
UNIVERSITY

GLASGOW

Department of
Computing Science

Staged Methodologies
for Parallel Programming

Noel William Winstanley

A thesis submitted fo r a Doctor o f Philosophy Degree in

Computing Science at the University o f Glasgow

April 2001

© Noel Winstanley 2001

ProQuest Number: 11007875

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007875

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Con \

Abstract

This thesis presents a parallel programming model based on the gradual introduction of
implementation detail. It comprises a series of decision stages that each fix a different
facet of the implementation. The initial stages of the model elide many of the parallelisa-
tion concerns, while later stages allow low-level control over the implementation details.
This allows the programmer to make decisions about each concern at an appropriate level
of abstraction. The model provides abstractions not present in single-view explicitly par­
allel languages; while at the same time allowing more control and freedom of expression
than typical high-level treatments of parallelism.

A prototype system, called PEDL, was produced to evaluate the effectiveness of this
programming model. This system allows the derivation of distributed-memory SPMD
implementations for array based numerical computations. The decision stages are struc­
tured as a series of related languages, each of which presents a more explicit model of
the parallel machine. The starting point is a high-level specification of the computational
portion of the algorithm from which a low-level implementation is derived that describes
all the parallelisation detail. The derivation proceeds by transforming the program from
one language to the next, adding implementation detail at each stage. The system is
amenable to producing correctness proofs of the transformations, although this is not
required.

All languages in the system are executable: programs undergoing derivation can be
checked and tested to provide the programmer with feedback. The languages are imple­
mented by embedding them within a host functional language. Their structure is repre­
sented within the type system of the host language. This allows programs to be expressed
in languages from a combination of stages, which is useful during derivation, while still
being able to distinguish the different languages.

Once all the parallelisation details have been fixed the final implementation is generat­
ed by a process of transformation and translation. This implementation is a conventional
imperative program in which communication is provided by the MPI library. The the­
sis presents case studies of the use of the system: programs undergoing derivation were
found to be clear and concise, and it was found that the use of this system introduces little
overhead into the final implementation.

Acknowledgements

I an grateful to my family, my friends and my supervisor

John O ’Donnell for all the advice, support, and encouragement

they have given over the last four years. Thanks to you all.

Declaration

I hereby declare that this thesis has been composed by my­

self, that the work herein is my own except where otherwise

stated, and that the work presented has not been presented for

any university degree before.

Contents

Abstract i

1 Introduction 1

1.1 B ackground... 2

1.2 Summary of Research... 5

1.3 C ontributions... 6

1.3.1 Primary C ontribu tions.. 6

1.3.2 Secondary C ontributions... 7

1.4 Thesis S tructure.. 9

2 Parallel Programming Models 11

2.1 Single-Stage Programming M odels.. 12

2.1.1 Explicit Parallel Program m ing... 13

2.1.2 Data Parallel Programming.. 14

2.1.3 Synchronous Parallel P rogram m ing.. 18

2.1.4 Skeleton Program m ing.. 20

2.1.5 Dataflow L an g u ag es..22

2.1.6 Parallel Functional L anguages... 23

2.1.7 S um m ary ... 25

2.2 Many-Stage Programming M o d e ls ..25

2.2.1 Programming by Transformation.. 26

2.2.2 SAT: Stages and T ransform ations... 27

2.2.3 FAN: Formal Abstract N o ta tio n .. 28

2.2.4 Aspect Oriented Program m ing... 29

2.2.5 TwoL Programming M ethodology... 30

2.2.6 Abstract Parallel M achines..32

2.2.7 D iscu ss io n .. 35

2.3 Our D e s ig n ...37

2.4 S u m m a ry .. 38

CONTENTS iv

3 PEDL - A Staged System for Group-SPMD Programming 39

3.1 Stages of the S y s te m .. 40

3.2 Common Language F ea tu re s ... 43
3.3 Collective-View P rogram m ing.. 44

3.4 Replicated and Distributed D a t a ...46

3.4.1 A Problematic Example ...47
3.4.2 Generating Distributed D a t a .. 48

3.4.3 Partitioning... 49

3.4.4 An ADT for Distributed Data ...49

3.4.5 Generating Replicated D a t a .. 50

3.5 Decision-Making S ta g e s .. 51

3.5.1 Independent Computation S ta g e .. 51

3.5.2 Distribution Stage ...52

3.5.3 Explicit Communication S tag e ... 53

3.6 Final Im plem entation...55

3.7 S u m m a ry .. 56

4 Formal Definition of PEDL 57
4.1 Syntax and Semantics of the PEDL Languages ... 58

4.1.1 Language B a s ic s .. 59

4.1.2 Program B locks... 62
4.1.3 Control Structures ...64
4.1.4 Parallelism C o n stru c ts .. 66

4.1.5 Computational Language...70

4.1.6 Independent Computation S ta g e ..72

4.1.7 Distribution Stage ...73
4.1.8 Explicit Communication S tag e ... 76

4.1.9 Intermediate L anguage.. 79
4.1.10 S um m ary ... 83

4.2 Parallel Behaviour of the Coordination Languages.. 84

4.2.1 The Definition of a P a r O p ..84

4.2.2 An APM for P E D L ...85

4.2.3 S um m ary ... 88

4.3 Reasoning about the Languages ... 89

4.3.1 V alid ity .. 89

4.3.2 An Example P r o o f ...91

4.4 C orrec tness ...94

4.5 S u m m a ry .. 94

CONTENTS v

5 Implementing a Series of Domain Specific Embedded Languages 96
5.1 Embedded Languages...97

5.1.1 Combinator L ibraries..98
5.1.2 Monadic Combinator Libraries... 99
5.1.3 Domain Specific Embedded L an g u ag es ... 102
5.1.4 C onclusion .. 103

5.2 Embedding the PEDL Languages in H askell.. 104
5.2.1 Why H askell?...104
5.2.2 Implementation Aims ...105
5.2.3 Controlling the Host Language..106

5.3 Distinguishing Between Languages ... 109
5.3.1 Encoding Languages as Phantom T y p e s ..110

5.3.2 Another use of Phantom T ypes... 117
5.3.3 Mixing L an g u ag es... 118

5.4 S u m m a ry ...120

6 Using PEDL 122
6.1 One Dimensional Wave Equation..123

6.1.1 Specification S ta g e ... 124
6.1.2 Independent Computation S ta g e .. 125
6.1.3 Distribution Stage ... 126
6.1.4 Explicit Communication S tag e ..127
6.1.5 Intermediate F o r m ... 129
6.1.6 Simplification...130
6.1.7 Translation to SAC+M PI... 131

6.2 Maximum Segment S u m ...133
6.2.1 Specification S ta g e ... 133
6.2.2 Independent Computation S ta g e .. 134
6.2.3 Explicit Communication S tag e ..136
6.2.4 Intermediate F o r m ... 137
6.2.5 Translation to SA C+M PI... 138

6.3 S u m m a ry ...138

7 Code Generation 140
7.1 Change of View T ransform ation..142

7.1.1 The Transformation... 143
7.1.2 An Example ...144
7.1.3 C orrectness.. 145

7.2 Simplification.. 145

CONTENTS vi

7.3 SAC Supporting Libraries ..147
7.3.1 Developing an MPI b in d in g ...148
7.3.2 PEDL Wrapper F u n c tio n s .. 149
7.3.3 Runtime E nv ironm en t...149

7.4 Translation to the Target L anguage.. 150
7.4.1 Translating Structures ...150
7.4.2 Translating Array operations...151

7.5 Discussion...152
7.6 Further W o r k .. 154

8 Conclusions 155
8.1 S u m m a ry ...155
8.2 C ontributions.. 157

8.2.1 The PEDL S y s te m ... 157
8.2.2 Staged Programming M odels...158
8.2.3 Implementing Embedded Languages..159

8.3 Further W o r k .. 161
8.3.1 Extending the Parallelism M odel.. 161
8.3.2 Developing the S ystem ...161
8.3.3 Tool S u p p o r t ...163

A Sources for the Case Studies 166
A.l Wave E q u a t io n ...166

A. 1.1 P E D L C o d e s ...166
A. 1.2 Simplified V e rs io n ... 169
A. 1.3 SAC Code .. 170
A. 1.4 R unlogs...172

A.2 Maximum Segment S u m ...173
A.2.1 P E D L C o d e s ...173
A.2.2 Simplified V e rs io n ... 176
A.2.3 SAC Code .. 177
A.2.4 R unlogs...179

B Bibliography 180

List of Tables

2.1 Features provided by different incremental programming methods 37

5.1 A comparison of inheritance in COM interfaces and PEDL languages . . 1 1 2

List of Figures

3.1 The stages of the PEDL system ...41
3.2 Comparison of message passing in different v iew s...44
3.3 Example data distributions for a ten-element vector v over five processors 46
3.4 Example translation from the coordination language to C + M P I......................47
3.5 A parallel sum o f decomposed values A and B on a partition o f five pro­

cessors ..48
3.6 Concurrent computations on child partitions .. 49
3.7 A global sum of replicated values A and B on a partition of five processors 50
3.8 Collective Communications..53

4.1 Transformational semantics for the intermediate langauge................................81
4.2 Standard form of a P a r O p ..85
4.3 LHS of proof of Equation 1 ... 91
4.4 RHS of proof of Equation 1 ... 92

5.1 Hierarchy of constructs .. I l l
5.2 Hierarchy of language characteristic ty p e s ..113

7.1 The change of view transformation...143

Chapter 1

Introduction

Parallel computation promises shorter execution times or the ability to process greater
quantities of data compared to sequential computation. However, in practice it is hard to
realize a parallel implementation that comes close to achieving its theoretical potential.
This is because efficient cooperation between processors is difficult to implement.

Parallelism introduces a new set of concerns for the programmer: the scheduling of com­
putations; placement of data; synchronization; and communication between processors.
This adds greatly to the complexity to the programming task. An implementation must
manage all these concerns in addition to computing a result.

Parallel programming languages and methodologies typically attempt to assist the pro­
grammer in one of two ways. The first approach is to provide layers of abstraction that
hide the low-level details of the parallel machine from the user. This simplifies the pro­
gramming task but reduces control over the finer details of the parallel implementation.
Other languages provide as little abstraction as possible and require the parallelisation
concerns to be managed explicitly. A skillful programmer can produce efficient imple­
mentations in such languages. However they are hard to use effectively; furthermore the
code produced is often unclear, brittle and machine-specific.

The weakness o f these two approaches is that they present a single fixed level o f abstrac­
tion. Implementing parallel algorithms is more complicated than implementing their se­
quential counterparts, while at the same time the efficiency of the implementation is very
important. This suggests a programming model that combines the benefits of both ap­
proaches: one that abstracts away from the complexity while still permitting fine control
when necessary.

This thesis proposes a programming model based on the gradual and systematic introduc­
tion of implementation detail. This model provides a sequence of appropriate levels of
abstraction. The initial stages of the process provide abstractions over the parallelisation

1.1 Background 2

concerns. Additional concerns are exposed at each stage of the sequence until a fully-
specified parallelisation results. This allows efficient implementations to be produced
from programs that are clear, modular and portable.

To evaluate the effectiveness of this model we have produced a prototype system that
applies the programming model to producing parallel implementations for array-based
numerical algorithms.

1.1 Background

We begin with a brief review of some of the terminology, concepts and issues that arise
in the field of parallel computation. The reader who requires further detail is referred to
a standard textbook such as (Wilson, 1995).

Machine architecture

Parallel machine architectures divide into two broad classes - shared memory systems
and distributed memory systems. Shared memory machines are characterised by a set of
processors that all have direct access to a common memory store, through which they
may communicate. Distributed memory machines are comprised of a set of nodes inter­
connected by a network. Each node is a processor with its own local memory. Data is
exchanged between nodes by exchanging messages across the network.

We choose to focus our attention on distributed memory machines: these systems are
more common, can be constructed from standard uniprocessors, and can accommodate
large numbers of nodes, giving greater potential for parallelism.

Writing programs for distributed memory machines is more difficult than implement­
ing a similar shared memory program. Communication is via message passing, which
introduces concurrency and possibly non-determinacy: in particular deadlock, livelock
and race conditions are all possible. Nondeterminacy greatly confuses reasoning about
program behaviour. The characteristics of the interconnection network - its latency and
bandwidth - must also be considered. Failure to do so may cause processors that are
waiting for a message to block excessively or the network to become saturated.

Implementation issues

As well as specifying the computation to perform, the programmer must manage addi­
tional implementation concerns introduced by parallelism.

1.1 Background 3

The most basic is which parallel decomposition to use; that is, how the algorithm is to
be broken into independent computations that may be executed in parallel. There may
be more than one way that a particular problem can be parallelised. A common method
to use is a data parallel decomposition. This is suitable for algorithms which operate
on regular data-structures such as a matrices or vectors. The data-structure is divided
between the processors, which then each compute a portion of the result. More irregu­
lar computations are better suited to other decompositions. An example is the processor
farm. Here a master processor distributes packets of computation to a pool of work­
er processors. When a worker processor completes a packet a result is returned to the
master processor, which collates the results and allocates further computation to the free
processor.

A related concern is balancing the computational load between processors. A parallel
computation proceeds at the speed of the slowest component: therefore it is important to
ensure that a computational component completes at approximately the same time as its
result is required by another component.

For some problems is is possible to determine which are the more expensive computa­
tions by inspection. In these cases load balancing can be achieved statically by allocating
these components more processors. In other situations a dynamic approach must be
used in which the implementation adapts to expensive computations by re-routing work
elsewhere. The processor-farm decomposition exhibits a simple form of dynamic load
balancing: processors which terminate first are allocated more work. Typically, dynamic
techniques require more communication of data than static solutions. This can introduce
inefficiencies by congesting the communication network.

Another facet in the parallelisation of an algorithm is what scheduling of components to
use. The data dependencies within an algorithm may allow a range of orders of execu­
tion for computational components. The most suitable ordering depends on the problem
decomposition, load balancing and communication patterns used.

In all but the most trivially parallel computations, some data will be computed on one
processor and required by another. Communicating data across a distributed memory ma­
chine is expensive - the network has significant latency and limited bandwidth. Therefore
parallel algorithms are designed to minimize the number of data redistributions required.
The aim is to decompose the problem so that as much as possible of the data required by
a processor is generated locally or on nearby processors. Another technique is to bundle
together in the same communication different data that is to be redistributed in the same
way. This may require adjusting the scheduling so that these results become available at
the same time.

It can be seen that these implementation issues are all inter-connected: changing one

1.1 Background 4

facet of the design will impact on the others. Often these concerns are in conflict: in such
cases an balance must be found between the demands of each of the concerns. Finding
this balance is what makes parallel implementation such a black art.

Abstraction in parallelism

Much research into language design and programming methodologies has been con­
cerned with introducing models of computation that abstract away from the low-level
machine details. Whether it is an incremental change, such as the introduction of subrou­
tines or the heap abstraction provided by C; or an innovation such as the execution model
of Prolog; the aim is the same - to simplify the programming task by hiding some of the
complexity of the underlying machine. This is achieved by delegating the management of
some of the implementation concerns to supporting software in the compiler or runtime
system. As the programmer is released from the requirement to manage these concerns
they are more able to concentrate on higher-level problem solving.

Abstractions can have further benefits. For instance, a programming model that abstract-
s from the details of the underlying machine is more likely to give rise to code that is
straightforward to port between platforms. Furthermore, program maintenance is simpli­
fied when working with clear code written using suitable abstractions.

However abstraction comes at a price: the programmer has less control over the imple­
mentation concerns that have been delegated. This is unimportant when the supporting
software produces good results, for example in managing register allocation. Unfortu­
nately this is not always the case. It is known to be computationally difficult to find
solutions to some parallelisation concerns, such as assigning computational components
to processors (Rauber and Riinger, 1996a). Therefore heuristics are commonly used.

When performance of the support software is suboptimal the programmer will have diffi­
culty in correcting the problem. Although a programmer may have the skill to produce a
higher quality implementation, the abstractions of the programming model may prevent
them from doing so. It is sometimes possible to subvert abstractions when needed. How­
ever such work-arounds - dirty hacks - result in the programmer fighting against the very
feature that was intended to make the programming task simpler. Such work-arounds al­
so diminish the other benefits of programming with abstractions - such as transparency,
safety, and portability.

The success of a parallel implementation can be assessed by a single measure: com­
pare the runtime to that of an optimized sequential implementation. Because parallel
processing is solely motivated by performance, it is often unacceptable to delegate im­
plementation decisions to supporting software that may produce sub-optimal results.

1.2 Summary of Research 5

Instead the programmer may favour a programming model that provides the low-level
control necessary to produce the best result. This is even though a programming model
with few abstractions may make the programming task more difficult, the code harder to
reason about and verify, and the resulting implementation harder to debug and maintain.

1.2 Summary of Research

The purpose of this thesis is to show that it is possible to accommodate comfortably both
abstraction and low-level control of parallelism within a single programming methodolo­
gy; and that such a methodology possesses many of the benefits of both abstraction- and
control-based approaches.

The methodology is composed of a series of n stages, each of which has an associated lan­
guage L i , . . . , Ln. Language Li allows the expression of computations: all parallelisation
details are left unspecified. Each of the following languages in the series L*, i = 2 , . . . , n
extends the previous language with constructs that make explicit the implementation
decisions of an additional parallelisation concern. Therefore each language has a lower
level of abstraction than its predecessor in the series.

The process starts by expressing the computational portion of the algorithm as a pro­
gram in language L\. Parallel implementation details are then incrementally introduced
by rewriting this program in every language of the series in turn. Each transformation
between stages only requires the programmer to make decisions about a single paralleli­
sation concern: the decision is supported by a language that presents an appropriate level
o f abstraction for that concern. The series of stages provides structure to the derivation.
The introduction of parallel implementation details is ordered so that the higher-level,
more fundamental decisions are taken before lesser concerns are tackled. By the time the
program has been rewritten in language Ln all the parallelisation details have been speci­
fied. A conventional implementation can then be produced with little further intervention
from the programmer.

We have designed and implemented a prototype of an incremental programming system
which we call PEDL (Parallel Embedded Derivation Languages). This system can be
used to produce parallel implementations of array-based computations. The result of
the system is an imperative program expressed in the Group-SPMD programming model
(Rauber and Riinger, 1996b). The target architecture is a distributed-memory machine
where communication is provided by the MPI library (MPI Forum, 1995).

PEDL comprises a series of stages which introduce the parallelisation concerns partic­
ular to the Group-SPMD model. The languages of the system are first-order functional
and share a common core of constructs. All the languages of the series are well-defined

1.3 Contributions 6

and executable. This allows programs undergoing derivation to be be verified, reasoned
about, statically checked and tested. It is possible to perform equational reasoning and
program transformation both within a language of a single stage and between languages
of different stages. The intermediate programs of the derivation can be used as docu­
mentation, proof of correctness and as a starting point for porting the program to another
architecture.

Once the program is expressed in the language of the final stage in the series all the im­
plementation details have been provided. A process of transformation and simplification
is then performed to produce an intermediate program. This can then be trivially trans­
lated to the target language. We have carried through some preliminary case studies to
evaluate the utility of the PEDL system.

1.3 Contributions

This section describes the research contributions made by this thesis.

1.3.1 Primary Contributions

Staged programming methodology

This thesis reviews a range of parallel programming systems and their ability to mask the
complexity of parallel programming while allowing low-level control where necessary.
This survey highlights the inadequacy of a single level of abstraction. We examine a
group of programming methods that allow the incremental introduction of detail: these
systems provide different levels of abstraction during the implementation process. These
systems are compared and their common properties are identified. These qualities are
use to motivate our prototype PEDL system.

The PEDL system

The PEDL system was produced to investigate methods of combining different levels of
abstraction within the same programming system. It is a staged programming method
structured as a series of distinct languages. This combines the benefits of a concrete
language semantics with varying levels of abstraction and the structured introduction
of implementation decisions. These features permit transformation and reasoning on
intermediate programs, and allows them to be simulated and verified.

1.3 Contributions 7

We have performed case studies that demonstrate the use of the system. Programming
in the system was found to be tractable: the intermediate programs are clear and concise
while still allowing fine control over the parallel behaviour. The resulting programs are
conventional imperative message-passing implementations and have been executed on a
network of workstations.

Embedded implementation of languages

The PEDL stage languages are implemented by embedding them within a pure, lazy
higher-order functional language. This simplifies the implementation and language de­
sign because many features can be inherited from the host language. A further benefit for
our system is that the host language provides a common semantic base for all the stage
languages.

This implementation serves as a case study of the technique of embedded implementa­
tion. As well as using existing methods, such as structuring computation as monads,
the novel requirements of embedding a series of languages led to the development of
new techniques. The languages of the different stages and layers in PEDL must remain
distinct and yet in some circumstances can be safely combined. We describe the use of
Phantom Language Types (Section 5.3) to represent within the type system of the host
language the static semantics of the languages and their legal combinations.

1.3.2 Secondary Contributions

This section describes some secondary contributions made by the thesis.

Use of APMs

The parallel behaviour of the PEDL languages is described using the Abstract Parallel
Machine (APM) methodology (O’Donnell and Riinger, 1997b). An abstract parallel ma­
chine is defined whose site states model the local store of each processor. The parallel
constructs are then described by operations over this abstract machine.

APMs are usually used for algorithm derivation. As far as we know, this is the first time
they have been used to describe the behaviour of language constructs. It was found that
the existing methodology was sufficient to describe constructs which performed com­
munication or distributed computation. However, it was necessary to extend the parallel
operation formalism to express constructs that partitioned the parallel machine into inde­
pendent groups.

1.3 Contributions 8

Two layer languages

The PEDL stage languages combine two views of the parallel computation: a collective
layer that describes coordination and communication and a individual processor layer for
expressing computation.

Each layer may only safely manipulate distributed data in certain ways: we must ensure
that computation does not occur in the collective layer, and that non-local accesses do
not occur in the processor layer. An abstract datatype is used to represent distributed
data: this enforces the correct usage by providing different operations for each layer. The
collective layer may permutate entire data structures to perform communication, while
the processor layer may access the local element of a data structure while performing
computation.

The two-layer approach provides more safety and structure than the typical flat paral­
lel programming language; it prevents many operations from being used inappropriately
and ensures the integrity of replicated data. However it is not suitable for implementation
directly by conventional imperative languages. We define the Change of view transfor­
mation (Section 7.1) which is used during the production of the final implementation to
combine the two layers to leave a residual single-level program.

Mixed language programs

It was discovered that the derivation process was simplified by being able to mix lan­
guages from adjacent decision stages within a single program. At each stage, the com­
putational models and constructs of the adjacent languages are so similar that a program
expressed in a mixture of the languages can be considered to be well-defined. Mixing
languages allows the programmer to perform a gradual transformation between stages
while using the compiler to validate and execute each intermediate program. The phan­
tom language types ensure that languages may only be mixed correctly and that a clean
separation is maintained between components in different languages. This is another lev­
el of staging and decision delaying - the whole of a derivation step does not need to be
thought through before preliminary steps can be made and verified.

Compilation method

Although the PEDL languages are first-order functional and are implemented by embed­
ding within a higher-order functional host language, the final result of a parallel derivation
is a conventional imperative program.

1.4 Thesis Structure 9

This thesis describes techniques for flattening and simplifying the results of a PEDL
derivation so that a program in a simple intermediate language results (Section 7.2). This
can then be straightforwardly translated to the target language (Section 7.4). This process
can almost all be automated. However, user input is required to translate some small
fragments of code expressed in the host language.

1.4 Thesis Structure

The structure of this thesis is as follows:

Chapter 2 evaluates a selection of parallel programming languages and methodologies.
These systems are assessed for their ability to provide suitable levels of abstraction to
mask the complexity of parallel programming while allowing low-level control where
required. We also consider their generality, expressiveness and suitability for distributed-
memory machines. We examine a class of systems that seem to offer the best solution
and identify the features these systems have in common. From this analysis the criteria
for the design of the PEDL system are formulated.

Chapter 3 introduces PEDL, our prototype incremental programming system. The series
of decision stages and the corresponding languages are presented. The languages have
a two-layer structure of a coordination layer with a collective view scheduling blocks of
computational, processor-view code. Methods for allowing the two layers to manipulate
distributed data safely are examined. A core set of constructs common to all languages
is described, followed by an examination of the features specific to each decision stage
language. We also present the intermediate language used in the generation of the final
imperative implementation.

Chapter 4 gives a formal definition of the PEDL languages. The syntax and operational
semantics of the common language core are described. Following this the constructs
unique to each stage are defined. The parallel behaviour of the languages is then spec­
ified using the Abstract Parallel Machine methodology. Finally, the technique used for
reasoning about the programs is described and examples given.

Chapter 5 describes the implementation of the PEDL system. The development of the
technique of embedding within a host language is surveyed and our choice of host lan­
guage justified. The remainder of the chapter describes techniques for structuring the
embedding so that the occurrence of host language features is controlled and a distinc­
tion maintained between the different stages and levels of the system.

Chapter 6 evaluates the utility of the PEDL system by applying it to two case studies: the
one-dimensional wave equation and the maximum segment sum problem. These studies

1.4 Thesis Structure 10

demonstrate an incremental programming system in action. The result of the derivations
are conventional message-passing programs which have been executed on a network of
workstations.

Chapter 7 describes how an imperative implementation is generated from a completed
derivation. This has two phases. First the collective-view coordination layer is trans­
formed away. The resulting single-processor view program is then simplified and trans­
lated to the target language. The design of libraries to support the implementation is also
presented.

Chapter 8 draws conclusions about staged systems for parallel implementation. It eval­
uates the potential of the staged programming approach, lessons learned from the design
and implementation of PEDL, and identifies areas of future work.

Chapter 2

Parallel Programming Models

Capsule

Many programming models have been proposed for parallel programming. The
commonest present one view of the program at a single level of abstraction. This
chapter reviews a range of these models and compares their strengths. We are partic­
ularly interested in models that permit the production of efficient implementations
for distributed memory machines. Regardless of the level of abstraction chosen by
the language designer, such models must compromise between allowing explicit
control of the implementation details and providing increased clarity, structure and
conciseness of expression.

Producing a parallel implementation is more complex than producing an equiv­
alent sequential implementation, and yet it is important that the implementation is
efficient. This would suggest that the programmer requires the full benefits of both
high and low levels of abstraction, rather than a trade-off between the two.

We survey a group of programming models based on the gradual introduction
of implementation detail. Such models can provide multiple views of a program,
allowing it to be presented at different levels of abstraction where needed. The
chapter identifies a set of qualities that are commonly exhibited by these models.
These qualities form the basis of the design of the PEDL system.

2.1 Single-Stage Programming Models 12

Introduction

Parallelism requires the programmer to consider a set of factors not present in sequential
code. The complexity these features create propagates throughout the program and can
seriously hinder the production, maintenance and portability of efficient parallel imple­
mentations. A successful parallel programming system should support the programming
task by: hiding the inherent complexity of the problem; simplifying reasoning about cor­
rectness and parallel behaviour; allowing prototypes to be produced; and be amenable to
performance prediction. At the same time, a successful model must allow efficient, main­
tainable, and portable implementations to be produced. This chapter examines the ability
of different systems proposed for parallel programming to satisfy these requirements

We first examine conventional methods based upon a programming language providing
a single level of abstraction. Although successful in some circumstances, these models
have difficulty in finding a balance between control and abstraction. In some cases the the
level of abstraction is too low to aid the programmer much. Others provide the abstraction
necessary to manage the complexity but prevent the programmer from having fine control
over the parallel behaviour of the program. Instead, much of the decision making is
delegated to an optimising compiler or runtime system. If such tools under-achieve,
there is little the programmer can do to improve the performance.

Section 2.2 describes a set of program development models based on some form of de­
layed decision making. Here implementation decisions are made incrementally, often
each presented at a different level of abstraction. The gradual introduction of detail make
the programming task manageable while exposing the low-level details of the imple­
mentation towards the end of the process. We analyze the common properties of these
staged models and develop a proposal for a programming system that exhibits all these
properties in a concrete setting (Section 2.3).

2.1 Single-Stage Programming Models

In this section we survey the main approaches currently taken for programming paral­
lel machines. We start with the mainstream method, writing parallel programs using
a sequential language combined with a communication library. After identifying the
strengths and weaknesses of this technique, we examine some alternatives.

2.1 Single-Stage Programming Models 13

2.1.1 Explicit Parallel Programming

The most direct method for programming parallel systems is to view them as a collection
of interacting sequential processors. Each processor is programmed using a conventional
sequential language. Communication is achieved by calling message-passing libraries. A
level of portability can be achieved by using a standard communication API such as MPI
(MPI Forum, 1995) or PVM (Geist et al., 1994) which are available on many different
platforms.

The popularity of this method is understandable: the programmer does not need to learn a
new language; the programmer has direct and absolute control over the way an algorithm
is expressed; there are few abstractions to introduce execution overhead; and there is
extensive experience, support and libraries of sequential code written using this method.

However, it is not easy to gain a clear picture of the global behaviour of the machine from
the program source. Sections where the computations of different processors differ are
typically expressed using case statements or expressions over the processor rank. This
allows the behaviour of the entire system to be represented within a single executable but
the code is liable to get very tangled.

Related to the difficulty in understanding the behaviour of the parallel machine is ensur­
ing that the processors communicate and synchronize correctly. Communicating a single
message typically requires two library calls - a send and a receive. As these calls will
occur in different branches of the program it is hard to ensure that the pairs of library calls
match up as intended. Similarly, calls to initialize communication system objects, such
as the communicators of MPI, must be executed by all processors, and each must pass
identical parameters to the call. The sequential language provides no support for these
constraints, and so deadlock and other hard-to-find errors are a common occurrence dur­
ing development.

Furthermore, this method makes it hard to develop parallel programs incrementally -
exploration and experimentation are discouraged because they require extensive restruc­
turing of the code. Rather, the programmer makes a set of arbitrary implementation
decisions and then codes the program. Provided the performance is acceptable, the first
implementation is often settled upon. It is also difficult to prove properties of programs
written in this style because non-determinism is exposed by the communication model.

The use of standard communication libraries such as MPI allow programs to be compiled
on various machines. However, performance will suffer unless the configuration of the
target machine is identical to the original. To improve performance, the program has to
be reworked to the new machine configuration. This is problematic when the program
was implemented directly on the original machine, as there is no prototype on which a

2.1 Single-Stage Programming Models 14

ported version can be based, and the tangled nature of the code makes comprehension
difficult.

In summary, explicit parallel programming provides fine control of all aspects of the
parallel execution but exposes the programmer to great complexity. The code produced
is brittle, hard to write, understand, maintain and port to other machines.

Although this is one of the commonest techniques used to produce applications for par­
allel machines, its many limitations have led researchers to investigate other ways to
express parallel computation. The following sections review some of the various solu­
tions proposed. We do not aim for an exhaustive survey, rather an representative sample
of the main approaches. A more thorough survey can be found in (Skillicom and Talia,
1998).

2.1.2 Data Parallel Programming

The data parallel model is concerned with the parallelism that arises from the manip­
ulation of large monolithic data-structures such as arrays. There is a wide class of
language designed for programming data-parallel applications. While many of these
languages were designed expressly for this purpose, others are languages which were
already collection-oriented and were later adapted to generate parallel codes. Collection-
oriented languages allow the expression of operations in terms of whole data-structures,
rather than in terms of iterations over the elements of the data structure. The undefined
execution order within the collection-oriented operations allows the computation of the
operation to possibly take place in parallel.

The main characteristics of data parallel languages are a global namespace and a sin­
gle thread of control. Communication and coordination are implicit. Data parallel pro­
gramming languages are generally scalable and easy to use, but lack fine-grained control
mechanisms: the programmer is often limited to just providing hints to the compiler and
cannot take further control of the process.

A typical division of labour is to allow the programmer, at most, to express the distri­
bution of the data structures. All other parallel implementation decisions are left to the
compiler. Although this model works well for regular data-parallel problems, perfor­
mance may suffer when the algorithm is irregular. Furthermore, this model is unsuited to
problems that are more naturally expressed in a control-parallel manner.

HPF

A well known example of a data parallel language is High Performance FORTRAN (H-
PF) (HPF Forum, 1993). This is an extension of FORTRAN by a system of annotations

2.1 Single-Stage Programming Models 15

that allow the programmer to describe the parallel behaviour of a program.

The main method for expressing parallel behaviour is the f o r a l l loop construct. This
has the same form and behaviour as the conventional do loop but indicates to the com­
piler when loop iterations can be computed independently. This is more feasible than the
compiler analyzing every conventional do loop in the program and trying to determine
which loops have independent iterations and contain useful parallelism. In general, the
compiler cannot verify that the loop body of a f o r a l 1 construct is actually independent.
It is a burden of proof on the programmer that there is no implied sequencing in the loop
body. This is a source of errors.

Collection-oriented array operations are also provided by the language, such as element­
wise map operations and reduces. These are implemented (conceptually at least) by the
f o r a l l loop construct and provide a higher level of abstraction for the programmer.

The other feature of the HPF system is a system of directives that describe the desired dis­
tribution of arrays. Iterations of parallel loop bodies are distributed between processors
according to where the corresponding array elements are located. Although HPF has a re­
distribution directive, the compiler is free to redistribute data when needed. For instance,
an element-wise collection-oriented operation involving two arrays with different distri­
butions will result in a redistribution. However, the programmer has no knowledge of
how and when the redistribution is performed. If he did he may be able to take advantage
of it later in the program, otherwise he may write code that requires more redistribution
than is necessary. The only way to circumvent this is to describe all redistributions ex­
plicitly, which places a burden on the programmer and leads to over-specified programs.

NESL

NESL (Blelloch, 1992) is a functional language that allows the expression of nested
data-parallelism. NESL is a strongly-typed first order language which is loosely based
on ML. It has polymorphic types and a system of ad-hoc function overloading. In this
language sequences are a primitive type; parallelism arises exclusively in operations on
these sequences.

Nested data parallelism is not supported by many data-parallel languages. It simplifies
the parallelization of algorithms but complicates the implementation and cost model­
ing. In particular it is useful for expressing irregular data structures; divide and conquer
problems; and algorithms using recursive data structures. Furthermore, it allows paral­
lel components to be reused without the programmer having to be aware of the internal
parallel behaviour.

NESL provides an ‘apply to each’ construct, which maps a function over the elements of

2.1 Single-Stage Programming Models 16

a sequence and also allows filters to be expressed. It is similar to the set comprehension
of mathematics, or the list comprehension of Miranda (Turner, 1985). The element com­
putations expressed using this construct are independent and are executed in parallel. The
‘apply to each’ construct can be nested to express nested parallelism. The user-defined
functions mapped over sequences may themselves contain further parallelism. The lan­
guage also provides a collection of primitive collection-oriented functions that operate
over an entire sequence, for example sum, maximum, and reverse. Many of these primi­
tives have a parallel implementation.

Performance prediction can be calculated from the source. Values for two complexity
measures, work complexity and depth complexity, are defined for each of the primi­
tives and can be composed across expressions. The work complexity gives the execution
time if executed on a serial RAM machine model. The depth complexity represents the
deepest path taken by an expression: this gives the execution time when executed on an
unbounded number of processors. When used together, the two complexities place an
upper bound on the asymptotic execution time for a PRAM machine model.

Compilation of a NESL program generates code for an abstract machine in an interme­
diate language called VCODE. This is a stack-based language where the objects on the
stack are vectors of atomic values. The most important phase of the compilation is flat­
tening the nested parallelism. Nested sequences are converted to sets of flat vectors, and
nested maps converted into VCODE operations over the flattened representation. The
VCODE is then compiled to C for the target architecture.

In common with many other single assignment languages for parallelism, NESL has an
exclusively implicit parallel model. The parallelism is encapsulated within the constructs
and primitives provided by the language. Compared to the approach of HPF, this leads to
a clean and comprehensible programming style, where the cost models allow informed
implementation decisions to be made.

NESL is designed to exploit fine-grained parallelism, and is well suited to fine-grain
architectures (such as the connection machine), vector processors and shared memory
systems. On such systems, its performance is comparable to hand-coded FORTRAN
(Blelloch et al., 1994). However, on distributed memory large-grain systems, much of the
potential parallelism in a NESL program will be unproductive. There is no mechanism
for the programmer to supply further information to identify the useful parallelism of a
program.

FISh

FISh (Jay and Steckler, 1997; Jay, 1998) is an Algol-like language for expressing array
computations. It has a higher-order polymorphic type system that maintains information

2.1 Single-Stage Programming Models 17

about the shape (Jay, 1995) of data structures; that is, the dimension and size of an array
is part o f its type.

This type system allows the FISh compiler to determine the shapes and update behaviour
of array expressions: using this information functional code can be converted to pro­
cedural code that updates in-place and an appropriate amount of storage allocated on
which these procedures can operate. Because of this the performance of FISh programs
is comparable to hand-coded C, and can exceed it in polymorphic situations.

(Jay, 2000) describes work in progress to produce a data-parallel variant of FISh. Their
approach is to isolate a purely functional subset of the language and extend it with second-
order array primitives (such as map and reduce) that encapsulate parallel behaviour.

A data-parallel program written in this functional coordination language is compiled into
efficient procedural FISh code for each processor. It is claimed that shape-based cost
analysis will allow the calculation of efficient data distributions for the parallelised arrays.
Furthermore, the programmer may specify data distributions within the existing shaped
type system using nested array types. The design and strengths of FISh suggest that this
language would be particularly effective at performing low-level optimisations after the
algorithmic details have been handled at a higher level.

Bird-Meertens Formalism

The Bird-Meertens formalism (BMF) (Bird, 1987; Bird and de Moor, 1996) is a calculus
for reasoning about functional specifications. Most work has focussed on the theory of
lists but other datatypes have been explored as well. A datatype and a set of operators
over it are defined, along with a collection of basic laws that describe the interactions of
the operators. By repeatedly applying these laws it is possible to start with a formal naive
specification and, step by step, convert this to an efficient program.

(Skillicom, 1990; Skillicom, 1991) advocates the use of BMF as a model for parallel
computation. BMF combinators such as map, reduce and filter are considered to contain
implicit data-parallelism. The parallel implementation of these operation is usually left
unspecified although costs may be provided for each operation.

BMF is sufficiently abstract to be architecture independent, while the strong theory pro­
vides a framework for constructing correct code. The equational laws can be used to
transform from one parallel realization to another. This makes it an attractive frame­
work for designing and reasoning about data-parallel algorithms. However, as BMF is
a transformational notation rather than a programming language there is no defined syn­
tax, semantics, cost model, or implementation. Therefore once an algorithm has been

2.1 Single-Stage Programming Models 18

designed it must be implemented by another means, possibly using skeletons or a data-
parallel language that provides operations similar to the combinators used.

2.1.3 Synchronous Parallel Programming

Programming models that been proposed which allow data-parallel computations to be
expressed in a more explicit fashion than the mostly-implicit approaches described in the
previous section. In these models the choice of communication, data distribution and
scheduling is made by the programmer rather than by the supporting software. Barrier
synchronization of all the processors occurs at regular intervals. This divides a program
into a series of steps and eliminates visible non-determinism, which simplifies reasoning
and performance prediction. Two of the best known examples are BSP (Valiant, 1989;
Skillicom et al., 1996) and SPMD, which is described in (Pfister, 1998).

A BSP program is structured as a series of supersteps. In each superstep processors may
perform local computation and issue requests to send and receive data. A superstep is
terminated by a global synchronization, in which all communications requested within
the superstep are completed. Communication is asynchronous: a request for remote data
is not guaranteed to be satisfied until the end of the current superstep, when all processors
are synchronised.

This pattern of communication and synchronisation prevents most cases of deadlock and
livelock occurring. The only time deadlock may happen is when processors do not all
participate in the synchronization operation that delimits supersteps. The prevention of
deadlock is a valuable aid to the programmer.

BSP provides a cost model for calculating the computation and communication costs for
a superstep. While the model is simple, it is accurate enough to allow the programmer to
make informed implementation decisions.

Although there exist languages specifically designed to support BSP-style programming
- GPL (McColl and Miller, 1995) and OPAL (Knee, 1994), an object-based programming
language - BSP implementation is commonly done using a conventional programming
language in conjunction with a BSP communication library such as that produced at Ox­
ford (Miller, 1993). Although this provides more support and safety for the programmer
than working with raw communication libraries such as MPI, the method retains many of
the weaknesses of programming parallel machines with augmented sequential languages.
For instance, there is still little protection from incorrect use of the library functionality;
the compiler cannot ensure that all processors call the synchronize procedure at the same
points in the program.

The SPMD programming model is similarly structured as a series of supersteps. Each

2.1 Single-Stage Programming Models 19

superstep in this model has a computation phase, where each processor performs local
computation, followed by a communication and synchronization phase where processors
exchange data using a synchronous collective communication.

A collective communication is a regular pattern of message exchanges that all the pro­
cessors participate in. Examples include broadcast, gather and fold. The behaviour of
these operations is known in advance, allowing finely tuned implementations and cost
models to be constructed. Collective operations provide a clearer view of the data redis­
tribution pattern then arbitrary sends and receives. This improves comprehension: it is
possible to ascertain from a single point of the program what communication pattern is
being performed.

The synchronisation provided by the model removes the non-determinacy inherent to
the more general message passing style. Although the implementation of a collective
communication may be non-deterministic, this is hidden within the operation. After the
synchronization barrier the machine is in a stable known state. As with BSP, this means
that deadlock is less likely to occur.

Not all algorithms can be expressed efficiently in the SPMD model. Group-SPMD
(Rauber and Riinger, 1996b) is an extension of this model that allows SPMD compu­
tations to be composed in parallel to calculate intermediate results of a more complex
computation. The processors of the machine may be partitioned into disjoint groups.
Each group executes independently in the SPMD style: no synchronization or commu­
nication takes place between groups. Therefore each group can be reasoned about in
isolation. The results of the computation of the child groups are made available to the
parent computation, which resumes once all the child group computations have complet­
ed.

Although these model appear restrictive, they may lead to better implementations than
the arbitrary message-passing model because programs are more amenable to reason­
ing and performance analysis. These models reduce the occurrence of dangerous non­
determinism and provide abstractions over the simple message-passing routines. This
allows more accurate cost analysis of implementations and better comprehension of the
code.

A limitation of these models is that they lack support for specification or prototyping.
When programming with an imperative language and a communication library, there is
no enforcement of the programming model or detection of aberrant programs. Although
programs which conform to the model have better properties for reasoning, little guidance
is provided on how to design and construct a program so that it fits the model.

2.1 Single-Stage Programming Models 20

2.1.4 Skeleton Programming

It has been observed by (Danelutto et al., 1992) that explicitly parallel programs are made
up of two different kinds of code: task specific code that implements the steps of the
algorithm; and code for structuring the program into patterns of computation and com­
munication for parallel execution. The second kind of code deals with the problematic
aspects of parallel programming and handles the low-level details of the target machine.

Although the code used to structure a parallel computation is complex, it often forms
familiar patterns. For instance (Pritchard et al., 1987; Pritchard, 1988) identify three
basic classes of parallelisation paradigm: processor farms, where computational tasks
are distributed to independent worker processes; geometric decompositions, where a data
structure is distributed uniformly between processors so that each is responsible for an
portion of the model; and algorithmic decompositions where each processor executes a
component of the total algorithm and data is passed between processors in pipelines.

(Cole, 1989) names such parallelization patterns ‘Algorithmic Skeletons’ and examines
their use to structure parallel programming. Skeletons are high-level programming lan­
guage constructs which encapsulate a particular pattern of parallelism. They are param-
eterised by blocks of sequential code that describe the task-specific parts of the parallel
computation. The programmer is supplied with a fixed repertoire of skeletons: paral­
lel applications are produced by composing skeleton constructs and providing the task-
specific code.

