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Abstract

There is a growing class of applications implemented in object-oriented languages that are large and com
plex, that exploit object persistence, and need to run uninterrupted for long periods of time. Development 
and maintenance of such applications can present challenges in the following interrelated areas: consis
tent and scalable evolution of persistent data and code, optimal build management, and runtime changes to 
applications.

The research presented in this thesis addresses the above issues. Since Java is becoming increasingly popular 
platform for implementing large and long-lived applications, it was chosen for experiments.

The first part of the research was undertaken in the context of the PJama system, an orthogonally persistent 
platform for Java. A technology that supports persistent class and object evolution for this platform was 
designed, built and evaluated. This technology integrates build management, persistent class evolution, and 
support for several forms of eager conversion of persistent objects.

Research in build management for Java has resulted in the creation of a generally applicable, compiler-inde
pendent smart recompilation technology, which can be re-used in a Java IDE, or as a standalone Java-specific 
utility similar to make.

The technology for eager object conversion that we developed allows the developers to perform arbitrarily 
complex changes to persistent objects and their collections. A high level of developer’s control over the 
conversion process was achieved in part due to introduction of a mechanism for dynamic renaming of old 
class versions. This mechanism was implemented using minor non-standard extensions to the Java language. 
However, we also demonstrate how to achieve nearly the same results without modifying the language 
specification. In this form, we believe, our technology can be largely re-used with practically any persistent 
object solution for Java.

The second part of this research was undertaken using as an implementation platform the HotSpot Java 
Virtual Machine (JVM), which is currently Sun’s main production JVM. A technology was developed that 
allows the engineers to redefine classes on-the-fly in the running VM. Our main focus was on the runtime 
evolution of server-type applications, though we also address modification of applications running in the 
debugger. Unlike the only other similar system for Java known to us, our technology supports redefinition of 
classes that have methods currently active. Several policies for handling such methods have been proposed, 
one of them is currently operational, another one is in the experimental stage. We also propose to re-use the 
runtime evolution technology for dynamic fine-grain profiling of applications.
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Chapter 1

Introduction

With the widespread adoption of object-oriented languages for server-side application development, there is 
a growing number of applications which can be characterised by one or more of the following properties:

• objects that they create need to survive application shutdown/restart;

• they consist of a large number (hundreds or thousands) of classes;

• they should run non-stop for weeks or months.

Development and maintenance of such, large and long-lived, applications can present a number of interre
lated challenges:

• If some form of object persistence is supported, i.e. objects can outlive an application that created 
them, the problem arises of how to perform changes. One aspect of this problem is the difficulty of 
changing both the code (class definitions) and the data (persistent objects) in such a way that they 
remain mutually consistent. There is also an issue of making this technology scalable, i.e. making it 
work for an arbitrarily large disk database with limited-size main memory.

• Large numbers of classes constituting an application can lead to a large number of interdependencies 
between them, which are difficult to keep track of manually and easy to break. For object-oriented lan
guages where compiled applications are not monolithic binaries, but rather relatively loose collections 
of dynamically loaded and linked classes, broken links (for example, when a method is deleted in one 
class, but other classes that call it are not updated) can remain unnoticed until a linking exception is 
thrown at run time. When a language is complex enough, and thus dependencies between classes can 
take multiple forms, traditional language-independent makefiles do not work well, either causing a lot 
of redundant, time-consuming recompilation, or failing to recompile programming modules when it 
is really needed. In the context of systems supporting persistent objects, this can further exacerbate 
the problem of keeping code and data mutually consistent.

• Currently most of the industrial-strength language implementations do not allow dynamic (on-the-fly) 
changes to running applications. However, there is a potentially high demand for such a functionality. 
It may be used at debug time (to fix a buggy method and continue, avoiding shutdown and restart of

1



CHAPTER 1. INTRODUCTION 2

the target application), at testing time (e.g. to avoid a painful process of taking down and restarting 
some complex applications), and even for a deployed application at run time (to diagnose or fix bugs, 
tune, or to upgrade it).

