steal a remote reference, which could have
further references to remote NUMA nodes.

The Parallel Scavenge policy devotes its design to keep the collector threads busy collect-
ing the heap without considering the complex NUMA architecture. Although the optional

NUMA configuration can help garbage collection to be aware of NUMA topology, its im-
plementation has been reported as ineffective [Gidra et al., 2013], see Section 3.6.3 page 53.
In addition, the garbage collection may change object location, (during a copy-promotion),
and relocate it to a different NUMA node; hence mutator threads would incur remote ac-
cesses and degrade application performance. The proposed optimizations aim to avoid these
problems.

The rooted sub-graph hypothesis is the basis for the proposed optimizations. Previous re-
search for NUMA copying collector apply optimizations at a per-object granularity of work.
Tikir and Hollingsworth [2005] profile memory access patterns for each object and calculate
the target NUMA node as the core accessing an object most of the time. Ogasawara [2009]
traces a sub-graph and moves objects to the dominant thread’s node. The dominant thread is
the thread that is likely to access the object most frequently.

However, rooted sub-graphs exhibit abundant locality, where there is a large proportion of
objects in a sub-graph co-located in the same NUMA. We have shown that choosing rooted
sub-graphs as the work granularity for task generation and distribution on NUMA machines
can yield better collection performance.

90

6.3. NUMA-AWARE COPYING COLLECTOR

Figure 6.1: Various topology-aware GC schemes. a) aggressive scheme only processes
thread-local tasks b) hybrid scheme distributes tasks across all nodes but steals from local
threads only. c) relaxed scheme processes random tasks from any node

6.3 NUMA-Aware Copying Collector

This section presents the design and implementation of the proposed NUMA-aware copying
collector. Before delving into details, we highlight the following considerations from Section
6.2. First, NUMA awareness in our algorithm is centred at preserving the rooted sub-graph
integrity, which means that connected objects in the sub-graph are processed together. The
Hotspot JVM does not differentiate between root reference and other references. In our
algorithm, we separate the task processing into task generation and task distribution. As a
result, garbage collector threads consume the root list first before entering the work stealing
phase; hence they would copy the entire rooted sub-graph to the same physical location.

Second, garbage collection threads should process local root references. Local roots are
identified during task generation by classifying the root set according to NUMA nodes.
Therefore, a collector thread dequeues a root reference from NUMA-local queue.

Third, when a collector thread exhausts its local work queue, it enters the work stealing
phase. To enable low access latency in this phase, work-stealing threads should search for
references from non-empty queues of sibling cores, i.e. in the same NUMA node. Garbage
collection threads that are running on the same NUMA node benefit from shared resources
(e.g. caches). Furthermore, stolen objects will be copied to the same NUMA node of their
original sub-graph. Therefore, the locality is preserved.

6.3.1 Data Structures

Figure 6.1 illustrates the data structures used in our NUMA-aware copying collector. When
the JVM launches, we query the operating system to discover the NUMA topology. At this

91

6.3. NUMA-AWARE COPYING COLLECTOR

stage, we create as many NUMA queues as the underlying NUMA nodes. Garbage collec-
tion threads run concurrently; thus we need to facilitate thread safe enqueue and dequeue
operations. Therefore, we utilize the existing Hotspot Arora queue data structure, which
implements the single producer / multiple consumers paradigm. At one end of the queue,
garbage collector threads dequeue root references safely using atomic operations. At the
other end, we protect the queue with a lock such that garbage collection threads must ac-
quire the lock first to perform an enqueue operation.

There could be lock contention on NUMA queues because garbage collection threads are
concurrently trying to enqueue tasks. Therefore, we mirror these shared NUMA queues for
each garbage collection thread such that roots are buffered locally. Once a root scanning
task is completed, a garbage collection thread locks the appropriate NUMA queues (one at a
time) and flushes the corresponding local NUMA queues into the shared queues. Although
we create many queues, the memory footprint remains small because the root set size is small
compared to the live object set.

Since some garbage collection threads may complete root scanning tasks early, it is pos-
sible that a garbage collection thread might attempt to dequeue a root reference from the
corresponding shared NUMA queue but it might fail because there are no roots enqueued
yet. As a result, a garbage collector may enter the work stealing phase whilst other collector
threads still scanning the root areas. In order to prevent collector threads from entering the
work stealing phase so early, we set a threshold for the mirrored NUMA queues. A collector
thread that buffers a certain number of root references should transfer all discovered refer-
ences to the corresponding should NUMA queues. We set the threshold to 100 references.

6.3.2 Algorithm

When program execution pauses for garbage collection, a single thread calls the VM thread
that executes a sequential block of code. In preparation for the parallel phase, the VM thread
populates the GCTaskQueue with three types of tasks, see Section 3.6 for more details.

1. Root scanning task: These task scans various memory areas to discover root refer-
ences.

2. Stealing task: Threads that run out of work steal references from pending queues to
balance the load.

3. Finaliser task: These task manages the termination of the parallel phase.

We modified the root scanning task to include proposed task generation and task distribution
of root references. Initially, every garbage collection thread scans one or more memory

92

6.3. NUMA-AWARE COPYING COLLECTOR

areas for root references. A garbage collection thread obtains the NUMA node of every root
reference and pushes it in the corresponding thread-local queue. If any local queue reaches
the size threshold, it tries to lock the shared NUMA queue and transfer all references. Once
a collector thread finishes root scanning tasks, it starts processing root references. It acquires
a root reference using atomic operations and traces its reachable set. At this stage, garbage
collection threads use a thread-local queue to trace the reachable reference set as in the
default implementation. Once the root set is processed, garbage collection threads execute
stealing tasks and search for references from pending queues. The first thread that finishes
its work stealing phase executes the finalizer task to manage the parallel phase termination.
Our algorithm’s pseudo code is presented in Listing 6.1.

Listing 6.1: NUMA-Aware Copying Algorithm Pseudo Code

Task = a c q u i r e g c t a s k ()

sw i t ch (Task)

case s c a n r o o t s :

f o r (a l l r o o t a r e a s){
r o o t = d i s c o v e r r o o t s ()

node = r e t r i e v e r o o t n o d e (r o o t)

e n q u e u e l o c a l q u e u e (r o o t , node)

i f (queue (node) s i z e ()> t h r e s h o l d)

f o r (i =0 ; i<t h r e s h o l d ; i ++)

e n q u e u e A r o r a q u e u e (r o o t , node)

}
break ;

case s t e a l w o r k :

node = g e t t h r e a d n o d e ()

whi le (A r o r a q u e u e (node) != empty){
r e f = dequeue (node)

f o l l o w (r e f)

}
whi le (NUMA local queue (node) != empty){

r e f = dequeue ()

f o l l o w (r e f)

}
break ;

case f i n a l t a s k :

w a i t u n t i l a l l t h r e a d s t e r m i n a t e ()

h a n d c o n t r o l t o V M t h r e a d ()

break ;

end

93

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

Work Stealing
Task Working

Local Non-local
Local Aggressive Hybrid

Non-local N/A Relaxed

Table 6.1: Optimization schemes for NUMA-aware garbage collection.

6.3.3 Optimization Schemes

Our NUMA-aware garbage collector considers the NUMA topology at various stages, most
importantly, the task distribution and work stealing. Classifying object’s NUMA node re-
quires system calls using the libnuma library [Andreas, 2005]. However, this system call is
expensive and if we use it, the overhead will be proportional to the size of live object set.
In addition, data locality optimization may cause NUMA congestion in the local memory
controller or links. Therefore, we explore three optimization schemes to study the impact
of applying data locality and/or NUMA memory balance. In all cases, rooted sub-graph
integrity is preserved, i.e. garbage collection threads process root references first.

Since this study has two factors: data locality and NUMA memory balance applied on task
working and work stealing, we should test four possibilities:

Aggressive: garbage collection threads look up object’s NUMA node at task generation
phase, and only steal references from NUMA-local threads as described in Section 6.3.1 and
Section 6.3.2.
Hybrid: garbage collection threads process roots randomly; however they steal from sibling
(NUMA-local) queues only.
Relaxed: garbage collection threads process roots randomly and steal work from any queue.
We exclude the option: local roots/random stealing because the combination of system calls
and random stealing produces huge overhead; hence degrades the garbage collection perfor-
mance. Table 6.1 lists the three optimization schemes and Figure 6.1 depicts a schematic
overview for them.

6.4 NUMA-Aware Garbage Collector Evaluation

This section evaluates our three optimization schemes. First, we describe various evaluation
metrics: object locality, execution time, and scalability. Next, we analyze and discuss the
results. Experimental setup and benchmark workloads are described in Chapter 4.

94

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

6.4.1 Evaluation Metrics

We use three different metrics to evaluate our optimization schemes.

NUMA Locality Trace:

In Chapter 5, we have studied object locality empirically and used Relative NUMA locality
Trace as a measure for object locality, see Chapter 5.5 page 70. The study focused on objects
in the old generation using OpenJDK version 7. This study evaluates object locality in the
young generation because our optimizations are applied to the copying collector. In addition,
we use OpenJDK version 8 with an up-to-date change set at the time of the study. We expect
that there would no major difference in object locality between these two collectors except
that the copying collector has an additional root area, which is the references from the old to
the young generation. Section 6.4.2 discusses this issue.

Application Pause Time and Total Execution Time

We measure and report the pause time caused by the (stop-the-world) garbage collection
and the end-to-end execution wall-clock time of the JVM. Time measurements are taken five
times. We report arithmetic means, and plot 95% confidence intervals on graphs.

Scalability

In this study, we schedule as many collector threads as the number of cores available to the
system. However, workloads that require large heaps may incur a scalability bottleneck.
The copying collector scans the old generation for roots that have references to the young
generation. Usually, in generational heaps, the garbage collection uses a card table, which
is a data structure used to record old-to-young pointers. As the old generation heap size
increases, the card table grows as well and collector threads consume much time for root
scanning. Therefore, we investigate the responsiveness of our optimization schemes to the
changes of heap size.

6.4.2 Relative NUMA Locality Trace

Figure 6.2 shows the relative NUMA locality trace results. Due to the huge trace file size for
Neo4j / LiveJournal, we are unable to process all the data collected. However, we follow a
previous research practice ([Gidra et al., 2015]) and limit our study of this benchmark to the
fifth collection cycle only as a sample of the workload collection phase.

95

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

Benchmark

xalansunflowspecjbb13pmdlusearchLiveJournaljythonh2avrora

N
U

M
A

 R
el

at
iv

e
L

o
ca

lit
y

T
ra

ce

1.00

.80

.60

.40

.20

.00

NUMA Relative Locality Trace

Page 1

Figure 6.2: Relative NUMA Locality Trace results for evaluated workloads. On average,
53% of objects are NUMA-local within rooted sub-graphs.

96

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

Benchmark

xalansunflowspecjbb13pmdlusearchlivejournaljythonh2avrora

R
el

at
iv

e
L

o
ca

lit
y

T
ra

ce

1.00

0.80

0.60

0.40

0.20

0.00

Relative NUMA Locality Traces for Rooted Sub-graphs

Thread_stackss
Old-to_young
Class_loader

Root_Type

Page 1

Figure 6.3: Relative NUMA Locality Traces for various root types: old-to-young, thread
stacks, and class loader roots. Old-to-young rooted sub-graphs exhibit relatively low locality.

97

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

DaCapo/Sunflow obtains the best relative NUMA locality trace results. Approximately, 90%
of the application’s objects reside in the same node as the root. On the contrary, DaCapo/h2
shows the lowest relative NUMA locality trace results from DaCapo benchmark suite. Ob-
jects in DaCapo/h2 are distributed across NUMA nodes and only 42% of objects in rooted
sub-graphs live in the same NUMA node as the root. Neo4j/LiveJournal records the mini-
mum relative NUMA locality trace values with 35%. We can notice that our optimization
schemes results exhibit , in general, less variation. This less variation is due to the work unit,
i.e. rooted sub-graphs, we set for garbage collection threads, which improves object local-
ity. The main difference between DaCapo benchmarks and LiveJournal program is the heap
size. We will discuss how the heap size affects rooted sub-graph locality in the subsequent
sections. For all workloads, the relative NUMA locality trace is 53% on average.

We can notice that results differ from our earlier empirical study in Chapter 5, which has
demonstrated high rooted sub-graph locality. This is expected because the copying collector
differs from the mark-compact collector in the number of memory areas included in the task
generation phase. When collecting the young generation, the garbage collector includes the
card table to scan references from the old to the young generations. Consequently, these
results may suggest that we cannot rely on the locality characteristic of rooted sub-graphs to
optimize the copying collector. However, we run more experiments to investigate whether
there is any factor that gives more insight on rooted sub-graph locality changes.

Recall that at the beginning of parallel garbage collection phase, several root scanning tasks
are inserted in the shared queue GCTaskQueue. Root scanning tasks direct the collector
threads to various JVM data areas, where potential root references can be found. These
memory areas include but not limited to mutator stacks, card table (for old-to-young refer-
ences), JNI handlers, and class loader data. We assume that some of these root types may
dominate the root set, and their relative NUMA locality trace can affect the overall results.
This assumption is similar to the prolific type notion study, see [Shuf et al., 2002a]. There-
fore, we calculate relative NUMA locality traces for prevalent root types and plot the results
in Figure 6.3. For all evaluated workloads, the old-to-young rooted sub-graphs consistently
obtain low locality results, whereas other roots show high locality.

These results suggest that our optimization schemes can be applied on high-locality root
types. In the next section, we show that garbage collection performance increases only when
applying locality optimization on all root types except old-to-young references. For old-to-
young root, we randomly assign root references to any NUMA queue.

6.4.3 Pause Time and VM Time Analysis

Figure 6.4 and Figure 6.5 plot the garbage collection pause time and VM execution time
results for our workloads. A boxplot shows the median, the first and the third quartile and

98

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

40
00

00
55

00
00

LiveJournal

tim
e/

m
se

c

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

2e
+

06
4e

+
06

SPECjbb13

tim
e/

m
se

c
●

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

15
00

0
25

00
0

35
00

0

avrora

tim
e/

m
se

c

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

30
00

0
45

00
0

60
00

0

h2

tim
e/

m
se

c

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

90
00

0
12

00
00

jython

tim
e/

m
se

c

●
● ●

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

90
00

0
11

00
00

13
00

00

lusearch

tim
e/

m
se

c

●

●

●

●

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

95
00

0
11

00
00

pmd

tim
e/

m
se

c

●

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

55
00

00
65

00
00

sunflow

tim
e/

m
se

c

●

●

ag
gr

es
si

ve

re
la

xe
d

hy
br

id

or
g

32
00

00
36

00
00

xalan

tim
e/

m
se

c

Figure 6.4: GC time (i.e. pause time) for our three optimization schemes. For small heaps
(e.g. DaCapo programs), hybrid scheme gives the best results, whereas aggressive scheme is
more effective for programs with larger heaps. (The default JVM is labelled Org.)

99

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

14
00

00
0

16
00

00
0

LiveJournal

tim
e/

m
se

c

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

6e
+

06
8e

+
06

SPECjbb13

tim
e/

m
se

c ●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

60
00

00
75

00
00

avrora

tim
e/

m
se

c

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

56
00

00
59

00
00

62
00

00

h2

tim
e/

m
se

c

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

26
00

00
32

00
00

jython

tim
e/

m
se

c

● ●

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

11
00

00
13

00
00

15
00

00

lusearch

tim
e/

m
se

c

●

●

●

●

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

14
00

00
16

00
00

18
00

00

pmd

tim
e/

m
se

c

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg55

00
00

65
00

00

sunflow

tim
e/

m
se

c

●

●

A
gg

re
ss

iv
e

R
el

ax
ed

H
yb

rid O
rg

40
00

00
44

00
00

48
00

00

xalan

tim
e/

m
se

c

Figure 6.5: VM time (i.e. end-to-end execution time) for our three optimization schemes.
At least one scheme provides better VM execution time than default (labelled Org) in most
cases.

100

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

95% confidence interval of median. Proposed NUMA-aware parallel techniques for task
distribution and work stealing outperform the default Hotspot Parallel Scavenge garbage
collection policy (labelled org) in most cases. In addition, our optimization schemes incur
less results variation due to the improved locality in rooted sub-graphs.