There are two descriptions associated with an algorithmic skeleton. A semantics gives
the relationship between the inputs and outputs of a skeleton, while a behavioural mod­
el describes its parallel complexity and cost. This is all the information provided about
the skeleton: its implementation is completely hidden from the programmer. Indeed, a
skeleton may have more than one realization on a particular machine. A skeleton com­
piler uses the behavioural models to calculate an optimal instantiation of the skeletons in
the source program for the target machine.

There are many different skeleton systems in the literature. They differ in the presentation
of the skeletons, the underlying computational language and the palette of skeletons made
available to the programmer.

• In his thesis Cole notes that the functionality of many skeletons can be expressed
concisely as higher order functions in a functional programming language. He
identifies four basic skeletons and produces performance models and implementa­
tions for them.

• The Pisa Parallel Processing Language (P 3L) (Danelutto et al., 1992; Bacci et al.,
1995) has two components: a sequential language for writing computational code

2.1 Single-Stage Programming Models 21

and a set of constructs (skeletons) for structuring parallelism. C++ is used as the
computational language. The supported skeletons include farm, map, linear and
tree pipelines, geometric and loop parallelizations.

P 3L skeletons may be nested. The compiler selects one of several implementation
techniques for each skeleton in the program using heuristics. Further tools can then
be used to optimize the program for a particular architecture.

The language allows the programmer to escape from the skeleton paradigm and
hand-code communication by calling the MPI library directly. This could be seen
as confirmation of a common criticism of skeleton approaches: that a limited s-
election of parallel abstractions is insufficient for some programming tasks. Fur­
thermore, the ability of the skeleton compiler to produce efficient code for such
mixed-paradigm programs is questionable.

• Skeletons have been embedded as higher order functions in the functional language
Hope+ (Darlington et al., 1991; Darlington et al., 1993). The semantics of each
skeleton is given by the definition of the corresponding higher order function. Ab­
stractions are provided for farm, pipe, divide & conquer, map & fold and dynamic
message passing parallelism.

Efficient portability over a range of architectures is claimed to be possible by us­
ing program transformation to rewrite an application as a composition of skeletons
known to be efficient on the target machine. This is guided by performance predic­
tion models for each machine.

The benefits claimed for skeleton-based languages include: less programming is required
to produce an application; a higher level of abstraction than explicit communication; a
modular program structure that aids comprehension and code reuse; portability, perhaps
only requiring recompilation for the new architecture; and a management of complexity
that allows scalability.

Although skeletons appear an excellent solution to the complexities of parallel program­
ming, they are best suited to ‘run of the mill’ applications that fit into patterns foreseen by
the language designer. It may not be possible to efficiently express an algorithm requiring
a novel parallelisation in the fixed repertoire of abstractions provided.

The skeleton compiler takes the decision of which combination of skeleton instantiations
will provide the best performance. This hides much of the complexity from the pro­
grammer. However, if the performance achieved is less than expected, there is little the
programmer can do to rectify this. Indeed, as the compilation process is opaque, it is
often difficult to see precisely where the optimisation is failing.

2.1 Single-Stage Programming Models 22

2.1.5 Dataflow Languages

In the dataflow model of computation, of which (Herath et al., 1987) is a description, a
program is represented by a directed graph. The nodes are functional units, which can be
any size but are usually small, while arcs represent data dependencies between units. A
functional unit may fire whenever data is present on all its input arcs: that is it consumes
the inputs in computing a result which is placed on the output arc.

As execution of functional units depends solely on data dependencies several nodes may
fire simultaneously. This gives the dataflow model rich opportunities for parallel eval­
uation. A parallelising compiler decomposes the dataflow graph between processors.
The arcs crossing processor boundaries then represent data that must be communicated.
Because of the fire-when-ready behaviour, all communication is asynchronous.

Once a node has computed an output value, this value cannot subsequently be changed.
Therefore languages that prevent multiple assignment are more naturally translated to this
model: single-assignment or first-order functional languages are typically used. There
are a range of such languages, Id (Arvind and Nikhil, 1989) and Sisal (McGraw et al.,
1985) being good examples.

These languages have similar features: referential transparency with special looping con­
structs that give an imperative rather than a recursive feel to programs. Parallelism is
implicit, being extracted from loop iterations, monolithic array operations and parallel
evaluation of function arguments. They commonly lack more advanced functional fea­
tures. An interesting exception is Lucid (Ashcroft and Wadge, 1985) which introduces
infinite streams of data as a primitive type.

Mentat (Grimshaw, 1993; Grimshaw et al., 1991) takes a different approach to dataflow
computing. This language is an extension of C++ which allows the programmer to exploit
the parallelism in calling methods on independent objects and the parallelism within sin­
gle methods. Mentat class and member function definitions may be annotated to indicate
useful parallelism and hint at placement. The language is compiled to a medium-grain
dataflow model where communication and synchronisation are managed by the compiler
and runtime system.

The dataflow model is abstract, simple, and can be efficiently implemented: on shared
memory systems Sisal performs as well as FORTRAN code (McGraw, 1993). However
the unstructured communication means that the dataflow model becomes inefficient on
distributed memory machines. Furthermore, the dynamic essence of the computational
model makes cost prediction impossible.

2.1 Single-Stage Programming Models 23

2.1.6 Parallel Functional Languages

Graph reduction (Peyton Jones, 1987) is the computational model underlying functional
langauges. Functions are represented as trees, while shared subtrees represent common
subexpressions. Computation rules select a portion of the graph, reduce the subgraph to
a simpler form, and then update the program graph with the reduced expression.

The Church-Rosser theorem (Church, 1941) states that a functional program will com­
pute the same result under any evaluation order, including concurrent orders. Therefore
this computational model can be parallelised by concurrently applying computation rules
to independent sections of the program graph. Expressions that are ready for reduction
are tasks that embody potential parallelism. Multiple processors can search the graph for
such expressions and evaluate them in parallel.

While simple in principle, in practice this pure approach has given disappointing results.
There is a high level of parallelism within a typical program graph, but much of it is too
fine grained to be useful. Hence practical parallel graph reduction systems rely on various
degrees of programmer annotation to indicate the of the intended parallel behaviour of the
program. The level of control varies from highly explicit languages to mostly implicit
approaches. A review of many of these systems is given in (Hammond, 1994) while
(Hammond and Michaelson, 1999) describes current areas of research in this and related
fields.

Parafunctional programming (Hudak, 1986) is a lazy functional programming system
which provides a large amount of control over the parallel behaviour. While communi­
cation and synchronisation are implicit, annotations allow the programmer to control the
evaluation order and specify on which processor a given expression should be evaluated.

Caliban (Kelly, 1989) is even more explicit. The language contains computational and
wiring sub-languages. The functional wiring language can be used to describe task place­
ment, network topologies and communication patterns. As it is a fully-featured functional
language, higher-order functions can be defined that act as templates for these parallelisa-
tion concerns. The wiring program is evaluated statically to produce the parallel structure
within which the computational program is executed.

The properties of a functional language allow parallelisation patterns to be conveniently
defined and reused. However these explicit approaches suffer many of the problems of
conventional explicitly-parallel languages: the program contains detailed knowledge of
the target architecture, and so portability suffers.

2.1 Single-Stage Programming Models 24

An example of a more implicit approach is Glasgow Parallel Haskell (GpH) (Trinder
et al., 1996). Parallelism is expressed soley in terms of the following Haskell operators.

a lseql b :: a —* b —» b
a ‘par ‘ b :: a —> b —> 6

The 5eg operator specifies the order of evaluation for two expressions. The first argument
is evaluated to weak-head normal form and then the second argument, which is returned.
The p a r operator introduces parallelism. It indicates that its first argument could be
evaluated in parallel; the second argument is simply returned. This operator only provides
a hint to the runtime system: whether a parallel thread is actually created depends on the
load at the time.

Used in combination, these operators can express rich parallel behaviours. However the
computational code can become cluttered with annotations which reduces the modular­
ity and comprehensibility of the program. Evaluation strategies (Trinder et al., 1998)
provide a more structured way to describe the evaluation order and parallelisation of
computational code in GpH. An strategy is a function that traverses a data structure ap­
plying the two primitive operators to the elements of the data structure to force evaluation
and spark computations: the primitive operators are now only used within strategic func­
tions. A strategic function makes no contribution towards the value being computed and
is evaluated purely for effect. By applying a strategy function to the result of a compu­
tation the evaluation order and parallelisation of that computation can be controlled. The
computational code itself is unchanged. This technique have been used successfully to
parallelise large sequential Haskell programs (Loidl et al., 1998) with a minimal amount
of modification to the source.

Parallel functional languages can express both data- and control-parallelism. They have
shown acceptable results for parallelising irregular computations on shared-memory sys­
tems. However the unstructured communication and small granularity makes them u-
nattractive for distributed-memory machines. Non-strict evaluation makes it difficult to
produce cost measures for these languages. Instead performance is improved by ex­
tensive profiling of the program on simulators (Hammond et al., 1994) and the target
machine.

Parallel graph reduction necessitates a large runtime system. The structure of the pro­
gram graph changes constantly during evaluation. An efficient runtime system must have
mechanisms for granularity control, load balancing, scheduling and resource allocation.
In addition to removing much of the control from the programmer, the implementation
and tuning of such a system requires much effort.

2.2 Many-Stage Programming Models 25

2.1.7 Summary

The parallel models reviewed in this section can be ordered according to the level of
abstraction they provide over the underlying parallel machine.

At the one extreme are explicit languages that provide few abstractions and require the
program to manage distribution, communication and synchronisation itself. Such lan­
guages have predictable cost models, are efficient on all architectures and allow fine con­
trol of the parallel behaviour of the program. However, programming in these languages
is a difficult task. There is no support for specification or prototyping. It is all too easy
to introduce concurrent errors such as deadlock. Programs are by necessity architecture-
dependent, reducing portability. Code comprehension is reduced because the algorithmic
code is muddled with machine-dependent details.

At the other end of the scale are implicit parallel languages which hide the architectural
details and parallelisation decisions from the programmer. Programs in these languages
are concise, elegant and easy to code and reason about. The high level of abstraction
allows portable programs to be written, and prevents many concurrency errors from oc­
curring.

Unfortunately, the computational models of some of these languages are unsuitable for
distributed memory architectures and make performance prediction difficult. Other lan­
guages restrict the forms of parallelism that can be exploited, making them unusable for
some applications. Still others rely on compiler analyses to produce efficient parallelisa-
tions. In cases where the compiler underperforms there is little the programmer can do,
even if they have insight into the best way to parallelize the code.

Between the two extremes of control and abstraction lie a range of languages that attempt
to find an acceptable balance of the advantages and disadvantages of each. Just as in any
other kind of programming there are acceptable tradeoffs in parallel implementation. A
suboptimal implementation may be acceptable: perhaps it achieves the desired runtime;
or maybe further improvements are not worth the greater effort necessary. However,
where performance is disappointing and cannot be improved on using the current set of
abstractions, the programmer has no choice but to move to a more explicit programming
model that provides greater control.

2.2 Many-Stage Programming Models

The essence o f the problem is that the parallel programming models surveyed so fa r
present a single fixed level o f abstraction. This is acceptable for sequential program­
ming tasks: an appropriate choice of language can be determined by the complexity of

2.2 Many-Stage Programming Models 26

the problem domain and the importance of efficiency. However parallel algorithms have
greater complexity than the corresponding sequential algorithm but at the same time ef­
ficiency is a prime motivation. This suggests a programming system that exhibits the
benefits of both the high- and low-level programming models.

One solution would be to use a combination of programming systems. For instance, algo­
rithms could be designed and analyzed using an abstract model such as BMF or PRAM,
prototyped using a high-level language such as GpH, and then efficiently implemented in
C+MPI. This would allow the benefits of each approach to be used at appropriate stages
in the process. However, it is questionable whether such a technique would ease the im­
plementation process or merely replicate work. Further issues are the degree to which the
capabilities of the different models match and the added cognitive load of working with,
and translating between, a variety of different systems. The final efficient implementation
will still contain unstructured architecture specific details: this may have to be discarded
altogether when porting to another architecture.

A more attractive approach is a unified system that allows effective specification, proto­
typing, reasoning and implementation at appropriate levels of abstraction within a single
programming environment. This section reviews a series of programming models, both
sequential and parallel, that go some way towards achieving this.

2.2.1 Programming by Transformation

The general idea of transformational programming is to start with an intuitively clear
but probably inefficient algorithm and to transform it until an equivalent solution with an
efficient implementation is reached. The best known approach to program transformation
is the fold-unfold methodology (Burstall and Darlington, 1977). This defines six simple
rules based around replacing function calls with the definition of the function, and vice
versa. This methodology has been effective at a broad range of program transformations.
However it does not guarantee to preserve total correctness - the termination properties
- of the program.

Constructive programming is another approach to program transformation. It is based
on the theory of the algebra of programming (Bird and de Moor, 1996). The program is
expressed in terms of a set of recursion combinators such as catamorphisms (folds). Each
recursion combinator is accompanied by a set of laws that characterize its behaviour. The
program is transformed by a series of applications of these laws. Expressing the program
solely in terms of these combinators make the recursion structure explicit, simplifying
the analysis required.

Transformation has also been applied to developing parallel implementation, using both

2.2 Many-Stage Programming Models 27

manual and automated approaches. The manual techniques tends to be more flexible but
burden the programmer while the automated transformations are easier to use but may
not produce the best results. An example is (Fitzpatrick et al., 1994) which uses auto­
mated transformations to derive parallel implementations from functional specifications
of numerical algorithms.

Programming by transformation appears to be a promising technique. The program­
mer first produces a specification or prototype, which is then directly manipulated by
the methodology. The transformed program is provably correct, while the result of a
derivation is the implementation rather than a description of the implementation. The
derivation process incrementally introduces detail into a clear specification to produce
the final implementation.

However transformation by hand is arduous for the programmer. Much of the work has
a strong exploratory flavour: there is little guidance provided by the methodology on
which transformation to apply at a certain stage in the derivation. Although suitable for
research into algorithmics, transformation by hand does not provide enough structure for
the average programmer.

2.2.2 SAT: Stages and Transformations

Stages and Transformations (SAT) (Gorlatch, 1996; Gorlatch, 1998) is a methodology for
deriving SPMD programs. It provides two views of the implementation - the abstraction
view and the performance view.

In the abstraction view, programs are single-threaded and expressed as compositions of
stages. Each stage is represented by a BMF combinator which encapsulates parallelism.
There is no parallelism between stages. A BMF combinator has a corresponding skeleton
implementation and a cost measure. Equational reasoning is used to transform simple
program specifications into more efficient compositions of skeletons.

Once an efficient parallelisation had been found the abstraction view program can be used
to generate an equivalent performance view program. These programs are expressed in
an imperative pseudo-code resembling FORTRAN with MPI communication construct-

s. To achieve this, each BMF combinator is translated to the corresponding skeleton
implementation, while user-supplied functions must be converted by hand into computa­
tional pseudo-code. During this process, further optimisations are applied to remove the
implicit gathering of intermediate data structures between each BMF combinator in the
abstraction view.

The result is a detailed but concise pseudo-code specification of the optimised algorithm,
which may then be used as a plan for the implementation.

2.2 Many-Stage Programming Models 28

SAT is more general than typical skeleton programming systems because it allows the
programmer to define new parallel computational components where needed: in a skele­
ton system the programmer has a fixed toolkit of abstractions. To add a new abstraction,
the programmer must supply a pseudo-code description of the skeleton, and then intro­
duce a new BMF combinator and laws that model the properties of the skeleton. The new
component may then be used in further program derivations.

The split level approach provides a clean separation of concerns and appropriate levels
of abstraction for each stage. Program optimisation and reasoning is simplified by using
a functional representation such as BMF. Meanwhile the performance view provides a
clear description of how the program should be implemented.

As SAT uses BMF in the specification stage, it suffers from some of the same problems
as BMF.

• Only data-parallel algorithms can be expressed in this model. Furthermore, build­
ing programs solely using composition can sometimes lead to quite awkward ex­
pressions.

• Parallelism is treated informally. Although the skeletons of the performance view
give a description of the parallel behaviour of a combinator, this information is not
available within the abstraction view.

• The system lacks concreteness. BMF is a transformational notation with no de­
fined syntax or semantics. Therefore it cannot be verified or simulated. Similarly,
the pseudo-code of the performance view lacks a defined semantics. The result of
a SAT derivation is a description of the implementation, rather than the implemen­
tation itself. The ease of producing this implementation relies on the description
being well-formed and sensible.

Another limitation of this method is that it is only concerned with the efficient combina­
tion of parallel components. It provides no guidance for constructing new components.
Although many components will be quite simple and have straightforward textbook im­
plementations, this may not be the case for all user-defined combinators.

2.2.3 FAN: Formal Abstract Notation

Formal Abstract Notation (FAN) (Gorlatch and Pelagatti, 1999) is a successor to SAT
that provides an abstraction level in which to design skeleton programs. Again it is a two
level derivation method. The specification view is now expressed in a simple functional
language. This allows names to be bound to the results of intermediate computations and

2.2 Many-Stage Programming Models 29

provides a language definition that allows verification and testing. The pseudo-code of
the performance view is replaced by the P 3L skeleton programming system discussed
earlier (Section 2.1.4). This provides concreteness and removes the need for a further
implementation phase.

The skeletons available in P 3L are modeled as combinators within the functional specifi­
cation language. Each has a cost associated with it. The design process starts by writing
a functional version of the algorithm; this is then manipulated via equational reasoning to
improve the performance. The programming system provides a transformation engine:
this has a store of transformation strategies which it attempts to apply to the program.
Depending on the matches found, the system suggests a choice of alternatives to the user,
along with a cost estimate for each.

After several iterations of design choice, the specification can then be translated to a P 3L
program in the performance view. The P 3L compiler performs further optimisation to
the code, although these are of a simpler nature than the transformations possible in the
specification view.

FAN is a concretization of the earlier SAT approach which solves many of the problems
we identified above. However, the output is a skeleton program, rather than explicitly-
parallel code. The ability to add new abstractions to the derivation system is lost, and the
reservations expressed about skeleton approaches - expressiveness, programmer control
and efficiency - now apply.

2.2.4 Aspect Oriented Programming

The key abstraction and composition mechanism of imperative, object-oriented, and
functional languages is some form of generalized procedure. Although the exact nature
differs between language paradigms, design methods for these languages tend to perform
a functional decomposition - they break a system down into units of behaviour or func­
tion. Such design methods are effective at structuring the computational components of
a system. The components can be cleanly encapsulated as generalized procedures which
can then be easily accessed and composed.

In addition to containing computational components, a system also contains aspects.
These are properties that affect the performance or semantics of the computational com­
ponents in a systematic way. Examples of aspects include policies for: synchronization;
error or failure handling; and communication. Aspects typically cannot be cleanly encap­
sulated as generalized procedures because they cross-cut the functionality of the system.

The inability of functional decomposition to isolate aspects leads to tangled programs
where aspect code occurs throughout the computational components of the system. A

2.2 Many-Stage Programming Models 30

familiar example of this is producing error-tolerant code. Adding good support for fail­
ure handling to a simple system prototype requires many little additions and changes
throughout the system. This violates the abstraction boundaries provided by the design
method.

The goal of Aspect Oriented Programming (AOP) (Kiczales et al., 1997) is to cleanly
separate components and aspects from each other. An AOP system provides a computa­
tional language in which to implement the computational components. It also provides
one or more aspect languages in which the programmer can specify aspect policies. A
tool called an aspect weaver is then used to combine a component program and aspect
programs to produce the final implementation. The aspect programs describe transfor­
mations that implement policies which the aspect weaver applies to the computational
program.

Aspect language designs range from the high-level where policies are expressed by declar­
ative statements to low-level approaches where policies are expressed as explicit trans­
formations of the computational language. It is possible that particular designs are better
suited to different classes of aspect. However it is clear that further research of the design
space for aspect languages is needed.

Aspect oriented programming gives a separation of concerns and enables the programmer
to focus on one aspect of the implementation at a time. A prototype can be developed in
the computational language and then combined with simple aspect programs that describe
default policies. Detail can then be added incrementally to the prototype by refining
the aspect programs. The code remains clear because the weaver program performs the
tangling of aspects, rather than requiring the programmer to add them by hand.

It may be possible to produce an aspect-oriented parallel programming system since par­
allelisation concerns such as communication and synchronisation are commonly cited
examples of aspects. Such a system would allow the algorithmic code to be tested and
verified in isolation, while the parallel behaviour of the code was described by separate
aspect programs. However, much research is still required into the practicality of the
AOP approach. Open questions include the best division between computation and as­
pect concerns, design guidelines for the various languages, theoretical support for the
model and methods to construct correct aspect weavers.

2.2.5 TwoL Programming Methodology

The Two-Level model (TwoL) (Rauber and Riinger, 1996b; Rauber and Riinger, 1996a)
is a programming methodology for deriving efficient Group-SPMD implementations of
numerical methods for distributed memory machines. The methodology can express

2.2 Many-Stage Programming Models 31

algorithms that possess two levels of potential parallelism: a high level task parallelism
which may contain a nested lower level of data parallelism. This makes it suitable for a
large class of partially-irregular problems.

The methodology is structured as a fixed series of design stages. At each stage a high-
level modeling language is used to express the sequential and parallel combination of
basic modules. These are data-parallel components implemented in the SPMD mod­
el. The most efficient method of combining basic modules can be calculated using the
methodology’s cost model.

The programmer starts by writing a module specification from a mathematical descrip­
tion of the numerical method. This divides the algorithm into submethods or modules.
The specification has a hierarchical structure and expresses data dependency and inde­
pendence between modules. This describes the maximum degree of parallelism available
and removes the need for dependency analysis, as all is made explicit in the specification.

From the specification a parallel frame program is derived. This is a non-executable
description of the final implementation which fixes the distributions of data, execution
order of modules, assignment of processors to modules and all other implementation
decisions. This description can be used to predict the runtime of the final implementation.

The derivation of a parallel frame program from a module specification is split into sev­
eral decision stages. Each stage in the derivation introduces one major decision about
the realization of the algorithm. TwoL provides cost analysis methods for predicting the
impact of the alternative choices available. At each stage the module specification is aug­
mented with additional constructs to capture the decisions made for that stage. Therefore,
the specification language has several dialects or extensions.

The first stage fixes the scheduling of modules. The programmer decides which modules
are to be executed concurrently on disjoint processor groups and which consecutively
by all processors in the group. The next stage balances the computational load between
modules that execute concurrently to ensure they terminate at approximately the same
time. This is done by fixing the sizes of the disjoint processor groups that each concur­
rent module will execute on. The final stage fixes the data distributions of the inputs
and outputs of modules. The aim of this stage is to minimise the amount of data redis­
tribution, and so communication, required within and between modules. Where data is
passed between modules with incompatible data distributions, redistribution operations
are inserted to indicate that communication is necessary.

TwoL provides a cost analysis based on an abstract machine which is described by a
few parameters. The values of these parameters are found experimentally for a particular
target machine. Cost functions can be calculated compositionally from the components of
the partially-specified frame program. The parameters to these functions are the costs of

2.2 Many-Stage Programming Models 32

the unspecified portions of the program. Mathematical optimisation techniques can then
be used to minimise these cost functions and so make optimal implementation decisions.

It is interesting that an optimal data distributions for a basic module need not lead to
a globally optimal solution. On the contrary, the optimal global solution may require
suboptimal distributions - and so extra redistribution - for some components.

Analysis

The strength of TwoL is that it allows the systematic derivation of efficient implementa­
tions while requiring the programmer to provide only a description of the computational
method. From this specification an optimal implementation can be calculated using the
cost models.

The TwoL modeling language expresses the composition of modules and the distribution
of their inputs and outputs rather than the computation each module performs. Therefore
intermediate programs are not executable, and cannot be tested to ensure that the correct
result is being computed. Furthermore, the result of a TwoL derivation is a description
o f the implementation, rather than the implementation itself. The implementation must
still be coded in the conventional way, which can lead to problems ensuring that the
implementation faithfully follows the specification.

The TwoL methodology is primarily concerned with calculating an efficient composition
of modules. Its derivation stages are concerned with the task-parallel level of the algo­
rithm. The system assumes the existence of libraries of data-parallel basic modules, with
a range of different parallelised versions and runtime information for each. Many basic
modules are provided by common parallel numerical libraries. However, the methodolo­
gy provides no guidance for the construction of new basic modules.

The derivation process could, at least partially, be automated by producing interactive or
automatic compilation tools for each stage of the design process. (Fissgus et al., 1999)
describes the implementation of a prototype TwoL compilation system, focusing primar­
ily on the generation of a final C+MPI implementation from the parallel frame program.
This also provides a simple single-assignment language in which to implement basic
modules, but this lacks the staged design methodology and supporting cost model of the

TwoL system proper.

2.2.6 Abstract Parallel Machines

Abstract Parallel Machines (APM) (O’Donnell and Riinger, 1997b; O ’Donnell and Riinger,
2000) is a methodology that derives parallel programs though a sequence of stages, start­
ing with an abstract specification and finishing with the executable program. Decisions

2.2 Many-Stage Programming Models 33

about the parallelism are introduced gradually, one per stage, where each decision is
made using an appropriate model of parallelism. Each stage may be proved equivalent to
the previous one using equational reasoning.

An Abstract Parallel Machine is a model of parallel computation. It comprises a set of
sites of computation, each with a local state, and some parallel operations (ParOps) that
manipulate these site states. The external view of a ParOpis a function that takes some
input data and the machine state and computes some results and a new state. The internal

the computations performed at each site and how data is communicated between them.
ParOps are expressed in a standard form that facilitates comparison, reasoning and trans­
formation. By choosing the appropriate view the programmer can reason about just the

Algorithms are expressed by combining the ParOps of a single APM using a coordi-

coordination language. For more complex algorithms that require control structures and
naming of intermediate results a pseudo-code, a standard imperative programming lan­
guage, or a functional language such as Haskell could be used. The non-strict nature
of Haskell is also convenient for implementing ParOps: the standard form of a ParOp

language.

grammer can test and experiment with early versions of a program, use the compiler to
detect many errors, and use the language semantics as a foundation for equational rea­
soning.

APMs are arranged into a tree hierarchy where child node APMs are able to realize the
operations of the parent node APM. Transformation rules can be used to describe how
this is achieved. A particular realization may only be possible in certain circumstances:
the edges of the tree can be annotated with side-conditions that capture these cases.

A program is derived via a sequence of program transformations. Some (horizontal trans­
formations) transform the algorithm within the same computational model. Other steps
(vertical transformations) change the computational model by switching from one APM
to another. In this case, the program is essentially unchanged but the parallel behaviour
of the program is realized using the operations of another APM. The correctness of such
a step relies on theorems relating the semantics of the operations of the two machine
models. It may be the case that there is a one-to-one correspondence between the oper­
ations of the APMs; in other cases several parallel operations of the target APM may be
composed together to realize an operation of the source APM.

2.2 Many-Stage Programming Models 34

It is common for there to be several ways to transform a particular version of the algo­
rithm using different APMs: this can lead to implementations for different architectures.
Furthermore different algorithm derivations may share some higher-level transformation
steps and the APMs models they are expressed in.

It is possible to define new APMs where needed and link them into the hierarchy. As only
a few case studies have been performed so far (O’Donnell and Riinger, 1995; Goodman
et al., 1998) the hierarchy is still under development. However, these studies have shown
that APMs can be collected and reused between derivations.

Analysis

The APM methodology allows incremental derivation of parallel programs supported
by appropriate machine models at each step. The machine models are separated from
the algorithm and organized into a hierarchy representing possible transformation paths.
This simplifies derivations and encourages reuse. The separation also allows computation
to be expressed in a combination of parallel models, which may be useful for larger
algorithms.

As ParOps are represented as functions, the APM methodology cannot easily express
algorithms which involve non-determinism. Finding a solution to this is the topic of
ongoing research (Goodman and O’Donnell, 1999).

While APMs support a staged decision making process, the stages are not fixed. Addi­
tional APM models and transformations can be added to the hierarchy. This increases the
versatility of the system and allows it to be applied to many different problem domains.
However, this freedom provides less direction and guidance for the programmer than a
fixed sequence of decision stages that target a particular architecture, such as is found in
TwoL.

The APM methodology has no strong link to a particular coordination or computation
language. This allows appropriate choices to be made for each derivation but may not be
concrete enough for low-level implementation work. Modeling low-level details compli­
cates the ParOp model and can make code unmanageable.

This suggests that the APM methodology is better suited to the exploration of new par-
allelisations of algorithms, rather than managing low-level implementation concerns for
algorithms where most of the parallelisation details are already known. Once the high
level algorithmic decisions have been made in the APM methodology, it may be more
productive to translate the resulting specification to a more concrete implementation lan­
guage than to continue the derivation in the APM system.

2.2 Many-Stage Programming Models 35

2.2.7 Discussion

The programming methodologies reviewed in the previous sections provide high levels of
abstraction while still permitting efficient implementations. These methodologies differ
in some of their details. However, they broadly share a common set of qualities, which
we summarize below.

Incremental introduction of detail. The methodologies start with a clear specification
of the core details of the algorithm and then incrementally introduce optimisations and
further detail until an implementation results. This sequence of decisions may serve as

documentation, proof of correctness and prototype for the implementation. Portability
is assisted by the ability to backtrack up the decision sequence and branch at a suitable
point when targeting a different machine architecture. The incremental approach may
also encourage more alternatives to be considered before choosing one to implement.

Discrete stages. The introduction of implementation detail is commonly divided into
discrete stages. This decomposes the implementation task into smaller, more manageable
subtasks, allowing the programmer to focus on one concern at a time. Often a different
level of abstraction is provided for each stage - in the form of notation, language or
machine model - that is tailored to expressing the decisions made at that stage.

It seems preferable for an incremental programming system to comprise many small,
manageable, stages rather than a few large stages with significant distance between them.
However, the problem domain may restrict the number of decision stages that the process
can be usefully decomposed into.

Fixed series of stages. Some methodologies have a fixed series of well-defined decision
stages. This provides a stronger framework for the programmer to work within that re­
moves some of the uncertainty and exploratory nature of the implementation task. How­
ever, such a framework often restricts the implementation to a particular target machine
or parallelisation paradigm.

Progression by transformation. Many of the methodologies introduce implementation
detail through transformation of the intermediate program. These transformations may
either be formal or informal, although most systems allow the user to produce correctness
proofs where required. Typically the transformation is guided by reasoning about the
computational and parallel behaviour of the program, which in some cases is developed
into a system of performance prediction. This reasoning is simplified by using multiple
levels of abstraction, so that details that are too low level for a particular stage can be
elided.

Executable intermediate programs. Methodologies which are based on concrete com­
putational languages, rather than informal notations or specification languages, have a

2.2 Many-Stage Programming Models 36

defined semantics. Given a suitable interpreter, intermediate programs can be checked for
syntactic validity; simulated on a single-processor machine; or even executed in parallel.
Through such testing, the programmer can be reassured that the program being derived
is well-formed and behaves correctly. Methodologies that use concrete languages tend to
result in an executable implementation, while those using more informal languages often
generate a description of the implementation, which must then be coded.

Programmer-directed tools. The authors of many of the methodologies discuss the
provision of tool support in an advisory role, rather then using the methodology as the
basis of a ‘black box’ compilation system. Tools are proposed that perform analyses to
provide guidance to the programmer, or to automate the application of transformations
selected by the programmer. This indicates a belief amongst the developers of these
systems that human insight and involvement in the parallelisation process is necessary
for the best results.

Extensible set of primitives. The most general methodologies allows the user to extend
the primitives available in the system: for example new basic modules for TwoL, adding
machines to the APM hierarchy, or introducing new skeleton combinators in SAT. The
methods that do not provide this facility risk being limited to a particular problem domain
or target architecture.

However, the methodologies provide little guidance in the design of new primitives. Per­
haps this is unsurprising: they are concerned primarily with the composition of primitive
operations to form algorithms. The introduction of new primitives is below the level of
these models, and requires the use of another design and implementation technique.

Comparison of the Many-Staged Systems

Table 2.1 summarises the features provided by each of the many-staged programming
methodologies surveyed. As program transformation encompasses a selection of differ­
ent approaches, the first column in the table describes the features of a typical system.

It can be seen that some of the methodologies exhibit more of these features than others
do. Furthermore, some features are supported to a higher degree in some systems. In
the borderline case this is indicated by a combined tick and cross. For instance, there
are only two discrete stages in the SAT methodology and the majority of the derivation
takes place in the first, the abstraction view. Similarly, general program transformation
techniques can be supported by tools to perform rewriting, but the ability to perform cost
analyses may be limited by the formalism used.

2.3 Our Design 37

Incremental introduction o f detail
Discrete stages
Fixed series o f stages
Progression by transformation
Executable intermediate code
Programmer-directed tools
Extensible set o f primitives

✓ ✓ ✓ ✓ ✓ ✓
X % / I X X ✓ ✓ ✓
X % / I X X ✓ ✓ X
✓ ✓ ✓ X X ✓
✓ X ✓ ✓ X ✓

✓ /X ✓ ✓ X ✓ ✓
✓ ✓ X X ✓ ✓

Table 2.1: Features provided by different incremental programming methods

2.3 Our Design

This section locates the PEDL programming system within the design space outlined in
the previous section. The following chapter presents the main features of PEDL, while
Chapter 4 gives a formal definition of the languages within the system.

PEDL is a system to produce efficient Group-SPMD parallel implementations for array
based algorithms. The aim of the design of this system is to combine all the qualities
identified in the previous section with a concrete and rigorous programming model to
provide a clear-cut implementation route for this problem domain.

Implementation details are introduced through a fixed series of discrete stages. These
stages are structured as a sequence of executable languages that allow reasoning, trans­
formation and testing of intermediate programs. As the PEDL system is restricted to a
particular parallel model and problem domain, fixing the decision stages does not con­
strain the generality of the system any further.

The sequence of languages provide increasing levels of control over the parallel machine.
Using a different language for each stage enforces a clean separation between the stages
of the method. The languages are first order functional and have a well defined semantics.
They share a core set of constructs and semantics which is extended by each language
with constructs that capture the decisions made at that stage.

The parallel behaviour of the languages is described using the APM framework. An
abstract parallel machine is defined whose ParOps represent language constructs that
introduce parallelism or communication.

An implementation is produced by transforming a program through the language se­
quence, which at each stage introduces implementation details. Programs can be trans­
formed within a single stage via standard equational reasoning. As the languages share

2.4 Summary 38

the same semantic underpinning, constructs in adjacent languages can be equated. This
allows transformations that introduce implementation decisions to be proved correct. As
each of the stage languages is executable, programs can be passed to an interpreter for
static checking and testing.

The result of the derivation process is a conventional imperative message-passing imple­
mentation, not just a description of this implementation. Once all parallelisation deci­
sions have been fixed this final implementation is generated by applying a set of transfor­
mations followed by translation to the target language. The process can be automated for
much of the language, although the programmer must translate by hand some of the user-
defined computational code. Further tool support could be provided to support program
transformation at the earlier stages of the system.

As well as producing stand-alone parallel implementations, PEDL could also be used in
conjunction with some of the staged methodologies listed above. Defining an APM that
describes the parallel behaviour of the language constructs allows PEDL to be utilized as
an implementation route for high-level specifications produced in the APM methodology.
The PEDL system could also be used to systematically implement new basic modules for
TwoL. If a TwoL derivation requires a new implementation of a module with a different
data distribution, all that is required is to backtrack through the decision stages of PEDL
and branch at some point - which reduces the amount of work required.

2.4 Summary

Both high and low levels of abstraction are beneficial at some point in the production of a
parallel program. This chapter has examined the ability of a range of programming mod­
els to combine the benefits associated with both levels. It was found that programming
models based on an incremental introduction of implementation detail permit different
levels of abstraction to be presented to the programmer at various stages of the imple­
mentation process.

Through comparing a selection of incremental programming systems, some important
qualities of these systems were identified. The motivation for the design of PEDL is to
produce a programming system with these qualities that is concrete, rigorous and pro­
vides a well-defined implementation route. The following chapter describes the features
of this system in more detail.

Chapter 3

PEDL - A Staged System for
Group-SPMD Programming

Capsule

This chapter introduces a system, PEDL, the design of which explores the use of

staged programming techniques. The purpose of this system is to implement array-
based algorithms on message-passing parallel machines in the Group-SPMD model.
The result of the system is a conventional message-passing imperative implementa­
tion.

The system starts from an abstract specification of the algorithm. A series of

decision stages then introduce parallelisation details. First the maximum useful par­
allelism is identified, then the program is mapped onto a machine with a finite num­
ber of processors. After adding communication operations the parallel program is
fully specified. A final implementation is generated by a process o f transformation
and simplification to an intermediate form that can then be translated to the target

language.

Each stage of the system is supported by languages which provide an appro­
priate level of abstraction. During the decision stages the program is expressed in

a two-level combination of a collective-view coordination language that schedules

computational blocks expressed in a processor-view language. An abstract data type

with a restricted set of operations is used to ensure that distributed data is manipu­

lated safely by the two language levels.

3.1 Stages of the System 40

Introduction

This chapter introduces PEDL- a system that produces Group-SPMD parallelisations of
array-based algorithms. The motivations and issues encountered during the design of the
system are discussed, and its key features are presented.

The chapter starts by describing the series of stages in the PEDL system. Section 3.2
presents the structure and constructs common to all the languages of the system. At
some stages of the system the program is expressed in a combination of two languages.
Section 3.3 explains the benefits of this, while Section 3.4 illustrates the importance
of differentiating replicated and distributed data and the technique used to do this. The
languages supporting each stage are then introduced. Stages that introduce parallelisation
detail are presented in Section 3.5 while the back-end of the PEDL system is sketched in
Section 3.6.

3.1 Stages of the System

The PEDL system comprises a series of distinct stages that progressively introduce more
implementation detail. At each stage of the derivation the program is expressed in a
language or combination of languages that allow implementation decisions to be captured
while abstracting from currently unspecified details. These stage languages are concrete
and executable: the programmer can ensure the algorithm has been specified completely
and that is behaves as expected. This is a valuable property that an informal or pseudo­
code approach would not allow.

(Winstanley, 1999a) introduces the stages of the PEDL system, which are repeated in
this section. The system starts with a specification of the computational component of
the algorithm. Three decision stages introduce implementation detail via user-directed
transformation. At this point all the parallelisation details have been fixed. The remain­
ing stages of the system transform, simplify and translate the program to produce a con­
ventional imperative message-passing implementation.

The choice and ordering of the decision stages of the PEDL system is similar to that
proposed by previous design methods. For instance, both an informal design method for
C+MPI programming (Pacheo, 1996) and the more formal TwoL methodology (Rauber
and Riinger, 1995) comprise first a step where the scheduling of computations is fixed,
followed by a step where processors are divided between computations executing in par­
allel, and finish with a step that considers the communication required to satisfy data
dependencies between computations. This division is in essence the same as the PEDL

3.1 Stages of the System 41

Specification Independent Distribution Com m unication

Coordination Code

Computation Code Intermediate SAC + MPI C + MPI
form

Figure 3.1: The stages o f the PEDL system

decision stages. Where the current work differs is that the methodology is seated in a

series o f concrete languages, rather than informal notations.

This division o f stages appears a sensible design, and was found suitable for the case stud­

ies that were performed. However, it is not clear that this is the only, or indeed the best,

sequence o f stages that could be used. This issue is examined further in Section 8.2.2

Figure 3.1 illustrates a program passing though the stages o f the system and the transfor­

mations applied to it. The details o f each stage in the system are as follows:

1. Specification. A simple language is used to specify the computation to be per­

formed. This is a single-assignment language that contains loops, conditionals and

operations to create and manipulate arrays.

2. Independent. In the decision stages the programmer introduces implementation

detail by transforming the program. User-directed transformations are denoted as

T in the figure.

This is the first decision stage, which identifies the maximum amount o f useful

parallelism. Programs at this and the following two stages have a two-level struc­

ture. At the upper level is a coordination language with a collective view o f the

processor o f the parallel machine. This level schedules blocks o f computational

code. These blocks are expressed in the computational language o f the previous,

specification, stage.

3.1 Stages of the System 42

3. Distributed. The program is then transformed so that the coordination level pro­
gram is expressed in the distributed stage language. At this stage the program
is restricted to a fixed number of processors. The coordination program now has
details of the placement and load balancing of computations.

4. Explicit Communication. The communication of data between processors has so
far been implicit. This stage extends the coordination level program with collective
communication constructs, which must be used to satisfy the redistribution require­
ments of the computational blocks. Once this has been done all the implementation
details necessary to produce a final implementation are present in the program.

5. Intermediate Form. The target for the PEDL system is a conventional imperative
program where communication is performed by calls to MPI. Such a language does
not have a collective view of the parallel machine: the parallelism occurs ‘outside’
the processor-view program.

The first step towards the final implementation is to remove the coordination level
of the program by combining coordination and computational code in a residual
processor-view program. This is achieved using the Change of View Transfor­
mation, whose application is denoted by I in the figure. The resulting program
is expressed in the intermediate language. This models the features of the tar­
get language: it is simply the computational language used throughout the system
extended with constructs that represent calls to the MPI communication system.

6. SAC+MPI. The final result of the system is a C+MPI program: this is necessary
because many parallel computing environments offer little more than C and FOR­
TRAN compilers and communication libraries. However, the language model of
C is some distance from the single-assignment semantics of the intermediate lan­
guage. Rather than describing the transformation between the two models by hand,
we use Single Assignment C (SAC) (Scholz, 1994) as a bridging language. SAC is
similar to the PEDL intermediate language and is compiled to ANSI C.

The intermediate language program is unfolded and simplified. It can then be
translated on a construct-by-construct basis to SAC. The SAC compiler is then
used to generate the final C+MPI implementation.

3.2 Common Language Features 43

3.2 Common Language Features

All the languages in the PEDL system, at both the coordination and computation layers,
have the same characteristics, structure and share a common core of constructs. Impor­
tant considerations in their design were that equational reasoning should be possible and
that the features they provide should be easy to translate to the target imperative lan­
guage. Thus the languages are strongly-typed single-assignment executable languages.
In contrast to ML or Haskell, the languages have a first-order type system: functions are
not first class, and so cannot be passed as parameters to constructs.

Common Structure. The languages are block structured. A block of code is made up of
a sequence of computations that are executed in order. Computations may themselves be
nested blocks. Each computation returns a result, which may either be bound to an identi­
fier or discarded. Some computations return uninteresting results, and are used primarily
for their side-effects. The block itself returns a result value, which is the result of the
last computation in the block. The sy ntax and semantics of the languages is presented is
detail in Chapter 4. For now we give a brief illustration of the syntax of language blocks:

bl = do a <— f
b *- g a
c <— do {d <— h a; k d}
m b c

This code snippet defines bl which comprises a block of computations. The block first
executes / binding its result to a. Such results can be used as parameters to later compu­
tations, as with g a. The result returned by bl is the result of the final computation m in
the block.

The identifier c is bound to the result of a nested block of computations. Identifiers
bound in an outer block are visible in the bodies of later inner blocks, but not vice-
versa. The structure of blocks may either be indicated using layout, or with explicit { ; }
punctuation.

Common Constructs. All the languages share a common core of conditional and itera­
tion constructs. These are not required for the purposes of this chapter and are defined in
Chapter 4.

Computational Constructs. The majority of the derivation of a program focuses on
implementation decisions that are recorded in the coordination layer language. Due to
this separation, the particular details of the computational language are of little interest
to this thesis: many language designs would be suitable. The simple computational lan­
guage used in the specification stage of the PEDL system possesses the common iteration
and and looping constructs and a set of operations for creating, indexing and manipulat-

3.3 Collective-View Programming 44

if (rank —= 2)
send(4, val)\

else if (rank = = 4)
val' = recv{ 2);

vaV = communicate(2,4:,val);

(bj Processor view (b) Collective view

Figure 3.2: Comparison of message passing in different views

ing arrays. This language forms the basis of the computational languages used in later
stages.

