
DEVELOPMENT OF A RADIOLIGAND BINDING ASSAY FOR 
DETECTION OF GASTRIN/CCKB RECEPTORS IN THE HUMAN 

GASTROINTESTINAL TRACT

by

Janet Fraser Mackenzie 
B.Sc.

Thesis submitted for the degree of Doctor of Philosophy

from

The University Department of Medicine and Therapeutics 

Western Infirmary 

Glasgow G11 6NT

March 1996

© J.F. Mackenzie 1996



ProQuest Number: 11007871

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007871

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



loftl
{)!

GLASGOW I
UNIVERSITY !■



SUMMARY

The initial strategy of the thesis (Chapter 3) examined the presence and characterisation 

of gastrin/CCKB receptors in the rat pancreatic cell line, AR42J. This cell line was chosen 

due to its continuous expression of high affinity gastrin/CCKB receptors even after 

repeated cell culture. Following optimisation of the radioligand binding assay, 

gastrin/CCKB receptors were characterised using a panel of receptor agonists and 

antagonists. The AR42J whole cell assay demonstrated that AR42J cells express high 

affinity gastrin/CCKB receptors with a dissociation constant of 0.3nM and maximal 

binding capacity of 24fmols/106 cells. These results were similar to those found in the 

literature by several different groups. Inhibitory dissociation constants (Ki) for the 

receptor agonists and antagonists used in displacement experiments were also found to 

correlate closely to literature values thereby confirming the validity of the gastrin/CCKB 

receptor properties of AR42J cells as measured using the assay developed.

The second series of experiments (Chapter 4) examined the preparation of crude 

membranes from AR42J cells and also the effect of membrane storage. Crude membrane 

fractions were found to retain the receptor characteristics and properties of receptors on 

AR42J whole cells. Storage of crude membranes for a limited period at -70°C in the 

presence of glycerol did not significantly affect receptor affinity or number. Receptor 

agonists/antagonists were found to displace gastrin from gastrin/CCKB receptor sites 

with similar potencies to those previously determined in the AR42J whole cells thereby 

confirming that receptor properties were unaltered by the process of membrane 

preparation.
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The first clinical study (Chapter 5) assessed the ability of the assay developed to 

detect and measure high affinity gastrin/CCKB receptors in membrane extracts derived 

from human colonic normal and neoplastic tissues. Various methods of membrane 

preparation were explored, including pulverisation of tissues under liquid nitrogen which 

had been previously successful in the detection of these receptors by other researchers. 

Using a similar radioligand binding assay to that optimised for AR42J membranes in the 

previous study (Chapter 4), human membranes were evaluated for gastrin/CCKB 

receptor status. Membranes prepared from both normal and neoplastic tissues were 

found to show little or no specific gastrin binding. Membranes that had low specific 

binding were subsequently found not to show displacement, even with high 

concentrations of unlabeled gastrin. When a similar assay was applied to membranes 

from normal and tumour tissues, freshly prepared by homogenisation, again there was no 

convincing evidence of high affinity gastrin/CCKB receptors.

The second study (Chapter 6) examined the possible presence of high affinity 

gastrin/CCKB receptors in membrane preparations from human gastric cancer and normal 

gastric body/antral tissues. Nine patients’ tissue samples were collected in total; four 

were prepared as crude membranes from fresh tissue and a further five were prepared as 

crude membranes from frozen tissues that had been stored at -70°C for various periods 

of time.

Four patients’ tissue samples collected fresh from theatre were immediately 

immersed in a buffer containing protease inhibitors and glycerol in order to protect the 

membrane structure prior to membrane preparation. Three of the four patients’ gastric
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body membranes expressed high affinity gastrin/CCKB receptors with KD and Bmax 

values between 0.4-2nM and 28-76fmol/mg protein respectively. Specific gastrin binding 

was displaced by gastrin/CCKs receptor agonists and antagonists with similar potencies 

to those found with AR42J membranes.

Crude membranes were also prepared from five gastric cancer patients’ tissue 

which had been stored at -70°C. However these tissues had not been immersed in buffer 

containing glycerol and protease inhibitors. They had been stored for varying periods of 

time at -70°C and only one patient’s gastric body membrane preparation was found to 

exhibit high affinity gastrin/CCKB receptors with Kd and Bmax of 0.7nM and 21 

finols/mg protein respectively.

None of the gastric antral or tumour membranes analysed exhibited high affinity 

gastrin/CCKs receptors although a low level of specific binding was found in one tumour 

membrane sample which may indicate binding to low affinity gastrin binding sites.

In conclusion, the experiments in this thesis demonstrate that high affinity 

gastrin/CCKe receptors are measurable in AR42J whole cells and that membrane 

preparation does not alter the receptor properties even after freezing at -70°C for a 

limited period of time. The clinical studies demonstrate that the optimised radioligand 

binding assay was successful in detection and characterisation of high affinity 

gastrin/CCKs receptors in human gastric body tissues. No convincing evidence to 

support the presence of high affinity gastrin/CCKs receptors in colorectal or gastric 

tumour tissue was found in this study.
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CHAPTER 1 GENERAL INTRODUCTION
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GASTRIN



1.1 Introduction

The gastrointestinal hormone, gastrin, was first isolated in 1905 from extracts of porcine 

antral mucosa (Edkins et al 1905). It was subsequently purified and structurally 

identified as sulphated and non-sulphated gastrin (G17) hecadecapeptide forms 

(Gregory and Tracy 1964). The structure of the peptide (Figure 1.1), its mRNA and 

genomic sequence have since been established (Wiborg et al 1984) and in recent years it 

has been demonstrated that G17 functions as a trophic factor for much of the 

gastrointestinal mucosa. Consequently the C-terminal of G17 (Trp-Met-Asp-Phe-NFt) 

was found to be the main biologically active site, although other C-terminal fragments 

may also be active (Tracy and Gregory 1964; Lin 1972). However, it is the C-terminal 

fragment of gastrin that binds to the gastrin/CCKB receptor and therefore any changes in 

amino acids of the C-terminal may affect the biological activity of the peptide (Tracy and 

Gregory 1964).

1.2 Biosynthesis and processing

Gastrins’ complex biosynthetic pathway has become well established and follows a 

pattern similar to that of most other peptide hormones (Rehfeld and Hilsted 1992). The 

majority of circulating gastrin originates from specialised G-cells which are situated 

within the pyloric glands of the antrum and proximal duodenum. G-cells have a flask-like 

shape and narrow neck, which opens onto the mucosal surface. Storage granules 

containing gastrin can be found at the base of the gland.

Gastrin is initially synthesised as preprogastrin, 101 amino acids in length (Figure 

1.2). The signal peptide is enzymatically cleaved to yield progastrin, which is subjected 

to a sequence of proteolytic cleavages. The resulting glycine-extended
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CO OH

Figure 1.2 Amino acid sequence of preprogastrin (Bardram and Rehfeld 1988)
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intermediate is carboxyamidated to produce the biologically active hormone (Rehfeld and 

Hilsted 1992; Walsh 1994). The tyrosyl residue in position six from the C-terminal 

distinguishes gastrin from the homologous peptide hormone, cholecystokinin.

1.3 Homology and molecular forms

Gastrin and cholecystokinin (CCK) belong to the same mammalian peptide family, both 

being isolated from the GI tract and subsequently shown to be present in the brain. 

Different forms of these peptides are released into the circulation by differential 

proteolysis. Gastrin and CCK share the same carboxyl terminal pentapeptide sequence. 

The carboxy-terminus tetrapeptide represents the region responsible for biological 

activity of both hormones whereas the rest of the two molecules only modifies their 

selectivity and potency for different target cells. The main difference is in the tyrosine 

residue which is present in gastrin six amino acids from the carboxy-terminus whereas 

CCK has the tyrosine as the seventh amino acid. The tyrosine residues are sulphated in 

various peptides of CCK but only partially sulphated in gastrin. The presence of a 

sulphate residue increases the affinity of gastrin for its receptor and sulphated G17 has a 

19 fold higher affinity for gastrin/CCKB receptors compared to non-sulphated G17 

(Huang et al 1989).

Processing of progastrin in the antral G-cell results in various N-terminal and 

C-terminal extended gastrins, glycine extended intermediates and mature bioactive 

carboxyamidated gastrins. Approximately ninety percent of gastrin released is G17 

and about five percent is gastrin-34 (G34). Also, unknown amounts of sulphated and 

non-sulphated gastrin-14, gastrin-6 and an NH2 terminal fragment 1-13 of Gl 7 are found
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in extracts of antral tissue. The biological activity of these peptides is uncertain. The 

differential clearance rate of G34 is approximately six to eight times slower than G17. 

Therefore G34 is the predominant form of gastrin in serum at any time (Jensen et al 

1980). Conversion of G34 to G17 occurs in the antrum and consequently G17 is the 

predominant form in the antral G-cells. Gastrin-34 has a half-life which is approximately 

five times greater than G17 but it is also about five times less potent than G17 (Walsh 

1974; Debas 1974).

1.4 Trophic effects

While gastrins’ importance in the control and regulation of acid secretion has been well 

studied, the hormones trophic effects on the gastrointestinal tract have only become 

appreciated in the last two decades.

Gastrin was first described as a trophic factor after reports of increased synthesis 

of the enzyme histidine decarboxylase in the rat stomach (Kahlson et al 1964, 1973). 

Experimental evidence was reported which demonstrated that pentagastrin induced 

increased protein synthesis in the rat stomach (Crean et al 1969). At the same time, 

Johnson et al confirmed these results when pentagastrin was exogenously administered 

and stimulated protein synthesis (Johnson et al 1969). It was subsequently discovered 

that this trophic effect of gastrin was independent of acid secretion (Johnson et al 1977).

Gastrin may control growth of gastrointestinal mucosa and physiological 

concentrations of gastrin have been shown to stimulate DNA synthesis particularly in the 

acid producing oxyntic mucosa of the stomach (Majumdar and Johnson 1982). Since the
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early studies, exogenously administered pentagastrin has been demonstrated to have 

trophic effects on the duodenum, colon and pancreas (Peitsch et al 1981). In addition, 

physiological concentrations of gastrin have also been shown to stimulate mRNA 

expression in isolated rat epithelial cells (Yassin et al 1991).

Further evidence for the trophic role of gastrin has been revealed by inhibition of 

endogenous gastrin via antrectomy which leads to atrophy of the GI mucosa and 

pancreas. This is reversable with exogenous gastrin (Seidel et al 1985). Endocrine cells 

within the oxyntic mucosa also respond trophically to gastrin. Stimulation of these 

enterochromaffin-like (ECL) cells by gastrin, enhances histamine release, enlarges the 

 ̂ cells and increases proliferation (Hakanson and Sundler 1991).

1.5 Intracellular signalling

It has been shown in several species that following gastrin binding to its receptor in 

gastric parietal cells, there is a rapid turnover of inositol phosphates (Chew and Brown 

1986; Chiba et al 1989). This is linked to an accumulation of intracellular calcium and 

activation of protein kinase C (PKC). Protein kinase C may also activate an 

autoregulatory mechanism which in turn may down regulate gastrin/CCKs receptors 

(Yamada et al 1993). Gastrin also stimulates PKC activity in isolated normal rat colonic 

epithelial crypt cells (Yassin et al 1991); effects which may be reversed by the gastrin 

receptor antagonist proglumide (Yassin et al 1993). Furthermore gastrin and CCK8 both 

induce a rapid turnover of inositol phosphates in isolated non-parietal cells from rabbit 

gastric mucosa, an effect which is mediated through the gastrin/CCKB receptor (Roche et 

al 1991). Nanomolar concentrations of gastrin also induce transcription of a wide range
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of mRNA species in these cells and significantly increases protein synthesis (Yassin et al 

1991).

Ornithine decarboxylase (ODC) catalyses the rate limiting step in the synthesis of 

polyamines, has a short half-life and is also under hormonal control. In normal tissues 

ODC activity is relatively low unless cells are actively dividing and it has been shown that 

in several parts of the normal gastrointestinal tract, including the colon, exogenous 

gastrin stimulates ODC activity and increases mucosal polyamine content in conjunction 

with gastrin mediated trophic effects (Seidel etal 1985; Majumdar 1990).
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GASTRIN/CCKb r e c e p t o r s



1.1 Introduction

Whilst a great deal is known about the effects of gastrin and its possible role in 

gastrointestinal proliferation, comparatively little is known about the role of 

gastrin/CCKe receptors. Since the trophic effects of gastrin are known to be mediated by 

binding of the hormone to gastrin/CCKB receptors, their presence is of importance in 

mechanisms involved in growth of the GI tract.

Gastrin binding sites were first described using radioligand binding in isolated 

gastric tissue with an iodinated gastrin ligand. Specific gastrin binding sites were 

reported in the oxyntic gland mucosa of the rat (Brown and Gallagher 1978). Further 

studies using tritiated gastrin revealed gastrin binding to antral smooth muscle cells, 

gastric mucosal plasma membranes and fundic cells in the rat (Baur and Bacon 1976; 

Lewin et al 1976, 1977; Soumarmon et al 1977). Early reports of gastrin/CCKB receptor 

binding sites in the stomach were not fully assessed and biological activity of the ligands 

used was not reported. Takeuchi and colleagues were the first to demonstrate 

physiological and specific binding of iodinated gastrin to gastrin/CCKB receptors in rat 

oxyntic gland mucosal membrane preparations which satisfied receptor binding criteria 

(Takeuchi etal 1979).

1.2 Distribution in different tissues and species

Gastrin/CCKB receptors have been identified in a variety of different animals and a 

diversity of tissues throughout the gastrointestinal tract, central nervous system and 

brain. Specific gastrin/CCKB receptors were first isolated on parietal cells from the 

canine stomach by Soil et al who demonstrated specific G17 binding to canine fundic
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mucosal cells (Soil et al 1984). Gastrin/CCKB receptors on canine parietal cells were 

further characterised by affinity cross-linking (Matsumoto et al 1987). Gastrin/CCKB 

receptors have also been identified on rabbit parietal cells (Magous and Bali 1982), 

histamine-containing cells from the fundic mucosa (Roche et al 1991) and guinea-pig 

fundic gastric glands (Ramani and Praissman 1989; Chang and Lotti 1986). In addition, 

gastrin/CCKB receptors have been shown to be present on gastrointestinal smooth 

muscle both in the stomach and the gallbladder of rabbits (Bitak and Makhlouf 1982; 

Grider and Makhlouf 1990). Distinct receptors for both gastrin and CCK have also been 

found on the pancreatic acini of the guinea-pig (Yu et al 1987,1990), the canine parietal 

cells (Fourmy et al 1987) and chief cells from the guinea-pig stomach (Cherner et al

1988). Finally, Singh and colleagues demonstrated specific gastrin/CCKB receptors in 

the rat stomach, distal duodenum and colorectal mucosa (Singh et al 1985).

' Kumamoto and co-workers examined specific gastrin binding to human gastric, 

duodenal, colonic and pancreatic tissue ( j  Kumamoto et al 1989). Specific binding was 

shown in both fundic and antral mucosa although the latter binding was lower. Specific 

binding to duodenal and pancreatic tissue was reported but specific binding to colonic 

mucosal tissue was found to be very low. It must be noted however that specific binding 

in thej Kumamoto study was found after analysis of tissues from only one patient.

A more detailed study on human colonic mucosa by Upp et al reported high 

affinity gastrin binding sites which were present on 28 out of 59 of the normal colon 

mucosa examined (Upp et al 1989). The gastrin/CCKB receptor content varied between 

2 and 20 fmol/mg protein with the majority of high affinity gastrin/CCKB receptors being
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present in amounts less than 10 fmol/mg protein. Details of this study are discussed more 

fully in Chapter 5, ‘Gastrin/CCKB receptors in normal and neoplastic human colonic 

tissues.’

1.3 Methods of measurement of gastrin/CCKB receptors

Three different techniques have been used to detect or measure gastrin/CCKB receptors : 

radioligand binding, immunocytochemistry and molecular characterisation. Each method 

has its own advantages and disadvantages in the measurement of gastrin/CCKB 

receptors, and these are discussed in more detail below.

1.3.1 Radioligand Binding

(i) Radioligand and methods of radiolabeling

Since gastrin has a high affinity for its receptor, only a small amount is required to 

saturate the binding sites. This necessitates a radioligand of high specific activity to 

permit accurate measurement of the bound fraction and therefore 125Iodine is the label of 

choice. Takeuchi and co-workers utilised iodination of synthetic gastrin-17 for use in 

gastrin/CCKB receptor assays and were the first to standardise the radioligand binding 

assay for measurement of gastrin/CCKB receptors (Takeuchi et al 1979). Various 

methods of iodination of gastrin-17 have been studied to determine the retention of 

biological activity (Singh et al 1985). Iodination methods were compared using synthetic 

15-leu-gastrin 17 and gastrin-17 containing methionine. Iodogen and enzymobead 

iodinations resulted in similar biological activities for both ligands. Another method, 

Chloramine T was found to completely abolish biological acivity with met-gastrin-17and
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reduce it with leu-gastrin-17. As chloramine T is a strong oxidising agent it may cleave 

gastrin-17 and oxidise the|sulphydrylgroups in the methionine residue.

To prevent oxidation of the methionine residue, gastrin analogues using leucine 

or norleucine substitutions for 15-methionine have been synthesised. These gastrin 

analogues have been reported to retain full biological activity and are more resistant to 

oxidation during iodination (Takeuchi etal 1979; Soli etal 1984; Magous et al 1982). In 

addition, 15-norleucine is chemically closer to 15-methionine and is theoretically better 

as a radioligand since similar receptor affinities and numbers were reported on isolated 

canine parietal cells compared to radiolabeled gastrin (Seet etal 1987).

(ii) Receptor preparations 

Gastric mucosal membrane preparations

In 1979, Takeuchi et al described preparation of a crude membrane fraction from the rat 

fundic mucosa suitable for gastrin binding (Takeuchi et al 1979). Briefly, rat antral 

mucosa was scraped and homogenised followed by differential centrifugation at 270g, 

30,000g and 60,000g. Specific 125I-G17 binding to membranes was greatest in the 

30,000g fraction. The gastrin/CCKB receptor was later extensively studied and 

biochemically characterised (Johnson et al 1985). This method has never been 

reproduced by other researchers, although several other modifications have been 

described and detection of gastrin/CCKB receptors has been subsequently reported 

(Singh et al 1985; Kleveland and Waldum 1986).
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However, problems may be encountered with membrane preparation since 

homogenisation of tissues may expose the receptors to liberated proteolytic enzymes 

which may affect both the receptor and radiolabeled gastrin during assay incubation. In 

addition, there are problems with the heterogeneity of cells in tissues to be analysed. 

Since cells which express gastrin/CCKB receptors may only constitute a small proportion 

of total fundic mucosal tissue or indeed tumour tissues, non-specific binding may be 

increased and in some cases it may be too high to permit detection of specific binding. 

This was evident from a study byi Kumamoto et al where specific binding was almost 

non detectable and non-specific binding was high in membrane preparations from human 

gastric fundic mucosa (j Kumamoto et al 1989)

There has been no evidence to confirm that gastrin/CCKB receptors are stable 

stored as membrane preparations. However, a study by Upp and colleagues which 

reported gastrin/CCKB receptors in human tissues stored at -80°C would support the 

theory that gastrin/CCKB receptors are stable after freezing of human tissues (Upp et al

1989). In the same study, later findings by the same group confirmed high affinity 

gastrin/CCKB receptors were detected on partially purified plasma membranes prepared 

from colonic tumour and normal tissues (Upp et al 1989; Chicone et al 1989). However, 

to date these results have never been confirmed by any other laboratory.

Dispersed cells

Isolated and dispersed cells prepared by enzyme disaggregation and enriched by 

elutriation have to some extent overcome the disadvantage of dealing with mixtures of 

different cell types from tissues. In a study by Soli et al, canine fundic mucosal cells were
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dispersed by collagenase followed by enrichment of parietal cells by elutriation (Soil et al 

1984). Specific 125I-G17 binding was reported in cell fractions containing parietal cells 

and binding was saturable at 37°C with steady state attained after 30mins incubation. 

Comparable gastrin/CCKB receptor binding properties were reported in isolated rat 

fundic plasma membranes (Singh et al 1985) and isolated rabbit gastric fundic cells 

(Magous et al 1982).

Tumour cell lines and tissues

Both animal and human tumour cell lines have been used extensively in the study of 

gastrin/CCKB receptors using radioligand binding assays. One of the main cell lines used 

has been the rat pancreatic cell line AR42J. Whole cell gastrin/CCKB receptor binding 

has been widely studied by different groups including Scemama and co-workers 

(Scemama et al 1987). Further whole cell binding assays in gastric cancer cell lines 

derived from primary human tumours used 125I-G17 to bind to gastrin/CCKB receptors 

(Weinstock and Baldwin 1988).

However, although these preparations allow detection and characterisation of 

gastrin/CCKB receptors in vitro, they may not reflect in vivo the binding of gastrin to the 

receptor. More useful information may be obtained from the study of spontaneous 

human gastrointestinal tumours. To date however there has only been one published 

report of specific 125I-G17 radioligand binding to human cancer tissues which has only 

ever been reproduced by the same researchers (Upp et al 1989; Chicone et al 1989). 

Specific binding was reported on partially purified membrane preparations from both 

normal and tumour tissues.
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(iii) Assay conditions

In standardisation of assay conditions in the gastrin/CCKB receptor assay, Takeuchi et al 

reported optimal binding of gastrin to rat fundic membranes at a temperature of 30°C 

after incubation for thirty minutes (Takeuchi et al 1979). However, this incubation 

temperature was found to give variable and mainly non-specific binding and significant 

peptide degradation was demonstrated at 30°C in plasma membranes from the rat fundic 

mucosa (Kleveland et al 1985). In addition iodinated gastrin was found to be degraded 

during incubation with enriched parietal cell preparations (Soil et al 1984; Janas et al

1984) and different enzyme inhibitors were found to be ineffective in preventing 

radiolabeled gastrin degradation. Assay incubation temperatures of 30-37°C cause added 

problems because of increased proteolytic activity which may damage the radiolabeled 

gastrin or receptors themselves. Substantial proteolytic damage was demonstrated in 

crude membranes from fundic rat mucosa (Kleveland and Waldum 1986) and lowering of 

incubation temperature inhibited both tracer degradation and destruction of the binding 

sites. Incubations at 15°C were performed and membranes from rat oxyntic glands bound 

125I-G17 with a Kd of 0.8nM (Kleveland and Waldum 1986).

Takeuchi et al used a standard Hepes buffer with added albumin in the first 

standardisation of the gastrin/CCKB receptor assay which was shown to be pH 

dependent displaying optimum binding at pH 7.0 (Takeuchi et al 1979). Since its 

description there have been a variety of different buffers used in gastrin/CCKB receptor 

radioligand binding assays and the buffer used would seem to depend on the receptor 

preparation analysed. Most isolated whole cell binding assays have used the standard Tris
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or Hepes buffers (Seva et al 1990a; Scemama et al 1987; Frucht et al 1992). However, 

specific 125I-G17 binding to AR42J whole cells attached to cell culture plates using 

Minimal Eagle’s media and BSA (Watson et al 1991) demonstrated a higher receptor 

affinity for the gastrin/CCKB receptor (KD = 0.09nM) in comparison to results on AR42J 

cells ( K d  =l.lnM) in a similar assay using a Krebs-Hepes based buffer (Seva et al 

1990a). The discord between different researchers with the same cell line demonstrates 

the requirement for a standardisation of assay conditions in radioligand binding studies.

1.3.2 Immunocytochemistry

Histological analysis of gastrin/CCKB receptors utilises specific anti-gastrin receptor 

antibodies and may provide an important screening technique for gastrointestinal 

tumours to determine the level and significance of gastrin/CCKB receptors in these 

tumours.

Staining of specific gastrin/CCKB receptors using murine monoclonal antibodies 

raised against the gastrin/CCKB receptor have been used by several groups (Mu et al 

1987; Nicolson et al 1992; Watson et al 1994). Specifically raised to the canine parietal 

cells, the IgM antibody, 2C1, was found to dose-dependently inhibit 125I-G17 binding to 

parietal cells with an IC50 of lOnM. The percentage of positively stained cells with 2C1 

was found to correlate with previously determined gastrin receptor status by radioligand 

binding (Scemama et al 1987). Using human fundic mucosa as a positive control the 2C1 

antibody was found to stain frozen unfixed sections of human colon carcinoma and 

revealed heterogeneous receptor expression. The antibody was also shown in this study 

to inhibit growth of a gastrin-sensitive carcinoma cell line (Nicolson et al 1992).
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Anti-gastrin receptor antibodies may provide an important screening method for 

histological analysis of gastrin/CCKB receptor expression in colorectal and gastric 

carcinoma patients. Large scale screening of tissues would also remove the problems 

associated with receptor preparations in radioligand binding techniques and may provide 

information on whether gastrin/CCKB receptor positive cells also contain intracellular 

gastrin and therefore operate in an autocrine manner.

1.3.3 Molecular characterisation

Until recently, very little about the molecular background to gastrin/CCKB receptors was 

known. Recently, the gastrin/CCKB receptor was cloned, sequenced and characterised by 

different groups from a range of sources including the rat brain and pancreas (Wank et al 

1992a), the human brain and stomach (Psiegna et al 1992), canine parietal cells (Kopin et 

al 1992) and ECL carcinoid tumours from Mastomys natalensis (Nakata et al 1992). A 

high degree of nucleic acid homology was found between Mastomys natalensis and 

canine parietal cells using polymerase chain reaction (PCR) to amplify transmembrane 

domain sequences. In addition Chiba et al demonstarted specific gastrin/CCKB receptors 

on membranes from gastric carcinoid tissues of Mastomys natalensis (Chiba et al 1991). 

But whether gastrin/CCKB receptors are identical in different tissues within the same 

species remains to be seen. Recent evidence by Kopins’ group would suggest that they 

are the same (Lee et al 1993) although others have suggested on the basis of the 

molecular structure of the human gastrin/CCKB receptor gene that alternate splicing 

pathways yielding receptor variants may exist (Song et al 1993).
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3 TROPHIC EFFECTS OF GASTRIN SUPPORTING THE PRESENCE OF

GASTRIN/CCKb RECEPTORS IN GASTROINTESTINAL CANCER
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1.1 Introduction

Colorectal cancer poses a major problem worldwide as it is is the second commonest 

cancer after lung, with an estimated 755, 000 new cases occurring each year 

(CRC 1995). In addition, there are 19000 deaths each year in the UK from gastric cancer 

(CRC 1993). Survival rates of patients with advanced colorectal and gastric carcinoma 

are poor, with surgery offering the only hope of cure.

There is evidence that gastrin exerts trophic effects on various human 

gastrointestinal tumours and this has stimulated interest in the use of hormonal therapy 

which has already been successful in the management of some breast cancers. The factors 

involved in the mechanism of carcinogenesis of gastrointestinal cancer remain elusive, 

therefore much still needs to be learned about the control and regulation of normal and 

malignant gastrointestinal tissue by the gastric antral hormone, gastrin.

1.2 Trophic effects of gastrin in tumour cells

Growth of gastrointestinal mucosa is regulated by various hormones and growth factors, 

but the underlying mechanism of gastrointestinal tumour growth is still not completely 

understood. Several studies have shown that gastrin plays an important role in the 

regulation of the gastrointestinal tract and possibly in the proliferation of tumour cells 

arising in the GI tract (Townsend et al 1988; Morris et al 1989; Watson et al 1988, 

1989a, 1989b). In addition, gastrin/CCKB receptors have been shown to be expressed in 

tumours arising from the gastrointestinal tract as well as normal gastrointestinal mucosa 

(Upp et al 1989; Chicone et al 1989). Both human and animal carcinoma cell lines have 

been widely reported to express high affinity gastrin/CCKB receptors and have been
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characterised using receptor agonists and antagonists (Singh et al 1985; Scemama et al 

1987; Seva et al 1990a; Watson et al 1991; Frucht et al 1992).

1.3 Trophic effects of progastrin in tumour cells

Following the important discovery of gastrin mRNA in extracts from colonic cancer 

cells, interest in the measurement of progastrin and different molecular forms of gastrin 

in GI tumours has increased. Kochman et al found increased levels of progastrin in 

extracts of colorectal tumours and corresponding normal mucosa using a panel of 

specific antibodies (Kochman et al 1992). While tumours contain more immature glycine 

extended gastrins than normal mucosa, the latter contain greater amounts of mature 

amidated gastrin. In comparison to gastric antrum, the amounts detected were small and 

the ratio of amidated to glycine extended gastrin was different, suggesting altered post 

translational processing of gastrin in tumours. No correlation was found between gastrin 

content and either tumour site or stage. At the same time, Nemeth et al in 1993, reported 

similar findings. They examined forty tumours and found all to contain progastrin with 

only eleven containing mature gastrin. The mature gastrin was more abundant in normal 

mucosa, while the tumours contained more progastrin. Although gastrin mRNA was 

present in large amounts in the tumours, they suggested the processing to mature gastrin 

was impaired. This was confirmed by Van Solinge et al, who detected the same patterns 

with the more sensitive technique of PCR (Van Solinge 1993).

It was later found that the more abundant non amidated forms of gastrin may 

possess trophic effects (Dia et al 1992). Several groups have since shown that progastrin

49



derived glycine extended intermediates may possess trophic properties for AR42J cells 

(Seva et al 1994; Negre et al 1994; Kaise et al 1994).

It has also recently been shown that glycine-extended forms of gastrin may play 

an important role in growth, a process which may act through a receptor other than the 

gastrin receptor (Seva et al 1995; Singh et al 1995; Kaise et al 1995). Over the years 

there has been growing recognition of the association between gastrin and carcinomas of 

the stomach and colon. Therefore the presence of gastrin/CCKB receptors and/or 

precursor receptors may be of clinical and therapeutic importance with respect to 

receptor antagonists which may be used in treatment of these carcinomas.

The exact cellular location of gastrin precursors has not yet been unequivocally 

shown because the previous studies depend on the homogenisation of tissues to release 

the peptide of interest. Gene expression in the colon was examined 

immunohistochemically by Finley et al in 1993 and normal colonic mucosa was found to 

contain occasional crypt cells which stained for progastrin, gastrin and chromagranin A 

suggesting that these cells normally express gastrin. In contrast, in twenty-two out of 

twenty-three colon cancers studied, 50% of the cells stained for gastrin and progastrin. 

The majority of these cells were not neuroendocrine as assessed by the absence of 

chromagranin A staining. No gastrin was found in six benign polyps suggesting that 

gastrin synthesis is a late event in the carcinogenic process.

Gastrin mRNA detected in tumours by PCR was identical to the published 

sequence of human gastrin (Finley et al 1993). They reported expression of gastrin
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mRNA in two human colorectal cancer cell lines and found that somatostatin inhibited 

both gastrin mRNA expression and cell growth, the latter being prevented when gastrin 

was supplied along with somatostatin (Lebovitz et al 1993). Therefore strong evidence 

exists that the normal and malignant colonic epithelium may synthesise gastrin .

Gastrin has also been suggested to have an autocrine/paracrine growth factor 

effect outside the colon in gastric carcinoma cell lines (Van Solinge and Rehfeld 1992; 

Reimy-Heintz et al 1993), a rat pancreatic cell line (Blackmore and Hirst 1992), 

bronchogenic carcinomas (Rehfeld et al 1989), ovarian cancers (Van solinge et al 1993) 

and a variety of uncommon neural and endocrine tumours (Rehfeld and Hilsted 1992). 