For workloads that require a small heap size, represented by the DaCapo benchmark suite,
we can observe that Hybrid scheme is the best choice for high performance. The hybrid
optimization scheme speeds up the garbage collection performance by up to 2.52x and never
degrades it. This means that stealing work from remote NUMA nodes would balance the
load over the collector threads or reduce congestion in the local NUMA node. In both cases,
data locality cannot be the only optimization objective for NUMA systems. However, not
all DaCapo benchmarks follow the same performance trend. DaCapo/h2, pmd and sunflow
obtain relatively similar results to other optimization schemes. For aggressive and relaxed
optimization schemes, garbage collection performance is better than the default JVM time in
four DaCapo benchmarks: avrora, h2, pmd and sunflow.

We can notice that locality is vital to programs that have large heaps. Our optimization
schemes improve Neo4j/LiveJournal garbage collection performance by 37%, 22%, and
5% for aggressive, hybrid, and relaxed schemes respectively. With the aggressive scheme,
SPECjbb2013 obtains improvement in garbage collection performance by 91%.

In terms of VM execution time, the VM performance follows the garbage collection perfor-
mance in all benchmarks except DaCapo/avrora. It uses too small heap size and exhibits a
static memory layout. Avrora has shown negative performance results in previous research,
for example, [Kalibera et al., 2012] [Sartor and Eeckhout, 2012].

Our optimization schemes have shown better performance than the default Hotspot JVM. It
is important, though, to show that this performance gain is a result of improved NUMA local
access not a caching effect. We test this for aggressive scheme and force garbage collection
threads to process remote rooted sub-graphs. In this experiment, garbage collection threads
of node i dequeue roots from NUMA queue i+2. Based on the rooted sub-graph hypothesis
we expect that a garbage collection thread incurs 80% remote memory access.

Figure 6.6 depicts the pause time and total execution time results. The graph shows three
bars: local access, which represents the aggressive scheme, remote access, and the default
Hotspot pause times. The aggressive scheme has shown that it is the best optimization for
large-heap benchmarks; therefore, remote access for Neo4j/LiveJournal is the worst result,
which indicates that NUMA remote access has a major impact on garbage collection per-
formance. DaCapo/xalan and lusearch results are similar to LiveJournal, whilst avrora, h2,
jython, pmd, and sunflow show no impact. We have shown that the hybrid scheme is the best
optimization for small-heap benchmarks.

101

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

Figure 6.6: GC time and VM time comparison between local access, remote access, and the
default JVM. GC and VM times for remote access is higher than local and the default JVM
for LiveJournal benchmark.

102

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

Heap Size

200150100

G
C

 T
im

e
(m

se
c) 1,000,000

800,000

600,000

400,000

200,000

0

G
C

 T
im

e
(m

se
c) 1,000,000

800,000

600,000

400,000

200,000

0

G
C

 T
im

e
(m

se
c) 1,000,000

800,000

600,000

400,000

200,000

0

O
p

tim
izatio

n
 S

ch
em

e

aggressive

hybrid

relaxed

GC Time Scalability

Error Bars: 95% CI

GC_org
GC_opt
GC_org
GC_opt

Variables

Page 1

Figure 6.7: GC time scaling with heap size for Neo4j/LiveJournal. GC time decreases with
heap size for our optimized versions, whereas the original implementation does not show
any scaling.

6.4.4 Scalability

When applications require a large heap size, the root scanning task may consume a lot of
time in scanning the old-to-young references. A large number of live objects were dis-
covered through scanning the card table; hence, the card table scanning tasks account for
the majority of garbage collection pause time. Our experience is that for heap sizes above
100GB, scanning the card table often takes hundreds of seconds.

In this section, we investigate the impact of increasing the heap size on our optimization
schemes. We set the following heap sizes: 100, 150, and 200 GB to Neo4j/LiveJournal,
the most memory-intensive workload in our benchmarks. Figure 6.7 and Figure 6.8 depicts
the garbage collection pause time and the VM time results. Intuitively, as the heap size
increases, the number of garbage collection cycles decreases. However, the original Hotspot
garbage collection implementation shows a slight increase in the pause time. We argue that
this increase is due to the time consumed by scanning and processing rooted sub-graphs in
the card table. In particular, there are three aspects that could impact these results. First,
old-to-young rooted sub-graphs tend to be deep and spend much processing time. Second,
as discussed in Section 6.4.2, old-to-young roots attain poor locality between objects in
their rooted sub-graphs. Therefore, the garbage collection thread incurs significant remote

103

6.4. NUMA-AWARE GARBAGE COLLECTOR EVALUATION

Heap Size

200150100

V
M

 T
im

e
(m

se
c) 2,000,000

1,500,000

1,000,000

500,000

0

V
M

 T
im

e
(m

se
c) 2,000,000

1,500,000

1,000,000

500,000

0

V
M

 T
im

e
(m

se
c) 2,000,000

1,500,000

1,000,000

500,000

0

O
p

tim
izatio

n
 S

ch
em

e

aggressive

hybrid

relaxed

VM Time Scalability

Error Bars: 95% CI

VM_org
VM_opt
VM_org
VM_opt

Variables

Page 1

Figure 6.8: VM time scaling with heap size for Neo4j/LiveJournal. VM time decreases with
increased heap size for our optimized versions, whereas the original implementation does
not show any scaling.

access overhead. Third, deep rooted sub-graphs are likely to allow other garbage collection
threads to steal some of their references; thus, stolen references would break connected
object locality and disperse objects across NUMA nodes.

Our three optimization schemes improve the second and third aspects. By preserving the
rooted sub-graph integrity and imposing NUMA awareness on work stealing we are success-
ful in scaling the garbage collection substantially. In particular, relaxed scheme outperforms
the original Hotspot garbage collection policy at 200GB heap size, by just processing rooted
sub-graphs first before entering the work stealing phase. As a result, applications with a large
heap size can benefit from the knowledge of NUMA topology to improve their memory ac-
cess behavior.

For VM performance scalability, we can see that the original Hotspot garbage collection
policy provides a steady VM time over the three heap sizes. Aggressive optimization scheme
follows the garbage collection performance trend and obtains better scalability results. On
the contrary, hybrid and relaxed optimization schemes observe better VM performance but
only moderate scaling with increased heap size.

104

6.5. RELATED WORK

6.5 Related Work

Previous research proposes allocating related objects close to each other to improve locality.
There are various criteria to choose which objects can be co-located. Chilimbi and Larus
[1999] suggest considering temporal access patterns, whereas Shuf et al. [2002b] use data
type for co-allocation. For graph-based workloads, graph traversal order can improve object
locality. Wilson et al. [1991] introduce a hierarchical decomposition traversal order. This
involves two different queues: small queues for sub-graphs such that objects reside in a
memory page, and a large queue to link these small queues. In our NUMA-aware garbage
collector, we use two queues: NUMA queues for root references and thread-local queues
for rooted sub-graphs. Huang et al. [2004] attempt to co-locate frequently accessed objects
in hot methods. While a program executes, they sample hot method fields and at garbage
collection time, referents of hot fields are copied with their parents. Rather than sampling,
our implementation relies on system calls to obtain object location at garbage collection time.

Thread-specific objects that are accessed by the owner thread only can be allocated locally,
[Anderson, 2010, Jones and King, 2005, Domani et al., 2002, Marlow and Peyton Jones,
2011, Steensgaard, 2000]. Intuitively, newly allocated objects are initially stored in thread-
local heaps until remote objects reference them. Consequently, referenced objects are pro-
moted to a shared heap. Zhou and Demsky [2012] design a master/slave collector, where
slave threads collect thread-local heaps only. If there is any reference to non-local objects,
the slave thread sends a message to the master thread to route it to the target slave thread
to mark it as live. In our algorithm, every garbage collection thread processes objects that
reside locally in the same NUMA node.

The existing NUMA-aware collectors take into account the object location before and after
garbage collection time. Tikir and Hollingsworth [2005] sample memory accesses during
program execution, and then move objects at garbage collection time to the NUMA node of
the thread accessing that object most frequently. Ogasawara [2009] identifies the dominant-
thread of each live object, for instance the thread holding the object lock. He obtains the
dominant thread for every live object and moves the object to the dominant-thread’s NUMA
node.

Connected objects in the object graph share various attributes. Hirzel et al. [2002] study
several connectivity patterns that are related to the object lifetime. Results show that con-
nected objects that can be reached only from the stack are shortlived; whereas, objects that
are reachable from globals stay alive for a long time. Furthermore, objects that point to each
other die at the same time. Object connectivity is strongly related to NUMA locality as well.
In Chapter 5 we have shown that a high proportion of connected objects that descend from a
root reside in the same memory node as the root.

105

6.6. CONCLUSION

Parallel garbage collection algorithms attempt to keep cores busy processing the reference
graph. Conventional parallel techniques create a per-thread work list and populate the list
with work tasks accessible by the owner thread. For load balancing, idle threads that run
out of work, steal tasks from pending queues [Flood et al., 2001, Endo et al., 1997, Siebert,
2008, Wu and Li, 2007]. Nonetheless, such processor-oriented algorithms pay no attention
to object locality; hence threads may incur overhead for accessing remote objects.

Memory-oriented parallel garbage collection algorithms take the memory location into ac-
count. These algorithms partition the heap into segments and assign a garbage collection
thread to one or more segments. Threads process only local references and whenever they
find references to remote objects, they push them into a queue of the corresponding segment
[Chicha and Watt, 2006]. Alternatively, Shuf et al. [2002b] enqueue references to remote
objects into a shared queue to enable other garbage collection threads to process them. For
load balancing, queues are locked and garbage collection threads need to acquire the lock
to dequeue live objects [Oancea et al., 2009]. These studies do not map memory regions to
NUMA nodes. A memory segment boundary might span multiple physical memory frames.
Further, a garbage collection thread may process remote memory regions. Improvement
could be possible by matching memory regions to NUMA nodes.

To balance the load, this means that a garbage collection thread needs to separate child
objects from their parents and this can negatively affect object locality. Gidra et al. [2011]
observe that disabling load balancing could improve program performance for some applica-
tions. Muddukrishna et al. [2013] propose a locality-aware work stealing algorithm, which
prioritizes the work eligible for stealing according to the distance between NUMA nodes
in a system with multi-hop memory hierarchy. In this algorithm, an idle thread on a node
attempts to steal work from the ‘nearest’ pending queues. Olivier et al. [2011] propose a
hierarchical work stealing algorithm. They devote one third of the running threads to steal
work and push stolen work into a shared queue for local threads. Our aggressive optimiza-
tion scheme allows garbage collection threads to steal work only from NUMA-local pending
queues to improve object locality.

6.6 Conclusion

We have shown that a NUMA-aware copying collector based on per-NUMA node task dis-
tribution is able to preserve much of the rooted sub-graph locality that is inherent in mutator
allocation patterns. Using NUMA-local root reference as locality heuristic, except old-to-
young roots, enables garbage collection threads to process local references and steal ref-
erences from sibling threads. Although locality improvement is the main objective of this
study, some applications gain performance when processing remote rooted sub-graphs, due

106

6.6. CONCLUSION

to the imbalance allocation between NUMA nodes. Therefore, we study three optimization
schemes: aggressive (process only local roots), hybrid (process any root, but with preference
to local roots, and steal only from NUMA-local queues), and relaxed (process any root and
steal from any queue).

The study results show that for large-heap applications, aggressive scheme performs better
than hybrid and relaxed schemes. This result is due to the fact that NUMA-local queues con-
tain a large number of roots and garbage collection threads process mostly local references,
which reduce the cost of remote memory accesses. Adversely, small-heap applications ben-
efit much from hybrid scheme. In this scheme, some garbage collection threads run out of
work (root processing) and attempt to steal references from sibling threads only. This behav-
ior suggests that, for our small-heap applications, memory allocation is imbalanced between
NUMA nodes. Our optimization schemes have shown significant benefits—with improve-
ments in garbage collection performance ,on average 13% for aggressive scheme, 23% for
hybrid scheme, and 8% for relaxed scheme.

This study focused on stop-the-world garbage collector, which mutator threads halt to enu-
merate root references. For concurrent garbage collectors, our optimization schemes may
face challenges because the root enumeration phase is based on individual threads. This
issue and other issues such as other runtime systems will be discussed in Section 8.3.1.

We believe that there are further possible improvements based on not only preserving local-
ity of reference sub-graphs in single NUMA nodes, but also using NUMA-local collector
threads to operate on these rooted sub-graphs. In this study, we rely on expensive system
calls to identify NUMA-local tasks for collector threads—but cheaper techniques are pre-
sented in recent literature [Gidra et al., 2015].

In summary, garbage collection implementations should be able to preserve intra-node ref-
erence graph locality as much as possible in order to enable subsequent low-latency access
times for both mutator and collector threads.

107

CHAPTER

7

NUMA-AWARE GARBAGE
COLLECTION THREAD

MANAGEMENT

Contemporary multicore processors provide abundant parallel compute resources to increase
application performance. Prevalent server-class NUMA machines are shipped with diverse
hardware configurations that parallel programs should take into account to efficiently utilize
the system. One parallel programming consideration is to decide how many hardware threads
the application should use in order to execute the workload. This decision is a non-trivial
problem. Many multi-threaded applications set the number of executor threads equal to the
number of cores available in the system. Nonetheless, allocating full resources in the system
to the application may result in a suboptimal performance.

The Hotspot JVM addresses this problem by using an adaptive garbage collection thread
policy. This policy changes the number of collector threads at each collection cycle based
on various factors. However, this policy is shown to work ineffectively in modern machines
because it is generally designed for specific legacy platforms. This chapter investigates the
performance of the existing adaptive collector thread policy of the Hotspot JVM when run-
ning on NUMA machines. First, we study this policy and show how and why it is not
suitable for modern NUMA machines. Second, we alter the number of garbage collection
threads and measure the garbage collection throughput for minor and major collections, i.e.

108

7.1. INTRODUCTION

the copying and the mark-compact collectors. Third, we use the throughput results to design
and implement static and dynamic optimizations to estimate the optimal number of collector
threads.

The contributions of this chapter are three-fold:

1. It quantitatively studies the garbage collection performance behavior when changing
the number of collector threads for minor and major collection. The study involves a
set of hardware performance counters that AMD Opteron processors support. In our
machine, there are four hardware performance counters, i.e. one for each socket. We
use these counters to measure off-node traffic between NUMA nodes. In addition, we
measure the application execution and pause times.

2. It estimates the optimum number of collector threads by fitting the garbage collection’s
throughput results of each workload to quadratic curves. Based on the results, we im-
plement a static optimization that sets and fixes obtained optimal number of collector
threads throughout program execution.

3. It implements a runtime search-based optimization to dynamically predict the optimal
number of collector threads for each collection cycle. This optimization is based on
a gradient-ascent search algorithm, which predicts the appropriate number of threads
prior to each collection. The results show an average of 25% and 5% improvements to
the garbage collection performance for DaCapo and overall benchmarks, respectively.

The organization of this chapter is as follows: Introduction and motivation are presented
in Section 7.1. The Hotspot default policy for adapting the number of garbage collection
threads is described and discussed in Section 7.2. Section 7.3 empirically studies the im-
pact of scheduling different numbers of collector threads on collection throughput. Section
7.4 designs and implements a static optimization for selecting the optimal number of collec-
tor threads, whereas Section 7.5 provides a runtime policy for adaptive garbage collection
threads. Section 7.6 compares and contrasts this work with closely related research, and
Section 7.7 summarizes this chapter.

7.1 Introduction

Multicore systems allow software developers to attempt to improve application performance
by running the workload on parallel hardware. To parallelize programs, developers have
designed several parallel programming models to manage and efficiently utilize the parallel
hardware. As a result, programs are executed with a high number of threads. In the context

109

7.1. INTRODUCTION

of NUMA garbage collection, performance may not be improved by running a high number
of garbage collection threads; this will be explained in Section 7.3.

A great deal of research has focused on improving data locality. Chapter 2 and Chapter 5 pro-
vide various examples for data locality improvements for NUMA machines. Furthermore,
hardware manufacturers have increased interconnection link speeds between NUMA nodes,
hence, memory access latency is reduced. Nevertheless, other NUMA issues, for example,
bandwidth saturation caused by the imbalanced memory allocation and congestion on mem-
ory controllers remain under research. Gaud et al. [2015] argue that NUMA congestion at
memory controllers and buses is more serious than data locality.