3.3 Collective-View Programming

The decision stages of PEDL present a two-level view of the parallel computation - the
upper coordination layer manages the placement and scheduling of lower-layer computa­
tional blocks which execute on a single processor. Abstract data types are used to allow
the two levels to manipulate distributed data in ways that are safe for each layer.

This approach separates the description of the algorithmic computation from that of
scheduling and data movement. It provides a programming model where the implemen­
tation is built up as a sequence of parallel computations. Although this ‘Seq of Par’ view
is not suitable for all classes of algorithm, it is easier for the programmer to understand
and work with as each parallel operation is self-contained: it is easier to rearrange and
manipulate the parallel behaviour o f the implementation.

Parallel programming in conventional languages such as C+MPI is difficult for many
reasons: one of these is that the language does not provide a clear view of the entire ma­
chine. Rather than providing constructs that define behaviour over the whole machine,
these languages instruct the processors individually - they have a processor-view of the
parallel machine. As well as making it difficult to understand the behaviour of the ma­
chine, this is a new cause of errors.

Figure 3.2 illustrates one of the problems of processor-view parallel programming. To
communicate a message requires two procedure calls - a send and the corresponding
receive. If the communication operations are not paired, the result will be deadlock or
erroneous behaviour. It is common for the calls to the two procedures to be separated
in the source code. A simplified example of this is shown in (a); however it is often the

3.3 Collective-View Programming 45

case that the two calls are separated by significantly larger blocks of code. Thus there are
linkages and dependencies between branches of the code that are not made explicit in the
language itself. Unfortunately the compiler cannot check for correctness because it has
no information about the relationship between the two library calls.

A better solution would be to have a communication construct that extends over all the
processors involved as in (b). Linkage is no longer a problem as one construct performs
the send and receive operations. As the call-sites for the two ends of the communication
are in the same position the comprehension is also improved: it is easier to follow the
flow and processing of data across the machine.

The idea of operations that scope over all processors in the machine can be extended from
communication to other language constructs. The constructs of the language express
behaviour in which all processors participate in some regular way. Programs written in
such a language do not execute on any one processor, but present a collective view of the
behaviour of a partition of processors. Such a style of language - where constructs scope
over a set of processors - we call a collective-view language. Code that initializes the
system or creates replicated data can more concisely be expressed in a language with a
collective view.

Most algorithms will at some point need to escape from the collective view so that each
processor can be instructed independently. For more task-parallel styles of implementa­
tion, each processor may be required to perform arbitrarily different computations. For
this purpose the collective-view coordination language provides hook constructs that ex­
ecute a block of processor-view computational code on every processor in the machine.
This provides a uniform entry and exit point to the arbitrary computational code.

When calling a processor-view computation it is desirable to ensure that the code is safe
and well-behaved: it must not alter the configuration of the parallel machine or attempt to
communicate with other processors. To this end, the language used to express processor-
view blocks has no parallelism-related constructs - it may only manipulate local data
structures. However, the computational block may query the rank of the processor it is
executing upon: this allows different routines to be executed on each processor.

This link between the two language levels fits well with the SPMD model. The processor-
view code performs a computational step and an implicit synchronisation, while the col­
lective view expresses the communication step and any initialization or management of
the machine configuration.

3.4 Replicated and Distributed Data 46

v = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 }

R

1 V

2 V

3 V

4 V

5 V
^ ^

B

1 1, 2

2 3 , 4

3 5, 6

4 7, 8

5 9 , 10
■V— :

r
C

1 1, 6

2 2 , 7

3 3 , 8

4 4 , 9

5

/
in

replicated block cyclic

Figure 3.3: Example data distributions for a ten-element vector v over five processors

3.4 Replicated and Distributed Data

Parallel algorithms make use of two kinds of parallel data structure. The first is distribut­
ed data, where processors each have a local copy of a subset of the total data. The other
is replicated data: here each processor has a copy of the entire data structure. Figure 3.3
illustrates different distributions of a vector of ten elements v over a partition of five
processors. In a replicated distribution, all elements of the vector are resident in each
of the processors’ local memories. Unlike replicated data, distributed data can be divid­
ed between processors in many different patterns. Two of the commonest are the block
and cyclic decompositions. A block decomposition allocates a continuous range of ele­
ments to each processor, while a cyclic decomposition ‘deals out’ the elements between
processors so that adjacent elements are on adjacent processors.

While distributed and replicated data are used to achieve a speedup, replicated data is also
used to control the behaviour of the parallel algorithm. Some of this control data is static:
for example parameters such as problem size, number of processors and array bounds.
Other control data is dynamic. For example a parallel search algorithm may terminate
when a processor finds an acceptable solution. If a match is found by one processor the
others must be informed. The simplest solution would be to broadcast a message to the
other processors: this replicates the dynamic data throughout the machine.

In the two level model of our system, distributed data is generated and consumed by
blocks of computational code but manipulated and marshalled in the coordination level.
Replicated data may be used as parameters to coordination language constructs or within
computational code.

3.4 Replicated and Distributed Data 47

for (1, < x, +1)
parallel{

(computational block)
}

f o r (i = l ; i < = x ; i + +) {
/* c o m p u ta tio n a l

b lo c k * /

(a) Coordination program (b) SAC+MPI translation

Figure 3.4: Example translation from the coordination language to C+MPI

3.4.1 A Problematic Example

As explained previously, a program written in the coordination language does not re­
side on any one processor, but instead manipulates a partition of processors. However
the target language for the derivation, SAC+MPI, does not have a machine model suit­
ed to executing such a language. To produce the final implementation the coordination
component of the program must be factored into the computational code for each proces­
sor. This results in a replication of the control structures and collective constructs of the
coordination program across all processors in the partition.

An example of this is given in Figure 3.4. The coordination program (a) consists of a
for loop which repeats x times. The loop body is a p a ra lle l construct parameterized
by a computational block. This is one of the hook constructs mentioned in the previous
section: p a ra lle l causes its parameter block of computational code to be executed in
parallel on every processor in the partition.

The corresponding C+MPI implementation (b) would be a f o r loop which iterates x
times. The coordination level has been combined with the computational code by trans­
forming x iterations of a parallel computation into the parallel execution of a computation
which iterates x times on each processor.

This illustrates a problem. The transformation is only valid i f x has the same value on
every processor, x must be a replicated, not a distributed value. To apply such transfor­
mations reliably it is essential that replicated and distributed data can be distinguished:
in short we must control the occurrence of distributed data in the coordination language.
Before explaining how this is done, we introduce the language constructs that generate
distributed data.

3.4 Replicated and Distributed Data 48

R <- parallel { r <- rank;
eA <- A [r] ;

A B

1 9 11

2 7 25

3 8 16

4 2 9

5 3 _L

eB <- B [r] ;
return (eA + eB)}

A B R

1 9 11 20

2 7 25 32

3 8 16 24

4 2 9 11
5 3 _L _L

Figure 3.5: A parallel sum of decomposed values A and B on a partition of five processors

3.4.2 Generating Distributed Data

The main means of introducing parallel computation that generates distributed data is by
using the p a ra lle l construct. Tthis is one of the hook constructs that link the collective-
view coordination language and the processor-view computational language. It takes a
block of computational code as a parameter and executes this in parallel on every pro­
cessor in the current partition. The computational language provides two constructs to
access environmental information: size returns the size of the partition, while ra n k gives
the rank in the partition of the processor the computational block is executing on. The
results of the processor computations are returned by the p a ra lle l construct back to the
coordination language as a sequence indexed by processor identifier (PID).

Figure 3.5 illustrates a parallel computation that combines two distributed values A and
B that are are simply distributed element-wise across the partition. In this example, the
parallel computation block accesses the elements of the distributed values that are local
to that processor and returns their sum. As the block is executed on every processor in the
partition in parallel, this performs an parallel element-wise sum of the distributed values.
The result returned in the coordination language is another distributed value R, which has

the same distribution as A and B.

It is possible for a distributed value to be unevenly distributed over a partition, so that
for some processors it is undefined. In the figure undefined elements are represented
by JL. Any processor computations involving undefined elements are themselves unde­
fined: however this does not affect other element computations or the termination of the
p a ra lle l construct.

3.4 Replicated and Distributed Data 49

2_

3_

4

gspmd (R <- a : opR, S <- b : opS)

b

R<-opR

S<-opS

R s

1 9 _L
2 7 _L
3 8 _L
4 _L _L
5 _L 5

Figure 3.6: Concurrent computations on child partitions

3.4.3 Partitioning

The p a ra lle l construct performs a SPMD computation step. The other method of intro­
ducing concurrent computation in the Group-SPMD model is to divide the partition into
independent child partitions. This is done by the g sp m d construct. It is parameterized
by descriptions of the partitions to create and a block of coordination code to execute on
each.

The interaction of child partitions is restricted according to the Group-SPMD methodol­
ogy - in particular no communication or synchronization is permitted between them. The
child partitions execute independently of one another and each returns a PID-indexed se­
quence of results to the parent partition. The coordination program of the parent partition
resumes once all child partitions have terminated.

Figure 3.6 illustrates the operation of the g sp m d constmct. In the example, two com­
putations opR and opS are to be executed concurrently. The a and b parameters define
which processors of the parent partition form each child partition. Each partition then
independently executes its assigned coordination block; this produces an indexed set of
results on the sub-partition. Once the computations of the child partitions have terminat­
ed, the partitions coalesce together again. The results computed on the child partitions
are available for use in the parent partition program. These decomposed values have de­
fined elements for those processors which participated in the child partition: the other

elements are undefined.

3.4.4 An ADT for Distributed Data

Section 3.4.1 described the need to distinguish between replicated data and distributed
data and to control where each may be used. Distributed data can only be introduced into
the coordination language by the p a ra lle l and g sp m d constructs. Our solution is to

3.4 Replicated and Distributed Data 50

R <- global {return (A + B)}

A B

1 5 16

2 5 16

3 5 16
4 5 16
5 5 16

A B R

1 5 16 2 1

2 5 16 2 1

3 5 16 2 1

4 5 16 2 1
5 5 16 2 1

Figure 3.7: A global sum of replicated values A and B on a partition of five processors

encapsulate the sequence of results returned from such computations as an abstract data
type. We call this type a distributed value (DVal).

The use of distributed data is controlled by restricting the operations available on the
D V al type. In particular the coordination languages lack the ability to project elements
from this abstract type: therefore elements of distributed data cannot be used as parame­
ters to coordination language constructs.

Meanwhile the computational language does have operations to project elements of a
DVal: this is necessary as the elements are the results of previous computations. The
construct use accesses the element of a D Val resident on the current processor. Rewrit­
ing the code from Figure 3.5 so that it uses the D V al ADT gives:

R <— p arallel eA +— use A
eB <— use B
return (eA + eB)

Although computational blocks may unpackage the elements of a D V al, this data cannot
escape back into the coordination layer: the result of a p a ra lle l computation is encapsu­
lated in a new DVal. In this way, the D V al ADT provides a safe interface between the
different views of the two language layers. The coordination layer has a collective view
of the distributed data structures while the computational language can access individual
elements of these structures.

3.4.5 Generating Replicated Data

Distributed data is controlled by packaging it in an abstract data type and restricting the
operations available on this type. However, coordination layer constructs require un­
packaged data as parameters - this cannot be generated by a p a ra lle l block because the
result will be inaccessible; while arbitrary computation is disallowed in the coordination
language.

3.5 Decision-Making Stages 51

Such data can be generated using the other coordination language hook construct -
g loba l (Figure 3.7). This executes a block of computational code to produce a repli­
cated result. The computational block may refer to previous replicated values, but cannot
project elements from a D Val or query the index of the processor it executes on - that
is the use, g e t and ra n k constructs are disallowed. As these are the only two ways in
which a computational block may generate a result that differs over processors, a repli­
cated result is guaranteed. Therefore a single result may be returned to the coordination
language, without the need for encapsulation in a DVal. Such data can be safely used in
later coordination layer or computation later code.

Sometimes it is necessary to use a particular element value of a D V al as a parameter in
the coordination language. In these cases the coordination language construct g loba lize
is used - this performs a broadcast communication to dynamically replicate the value and
makes the representative element visible.

3.5 Decision-Making Stages

This section presents each of the the decision stages and their supporting languages.

3.5.1 Independent Computation Stage

The Independent Computation stage is the first decision stage of the system. It introduces
a coordination language which is used to identify the potential parallelism of the algo­
rithm. The language can express the computation of decomposed and replicated values
and the execution of concurrent child partitions using the constructs p ara lle l, g loba l
and gspm d. However, it does not specify the placement of computations on processors
or communication.

A program in this coordination language executes on a partition described simply by an
integer size - the number of processors in the partition. The processors are given ranks
numbering from one to this size.

Distributed Values. Decomposed values are encapsulated in a D V al whose elements
are indexed by processor ranks. This language has a shared memory machine model in
which the computational result of one processor can be directly accessed by subsequent
computations on other processors without explicit communication constructs. The local
element of a distributed value can always be accessed in a computational block by the
use construct. To access elements of a distributed value computed by another processors
the g e t construct is used: this takes a D V al and the processor rank of the element to

3.5 Decision-Making Stages 52

project. This means that distributed values can be treated rather like arrays, where g e t is
the indexing operation.

Partitioning. As this decision stage is intended to identify the maximum potential par­
allelism, child partitions are not limited to sub-dividing the processors of the current
partition. Instead an unlimited number of processors are available; the partitioning con­
struct g sp m d can create partitions that are as large as required. Partitions are described
by a single integer representing their size. A D V al is returned from a child partition with
elements indexed up to this partition size.

3.5.2 Distribution Stage

The next decision stage starts to introduce the constraints of the target parallel machine.
The Distributed coordination language has a machine model of a fixed number of proces­
sors and they have an identity: each is named by a processor identifier (PID). A partition
is described by a new data type - the G ro u p . Values of this type define a mapping be­
tween logical rank in the partition and absolute PID. This abstraction is more convenient
than programming with PIDs directly, as it gives a contiguous ordering to the processors
and also a degree of machine independence.

Rewriting the program in this language requires load balancing and granularity adjust­
ments so that the processors of the machine are evenly utilized. Once the program is
in this language the decomposition of data and computation is fully specified. However
communication still remains implicit.

Distributed Data. The constructs from the previous language for creating and accessing
decomposed data are retained unchanged. The use and g e t commands still work by
processor rank. The ranks are mapped through the underlying group that describes the
current partition. This converts ranks to PIDs which are then used to index the DVal.

Partitioning. In this language the processors in child partitions created by the g sp m d
construct are defined by a group value. To compute new values of this type, the computa­
tional language is extended with a construct c u r re n t G ro u p that returns the underlying
group that defines the current partition. A set of operations on the Group type are also

provided that manipulate and create new groups,

The most significant change to this language is the limitation to a fixed number of pro­
cessors. Therefore child partitions must be located on a subset of the processors of their
parent. Similarly, a processor can only be in one concurrently executing partition. There­
fore the machine resources must be managed by balancing the load of the different SPMD
computations.

3.5 Decision-Making Stages 53

P 1 • • Pi

VP2 * P 2

P3 •

P4 • • Pa

(a) Point to point

• p 2 V

(b) Broadcast

Pi •

{a, 6, c, d} p 2

• P i

p 2 {a, 6, c, d}

(c) Scatter

{ a u bu cu d i } p 1

{ « 2 , b2, c2, d2] Pi

{a3, b3, c 3, d 3} p3

{<2 4 , 6 4 , C4 , £̂ 4 } P4

Pi { a 1) ^2) a 3> a 4}

P2

P3 { ̂ 1 ? ^2) C3 > C4 }

P4 {^1> d 2) d3) 6/4 }

/ *P3

• P 4

(d) Gather

a pi • p p i d
bp2 r * P 2 d

CP3 ' S s # P3 b
d p 4 • N » p 4 c

(e) Total exchange

Figure 3.8: Collective Communications

(f) Shift

A group defining a child partition may give a different mapping between ranks and PIDs
than its parent. This can be used to describe different orderings and topologies for sub­
computations. However, as the elements of a D V al are accessed using the rank ordering
of the current partition, the parent partition needs no knowledge of the ordering used by
the child partition to access elements of the D V al it returns.

3.5.3 Explicit Communication Stage

The final decision stage makes explicit the communication patterns required by the im­
plementation. The supporting language disallows the g e t construct. Therefore the un­
structured non-local D Val accesses previously expressed by this construct must now be
written in a different way - by using collective communications.

The language provides a typical selection of communication primitives, based upon the
informal consensus within the parallel programming community as to which primitives
are necessary for a communication library. Many different systems, such as TwoL, MPI
and iCC (Mitra et al., 1995) (a communication library for the Paragon), propose sim­
ilar sets of collective operations. Figure 3.8 illustrates the behaviour of the primitives
provided by PEDL for a partition of four processors pi, p 2, p3, p±. The set comprises:

3.5 Decision-Making Stages 54

point-to-point One processor passes a single message to another processor.

broadcast One processor passes the same message to every processor in the partition.

scatter One processor passes a individual message to every processor in the partition.
This primitive is typically implemented so that an array of messages is passed to
it: the first element is intended for the first ranked processor in the partition, and so
on.

gather The reverse of scatter. Every processor in the partition passes an individual mes­
sage to a single destination processor. Implementations typically return an array of
messages on the destination processor.

total exchange Every processor in the partition performs a scatter simultaneously. There­
fore a unique message is passed between all pairs of processors in the partition.

shift Every processor in the partition passes an individual message to a processor whose
rank is the specified offset from it. The offset can be positive or negative. This
primitive can be periodic: where the shifting action ’loops round’ from the end of
the processor ranks to the start again; or non-periodic: where some processors will
receive null values instead.

These collective communication operations reside in the coordination language. All have
the same general form: in addition to some configuration parameters, they accept a com­
municator and a D V al of elements to communicate and return a new D V al where these
elements have been reordered.

A communicator is a concept taken from MPI. It defines a communication context: mes­
sages from different communicators cannot be accidentally intercepted by communica­
tions from other communicators. It also defines the set of processors which participate in
the communication and an ordering for them. In the PEDL system a communicator is an
abstract data type, created in the computational language from a group. This group gives
the ordering used within the communicator.

The choice of communication operations is shaped somewhat by those provided by MPI,
the initial implementation target. However, they need not be restricted to this set - any
communication between a set of processors can be encoded as a permutation function
operating on a DVal.

Once this stage of the derivation is completed, the program contains details of the com­
putations, their ordering and placement on named processors, and the communication
operations required to redistribute data between them. All the information needed to
produce an implementation has been provided.

3.6 Final Implementation 55

3.6 Final Implementation

After all the implementation details have been fixed, the back end of the PEDL sys­
tem takes the derived program and generates a SAC+MPI implementation which is then
compiled to C+MPI.

Single Assignment C (SAC) (Scholz, 1994; Scholz, 1998) is a strict, purely functional
language whose syntax in large parts is identical to that of C. It differs from C in that
it disallows global variables and pointers to keep functions free from side-effects, and
allows multiple return values from user-defined functions. One of the motivations for
the SAC research is the efficient compilation of array-based computation. The language
possesses a rich set of array operations that allow the programmer to write dimension-
independent array expressions. The heavily optimising compiler generates code compa­
rable in performance to FORTRAN (Scholz, 1997).

We use SAC as a bridging language between our system and C+MPI. This simplifies
the transformations required to produce the final implementation as the SAC compiler
converts from a functional to an imperative language model and generates conventional,
portable C code. Although the SAC language model is closer to the PEDL languages than
C, there are still differences. The most significant is that it only presents a processor-view
model of parallel computation.

The next stage is to combine the coordination and computation layers of the program
using the change of view transformation (Section 7.1) to produce a program in an inter­
mediate language. This has a processor-view computational model and the functionality
of a subset of SAC+MPI.

The intermediate language is an extension of the computational language used throughout
the system. It provides the core computational operations and constructs that manipulate
groups; communicators; and access information about the parallel environment. This
language also has processor-view equivalents of the collective view communication op­
erations. These mirror the functionality of the MPI calls available from SAC. As it is
single-level language, there is no need for the encapsulation provided by the D V al ADT.
Therefore the constructs that access elements of distributed values are not present in the

language.

3.7 Summary 56

3.7 Summary

This chapter has given an informal overview of the PEDL system. It comprises a series
of decision stages followed by a series of transformations that result in a SAC+MPI
program, which is then compiled to C+MPI. At each stage the program is expressed in a
different language with a level of abstraction appropriate for that stage.

During the decision stages, where the programmer is introducing parallelisation detail,
the program is expressed in a combination of a coordination language and a computation
language. Each of these layers present a different view of the parallel machine, appropri­
ate for the purpose of that language. Combining different views of the machine requires
a technique to control the movement of data across the boundary between the views. An
abstract data type, the DVal, is used for this. It provides a different set of operations to
each language level.

The following chapter gives a formal definition of the syntax and semantics of the PEDL
languages. It describes the parallel behaviour of the coordination level constructs and
then demonstrates that it is possible to reason formally about programs in these lan­
guages.

Chapter 4

Formal Definition of PEDL

Capsule

This chapter gives a definition of the syntax, semantics and parallel behaviour
of the PEDL languages.

An operational semantics is defined for the languages of the decision stages of
the system. The languages share a common core of features and constructs. These
can be factored out of the languages and so presented only once. As well as simpli­
fying the presentation, the commonality allows code and theorems to be produced
that can be applied in many different contexts.

A different technique must be used for the intermediate language, as it does not
fit well within the operational semantic framework used for the other languages.
A transformational semantics is given that produces an equivalent collective-view
program for an intermediate language program.

The parallel behaviour of the coordination layer constructs is described using
Abstract Parallel Machines. In addition to documenting the behaviour of the con­
structs, this technique could be used to provide cost models for PEDL, and makes
it possible for the PEDL system to be used as an implementation route for APM
derivations.

The operational semantics can be used to reason about computations expressed
in the same or adjacent languages. The chapter concludes with an example equiva­
lence proof which uses evaluation functions defined by the operational semantics to
show that two computations have the same effect on the machine.

4.1 Syntax and Semantics of the PEDL Languages 58

Introduction

The PEDL system produces a parallel implementation by transforming a specification
through a series of progressively more explicit languages. To prove that the transforma­
tions applied are correct, we must be able to reason about program fragments within the
same language, and also equate program fragments in adjacent languages. This chapter
gives a formal definition of the PEDL languages that can be used as a foundation for
reasoning and performing proofs.

The first section defines the syntax and semantics of the languages. An operational p-
resentation of the semantics is given for the languages of the decision stages, while the
intermediate level language is described using a transformational semantics. Section 4.2
describes the parallel behaviour of the coordination-level languages by defining an Ab­
stract Parallel Machine (O’Donnell and Riinger, 1997b) where each construct is repre­
sented as a ParOp. Finally Section 4.3 demonstrates how the operational semantics can
be used to reason about programs expressed in the PEDL languages. Equivalence proofs
can be performed by showing that the semantic evaluation functions for two program
fragments have the same effect on the machine state.

4.1 Syntax and Semantics of the PEDL Languages

The PEDL languages are implemented by embedding them within a host language. A
pure lazy functional language, Haskell, is used as the host; the PEDL language constructs
are implemented within it as combinators. This implementation is described in detail in
Chapter 5. Embedding within a host language simplifies the design, implementation and
description of a language. Many of the features of the host language can be reused, so
that it is only necessary to implement the novel features of the embedded language.

The language specification given in this chapter concentrates on the higher-level portion
of the languages: mainly the constructs and concepts of the coordination layer. Other
details - for instance the syntax and semantics of expressions and function definitions -
are not handled here. Such details are as defined by the host language.

Furthermore, much of the static semantics and type system is omitted. For each construct
presented, we indicate what types are expected for its parameters. How this is enforced
and verified is dependent upon the host language. In our current implementation, the
languages are strongly-typed and statically checked. This is achieved by representing the
constructs in the Haskell type system. The type system is also used to ensure that the
PEDL languages are composed together correctly.

4.1 Syntax and Semantics of the PEDL Languages 59

The PEDL language syntax used throughout this thesis is a lightly-sugared version of
the Haskell implementation of the languages. The syntax of the languages is present­
ed in standard EfNF. Language keywords are written in b o ld while non-terminals are
capitalized in angle brackets like (THIS).

The operational semantics of the PEDL languages were first developed and checked by
implementing an abstract interpreter within Haskell. The sources and description of this
model are available from (Winstanley, 2000b). For clarity, the semantics are presented in
this chapter in a more mathematical form. The main addition is an explicit set type {a},
with set comprehensions and other set operations. While such operations can be approx­
imated using the list-handling capabilities of Haskell, a distinct type clarifies where there
is no ordering or sequencing implied in the semantics.

This section first presents the supporting functions and types used within the definition of
the languages. The common language structure and groups of constructs shared by class­
es of language are then presented (Section 4.1.2). This is followed by the specification of
the constructs particular to each stage of the system (Section 4.1.5).

Sharing constructs between languages simplifies the design, implementation and spec­
ification of the languages. It also permits the programmer to write generic procedures
and to formulate transformations and theorems that may be used in a range of settings.
However it is still possible to distinguish between the different languages; the embedded
implementation achieves this through the use of phantom language types (Section 5.3).

4.1.1 Language Basics

We start by defining the underlying type and functions used throughout the presentation
of the semantics.

Environments

The machine state is modeled using the following types and function. These definitions
manipulate tuples, for which we provide some primitive operations. The domain of a set
of tuples s can be accessed using do m s. Similarly, the codomain, or range, of a set of
tuples can be accessed using codom s. The notation s(n) maps a value through a set of
tuples. The value n must occur in the domain of s : the associated value in the codomain
of s is returned.

4.1 Syntax and Semantics of the PEDL Languages 60

State
Store

= (World, Store)
= [{(Identifier, Value)}]

newState
pop frame
pushframe
bind Identifier —» (Value, State) —> 5£a£e

Identifier —> S'tate —»• Vahze

W or/d —»
State —>
(State —> .State

find Value

bind n (v, (w, (f : f s)) =
findValue n (w, []) =

pop frame (w, (f : fs)) =
pushframe (w, fs) =

newState w

undefined
findValue n (w, (f : fs)) = if n G dom /

th en f (n)
else findValue n (w ,fs)

The State of the parallel machine is represented as a tuple of an abstract representation
of the external world state, and the store. The Store associates identifiers with values. It
reflects the block structure of the language: it is a sequence of frames. Each frame is a set
of bindings between identifier and value. A fresh frame is added to the store whenever a
new block of the program is entered; this frame is removed once execution of the block
is completed.

The program starts executing in a state with an empty store. The popframe and pushframe
functions add and remove a new frame to the store. A new binding between a name and
value can be added to the most recent frame using bind. Within the definition of bind
the I±J symbol denotes overriding union - that is, the new binding overrides any previous
binding involving that identifier in the frame.

The findValue operation finds the value associated with an identifier. Notice that when
bindings for an identifier occur in more than one frame, the value from the most re­
cent binding is returned. This corresponds to the lexical scoping of block-structured
languages, where the innermost binding gives the current value of an identifier. If no
binding can be found for an identifier, the value returned is undefined.

Some computations do not return useful results - instead they perform 10 that affect
the state of the external world. To retain a referentially-transparent presentation of the
semantics, this external state is modeled using an abstract type called ‘World’. Pro­
vided the world state is never duplicated or stored the program will be single-threaded,
which allows equational reasoning to be applied. This is similar to the approach used in

Worlds

4.1 Syntax and Semantics of the PEDL Languages 61

Clean (Bins et al., 1987) - where states are represented by variables whose single-use is
enforced using uniqueness type attributes (Smetsers et al., 1994).

This type is merely a device for preventing errors during reasoning and transformation.
It does not give any specification of the behaviour of IO-performing computations.

World = . . .
doIO :: World -» World
mergeWorld :: {W o r ld } —+ World
split World :: World —> { World]

V w :: World • w ^ doIO w
V ws :: {W o r ld } ■ mergeWorld ws ws
V w :: World • w splitWorld w

The evaluation rules for computations performing 10 consume the current world state and
produce a new one. This is encapsulated in the doIO primitive; no definition is given,
merely an axiom stating that it never returns the same world value.

We also define operations that split and combine the world value. This is necessary
because of the change of view that occurs when control passes from the coordination
layer to a block of parallel computational code. Such a block of code may cause each
processor to perform 10. The world value is decomposed using splitWorld so that each
processor has a portion of it on which to operate. After the parallel computation has
completed the (possibly altered) processor world values are combined using merge World
to produce a new collective-view model of the world.

This splitting and merging is quite sensible provided that different processors do not
attempt to access the same 10 resource during a computation step. If this happens the
outcome is undefined, as synchronisation is impossible in a single computation step. Fur­
thermore, such behaviour breaks the SPMD programming model. An example of legal 10
is where each processor writes to a different file simultaneously - these are disjoint parts
of the collective world state that do not interact with one another. However, having one
processor reading and another writing to the same file in a single step is nondeterministic
- as there is no way to synchronize the two operations in the computational model.

For convenience the world values are threaded through the semantic equations as part
of the State value, which also contains the environment of the executing program. To
prevent extensive packing and unpacking later in the semantics, we define merge and
split functions that operate over this state type as follows:

mergeState :: {S ta te } —> State
splitState :: State —> {S ta te }
mergeState ws = (merge World (dom ws), e) w h ere e G cod om ws
splitState (w, e) = { (« /, e) \ w' G splitWorld w }

4.1 Syntax and Semantics of the PEDL Languages 62

These definitions also specify what happens to the store value when moving back and

forth between the processor view and the collective view. Moving to the processor view

(sp litS ta te) replicates the current environment on each processor. W hen recombining,

the environment of an (unspecified) processor is selected to form the environment of the

coordination level. This leads to non-deterministic behaviour unless the environment

on every processor is identical. However, this is the case once the processor blocks have

completed, as any bindings that had been introduced by them were stored in fresh frames,

which are subsequently popped off the environment.

4.1.2 Program Blocks

All the PEDL languages are block structured. A (PROGRAM) is made up of a block of

code, combined with an integer which gives the number of processors that the starting

partition should contain. A (BLOCK) consists of a sequence of one or more computa­

tions, where the return value of the final computation forms the return value of the entire

block. Each computation in the block is an action, whose result may be bound to a new

identifier in the environment or simply discarded.

(PROGRAM) ::= ru n (BLOCK) (IDENT)
(BLOCK) ::= { (COMPUTATION) + }
(COMPUTATION) (IDENT) <- (ACTION) ;

| (ACTION) ;

The (ACTION) syntactic class contains all other language constructs: this varies from

language to language. Therefore (ACTION) it is left undefined for now, and a separate

definition given for each language in turn.

Semantics

We now present the semantic equations for the syntactic classes introduced so far. The

evaluation function [[•]] gives the result of evaluating a construct in the current machine

state. In most cases, the equation of [[•]] to choose can be determined by the concrete

syntax passed to it. However, in cases where this is ambiguous or unclear, the function is

annotated with the name of the syntactic class.

In addition to the syntactic clause, the evaluation function commonly takes two further

parameters The first, d, is a parameter containing environmental information about the

parallel machine the program is executing upon. This will is examined in detail when the

execution rules for parallelism constructs are presented (Section 4.1.4). Until then, it can

be ignored. The other parameter, e is the representation of the machine state introduced

earlier.

4.1 Syntax and Semantics of the PEDL Languages 63

The evaluation function typically returns a tuple of a result value, and a new machine
state. The machine configuration parameter d is never returned: it consists of ‘read-only’
data that may only be accessed by evaluation functions but not modified. Some of the
evaluation equations differ in their parameter or return types. Such cases will be indicated
as they occur.

[[run B zj

[[{C}Ubiock d e

IhMlcomputations d ®

[[B ; A]]compUtations d 6

= A w —► [[BJbiock (mkGroup i) (newState w)

= le t (v, e') = [[C]]Computations d (pushframe e)
in {v, pop frame e')

— ffAJcomputation d e

[[77. < A J co m p Uta tion d e —

[[A]]computation d e

le t (77, e) — [[B]]compUtation d 6
in [[A]]conipUtations d e

le t (z;, e') = [[A]] d e
in (v, bind n (v, e'))

[[A]] d e

The first equation above states that the effect of executing a program on a set of proces­
sors is the effect of executing the top-level block B in the state newState w. This is a
state formed from an empty store and the currently available world value. The parallel
configuration is generated using the mkGroup function (defined in Section 4.1.4): this
takes as input the number of processors required by the program.

A block has its own nested scope. Executing a block involves adding a fresh frame to the
environment, executing the computations of the block within this new frame, and then
popping the frame off the environment. Each computation in the block may bind its result
to an identifier in the new stack frame. Alternatively, the result may be discarded; this is
useful for computations that return no significant result and are called for their effect on
the external world.

Any new bindings can be accessed by subsequent computations. The result returned from
a block is the result computed by the final computation within it. As the temporary frame
is removed on completion of the block, the result returned from it is the only property of
the block observable from the parent program.

4.1 Syntax and Semantics of the PEDL Languages 64

4.1.3 Control Structures

There is a common core of control structures that appear in all the PEDL languages with
identical semantics. This section examines these constructs.

(STRUCTURE) ::= retu rn (EXP)
| if (EXP) th en (BLOCK) else (BLOCK)
j do (BLOCK)
j rep eat (BLOCK)
| rep ea tn (EXP) (BLOCK)
| rep eataccu m (EXP) (ABS1)
| rep eatn accu m (EXP) (EXP) (ABS1)
| for ((EXP) , (EXP) , (EXP)) (ABS1)
j foraccum ((EXP) , (EXP) , (EXP)) (EXP)(ABS2)

e = (p i e, e)

pkp R9H H p = j ttB1Ibiock d e, if P I e = true
“ \ |[B2]|block d e, if [E l e = false

= [[Bl block d e

The r e tu r n construct binds the result of an expression to an identifier in the current store.
This can be thought of as a let-binding or local definition. The evaluation equation for
expressions is not specified here - it is part of the host language. As such, it cannot access
the parallel-machine data, and so is only parameterized by an environment. Furthermore,
as the expression must be pure, the environment is unchanged.

The conditional statement is quite straightforward. Depending on whether the boolean
expression evaluates to True or False, one of the two alternative blocks is executed in the
current state. Next, the do statement introduces a child block. This is useful to control
the scoping of local variables. The child block is executed as described in the previous
section.

p e p e a t B l d e = p e p e a t B l d (snd (P Ib io c k d e))

p e p e a tn E B l d e = let eval 1 e — P Ib io c k d e
eval i e = eval (i — 1) (snd (P Ib io c k d e))

in eval (p i e) e

The other shared constructs are various forms of loop combinator; these mirror the differ­
ent iteration patterns possible in an imperative language with loop constructs. The first,
r e p e a t, executes its loop body infinitely; a possibly more useful construct is r e p e a tn
which executes a block a fixed number of times, returning the result of the final iteration.

p e tu r n E l d

p f E th en Bl

[[do B l d e

4.1 Syntax and Semantics of the PEDL Languages 65

[[repeataccum E B] d e = let eval (v, e) — eval ([[B]]absi d v e)
in eval ([[E]] e, e)

[[repeatnaccum E E’ BJ d e = let eval 0 (v, e) = (v,e)
eval i (v, e) = eval (i — 1) ([[B]]absi d v e)

in eval ([[EJ e) ([[E’]] e, e)

For expressing folds and scans, re p e a ta c c u m and re p e a tn a c c u m can be used. These
are similar to the previous looping constructs but add an accumulating parameter. A
starting value for this must be supplied, which is then passed to the first iteration of the
loop body. After that, the result of one iteration is passed as a parameter to the next. The
loop body is an abstraction that binds an identifier to the value passed in to the loop. The
evaluation rules for the abstraction syntactic classes are given presently.

[[for (N, N \ N”) BJ d e =
let start = [[N]] e

stop = fl~N’]] e
inc = fl~N”]] e
eval i e = if abs (i + inc) > abs (stop)

th en [B]]absi d i e
else eval (i + inc) (snd ([[B]]absi d i e))

in eval start e

p o ra ccu m (N, N ’, N”) EBJ d e =
le t start = [[NJ e

eval i (v, e) = if abs (i + inc) > abs (stop)
th en |[B]]abs2 d i v e
else eval (i + inc) (snd ([[B]]abs2 d i v e))

in eval start ([[EJ e , e)

Finally, a general for-loop construct is provided, and a variant with an accumulating
parameter. The range of loop indexes is described by a tuple of start, stop and increment
values. The value of the loop index is passed to each iteration of the loop body through an
abstraction. In addition the fo raccu m construct also passes an accumulating parameter
through the iterations of the body.

Provided they terminate, all the loop constructs return the result of the final iteration of the
loop body. The computational language has additional varieties of loop combinator that
build arrays or vectors from the results of each iteration. These are useful for constructing
data structures where the value of one element depends on previous elements. However,
these features are not really relevant to the details of the coordination languages and
management of parallelism, and so are not presented here.

stop
inc

= IN’] e
= IN”]] e

4.1 Syntax and Semantics of the PEDL Languages 66

Abstractions

(ABS1) A (IDENT) -► (BLOCK)
(ABS2) ::= A (IDENT) (IDENT) -> (BLOCK)

n —> B]jabsi d v e = le t e' = bind n (v, pushframe e)

in (r, pop frame e")
(r, e") = PIbiock d e'
rr* rr \r \r r \ -p m n nnr\ n

P n n' BJabs2 d v v' e = le t e' = bind n {v, pushframe e)

in (r, popframe e")
(r, e") = Plbiock d {bind n' (v', e))
rr* r r \r \r r \ f r r * n r r Y \ a

The bodies of the accumulating and for loops are abstractions over loop indexes or ac­
cumulating values. The syntax and evaluation equations for these abstractions are shown
above. These evaluation functions are passed additional values: the actual parameters to
be passed to the abstraction. These are bound to the formal parameter identifiers in a new
frame. The block itself is then evaluated after which the temporary frame of parameter
bindings is removed.

4.1.4 Parallelism Constructs

This section presents the constructs that introduce parallel computation and partition de­
composition into the language. These are shared by all the coordination languages of the
system. Before presenting the constructs themselves, some supporting types and defini­
tions are given.

A group is a MPI type that is used to describe a set of processors and an ordering of
the set. A group defines a mapping between an ordered sequence of ranks (integers)
and the arbitrary processor identifiers (PIDs). Ranks, which are numbered contiguously
from one, are more convenient to program with than the irregularly named processor
identifiers. Groups are used within the PEDL languages to describe the partitioning of
the parallel machine.

Groups

mkGroup
rankToPid
pidToRank

Group = [PID]
:: Integer —> Group
:: Group —* Rank —► PID
:: Group —» PID —» Rank

mkGroup n — g , length g — n
rankToPid grp rank = grp !! {rank + 1)

4.1 Syntax and Semantics of the PEDL Languages 67

pidToRank grp pid = let count i {p : p s) = if pid = p
th en i
else count (i + 1) ps

in count 1 grp

A group is modeled as a sequence of processor identifiers. The ordering of the PIDs in
the sequence determines their ranks in the group. rankToPid and pidToRank give the
mapping between these two naming systems. mkGroup is used to generate the group that
defines the starting partition of a program, based on the number of required processors
passed to the ru n construct. The naming scheme of the PIDs in the starting group is
system dependent; all that can be stated about the mkGroup function is that it returns a
group containing the required number of processors.

Distributed values

As described in the previous chapter, the distributed result of a parallel computation is
encapsulated within an abstract datatype called a DVal. This ensures a clean separation
between the coordination and computation layers of a program. A distributed value has
a different element on each processor in the machine, where some of these elements may
be undefined. A distributed value is represented as a set of bindings between PIDs and
values. The operation indexDval projects the element of the distributed value associated
with processor named pid.

Dual = {{P ID , Value)}
indexDval :: PID —> Dval —> Value
indexDval pid dv = dv{pid)

Parallel Machine Configuration

This section describes the machine configuration data that is passed to the evaluation
equations - this is the d parameter introduced earlier.

CoordinationData = Group
GlobalData = (size :: In t , group
ParallelData = (size :: In t , rank

mkGlobalData
mkParallelData

CoordinationData
CoordinationData

Group)
In t , p id :: PID, group :: Group)

■> GlobalData
* { (ParallelData, S ta te)}

mkGlobalData d = {size = length d, group — d)
mkParallelData d e =

{{{size = length d, rank = i, p id = p, group = d) ,pe)
| (i , p , p e) G zip3 [1 ..] d {splitState e)}

4.1 Syntax and Semantics of the PEDL Languages 68

Within the coordination layer of the program, the configuration data is a value of type
CoordinationData - which is simply a group. This group defines the partition of pro­
cessors the coordination program is executing on.

When a parallel or global computation block is entered the configuration data is extend­
ed with extra information that may be required during its execution. Values of type
GlobalData or ParallelData types are passed to the evaluation equations of such blocks.
These types are records that contain the group defining the current partition along with
extra fields. The GlobalData record type contains a size field - this gives the number
of processors in the current partition. In addition the ParallelData type has fields that
contain the rank and PID of the currently executing processor.

The functions mkGlobalData and mkParallelData construct the configuration data for
a computational block from the data in the coordination layer. mkGlobalData returns
a single record as the configuration data is identical for all processors participating in
the computation. In contrast, the mkParallelData function returns a set of record and
environment pairs. This is necessary because each processor must have an individual
record that contains the correct values for the rank and PID fields. Furthermore, this
function splits the world value contained in the coordination layer state, generating a
partial world state for each processor.

Syntax

The syntax of the coordination language parallelism constructs is as follows:

(PAROP) ::= p arallel (BLOCK)
| g lobal (BLOCK)
| g loba lize (EXP) (IDENT)
| gspm d { (PBINDING)+ }

(PBINDING) ::= (IDENT) <- (PARTITION)
(PARTITION) ::= (EXP/IDENT) : (BLOCK)

The p a ra lle l construct executes a block of computational code on each processor in the
current partition in parallel and returns a D V al of their results. The g loba l construct
does similar but, by constraining the possible operations in the computational body, the
result is guaranteed to be replicated across processors. Therefore the result does not need
to be encapsulated in the distributed value ADT. The g lobalize construct replicates an
element of a distributed value across all processors in the partition. Its parameters are
an expression which evaluates to a valid processor rank and the identifier of a distributed
value from which to project the element.

The g sp m d construct divides the current partition into concurrently executing child par­
titions. It accepts a list of partition bindings: these bind the result of a partition com­

4.1 Syntax and Semantics of the PEDL Languages 69

putation to a new identifier. The partition syntactic class comprises a description of the
processors in the new partition, and a block of coordination code to execute on these
processors. The method used to describe a partition varies across the languages. In the
earlier coordination language a single integer expression giving the size is sufficient. Lat­
er languages introduce processor identity and so a partition must be described by a group
value.

Semantics

The purpose of the semantics presented here is to express the changes to state and the
values computed by the coordination language constructs, rather than to model their par­
allel behaviour. Hence there is no explicit notion of a processor in any of these semantic
equations. The parallel behaviour of these constructs is described later in Section 4.2.

[[global B]\ d e = [Bflbiock ('mkGlobalData d) e

[g lo b a lize E dv]\ d e = let p = rankToPid i (P I e)
in (indexDval p (findValue dv e), e)

The g loba l construct generates data that is guaranteed to be replicated over all processors
of the current partition. The equation for this construct is quite simple. A machine con­
figuration for the global block is generated from the current group using mkGlobalData.
The block of computational code is then executed in the current environment and is
passed this machine configuration As the current environment is used, any previous bind­
ings are visible within the computational block. However, only other replicated values
may be accessed: distributed values are encapsulated within the Dval type, for which this
language lacks a construct to project elements.