The ability to express and synthesise gastrin appears to be relatively common in many 

neoplastic cells of diverse origins and may lead to the disordered growth control in these 

tumours.

Recent studies demonstrated gastrin gene expression in some colonic cancer cell 

lines (Baldwin and Zhang 1992) and progastrin derived peptides have been found in 

human tumours (Kochman et al 1992; Nemeth 1993) therefore supporting a role for 

gastrin as an autocrine growth factor.

1.4 Autocrine trophic effects

Considerable evidence to support the trophic effects of gastrin in proliferation of human 

cancer cells has already been discussed. It is also now widely recognised that many 

hormones can act as autocrine growth factors in human carcinomas (Cuttitta 1990). An 

autocrine role for gastrin was first proposed by Hoosein et al who reported that
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polyclonal anti-gastrin antibodies inhibited growth of two human colon cancer cell lines 

in vitro (Hoosein et al 1989). It was also noted that pre-incubation of the antiserum with 

gastrin reversed the inhibitory effect. In addition, the human gastric cancer cell line 

HGT-1 was reported to have high affinity gastrin/CCKB receptors but when grown in 

serum supplemented with gastrin, growth was not enhanced (Remy-Heintz et al 1993). 

In contrast, Guo et al reported that anti-gastrin antibodies had no effect on cell growth 

of the murine colon cancer cell line MC26 in vitro (Guo et al 1990). Gastrin-like 

peptides were detected in both human colon cancer cells and gastric cancer cell 

supernatant by RIA analysis. These gastrin/CCK antibodies inhibited cell proliferation at 

very high dilutions. This suggests the gastrin-like peptide may be acting as an autocrine 

growth factor in human GI cancer cells.

In another report by Baldwin et al, gastrin mRNA was detected in two human 

cell lines only after using the more sensitive technique of PCR. (Baldwin et al

1990). With the use of quantitative PCR, Baldwin et al were able to detect gastrin mRNA 

in seven colonic carcinoma cell lines (Baldwin and Zhang 1992). Others have 

demonstrated gastrin in samples of colonic cancers but not in normal mucosa (Monges et 

al 1993) and demonstrated the capacity for gastrin gene transcript in some colon cancer 

cell lines (Tillotson et al 1993).

A significant growth promoting effect of gastrin was recently found on both 

colorectal and gastric cancer cells that were either freshly disaggregated from patient 

tumours or were primary tumour cell lines at an early passage (Watson et al 1988). 

Using a specific anti-gastrin antibody, with immunofluorescence and flow cytometry,
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Watson et al, found that six out of twenty-eight freshly disaggregated human colorectal 

tumours possessed more than 20% gastrin positive cells (Watson et al 1991). 

Corresponding tumour-free mucosa contained less than 5% of gastrin positive cells in the 

majoritory of cases.

1.5 Intracellular signalling

Although much is known about the post-receptor second messengers in the gastric 

parietal cell involved in acid secretion (Yamada et al 1993), this may not be applicable to 

GI tumour cells. Indeed, the gastrin/CCKB receptor on gastric parietal cells may not be 

the same as the receptor mediating trophic responses in the colon or tumour cells. 

Therefore, it is important to understand the mechanisms involved in cellular signalling, 

for even if they are the same receptor, their regulation may be different due to binding to 

different G-proteins.

Physiological concentrations of gastrin stimulate growth of several human 

colorectal cancer cell lines with a parallel stimulation of phosphoinositol hydrolysis (PI) 

and intracellular calcium mobilisation (Ishizuka et al 1994). Effects are blocked by the 

selective gastrin/CCKB receptor antagonist JMV320. Other cell lines respond to gastrin 

with an increase in cAMP turnover but without any change in PI or intracellular calcium. 

A study by Bold and colleagues showed that gastrin stimulates growth of the human 

colon cancer cell line LoVo, an effect irreversible by either CCKA or gastrin/CCKB 

receptor antagonists. LoVo cells were devoid of mRNA transcripts for CCKA and CCKB 

receptors as assessed by northern hybridisation, yet gastrin stimulated the production of 

cAMP but not phospholipase C. It was suggested that growth of these cells occurred via
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a receptor other than CCKA or CCKB and perhaps one which has not yet been isolated 

(Bold et al 1994). Therefore gastrin signalling in colonic cancers cells appears to occur 

through two differing routes or mechanisms.

Gastrin also stimulates mobilisation of intracellular calcium independently of PI 

hydrolysis in a gastric carcinoma cell line (AGS) which possesses gastrin/CCKB 

receptors and responds trophically to gastrin (Ishizuka et al 1992). The hormone had no 

effect on intracellular calcium in a subclone lacking gastrin/CCKB receptors. Similar 

effects with addition of gastrin to SCLC cells causes a rapid and transient rise in 

intracellular calcium concentrations (Sethi et al 1993) and in NIH3T3 fibroblasts 

expressing the cloned human gastrin/CCKB receptor (Taniguchi et al 1994). Gastrin may 

act as a direct growth factor through gastrin/CCKB receptors on some SCLC (Herget et 

al 1992). However, CCKA receptors are preferentially expressed in SCLC and therefore 

increased intracellular calcium mobilisation and growth in SCLC cells may be mediated 

through either CCKA or CCKB receptor subtypes (Sethi et al 1993). These effects were 

also observed and blocked by gastrin/CCKB and CCK receptor antagonists in Mastomys 

natalensis ECL gastric carcinoid tumour cells (Inomoto et al 1992).

In contrast, proliferation of pentagastrin stimulated growth of a 

xenotransplantable human gastric tumour in nude mice was found to be linked to cAMP 

metabolism (Sumiyoshi et al 1984) whereas CCK8 inhibited both increases in cAMP and 

activation of the cAMP dependent protein kinase C (Yasui et al 1986).
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Polyamines have been implicated in the regulation of cellular proliferation and 

have important roles in cell growth and differentiation that are not completely 

understood. An increase in activity of the enzyme ornithine decarboxylase (ODC) is 

indicative of cellular proliferation (Johnson et al 1993). High levels of polyamines and 

increased ODC activity occur in colorectal tumours (Kingsnorth et al 1984; Lamuraglia 

et al 1986). Gastrin also stimulates polyamine turnover in both colonic cancer cell lines 

and xenografts (Eggstein et al 1991; Smith et al 1993). Freshly resected colorectal 

carcinomas were found to have higher levels of polyamines in gastrin receptor positive 

cancers than compared with gastrin/CCKB receptor negative tumours (Upp et al 1988). 

Levels of polyamines were higher in normal colon mucosa from patients with cancer than 

from those without cancer (Upp et al 1987). The presence of polyamines in colon 

cancers with gastrin receptors provides evidence that gastrin may play a trophic role in 

human colon cancers and it was thought that some tumours may have been treated with 

polyamine biosynthesis inhibitors. Polyamine levels were also found to be elevated in 

oestrogen receptor positive gastric tumours (Linsalata et al 1994).

Several studies have found that DFMO. (a-difluoromethylornithine) an 

irreversible inhibitor of ODC inhibits proliferative effects of gastrin on the colon in vivo 

and in vitro (Seidel et al 1985; Majumdar et al 1990; Eggstein et al 1991; Smith et al 

1993). Cell proliferation in primary colonic tumours was substantially reduced by DFMO 

(Tutton and Barkla 1986). AR42J cells differ from normal acinar cells since they 

proliferate rapidly and express gastrin/CCKB receptors (Christophe 1994). DFMO was 

found to inhibit AR42J cell growth since growth is dependent on adequate intracellular 

polyamine concentrations (Scemama et al 1987; Logsdon et al 1992). Results obtained
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with gastrin/CCKe receptor antagonists demonstrate that ODC stimulation in AR42J 

cells is mediated via the gastrin/CCKB receptor (Scemama et al 1989). Coupling of 

gastrin/CCKB receptors to PKC activation also occurs in AR42J cells (Seva et al 1990b). 

Polyamines are therefore likely to be involved in the trophic response to gastrin in 

carcinoma cells.
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GASTREV/CCKb r e c e p t o r s  in  g a s t r o in t e s t in a l  c a n c e r



1.1 Introduction

Gastrin exerts its biological actions by interacting with specific cell surface receptors. If 

gastrin is of relevance to human gastrointestinal cancer, then detection and 

characterisation of gastrin/CCKB receptors on tumour cells is of importance before 

gastrin/CCKB receptor antagonists can be considered in the therapy of gastrointestinal 

cancer.

1.2 Animal tumour cells

One of the most widely studied animal tumour cell lines has been the rat pancreatic cell 

line AR42J. Receptor affinities for gastrin were found to differ from those found on 

normal rat pancreatic acinar cells (Blackmore and Hirst 1992) and have been 

characterised with gastrin receptor antagonists (Scemama et al 1987; Seva et al 1990a; 

Watson et al 1991). The presence of the gastrin/CCKB receptor on these cells is 

discussed in more detail in Chapter 3, ‘Gastrin/CCKB receptors in AR42J cells.’

High affinity gastrin/CCKB receptors were detected on the murine colon cancer 

cell line, MC26 (Singh et al 1985) and subsequent studies confirmed the presence of 

gastrin/CCKB receptors demonstrating a requirement for gastrin to maintain both 

receptor affinity and number as the tumours increased in size (Singh et al 1986, 1987, 

1993; Chicone etal 1989; Guo etal 1990).

Tumours in rats which were not treated with pentagastrin showed a significant 

reduction in gastrin/CCKB receptor affinity indicating that the concentration of 

endogenous gastrin was too low to maintain receptor affinity (Singh et al 1987). It was
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suggested that in vivo, tumour cells may de-differentiate resulting in possible 

conformational changes in expression of the gastrin/CCKB receptor in the absence of 

high levels of circulating gastrin (Singh et al 1986). This study also supports previous 

work which suggested that gastrin up regulates its own receptor (Takeuchi et al 1980).

1.3 Human tumour cells

1.3.1 Gastric

Many groups have studied human gastrointestinal tumour cell lines which respond 

trophically to gastrin (Ishizuka et al 1992; Watson et al 1989a, 1989b; Singh et al 1985; 

Ochiai et al 1985). Gastrin/CCKB receptors have also been reported on cancer cell lines 

from a variety of species including several human gastric cancer cell lines. The human 

gastric cell line TMK-1, has been reported to respond trophically to gastrin, an effect 

which appears to be mediated by a high affinity gastrin/CCKB receptor (Ochiai et al

1985).

Human gastric cancer cell lines have been screened using a single saturating dose 

of 125I-G17. The gastric cell line AGS was found to be strongly positive for specific 

gastrin binding sites, with an affinity (KD < InM) similar to the normal rat fundus (Singh 

et al 1985). Seven AGS clones were established and four were positive for gastrin 

binding sites (>12 fmols/mg protein). Of the others, one was found to be negative and 

two exhibited gastrin binding sites of less than 3.3 fmols/mg protein. Although details of 

how the AGS cells were grown was not given in the report, it is known from other 

studies that gastrin-responsiveness may be lost in established cell lines after repeated 

subculture (Watson et al 1988). Loss of responsiveness to gastrin has been shown in
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established cell lines on repeated subculture in vitro (Watson et al 1988). Gastrin 

responsiveness could be retained by transplanting cells into nude mice and growing in 

vivo before re-establishment in vitro. The same group also reported that several human 

gastric cell lines lacked any mitogenic response to gastrin at passage >250 in vitro when 

compared to freshly derived primary gastric tumours, where -50% were gastrin 

responsive (Watson et al 1989b). This variation in ability of gastrin to induce mitogenic 

effects may be due to up and down regulation of receptors. This must be taken into 

account when examining gastrin receptor status of gastrointestinal tumour cells and 

caution in interpretation of negative gastrin/CCKB receptor cell lines is required.

Weinstock and Baldwin examined five human gastric cancer cell lines using 

whole cells in radioligand binding studies (Weinstock and Baldwin 1988). Isolated canine 

parietal cells were used as positive controls with KD’s of 1.7 and 0.2nM for 125I-met G17 

and 125I-leu G17 respectively. However, it was noted that affinity constants for the 

human gastric tumour cell lines varied between 0.2 and 1.3uM exhibiting receptor 

affinities around 1000 times less than found in parietal cells. This variation in affinities for 

the gastrin/CCKB receptor did not affect displacements with unlabeled gastrin-17 and 

CCK8 which were shown to have comparable affinities for the receptor. The authors 

postulated that the gastrin/CCKB receptor can exist in different conformational states 

thereby altering receptor affinity and go on to describe experiments with isolated canine 

parietal cells where membranes are extracted using detergents resulting in a low affinity 

gastrin receptor. In addition, there was no increase in in vitro cell proliferation of the 

gastric cell lines in the presence of gastrin-17, indicating that the low affinity 

gastrin/CCKb receptor is not involved in any trophic response. The relevance of these
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low affinity gastrin/CCKB receptors in a possible autocrine role for gastrin has been 

discussed elsewhere.

Radioligand binding studies were performed on human scirrhous gastric 

carcinomas by | Kumamoto et al (1988). Using membrane preparations and 125I-G17, 

four out of five carcinomas showed a high degree of specific binding. Although no 

affinities were reported, specific binding ranged from l.l-18.2fmols/mg protein. The 

presence of gastrin/CCKB receptors was more frequent in the poorly differentiated 

scirrhous carcinomas (Borrman type IV) than in other gastric adenocarcinomas examined 

(Borrman type II or III). A study by the same group in 1989 demonstrated specific 

125I-G17 binding to human gastric fundic mucosa with KD of 1.6nM and receptor 

capacity of 15fmol/mg protein. Antral mucosa was shown to exhibit little specific 

binding.

1.3.2 Colorectal

In a report by Singh and colleagues, high affinity gastrin/CCKB receptors 

(Kd of 0.25-0.6nM) were found to be present on membranes from a human colonic 

cancer cell line (LoVo). Another human colonic cell line, HT29 showed little specific 

binding (Singh et al 1985) in this study but was later reported by another group to 

exhibit specific gastrin binding when cells were grown in serum free medium (McRae et 

al 1986). Pentagastrin was also shown to stimulatec growth of the HT29 cells.

A recent study by Frucht et al examined functional receptors for a wide range of 

GI hormones on human colon cancer cell lines (Frucht et al 1992). Only one out of the
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ten cell lines examined expressed gastrin/CCKB receptors. This low gastrin/CCKB 

receptor expression in human tumour cell lines may be due to methodological problems, 

in particular the length of time in culture as has been suggested by Watson et al as human 

colorectal cell lines lost their gastrin responsiveness when passaged more than 250 times 

(Watson et al 1989b).

Eggstein and co-workers examined the mechanisms involved in the mitogenic 

action of gastrin mediated by gastrin/CCKB receptors on human colonic carcinoma cells 

(Eggstein et al 1991). Growth of the colonic cell line SW403 was increased by gastrin in 

vitro and this was shown to be specifically mediated by gastrin receptors since the gastrin 

receptor antagonist benzotript reversed this stimulation.

Several reports have demonstrated the in vitro gastrin responsiveness of fresh 

human tumour tissue (Watson et al 1989b) and used this as a marker of gastrin/CCKB 

receptor status, but few have directly shown the presence of specific high affinity 

gastrin/CCKB receptors on human tumour tissues. The first study to demonstrate specific 

gastrin/CCKB receptors on primary colon cancer tissue was by Rae-Venter et al in 1980. 

Seven out of eight (87.5%) colon tumours expressed gastrin/CCKB receptors with a 

Kd of 0.4-0.6nM and receptor density of 0.5-1.3fmols/mg protein. Further publications 

by the same group examined gastrin/CCKB receptor status in freshly resected colorectal 

tumours and healthy normal mucosa (Upp et al 1989). Thirty-eight of the sixty-seven 

(56.7%) cancers had high affinity receptors (KD < InM) and seven had low affinity 

receptors (KD >lnM). Twenty of the thirty-eight people with gastrin/CCKB receptor 

positive tumours had receptor densities above lOfmol/mg of protein but no correlation
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between gastrin/CCKB receptor content and patient age, sex, serum CEA concentration 

or degree of differentiation was found. The mean receptor density of Dukes’ A or B 

tumours was twice that of Dukes’ stage C or D lesions. Twenty-two out of fifty-nine 

(37%) of samples had no detectable gastrin/CCKB receptors. There was a highly 

significant correlation between the presence of gastrin/CCKB receptors on normal 

mucosa and corresponding tumours.
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GASTRIN/CCKb r e c e p t o r  a n t a g o n is t s



1.1 Introduction

In recent years, there has been increasing interest in the ability to inhibit gastrin/CCKB 

receptor mediated growth in tumour cells. This is due to the accumulating evidence of 

the presence of gastrin/CCKB receptors in tumour cell lines and tissues. Subsequently, 

over the past decade there has been a vast production of receptor antagonists for 

gastrin/CCKB peptides. In addition, human cancer cell lines and tissues have been found 

to possess gastrin/CCKB receptors leading to therapeutic implications for gastrin/CCKB 

receptor antagonist therapy in some gastrointestinal tumours.

Competitive receptor antagonists should be effective at physiological 

concentrations and therefore require to be selective and of high affinity. They are 

established as the main tool for study and characterisation of receptors and have been 

used extensively in the classification of receptor subtypes and second messenger systems 

within the gastrointestinal tract.

Since the gastrin/CCKB receptor is known to have equal affinities for 

gastrin and cholecystokinin ( Jensen et al 1989; Roques et al 1989; Freidinger et al 

1989) it follows that gastrin/CCKB receptor antagonists also antagonise the effects of 

CCK. Consequently the development of gastrin/CCKB receptor antagonists was 

simultaneous with the development of CCK receptor antagonists.

At least eight classes of gastrin/CCKB receptor antagonists have been presented 

in the literature (Jensen et al 1990; Presti and Gardner 1993) which are highly selective 

with the capacity to distinguish between CCKA and gastrin/CCKB receptors. The
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majority of studies have concentrated on the inhibitory effects of antagonists on growth 

of tumour cell lines and tumour cells and not on normal epithelial cells (Watson et al 

1991, 1992a, 1992b).

1.2 Gastrin/CCKs and CCKA receptor antagonists

1.2.1 Glutaramic acid derivatives

During the 1960s, Rovati developed the gastrin receptor antagonist proglumide 

((+/-)-4-(benzolyamino)-5-(dipropylamino)-5-oxopentanoic acid), a glutaramic acid 

derivative (Rovati 1968). Proglumide was used for several years in the treatment of 

peptic ulcer disease because of its ability to competitively inhibit gastrin-stimulated 

gastric acid secretion (Rovati 1979). The compound was later found to competitively 

inhibit pentagastrin-stimulated increases in DNA, RNA and protein content in the rat 

oxyntic mucosa as well as the rate of DNA synthesis (Johnson and Guthrie 1984).

Following an earlier study which found that pentagastrin enhanced growth of 

MC26 tumours and reduced survival in mice (Winsett et al 1985), the effects of 

proglumide were found to reduce growth, DNA and RNA content in both tumours and
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normal colonic mucosa (Beauchamp et al 1985). Others have also found that proglumide 

inhibits gastrin or pentagastrin-stimulated growth in colon cancer cells in vivo (Singh et 

al 1986, 1987) but not basal growth of tumour cells. However, not all reports have been 

able to show an inhibitory effect of proglumide on colorectal cancer cells (Romani et al 

1994) and inhibitory effects that have been found were not in the physiological range. In 

addition, proglumide has only been used in one small study of patients with advanced 

colorectal cancer, in which no effect on survival or tumour growth was demonstrated 

(Morris et al 1990).

Subsequent developments produced an amino acid tryptophan derivative, 

benzotriptj(Rovati 1976).Howeverboth proglumide and benzotript were shown to 

competitively antagonise effects of cholecystokinin on the CCKA receptor (Hahne et al 

1981). But proglumide and benzotript are relatively weak antagonists of the 

gastrin/CCKB receptor, with relatively weak inhibitory effects in both human and animal 

colorectal cell lines within the millimolar range (Hoosein et al 1989; Guo et al 1990; 

Eggstein etal 1991).

A requirement for new gastrin/CCKB receptor antagonists with greater potency 

in the physiological range led to the development of non-peptide derivatives of 

proglumide, lorglumide (Makovec et al 1985) and loxiglumide (Setnikar et al 1987) and 

recently the (R)-4-benzodiamdo-5-oxopentanoic acid non-peptidic derivatives CR1795, 

CR2093 and CR2194, which discriminate between different CCK receptor subtypes 

(Makovec et al 1992) but are still weak CCK receptor antagonists. CR2093 inhibited in 

vitro growth of AR42J cells and the human gastric cell line MKN45 (Watson et al
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1992b). However when human colonic cancer cells C523, which have been reported to 

have high affinity gastrin/CCKB receptors (KD = 0.22nM), were grown as xenografts in 

nude mice, neither basal nor gastrin stimulated growth was inhibited by continuous 

intravenous infusion of CR2093 (Watson et al 1992b).

1.2.2 Benzodiazepine derivatives

The benzodiazepine derivative gastrin/CCKB and CCKA receptor antagonists originated 

from asperlicin (Chang et al 1985). Asperlicin had little potency, but the 

1,4-benzodiazepine ring system led to derivatives with increased potency. 

iDevazepide (MK-329 or L364718), a selective and competitive receptor antagonist of 

CCK at CCKa receptors with an affinity comparable to that of CCK8 (IC50 = 0.08nM)

| has greater than 1000 fold selectivity over the gastrin/CCKB receptor (Evans et al 1986). 

This was confirmed by Chang and Lotti by in vitro studies using CCK induced 

contractions of the guinea-pig ileum and colon where L364718 acted as a CCK 

antagonist without any agonist action (Chang and Lotti 1986).

Several structural modifications of devazapide led to the discovery of the 

gastrin/CCKB receptor antagonist L365260 which exhibited a 100 fold greater affinity for 

gastrin/CCKB receptors (IC50 = InM) than CCKA receptors (Bock et al 1989; Lotti and 

Chang 1989). Following growth of AR42J cells as xenograft tumours in nude mice, the 

gastrin/CCKfi receptor antagonist L365260 was administered via an osmotic mini pump 

to mice that had previously received either PBS control or G17. Gastrin increased 

growth of AR42J xenografts and L365260 was found to suppress only gastrin stimulated 

growth (Watson et al 1991). This effect was also found in MC26 xenografts with
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proglumide (Singh et al 1987). The gastrin/CCKB receptor antagonist, L365260 was one 

of the most potent (Presti and Gardner 1993; Hughes et al 1993) which also inhibited 

basal growth rates of human colon cancer cell lines in vitro (Watson et al 1991). Further 

studies confirmed L365260 as a selective gastrin/CCKB receptor antagonist (Roche et al 

1991; Durieux etal 1991) although a further report did not show any effect on growth of 

two human colorectal cancer cell lines in vitro (Thumwood et al 1991).

Attempts to produce receptor antagonists with increased affinity for the 

gastrin/CCKB receptor resulted in a range of acidic derivatives of L365260. Biological 

activity and CNS penetration were examined and increased in a number of tetrazole 

derivatives. The compound L368730, the tetrazole analogue of L365260 showed an 

eight fold increase in affinity for the gastrin/CCKB receptor which increased CCKB/CCKA 

selectivity by more than seven percent. The isobutyl derivative L368935, (KD = O.lnM) 

is more potent than other recently described gastrin/CCKB receptor antagonists C l988 

(Hughes et al 1990) and LY262691 (Howbert et al 1992). The latter has weak affinity 

for gastrin/CCKB receptors whereas C l988 has limitations because of poor oral 

bioavailability and CNS penetration (Hinton et al 1991). The CCKA and gastrin/CCKB 

receptor antagonist CAM1481, reduced growth of LoVo cells grown as xenografts by 

53% after oral administration in nude mice (Romani et al 1994).

The most potent gastrin/CCKB receptor antagonists have originated from 

benzodiazepine derivatives and one in particular with high affinity (IC50 = 0.04nM) for 

the gastrin/CCKB receptor, L740093 [N-[(3R)-5-(3-azabicyclo[3.2.2]nonan-3-yl)-2,3- 

dihydro-1 -methyl-2-oxo- 1H-1,4-benzodiazepin-3yl]-N’(3-methylphenyl)urea] is the most
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potent and selective gastrin/CCKB receptor yet known (Patel et al 1994). This receptor 

antagonist was found to have 210 fold higher affinity than L365260 for gastrin/CCKB 

receptors and 3 fold higher for CCKA receptor sites. The antagonist properties of 

L740093 were also confirmed in in vivo binding studies. In addition, L740093 

demonstrated increased solubility and CNS penetration therefore offering an attractive 

profile to characterise the role of gastrin/CCKB receptors in physiology and disease.

1.2.3 Other gastrin/CCKB receptor antagonists

Analogues and fragments of CCK8 have been evaluated for their potential use as 

gastrin/CCKB receptor antagonists. The CCKa receptor binds CCK8 with high affinity 

but CCK4 only displays low affinity for the receptor subtype. In contrast, the 

gastrin/CCKB receptor binds both CCK8 and CCK4 with high affinity and exploitation of 

this feature was deemed likely to produce a highly selective gastrin/CCKB receptor 

antagonist (Lin et al 1989). This led to the development of derivatives of the c-terminal 

tetrapeptide of CCK8. Derivatives incorporating either BOC or succinyl groups at the 

N-terminal end were reported to exhibit high affinity for guinea-pig cortical 

gastrin/CCKB receptors (Harbammer etal 1991).

Other potent and selective gastrin/CCKB receptor antagonists have been 

produced and a series of phenethyl ester derivative analogues of the C-terminal 

tetrapeptide of gastrin have been described (Martinez et al 1986). Modification of amino 

acid side chains by replacing the phenylalanyl residue with a phenethyl group to produce 

these derivatives was found to affect receptor affinity (Harbammer et al 1991).
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Alternatively, cyclization of the N-terminal portion of CCK8 was also found to produce 

gastrin/CCKB receptor antagonists with high potency (Charpentier et al 1988).

Novel gastrin/CCKB receptor antagonists have been isolated by screening of the 

antibiotic virginiamycin Mi from guinea-pig mucosal glands. Three analogues, 

L-156,586, L-156,587 and L-156,588 were shown to selectively bind to gastrin/CCKB 

receptors in the nanomolar range (Lam et al 1991).

1.3 Anti-gastrin antibodies

Alternatives to gastrin/CCKB receptor antagonists in the form of antibodies directed 

against gastrin may have the potential to neutralise gastrin in serum without interaction at 

the receptor level and may also neutralise autocrine growth mediated via gastrin.

Recently specific neutralising anti-G17 antibodies were raised using a novel 

immunogen, j  Gastr immune, in which the N-terminal of human G17 was conjugated to 

diptheria-toxoid (Makishima et al 1994). The resulting antiserum did not cross react with 

either G34 or CCK (Watson et al 1993, 1994) and prevented 125I-G17 binding to gastrin 

receptors on AR42J cells (Watson et al 1995a).

The in vitro growth of the human gastric cell line MGLVA1 was significantly 

reduced in the presence of antiserum and mice which were injected with the cells and 

treated with the antiserum also showed a significant increase in survival rates (Watson et 

al 1995b). In experimental animal modelsj Gastrimmune treatment significantly inhibited 

basal and gastrin-stimulated growth of a human primary colorectal tumour AP5. When
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AP5 cells were grown as xenografts in nude mice, the trophic effects of gastrin were 

maintained and both basal and gastrin-stimulated growth was significantly inhibited by 

i.v. infusion of the antiserum when compared to controls treated with anti-DT antisera 

alone (Watson et al 1995a). Results from clinical trials in patients with colorectal and 

gastric cancer would provide valuable information about the possible therapeutic role of 

anti-gastrin antibodies.

1.4 Therapeutic applications

Although there is a growing array of gastrin/CCKB receptor antagonists, their potential 

clinical application in the possible treatment of gastrointestinal malignancy remains 

speculative. Much work has been done in the area of inhibition of basal and gastrin 

stimulated growth. In cultured cells derived from human colonic, gastric and pancreactic 

cancers shown to possess gastrin/CCKB receptors this provides evidence of a possible 

therapeutic application based on gastrin/CCKB receptor antagonist inhibition. In 

particular, new benzodiazepine derivatives such as L740093 which has a higher affinity 

for the gastrin/CCKB receptor than the natural agonist G17, may have potential 

therapeutic value.

Many researchers have demonstrated in vitro and in vivo inhibitory effects of 

specific gastrin/CCKB receptor antagonists on human colonic and gastric cell lines. But 

to date only one substantial report has demonstrated gastrin/CCKB receptors directly on 

human colonic carcinomas (Upp et al 1989). This paper has been widely quoted yet there 

has been no subsequent report from any other group despite numerous reports of 

gastrin/CCKB receptors on colonic carcinoma cell lines. The therapeutic value of the
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growing number of gastrin/CCKB receptor antagonists must follow the unequivocal 

demonstration and examination of the level and distribution of gastrin/CCKB receptors in 

human gastrointestinal tumours.
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RADIOLIGAND BINDING METHODOLOGY



1.1 Introduction

Radioligand binding assays are a relatively simple but extremely powerful tool for 

studying receptors and as a result, radioligand binding is important in many biological 

sciences.

The principle of radioligand binding is incubation of a biologically active 

radioligand with a receptor preparation until steady state has been reached. Bound 

radiolabel is then separated from free, either by centrifugation or filtration, and the bound 

fraction counted. Reliable measurement of any receptor requires fully optimised 

radioligand binding assay methodology for the receptor of interest. This chapter will 

discuss the main factors involved in the optimisation of radioligand binding methodology. 

The mathematical basis of radioligand binding theory is presented in Chapter 1, section 7.

1.2 Choice of radioligand and method of radiolabeling

When studying hormone receptors, the radioligand of choice would be the endogenous 

peptide expected to bind to the receptor of interest. It is important that the radioligand 

should retain its biological activity yet still be indistinguishable from the unlabeled 

peptide after labeling. While tritiated labels (3[H]) have the advantage of leaving the 

structure of the peptide intact, the labels prepared are of inherently low specific acivity 

and therefore are of limited use in the detection of high affinity binding sites (Bylund and 

Yamamura 1990). Use of iodinated radioligands permits the preparation of high specific 

activity labels, necessary for detection of high affinity binding sites. But incorporation of 

an iodine atom and/or the iodination procedure itself may diminish the biological activity
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of a peptide. Therefore the choice of iodination protocol is important and will be 

individually applicable to each peptide/receptor system.

1.3 Receptor preparations

Measurement of receptor expression on both normal and tumour tissues is most widely 

studied in crude membrane preparations of either cultured cells or tissues of interest 

although whole cells and isolated cells from tissues also provide valuable information 

about binding kinetics.

1.3.1 Cell lines and crude membrane preparation

Cell lines have been used extensively as a source of receptors for radioligand binding 

assays as they provide the advantage of a plentiful supply of homogenous receptor 

preparation for extended periods of time. Isolated cells from tissues may also be prepared 

by enzyme disaggregation and enriched by elutriation. To some extent, this has 

overcome the disadvantage of dealing with a mixture of different cell types from a single 

tissue. However, there still remains variablity between individual animals of the same 

species.