A large body of research on NUMA optimization attempts to improve application threads
performance, in general. However, garbage collection for NUMA heaps faces similar chal-
lenges. Whilst co-locating data in a NUMA node may improve data locality, congestion
can occur in the NUMA node’s local memory system. In Chapter 6, we attempted to im-
prove data locality for garbage collection with three schemes. The aggressive scheme limits
garbage collection threads to process rooted sub-graphs in local nodes only. However, re-
sults show that imposing strict data locality may not be appropriate for NUMA systems.
Adversely, the hybrid scheme outperforms the aggressive scheme because it enables utiliz-
ing remote resources.

In this chapter, we tackle NUMA off-node traffic from a different perspective: managing
the number of collector threads. Common practice is to fully utilize the system resources to
execute the workload. However, anecdotal discussions reveal that scheduling many collector
threads could degrade application’s performance [Printezis, 2009]. The garbage collector
encounters parallelism issues, for example lock contention. Gidra et al. [2013], Iyengar et al.
[2012] identify and improve some of these issues .

Previous research suggest several proposals to mitigate resource contention such as balancing
memory allocations between NUMA nodes [Dashti et al., 2013]. These studies attempt to
solve problems with an assumption that full system’s resources are being used. In contrast,
Hotspot JVM uses an adaptive policy for garbage collection thread management. This policy
is implemented in method calc default active workers of the Hotspot source code
[Hotspot Source Code]. This policy emerged in response to performance degradation when
utilizing full resources [Printezis, 2009]. Although it adapts the number of collector threads
at each collection cycle, the policy enforces an upper limit on the number of threads. Because
the policy was designed for specific set of machines (SUN systems from the 2000s) and it has
not been updated yet, the policy generates a fixed number of threads on modern multicore
platforms. Therefore, using the system’s full resources or relying on the existing Hotspot
policy may not yield an optimum garbage collection performance.

Choosing an optimal number of parallel threads to execute a garbage collection workload is

110

7.2. HOTSPOT GC THREADS MANAGEMENT

a non-trivial problem. In this chapter, we empirically study the impact of selecting different
numbers of collector threads on garbage collection’s throughput and NUMA off-node traffic.
To the best of my knowledge, the impact of choosing the number of collector threads has not
been studied in the context of NUMA architecture. Results show that the mean collection
throughput peaks at a threshold number of collector threads, and then degrades as we add
further threads to the collector thread pool.

In further analysis, we argue that not all garbage collection phases require the same num-
ber of threads. Results show that the young generation collection’s work is, in general, best
carried by fewer threads compared to the full heap collection. We employ curve fitting for
collection throughput to estimate the optimal number of collector threads. In addition, we
use a runtime search-based optimization, called a gradient-ascent [Snyman, 2005] to esti-
mate optima for minor and major collections separately. At every garbage collection cycle,
the gradient-ascent technique learns from previous collection’s throughput and predicts the
number of threads needed for the current collection. On average, proposed optimizations
improve collection throughput over the default policy by an average of 21% for DaCapo and
5% for all benchmarks.

7.2 Hotspot GC Threads Management

The Hotspot JVM manages the number of collector threads in several ways. Firstly, it pro-
vides a command-line flag to allow the user to set the number of parallel collector threads,
Oracle [2016]. A user’s explicit thread configuration at VM initialization overrides all other
configurations and it is used and remains constant throughout every garbage collection cycle,
for both minor and major collections.

Secondly, if the user does not change the number of collector threads explicitly, then the
HotSpot activates its adaptive garbage collection thread management. This policy adapts the
number of collector threads, if required, at every collection cycle. As a common practice,
Hotspot developers do not engage full system resources to the garbage collection. Anecdo-
tally, consuming full resources yields suboptimal performance [Printezis, 2009]. Therefore,
the Hotspot JVM sets an upper limit for the number of collection threads M using the fol-
lowing equation:

M = 8 +
(
(P − 8) ∗ 5

8

)
(7.1)

where P is the number of processors. For example, if a system has 32 cores then the max-
imum number of garbage collection threads is 23. If the number of cores is equal to or less
than 8, then the policy uses all cores.

The adaptive policy manages the number of collector threads at every collection cycle using

111

7.2. HOTSPOT GC THREADS MANAGEMENT

Figure 7.1: Hotspot JVM policy for setting a dynamic number of garbage collection threads.

two key factors. First, there is a heuristic that the number of collector threads should be at
least double the number of mutator threads, Tmutator [Hotspot Source Code]. This is based
on the assumption that the amount of memory used by a single Java thread would be best
collected by two garbage collection threads. Second, the number of garbage collector threads
should be related to the heap size, i.e. large heaps are collected by a large number of threads.
Hotspot assigns a garbage collection thread for every 64MB of the heap. Consequently, the
number of collector threads for nth collection cycle T n

GC is calculated as:

T n
GC = max

(
2Tmutator,

heapsize

64MB

)
(7.2)

If the number of collector threads exceeds the upper limit M , then only M threads will be
used at nth collection cycle. At every collection cycle, the number of collector threads at the
previous collection is taken into account. If the calculated number of collector threads for the
nth garbage collection is bigger than the number of threads for (n− 1)th garbage collection,
then T n

GC is applied. Otherwise, the new number of collector threads is calculated as:

T n
GC =

max
(
2Tmutator,

heapsize
64MB

)
+ T n−1

GC

2
(7.3)

This means, the rate of change in collector thread count is asymmetric. When the runtime
decides to increase the number of threads, it does so instantly. However, decreasing the
number of GC threads is done gradually. This asymmetric change is eager to keep the number

112

7.3. IMPACT OF VARYING THE NUMBER OF COLLECTOR THREADS ON
THROUGHPUT

of garbage collection threads high (around the upper limit) to take advantage of the parallel
resources. Figure 7.1 shows the Hotspot adaptive thread policy schematically.

7.3 Impact of Varying the Number of Collector Threads

on Throughput

Hotspot implements a throughput-oriented garbage collection policy, called Parallel Scav-
enge. This collector aims to provide high collection throughput by using parallelism, adap-
tive heap sizing policy, adaptive garbage collector thread management policy, and a service
level agreement (SLA). With modern NUMA systems, the adaptive garbage collector threads
management policy is shown as not to work efficiently and it gives a fixed number of threads
throughout program execution. Along with the theoretical analysis discussed in Section 7.2,
this section studies the impact of choosing different number of collector threads on collec-
tion’s throughput.

The first objective of this study is to observe collection’s throughput behavior when speci-
fying a different number of threads at VM initialization each time. Note that we measure
collection throughput for minor and major collections separately because they have different
characteristics. The minor collector is a copying collector, whereas the major collector is
mark-compact collector. Throughput is calculated as size of collected heap space divided by
wall clock time of garbage collection. The number of collector threads for each workload is
fixed and it ranges from 2 to 32. For each (workload, collector threads) combination, we take
20 measurements and report arithmetic mean. All error bars on graphs show 95% confidence
interval.

The second objective is to measure off-node NUMA traffic using hardware performance
counters. This dissertation considers using hardware performance counters as a novel contri-
bution to the research. Off-node memory events provide an indication about whether increas-
ing the number of collector threads can causes NUMA congestion on the system’s intercon-
nection links. It also can show whether or not data allocation is balanced between NUMA
nodes. Although our AMD system is an eight-node machine, it supports four hardware per-
formance counters only to measure off-node events. This limitation forces us to emulate a
machine of four nodes. Accordingly, we configure the machine to be of four nodes, 32-cores,
and 250 GB memory using numactl Linux NUMA tool. We use the Likwid [Treibig et al.,
2010] profiling tool to count memory events, i.e. read/write operations, that pass through
off-node interconnection links. These events include memory operations from both mutator
and garbage collector threads. The experiments ran for 20 times and the results show the
sum of all links averaged by the number of cores.

113

7.3. IMPACT OF VARYING THE NUMBER OF COLLECTOR THREADS ON
THROUGHPUT

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e

c
)

4,000

3,000

2,000

1,000

0

Error Bars: 95% CI

Avrora

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e

c
)

20,000

15,000

10,000

5,000

0

Error Bars: 95% CI

H2

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e

c
)

12,000

10,000

8,000

6,000

4,000

2,000

0

Error Bars: 95% CI

Jython

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

se
c)

20,000

15,000

10,000

5,000

0

LiveJournal

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

se
c)

6,000

5,000

4,000

3,000

2,000

1,000

0

Lusearch

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e

c
)

12,000

10,000

8,000

6,000

4,000

2,000

0

Error Bars: 95% CI

Pmd

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e

c
)

10,000

8,000

6,000

4,000

2,000

0

Error Bars: 95% CI

Sunflow

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e

c
) 6,000

4,000

2,000

0

Error Bars: 95% CI

Xalan

Page 1

Figure 7.2: Minor collection throughput varies with number of collector threads (higher is
better)

114

7.3. IMPACT OF VARYING THE NUMBER OF COLLECTOR THREADS ON
THROUGHPUT

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e
c
)

120

100

80

60

40

20

0

Avrora

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e
c
) 600

400

200

0

H2

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e
c
)

200

150

100

50

0

Jython

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e
c
)

250

200

150

100

50

0

Lusearch

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

se
c)

400

300

200

100

0

LiveJournal

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e
c
)

300

200

100

0

Pmd

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e
c
)

600

500

400

300

200

100

0

Sunflow

Error Bars: 95% CI

Page 1

GC Threads

32241682

T
h

ro
u

g
h

p
u

t
(K

B
/m

s
e
c
)

400

300

200

100

0

Xalan

Error Bars: 95% CI

Page 1

Figure 7.3: Major collection throughput varies with number of collector threads (higher is
better)

115

7.3. IMPACT OF VARYING THE NUMBER OF COLLECTOR THREADS ON
THROUGHPUT

The results in Figure 7.2 show that minor collections throughput improves as we increase the
number of collector threads until it reaches a maximum value, then performance degrades
beyond this threshold. For avrora, h2, pmd, xalan, and sunflow graphs, the threshold number
of collector threads is around 8 threads; whereas livejournal continues to improve throughput
up to around 24 threads. Surprisingly, jython and lusearch show no advantage in having more
than two threads.

Minor collections use a copying algorithm, where each collector thread has its own buffer in
the target space and it is just bumping the pointer to copy objects. Therefore, the copying
collector encounters less locking contention to allocate memory. On the contrary, copying
objects to remote NUMA nodes leads to creating NUMA traffic [Gidra et al., 2011]; hence,
smaller thread counts are more appropriate for minor collections. Livejournal exhibits a huge
workload and its data lives long; thus, it may require more threads to carry out the collection
work. In summary, minor collections prefer to schedule fewer threads, though for specific
applications, with long-lived data, more collector threads are needed.

Figure 7.3 depicts major collection’s throughput. It is clear that the threshold value for major
collections is different from minor collections. For avrora, h2, jython, and xalan, the optimal
number of threads is around 16 threads; whereas for lusearch, sunflow, pmd, and livejournal
it is around 8 threads.

Major collections use a mark-compact algorithms, and the old generation size is generally
much larger than the young generation. In addition, objects in the old generation are long-
lived; thus, the number of collector threads is likely to be higher than the minor collections.
We can see from the graphs that, in general, throughput variance is more narrow as we in-
crease the number of threads compared to minor collection’s throughput. Although through-
put peaks are evident, other environmental or architectural issues such as efficient energy
consumption or virtualization may benefit from fewer number of threads since scheduling
additional collector threads would not make much difference.

The second objective of this study is to investigate the impact of running a high number
of collector threads on NUMA off-node traffic. Figure 7.4 shows the absolute values for
hardware performance counter averaged over the number of cores. Due to performance tool
limitations, we are unable to measure memory events occur during the garbage collection
time only, thus the curve shows off-node traffic for complete execution of each benchmark.
The curve represents the sum of memory events pass through interconnection links. We
would expect that as we increase the number of garbage collection threads, benchmarks
issue high NUMA-traffic because threads would be mapped to multiple NUMA nodes and
they are likely to cross NUMA nodes to access memory. However, not all benchmarks exhibit
the same behavior. In jython, pmd, and livejournal graphs, 16 collector threads encounter
low NUMA traffic. If we compare these results with Figure 7.3, Whilst avrora and h2 show

116

7.4. STATIC OPTIMIZATION

existence of traffic minima, lusearch, sunflow, and xalan exhibit rapid traffic growth off the
nodes as we increase the number of collector threads. Since NUMA traffic measurements
include mutator and garbage collection execution, analysis for the effect of increased number
of garbage collection threads with the limitations in the existing profiling tools to the NUMA
traffic is hard.

To sum up, using too many collector threads can degrade performance on NUMA machines.
Furthermore, we observe that the optimal number of collector threads is different for minor
and major collections, and for different benchmarks. Based on these conclusions, we can
take advantage from this study to statically analyze the collection’s throughput behavior
and compute the optimal number of threads for each benchmark and for minor and major
collections. The next section implements a static optimization for the number of collector
threads.

7.4 Static Optimization

The existing adaptive garbage collection thread management policy produces a fixed number
of threads for both minor and major collections. In addition, users can explicitly set the
number of collector threads via a command-line switch for both collections. However, we
have shown in the previous section that both options yield suboptimal garbage collection
performance.

This section investigates the possibility of performing profile-based analysis on collection
throughput to generate separate optimal numbers of collector threads for minor and major
collections. Based on the observed throughput’s behavior in the previous section, we can
model the throughput’s behavior by fitting it into a curve. The shape of collection throughput
in Figure 7.2 and Figure 7.3 suggest that there is a maximum throughput value within the
range of garbage collection threads we analyse. Therefore, a second degree polynomial
function would be able to model this turning point. We will use the quadratic function
y = ax2 + bx + c where y is garbage collection throughput and x is number of collector
threads. We use SPSS version 21 to fit throughput data and estimate a quadratic curve for
each benchmark.

The quadratic curve has a parabola shape. Based on our observed throughput behavior, we
would say that, in general, throughput is enhanced as we increase the number of collector
threads until a turning point after which throughput is worsened. This turning point indicates
optimal number of collector threads we should use.

Figure 7.5 and Figure 7.6 show the fitted quadratic curves for the Dacapo and LiveJournal
benchmarks for minor and major collections respectively. For minor collection graphs, we
see wide parabolas for avrora, xalan, pmd, h2, and livejournal benchmarks. In contrast, for

117

7.4. STATIC OPTIMIZATION

GC Threads
32241682

Av
era

ge
 Li

nk
s E

ven
ts

(M
eg

a)
3

2

1

0

Avrora

Page 1

GC Threads
32241682

Av
era

ge
 Li

nk
s E

ven
ts

(M
eg

a)

6
5
4
3
2
1
0

H2

Page 1

GC Threads
32241682

Av
era

ge
 Li

nk
s E

ven
ts

(M
eg

a)

6
5
4
3
2
1
0

Jython

Page 1

GC Threads

32241682

A
ve

ra
g

e
L

in
ks

 E
ve

n
ts

(M

eg
a)

30

20

10

0

LiveJournal

Page 1

GC Threads
32241682

Av
era

ge
 Li

nk
s E

ven
ts

(M
eg

a)

5

4

3

2

1

0

Lusearch

Page 1

GC Threads
32241682

Av
era

ge
 Li

nk
s E

ven
ts

(M
eg

a)

10

8

6

4

2

0

Pmd

Page 1

GC Threads
32241682

Av
era

ge
 Li

nk
s E

ven
ts

(M
eg

a)

8

6

4

2

0

Sunflow

Page 1

GC Threads
32241682

Av
era

ge
 Li

nk
s E

ven
ts

(M
eg

a)

25

20

15

10

5

0

Xalan

Page 1

Figure 7.4: Off-node memory events over interconnect links between nodes; each line repre-
sents per-node average memory events over all four links (lower is better).

118

7.4. STATIC OPTIMIZATION

Application minor threads major threads
Avrora 9 16
H2 14 19
Jython 2 16
Lusearch 2 8
Pmd 9 10
Sunflow 2 17
Xalan 14 13
LiveJournal 23 19

Table 7.1: Optimum number of collector threads for minor and major collections

jython, sunflow, and lusearch, the initial value on the x axis is much better than other points
on the curve, i.e. minimum collector threads yields better throughput. For major collections,
parabolas shapes have a clear turning point indicating optimal number of threads.