The g lobalize operation evaluates the expression to a rank and maps this to the corre­
sponding PID using the group in the configuration data, which defines the current parti­
tion. The element of the distributed value associated with this PID is then projected.

[p ara lle l B J d e = let f (pd ,pe) — le t (v ,pe ') — [BJbiock pd pe
in ((p d .p id , v), pe')

rs = { / s | s G mkParallelData d e]

in (dom rs, mergeState (codom rs))

The semantics of the p a ra lle l construct are a little more involved. A local function /
describes the behaviour of a single processor. It accepts a tuple of a system configuration
and a state. The computation body is executed in this configuration and state, and the
resulting value labelled with the PID of the current processor.

The set rs is the result of applying the single-processor computation / to each element
of the set of (configuration, processor state) pairs generated by mkParallelData. The

4.1 Syntax and Semantics of the PEDL Languages 70

domain of rs is a set of {PID, Value) pairs - the distributed value which is the result of
this construct.

The state returned by the p a ra lle l construct is the merging of all the resulting processor
states. As the temporary frame is removed after evaluating the computational block, the
environment at this stage is identical in all processors. Therefore it does not matter which
processor store is chosen to become the collective-view environment. All mergeState
really does is to coalesce the processor world values into a collective-view world value.

HE : BJpartition d e = le t d' = mkPartition [[E]] d e
in pjbiock d' e

[[TL < PJpbinding d e = le t (l), e) = [fPllpartition d e
in ((n, v), e')

[[gspmd {PS}]] d e =
l e t / [[P]l e = [[Plpbinding d e

rs = map2 f [[PS]] (splitState e)
g (n, v) e = bind n (i>, e)

in (snd (last (dom rs)), fold g (mergeState (codom rs))(dom rs))

The evaluation function for a partition generates a new CooordinationData value through
the use of the mkPartition function, and then executes the block in this new machine
configuration. This returns a result and state pair. The definition of mkPartition is de­
pendent on whether the language uses integers or groups to describe partitions. It is left
undefined for now, and a definition given for each language.

The g sp m d construct is similar to p a ra lle l but executes a set of coordination language
blocks in parallel, rather than a set of computational blocks. The world value is divided
between the child partitions; after they have terminated it is merged back together. The
local function / describes the execution of one partition. It is mapped along the sequence
of partition bindings and fragmented world values to produce rs, which is a set of parti­
tion binding results. Evaluating a partition binding executes the partition it contains and
pairs the result with the identifier it is to be bound to. Therefore the domain of the set rs
is a set of {Identifier, Value) pairs, while the codomain is a set of states.

The value the g sp m d construct returns is the result of the last partition. The environment
returned is the merged state of the states produced by the different partitions, to which
each of the (Identifier, Value) pairs returned by the partition bindings is then added.

4.1.5 Computational Language

The block structure of the languages, the set of control constructs shared by all lan­
guages, and the parallelism constructs shared by the coordination languages have all

4.1 Syntax and Semantics of the PEDL Languages 71

been described. The following sections will now examine the constructs particular to
each language.

We start with the computation language. This language has a single processor machine
model and is used to express the computational facets of the parallel program. It is the
core on which the different parallel computation and global computation languages are
based. The language has a rich set of array combinators. However, these can be defined
in terms of a few primitives, the semantics of which are presented below.

Array = {(Index, Value)}
indexSet :: a —» { a }
indexArray :: Index —» Array —► Value

indexSeti b — {« | i G [1 .. 6]}
indexSeto, (bi: bj) = {(i , j) \ i G [1.. &*], j G [1.. bj]}
indexArray ix a = a(ix)

An array is modeled as a set of (Index, Value) pairs. The Index type for an n-dimensional
array is an n-tuple of integers. The indexes of an array are contiguous and have an origin
of 1 for a vector, (1,1) for a two-dimensional matrix, and so on. The indexSet func­
tion takes an upper bound and produces a set of all indexes from the origin up to this
upper bound. It is difficult to give a clear definition of this functions that works for all
dimensionalities of index. Instead two examples are given: definitions for other dimen­
sionalities can be defined as needed by following this pattern.

(ARRAYOP) ::= genarray (EXP) (ABS1)
| m odarray (IDENT) (ABS2)
| (IDENT) ! (EXP)
| b ou n d s (IDENT)

[[genarray E B J d e = le t / ix = le t (v, e') = [[B]]absi d ix e
in (ix, v)

in ({ / i | i G indexSet ([[EJ e) } , e)

[[modarray a B J d e = let array = findValue a e
f (ix, v) = le t (v', e') = [[B Jabs2 d ix v e

in (ix, v')
in { / a | a G array}, e)

[[a ! E J d e = let array = findValue a e
in (indexArray ([[EJ e) array, e)

[[bounds a j d e = let array = findValue a e
bnd = if array ^ { } th en maximum (dom array)

else 0
in (bnd, e)

A new array is created using g en array . This applies the abstraction body to each index
in the index set to compute the corresponding element. The m o d a rra y operation is

4.1 Syntax and Semantics of the PEDL Languages 72

similar, but performs a map over an existing array to form the new array. Notice that
the order in which the abstractions are executed is not defined. This is necessary as
the SAC equivalent of this construct does not define an execution order for the element
computations either: this allows the SAC compiler to reorder the computations for the
best efficiency. For safety the language does not permit 10 to take place within the body
of the construct. If IO does take place the result will be undefined as the world value is
not threaded though the element computations, but instead is returned unchanged from
this construct.

The ! operation indexes an array. This is straightforward, as is computing the b o u n d s
of an array, which returns the largest index in the array.

4.1.6 Independent Computation Stage

This is the first decision stage in the sequence. As all the common structure has already
been presented, the syntax of the coordination language used at this stage can be com­
pleted by giving a definition of the missing (ACTION) syntactic class.

(ACTION) ::= (PAROP) | (STRUCTURE)

So an action in the independent coordination language is either: a parallel operation (for
instance a p a ra lle l or global); or a control structure (such as a conditional or loop).

mkPartition [[EJ d e — mkGroup ([[EJ e)

Similarly, the semantics of the language can be completed by giving a definition of the
missing mkPartition function. In this language, a partition is described by a single
integer - the size. Hence mkPartition can be defined in terms of mkGroup given earlier.

Global Language

The syntax of the computational languages used at this stage of the system can be defined
in the same way.

(ACTION) ::= (ARRAYOP) | (STRUCTURE) | (SIZE)

The actions permitted in the global computation language of this stage are array opera­
tions, common control structures, and a new construct (SIZE).

4.1 Syntax and Semantics of the PEDL Languages 73

Parallel Language

(ACTION) ::= (ARRAYOP) | (STRUCTURE)
| (RANK) | (SIZE) | (USE) | (GET)

Similarly, an action of the parallel language is either an array operation, a common struc­
ture, or one of four new constructs.

New Constructs

The following constructs are introduced by the computational languages of this stage of
the PEDL system:

(RANK) ::= rank
(SIZE)
(USE)
(GET)

= size
= use (IDENT)
= get (IDENT) (EXP)

[[rank]] pd e = (pd.rank , e)
[[size]] pd e = (pd .s ize , e)
[[use dv]\ pd e = (indexDval (p d .p id) (findValue dv e), e)
[[get dv E J pd e = l e t p = rankToPid (pd.group) ([[EJ e)

in (indexDval p (findValue dv e), e)

The ra n k and size constructs allow the programmer to query the rank of the current
processor and the size of the current partition. Their evaluation functions project the
corresponding field from the parallel configuration record, while the state is unchanged.

The other two operations access elements of a distributed value, u se projects the element
local to the current processor by using the pid field of the parallel configuration record,
g e t accesses an element resident on another processor. The construct takes an expression
which evaluates to a rank. This rank is then mapped through the current group to find a
PID with which the distributed value is then indexed.

Notice that any constructs that allow access to distributed data, query the processor rank,
or perform 10 are disallowed in the global computational language. As using these is the
only way that a different value can be computed on each processor, the result of a global
computation is guaranteed to be replicated.

4.1.7 Distribution Stage

The next decision stage introduces a fixed number of named processors. From this stage
groups are used to define partitions of processors.

4.1 Syntax and Semantics of the PEDL Languages 74

(ACTION) ::= (PAROP) | (STRUCTURE)

mkPartition [[nj d e = findValue n e

The constructs permitted in this coordination language are unchanged from the previous
stage. However, the definition of the mkPartition function is changed so that it is passed
an identifier bound to a group in the current environment.

Global Language

(ACTION) ::= (ARRAYOP) | (STRUCTURE) | (SIZE)
| (GROUP)

Parallel Language

(ACTION) ::= (ARRAYOP) | (STRUCTURE)
| (RANK) | (SIZE) | (USE) | (GET)
| (GROUP)

The (ACTION) syntactic class for the global and parallel computational languages con­
tains the constructs of the previous stage and adds a new set of constructs for manipulat­
ing groups.

Group Constructs

These allow the construction and manipulation of group values. In addition to queries
such as finding the size of a group, there are constructs to perform set-like operations on
groups, compare groups, and create groups by including or excluding a set of ranks given
as a vector.

(GROUP) ::= current group
| grou p Size (IDENT)
| grou p T ranslateR an ks (IDENT) (IDENT) (IDENT)
| groupC om pare (IDENT) (IDENT)
| g ro u p ln cl (IDENT) (IDENT)
| grou p E xcl (IDENT) (IDENT)
| g rou p U n ion (IDENT) (IDENT)
| g ro u p ln tersec tio n (IDENT) (IDENT)
| grou p D ifferen ce (IDENT) (IDENT)

4.1 Syntax and Semantics of the PEDL Languages 75

[[currentgroup]] pd e = (pd.group, e)
[[groupSize g j p d e = (length (findValue g e), e)

The c u r re n t G ro u p operation returns the defining group of the current partition, by
projecting the group field from the parallel configuration record. The current group is a
base value from which other groups can be constructed.

[[groupTranslateRanks g g' a]] pd e —
let fromGroup = findValue g e

to Group = findValue g' e
array = findValue a e
array' = let pids = { (i x , fromGroup V. (r — l)) | (« 2:,r) G array]

in {(ix, r) | (ix, p) G pids, (r, p') G zip [1 ..] toGroup, p = p'
in (array', e)

The tra n s la te R a n k s operation allows a vector of ranks to be mapped through a group,
which is useful, for instance, to convert between ranks of a parent and child partition.

HgroupCompare g g'J pd e — let group = findValue g e
group' = findValue g' e
n — if group = group' th en 1 else

if sort group — sort group' th en 2
else 0

i n (n, e)

[[grouplncl g a j pd e = let group = find Value g e
array = findValue a e

in ([group !! (r — 1) | r G codom array], e)

[[groupExcl g a j pd e = let group = findValue g e
array = findValue a e
excl = {group !! (r — 1) | r G codom array]

in ([p | p <— group, ->(p G excl)], e)

The g ro u p C o m p a re returns an integer indicating whether two groups are identical,
similar (same PIDs, but different ranks), or different, g ro u p ln c l constructs a new group
composed of the ranks contained in an array based on an existing group. The complement
of this group can be created using g roupE xcl.

[[groupUnion g #']] pd e — let group = findValue g e
group' — findValue g' e

in (group' Tf [p\ P group', -> (p G group)], e

[[grouplntersection g g']\ pd e — let group — findValue g e
group' = findValue g' e

in ([p | p <— group, p G group1], e)

dgroupDifference g g']\ pd e = let group = findValue g e
group' = find Value g' e

in ([p | p <— group, ->(p G group')], e)

Finally, the language provides a group generators that allow groups to be treated as sets.

4.1 Syntax and Semantics of the PEDL Languages 76

4.1.8 Explicit Communication Stage

The final decision stage in the PEDL system introduces explicit collective communica­
tions.

(ACTION) ::= (PAROP) | (STRUCTURE)
| (COMM) | com m u nicator (IDENT)

mkPartition [[nj d e = findValue n e

The coordination language for this stage is extended with a set of collective communi­
cation operations (COMM) and a construct to create a new communicator. A commu­
nicator defines a separate namespace for messages, and ensures that messages cannot be
intercepted by other communication operations. The m k P a r t i t io n function is unchanged
from the previous stage.

Global Language

(ACTION) ::= (ARRAYOP) | (STRUCTURE) | (SIZE)
| (GROUP)

Parallel Language

(ACTION) ::= (ARRAYOP) | (STRUCTURE)
| (RANK) | (SIZE) | (USE)
| (GROUP)

While the global language is remains the same as in the previous stage, the g e t operation
is removed from the parallel language. Therefore all data redistribution must now take
place using the collective communication operations rather than by direct accesses.

Communicator

A communicator is a MPI type that provides a separate namespace for a communication
and defines an ordered set of processors that participate in a communication operation.
In the semantics a communicator is modeled by a group. The co m m u n ic a to r operation
creates a new communicator from a group.

Communicator = Group
[[com m unicator n j d e — {findValue n e, e)

4.1 Syntax and Semantics of the PEDL Languages 77

Although communicators and groups share the same representation, we differentiate be­
tween the two syntactic classes because of the different properties of these types. The
creation of a group in MPI is a asynchronous operation that requires no communication.
However, the process of creating a communicator involves synchronization and commu­
nication between the group of processors involved. Hence this construct is placed in
the coordination layer language. All processors which call the creation procedure must
do so with identical parameters. Placing the creation construct in the coordination layer
ensures that only replicated data can be passed as parameters.

Collective Communications

The collective communication operations all have the same general form - they accept
ranks indicating source and destination processors, a communicator and a distributed
value. A new distributed value is returned with the indexes reordered.

(COMM) ::= p o in tT oP oin t (EXP) (EXP) (IDENT) (IDENT)
| broadcast (EXP) (IDENT) (IDENT)
| m u ltiB road cast (IDENT) (IDENT)
| gath er (EXP) (IDENT) (IDENT)
| sca tter (EXP) (IDENT) (IDENT)
| to ta lE x ch a n g e (IDENT) (IDENT)
| sh ift (EXP) (EXP) (EXP) (IDENT) (IDENT)

The semantic functions have a common structure. The communication operation evalu­
ates or finds the value of its parameters and then uses these to create a new distributed
value that reorders the elements of the message data.

[[pointT oPoint E E’ comm dvJ d e =
let commGroup = findValue comm e

src = rankToPid commGroup ([[E]] e)
dest = rankToPid commGroup ([[E’]] e)
dval = findValue dv e

in ({(dest , indexDval src dval)}, e)

[[broadcast E comm dv~R d e =
le t commGroup = findValue comm e

src = rankToPid commGroup ([[EJ e)
dval = findValue dv e

in ({(p, indexDval src dval) \ p E commGroup}, e)

4.1 Syntax and Semantics of the PEDL Languages 78

[[m ultiB roadcast comm dv]) d e —
le t commGroup — findValue comm e

dval = findValue dv e
arr = {(pidToRank commGroup pid , indexDval p id dval)

| pid £ commGroup}

in ({(p, arr) \ p £ commGroup}, e)

[[gather E comm dv]\ d e —
le t commGroup = findValue comm e

dest — rankToPid commGroup ([[E]] e)
dval = findValue dv e
arr = {(pidToRank commGroup pid, indexDval p id dval)

| pid £ commGroup}

in ({(dest , arr)} , e)

[[scatter E comm dv]\ d e —
le t commGroup = findValue comm e

src = rankToPid commGroup ([[EJ e)
dval = findValue dv e
arr = indexDval src dval

in ({(p, indexArray (pidToRank commGroup p) arr)
| p £ commGroup}, e)

[[totalE xchange comm dv~ft d e =
le t commGroup = findValue comm e

dval = findValue dv e
f destRank = {(pidToRank commGroup srcPid

, indexArray destRank (indexDval srcPid dval))
| srcPid £ commGroup}

in ({(p, / (pidToRank commGroup p)) \ p £ commGroup}, e)

[[shift E E’ E” comm dv]\ d e =
let commGroup = findValue comm e

= findValue dv e
= m e
= p i e
= P ’l e
= length commGroup
= le t destRank — pidToRank commGroup pid

srcRank = des tR ank — (direction x disp)
in if srcR ank < 1 V srcR an k > c o m m S ize

th en if periodic
th en rankToPid commGroup

(1 + ((srcR ank — 1) mod com m S ize))
else undefined

else rankToPid commGroup srcRank
in ({(p, indexDval (f p) dval) \ p £ commGroup}, e)

dval
periodic
direction
disp
commSize
f pid

4.1 Syntax and Semantics of the PEDL Languages 79

4.1.9 Intermediate Language

At this point of the a PEDL derivation all the parallelisation details have been fixed.
The next stage in the process is to transform the program to an intermediate language
which more closely resembles the target language. Unlike the previous languages, the
intermediate language has a conventional single-processor view of the parallel machine.
In place of using a coordination layer to express the communication and coordination
of the parallel algorithm, the language provides constructs which request these services
from an underlying communication system. This is similar to the interface provided by
communication libraries to conventional programming languages.

As there is only a single layer to this stage, there is no need for the abstraction of dis­
tributed values and the operations associated with them. The language is comprised of the
common computational core of structures, array operations and group operations. To this
are added single-processor versions of the collective communication constructs. These
differ in that they accept elements of data to communicate, rather than entire distributed
values. The language has the following syntax:

(ACTION) ::= (STRUCTURE) | (ARRAYOP)
| (GROUP) | (SIZE) | (RANK)
| (COMMRQ)
| com m u nicatorR Q (IDENT)
| gspm dR Q { (PBINDING)+ }
j g lobalizeR Q (EXP) (IDENT)

The language introduces constructs (co m m u n ica to rR Q , g sp m d R Q , g lobalizeR Q
and (COMMRQ)) that replace the collective operations of the previous languages. These
have the same structure and parameters as their collective counterparts, but produce a
result by calling the underlying communication system rather than manipulating data
directly. The new syntactic class (COMMRQ) enumerates the communication requests.
Each has the same structure as the corresponding collective communication.

(COMMRQ) ::= p o in tT oP oin tR Q (EXP) (EXP) (IDENT) (IDENT)
| b roadcastR Q (EXP) (IDENT) (IDENT)
| m u ltiB road castR Q (IDENT) (IDENT)
| gatherR Q (EXP) (IDENT) (IDENT)
| scatterR Q (EXP) (IDENT) (IDENT)
| to ta lE xch an geR Q (IDENT) (IDENT)
| sh iftR Q (EXP) (EXP) (EXP) (IDENT) (IDENT)

4.1 Syntax and Semantics of the PEDL Languages 80

Semantics

To represent the semantics of the intermediate stage in the same manner as the previous
languages would require a description of the communication system and the interaction
between processors. This would introduce concurrency and nondeterminism into the
presentation, greatly complicating it.

Instead we use a technique proposed by (O’Donnell, 2000). The semantics of an inter­
mediate language program are defined by a transformation which generates an equivalent
collective-view program. The computational code is unchanged in this process, and so
can be reasoned about before and after the transformation using the operational semantics
defined already.

Transformational Semantics

Figure 4.1 defines a transformation C that generates a semantically equivalent collective-
view program from an intermediate language program. The transformation converts com­
munication requests into the corresponding collective communication constructs. These
must occur in the coordination layer of the resulting program. Therefore, no matter how
deeply nested a communication request occurs, the enclosing block forms part of the
boundary between the two layers.

While any communication requests in a block of code are transformed to coordination-
level constructs, any surrounding computational code must be placed either in a p a ra lle l
or g loba l block. A computation is determined to be parallel whenever it contains con­
structs specific to parallel blocks (such as ran k) or references to identifiers bound to the
result of previous parallel computations. Otherwise, a global computation block can be
used.

The transformation relies on the source program being well-formed - in particular dis­
tributed data must not used where replicated data is required. While the collective lan­
guages enforce this by the use of different hook constructs and the Dval type, at this stage
the responsibility lies with the programmer.

We now examine each group of transformation rules in turn:

1. Blocks. If the block contains constructs that will appear in the coordination lay­
er, the algorithm must enter the block and independently transform each of the
computations within it.

If the block is comprised solely of computational constructs, then the block can
be transformed as a whole without recursing further. If the block contains con­
structs specific to parallel computations, or refers to distributed values produced

4.1 Syntax and Semantics of the PEDL Languages 81

Blocks
C l doB J

| is Coordination [[BJ
| isParallel^BJ
I otherwise

d o c m
parallel transUse^_B]]
global B

Traverse a block
C[[{B} 1 block

CUAJcomputation

C[[n < ^Hcomputation

Computation
C[[return E]|
CflsizeJ
CflrankJ
C [G J g ro u p

| isParallel\[GJ
| otherwise

C [[A J array0p

| is Parallel^ A]\
I otherwise

map (CJJcomputation) B
C [A J action
^ < ^[[A]] action

retu rn E
global size
p arallel rank

parallel transUse^GJ
global G

p arallel transUsefrAJ
global A

Communication requests
C[g sp m d R Q {PB}J
C[[globalizeRQ EIJ
C[[com m unicatorR Q IJ
C flpointToPointR Q E E’ I I’J

gsp m d { map (CO) PB }
globalize EI
com m u nicator I
p o in tT oP oin t E E’ 11’

Control Structures
C p f E th en B else B’J ==>■ if E th en C[[BJ else C[[B’J
CQrepeat BJ =>■ rep eat C[[BJ

Supporting Functions

• isCoordination\[A]\. Boolean. Returns True if A contains any request construct - i.e.
gspm dR Q , globalizeR Q , com m u nicatorR Q or a communication request.

• isParallel^_A\ Boolean. Returns True if A contains the rank construct or references to
any identifier bound to the result of a previous parallel computation or communication.

• trans Use[[AJ. Transformation. Adds u se constructs for all distributed values occurring in
A. The following is an example of the transformation, where a, b are bound to the results
of parallel computations:

trans Us e\[comp a 6J = > do {a <— use a; b *— u se b; comp a b}

Figure 4.1: Transformational semantics for the intermediate langauge

4.1 Syntax and Semantics of the PEDL Languages 82

by previous parallel computations or communications, then it too must be a paral­
lel computation. Otherwise it can be safely transformed to a global computation.

2. Traverse a block. These rules recursively transform all the actions within a block.

3. Computation. The next set of rules transform computational code. There is a
rule for each syntactic class of construct. For some of the primitives, a clear deci­
sion can be made on whether to place it in a parallel or global computation. For
constructs that accept parameters, the context in which the parameter value was
generated must be analyzed. This requires that a record be maintained of the i-
dentifiers currently in scope and the context in which they were generated - this is
elided from the presentation.

As with the rule for blocks, if a parameter to the computation under analysis was
created in a parallel context, then this computation must also be placed in a par­
allel context. As well as adding the p a ra lle l construct, the transformation calls
transUse [[]] to add use constructs that access the elements of these distributed val­
ues. To remove the need to rename identifiers, the use constructs name-shadow
the original identifier. An example of this is given at the bottom of the figure.

On the other hand, if the computation does not access the results of previous par­
allel computations, it can simply be transformed to a global execution context.

4. Communication Requests. A communication request is replaced with the corre­
sponding collective-view operation. The rules for the other communication con­
structs follow the same pattern and are elided.

5. Control Structures. Control structures such as loops and conditionals are left
unchanged, but the transformation is recursively applied to the bodies of these
constructs. Parameters to a structure (such as the condition of the if statement)
are unchanged. Provided that the source program is well-formed, such parameters
will only contain references to values produced in an appropriate computational
context. For conciseness we have omitted the similar rules for the other looping
constructs.

An Example

The following intermediate language function creates a communicator which is then used
to broadcast an array. The resulting array is then mapped across by a function / which
takes the processor rank as an additional parameter.

4.1 Syntax and Semantics of the PEDL Languages 83

p arr = do
g <— currentG roup
comm <— com m u nicatorR Q g
arr' <— b roadcastR Q 1 comm arr
r <— rank
m odarray arr' (/ r)

Applying the C transformation gives the following collective-view program which defines
the semantics of the intermediate program:

p arr = do
g <— global currentG roup
comm <— com m u nicator g
arr' <— broadcast 1 comm arr
r <— parallel rank
parallel arr' <— u se arr'

r «— use r
m odarray arr' (/ r)

This example illustrates the conversion of requests to collective operations and the intro­
duction of parallel and global computational contexts. The final m o d a rra y computation
is determined to be a parallel computation because it refers to two values that have al­
ready been transformed into distributed values - the results of the communication and
the ra n k construct. Constructs to access the local elements of these distributed values
are added to the code.

The transformation produces programs which have a peculiar structure with small-grain
parallel blocks and extensive unpacking of distributed values. Although perhaps not the
most natural expression of the parallel algorithm, these generated programs give a faithful
model of the semantics of the corresponding single-processor view program, which is
their intended purpose.

4.1.10 Summary

This section has defined the syntax and semantics for all the languages in the PEDL
system. This task was simplified by identifying sets of constructs that are shared by a
group of languages and factoring out their definitions. As well as making the language
definition more concise, this commonality also simplifies reasoning about the languages:
theorems over these constructs can be applied to any language the constructs occur in.

4.2 Parallel Behaviour of the Coordination Languages 84

4.2 Parallel Behaviour of the Coordination Languages

While the semantics presented in the preceding section define the values computed by
PEDL programs, it says little about the parallel behaviour of these programs. This section
gives a concrete specification of the parallel behaviour using Abstract Parallel Machines,
which were introduced in Section 2.2.6. An APM consists of a set of ParOps which each
define the parallel behaviour of an operation and the value it computes.

APMs can be used to structure extensive program derivations. By defining an APM with
ParOps for each of the parallelism constructs in the PEDL languages it is hoped that this
system can also be used as the ‘back-end’ for APM derivations intended for our target
architecture.

4.2.1 The Definition of a ParOp

An APM consists of n sites of computation P i , . . . , Pn. The state of the machine is
represented by a set of site states S = {s i , . . . , s„}. The external view of a ParOp is a
function that takes a set of site states and r inputs X — {:ri,. . . , xr} and produces a new
set of site states and t outputs Y = { y i , . . . ,y t}.

The definition of a ParOp describes the local computations performed on these sites and
how data is communicated between them. It comprises:

• A site function f for each site Piy i = 1 , . . . , n with the following type:

fi i&ii (*̂ 1) • • • > 0TOj)) * (‘Pli • ■ • i (fra))

A site function takes ra* inputs with types 4>j, j = 1 , . . . , m, and produces rii result
values with types <pj. In addition, the site has an internal state with type cr* . Thus
fi takes the old state and inputs and defines the new state and outputs.

• A coordination function for each site that describe the internal communications
between sites. The function i = 1 , . . . , n determines where the site function f

obtains its inputs:

Qi :: .. ■ ,$n) -» (a i , . .. ,CTSi)

The selection of values required by site i is made from among the system inputs
(of type <I>o) and results produced by other sites; ^ = (</>i,. . . , ipn.) is the type of
the value produced by site j , for j = 1 , . . . , n.

4.2 Parallel Behaviour of the Coordination Languages 85

ParOp (si , . . . , sn)(zi, • • •, xr) = ((sj , . . . , s'n), (2/1, . . . , yt))
w here (s', Ai) = h {si,9 i{V))

(2/1, - - - , 2/i) = 9o(V)
V = ((3̂1, • • •, xr), A \ , . . . , An)

Figure 4.2: Standard form of a ParOp

The general form of a ParOp is shown in Figure 4.2. A ParOp with n sites takes the old
site states (si , . . . , sn) and r inputs (a*,. . . , xr) and computes a new state (s[, . . . , s^) and

the t outputs (2/1, , yn) using the local functions f and gt . An additional coordination
function gQ selects the outputs from the values produced by the set of sites.

V consists of all available values - the produced by every site i and the external inputs
Xi. The function f in site i takes the old site state s* and a selection of the available values,
chosen by git and it returns a new local site state s' and some number (possibly zero) of
site results A { = (aiA, . . . , ai)7lJ

There appears to be a circularity in the general form, as V is defined using the site outputs
Ai, which are in turn defined using V . This is not really a problem - V is a container
of all available values. Deadlock will only occur when the f and ^ functions cause a
particular value (a site state Si or site output Oij) to be defined in terms of itself.

4.2.2 An APM for PEDL

The parallel behaviour of the PEDL languages is described by the definition of an APM
with ParOps for each of the coordination level constructs. The site states of this APM
will be the environments of bindings maintained by each processor. We will not represent
this explicitly - it is similar to the store used in the operational semantics of the previous
section. Instead bindings are added and retrieved using two primitives:

bind :: (Identifier, Value) —> SiteState —» SiteState
lookup :: Identifier —> SiteState —> Value

All the language constructs operate solely over the site states - there is no other input or
output from the ParOps. Therefore, we can use an abridged form where the input and
output values have been removed as follows:

ParOp (si , . . . , sn) = (s{ , . . . , 4)
w here (s', Ai) = fi{si,gl (V))

V =

To start, we define ParOps for the communication operations of the language. The
g loba lize construct performs a broadcast communication from the source site to all oth­
er sites in the machine. The definition is straightforward - the src site finds the binding

4.2 Parallel Behaviour of the Coordination Languages 86

in the local site environment and makes it available as a result. The other sites return no
result (denoted by ()). The other sites retrieve the result of the src site and store it in their
own site local environment.

fly <_ g lobalize src dv^ (sl5. . . , sn) = (s (, . . . , s^)
w h ere (s', ,4*) = /*(«*,#(V))

V = (A u . . . , A n)
/ Src(s,_) = le t v = lookup d s

in (bind (r, v) s, v)
f others(^i v) = (bind (r, V) s, ())

9src(-) — ()
9others(- • • > A src, • • •) = A src

The p o in tT o P o in t communication is similar. The value to be communicated is re­
trieved from the store of the source site and made available as an output. The destination
site takes this value and adds a binding in its local store. All other site states are un­
changed. Therefore this identifier r is bound to a value only in the store of the destination
site; on other sites the value of this identifier is undefined.

Communications use a communicator to provide a context and also a ranking scheme for
the sites involved. A communicator can be represented as an array of site indexes. In the
following ParOp definitions the site functions are subscripted by a site index given as an
element of a communicator array.

[[r <— p o in tT oP oin t src dest comm d]\ (s i , . . . , sn) = (s{ , . . . , s'n)
w h ere (s', A i) = f i (s i , 9i (V))

V = (A u . . . , A n)

fcomm[src\{s■> -) (^i lookup d s)
fcomm[dest}{s, v) = (bind (r, v) s, ())

fo th e rs (^ i-) = (^ > 0)
9comm[dest\{■ ■ ■ > A Comm[src]i • • •)
9others (-) ~ ()

Lcomm\src\

In the s c a t te r operation, the source site provides an array of messages, where the i th
element of the array is to be communicated to the site index defined by comm[i\. There
may be processors in the machine which are not part of the present group. Their site state
is unchanged: this is captured by the others case.

[[r <— sca tter src comm dj (s i , . . . , sn) = (s [, . . . , s'n)
w h ere (s', Ai) = 9 i (V))

V = (A 1, . . . , A n)
fcomm[src](Si -) l®f ̂ lookup d S

in (b in d (r, i>[src]) s, v)
fcomm\j}(s,v) = (bind (r, v\j}) s, ())
fothers (s i -) = (ĵ ())
9com m\j]i■ ■ • i A COmm[src]i • • •) comm [src] \Vj]
9others (-) = ()

1 < j < l e n (v), j src

4.2 Parallel Behaviour of the Coordination Languages 87

The other collective communications follow a similar pattern, and are omitted.

Next we present the operations which coordinate computational code - the hook con­
structs. These are parameterized over a block of computational code. We use £[[]] to
denote the evaluation of these computational blocks. £ is left unspecified - the opera­
tional semantics already defines how computational code is evaluated - but the ParOp
definition does definedoes describe which site state and parallel configuration data is
passed to it.

The g loba l construct executes code in a restricted environment that guarantees the same
value will be computed on all sites. No communication takes place between sites. The
only information available about the machine configuration is the current group - an
array of the site indexes.

l r <- globalBU (s i , . . . , s n) =
w h ere (s', Ai) = f i { s i , g i (V))

V = (A u . . . , A n)
f i (s , _) = let (_, v) = £[[B]] s grp

grp =
in (bind (r, v) s, ())

9i { -) = 0

The p a ra lle l construct takes two forms. The first form presented is for the later stages of
the PEDL system where all communication is by explicit collective construct. Therefore
parallel computational code may only access bindings in the environment of the local
site. The ParOp definition is similar to that for global, but the index of the current site
is also made available to the computational code. This is used to provide a result for the
ra n k primitive.

l r *- p a r a l l e l B J (s i , . . . , s n) =
w here (s', Ai) = f i { s i , g i { V))

V = { A u . . . , A n)
f i (s , _) = le t (_, v) — £[fB]] s grp rank

grp = { 1 , . . . , tt.}
rank = i

in (bind (r , v) s, ())
9i { -) = 0

In the earlier stages of the derivation, communication is unstructured and non-local ac­
cesses can be made within computational blocks using the g e t construct. The pattern of
non-local data access is not apparent until the computational block B is evaluated. There­
fore it is not possible to give a precise definition for the communication functions ^ for
this ParOp. Instead, all site states are made available to the evaluation function £ to be
accessed as needed.

4.2 Parallel Behaviour of the Coordination Languages 88

l r <- p arallel BJ (si , . . . , sn) = (s j , . . . , s j j
w here (s', Ai) = f i {si , g l {V))

V = (Al5. . . , A n)
f i (s , S) = let (_, v) — £[[B]] s grp rank S

grp = { 1 , . . . , n}

We can describe how this data is used by the computation evaluation function by giving
the evaluation rule for the ge t construct. The index is used to access the site state from
that particular site, in which the requested identifier is looked up.

Slget ix dv]\ s grp rank (. . . , s ^ , . . .) = (s, lookup dv S{x)

The final parallel construct of the languages is g spm d. This partitions the sites into inde­
pendent machines that each evaluate a coordination block independently. This construct
does not fit into the conventional ParOp form because it performs no computation it­
self. However, we can describe the way in which the sites are partitioned and then joined
together again.

Hgspmd{ri *- grpi : B i ; . . . ; r p * - grpp : Bp}]] (s i , . . . , sn) = (s[, . . . , s'n)

For each partition j = 1, . . . ,p, a group grpj is used to define the subset of sites Sj in
the partition. A partition computation Bj is then evaluated independently on each subset
of sites. The resulting site subsets for each partition are unioned together to produce the
result set of sites.

4.2.3 Summary

We have used Abstract Parallel Machines to describe the parallel behaviour of language
constructs. As well as providing a clear presentation of the operational details of the
constructs this links the PEDL system into the APM hierarchy: APM derivations may
use PEDL as an implementation route after the high-level exploratory algorithm design
has been carried out within the APM system.

APMs also provide a structure in which to express cost models (O’Donnell et al., 2000),
which could then be used to compare different implementation choices. A cost model can
be defined for an individual machine in the APM hierarchy and from this cost measures
generated for child- or parent-node APMs. It would be possible to produce a cost model
for the PEDL system using the APM we have defined in this section. The cost model

9i(V)

rank = i
in (bind (r, v) 5, ())
V

where (sj,
let Sj (s 5rpj[l]> • ■ • > sgrpj[len(grpj) \)
in Slrj <— BjJ Sj

4.3 Reasoning about the Languages 89

could be either be derived from the internal descriptions of the ParOps or based on real
timings of the underlying MPI operations.

APMs are usually used for algorithm derivation. As far as we know, this is the first use
of APMs to describe language semantics. It was found that the standard form of ParOp
in combination with semantic evaluation functions was sufficient to express most of the
language constructs. An exception was the partitioning g sp m d construct which does
not fit into this form. However, it was found to be possible to describe the effect of this
construct in a similar style to the rest of the ParOp definitions.

4.3 Reasoning about the Languages

The operational semantics of the languages can be used to prove equivalences between
program fragments expressed in the same language (for horizontal transformations) and
between fragments expressed in adjacent languages (for vertical transformations). The
method used is to show that the corresponding semantic equations cause the same changes
to the machine state and return the same value.

4.3.1 Validity

It is normal to state an equivalence between expressions that holds for all possible values
of a particular variable. This is done by leaving free variables in the expressions which
are then universally quantified by an explicit ‘forall’ notation. For instance, the theorem
that composition distributes over map is commonly written:

V xs :: [a] • map (f . g) xs = (map f . map g) xs

Here the ‘forall’ symbol indicates that this theorem is true for all values of the type [a].

However, some of the types used within the PEDL language semantics have values that
are invalid or cannot occur in the model. For example, a group is represented as a se­
quence of processor identifiers. Each element of the sequence must be unique - as a
processor may only belong to a group once. Therefore sequences containing duplicates
are invalid models of a group.

When expressing a theorem involving free variables of these types, we wish to state that
the theorem holds for all valid values of the type. This subset of the type is specified by
defining a predicate Valid: like ‘forall’ this is then used as a quantifier for free variables.
We now define the validity predicate for all types used in the semantics which have val­
ues that are not valid representations. First the definitions for types used to model data
structures:

4.3 Reasoning about the Languages 90

Valid{a :: Array)

Valid (dv :: Dval) = $
Valid{c :: Communicator) =
Valid(g :: Group) =*>

size (dom a) = size a
minimum (dom a) = 1, a ^ {}
maximum (dom a) = size a, a ̂ {}
size (dom dv) = sue dv
Valid(c :: Group)
V i, j E {0 . . . length g — 1} .
g\i - 9'J i = j

The first definition gives the properties of a well-formed array. For an array to be
valid, the three conditions listed must be true. This datatype is represented as a set of
(Index, Value) pairs. An array is valid if each index is unique: that is, the set of indices
(the domain) is the same size as the set of bindings itself. Furthermore, for a non-empty
array the smallest index must be the unit of the index type and the set of indexes must be
contiguous.1

A distributed value is a set of (PID , Value) pairs. The only validity condition is that each
processor identifier is unique. A communicator is represented as a group. Therefore, the
validity condition for a communicator is defined to be the validity condition for a group.
A group is a sequence of processor identifiers: each must be unique. This is expressed in
the standard way by stating that, for any two indexes, if the elements the indexes project
from the sequence are equal then the indexes themselves must be equal. Next we examine
the validity conditions for the data structures used to models the parallel configuration of
the machine.

Valid(d :: CoordinationData) = Valid(d :: Group)
Valid(gd :: GlobalData)

Valid(pd :: ParallelData)

Valid(gd.group :: Group)
gd.size = length (gd.group)
Valid(pd.group :: Group)
pd.size = length (pd.group)
pd.rank = pidToRank (pd.group) (pd.pid)
pd.pid = rankToPid (pd.group) (pd.rank)

from which can be inferred

pd.pid E pd.group
pd.rank E {1 . . . length (pd.group)}

The machine configuration in the coordination languages is represented as a group. There­
fore, the configuration is valid if the group is valid. For the machine configuration types
used in global and parallel computational blocks there are more restrictions: certain rela­
tionships must hold between the different elements of the record. A GlobalData record
value is valid if the group field is a valid group and the size field corresponds to the size
of the group. A valid ParallelData record has the constraints of the global configuration

*As it is difficult to give equations that express these constraints for all index types, the equations
presented only apply to arrays indexed by single integers.

4.3 Reasoning about the Languages 91

record, and also a relationship between the value of the pid and rank fields. Mapping
from the rank field through the group must result in the value of the pid field, and vice
versa. From the constraints on ParallelData records, some further lemmas can be de­
duced. For instance, the pid field must be an element in the group, while the rank field
will be a value between one and the length of the group.

The only way that machine configuration records are created in the operational semantics
is by the use of the mkGlobalData and mkParallelData functions. It can be shown that
these functions always generate valid records.

4.3.2 An Example Proof

This section presents an example of a proof of equivalence between program fragments.
The proposition we wish to prove is that for any distributed value dv, calling use dv
to access the local element is equivalent to calling ge t dv r, where r is the rank of the
current processor. That is:

do
V dv ■ use dv r <— rank

g et dv r

We prove the proposition by showing that the corresponding semantic functions are e-
quivalent.

V dv e, Valid(d :: ParallelData) ■
[[use dv]\ d e = [[do {r <— rank; get dv r } J d e (1)

This equation introduces new free variables: the environment and the machine configu­
ration. As any value of the environment type is valid, the environment can be universally
quantified. However, the d parameter is restricted to the set of valid parallel machine
configurations.

Figure 4.3 shows the left hand side of the proof of this equation. Using the semantic
equation for use the expression can be rewritten as an operation on the environment and
the parallel configuration. As the value of these parameters are not defined, the reduction
must stop here. The right hand side of the equation is a block of code, rather than a single
construct. Due to this, the right hand side of the proof (Figure 4.4) has a few steps that
merely unfold the syntactic block. The details of the proof, line by line, are as follows:

LHS = [[use dv]\ d e
= (1: use)

(indexDval (d .p id) (JindValue dv e), e)

Figure 4.3: LHS of proof of Equation 1

4.3 Reasoning about the Languages 92

RH S = [[do (r <— rank; get dv r}]] d e
= (1: do)

[[{r <- rank; get dv r}]]biock d e
= (2: block)

le t (v, e') = [[r <- rank; get dv rjcomputations d (pushframe e)
in (v, pop frame e')

= (3: computations)
le t (v, e') — let (v , e ') = [[r <— rank]] d (pushframe e)

in Hget dv r]] d e'
in (v, popframe e')

= (4: computation)
le t (v, e') = let (v, e') = le t (i>, e') = [[rank]] d (pushframe e)

in (v , bind r (v, e')
in [[get dv r j d e'

in (v, pop frame e')
= (5: rank)

le t (v, e') = let (w, e') = (d.rank , bind r (d.rank , pushframe e))
in [[get dv r j d e'

in {v, pop frame e')
= (6: factor out pushframe and bind)

let be = bind r (d.rank, pushframe e)
in let (v , e') — [[get dv r j d be

in (v, pop frame e')
= (7: get)

let be = bind r (d.rank, pushframe e)
in le t (v, e ') = let p = rankToPid (d.group) ([[rj be)

in (indexDval p (findValue dv be), be)
in (v, pop frame e')

= (8: expression evaluation)
let be = bind r (d.rank, pushframe e)
in le t (v, e') = let p — rankToPid (d.group) (findValue r be)

in (indexDval p (findValue dv be), be)
in (v, pop frame e')

= (9: findValue)
let be = bind r (d.rank, pushframe e)
in le t (i>, e') = let p = rankToPid (d.group) (d.rank)

in (indexDval p (findValue dv be), be)
in (v, pop frame e')

= (10: Valid law for parallel data, subst for p)
le t be = bind r (d.rank, pushframe e)
in let (v, e') = (indexDval (d.pid) (findValue dv be), be)

in (v, pop frame e')
= (11: subst for v and e’)

le t be = bind r (d.rank, pushframe e)
in (indexDval (d.pid) (findValue dv be), popframe be)

= (12: popframe, bind, pushframe)
le t be = bind r (d.rank, pushframe e)
in (indexDval (d.pid) (findValue dv be), e)

= (13: findValue when no binding in first frame)
(indexDval (d.pid) (findValue dv e), e)

Figure 4.4: RHS of proof of Equation 1

4.3 Reasoning about the Languages 93

1-4. The block of constructs is unfolded using the semantic equation for do, then block,
rhen computations and computation, this decompses the block into its constituent
actions.

5. Rewriting using the semantic equations for ra n k results in a frame with a binding
of r to the rank field of the parallel configuration being added to the environment.

6. The description of the new state is a little unwieldy. Rather than reduce it further
using the definitions of pushframe and bind, it is factored out into a new let-binding
and left in this non-normalized form.