Membranes from cultured cells or tissues are easy to prepare and can be stored 

and used for screening of receptors from most cell types. Crude membrane preparation 

involves homogenisation of the tissue or cells in a hypotonic buffer using a mechanical 

homogeniser such as a polytron. Large debris can be removed by filtration through a 

nylon mesh (~50um) and/or slow speed centrifugation.A crude membrane fraction is 

sedimented after centrifugation at 30000g.
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1.4 Assay conditions

The theoretical model for saturation requires the reaction to be at equilibrium (or at least 

steady state). The time for a reaction to reach steady state is dependent on both the 

radioligand concentration and temperature used. While it is convenient to perform 

experiments at room temperature, the use of 37°C may be more physiologically relevant. 

However, problems can occur with radiolabel degradation at 37°C and also reaction 

kinetics may be so fast that precision is difficult to achieve. For these reasons a 

temperature of 4°C may be advantagous.

Generally, the pH should be in the physiological range between pH7 and 8 

(Bylund and Yamamura 1990). The type of buffer may depend on the receptor 

preparation and although Tris(hydroxymethyl) aminomethane (Tris) buffer is often used, 

it is not necessarily the best. It is therefore important to try other buffers in order to 

obtain optimum binding. Buffers are often supplemented with ions such as Mg2+ which 

may enhance binding of the radioligand. Addition of monovalent or divalent cations may 

either increase or decrease the affinity of competing ligands for the receptor site. For 

example addition of Mg2+ ions at concentrations of O.l-lOmM promote agonist binding 

to many G-protein-coupled receptors in membranes by favouring the formation of the 

high affinity agonist-receptor-G-protein complex (Hulme and Birdsall 1992). Other 

additions often included in radioligand binding buffers are protease inhibitors but this 

depends mainly on the receptor preparation being analysed.

Finally the choice of separation method for bound and free radioligand is 

important in preventing significant dissociation of the receptor radioligand complex since
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this is the measured parameter. Membrane assays are generally separated using filtration 

methods where membrane fragments that contain the radioligand receptor complex are 

retained on the filter and the free radioligand passes though it. However there are 

drawbacks since non-specific binding to the filter may be high. This problem may be 

overcome by pre-soaking filters with 1% (v/v) aqueous polyethylenimine in order to 

reduce non-specific binding to the filter. Alternative methods involve centrifugation of 

assay reactants forming a pellet containing the radioligand bound to the membrane 

fragments. Centrifugation is most often used in assays where the affinity of the 

radioligand is in the lOnM to luM range or non-specific binding to the filter is 

prohibitively high. An additional advantage of the centrifugation technique is that the 

extent of dissociation of the radioligand-receptor complex is minimal.
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RECEPTOR CHARACTERISATION



1.1 History

The origins of receptor theory came from Langley in 1878, who studied the effects of 

pilocarpine and atropine on salivary action. From these studies he declared that “there is 

some ‘receptor’ substance with which both atropine and pilocarpine are capable of 

forming complexes according to some law in which their relative mass and chemical 

affinity for the substance are factors” (Langley 1878). Later he noticed that nicotine and 

curare gave an effect and blockage respectively on small areas of muscle surface. He 

concluded in 1905 that “there is a chemical combination between the drug and a 

constituent of the cell - the receptive substance” (Langley 1905).

In 1885, Ehrlich independently postulated that specific activities of cellular 

protoplasm could be moderated by side chains or receptors. His work on the binding of 

drugs to these receptors is summed up by saying “substances that bind have an effect”. 

Ehrlich also suggested from Langley’s work that drug action on receptors is loose, 

reversible and involves weak chemical bonds (Ehrlich 1900), which led to the speculation 

of cell surface recognition sites.

Further work by Ehrlich and Hill provided evidence for the chemical nature of the 

receptor-ligand reaction (Hill 1909), but it was not until twenty-four years later that 

Clark provided the evidence for receptor occupancy (Clark 1933). These studies led 

Clark to assume that the biological or functional response to receptor activation was 

directly proportional to the number of receptors occupied by the ligand at equilibrium.
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Gaddum developed the extension of receptor theory with competitive 

antagonism, where an antagonist interacts reversibly with receptors to form a complex 

but does not elicit a response. He proposed that an antagonist might bind to the same 

receptor as the agonist and compete for its occupancy (Gaddum 1936). Gaddum 

observed that the agonist dose response curves were rightwardly shifted in parallel in the 

presence of an antagonist. Consequently higher agonist concentrations than previous 

were required to displace the antagonist and adhere agonist occupation of all receptors.

1.2 Mathematical basis of radioligand binding

Familiarity with the theoretical background to receptor characterisation is necessary for 

correct interpretation of the results of binding studies. What follows is a brief summary 

of the binding kinetics, parameters and factors which may affect binding. Only the simple 

binding reactions are described due to the complex mathematical nature of multiple 

binding sites.

1.2.1 Kinetic analysis

(i) Association

In the simplest case, the binding of a labelled ligand [L]* to a receptor [R] is a simple 

bimolecular association reaction. Association of a radioligand is a second order process 

where the rate of formation of radioligand complex is dependent on both ligand [L]* and 

binding site [R]. The amounts of receptor and radioligand are constant and the 

concentration of radioligand bound to the receptor is determined as a function of time. 

The rate of association or rate of formation of [RL]* = K+i.[L]*.[R] where K+i is the
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forward rate constant or association rate, [L]* is the free radioligand concentration and 

[R] is the free receptor concentration.

K +1

[R] + [L]* -----------► [RL]* (1)

Association experiments determine when steady-state is reached. This 

information is critical as inhibition experiments are usually performed at steady-state. The 

time to reach equilibrium is dependent not only on the rate constant but also the 

radioligand and receptor concentrations. Technically it is difficult to calculate K+i as it is 

not possible to prevent concurrent dissociation of the complex. However by holding the 

ligand concentration [L]* constant in an experiment i.e. less than 10% bound at 

equilibrium, the above equation is reduced to a pseudo first order process. By doing this, 

the equation for association of a radioligand to a binding site describes an increasing 

curve as a function of time.

i = n

[Rbt] = I  [Rei], ( l-e Kob!") (2)

i = 1

Where [Rbt] is the amount of radioligand bound at time t, [Rei] is the amount of 

radioligand bound at equilibrium to site i out of a possible n sites and Kobsi is the
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observed association rate constant. The data is fitted again by non-linear regression or 

the natural logarithm of the ratio of the amount of [R] bound at steady-state (Be), which 

is divided by the difference between the [R] bound at steady state and the amount bound 

(B) at time t is plotted against time.

Pseudo first order association plot:

Ln(Be/Be-B) = (K +1 . F + K. i ) t  +Kobs.t (3)

Kobs is the slope of the plotted line and so if K_i (dissociation constant) is known 

from separate experiments, then K+i can be calculated:

K + 1 = (Kobs - K . i) / Free ligand (r|M) (4)

Kd = K . ! / K +1 (5)

If accurate the KD from association should be in agreement with the dissociation 

constant from saturation studies and this is a good check on the internal consistency of 

the binding data at steady-state.
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(ii) Dissociation

The [RL]* complex is the initial radioligand concentration bound to the receptor, [R] is 

the free receptor and [L]* is the free ligand. The rate of breakdown of [RL]* to [R] and 

[L]* can be expressed as the dissociation (K-i) rate constant.

K -i

[RL]*  ► [R] + [L]* (6)

Dissociation is a first order reaction since it depends only on the initial 

concentration of the complex. It can be described with the first order rate equation :t

i = n

[Rbt] = E [Roi]. e 'K'"* (7)

i = 1

Where [Rbt] is the amount of radioligand bound at time t, [Ro] is the amount 

bound at time t=0 and K-i is the dissociation rate constant for each site i out of a possible 

n sites.

The radioligand [L]* is incubated with receptor [R] until steady-state is achieved. 

Further binding of [L]* to [R] is prevented by either a 50 fold or greater dilution of the 

incubation mixture or addition of excess unlabeled drug in order to occupy all the free 

receptors. An excess of unlabelled drug is defined as 100 times the IC50 value. In either 

case association is effectively prevented so only the dissociation reaction is measured.
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The natural logarithm (Ln) of radioligand bound divided by bound at time zero 

i.e. at steady-state, can be plotted as a function of time. The semilogarithmic plot of 

dissociation data produces a straight line, the slope of which is -K_i. Therefore the 

dissociation rate constant, KD which is equal to K-i/K+i can be calculated from a 

combination of association and dissociation reactions.

1.2.2 Saturation analysis

As has been previously described, when a receptor [R] is incubated with a radioligand

[L]* for a period of time t , [RL]* will form according to the simple biomolecular

reaction:

[L]* + [R] 7= 1  [RL]* (8)

In a saturation experiment, the amount of [RL]* complex formed is measured as 

a function of the free radioligand concentration. At equilibrium (steady state) where the 

forward and reverse reactions are progressing at the same rate, the law of mass action 

states that:

Kd = [L]* . [R] (9)

[RL]*

where KD (the dissociation constant) = K-i/K+i. If the total receptor concentration 

is equal to Bmax then the mathematical equation that relates the concentration of [RL]* 

(also termed B for Bound) and free ligand [L]* (termed F for free) is as follows:
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B = Bmax . F 

(Kd + F) (10)

This equation describes a rectangular hyperbola but due to the non-linearity of 

radioreceptor saturation curves, both the apparent Bmax and KD values can only be 

approximated from the plot. Therefore transformation of the data into a linear form as 

with a scatchard plot or Rosenthal plot is generally required (Scatchard 1949; Rosenthal 

1967).

Expanding and re-arranging:

B = - l . B  + Bmax (11)

F Kd Kd

Although the terminology of a Rosenthal plot is more accurate since it belies a 

derivation of the scatchard, the name scatchard is more commonly recognised to mean 

the same as the latter. The scatchard plot involves bound/free ligand plotted as function 

of the bound. Equation eleven is in the form y = mx + C and so it follows that y is equal 

to B/F, m is equal to -1/KD, x is equal to B and C is equal to Bmax/Ko. The receptor 

density or Bmax as it is commonly known is the value obtained from the intercept on the 

abscissa and the KD is the negative reciprocal of the slope of the line (Figure 1.3). To 

represent receptor binding, the calculated KD should be similar to the concentration of 

the unlabeled hormone displacing 50%  of the labeled hormone (IC50). Additionally the 

Kd and IC50 should be compatible with the physiological plasma concentration for the
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hormone of interest. The binding should be saturable, thereby indicating a finite number 

of receptors. Specificity for the hormone and binding affinities of analogues should 

reflect their biological activity and should be linked to a biological response.

Where the radioligand binds to only one site, a linear scatchard (Figure 1.3) is 

observed and reasonable estimates of Bmax and the Kd can be generated. If a non-linear 

scatchard is observed this could mean that the ligand is binding to more than one site or 

receptor state and therefore computer generation of these values is compulsory. 

Interpretation of these plots is essential since linear scatchards can also be obtained when 

a non-selective radioligand binds to more than one site with the same affinity.

A further derivation of the scatchard plot is the Eadie-Hofstee plot (Hoftsee 

1959). This is identical in form to the scatchard plot previously described (Molinoff et al 

1981). Linear regression may be performed with the Hoftsee plot to obtain initial 

estimates of Kd and Bmax. One problem with this plot is that it is subject to influence by 

points close to either 0 or 100% specifically bound. To avoid this the Hoftsee plot only 

contains data which are in the region 5% to 95% of specific binding and therefore it is 

possible to loose some data.

1.2.3 Competition analysis

For a competition experiment, the receptor concentration, the radioligand concentration 

and the time are all constant with the variable being the concentration of unlabeled 

competing drug. When the drug concentration is zero only a small fraction of the 

receptors are bound as radioligand-receptor complex but as the concentration of drug
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increases, it competes with the radioligand for the receptor binding site. This decreases 

the concentration of free receptors and therefore the concentration of radioligand- 

receptor complex is also reduced. The equation relating the concentration of bound 

radioligand to the drug concentration is :

B = Bmax. F (12)

F + Kd (1 + 1/Ki)

One useful method of linearizing inhibition data is to use a logit-log plot. Data are 

calculated in terms of percent bound (P) where 100% is the the amount specifically 

bound in the absence of inhibitor i.e Bo. The percent specifically bound at each 

concentration of inhibitor is calculated and the data is manipulated by logit 

transformation:

logit = Ln(P/(100-P) (13)

The IC 50 is 50%  of specific binding, and the logit of 50%  [Ln(l)] is 0 , therefore 

the IC 50 value can be obtained either by linear correlation or by plotting the logit data 

against log concentration of inhibitor and graphically determining the IC 50.

The Cheng-Prusoff relationship makes the assumption that the receptor 

concentration is much less than the ligand concentration and is only valid when [R] < 

0.1 [F] (Cheng and Prusoff 1973). So by re-arranging equation 11 :
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Ki = IC50 (14)

1 + [F]/Kd

Where Ki is the inhibition constant and is the affinity of the inhibitor for the 

receptor. Inhibition data are visualised by plotting the amount of bound radioligand on 

the ordinate against the log concentration of inhibitor on the abscissa. The concentration 

of competing drug required to inhibit 50% of the specific binding, IC50 is always greater 

than the Ki value.

1.3 Computation

Studies of radioligand binding to receptors have increased in importance for 

quantification and characterisation of a wide variety of receptors in different scientific 

fields. Before the advent of personal computers, most binding studies were analysed by 

simple manual graphical and very subjective methods which were often based on 

approximations. Today however, computers provide a more exact analytical tool which 

removes the tedious manipulation of data into a meaningful form and also provides an 

exact mathematical model with weighted least squares curve fitting.

Most, if not all, of the current computerised packages available for analysis of 

binding data are based on the method of Feldman (1980). Using non-linear regression 

analysis, the best fit of the mathematical model is determined through successive 

iterations. Initially the errors between the theoretical data points of the selected model 

and the actual data points are squared and summed, resulting in the sum of the squares of 

the residuals.
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The LIGAND program is a versatile computerised approach for characterisation 

of ligand binding systems and can be used in the analysis of binding data from kinetic, 

saturation and displacement studies. Various versions of the program LIGAND exist 

(McPherson 1985; Munson and Rodbard 1980) and all will provide optimal initial and 

final estimates of binding parameters for ligands interacting with receptors.
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OBJECTIVES



Since Takeuchi and co-workers first demonstrated the specific and physiologically 

relevant binding of gastrin to gastrin/CCKB receptors in rat oxyntic gland mucosal 

membranes (Takeuchi et al 1979), many groups have shown binding of gastrin to a 

variety of tissues from different species (Magous and Bali 1982; Roche et al 1991; 

Chang et al 1986; Soil et al 1984; Ramani and Praismann 1989; Bitak and Makhlouf 

1982; Grider and Makhlouf 1990; Kuamamoto et al 1989; Upp et al 1989; Singh et al 

1985). The initial aim of this thesis was to optimise and standardise a gastrin/CCKB 

receptor binding assay using the rat pancreatic acinar cell line AR42J, followed by 

characterisation of the gastrin/CCKB receptor with established and novel receptor 

agonists and antagonists.

Following optimisation of the assay and characterisation of the gastrin/CCKB 

receptor in whole cells, the next objective was to ensure that preparation of crude 

membranes from the cells did not alter the previously determined receptor properties. In 

addition, the crude membranes were to be used in stability studies to determine the most 

suitable and appropriate conditions for maintenance of gastrin/CCKB receptor activity. 

This was considered important as it was hoped that human tissues could be collected and 

stored prior to assay.

To date the only study that has directly demonstrated specific gastrin/CCKB 

receptors on human colonic normal and tumour tissue is by Upp et al in 1989. Their 

report provides little information about the kinetics and standardisation of the 

gastrin/CCKB receptor assay used. No other group has published reports confirming or 

disproving these results. Therefore the aim of the first clinical study was to use the
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optimised radioligand binding assay to determine if gastrin/CCKB receptors were 

detectable on human colorectal tumour and normal tissues.

Finally, gastrin/CCKB receptors may be present on parietal cells and possibly 

ECL cells located in the gastric body of humans (Praismann and Brand 1991). Although 

high affinity gastrin/CCKB receptors have been demonstrated using radioligand binding 

(Kuamamoto et al 1989), they have not been characterised using gastrin/CCKB receptor 

agonists and antagonists. Therefore characterisation of gastrin/CCKB receptors in the 

human stomach would provide useful information especially in comparison to data 

gathered using AR42J cells and membranes.
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CHAPTER 2 MATERIALS AND GENERAL METHODS
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1 MATERIALS

1.1 Cell culture

DMEM amd RPMI 1640 media, glutamine and sodium bicarbonate were all obtained 

from Life Technologies Ltd, Paisley, Scotland. F10 HAMS medium and trypan blue were 

from ICN Biomedicals Inc, Thame, Oxfordshire, UK. Foetal calf serum (FCS) was 

obtained from Globe Pharmaceuticals Ltd, Surrey, UK. Dimethylsulphoxide (DMSO) 

was from Fisons Scientific Equipment, Loughborough, UK. Sodium hydroxide, 

Ethylenediaminetetra-acetic acid (EDTA) and sodium chloride were all purchased from 

BDH Chemicals Ltd, Poole, Dorset, UK. Tissue culture flasks and cryovials were from 

Nunclon, U.K. Disposable cell scrapers were purchased from Costar, UK. Centrifuge 

tubes and 19G microlance needles were from Becton Dickinson Labware, UK. All other 

plastic consumables were from Bibby Sterilin Ltd, Staffs, UK.

1.2 Cell lines

The rat pancreatic cell line AR42J was kindly donated by Dr.S.A. Watson, CRC 

Nottingham as were the human colonic cell lines LoVo and HT29. The human colonic 

cell line DLD1 was a gift from Dr. P.Scott, CRC Beatson, Glasgow.

1.3 Radioligand binding

Aprotinin, bacitracin, bestatin, bovine serum albumin (BSA), calcium chloride (CaCb), 

cholecystokinin-8 (CCK8), cholecystokinin-8-sulphated (CCK8S), dimethylsulphoxide 

(DMSO), DL-dithiothreitol (DTT), human gastrin-17-1 (G17), human gastrin-34 (G34), 

N-[2-Hydroxyethyl]-piperazine-N’-[2-ethanesulphonic acid] (HEPES), magnesium
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chloride (MgCl2.6H20), sodium hydroxide, soya bean trypsin inhibitor type 1-S (SBTI), 

glycerol, pepstatin A, phenylmethylsulphonyl fluoride (PMSF) and phosphoramidon were 

all purchased from Sigma Chemical Co, Poole, Dorset, UK. Ringer lactate solution was 

from Baxter Healthcare Ltd, Norfolk, UK. BCA protein reagent assay kit was purchased 

from Pierce Chemical Co, UK. 125I-tyr-human gastrin 17 (125I-G17) was purchased from 

NEN Dupont, Stevenage,UK.

1.4 Gastrin/CCKe and CCKA receptor antagonists

L364718 (Devazepide) and L365260, highly selective and potent non-peptide 

antagonists capable of distinguishing CCKA and gastrin/CCKB receptors respectively, 

were kindly provided by Dr. B. Evans of Merck Sharp and Dohme, West Point, 

Pennsylvania, USA. L740093, a highly selective gastrin/CCKB receptor antagonist, was 

donated by Dr. S. Patel of Merck Sharp and Dohme, Neuroscience Research Centre, 

Harlow, UK. CAM1028 (Meglumide), a gastrin/CCKB antagonist, was a gift from 

Professor J. Hughes, Parke Davis, Neuroscience Research Centre, Addenbrookes 

Hospital Site, Cambridge. Loxiglumide-Na (CR1409) and Lorglumide-Na (CR1505) 

were gifted by Professor L. Rovati, Rotta Laboratories, Milan, Italy. All antagonists 

were dissolved in assay buffer 1 (section 2.3), except for L364718, L365260 and 

L740093 which were dissolved in DMSO and stored at a concentration of ImM at 

-20°C.
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2 BUFFERS

2.1 Cell culture media 1 : R PM I1640

400mls distilled H2O

45mls RPMI 1640 (1 OX concentrated)

13 mis sodium bicarbonate 

50mls FCS

5mls 200mM glutamine

pH to 7.4 with 2-2.5mls 0.1M sodium hydroxide

2.2 Cell culture media 2 : F10 HAMS/DMEM

400mls distilled H2O

22.5mls F10 HAMS (10X concentrated)

22.5mls DMEM (10X concentrated)

13 mis sodium bicarbonate 

50mls FCS

5mls 200mM glutamine

pH to 7.4 with 2-2.5mls 0.1M sodium hydroxide

2.3 Assay buffer 1 : whole cell assay 

50mM HEPES

lOmM magnesium chloride 

0.1% BSA (Fraction V, protease free) 

pH 7.0
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2.4 Assay buffer 2 : cell membrane assay 

50mM HEPES

lOmM magnesium chloride 

luM soya bean trypsin inhibitor 

0.1%  B SA  

pH 7.0

2.5 Assay buffer 3 : human tissue membrane assay 

50mM HEPES

lOmM magnesium chloride

luM soya bean trypsin inhibitor

luM bestatin

luM bacitracin

ImM aprotinin

1.5mM DL-dithiothreitol

luMPMSF

10%glycerol

0.1% BSA

pH 7.0

Filter buffer through a 0.2um sterile acrodisc filter prior to use.
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3 GENERAL METHODS

3.1 Cell culture

All cell culture was carried out under sterile conditions in a laminar flow hood. AR42J 

cells and DLD1 cells were grown in RPMI 1640 medium supplemented with 10% v/v 

FCS and gassed with 5% CO2. The cells were passaged twice weekly as described 

below. The human cell lines L0 V0  and HT29 were grown in F10 HAMS/DMEM 

medium supplemented with 10% v/v FCS and gassed with 5% C02. The cells were 

passaged at least three times weekly as described below.

Cells were grown consecutively in 25cm2, 75cm2 and 150cm2 tissue flasks and 

incubated after gassing with 5% C02 at 37°C. Once cells were confluent, the culture 

medium was removed and ImM EDTA was added to the flask. The flask was incubated 

for five minutes at room temperature. The cells were detached from the flask surface by 

gentle pipetting. The suspension was removed into plastic universals and centrifuged at 

1200g for 5mins. The supernatant was poured off and the cell pellet resuspended in 

lOmls of RPMI medium and 10% FCS. A single cell suspension was prepared by gentle 

resuspension approximately five times through a 19G needle.

All cell lines were counted in an electronic coulter counter using the same 

settings. The coulter counter was preset with an amplitude of 8, aperture current 1/2, 

lower and upper thresholds at forty and affinity respectively. The mean of three separate 

readings was taken. Cell viability was assessed by phase contrast microscopy using 

trypan blue exclusion.

100



Cell lines were frozen at a concentration of 3 x 106 cells per ml in 10% v/v 

DMSO in RPMI. Cells were initially frozen at -70°C overnight at a rate of 1°C per 

minute and transferred to liquid nitrogen for long term storage.

Frozen cells were thawed quickly at 37°C. lOmls of RPMI was added slowly to 

3 x 106 cells per ml and the cells were centrifuged immediately at 1200g for 5mins to 

remove the DMSO. The cell pellet was resuspended in a further lOmls of RPMI by 

gentle agitation with a pipette. The cells were seeded at approximately 3 x 105 cells per 

ml into 25cm2 flasks and incubated in a humidified atmosphere at 37°C with 5% CO2 .

3.3 Collection and storage of human tissue

Samples of normal and tumour tissue were obtained at surgical resection. The specimen 

was cut to expose the tumour and washed with ice cold ringer lactate solution, paying 

particular attention to the tumour surface. Macroscopically normal tissue was treated in 

the same way. The tissue was immersed in ice cold assay buffer 3 (section 2.5) without 

BSA and stored in ice for transport to pathology. Paired samples of human colorectal or 

gastric tumours and macroscopically normal mucosa were obtained and washed free of 

any endogenous blood. Membranes were either prepared fresh or tissues immersed in 

assay buffer 3 and snap frozen in liquid nitrogen and stored in a -70°C freezer until 

required.

3.4 Preparation of cell plasma membranes

AR42J cells were harvested with lmM EDTA and a single cell suspension was prepared 

by dispersal through a 19G needle. Cells were diluted in RPMI containing 10% FCS and
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counted using a coulter counter. Following centrifugation (lOOOg, lOmins, 4°C) the 

supernatant (fraction I) was retained on ice. The pellet was resuspended in ice cold assay 

buffer 2 (without BSA) and sonicated on ice in three 15 second bursts using an 

ultrasonic probe. Following centrifugation (lOOOg, lOmins, 4°C) the supernatant 

(fraction II) was retained on ice while the pellet was resuspended, resonicated and 

recentrifuged. This supernatant was pooled with fraction II above. Fractions I and II 

were centrifuged at 30,000 g, 4°C for thirty minutes. The resulting membrane pellets 

were resuspended in ice cold assay buffer 2 without BSA to give membranes I and II 

respectively. These were then processed immediately for protein estimation using a 

Pierce protein assay kit. Aliquots which were not used immediately for ligand binding 

were stored frozen at -70°C in assay buffer 2 containing 15% glycerol.

3.5 Processing of frozen human tissue membranes

To assess whether the method of tissue preparation affected gastrin binding, frozen 

tissues were initially processed in one of two ways :

3.5.1 Cryostat method

Paired tumour and normal tissues were collected without immersion in assay buffer 3 and 

mounted on ice in a cryostat (-30°C) from which multiple sections were cut and placed in 

tubes precooled in dry ice. All tissue was stored at -70°C until membrane preparation 

(section 3.6).

3.5.2 Pulverisation method

Paired tumour and normal tissues were collected and stored with and without immersion 

in assay buffer 3. Tissues were pulverised under liquid nitrogen either in a mechanical
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dismembranator or by hand using a stainless steel percusson mortar followed by a pestle 

and mortar. Tissues were weighed before and after pulverisation and stored at -70°C in 

0.2g aliquots until membrane preparation (section 3.6).

3.6 Preparation of human tissue membranes

Paired patient tumour and normal tissues were weighed. Fresh tissue was cut into small 

sections. Both fresh tissue and powdered frozen tissue (0.2g) were homogenised in a 

precooled polytron in lOmls of ice cold assay buffer 3 on ice for three 15 second bursts 

at setting two. The homogenate was filtered through a guaze mesh (lOOum) and 

centrifuged at 400g, 4°C for 5mins. The supernatant was centrifuged at 30,000g, 4°C for 

60mins and the resulting pellet resuspended in 2mls of ice cold assay buffer 3 without 

BSA. The suspension was homogenised by hand in a precooled 5ml teflon-in-glass 

homgeniser on ice. The protein content was estimated using the Pierce BCA protein kit 

and membranes adjusted to 2mg/ml prior to radioligand binding.

3.7 Radioligand Binding

3.7.1 Cells and cell membranes

Reagents for the whole cell and membrane assays were prepared in assay buffers 1 and 2 

respectively. AR42J cells (1 x 106 cells/tube, 200ul) and membranes (lOOug/tube, 200ul) 

were incubated in duplicate with 0.114nM 125I-G17 with a final concentration in the tube 

of 0.029nM (NEN Dupont, Stevenage, UK, 2200Ci/mmol). The reaction mixture was 

incubated in a final volume of 400ul for 180mins at 22°C for the measurement of total 

binding. Non-specific binding was determined in the presence of 0.119uM unlabeled G17 

(0.029uM final concentration). The reaction was terminated by the addition of 0.8mls of
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ice cold assay buffer. Whole cell and membrane bound 125I-G17 was separated 

immediately by centrifugation (13,000g, 3min, RT) followed by aspiration of the 

supernatant. The pellet was washed twice with 0.8mls of ice cold assay buffer and the 

resultant pellet counted in a gamma counter for lmin. Specific binding was calculated by 

subtracting non-specific from total binding and expressed as G17 bound / 106 cells for 

whole cell assays or fmol G17 bound /mg protein for membrane assays.

3.7.2 Human tissue membranes

Human tissue membranes (lOOug/tube, 50ul) were incubated in duplicate with 0.25nM 

125I-G17 (final concentration of 0.125nM) in assay buffer 3 containing 0.1% BSA. The 

reaction mixture was incubated in a final volume of 200ul for 15mins at 22°C for the 

measurement of total binding. Non-specific binding was determined in the presence of 

0.25uM (final concentration of 0.125uM) unlabeled G17. The reaction was terminated by 

the addition of 0.8mls of ice cold assay buffer 3. Membrane bound 125I-G17 was 

separated immediately by centrifugation (13,000g, 3min, RT) followed by aspiration of 

the supernatant. The pellet was washed twice with 0.8mls of ice cold assay buffer and the 

resultant pellet counted in a gamma counter for lmin. Specific binding was calculated by 

subtracting non-specific from total binding and expressed as fmol G17 bound /mg 

protein.

4 DATA ANALYSIS

4.1 Kinetic analysis

The program KINETIC was used to analyse binding data from both association and 

dissociation experiments (McPherson 1985). Analysis involved using a weighted non
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linear curve fitting technique (Rodbard 1984) coupled with statistical testing to 

determine the most appropriate model (section 4.4.1). Data was entered manually 

followed by initial estimates of the amount of radioligand specifically bound at time zero 

and dissociation rate constant (KD calculated from cold saturation experiments). 

KINETIC produced a plot of bound versus either time of association or time of 

dissociation and calculated the observed association (Kobs) or dissociation rate constants 

respectively. The kinetic dissociation constant (KD) was calculated manually using 

equations (4) and (5) in Chapter 1, section 7.

4.2 Equilibrium binding data

Binding data was processed by the equilibrium binding data analysis (EBDA) program to 

provide initial parameter estimates and produce raw data in a form for use by LIGAND. 

Data was entered manually and processed by EBDA from the following types of 

equilibrium binding experiments:

4.2.1 Saturation with homologous unlabeled ligand

A homologous displacement study and saturation binding study are similar and in both, 

increasing concentrations of an unlabeled ligand are incubated with the receptor. The 

essential difference is the estimate of the proportion of ligand bound to the receptor. 

Data was entered manually and transformed by EBDA. Initial estimates obtained from 

EBDA were entered into the LIGAND program. The number of binding sites was 

selected and the LIGAND automatically determined the final parameters of dissociation 

constant ( K d)  and receptor capacity (Bmax) after fitting was completed and statistically 

acceptable.
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4.2.2 Competition with unlabeled drug

A sigmoidal curve fitting program was used by EBDA to fit displacement data in 

competition experiments. Log-logit transformation of the data was performed to obtain 

initial estimates of IC50 values (Chapter 1, section 7 equation (13)). Calculation of 

inhibition affinity constant (Ki) used the Cheng-Prusoff correction method (Cheng and 

Prusoff 1973). This required input of the dissociation constant ( K d )  which was 

previously determined from unlabeled G17 saturation experiments. LIGAND was not 

used to calculate final estimates.

4.3 Statistical analysis

4.3.1 Binding data

Does the data provide evidence of a second class of receptors or does a single class 

explain the data sufficiently well, given the experimental noise? The binding data was 

fitted to the simplest one site model with consequent fitting to a two site model and 

assessed using an F-test criterion on the residual variances. For the second more complex 

model to provide a significantly better fit to data, the F-test statistical criterion was set 

with degrees of freedom at p = 0.05.