SPSS computes the parameters for the quadratic formula. We can differentiate the quadratic
formula to compute the location of the turning point on the parabola. Note that a single
workload will have two optimum values—one for minor and one for major collections. Table
7.1 gives the computed optimum values for the number of minor and major collector threads
for each benchmark.

Computed values for minor collections for avrora, jython, lusearch, pmd, and sunflow sug-
gest to use few collector threads (≤ 9). In fact, jython, lusearch, and sunflow values are
less than two but we set two threads as the lower bound for parallel threads. The throughput
curve starts at high values then slides down as we increase the number of threads. Other
programs like xalan, h2, and liveJournal exhibit more symmetry in the shape of the parabola.
The number of collector threads for xalan and h2 benchmarks is 14, whereas liveJournal uses
23 threads.

For major collections, curves clearly indicate sweet-spots, where collection throughput peaks.
The mark-compact collector requires a high number of threads for full heap collection. The
optimal number of threads ranges from 8 to 19 across the benchmarks.

We implement static optimization by patching the JVM to allow different fixed thread set-
tings for minor and major collections. Benchmarks ran for twenty times and we report arith-
metic mean of pause times and VM times. Then we compare the computed static optimiza-
tion results against default Hotspot adaptive policy. Figure 7.7 shows the garbage collection
time for various workloads with these policies. For DaCapo benchmarks, the static optimiza-
tion for garbage collection is significantly better (25% on average) than the Hotspot default
adaptive policy. However, static optimization for the number of garbage collection threads of
LiveJournal benchmark shows no improvement to the garbage collection performance with
high pause time variation. By looking at the quadratic function of LiveJournal, the estimated

119

7.4. STATIC OPTIMIZATION

Figure 7.5: Fitted quadratic curves for benchmark GC throughput observations for minor
collections

120

7.4. STATIC OPTIMIZATION

Figure 7.6: Fitted quadratic curves for benchmark garbage collection throughput observa-
tions for major collection

121

7.5. DYNAMIC OPTIMIZATION

Figure 7.7: Garbage collection pause time comparison for various garbage collection thread-
ing policies (lower is better)

optima for major collection is 19, whereas its throughput graph (7.3) indicates that optima is
8. LiveJournal’s major collection throughput shows no significant variation after 8 threads
and the static optimization indicates that 23 threads (from the default JVM) and 19 threads
(from the curve fitting) are almost the same.

Figure 7.8 shows the overall application execution time for the same workloads. In the
majority of cases, the static optimization configuration leads to significantly better execution
times than the Hotspot default adaptive policy. The total execution time for LiveJournal
benchmark follows the same trend of pause time results, whereas avrora VM time is much
worse than the default JVM, which is the same conclusion from Figure 6.5 page 99.

In summary, static optimal garbage collection thread management configuration significantly
improves collection performance over the Hotspot default settings.

7.5 Dynamic Optimization

In the previous section, we set the number of collector threads explicitly on the command-
line for minor and major collections and they remain constant throughout program execution.
The optimum number of garbage collection threads may vary during execution, e.g. if a pro-
gram goes through phase changes, or if several distinct programs are chained together in

122

7.5. DYNAMIC OPTIMIZATION

Figure 7.8: Comparison of overall application performance for various garbage collection
threading policies (lower is better)

a single JVM instance. The default adaptive garbage collection thread management policy
was designed to be responsive to runtime changes, and that inspires us to design a runtime
optimization to vary the number of collector threads in the context of NUMA systems. In-
stead of correlating the number of collector threads with the combination of heap size and
the number of Java threads as of present, we take advantage from discussion in previous
sections and correlate the number of threads with collection throughput.

Figure 7.9 depicts our runtime optimization system for adaptive garbage collection thread
management. When a program pauses execution to enter a garbage collection phase, we
activate the adaptive policy to calculate the appropriate number of threads for the current
collection cycle. We treat the first and the second garbage collection cycle as a special case
because at least two throughput reading are required to identify the direction of collection
throughput. Observational results presented in Section 7.3 indicate that the garbage collector
uses a small number of threads to collect the heap. Therefore, we set two threads for these
collection cycles. Once the garbage collection completes the execution, we calculate and
store collection throughput in a circular buffer. For subsequent collections, we calculate
median throughput from the buffer and send the result as a parameter to the adaptive policy.

The adaptive policy is a simple search-based runtime optimization called a gradient descent

[Snyman, 2005] —although with the throughput curves we use, we are actually performing

123

7.5. DYNAMIC OPTIMIZATION

Garbage
Collector

Adaptive
Policy

Number of
Threads

(M)

Calculate Collection
Throughput

Continue Program
Execution

Stop Program
Execution

Figure 7.9: Schematic diagram for adaptive runtime GC threads management system.

Figure 7.10: Gradient ascent optimization searches for optimal value which is on the top
of the hill, where the slope is zero. At any point to the left, the slope value is positive,
indicating that optimal direction is forward. If the point is to the right, the slope is negative
and the direction is back.

124

7.5. DYNAMIC OPTIMIZATION

1 ∆threads = numThreads − numThreadsAtLas tQuery
2 ∆throughput = t h r o u g h p u t − t h r o u g h p u t A t L a s t Q u e r y
3

4 numThreadsAtLas tQuery = numThreads
5 t h r o u g h p u t A t L a s t Q u e r y = t h r o u g h p u t
6

7 i f (|∆throughput| < ε)
8 then
9 numThreads does not change / * below n o i s e t h r e s h o l d * /

10 e l s e
11 numThreads += α ∗∆throughput/∆threads / * m u l t i p l y by g r a d i e n t * /

Figure 7.11: Gradient ascent algorithm to optimize the number of GC threads

gradient ascent. Figure 7.10 depicts an example for gradient ascent curve. The basic intuition
is that, at a point x, we change the number of threads in a way that is proportional to the
gradient of the throughput curve at x. In this way, we approach the local maximum for the
throughput curve. Figure 7.11 outlines the gradient ascent algorithm we use and Appendix A
presents the source code. The parameter ε specifies the sensitivity threshold below which any
differences are considered to be noise. The parameter α is the amount by which the gradient
is multiplied. This value must be set carefully—if α is too small then the optimization takes
a long time to converge, but if α is too large then the optimization overshoots the maximum
point. In all our experiments, we use the values α = 0.05 and ε = 25, which are calculated
by trial and error effort. As before, we apply the optimization concurrently but separately for
minor and major GC threads.

The results in Figure 7.7, for pause time, and Figure 7.8, for total execution time, show
that the dynamic selection of collector threads performs significantly better than the Hotspot
default policy. The gradient ascent approach is generally as good as the static optimiza-
tion technique. The results show 21% on average performance improvement for DaCapo
benchmarks. However, note that for some programs (e.g. lusearch) the dynamic approach is
significantly better. This is likely to be the case when the application goes through differ-
ent phases within which there are large differences between the optimal number of collector
threads. Adversely, LiveJournal does not benefit from the gradient-ascent approach. In fact,
the performance degrades by 22% on average. The dynamic approach requires some tuning
(for α and ε), which we do this once for the system. LiveJournal may need different param-
eters value than DaCapo benchmarks to gain performance from the dynamic approach.

Figure 7.12 shows how the number of collector threads (for major and minor collections)
changes over time for several benchmarks. It shows up to 100 garbage collection cycles for
illustration purpose only, though benchmarks use small heap size and call the garbage collec-
tion excessively. These are illustrative graphs, but they show the effect of the gradient ascent
optimization. Note that the result returned from the gradient ascent approach is bounded in

125

7.6. RELATED WORK

the range [2, 32].

To sum up, a garbage collector thread management policy based on gradient ascent is able
to improve garbage collection performance significantly over the Hotspot default policy, in
many cases.

7.6 Related Work

7.6.1 NUMA GC Characterization

Sartor and Eeckhout [2012] study JVM performance for a two-socket NUMA machine. They
experiment with running garbage collection threads on one socket at a lower frequency than
application threads on the other socket. In general, they find that there can be fewer collec-
tor threads than application threads, although they do not expose NUMA congestion as the
underlying reason for this.

7.6.2 Causes of Congestion

Gidra et al. [2013] analyzed the OpenJDK Parallel Scavenge garbage collector for paral-
lelism bottlenecks and pinpointed several contended data structures. They propose several
modifications to reduce contention (and corresponding NUMA congestion).

Iyengar et al. [2012] study the scalability of the marking phase of the C4 algorithm [Tene
et al., 2011]. They report that the duty cycles of the marking phase get worse as the number
of threads increases. A primary source of this problem is the contention of work sharing in
marking tasks, where multiple threads attempt to atomically update words in a side bitmap.
The JVM allocates the bitmap data structure at the initialization phase and it is likely to reside
in a single NUMA node. Therefore, the collector threads would saturate the bandwidth of
that node. In addition, the cache line is big enough to accommodate multiple words; thus,
false sharing would occur with high probability.

Garbage collection’s work stealing may also lead to congestion. Gidra et al. [2011] eval-
uate disabling work stealing and report that some applications gain performance improve-
ment. Muddukrishna et al. [2013] propose a locality-aware work stealing algorithm. Cores
in a multi-hop memory hierarchical systems calculate the distance to other NUMA nodes.
Threads that run out of work on a node attempt to steal work from the ‘nearest’ pending
queues. Olivier et al. [2011] develop a hierarchical work stealing algorithm to improve lo-
cality. In each node, one third of running threads steal work from other nodes on behalf
of the remaining threads in the same chip. Stolen work is pushed into a node-local shared
queue, which enables threads to consume work from a local queue.

126

7.6. RELATED WORK

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Avrora (major collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Avrora (minor collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

LiveJournal (major collections)

Page 1

GC Cycle

100806040200
G

C
 T

h
re

ad
s

40

30

20

10

0

LiveJournal (minor collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Lusearch (major collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Lusearch (minor collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Pmd (minor collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Pmd (major collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Xalan (major collections)

Page 1

GC Cycle

100806040200

G
C

 T
h

re
ad

s

40

30

20

10

0

Xalan (minor collections)

Page 1

Figure 7.12: Illustrative graphs showing how the number of collector threads varies over the
first 100 collections with gradient ascent optimization

127

7.7. CONCLUSION

7.6.3 Reducing Congestion

Gidra et al. [2015] use message passing between local and remote garbage collection threads
to prevent NUMA congestion. Locality improvement is the most common way to reduce
congestion. This can be achieved by using thread-local heaps [Marlow and Peyton Jones,
2011, Domani et al., 2002]. Object migration may improve locality, but causes non-trivial
inter-node traffic [Tikir and Hollingsworth, 2005].

7.7 Conclusion

In the same way that JVM heap size is subject to a complex dynamic tuning system based
on feedback control, we argue that the number of garbage collection threads should have a
similar runtime tuning system. We have shown that the number of garbage collection threads
has a significant impact on application performance. NUMA machines are particularly sensi-
tive to garbage collection multi-threading. We observe that the optimum number of collector
threads varies by garbage collection type and application workload. We have shown the
potential for adaptive tuning using a simple search-based optimization technique.

The static optimization identifies the optimal number of threads based on the collection
throughput behavior. Previous studies, e.g. [Mao et al., 2009], have shown that the run-
time performance of DaCapo Java benchmarks are sensitive to input data variation. Our
static optimization is specialized to the particular input data used for training / analysis. For
this reason, the dynamic optimization approach is better when input characteristics are not
known ahead-of-time.

However, there are several limitations in this study. We only perform experiments on one
NUMA system and with a single virtual machine implementation. It is possible that these
empirical behaviors might be artifacts of the evaluation platform. To mitigate this, it is nec-
essary to perform the same experiments on other platforms and compare the results. We
consider our range of benchmarks to be representative and moderately broad. Furthermore,
we could check to see whether Hotspot has similar multi-threading garbage collection per-
formance issues on multicore UMA platforms.

128

Part III

CONCLUSION

129

CHAPTER

8

CONCLUSION

Modern servers increasingly use NUMA architectures to increase the number of processing
cores and the memory bandwidth. Whilst the parallel hardware in NUMA systems have the
potential to improve application performance significantly, balancing NUMA locality and
off-node traffic is a challenge. Managed runtime systems abstract NUMA details to pro-
vide several software engineering advantages, including automatic memory management.
Re-engineering runtime systems to be topology-aware can assist non-specialist program de-
velopers to benefit from advanced hardware.

The aim of this dissertation is to investigate improvements to the garbage collection of the
JVM by re-visiting the design choices for garbage collection from ground up. The scope
of this study includes ccNUMA architectures which are the base architecture for modern
servers. Cache coherency protocols have limited the scalability of the number of cores,
however, this research has shown that NUMA aspects could degrade the memory access
performance if software treats the memory in a NUMA-agnostic fashion. In addition, this
study is limited to Hotspot JVM which is the prevalent deployment of JVMs. Garbage col-
lection optimizations in this research target the default garbage collection policy, i.e. parallel
scavenge. Other garbage collection policies would be a research extension in the future.

Although NUMA awareness optimizations discussed in this dissertation have shown im-
provement to the garbage collection, there should be a comprehensive re-visit to the design
choices for NUMA garbage collection policies from ground-up to be NUMA aware. This
chapter concludes the dissertation by revisiting the thesis statement presented in Chapter 1

130

8.1. THESIS STATEMENT REVISITED

and discussing potential extensions and future work.

8.1 Thesis Statement Revisited

The thesis statement presented in Section 1.2 (page 4) is as follows:

Given that NUMA systems partition the memory into multiple nodes, and

a multi-threaded application can allocate data in any NUMA node, parallel

garbage collection involves off-node communications cost when collecting garbage

memory. This research asserts that NUMA topology awareness can improve

garbage collection performance. By obtaining data location, garbage collection

threads can process NUMA-local data. In addition, NUMA congestion caused

by increased number of scheduled garbage collection threads can be alleviated

by dynamically adapting the number of threads.

The assertion is proven by the following findings of this research:
Chapter 5 studies reference locality when garbage collection threads traverse the reference
graph. Two major techniques play an important role to characterize reference locality: paral-
lel algorithms and memory allocation policies. Garbage collectors are obliged to process the
reference graphs created by mutator threads during program execution. The JVM devolves
memory allocation to the operating system, which is set to first-touch policy by default and
uses huge page tables for page mapping.

Previous research proposals base their approaches on inspecting every object location prior
to processing for copying or compacting garbage collectors. This chapter shows that huge
page tables map large memory pages to a single NUMA node. Therefore, the study exploits
this mapping mechanism and provides empirical evidence that a large number of connected
objects belonging to the transitive closure of a root reside in the same NUMA node as that
root. The reference graph can be divided into many rooted sub-graphs that garbage collection
threads leverage to improve NUMA locality.

Chapter 6 discusses the implementation of NUMA-aware garbage collection based on the
observation of rooted sub-graph locality richness. In this chapter, three optimization schemes
are presented. Firstly, the aggressive scheme allows garbage collection threads to process
NUMA-local rooted sub-graphs only. To implement this scheme, garbage collection threads
classify roots based on NUMA nodes and enqueue them into shared per-node queues. Then,
each thread dequeues roots from a NUMA-local queue and scans their transitive closures.
During the work stealing phase, garbage collection threads steal work from NUMA-local
pending queues only. The results show that the aggressive optimization scheme works best
for large-heap applications. The average performance gains for aggressive scheme is 13%.

131

8.2. CONTRIBUTIONS

Secondly, the hybrid scheme allows garbage collection threads to process NUMA-local
rooted sub-graphs only but enables work stealing from any pending queues. In this scheme,
stealing from remote NUMA nodes may reduce NUMA congestion in the local node or bal-
ance the workload over NUMA nodes if the memory allocation is biased to some nodes.
Small-heap applications benefit greatly from the hybrid optimization scheme. The hybrid
scheme improves the garbage collection performance with an average of 23%.

Thirdly, the relaxed scheme aims at preserving the rooted sub-graph integrity by allowing
garbage collection threads to process all rooted-sub-graphs prior to entering the work stealing
phase. The results show that the relaxed optimization scheme outperforms the default JVM
with 8% on average.

The three optimization schemes of the NUMA-aware garbage collector combine to improve
the overall collection performance by 15%.

Chapter 7 addresses high NUMA off-node traffic caused by the large number of sched-
uled garbage collection threads. This chapter explores the relationship between collection
throughput and thread count. The study concludes that at a threshold thread count, the col-
lection throughput peaks and then degrades as the number of threads increases. The study
is repeated, however, to observe NUMA traffic behavior as more garbage collection threads
are added. We use hardware performance counters to measure memory events (read/write)
throughout the program execution. The results show that a high correlation between the
number of threads and NUMA traffic is noticeable.