7-8. The semantic equation for g e t is used to rewrite the return value of the computa­
tional block: this introduces a further let expression. The expression [[r]] is then
evaluated. Evaluation rules for expressions are not defined, being left to the seman­
tics of the host language. However, in this case it is clear that the expression r is
evaluated by finding the corresponding binding in the environment.

9. The findValue function returns the binding of r to d.rank that was recently added
to the environment.

10. As d must be a valid configuration record, the following identity holds:

d.pid = rankToPid (d.group) (d.rank)

This can be used to reduce the definition of p to d.pid. The associated let expression
is then removed by substituting for p in the main expression.

11. The inner let binding is a tuple bound to a tuple pattern. Therefore, v and e' can be
substituted by their definitions in the main expression.

12. By inspecting the definition of bind, pushframe and popframe, it can be seen that
the following identity holds.

popframe . n . pushframe = id
w h ere

n = (any number of applications of bind)

Using this identity, popframe be can be replaced by e. This shows that the compu­
tational block has made no lasting changes to the machine environment.

13. Finally, we can remove the definition of be and replace it by e in the main expression
by observing that the following holds

findValue n (bind n! (v, pushframe e)) = findValue n e
w here

n V n>

The two sides of the semantic equation have been proven equal: therefore the two con­
structs have identical effects upon the machine, and are equivalent. It is noticeable that
many little lemmas were introduced to simplify the stages of the main proof. If the
PEDL system was to be used for real problems, libraries of these supporting lemmas and
theorems would have to be provided to make proofs and reasoning practical.

4.4 Correctness 94

4.4 Correctness

While the design of the PEDL languages prevents many errors occurring, for instance
by differentiating between replicated and distributed data, it is still possible to write er­
roneous programs that will fail at runtime.

An arbitrary group value can be used to define a communicator. If the group refers to
processors that are not in the current partition then the result of any communications
performed with this communicator will be undefined. Similarly, indexing outside the
bounds of an array will cause a runtime error. There are further circumstances where the
languages do not prevent incorrect programs from being constructed. In fact, it may not
be possible to design a language that prevents all these cases while still being flexible
enough to conveniently express algorithms.

Therefore, as a program passes through the stages of the PEDL system, informal transfor­
mations may be performed that do not preserve the correctness of the program. Although
the languages do not prohibit these erroneous programs, we claim that any transforma­
tion that generates such a program cannot be shown to be correct with respect to the
operational semantics. It follows that if a transformation can be proven to be correctness-
preserving, it will not generate invalid programs.

This claim assumes that the operational semantics we present are complete and consis­
tent. No attempt has been made to prove this - to do so would require an induction over
the set of all possible programs, which would be a lengthy undertaking. However we
are reasonably confident that the semantics we present are correct, or at worse could be
rectified with minor changes.

4.5 Summary

This chapter has given a detailed description of the syntax, semantics and parallel be­
haviour of the languages of the PEDL system. The semantics of the languages of the
decision stages are described in an operational fashion; this presentation was developed
and tested by modeling it within Haskell. The operational semantics is made more con­
cise by the ability to factor out common classes of constructs and describe them once for
all the languages. This commonality could also simplify reasoning about the languages.

An example equivalence proof was performed to demonstrate that the operational seman­
tics could be used to reason about program fragments. Although this is possible, larger
proofs will require libraries of supporting theorems.

The intermediate language has a different execution model than the previous languages in
the system. A communication system which is outside the language is used to exchange

4.5 Summary 95

data between processors. The external nature of this system makes it difficult to give an
operational semantics for this language that fits within the framework used by the other
languages. Instead a transformational semantics is given which generates an equivalent
collective-view program.

The parallel behaviour of the languages was described separately by defining an APM
for the PEDL system, and a ParOp for each of the parallel constructs. Although this
is an unusual application of APMs, it was found that the parallel behaviours could be
expressed without much difficulty.

Chapter 5

Implementing a Series of Domain
Specific Embedded Languages

Capsule

This chapter presents the implementation of the PEDL languages as an embed­
ded set of combinators within Haskell, a lazy functional language.

The chapter first examines the development of the implementation of Domain
Specific Embedded Languages (DSELs) in functional languages and explains the
benefits of this method of implementation. The most significant of these is that the
language may inherit many of its conventional features from the host: only the novel
features need to be designed and implemented afresh. Furthermore, any existing
tools supporting the host language can be used with the embedded language. This
makes embedding a quick and lightweight implementation method and simplifies
experimentation with different language designs.

After sketching the overall structure of the implementation, some of its more
interesting features are presented. The PEDL languages have two unusual proper­
ties. The occurrence of hard-to-implement features of the host language must be
controlled to simplify the final translation to the target language. In addition, a
PEDL program is comprises two layers, each of which is expressed in a different
language. Phantom Types are used to restrict difficult host language features and to
ensure that program layers are composed correctly. These represent the constraints
and structure of the PEDL languages within the type system of the host language,
which allows errors to be detected during compilation. Furthermore, it was found to
be possible and useful to extend this method to allow code from adjacent decision
stages to be composed.

5.1 Embedded Languages 97

Introduction

There are a variety of techniques that can be used to implement a language. These include
writing an inefficient but clear interpreter, an efficient conventional compiler, or a pre­
processor that translates the source into another high-level language. For the languages
of PEDL we chose to use the technique of embedding within a host language.

The first section traces the development of embedded languages and examines some of
the techniques commonly used to model the semantics and type system of the embedded
language in the host. In passing, this section also introduces some of the more advanced
features of Haskell, a language commonly used for such applications.

The following sections present some of the interesting points of applying this implemen­
tation technique to our series of languages. On the way we describe two new applications
of Phantom Types', representing the features of a language, and detecting the occurrence
of constructs within a program block.

5.1 Embedded Languages

Implementation by embedding relies on the following observation: many of the decisions
in the design of a programming language are not all that important. The design details of
a language’s arithmetic, scoping rules, pattern matching, type system and module system
tend not to matter that much. There are often many perfectly reasonable solutions that
could be chosen.

An embedded language is produced by implementing the significant constructs of the
language as a library of functions, procedures and types in a host language. In this
way, the implementor can concentrate on the design of the novel features, while the less
important details are inherited from the host language.

Source programs are then written in a subset of the host language, making use of the
embedded language’s library of program constructs and types. The infrastructure of the
host language - development environment, compilers, debuggers, profilers and runtime
system - can all be utilized by the embedded language implementation. Similarly, there
is no need to implement a parser or type-checker for the embedded language - the host
language implementation provides these too.

At first glance, this technique appears to provide little more than an API to a code library.
However, the choice of host language makes a substantial difference to this perception.
By choosing a versatile, flexible language the ‘feel’ of coding in the embedded language
is much closer to writing real programs than calling subroutines. Scheme was the lan­
guage of choice for early embedded implementations (Abelson and Sussman, 1984),

5.1 Embedded Languages 98

while recently strongly-typed functional languages, such as Haskell (Peyton Jones, 1999)
or ML (Milner, 1983), have gained in popularity.

5.1.1 Combinator Libraries

Within Haskell, the forerunners of embedded languages are libraries which tackled com­
plex problems, such as parsing (Hutton, 1990; Hutton, 1992), pretty printing (Hughes,
1995), document manipulation (Wallace and Ranciman, 1999; Gill, 1999) and graphical
user interfaces (Carlsson and Hallgren, 1993).

In place of an API of simple functions, the interface to these libraries is a collection
of operators and higher-order functions which manipulate an abstract type. Primitive
operations are also provided (such as displaying a string, parsing a single character, or
displaying a single button.)

Applications are built by using the operators and higher-order functions to combine the
primitive operations into larger expressions. These expressions are then passed to an
evaluator or ‘run’ function to produce an observable result. Writing code using such a
library resembles programming in a small self-contained language.

Applications which use combinator libraries are claimed to be quick to build; more likely
to be correct; and simple to understand and modify. This is because no ‘new’ code is writ­
ten: existing abstractions are simply composed together. There are also domain-specific
benefits: for instance a parser implemented with combinators resembles the syntax it was
designed to accept.

Analysis

Combinator libraries are versatile, safe and expressive. They mix easily with other pro­
gram components, while the type system regulates how different elements may be com­
bined. As combinator libraries are a set o f functions and operators over an abstract type,
they lend themselves towards formulating axioms and equational reasoning, especially
when implemented in an underlying language with a simple semantics. Once a set of
axioms has been formulated, and verified by appealing to the underlying implementa­
tion, the user of the library can reason directly within the domain semantics rather than
within the semantics of the underlying language. From such axioms an algebra of laws
and identities can be constructed about the domain.

There are three language features that simplify the production of a combinator library:
higher-order functions, polymorphic typing and laziness. Higher-order functions enable
the encapsulation and naming of programming idioms in a way not possible in first-order

5.1 Embedded Languages 99

languages. Polymorphic typing allows the same programming idiom to manipulate data
of different types. Lazy evaluation allows the programmer to abstract away from the
execution behaviour: the same idiom can be reused in circumstances where all, some or
none of the result it computes is required.

Together, these three features allow the identification and capture of the core idioms of a
problem domain. Applications can then be implemented in a component-based program­
ming style with extensive code reuse. It may be possible to write a similar library in a
language lacking some or all of these features. However the implementation and use of
the library will be more difficult.

5.1.2 Monadic Combinator Libraries

Irrespective of the functionality provided by different combinator libraries many have
similar implementation issues. For instance, how to propagate data through the com­
binators; maintain an mutable store; accumulate output; handle non-determinacy and
error-recovery.

At one time, the author of a combinator library had to solve each of these problems
from scratch, usually in an ad-hoc manner. Then it was realized that monads could be
used to provide these facilities in a structured and reusable way. A monad defines the
computational model of the combinator library. The value of monads is the modularity
they provide. By using a monad the underlying machinery of the computational model
can be hidden and new features added with ease.

Definition of a Monad

Monads were introduced to the functional programming community by Wadler (Wadler,
1990; Wadler, 1992). The literature is extensive, ranging from their theory to design
and practical use. A good introduction to monadic support in Haskell is given in (Hu-
dak et al., 1999) while (Winstanley, 1999b) gives an informal introduction to monadic
programming.

A monad comprises a type and two primitive functions over it, called return and then.
For a type T, these operations will have the following signatures:

return :: a —> T a
then :: T a —> (a —► T b) —> T b

A value of type T a can be thought of as a computation which returns a result of type a.
The return function produces a computation that simply returns a value without doing

5.1 Embedded Languages 100

anything else: it lifts its parameter into the monad. Computations are sequenced together
using the then operator. This takes the result of the computation passed as its first param­
eter and applies the second (function-valued) parameter to it. The result is a computation
whose result is the value returned by the second parameter.

To qualify as a monad, the combinators must satisfy the following requirements:

return a 1then‘ (A x —» / x) = / a
m H h e n ^ X x —> return x) = m
m ‘then‘ (X x —► f x lthenl X y —> g y) = (m 1then‘ X x —* f x) l then‘ X y —> g y

These laws state that the return function must be a left- and right-unit, and that the
sequencing operator then must be associative

Monads in Haskell

It was realized that the encapsulation of state provided by monads could be used as the
basis of an 10 system for Haskell which would be more versatile than previous approach­
es to 10, some of which are reviewed in (Hudak and Sundaresh, 1989). Rather than add
a single special feature to the language, the language was adapted so that monads could
be defined in a systematic way.

The core of this was the extension of type classes so that constructor classes could be
declared. While a type class is parameterized over a type, a constructor class is parame­
terized over a type constructor. The language standard defines the following class which
captures the notion of a monad: (notice that the then operator is written as >>>= in
Haskell)

class Monad m where
return :: a —► m a
m » = k :: m a —> (a —> m b) —* m b

Furthermore, a rich library of generic monadic combinators is provided by the language
standard. Any type which is an instance of the Monad class can make use of these
combinators. An example is the sequence function, shown below. This takes a list of
monadic computations and combines them into a computation that returns a list of the
results.

sequence :: M onad m =£> [m a] —> m [a]
sequence [] = return []
sequence (m : ms) -- m » = A x —>

sequence ms » = A xs —>
return {x : xs)

5.1 Embedded Languages 101

This illustrates a valuable point - although monadic values represent computations, they
are still first-class values and so can be manipulated, stored in lists and returned from
functions.

The final addition to Haskell was a syntactic sugar for monadic programming. Called
the ‘do-notation’, it replaces the (return, >£>=) functions with a sequence of generators
delimited by the offside rule. The details of the transformation between the two forms
is given in the language definition (Peyton Jones, 1999). However, it is possible to get
an intuition of the translation by comparing code in both forms. For example, here is the
previous function expressed in do-notation:

sequence [] = return []
sequence (m : ms) = do

x <— m
xs <— sequence ms
return (x : xs)

The do-notation is the basis for the sugared form used to present the PEDL code in this
thesis.

Using Monads in Combinator Libraries

A monad can be used in a combinator library to implement the underlying runtime system
required by the abstraction. By varying the definitions of the type constructor and the
monadic primitives, computational models can be defined that possess any combination
of the implementation issues mentioned earlier: state, back-tracking, exception-handling
and so on. Depending on the features present in the computational model other primitives
will be provided: for instance to update a value, or catch an exception.

After these primitives have been provided, all the functionality of the monadic combina­
tor library is implemented using them. Therefore, the combinators return monadic values
- representations of computations in the model defined by the monad. The computational
model can be altered or extended by redefining the primitives and the monad type. By
restricting access to the internals of the monad to a small set of primitives, modifications
can be made without needing to rewrite the existing combinators.

The modularity provided by monads in combination with the syntactic and library support
of Haskell has provided a strong incentive to library implementors. The success of this
approach is indicated by the number of modem combinator libraries implemented in
a monadic style. Examples are parsing (Hutton and Meijer, 1998), GUI programming
(Finne and Peyton Jones, 1995; Scholz, 1999), and constructing SQL queries (Leijen and
Meijer, 2000).

5.1 Embedded Languages 102

Another benefit of using monads is that it enables a greater understanding of the prop­
erties and limitations of a combinator library. The implementation fits into an existing
framework, and so can use the results of general monad research. Examples are research
into equational reasoning techniques for monads (Meijer and Jeuring, 1995), and meth­
ods for composing monads rather than adding new features by hand (King and Wadler,
1993; Liang et al., 1995).

5.1.3 Domain Specific Embedded Languages

A domain specific language (DSL) (Bentley, 1986) is a programming language designed
for a particular problem domain. Such a language is not necessarily general purpose -
it aims is to accurately capture the semantics of its target domain. A well designed DSL
allows domain applications to be developed quickly and correctly.

A recent development is Domain Specific Embedded Languages (DSELs) (Hudak, 1998).
This is a technique for implementing - or at least prototyping - a domain specific lan­
guage as a combinator library. The implementation is a pure embedding in the host
language: for clarity and simplicity no preprocessing, macros or the like are used.

For a new DSL, as with any language, it is likely that there will be many refinements
made to the original language design. Furthermore, much of the design of a language is
routine: the syntax and semantics of strings or arithmetic for example. Implementing by
embedding in a host language, as a combinator library, assists with both these concerns.
Such a lightweight implementation is no barrier to redesign or experimentation with the
language semantics. The rapid prototyping this allows can give new insight into the
domain. The second concern is removed: any feature that is not novel can be inherited
from the host language.

As a DSEL is implemented as a library of combinators, it can be hard to draw a clear
dividing line between what is a combinator library, and what is a DSEL. The difference is
in the emphasis of the work. Combinator libraries are intended to be used as a subordinate
component of a larger application. DSELs tend to be fuller libraries that subsume the host
language; the majority of the code is written in the DSEL combinators. Where the host
language is used, it is clearly a component of the DSL program, rather than the other way
round.

A DSELs should be seen as a real language, rather than a library with convenient syntactic
sugar. Many are intended for use by domain experts. To some degree, it is possible for the
programmer to learn and use the DSEL without much knowledge of the host language.

5.1 Embedded Languages 103

Examples

An early published example of DSEL techniques is the experiment conducted by DARPA
which compared the prototyping abilities of various programming languages (Hudak and
Jones, 1994). The task was to implement a ‘Geometric Region Server’; part of the
Haskell solution was structured as an embedded language in which the domain expert
could express properties of regions. The solutions and development metrics for the d-
ifferent languages were independently assessed: it was found that the DSEL prototype
took significantly less time to develop, and was easier to understand and modify.

More recent examples include the functional reactive programming (FRP) family of lan­
guages. These include FRAN (Elliott and Hudak, 1997) for graphics and reactive anima­
tion; FranTk (Sage, 2000) for declarative GUI-intensive applications; and Frob (Peterson
et al., 1999) for expressing robot controllers. These language designs share the same
framework, in which there are two key abstractions: behaviours and events. A behaviour
is a value which continuously varies over time, while an event is a stream of discrete
(time, value) pairs. The framework provides a range of combinators to combine prim­
itive behaviours and events to create complex behavioural networks. The value of this
approach is the abstraction provided by lifting functions over values to functions over
behaviours, so that time becomes an implicit parameter in expressions.

Another notable system is Lava99 (Bjesse et al., 1999); a DSEL for hardware design.
Compared to the FRP family, it has a simple implementation as a set of monadic com­
binators. The source programs, which describe electronic circuits, are expressed in the
do-notation. By executing the source in different monads - and therefore different com­
putational models - a circuit can be simulated; netlists or VHDL output generated; or a
proof constructed that can then be verified by a theorem prover.

5.1.4 Conclusion

By embedding a new language in an established host the implementation is greatly sim­
plified. The language designer need only be concerned with the novel constructs of the
language; much of the language framework can be inherited from the host language. Fur­
thermore, as the language is expressed as combinators, there is no need to implement a
parser. Although this is convenient, it also means that the language design is constrained
by the syntax of the host language.

Because of the low implementation cost, it is feasible for the language to go through
many iterations of redesign - the cost to experiment with new constructs is minimal.
This exploratory method is very powerful, and led to many refinements of the languages
used in PEDL.

5.2 Embedding the PEDL Languages in Haskell 104

Another benefit is the inheritance of the properties of the host language. In this case of
Haskell, this means that embedded languages have a good semantic underpinning and
that equational reasoning and transformations are tractable.

One disadvantage of embedding is that the domain experts who are the intended users
of the language may not have sufficient knowledge of the host language. Even in the
case of a self-contained DSEL where no code has to be written in the host language
the programmer will be exposed to error messages from the compiler that refer to the
underlying implementation, rather than the source program. Due to the extensive use
of types, classes and monads to structure the embedding, understanding error messages
often requires deep knowledge of Haskell and the combinator implementation.

Another question is the efficiency of DSEL implementations: there is an additional level
or two of interpretation in the final executable. For DSELs that are development tools
for a different target system - for example Lava99 and the PEDL languages - efficien­
cy is not so important, as programs are simply models. In the case of languages where
programs are intended to be repeatedly executed - for instance the FRP family - Hu­
dak proposes partial evaluation of the interpreter with respect to its source as a solution.
However a useful partial evaluator for Haskell has yet to be been produced. Nonethe­
less, as embedded languages can make use of all the tools of their host, any advances in
optimisation of the host will also benefit the embedded language.

5.2 Embedding the PEDL Languages in Haskell

Motivated by the reasons described in the previous section, it was decided to implement
the PEDL languages by embedding them in a host language. The source code of this
implementation is available from (Winstanley, 2000a).

5.2.1 Why Haskell?

Many higher-order functional languages would have been suitable as the host. Haskell is
one of the prevalent functional languages: it was chosen because the author has extensive
experience in this language. In addition, by using the same language as my colleagues
it is hoped it will be easier to compare, combine and utilize the staged programming
system with their research on parallel algorithm derivation (O’Donnell and Riinger, 1995;
O ’Donnell and Riinger, 1997a), derivation structuring (O’Donnell and Riinger, 1997b;

Goodman et al., 1998) and proof tools.

If these cultural issues had been ignored, we might have decided to implement using one
of the dialects of ML. There are always trade-offs, and many points for consideration,

5.2 Embedding the PEDL Languages in Haskell 105

when choosing a host language. The main benefit would be be that, compared to the lazy
semantics of Haskell, the strict semantics o f ML are closer to those of the target language.
However, ML lacks the operator overloading provided by Haskell’s type classes. Monads
can be defined in ML, but due to the lack of overloading a library of generic monadic
combinators and the syntactic sugar of the do-notation is not possible.

Type classes are also used to represent constraints on the values passed to language con­
structs. This technique was developed after the the host language had been chosen. It is
unknown to the author if it it possible to construct a similar solution within ML: probably
different techniques would have to be used.

5.2.2 Implementation Aims

In strongly-typed languages the type checker catches many programmer errors. This
encourages the programmer to apply the heuristic ‘if it compiles, my program is correct’.
Although it is unable to detect all errors, strong typing is a valuable programmer aid.

It is very well to describe the valid syntax and static semantics of a language in a def­
inition document, but if an implementation accepts programs that are not well-formed
the user will become confused and disoriented. We wish to produce a embedding of our
languages in which their static semantics are encoded in the type system of the host lan­
guage. In this way the host type-checker will detect invalid programs, so that the heuristic
can still be used.

The techniques to do this for standard DSELs are well understood. However, for our case
it is made more difficult by two unusual features of our system. The first is that the result
of a derivation is an implementation in a language which lacks many of the features
of Haskell; to make this feasible the language forms that occur must be restricted to
a subset of Haskell that has a direct translation to our target language. The following
section describes the method used to do this.

The second problem is that a parallel program will be expressed in a combination of
a computation and a coordination language. The properties of each language must be
represented in the host type system so that constructs from different languages can not
be combined incorrectly. Furthermore, it was discovered that the derivation process was
simplified by being able to mix languages from adjacent derivation stages in the same
program. The issues and techniques used to achieve this are discussed in Section 5.3.

5.2 Embedding the PEDL Languages in Haskell 106

5.2.3 Controlling the Host Language

The final step of the PEDL system produces an implementation by translating a program
in the intermediate language to the target language. The language targeted a the moment
by our system, SAC, lacks many of the features of rich languages such as Haskell. In
particular the type system is much simpler and does not permit polymorphism, partial
application or higher-order functions.

Although these language features are powerful and expressive - indeed, they are used

throughout the implementation of the embedded languages - they have no simple trans­
lation to SAC. Therefore they must either be transformed away as part of the derivation
process or prevented from occurring in the first place.

The motivation of this research is to use functional languages to model and derive parallel
algorithms, not to find a new compilation technique for Haskell. Therefore it was decided
that these difficult-to-translate features should be disallowed altogether.

The limitations of SAC are reflected in the design and semantics of the PEDL languages
(Chapter 4). For example, the design of SAC favours iterative programs rather than re­
cursive ones. A repeated computation may be expressed in Haskell as a directly recursive
function or by using a combinator such as fold or map that encapsulates a recursion pat­
tern. In contrast SAC possesses f o r and w h i le loop constructs similar to C. The PEDL
languages provide iteration combinators (Section 4.1.3) that can be directly translated to
SAC loop constructs. By providing these, it is hoped that the programmer will not be
tempted to write recursive code unnecessarily.

However it is still possible for the programmer to introduce arbitrary Haskell code in­
to a PEDL program. The language embedding has been designed to constrain the use
of Haskell to forms that can be translated to SAC simply. Although these mechanisms
restrict some illegal forms, it it not possible to protect against all difficult features. For in­
stance class and instance declarations are disallowed; however there is no way to enforce
this as they are external to the type system.

The simplest technique used is to define a new prelude for use when writing PEDL
programs. This is a very restricted version of the standard prelude that omits many types
and functions: for instance, as lists are not supported in SAC we omit all the standard list

combinators.1

The following sections describe two of the other techniques used. The first uses a monad
to introduce sequencing and reduce the amount of laziness that may occur in the lan­
guage, while the second section describes how we restrict polymorphism.

‘it w ould be desirable to om it the list type too, but due to its special syntax this is not possib le

5.2 Embedding the PEDL Languages in Haskell 107

Computational Model

The embedded languages are structured using an environment (or reader) monad2 which
was named Action :

data Action r a = Action (ProgramData —» 1 0 a)

instance Monad (Action r) where
(standard environment & 10 monad)

From the monad type it can be seen that a computation is a function from some ProgramData
to a result in the 10 monad; the 10 monad is used so that we can provide basic input and
output functionality for the languages. The Action type is parameterized over a type
variable r . This variable encodes the properties of a language in the type system; its use
is described in Section 5.3 and can be ignored for now.

data ProgramData — ProgramData {
partition :: [P ID],
rank :: Maybe Rank,

}

The combinators of the monad propagate a value of ProgramData through the embedded
program. The ProgramData type contains environmental information about the parallel
machine that the program is executing on. Amongst other information, it records the
current partition and, for computational languages, the rank of the current processor.

The embedded language constructs all return an Action computation. By hiding the
constructors of this type, the only way to access the result of a computation is by binding
it to a variable in a block of do-notation. Therefore a PEDL program is monad-bound:
there is no way to escape from the Action monad. The serialization produced by the
monad gives the program a defined execution order - something that is often lacking
in vanilla Haskell programs. Furthermore, the serialization prevents the programmer
writing recursive expressions which rely on laziness for termination. This is valuable

considering that at the later stages of the derivation the implementation will be strict.

Another benefit of the monadification is that it encourages a simple single-assignment
form of programming, rather than deep nesting of expressions and combinators. This
simplifies the transformation process.

2This is a sim plification. The m onad used in the im plem entation also provides sim ple tracing and
logging facilities. A s m onads provide modularity these features to not im pact on the core functionality
described here

5.2 Embedding the PEDL Languages in Haskell 108

Phantom Classes

In Haskell all types are first-class - a value of any type can be passed to a function, stored
in a data structure or communicated via a channel. In SAC this is not the case: there is a
discrimination between functions and the types that may be passed between them. SAC
has five basic types: integers, single and double precision floating point, booleans and
characters; and a single datatype, the array. Arrays may only contain basic types. Nested
arrays are not permitted.

If PEDL is to be easily translated to SAC, these restrictions must be reflected in the type
system of the embedded languages. We do this by introducing new constraints into the
host type system.

Leijen and Meijer (Leijen and Meijer, 2000) describes how to use polymorphic type vari­
ables to ensure the type correctness of untyped embedded SQL queries. These variables
only occur in type signatures - a value of that type is never physically present in the
program: this explains their name, phantom type variables. In a similar vein, we use
phantom classes to control the polymorphism present in the host language. A phantom
class is simply a class with no member functions. Therefore it does nothing, but can still
be used to constrain a type variable in the signature of a combinator.

We declare a phantom class Data. This class enumerates the set o f types that may be
passed between functions and communicated between processors. Instances of this class
are provided for the five basic types and array type as follows:

class Data a

in sta n ce Data Int

in sta n ce Data a => Data (Array ix a)

A subset of types in the Data class may be stored in arrays. Another class, Storable, is
declared and provided with suitable instances to represent this.

class Data a => Storable a

in sta n ce Storable Int

After setting up this framework, the legal types that may be passed to a combinator can
be specified by adding a phantom class context to its type. No change is necessary to the
definition of the combinator. For example:

genarray :: Storable a => ix —>■ (ix —► Action r a) -> Action r (Array ix a)
g et :: Data a =>- DVal a —> Rank —» Action r a

5.3 Distinguishing Between Languages 109

We can constrain the array generator genArr so that it can only create arrays of a basic
SAC type. Likewise get, which performs an implicit communication, is restricted to
distributed values whose elements are of a type that can be communicated. In this way,
if the programmer writes a PEDL program that breaks the constraints of the SAC type
system, it will be detected by the Haskell type checker.

5.3 Distinguishing Between Languages

An interesting difference from typical DSELs is that PEDL comprises a a sequence of
language pairs, rather than a single language. A parallel program is expressed in a com­
bination of a coordination and a computation language. Derivation of the parallel im­
plementation proceeds by transforming the language pair of one derivation stage to the
language pair of the next stage in the sequence. The languages share common construct-
s and types, but each stage of the sequence extends this core with constructs that give
greater control over the parallel algorithm.

This raises the question of how the implementation of the languages should be organized.
We wish to keep each pair of languages distinct from the others so that the stages of the
derivation process are well defined. Furthermore, constructs specific to the computation
or coordination layers must be prevented from occurring in the other layer, where they are
invalid. This is complicated further by sets of constructs, such as looping combinators,
that are valid in both layers.

The simplest solution would be to use the module system to provide a separate interface
for each pair of combination and computation language. Shared language features could
be placed in modules that were imported by the interface modules of the languages where
they were present. Different monad types could be used for the coordination and com­
putation layer, while constructs that were valid in both layers would be overloaded using

type classes.

As only one pair of combinator languages would ever be imported into a program at
a time the stages would remain distinct, while the differing monad types would ensure
the layers did not become muddled. The programmer could be confident the program
was expressed in a single pair of languages, rather than some combination of derivation

stages.

However this approach was unsatisfactory: we realized the importance of being able to
mix languages from different derivation stages within a single program. This was not so
that the programmer may write code in a mixture of languages: instead it is an aid for
performing derivation steps.

5.3 Distinguishing Between Languages 110

The purpose of the PEDL system is to derive parallel algorithms by transforming be­
tween languages. When transforming a program from one derivation stage to the next,
it is inconvenient to require the program to be entirely rewritten in the next stage before
the user can verify that the transformations have been applied correctly. For real-world
programs, having to monolithically transform the entire code would be unworkable.

For each of the derivation steps, the computational models and constructs of the adjacent
language pairs are so similar that a program expressed in a mixture of the languages can
be considered to be well-defined. By producing an implementation that accepts these
mixed-language programs, the programmer can use the parser and type-checker of the
host language to verify that the program is syntactically and type correct. Furthermore,
it is possible to execute mixed-language programs.

Mixing languages gives the programmer the ability to perform a gradual transformation
between stages. This is another example of staging and decision delaying that we believe
gives more opportunity for insight and experimentation - the whole of a derivation step
does not need to be thought through before preliminary steps can be made and verified.

We could permit mixed-language programs with a module-structured implementation. If
designed carefully, it would be possible to import the language interfaces for adjacent
derivation stages into a program that was being transformed between them. However, the
clean separation of stages is then compromised: this increases the risk of confusion and
making mistakes during the transformation process. The language implementation can
provide no protection from these errors. The only way to determine if the program had
been fully and correctly transformed would be to remove the import of the old interface
and hope for the best.

For mixed-language programs all the combinator languages must be visible in the names­
pace at the same time. To preserve the distinction between derivation steps we require
a method to determine which language a block of code is expressed in, and a way of
ensuring that constructs may only occur in languages where they are valid.

5.3.1 Encoding Languages as Phantom Types

We devised a system which encoded language information as a ‘chain’ of phantom types.
Through this the type checker can then determine the language used for each program
block and ensure that only valid combinations of constructs are used.

Each group of constructs is valid in a different subset of the PEDL languages. The
most general are the loop combinators, which occur in any language, computational or
coordination, at any stage. The array operations may occur at any stage, but only in the

5.3 Distinguishing Between Languages 111

computational language. Then there are combinators common to all the coordination lay­
ers; and constructs specific to one or two languages, such at ge t, which is later replaced
by explicit collective communications.

Figure 5.1 illustrates this hierarchy of construct-
s. The root node represents the constructs com­
mon to all languages. Coordination languages ex­
tend this core with constructs such as p a ra lle l and
global; in the redistribution stage of the deriva­
tion, the coordination language is further extend­
ed with collective communications. Computation
languages possess combinators that manipulate ar­
rays. A subset of the computation languages ex­
ecute upon a processor, rather than as a specifica­
tion. These languages add constructs such as size
that return information about the machine config­
uration. Computational code for a parallel machine may either be executed as a parallel
or global block. Each of these add further constructs.

If we view a language as a type, then each of the nodes in the tree defines a language
subtype that supports the constructs of its parent nodes and adds constructs of its own.
We have an inheritance hierarchy of languages.

Expressing inheritance using Phantom Types

The comparison with classes and inheritance gave an insight into how to represent lan­
guages within the type system. (Finne et al., 1999) use chains of phantom types to rep­
resent single-inheritance of interfaces to COM components. Their technique works as
follows. For every kind of COM interface imported into Haskell, a new type is automat­
ically generated. For instance, an address book interface could have a type like:

d a ta IAddressBook a = IAddressBook
openAddressBook :: 1 0 (Object (IAddressBookQ))

These interface types are used to annotate untyped pointers to external COM objects.
So when opening the address book component a pointer annotated by the IAddressBook
interface type is returned. These types are also used in the signatures of the methods that
are supported by an interface. In our address book example the method to add a new
entry has the following type:

addEntry :: Entry —> Object (IAddressBook a) —» 1 0 ()

Coordination Computation

Redistribution
Processor

Parallel Global

Figure 5.1: Hierarchy of constructs

5.3 Distinguishing Between Languages 112

______________________________ COM__________________PEDL__________
Carrier type Object Action monad
Chain o f types represent interface inheritance inheritance of characteristics
Operations interface methods language constructs

Table 5.1: A comparison of inheritance in COM interfaces and PEDL languages

The interface type ensures that this method can only be called on objects that support
the address book interface. However a value of the interface type never occurs in the
program - they are phantoms that appear solely in the type system.

Imagine that an improved addressbook component is implemented. It supports the ex­
isting interface, but provides additional functionality for searching the entries. The new
interface is represented by another type:

data ISearchable a = ISearchable
openSearchable Address Book :: 1 0 (Object (IAddressBook (ISearchable ())))

The object pointer returned by opening the improved address book component is now
annotated by a chain of interface types. This chain represents the interface inheritance
of the component. The additional methods provided by the of the extended address book
have corresponding types:

:: Query —> Object (IAddressBook (ISearchable a)) —> 1 0 [Entry]

The findEntry method can only be called on objects supporting the search interface. The
methods of the simpler address book interface can also be called on this object: due to
the polymorphism in the chain of interface types of their signature, methods of a parent
interface can be used on objects of a subclass. However the reverse, which is incorrect, is
prevented by the type system. The simpler addressbook interface type cannot be unified
with the object type required by the findEntry signature, due to the use of the null tuple
() to close off the inheritance chain.

Returning to the PEDL languages, we have observed that there is a inheritance relation­
ship between the different classes of languages. We can represent this in the Haskell type
system in a similar way to the COM interfaces using the mapping shown in Table 5.1.
The following sections examine each part of the mapping in turn.

Carrier Type

The language constructs all return computations in the Action monad. By adding a
parameter to the Action type that will contain a chain of phantom types each computation

5.3 Distinguishing Between Languages 113

stage m s

CoordinationComputation

Processor

level

usage

machine

Parallel () Global

Figure 5.2: Hierarchy of language characteristic types

can be annotated with the language it was expressed in. This parameter, named r was
shown in the definition of Action given earlier in Section 2.

Consider the type signature of the monadic sequencing operator when it is specialised to
the instance for the Action monad:

(>>>=) :: Action r a —» (a —> Action r b) —> Action r b

It can be seen that although it can sequence computations that have different result types,
the language type r must be consistent throughout. Therefore, the sequencing combinator
may only combine computations expressed in the same language. Through this it can
ensured that a block of code only contains compatible constructs.

Language characteristics

Unlike the COM interfaces, we have a fixed set of characteristics we wish to model.
We can define phantom types for each of these, forming the tree structure shown in
Figure 5.2. At the top level will be types representing the stage of the derivation. The
stages are enumerated as follows:

d a ta Specification level m s = Specification
d a ta Independent level m s = Independent
d a ta Distributed level m s = Distributed
d a ta Redistribution level m s = Redistribution
d a ta Intermediate level m s = Intermediate

The level parameter in each type will contain further characteristics of the language. The
m and s parameters have another purpose: in addition to describing the subtyping of
a language, we will also record other information about a program block. Their use is
explained in Section 5.3.2.

In many stages of the derivation, there are two language levels. These are represented
with further types:

5.3 Distinguishing Between Languages 114

data Coordination = Coordination
data Computation machine = Computation

No further information is required about coordination layer languages. However, there is
a group of computation layer constructs that may only occur in languages that execute on
a parallel machine. This gives another type Processor. Finally, there are some constructs
that may occur only in a global block of processor computation, and some that occur only
in a parallel block. The following types represent this:

data Processor usage = Processor
data Global = Global
data Parallel = Parallel

Using these types to describe language characteristics, each of the languages can now be
defined as a type synonym. The first synonym below, for example, is the language type
of the coordination layer of the independent decision stage. The second synonym is the
language type of a parallel block of computational code in the distributed stage.

type IndependentProg m s a —
Action (Independent Coordination m s) a

type DistributedParallelProg m s a =
Distributed (Computation (Processor Parallel)) m s) a

The other languages of the two-level stages have similar types. We can also describe
the specification language in this framework. It is a computational language, but does
not execute on a parallel machine. We can disallow constructs that assume a parallel
machine by plugging the subtyping ‘hole’ with the unit type ().

typ e SpecificationProg m s a =
Action (Specification (Computation ()) m s) a

type IntermediateProg m s a —
Action (Specification (Computation (Processor ())) m s) a

The intermediate language is more troublesome. It is a computational language on a
parallel processor, but by this point in the derivation the differentiation between parallel
and global blocks has been removed. We can express this by using () to prevent any
constructs specific to these blocks.

This is correct for most cases. Unfortunately there are exceptions: some parallel-only
constructs are carried through to the intermediate language. Section 5.3.1 demonstrates
how these special cases are expressed without complicating the overall system.

5.3 Distinguishing Between Languages 115

Language Constructs

We have defined types that represent different language characteristics, and have a method
that ensures that a block of code is expressed in a single language. It remains to define
the language characteristics required by each construct. This is done by constraining
the polymorphism of the language type chain sufficiently to restrict it to the subset of
languages it is valid in. No changes are necessary to the definitions of the constructs.

Starting with the more general constructs first, we can state that array operations are per­
mitted in any computation language by giving them signatures that constrain the language
level to Computation. The other language characteristics are left fully polymorphic to
allow these constructs to be used in any context. For example, the signature for the array
indexing operation becomes:

(!) :: (Index i, Storable a) => Array i a —> i —» Action (I (Computation 11) s m) a

The use construct projects the local element of a distributed value. Therefore, it can only
occur in a parallel block of computational code; its type states this.

use :: Dval a —> Action (I (Computation (Processor Parallel)) s m) a

Collective communications only occur in the coordination language of the redistribution
stage. This more specific constraint is expressed by leaving less polymorphism in the
phantom type:

broadcast :: Sendable a =>- Rank —► Communicator —» Dval a
—» Action (Redistribution Coordination s m) (Dval a)

We can also type the hook constructs that combine blocks in different languages. The
p a ra lle l construct executes a block of parallel computation code and returns a distributed
value containing the results back to the coordination layer. Notice that although the
derivation stage I is left polymorphic, we require that the two language levels must agree
to the stage.

parallel :: Data a => Action (I (Computation (Processor Parallel)) s m) a
—> Action (I Coordination s m) (Dval a)

Typing programs

As the Action monad propagates the language type throughout a block of code, the con­
straints of each construct in the block are unified. Provided no direct conflicts occur -

5.3 Distinguishing Between Languages 116

which would indicate an incorrect program where languages have been combined ille­
gally - the type of the block indicates the language, or class of languages, it is valid
in.

For instance, although the following block of code contains an array operation, which
may occur in any computational language, the possible language is further constrained
by the use construct.

11 dv = do
a <— u se dv
a ! 3

Querying the type of this program in Hugs gives:

Hugs> :ty p e t l
t l :: (Index a, S t o r a b l e b, Num a) => Dval (Array a b)

-> A c t i o n (c (Computation (P r o c e s s o r P a r a l l e l)) d e) b

That is, this program is expressed in a computational language, executing on a processor
in parallel. However it is not restricted to a particular derivation stage.

Correct programs can be passed to an interpreter for execution. The interpreter for each
derivation stage uses the type synonyms shown earlier to describe the language it accepts.
For instance, the interpreter for the independent stage only accepts programs written in
the coordination language of that stage, as follows:

runlndependent :: Int IndependentProg m s a 10 ()

Irregular Constructs

For the derivation stage, language or usage we can express either that a construct is valid
only in a single alternative, or in all. We cannot express ‘all but one’.

Some constructs require just that. For example the get construct may occur in a parallel
computation block of any stage apart from the redistribution stage, where it is replaced
by collective communications. Another problematic construct is rank, which may occur
in any parallel computation block, and in the intermediate language, but not in a global
computation block.

This may be a sign that the representation of languages we use is not the best possible
design. However, adding types to represent these special cases causes the type model

5.3 Distinguishing Between Languages 117

to get more complex. There is a trade-off between modeling everything in a uniform
manner and retaining usability and conciseness. Therefore we found a solution that was
external to the type model: although maybe a little inelegant, our solution does not affect
the constructs that fit into the type model.

We use phantom classes to express these ‘all but’ relations: we named them ‘not-classes’.
For instance to state that rank may appear anywhere but in a global block the following
definitions are used:

class NotGlobal a
in sta n ce NotGlobal ()
in sta n ce NotGlobal Parallel

Instances are provided for all subtypes but the one we wish to prevent. Using these
classes, we can express the restriction on the places where this construct may occur by
adding a class context.

get :: NotRedistribution I => Dval a —» Rank
—» Action (I (Computation (Processor Parallel)) s m) a

rank :: NotGlobal 11 => Action (I (Computation (Processor 11)) s m) Rank

This solution is a little counter-intuitive - it requires an instance definition for every
subtype apart from the one we are really interested in. However, there is no increase on
complexity other than the additional class context.

5.3.2 Another use of Phantom Types

Although the entire language is monad-bound, the majority of constructs are pure - they
have no side effects. Furthermore, they cannot affect the state of the monad as it is
a reader monad only, not a state transformer. It is safe to re-order such computations
limited only by data dependencies.

However some computations do perform 10. The order of side-effecting computations
cannot be swapped without altering the behaviour of the program. We could ensure this
does not happen by unrolling the monadic combinators so that the 10 actions are exposed.
However this is inconvenient: we would like the user to be able to abstract away from
the internals of the implementation. If program blocks that may perform 10 could be
detected, the user can ensure that their ordering is maintained without examining the
underlying code. Fortunately phantom types can be used to achieve this.

As seen earlier, the types representing stages of the derivation system have two additional
variables. The s variable is used to indicate side-effecting blocks. We define a new type
that will denote a side-effecting computation.

5.3 Distinguishing Between Languages 118

d a ta SideEffect = SideEffect

Side-effecting computations are expressed using the doIO primitive. This primitive lifts
an 10 computation into the Action monad. All side-effecting computations must be
defined using do 1 0 , as only this has access to the internals of the monad.

doIO :: 10 a —> Action (I (Computation 11) SideEffect m) a
doIO a = Action (A _ —> a)

This primitive constrains the s variable to type SideEffect. Any side-effecting computa­
tions defined using it will share this behaviour. Constructs that do not perform IO leave
the s variable fully polymorphic and unconstrained.

As the language types are unified within a block of code, the type of s for any block
containing a side-effecting computation will therefore be SideEffect; for blocks o f pure
code, s will still be polymorphic. In this way the user can inspect the type of a block to
determine whether special treatment is required.

This feature can also be used to prevent 10 where it is not well defined. For instance, ar­
ray generator bodies in SAC have no defined order of execution - this gives the compiler
greater opportunities for optimisation. We can prevent the use of side-effecting compu­
tations in PEDL array generators by constraining the s variable to () for the generator
body only.

This simple technique works well. Its one weakness is that a user may inadvertently
give a type signature that over-constrains the s variable, so that a false positive is given.
However this will not affect the semantics of the program - merely restrict the freedom
with which the program can be manipulated. The dangerous false negative cannot occur.
If the user does not over-constraint the s variable, type inference will not introduce false
positives itself.