The binding data was also tested for ‘goodness of fit’ by the RUNS test which 

assumed that the order of the signs of the residuals (difference between the data and the 

fitted curve) was random. Non random residuals were a sign of poorly fit data to model 

and the level of significance was computed by LIGAND.
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4.3.2 Optimisation data

Optimisation data in Chapters three and four were analysed using one way analysis of 

variance (ANOVA) using GraphPAD InStat. A Bonferroni t-test was used to determine 

which groups differed and statistical significance was set at p<0.01.
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CHAPTER 3 GASTRIN/CCKb RECEPTORS IN AR42J WHOLE 

CELLS
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1 INTRODUCTION

The rat pancreatic cell line AR42J (Jessop et al 1980) has been widely studied and 

characterised because of its expression of abundant high affinity gastrin/CCKB receptors 

(Scemama et al 1987; Seva et al 1990a; Watson et al 1991). It therefore provides a 

suitable model with which to develop and optimise a gastrin/CCKB receptor assay.

The presence of gastrin/CCKB receptors on AR42J whole cells was first described 

using 125I-G17 as the radioligand (Scemama et al 1987). The receptors found on these 

cells resembled those found on canine and guinea-pig pancreatic acini (Fourmy et al 

1987; Yu et al 1990) as G17 and CCK8S competed with equal affinity thus suggesting 

the presence of gastrin/CCKB rather than CCKA receptor sites. Gastrin/CCKB receptors 

found on AR42J cells mediated trophic effects (Logdsonl986; Logdson et al 1992) and 

the co-existence of CCKA and gastrin/CCKB receptor subtypes on AR42J cells was 

subsequently shown by radioligand binding (Scemama et al 1987).

Both gastrin and CCK-induced stimulation of AR42J cell growth involves the 

ornithine decarboxylase (ODC) pathway, an early event associated with cell proliferation 

(DeVries et al 1987a; Scemama et al 1989). Affinities of gastrin and CCK peptides for 

the gastrin/CCKB receptor and their order of potency in stimulation of ODC activity are 

similar (De Vries et al 1987b; Seva et al 1990b). Although both CCK and gastrin 

stimulate ODC activity, only gastrin and pentagastrin are efficient at stimulating 

3H-thymidine uptake, indicating that it is only the gastrin/CCKB receptor that is involved 

in AR42J cell proliferation (Seva et al 1990b). Additionally, specific gastrin/CCKB
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receptor antagonists inhibited gastrin stimulated thymidine uptake whereas CCKA 

receptor antagonists had no effect (Seva et al 1990b).

1.1 Objectives

The aim of this study was to develop a reliable and sensitive assay capable of detecting 

and characterising gastrin/CCKB receptors on AR42J cells. This would provide control 

data to permit development of an assay for use with cell membrane preparations

2 METHODS

Materials and general methods can be found in Chapter 2

2.1 Kinetic assays

Radioligand binding was performed as described in Chapter 2, section 3.7.1. Association 

kinetics were examined at increasing time points until a point after steady state had been 

reached. Dissociation kinetics were studied by incubating cells with radioligand until 

equilibrium was reached, prior to a saturable concentration of unlabeled G17 being 

added and binding again measured at increasing time points. Specific binding was defined 

as total binding minus non-specific binding with excess unlabeled G17.

2.2 Optimisation assays

The gastrin receptor assay was optimised with respect to cell number, 125I-G17 

concentration, incubation buffer, pH, temperature and method of separation. The basic 

protocol was as described in Chapter 2, section 3.7.1, with each of the conditions under
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study being varied in separate experiments. Non-specific binding was defined as binding 

in the presence of excess unlabeled G17.

2.3 Competition assays

Gastrin receptors on AR42J cells were characterised using the agonists G17, G34, CCK8 

and CCK8S; the gastrin/CCKB receptor antagonists L365260, L740093, and CAM1028; 

and the CCKA receptor antagonists L364718, CR1505 and CR1409. Cells were 

incubated for 180mins at 22°C in assay buffer. All competition assays were performed 

with 0.029nM 125I-G17 (final concentration) and increasing concentrations (10'16-10'5M) 

of the previously stated agonists and antagonists.
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3 RESULTS

3.1 Assay Optimisation

3.1.1 Effect of cell number on binding of 125I-G17 to AR42J cells

Increasing numbers of AR42J cells (0.2-2.4 x 106 cells/tube), were incubated with 

0.029nM 125I-G17 for 180mins at 22°C (Figure 3.1). Specific binding was found to be 

linear within the range 0.2-1 x 106 cells/tube and almost reached receptor saturation at

2.4 x 106cells/tube. A concentration of 1 x 106 cells/tube gave specific binding of less 

than 17% of total added and the highest ratio of specific to non specific binding. This 

was also the minimum concentration required to provide a reasonable size pellet, thus 

permitting acceptable precision in the assay.

3.1.2 Effect of incubation time on binding of 1251-G17 to AR42J cells

AR42J cells (1 x 106cells/tube) were incubated with 0.029nM 125I-G17 for increasing 

time intervals at 22°C. Binding reached a plateau after 180mins, confirming that the 

reaction had reached steady state (Figure 3.2). The observed association rate (Kobs) was 

calculated using a non linear regression program (LIGAND) and is represented 

graphically by Figure 3.2 inset, where Kob* is the slope of the line. Non-specific binding 

changed little throughout the duration of the assay and was less than 13% of total 

binding at 270 minutes of incubation. Addition of lOuM unlabeled G17 into the 

incubation medium at 180 minutes (i.e. when the reaction was at steady state) caused 

dissociation of bound radioactivity. The dissociation rate (K-i) was calculated using 

LIGAND and the half-life for dissociation of G17 from the gastrin/CCKB receptor was 

estimated to be 55mins. From equation 4 (Chapter 1, section 7), the actual association 

rate (K+i) was also calculated. The dissociation rate constant (KD) for AR42J cells was 

calculated from equation 5 (Chapter 1, section 7) as 0.02nM.
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Figure 3.1 Effect of increasing cell concentrations on l25I-G17 binding to 
AR42J cells

Binding of 125I-G17 to increasing numbers of AR42J cells at 22°C for 180mins. Total 
binding (-0-); Non-specific binding (-A-) in the presence of 1000 fold excess unlabeled 
G17; Specifc binding (HZh). Each point is the mean (+/-SD) of six experiments 
performed in duplicate.
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Figure 3.2 AR42J whole cell association and dissociation time courses with 
I25I-G17

Cells were incubated either with 0.029nM l25I-G17 alone ( - o )  or in the presence of 
0.029uM G17 ( -A-) at 22°C. Specific binding ( o - ) is total binding (-O- ) minus non
specific binding (A-). At 180 mins, lOuM G17 was added to the incubation medium 
to dissociate 125I-G17 from binding sites. Dissociation results are denoted by total(-#-), 
specific (-■-) and non-specific binding (-A-) with each point the mean (+/-SD) of four 
experiments performed in duplicate. Inset is a graphical representation of the 
association rate constant where the slope of the line is the observed association rate 
constant (Kobs).
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3.1.3 Effect of increasing 125I-G17 concentrations

Increasing concentrations of 125I-G17 were added to 1 x 106 AR42J cells and incubated 

for 180mins at 22°C in assay buffer. Specific binding increased linearly with increasing 

125I-G17 concentration, but did not reach saturation because of the large quantity of 

radiolabel which would have been required due to the high concentration of cells per 

tube. Scatchard analysis was not performed as extrapolation of the data would have been 

required therefore invalidating the results. A concentration of 0.029nM 125I-G17 

(Figure 3.3) gave a level of specific binding between 10-20% of total radioactivity added 

and therefore was used in subsequent experiments.

3.1.4 Effect of different incubation buffers

Addition of BSA to the incubation buffer significantly (p <0.01) decreased the non

specific binding by 30% resulting in an increase in specific binding of 17% (Figure 3.4).

A significant increase in specific binding was observed when 50mM Hepes 

(buffer 3) was used rather than 50mM phosphate (buffer 1) (Figure 3.5). Addition of 

magnesium chloride to 50mM phosphate (buffer 2) did not significantly increase specific 

binding but addition of magnesium chloride to 50mM Hepes (buffer 4) caused a 58% 

increase in specific binding. Addition of calcium chloride to 50mM Hepes did not result 

in as large an increase in specific binding. Addition of both magnesium chloride and 

calcium chloride to Hepes buffer (buffer 6) did not result in a further increase in specific 

and therefore buffer 4 (50mM Hepes + lOmM MgCl2.6H20 + 0.1% BSA) was chosen 

for subsequent experiments.
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Figure 3.3 Effect of increasing 125I-G17 concentration on binding to AR42J 
cells

Cells were incubated at 22°C for 180mins in the absence (-O-) or presence (~^~) of 
1000 fold excess of unlabeled G17. Specific binding (HU-) was total binding 
(-0-) minus non-specific binding (-A-) and each point is the mean (+/-SD) of four 
experiments performed in duplicate.
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Figure 3.4 Effect of addition of BSA to incubation buffer on 125I-G17 binding 
to AR42J cells

Cells were incubated in 50mM Hepes, lOmM MgCl2.6H20 + 1-  0.1% BSA for 60mins at 
22°C and results are the mean (+SD) of total ( ■  ), specific ( □  ) and non-specific 
( □  ) binding from three experiments performed in duplicate.
* denotes level of significance (p<0.01) when compared with corresponding binding 
from buffer without BSA.
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Buffers

Figure 3 .5 Effect of different incubation buffers on 125I-G17 binding to AR42J
cells

AR42J cells were incubated with different buffers for 180mins at 22°C. Each bar 
represents the mean (+SD) of total ( ■  ), specific ( □  ) and non-specific ( H )  binding 
from six experiments performed in duplicate.
* and ** denote levels of significance (p<0.01) in comparison to buffer 1 and 4 
respectively. Buffers were as follows :

1 50mM phosphate + 0.1% BSA
2 50mM phosphate + lOmM MgCl2.6H20 + 0.1% BSA
3 50mM Hepes + 0.1% BSA
4 50mM Hepes + lOmM MgCl2.6H20 + 0.1% BSA
5 50mM Hepes + lOmM CaCl2 + 0.1% BSA
6 50mM Hepes + lOmM MgCl2.6H20 + 10mMCaCl2 + 0.1% BSA



3.1.5 Effect of pH

The pH of the 50mM Hepes, lOmM MgCl2.6H20, 0.1% BSA buffer was adjusted to 

6.5, 7.0, 7.5 and 8.0. Optimum binding was obtained after 180mins at 22°C at a pH 

between 6.5 and 7.0 (Figure 3.6) and decreased to half the maximum specific binding at 

pH8.0. Specific binding at pH 6.5 was not significantly different from pH 7.0 and so the 

more physiological pH of 7.0 was chosen for subsequent experiments.

3.1.6 Effect of incubation temperature

At an assay incubation temperature of 4°C, specific binding increased linearly with 

increasing time between 2.5 and 90 mins, after which a plateau was reached and steady 

state maintained for a further 180 mins (Figure 3.7). Binding at 22°C followed a similar 

pattern with specific binding increased by 50% compared with that at 4°C. Steady state 

was achieved after 180 mins incubation and maintained for 90 mins. A rise in specific 

binding at 37°C was not observed and at time points between 2.5 and 90 mins a rapid 

decline in specific binding was observed. An incubation temperature of 22°C was 

therefore considered optimum and all subsequent experiments were performed in an 

ambient temperature water bath to achieve this.

3.1.7 Effect of separation method

Following incubation of cells (1 x 106/tube) at 22°C for 180 mins, the reaction was 

terminated by either centrifuging at 13000g for 2 mins in a microcentrifuge, filtering 

through a Brandell cell harvester onto filters pre-soaked in ice-cold assay buffer 

containing 0.5% BSA or filtering through a Millipore filter onto filters pre-soaked in ice- 

cold assay buffer containing 0.5% BSA (Figure 3.8). Each of the conditions involved
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Figure 3 .6 Effect of buffer pH on 125I-G17 binding to AR42J cells

Effect of pH of incubation buffer (50mM Hepes, lOmM MgCl2.6H20, 0.1% BSA) on 
125I-G17 binding to AR42J cells. Reaction was incubated at 22°C for 180mins and each 
bar represents the mean (+SD) total ( ■ ) ,  specific ( □ )  and non-specific (E l) binding 
from six experiments performed in duplicate.
* denotes level of significance (p<0.01) in comparison to corresponding binding with
pH 6.5.
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Figure 3.7 Effect of different incubation temperatures on the time course of 
specific 125I-G17 binding to AR42J cells

Effect of different incubation temperatures, 4°C (-0), 22°C and 37°C-(A-), on the
time course of 125I-G17 specific binding to AR42J cells. Each point is the mean 
(+/-SD) of six experiments performed in duplicate.
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Centrifuge Harvester Millipore

Figure 3.8 Effect of different separation methods on 125I-G17 binding to AR42J 
cells

Following incubation of cells for 180 mins at 22°C, reaction tubes were either 
centrifuged at 13000g for 2mins, filtered with a brandell harvester onto ice cold filters 
or filtered with a millipore filter onto ice cold filters. Each bar represents the mean 
(+SD) total ( ■ ) ,  specific ( □  ) and non-specific ( □  ) binding of two experiments 
performed in triplicate.
* denotes level of significance (p<0.01) when compared to corresponding binding with 
the centrifugation method.
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two washes with ice-cold assay buffer to reduce non-specific binding and the pellet or 

filter was counted in a gamma counter for 1 min. Although total binding was higher with 

the Brandell harvester and Millipore methods, the specific binding was not increased due 

to the significant increase (p<0.01) in non-specific binding compared to the 

centrifugation method. Therefore centrifugation was the separation method of choice for 

future assays.

3.2 Competition assays

3.2.1 Effect of gastrin/CCKfi receptor agonists on binding of 125I-G17 to AR42J 

cells

To assess the affinity of gastrin/CCKB receptor agonists for gastrin/CCKB receptor sites 

on AR42J cells, competition curves were analysed using a least squares curve fitting 

program (LIGAND). Inhibition of 125I-G17 binding to AR42J cells by G17, G34, CCK8S 

and CCK8 was statistically best fit by a single site model (Figure 3.9). Scatchard analysis 

of cold G17 displacement data revealed a single binding site with a KD of 0.3nM and 

maximal capacity of 24fmols/106 cells. Specific 125I-G17 binding was displaced from 

AR42J cells by G17 with an IC50 of 0.4nM, but CCK8S was the most potent competitor 

with an IC50 of 0.25nM and 1.6 fold higher potency than G17. The rank order of potency 

was CCK8S > G17 > G34 > CCK8 with IC50 values for G34 and CCK8 of 0.58nM and 

1.6nM respectively (Table 3.1). The rank order of affinities for the gastrin/CCKB 

receptor on AR42J cells is CCK8S^ G17^G34 ^  CCK8 with Ki/Ko values of 0.23nM, 

0.3nM, 0.52nM and 1.5nM respectively.
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Figure 3.9 Comparison of agonist displacement of 125I-G17 binding to AR42J 
cells

Displacement of 125I-G17 binding to AR42J cells by increasing concentrations of 
agonists CCK8S (-#-), G17 (-A-), G34 (-■-) and CCK8 (-O ). Each point is the mean 
(+/-SD) of at least three experiments performed in duplicate.
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CLASSIFICATION LIGAND IC50
(nM)

KD/Ki
(nM)

AGONISTS CCK8S 0.25 0.23

G17 0.4 0.3

G34 0.58 0.52

CCK8 1.6 1.5

ANTAGONISTS L740093 0.02 0.018

L365260 4.7 4.3

CAM 1028 5.0 4.5

L364718 230 209

CR1409 4530 4118

CR1505 15000 13624

Table 3.1 Table of half maximal values and affinities from 
inhibition curves of receptor agonists/antagonists to the 
gastrin/CCKs receptor on AR42J cells



3.2.2 Effect of gastrin/CCKB and CCKA receptor antagonists on binding of 

125I-G17 to AR42J cells

All the receptor antagonists inhibited l25I-G17 binding to AR42J cells 

(Figures 3.10, 3.11, 3.12) with the following order of potency, L740093 > L365260 >

CAM1028 > L364718 > CR1409 > CR1505. Data was analysed by LIGAND

(Table 3.1) and the log-logit plot of displacement data was found to be linear indicating 

binding to one site. A relatively new gastrin/CCKB receptor antagonist tested was 

CAM1028 which displaced gastrin binding to the gastrin/CCKB receptor with an IC50 of 

5nM. The second novel gastrin/CCKB receptor antagonist analysed was L740093 which 

caused detectable inhibition of binding of 125I-G17 at lpM, half maximal inhibition (IC50) 

at 0.02nM and complete inhibition at InM. L365260 was 235 fold less potent with an 

IC50 of 4.7nM and complete inhibition at O.luM. Devazepide (L364718) was the most 

potent of the the CCKA receptor antagonists with an IC50 value of 0.2uM. Lorglumide 

(CR1409) was the more potent of the two proglumide derivatives analysed with an IC50 

of 4.5uM in comparison to loxiglumide (CR1505) with an IC50 of 15uM. The inhibitory 

constants (Ki) for gastrin/CCKB receptor antagonists (Table 3.1) followed the same 

pattern as for IC50 values with L740093 being the most potent with a 17 fold higher

affinity for the gastrin/CCKB receptor on AR42J cells.
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Figure 3.10 Comparison of antagonists with G17 displacement of 125I-G17 
binding to AR42J cells

Displacement of 125I-G17 binding to AR42J cells with increasing concentrations of 
G17 (~^~), and CCKB and CCKA receptor antagonists L365260 (-# -), and L364718 
( -Q -) respectively. Each point is the mean (+/-SD) of at least four experiments 
performed in duplicate.
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Figure 3.11 Comparison of antagonists with G17 displacement of l25I-G17 
binding to AR42J cells

Displacement of 125I-G17 binding to AR42J cells with increasing concentrations of 
G17 (-&-), and proglumide derivatives, CR1409 ( - • ) ,  and CR1505 (-0-). Each point 
is the mean (+/-SD)of at least four experiments performed in duplicate.
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Figure 3.12 Comparison of new antagonists with G17 displacement of 125I-G17 
binding to AR42J cells

Displacement of 125I-G17 binding to AR42J cells with increasing concentrations of 
G17 (-&), and CCKB receptor antagonists L740093 (-#-), and CAM1028 (HR. Each 
point is the mean (+/-SD) of at least four experiments performed in duplicate.
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4 DISCUSSION

The basic binding assay protocol is straightforward and the reasons for choice of 

conditions for the final protocol are discussed here in detail.

It was important that an appropriate model was selected to best mimic the 

ultimate cell membranes to be analysed. In this instance the rat pancreatic cell line, 

AR42J, was considered to be the most suitable control model since it had previously 

been found to possess both CCKA and gastrin/CCKB receptors on its cell surface 

(Scemama et al 1989) which had been characterised with various ligands (Seva et al 

1990a; Watson et al 1991; Blackmore and Hirst 1992). Human colorectal carcinoma cell 

lines HT29, LoVo and DLD1 were analysed in vitro for gastrin/CCKB receptor status 

but significant specific 125I-G17 binding was not observed (data not shown). Of the 

human cell lines tested, only LoVo cells were previously shown to exhibit high affinity 

gastrin/CCKB receptors, but this was after growing them as xenografts in mice (Watson 

SA, personal communication). The gastrin/CCKB receptor status of the human colorectal 

carcinoma cell line DLD1 is not known. A human gastric tumour cell line, MKN45, 

grown as xenografts in nude mice also exhibited high affinity (KD of 1.2nM) 

gastrin/CCKB receptors (Watson et al 1992b). Although optimisation assays may have 

benefited from inclusion of gastrin/CCKB receptor positive human carcinoma cell lines, a 

lack of facilities for growing animal xenografts prevented their use in this thesis.

The radioligand, 125I-G17 was used in preference to 125I-CCK8 since the ultimate 

goal of this thesis was to measure gastrin/CCKB receptors in human tissues. Gastrin-17 is 

selective for gastrin/CCKB receptors and can be radiolabelled to give a high specific
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activity. The requirements for scatchard analysis, 10-90% receptor saturation with 

radiolabel could not be met as large quantities of radioligand would have been required 

to achieve saturation due to the high number of cells used per tube and this was 

prohibitively expensive. The use of fewer cells/tube was not an option as assay precision 

was adversely affected.

In an attempt to simulate genuine physiological conditions in vitro, various 

buffers have been used in radioligand binding assays. Some groups have used 

Kreb-Hanseleit solution as a physiological buffer (Scemama et al 1987; Szecowka et al 

1985), while others used cell culture media such as minimal eagles medium (Watson et al 

1992a). The cell culture medium RPMI 1640 was used initially in the binding assay 

described in this thesis as this was the medium that the AR42J cells were grown in. 

Comparison of RPMI 1640 with 50mM Hepes buffer, showed binding to be increased by 

approximately 50% with the Hepes buffer (data not shown) and therefore further 

optimisation of the binding buffer excluded RPMI 1640 and cells were resuspended in 

Hepes buffer. Of the buffers tested (Figure 3.5) it was found that 50mM Hepes, lOmM 

MgCl2.6H20, 0.1% BSA, gave the highest specific binding. Addition of magnesium 

chloride was found to enhance binding of the radioligand as did calcium chloride but in 

combination binding did not surpass that of magnesium chloride alone. This is in 

agreement with Innis and Snyder (1980) who found enhanced binding of 125I-CCK8 to 

CCK receptors in the presence of magnesium ions. The addition of magnesium ions is 

known to promote agonist binding to G-proteins by favouring the high affinity agonist 

receptor-G-protein complex (Hulme and Birdsall 1992) and this may explain the results 

found here. Addition of 0.1% BSA to the assay buffer (Figure 3.6) caused a significant
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reduction (p < 0.01) in non-specific binding and was therefore included in the final 

buffer.

Variations in pH within a range 6.5-8.0 caused a significant decrease in specific 

binding from pH 7.0 to 8.0. Although binding at pH 7.0 was not significantly different 

from pH 6.5, pH 7.0 was chosen as the most physiologically relevant pH. A pH of 7 was 

prefered for competition experiments with gastrin/CCKB receptor agonists/antagonists, 

also required to facilitate comparisons with published data. Steigerwalt and Williams 

(1981) found that 125I-CCK33 binding to guinea-pig pancreatic acini was optimal at 

pH 5.5. Praissman and Brand (1991) demonstrated using autoradiographical methods 

that maximum specific 125I-G17 binding to the human gastric body was observed at 

pH 6.5.

Separation of bound from free radioligand in the binding assay was evaluated by 

the methods of filtration and centrifugation. The advantages of using filtration are that it 

is rapid and convenient with a high throughput. Total binding with filtration was 

significantly higher than with centrifugation, but non-specific binding was also 

significantly greater therefore specific binding was in fact decreased in comparison to 

centrifugation. As non-specific binding was also a potential problem in the final assay 

which was to be used for human tissue membrane preparations which contain a 

heterologous population of cells, the most suitable method for separation was 

centrifugation.
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The present study found that although a cell number of < 1 x 106cells/tube was 

necessary to give specific binding of less than 10% of total added, it was necessary to use 

1 x 106 cells/tube due to the requirement of a pellet which could be washed with ease. 

This resulted in specific binding of 17% of total added. Any cell number less than this 

and washing of the pellet formed during termination of the reaction by centrifugation 

caused problems with assay precision because of the removal of cells with aspiration of 

the supernatant.

It is important to establish the time needed for equilibrium binding to be achieved 

under different experimental conditions. Steady state must be reached before dissociation 

experiments can be performed. Dissociation experiments where lOuM G17 was added to 

the incubation medium revealed a half life of 55mins for 125I-G17. This is not in 

agreement with Scemama and co-workers who reported a half life of 8.5mins for 

dissociation of 125I-G17 from gastrin/CCKB receptors on AR42J cells (Scemama et al 

1987). This discrepancy may be due to differences in incubation temperature used since 

Scemama et al performed their experiments at 37°C rather than 22°C, which is likely to 

result in faster kinetics.

This idea is supported by the finding in this study that a temperature of 37°C was 

impractical due to the rapid association rate measured in seconds rather than minutes. 

Kleveland and Waldum (1986) showed the same pattern of binding at 30°C for 125I-G17 

with rat fundic plasma membranes. Svoboda et al (1982) demonstrated internalisation of 

the ligand-receptor complex of CCKA receptors such that at 37°C, binding was too rapid
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for a reliable assay to be developed. For these reasons a temperature of 22°C was 

chosen over and 37°C.

Gastrin-17 was shown to displace 125I-G17 binding to AR42J cells with an IC50 of 

0.4nM. Binding was displaced over a 10-90% displacement range and the slope of the 

displacement curve was unity indicating competitive agonist binding. Scatchard analysis 

revealed a single high affinity binding site with a Kd of 0.3nM and Bmax of 24fmols/106 

cells (Table 3.1). This is in agreement with Watson et al who found a Kd for the 

gastrin/CCKB receptor of 0.46nM and Bmax of 55fmols/106 cells on AR42J cells 

(Watson et al 1992b). Dissociation constants for the gastrin/CCKB receptor vary widely 

throughout the literature with values between 0.46-4.6nM and maximal capacities 

between 55-94fmols/106 cells in AR42J cells. Differences may be due to different assay 

conditions and/or equilibrium kinetics. In the present study the Kd and Bmax are both 

lower than those quoted in the literature and this may be due to assay temperatures of 

22°C. Log-logit plots of the data were also found to be linear, demonstrating a ligand 

binding to single class of binding site. Values for inhibition (Ki) constants (Table 3.1) 

were determined from inhibition curves of the ability of various antagonists to inhibit 

125I-G17 to AR42J cells by the Cheng-Prusofif correction method (Cheng and Prusoflf 

1973).

Competition studies (Figure 3.9) with different agonists of the gastrin/CCK 

family showed similar potencies, with the exception of non-sulphated CCK8, in inhibiting 

125I-G17 binding to AR42J cells. This is in agreement with Scemama and co-workers 

(Scemama et al 1987) who also demonstrated equal potency between G17 and CCK8S
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but observed a two fold lower potency with CCK8  as compared with the present system 

where CCK8  was five fold lower in ability to inhibit binding. A report by the same group 

in 1989 found CCK8  was as efficient as G17 and pentagastrin at inhibiting binding in 

AR42J cells with IC50 values of 1.5, 1.1 and 1.2nM respectively under different

experimental conditions to the current study, (Scemama et al 1989).

Proglumide, a weak gastrin receptor antagonist, (Rovati 1968) requires 

micromolar quantities in vitro and in vivo to cause inhibition of gastrin-stimulated 

growth and is the only gastrin receptor antagonist which has reached phase III clinical 

trials in patients with advanced colorectal and gastric cancer (Harrison et al 1990). 

However, there was no effect on either patient survival or tumour growth (Morris et al

1990). (proglumide inhibits growth effects of gastrin in the murine colon cancer cell line 

MC26 and with the same cells grown in vivo as xenografts thereby prolonging survival 

of tumour bearing mice (Singh et al 1987; Beauchamp et al 1985). The proglumide 

derivatives CR1409, (lorglumide) and CR1505, (Loxiglumide) were analysed in the 

present study. Half maximal concentrations for CR1409 and CR1505 were 4.5uM and 

13uM respectively and were comparable to those obtained by Seva et al with AR42J 

cells (3uM and 13uM respectively). Watson et al reported IC50 values for CR1409 of 

4uM (Watson et al 1992a). The newly developed gastrin/CCKB receptor antagonist, 

CAM1028 (Hughes et al 1990), which is structurally similar to the gastrin/CCKe 

receptor antagonist C l-988 (Parke-Davis, personal communication) was found to have 

equal potency with L365260 with an IC50 of 5nM. The gastrin/CCKe receptor antagonist 

L740093, a 1,4 benzodiazepine derivative inhibited 125I-G17 binding to AR42J cells with 

an IC50 of 0.02nM. The only previous study to date on this compound reported an
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IC50 of 0.04nM for binding to the gastrin/CCKB site on guinea-pig gastric glands (Patel 

et al 1994) which was more than 210 times more potent than the parent compound 

L365260 (IC50 = 8.5nM). In the present study L740093 was found to be 235 fold more 

potent in inhibiting binding than L365260, with IC50 values of 0.02nM and 4.7nM 

respectively.

This chapter has described in detail an optimised radioligand binding assay which 

has been characterised using a panel of agonists and antagonists. The values attained for 

the dissociation affinity constant, maximal capacities and half maximal concentrations for 

competing ligands correlate with those reported previously in the literature confirming 

the validity of the gastrin/CCKB receptor binding properties of AR42J cells found using 

this assay. This optimised assay is therefore suitable for use as a control from which to 

ascertain whether preparation of AR42J plasma membranes affects the number, affinity 

and/or characteristics of the gastrin/CCKB receptors thus far identified.
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CHAPTER 4 GASTRIN/CCKb RECEPTORS IN AR42J CELL 

MEMBRANES
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1 INTRODUCTION

The whole cell AR42J radioligand binding assay was optimised as described in Chapter 

three. The next step was to use this as a basis with which to optimise and evaluate a 

similar assay using membranes prepared from the same cell line, ensuring that no 

receptor properties were lost due to membrane preparation.

One of the main advantages of using gastrin/CCKB receptor positive tumour cell 

lines to prepare plasma membranes is that cells can be grown in vitro to produce large 

quantities of homogeneous material. Many groups have studied AR42J cells because of 

their gastrin/CCKB receptor properties (Seva et al 1990a, 1990b; Scemama et al 1987; 

Blackmore and Hirst 1992; Watson et al 1991), but to date only one report has 

characterised gastrin/CCKB receptors on AR42J plasma membranes (Lambert et al

1991). Nevertheless, in this paper full optimisation of the radioligand binding 

methodology was not reported, although membranes were shown to have 80% 

gastrin/CCKB receptors with affinities for CCK8S and G17 of InM and 4nM respectively 

and 20% CCKA receptors with affinities of InM and luM for CCK8S and G17 

respectively.

Characterisation of gastrin/CCKB receptors on AR42J plasma membranes is 

important as original cell receptor properties should be retained after membrane 

preparation. Characterisation of these receptors in AR42J membranes is also required for 

comparison of gastrin/CCKB receptor status from plasma membranes prepared from 

human colonic and gastric carcinoma and corresponding normal tissue.
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Studies with AR42J plasma membranes may also provide important data on 

storage conditions (i.e. temperature, length of time in storage and requirements for 

protective agents) which preserve receptor structure and function since receptors of 

interest may be destroyed in the process of membrane preparation.

Ultimately it must be realised that although studies with animal and human cell 

lines yield important information about the gastrin/CCKB receptor, caution must be 

exercised about their clinical relevance. Direct study of plasma membranes from human 

gastrointestinal normal mucosa and tumours in conjunction and comparison with AR42J 

plasma membranes as control are needed.

1.1 Objectives

The object of this study was to establish a reliable and sensitive assay capable of 

detecting and characterising gastrin/CCKB receptors on cell membranes.

2 METHODS

Materials and general methods are in Chapter 2

2.1 Kinetic assays

Association kinetics were determined by incubating membranes as described in Chapter 

2, section 3.7.1, at increasing time points from 5 to 270mins to ensure steady state had 

been reached. Dissociation kinetics were studied by incubating membranes with 

radioligand until steady state was attained prior to excess unlabeled G17 being added and 

residual binding measured at time increments between 2.5 and 180mins. Specific binding 

was defined as the total binding minus that in the tubes containing excess G17.
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2.2 Optimisation assays

These assays included the optimisation of membrane concentration, 125I-G17 

concentration, incubation buffer, pH and temperature. The basic protocol was as 

described in radioligand binding with lOOug/tube of fraction II and fraction I membranes 

incubated with 0.029nM 125I-G17 and each of the individual conditions under study 

varied accordingly. Non-specific binding was defined as binding in the presence of 

0.029uM G17.