Based on these studies, this chapter provides a static optimization scheme by enabling the
user to set the appropriate number of garbage collection threads using command-line flags,
separately for minor and major collections. The static optimization performs 25% on aver-
age better than the default JVM for the majority of benchmarks. In addition, this chapter
uses a runtime thread management policy to change the number of threads at each collection
cycle based on previous collection throughput behavior. This policy uses a gradient-ascent
algorithm to calculate the step of garbage collection thread count required for the current
collection. The results show 21% performance improvement for DaCapo benchmarks. Live-
Journal benchmark performs worse than the default JVM because the gradient-ascent algo-
rithm’s parameters require further tuning to give a different step size from the one used for
DaCapo benchmarks.

8.2 Contributions

This thesis contributes to garbage collection in the context of NUMA architectures in several
ways:

132

8.2. CONTRIBUTIONS

• Rooted sub-graph locality Chapter 5

Unlike previous research, this work develops the rooted sub-graph hypothesis, which
requires garbage collector threads to obtain the location of root references only (Sec-
tion 5.2). The root set size is smaller than the live object set that previous approaches
use. To test the hypothesis, we use seven benchmarks from the established real-world
DaCapo benchmark suite. In addition, the experiments involve a widely used SPECjbb
benchmark and Neo4J graph database Java benchmark, as well as an artificial bench-
mark. The results presented in Section 5.6 show that 80% of rooted sub-graph objects
(in the old generation) reside in the same NUMA node as the root. The young gen-
eration’s rooted sub-graphs show less locality connection between objects. Section
6.4.2 analysed the cause of this reduction and concluded that roots that are from the
old-to young generation incur poor locality. Therefore, NUMA optimizations can be
be applied to high-locality rooted sub-graphs only.

• Root classification Chapter 6

By using the rooted sub-graph, task generation and distribution can improve NUMA
locality. Roots are classified and distributed to NUMA queues, where garbage collec-
tor threads can acquire appropriate roots. Section 6.3 describes how roots are classified
and distributed to NUMA queues.

• NUMA-local work stealing Chapter 6

Work stealing usually selects an arbitrary pending queue to steal work. In NUMA
architecture, this mechanism may incur remote memory access overhead and change
object location. NUMA-local work stealing ensures that garbage collection threads
that run out of work can steal work from NUMA-local pending queues. The imple-
mentation of NUMA-local work stealing is presented in Section 6.3. Work stealing
should consider two conflicting factors. For locality enhancement, work stealing is
limited to local NUMA nodes to avoid remote memory access. However, for load bal-
ancing and to reduce congestion in the local NUMA node, garbage collection threads
should steal from remote NUMA nodes. This research suggests that managing these
factors in adaptive runtime systems is application-specific. Our Aggressive and Hybrid
optimization schemes use NUMA-local work stealing and the results show 13% and
23% on average performance improvement, respectively.

• Collection throughput and NUMA traffic correlate with the number of garbage
collection threads Chapter 7

Selecting the appropriate number of garbage collection threads is a non-trivial prob-
lem. In this research, the number of garbage collection threads is correlated with col-
lection throughput. Section 7.3 observes that garbage collection throughput increases

133

8.3. FUTURE RESEARCH DIRECTIONS

as more threads added to the collector thread pool and peaks at a specific number of
garbage collection threads then the collection throughput declines. Likewise, NUMA
off-node is shown to be impacted by the number of garbage collection threads. Both
factors suggest that the naive utilization of full resources for garbage collection yields
suboptimal performance. In addition, the optimal number of threads is shown to be
application-specific. Analysis of collection throughput behavior indicates that there is
an optimum number of threads for each application and this number is different for
minor and major collections (Figure 7.2 and Figure 7.3).

• NUMA-aware garbage collection thread management Chapter 7

This research contributes to garbage collection by using static and dynamic thread
management. In the static optimization policy, the optimal number of garbage col-
lection threads is obtained for minor and major collection individually for each bench-
mark (Section 7.4). The static optimization performs 25% better than the default JVM.
The dynamic optimization policy uses a search-based algorithm gradient-ascent to find
optimal points in a quadratic curve, which represents the collection throughput, Sec-
tion 7.5). At runtime, the number of garbage collection threads changes based on pre-
vious collection throughput behavior and the slope direction that the gradient-ascent
algorithm calculates. The dynamic optimizations show 21% better performance than
the default JVM configuration (Figure 7.7) for DaCapo benchmarks. The gradient-
ascent algorithm requires further tuning for LiveJournal benchmark to gain improve-
ment.

The outcomes of this research have shown that garbage collection exhibits performance
degradation when threads access remote NUMA nodes in ccNUMA systems. Locality im-
provements for NUMA memory accesses are shown to be more significant than cache lo-
cality improvement in ccNUMA architectures. Therefore, this research contributions would
be likely to improve next generations of non cache-coherent NUMA architectures (will be
discussed in Section 8.3.2). In addition, rooted sub-graph’s locality richness is tested for
stop-the-world copying and compacting garbage collections. Although we use Hotspot JVM
in this research, we would expect similar results for other JVMs since there is a phase for
roots enumeration as described in Section 3.6. The next section identifies areas where these
contribution can be applied.

8.3 Future Research Directions

This dissertation has shown that NUMA awareness is significant to garbage collection per-
formance. Developing NUMA-aware algorithms for garbage collection that balance between

134

8.3. FUTURE RESEARCH DIRECTIONS

data locality and congestion is non-trivial. The work of this thesis shows that there is great
potential for future research in this area. This section outlines and describes a number of
possible research directions.

8.3.1 Experimental Setup Generalization

So far, this thesis investigates the effectiveness of using NUMA-aware garbage collection
under one VM variant (the Hotspot JVM), one operating system (Linux), and one NUMA
architecture (AMD Opteron multi-hop memory system). There are many other hardware
and software combinations on which NUMA garbage collection can be used to examine and
generalize suggested optimizations.

Different Hardware

Hardware advances are leading information technology solutions and services; however, the
software needs to increase the development pace to utilize the emerging powerful hardware.
All experiments in this dissertation are executed on the AMD Opteron platform, see Chapter
4. The number of cores in a single die, interconnection link transfer speed, cache hierarchy,
and cache coherency protocol are all changing rapidly and they have significant impact on
NUMA performance.

AMD Opteron processors use the Bulldozer architecture and its successors, for example
Piledriver. This architecture has a per-core integer module and shares cache with another
sibling core. However, AMD has recently announced the Zen micro-architecture [Wikipedia,
2016], which introduces simultaneous multi-threading, a similar feature offered by Intel
processors (Hyper Threading), to improve per-core performance. This micro-architecture
may challenge NUMA garbage collection performance because adding more ”virtual” cores
would cause congestion on bus and memory controller [Gaud et al., 2015]. The Zen micro-
architecture uses high memory bandwidth (HMB) [AMD, 2016a] chips, which is a high-
performance RAM interface for 3D-stacked DRAM. In contrast to our experimental hard-
ware which integrates the memory controller with the processor, HMB chips involves an
interface with the CPU and may increase the communication overhead.

Different Software

High-level languages use managed runtime systems because of their success in abstract-
ing low-level details. The JVM documentation gives high-level specifications for garbage
collection design; thus there are diversity of JVMs production that may implement differ-
ent garbage collection algorithms, for instance JRockit, J9, Hotspot, Jikes RVM, and Zing

135

8.3. FUTURE RESEARCH DIRECTIONS

JVMs. Moreover, the JVMs may provide multiple garbage collections policies for different
application needs.

Hotspot provides three garbage collection policies: the Parallel Scavenge, the Concurrent
Mark-Sweep, and the Garbage First. In this research, NUMA optimization is applied to
the Parallel Scavenge garbage collection policy. It would be a fruitful research extension to
apply similar NUMA optimizations to the other two garbage collection policies.

Various programming languages can be hosted on JVMs, for example, Scala, Clojure, Jython,
and JRuby. Object size and lifetimes of these languages are different from Java [Li et al.,
2013]. However, Hotspot condenses long-living objects into one side of the old genera-
tion and usually does not move them [Hotspot dense prefix] (compute dense prefix

method). Furthermore, functional languages, e.g. Haskell, have a high allocation rate, which
may impact NUMA memory allocation and off-node traffic for multi-threaded applications.
Our optimizations (Section 6.3) would be candidates for such languages to improve NUMA
locality. Extending this research to study NUMA garbage collection for these languages is
another research opportunity.

Different Operating System

In this research, the operating system used to run the experiments is Linux (kernel version
3.11). NUMA-aware thread scheduling and memory allocation policies are different from
one operating system to another. For example, Solaris uses two modes of memory alloca-
tion: next-touch and random [Antony et al., 2006]. Next-touch policy is for thread-local data,
whereas random is useful for shared data that multiple threads can access. Data placement
is determined by the memory allocation and thread affinity. Linux supports more flexibil-
ity in memory allocation policies than Solaris. Experimenting with the proposed NUMA
optimizations on Solaris or other operating systems may show interesting results.

Future runtime systems may need to override the operating system’s memory allocation pol-
icy to manage data locality. In this case, garbage collection threads can manage data place-
ment on NUMA architectures, e.g. [Gidra et al., 2013].

8.3.2 NUMA Architectures without Cache Coherency

Cache-coherent shared memory systems enable multicore processors to benefit from private
caches and reduced memory access latency and traffic [Choi et al., 2011]. However, the
conventional wisdom is that cache coherence protocols will be a major obstacle to scaling the
number of cores that future processors are expected to have [Martin et al., 2012, Komuravelli
et al., 2014]. Increasing interconnection network traffic would cause higher access latency
and power consumption.

136

8.3. FUTURE RESEARCH DIRECTIONS

Three directions can be taken to solve this problem: abandon hardware and rely on software
cache coherence protocols, remain dependent on hardware cache coherency, or use software-
hardware hybrid coherency management, which aims to apply hardware cache coherency
within a processor chip and software-managed coherency between processors. For example,
Barrelfish [Baumann et al., 2009] allows each core to run a separate operating system kernel
and communicate with other cores through message passing protocols. Intel’s Single-Chip
Cloud Computer (SCC) [Baron, 2010] abandons hardware cache coherence and replaces it
with message-passing software cache management.

The work in this thesis investigates NUMA optimization on systems with hardware-enabled
cache coherency protocols. When moving the coherency burden to software (message pass-
ing), my proposed NUMA optimizations would need revisiting, and this too presents an
exciting research opportunity.

137

APPENDIX

A

GRADIENT-ASCENT ALGORITHM

This appendix presents the gradient-ascent class file layout. It shows the header and the
method source code.

Listing A.1: Gradient Ascent Header File

1 class HillClimber {

2 private:

3 // number of threads at last GC, so we can calculate

whether we should

4 // recommend increase or decrease in number of GC threads

5 int numThreadsAtLastQuery;

6 // GC throughput reading at last GC, so we can calculate

whether we are

7 // ascending or descending the hill

8 double throughputAtLastQuery;

9 // noise threshold - if two successive throughput

10 // readings are within epsilon of each other then recommend

no change

11 // to num GC threads

12 double _epsilon;

138

13 // gradient multiplication factor to scale the

14 // gradient ascent - this must be tuned carefully for the

problem

15 // (a) if alpha is too small then the search takes too long

to get to optimum

16 // (b) if alpha is too large then the search overshoots

badly

17 double _alpha;

18 // cached recommendation for num GC threads

19 // +ve means increase num threads

20 // 0 means keep num threads constant

21 // -ve means decrease num threads

22 // Notes:

23 // (1) _directionToClimb is the cached return value of

24 // the most recent call to recordThroughputReading()

25 // (2) the magnitude of this value is computed by the

26 // "gradient ascent" approach - so it can be used to

27 // determine how many threads to grow/shrink the

28 // GC thread count.

29 // _directionToClimb = gradient * alpha

30 int _directionToClimb;

31 public:

32 // constructor

33 // noise threshold and gradient scaling factor

34 // HillClimber(double epsilon, double alpha);

35 HillClimber(double epsilon = 25.0, double alpha = 0.05)

36 : _epsilon(epsilon), _alpha(alpha) {

37 numThreadsAtLastQuery = 2;

38 throughputAtLastQuery = 0.0;

39 _directionToClimb = 0;

40 }

41 // supply a (numThreads, throughput) reading to the hill-

climber

42 // This method compares the new reading with the previous

one, and

43 // outputs a recommendation. See comment on

_directionToClimb

44 // to interpret the recommendation value.

139

45 int recordThroughputReading(int numThreads, double

throughput);

46 // returns cached direction computed at last call to

recordThroughputReading()

47 // Again, see comment on _directionToClimb to interpret the

recommendation

48 // value.

49 int directionToClimb();

50 int getLastThreads() {

51 return numThreadsAtLastQuery;

52 }

53 };

Listing A.2: Gradient Ascent Methods

1 // returns the new direction to go...

2 // (-ve means decrease numThreads,

3 // +ve means increase numThreads,

4 // 0 means keep numThreads constant)

5 // magnitude of returned value computed by

6 // gradient ascent - larger for steeper gradients

7 int

8 HillClimber::recordThroughputReading(int numThreads, double

throughput) {

9 int delta_threads = numThreads - numThreadsAtLastQuery;

10 double delta_throughput = throughput -

throughputAtLastQuery;

11 bool ignoreChange = fabs(delta_throughput) < _epsilon;

12 double gradient = (delta_threads==0)?0:(delta_throughput /

delta_threads);

13 //std::cout << "[hillclimber] gradient is " << gradient <<

"\n";

14 // now update fields

15 numThreadsAtLastQuery = numThreads;

16 throughputAtLastQuery = throughput;

17 if (ignoreChange) {

18 // stay in same place on hill

140

19 _directionToClimb = 0;

20 } else {

21 _directionToClimb = ((gradient<0)?floor(gradient):ceil(

gradient)) * _alpha;

22 }

23 if (delta_threads == 0) {

24 if (numThreads < 16) {

25 _directionToClimb = 1;

26 } else {

27 _directionToClimb =-1;

28 }

29 }

30 //std::cout << "[hillclimber] recommending change: " <<

_directionToClimb << "\n";

31 return _directionToClimb;

32 }

33 // returns the cached most recently computed

34 // direction to go...

35 // (-ve means decrease numThreads,

36 // +ve means increase numThreads,

37 // 0 means keep numThreads constant)

38 int

39 HillClimber::directionToClimb() {

40 return _directionToClimb;

41 }

141

BIBLIOGRAPHY

Khaled Alnowaiser. A Study of Connected Object Locality in NUMA Heaps. In Proceedings

of the Workshop on Memory Systems Performance and Correctness, MSPC ’14, pages 1:1–
1:9, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2917-0. doi: 10.1145/2618128.
2618132. URL http://doi.acm.org/10.1145/2618128.2618132.

Khaled Alnowaiser and Jeremy Singer. Topology-Aware Parallelism for NUMA Copying

Collectors, chapter Languages and Compilers for Parallel Computing: 28th International
Workshop, LCPC 2015, Raleigh, NC, USA, September 9-11, 2015, Revised Selected
Papers, pages 191–205. Springer International Publishing, Cham, 2016. ISBN 978-3-
319-29778-1. doi: 10.1007/978-3-319-29778-1 12. URL http://dx.doi.org/10.

1007/978-3-319-29778-1_12.

AMD. AMD64 Architecture Programmers Manual Volume 2: System Programming.
http://support.amd.com/TechDocs/24593.pdf, Sep 2015.

AMD. High Bandwidth Memory — Reinventing Memory Technology. http://

www.amd.com/en-us/innovations/software-technologies/hbm, June
2016a.

AMD. HyperTransport Technology. http://www.amd.com/en-us/innovations/
software-technologies/hypertransport, June 2016b.

Todd A. Anderson. Optimizations in a Private Nursery-based Garbage Collector. In Proceed-

ings of the 2010 International Symposium on Memory Management, ISMM ’10, pages 21–
30, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0054-4. doi: 10.1145/1806651.
1806655. URL http://doi.acm.org/10.1145/1806651.1806655.