5.3.3 Mixing Languages

For flexibility we wish to allow constructs from other derivation stages to be embedded
within a program whilst it is being transformed. However, we must ensure that these
mixed language programs are still well-formed. For instance, while computational code
from one stage can safely be substituted for computational code from another stage, we
cannot allow coordination level constructs to occur where computational code is expect­
ed. Similarly, parallel processor constructs should not occur within a global computation
block: this would allow access to the elements of a distributed value, breaking the barrier
between the two language levels.

5.3 Distinguishing Between Languages 119

We can define a primitive that allows languages from different stages to be safely mixed,

d a ta Mixed = Mixed
m ix :: Action (I b s m) a —> Action (I' b s Mixed) a
m ix (Action m) = (Action m)

The parameter to mix is a computation expressed in the language of a different derivation
stage. This parameter is unpackaged and then repackaged in the Action monad: this
destroys the existing type information and allows us to invent a new language type for
the computation that fits with the language type of the enclosing code.

The type variable representing the derivation stage differs between the embedded and
the enclosing program blocks - 1,1'. This allows code from different derivation stages
to be mixed. However the language level and usage - represented by the b variable - of
the computations must be consistent. This means that two coordination blocks may be
mixed, as can two global or two parallel blocks. However, different kinds of program
block cannot be mixed.

The side effecting variable s is propagated out to the enclosing block - no matter what
the language, a side effect is still a side effect. The final variable m is used to indicate
which program blocks contain mixed code. This works in the same way as the side-
effecting variable described in the previous section. We indicate that the enclosing block
is mixed by constraining its type to Mixed. This annotation will propagate throughout
any program that this block is used in, indicating to the user that the program is currently
between derivation stages.

Below is an example of the use of mix. The outer block is coordination level code that,
due to the occurrence of a collective communication, must be in the redistribution stage
of the derivation. Within it is a block of computational code containing the get construct.
This construct should not occur in the redistribution stage, However, the two stages can
be combined using m ix: this program will now compile and run correctly, while its type
indicates that is expressed in a mixture of derivation stages.

£4 comm — do
dv <— p arallel rank
dv' <— b road cast 1 comm dv
p arallel (m ix ((get dv 1)

:: Action (Distributed (Computation (Processor Parallel)) s m) Rank))

Hugs> : type t4
t4 :: Communicator

-> A c t i o n (R e d i s t r i b u t i o n C o o r d in a t io n b Mixed) (Dval Rank)

5.4 Summary 120

This example illustrates a disadvantage of m ix - a lengthy type annotation is required to
resolve any not-class constraints on the derivation stage variable of the language type. We
can define a new operator that provides a more convenient way to describe the derivation
stage a computation is expressed in.

infix 0 f
(f) :: Action (I b s m) a —> l b s m —► Action (I1 b s Mixed) a
act f phantom = mix act

This operator takes the foreign-language computation and flags it with the constructor
of the derivation stage type the computation is expressed in. As these constructors have
the same name as the type itself, it appears as an abbreviated type annotation. Only the
derivation stage needs to be specified - the other language characteristics are constrained
by the enclosing program block. Using this operator, the previous example can be rewrit­
ten as:

£4 comm = do
dv <— p arallel rank
dv ' <— b road cast 1 comm dv
p arallel (get dv I f Distributed)

This notation is more concise and less error prone than using m ix. Another benefit is
that the user must now consciously assert which derivation stage a block of code is in.

5.4 Summary

This chapter described the development of the method of implementing languages by
embedding them in a host. This is an economical and versatile way to develop a language
design. Monads were presented as a technique for structuring computations, which could
be used as the underpinning for an embedded implementation. We justified our choice of
Haskell as a host language and then sketched the method used to implement the PEDL
languages as Haskell combinators.

There are two features peculiar to the PEDL languages. The first is that the features of
the host language must be constrained to a subset that is easy to translate to our target
language. The second is that a program is expressed in a combination of two languages.
We found that the type system of the host language could be used to control the occur­
rence of hard-to-implement host language features, and that it could impose a structure
on the combination of languages.

A hierarchy of phantom types were used to represent the classes of related language
features. Through this, the type of a block of code indicates which class of languages it

5.4 Summary 121

is valid in. The allows the type checker to detect malformed programs. Phantom types
are also used to record other program properties, such as the presence of side-effects.

It was found that the phantom language type system was flexible enough to allow code
blocks from different decision stages to be mixed in a single program, but only in combi­
nations that were well defined. This allows mixed language programs to be checked and
executed, which was found to be a great advantage when performing program derivations.

At present the languages of the derivation stages are simulated on a uniprocessor. A
extension to the current PEDL implementation would be to execute programs in these
languages in parallel. This could allow the programmer to gain insight into the parallel
behaviour and performance. For the more abstract stages of the system the constructs of
the coordination language could be implemented in terms of the seq and par combinators
of GpH. The implicit paralleism and dynamic nature of GpH is well suited to executing
such programs, whose parallelisation is only partially specified. Furthermore the GpH
simulator, GRANSIM (Hammond et al., 1994), could be used to visualise the parallel
behaviour. The intermediate level language does not have a coordination layer and so
would not be suitable for this method. However the communication requests of this
language can be implemented using a Haskell binding to MPI such as hMPI (Weber,
2000). These intermediate level programs would have the same parallel behaviour as
the final implementation, but the executable on each processor would be generated by a
Haskell compiler rather than a C compiler.

Chapter 6

Using PEDL

Capsule

This chapter illustrates the use of the PEDL system. Two case studies are pre­
sented, from which the different stages of the derivation process can be seen. Each
case study commences with an abstract specification and progresses though the user
directed decision stages until a full specification of the parallel implementation is
produced. Once the derivation stages of the process are completed, we informally
illustrate the code generation transformations that produce the final implementation
- the details of this process are formalised in the following chapter. The generated
SAC programs are clear and well structured and have been executed in parallel.

6.1 One Dimensional Wave Equation 123

Introduction

This chapter demonstrates the use of the PEDL system. We start with a case study
that illustrates the main features and ideas of the system. The algorithm studied is the
simple one-dimensional wave equation. Then Section 6.2 produces a parallelisation of
the maximum segment sum problem using parallel scan and fold operations.

Each case study starts with an abstract specification and proceeds through the decision
stages until a fully specified parallelisation results. Once the derivation stages of the
process are completed, the process of simplification and transformation that generates the
final implementation is illustrated. The details of this process are presented in Chapter
7. The result of the case studies are clear, conventional SAC programs: these have been
executed in parallel on a network of workstations.

6.1 One Dimensional Wave Equation

A range of physical systems can be simulated by an algorithmic pattern commonly re­
ferred to as the ‘wave equation’. We will develop a parallel implementation for the one­
dimensional version of this algorithm. The algorithmic pattern simulates how the state of
an area of space varies through time. The area of space is represented as a sequence of
evenly-distributed points. Likewise, time is divided into small increments.

Let w* be the sequence of point states at time t, where w- denotes the state of the i th
point in the sequence at time t. The state of a point p at time t + 1 is described by an
element function / of the previous state of p and the points adjacent to it. That is:

Wp +1 = / (w p - i > w p >w p + i)

The simulation proceeds by calculating a new sequence of point states for each time step
in turn. This is achieved by applying the function / to each element in the sequence of
the previous time-step. For the elements at the start and end of the sequence constant
values are used in place of the values of the missing neighbours.

The inputs to the algorithm are a sequence of starting states for the points, constant values
for the left and right boundaries, an element function / , and the number of time steps n
to run the simulation. The result of the simulation is the sequence of states after n time
steps.

By varying the definition of the element function this algorithmic pattern can model, for
example, transmission of heat along a one-dimensional solid; or propagation of a wave
though space. Further systems can be simulated by altering the parameters to the element

6.1 One Dimensional Wave Equation 124

function. For instance, the value of the local element at the previous two time steps, or
the values of additional neighbours on each side may be passed to the function. However
the principle of the algorithm remains the same.

The following sections illustrate how this algorithm is parallelised as it progresses through
the stages of the PEDL system.

6.1.1 Specification Stage

The obvious way to implement this algorithm is to represent the sequence of point states
as a vector. For each time step, the element function is applied to every point in the
previous vector, resulting in a new vector. This suggests an external loop over time steps,
and an internal loop over the elements of the vector. The following code is an executable
specification of the algorithm. The computation waveEq is the loop over time steps; for
modularity the inner loop is defined as a separate function onelter.

waveEq f n b l b r v = do
b <— bounds v
loopnaccum n v (A vect —> onelter f bl br b vect)

The parameters to waveEq are the element function / ; left and right boundary values
bl,br; a vector v of the starting state of each of the points; and n, an integer giving the
number of time steps that the system is to be simulated for.

The body of waveEq is a loop combinator lo opnaccum . This executes its loop body
n times, threading an accumulating value through the iterations. That is, the result of
one loop iteration becomes the input to the next. The vector of starting states v is passed
as the initial value of this accumulating value. The result of the loop computation is
the value computed by the final iteration of the loop body: this forms the result of the
waveEq computation.

The loop body is an abstraction over a call to the onelter function. This accepts the state
vector for one time step and returns the vector for the next time step. This function takes
similar parameters to waveEq function: however the bounds (or size) of the vector is also

passed in.

onelter f bl br b vect — genarray b (A i —> do
I <— if i > 1 then v e c t ! (i — 1) else return bl
c <— vect ! i
r if i < b then v e c t ! {i + 1) else return br
f I c r)

The g e n a rra y construct computes a vector of point states. Its parameters are the upper
bound of the vector and an abstraction to execute for each point in the vector. This

6.1 One Dimensional Wave Equation 125

abstraction computes the inputs to the element function / , and then calls this function
to return the new state for this point. The inputs to the element function are called /eft,
centre, and right. The conditional expressions for the left and right values test whether
the element being computed is at either limit of the vector. If this is the case then one
of the constant values is returned; otherwise the neighbouring element in the previous
vector is indexed.

These two definitions give a complete description of the wave equation algorithm. By
defining a harness program that initialises some input data, calls the wave equation com­
putation and prints the result, the wave equation program can be executed and tested. The
same applies for successive stages of the derivation. The full sources for all the programs
in the derivation, and their execution logs, are given in Appendix A. 1.

6.1.2 Independent Computation Stage

The first decision stage requires the programmer to identify the maximum amount of
useful parallelism. The program is transformed so that it is expressed in a combination
of the independent coordination language and the associated computation language. At
this point in the derivation an unlimited number of processors are available. Therefore
the partition size is determined by the problem size, rather than any limits of the parallel
machine.

Inspecting the algorithm, it can be seen that there is a data dependency between itera­
tions of the external loop, as the element vector for time i + 1 depends on that for time
t. However, the computation of point states within a single time step are independent
from one another: they only depend on values from the previous time step. Exploiting
this independence produces a parallelisation where the outer loop remains the same, but
the loop body now computes each new point state in the sequence in parallel. This is
illustrated in the following code. Note that the definitions of waveEq and onelter have
been combined in this program - this simplifies the presentation of the later stages.

waveEq f n bl br iv = do
b <— global size
loop n accu m n iv (A ivect —» p arallel

i <— rank
/ <— if i > 1 th en get ivect (i — 1) e lse return bl
c <— use ivect
r <— if i < b th en g et ivect (i + 1) e lse return br
f I c r)

The sequence of point states passed into the wave equation function is now represented
as a distributed value rather than a vector. This allows each element to be computed in

6.1 One Dimensional Wave Equation 126

parallel. The function changes to accommodate this - instead of querying the bounds of
a vector, we perform a global computation to find the size of the partition the program is
executing on. As we have unlimited processors in this computational model, the size of
the partition is therefore also the number of point states in the distributed value iv.

The loop body is a parallel computation, rather than an array generator. Each processor
computes a single point state in the sequence. First the rank of the current processor is
found - this is analogous to the index value i in the previous program. The values for
I, c, r are then calculated and passed to the element function / . The computation of the
parameters to the element function is similar to that in the previous program, but now
must access elements of a distributed value rather than elements of an array. Therefore
u se is used to access the local element of the distributed value, while the indexes resident
on adjacent processors are accessed using get.

It can be seen that the transformed program is in essence unchanged: all that has been
done is to replace one data type, the array, and it corresponding operations with another,
the distributed value.

6.1.3 Distribution Stage

The next decision stage in the series tailors the idealized parallel program to the limita­
tions of the target parallel machine. The number of available processors is fixed; there­
fore the parallel data structures must be distributed between the processors such that good
performance results.

For the target machine, it is likely that there will be a large factor fewer processors than
simulation points. This means that points must be ‘doubled up’ so that each processor
computes more than one point. The best data distribution to use for this algorithm is
a block-wise decomposition. The access pattern for the distributed sequence of points
is such that only values of neighbouring points are required by each computation. A
block-wise decomposition ensures that for the majority of points the required data will
be located on the same processor.

6.1 One Dimensional Wave Equation 127

waveEq f n bl br block iv = do
b <— g lobal size
loop n accu m n iv {A bvect —» parallel

i <— rank
I <— if i > 1 th en do

a <— get bvect (i - 1)
a ! block

else retu rn bl
c <— use bvect
r <— if i < b th en do

a <— get bvect (i + 1)
a ! 1

else retu rn br
onelter f I r block c)

We can represent the block-wise data pattern as a distributed value of vectors. The dis­
tributed value has one element per processor: each element is a vector containing the
block of points assigned to that processor.

In the distributed computation version of the program above, the waveEq function has
an additional integer parameter: the size of the blocks. It is assumed the blocks on each
processor are of an equal size. Each processor now computes a block of point states for
each time step. Therefore the body of the parallel computation returns a vector - the
new block for this processor. This block of point states is computed sequentially by the
method used in the specification stage. In fact, we reuse the onelter function defined in
the specification here to compute the block.

The rest of the loop body calculates the parameters to pass to the onelter function. The
center value is the block resident on the current processor. The left and right boundary
values for the block computation are the end values of the blocks on the adjacent proces­
sors. Provided the current processor is not at one of the limits (in which case the limit
values are used), the values of I and r are computed by get-ing the block vector from
the adjacent processor, and then indexing to return either the first or last element of this
block.

6.1.4 Explicit Communication Stage

The final decision stage of PEDL removes the implicit communications expressed using
the g e t construct. Instead of processors accessing non-local data directly, collective
communications must be used to redistribute the distributed values so all elements are
local to the processors where they are required. To this end the g e t construct is removed
from the computational language of this stage. However, the use construct is retained.

6.1 One Dimensional Wave Equation 128

This construct performs no communication and is necessary to access the local element
of a distributed value.

waveEq f n bl br block bv = do
b <— global size
grp <— global current Group
comm <— com m unicator grp
loopnaccum n bv (A bvect —> do

lastVals <— parallel {a <— use bvect] a\ block}
firstVals <— parallel {a <— use bvect] a ! 1}
Idata <— shift NonPeriodic Inc 1 comm last Vais
rdata <— shift NonPeriodic Dec 1 comm first Vais
parallel

i <— rank
I <— if i > 1 then use Idata else return bl
c <— use bvect
r <— if i < b then use rdata else return br
onelter f I r block c)

By inspecting the wave equation program of the previous stage it can be seen that the
only data communicated is the limit elements of each block vector. The pattern is an
exchange of these elements between adjacent processors: this can be implemented by a
shift to the right followed by a shift to the left.

The communication stage program above first defines a communicator to use in the shift
operations. A communicator is an MPI type that provides a context for a communica­
tion and defines the group of processors that participate in the communication and their
ordering. A communicator is created from a group in a collective operation across all
processors.

The ordering of processors in the partition is used to define which are neighbours and
so exchange data. As all the processors in the partition will participate in the shift com­
munications, the communicator in the program can be created directly from the group
that describes the current partition. This group value is part of the information provided
to the program about the machine environment and is accessed by the c u r re n t G ro u p
construct.

The first two lines of the loop body define the values to communicate. In parallel, each
processor accesses its local block vector and projects either the first or last element in the
block. The result of these parallel computations are distributed values of the leftmost or
rightmost elements on each processor.

Two shift operations are then performed to exchange these elements between adjacent
processors. This results in two new distributed values (Idata,rdata) where the leftmost
and rightmost values are resident on the processors where they are required.

6.1 One Dimensional Wave Equation 129

The sh ift collective communication shifts elements of a distributed value according to
the processor ordering defined by the provided communicator. In addition to the commu­
nicator and data, this operation takes three further parameters - a periodicity, a direction
and a displacement value. The periodicity indicates whether the shift operation ‘loops
around’ from the last ranking processor back to the first. If, as in this program, the shift
is NonPeriodic, then the element of the resulting distributed value for the first ranking
processor is undefined. The direction specifies whether to shift elements in an increasing
or decreasing order along the processor ranks, while the displacement is the number of
processors in that direction to shift the data.

After the data has been redistributed the main computation can be performed. This is
similar to the loop body of the previous stage. In parallel the boundary values for the
block (l,r) are computed by either accessing the local element of the shifted distributed
values, or by using the constants if the processor is at one of the limits. As before, the
onelter computation is then called to compute the new block vector.

6.1.5 Intermediate Form

At this point all the parallelisation and algorithmic details required by the final imple­
mentation have been specified. The following stages prepare for the translation to the
target language. The first step in the process is to factor out the coordination language
layer to leave a processor-view program that matches the computational model of the tar­
get language. This is achieved by the change o f view transformation which is explained
in Section 7.1.

Applying the transformation results in the following program. It can be seen that the ba­
sic structure is retained, although the transformation introduces redundant computations.
These inefficiencies can be removed as part of the translation to SAC, or they can be left
for the optimising SAC compiler to eliminate The operations of the collective layer are
replaced with requests to the underlying communication system to perform the operation.

6.1 One Dimensional Wave Equation 130

waveEq f n bl br block bv = do
b size
grp currentGroup
comm *— com m unicatorRQ grp
loopnaccum n 6 (A bvect —> do

lastVals <— do{a <— return bvect; a ! block}
firstVals <— do{a <— return bvect] a l l }
Idata <— shiftRQ NonPeriodic Inc 1 comm last Vais
rdata shiftRQ NonPeriodic Dec 1 comm first Vais
do

i <— rank
I <— if i > 1 then return Idata else return bl
c +— return bvect
r <— if i < b then return rdata else return br
onelter f I r block c)

6.1.6 Simplification

The generation of the target language code splits into two steps. The majority are source-
to-source transformations that are applied to the intermediate code, resulting in another
intermediate level program. These simplify the program to remove any language features
that are not supported by the target language, in this case SAC. Problematic features in­
clude function-typed parameters, nested blocks and function definitions and anonymous
functions. The details of the simplification process are presented in Section 7.2. The
result of the simplification process is the following code:

cBLOCK = 4 :: Int
f I c r = ...

onelter bl br vect = do
result <— g e n a r r a y cBLOCK (A i —> do

I *— if i > 1 t h e n vect ! (i — 1) e ls e r e t u r n bl
c <— vect ! i
r <— i f i < cBLOCK t h e n vect! (i + 1) e ls e r e t u r n br
element <— f I c r
r e t u r n element)
r e t u r n result

6.1 One Dimensional Wave Equation 131

waveEq n bl br bv = do
b *— size
grp <— current Group
comm <— com m unicatorRQ grp
vect <— loopnaccum n bv (A bvect —► do

lastVals <— bvect I cB L O C K
firstVals *— b v e c t! 1
Idata <— shiftRQ NonPeriodic Inc 1 comm last Vais
rdata <— shiftRQ NonPeriodic Dec 1 comm first Vais
i <— rank
I <— if i > 1 then return Idata else return bl
c <— return bvect
r <— if i < b then return rdata else return br
result <— onelter I r c
return result)

return vect

At this stage, further optimisations can be performed, such as removing dead bindings;
inlining functions; and factoring constant code out of loop bodies. Further research is
required to ascertain which optimisations would improve the code generated, and which
are already performed by the optimisation pass of the SAC compiler. For clarity, no
optimisations will be applied to the example program.

6.1.7 Translation to SAC+MPI

The final step is to translate to SAC. Details of the translation rules are given in Sec­
tion 7.4. For many constructs the translation is purely syntactic. However, here are three
areas of the translation that are a little more complex: loops and array combinators; com­
munications; and array indexes.

One of the decisions taken during the design of the PEDL languages of the system was
that arrays would have an origin of 1. However, SAC follows the C tradition of indexing
arrays from 0. This means that the values used in indexing and conditionals often have to
be adjusted by subtracting 1. This ad-hoc approach is temporary: a better solution would
be to redesign the PEDL array combinators to more closely resemble those of SAC.

6.1 One Dimensional Wave Equation 132

d e f i n e BLOCK 4

i n l i n e f l o a t f (f l o a t 1, f l o a t c , f l o a t r) {

} ”

f l o a t [] o n e l t e r (f l o a t b l , f l o a t br , f l o a t [] v e c t) {
r e s u l t = w i t h (. <= i <= .) {

i f (i [[0]] > 0) {1 = v e c t [i - l] ; } e l s e {1 = b l ;}
c = v e c t [i] ;
i f (i [[0]] < BLOCK - 1) {r = v e c t [i + 1] ;} e l s e {r = b r ; }
e lem en t = f (l , c , r) ;

} g e n a r r a y ([BLOCK], e l e m e n t) ;

r e t u r n (r e s u l t) ;
}

f l o a t [] waveE q(in t n, f l o a t b l , f l o a t br , f l o a t [] b v) {
b = s i z e () ;
grp = c u r r en tG ro u p ();
comm = c o m m u n ic a to r (g r p) ;
_ l o o p c o u n t = n;
b v e c t = bv;
w h i l e (_ lo o p c o u n t > 0) {

l a s t V a l s = b v e c t [[BLOCK-1]] ;
f i r s t V a l s = b v e c t [[0]] ;
I d a t a = S h i f t _ f l o a t (f a l s e , 1 , 1 , c o m m , l a s t V a l s) ;
r d a t a = S h i f t _ f l o a t (f a l s e , - 1 , 1 , c o m m , f i r s t V a l s) ;
i = r a n k () ;
i f (i > 0) { l = Idata,-} e l s e {1 = b l ; }
i f (i < b -1) {r = rdata,-} e l s e {r = b r ; }
r e s u l t = o n e l t e r (1 , r , b v e c t);
b v e c t = r e s u l t ;
_ l o o p c o u n t - -;

}
v e c t = b v e c t ;
r e t u r n (v e c t) ;

}

The translated wave equation program is presented above. Notice that the structure is

very similar to the intermediate language program, although the syntax is quite different

in places. This program compiles and executes successfully in parallel: it has been tested

on a network o f workstations.

6.2 Maximum Segment Sum 133

6.2 Maximum Segment Sum

We now present a PEDL parallelisation of the Maximum Segment Sum (MSS) prob­
lem (Bentley, 1984). This algorithm has been studied extensively in the literature. The
purpose of this section is not to perform a novel parallelisation of this algorithm, but
to demonstrate that PEDL allows algorithms to be parallelised in a clear, concise and
manageable manner. The full sources for all the programs in this derivation, and their
execution logs, can be found in Appendix A.2.

Given a sequence of numbers X i . . . X n the task is to find the largest possible sum of a
continuous segment within X . For example, mss({2, —4,2, —1,6, —3}) would compute
7. The maximum segment sum can be computed in the following way:

This algorithm can be implemented in conventional Haskell as follows. The sequence of
numbers is represented by a list. Each intermediate result is computed using one of the
standard list combinators. The first two follow the pattern of a scan (or multiprefix opera­
tion). The element-wise combination of the three lists can be expressed using zipWithZ.
The final result is then computed by a fold (or reduce) to find the maximum. That is:

mss :: [Int] —> Int
mss x = le t s = scanl 1 (+) x

m = scanr 1 max s
b = zipWithS (A mi si xi —> mi — si + xi) m s x
mss = fo ld r l max b

in mss

6.2.1 Specification Stage

The MSS algorithm can be expressed in the specification language of PEDL in a form
very similar to the conventional Haskell program. The main difference is that arrays
rather than lists are used as the underlying data structure. The computational language
provides libraries of whole-array combinators defined using the looping constructs and

1. compute
3=0

2. compute Mi = max Sj
i < j < n

for 1 < i < n

for 1 < i < n

3. compute Bi = — Si + X i for 1 < i < n

4. compute m ss = max Bi
* 1< i < n

6.2 Maximum Segment Sum 134

array primitives. These have similar functionality to their corresponding list combinators.
The specification stage program is as follows:

specMss :: Vector Int —> SpecificationProg m Int
specMss x = do

s <— scanlArr 1 sumOp x
m <— scanrArr 1 maxOp s
b <— m od3A rr (A mi si xi —► return (mi — si + xi)) m s x
mss <— fo ldA rr l maxOp b
retu rn mss

6.2.2 Independent Computation Stage

This algorithm can be simply parallelised by placing each element of the sequence on
a separate processor. The entire sequence now forms a distributed value, rather than an
array. The type of the program changes to reflect this :

independentMss :: Dval Int —> IndependentProg m (Dval In t)
independentMss x = do

s <— scanlDval 1 sumOp x
m <— scanrDval 1 maxOp s
b <— parallel

mi <— u se m
si <— u se s
xi <— use x
retu rn (mi — si + xi)

mss <— foldDvall maxOp b
retu rn mss

It remains to define the recursion combinators - scan, fold and map - for distributed
values. The element-wise map across the three sequences can be expressed trivially using
the p a ra lle l construct, as seen above. For every processor the local elements of the three
sequences are projected, and then combined to produce the resulting distributed value.

We define the reduction operations separately. All have the same general form, a loop
whose body is a parallel operation over the elements of the distributed value. An inter­
mediate result is accumulated through the iterations of the loop. At each iteration, an
offset is calculated. This is used to access the element resident on a distant processor,
which is then combined with the local element to produce the next intermediate value.
The pattern of non-local accesses over the iterations form a tree structure.

6.2 Maximum Segment Sum 135

scanlDval 1 op dv = do
n global size
rs <— parallel rank
forA ccum (0, ceiling (log (fromlnt n)), 1) dv

(A j b —> parallel
i use rs
bi <— use b
i f i > 2J

th en do
xi <— g et b {i — 2i)
xi ‘op‘ bi

e lse re tu rn bi)

scanrDval 1 op dv = do
n <— global size
rs <— parallel rank
forA ccu m (0, ceiling (log (fromlnt n)), 1) dr

(Aj 6 —> parallel
z <— use rs
bi <— use 6
if z < (rz + 1) — 23

th en do
xi <— get b (z + 2J)
6z ‘op‘ xz

else retu rn bi)

The fold operation is implemented in the same way as the scan operations, but with an
extra clause in the conditional so that only the intermediate values required for the final
result are computed, rather than all processors participating at all stages. The result of
the reduction is left in the first element of the distributed value - the other elements are
intermediate values used in the computation.

foldDvall op dv = do
n <— global size
rs <— parallel rank
forA ccu m (0, ceiling (log (fromlnt n)), 1) dv

(X j b —» parallel
z <— use rs
bi <— use b
if z < (n + 1) — 23 SzSz i mod 2•7+1 = = 1

th en do
xi <— get b (i + 2?)
bi lopi xi

else retu rn bi)

The next stage in the PEDL system maps the idealised parallelisation onto a machine
with a limited number of processors. This is done by introducing a data distribution
where each processor possesses more than one element of the sequence. In short, a
distributed value of elements is replaced by a distributed value of vectors of elements.
The operations over the distributed value are then adjusted to map across these vectors.

6.2 Maximum Segment Sum 136

However, in this case study we will omit this stage - it would introduce a block-wise
decomposition which has already been seen in the previous case study, and only serve to
complicate the presentation of later stages. Instead, we make the simplifying assumption
that the number of processors in the target partition is equal to the size of the input
sequence to the MSS algorithm.

6.2.3 Explicit Communication Stage

The final decision stage replaces the implicit communication performed by the g e t con­
struct with explicit collective communications. The fold and scan operations must be
transformed; however, the main algorithm remains essentially unchanged. The only ad­
dition is the creation of a communicator which is then passed to the new versions o f the
reduce operations.

redistMss :: Dval Int —> RedistributionProg m (Dval In t)
redistMss x = do

grp <— global cu rrentG roup
comm <— com m u nicator grp
s <— redistScanlDvall sumOp comm x
m <— redistScanrDval 1 maxOp comm s
b <— parallel

mi <— use m
si <— use s
xi <— use x
retu rn (mi — si + xi)

mss <— redistFoldDval 1 maxOp comm b
retu rn mss

The reduction operations are implemented in a similar way, and therefore exhibit similar
communication patterns. For brevity, the communicating version of only one is present­
ed. The access pattern at each loop iteration is regular: processors use the data from
the processor a fixed offset along the sequence. The data redistribution required can be
realized by a shift operation at each iteration of the loop.

redistScanlDvall op comm dv = do
n <— global size
rs <— p arallel rank
forA ccu m (0, ceiling (log (fromlnt n)), 1) dv

(A j b —> do
x <— sh ift NonPeriodic Inc 23 comm b
parallel

i <— use rs
bi <— use b
if i > 2J

th en do
xi <— u se x
xi iopi bi

else retu rn bi)

6.2 Maximum Segment Sum 137

The shift operation involves all processors in the partition. However, not all processors
use this data to compute the result: at iteration j , ranks above 2j have already com­
puted their final result. It may seem that this is inefficient - more messages are being
passed through the communication network than are required. The alternative would be
to define a new communicator at each iteration which contained only the processors that
required the data. However, as creating a communicator within MPI is a synchronous op­
eration, which requires communication between processors to negotiate a new context, it
is doubtful that an improvement in efficiency would be seen.

6.2.4 Intermediate Form

All the parallelisation details have now been provided by the programmer. The process
of generating target language code begins. After removing the coordination layer from
the program and simplifying a little, the following intermediate stage program results:

intermediateMss :: Int —> IntermediateProg m Int
intermediateMss x = do

grp <— current G roup
comm <— com m u nicatorR Q grp
s <— intermediatescanll sumOp comm x
m <— intermediatescanrl maxOp comm s
b <— retu rn (m — s + x)
mss <— intermediateFoldl maxOp comm b
return mss

intermediates canll op comm dv = do
n <— size
i <— rank
forA ccu m (0, ceiling (log (fromlnt n)), 1) dv

(A j bi —> do
xi <— sh iftR Q NonPeriodic Inc (2J) comm bi
if i > 2J

th en xi lopl bi
else retu rn bi)

The other scan and fold operation are similar and are omitted.

6.3 Summary 138

6.2.5 Translation to SAC+MPI

The intermediate stage program can be simplified a little further, and then straightfor­
wardly translated to SAC to yield the final implementation.

i n t in termediateScanll(Mpi_Com m &comm, i n t d v) {
n = s i z e ();
i = r a n k ();
b i = dv;
f o r (j = 0 ; j < c e i l i n g (l o g (n)); j + +) {

x i = S h i f t _ i n t (f a l s e , l , p o w (2 , j) , c o m m ,b i) ;
i f (i > pow(2 , j))

{ b i = x i + b i ; }
}
r e s u l t = b i ;
r e t u r n (r e s u l t);

}

i n t i n t e r m e d i a t e M s s (i n t x) {
grp = c u r r en tG ro u p ();
comm = c o m m u n ic a to r (g r p) ;
s = i n t e r m e d i a t e S c a n l l (c o m m , x) ;
m = i n t e r m e d i a t e S c a n r l (c o m m , s) ;
b = m - s + x ;
mss = i n t e r m e d i a t e F o l d l (c o m m , b) ;
r e t u r n (m s s);

}

6.3 Summary

This chapter has presented two case studies that used the PEDL system to produce par­
allel implementations from mathematical descriptions of an algorithm. The first stage
in the process is to express the computation in the PEDL specification language. The
specification is then transformed through each decision stage in turn. This incrementally
introduces parallelisation detail until a fully specified implementation results.

The second half of the PEDL system was then sketched. This generates a target language
implementation from the PEDL program. A process of transformation, simplification
and translation is used. This code generation process is described in detail in the next
chapter.

6.3 Summary 139

It can be seen that the SAC programs that are the result of the derivation process are
conventionally structured and readable; no additional runtime system or implementation
techniques for functional languages are required.

Furthermore these programs have been constructed by a systematic decision process that
allows proofs of correctness where necessary. The SAC programs have been compiled
and executed in parallel on a network of workstations with no further modification.

Chapter 7

Code Generation

Capsule

This chapter describes the process of producing a conventional implementation
from a PEDL program in which all parallelisation details have been specified. There
are three stages to the process.

First the change o f view transformation is applied to the two-level program.
This removes the coordination layer and produces an equivalent processor-view pro­
gram. This is expressed in the intermediate language which has a language model
and capabilities similar to the target language. Any communication and schedul­
ing operations that occur within the coordination layer are replaced with equivalent
processor-layer requests to these services.

The next stage is to simplify the intermediate program so that it is in a form that
can be trivially translated to the target language on a construct-by-construct basis.
While some simplification can be automated, much must be done by inspection.

The simplified program can be translated to the target language. Translation
rules for some of the language constructs are given. Many of these are obvious,
and involve little more than converting syntax. The translation is simplified by the
provision of a set of supporting libraries in the target language; we describe the
design and implementation of these libraries.

The chapter concludes with an evaluation of the quality of the generated code
and the suitability of using SAC as the target language.

141

Introduction

This chapter presents the back-end of the PEDL system. The previous chapters have
shown how parallelization details can be incrementally added to an algorithm specifica­
tion so that a fully-specified parallel program results. We use a sequence of progressively
more detailed and explicit parallel computational models where each model is encapsu­
lated within a language; implementation decisions are added to the program in the course
of transforming the program from one language to the next.

The resulting parallel program is expressed in a combination of a coordination and a
computation language; both of which are implemented as an embedded language of com-
binators within Haskell.

The final stage in the process is to take the Haskell-based description of the parallel
program and generate a stand-alone implementation from it. This is the focus of this
chapter. Unlike the incremental derivation stages, this process is entirely mechanistic.
There is no scope for applying insight or ‘eureka’ steps: although the transformations are
currently performed by hand, they can be described by a simple set of rules and much of
it could be automated.

We had originally intended to generate a stand-alone implementation expressed in C,
using the MPI library for communication. As the computational model and level of
abstraction provided by C is far removed from that of the PEDL languages we found that
we spent more effort describing the translation of sequential code than focusing on our
field of interest, the parallel structure.

We decided to target a language whose abstractions and model were closer to our trans­
formation languages. After a little searching and testing, Single Assignment C (Scholz,
1994) was settled upon. This purely-functional first-order language was chosen for a
number of reasons. The translation of sequential code was simplified by the functional
semantics and implicit allocation and deallocation of variables provided by SAC. One
of the main research directions of SAC is the efficient compilation of functional code.
Therefore, we can leave much of the optimisation to the SAC compiler. Another ben­
efit is that the compiler generates standard ANSI C - this means that our code can be
executed on parallel machines for which only a C compiler is provided.

Choosing SAC as the target language caused a redesign of the PEDL languages. Pow­
erful features of SAC, such as whole-array combinators, were added as primitives in the
PEDL languages. In short, the design was altered to minimise the impedance gap be­
tween the two languages. However, we do not believe that the transformation system

is inextricably tied to using SAC as a back end; many other languages could be used.
Another single-assignment language would be especially well suited.

7.1 Change of View Transformation 142

The Haskell-based description of the parallel program is expressed in a two-level model
where the coordination layer provides a collective view of the entire parallel machine. In
contrast, SAC has a conventional single-processor computational model. The first step
towards producing a SAC implementation is to derive a single-processor view program
from the collective-view implementation. This process is described in Section 7.1. The
program produced by this transformation is expressed in a small set of constructs, which
we refer to as the intermediate language

The next stage is to transform the intermediate language program so that it closer re­
sembles a SAC program. This involves substituting hard-to-implement constructs with
more convenient equivalents; expanding and inlining some definitions, flattening nested
blocks and rearranging the code. We call this process simplification, and it is described
in Section 7.2.

Once it has been simplified, the program is really beginning to resemble a SAC program
- it has quite modest features. All that remains is to translate the program. To support this
process we implemented a library of SAC code that provides equivalents of some of the
intermediate language constructs. This involved adding a binding to MPI and building
wrapper libraries which abstracted over the details of the MPI primitives. The design and
implementation of the supporting libraries are described in Section 7.3.

The translation proceeds construct by construct. Much of the translation is purely syntac­
tic - we outline the typical features without giving an exhaustive set of rules or algorithm
for this. However, translation of some of the constructs is a little more difficult due to
the differences between the languages. Section 7.4 presents the interesting parts of the
translation process. The following section (Section 7.5) assesses the quality of the SAC
code generated and analyzes the weaknesses of this technique.

7.1 Change of View Transformation

The first step in the process of translating to SAC is to rework the program so that it is
in a language with a similar computational model to SAC. In particular, SAC along with
most other languages provides a single-processor view of execution. This is in contrast
to collective view of the entire parallel machine provided by the coordination layer of
the PEDL languages. The change of view transformation removes the coordination layer
from the program to leave a residual single-processor view program. This program is
expressed in a subset of the PEDL constructs; we call it the intermediate stage language.

Since the coordination layer is to be removed, the protection provided by the D V al ADT
against improper use of distributed data in this layer is unneeded. Any reference to a
distributed value can be replaced by a reference to the element of the distributed value

7.1 Change of View Transformation 143

T[[parallel BJ =$■
JUglobalB]]
X|[use dvj =>
T[[communicator n j =>■
XJglobalize E dv]] ==>
J[[gspm d PS]] =£■
JJpo in tT oP o in t E E’ comm dv]\ =>•
J[[broadcast E comm dv]] = >

doB
do B
re tu rn dv
com m unicatorR Q n
globalizeRQ E dv
gspm dRQ PS
pointToPointR Q E E’ comm dv
b roadcastR Q E comm dv

Figure 7.1: The change of view transformation

local to that processor. Similarly there is no need to distinguish between computational
code that executes in a global or a parallel context. The blocks of computational code
embedded in the coordination layer are combined to produce a program for a single
processor.

The change of view transformation removes the model of a communication system from
within the two-level program: in the processor-view program these services are provid­
ed by the underlying runtime system. The coordination layer may contain collective
communications which directly permutate the elements of a distributed value. They are
replaced by processor-view requests to the external communication system to perform
the communication. The requests are similar to the message passing bindings typically
found in processor-view languages.

7.1.1 The Transformation

The transformation consists of the rules shown in Figure 7.1, applied exhaustively through­
out the program.

• The constructs which introduce blocks of computation into the coordination lan­
guage (p a ra lle l and global) are replaced with do. This preserves the scope of
identifiers in the computation block but removes the embedding of one language
within another. The program is now composed only of computational blocks, with
no coordination layer code.

• As the collective-view layer is being removed, there is no need for distributed val­
ues. These values are replaced with the representative element on the processor.
This can be simply achieved by replacing calls to use with r e tu r n - this intro­
duces a new binding for an existing value, leaving the rest of the code unchanged.
These redundant bindings are removed during the following simplification stage.

7.1 Change of View Transformation 144

• The other constructs that appear in the coordination layer are replaced by their
intermediate language equivalents. These coordination layer constructs simulate
the behaviour of the communication system by manipulating distributed values and
other data structures directly. They are substituted by requests to the underlying
system to perform the operation.

In particular, collective view communications are replaced with single-processor
view counterparts. These are similar to conventional MPI calls: instead of accept­
ing and producing distributed values, the data communicated is directly passed to
and from the procedure. Apart from the change in type of these parameters, the
code is unchanged. The figure shows the transformation for two of the commu­
nications: the transformation rules for the other communication rules have been
elided for conciseness.

• Any type signatures in the program must be adjusted to reflect the change in lan­
guage and the type of parameters. In particular, any parameters which were previ­
ously of type Dval a will now have type a.

7.1.2 An Example

This following two-level function creates a communicator and uses it to broadcast an
element of the distributed value dv. This results in another distributed value dv' which is
subsequently used in a parallel computation comp.

p :: Dval Int —► Action (RedistributionProg s m) (Dval Int)
p dv = do

grp <— global current G roup
comm <— com m u nicator grp
dv' <— broadcast 1 comm dv
parallel

i <— use dv'
comp i

Generating an intermediate language program for this function illustrates all the features
of the change-of-view transformation. The following program is the result: it consists of
a single computational block which initializes communicators, performs communication
and then computes a result.

p :: Int —► Action (IntermediateProg s m) Int
p dv = do

grp <— do current G roup
comm <— com m u nicatorR Q grp
dv' <— broad castR Q 1 comm dv
do

i <— return dv'
comp i

7.2 Simplification 145

The collective operations are replaced with processor-view requests to the communica­
tion system. Constructs that embed blocks of computational code are replaced by do
blocks. Type signatures are adjusted to reflect the removal of distributed values and the
change of language.

7.1.3 Correctness

The change of view transformation X is the reverse of the transformation C presented in
Section 4.1.9 that defines the semantics of the intermediate language. However, unlike
the application of a change-of-view transformation to a simple language that is presented
in (O’Donnell, 2000), these transformations are not the inverse of one another. Applying
one and then then reverse does not result in the same program. Formally:

VP • C{im) ± P
VP • J(C P1) ± P

This is because the transformation from collective to individual view (X) results in a loss
of structure which cannot be reconstructed by the C transformation.

If the result program generated by the change-of-view transformation is simply compared
to the source, it can be seen that this transformation is not correctness-preserving. It takes
a program that operates on distributed values and produces a program that manipulates
single values. However, the overall computation performed by a group of processors
executing the intermediate program is equivalent to the computation described by the
collective-view program. While the program texts are unequal, the behaviour of the
systems they describe are equivalent.

The following equation holds (where S denotes the semantics of the collective-view lan­
guages):

VP • S(C(J|[P]]))= sm

That is, for any collective program P, the change of view transformation X preserves the
semantics as defined by C. The parallel behaviour of the program is also preserved.

7.2 Simplification

The next stage is to simplify the structure of the intermediate level program so that it is
in a form more easily translated to our target language.

This section outlines the steps taken, and the justification for each. Some of the steps are
a consequence of using SAC as the target language, while others are more general and

7.2 Simplification 146

would apply for a range of target languages. We have attempted to devise an ordering
that ensures that every step has to be performed at most once. However, it is possible that
for some programs later steps could introduce situations that require further application
of previous steps.

The result of the simplifications is a program with a flat structure, ordered so that each
function is defined at the top level, and before its first usage, as is required by SAC.
Partial applications and function-valued parameters are removed while uses of many of
the language constructs are inlined.

1. Rewriting & Expansion
The first step is to inline the definitions of some of the constructs and operators of
the intermediate language. At the same time, syntactic forms that have no equiva­
lent in SAC are rewritten.

• The g sp m d construct, should be replaced by its definition - a conditional
statement testing on the rank of the current processor.

• Case statements and guards are convenient for defining programs in the trans­
formation languages. However, these syntactic forms have no translation to
SAC, and so strictly speaking should be disallowed in the transformation lan­
guages. At this point they must be rewritten as blocks of nested if expres­
sions.

• The result produced by a sequence of computations (i.e. a do block) is the
value returned by the last computation in the sequence. However, function
definitions in SAC require an explicit r e t u r n statement. An explicit r e tu r n
statement is therefore appended to each function definition.

2. Handle limitations of SAC
The next step reforms the program so that it fits within the limitations of SAC.

• Although higher-order functions are convenient for program development,
they are not supported by SAC. Therefore all function-valued parameters
must be eliminated. If the value of a function parameter is known at compile­
time, it can be substituted into the body of the function. Multiple uses of a
higher order function will result in a set of specialized versions of the func­

tion.

If the value of the function parameter cannot be determined at compile-time,
a system of enumeration types and conditionals can be used to allow a partic­
ular function to be selected from a set at mn-time.

7.3 SAC Supporting Libraries 147

• SAC does not allow nested definition of functions. Therefore any local func­
tion definitions must either be inlined or moved to the top level. This may
require adding additional parameters for values that were previously in scope.