The research presented in this thesis addresses the above issues. It was undertaken using the Java language 
and platform for experiments. Java was an obvious choice for us considering its high and still growing pop
ularity, increasing adoption for development of large and long-lived (or enterprise) applications, and, last 
but not least, the relatively open policy of Java’s original developer, Sun Microsystems Inc., with respect to 
the source code of its implementations of Java (as well as the personal connections between the people at 
the University of Glasgow and Sun Laboratories). As a result, it became possible to establish collaboration 
between the University of Glasgow and Sun Labs, and to get access to the latest sources of Sun’s implemen
tations of Java. To use an industrial-strength product as a research platform is not an opportunity to miss 
for a computing science researcher! On the other hand, we believe that a number of aspects of our research 
can be generalised for other languages and platforms, or be used to determine how future systems should be 
designed to support evolution of large and long-lived applications.

The first part of this research was undertaken in the context of the orthogonally persistent platform for 
Java, the PJama system, that was being developed collaboratively by the University of Glasgow and Sun 
Microsystems Laboratories. For PJama, we have, first of all, developed a mechanism of flexible, powerful 
and scalable persistent object conversion, that transforms persistent objects to make them match the new 
definitions of their classes once the latter have changed. A high level of the developer’s control over con
version process was achieved in part due to introduction of a mechanism for dynamic renaming of old class 
versions, which uses minor non-standard extensions to the Java language. However, we also show how to 
achieve nearly the same results without modifying the language specification. We believe that many aspects 
of our technology can be re-used with other persistent solutions for Java.

Another piece of work done in the context of PJama evolution subsystem, has resulted in creation of the 
generally applicable, compiler-independent smart recompilation technology for Java. Such a technology is 
designed to help the developer handle changes to applications consisting of a large number of interconnected 
classes. It ensures that, once a change to a particular class is made, all of the other application classes 
that depend on or may be affected by this particular change, are recompiled, yet avoiding the majority of 
redundant recompilations. In this way, the development turnaround time is reduced significantly, compared 
with the case when “recompile all” operation is used all the time. At the same time, the resulting application 
is guaranteed from linking exceptions or misbehaviour due to links set incorrectly.

The second part of this research was undertaken using as an implementation platform the HotSpot Java 
Virtual Machine (JVM), which is currently Sun’s main production JVM. The author is working on the 
extensions to this VM, which allow a developer to modify a Java application currently being executed by 
the VM. The unit of evolution is a class, as in our work on persistent applications evolution. Our main focus 
is on runtime evolution of server-side applications, though we also address modification of applications 
running in the debugger (when this technology is used primarily to fix bugs without leaving a debugging 
session). In the server context, our technology can be used to diagnose and fix bugs as well, and can also be 
utilised for other purposes, such as application tuning and upgrading. In addition, we believe that it can be 
used (or its components re-used) for dynamic fine-grain profiling.
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In the following sections, we present an overview of the Java language and platform, discuss the issues 
addressed in this research in more detail, make the thesis statement, and present an overview of this thesis.

1.1 The Java Programming Language and Platform

This description of Java’s history builds on that of my colleague Tony Printezis [PriOO].

In 1990, a product-focussed project called Green was started at Sun Microsystems by James Gosling, Patrick 
Naughton and Mike Sheridan. The former recalls [Gos97]:

“[The project] was chartered to spend time (and money!) trying to figure out what would be 
the “next wave” of computing and how we might catch it. We quickly came to the conclusion 
that at least one of the waves was going to be the convergence of digitally controlled customer 
devices and computers.”

So, the Green project concentrated on consumer devices, such as televisions, videos, stereos, etc., and 
how they can communicate with each other. Such devices are made with different CPUs and have limited 
amounts of program memory. This encouraged the team to develop a new programming language (initially 
named “Oak” by James Gosling after a large oak tree outside his window), designed to allow program
mers to support more easily dynamic, changeable hardware. To make applications written in this language 
portable, they were compiled into machine-independent bytecodes that would be then interpreted by an Oak 
interpreter (virtual machine). The primary goal when designing the bytecode set was to minimise the size 
of compiled applications. This defined the present shape of Java bytecodes, where each bytecoded instruc
tion is encoded by just a single byte, however some of these instructions are pretty complex. For example, 
a single variable-length instruction effectively represents the whole “sw itch () . . . ” statement of the 
language.