142

http://doi.acm.org/10.1145/2618128.2618132
http://dx.doi.org/10.1007/978-3-319-29778-1_12
http://dx.doi.org/10.1007/978-3-319-29778-1_12
http://support.amd.com/TechDocs/24593.pdf
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hypertransport
http://www.amd.com/en-us/innovations/software-technologies/hypertransport
http://doi.acm.org/10.1145/1806651.1806655

David L Andre. Paging in lisp programs. Master’s thesis, University of Maryland, 1986.

Kleen Andreas. A NUMA API for LINUX. http://developer.amd.com/

wordpress/media/2012/10/LibNUMA-WP-fv1.pdf, April 2005.

Joseph Antony, Pete P. Janes, and Alistair P. Rendell. High Performance Computing - HiPC

2006: 13th International Conference, Bangalore, India, December 18-21, 2006. Pro-

ceedings, chapter Exploring Thread and Memory Placement on NUMA Architectures:
Solaris and Linux, UltraSPARC/FirePlane and Opteron/HyperTransport, pages 338–352.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-68040-6. doi:
10.1007/11945918 35. URL http://dx.doi.org/10.1007/11945918_35.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread Scheduling for Multiprogrammed
Multiprocessors. Theory of Computing Systems, 34(2):115–144, 2001. ISSN 14324350.
doi: 10.1007/s002240011004.

Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John Reppy. Garbage Collection
for Multicore NUMA Machines. In Proceedings of the 2011 ACM SIGPLAN Work-

shop on Memory Systems Performance and Correctness, pages 51–57, New York, NY,
USA, 2011. ACM. ISBN 9781450307949. doi: 10.1145/1988915.1988929. URL
http://portal.acm.org/citation.cfm?doid=1988915.1988929.

David F. Bacon and V. T. Rajan. Concurrent Cycle Collection in Reference Counted Sys-

tems, chapter Concurrent Cycle Collection in Reference Counted Systems, pages 207–
235. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 978-3-540-45337-
6. doi: 10.1007/3-540-45337-7{\ }12. URL http://link.springer.com/10.

1007/3-540-45337-7{_}12.

DavidF. Bacon, StephenJ. Fink, and David Grove. Space- and Time-Efficient Implemen-
tation of the Java Object Model. In Boris Magnusson, editor, ECOOP 2002 Object-

Oriented Programming, volume 2374 of Lecture Notes in Computer Science, pages
111–132. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-43759-8. doi: 10.1007/
3-540-47993-7 5. URL http://dx.doi.org/10.1007/3-540-47993-7_5.

Katherine Barabash and Erez Petrank. Tracing Garbage Collection on Highly Parallel
Platforms. In Proceedings of the 2010 International Symposium on Memory Manage-

ment, ISMM ’10, pages 1–10, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0054-4. doi: 10.1145/1806651.1806653. URL http://doi.acm.org/10.1145/

1806651.1806653.

Max Baron. The Single-chip Cloud Computer . http://http://www.

intel.co.uk/content/dam/www/public/us/en/documents/

143

http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
http://dx.doi.org/10.1007/11945918_35
http://portal.acm.org/citation.cfm?doid=1988915.1988929
http://link.springer.com/10.1007/3-540-45337-7{_}12
http://link.springer.com/10.1007/3-540-45337-7{_}12
http://dx.doi.org/10.1007/3-540-47993-7_5
http://doi.acm.org/10.1145/1806651.1806653
http://doi.acm.org/10.1145/1806651.1806653
http://http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf
http://http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf
http://http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf

technology-briefs/intel-labs-single-chip-cloud-article.pdf,
Apr 2010.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Si-
mon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The multikernel:
A new os architecture for scalable multicore systems. In Proceedings of the ACM SIGOPS

22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 29–44, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629579. URL
http://doi.acm.org/10.1145/1629575.1629579.

E D Berger, K S McKinley, R D Blumofe, and P R Wilson. Hoard: A scalable memory
allocator for multithreaded applications. Acm Sigplan Notices, 35(11):117–128, 2000.
ISSN 0362-1340. doi: 10.1145/356989.357000.

Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference counting: Fast garbage
collection without a long wait. In Proceedings of the 18th Annual ACM SIGPLAN Con-

ference on Object-oriented Programing, Systems, Languages, and Applications, OOPSLA
’03, pages 344–358, New York, NY, USA, 2003. ACM. ISBN 1-58113-712-5. doi: 10.
1145/949305.949336. URL http://doi.acm.org/10.1145/949305.949336.

Stephen M Blackburn, Sharad Singhai, Matthew Hertz, Kathryn S McKinely, and J Eliot B
Moss. Pretenuring for java. In ACM SIGPLAN Notices, volume 36, pages 342–352. ACM,
2001.

Stephen M. Blackburn, Richard E. Jones, Kathryn S. Mckinley, and J. Eliot B. Moss. Belt-
way: Getting around garbage collection gridlock. PLDI: Programming Language Design

and Implementation, volume37(5):153–164, 2002. doi: 10.1145/512529.512548.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The Dacapo Benchmarks: Java Benchmarking Development and Analysis. In
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented Program-

ming Systems, Languages, and Applications, OOPSLA ’06, pages 169–190, New York,
NY, USA, 2006. ACM. ISBN 1-59593-348-4. doi: 10.1145/1167473.1167488. URL
http://doi.acm.org/10.1145/1167473.1167488.

Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, Asjad M.
Khan, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish

144

http://http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf
http://http://www.intel.co.uk/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf
http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/949305.949336
http://doi.acm.org/10.1145/1167473.1167488

Phansalkar, Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. Wake up and smell the coffee: Evaluation methodology for the 21st century.
Commun. ACM, 51(8):83–89, August 2008. ISSN 0001-0782. doi: 10.1145/1378704.
1378723. URL http://doi.acm.org/10.1145/1378704.1378723.

Hans Boehm. GCBench Program. http://hboehm.info/gc/gc_bench/

GCBench.java, Oct 2000.

William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J. Fowler, and Alan L.
Cox. Numa policies and their relation to memory architecture. In Proceedings of the

Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS IV, pages 212–221, New York, NY, USA, 1991. ACM.
ISBN 0-89791-380-9. doi: 10.1145/106972.106994. URL http://doi.acm.org/

10.1145/106972.106994.

François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento, Brice
Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: a Generic
Framework for Managing Hardware Affinities in HPC Applications. In IEEE, editor,
PDP 2010 - The 18th Euromicro International Conference on Parallel, Distributed and

Network-Based Computing, Pisa, Italy, February 2010. doi: 10.1109/PDP.2010.67. URL
https://hal.inria.fr/inria-00429889.

Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-Conscious Data Place-
ment. In Proceedings of the Eighth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS VIII, pages 139–149, New
York, NY, USA, 1998. ACM. ISBN 1-58113-107-0. doi: 10.1145/291069.291036. URL
http://doi.acm.org/10.1145/291069.291036.

Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Scheduling and page migration for multiprocessor compute servers. In Proceedings of

the Sixth International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS VI, pages 12–24, New York, NY, USA, 1994. ACM.
ISBN 0-89791-660-3. doi: 10.1145/195473.195485. URL http://doi.acm.org/

10.1145/195473.195485.

Wen-ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xiaofeng Gao, and Weihaw Chuang.
Profile-guided proactive garbage collection for locality optimization. In Proceedings of

the 2006 ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’06, pages 332–340, New York, NY, USA, 2006. ACM. ISBN 1-59593-
320-4. doi: 10.1145/1133981.1134021. URL http://doi.acm.org/10.1145/

1133981.1134021.

145

http://doi.acm.org/10.1145/1378704.1378723
http://hboehm.info/gc/gc_bench/GCBench.java
http://hboehm.info/gc/gc_bench/GCBench.java
http://doi.acm.org/10.1145/106972.106994
http://doi.acm.org/10.1145/106972.106994
https://hal.inria.fr/inria-00429889
http://doi.acm.org/10.1145/291069.291036
http://doi.acm.org/10.1145/195473.195485
http://doi.acm.org/10.1145/195473.195485
http://doi.acm.org/10.1145/1133981.1134021
http://doi.acm.org/10.1145/1133981.1134021

C J Cheney. A Nonrecursive List Compacting Algorithm. Communications of the ACM, 13
(11):677–678, 1970a.

C. J. Cheney. A Nonrecursive List Compacting Algorithm. Commun. ACM, 13(11):677–
678, November 1970b. ISSN 0001-0782. doi: 10.1145/362790.362798. URL http:

//doi.acm.org/10.1145/362790.362798.

Yannis Chicha and Stephen M Watt. A Localized Tracing Scheme Applied to Garbage
Collection. Programming Languages and Systems, 4279:323–339, 2006. doi: 10.1007/
11924661 20.

TM Chilimbi and JR Larus. Using Generational Garbage Collection To Implement Cache-
Conscious Data Placement. ACM SIGPLAN Notices, 1(212), 1999. URL http://dl.

acm.org/citation.cfm?id=286865.

Trishul M. Chilimbi and James R. Larus. Using Generational Garbage Collection to Im-
plement Cache-conscious Data Placement. In Proceedings of the 1st International Sym-

posium on Memory Management, ISMM ’98, pages 37–48, New York, NY, USA, 1998.
ACM. ISBN 1-58113-114-3. doi: 10.1145/286860.286865. URL http://doi.acm.

org/10.1145/286860.286865.

Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious Structure Defini-
tion. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language

Design and Implementation, PLDI ’99, pages 13–24, New York, NY, USA, 1999a. ACM.
ISBN 1-58113-094-5. doi: 10.1145/301618.301635. URL http://doi.acm.org/

10.1145/301618.301635.

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure lay-
out. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language

Design and Implementation, PLDI ’99, pages 1–12, New York, NY, USA, 1999b. ACM.
ISBN 1-58113-094-5. doi: 10.1145/301618.301633. URL http://doi.acm.org/

10.1145/301618.301633.

B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S. Adve,
N. P. Carter, and C. T. Chou. Denovo: Rethinking the memory hierarchy for disciplined
parallelism. In Parallel Architectures and Compilation Techniques (PACT), 2011 Interna-

tional Conference on, pages 155–166, Oct 2011. doi: 10.1109/PACT.2011.21.

Myra Cohen, Shiu Beng Kooi, and Witawas Srisa-an. Clustering the heap in multi-threaded
applications for improved garbage collection. In Proceedings of the 8th Annual Confer-

ence on Genetic and Evolutionary Computation, GECCO ’06, pages 1901–1908, New
York, NY, USA, 2006. ACM. ISBN 1-59593-186-4. doi: 10.1145/1143997.1144314.
URL http://doi.acm.org/10.1145/1143997.1144314.

146

http://doi.acm.org/10.1145/362790.362798
http://doi.acm.org/10.1145/362790.362798
http://dl.acm.org/citation.cfm?id=286865
http://dl.acm.org/citation.cfm?id=286865
http://doi.acm.org/10.1145/286860.286865
http://doi.acm.org/10.1145/286860.286865
http://doi.acm.org/10.1145/301618.301635
http://doi.acm.org/10.1145/301618.301635
http://doi.acm.org/10.1145/301618.301633
http://doi.acm.org/10.1145/301618.301633
http://doi.acm.org/10.1145/1143997.1144314

George E. Collins. A method for overlapping and erasure of lists. Commun. ACM, 3(12):
655–657, December 1960. ISSN 0001-0782. doi: 10.1145/367487.367501. URL http:

//doi.acm.org/10.1145/367487.367501.

P. Conway and B. Hughes. The AMD Opteron Northbridge Architecture. Micro, IEEE, 27
(2):10–21, March 2007. ISSN 0272-1732. doi: 10.1109/MM.2007.43.

Robert Courts. Improving Locality of Reference in a Garbage-collecting Memory Manage-
ment System. Commun. ACM, 31(9):1128–1138, September 1988. ISSN 0001-0782. doi:
10.1145/48529.48536. URL http://doi.acm.org/10.1145/48529.48536.

E.H.M. Cruz, M.A.Z. Alves, and P.O.A. Navaux. Process mapping based on memory access
traces. In Computing Systems (WSCAD-SCC), 2010 11th Symposium on, pages 72–79,
Oct 2010. doi: 10.1109/WSCAD-SCC.2010.26.

M Dashti, Alexandra Fedorova, and Justin Funston. Traffic management: a holistic approach
to memory placement on NUMA systems. . . . and operating systems, pages 381–393,
2013. URL http://dl.acm.org/citation.cfm?id=2451157.

Julian Dolby and Andrew Chien. An automatic object inlining optimization and its evalua-
tion. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation, PLDI ’00, pages 345–357, New York, NY, USA, 2000. ACM.
ISBN 1-58113-199-2. doi: 10.1145/349299.349344. URL http://doi.acm.org/

10.1145/349299.349344.

Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector for a mul-
tithreaded implementation of ml. In Proceedings of the 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’93, pages 113–123, New
York, NY, USA, 1993. ACM. ISBN 0-89791-560-7. doi: 10.1145/158511.158611. URL
http://doi.acm.org/10.1145/158511.158611.

Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and Dafna
Sheinwald. Thread-local Heaps for Java. In Proceedings of the 3rd International Sym-

posium on Memory Management, ISMM ’02, pages 76–87, New York, NY, USA, 2002.
ACM. ISBN 1-58113-539-4. doi: 10.1145/512429.512439. URL http://doi.acm.

org/10.1145/512429.512439.

Toshio Endo, K. Taura, and A Yonezawa. A Scalable Mark-Sweep Garbage Collector on
Large-Scale Shared-Memory Machines. In Proceedings of the 1997 ACM/IEEE Confer-

ence on Supercomputing, pages 1–14, San Jose, CA, 1997. ISBN 0897919858.

147

http://doi.acm.org/10.1145/367487.367501
http://doi.acm.org/10.1145/367487.367501
http://doi.acm.org/10.1145/48529.48536
http://dl.acm.org/citation.cfm?id=2451157
http://doi.acm.org/10.1145/349299.349344
http://doi.acm.org/10.1145/349299.349344
http://doi.acm.org/10.1145/158511.158611
http://doi.acm.org/10.1145/512429.512439
http://doi.acm.org/10.1145/512429.512439

Haggai Eran and E Petrank. A Study of Data Structures with a Deep Heap Shape. In
Proceedings of the ACM SIGPLAN Workshop on Memory Systems Performance and Cor-

rectness, pages 21–28, Seattle, Washington, 2013. ACM. ISBN 9781450312196. URL
http://dl.acm.org/citation.cfm?id=2492413.

Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. IEEE Micro, 32(3):122–134, 2012.
ISSN 02721732. doi: 10.1109/MM.2012.17.

CH Flood, David Detlefs, N Shavit, and X Zhang. Parallel Garbage Collection for Shared
Memory Multiprocessors. In Proceedings of the 2001 Symposium on JavaTM Virtual

Machine Research and Technology Symposium, page 21, Monterey, California, 2001.
USENIX Association. URL https://www.usenix.org/event/jvm01/full_

papers/flood/flood.pdf.

M. Flynn. Some computer organizations and their effectiveness. Computers, IEEE Transac-

tions on, C-21(9):948–960, Sept 1972. ISSN 0018-9340. doi: 10.1109/TC.1972.5009071.

Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Alexandra Fedorova,
Vivien Quéma, Renaud Lachaize, and Mark Roth. Challenges of memory management on
modern NUMA systems. Commun. ACM, 58(12):59–66, 2015. doi: 10.1145/2814328.

P. Gepner and M.F. Kowalik. Multi-Core Processors: New Way to Achieve High System
Performance. International Symposium on Parallel Computing in Electrical Engineering

(PARELEC’06), pages 0–4, 2006. doi: 10.1109/PARELEC.2006.54.

Lokesh Gidra, Gael Thomas, Julien Sopena, and Marc Shapiro. Assessing the Scalability of
Garbage Collectors on Many Cores. In 6th Workshop on Programming Languages and

Operating Systems (PLOS’11)., pages 1–7, 2011.

Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A Study of the Scalability
of Stop-the-world Garbage Collectors on Multicores. In Proceedings of the Eighteenth

International Conference on Architectural Support for Programming Languages and Op-

erating Systems, ASPLOS ’13, pages 229–240, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-1870-9. doi: 10.1145/2451116.2451142. URL http://doi.acm.org/

10.1145/2451116.2451142.

Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. NumaGiC:
A Garbage Collector for Big Data on Big NUMA Machines. In Proceedings of the Twen-

tieth International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 661–673, 2015.