• The current implementation of the SAC compiler requires a compile-time
constant value for the bounds of an array generator. If array generators are
passed a variable for the bounds, its value must be inlined. This reduces
the generality of the program; for instance block sizes cannot be determined
at runtime. The code can be made a little more size-independent by using
preprocessor definitions to inline the value.

This is not part of the SAC language specification, but a limitation of the
current compiler. Hopefully, a new release of the compiler will remove this
constraint.

3. Flattening and Ordering
The program is now in a form where much of the code has been inlined and rewrit­
ten in a form that can be translated to SAC. The final step is to flatten the structure
of the program - SAC does not permit nested blocks of code.

• Block structures may only occur in a few places in SAC: as a loop body; as the
alternatives in a conditional; and as the body of an array combinator. All other
nested blocks must be flattened out, taking care to rename any identifiers that
clash with identifiers in the outer scope.

• In common with C, every function must be defined before it is used. There­
fore the function definitions must be sorted into such an order.

• Finally, we can examine the code and rationalize it by removing dead bindings
introduced at earlier stages. Due to the extensive inlining, it may also be pos­
sible to factor out repeated computation. This results in a tidier program, but
it is unclear if this leads to better code generation by the heavily-optimising
SAC compiler.

7.3 SAC Supporting Libraries

A set of libraries were implemented in SAC to support the translation process. Before
presenting the translation itself, this section will describe the libraries and some of the
issues involved in designing and implementing them. The libraries fall into three parts:
the interface and marshaling code required to link to the MPI library; abstractions built
upon the MPI primitives; and code to provide the information about the parallel machine
environment that is available in the PEDL languages.

7.3 SAC Supporting Libraries 148

7.3.1 Developing an MPI binding

SAC is a relatively new language and does not have a binding to the MPI library. However
it has the ability to call C code and has a foreign interface system where APIs can be
annotated to indicate the presence of side effects, updates and the desired behaviour of
the garbage collector.

Referential transparency is maintained in SAC through uniqueness types (Grelck and
Scholz, 1995) similar to those in the language Clean. Side effecting computations operate
on objects, which maintain a mutable state. Object types have a uniqueness annotation
which allows the type checker to ensure that objects are used in a single-threaded manner
throughout the program.

MPI provides an interface of about 140 functions, many of which manipulate data in
peculiar ways to maintain a strict separation between the application program and the
communication system. Using a combination of classes, objects and code interfaces, we
produced a binding to much of the functionality of MPI.

Implementing most of the binding was quite straightforward. However, in some places
the strong type system and functional nature of SAC became quite a hindrance. The most
noticeable example of this was passing message data to and from communication opera­
tions. In the C binding, the locations for the data sent and received from a communication
are passed to communications as untyped pointers (v o id *). The size and type of the
data is described by further parameters to the MPI call.

However, SAC is a functional language - data is immutable and bound to identifiers
rather than stored in variables. Furthermore SAC provides no pointer type, and there is
no way to take the address of an identifier. Because of this, it is not possible to pass data
directly to MPI communications.

We implemented a buffer abstraction in C, with operations to create new buffers and to
copy data to and from them. This abstraction was introduced into SAC as a new class of
mutable object. In this way a buffer can be created in a SAC program, data copied into
it, and then passed to an MPI communication. This adds the inefficiency of copying data
before and after communicating a message, but seems to be the only solution.

A further difficulty is that the shape - the number of elements and dimensions - is part
of the type of a SAC array. In the language specification, arrays with unspecified shapes
are permitted. However, the current compiler does not support this - arrays passed to and
from function calls must have their shape fully specified.

This makes it impossible to provide generic pack and unpack operations for the buffer
object. We currently circumvent this by generating dummy pack and unpack functions
for every array shape communicated in the program. These all call the same C primitive,

7.3 SAC Supporting Libraries 149

but have differing type annotations. The inconvenience of this is lessened slightly by
using macros to declare a new function, instantiated to a particular size.

7.3.2 PEDL Wrapper Functions

Around the MPI primitives, we implemented a set of wrapper functions that more close­
ly resemble the interface of the PEDL communication, group and communicator opera­
tions. The wrapper functions for communications create buffers into which the message
data is packed. They also construct the data required for the additional parameters of the
primitive operation, such as a representation of the message data type.

Due to the size and type system of SAC, these wrappers must also be specialised for each
combination of size and type communicated. We use macros, parameterized over the
size and type, to define the specialised communication wrapper functions required for a
particular application.

The communication operations that are to be used are statically declared using these
macros at the start of the program text. This is not a further limitation on the generality
of the program: due to the restriction that the compiler must statically know the size of
every array generated, this information must already be present at compile time.

Declaring a new wrapper for each size and type introduces some inefficiency, as new
buffers and MPI type values are created every time a communication is performed. This
could be lessened by expanding the macros and then factoring out common code so that
buffers and other data could be reused. However, we hope that an improved version of
the SAC compiler which accepts partially-shaped arrays will make this unnecessary.

7.3.3 Runtime Environment

The PEDL system provides a computational model where environmental information
about the parallel machine, such as the current partition, is always available. This in­
formation is updated whenever the execution context changes. For instance, when the
program executes a g sp m d construct the current partition is sub-divided: the parallel
environment information is updated for the duration of the independent computations,
and then reverted back to the previous context once the processors unify again in the
parent partition.

Within Haskell, this information is propagated throughout the program within the inter­
nals of the computation monad. An equivalent system that records the current machine
environment must be provided for the SAC translation.

7.4 Translation to the Target Language 150

This consists of a few global objects; these are initialized at the start of execution by
querying MPI primitives to find information about the current partition and the rank o f the
particular processor the program is executing on. The definition of the g sp m d construct
updates these objects when entering a new execution context. Primitives such as size and
c u r re n t G ro u p are implemented as projection functions on these objects.

7.4 Translation to the Target Language

The majority of the translation process is purely syntactic - the abstract syntax of the
intermediate stage language is very similar to the abstract syntax of SAC. Such details
as where to replace <— by = and the syntax for function definitions are elided. O f more
interest is the translation of the constructs themselves.

The constructs available in the intermediate language are described in Section 4.1.9 and
reproduced here for convenience.

(ACTION) ::= (STRUCTURE) | (ARRAYOP)
| (COMM) | (GROUP)
| (SIZE) | (RANK)
| (COMMUNICATOR)

The operations of the group, communicator and comm(unication) syntactic classes are
translated to calls to wrapper functions around MPI primitives that take the same pa­
rameters. Similarly the (SIZE) and (RANK) classes, which access information about
the parallel environment, are translated to projection functions over the global objects
that maintain the parallel environment. These translations are trivial and are not pursued
further. This leaves the (STRUCTURE) and (ARRAYOP) syntactic classes.

7.4.1 Translating Structures

(STRUCTURE) ::= retu rn (EXP)
| if (EXP) th en (BLOCK) e lse (BLOCK)
| do (BLOCK)
| rep ea t (BLOCK)
| (other varieties o f loop) . . .

Above are the different forms of structure. The r e tu rn construct can be translated di­
rectly. A similar case is do - as the block structure of the program has been flattened,
this construct can only appear at the start of a function definition, or within the body of a
conditional or loop. It allows a sequence of computations to be placed somewhere where

7.4 Translation to the Target Language 151

a single computation is expected. As such, it can be translated into the {} braces used for
the same purpose in SAC and C.

The conditional is more interesting. While this construct is an expression in the PEDL

languages, and so returns a value, it is a statement in SAC. Therefore the translation
requires the movement of the binding operation into each alternative block of the condi­
tional, as follows:

i f (p)if p
., t r = a;th en a = >

e ls eelse d o { . 6} >

This will require complex expressions containing conditionals to be simplified so that the
conditionals are directly on the right hand side of a binding.

Loop combinators are translated to the w h i le and f o r loops provided by SAC. Al­
though more involved, the transformation of loops is still template-based; it does not
depend on the context the loop occurs in, or the operations within the loop body. Extra
bindings are introduced for accumulating values and loop counters: these simulate the
behaviour of the lambda abstractions of the intermediate program. It must be ensured
that these are given fresh names that do not clash with existing bindings.

For example, the lo o p n accu m construct, which iterates a fixed number of times accu­
mulating a result, is translated as follows:

acc = a;
r <— loopnaccum n a fo r (in d e x = 0 ; in d e x < n; i n d e x + +) {

(A acc —> do t • • •!
acc — v;

v) }
r = acc;

The other loop combinators have similar translations.

7.4.2 Translating Array operations

The other syntactic class that merits examination are the array operations.

(ARRAYOP) genarray (EXP) (ABS1)
| m odarray (IDENT) (ABS2)
| (IDENT) ! (EXP)
| b ou n d s (IDENT)

The indexing and bounds operations can be translated directly to SAC primitives. The
array generation and array map can be expressed as forms of SAC’s generic w i th ar­
ray construct. This allows the specification of a range of indexes to compute over and

7.5 Discussion 152

provides a limited form of lambda abstraction for the index computation. The array gen­
erator operation is translated as follows.

r <— genarray b (A ix —» do r = with (. < = ix < = .){
x <— E ix t x = E ix;

E' x) } genarray([b], E' x);

The array map operation is translated in a similar way:

r <— m odarray a (A (i x , v) —» do r with (. < ix < .){
j—i v a I i x I.

x <— E IX V T „ .
= > x = E ix v;

E' x) ‘ " , . _/ \} modarray (a, ix , E xj;

7.5 Discussion

This chapter has presented the back-end of the PEDL system. This takes a two-level
program whose parallelisation is fully specified and generates an implementation in the
target language.

The first step is to apply the change of view transformation. This produces a processor-
view program from the two-level specification. The collective view coordination layer
is removed and the coordination code rewritten using processor-view constructs that per­
form requests to an underlying communication system. This transformation is simply
formulated as a set of rules and could be automated.

The processor-view program is expressed in an intermediate language which is similar to
the_ target language. A process of simplification removes constructs that are difficult to
translate and reforms the code so that it may be translated construct-by-construct to the
target language. Parts of the simplification process are specific to SAC, while others are
generally applicable to a range of possible target languages.

The target implementation is then produced by a translation. Most of the translation
rules are purely syntactic and trivial. Translating array and loop constructs require a little
more: the introduction of new variables. Communication operations are translated to
calls to the SAC binding to the MPI library. The production of the final program uses
no complex implementation techniques, but instead maps directly to the target language.
In particular there are none of the runtime features typically associated with higher-order
functional languages, such as graph reduction, garbage collection and heap allocation.

7.5 Discussion 153

The simplicity of the final translation is due to the PEDL intermediate language being so
close to SAC: it presents the same level of abstraction as SAC. As no additional abstrac­
tions are imposed by the PEDL computational languages compared to SAC, both systems
provide the programmer with the same degree of control over the sequential execution.

This has two benefits. The first is that the generated code is clear, conventionally struc­
tured and bears a resemblance to the PEDL sources. If needed, it would be much easier
for a programmer to read and modify this compared to, say, the C output of the GHC
Haskell compiler. The second benefit is that there is little sequential execution overhead
imposed by using the system rather than coding in SAC directly. Furthermore, as SAC
has been shown to produce performance comparable to FORTRAN, we can fairly confi­
dently extend this statement and claim that array-based computation in PEDL has little
sequential overhead compared to C.

However, the most important factor in determining the performance of a parallel imple­
mentation is not the sequential code but the parallelisation and communication code.

The communication constructs of PEDL each map to a single MPI primitive. Therefore
the system presents the same level of abstraction as coding against the MPI binding to
SAC or C. The programmer has the same degree of control over the machine and can
express parallel behaviours in the same level of details in all these languages. This is not
the case for more abstract models of parallelism such as skeletons or evaluation strategies.

Although PEDL does not reduce the available control over parallelism, it does restrict the
form parallelism may take. It is limited to a strict Group-SPMD model of parallelism;
it does not provide access to MPI primitives that do not fit this model. This makes it
unsuitable for expressing more dynamic or irregular algorithms. However, for algorithms
that can be efficiently expressed in Group-SPMD, we claim that using PEDL imposes
little overhead on communication or restrictions on the form of parallelism compared to
hand-coding in C+MPI.

The overhead that is incurred is due to excess copying of data into temporary buffer-
s before and after communication. However this is an implementation issue, and is a
computational penalty - it does not have a significant impact compared to the time taken
for communication itself. Further effort could be expended on producing a more effi­
cient SAC binding to the MPI library that eliminates this copying. However, due to the
functional semantics of SAC it may not be possible to remove this copying altogeth­
er: although perhaps transformations could be formulated that optimise the intermediate
program so that buffers are reused and copying minimised.

The result of a PEDL derivation is an imperative program calling a communication li­
brary. We claim that little computational or communication overhead is incurred from
using PEDL compared to hand coding. What our system adds to this are levels of ab­

7.6 Further Work 154

straction from the detail of the parallel algorithm, and from the communication library,
at the earlier stages of program design. Additional degrees of control are introduced in a
systematic and structured way, while reasoning about the correctness of code is simpli­
fied. This does not limit the expressiveness or degree of control available within the later
stages of the system, but may permit the programmer to formulate a better solution.

7.6 Further Work

Currently the code generation process is quite simple. Further optimisation steps could
be added to produce more efficient target language programs. This optimisation could
be assisted by modeling the features of the target language more fully within PEDL. For
instance, optimisation of the w i th array loop construct of SAC has been the subject
of extensive research. By adding this construct to the PEDL computational language,
the programmer could express algorithms in a form that is more likely to be efficiently
implemented. If the language was redesigned to be closer to SAC, small irritations such
as the difference in array origin could also be removed.

The SAC research group have also investigated the automatic parallelization of w i th
loop array operations (Grelck, 1998). Their parallelisation model is a shared-memory
task-farm architecture quite different from that in this thesis. However, it would be inter­
esting to experiment with methods to combine the two forms of parallelisation. Possibly
PEDL could be used to describe the large-grain problem decomposition, while SAC man­
ages the small-grain system parallelism. This could produce implementations suitable for
a distributed machine where each node is a shared-memory multiprocessor.

Another consideration is whether another language would be better suited as the target
for PEDL derivations. A lower-level language such as C, C -- (Peyton Jones et al.,
1998) or assembler, would require a much more complex code-generation system. As
there are languages that provide a computational model closer to PEDL and produce
efficient implementations there seems little point to target a lower level language directly.
However, there may be other first-order functional or single-assignment languages which
are better suited than SAC.

Chapter 8

Conclusions

8.1 Summary

Parallel programming is a difficult task. An efficient parallel implementation must man­
age a set of features that are not present in a similar sequential implementation. Many
programming models have been proposed to tackle the complexity this introduces. These
range from almost totally implicit techniques, where the compiler or runtime system
makes most of the parallelisation decisions, to explicitly-parallel models where the pro­
grammer has full control.

Implicit approaches remove the need to precisely specify all details of the desired par­
allel behaviour. This is acceptable when the application is very irregular or where the
programmer has little experience of parallel implementation. However for problem do­
mains whose parallelisation is well understood, a skilled practitioner can produce better
implementations in a programming model which permits more low-level control.

Unfortunately, explicitly-parallel programs tend to be poorly structured; the management
of parallel features is tangled with computational components throughout the program.
This leads to code that is difficult to understand, debug and maintain, while the presence
of machine specific details reduces the portability of the code.

With effort, the programmer can overcome these drawbacks. A more serious problem is
that explicit parallelism makes it more difficult to produce good implementations in the
first place. The programming model is so cumbersome that prototyping, reasoning about
correctness, and performance prediction is often seen as not being worthwhile.

The thesis proposes a staged programming model that accommodates both abstraction
and low-level control of parallelism. We claim that such a model possesses many of the
benefits of both the implicit and explicit treatments of parallelism. It allows specification,

8.1 Summary 156

prototyping and concretization of implementation decisions to take place within a single
unified system.

The design of this programming model was guided by the analysis of a group of existing
systems that present more than one level of abstraction. It was found that each of these
systems had some of the following qualities:

• Implementation decisions are made incrementally.

• The system is divided into a series of discrete design stages.

• There is a fixed number and ordering of these stages.

• Movement from one stage to the next is by some form of program transformation,
which may be either formal or informal.

• The system supports reasoning about the computational correctness and parallel
behaviour of code.

• Programs at all stages of the system can be executed or simulated.

• The programmer is firmly in control of all implementation decisions: any support­
ing software is subordinate to the user.

• New primitives that extend the system may be added in a straightforward manner.

However, none of the systems reviewed possesses all these qualities. Many use informal
or poorly defined notations; the result of other systems is a specification of the implemen­
tation, rather than the implementation itself; while others have no well defined derivation
route and so provide less guidance for the programmer.

This thesis introduces a prototype staged programming system called PEDL which pos­
sesses all the properties identified above. It comprises a fixed series of stages. Although
this is more restrictive than a system with an arbitrary number and order of stages, a
fixed series provides more structure for the programmer and simplifies the production of
software to support and analyze the process.

Each stage introduces details of another aspect of the parallelisation, A different lan­
guage is associated with each stage: the languages capture the implementation decisions
of that stage at an appropriate level of abstraction. The languages are well defined and
executable. This permits equational reasoning on programs and the simulation of inter­
mediate programs.

Once all the parallelisation details have been provided, a series of transformations and
translation results in an SPMD program implemented in a conventional imperative lan­
guage.

8.2 Contributions 157

8.2 Contributions

8.2.1 The PEDL System

This thesis demonstrates it is possible to produce a programming system containing d-
ifferent levels of abstraction that is based around a series of well-defined executable
languages. The system consists of a fixed series of stages which each introduce more
implementation detail. At every stage the programmer can focus in isolation on one
parallelisation issue.

The concreteness of the stages and languages give a clear implementation route. At
each stage the programmer can focus on a facet of the parallelisation in isolation, while
other concerns are abstracted by the stage language. This guides the programmer from a
specification to a full description of the parallel algorithm. From this a conventional final
implementation can be produced by a sequence of semi-automatic transformations.

The thesis also goes some way towards showing that a concrete staged programming
system is also productive. The PEDL prototype system is limited to a particular pro­
gramming model and has a limited range of datatypes and computational features. This
restricts it to a particular class of algorithm: mostly data-parallel array based computa­
tions. However, the small case studies presented in this thesis demonstrate that algorithms
which fit within these constraints can be clearly and concisely expressed and that their
final implementations have little overhead compared to hand-coded equivalents.

In the initial stages of the system many of the implementation details are abstracted away
from: programs in these stage languages are compact and easy to understand. This makes
experimentation, modeling and reasoning about parallel performance much more feasi­
ble. The incremental introduction of detail structures the implementation process, while
the well defined derivation route allows libraries of commonly used abstractions, equal­
ities and transformations to be built up and reused. So it appears that this staged pro­
gramming system is effective in combining the benefits of high-level specification and
low level implementation within the same system.

Our only reservation is over the amount of code manipulation and rewriting necessary
during a program derivation. Each stage of the process requires the transformation of
the program from one language to the next. As the languages share a common base of
constructs much of the code remains unchanged. Nonetheless, while transformation by
hand is manageable for the small case studies presented here, clearly when working with
larger real-world applications it could become unwieldy. The PEDL system still needs
to be tested against larger case studies to ascertain the significance of this problem.

A usable staged programming system for real-world applications would have to be sup­

8.2 Contributions 158

ported by a suite of tools for program editing, analysis and transformation. The concrete
and constrained nature of the staged system would simplify the design and production of
this suite. This further work is discussed in Section 8.3.3.

A related issue is the guidance provided to the programmer during the derivation. Cost
models for performance prediction are increasingly being seen as a necessary component
of a useful parallel programming system. The metrics they provide allow the programmer
to compare candidate implementation choices.

Cost models would be straightforward to add to the PEDL system. One possible tech­
nique would be the cost modelling system proposed for the APM methodology. As the
operational behaviour of PEDL parallel constructs are already described in the APM
methodology this would pose few problems. This cost modeling system permits costs to
be derived for ParOps of internal nodes of the APM hierarchy from the known costs of
ParOps of leaf node APMs. In the case of PEDL, this would mean that costs for con­
structs of the stage languages could be derived from experimental measurement of the
corresponding target language constructs.

Another possibility is to use a cost model similar to that of TwoL. TwoL and PEDL
share the same model of parallel computation - Group-SPMD. The earlier stage programs
correspond to partially-specified TwoL frame programs. In these cases a cost function is
derived which is parameterised over the unspecified implementation decisions.

8.2.2 Staged Programming Models

The PEDL system presented in this thesis is only a first prototype of a concrete staged
programming system. One question that this prototype raises is the optimal size and
number of stages in the methodology. PEDL has a few large stages, each of which
produces a significant change to the level of parallel implementation detail. This means
that significant leaps are made during a derivation - although this is mitigated somewhat
by being able to execute programs that are expressed in a mixture of languages.

It may be better to have a system with a finer granularity: one with a longer series of
stages where each stage introduces a smaller amount of implementation decisions. This
would reduce the distance between steps and make each more manageable. However, it is
unclear whether it is possible to decompose the parallelisation process into more stages.

The staged programming model may have applications outside the field of parallelism.
Other complex problem domains could benefit from the multiple levels of abstraction
that this model provides. The ability to make significant decisions first and later fix
the smaller details may be productive in, for example, hardware design or distributed
systems.

8.2 Contributions 159

For the staged programming model to be appropriate for a particular problem domain,
it must be possible to decompose the domain into a set of implementation concerns.
Each of the concerns must be to some extent independent, so that each can be tackled
in isolation. Furthermore, it must be possible to order the concerns in such a way that
freezing the implementation details of one concern does not overly constrain the choice
for later concerns. If freezing one concern constrains another concern so much that useful
solutions are not possible it suggests that it may be better to reverse the order in which
decisions are made on the two concerns. It is possible that in some problem domains
there will be cyclic dependencies between concerns. Such loops could be tackled by
backtracking through stages, but a large amount of circularity would lead to a system
where no progress was made until the entire solution was found.

Parallel implementation is amenable to the staged programming system, at least for the
Group-SPMD model, because it is possible to serialize the fixing of concerns without
requiring any backtracking. Freezing one concern restricts the possibilities for later con­
cerns, but not so much as to prevent useful solutions. For instance, in PEDL decisions are
made on the redistribution of data before choosing collective communication operations
that satisfy these requirements. Therefore redistribution, the earlier concern, constrains
the possible communication patterns chosen as a later concern. This is not a problem
because in this case the latter concern is subordinate to the redistribution requirements.

8.2.3 Implementing Embedded Languages

The PEDL languages are implemented by embedding them within a pure lazy functional
language. This simplifies the design of the languages, provides a common semantic base
for reasoning and translation, and makes the implementation and modification of the
languages easier. It also serves as a case study for the benefits and practicality of this
implementation technique.

An unexpected contribution was the development of techniques to represent the static
semantics of stage languages and the legal combinations of languages within the type
system of the host language. This enables us to use the type checker of the host language
to verify that programs are well-formed. Previous projects have used phantom classes
and types. However this work extends their application to the use of trees of phantom
types to represent languages and the legal contexts for constructs. Phantom types are
also used to record whether a block of code performs side-effecting computations and
whether it is composed of constructs from more than one language. This indicates to the
programmer when a block has been fully transformed to the next stage of the derivation,
and when extra care should be taken in applying transformations.

8.2 Contributions 160

Chains of phantom types could be used in other situations to differentiate between related
languages or other forms of hierarchy. For example, (Leijen and Meijer, 2000) describes
a set of Haskell combinators for expressing SQL queries which can then be passed to an
external database server. Many database vendors use different dialects or extensions of
standard SQL. Therefore a query accepted by one server may be considered malformed
by another. Phantom language types could ensure that each server is only passed queries
in its own dialect, while allowing standard SQL constructs to be passed to all servers.
The dialect and sub-dialects of SQL to be modeled can be arranged into a hierarchy,
which is represented by a tree of phantom types similar to that used in PEDL. Each SQL
combinator is parameterised by an additional phantom language type variable. This is
left fully polymorphic in the type signature of standard SQL constructs; server-specific
constructs constrain the language type to the extent in the hierarchy in which the construct
is legal. Finally the call to the SQL interface is passed two values: the SQL expression
to execute and a value of the phantom language type that represents the language that
particular server accepts. By requiring that these two types be unified the type-checker
can detect any incorrect use of dialects.

8.3 Further Work 161

8.3 Further Work

8.3.1 Extending the Parallelism Model

PEDL enforces a strict Group-SPMD model of parallelism. While this makes programs
amenable to analysis and is suitable for a wide class of applications, not all algorithms can
be efficiently expressed in this model. Highly irregular computations are better suited to
a more dynamic programming model, where the parallel behaviour of the program adapts
to the input data.

A further development of the PEDL system would be to generalize it to other forms of
parallelism - in particular task parallelism with unstructured point-to-point communica­
tions. This would require a redesign of the languages and would weaken the reasoning
ability. However with care it should be possible to design language constructs and exten­
sions to the system so that the the strengths of the Group-SPMD model are retained for
algorithms that fit within it, while still allowing more difficult algorithms to be expressed.

Another thing to investigate is whether the non-blocking communications provided by
MPI can be accommodated in our model. These are useful in achieving higher perfor­
mance but again would complicate reasoning about programs.

Designing extensions to the system will be made easier by the nature of the implemen­
tation: the embedding technique simplifies experimenting and refining new language
constructs. Furthermore, phantom language types can be used to record more informa­
tion about the behaviour of a block of code - for instance the presence of asynchronous
parallelism or non-blocking communications that require greater care in transformation.

8.3.2 Developing the System

There are a number of developments and extensions that could be made to the current
system to improve its ability to handle real-world problems.

In PEDL it is possible to reason about programs expressed in the same language and in
adjacent languages. Currently this reasoning is done by appealing to the underlying se­
mantics. A developed staged programming system should provide a library of equalities
and theorems. This would allow the programmer to relate and reason about constructs
directly, instead of working from first principles. Producing a library of such theorems
would allow concise high-level proofs to be produced.

Similarly, the system should supply catalogues of transformations that describe the usu­
al implementation routes for common patterns of parallelism. Candidates for such a

8.3 Further Work 162

catalogue would include transformations that introduce block-wise or cyclic data distri­
butions for independent computations.

Another improvement would be to enrich the computational language with other datatype-
s, such as trees and lists. This would not affect the coordination layer of the system, but
would provide more freedom to express computational components. Adding a new da­
ta type and operations over it would require an implementation as combinators in the
PEDL computational language, the addition to the semantics of a characterisation of
its behaviour, and rules to describe the translation of these combinators to supporting
libraries in the target language.

The PEDL system currently uses only a small range of the facilities provided by MPI.
The languages could provide bindings to some of the more powerful features of this
library, such as processor topologies. Upon the processor topologies could then be added
further abstractions, for example data distribution types (Rauber and Riinger, 1995) and
distributed arrays. This would allow parallel array computations to be expressed more
easily, without the need to map between global and local array indices. This would
require research into the design of an interface for this abstraction that was convenient
and still gave the programmer sufficient control.

A weakness of the design of the PEDL collective communications is the point-to-point
operation. This causes a synchronisation across all processors in the current partition.
Therefore a sequence of these communications is very inefficient. A better formulation
would be a BSP-like primitive (Valiant, 1990), in which a set of arbitrary point-to-point
communications are performed simultaneously, followed by a synchronisation across the
partition.

Adding new communication primitives to the language is straightforward, but could be
simplified by a more generic treatment of communication within the operational and
parallel semantics. Instead of the full definition currently given for each operation, a
general definition could be provided that is then parameterised by a permutation function
which defines the characteristics of a particular communication. Hence the semantics of
new primitives could be specified with the definition of a new permutation function.

This research could be extended to the design of libraries of higher-level abstractions
that capture frequently used parallelisation idioms. Although similar to skeletons, these
idioms would not be black-box constructs whose implementation details were hidden.
They would be implemented using the primitives provided by the stage languages. Each
encapsulation of a parallel idiom would be accompanied by a set of theorems and trans­
formations that describe its properties, equivalences and possible implementation routes.
An idiom would have one or possibly more realizations for each stage of the system. For
instance, reducing the elements of a distributed value in the independent language could

8.3 Further Work 163

be encapsulated as an idiom function. At the next stage it could be transformed to per­
forming a reduction over various different distributions of data. Each alternative would
be implemented as a separate library function in the distribution stage languages.

These idiom libraries would allow a much more structured form of parallel derivation
without sacrificing any control. Alternate realizations of the idiom can be chosen at
each stage; while if further control is required their definition in terms of the language
primitives can be manipulated directly.

8.3.3 Tool Support

It can be seen that the back end of the PEDL system is mechanical and that much of
it could be automated. Of more interest is the design of software to support the pro­
grammer during the earlier stages of the process by providing guidance and performing
transformations. These decision stages require insight and inspiration, so any tool must
be directed by the programmer rather than be fully automated.

In its minimal form, the support software would be an interactive editor that applied trans­
formations to the program text. It should verify at each step that the transformation being
applied was valid, and record any side-conditions or assumptions made. However, there
are much richer design possibilities for a truly useful, powerful tool suite. In addition to
the core transformation system, the following features would be desirable.

• Journaling. The application should maintain a record of the transformations ap­
plied to the program. This acts as documentation and justification for the imple­
mentation, It also allows the programmer to roll back implementation decisions
when: seeking better solutions to the problem; porting a program to a different
architecture; or reworking a component for a different usage or data distribution.

• Program Analysis. If the application could perform program analyses (for exam­
ple cost analysis) the results could be used to narrow the set of applicable trans­
formations, or to rank them according to an estimation of the likelihood of good
results.

One way to provide such functionality would be to use multiple interpretations
of the PEDL language combinators. This technique is used in the hardware de­
scription language Hydra (O’Donnell, 1987) to perform profiling, proof checking
and symbolic evaluation. The technique works by providing a set of different im­
plementations for the language combinators: evaluating the source program with
respect to a different implementation of the underlying language produces a differ­
ent kind of result.

8.3 Further Work 164

• Scripting. A powerful feature would be to allow the programmer to record a se­
quence of transformation applications, so that it can be reused at other points in
the derivation. This would require a form of macro or transformational language
in which the programmer defines new transformations by composition. Such a lan­
guage should also be able to express higher-order operations over transformations,
for instance: applying a parameter transformation exhaustively over a program tex-
t; or applying a transformation selectively according to a condition.

The provision of a transformation control language, combined with the ability to
perform program analysis, could lead to the development of a tactics-based trans­
formation system. Here the user chooses from a selection of high-level parallelisa­
tion tactics. Once a tactic is chosen, the low-level details of the transformation are
performed automatically, after which the result is presented to the programmer for
evaluation.

• User Interface.

Such an inherently complex application would require research into the design of
a productive user interface. The user will be working on a sizeable program tex-
t, possibly divided into many different versions and branches. They must choose
transformations from a large catalogue and then direct where they are to be applied
to the code. Performing the transformation adds to the derivation history and gen­
erates proof requirements for any side conditions that occur. The interface must be
able to shield the user from the complexity of the system by eliding any details that
were not currently important.

As well as managing the complexity, the interface must also support rather than
hinder the user. Many proof assistants and structured editors have a modal method
of operation, where the task to be performed is strictly serialized and formalized.
This can stifle inspiration and frustrate the user. Even though the application is
primarily a verification system that checks the correctness of transformations, it
must allow the programmer to go with a hunch and temporarily break the rules:
for example apply transformations to any portion of the code, leave side conditions
unsatisfied, make unproven assumptions, or directly manipulate the code. The ap­
plication should record the conditions and assumptions made, so if an exploratory
transformation appears promising the programmer can return to tie up the loose
ends by formalising the informal transformation steps they have performed.

A related feature is that the tool should allow the development tree to be forked at
arbitrary points of the derivation. Often the programmer will not know which of
some alternatives is the best way to proceed. It would be convenient to be able to
develop a few alternatives in parallel for a while, until it become clear which is the

8.3 Further Work 165

best approach. Furthermore, this forking should only scope over the areas where
the sibling derivations differ; the tool should allow unaffected transformations to
be mapped across all sibling programs.

There are some existing systems that could provide inspiration or a starting point for
the proposed tool suite. (Tullsen and Hudak, 1998) describes work in progress on the
design of a Programmer Assistant fo r Transforming Haskell (PATH). This provides a
meta-language in which to express the application of transformation templates (Huet
and Lang, 1978) to an object program. Subsets of Haskell are used for both the meta­
language and object-language. The design of the meta-language and supporting libraries
ensure that only correctness-preserving transformations can be performed.

The Haskell Equational Reasoning Assistant (HERA) is an ongoing project in Glasgow to
develop a system that assists in the production of inductive proofs over Haskell programs.
It provides a point-and-click interface to select theorems and expression points at which
they are to be applied. The applicability of the chosen theorem is checked, and then the
expression rewritten as another line in the proof.

Meanwhile there are many examples of tools that perform automated transformation, for
example the Glasgow Haskell Compiler (Peyton Jones, 1996), which could inform the
design of an implementation of the back-end of the PEDL system.

This thesis has shown that a concrete staged programming method effectively manages
complexity while still permitting detailed specification of the parallel behaviour. By
relaxing the computational model of the system and adding libraries of higher level ab­
stractions and corresponding sets of theorems, the programmer will be able to concisely
express a much broader class of parallel algorithm. With automation of the back end of
the system and tool support for program analysis and transformation, a staged program­
ming system would be truly useful for real-world applications.

Appendix A

Sources for the Case Studies

A .l Wave Equation

A.1.1 PEDL Codes

Specification Stage

seqHarness :: SpecificationProg m ()
seqHarness = do

sz <— return (20 :: Int)
iterations <— return (20 :: Int)
boundsLeft <— return (100 :: Float)
boundsRight <— return (0 :: Float)
vect <— genArr sz (_ —> return (50 :: Float))
let f I c r = return ((I/2 + c + r/2)/2)
r <— seqWaveEq f iterations boundsLeft boundsRight vect
putOut “ result”
printout r
return ()

seqWaveEq op n bl br v = do
b <— bounds v
final $ loopNAccum n v (\vect —>

oneSeqlter op bl br b vect)

oneSeqlter op bl br b vect = genArr b (\ i —► do
I <— if i >1 then vect ! (i-1)

else return bl
c <— vect ! i
r <— if i < b then vect ! (i+1)

else return br
op I c r
)

A .l Wave Equation 167

Independent Stage

indepHarness :: IndependentProg m (Dval ())
indepHarness = do

sz <— global size
iterations <— return (20 :: Int)
boundsLeft <— return (100 :: Float)
boundsRight <— return (0 :: Float)
ivect <— parallel (return (50 :: Float))
let f I c r = return ((I/2 + c + r/2)/2)
r <— indepWaveEq f iterations boundsLeft boundsRight ivect
one $ do putOut “ result”

nulLoop $ for (1::lnt, (< sz),(+ 1))
$ \ i ^ do v <- r ‘get1 i

printout v

indepWaveEq op n bl br iv = do
b * - global size
final $ loopNAccum n iv (\ivect —> parallel $

do i <— rank
I <— if i >1 then ivect ‘get1 (i-1)

else return bl
c <— use ivect
r <— if i < b then ivect ‘get1 (i+1)

else return br
op I c r
)

Distributed Stage

distribHarness :: DistributedProg m (Dval ())
distribHarness = do

sz global size
blocksize «- return (20 ‘div‘ sz)
iterations <— return (20 :: Int)
boundsLeft <— return (100 :: Float)
boundsRight <— return (0 :: Float)
bvect <— parallel (genArr blocksize (_ —> return (50 :: Float)))
let f I c r = return ((I/2 + c + r/2)/2)
r <— distribWaveEq f iterations boundsLeft boundsRight blocksize bvect
on 1 $ do putOut “ result”

nulLoop $ for (1::lnt, (<sz), (+1))
$ \ i -» do v <— r ‘get1 i

printout v

distribWaveEq op n bl br block bv = do
b <— global size
final $ loopNAccum n bv (\bvect —> parallel $ do

i <— rank
I <— if i > 1 then do a <- bvect ‘get1 (i-1)

a ! block
else return bl

c <— use bvect
r f— if i < b then do a «- bvect ‘get1 (i+1)

a ! 1
else return br

oneSeqlter op I r block c

A .l Wave Equation 168

Redistribution Stage

redistHarness :: RedistributionProg m (Dval ())
redistHarness = do

sz <— global size
blocksize <- return (20 ‘div‘ sz)
iterations <— return (20 :: Int)
boundsLeft <— return (100 :: Float)
boundsRight <— return (0 :: Float)
bvect <— parallel (genArr blocksize (_ - * return (50 :: Float)))
let f I c r = return ((I/2 + c + r/2)/2)
r <— redistWaveEq f iterations boundsLeft boundsRight blocksize bvect
grp <— global currentGroup
comm <— communicator grp
r' <— gather 1 comm r
on 1 $ do putOut “ result”

vect <— use r'
nulLoop $ for (1 ,(< sz),(+ 1))

$ \ i -> do v vect ! i
printout v

redistWaveEq op n bl br block bv = do
b <— global size
grp <— global currentGroup
comm <— communicator grp
final $ loopNAccum n bv (\bvect —> do

Idata <— parallel $ do a <— use bvect
a ! block

rdata <— parallel $ do a use bvect
a ! 1

Idata' <— shift NonPeriodic Inc 1 comm Idata
rdata' <— shift NonPeriodic Dec 1 comm rdata
parallel $ do

i <— rank
I <— if i >1 then use Idata'

else return bl
c <— use bvect
r <— if i < b then use rdata'

else return br
oneSeqlter op I r block c
)

Intermediate Stage

singleHarness :: IntermediateProg m ()
singleHarness = do

sz <— size
blocksize <— return (20 ‘div‘ sz)
iterations <— return (20 :: Int)
boundsLeft «— return (100 :: Float)
boundsRight <— return (0 :: Float)
bvect <— genArr blocksize (_ —> return (50 :: Float))
let f I c r = return ((I/2 + c + r/2)/2)
r <— singleWaveEq f iterations boundsLeft boundsRight blocksize bvect
grp <— currentGroup
comm <— communicatorRQ grp

A .l Wave Equation 169

r' * - gatherRQ 1 comm r
sOn 1 $ do putOut “ result”

vect <— return r'
nulLoop $ for (1, (<sz), (+1))

$ \ i —> do v <— vect ! i
printout v

singleWaveEq op n bl br block bv = do
b <— size
grp <— currentGroup
comm <— communicatorRQ grp
final $ loopNAccum n bv (\bvect —> do

Idata <— do a return bvect
a ! block

rdata <— do a <— return bvect
a ! 1

Idata' 4- shiftRQ NonPeriodic Inc 1 comm Idata
rdata' <— shiftRQ NonPeriodic Dec 1 comm rdata
do

i 4— rank
I 4- if i >1 then return Idata'

else return bl
c 4 return bvect
r 4- if i < b then return rdata'

else return br
oneSeqlter op I r block c

A.1.2 Simplified Version

cBLOCK = 4 :: Int

f I c r = return ((1/2 + c + r/2)/2)

oneSeqlter bl br vect = do
result 4— genArr cBLOCK (\i — * do

I 4— if i >1 then vect ! (i - 1)
else return bl

c 4— vect ! i
r 4— if i < cBLOCK then vect ! (i+1)

else return br
element 4— f I c r
return element
)

return result

singleWaveEq n bl br bv = do
b 4— size
grp 4— currentGroup
comm 4— communicatorRQ grp
vect 4— final $ loopNAccum n bv (\bvect —> do

Idata 4— bvect ! cBLOCK

A .l Wave Equation 170

rdata <— bvect ! 1
Idata' <— shiftRQ NonPeriodic Inc 1 comm Idata
rdata' <— shiftRQ NonPeriodic Dec 1 comm rdata
i <— rank
I v- if i >1 then return Idata'

else return bl
r <— if i < b then return rdata'

else return br
result <— oneSeqlter I r bvect
return result
)

return vect

singleHarness :: SingleProg ()
singleHarness = do

sz <— size
iterations <— return (20 :: Int)
boundsLeft <— return (100 :: Float)
boundsRight <— return (0 :: Float)
bvect <— genArr cBLOCK (_ —► return (50 :: Float))
r <— singleWaveEq iterations boundsLeft boundsRight bvect
grp <— currentGroup
comm <— communicatorRQ grp
r' * - gatherRQ 1 comm r
sOn 1 $ do putOut “ result”

nulLoop $ for (1, (<sz), (+1))
$ \ i —» do v <— r' ! i

printout v

A.1.3 SAC Code

/* SAC+MPI WaveEquation program */
import StdIO : all;
import Hp: all;
import Array : all;

#include "hp.h"
#define BLOCK 4
#define RESULT 2 0

/* declare the communications used */
DEFINE_Gather_Vect(float,5,4,20)
DEFINE Shift(float)

/* program proper begins*/
inline float f(float 1, float c, float r){

return ((1/2.Of + c + r/2.Of)/2.Of);
}

float [] oneSeqlter(float bl,float br, float [] vect){
result = with (. <= i <= .) {

if (i[[0]] > 0) {1 = vect[i-1];} else {1 = bl;}

A .l Wave Equation 171

c = vect [i] ;
if (i [[0]] < BLOCK - 1) {r = vect[i + 1] ;} else {r = br;}
element = f(l,c,r);

} genarray([BLOCK],element);

return (result) ;
}

float [] singleWaveEq(int n, float b l , float br, float [] bv) {
b = size () ;
comm = currentComm();
loopcount = n;
bvect = bv;
while (loopcount > 0){

Idata = bvect[[BLOCK-1]] ;
rdata = bvect[[0]]; /* bounds fiddling here */
IdataA = Shift_float(false,1,1,comm,Idata);
rdataA = Shift_float(false,-1,1,comm,rdata);
i = rank();
if (i > 1) {1 = IdataA;} else {1 = bl;}
if (i < b) {r = rdataA;} else {r = br;}
result = oneSeqlter(1,r,bvect);
bvect = result;
loopcount--;

}
vect = bvect;
return (vect);

}

void seqHarness(){
sz = size () ;
iterations = 20;
boundsLeft = 100.Of;
boundsRight = O.Of;
bvect = with (. <= ix <= .) {
} genarray([BLOCK], 50.0f);
r = singleWaveEq(iterations,boundsLeft,boundsRight,bvect);
grp = currentGroup();
comm = communicator(grp);

rA = Gather_Vect_float_5_4(1,comm,r);

if (rank() = =1) {
print ("result11) ;
print(rA);

}
}

int m a i n (){
seqHarness();
Mpi_Finalize();
return(0) ,-

}

A .l Wave Equation 172

A. 1.4 Runlogs

WaveEquation> main
Specification version
result
{ 1 := 8 7 . 7 6 1 4 , 2 := 7 6 . 6 3 5 5 , 3 : = 6 7 . 4 4 4 4 , 4 : = 6 0 . 5 5 1 2 ,
5 : = 5 5 . 8 6 3 7 , 6 : = 5 2 . 9 7 9 2 , 7 : = 5 1 . 3 7 6 4 , 8 : = 5 0 . 5 7 4 1 ,
9 : = 5 0 . 2 1 0 6 , 1 0 : = 5 0 . 0 5 1 , 1 1 : = 4 9 . 9 4 9 , 1 2 : = 4 9 . 7 8 9 4 ,
13 : = 4 9 . 4 2 5 9 , 1 4 : = 4 8 . 6 2 3 6 , 1 5 : = 4 7 . 0 2 0 8 , 1 6 : = 4 4 . 1 3 6 2 ,
1 7 : = 3 9 . 4 4 8 8 , 1 8 : = 3 2 . 5 5 5 6 , 1 9 : = 2 3 . 3 6 4 5 , 2 0 : = 1 2 . 2 3 8 6 , }

RunLog of Execution

Single Language : True
Language : Sequential No. 1.0
Blocks in :

Blockwise version
result
{1 = 87.7614, 2 = 76.6355, 3 := 67.4444, 4 := 60.5512, }
{1 = 55.8637, 2 = 52.9792, 3 := 51.3764, 4 := 50.5741, }
{1 = 50.2106, 2 = 50.051, 3 = 49.949, 4 : 49.7894, }
{1 = 49.4259, 2 = 48.6236, 3 := 47.0208, 4 := 44.1362, }
{1 = 39.4488, 2 = 32.5556, 3 := 23.3645, 4 := 12.2386, }

RunLog of Execution

Single Language : True
Language : Processor Limited Parallel Machine No. 3.0
Blocks in :

% mpirun -np 5 WaveEquation

resultDimension: 2
Shape : < 5, 4>
87.761436 76.635468 67.444443 60.551178
55.863747 52.979153 51.376411 50.574120
50.210587 50.050983 49.949020 49.789413
49.425880 48.623596 47.020847 44.136246
39.448818 32.555553 23.364536 12.238565

A.2 Maximum Segment Sum 173

A.2 Maximum Segment Sum

A.2.1 PEDL Codes

V a n illa H a s k e ll S p ec ifica tion

mss :: [Int] —> Int
mss x = let

s = scanh (+) x
m = scanrl (max) s
b = zipWith3 (\m i si xi —> mi - si + xi) m s x
mss = fo ld ii max b
in mss

P E D L S p ec ifica tion

specMss :: Vector Int —> SpecificationProg m Int
specMss x = do

s <— scanlArrl sumOp x
m <— scanrArrl maxOp s
b <— mod3Arr (\m i si xi —> return (mi - si + xi)) m s x
mss foldArrl maxOp b
return mss

specHarness :: SpecificationProg m ()
specHarness = do

a <— genArr 6 (\ i —> case i of
1 —> return (2 ::lnt)
2 —> return (- 4)
3 —> return 2
4 —> return (- 1)
5 —> return 6
6 -> return (- 3)
) - PEDL needs syntax for array declaration,

printout a
r 4- specMss a
printout r

In d e p e n d e n t Stage

independentHarness :: IndependentProg m (Dval ())
independentHarness = do

a <— parallel $ do
i <— rank
case i of

1 ->• return (2 ::lnt)
2 —► return (- 4)
3 —» return 2
4 —> return (- 1)
5 —> return 6
6 —> return (- 3)

one $ nulLoop . for (1, (< 6),succ) $ \ i —> do
v <— a ‘get* i
printout v

A.2 Maximum Segment Sum 174

r <— independentMss a
one $ do v <— r ‘get‘ 1

printout v

independentMss :: Dval Int —> IndependentProg m (Dval Int)
independentMss x = do

s <— scanlDvaM sumOp x
m <— scanrDvaM maxOp s
b <— parallel $ do

mi <— use m
si <— use s
xi <— use x
return (mi - si + xi)

mss <— foldDvah maxOp b
return mss

scanlDval1,scanrDval1,foldDvah :: (Storable a,NotRedistribution I) =>•
(a -► a -> Action (I (Computation (Processor Parallel)) s m) a)
Dval a —► Action (I Coordination s m) (Dval a)

scanlDvaM op dv = do
n <— global size
rs <— parallel rank
final . forAccum (0, (< ceiling (log (fromlnt n))),succ) dv $

\ j b —» parallel $ do
i <— use rs
bi <— use b
if (i > 2~j) then do

xi <— b ‘get1 (i—2~j)
xi ‘op‘ bi

else
return bi

scanrDvaM = ...
foldDvah = ...