The Oak language was object-oriented, syntactically very similar to C++. However, it was “stripped-down” 
to a bare minimum. This was done partially to make applications and the virtual machine fit into limited-size 
memory that small devices would offer, and partially to meet the deadlines. In particular, Gosling writes:

“My major regret about that spec is that the section on assertions didn’t survive: I had a 
partial implementation, but I ripped it out to meet a deadline1”

This problem can be understood easily, considering that in just 18 months the group consisting of a handful 
of people managed to design, build and successfully demonstrate a new SPARC-based, hand-held wireless 
device (Personal Digital Assistant, PDA) called Star7. It contained an impressive list of features, both 
hardware and software. The fact that all of the application software was implemented in such a short period 
of time and was easily changeable, was largely due to the design of the language, which eliminated most of

1 Interestingly, language support for assertions was one o f the most common requests from the developers since Java was re
leased. The forthcoming release o f Java (JDK 1.4) will finally contain this feature.
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the problematic aspects of C++. It supported single class inheritance, but also allowed classes to implement 
multiple interfaces. It was type safe, did not allow direct pointer manipulations, and its memory management 
relied on a garbage collector. Some extra features included in Oak were exceptions and built-in concurrency 
facilities (language-level support for multiple threads and their synchronisation).

Unfortunately, the Green project never achieved any commercial success and was eventually cancelled. The 
reasons were that the TV set-top box and video-on-demand industries, which it was targeting, were in their 
infancy, and still trying to settle on viable business models.

However, around that time, in 1993, the National Center for Supercomputing Applications (NCSA) intro
duced the World Wide Web (WWW) and the Mosaic (later Netscape) browser. The Internet was becoming 
popular as a way of moving media content -  text, graphics, video -  throughout a network of heterogeneous 
devices. Java technology had been designed in parallel to move media content across networks of heteroge
neous devices, but it also offered the capability to move “behaviour” in the form of applets along with the 
content. HTML [RHJ98], the text-based markup language used to present information on WWW, could not 
do that alone, but it did set the stage for Java technology. So, in 1994 Oak was retargetted to the WWW and 
was renamed Java. Later a deal was made with Netscape Corp. for Java interpreter to be included in the 
Netscape browser.

One reason for the subsequent huge success of Java was the decision to release the first full public alpha 
version (1.0a2) of the Java source code on the Internet. This happened in March 1995. “We released the 
source code over the Internet in the belief that the developers would decide for themselves” recalls team 
member Lisa Friendly [Byo98]. The team knew that releasing code to developers for free is one of the 
fastest ways to create widespread adoption. It was also the easiest way to enlist the help of the development 
community to inspect code and find any overlooked bugs.

In just a few months, the downloads began to surge into the thousands. The 10000 downloads barrier that 
Gosling considered an indicator of a huge success, was broken in surprisingly short time, just a few months, 
and the amount of downloads continued to grow exponentially. Soon Sun realised that the Java technology 
team’s popularity was quickly and haphazardly outpacing its own carefully orchestrated popularity. All of 
this was happening while Java had virtually no marketing budget or plan.

Six years later, Java is hailed as one of the biggest advances in computing. Software companies have started 
marketing products written entirely in Java and developers report improvements by up to a factor of two in 
development time and by up to a factor of three in robustness, when using Java instead of C++ [Phi99]. The 
Java language has been augmented with a large set of standard classes and APIs, covering a large number 
of facilities needed by developers. These include 2D/3D graphics (Java 2D/3D APIs [Sun99a, SunOOg], 
networking (Java RMI [SunOOn]), relational database connection (JDBC [SunOOp]), component technology 
(Java Beans [SunOOa]), etc. The combination of the Java language and the set of standard APIs (currently 
comprising several thousand Java classes and interfaces) is known as the Java Platform. The presence of 
these APIs on all hardware/OS platforms that Java supports greately increases the portability of Java code, 
since in most cases the developers can avoid using native methods, i.e. adding native and platform-dependent 
code to their Java applications. Sun’s implementation of the Java Platform {Java Development Kit (JDK) 2), 
currently in version 1.3 [SunOOd], is considered to be the standard.