148

http://dl.acm.org/citation.cfm?id=2492413
https://www.usenix.org/event/jvm01/full_papers/flood/flood.pdf
https://www.usenix.org/event/jvm01/full_papers/flood/flood.pdf
http://doi.acm.org/10.1145/2451116.2451142
http://doi.acm.org/10.1145/2451116.2451142

James Gosling and Alex Buckley. The Java Language Specification: Java SE 8 Edition.
Oracle, 2015.

Samuel Z. Guyer and Kathryn S. McKinley. Finding Your Cronies: Static Analysis for Dy-
namic Object Colocation. In Proceedings of the 19th Annual ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’04,
pages 237–250, New York, NY, USA, 2004. ACM. ISBN 1-58113-831-8. doi: 10.1145/
1028976.1028996. URL http://doi.acm.org/10.1145/1028976.1028996.

Mark Harman, Stephen Swift, and Kiarash Mahdavi. An empirical study of the robustness
of two module clustering fitness functions. In Proceedings of the 7th Annual Conference

on Genetic and Evolutionary Computation, GECCO ’05, pages 1029–1036, New York,
NY, USA, 2005. ACM. ISBN 1-59593-010-8. doi: 10.1145/1068009.1068184. URL
http://doi.acm.org/10.1145/1068009.1068184.

Barry Hayes. Using key object opportunism to collect old objects. In Conference Proceed-

ings on Object-oriented Programming Systems, Languages, and Applications, OOPSLA
’91, pages 33–46, New York, NY, USA, 1991. ACM. ISBN 0-201-55417-8. doi: 10.1145/
117954.117957. URL http://doi.acm.org/10.1145/117954.117957.

John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quanti-

tative Approach, chapter Memory Hierarchy Design. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2011a. ISBN 012383872X, 9780123838728.

John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quanti-

tative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition,
2011b. ISBN 012383872X, 9780123838728.

Martin Hirzel, Johannes Henkel, Amer Diwan, and Michael Hind. Understanding the Con-
nectivity of Heap Objects. In Proceedings of the 3rd International Symposium on Mem-

ory Management, ISMM ’02, pages 36–49, New York, NY, USA, 2002. ACM. ISBN
1-58113-539-4. doi: 10.1145/512429.512435. URL http://doi.acm.org/10.

1145/512429.512435.

Martin Hirzel, Amer Diwan, and Matthew Hertz. Connectivity-based Garbage Collection.
In Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-oriented Pro-

graming, Systems, Languages, and Applications, OOPSLA ’03, pages 359–373, New
York, NY, USA, 2003. ACM. ISBN 1-58113-712-5. doi: 10.1145/949305.949337. URL
http://doi.acm.org/10.1145/949305.949337.

Hotspot dense prefix. Method: compute dense prefix. src/share/vm/gc_

implementation/shared/adaptiveSizePolicy.cpp.

149

http://doi.acm.org/10.1145/1028976.1028996
http://doi.acm.org/10.1145/1068009.1068184
http://doi.acm.org/10.1145/117954.117957
http://doi.acm.org/10.1145/512429.512435
http://doi.acm.org/10.1145/512429.512435
http://doi.acm.org/10.1145/949305.949337
src/share/vm/gc_implementation/shared/adaptiveSizePolicy.cpp
src/share/vm/gc_implementation/shared/adaptiveSizePolicy.cpp

Hotspot Source Code. Method: calc default active workers. src/share/vm/gc_

implementation/parallelScavenge/psParallelCompact.cpp.

Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss, Zhenlin
Wang, and Perry Cheng. The Garbage Collection Advantage: Improving Program Local-
ity. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’04, pages 69–80, New
York, NY, USA, 2004. ACM. ISBN 1-58113-831-8. doi: 10.1145/1028976.1028983.
URL http://doi.acm.org/10.1145/1028976.1028983.

RichardL. Hudson and J.EliotB. Moss. Incremental collection of mature objects. In Yves
Bekkers and Jacques Cohen, editors, Memory Management, volume 637 of Lecture Notes

in Computer Science, pages 388–403. Springer Berlin Heidelberg, 1992. ISBN 978-3-
540-55940-5. doi: 10.1007/BFb0017203. URL http://dx.doi.org/10.1007/

BFb0017203.

Intel. Intel QuickPath Interconnect. http://www.intel.com/content/www/

us/en/io/quickpath-technology/quickpath-technology-general.

html, June 2016.

Balaji Iyengar, Edward Gehringer, Michael Wolf, and Karthikeyan Manivannan. Scalable
Concurrent and Parallel Mark. In Proceedings of the 2012 international symposium on

Memory Management - ISMM 12, pages 61–72. ACM, 2012.

R. Jones and A.C. King. A Fast Analysis for Thread-local Garbage Collection with Dynamic
Class Loading. In Fifth IEEE International Workshop on Source Code Analysis and Ma-

nipulation, pages 129–138, 2005. ISBN 0769522920. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1541165.

Richard Jones and Chris Ryder. Garbage Collection Should Be Lifetime Aware. Implemen-

tation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems

({ICOOOLPS}’2006), page 8, 2006. URL http://www.cs.kent.ac.uk/pubs/

2006/2376/.

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook: The

Art of Automatic Memory Management. Chapman & Hall/CRC, 1st edition, 2011. doi:
1420082795,9781420082791.

Richard E. Jones and Chris Ryder. A Study of Java Object Demographics. In Proceedings

of the 7th International Symposium on Memory Management, ISMM ’08, pages 121–130,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-134-7. doi: 10.1145/1375634.
1375652. URL http://doi.acm.org/10.1145/1375634.1375652.

150

src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp
src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp
http://doi.acm.org/10.1145/1028976.1028983
http://dx.doi.org/10.1007/BFb0017203
http://dx.doi.org/10.1007/BFb0017203
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1541165
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1541165
http://www.cs.kent.ac.uk/pubs/2006/2376/
http://www.cs.kent.ac.uk/pubs/2006/2376/
http://doi.acm.org/10.1145/1375634.1375652

Tomas Kalibera, Matthew Mole, Richard Jones, and Jan Vitek. A Black-box Approach to
Understanding Concurrency in DaCapo. In Proceedings of the ACM International Con-

ference on Object Oriented Programming Systems Languages and Applications, OOP-
SLA ’12, pages 335–354, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1561-6. doi: 10.1145/2384616.2384641. URL http://doi.acm.org/10.1145/

2384616.2384641.

Rakesh Komuravelli, Sarita V. Adve, and Ching-Tsun Chou. Revisiting the complexity of
hardware cache coherence and some implications. ACM Trans. Archit. Code Optim., 11
(4):37:1–37:22, December 2014. ISSN 1544-3566. doi: 10.1145/2663345. URL http:

//doi.acm.org/10.1145/2663345.

Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. Lonestar: A suite
of parallel irregular programs. In ISPASS ’09: IEEE International Symposium on Perfor-

mance Analysis of Systems and Software, 2009. URL http://iss.ices.utexas.

edu/Publications/Papers/ispass2009.pdf.

Michael S. Lam, Paul R. Wilson, and Thomas G. Moher. Object Type Directed Garbage
Collection To Improve Locality. In Proceedings of the International Workshop on

Memory Management, IWMM ’92, pages 404–425, London, UK, UK, 1992. Springer-
Verlag. ISBN 3-540-55940-X. URL http://dl.acm.org/citation.cfm?id=

645648.664829.

Christoph Lameter. NUMA (Non-Uniform Memory Access): An Overview. Queue, 11
(7):40:40–40:51, July 2013. ISSN 1542-7730. doi: 10.1145/2508834.2513149. URL
http://doi.acm.org/10.1145/2508834.2513149.

Richard P. LaRowe, Carla Schlatter Ellis, and Laurence S. Kaplan. The robustness of NUMA
memory management. ACM SIGOPS Operating Systems Review, 25(5):137–151, 1991.
ISSN 01635980. doi: 10.1145/121133.121158.

Peeter Laud. Analysis for object inlining in java. In In Proceedings of the Joses Workshop,
pages 1–8, 2001.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, jun 2014.

Ondej Lhotàk and Laurie Hendren. Run-time evaluation of opportunities for object inlining
in java. Concurrency and Computation: Practice and Experience, 17(5-6):515–537, 2005.
ISSN 1532-0634. doi: 10.1002/cpe.848. URL http://dx.doi.org/10.1002/

cpe.848.

151

http://doi.acm.org/10.1145/2384616.2384641
http://doi.acm.org/10.1145/2384616.2384641
http://doi.acm.org/10.1145/2663345
http://doi.acm.org/10.1145/2663345
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf
http://dl.acm.org/citation.cfm?id=645648.664829
http://dl.acm.org/citation.cfm?id=645648.664829
http://doi.acm.org/10.1145/2508834.2513149
http://dx.doi.org/10.1002/cpe.848
http://dx.doi.org/10.1002/cpe.848

Wing Hang Li, David R White, and Jeremy Singer. Jvm-hosted languages: they talk the
talk, but do they walk the walk? In Proceedings of the 2013 International Conference

on Principles and Practices of Programming on the Java Platform: Virtual Machines,

Languages, and Tools, pages 101–112. ACM, 2013.

LinuxMemPolicy. What is Linux Memory Policy? https://www.kernel.org/doc/

Documentation/vm/numa_memory_policy.txt, May 2015.

Mengxiao Liu, Weixing Ji, Zuo Wang, and Xing Pu. A memory access scheduling method
for multi-core processor. In Computer Science and Engineering, 2009. WCSE ’09. Second

International Workshop on, volume 1, pages 367–371, Oct 2009. doi: 10.1109/WCSE.
2009.689.

Zoltan Majo and Thomas R. Gross. Memory Management in NUMA Multicore Systems:
Trapped Between Cache Contention and Interconnect Overhead. In Proceedings of the

international symposium on Memory management - ISMM ’11, page 11, New York, NY,
USA, 2011. ACM. ISBN 9781450302630. doi: 10.1145/1993478.1993481. URL http:

//portal.acm.org/citation.cfm?doid=1993478.1993481.

S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: a clustering tool for
the recovery and maintenance of software system structures. In Software Maintenance,

1999. (ICSM ’99) Proceedings. IEEE International Conference on, pages 50–59, 1999.
doi: 10.1109/ICSM.1999.792498.

Feng Mao, Eddy Z Zhang, and Xipeng Shen. Influence of program inputs on the selection
of garbage collectors. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, pages 91–100. ACM, 2009.

Simon Marlow and Simon Peyton Jones. Multicore Garbage Collection with Local Heaps. In
Proceedings of the International Symposium on Memory Management, ISMM ’11, pages
21–32, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0263-0. doi: 10.1145/
1993478.1993482. URL http://doi.acm.org/10.1145/1993478.1993482.

Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip cache coherence is
here to stay. Commun. ACM, 55(7):78–89, July 2012. ISSN 0001-0782. doi: 10.1145/
2209249.2209269. URL http://doi.acm.org/10.1145/2209249.2209269.

J. Harold McBeth. Letters to the editor: On the reference counter method. Commun. ACM, 6
(9):575–, September 1963. ISSN 0001-0782. doi: 10.1145/367593.367649. URL http:

//doi.acm.org/10.1145/367593.367649.

152

https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
http://portal.acm.org/citation.cfm?doid=1993478.1993481
http://portal.acm.org/citation.cfm?doid=1993478.1993481
http://doi.acm.org/10.1145/1993478.1993482
http://doi.acm.org/10.1145/2209249.2209269
http://doi.acm.org/10.1145/367593.367649
http://doi.acm.org/10.1145/367593.367649

John McCarthy. Recursive functions of symbolic expressions and their computation by ma-
chine, part i. Commun. ACM, 3(4):184–195, April 1960. ISSN 0001-0782. doi: 10.1145/
367177.367199. URL http://doi.acm.org/10.1145/367177.367199.

Sally A. McKee. Reflections on the memory wall. In Proceedings of the 1st Conference on

Computing Frontiers, CF ’04, pages 162–, New York, NY, USA, 2004. ACM. ISBN
1-58113-741-9. doi: 10.1145/977091.977115. URL http://doi.acm.org/10.

1145/977091.977115.

David A. Moon. Garbage Collection in a Large LISP System. In Proceedings of the 1984

ACM Symposium on LISP and Functional Programming, LFP ’84, pages 235–246, New
York, NY, USA, 1984. ACM. ISBN 0-89791-142-3. doi: 10.1145/800055.802040. URL
http://doi.acm.org/10.1145/800055.802040.

Gordon Moore. Cramming more components onto integrated circuits. Readings in computer

architecture, 56, 2000.

Ananya Muddukrishna, PeterA. Jonsson, Vladimir Vlassov, and Mats Brorsson. Locality-
aware Task Scheduling and Data Distribution on NUMA Systems. In AlistairP. Rendell,
BarbaraM. Chapman, and MatthiasS. Mller, editors, OpenMP in the Era of Low Power

Devices and Accelerators, volume 8122 of Lecture Notes in Computer Science, pages
156–170. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-40697-3.

Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. Introducing the
graph 500. Cray Users Group (CUG), 2010.

Neo4J, March 2015. URL http://www.neo4j.com/.

Gene Novark, Trevor Strohman, and Emery Berger. Custom Object Layout for Garbage-
Collected Languages. Techreport, (UMCS TR-2006-007), 2006.

Cosmin E. Oancea, Alan Mycroft, and Stephen M. Watt. A New Approach to Parallelising
Tracing Algorithms. In Proceedings of the 2009 International Symposium on Memory

Management, ISMM ’09, pages 10–19, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-347-1. doi: 10.1145/1542431.1542434. URL http://doi.acm.org/10.

1145/1542431.1542434.

Takeshi Ogasawara. Numa-aware Memory Manager with Dominant-thread-based Copying
GC. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Program-

ming Systems Languages and Applications, OOPSLA ’09, pages 377–390, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-766-0. doi: 10.1145/1640089.1640117. URL
http://doi.acm.org/10.1145/1640089.1640117.

153

http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/977091.977115
http://doi.acm.org/10.1145/977091.977115
http://doi.acm.org/10.1145/800055.802040
http://www.neo4j.com/
http://doi.acm.org/10.1145/1542431.1542434
http://doi.acm.org/10.1145/1542431.1542434
http://doi.acm.org/10.1145/1640089.1640117

Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, and Jan F Prins. Scheduling Task
Parallelism on Multi-Socket Multicore Systems. Runtime and Operating Systems for Su-

percomputers, pages 49–56, 2011. doi: 10.1145/1988796.1988804.

OpenJDK. OpenJDK repository. http://hg.openjdk.java.net/jdk8u, Sep 2015.

Oracle. Java Platform, Standard Edition Tools Reference. http://docs.oracle.com/
javase/8/docs/technotes/tools/unix/java.html, Feb 2016.

Oracle. Hotspot Code. http://hg.openjdk.java.net/jdk8u/jdk8u20/

hotspot/file/f06c7b654d63/src/share/vm/gc_implementation/

shared/mutableNUMASpace.hpp, June 2016a.

Oracle. Java HotSpot Virtual Machine Performance Enhancements. http:

//docs.oracle.com/javase/7/docs/technotes/guides/vm/

performance-enhancements-7.htm, June 2016b.

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory data organization
for improved cache performance in embedded processor applications. ACM Trans. Des.

Autom. Electron. Syst., 2(4):384–409, October 1997. ISSN 1084-4309. doi: 10.1145/
268424.268464. URL http://doi.acm.org/10.1145/268424.268464.

Tony Printezis. Number of Parallel GC Threads. http://mail.openjdk.java.net/
pipermail/hotspot-gc-dev/2009-January/000718.html, Jan 2009.

T. Rauber and G. Rünger. Parallel Programming: For Multicore and Cluster Systems, chap-
ter Parallel Computer Architecture. Springer, 2010a. ISBN 9783642048173.

T. Rauber and G. Rünger. Parallel Programming: For Multicore and Cluster Systems, chap-
ter Message-Passing Programming. Springer, 2010b. ISBN 9783642048173.

Kenneth H. Rosen. Discrete Mathematics and Its Applications, chapter Graphs. McGraw-
Hill Higher Education, 4th edition, 1999. ISBN 0072424346.

Jennfer Sartor and Lieven Eeckhout. Exploring Multi-threaded Java Application Per-
formance on Multicore Hardware. In Proceedings of the ACM international confer-

ence on Object oriented programming systems languages and applications - OOPSLA

’12, pages 281—-296, New York, USA, 2012. ACM. ISBN 9781450315616. doi:
10.1145/2384616.2384638. URL http://dl.acm.org/citation.cfm?doid=

2384616.2384638.