2.3 Membrane storage

Storage time and buffer were tested for optimal 125I-G17 binding to AR42J membranes. 

Membranes were prepared fresh on day zero and each of three aliquots diluted either in 

whole cell assay buffer 1, membrane assay buffer 2 or human tissue membrane assay 

buffer 3 (Chapter 2, section 2) at a concentration of 2mg/ml. Membranes (lOOug/tube) 

were incubated on day zero with 0.029nM 125I-G17 for 180mins at 22°C. The remaining 

aliquots of membrane from the corresponding buffers were stored at -70°C for up to 14 

days. Binding as described above in Section 2.2 was measured on days 1 (18 hours), 2, 7 

and 14 after freezing.

Storage temperature was examined by storage of membranes (2mg/ml) in 

membrane assay buffer 2 at 4°C, -20°C and -70°C. Binding was determined on the day of 

membrane preparation and was designated the experimental control. Binding was re

examined after storage of membranes at respective temperatures for 18-24 hours.
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2.4 Cell disruption

In the present study, the initial method of cell disruption was optimised since a number of 

different methods have been used throughout the literature for the measurement of 

receptors. These include freeze-thawing in liquid nitrogen (Scemama et al 1987; Tahairi- 

Jouti et al 1992), manual homogenisation (Szecowka et al 1985) and mechanical 

homogenisation (Preston et al 1993).

In an initial study to determine the optimal method of cell disruption, a number of 

methods were examined. These included homogenisation with a polytron at a setting of 

two for three fifteen second bursts, sonicating with a probe sonicator for three fifteen 

second bursts at an amplitude of thirty microns, freeze-thawing in liquid nitrogen, manual 

homogenisation in a teflon-in-glass homogeniser, sonication in a bath sonicator and 

lysing of cells in hypotonic buffer. Disruption of the! cells was monitored using 

the trypan blue exclusion test, with subsequent examination of the membranes under a 

light microscope.

2.5 Competition assays

The gastrin/CCKB receptor on AR42J membranes was characterised using the agonists 

G17, G34, CCK8S and CCK8. The gastrin/CCKB receptor was further characterised 

using the gastrin/CCKB receptor antagonists L365260, L740093 and CAM1028, and the 

CCKa receptor antagonist L364718. All competition assays were performed with 

0.029nM 125I-G17 (final concentration) and increasing concentrations (10'16-10'5M) of 

the corresponding agonists and antagonists for 180mins at 22°C in the assay buffer.
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3 RESULTS

3.1 Assay optimisation

3.1.1 Comparison of different cell disruption methods

The probe sonicator produced the best overall disruption of cells in comparison to the 

other methods which did not completely disrupt all cells. Mechanical homogenisation 

using a polytron is commonly used to disrupt cells but it produced considerably more 

heat than the other methods tested and therefore may have caused problems with the 

stability of receptors on membrane fragments. Membranes prepared using the probe 

sonicator appeared the most uniform and therefore this was chosen as the method of cell 

disruption.

3.1.2 Effect of membrane concentration on binding of 125I-G17 to AR42J 

membranes

Increasing concentrations of AR42J fraction II and fraction I membranes, between 

6.25ug/tube and 150ug/tube were incubated with 125I-G17 (0.029nM, final 

concentration) for 180mins at 22°C. Specific binding (Figure 4.1) was shown to be linear 

within this range, although membranes from fraction I had a sharper incline and therefore 

required less protein per tube to reach the same level of specific binding as fraction II 

membranes. The concentration of membranes for both fraction II and fraction I used for 

subsequent experiments was lOOug/tube, which gave specific binding of less than 19% of 

total radiolabel added. This concentration was also found to be the minimum necessary 

for the formation of a pellet of reasonable size.
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Figure 4.1 Effect of increasing membrane concentration on 12SI-G17 binding to 
AR42J membranes

Binding of 125I-G17 to increasing concentrations of AR42J membranes at 22°C for 
180mins. Total binding (-O-); non-specific binding (-A-) in the presence of 1000 fold 
excess unlabeled G17 ; specifc binding (-D-). Each point is the mean (+/-SD) of four 
experiments performed in duplicate.
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3.1.3 Effect of incubation time on binding of 125I-G17 to AR42J membranes

Binding reached a plateau after 180mins for both fraction II and fraction I membranes, 

confirming the reaction had reached steady state. The observed association rates, KobS for 

AR42J membranes were calculated using non linear regression program by LIGAND 

(Figure 4.2 and 4.3 inset, Kobs is the slope of the line). Non-specific binding changed little 

throughout the duration of the assay and was less than 9% of total binding at 270mins of 

incubation for both membrane fractions. Addition of lOuM unlabelled G17 into the 

incubation medium at 180mins when the reaction was at steady state caused dissociation 

of bound radioactivity. Dissociation rates (K_i) were calculated using LIGAND and from 

equation 4 (Chapter 1, section 7), the association rate was calculated. The dissociation 

constant (K+i) was calculated from equation 5 (Chapter 1, section 7). Dissociation rates 

for both AR42J fraction II and I membranes were 0.12nM and 0.097nM respectively.

3.1.4 Effect of increasing 125I-G17 concentrations

Increasing 125I-G17 concentrations were added to lOOug AR42J membrane fractions II 

or I for 180mins at 22°C in assay buffer (Figure 4.4). Specific binding increased linearly 

with increasing 125I-G17 concentrations with both fraction II and I but did not reach 

saturation. Scatchard analysis was regarded as invalid due to the extrapolation of data 

required since the reaction did not reach saturation.

3.1.5 Effect of addition of protease inhibitors to incubation buffer

Membrane fractions II and I were incubated with different buffers with and without 

protease inhibitors (Figure 4.5). Addition of luM soya bean trypsin inhibitor to the buffer 

significantly increased specific binding by 36-55% (p < 0.01). Binding with buffer 3,
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Figure 4.2 AR42J fraction n  membrane association and dissociation time 
courses with 125I-G17

Membranes (lOOug/tube) were incubated either with 0.029nM 125I-G17 alone (Q ) or in 
the presence of 0.029uM G17 (-A -) at 22°C. Specific binding ( - □ - )  is total binding 
( O )  minus non-specific binding (-A-). At 180 mins, lOuM G17 was added to the 
incubation medium to dissociate 125I-G17 from binding sites. Dissociation results are 
denoted by total (#-), specific and non-specific binding (±_) with each point the 
mean (+/-SD) of four experiments performed in duplicate. Inset is a graphical 
representation of the association rate constant where the slope of the line is the 
observed association rate constant (Kobs).

145



X

S
O ho

N—✓
’■oooo
PQr~-
01HHa

14

■■ob*

12

0 60 120 

Time (mins)10

8

6

4

2

0
0 60 120 180 240 300 360

Time (mins)

Figure 4.3 AR42J fraction I membrane association and dissociation time 
courses with 125I-G17

Membranes (lOOu^tube) were incubated either with 0.029nM 125I-G17 alone fO ) or in 
the presence of 0.029uM G17 (-A -) at 22°C. Specific binding (HZ}- ) is total binding 
( O )  minus non-specific binding (-A-). At 180 mins, lOuM G17 was added to the 
incubation medium to dissociate 125I-G17 from binding sites. Dissociation results are 
denoted by total (-#-), specific (® ) and non-specific binding with each point the 
mean (+/-SD) of four experiments performed in duplicate. Inset is a graphical 
representation of the association rate constant where the slope of the line is the 
observed association rate constant (Kobs).
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Figure 4.4 Effect of increasing l25I-G17 concentration on binding to AR42J 
membranes

Membranes were incubated at22°C for 180mins in the absence (-0-) or presence (-A-) 
of 1000 fold excess of unlabeled G17. Specific binding (-Q-) was total binding ( o )  
minus non-specific binding (^-) and each point is the mean (+/-SD) of four experiments 
performed in duplicate.
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Figure 4.5 Effect of protease inhibitors on 125I-G17 binding to AR42J 
membranes

AR42J membranes were incubated with different buffers for 180mins at 22°C. Each bar 
represents the mean (+SD) of total ( ■  ), specific ( □  ) and non-specific ( □  ) binding 
from four experiments performed in duplicate.
* denotes the level of significance (p<0.01) when compared to corresponding binding 
with buffer 1. Buffers were as follows :

1 50mM Hepes + lOmM MgCl2.6H20 + 0.1% BSA
2 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 0.1% BSA
3 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + luM Bestatin +

luM bacitracin + ImM aprotinin+ 1.5mM DL-dithiothreitol + luM 
PMSF + 10% glycerol + 0.1% BSA
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human membrane assay buffer (Chapters 2, section 2.5) increased binding by 20-30% in 

comparison with buffer 2. Although the human membrane assay buffer may have been 

the most appropriate to use in experiments involving AR42J membranes, the experiment 

including buffer 3 was performed at the end of the study. Therefore buffer 2 was used as 

the assay buffer for measurement of gastrin/CCKB receptors on AR42J membranes.

3.1.5 Effect of pH

The AR42J membrane assay buffer (50mM Hepes, lOmM MgCl2.6H20, luM soya bean 

trypsin inhibitor, 0.1% BSA) was prepared at pH 6.5, 7.0, 7.5 and 8.0. Optimum binding 

was obtained after 180mins at 22°C for both membrane fractions II and I at pH.6.5. 

Binding then steadily decreased to pH 8.0 (Figure 4.6). As there was no statistical 

difference between pH 6.5 and 7.0, to allow for comparison of results with the whole 

cells, the more physiological pH of 7.0 was chosen for subsequent experiments.

3.1.6 The effect of temperature on 125I-G17 binding to AR42J membranes at 

steady state.

Specific binding was higher at 22°C than at 4°C or 37°C, similar to the results observed 

for whole cell preparations (Figure 4.7). Specific binding was proportionally greater in 

fraction I than in fraction II membranes, although both followed the same general 

pattern.
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FRACTION IFRACTION II

Figure 4.6 Effect of buffer pH on 125I-G17 binding to AR42J membranes

Membranes were incubated in buffer (50mM Hepes, lOmM MgCl2.6H20, luM SBTf 
0.1% BSA) at pH 6.5-8.0 for 180mins at 22°C. Each bar represents the mean ( +SD) 
total ( ■ ) ,  specific ( □ )  and non-specific ( □ )  binding from at least three experiments 
performed in duplicate.
* denotes level of significance (p<0.01) when compared to corresponding binding with
pH 6.5.
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Figure 4.7 Effect of different incubation temperatures on 125I-G17 
binding to AR42J membranes

Membranes were incubated at temperatures of 4°C, 22°C and 37°C for 180mins and 
each bar represents the mean (+SD) total ( I  ), specific ( D  ) and non-specific ( □  ) 
binding from four experiments performed in duplicate.
* denotes level of significance (p<0.01) when compared to corresponding binding at
22°C.
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3.2 Membrane storage

3.2.1 Effect of storage time and protective agents on fraction IIAR42J

membranes

Fraction II AR42J membranes were stored at -70°C in buffer containing either no 

protective agents, or with 10% glycerol (v/v) or 10% sucrose (w/v). Binding was 

analysed after storage at various time points over a period of fourteen days (Figure 4.8). 

On the day of membrane preparation (O), radioligand binding was measured at 22°C for 

180mins in buffer without either glycerol or sucrose. This was used as the control. After 

freezing for 18 hours at -70°C (dayl), membranes stored without glycerol or sucrose 

showed a sharp drop (40%) in specific binding of radiolabel, whereas the specific binding 

of membranes stored in glycerol or sucrose was not significantly decreased. Membranes 

stored without glycerol or sucrose formed a gelatin-like clot which may have contributed 

to reduced binding due to loss of protein.

Specific binding in membranes stored without protection decreased steadily from 

day one to day fourteen by which time only 15% of the original specific binding was 

retained. A significant decrease in binding with membranes stored in buffer with glycerol 

and sucrose occurred by day seven, when there was a sharp drop in specific binding to 

50% of that of day one. Non-specific binding was significantly less using the buffer 

containing glycerol compared with sucrose and therefore subsequent experiments used 

membranes which had been stored for a maximum of two days at -70°C in buffer 

containing 10% glycerol.
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Figure 4.8 Effect of storage time on 125I-G17 binding to fraction II membrane 
with addition of either glycerol or sucrose

Membranes (2mg/ml) were stored in aliquots at -70°C with and without buffer 
containing either 10% glycerol or 10% sucrose for a period of two weeks. Day of 
preparation was denoted (0). Each bar represents the mean (+SD) specific binding for 
buffer 1 ( □  ), buffer 2 ( B )  and buffer 3 ( B )  from three experiments performed in 
duplicate.
* denotes the level of significance (p<0.01) when compared to day zero. Buffers were 
as follows :

1 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 0.1% BSA
2 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 10% glycerol + 0.1% BSA
3 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 10% sucrose + 0.1% BSA
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Figure 4.8 Effect of storage time on 125I-G17 binding to fraction H membrane 
with addition of either glycerol or sucrose

Membranes (2mg/ml) were stored in aliquots at -70°C with and without buffer 
containing either 10% glycerol or 10% sucrose for a period of two weeks. Day of 
preparation was denoted (0). Each bar represents the mean (+SD) specific binding for 
buffer 1 ( □  ), buffer 2 ( H )  and buffer 3 ( H )  from three experiments performed in 
duplicate.
* denotes the level of significance (p<0.01) when compared to day zero. Buffers were 
as follows :

1 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 0.1% BSA
2 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 10% glycerol + 0.1% BSA
3 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 10% sucrose + 0.1% BSA
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3.2.2 Effect of storage temperature on 125I-G17 binding to fraction IIAR42J 

membranes

AR42J fraction II membranes were stored in buffer containing 10% glycerol as a 

protective agent at 4°C, -20°C and -70°C immediately after preparation. Binding 

performed at 24 hours showed specific binding to be significantly decreased at 4°C and 

-20°C but not at -70°C in comparison to the freshly prepared membranes analysed on the 

day of preparation (Figure 4.9). It was noted that storage at any temperature lowered 

non-specific binding. Subsequently membranes were stored at -70°C.

3.3 Competition assays

3.3.1 Effect of gastrin/CCKs receptor agonists on binding of 125I-G17 to AR42J 

membranes

To assess the affinity of gastrin receptor agonists for the gastrin/CCKB receptor site, 

competition curves were analysed using a least squares curve fitting program 

(LIGAND). Inhibition of 125I-G17 binding to AR42J membranes fraction II by G17, 

G34, CCK8S and CCK8 were statistically best fit by a single binding site model (Figure 

4.10). Scatchard analysis of cold G17 displacement for fraction II membranes data 

revealed a single binding site with a Kd of 2nM and maximal capacity of 1160finols/mg 

protein. The half maximal (IC50) value for G17 displacement of 125I-G17 from AR42J 

fraction II membranes was 1.6nM with CCK8S the most potent agonist with an IC50 of 

0.3nM which was 20 fold higher potency than G17. The order of potency being CCK8S 

> G17 > G34 > CCK8 with IC50 values for G34 and CCK8 of 2nM and 3nM respectively 

(Table 4.1). Inhibition constants (Ki) were calculated and results are summarised in 

Table 4.2. The order of affinity for the gastrin/CCKB receptor on AR42J fraction II
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Figure 4.9 Effect of storage temperature on I25I-G17 binding to AR42J fraction 
II membranes

Membranes were stored in 2mg/ml aliquots at 4°C, -20°C and -70°C in membrane 
buffer containing 10% glycerol. Binding of 125I-G17 to membranes on the day of 
preparation prior to storage is denoted as control. Each bar represents the mean (+SD) 
of total ( ■  ), specific ( □  ) and non-specific ( □  ) binding from four experiments 
performed in duplicate.
* denotes the level of significance (P<0.01) when compared to corresponding binding 
with control.
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Figure 4.10 Comparison of agonist displacement of 125I-G17 binding to AR42J 
fraction n  membranes

Displacement of 125I-G17 binding to AR42J membranes with increasing concentrations 
of agonists CCK8S (-•-), G17 (-^-), G34 (-■-) and CCK8 (-□-). Each point is the 
mean (+/-SD) of at least three experiments performed in duplicate.
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CLASSIFICATION LIGAND IC50 
FRACTION II

(nM)

IC50 
FRACTION I

(nM)

AGONISTS CCK8S 0.3

G17 1.6 0.87

G34 2.0

CCK8 3.0

ANTAGONISTS L740093 0.03

CAM 1028 5.6

L365260 22 10

L364718 202 131

Table 4.1 AR42J membrane half maximal (IC50) data for the 
gastrin/CCKB receptor
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CLASSIFICATION LIGAND Kd / Ki 
FRACTION n

(nM)

KD / Ki 
FRACTION I

(nM)

AGONISTS CCK8S 0.29

G17 2.0 1.0

G34 1.67

CCK8 3.2

ANTAGONISTS L740093

CAM1028

0.029

5.5

L365260 22 9.7

L364718 196 127

Table 4.2 Gastrin/CCKB receptor affinities from inhibition curves with 
receptor agonists/antagonists on AR42J membranes
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membranes was CCK8S > G34 > G17 > CCK8 with Ki/KD values of 0.29nM, 1.67nM, 

2nM and 3.2nM respectively. AR42J fraction I membranes were only incubated with 

increasing concentrations of G17 which gave an IC5o of 0.87nM. Scatchard analysis of 

cold G17 displacement data revealed a KD of InM and maximal capacity of 720fmols/mg 

protein.

3.3.2 Effect of gastrin/CCKB and CCKA receptor antagonists on binding of 

125I-G17 to AR42J membranes

All antagonists inhibited 125I-G17 binding (Figures 4.11 and 4.12) to fraction II 

membranes with the following order of potency, L740093 > L365260 > CAM1028 > 

L364718. The gastrin/CCKB receptor antagonist L740093, showed half maximal 

inhibition at 0.03nM. The gastrin/CCKB receptor antagonists CAM1028 and L365260 

were 200 and 700 times less potent respectively than L740093 with respective IC50 

values of 5.6nM and 22nM. The CCKa receptor antagonist L364718 showed half 

maximal inhibition at 0.2uM. Similarly for fraction I membranes, the order of potency 

was L365260 > L364718 with IC50 values of lOnM and 0.13uM (Figure 4.13) and 

respective affinites (Ki) for the gastrin/CCKB receptor of 9.7nM and 0.127uM 

respectively.
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Figure 4.11 Comparison of antagonists with G17 displacement of 125I-G17 
binding to AR42J fraction n  membranes

Displacement of 125I-G17 binding to AR42J fraction II membranes with increasing 
concentrations of G17 (~A-), and CCKB and CCKA receptor antagonists L635260 (-•-), 
and L364718 (-o- ) respectively. Each point is the mean (+/-SD) of four experiments 
performed in duplicate.
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Figure 4.12 Comparison of new antagonists with G17 displacement of 125I-G17 
binding to AR42J fraction n  membranes

Displacement of 125I-G17 binding to AR42J membranes with increasing concentrations 
of G17 (-A- )3 and CCKB receptor antagonists L740093 (-#-), and CAM1028 ).
Each point is the mean (+/-SD), of at least three experiments performed in duplicate.
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Figure 4.13 Comparison of antagonists with G17 displacement of 125I-G17 
binding to AR42J fraction I membranes

Displacement of 125I-G17 binding to AR42J fraction I membranes with increasing 
concentrations of G17 (-A-), and CCKB and CCKA receptor antagonists L365260(-#-), 
and L364718 (-O ) respectively. Each point is the mean (+/-SD) of four experiments 
performed in duplicate.
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4 DISCUSSION

The aim of this study was to assess whether gastrin receptors which had previously been 

measured and characterised on whole AR42J cells were in any way diminished or altered 

by the process of membrane preparation. Since tissue membrane preparation is known to 

be problematic, optimisation of the radioligand binding methodology for AR42J plasma 

membranes was of critical importance since the information obtained was to be used to 

aid the development of an assay capable of measuring and characterising gastrin/CCKB 

receptors present on membranes prepared from human tissue.

Fraction I membranes were shown to have similar but not identical binding 

properties to that of fraction II membranes. Examination of these two fractions with 

gastrin receptor agonists and antagonists revealed similar but not identical affinities for 

the gastrin/CCKfi receptor thereby suggesting that fraction I membranes were perhaps 

from a different source or perhaps in a different state. It is possible that fraction I 

membrane receptors were from internal cell organelles derived from cells that had lysed 

during the thirty minute period prior to centrifugation and membrane preparation.

A higher concentration of fraction II membranes was required to reach the same 

level of specific binding as with fraction I membranes. As the protein content measures 

not only the gastrin receptor but also other membrane proteins in the membrane 

fragments prepared, it is possible that fraction I membranes were ‘purer’ than fraction II 

membranes. The reason for this could be that they were derived from different sources or 

that equivalent membranes contained more receptors. Scatchard analysis of cold G17 

displacements demonstrates that the maximal binding capacity of fraction I membranes
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was less than that of fraction II membranes by 440fmol/mg protein suggesting the former 

argument. It is also possible that the two fractions are of different receptor states or 

affinities and this is supported by AR42J membrane receptor affinity data.

Kinetic studies showed that fraction I membranes had a one and a half times 

faster association rate than fraction II membranes and consequently a faster dissociation 

rate. This again suggests a higher affinity receptor/receptor state. The dissociation half 

lives were similar for fraction II and fraction I membranes and were 31mins and 25mins 

respectively. This was much faster than observed with whole cells which had a half life of 

55mins. This observation may be due to sequestering of the ligand in intact cells which 

would not be apparent with the membranes. Additionally, there may be a change in the 

conformational structure of the receptor on whole cells due to activation of second 

messenger systems.

As was observed with the whole cells, increasing radiolabel increased specific 

binding in a linear manner. Again no saturation of the membranes with 125I-G17 was 

reached and so Scatchard analysis was not performed since extrapolation of the data is 

invalid and may yield inaccurate affinities and receptor densities.

Conditions for optimisation of the membrane assay were based on the results 

obtained during optimisation of the whole cell assay. Additional experiments were 

required to determine optimal conditions for storage of the plasma membranes once 

prepared. Since the nature of the preparation releases proteolytic enzymes which was not 

a problem with the whole cell assay, there was an added requirement for protease
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inhibitors. The whole cell buffer was used as a control (Figure 4.5, buffer 1), from which 

to study addition of protease inhibitors. The most useful inhibitor in AR42J receptor 

assays was considered to be soya bean trypsin inhibitor, since the AR42J cells are 

pancreatic in origin and are known to secrete zymogen granules rich in trypsin and 

chymotrypsin. Addition of luM soya bean trypsin inhibitor increased specific binding for 

both membrane fractions by 60-70%, an increase which was not observed with AR42J 

whole cells (data not shown). This confirms that proteases’ are active and released by 

cell disruption.

Membrane fractions II and I showed identical patterns of binding over the pH 

range 6.5-7.0 Maximum specific binding at was found at pH 6.5, similar to that of 

AR42J whole cells. Normal rat pancreatic CCKa receptors have an acidic pH optimum 

of 5.5 for 125I-CCK33 and a pH optimum of 6.0 for 125I-CCK8 (Steigerwalt and Williams 

1981). They noted that the change in pH did not alter the affinity of the CCK receptor 

but did increase the receptor density by increasing accessibility of receptors otherwise 

unavailable for binding.

Kinetics for the AR42J whole cells were previously shown to be optimal at a 

temperature of 22°C. Due to limited membrane availability, kinetics were not studied but 

binding was assessed at steady state (i.e.l80mins). Significantly higher specific binding 

was observed at a temperature of 22°C than either 4°C or 37°C after 180mins, therefore 

subsequent experiments were performed at|22°C.
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The abilities of agonists and antagonists to displace specific 125I-G17 binding was 

compared with both membrane fractions and with whole cells as this is the most sensitive 

way to ensure receptor properties are maintained between whole cells and membrane 

preparations. Mathematical derivation of kinetic experiments produced similar 

dissociation constants for fraction II and I membranes of 0.12nM and 0.097nM 

respectively. Affinities derived from kinetic analysis of membrane fractions were six fold 

lower affinity than for gastrin/CCKB receptors on AR42J whole cells (KD of 0.02nM).

Fraction II and I membranes were displaced by the natural agonist G17, the 

C C K b receptor antagonist L365260 and C C K a  receptor antagonist L364718. The 

respective affinities for G17 were slightly higher with fraction I membranes which had a 

Kd of InM compared to fraction II membranes which had a Kd of 2nM. The affinities 

calculated from displacement and kinetic experiments should correspond, but as has been 

shown values are significantly different between the two analysis. Affinity for gastrin 

binding to AR42J whole cells (KD of 0.3nM) was up to six times greater than binding to 

AR42J fraction II and I membranes. The CCKB receptor antagonist L365260 displaced 

specific 125I-G17 binding to fraction II membranes with a half maximal concentration of 

22nM in comparison to lOnM and 4.7nM for fraction I membranes and AR42J cells 

respectively. The CCKA receptor antagonist L364718 displaced specific 125I-G17 binding 

to fraction II membranes with a half maximal concentration of 202nM in comparison to 

13 InM and 230nM for fraction I membranes and AR42J cells respectively. The IC 50 

values were corrected using the Cheng-Prusoff equation and affinity inhibition constants 

are summarised in Table 4.2.
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Fraction II membranes were further characterised with competition assays using 

the agonists CCK8S, CCK8 and G34 and the new antagonists CAM1028 and L740093. 

The order of potency of the ligands was similar to that found for AR42J whole cells, 

L740093 > CCK8S > G17 > G34 > CCK8 > CAM1028 > L365260 > L364718. Half 

maximal values for each ligand tested were found to be similar to those from AR42J 

whole cells. Sulphation of CCK8 increased its affinity for the gastrin/CCKB receptor 

seven fold in comparison to desulphated G17 and six fold in comparison with 

desulphated CCK8. The same order of potency was reported by Huang and colleagues, 

with the addition of sulphated G17(G17II) which demonstrated a higher affinity than 

CCK8S, G17 and CCK8 for the gastrin/CCKs receptor on guinea-pig pancreatic acini 

(Huang et al 1989).

In summary, this chapter has demonstrated that gastrin/CCKs receptors are 

measurable on plasma membranes prepared from AR42J whole cells. The membrane 

fractions retain the broad characteristics and properties of the gastrin/CCKs receptors on 

whole cells. Freezing of the membranes does not alter this after storage at -70°C in the 

presence of glycerol for short periods of time only (i.e. < 2 days). This data provides the 

ground work on which to develop an assay to detect and characterise membranes 

prepared from fresh and frozen human colonic and gastric, tumour and normal tissues.
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CHAPTER 5 GASTRIN/CCKb RECEPTORS IN NORMAL AND 

NEOPLASTIC COLORECTAL TISSUES



1 INTRODUCTION

Gastrointestinal cancers have been shown to respond trophically in vitro and in vivo to 

gastrin, and this action is most likely to be mediated through binding to gastrin/CCKB 

receptors.

The first demonstration of gastrin/CCKB receptors on colonic cells was in 1985 

(Singh et al 1985) when high affinity gastrin/CCKB receptors (KD of 0.4-0.55nM) were 

found on crude membrane fractions from normal rat colonic mucosa. High affinity 

receptors (KD of 0.25-0.6nM) were found to be present on membranes from one human 

(LoVo) and one murine (MC-26) colon cancer cell line whereas another human colon 

cancer cell line, HT29 showed little specific binding (Singh et al 1985). In contrast to the 

report by Singh et al, specific gastrin binding to the human colorectal cell line, HT29 was 

demonstrated by McRae et al in 1986. The cell line bound 125I-G17 and 3H pentagastrin 

when cells were grown in serum free medium and pentagastrin stimulated growth of 

these cells.

Recently, Frucht et al (1992) observed gastrin/CCKB receptor expression in only 

one out of ten human colon cancer cell lines analysed. Six of these cell lines were derived 

from secondary instead of primary tumours and only one concentration of G17 was used 

in the binding study (lOOpM). Also CCK binding was observed in three out of ten lines 

but as competition assays with CCK receptor antagonists were not performed it is 

unclear whether the binding represented CCKA or gastrin/CCKB receptors. This low 

gastrin/CCKB receptor expression in human tumour cell lines may be due to 

methodological problems, in particular the length of time in culture. Watson et al,
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(1989b) found that human colorectal cell lines lost their gastrin responsiveness when 

passaged more than 250 times. This was assessed by tritiated thymidine uptake. This 

suggests that the presence of the gastrin/CCKB receptor could be dynamic and may alter 

after increased passage times.

Eggstein et al (1991) showed that growth of the human colonic cell line SW403 

was increased by gastrin in vitro, and this effect was reversed by the gastrin/CCKB 

receptor antagonist benzotript. When SW403 cells were grown as solid tumours in nude 

mice, pentagastrin stimulated both proliferation and ornithine decarboxylase (ODC) 

activity in vivo. Stimulation of growth in SW403 cells by gastrin was accompanied by an 

increase in ODC activity which was blocked by DMFO, an irreversible inhibitor of ODC. 

However, epidermal growth factor induced proliferation did not increase ODC activity. 

In contrast, a previous report by Seidel et al (1985) failed to show ODC stimulation by 

gastrin in the normal rat mucosa. This may be due to differences between normal and 

malignant tissue and/or species differences.

While reports have demonstrated the in vitro gastrin responsiveness of fresh 

human tumour tissue (Watson et al 1989b) and used this as a marker of gastrin/CCKB 

receptor status, very few have directly demonstrated specific high affinity gastrin/CCKB 

binding sites. The first study to demonstrate specific gastrin/CCKB receptors on primary 

colon cancer tissue was by Rae-Venter et al in 1980. Membranes were partially purified, 

by discontinuous sucrose gradients, from eight human colon cancer biopsies and three 

normal colonic mucosa. Membranes were assayed in the presence of lOOpM 125I-G17 at 

20°C for two hours. Non-specific binding was defined as binding of 125I-G17 in the
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presence of excess unlabeled G17. Seven out of eight (87.5%) colon tumours expressed 

gastrin/CCKb receptors with a KD 0.4-0.6nM and receptor density of 0.5-1.3fmols/mg 

protein. Competition studies were performed with pentagastrin, CCK8 and caerulein, a 

CCK-like peptide all competed for gastrin/CCKB receptor binding sites

The same group went on to publish a more detailed study in 1989, in which 

freshly resected colorectal tumours and healthy normal mucosa were examined for 

gastrin/CCKB receptor status (Upp et al 1989). Gastrin binding assays were performed 

on crude membranes prepared from frozen sections. They found thirty-eight of the sixty- 

seven (56.7%) cancers had high affinity receptors (KD < InM) and seven with low 

affinity receptors (KD >lnM). Positive tumours exhibited only a single class of high 

affinity sites with KD’s of 0.1-0.3nM and gastrin/CCKB receptor contents between 

1.5-50fmol/mg membrane protein. Twenty of the thirty-eight people with gastrin/CCK0 

receptor positive tumours had receptor densities above lOfmol/mg of protein. No 

correlation between gastrin/CCKB receptor content and patient age, sex, serum CEA 

concentration or degree of differentiation was found. The mean receptor density of 

Dukes’ A or B tumours was twice that of Dukes’ stage C or D lesions. The content of 

gastrin receptors in normal colon mucosa was determined in fifty-nine out of the sixty- 

seven patients studied. Similar high affinity gastrin/CCKB receptors to the colon cancers 

were found in the normal mucosa in thirty-two patients and low affinity in nine other 

patients. A further twenty-two normal samples had no detectable gastrin/CCKB 

receptors. There was a highly significant correlation between the presence of 

gastrin/CCKB receptors on normal mucosa and corresponding tumours. Other studies by 

this group have also identified high affinity gastrin/CCKB receptors in membranes
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prepared from freshly resected human colorectal tumours (Upp et al 1989; Chicone et al 

1989).