2Lately, JDK has been renamed to Javatm Software D evelopm ent K it (SDK), introducing naming complexity and some confu
sion, that we would like to avoid. The official full name for what is referred to both internally at Sun and throughout this thesis as 
“JDK 1.3” is “Java 2 Platform SDK Version 1.3”.
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At the same time, a number of companies are marketing complete Java platform systems and develop
ment environments. A few examples are JBuilder from Borland [BorOOc], CodeWarrior from Metrowerks 
[MetOO], VisualAge from IBM [EBMOOb], J++ from Microsoft [MicOOb], etc. Ironically, the development 
tools from Sun itself remained in the same old-fashioned, command-line style for long time. Only recently, 
in summer 2000, Sun has finally introduced its own integrated development environment (IDE) for Java 
called Forte for Java [SunOOb]. However, this IDE has a significant advantage from the point of view of 
researchers and independent developers: it is not just a yet another proprietary product. Instead, Forte for 
Java is actually a stable “snapshot” of the code of the project called NetBeans [NetOO]. The latter project is 
open source, which means that its code (and hence most of the code of Forte, though the latter also contains 
some proprietary modules) is freely available to anyone, and anyone is welcome to submit new code and 
bug fixes.

Despite the huge success of Java, it is worth noting that it did not introduce any new concepts or ideas. 
Instead, it incorporates a lot of already existing ones. Some of them were already popular and familiar 
to many programmers (e.g. C++ like syntax), some of the others were useful parts of otherwise not very 
popular systems — e.g. bytecoded representation of compiled programs or garbage-collected memory man
agement. Perhaps the secret of Java’s huge success was in the right combination of all of these features, 
the attractiveness of “write once, run anywhere” concept (though in reality it is not always easily achieved), 
availability of the free implementation, and, last but not least, the unprecedented hype around it that was 
orchestrated by Sun.

At present Java Platform implementation from Sun is available in three separate editions: Standard Edition, 
Enterprise Edition and Micro Edition. Standard Edition is oriented towards individual developers or groups 
working on client-side, standalone or simple server-side applications. Enterprise Edition combines a num
ber of technologies relevant for development and deployment of large server-side and distributed enterprise 
applications, e.g. Enterprise Java Beans [SunOOa], Java Server Pages [SunOOm], Compatibility Test Suite 
[SunOOc], etc. Micro Edition is a highly optimised Java runtime environment targeting a wide range of con
sumer products, including pagers, cellular phones, screen phones, digital set-top boxes and car navigation 
systems. This looks very close to the original goal for Oak.

The official definition of the Java language is given in the Java Language Specification (JLS), the second 
edition of which by Gosling, Joy, Steele and Bracha was recently published [GJSB00]. The official Java 
Virtual Machine Specification, now also in Second Edition, is published by Lindholm and Yellin [LY99].

1.2 Enterprise Applications, Object Persistence and Change Management

1.2.1 Enterprise Applications and Java

The constant advances in hardware technology resulting in cheap and ubiquitous computing, and the wide 
adoption of object-oriented programming languages and advanced programming tools, that allow the devel
opers to build much bigger applications much faster than before, has provoked an unprecedented growth in 
number, size and complexity of software applications. This was further stimulated by the growth of pop
ularity of the World Wide Web (WWW), that has forced many organisations to establish their presence on 
it, first in the form of mere static information sites, and then in the form of interactive Web applications de
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livering various kinds of services — from news and education to banking and e-commerce. An application 
that runs on the Web site of a computer manufacturer, and controls all of the stages of making a purchase: 
interactive selection of machine configuration and price determination, taking an order using a credit card, 
sending an order to the manufacturing workshop, and shipping the package — is an example of an enter
prise application, characterised by high complexity, and also high demand for constant changes. Computer 
models, parts and possible configurations are constantly being upgraded, price determination algorithms are 
being changed, various seasonal or conditional discounts are introduced, etc. Managing such an application, 
in the circumstances when any significant downtime leads to substantial financial losses, is certainly not a 
trivial task.