Robert A Saunders. The lisp system for the q-32 computer. The Programming Language

LISP: Its Operation and Applications, pages 220–231, 1964.

154

http://hg.openjdk.java.net/jdk8u
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
http://hg.openjdk.java.net/jdk8u/jdk8u20/hotspot/file/f06c7b654d63/src/share/vm/gc_implementation/shared/mutableNUMASpace.hpp
http://hg.openjdk.java.net/jdk8u/jdk8u20/hotspot/file/f06c7b654d63/src/share/vm/gc_implementation/shared/mutableNUMASpace.hpp
http://hg.openjdk.java.net/jdk8u/jdk8u20/hotspot/file/f06c7b654d63/src/share/vm/gc_implementation/shared/mutableNUMASpace.hpp
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.htm
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.htm
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.htm
http://doi.acm.org/10.1145/268424.268464
http://mail.openjdk.java.net/pipermail/hotspot-gc-dev/2009-January/000718.html
http://mail.openjdk.java.net/pipermail/hotspot-gc-dev/2009-January/000718.html
http://dl.acm.org/citation.cfm?doid=2384616.2384638
http://dl.acm.org/citation.cfm?doid=2384616.2384638

Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh. Exploiting Pro-
lific Types for Memory Management and Optimizations. In Proceedings of the 29th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’02, pages 295–306, New York, NY, USA, 2002a. ACM. ISBN 1-58113-450-9. doi: 10.
1145/503272.503300. URL http://doi.acm.org/10.1145/503272.503300.

Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel, and Jaswinder Pal Singh. Cre-
ating and Preserving Locality of Java Applications at Allocation and Garbage Collec-
tion Times. In Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’02, pages 13–25, New
York, NY, USA, 2002b. ACM. ISBN 1-58113-471-1. doi: 10.1145/582419.582422. URL
http://doi.acm.org/10.1145/582419.582422.

Fridtjof Siebert. Limits of Parallel Marking Garbage Collection. In Proceedings of the 7th

International Symposium on Memory Management, ISMM ’08, pages 21–29, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-134-7. doi: 10.1145/1375634.1375638. URL
http://doi.acm.org/10.1145/1375634.1375638.

Jeremy Singer. Number of Parallel GC Threads. https://github.com/

jeremysinger/gcbench, Feb 2014.

Jeremy Singer, Gavin Brown, Mikel Luján, and Ian Watson. Towards Intelligent Analysis
Techniques for Object Pretenuring. In Proceedings of the 5th International Symposium on

Principles and Practice of Programming in Java, PPPJ ’07, pages 203–208, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-672-1. doi: 10.1145/1294325.1294353. URL
http://doi.acm.org/10.1145/1294325.1294353.

Jan A. Snyman. Practical Mathematical Optimization: An Introduction to Basic Optimiza-

tion Theory and Classical and New Gradient-Based Algorithms, chapter Line Search
Descent Methods for Unconstrained Minimization, pages 33–55. Springer US, Boston,
MA, 2005. ISBN 978-0-387-24349-8. doi: 10.1007/0-387-24349-6 2. URL http:

//dx.doi.org/10.1007/0-387-24349-6_2.

SPEC05. Standard Performance Evaluation Corporation. Available at:
http://www.spec.org/jbb2005. URL http://www.spec.org/jbb2005.

SPEC13. Standard Performance Evaluation Corporation. Available at:
http://www.spec.org/jbb2013. URL http://www.spec.org/jbb2013.

James W. Stamos. Static Grouping of Small Objects to Enhance Performance of a Paged
Virtual Memory. ACM Trans. Comput. Syst., 2(2):155–180, May 1984. ISSN 0734-2071.
doi: 10.1145/190.194. URL http://doi.acm.org/10.1145/190.194.

155

http://doi.acm.org/10.1145/503272.503300
http://doi.acm.org/10.1145/582419.582422
http://doi.acm.org/10.1145/1375634.1375638
https://github.com/jeremysinger/gcbench
https://github.com/jeremysinger/gcbench
http://doi.acm.org/10.1145/1294325.1294353
http://dx.doi.org/10.1007/0-387-24349-6_2
http://dx.doi.org/10.1007/0-387-24349-6_2
http://www.spec.org/jbb2005
http://www.spec.org/jbb2013
http://doi.acm.org/10.1145/190.194

Bjarne Steensgaard. Thread-specific Heaps for Multi-threaded Programs. In Proceedings

of the 2Nd International Symposium on Memory Management, ISMM ’00, pages 18–24,
New York, NY, USA, 2000. ACM. ISBN 1-58113-263-8. doi: 10.1145/362422.362432.
URL http://doi.acm.org/10.1145/362422.362432.

Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based garbage collection.
In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and Applications, OOPSLA ’99, pages 370–381, New York, NY,
USA, 1999. ACM. ISBN 1-58113-238-7. doi: 10.1145/320384.320425. URL http:

//doi.acm.org/10.1145/320384.320425.

SunMicroSystems. Memory Management in the Java HotSpot Virtual Ma-
chine. http://www.oracle.com/technetwork/java/javase/tech/

memorymanagement-whitepaper-1-150020.pdf, April 2006.

Herb Sutter and James Larus. Software and the concurrency revolution. Queue, 3(7):54–
62, September 2005. ISSN 1542-7730. doi: 10.1145/1095408.1095421. URL http:

//doi.acm.org/10.1145/1095408.1095421.

Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The Continuously Concurrent Com-
pacting Collector. Ismm’11, pages 79–88, 2011. ISSN 0362-1340. doi: 10.1145/
1993478.1993491. URL http://www.azulsystems.com/sites/default/

files/images/c4_paper_acm.pdf.

Mustafa M. Tikir and Jeffery K. Hollingsworth. Numa-aware Java Heaps for Server Appli-
cations. In Proceedings of the 19th IEEE International Parallel and Distributed Process-

ing Symposium, IPDPS ’05, pages 108.2–, Washington, DC, USA, 2005. IEEE Com-
puter Society. ISBN 0-7695-2312-9. doi: 10.1109/IPDPS.2005.299. URL http:

//dx.doi.org/10.1109/IPDPS.2005.299.

Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments. In Parallel Processing Workshops

(ICPPW), 2010 39th International Conference on, pages 207–216, 2010.

D.N. Truong, Francois Bodin, and A. Seznec. Improving Cache Behavior of Dynamically
Allocated Data Structures. In Parallel Architectures and Compilation Techniques, 1998.

Proceedings. 1998 International Conference on, pages 322–329, Oct 1998. doi: 10.1109/
PACT.1998.727268.

David Ungar. Generation scavenging: A non-disruptive high performance storage reclama-
tion algorithm. In Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineer-

ing Symposium on Practical Software Development Environments, SDE 1, pages 157–167,

156

http://doi.acm.org/10.1145/362422.362432
http://doi.acm.org/10.1145/320384.320425
http://doi.acm.org/10.1145/320384.320425
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
http://doi.acm.org/10.1145/1095408.1095421
http://doi.acm.org/10.1145/1095408.1095421
http://www.azulsystems.com/sites/default/files/images/c4_paper_acm.pdf
http://www.azulsystems.com/sites/default/files/images/c4_paper_acm.pdf
http://dx.doi.org/10.1109/IPDPS.2005.299
http://dx.doi.org/10.1109/IPDPS.2005.299

New York, NY, USA, 1984. ACM. ISBN 0-89791-131-8. doi: 10.1145/800020.808261.
URL http://doi.acm.org/10.1145/800020.808261.

David Ungar and Frank Jackson. An Adaptive Tenuring Policy for Generation Scav-
engers. ACM Transactions on Programming Languages and Systems (TOPLAS), 14(1):
1–27, 1992.

Andrs Vajda. Programming Many-Core Chips, chapter Many-core Virtualization and Op-
erating Systems. Springer Publishing Company, Incorporated, 1st edition, 2011. ISBN
1441997385, 9781441997388.

Ronald Veldema, Ceriel J. H. Jacobs, Rutger F. H. Hofman, and Henri E. Bal. Object com-
bining: a new aggressive optimization for object intensive programs. Concurrency and

Computation: Practice and Experience, 17(5-6):439–464, 2005. ISSN 1532-0634. doi:
10.1002/cpe.836. URL http://dx.doi.org/10.1002/cpe.836.

Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating system sup-
port for improving data locality on cc-numa compute servers. In Proceedings of the Sev-

enth International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS VII, pages 279–289, New York, NY, USA, 1996. ACM.
ISBN 0-89791-767-7. doi: 10.1145/237090.237205. URL http://doi.acm.org/

10.1145/237090.237205.

Jim Webber. A programmatic introduction to neo4j. In Proceedings of the 3rd An-

nual Conference on Systems, Programming, and Applications: Software for Humanity,
SPLASH ’12, pages 217–218, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1563-0. doi: 10.1145/2384716.2384777. URL http://doi.acm.org/10.1145/

2384716.2384777.

Wikipedia. Zen (microarchitecture). https://en.wikipedia.org/wiki/Zen_

(microarchitecture), March 2016.

Paul R. Wilson. Uniprocessor garbage collection techniques. Memory Management, pages
1–42, 1992. doi: 10.1007/BFb0017182.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective ”Static-graph” Reorgani-
zation to Improve Locality in Garbage-collected Systems. In Proceedings of the ACM SIG-

PLAN 1991 Conference on Programming Language Design and Implementation, PLDI
’91, pages 177–191, New York, NY, USA, 1991. ACM. ISBN 0-89791-428-7. doi: 10.
1145/113445.113461. URL http://doi.acm.org/10.1145/113445.113461.

Christian Wimmer and Hanspeter Mössenböck. Automatic object colocation based on read
barriers. In DavidE. Lightfoot and Clemens Szyperski, editors, Modular Programming

157

http://doi.acm.org/10.1145/800020.808261
http://dx.doi.org/10.1002/cpe.836
http://doi.acm.org/10.1145/237090.237205
http://doi.acm.org/10.1145/237090.237205
http://doi.acm.org/10.1145/2384716.2384777
http://doi.acm.org/10.1145/2384716.2384777
https://en.wikipedia.org/wiki/Zen_(microarchitecture)
https://en.wikipedia.org/wiki/Zen_(microarchitecture)
http://doi.acm.org/10.1145/113445.113461

Languages, volume 4228 of Lecture Notes in Computer Science, pages 326–345. Springer
Berlin Heidelberg, 2006. ISBN 978-3-540-40927-4. doi: 10.1007/11860990 20. URL
http://dx.doi.org/10.1007/11860990_20.

Christian Wimmer and Hanspeter Mössenböck. Automatic feedback-directed object inlining
in the java hotspot virtual machine. In Proceedings of the 3rd International Conference

on Virtual Execution Environments, VEE ’07, pages 12–21, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-630-1. doi: 10.1145/1254810.1254813. URL http://doi.

acm.org/10.1145/1254810.1254813.

Ming Wu and Xiao-Feng Li. Task-pushing: A Scalable Parallel GC Marking Algorithm
without Synchronization Operations. In Parallel and Distributed Processing Symposium,

2007. IPDPS 2007. IEEE International, pages 1–10. IEEE, 2007.

Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the Obvious.
SIGARCH Comput. Archit. News, 23(1):20–24, March 1995. ISSN 0163-5964. doi: 10.
1145/216585.216588. URL http://doi.acm.org/10.1145/216585.216588.

Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor, and Kathryn S.
McKinley. Why nothing matters: The impact of zeroing. In Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems Languages and

Applications, OOPSLA ’11, pages 307–324, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0940-0. doi: 10.1145/2048066.2048092. URL http://doi.acm.org/

10.1145/2048066.2048092.

Zoe C. H. Yu, Francis C. M. Lau, and Cho-Li Wang. Object co-location and memory
reuse for java programs. ACM Trans. Archit. Code Optim., 4(4):4:1–4:36, January 2008.
ISSN 1544-3566. doi: 10.1145/1328195.1328199. URL http://doi.acm.org/10.

1145/1328195.1328199.

Jin Zhou and Brian Demsky. Memory Management for Many-core Processors with Software
Configurable Locality Policies. In Proceedings of the 2012 International Symposium on

Memory Management, ISMM ’12, pages 3–14, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1350-6. doi: 10.1145/2258996.2259000. URL http://doi.acm.org/

10.1145/2258996.2259000.

158

http://dx.doi.org/10.1007/11860990_20
http://doi.acm.org/10.1145/1254810.1254813
http://doi.acm.org/10.1145/1254810.1254813
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/2048066.2048092
http://doi.acm.org/10.1145/2048066.2048092
http://doi.acm.org/10.1145/1328195.1328199
http://doi.acm.org/10.1145/1328195.1328199
http://doi.acm.org/10.1145/2258996.2259000
http://doi.acm.org/10.1145/2258996.2259000

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Overview
	1.2 Thesis Statement
	1.3 Contributions
	1.4 Publications
	1.5 Thesis Outline

	I STATE OF THE ART
	2 Literature Survey
	2.1 Basic Garbage Collection Algorithms
	2.1.1 Mark-Sweep Collection
	2.1.2 Mark-Compact Collection
	2.1.3 Copying Collection
	2.1.4 Reference Counting

	2.2 Parallel Garbage Collection
	2.3 Heap Partitioning
	2.3.1 Thread-local Heaps

	2.4 NUMA Heaps
	2.5 Object Locality
	2.5.1 Cache Locality Optimization
	2.5.2 Memory Page Locality Optimization

	2.6 Object Clustering
	2.7 Data Placement Policies
	2.8 Conclusion

	3 Technical Background
	3.1 Introduction
	3.2 Parallel Architectures
	3.2.1 Distributed Memory Architectures
	3.2.2 Shared Memory Architectures

	3.3 Non-Uniform Memory Access Architecture
	3.4 NUMA Memory Allocation Policies
	3.5 Virtual to Physical Memory Page Mapping
	3.5.1 Memory Pages

	3.6 Java Virtual Machine and Garbage Collection
	3.6.1 The Copying Collector
	3.6.2 The Mark-Compact Collector
	3.6.3 The Parallel Scavenge Optimizations for NUMA Machines

	3.7 Conclusion

	4 Experimental System Infrastructure
	4.1 Hardware Setup
	4.2 Benchmarks
	4.2.1 DaCapo Benchmark Suite
	4.2.2 SPECjbb (20XX)
	4.2.3 GCBench
	4.2.4 Neo4j / LiveJournal

	4.3 Conclusion

	II CONTRIBUTIONS
	5 A Study of Reference Locality
	5.1 Introduction
	5.2 Rooted Sub-Graphs
	5.3 Implementation
	5.4 Limitations
	5.5 Experimental Setup
	5.6 Reference Locality Evaluation
	5.6.1 Locality-distributed Rooted Sub-graph
	5.6.2 Rooted Sub-graph Locality Analysis
	5.6.3 GC Impact on Rooted Sub-graph Locality

	5.7 Related Work
	5.8 Conclusion

	6 NUMA-Aware Garbage Collector
	6.1 Introduction
	6.2 Motivation
	6.3 NUMA-Aware Copying Collector
	6.3.1 Data Structures
	6.3.2 Algorithm
	6.3.3 Optimization Schemes

	6.4 NUMA-Aware Garbage Collector Evaluation
	6.4.1 Evaluation Metrics
	6.4.2 Relative NUMA Locality Trace
	6.4.3 Pause Time and VM Time Analysis
	6.4.4 Scalability

	6.5 Related Work
	6.6 Conclusion

	7 NUMA-Aware Garbage Collection Thread Management
	7.1 Introduction
	7.2 Hotspot GC Threads Management
	7.3 Impact of Varying the Number of Collector Threads on Throughput
	7.4 Static Optimization
	7.5 Dynamic Optimization
	7.6 Related Work
	7.6.1 NUMA GC Characterization
	7.6.2 Causes of Congestion
	7.6.3 Reducing Congestion

	7.7 Conclusion

	III CONCLUSION
	8 Conclusion
	8.1 Thesis Statement Revisited
	8.2 Contributions
	8.3 Future Research Directions
	8.3.1 Experimental Setup Generalization
	8.3.2 NUMA Architectures without Cache Coherency

	A Gradient-Ascent Algorithm
	Bibliography