In contrast, the only negative report to date was by | Kumamoto et al in 1989 

who reported high affinity gastrin/CCKB receptors in human fundic mucosa ( K d  of 

1.6nM and receptor density of 15fmol/mg protein) but were unable to demonstrate 

significant gastrin/CCKB receptors in normal colonic mucosa of two patients undergoing 

surgery for colorectal cancer.

1.1 Objective

The object of this study was to assess whether membranes prepared from human 

colorectal cancers expressed measurable high affinity gastrin/CCKB receptors using a 

radioligand binding assay. This assay had been used to measure high affinity 

gastrin/CCKB receptors in AR42J whole cells and crude plasma membrane preparations. 

Therefore it was assumed that if gastrin/CCKB receptors were present on colonic tumour 

and normal tissue, this assay should permit their detection.
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2 METHODS

Materials and general methods can be found in Chapter 2.

2.1 Statistical analysis

In each case, a hypothesis test was performed to determine whether there was evidence 

to reject the hypothesis that the data were normally distributed. This was based on the 

correlation between the observations and their ‘normal scores’ (Minitab Reference 

Manual 1994).

If there was no evidence to reject the hypothesis that the data were normally 

distributed then the mean values in all groups were compared using a two sample t-test. 

If there was evidence to reject the hypothesis of normality then the median values in each 

group were compared using the non-parametric Mann Whitney test. Statistical 

significance was set at p < 0.05.

3 RESULTS

3.1 Patient Data

The study involved thirty-three patients who presented with primary colonic carcinoma. 

Eleven patients had tumours in either the caecum or ascending colon (Table 5.1, pagel). 

The remaining twenty-two patients had primary tumours in either the distal colon or 

rectum (Table 5.1, page 2 and 3). All tumours were histologically defined as 

adenocarcinoma with varying levels of de-differentiation and categorised according to 

the Dukes’ stage of cell invasion.
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Initials Age Sex Tumour
site

Histology Different
-iation

Dukes’
stage

D.H. 83 F caecum adenocarcinoma poor C

G.McK 71 M caecum adenocarcinoma poor D

J.B. 84 M caecum adenocarcinoma moderate B

R.H. 79 M caecum
mucinous

adenocarcinoma moderate B

R.P. 86 M caecum adenocarcinoma moderate B

R.S. 68 M caecum adenocarcinoma moderate B

P.G. 74 M caecum adenocarcinoma moderate C

MR. 75 F caecum adenocarcinoma well B

F.M. 74 F ascending adenocarcinoma moderate B

MCI. 62 M ascending adenocarcinoma moderate C

J.Ca. 66 M ascending adenocarcinoma well B

Table 5.1 Colorectal patient details (page one of three)

173



Initials Age Sex Tumour
site

Histology Different
-iation

Dukes’
stage

I.E. 46 M descending adenocarcinoma moderate B

ID. 67 F sigmoid adenocarcinoma poor C

P.S. 56 F sigmoid adenocarcinoma poor C

E.L. 56 F sigmoid adenocarcinoma poor D

H.B. 66 M sigmoid adenocarcinoma poor D

J.Co. 70 M sigmoid adenocarcinoma moderate B

J.M. 63 M sigmoid adenocarcinoma moderate B

T.T. 87 M sigmoid adenocarcinoma moderate B

B.T. 44 M sigmoid adenocarcinoma moderate C

A.B. 84 F rectosigmoid adenocarcinoma moderate C

M.Mcl. 48 M rectosigmoid adenocarcinoma moderate C

Table 5.1 (continued) Colorectal patient details (page two of three)
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Initials Age Sex Tumour
site

Histology Different
-iation

Dukes’
stage

I.M. 64 F rectum adenocarcinoma poor D

J.H. 47 M rectum adenocarcinoma moderate A

G.A. 67 F rectum adenocarcinoma moderate B

J.A. 70 M rectum adenocarcinoma moderate B

M.Y. 71 F rectum adenocarcinoma moderate B

T.W. 63 M rectum adenocarcinoma moderate B

J.Cum. 46 M rectum adenocarcinoma moderate C

J.K. 67 M rectum adenocarcinoma moderate C

L.H. 58 M rectum adenocarcinoma moderate C

A.Cr. 53 F rectum adenocarcinoma moderate D

M.Mor. 56 M rectum adenocarcinoma moderate D

Table 5.1 (continued) Colorectal patient details (page three of three)
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3.2 Comparison of different methods of membrane preparation

3.2.1 Frozen tissues 

(i) Cryostat method

Three patient samples, taken at random, were tested using the cryostat method for 

preparing crude membranes ( Appendix III, table 1). Tissue sections of 20um were sliced 

from frozen tissues using a cryostat, followed by subsequent membrane preparation as 

described in Chapter 2, section 3.5. The patient tissues tested using this method were 

G.McK., P.S. and M.McL. Radioligand binding was examined using increasing 125I-G17 

concentrations of 0.1, 0.25 and 0.5nM (final concentration in the tube). The results 

showed little or no specific binding with either the normal membranes or the tumour 

membranes (Figures 5.1 and 5.2). For example at 0.5nM 125I-G17 concentration, M.Mcl. 

tumour membranes gave 11% specific binding that was still only a fractional 0.06% 

specific binding of total added. In most cases there was insufficient tissue to allow 

multipoint saturation curves to be performed and therefore the figures are shown as 

histograms to emphasise that most of the binding was non-specific in nature. With the 

exception of patient P.S. normal tissue, total binding in both normal and tumour tissue 

increased linearly with increasing radiolabel as did non-specific binding. Relatively high 

specific binding (45%) was observed with patient P.S. normal membranes (Figure 5.1) at 

a concentration of O.luM 125I-G17, but specific binding was not observed at higher 

125I-G17 concentrations. In each patient, comparison of normal and tumour total binding, 

it was noted that total binding in the tumour was two to three fold greater than the total 

binding in normal membranes.
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(ii) Pulverised method

Tissue samples from twenty-two patients (Appendix III, table 2, pages 1 to 4) were 

analysed following preparation of membranes by the pulverised method as described in 

Chapter 2, section 3.5. All patient tissues were immediately snap frozen in liquid 

nitrogen. These tissues had not been previously immersed in the human collection buffer 

(Chapter 2, section 2.5) and had been stored at -70°C for varying periods of time up to 

three years. Six patients were tested with increasing 125I-G17 concentrations between 0.1 

and 0.5nM (Figures 5.3 to 5.5), while a further sixteen patients were screened using 

0.125nM 125I-G17 (Figures 5.6 and 5.7) only due to the expense of the radiolabel and in 

some cases lack of tissue. In general, total binding was found to be higher than was 

observed with membranes prepared using the cryostat method. Specific binding was no 

greater than 50% of total binding and 0.007% of total added. Total binding varied 

greatly between different patients for both normal and tumour membranes. In all but one 

(T.W.) of the twenty-two patients studied by this method, there was a two to three fold 

increase in total binding between normal and tumour total binding.

3.2.2 Fresh tissues

(i) Homogenisation method

Tumour and normal tissue samples from eight patients (Appendix III, table 3, pages 1 to 

3) were immersed in the human collection buffer (Chapter 2, section 2.5), immediately 

upon resection. Membranes were prepared as quickly as possible (generally within 

30mins of resection) by the homogenisation method as described in Chapter 2, section

3.6. In general total binding was found to be increased in comparison to the previous

membrane preparation methods of cryostat sectioning and pulverisation
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(Figures 5.8-5.12). Increasing 125I-G17 concentrations were used to analyse all of the 

patients normal and tumour membranes and although specific binding was more 

consistent and reproducible than | the cryostat method ? binding still only reached 0.45% 

of the radioactivity added. Displacement of specific binding to tumour or normal 

membranes from patients R.P., M.C1., M.Y., J.M. and I.E. were unsuccessful at a 

radiolabel concentration of 0.5nM and increasing unlabeled G17 concentrations 

between 10'12-10'5M (data not shown).

3.3 Comparison of gastrin/CCKs receptor status with tumour site,

differentiation and Dukes’ stage

Tumour site, differentiation and Dukes’ stage were compared using total binding and the 

ratio of tumour/normal total binding from thirty-two patients. Total binding in tumour 

membranes was consistently two to three fold higher than the corresponding normal 

membranes. Total 125I-G17 bound in all three groups | was not normally distributed (see 

methods) and so non-parametric Mann Whitney tests were used to analyse the data. In 

contrast, the ratio of tumour/normal 125I-G17 total bound in all three groups were 

normally distributed and therefore data was analysed using a Two-sample t-test.

Eleven patient tumours were situated in the left colon and twenty-one tumours in 

the right colon. Median levels for 125I-G17 total bound (Figure 5.13, graph A) in the left 

colon were not significantly different from levels in the right colon (p = 0.2042, Mann 

Whitney). The mean levels for the ratio of tumour/normal 125I-G17 total bound 

(Figure 5.13, graph B) in the left colon were not significantly different from the mean 

total binding in the right colon (p = 0.3134, Two sample t-test).
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Total binding Ratio of
tumour : normal total binding

Tumour
site

Median IQ Range Median IQ Range

Left colon 
(n=l l )

1269 532-3856 2.5 1.9-3.6

Right colon 
(n =21)

883 386-1546 2.0 1.45-2.8

Table 5.2 Comparison of total 125I-G17 bound (cpm) and the ratio of tumour
normal total 125I-G17 bound according to tumour site in colorectal
patients. IQ = interquartile.



Seven tumours in the study were poorly differentiated, twenty-three were 

moderately differentiated and only two were well differentiated. Median values of total 

125I-G17 binding (Figure 5.14, graph A) were not significantly different when compared 

between the first two groups ( p = 0.1855, Mann Whitney). The mean values for the 

ratio of tumour/normal total 125I-G17 binding were marginally higher in patients with 

poorly differentiated tumours (p = 0.09, Two sample t-test) in comparison with 

moderately differentiated tumours (Figure 5.14, graph B). Since only two well 

differentiated tumours were involved in the study they were not compared.

Finally the Dukes’ stage was compared and classes A and B were grouped 

together as were classes C and D. Fifteen tumours were either stage A or B and 

seventeen were either stage C or D. Median values for total 125I-G17 binding 

(Figure 5.15, graph A) were not significantly different when the two groups were 

compared (p = 0.6326, Mann Whitney). The mean ratios of tumour/normal total 125I-G17 

binding (Figure 5.15, graph B) were not significantly different in patients with A and B 

types in comparison to C and D stages (p = 0.1656, Two sample t-test).

193



6000

/—sa
a ,o
'O 40003
3OX

13

2000
n=7 n=23

Poor Moderate

Differentiation

013O
a3HI1*33

OH
r-H
O
HHiq

6

4

2

0
ModeratePoor

M ean =3 

SD =1.4
Differentiation M ean =2.2 

SD =0.95

Figure 5.14 A. Comparison of the level of tumour differentiation versus 125I-G17 
total bound (cpm). B. Comparison of tumour differentiation versus 
the ratio of tumour: normal 125I-G17 total bound. Dots are 
individual patients displayed with medians, interquartiles and 
confidence intervals.

194



Total binding Ratio of
tumour : normal total binding

Different
iation

Median IQ Range Median IQ Range

Poor
(n=7)

458 170-1862 2.5 2.0-4.4

Moderate 
(n =23)

1054 532-1987 1.9 1.5-2.8

Table 5.3 Comparison of total 125I-G17 bound (cpm) and the ratio of tumour
normal total 125I-G17 bound according to differentiation in
colorectal patients. IQ = interquartile.
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Total binding Ratio of
tumour : normal total binding

Dukes’
stage

Median IQ Range Median IQ Range

A & B
(ii=15)

969 532-3220 2.15 1.75-2.85

C & D  
(n =17)

1048 367-1786 2.45 1.925-3.45

Table 5.4 Comparison of total 125I-G17 bound (cpm) and the ratio of tumour :
normal total 125I-G17 bound according to tumour stage in colorectal
patients. IQ = interquartile.



4 DISCUSSION

While gastrin/CCKs receptors have been identified in normal and malignant colonic cells 

from a number of different species (Singh et al 1985; Guo et al 1990; Watson et al 

1992a) little is known about these receptors in primary human colorectal tumours.

The aim of this study was to detect and characterise high affinity gastrin/CCKs 

receptors in human colorectal cancer and normal tissue membrane preparations using 

125I-G17 in a radioligand binding assay. The technique was proven to be satisfactory 

following optimisation using both AR42J whole cell and membrane preparations, on 

which high affinity gastrin/CCKB receptors were measured reliably and consistently. In 

contrast to this, membranes prepared from both normal and malignant mucosa of the 

colon were found to show little or no specific binding of 125I-G17. The low specific 

binding observed with some patient tissues was not displaceable even with high 

concentrations of unlabeled G17. In an attempt to determine why no specific binding was 

observed with these membrane preparations, various methods of membrane preparation 

were explored.

The main technique used for membrane preparation, pulverisation under liquid 

nitrogen, has been successfully employed previously in the preparation of gastrointestinal 

tumours for study of high affinity gastrin/CCKB receptors (Upp et al 1989), as well as 

other tumours including gastrin releasing peptide (Preston et al 1993) and oestrogen 

receptors (Singh et al 1993). After pulverisation, the resulting powder was subjected to 

the same membrane preparation as that of freshly homogenised tissues (Chapter 2,
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section 3.6). Even less overall total binding with little or no specific binding was 

observed with the cryostat method (Appendix III, table 1).

There are a number of reasons why the tumours may have given very little 

specific binding which could not be displaced with competing ligands, including the 

possibility that gastrin/CCKB receptors were not present on the colonic tissue analysed. 

This is in contradiction to the study by Upp et al who demonstrated the presence of 

gastrin/CCKe receptors on two thirds of human colonic tumours. It is also possible that 

the method of storage may have contributed to receptor loss or degradation. This is 

unlikely to be the sole cause of receptor loss in the present study since of the thirty-three 

patient tissues analysed, nine were examined for gastrin/CCKB receptor status 

immediately following resection. Additionally, tissues from the Upp et al study were only 

snap frozen in liquid nitrogen.

Whilst it is quite possible that none of these tissues contained gastrin/CCKB 

receptors, results from Upp et al and further studies by the same group would suggest it 

was statistically unlikely that thirty-three samples analysed consecutively would be 

gastrin/CCKB receptor negative (Upp et al 1989; Chicone et al 1989). It is possible that 

Upp et al may have had access to all or most of the tumour tissue, whereas restricted 

amounts of tumour tissue was collected in this study, and gastrin/CCKB receptors may 

have been present on parts of the tissues not collected. To date, the study by Upp et al is 

the only substantial study on gastrin/CCKB receptors in colorectal tumours and the only 

group to publish positive results. Another group ( Kumamoto et al 1989) reported 

negative findings using 125I-G17 in a radioligand binding assay, although the study

199



included only two normal/tumour colonic tissues. However, the same group using single 

point assays with 400pM 125I-G17 detected a high degree of specific binding in human 

gastric fundic mucosa with KD of 1.6nM and receptor capacity of 15fmol/mg protein. 

Other groups have used ‘gastrin-responsiveness’ as an indirect marker of the presence of 

gastrin/CCKB receptors in fresh primary tumours (Watson et al 1988, 1989b) or 

established human carcinoma cell lines (Frucht et al 1992). Again, in these indirect 

studies, only a proportion of the cell lines tested exhibited high affinity gastrin/CCKe 

receptors. Watson et al screened 31 colorectal tumours and showed that 35% of 

colorectal cancers which were ‘gastrin responsive’ contained tumour cells which 

responded to physiological concentrations of gastrin (Watson et al 1989b).

If the method of membrane preparation or storage conditions are not 

accountable for complete loss of receptors, the assay conditions used are the next 

obvious consideration. Failure to detect gastrin/CCKB receptors in colorectal membranes 

are unlikely to be caused by the chosen incubation conditions such as buffer, pH and 

temperature since the binding protocol used was similar to that of Upp and colleagues 

(1989). The human assay buffer increased specific binding by approximately 30% in 

comparison to AR42J membrane assay buffer in the membrane assay, therefore protease 

inhibitors should be sufficient to inhibit proteolytic receptor damage. Upp et al iodinated 

[Leu15]-gastrin-17 using either Iodogen, Enzymobead or Chloramine T techniques (Singh 

et al 1985) whereas the present study used a commercially available iodinated 

[Tyr15]-gastrin-17 (NEN-Dupont), prepared using a modification of the Hunter and 

Greenwood method (1962). The radiolabel used in this study was 125I-[Tyr15]-gastrinl7 

as opposed to 125I-[Leu15]-gastrinl7 and although specific activity of both radioligands

2 0 0



were similar, the method of iodination may have contributed to the lack of detection of 

gastrin/CCKs receptors in the present study.

An autocrine mechanism for gastrin binding in tumour cells has been suggested 

by several groups (Hoosein et al 1990; Watson et al 1991; Blackmore and Hirst 1992). 

It is possible that gastrointestinal tumours may secrete their own gastrin and therefore it 

is feasible that the high local concentration of gastrin may result in a low affinity state of 

the receptor. Also in the binding assay radiolabeled gastrin could then have to compete 

with gastrin produced by the tumour cells themselves. Some groups have reported 

elevated serum gastrin concentrations in colorectal cancer patients (Smith et al 1988; 

Chamley et al 1992; Seitz et al 1992) but this remains debatable with other studies 

finding no difference in comparison to controls (Suzuki et al 1988; Creutzfeldt and 

Lambert 1991; Yapp et al 1992; Kikendall et al 1992; Penman et al 1994). However 

increased local gastrin concentrations at the tumour site may increase growth of tumours 

which are not normally responsive to physiological gastrin concentrations. The 

gastrin/CCKB receptor may only require to be in a low affinity state because of high 

locally produced concentrations of gastrin and could explain the differences between 

normal high affinity endocrine cells and tumour cells.

The overall trend in the data presented is that total binding in tumours was found 

to be two-three fold greater per mg of protein than that in normal mucosa from the same 

patient. This may suggest that gastrin/CCKB receptors are present in low numbers and/or 

very low affinity states which are difficult to detect using the current assay methodology. 

It is also possible that gastrin may bind with low affinity to a ‘specific receptor’, other
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than the gastrin/CCKB receptor, present in tumours thereby explaining the 2/3 fold 

greater total binding in tumours compared to normal tissues. This would also explain the 

low specific binding of total added which is not displaceable with gastrin/CCKB receptor 

antagonists. The existence of a third class of gastrin/CCKB receptors (CCKc or C C K g)  

which binds CCK and gastrin with the same affinity remains unclear at present. However, 

gastrin/CCKB receptor antagonists do not inhibit gastrin stimulation via the hypothesised 

third class of receptor (Bold et al 1994; Singh et al 1995; Imdahl et al 1995).

The low levels of specific binding seen in several patients (Figures 5.8, 5.9 and 

5.12) may represent binding to low affinity sites which were noted to be found in 10% of 

patients from the Upp et al study. It is also increasingly recognised that CCK receptors 

and gastrin/CCKB receptors may exist in multiple affinity states (including a very low 

affinity state) and move between states by poorly understood mechanisms (Yu et al 

1990; Talkad et al 1994; Huang et al 1994). The physiological relevance of these low 

affinity states is currently unknown. A study by Chang et al showed that GTP analogues 

can decrease affinity of radiolabeled CCK for the CCK receptor on pancreatic 

membranes but had no effect on the affinity of the radiolabeled CCKa antagonist 

L364718 (Chang etal 1986).

Alternatively, low numbers of gastrin/CCKB receptors may be present within the 

tumours due to the loss of mechanisms controlling maturation of gastrin precursors into 

mature gastrin. Recently several groups have presented evidence which has supported a 

trophic role for pro-gastrin derived glycine extended intermediates (Seva et al 1994; 

Negre et al 1994; Kaise et al 1994, 1995). Seva and colleagues have also presented
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preliminary results showing that the G-Gly receptor is present on the human colorectal 

cell lines HT29 and LoVo (Seva et al 1995) and high concentrations of glycine-extended 

gastrin-17 are mitogenic for a gastrin responsive human colon cancer (DLD1) cell line in 

vitro (Singh et al 1994).

Tumour site, differentiation and Dukes’ stage for the thirty-three patients in the 

study were correlated with 125I-G17 total binding and the ratio of tumour/normal tissue 

total binding. Tumours arising from the caecum and ascending colon were classed as the 

right colon and tumours from the descending, sigmoid, rectosigmoid and rectal sites were 

grouped together as the left colon. There was no correlation between tumour site and 

level of either total binding or the ratio of tumour/normal total binding. In addition, there 

was no significant difference between total 125I-G17 binding in poor or moderately 

differentiated patient tumours. A marginal increase was observed in the ratio of 

tumour/normal binding with poorly differentiated tumours compared to moderately 

differentiated tumours. No significant difference between the level of tumour cell 

invasion (Dukes’stage) and total binding was observed in any tissue membranes analysed.

In a study by Upp et al, a significant correlation was found between tumours 

situated on the left and right side of the colon and gastrin/CCKB receptor density (Upp 

et al 1989). They also reported no difference between moderate and mucinous tumours. 

However they did demonstrate that if normal tissues did not express gastrin/CCKB 

receptors then neither did corresponding tumour tissues. Therefore the normal mucosa 

may be of importance in the determination of the patients gastrin/CCKB receptor status. 

In the same report , colon tumours with no lymph node or distant metastasis
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(Dukes’ stage A&B) had a significantly higher gastrin/CCKB receptor density than more 

advanced tumours (Dukes’ stage C&D).

In conclusion, high affinity gastrin/CCKB receptors were not found on any normal 

or malignant human colorectal tissues analysed despite being consistently and reliably 

measured in AR42J cells and membranes. It is possible that gastrin/CCKB receptors are 

present in either low numbers or in a low affinity state which were not detectable with 

the current methodology.
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CHAPTER 6 GASTRIN/CCKb RECEPTORS IN NORMAL AND 

NEOPLASTIC HUMAN GASTRIC TISSUE
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1 INTRODUCTION

In contrast to the studies of gastrin/CCKB receptors in the colon, more is known about 

these receptors in the stomach and gastrin/CCKB receptors have been widely studied and 

characterised in animal models using radioligand binding techniques.

In 1976, Lewin and co-workers were the first to demonstrate specific binding of 

radiolabeled gastrin to the rat gastric fundic mucosa (Lewin et al 1976). Although 

binding was observed on both membranes and isolated cells, the binding was of low 

affinity (KD = 9nM). A tritiated radiolabel waSusedin this study and consequently specific 

acivity was low (60Ci/mmol). This may have contributed to the detection of only low 

affinity gastrin/CCKB receptors.

The gastrin/CCKB receptor radioligand binding assay optimised by Takeuchi et al 

used a high specific activity label (125I-G17) (~2000Ci/mmol) with crude plasma 

membranes from the rat oxyntic mucosa (Takeuchi et al 1979). High affinity 

gastrin/CCKB receptors were detected (KD = 0.4nM). These receptors were subsequently 

characterised by another group using a variety of ligands (Johnson et al 1985).

Other groups have since reported high affinity gastrin/CCKB receptors in the 

stomach of various animal species. Specific high affinity binding of 125I-leu-G17 to 

isolated canine fundic cells was described by Soil et al in 1984. Cells were separated 

using elutriation and binding was shown to correlate with parietal cell content. Other 

investigators have demonstrated high affinity oxyntic gastrin/CCKB receptor binding sites
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for gastrin in the rat (Singh et al 1985), rabbit (Magous and Bali 1982) and guinea-pig 

(Ramani and Praissmanl989).

Gastrin has been shown to promote growth in some gastric cancer cell lines 

grown either in vitro or in vivo (Ishizuka et al 1992; Watson et al 1989a, 1989b; Singh 

et al 1985; Ochiai et al 1985) and gastrin/CCKB receptors have been characterised on 

these cells (Sethi and Rozengurt 1992; Ishizuka et al 1992; Watson et al 1989a).

Gastrin/CCKB receptors have also been reported on cancer cell lines from a 

variety of species including several human gastric cancer cell lines. This is important as 

human tumour cell lines may provide information which is more pharmacologically and 

clinically relevant. The human gastric cancer cell line TMK-1, has been shown to respond 

trophically to lOnM gastrin as assessed by [3H] thymidine uptake. This process appears 

to be mediated through a high affinity gastrin/CCKB receptor on the cell membrane 

(Ochiai et al 1985). Weinstock and Baldwin (1988) examined five human gastric cancer 

cell lines using whole cells in radioligand binding studies. They used isolated canine 

parietal cells as positive controls with K d ’s of 1.7 and 0.2nM for 125I-met G17 and 

125I-leu G17 respectively. However, the affinity constants for the human gastric tumour 

cell lines ranged between 0.2 and 1.3uM i.e. gastrin/CCKB receptor affinities of 

approximately 1000 times less than parietal cells.

A report by Matsushima and colleagues found no gastrin/CCKB receptor gene 

expression using RT-PCR in either human gastric carcinoma cell lines or adenocarcinoma 

tissues (Matsushima et al 1994). In contrast, a recent abstract by Clerc et al found high 

levels of gastrin/CCKB receptor mRNA in two out of four extracts of human gastric
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carcinoma tissues using the same technique (Clerc et al 1995). However, when these 

tissues were examined by radioligand binding techniques, specific binding of radiolabeled 

gastrin was not found in crude membrane preparations.

Human gastric cancer cell lines have been screened using a single saturating dose 

of 125I-G17. The gastric cell line AGS was found to be strongly positive for specific 

gastrin binding sites, with an affinity (KD < InM) similar to normal rat fundic cells (Singh 

et al 1985). Seven AGS clones were established and four were positive for gastrin 

binding sites (>12 finols). Of the others, one was found to be negative and two exhibited 

gastrin binding sites of less than 3.3 fmols. Whether gastrin is trophic for all AGS clones 

to the same extent or dependent on the level of gastrin receptors present on the cell lines 

is not known.

Radioligand binding studies were performed on human scirrhous gastric 

carcinomas by| Kumamoto et al (1988). Using membrane preparations and 125I-G17, 

four out of five carcinomas with specific binding between l.l-18.2fmols/mg protein. The 

presence of gastrin receptors was more frequent in the poorly differentiated scirrhous 

carcinomas (Borrman type IV) than in other gastric adenocarcinomas examined 

(Borrman type II or III). A further study by the same group in 1989 demonstrated 

specific 125I-G17 binding to human gastric fundic mucosa with a Kd of 1.6nM and 

receptor capacity of 15finol/mg protein.

Loss of responsiveness to gastrin has been shown in established cell lines on 

repeated subculture in vitro (Watson et al 1988). Gastrin responsiveness could be
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retained by transplanting cells into nude mice and growing in vivo before re

establishment in vitro. The same group also reported that several human gastric cell 

lines lacked any mitogenic response to gastrin at passage >250 in vitro when compared 

to freshly derived primary gastric tumours, where -50% were gastrin responsive 

(Watson et al 1989b). This variation in ability of gastrin to induce mitogenic effects may 

be due to up and down regulation of receptors. Therefore cautious interpretation of 

results is required before gastrointestinal tumour cell lines can be declared ‘gastrin/CCKB 

receptor negative’.

1.1 Objective

The object of this study was to demonstrate high affinity gastrin/CCKe receptors 

on membrane preparations from the normal human body region of the stomach and to 

determine if these receptors were present in corresponding gastric tumours.
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2 METHODS

Materials and methods can be found in Chapter 2.

3 RESULTS

3.1 Patient data

Four out of nine tumours and corresponding normal tissues from either body and/or 

antral sites were collected in the human collection buffer stated previously (Table 6.1). 

These tissues were collected immediately upon resection and stored on ice, in the 

collection buffer, until dissection by a pathologist. Tissues from the remaining five 

patients were collected from theatre and snap frozen in liquid nitrogen without 

immersion in the human collection buffer (Table 6.1).

3.2 Patient results

3.2.1 Patient tissues collected and assayed fresh in human collection buffer

Three out of four patient gastric body membranes (Table 6.2) tested, expressed high 

affinity gastrin/CCKB receptors with KD’s and Bmax’s between 0.2-1. InM and 

28-76finol/mg protein respectively. Specific 125I-G17 binding was displaceable with G17, 

G34, L365260 and L364718. The minimum time between resection and immersion in 

collection buffer on ice was never more than five minutes, except for patient A.M. This 

may be the reason why gastrin/CCKB receptors were not detected on gastric body 

membranes from this patient. Antral tissue also collected from two of the four patients 

was not found to have detectable gastrin/CCKB receptors.
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Initials Age Sex Normal tissue 
site

Tumour
site

Differentiation

1 .Patient tissues collected and assayed fresh in human collection buffer

J.N. 68 M body antrum poor

J.M. 51 M body/antrum oesophageal poor

A.M. 55 M body antrum poor

G.S. 82 M body/antrum oesophageal poor

2. Patient tissues collected and frozen without human collection buffer prior to assay

F.S. 68 F body/antrum oesophageal poor

R.B. 70 M antrum body moderate

AH. 75 M body antrum well

C.R. 70 F antrum body poor

S.H. 64 M antrum body poor

Table 6.1 Gastric patient details
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INITIALS Bmax
(fmol/mg)

Kd
(nM)

Ki
(nM)

G17 G34 L365260 L364718

G.S. 44 0.2 0.48 2.6 229

J.M. 76 1.1 - 14 96

J.N. 28 0.4 - 0.88 163

F.S. 21 0.7 - - -

Table 6.2 Gastrin/CCKB receptor affinity constants and receptor capacities 
for gastric patient body membranes
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(i) Patient J.N.

Patient JN, a 68 year old male, had a poorly differentiated antral gastric tumour and so 

only body tissue was obtained from this patient at resection. Body and tumour 

membranes were tested using increasing concentrations of radiolabel, but only body 

membranes gave significant specific binding (Figure 6.1). Association time courses were 

performed with body and tumour membrane preparations (Figure 6.2). Association of 

125I-G17 to body membranes reached a plateau at 5mins and remained at this level for a 

further 55mins. Total binding for tumour membranes was less than 50% that of body 

membranes (Figure 6.2) and no specific binding was observed at any time point. Specific 

binding of 125I-G17 to body membranes was displaced by G17, L365260 and L364718 

(Figure 6.3). LIGAND analysis of the displacement data revealed a single binding site 

with Kd of 0.4nM and Bmax 28fmols/mg of protein. Half maximal ( I C 5 0 )  values for G17, 

L365260 and L364718 were found to be 0.46, 1.4 and 260nM respectively. The 

corrected inhibitory constants (Ki) for receptor antagonists L365260 and L364718 were 

calculated as 0.88nM and 163nM respectively (Table 6.2).

(ii) Patient J.M.

Body, antral and tumour tissues were obtained for patient JM, a 51 year old male who 

also presented with a poorly differentiated gastro-oesophageal tumour. Again, significant 

specific binding of 125I-G17 was observed only in body membranes (Figure 6.4). 