The main focus of the Java platform has been shifting in the recent years from client-side to server-side, 
enterprise applications, and a number of features, mentioned in the previous section, have been introduced 
to support such applications. Combined with the original properties of Java, such as the automatic memory 
management, availability for all of the major hardware/OS platforms, a vast number of standard libraries 
supporting virtually any programming area, etc., they make Java an increasingly attractive choice for enter
prise application development.

1.2.2 Object Persistence and Java

All of the data which is created and manipulated in the main memory during the execution of a given 
process, is typically discarded automatically at the end of its execution by the operating system3. How
ever, most non-trivial applications need to retain at least some data across multiple invocations. Data (and, 
maybe, application state as well) preservation outside the main memory is called persistence. It is usually 
achieved by storing the data on secondary storage, using ad hoc custom-made schemes (e.g. flat files), more 
advanced programming language facilities (such as object serialization in Java), or heavy-duty databases 
(e.g. relational or object-oriented).

A recent report [AtkOOj contains an exhaustive survey of the presently existing persistence solutions for 
Java. These include Java Object Serialization (JOS) [SunOOjj, connections to relational databases (JDBC) 
[SunOOp], automated object-relational mappings [SunOOh], object databases with a Java binding (see Section 
4.9.2), Java Data Objects technology [RusOO], and the Enterprise Java Beans (EJB) framework [SunOOa]. 
The very number of these solutions suggests that none of them is ideal — though, of course, there are 
certain practical reasons justifying their co-existence. E.g. JOS may be a reasonable choice for easy-to- 
implement storage of small amounts of non-critical data, whereas connections to relational databases are 
often an inevitable choice for legacy RDBs.

Orthogonal Persistence, discussed in detail in Section 2.1.1 was proposed by Atkinson in 1978 [Atk78] to 
provide seamless integration between the programming language and the storage mechanism, that renders 
unnecessary the need for a separate database system, along with the complexity such a separation introduces. 
The latter may include a schema modelling language, rules and restrictions that need to be followed during 
application development, new concepts and APIs to be understood, etc. In applications running on top of 
an orthogonally persistent platform, data modelling, operations such as long-lived data reading/writing, and

3The exception are persistent operating systems, such as Grasshopper [DdBF+ 94] or L4 [Lie96]. In such systems, processes 
can be made persistent and survive across machine power-downs. Such systems, however, are still at an experimental stage and are 
not widely used.
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ensuring schema consistency, are achieved in a way that is familiar and natural to the developer: the standard 
constructs of the programming language.

PJama was a project that aimed at providing orthogonal persistence for Java by modifying the JVM4. Any 
Java application running on PJama platform executes against a persistent store, an equivalent of a database, 
which is specified at the VM startup using a command line parameter or an OS environment variable, and 
can not be changed for an active VM. The choice of the roots o f persistence model should also be made at the 
VM startup time. Either all of the s t a t i c  variables of the main application class, or all of the static variables 
of an explicitly specified (using a simple Java API) class can serve as roots of persistence. All of the objects 
reachable transitively from the persistent roots are saved atomically and durably into the persistent store 
either upon a normal (i.e. not an abrupt, caused by an unhandled exception) program shutdown, or using a 
“checkpoint” API call. The above two API calls, that is, persistent root specification and checkpoint, are the 
only calls that the application programmers typically need to use in most of the applications. More detailed 
description of PJama is presented in Section 2.1, and also, along with the analysis of the mixed success of 
the this project, in [AtkOO, AJOO].