Redistribution Stage

redistHarness :: RedistributionProg m (Dval ())
redistHarness = do

a <— parallel $ do
i <— rank
case i of

1 -> return (2::lnt)
2 —► return (- 4)
3 —> return 2
4 —> return (- 1)
5 —> return 6
6 —> return (- 3)

grp <— global currentGroup
comm <— communicator grp
a' <— gather 1 comm a
on 1 $ do vect * - use a'

printout vect
r <- redistMss a
on 1 $ do v <— use r

printout v

A.2 Maximum Segment Sum 175

redistMss :: Dval Int —> RedistributionProg m (Dval Int)
redistMss x = do

grp <— global currentGroup
comm <— communicator grp
s <— redistScanlDvaM sumOp comm x
m <— redistScanrDvah maxOp comm s
b <— parallel $ do

mi <— use m
si <— use s
xi <— use x
return (mi - si + xi)

mss redistFoldDvah maxOp comm b
return mss

redistScanlDvaM, redistScanrDvah, redistFoldDvah
:: (Storable a,Sendable a) =>

(a —> a —» Action (Redistribution (Computation (Processor Parallel)) s m) a)
—> Communicator —> Dval a
- * Action (Redistribution Coordination s m) (Dval a)

redistScanlDvah op comm dv = do
n global size
rs <— parallel rank
final . forAccum (0, (< ceiling (log (fromlnt n))),succ) dv$

\ j b —> do
x * - shift NonPeriodic Inc (2 'j) comm b
parallel $ do

i <— use rs
bi <— use b
if (i > 2~j) then do

xi <— use x
xi ‘op‘ bi

else
return bi

redistScanrDvah = ...
redistFoldDvah = ...

Intermediate Stage

intermediateHarness :: IntermediateProg s (())
intermediateHarness = do

a <— do i <— rank
case i of

1 -> return (2::lnt)
2 —> return (- 4)
3 return 2
4 —> return (- 1)
5 —> return 6
6 —> return (- 3)

grr <— currentGroup
comm <— communicatorRQ grp
a' <— gatherRQ 1 comm a
sOn 1 $ do printout a'
r «- intermediateMss a
sOn 1 $ do printout r

A.2 Maximum Segment Sum 176

intermediateMss :: Int —► IntermediateProg m Int
intermediateMss x = do

grp <— currentGroup
comm <— communicatorRQ comm
s <— intermediateScanh sumOp comm x
m * - intermediateScanrl maxOp comm s
b <— return (m - s + x)
mss <— intermediateFoldl maxOp comm b
return mss

intermediateScanll, intermediateScanrl, intermediateFoldl
:: (Storable a,Sendable a) =>

(a —> a —» Action (Intermediate (Computation (Processor ())) s m) a)
—> Communicator -+ a
—> Action (Intermediate (Computation (Processor ())) s m) a

intermediateScanll op comm dv = do
n * - size
i <— rank
final . forAccum (0, (< ceiling (log (fromlnt n))), succ) dv $

\ j bi —> do
xi <— shiftRQ NonPeriodic Inc (2~j) comm bi
if (i > 2~j) then

xi ‘op‘ bi
else

return bi

intermediateScanrl = ...
intermediateFoldl = ...

A.2.2 Simplified Version

intermediateScanll comm dv = do
n size
i <— rank
result <—final . forAccum (0, (< ceiling (log (fromlnt n))), succ) dv $
\ j bi -+ do

xi <— shiftRQ NonPeriodic Inc (2"j) comm bi
if (i > 2"j) then

return (xi + bi)
else

return bi
return result

intermediateScanrl comm dv = ...
intermediateFoldl comm dv = ...

intermediateMss :: Int —> IntermediateProg m Int
intermediateMss x = do

grp <— currentGroup
comm <— communicatorRQ grp

A.2 Maximum Segment Sum 177

s <— intermediateScanll comm x
m <— intermediateScanrl comm s
b <— return (m - s + x)
mss <— intermediateFoldl comm b
return mss

intermediateHarness :: IntermediateProg s (())
intermediateHarness = do

i <— rank
a <— if (i= = 1) then

return (2::lnt)
else if (i = = 2) then

return (- 4)
else if (i= = 3) then

return 2
else if (i= = 4) then

return (- 1)
else if (i= = 5) then

return 6
else {-if (i= =6) then-}

return (- 3)
grp <— curentGroup
comm <— communicatorRQ grp
a' <— gatherRQ 1 comm a
if i = = 1 then printout a'

else return undefined
if j = = 1 then putOut “ — ”

else return undefined
r <— intermediateMss a
if j = = 1 then printout r

else return undefined
return ()

main = do runlntermediate 6 intermediateHarness
return ()

A.2.3 SAC Code

/* SAC+MPI Mss Program */

/* standard headers */
import StdIO : all;
import H p : all;
import Math : all;
#include "hp.h"

/* declare the comms we use */
DEFINE_Gather(int,6)
DEFINE_Shift(int)

/* integer versions of the math functions */
int pow(int i ,int j){

return (toi(pow(tof(i),tof(j))));

A.2 Maximum Segment Sum 178

}

float log(int i) {
return (log(tof(i)));

}

int ceiling(float f){
return(toi(ceil(f)));

}

/* The program proper */
int intermediateScanll(Mpi_Comm &comm, int dv){

n = size () ;
i = rank();

bi = dv;
for (j = 0;j < ceiling(log(n)); j++){

xi = Shift_int(false,1,p o w (2,j),comm,bi);
if (i > p o w (2,j))

{bi = xi + b i ;}
else

{bi = bi;}
}
result = bi;
return(result);

}

int intermediateScanrl(Mpi_Comm &comm, int dv){
n = size () ;
i = rank();

bi = dv;
for (j = 0; j < ceiling(log(n)); j+ +){

xi = Shift_int(false,-l,pow(2,j),comm,bi);
if (i < (n+1) - p o w (2,j))

{bi = max(xi,bi);}
else

{bi = b i ,-}
}
result = bi;
return(result);

}

int intermediateFoldl(Mpi_Comm &comm,int dv){
n = size () ;
i = rank();

bi =dv;
for (j = 0; j < ceiling(log(n)); j+ +){

xi = Shift_int(false,-1,p o w (2,j),comm,bi);
if (i < (n+1) - pow(2,j) && i % pow(2,j+l) == 1)

{bi = max(xi,bi);}
else

{bi = bi;}
}
result = b i ;
return(result) ;

A.2 Maximum Segment Sum 179

}

int intermediateMss(int x) {
comm = currentComm();
s = intermediateScanll(comm,x);
m = intermediateScanrl(comm,s);
b = m - s + x;
mss = intermediateFoldl(comm,b);
return(mss);

}

v o i d i n t e r m e d i a t e H a r n e s s () {
i = r a n k () ;
i f (i = = l) { a = 2 ; }
e l s e i f (i == 2) { a = -4;}
e l s e i f (i == 3) { a = 3 ; }
e l s e i f (i == 4) { a = -1;}
e l s e i f (i == 5) { a = 6 ; }
e l s e { a = - 3 ; }

grp = currentGroup();
comm = communicator(grp);
aPrime = Gather_int(1,comm,a);
if (i==l){print(aPrime);}
if (i==l){print("---\n");}
r = intermediateMss(a);
if (i==l){print(r);}

}

int m a i n (){
intermediateHarness();
Mpi_Finalize();
return (0);

}

A.2.4 Runlogs

Mss> main

Specification Stage

{ l : = 2 , 2 : = - 4 , 3 : = 2 , 4 : = - 1 , 5 : = 6 , 6 : = - 3 , }

% mpirun -np 6 Mss

Dimension: 1
Shape : < 6>
< 2 - 4 3 - 1 6 - 3 >

Appendix B

Bibliography

Each citation in this bibliography is annotated by the page numbers in this thesis where
the publication is cited.

Abelson, H. and Sussman, G. J. (1984). Structure and Interpretation o f Computer Pro­
grams. MIT Press, (page 97)

Arvind and Nikhil, R. (1989). I-structures: Data structures for parallel computing. ACM
Transactions on Programming Languages and Systems, 11(4):598-632. (page 22)

Ashcroft, E. A. and Wadge, W. W. (1985). Lucid, the data-flow programming language.
Academic Press, New York, (page 22)

Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., and Vanneschi, M. (1995). P31: A
structured high level programming language and its structured support. Concurren­
cy: Practice and Experience, 7(3):225-255. (page 20)

Bentley, J. (1984). Programming pearls: Algorithm design techniques. Communications
o f the ACM, 27(0): 865-871. (page 133)

Bentley, J. (1986). Little languages. Communications o f the ACM, 29(8):711-21.
(page 102)

Bird, R. S. (1987). A calculus of functions for program derivation. Technical Monograph
PRG-64, Oxford University Computing Laboratory, (page 17)

Bird, R. S. and de Moor, O. (1996). Algebra o f Programming. Prentice Hall,
(page 17, 26)

Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. (1999). Lava: Hardware design in
Haskell. SIGPLANNotices, 34(1): 174-184. (page 103)

Blelloch, G. E. (1992). NESL: A nested data-parallel language. Technical Report CS-
92-103, Carnegie Mellon University, School of Computer Science, (page 15)

Blelloch, G. E., Chatteijee, S., Hardwick, J. C., Sipelstein, J., and Zagha, M. (1994).
Implementation of a portable nested data-parallel language. Journal o f Parallel and
Distributed Computing, 21(1). (page 16)

181

Brus, T., van Eekelen, M. C. J. D., van Leer, M. O., Plasmeijer, M. J., and Barendregt,
H. P. (1987). Clean: A language for functional graph rewriting. In Kahn, G., edi­
tor, Proceeding o f the Third International Conference on Functional Programming
Languages and Computer Architecture, volume 274 of Lecture Notes in Computer
Science, pages 364-384. Springer-Verlag. (page 61)

Burstall, R. M. and Darlington, J. (1977). A transformation system for developing recur­
sive programs. Journal o f the ACM, 24(l):44-67. (page 26)

Carlsson, M. and Hallgren, T. (1993). FUDGETS: A graphical user interface in a lazy
functional language. In Proceedings o f the Conference on Functional Programming
Languages and Computer Architecture, pages 321-330, New York, NY, USA. ACM.
(page 98)

Church, A. (1941). The Calculi o f Lambda-Conversion. Princeton University Press,
(page 23)

Cole, M. (1989). Algorithmic Skeletons: Structured management o f parallel computa­
tion. PhD thesis, Pitman / MIT. (page 20)

Danelutto, M., Di Meglio, R., Orlando, S., Pelagatti, S., and Vanneschi, M. (1992). A
methodology for the development and the support of massively parallel programs.
In Future Generation Computer Systems. North Holland, (page 20, 20)

Darlington, J., Field, A. J., Harrison, P. G., Harper, D., Jouret, G. K., Kelly, P. J., Seph-
ton, K. M., and Sharp, D. W. (1991). Structured Parallel Functional Programming.
In 3rd International Workshop on the Parallel Implementation o f Functional Lan­
guages, pages 31-52, Southampton, UK, June 5-7. Technical Report CSTR 91-07,
University of Southampton, (page 21)

Darlington, J., Field, A. J., Harrison, P. G., Kelly, P. H. J., Sharp, D. W. N., Wu, Q., and
While, R. L. (1993). Parallel programming using skeleton functions. In PARLE ’93:
Parallel Architectures & Languages Europe, Lecture Notes in Computer Science,
pages 146—160. Springer-Verlag. <http://theory.doc.ic.ac.uk/tfm/papers/
KellyP/SkeletonsParle93.ps.Z>. (page 21)

Elliott, C. and Hudak, P. (1997). Functional reactive animation. In Proceedings o f the
1997 ACM SIGPLANInternational Conference on Functional Programming, pages
263-273, Amsterdam, The Netherlands. ACM. (page 103)

Finne, S., Leijen, D., Meijer, E., and Peyton Jones, S. (1999). Calling Hell from Heaven
and Heaven from Hell. In Proceedings o f the Fourth ACM SIGPLAN International
Conference on Functional Programming (ICFP’99), volume 34 of SIGPLAN No­
tices, pages 114-125. (page 111)

Finne, S. and Peyton Jones, S. (1995). Composing Haggis. In Proceedings
o f the Fifth Eurographics Workshop on Programming Paradigms in Computer
Graphics, Maastrict, Netherlands, <http://www.dcs.gla.ac.uk/~sof/haggis/
composing-haggis.ps.gz>. (page 101)

http://theory.doc.ic.ac.uk/tfm/papers/%e2%80%a8KellyP/SkeletonsParle93.ps.Z
http://theory.doc.ic.ac.uk/tfm/papers/%e2%80%a8KellyP/SkeletonsParle93.ps.Z
http://www.dcs.gla.ac.uk/~sof/haggis/%e2%80%a8composing-haggis.ps.gz
http://www.dcs.gla.ac.uk/~sof/haggis/%e2%80%a8composing-haggis.ps.gz

182

Fissgus, U., Rauber, T., and Riinger, G. (1999). A framework for generating task parallel
programs. In Proceedings o f Frontiers ’99: The 7 th Symposium on the Frontiers o f
Massively Parallel Computation, pages 72-80, Annapolis, Maryland. IEEE Com­
puter Society, (page 32)

Fitzpatrick, S., Harmer, T. J., and Boyle, J. M. (1994). Deriving efficient parallel im­
plementations of algorithms operating on general sparse matrices using automatic
program transformation. In Buchberger, B. and Volkert, J., editors, Parallel Pro­
cessing: CONPAR 94-VAPP VI, pages 148-159. Department of Computer Science,
Queen’s University of Belfast, Springer-Verlag. (page 27)

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. (1994).
PVM 3 Users Guide and Reference manual. Oak Ridge National Laboratory, Oak
Ridge, Tennessee, <http://www.eece.ksu.edu/pvm3/ug.ps>. (page 13)

Gill, A. (1999). A Haskell HTML combinator library, <http://www.cse.ogi.edu/
~andy/html / intro . htm>. (page 98)

Goodman, J. and O’Donnell, J. (1999). Nondeterminism in the APM methodology. In
Proceedings o f First Scottish Functional Programming Workshop. < h t t p : //www.
d c s .g l a .a c .uk/~joy/research/nondet.p s .gz>. (page 34)

Goodman, J., O’Donnell, J., and Riinger, G. (1998). Refinement transformation using
Abstract Parallel Machines. In Glasgow Workshop on Functional Programming
1998, Glasgow University, Scotland. Revised version at <http://www.dcs.gia.
a c .uk/~joy/research/maptri.ps>. (page 34, 104)

Gorlatch, S. (1996). Stages and transformations in parallel programming. In Abstract
Machine Models, pages 147—161. IOS Press. <http: //brahms. fmi.uni -passau.
de/cl/papers/GorPel99a.ps.gz>. (page 27)

Gorlatch, S. (1998). Abstraction and performance in the design of parallel programs.
Technical Report MIP-9802, University of Passau, Germany, (page 27)

Gorlatch, S. and Pelagatti, S. (1999). A transformational framework for skeletal pro­
grams: Overview and case study. In Rohlim, J. et al., editors, Parallel and Distribut­
ed Processing. IPPS/SPDP ’99 Workshops Proceedings, Lecture Notes in Comput­
er Science 1586, pages 123—137. <http://brahms.fmi.uni-passau.de/pub/
local/parallel/papers/Gor96 a .p s .Z>. (page 28)

Grelck, C. (1998). Shared memory multiprocessor support for SAC. In Conference on
Implementation o f Functional Languages (IFL’98), Lecture Notes in Computer Sci­
ence. University College, London, Springer-Verlag. <http://www.informatik.
uni -kiel.de/~sacbase/papers/mt-support -london-98.p s .gz>. (page 154)

Grelck, C. and Scholz, S.-B. (1995). Classes and objects as basis for I/O in SAC. In Con­
ference on Implementation o f Functional Languages (IFL’95). Chalmers Universi­
ty of Technology. <http://www.informatik.uni-kiel.de/~sacbase/papers/
sac-classes-obj ects-bastad-95.p s .gz>. (page 148)

http://www.eece.ksu.edu/pvm3/ug.ps
http://www.cse.ogi.edu/%e2%80%a8~andy/html%20/intro%20.%20htm
http://www.cse.ogi.edu/%e2%80%a8~andy/html%20/intro%20.%20htm
http://www.dcs.gia.%e2%80%a8ac.uk/~joy/research/maptri.ps
http://www.dcs.gia.%e2%80%a8ac.uk/~joy/research/maptri.ps
http://brahms.fmi.uni-passau.de/pub/%e2%80%a8local/parallel/papers/Gor96a.ps.Z
http://brahms.fmi.uni-passau.de/pub/%e2%80%a8local/parallel/papers/Gor96a.ps.Z
http://www.informatik.%e2%80%a8uni%20-kiel.de/~sacbase/papers/mt-support%20-london-98.ps.gz
http://www.informatik.%e2%80%a8uni%20-kiel.de/~sacbase/papers/mt-support%20-london-98.ps.gz
http://www.informatik.uni-kiel.de/~sacbase/papers/%e2%80%a8sac-classes-obj%20ects-bastad-95.ps.gz
http://www.informatik.uni-kiel.de/~sacbase/papers/%e2%80%a8sac-classes-obj%20ects-bastad-95.ps.gz

183

Grimshaw, A. S. (1993). Easy-to-Use Object-Oriented Parallel Processing With
Mentat. IEEE Computer, 26(5):39—51. <ftp://ftp.cs.virginia.edu/pub/
techreports/CS-92-32.ps.Z>. (page 22)

Grimshaw, A. S., Loyot, E. C., and Weissman, J. B. (1991). Mentat programming
language (MPL) reference manual. Technical Report CS-91-32, Department of
Computer Science, University of Virginia. <f t p : //ftp. cs .Virginia. edu/pub/
techreports/CS-91-3 2.p s .Z>. (page 22)

Hammond, K. (1994). Parallel functional programming: An introduction. In Hong, H.,
editor, PASCO ’94-International Symposium on Parallel Symbolic Computation, vol­
ume 5 o f Lecture Notes in Computer Science, pages 181-193, Hagenberg/Linz, Aus­
tria, 26-28 September. RISC-Linz, World Scientific, <http://www.dcs.st-and.
a c .uk/~kh/papers/pasco94/pasco94.html>. (page 23)

Hammond, K., Loidl, H. W., and Partridge, A. (1994). Improving granularity in paral­
lel functional programs: A graphical winnowing system for Haskell. In Glasgow
Workshop on Functional Programming, Workshops in Computing, pages 111-126,
Ayr, Scotland, September 12-14. Springer-Verlag. <ftp://ftp.dcs.gla.ac.uk/
pub/glasgow-fp/authors/Andrew_Partridge/gran.p s .Z>. (page 24, 121)

Hammond, K. and Michaelson, G., editors (1999). Research Directions in Parallel Func­
tional Programming. Springer-Verlag. (page 23)

Herath, J., Yuba, T., and Saito, N. (1987). Dataflow computing. In Parallel Algorithms
and Architectures, pages 25-36. Springer-Verlag. Lecture Notes in Computer Sci­
ence 269. (page 22)

HPF Forum (1993). High Performance Fortran Language Specification. High Per­
formance Fortran Forum, Rice University, Houston, Texas, 1.1 edition. < h t t p :

/ / www. e r e . m s s t a t e . e d u /h p f f /h p f - r e p o r t - p s / h p f - v l l .p s >. (page 14)

Hudak, P. (1986). Parafunctional programming. IEEE Computer, 19:60-71. (page 23)

Hudak, P. (1998). Modular domain specific languages and tools. In Devanbu, P. and
Poulin, J., editors, Proceedings: Fifth International Conference on Software Reuse,
pages 134-142. IEEE Computer Society Press, (page 102)

Hudak, P. and Jones, M. P. (1994). Haskell vs. Ada vs. C++ vs Awk vs . . . an experiment
in software prototyping productivity. Technical report, Yale University. <ftp://
nebula.c s .yale.edu/pub/yale-fp/papers/NSWC/jfp.ps>. (page 103)

Hudak, P., Peterson, J., and Fasel, J. (1999). A gentle introduction to Haskell 98. < h t t p :
//w w w .haskell.org/tutorial/haskell-98-tutorial.pdf>. (page 99)

Hudak, P. and Sundaresh, R. S. (1989). On the expressiveness of purely functional I/O
systems. Technical report, Yale University, (page 100)

Huet, G. P. and Lang, B. (1978). Proving and applying program transformations ex­
pressed with second-order patterns. Acta Informatica, 11(1):31-55. (page 165)

ftp://ftp.cs.virginia.edu/pub/%e2%80%a8techreports/CS-92-32.ps.Z
ftp://ftp.cs.virginia.edu/pub/%e2%80%a8techreports/CS-92-32.ps.Z
http://www.dcs.st-and.%e2%80%a8ac.uk/~kh/papers/pasco94/pasco94.html
http://www.dcs.st-and.%e2%80%a8ac.uk/~kh/papers/pasco94/pasco94.html
ftp://ftp.dcs.gla.ac.uk/%e2%80%a8pub/glasgow-fp/authors/Andrew_Partridge/gran.ps.Z
ftp://ftp.dcs.gla.ac.uk/%e2%80%a8pub/glasgow-fp/authors/Andrew_Partridge/gran.ps.Z
http://www.ere.msstate.edu/hpff/hpf-report-ps/hpf-vll.ps
ftp://%e2%80%a8nebula.cs.yale.edu/pub/yale-fp/papers/NSWC/jfp.ps
ftp://%e2%80%a8nebula.cs.yale.edu/pub/yale-fp/papers/NSWC/jfp.ps
http://www.haskell.org/tutorial/haskell-98-tutorial.pdf

184

Hughes, J. (1995). The design of a pretty-printing library. In Jeuring, J. and Meijer, E.,
editors, Advanced Functional Programming, volume 925 of Lecture Notes in Com­
puter Science. Springer-Verlag. <http : //www. cs . chalmers . se/~rjmh/Papers/
pretty.ps>. (page 98)

Hutton, G. (1990). Parsing using combinators. In Davis, K. and Hughes, R. J. M.,
editors, Functional Programming: Proceedings o f the 1989 Glasgow Workshop, 21-
23 August 1989, pages 353-370, London, UK. Springer-Verlag. British Computer
Society Workshops in Computing Series, (page 98)

Hutton, G. (1992). Higher-order functions for parsing. Journal o f Functional Program­
ming, 2(3):323-343. (page 98)

Hutton, G. and Meijer, E. (1998). Monadic parsing in haskell. Journal o f Functional
Programming, 8(4):437-444. (page 101)

Jay, C. and Steckler, P. (1997). The Functional Imperative: Shape! Technical Re­
port 06, University of Technology, Sydney, <http://www-staff.socs.uts.edu.
au/~cbj/Publications/functional_imperative.ps.gz>. (page 16)

Jay, C. B. (1995). A semantics for shape. Science o f Computer Programming,
25:251—283. <http://www-staff.socs.ut s .edu.au/~cbj/Publications/
shape_semantics.ps.gz>. (page 17)

Jay, C. B. (1998). The FISh language definition. <http: //www-staff. socs.u t s . edu.
au/~cbj/Publications/fishdef.ps.gz>. (page 16)

Jay, C. B. (2000). Costing parallel programs as a function of shapes. Science o f
Computer Programming, in press. <http : / /www- staff. socs. u t s . edu. au/~cbj /
Publications/costing_parallel_scp.p s .gz>. (page 17)

Kelly, P. H. J. (1989). Functional Programming fo r Loosely-Coupled Multiprocessors.
Research Monographs in Parallel and Distributed Computing. MIT Press, (page 23)

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. In Ak§it, M. and Matsuoka, S.,
editors, ECOOP ’97 — Object-Oriented Programming 11th European Conference,
Jyvaskyla, Finland, volume 1241 o f Lecture Notes in Computer Science, pages 220-
242. Springer-Verlag. (page 30)

King, D. J. and Wadler, P. (1993). Combining monads. Technical report, Univer­
sity of Glasgow, <ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/papers/
combining-monads.ps.Z>. (page 102)

Knee, S. (1994). Program development and performance prediction on BSP machines
using OPAL. Technical Report PRG-TR-18-94, Oxford University Computing Lab­
oratory. (page 18)

Leijen, D. and Meijer, E. (2000). Domain-specific embedded compilers. SIGPLAN
Notices, 35(1): 109-122. (page 101, 108, 160)

http://www-staff.socs.uts.edu.%e2%80%a8au/~cbj/Publications/functional_imperative.ps.gz
http://www-staff.socs.uts.edu.%e2%80%a8au/~cbj/Publications/functional_imperative.ps.gz
http://www-staff.socs.uts.edu.au/~cbj/Publications/%e2%80%a8shape_semantics.ps.gz
http://www-staff.socs.uts.edu.au/~cbj/Publications/%e2%80%a8shape_semantics.ps.gz
ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/papers/%e2%80%a8combining-monads.ps.Z
ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/papers/%e2%80%a8combining-monads.ps.Z

185

Liang, S., Hudak, P., and Jones, M. (1995). Monad transformers and modular interpreter-
s. In Conference Record o f POPL 95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles o f Programming Languages, pages 333-343. ACM SIGACT and SIG­
PLAN, ACM. (page 102)

Loidl, H.-W., Morgan, R., Trinder, P., and Poria, S. (1998). Parallelising a large function­
al program or: Keeping LOLITA busy. Lecture Notes in Computer Science, 1467.
(page 24)

McColl, W. F. and Miller, Q. (1995). The GPL language: Reference manual. Techni­
cal Report ESPRIT GEPPCOM Project, Oxford University Computing Laboratory,
(page 18)

McGraw, J., Skedzielewski, S., Allan, S., Oldehoeft, R., Glauert, J., Kirkham, C., Noyce,
B., and Thomas, R. (1985). SISAL — Streams and Iteration in a Single Assignmen-
t Language, Language Reference Manual, Version 1.2. Technical Report M-146,
Lawrence Livermore National Laboratory, University of California, (page 22)

McGraw, J. R. (1993). Parallel functional programming in Sisal: Fictions, facts, and fu­
ture. In Advanced Workshop, Programming Tools fo r Parallel Machines, (page 22)

Meijer, E. and Jeuring, J. (1995). Merging monads and folds for functional program­
ming. In Jeuring, J. and Meijer, E., editors, Tutorial Text 1st Int. Spring School on
Advanced Functional Programming Techniques, Bastad, Sweden, 24-30 May 1995,
volume 925 of Lecture Notes in Computer Science, pages 228-266. Springer-Verlag,
Berlin, <http://www.cs.ruu.nl/~erik/mmfffp.ps>. (page 102)

Miller, R. (1993). A library for Bulk Synchronous Parallel programming. In Proceed­
ings o f the BSC Parallel Processing Specialist Group workshop on General Purpose
Parallel Computing, pages 100-108. (page 18)

Milner, R. (1983). A proposal for Standard ML. Polymorphism: The ML/LCF/Hope
Newsletter, 1(3). Also appeared in the Conference Record of the ACM Symposium
on Lisp and Functional Programming, Austin, Texas, August 1984, pages 184-197
and as Tech. Report CSR-157-83, University of Edinburgh, Edinburgh, Scotland,
1983. (page 98)

Mitra, P., Payne, D., Shuler, L., van de Geijn, R., and Watts, J. (1995). Fast collec­
tive communication libraries, please. Technical Report CS-TR-95-22, University of
Texas, Austin, (page 53)

MPI Forum (1995). MPI: A Message Passing Interface Standard. Message Passing
Interface Forum, University of Tennessee, (page 5, 13)

O’Donnell, J. (1987). Hardware description with recursion equations. In Proceed­
ings o f the IFIP 8th International Symposium on Computer Hardware Descrip­
tion Languages and their Applications, pages 363-382, Amsterdam. North-Holland.
(page 163)

O ’Donnell, J. (2000). The collective and individual semantics in functional SPMD
programming. In Mohnen, M. and Koopman, P., editors, Proceedings o f the

http://www.cs.ruu.nl/~erik/mmfffp.ps

186

12th International Workshop on Implementation o f Functional Languages, number
2000-7 in Aachener Informatik-Berichte, pages 5-13, RWTH Aachen, Germany,
(page 80, 145)

O ’Donnell, J., Rauber, T., and Riinger, G. (2000). Cost hierarchies for Abstract Parallel
Machines. In 13th International Workshop on Languages and Compilers fo r Parallel
Computing, Draft Proceedings. Springer-Verlag. (page 88)

O’Donnell, J. and Riinger, G. (1995). A case study in parallel program derivation: the
heat equation algorithm. In Glasgow Workshop on Functional Programming 1994,
pages 167-183. Springer-Verlag Workshops in Computation, <http://www.dcs.
g l a .ac.uk/~jtod/publications/heatEqu-FPG94.ps.gz>. (page 104)

O’Donnell, J. and Riinger, G. (1995). An explanatory formal derivation o f a parallel
binary addition circuit. Technical Report TR-1995-19, Department of Computing
Science, University of Glassgow. (page 34)

O’Donnell, J. and Riinger, G. (1997a). A coordination level functional implementation
of the hierarchical radiosity algorithm. In Glasgow Workshop on Functional Pro­
gramming 1997, Glasgow University, Scotland, (page 104)

O’Donnell, J. and Riinger, G. (1997b). A methodology for deriving parallel programs
with a family of parallel abstract machines. In Third International Euro-Par Confer­
ence, volume 1300 o f Lecture Notes in Computer Science, pages 662-669. Springer-
Verlag. <http://www.dcs.g l a .a c .uk/~j tod/publications/apm-EuroPar97 .
ps.gz>. (page 7, 32, 58, 104)

O ’Donnell, J. and Riinger, G. (2000). Abstract parallel machines. Computers and
Artificial Intelligence (continued as Computing and Informatics), 19(2): 105—129.
(page 32)

Pacheo, R S. (1996). Parallel Programming with MPI. Morgan Kaufmann, San Francis­
co, California, (page 40)

Peterson, J., Hudak, P., and Elliott, C. (1999). Lambda in motion: Controlling robots
with Haskell. Lecture Notes in Computer Science, 1551:91-105. (page 103)

Peyton Jones, S. (1996). Compiling Haskell by program transformation: A report from
the trenches. In European Symposium on Programming (ESOP’96), volume 1058
of Lecture Notes in Computer Science. Springer-Verlag. (page 165)

Peyton Jones, S. (1999). Report on the programming language Haskell 98, a non-strict
purely functional language. Technical Report YALEU/DCS/RR-1106, Department
of Computer Science, Yale University, (page 98, 101)

Peyton Jones, S., Nordin, T., and Oliva, O. (1998). C — — : A portable assembly
language. Lecture Notes in Computer Science, 1467. (page 154)

Peyton Jones, S. L. (1987). The Implementation o f Functional Programming Languages.
Prentice-Hall. (page 23)

Pfister, G. (1998). In Search o f Clusters. Prentice Hall, second edition, (page 18)

http://www.dcs.%e2%80%a8gla.ac.uk/~jtod/publications/heatEqu-FPG94.ps.gz
http://www.dcs.%e2%80%a8gla.ac.uk/~jtod/publications/heatEqu-FPG94.ps.gz
http://www.dcs.gla.ac.uk/~j%20tod/publications/apm-EuroPar97%20.%e2%80%a8ps.gz
http://www.dcs.gla.ac.uk/~j%20tod/publications/apm-EuroPar97%20.%e2%80%a8ps.gz

187

Pritchard, D. (1988). Mathmatical models of distributing computation. In Muntean, T.,
editor, Parallel Programming o f Transputer Based Machines, pages 25-36, Amster­
dam. IOS Press, (page 20)

Pritchard, D. J., Askew, C. R., Carpenter, D. B., Glendinning, I., Hey, A. J. G., and
Nicole, D. A. (1987). Practical parallelism using transputer arrays. In Proceedings o f
the Conference on Parallel Architectures and Languages Europe (PARLE). Volume
I: Parallel Architectures, volume 258 of Lecture Notes in Computer Science, pages
278-294, Eindhoven, The Netherlands. Springer, (page 20)

Rauber, T. and Riinger, G. (1995). Parallel numerical algorithms with data distribu­
tion types. Technical Report 07-95, Computer Science Department, University of
Saabriicken, Germany, (page 40, 162)

Rauber, T. and Riinger, G. (1996a). The compiler TwoL for the design of parallel imple­
mentations. In Proceedings o f the 1996 Conference on Parallel Architectures and
Compilation Techniques (PACT ’96), pages 292-301, Boston, Massachusetts. IEEE
Computer Society Press. <http://www.informatik.uni-halle.de/~rauber/
webpage/13_twoL .ps>. (page 4, 30)

Rauber, T. and Riinger, G. (1996b). Deriving structured parallel implementations
for numerical methods. Microprocessing and Microprogramming, 9(3): 181-202.
(page 5, 19, 30)

Sage, M. (2000). FranTk - a declarative GUI language for Haskell. In Proceedings
o f ACM SIGPLAN International Conference on Functional Programming (ICF-
P ’2000). to appear, (page 103)

Scholz, E. (1999). Imperative streams - A monadic combinator library for synchronous
programming. SIGPLAN Notices, 34(l):261-272. (page 101)

Scholz, S.-B. (1994). Single Assignment C - functional programming using imperative
style. In Conference on Implementation o f Functional Languages (IFL’94). Uni­
versity of East Anglia, Norwich, UK. <http://www.informatik.uni-kiel.de/
~sacbase/papers/sac-overview-norwich-94.ps.gz>. (page 42, 55, 141)

Scholz, S.-B. (1997). On programming scientific applications in SAC - A functional
language extended by a subsystem for high-level array operations. In Conference
on Implementation o f Functional Languages (IFL ’96), Lecture Notes in Computer
Science, pages 85-104. Springer-Verlag. <http://www.informatik.uni-kiei.
de/~sacbase/papers/scientific-applications-sac-bonn-96-ps.gz>.
(page 55)

Scholz, S.-B. (1998). On defining application-specific high-level array operations by
means of shape-invariant programming facilities. In Proceedings o f the APL98 In­
ternational Conference, pages 40—45. ACM-SIGAPL. <http: / /www. informatik.
uni-kiel.de/~sacbase/papers/sac-defining-array-ops-rom-9 8 .ps.gz>.
(page 55)

Skillicom, D. B. (1990). Architecture-independent parallel computation. IEEE Comput­
er, 23(12):38—50. (page 17)

http://www.informatik.uni-halle.de/~rauber/%e2%80%a8webpage/13_twoL%20.ps
http://www.informatik.uni-halle.de/~rauber/%e2%80%a8webpage/13_twoL%20.ps
http://www.informatik.uni-kiel.de/%e2%80%a8~sacbase/papers/sac-overview-norwich-94.ps.gz
http://www.informatik.uni-kiel.de/%e2%80%a8~sacbase/papers/sac-overview-norwich-94.ps.gz
http://www.informatik.uni-kiei.%e2%80%a8de/~sacbase/papers/scientific-applications-sac-bonn-96-ps.gz
http://www.informatik.uni-kiei.%e2%80%a8de/~sacbase/papers/scientific-applications-sac-bonn-96-ps.gz

188

Skillicom, D. B. (1991). Models for practical parallel computation. International Journal
o f Parallel Programming, 20(2): 133-158. (page 17)

Skillicom, D. B., Hill, J. M. D., and McColl, W. F. (1996). Questions and answers
about BSP. Technical Report 15-96, Programming Research Group, Oxford Univer­
sity Computing Laboratory. <f t p : // f t p . comlab. o x . ac . uk/pub/Packages/BSP/
papers/SkillHillMcColl_QA.ps.gz>. (page 18)

Skillicom, D. B. and Talia, D. (1998). Models and languages for parallel computa­
tion. ACM Computing Surveys, 30(2): 123—169. <http://www. acm.org : 80/pubs/
citations/journals/surveys/1998- 30-2/pl23- skill i c o m />. (page 14)

Smetsers, S., Barendsen, E., van Eekelen, M., and Plasmeijer, R. (1994). Guarantee­
ing safe destructive updates through a type system with uniqueness information for
graphs. Lecture Notes in Computer Science, 776:358-379. (page 61)

Trinder, P. W., Hammond, K., Loidl, H.-W., and Peyton Jones, S. L. (1998). Algorithm +
Strategy = Parallelism. Journal o f Functional Programming, 8(1):23—60. (page 24)

Trinder, P. W., Hammond, K., Mattson, J. S., Partridge, A. S., and Peyton Jones,
S. (1996). GUM: a portable parallel implementation of Haskell. In Pro­
ceedings o f the ACM SIGPLAN ’96 Conference on Programming Language De­
sign and Implementation, SIGPLAN Notices, pages 79-88, Philadelphia, Penn­
sylvania. <ftp://ftp.dc s .glasgow.a c .uk/pub/glasgow-fp/authors/Philip_
Trinder/gumFinal.ps.Z>. (page 24)

Tullsen, M. and Hudak, P. (1998). An intermediate meta-language for program transfor­
mation. Technical Report YALEU/DCS/RR-1154, Yale University, (page 165)

Turner, D. A. (1985). Miranda: A non-strict functional language with polymorphic types.
In Jouannaud, J.-P., editor, Functional Programming Languages and Computer Ar­
chitecture, volume 201 o f Lecture Notes in Computer Science, pages 1-16. Springer
Verlag. (page 16)

Valiant, L. G. (1989). Bulk synchronous parallel computers. Technical Report TR-08-89,
Computer Science, Harvard University, (page 18)

Valiant, L. G. (1990). A bridging model for parallel computation. Communication-
S o f the ACM, 33(8): 103—111. <http://www.acm.org/pubs/toc/Abstracts/
0 0 01-07 82/7 9181,html>. (page 162)

Wadler, P. (1990). Comprehending Monads. In LISP’90, Nice, France, pages 61-78.
ACM. (page 99)

Wadler, P. (1992). Monads for functional programming. Lecture notes for Marktoberdorf
Summer School on Program Design Calculi, Springer-Verlag. <f t p : / /f t p . d c s .
gl a .a c .uk/pub/glasgow-fp/authors/Philip_Wadler/monads-for-fp. dvi>.
(page 99)

Wallace, M. and Ranciman, C. (1999). Haskell and XML: Generic combinators or type-
based translation? In Proceedings o f the Fourth ACM SIGPLAN International Con­
ference on Functional Programming (ICFP‘99), volume 34 of SIGPLAN Notices,
pages 148-159, N.Y. ACM. (page 98)

http://www.%20acm.org:%2080/pubs/%e2%80%a8citations/journals/surveys/1998-%2030-2/pl23-%20skillicom/
http://www.%20acm.org:%2080/pubs/%e2%80%a8citations/journals/surveys/1998-%2030-2/pl23-%20skillicom/
ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/authors/Philip_%e2%80%a8Trinder/gumFinal.ps.Z
ftp://ftp.dcs.glasgow.ac.uk/pub/glasgow-fp/authors/Philip_%e2%80%a8Trinder/gumFinal.ps.Z
http://www.acm.org/pubs/toc/Abstracts/%e2%80%a80%200%2001-07%2082/7%209181,html
http://www.acm.org/pubs/toc/Abstracts/%e2%80%a80%200%2001-07%2082/7%209181,html

189

Weber, M. (2000). hMPI, a Haskell binding for MPI. chttp://www-i2.informatik.
rwth-aachen.de/Software/Haskell/libs>. (page 121)

Wilson, G. V. (1995). Practical Parallel Programming. MIT Press, (page 2)

Winstanley, N. (1999a). Parallel programming by transformation. In Fifth Interna­
tional Euro-Par Conference, Lecture Notes in Computer Science. Springer-Verlag.
(page 40)

Winstanley, N. (1999b). What the hell are monads? <http://www.d c s .g l a .a c .uk/
~nww/Monads.html>. (page 99)

Winstanley, N. (2000a). An embedded implementation of PEDL. <http: //www. d c s .
g l a .a c .uk/~nww/PEDL/Implementation>. (page 104)

Winstanley, N. (2000b). A Haskell model of the semantics of PEDL. ch t t p ://www.
d c s .gla.a c .uk/~nww/PEDL/Semantics>. (page 59)

http://www-i2.informatik
http://www.dcs.gla.ac.uk/%e2%80%a8~nww/Monads.html
http://www.dcs.gla.ac.uk/%e2%80%a8~nww/Monads.html
http://www