Unfortunately, only small amounts of tissue were obtained and therefore experiments on 

this patient were limited to a single displacement assay. Specific binding of 125I-G17 to 

body membranes was displaced by G17, L365260 and L364718 (Figure 6.5). LIGAND 

analysis of the displacement data again revealed a single binding site with Kd of 1.1 nM
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Figure 6.1 Effect of increasing radiolabel concentration on 125I-G17 binding to 
membranes from patient J.N.

Membranes (lOOug/tube) were incubated for 15mins at 22°C with increasing 
concentrations of 125I-G17. Specific binding ( □  ) is total ( H  ) minus non-specific 
binding ( □ ) .
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Figure 6.2 Association time-courses on membranes from patient J.N.

Membranes (lOOug/tube) were incubated with 0.25nM 125I-G17 for measurement of 
total binding ( -O- ) at 22°C. Non-specific binding was measured in the presence of 
0.25uM G17 (-A- ) and specific binding (-Q-) was calculated as total minus non- 
specific.Results are the mean of one experiment performed in duplicate.
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Figure 6.3 Displacements on body membranes from patient J.N.

Displacement of 125I-G17 binding to J.N. body membranes (lOOug/tube) by increasing 
concentrations of G17 (-o) and by CCKBand CCKA receptor antagonists L365260 (-^) 
and L364718 (-Q-) respectively. Each point is the mean of two experiments performed 
in duplicate.
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Figure 6.4 Effect of increasing radiolabel concentration on 125I-G17 binding to 
membranes from patient J.M.

Membranes (lOOug/tube) were incubated for 15mins at 22°C with increasing 
concentrations of 125I-G17. Specific binding ( □  ) is total ( ■  ) minus non-specific 
binding ( □ ) .
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Figure 6.5 Displacements on body membranes from patient J.1VL

Displacement of 125I-G17 binding to J.M. body membranes (lOOug/tube) by increasing 
concentrations of G17 (-Q-) and by CCKBand CCKA receptor antagonists L365260 f#-) 
and L364718 (-o) respectively. Each point is the mean of one experiment performed in 
duplicate.
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and Bmax of 76fmols/mg protein. Half maximal (IC50) values for G17, L365260 and 

L364718 were found to be 1.1, 17 and 120nM respectively. The corrected inhibitory 

constants (Ki) for the receptor antagonists L365260 and L364718 were calculated as 

14nM and 96nM respectively (Table 6.2).

(iii) Patient A.M.

Patient AM was a 55 year old male who also had a poorly differentiated antral gastric 

tumour and so only body tissue was collected at the time of resection. After resection, 

tumour and corresponding gastric tissue was not immediately immersed in collection 

buffer but left at room temperature for more than 20mins. This was considered to be 

significant since gastrin/CCKB receptors were not detected on the body membranes. 

Very little binding and no specific binding was found with either body or tumour 

membranes. Radiolabel concentration was increased to a final concentration of 0.5nM in 

the tube (data not shown) but this still did not yield any further results for this patient.

(iv) Patient G.S.

Patient GS, an 82 year old male, had a poorly differentiated gastro-oesophageal tumour 

and so tissues from the body and antral regions of the stomach were plentiful. 

Membranes prepared from each region were tested using increasing concentrations of 

radiolabel (Figure 6.6). Only membranes from the body gave significant specific binding 

(36%). Association time course experiments were subsequently performed with all three 

membrane preparations (Figure 6.7). The gastric body membrane association maintained 

a plateau between 30 and lOOmins. The association time course with tumour membranes
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Figure 6.6 Effect of increasing radiolabel concentration on 125I-G17 binding to 
membranes from patient G.S.

Membranes (lOOug/tube) were incubated for 90mins at 22°C with increasing 
concentrations of 125I-G17. Specific binding (□ )  is total ( ■ )  minus non-specific 
binding ( □ ) .
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Figure 6.7 Association time-courses on membranes from patient G.S.

Membranes (lOOug/tube) were incubated with 0.25nM 125I-G17 for measurement of 
total binding ( -O-) at 22°C. Non-specific binding was measured in the presence of 
0.25uM G17 (-^-) and specific binding (£>) was calculated as total minus non-specific. 
Results are the mean (+/-SD) of three experiments performed in duplicate for body 
membranes and one experiment performed in duplicate for antral and tumour membrane 
results.
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was found to plateau between 15 and 120mins thereafter decreasing sharply. Antral

membranes showed no significant specific binding.

The agonists G17 and G34 and CCKB/CCKA receptor antagonists L365260 and 

L364718 respectively, all displaced 125I-G17 from membranes prepared from the body 

tissue (Figure 6.8). LIGAND analysis of the displacement data revealed a single binding 

site with Kd of 0.2nM and Bmax of 44fmols/mg protein. Binding to a single site was 

shown using a log-logit plot of the G17 displacement data which was linear with an IC50 

value of 0.34nM. Specific 125I-G17 binding to body membranes was displaced by G34, 

L365260 and L364718, with IC50 values of 0.55nM, 3.2nM, 260nM respectively. 

Inhibition constants (Ki’s) for patient G.S. are summarised in Table 6.2. The order of 

affinity for the gastrin/CCKe receptor was G17 >G34 > L365260 »L364718, with

Ko/Ki values of 0.2nM, 0.48nM, 2.6nM and 229nM respectively.

Although specific binding was obtained with G.S. tumour membranes, 

displacement of, total binding was not observed using a range of concentrations of 

G17 between 10'13-10'6M (data not shown).

3.2.3 Patient tissues collected and frozen without human collection buffer

Five patient tissues were collected without human collection buffer before snap freezing 

in liquid nitrogen for periods of one-three years prior to assay. Only two out of five 

patient normal tissues were collected from the gastric body regions (Table 6.1) and of 

these only patient FS was found to have detectable gastrin/CCKs receptors on body 

membranes.
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Figure 6.8 Displacements on body membranes from patient G.S.

Displacement of 125I-G17 binding to G.S. body membranes (lOOug/tube) by increasing 
concentrations of agonists G17 (-O -) and G34 ( A -), and by CCKBand CCKA receptor 
antagonists L365260 (~Bh) and L364718 (HZh) respectively. Each point is the mean 
(+/-SD)of three experiments performed in duplicate.
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(i) Patient F.S.

Only one patient F.S., showed significant specific binding on body membranes (Figure 

6.9). G17 displaced 125I-G17 specific binding on body membranes with an IC50 value of 

0.5nM (Figure 6.10). LIGAND analysis of the displacement data revealed a single 

binding site with KD of 0.7nM and Bmax of 21fmols/mg of protein (Table 6.2). 

Although 125I-G17 binding on antral and tumour membranes was observed (Figure 6.9), 

only 10-16% was specifically bound.

(ii) Patients A.H., R.B., C.R. and S.H.

Specific 125I-G17 binding to patient A.H. body membranes was 21% (Appendix IV, 

table 13). However, the concentration of 125I-G17 was high (0.5nM), therefore multi

point saturation experiments were not performed (Figure 6.11). Specific 125I-G17 binding 

between 11-32 % was observed with membranes prepared from antral tissue from 

patients R.B. and S.H (Figure 6.11 and 6.12). Again the concentration of 125I-G17 was 

high (0.5nM), therefore multi-point saturation experiments were not performed. All four 

patient tumour membranes tested showed no specific 125I-G17 binding (Figure 6.11 and 

6 . 12).
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Figure 6.9 Effect of increasing radiolabel concentration on 125I-G17 binding to 
membranes from patient F.S.

Membranes (lOOug/tube) were incubated for 15mins at 22°C with increasing 
concentrations of 125I-G17. Specific binding ( []] ) is total ( | ) minus non-specific
binding (□ )■
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Figure 6.10 Displacement on body membranes from patient F.S.

Displacement of 125I-G17 binding to F.S. body membranes (lOOug/tube) by increasing 
concentrations of G17 (-0-). Each point is the mean of one experiment performed in 
duplicate.
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Figure 6.11 Effect of increasing radiolabel concentration on 125I-G17 binding to 
membranes from patients R.B. and A.H.

Membranes (lOOug/tube) were incubated for 15mins at 22°C with increasing 
concentrations of l25I-G l7. Specific binding ( □  ) is total ( ■  ) minus non-specific
binding (□ ) •
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Figure 6.12 Effect of increasing radiolabel concentration on 125I-G17 binding to 
membranes from patients C.R and S.H.

Membranes (lOOug/tube) were incubated for 15mins at 22°C with increasing 
concentrations of 125I-G17. Specific binding ( □  ) is total ( I  ) minus non-specific 
binding ( □  ).
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4 DISCUSSION

The aim of this study was to use a radioligand binding assay to detect and characterise 

gastrin/CCKB receptors in human gastric tumours and normal antral or body tissues. 

Praismann and Brand reported evidence of two gastrin binding sites in the human oxyntic 

mucosa (Praismann and Brand 1991). Frozen sections were incubated with 125I-G17 at 

22°C and binding was quantitated by autoradiography. Scatchard analysis of saturation 

data revealed an ultra high affinity binding site with KD of 8.61pM and a second high 

affinity site, Kd of 0.34nM with receptor densities of 28 and 450fmols/mg protein 

respectively. Characterisation with receptor antagonists was not reported.! Kumamoto 

and colleagues demonstrated specific 125I-G17 binding to gastric fundic mucosa from a 

duodenal ulcer patient ( Kumamoto et al 1989). In contrast to Praismann and Brand, 

they reported only one binding site with a dissociation constant of 1.1 nM and receptor 

capacity of 15fmols/mg protein. A previous paper by the same group also demonstrated 

specific 125I-G17 binding to eight human gastric tumour tissues, although details of 

affinities were not given and characterisation was not performed ( Kumamoto et al 

1988).

In the previous study (Chapter 5), gastrin/CCKB receptors were not detected in 

any membranes prepared from colorectal tumours or corresponding normal tissue using 

the current assay methodology. In contrast, four out of six patient’s gastric body 

membranes were found to have high affinity gastrin/CCKB receptors (KD 0.2-1. InM) 

with receptor densities above 20fmol/mg protein and corresponded to results observed 

by Kumamoto et a l Specific 125I-G17 binding to membranes was displaceable with 

gastrin/CCKb receptor agonists G17 and G34 and CCKB/CCKA receptor antagonists
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L365260 and L364718 respectively. The findings of Praismann and Brand were not 

confirmed in this study, as log-logit plots were all found to be linear indicating binding to 

a single high affinity site. Specific 125I-G17 binding to patient G.S. body membranes was 

displaced with G17, G34, L365260 and L364718 and gastrin/CCKB receptor affinities 

were 0.2nM, 0.48nM, 2.6nM and 229nM respectively. These followed a similar order of 

potency as for AR42J fraction II membranes which were previously shown to have 

affinities for the gastrin/CCKB receptor of 2nM, 1.67nM, 22nM and 196nM respectively. 

G.S. body membrane G17 displacement results were the mean of three experiments in 

duplicate whereas other ligand displacements were only perfomed once and this may 

have contributed to experimental error in comparison to results obtained in 

displacements with AR42J membranes. This may also explain variations in dissociation 

constants for gastrin/CCKB receptor positve body membranes ( K d  of 0.2-1. InM).

Binding with patient A.M. was not observed and the fact that so little total 

binding was obtained suggested that there may have been almost complete degradation 

of any gastrin/CCKB receptors present due to the time lapse between resection and 

immersion in human collection buffer which in this case was much longer than with other 

patients. This was important for subsequent collection of human tissue. In addition, the 

gastrin/CCKB receptor may have a short half-life and periods of ischaemia due to the 

unavoidable clamping of the blood supply during surgery may also cause receptor loss.

Other patient body membranes (J.M. and J.N.) which were collected fresh from 

theatre and stored in the human collection buffer, were found to exhibit high affinity 

gastrin receptors ( K d  0.4-1. InM) which were similar to dissociation constants previously
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determined on AR42J fraction II membranes (Kd 1.6nM). Displacements with the 

gastrin/CCKB receptor antagonist L365260 were calculated to have inhibitory 

dissociation constants (Ki) of 14 and 0.88nM for J.M. and J.N. body membranes 

respectively. The displacement values did not correspond with those for AR42J fraction 

II membranes (Ki = 22nM) but the results were taken from only one experiment 

performed in duplicate. Displacements with the CCKA receptor antagonist L364718 also 

produced different results between body membranes of different patients 

(Ki = 96-229nM). L364718 displacement results from patients G.S. and J.N.were closer 

to results obtained from AR42J membranes (Ki = 200nM) and it must be noted the 

result from patient J.M. was obtained after only one experiment in duplicate.

From the patient tissues collected and stored without the human collection buffer, 

only one, patient F.S. demonstrated specific high affinity binding of gastrin to body 

membranes (KD = 0.7nM) which corresponded to affinities found in AR42J fraction II 

membranes. None of the other membranes tested for this group showed any significant 

specific binding, although three out of the five normal tissues collected were from the 

antrum and no body tissues were obtained as the tumour was situated in the corpus of 

the stomach. The only other patient in this group where body tissue was collected was 

A.H. Specific 125I-G17 binding was detected only at a concentration of 0.5nM 

125I-G17 and so further multi-point saturations were not performed. The fact that the 

tumour site in patients R.B., C.R. and S.H. is located in the corpus combined with the 

lack of specific binding would also indicate that there may be altered processing or loss 

of gastrin/CCKB receptor during carcinogenesis.
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Receptor capacities for gastrin/CCKB receptor postive patients were similar 

(Bmax 21-76fmols/mg protein) and correlated with reported values for gastrin/CCKB 

receptors on colonic normal and cancer tissue membranes (Upp et al 1989). Receptor 

densities from patients were approximately ten times less than those on AR42J 

membranes (Chapter 4) which may also explain the lack of overall total binding.

No specific binding of 125I-G17 was detectable in any of the antral membranes 

analysed. Specific binding was observed only in G.S. tumour membranes (Figure 6.2) but 

binding was not displaceable with G17 concentrations between lO'^-lO^M. This may 

suggest that there was specific binding to low affinity gastrin/CCKB binding sites which 

could not be detected using the current radioligand binding assay. Specific binding was 

not observed in any of the other tumour membranes tested but it was noted that the 

overall total binding was greater than that in corresponding antral membranes.

Autocrine production of gastrin in gastric tumour cells has also been postulated 

(Watson et al 1992b). In a study with the gastric carcinoma cell line MKN45G, ninety- 

seven percent of the cells stained positively with an anti-gastrin antibody. In addition the 

cell line did not respond trophically to exogenously adminstered gastrin-17 in vitro 

(Watson et al 1991). This may support the theory that low affinity gastrin/CCKB 

receptors are present in gastric cancer cells since autocrine production of gastrin may 

produce high local concentrations and become less responsive to exogenously 

adminstered gastrin which reduces receptor affinity. In the present study there may be 

low affinity gastrin/CCKB receptors present on the G.S. tumour membranes which were 

not further characterised.
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Advances in molecular cloning of the gastrin/CCKB receptor have produced some 

insight into the possible presence of the receptor in gastrointestinal cancer tissues. A 

recent report detailed evidence of increased gastrin/CCKB receptor mRNA expression in 

two out of four gastric cancer extracts (Clerc et al 1995). It is possible that the tumours 

tested in this study did not have any gastrin/CCKB receptors at all, but the statistics from 

the study by Clerc et al would suggest that some tumour cells may have expressed 

mRNA for the receptor. This could then indicate a possible defect in the translation of 

the message and may explain undetectable specific binding in the tumour membranes 

tested.

In conclusion, high affinity gastrin/CCKB receptors have been detected and 

characterised in the gastric body of patients who had undergone surgery for gastric 

carcinoma. Four out of six patient gastric body tissues exhibited gastrin/CCKB receptors. 

Affinities for gastrin were found to be in the nanomolar range and corresponded with 

those found in AR42J fraction II membranes which served as a control for this study.
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CHAPTER 7 FINAL DISCUSSION AND CONCLUSIONS
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The object of this programme of work was to develop a radioligand binding assay 

capable of detecting gastrin/CCKB receptors in human gastrointestinal tissues. The initial 

detection and characterisation of high affinity gastrin/CCKB receptors in AR42J cells and 

membranes was investigated in order to standardise the radioligand binding assay. This 

was considered important since the assay would ultimately be used for the detection of 

high affinity gastrin/CCKB receptors in human gastrointestinal tissues.

Gastrin/CCKe receptors were accurately and reliably measured using an 

optimised AR42J whole cell assay and crude membranes prepared from AR42J cells 

were found to retain similar receptor binding properties. High affinity gastrin/CCKB 

receptors were characterised and following freezing of membranes at -70°C receptor 

affinity was retained for a limited period.

AR42J whole cells were shown to have an affinity of 0.3nM for the gastrin/CCKB 

receptor. Interestingly, fraction I membranes were shown to have a much higher affinity 

( K d  =lnM) for the gastrin/CCKB receptor than fraction II membranes ( K D = 2nM). In 

fact, the order of IC50 values for each agonist/antagonist analysed demonstrated the same 

Y order of potency i.e. whole cells ^  fraction I membranes <Pfraction II membranes. This 

suggests that the gastrin/CCKB receptor is in one affinity state in AR42J whole cells 

which is different from either AR42J fraction I or II membranes. Moreover, the higher 

affinity seen with fraction I membranes also suggests that receptors may be in a different 

state from fraction II membranes which is possible since they were derived from different 

sources. Differences in affinity state may also reflect a degree of receptor damage.
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High affinity gastrin/CCKB receptors in tissues from the human gastric body were 

successfully detected and characterised in four out of six gastric body tissues analysed. 

There was no evidence of high affinity gastrin/CCKB receptors in any tumour tissues 

tested. However, the presence of low affinity gastrin/CCKB receptors on these tissues 

has not been ruled out.

Results from analysis of gastrin/CCKB receptor status in normal gastric body 

tissues would suggest that high affinity gastrin/CCKB receptors are not present on gastric 

tumour tissues or in either normal or tumour colonic tissues. As previously discussed, it 

is possible that gastrin/CCKB receptors are present on these tissues but exist in a low 

affinity state which may explain the low level of specific binding observed in some 

tumour tissues. In addition, there is accumulating evidence in support of an autocrine 

growth mechanism in GI tumour cells which may be mediated by gastrin/CCKB receptors 

(Hoosein et al 1989; Watson et al 1988, 1991; Baldwin and Zhang 1992; Reimy-Heintz 

et al 1993).

High affinity gastrin/CCKB receptors were not detected on thirty-three colonic 

cancers and corresponding normal mucosa analysed consecutively. It is unlikely that the 

lack of specific gastrin/CCKB receptors in colonic cancer and normal tissues is due to a 

methodological problem as receptors were readily detected on gastric body tissue 

samples using the same assay methodology. Upp et al found gastrin/CCKB receptors in 

approximately two thirds of membranes from human normal and tumour colon but this is 

the only group to publish positive results (Upp et al 1989). Other investigators have 

either used established human tumour cell lines (Frucht et al 1992) or in vitro
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‘gastrin-responsiveness’ as an indirect measure of the presence of gastrin receptors in 

fresh human tumours (Watson et al 1988; 1989b). However, these studies showed that 

only a proportion of tumours or cell lines possessed gastrin/CCKB receptors or 

responded to gastrin. While only a proportion of colonic tumours may possess functional 

gastrin/CCKe receptors, it seems statistically unlikely that all thirty-three tumours 

examined should be receptor negative. It is also possible that receptors were present and 

were not detected. Differences between the current study and that of Upp et al include 

the use of a different radiolabeled gastrin. The same group iodinated their own gastrin 

instead of using the commercially available iodinated gastrin-17 (NEN Dupont) which 

was used in the current study. However, since specific 125I-G17 binding was 

demonstrated on crude membranes from human gastric body tissues, it would appear that 

the biological activity of the radiolabel was unaffected.

Colorectal tumours were found to have significantly higher total binding 

compared with corresponding normal colonic mucosa. This increase was generally two 

to three fold higher; an effect observed in all but one patient sample. These results may 

suggest 125I-G17 binding to low affinity gastrin/CCKB receptors, the existence of which 

is now increasingly recognised. Studies by several different groups have reported 

multiple CCK and gastrin receptor states (including a very low affinity) which move 

between states by poorly understood mechanisms (Yu et al 1990; Talkad et al 1994; 

Huang et al 1994). The clinical relevance of these receptor states is currently unknown.

The emergence in the past few years of the cloning and sequencing of the human 

gastrin/CCKB receptor gene has suggested that the gastrin/CCKB receptor is present on a
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fraction of gastrointestinal tumour cells but the presence of gastrin receptor mRNA in 

these cells may not automatically mean expression of a cell surface receptor. The lack of 

specific receptor sites in any of the tumour tissues analysed in these studies, combined 

with literature evidence of the presence of the gastrin/CCKB receptor gene expression in 

some GI tumour cells, may be the result of conformational change in the gastrin/CCKB 

receptor (i.e. to a low affinity state) during carcinogenesis.

Alternative approaches to radioligand binding in the measurement of 

gastrin/CCKB receptors such as detection with anti-gastrin receptor antibodies or by 

RT-PCR with probes may provide valuable information. Following the recent isolation 

and sequencing of the genes for CCKA and CCKB receptors from human and other 

species (Wank et al 1992a, 1992b; Psiegna et al 1992; Kopin et al 1992; Miyake et al 

1994), one approach might be examination of receptor mRNA expression by in situ 

hybridisation or Northern analysis. However, caution should be observed with 

interpretation of results obtained from such studies since a recent report by Clerc et al 

observed high levels of gastrin/CCKB receptor mRNA in two out of four extracts of 

human gastric carcinoma tissues using PCR (Clerc et al 1995), but when these tissues 

were examined using radioligand binding, specific binding of radiolabeled gastrin was not 

found in crude membrane preparations. This may indicate a possible defect in the 

translation of the message and may explain undetectable specific binding in the tumour 

membranes tested.
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Alternatively, immunohistochemical studies using specific antibodies to the 

gastrin/CCKB receptor may be useful. Only one such antibody, raised to canine parietal 

cells is currently available (Mu et al 1987), but further antibodies may become available 

in the near future.

While these approaches have the advantage of giving information about the 

receptor at the cellular level they are poorly quantitative and do not allow 

pharmacological receptor characterisation. Radioligand binding offers the best 

quantitative method for studying gastrin/CCKB receptors in normal and tumour tissues, 

but may be even more productive in combination with immunocytochemistry and in situ 

hybridisation. The latter two techniques could provide useful screening methods for the 

presence of gastrin/CCKB receptors in tumour tissues from the human gastrointestinal 

tract since they have the added bonus of cryopreservation of receptors and signal 

amplification. It is important that gastrin/CCKB receptor are unequivocally shown to be 

present on these tissues and are characterised before the growing number of 

gastrin/CCKB receptor antagonists can be considered as possible treatments for patients 

with gastric and colorectal cancer.

Finally recent reports have emerged focusing on the trophic effects of pro-gastrin 

and glycine-extended intermediates which are thought to operate via a receptor other 

than the gastrin/CCKB receptor (Seva et al 1995; Kaise et al 1995). Examination of the 

growth mechanisms and the presence of these receptors on GI tumours may help to 

elucidate other growth mechanisms in hormonally controlled GI tumour cells. As yet the 

clinical relevance of these receptors in human GI tumour cells is not known but several
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groups have shown that progastrin derived glycine extended intermediates may possess 

trophic properties in AR42J cells (Seva et al 1994; Negre et al 1994; Kaise et al 1994).

This area merits further investigation with a requirement to characterise the glycine extended 

G17 receptor.
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APPENDIX I



Cell concentration
(1 x lO^cells/tube)

Total
+/-SD
(cPm)

Non
specific
+/-SD

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

0.2 1675+/-99 <50* 1625+/-99 3

0.4 3485+/-408 106+/-50 3379+/-426 7

0.6 5302+/-252 185+/-37 5117+/-258 10

0.8 7793+/-109 509+/-30 7248+/-110 14

1.0 9453+/-164 670+/-74 8782+/-168 17

2.0 11416+/-704 1146+/-116 10270+/-639 20

2.4 12206+/-923 1259+7-93 10947+/-859 21

n = 6 experiments in duplicate 
* Counts below gamma counter background

Table 1 Effect of increasing cell concentrations on 125I-G17
binding to AR42J cells.
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Time
(mins)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

5 2279+/-532 429+/-81 1850+/-479 4

15 3221+/-644 521+/-108 2701+/-543 6

30 5301+/-357 645+/-171 4656+/-294 9

60 7881+/-586 720+/-141 7161+/-524 15

90 9079+/-773 881+/-170 8199+/-646 17

120 9892+/-892 943+/-24S 8949+/-857 18

150 10150+/-564 1038+/-225 9100+/-358 18

180 10529+/-529 1287+/-45 9241+/-495 18

210 10922+/-546 1411+/-89 9511+/-601 19

240 11089+/-458 1484+/-38 9605+/-482 19

270 11263+/-459 1543+/-36 9719+/-456 19

n = 5 experiments in duplicate

Table 2 AR42J cell association time course
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Time
(mins)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

182 11125+/-645 909+/-227 10215+/-602 20

185 9870+/-642 839+/-160 9032+/-506 18

195 9040+/-566 787+/-106 8254+/-555 16

210 7874+/-947 758+/-76 7116+/-948 14

240 6580+/-412 666+/-59 5914+/-413 11

270 5367+/-409 647+/-107 4720+/-437 9

300 4814+/-262 666+/-123 4149+/-336 8

330 4031+/-153 613+/-120 3418+/-182 7

360 2401+7-202 557+/-99 1845+7-232 4

n = 6 experiments in duplicate

Table 3 AR42J cell dissociation time course
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[125I-G17]
(nM)

Total added
+/-SD
(cpm)

Total
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

0.0070 12231+/-958 2639+/-918 2505+/-926 20

0.0142 24391+/-2290 5423+/-1520 4867+/-1503 20

0.0285 47662+/-4080 9624+/-269S 8731+/-2678 18

0.0570 100001+/-9444 21065+/-3458 17626+/-3453 18

0.1140 196250+/-10404 38146+/-5465 32202+/-5036 16

n = 5 experiments in duplicate

Table 4 Effect of increasing radiolabel concentration on 125I-G17 binding to
AR42J cells
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Buffer Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of total 

added

1 1458+/-171 329+/-37 1128+/-161 2

2 1333+/-177 334+/-80 1000+/-135 2

3 2448+/-591 348+/-80 2101+/-550 4

4 8517+/-1016 587+/-99 7930+/-926 15

5 7316+/-928 572+/-117 6744+/-823 13

6 7108+/-1059 644+/-115 6464+7-992 13

n = 6 experiments in duplicate 

Buffers

1 50mM Phosphate + lOmM MgCl2.6H20  + 0.1% BSA

2 50mM Phosphate + 0.1% BSA

3 50mM Hepes + 0.1% BSA

4 50mM Hepes + lOmM MgCl2.6H20  + 0.1% BSA

5 50mM Hepes + lOmM CaCl2+ 0.1% BSA

6 50mM Hepes + lOmM MgCl2.6H20  + lOmM CaCl2+ 0.1% BSA

Table 5 Effect of different buffers on 125I-G17 binding to AR42J cells



pH Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

6.5 9188+/-1494 598+/-111 8590+/-1487 17

7.0 9362+/-766 611+/-84 8751+/-761 17

7.5 6706+/-984 531+/-12 6175+/-987 12

8.0 4355+7-503 482+/-53 3873+7-504 8

n = 6 experiments in duplicate

Table 6 Effect of pH on 125I-G17 binding to AR42J cells
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Time
(mins)

4°C
Specific +/-SD 

(cpm)

22°C 
Specific +/-SD 

(cpm)

37°C 
Specific +/-SD 

(cpm)

5 486+/-61 486+/-61 4749+/-864

15 1206+/-210 1206+/-210 4244+/-728

30 2186+/-238 2186+/-238 3118+/-567

60 3741+/-228 3741+/-228 1932+/-409

90 4169+/-320 4169+/-320 734+7-202

180 4632+M39 4632+M39

270 49 57+7-786 4957+7-786

n = 6 experiments in duplicate

Table 7 Effect of incubation temperature on 125I-G17 binding to
AR42J cells

248



Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

1 x 10-8 737+/-75 105+/-50 1+/-0.4

1 x 10'9 2431+/-294 1799+/-307 25+/-5

1 x 1010 5766+/-840 5135+/-830 12+1-8

1 x 10n 6938+/-1265 6306+/-1237 81+1-4

1 x 1012 7476+/-1330 6844+/-1301 95+/-S

CONTROL 7859+/-1473 7227+/-1442

ii = 7 experiments in duplicate

Table 8 G17 displacement of i25I-G17 binding to AR42J cells
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

1 x 10'7 1028+/-121 99+/-34 2+/-0.6

i xicr8 1783+/-240 854+/-135 14+/-2

1 x 10'9 2085+/-452 1325+/-99 22+1-2

1 X 1010 5082+/-259 4153+/-155 70+/-1

1 x 10" 6328+/-323 5400+/-219 91+/-1

1 x 10'“ 6490+/-420 5561+/-317 94+7-0.6

CONTROL 6865+7-410 5936+7-306

ii = 3 experiments in duplicate

Table 9 CCK8S displacement of 125I-G17 binding to AR42 J  cells
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

1 x 107 834+/-70 97+/-54 1+/-0.6

1 xKT8 1360+/-142 623+/-153 10+/-2

1 x 10 9 2875+/-393 2139+/-432 34+/-2

1 x 1010 6619+/-1023 5883+/-1079 93+/-5

1 x 1011 6796+/-1155 6060+/-1210 96+/-3

1 x 1012 7184+/-1038 6447+/-1077 102+/-6

CONTROL 7075+/-1169 6339+/-1216

n = 4 experiments in duplicate

Table 10 G34 displacement of 125I-G17 binding to AR42J cells
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD  
(cpm)

% Binding of 
Maximum

+/-%SD

1 x 107 1524+/-273 443+/-436 3+/-3

1 x 10 8 2387+/-319 1107+/-292 14+/-3

1 x 10 9 6087+/-685 4807+/-747 60+/-8

1 x 1010 7886+/-683 6605+/-807 83+/-8

1 x 1011 9188+/-740 7907+/-524 99+/-0.4

1 x 1012 9179+/-712 7898+/-542 99+7-2

CONTROL 9243+7-643 7962+7-535

n = 4 experiments in duplicate

Table 11 CCK8 displacement of 125I-G17 binding to AR42J cells
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD  
(cpm)

% Binding of 
Maximum

+/-%SD

1 x 107 1018+/-HO 374+/-125 6+/-2

1 x 10 8 2962+/-633 2314+/-648 35+/-10

1 x 10 9 5485+/-648 4840+/-646 74+/-11

1 x 1010 7016+/-812 6363+/-750 97+/-8

1 x 1011 7286+/-1030 6687+/-986 101+/-7

1 x 1012 7225+/-1132 6573+/-1080 99+/-9

CONTROL 7305+/-1309 6672+/-1254

n = 6 experiments in duplicate

Table 12 L365260 displacement of 125I-G17 binding to AR42J cells
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