Whether or not orthogonal persistence succeeds in future, technologies allowing programming language 
objects and complex data structures (rather than their, often awkward and inconvenient, representations as 
e.g. relational database records) to persist, will remain highly appealing to developers. However, to make 
the structure of the saved data malleable, and hence the data itself able to survive application specifica
tion changes, bug fixes, and application evolution, a special evolution technology is required. Why this 
technology is so important for object persistence, is discussed in the next section.

1.2.3 Evolution o f Persistent Objects

Once objects and their collections are made persistent, a question arises immediately of what to do if the 
definition of any class(es) describing these objects (database schema) has changed. The answer depends 
significantly on the details of the particular persistence solution, and also on the degree of convenience, 
safety and scalability we want to achieve. If we consider all of these characteristics, then on the lower end 
of the scale we will have the “technology” of writing an application that saves a persistent object collection 
in some custom format, e.g. in a text file. This intermediate representation should then be re-read by another 
application that uses new class definitions and creates the matching persistent collection in the new format. 
However, encoding all of the translations between formats manually is obviously very inconvenient, labour 
intensive and error prone. Furthermore, such an approach can simply not work in certain situations, e.g. 
when a large amount of objects are connected into a complex graph. In this case, to correctly preserve 
all the links between the objects in the intermediate representation, we would have to load them all into 
main memory and then walk the graph according to some algorithm. Main memory may be insufficient 
to accommodate all of the objects at once, but splitting the graph may also be problematic. Thus, more 
sophisticated technologies for object evolution should automate the evolution process by at least preserving 
the links between objects while they are transformed, and they should be capable of handling arbitrarily 
large graphs of objects.

4Other approaches, such as pre- or post-processing the application classes, are also possible, but m odifying the VM generally 
seems to provide better results in terms o f  the execution speed, as well as the development convenience. This is due to the fact that 
no special additional bytecodes are executed, and it is not required to perform an additional code processing operation.



CHAPTER 1. INTRODUCTION 8

Another issue is what kinds of changes can be actually performed using a particular evolution technology. 
Again, on the lower end of the scale will be the technologies allowing only very simple, e.g. default, trans
formations. For example, if in both the old and the new class definitions there is a S tr in g  name data field, 
such a technology would correctly copy the value of this field from the object in the old format to the corre
sponding object in the new format. It would, however, be unable to sensibly handle a transformation where 
each name field should be split in the new object into two fields, firstName and lastName. Obviously, 
to support such a change, we need to provide a mechanism that allows the developer to specify how to 
perform the required transformation, preferably in the same language that is used to write normal persistent 
applications.

Thus, in our opinion, a really adequate conversion technology should allow the developers to perform arbi
trary transformations of objects and larger data structures that embrace them (for example, convert a fist into 
a tree or vice versa), and work for arbitrary large amounts of persistent objects with limited-size main mem
ory. The technology which we built for PJama, satisfies, as we believe, these requirements. On the other 
hand, after surveying the object conversion facilities presently available in the existing persistent solutions 
for Java and other languages (see Sections 2.6 and 4.9) we can conclude that, to the best of our knowledge, 
there is no other system that matches them equally well.

1.2.4 Application Evolution and Build M anagement

Java is distinct from most of the other widely adopted industrial-strength programming languages in at least 
one aspect, and that is its late linking model. Java applications are not monolithic5 — rather, they are loose 
collections of classes, for which the final linking phase is replaced with a lazy incremental resolution process 
that happens every time a new class is loaded by the JVM. In addition, dependencies between Java classes 
can take many forms. Class C can call a method of class D, be D’s subclass, implement interface D, declare 
a field or a local variable of type D, to name but a few. Some changes to D will affect C and some not, 
depending on the actual kind of relation(s) between C and D. For example, consider what happens if method 
m () is deleted from D. If C previously called this method, it should necessarily be updated and recompiled. 
However, if C simply declares a local variable of type D, nothing needs to be done to C.