1 X 10'5 633+/-72 38+/-36 0.6+/-0.7

i x  ltr* 1639+/-152 1043+/-96 16+/-2

1 x 10'7 4879+/-508 4301+/-432 66+/-5

l x i o - 8 6061+/-566 5465+/-535 84+/-12

1 X10'9 6820+/-889 6225+/-835 95+/-11

1 x 101# 7009+/-788 6413+/-698 98+7-7

CONTROL 7184+/-1057 6588+7-966

n = 6 experiments in duplicate

Table 13 L364718 displacement of 125I-G17 binding to AR42J cells
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

i x  nr4 1488+/-210 431+/-67 7+/-1

1 X 10'5 2855+/-477 1798+/-462 29+1-2

l x i t r 6 5346+/-707 4289+/-747 69+/-2

1 x 10'7 6885+/-966 5828+/-964 94+1-2

1 x 10-8 7055+/-1045 5998+/-907 91+1-2

1 x 10'9 7094+/-1187 6037+/-1186 97+/-3

CONTROL 7257+/-1064 6200+/-1076

n = 4 experiments in duplicate

Table 14 Lorglumide (CR1409) displacement of 125I-G17 binding to
AR42J cells.
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

1X10J 2025+/-131 900+/-264 15+/-4

IX  10-4 2827+/-329 1702+/-457 28+/-5

1 x 10'5 4954+/-179 3829+M65 63+/-3

l x l O -4 6838+/-256 5713+/-342 94+/-4

1 x 10'7 7051+/-775 5927-f-/-862 98+/-3

1 x 10-8 7031+/-909 5906+/-1002 97+/-1

CONTROL 7203+/-919 6078+/-1012

n = 4 experiments in duplicate

Table 15 Loxiglumide (CR1505) displacement of 125I-G17 binding 
to AR42 J cells
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

1 x 107 1272+/-237 200+/-105 4+/-1.4

1 x 10 8 2333+/-896 1261+/-785 26+/-H

1 x 10 9 3947+/-874 2876+/-815 62+/-3

1 x 1010 4453+/-849 3381+/-807 74+/-3

1 x 1011 5193+/-1403 4171+/-1327 89+/-7

1 x 1012 5422+/-1213 4351+/-1159 94+/-3

CONTROL 5701+/-1239 4749+/-1147

n = 4 experiments in duplicate

Table 16 CAM1028 displacement of 125I-G17 binding to AR42J
cells.
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Concentration
(M)

Total +/-SD 
(cpm)

Specific +/-SD 
(cpm)

% Binding of 
Maximum

+/-%SD

1 X 109 1194+/-155 357+/-90 4+/-1

1 X 1010 2983+/-273 2145+/-252 24+1-2

1 x 10" 5832+/-558 4994+/-597 5 6+1-6

1 x 1012 8385+/-368 7548+/-330 85+/-1

1 x 1013 9099+/-399 8262+/-375 92+/-1

1 x 1014 9505+/-73 8668+/-133 91+1-4

CONTROL 9750+/-368 8913+/-330

n = 3 experiments in duplicate

Table 17 L740093 displacement of 125I-G17 binding to AR42J cells
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Concentration
(ug/tube)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

6.25 513 +/- 82 52 +/-3 461 + /-84 1

12.5 1015 +/-111 109 +1-22 906 +1-121 2

25 1527 +1-222 131 + /-18 1396 + /-24 3

37.5 2249 + /-198 170 +/-12 2078 +/-194 4

50 3608 +/-188 283 +/-59 3324 +/-138 7

75 5455 +/-341 383 +/-33 5071 +/-351 10

100 7325 +1-512 545 + /-57 6780 + /-580 13

150 11431 +/-768 651 +/-24 10780 + /-743 20

n = 4 experiments in duplicate

Table 1 Effect of increasing fraction IIAR42J membrane
concentration on 125I-G17 binding
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Concentration
(ug/tube)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

6.25 364 +/-40 91 +/-26 273 +/-29 0.5

12.5 1012 +/-44 209 +1-91 803 +/-100 2

25 2179 +/-146 267 +/-98 1912 +/-133 4

37.5 3819 +/-431 309 +/-98 3509 +/-410 7

50 5946 +/-586 377 +/-140 5569 +/-570 11

75 7937 +/-681 425 +/-77 7511 +/-701 15

100 9420 +/-1242 554 +/-34 8231 +/-675 16

150 12544 +/-1313 684 +/-61 11860 +/-1295 23

n = 4 experiments in duplicate

Table 2 Effect of increasing fraction IAR42 J  membrane
concentration on 125I-G17 binding
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Time
(mins)

Total
+/-SD

(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 

total

5 1275+/-H7 311+/-45 963+/-160 2

15 2200+/-120 357+/-43 1843+/-85 4

30 3212+/-137 455+/-129 2832+/-117 6

60 4752+/-108 474+/-81 4278+/-184 9

90 5442+/-268 509+/-42 4933+/-240 10

120 6646+/-224 519+/-26 6126+/-20 12

150 7501+/-308 600+/-32 6900+/-319 14

180 8381+/-517 624+/-38 7757+/-492 15

210 8534+/-662 655+/-57 7879+/-642 16

240 8515+/-659 688+/-58 7827+/-639 15

270 84 86+7-738 739+7-8 7747+7-738 15

n = 4 experiments in duplicate

Table 3 AR42J fraction II membrane association time course
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Time
(mins)

Total +/-SD 
(cpm)

Non-specific
+/-SD (cpm)

Specific +/-SD 
(cpm)

% Specific 
binding of 
total added

180 8611 +/-1103 588 +/-25 8023 +/-1088 16

185 7717 +/-1187 559 +/-53 7157 +/-1185 15

195 6780 +/-1065 584 +/-55 5996 +/-1029 12

210 5777 +/- 877 560 +/- 74 5217 +/-819 11

240 4191 +/- 398 581 +/-91 3610 +/-379 7

270 3055 +/-316 648 +/-93 2407 +/-266 5

300 1807 +/-425 588 +/-139 1219 +/-426 2

330 1614 +/-253 581 +/-144 1033 +/-257 2

n = 4 experiments in duplicate

Table 4 AR42J fraction II membrane dissociation time course
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Time
(mins)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specific 
binding of 
total added

5 1626 +/-121 185 +/-21 1441 +/-110 3

15 2638 +/-106 218 +/-19 2420 +/-95 5

30 5144 +1-522 339 +/-59 4805 +/-117 10

60 7776 +/-843 419 +/-43 7356 +/-818 15

90 9585 +/-837 531 +1-61 9054 +1-116 19

120 10075 +/-409 542 +/-86 9532 +1-401 20

150 10659 +/-612 596 +/-51 10063 +1-511 21

180 11822 +1-151 615 +/-92 11206+/-717 23

210 11348 +/-432 649 +/-60 10699 +/-4S2 22

240 11330+/-629 664 +/-6S 10666 +/-600 22

n = 4 experiments in duplicate

Table 5 AR42J fraction I membrane association time course
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Time
(mins)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

% Specifc 
binding of 
total added

180 10588 +/-514 637 +/-84 9951 +/-472 21

185 9005 +/-319 634 +/-53 8370 +/-303 17

195 7872 +/-464 635 +/-87 7236 +M62 15

210 6323 +/-550 631 +/-133 5692 +/-548 12

240 4130 +/-298 662 +/-175 3468 +/-240 7

270 3475 +/-288 670 +/-220 2805 +/-393 6

300 2642 +/-180 661 +/-264 1981 +/-436 4

330 2126 +/-165 624 +/-251 1502 +/-247 3

n = 4 experiments in duplicate

Table 6 AR42J fraction I membrane dissociation time course
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[125I-G17]
(nM)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

0.0029 1002 +1-12 50 +/-0 952 +1-12

0.014 3878 +/-281 335 +/-42 3542 +/-259

0.029 8182 +/-1016 590 +/-29 7592 +/-1023

0.043 9415 +/-592 801 +/-53 8614 +/-582

0.057 13839 +/-1084 1044 +/-150 12794 +/-1079

0.086 21195+/-2261 1304 +/-74 19890 +/-2195

0.114 26710 +/-1816 1581 +1-19 25128 +/-1796

n = 3 experiments in duplicate

Table 7 Effect of increasing radiolabel concentration on
12SI-G17 binding to AR42J fraction II membranes
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[125I-G17]
(nM)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

0.0029 1979 +1-231 353 +/-40 1626 +/-198

0.014 6141 +/-136 502 +/-10 5638 +/-144

0.029 12274 +/-823 658 +/-46 11615 +/-826

0.043 15731 +/-441 773 +/-36 14958 +/-416

0.057 18482 +/-26S 913 +/-54 17569 +/-293

0.086 28605 +/-829 1255 +/-173 27350 +1-660

0.114 36129 +/-1420 1693 +/-47 34436 +/-1409

n = 3 experiments in duplicate

Table 8 Effect of increasing radiolabel concentration on
125I-G17 binding to AR42J fraction I membranes
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Buffer Membrane
fraction

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

1 I 5877+/-552 1134+/-195 4743+/-727

2 I I1375+/-544 947+/-9S 10428+/-474

3 I 15432+/-638 2355+/-156 13077+/-631

1 n 5496+/-971 848+/-71 4648+/-1032

2 n 8282+/-516 990+/-63 7292+/-516

3 n 13642+/-556 3177+/-205 I0465+/-576

n = 4 experiments in duplicate 

Buffers

1. 50mM Hepes + lOmM MgCl2.6H20 + 0.1% BSA, pH 7.0

2. 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + 0.1% BSA, pH7.0

3. 50mM Hepes + lOmM MgCl2.6H20 + luM SBTI + luM Bacitracin + luM 
Bestatin + luM PMSF + 1.5mM DTT + ImM Aprotinin + 10% glycerol + 0.1% 
BSA, pH7.0

Table 9 Effect of protease inhibitors on 125I-G17 binding to
AR42J membranes
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pH Membrane
fraction

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

6.5 I 12351+/-794 1152+/-109 11199+/-782

7.0 I 10570+/-1281 872+/-95 9698+/-1199

7.5 I 8849+/-336 832+/-24 8017+/-327

8.0 I 7710+/-142 634+/-107 7076+/-102

6.5 H 8745+/-292 1229+/-97 7515+/-341

7.0 n 7921+/-97 1137+/-76 6785+/-173

7.5 H 6304+/-1032 I095+/-227 5209+/-929

8.0 H 4937+/-701 902+/-73 4035+/-631

Fraction I n = 4 experiments in duplicate
Fraction II n = 3 experiments in duplicate

Table 10 Effect incubation buffer pH on 125I-G17 binding to
AR42J membranes
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Temp
cc)

Membrane
fraction

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

4 I 3638+/-101 842+/-65 2796+/-153

22 I 10212+/-902 722+/-10 9491+/-901

37 I 3110+/-138 538+/-41 2573+/-100

4 n 5820+/-189 959+/-36 4861+/-159

22 II 8256+/-148 1053+/-50 7204+/-160

37 n 3461+/-393 1055+/-93 2406+/-301

n = 4 experiments in duplicate

Table 11 Effect of incubation temperature on 125I-G17 binding
to AR42J membranes
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Day Addition Total Non-specific Specific
+/-SD +/-SD +/-SD
(cpm) (cpm) (cpm)

0* - 11143+/-1141 1041+/-81 10101+/-1214

1 - 6736+/-552 545+/-127 6191+/-556

1 Glycerol 10167+/-356 390+/-65 9776+/-355

1 Sucrose 9714+/-271 454+/-59 9260+/-261

2 - 5761+/-107 537+/-107 5223+/-211

2 Glycerol 9769+/-293 489+/-109 9280+/-261

2 Sucrose 8797+/-470 450+/-58 8347+M77

7 - 3570+/-719 287+/-112 3283+/-6S4

7 Glycerol 5168+/-946 290+/-74 4878+/-890

7 Sucrose 4857+/-955 272+/-34 4585+/-938

14 - 1804+/-234 164+/-62 1638+/-270

14 Glycerol 2928+/-335 121+/-54 2807+/-349

14 Sucrose 2469+/-385 126+/-46 2343+M22

n = 3 experiments in duplicate

* Membranes used on day of preparation

Table 12 Effect of storage time and protective agents on
125I-G17 binding to AR42J membranes
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Temperature
(°C)

Total
+/-SD
(cpm)

Non-specific
+/-SD
(cpm)

Specific
+/-SD
(cpm)

* 11896+/-398 1023+/-56 10873+/-431

4 5896+/-148 417+/-82 5506+/-154

-20 4998+/-108 321+/-82 4677+/-100

-40 5225+/-H8 290+/-23 4935+/-95

-70 10568+/-687 313+/-51 10254+/-727

n = 4 experiments in duplicate 

* Membranes used without freezing

Table 13 Effect of AR42J fraction n  membrane storage temperature
on ‘“ I-G17 binding
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Concentration
(M)

Fraction II 
% Binding of maximum

+/-%SD

Fraction I 
% Binding of maximum

+/-%SD

1 X 107 3+/-3 3+/-1

5X10* 10+/-1 5+/-1

1X10* 25+/-6 13+/-3

5 X 109 34+/-5 12+1-1

1 X 10* 55+/-9 48+/-2

5 X 1 0 10 69+/-5 57+/-12

1 X 10‘° 96+1-1 78+/-2

5 X 10“ 95+/-S 86+/-10

1 X 10" 98+1-6 92+/-S

5 X 10'12 100+/-6 99+1-2

1 X 1 0 12 101+/-6 100+/-4

n = 4 experiments in duplicate

Table 14 G17 displacement of 125I-G17 binding to AR42J
membranes
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Concentration
(M)

Fraction It 
% Binding of maximum

+/-%SD

Fraction I 
% Binding of maximum

+/-%SD

1 X 106 3+/-0.5 -

5 X 107 7+/-0.5 2+/-0.5

1 X 10* 15+/-3 9+/-0.5

5X10* 33+/-2 23+/-1

1X10* 64+/-10 49+/-S

5 X 10* 16+1-6 61+/-2

1 X 10* 87+/-4 85+/-S

5 X 10'1" 93+1-2 95+/-4

1 X 1010 96+1-3 9S+/-1

n = 4 experiments in duplicate

Table 15 L365260 displacement of 125I-G17 binding to AR42J
membranes
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Concentration
(M)

Fraction II 
% Binding of maximum

+/-%SD

Fraction I 
% Binding of maximum

+/-%SD

1 X 10 5 3+/-2 -

5X10^ 8+/-0.5 -

i x i o -6 15+/-3 4+/-3

5 X 107 32+/-2 21+/-2

1 X 107 63+/-7 52+/-3

5X 10-® 75+/-3 61+/-1

1X10* 87+/-7 77+/-2

5 X 109 92+/-4 82+/-1

1 X 109 93+M 84+/-3

5 X 10'1# 96+/-3 88+/-4

1 X 101# 97+7-8 92+1-2

n = 4 experiments in duplicate

Table 16 L364718 displacement of 125I-G17 binding to AR42J
membranes
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Concentration
(M)

CCK8S 
% Binding of 

maximum
+/-%SD

G34 
% Binding of 

maximum
+/-%SD

CCK8 
% Binding of 

maximum
+/-%SD

1X1045 _ - 3+/-1

1 X 107 2+/-1 1+/-0.5 19+/-6

1X1041 13+/-1 16+/-2 35+/-5

1 X 10 9 41+/-3 28+/-3 70+/-5

1 X 10‘° 90+/-2 12+1-2 88+/-3

1 X 10" 93+/-4 95+1-2 95+/-4

1 X 1 0 12 96+/-3 96+1-2 91+1-1

1 X 1 0 13 - 95+1-3 -

1 X 1014 - 95+1-5 -

n = 4 experiments in duplicate

Table 17 Agonist displacement of 125I-G17 binding to AR42J
fraction II membranes

276



Concentration
(M)

CAM1028 
% Binding of maximum

+/-%SD

L740093 
% Binding of maximum

+/-%SD

1 X 107 6+/-1

1X 104* 23+/-1 -

1 X 10'9 63+1-3 2+/-1

1 X 1010 16+1-2 21+/-3

1 X 10" 93+1-4 61+1-3

1 X 1012 95+1-3 S2+/-2

1 X 1013 - 91+/-1

1 X 1014 - 93+1-5

1 X 1015 - 91+1-6

1 X 10“ - 93+1-3

n = 4 experiments in duplicate

Table 18 Antagonist displacement of 125I-G17 binding to AR42J
fraction II membranes
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Patient
Initials

Tissue [125I-G17]
(nM)

Total
binding
(cpm)

Non-Specific
binding
(cpm)

Specific
binding
(cpm)

G.McK. normal 0.1 <50 <50 0
0.25 224 198 26
0.5 398 403 0

G.McK. tumour 0.1 123 198 0
0.25 434 366 68
0.5 669 735 0

PS. normal 0.1 155 82 73
0.25 <50 <50 0
0.5 272 279 0

PS. tumour 0.1 170 131 39
0.25 296 339 0
0.5 633 697 0

M.McL normal 0.1 90 80 10
0.25 145 130 15
0.5 331 396 0

M.McL tumour 0.1 252 282 0
0.25 497 433 64
0.5 1433 1269 164

Table 1 Colorectal patients normal and tumour results : 
1. Frozen tissue samples - Cryostat method
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Patient
Initials

Tissue [125I-G17]
(nM)

Total
binding
(cpm)

Non-Specific
binding
(cpm)

Specific
binding
(cpm)

E.L. normal 0.1 84 66 18
0.25 101 83 18
0.5 233 172 61

E.L. tumour 0.1 423 292 131
0.25 882 823 59
0.5 1686 1567 119

H.B. normal 0.1 225 162 63
0.25 592 406 186
0.5 1104 791 313

H.B. tumour 0.1 458 443 15
0.25 1406 1059 347
0.5 2561 2015 546

B.T normal 0.1 117 89 28
0.25 222 189 33
0.5 311 299 12

B.T. tumour 0.1 348 303 45
0.25 740 736 4
0.5 1512 1113 399

Table 2 Colorectal patient normal and tumour results :
2. Frozen tissue samples - pulverised method

(page one of four)
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Patient
Initials

Tissue [125I-G17]
(nM)

Total
binding
(cpm)

Non-Specific
binding
(cpm)

Specific
binding
(cpm)

A.B. normal 0.1 478 410 68
0.25 1060 881 179
0.5 1894 1527 367

A.B. tumour 0.1 896 870 26
0.25 2453 2144 309
0.5 4223 3929 294

J.Ar. normal 0.1 131 109 22
0.25 267 215 52
0.5 474 462 12

J.Ar. tumour 0.1 235 183 52
0.25 483 384 99
0.5 883 729 154

T.W. normal 0.1 89 83 6
0.25 161 121 40
0.5 215 132 83

T.W. tumour 0.1 96 71 25
0.25 60 53 7
0.5 156 116 40

Table 2 (continued) Colorectal patient normal and tumour results :
2. Frozen tissue samples - pulverised method

(page two o f four)
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Initials Tissue [125I-G17]
(nM)

Total
binding
(cpm)

Non-Specific
binding
(cpm)

Specific
binding
(cpm)

D.H. normal 0.125 1234 964 270

D.H. tumour 0.125 4498 4278 220

R.S. normal 0.125 1226 1022 204

R.S. tumour 0.125 4552 4013 539

P.G. normal 0.125 684 503 181

P.G. tumour 0.125 1556 1459 97

MR. normal 0.125 1556 1223 333

MR. tumour 0.125 3856 3476 380

C.C. normal 0.125 2491 2414 77

C.C. tumour 0.125 14039 13435 604

ID. normal 0.125 759 705 54

ID. tumour 0.125 1862 1782 80

J.Co. normal 0.125 562 568 0

J.Co. tumour 0.125 1054 1005 49

T.T. normal 0.125 2076 1383 693

T.T. tumour 0.125 4926 4836 90

Table 2 (continued) Colorectal patient normal and tumour results :
2. Frozen tissue samples - pulverised method

(page three o f four)
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Initials Tissue [125I-GI7]
(nM)

Total
binding
(cpm)

Non-Specific
binding
(cpm)

Specific
binding
(cpm)

I.M. normal 0.125 128 106 22

I.M. tumour 0.125 562 448 114

J.H. normal 0.125 1003 912 91

J.H. tumour 0.125 3008 2873 135

G.A. normal 0.125 168 125 43

G.A. tumour 0.125 669 603 66

J.Cu. normal 0.125 915 841 74

J.Cu. tumour 0.125 1200 1009 191

J.K. normal 0.125 3748 2996 752

J.K. tumour 0.125 24491 22207 2284

L.H. normal 0.125 4221 3622 599

L.H. tumour 0.125 5522 4225 1297

A.Cr. normal 0.125 526 428 98

A.Cr. tumour 0.125 1230 1133 97

M.Mo. normal 0.125 698 624 74

M.Mo. tumour 0.125 1987 1705 282

Table 2 (continued) Colorectal patient normal and tumour results
2. Frozen tissue samples - pulverised method

(page four o f four)
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Initials Tissue [125I-G17]

(nM)

Total
binding
(cpm)

Non-specific
binding
(cpm)

Specific
binding
(cpm)

J.B. normal 0.1 415 376 39
0.25 945 757 188
0.5 2057 1818 239

J.B. tumour 0.1 1126 952 174
0.25 2616 2458 158
0.5 5559 5237 322

R.H. normal 0.1 291 286 5
0.25 840 673 167
0.5 2346 2147 199

R.H. tumour 0.1 532 496 36
0.25 1067 749 318
0.5 2996 2872 124

R.P. normal 0.1 592 406 186
0.25 2492 1994 498
0.5 5324 4962 362

-

R.P. tumour 0.1 2104 1724 380
0.25 4886 4680 206
0.5 10062 8924 1138

Table 3 Colorectal patient normal and tumour results :
3. Fresh tissue samples - homogenisation method

(table one of three)



Initials Tissue [125I-G17]

(nM)

Total
binding
(cpm)

Non-Specific
binding
(cpm)

Specific
binding
(cpm)

F.M. normal 0.1 912 722 190
0.25 1975 1336 639
0.5 4650 3928 722

F.M. tumour 0.1 532 426 106
0.25 1470 867 603
0.5 4006 3862 144

MCI. normal 0.1 282 280 2
0.25 612 173 439
0.5 924 592 332

M.C1. tumour 0.1 1269 941 328
0.25 2405 2116 289
0.5 4049 3239 810

J.Ca. normal 0.1 491 426 65
0.25 1012 608 404
0.5 2588 1896 692

J.Ca. tumour 0.1 916 824 92
0.25 2145 1577 568
0.5 4390 4068 322

Table 3 (continued) Colorectal patients normal and tumour results :
3. Fresh tissue samples - homogenisation method

(page two o f three)
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Initials Tissue [125I-G17]
(nM)

Total
binding
(cpm)

Non-specific
binding
(cpm)

Specific
binding
(cpm)

I.E. normal 0.1 922 812 110
0.25 2091 1361 730
0.5 5034 4962 72

I.E. tumour 0.1 1008 934 74
0.25 3553 2614 939
0.5 9146 8290 856

J.M. normal 0.1 162 176 0
0.25 975 906 69
0.5 2386 2191 195
1.0 4652 4000 652

J.M. tumour 0.1 336 317 19
0.25 1973 1662 311
0.5 3783 3748 35
1.0 6863 6046 817

M.Y. normal 0.1 328 304 24
0.25 711 659 52
0.5 1724 1448 276

M.Y. tumour 0.1 641 604 37
0.25 1413 1292 121
0.5 3690 2628 1062

Table 3 (continued) Colorectal patients normal and tumour results :
3. Fresh tissue samples - homogenisation method

(page three of three)
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[125I-G17]
(nM)

Membrane Total
(cpm)

Non
specific
(cpm)

Specific
(cpm)

% Specific 
binding

0.125 Body 1945 819 1126 58

0.25 a 3322 1646 1676 50

0.5 a 4682 4059 623 13

0.125 Tumour 314 272 42 13

0.25 574 446 128 22

0.5 a 1191 1034 157 13

Results are representative of two experiments performed in duplicate

Table 1 Effect of increasing radiolabel concentration on 125I-G17
binding to membranes from patient J.N.
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Time
(mins)

Membrane Total
(cpm)

Specific
(cpm)

% Specific 
binding

2.5 Body 1963 505 51

5 tt 3677 1875 49

15 a 3641 1777 46

30 a 3530 1610 42

60 a 3537 1481 42

2.5 Tumour 748 42 6

5 a 1174 58 5

15 a 1163 161 14

30 a 1119 92 8

60 a 1056 - -

Results are from one experiment in duplicate

Table 2 Association time courses for membranes from patient J.N.
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Concentration
(M)

% Binding of 
Maximum

L365260 
% Binding of 

Maximum

L364718 
% Binding of 

Maximum

5 x 10-6 _ - 8

1 x 10"6 - - 18

5 x 107 - - 40

1 x 10'7 - - 59

5x10-® - 1 78

1 x 10"8 - 8 86

5 X 1 0 9 1 21 92

1 X 10'9 18 48 91

5 X 10‘° 40 64 90

1 X 10I# 68 78 94

5 X 10'" 72 84 -

1 X 10'" 81 90 -

5 X 10" 90 91 -

1 X 10" 92 92 -

Results are representative of two experiments in duplicate

Table 3 Displacement of 125I-G17 binding to body membranes from
patient J.N.
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[125I-G17]
(nM)

Membrane Total
(cpm)

Non-specific
(cpm)

Specific
(cpm)

% Specific 
binding

0.125 Body 2286 1944 342 15

0.25 ( t 3544 2876 668 19

0.5 44 7931 5448 2483 31

0.125 Antral 1762 1646 116 7

0.25 <« 2518 2234 284 11

0.5 (4 5478 4891 587 11

0.125 Tumour 462 413 49 11

0.25 44 948 902 46 5

0.5 44 2308 1517 791 34

Results are representative of two experiments in duplicate

Table 4 Effect of increasing radiolabel concentrations on 125I-G17
binding to membranes from patient J.M.
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Concentration
(M)

G17 
% Binding of 

Maximum

L365260 
% Binding of 

Maximum

L364718 
% Binding of 

Maximum

1 x 10 5 . _ 1

1x10^ - - 14

1 x 107 9 13 48

1 xlO* 35 54 74

1 x 10 9 50 86 83

1 x 1010 78 92 98

1 x 1011 91 94 -

1 xlO12 92 98 -

Results are from one experiment in duplicate

Table 5 Displacement of 125I-G17 binding to
body membranes from patient J.M.
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[125I-G17]
(nM)

Membrane Total
(cpm)

Non
specific
(cpm)

Specific
(cpm)

% Specific 
binding

0.125 Body 1246 642 604 48

0.25 3064 1930 1134 37

0.5 (6 5762 3400 2362 41

0.125 Antral 442 401 41 9

0.25 K 1062 956 106 10

0.5 u 2147 1963 184 9

0.125 Tumour 1062 758 304 29

0.25 «( 3006 2494 512 17

0.5 a 4866 3919 947 19

Results are representative of one experiment in duplicate

Table 6 Effect of increasing radiolabel concentrations on 125I-G17
binding to membranes from patient G.S.
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Concentration
(M)

G17 
% Binding of 

Maximum
+/-SD

G34 
% Binding of 

Maximum
+/-SD

1 x 10 7 4+/-3 3+/-2

1x10* 12+/-2 15+/-1

1 x 10 9 36+/-4 41+/-3

1 x 1010 61+/-1 65+/-4

1 X 10" 89+/-3 95+/-4

1 X 1012 91+M 92+1-2

1 x 1013 - 90+/-1

1 x 1014 - 100+/-2

n = 3 experiments in duplicate

Table 8 Agonist displacement of 125I-G17 binding to body
membranes from patient G.S.
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Concentration
(M)

L365260 
% Binding of 

Maximum
+/-SD

L364718 
% Binding of 

Maximum
+/-SD

1 x 10 5 _ 2+1-2

1 x 10 6 - 26+/-4

1 x 10 7 17+/-1 51+/-1

1x10^ 35+/-2 80+/-2

1 x 10 9 62+/-2 88+/-7

1 x 1010 78+/-3 93+/-12

1 x 10" 91+/-1 -

1 x 10'“ 95+/-1 -

n = 3 experiments in duplicate

Table 9 Antagonist displacement of 125I-G17 binding to body
membranes from patient G.S.
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[125I-G17]
(nM)

Membrane Total
(cpm)

Non-specific
(cpm)

Specific
(cpm)

% Specific 
binding

0.125 Body 4632 3847 785 17

0.25 a 9448 7246 2202 23

0.5 a 14008 12986 1022 7

0.125 Antral 2166 1966 200 9

0.25 a 5348 4814 534 10

0.5 u 9262 8887 375 4

0.125 Tumour 1506 1287 219 15

0.25 a 3048 2546 502 16

0.5 a 5962 5132 830 14

Results are representative of two experiments in duplicate

Table 10 Effect of increasing radiolabel concentration on 125I-G17
binding to membranes from patient F.S.
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Concentration
(M)

G17 
% Binding of 

Maximum

1 x 10'7 12

1 x 10-8 36

1 x 10 9 74

1 x 1010 86

1 x 1011 91

1 x 1012 94

Results are from one experiment in duplicate

Table 11 Displacement of 125I-G17 binding to body
membranes from patient F.S.
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[125I-G17]
(nM)

Membrane Total
(cpm)

Non-specific
(cpm)

Specific
(cpm)

% Specific 
binding

0.125 Body 1867 1689 178 10

0.25 4184 3977 207 5

0.5 a 6745 5350 1395 21

0.125 Tumour 347 297 50 14

0.25 a 670 632 38 6

0.5 «« 1182 1008 174 15

Results are representative of two experiments in duplicate

Table 13 Effect of increasing radiolabel concentration on 125I-G17
binding to membranes from patient A.H.
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[125I-G17]
(nM)

Membrane Total
(cpm)

Non-specific
(cpm)

Specific
(cpm)

% Specific 
binding

0.125 Antral 562 398 164 29

0.25 a 1034 824 210 20

0.5 a 1744 1504 240 14

0.125 Tumour 362 308 54 15

0.25 a 824 811 13 2

0.5 a 1286 1136 150 12

Results are representative of two experiments in duplicate

Table 14 Effect of increasing radiolabel on 125I-G17 binding to 
membranes from patient C.R.
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[125I-G17]
(nM)

Membrane Total
(cpm)

Non-specific
(cpm)

Specific
(cpm)

% Specific 
binding

0.125 Antral 663 513 150 23

0.25 <( 1214 998 216 18

0.5 a 2210 1502 708 32

0.125 Tumour 902 847 55 6

0.25 a 1510 1332 178 12

0.5 u 3157 2394 763 24

Results are representative of two experiments in duplicate

Table 15 Effect of increasing radiolabel concentration on 125I-G17
binding to membranes from patient S.H.
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APPENDIX V

Poster

“Development of an assay to detect gastrin receptors in gastrointestinal tumours”
Presented as a poster at the British Society of Gastroenterology in Edinburgh, September 
1994.

Presentation

“Development of an assay to detect gastrin receptors in the human gastrointestinal tract”
Oral presentation at the British Society of Gastroenterology in Brighton, March 1996.

Publications

JF Mackenzie, CA Dorrian, ID Penman, VP Gerskowitch, KEL McColl. Development 
of an assay to detect gastrin receptors in gastrointestinal tumours. Gut 1994; 35 (suppl) : 
S73 (abstract)

JF Mackenzie, CA Dorrian, ID Penman, VP Gerskowitch, KEL McColl. Development 
of an assay to detect gastrin receptors in the human gastrointestinal tract. Gut 1996; 
(suppl): T146 (abstract)
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