While allowing independent evolution of classes that constitute a single application or participate in a num
ber of them (which is especially useful in case of distributed, geographically disperse development), these 
properties of Java also increase significantly the probability of incompatible changes going unnoticed until 
a linking exception is thrown at run time. Worse than that, some of those changes may not lead to an ex
ception, but result in incorrect program execution. One example is how s t a t i c  methods are actually called 
by Java bytecodes. Suppose that we have two classes, C and its subclass D, and a static method m () defined 
in C, which we call in yet another class A as D . m (). If we then override in () in class D, the call from A will 
still go to C. m (), contrary to what one would expect from the late linking model. To correctly handle this 
change, the source code of A must be recompiled.

Considering these properties of Java, it is highly desirable to have a smart recompilation technology that, 
given all the classes constituting an application, would automatically keep track of incompatible changes 
and recompile all the dependent classes, thus assuring that any links that may potentially be broken are

5According to the classic model. There are at present a number o f  Java native compilers, e.g. Visual Cafe [WebOO], which 
com pile Java sources into monolithic binary executables —  but this eliminates portability and precludes evolution.



CHAPTER 1. INTRODUCTION 9

either checked or updated. On the other hand, classes should not be recompiled unnecessarily. It turns 
out that very few of the existing products for Java support smart recompilation completely (i.e. handle 
correctly all of the incompatible changes that we have managed to discover). Those that do, support it in 
an undocumented way, and seem to exploit intermediate, memory-intensive data structures created by the 
Java compiler. In contrast, in this work we present a comprehensive list of incompatible changes that can be 
made to Java classes, and for each such change — a method for determining all of the classes that might be 
affected. Using them, it is possible to implement an efficient smart recompilation technology that would be 
independent of a particular Java compiler. We have done that for PJama, creating what we call the persistent 
build technology, that combines smart recompilation with persistent class evolution.

1.2.5 Runtime Evolution o f Java Applications

For a large class of critical applications, such as business transaction systems, telephone switching, call 
centers or emergency response systems, any interruption poses very serious problems. Therefore facilities 
that allow engineers to update an application on-the-fly, or at least to, say, modify it to help diagnose a 
bug that is hard to reproduce in synthetic tests, can be very attractive. The same technology can be used to 
fine-tune the code for e.g. specific hardware configurations or security requirements. During debugging, the 
same technology allows the developer to fix a bug in a method and continue, without leaving the debugging 
session.

Facilities allowing an application to be modified at run time have been around for some languages, e.g. 
Smalltalk [GR83, Gol84] and CLOS [Sla98], for decades. However, until recently all of the work of this 
kind for Java was in the area of load-time bytecode instrumentation. A class could be modified at load-time, 
but once it was active, it could not be changed. A lack of works on runtime evolution for Java can probably be 
explained in part by more complex design of the Java language and of the JVMs, compared to e.g. Smalltalk. 
Thus, it would cost a lot to develop from scratch any JVM, let alone one which supports runtime evolution. 
On the other hand, existing JVMs, at least those for which the source code is publically available, were not 
designed with runtime evolution in mind, and thus can not be easily modified to support it. In addition, Java 
is a type safe language. Therefore (again in contrast with Smalltalk or CLOS) a technology for runtime class 
redefinition should either allow only limited (e.g. binary compatible, see [GJSBOO], Chapter 13) changes to 
be made, or be able to check that the updated application still conforms to the type safety rules of Java. The 
latter is not easy, as we show in this work.

So, only about a year ago the first work [MPG+00] appeared, that described a type safe runtime evolution 
technology for Java. Type safety was achieved simply by allowing only restricted, namely binary compati
ble, changes. Furthermore, classes whose methods are currently active, can not be replaced by this system. 
Some other restrictions and the fact that it was implemented for Sun’s first JVM, which is currently no 
longer in use, made this system more like an interesting experiment, rather than an industrial-strength im
plementation. Nevertheless, at the ECOOP’2000 conference where this work was presented, it was a huge 
success.

The author started to work on the runtime evolution extensions to the HotSpot JVM, which is Sun’s present 
production VM, in August 2000 as a summer intern. From the beginning we decided that we should support 
evolution of classes that have methods currently active, and we devised several policies for dealing with such 
methods. The simplest one, which we currently have working, is to allow all of the calls to old method to
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complete, while dispatching all of the new calls to new methods. We have also suggested two other policies, 
and for one of these (on-the-fly switch from old method code to the new code) developed an experimental 
implementation.

Being aware of various difficulties we could encounter, we have devised a plan of staged implementation, 
where each stage corresponded to a relatively consistent level of functionality, that could be included in 
some release of HotSpot. In the first stage, which is now complete and operational, our implementation 
supports changes only to method bodies. It works both in the debugging and in the server context, supporting 
evolution of applications that run in mixed (interpreted and compiled) mode. This code will be included in 
the forthcoming release of HotSpot (JDK1.4), scheduled for the end of the year 2001.

In the subsequent stages we are going to implement support for less restrictive changes: binary compatible 
(in the second stage, which is now close to completion), and any changes that do not violate type safety for a 
particular application (in the third stage). We are also considering implementing object conversion support. 
Since the latter facility does not by itself raise any type safety issues (which determine the difference between 
the stages 2 and 3), it can be implemented at any time.

1.3 Thesis Statement

There is a growing class of applications implemented in object-oriented languages that are large and com
plex, that exploit object persistence, and need to run uninterrupted for long periods of time. Java is becoming 
increasingly popular platform for such applications. Existing technologies supporting evolution of Java code 
and data, whether in the context of object persistence, build management, or runtime class redefinition, are 
mostly inadequate or simply undeveloped.

A technology that supports persistent class and object evolution for the PJama orthogonally persistent plat
form was designed, built and evaluated. This technology integrates build management, persistent class evo
lution, and facilities for various forms of eager conversion of persistent objects. The complexity and depth 
of changes to the persistent data, that the conversion facilities of PJama allow the developers to perform in 
parallel with schema change, are, to our best knowledge, unmatched by other systems. We demonstrate that 
parts of this technology can be re-used in other contexts. For example, smart recompilation for Java would 
be useful in a Java IDE or can be implemented in a standalone utility, and the slightly modified solution 
for managing class versions during custom conversion can be adopted for practically any persistent object 
solution for Java. It is argued that the feasibility of this technology and the appropriateness of its semantics 
has been demonstrated.

A technology that supports runtime evolution of Java applications was developed for the HotSpot production 
JVM. It allows the developers to redefine classes on-the-fly in the running JVM, and, unlike the only other 
existing similar system for Java, supports redefinition of classes that have methods currently active. Several 
policies for handling such methods have been proposed, and one of them is currently operational. Re
using the runtime class redefinition technology for dynamic fine-grain profiling of applications has been 
proposed. It is argued that the dynamic evolution technology will be very useful to application engineers 
during development, maintenance and operation. At least simple versions of this technology have been 
shown to be practical.
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1.4 Thesis Overview

The thesis is organised as follows.

In Chapter 2 we discuss the concept of orthogonal persistence, and give an overview of the PJama platform, 
which was the base system for developing and experimenting with persistent class and object evolution. We 
explain how our evolution system has itself evolved, present its architecture, and explain why it has certain 
limitations.

Chapter 3 describes our persistent build technology, which combines class evolution and smart recompila
tion. We present the algorithm which is used by our smart recompilation procedure, and the comprehensive 
tables of source incompatible changes.

In Chapter 4 we present our object conversion technology for PJama. We describe several types of conver
sion that we provide, discuss the issue of naming of old class versions when custom conversion is used, and 
present our solution to this problem. The discussion is illustrated on a simple running example.

In Chapter 5 we discuss the semantic issues which come to the fore when databases more close to real-life 
should be converted, our solutions, and the important internal implementation details. We also present an 
alternative design of custom conversion support, that, unlike our present one, does not require changes to 
the Java language — at a price of providing somewhat less convenience to the developer.

Chapter 6 describes the details of the persistent store -  level layer of our evolution technology, which makes 
the latter reliable and scalable. We also present the initial performance evaluation results.

Chapter 7 is devoted to the description of the runtime evolution technology which we are developing for the 
HotSpot JVM. The plan of staged implementation of this technology is presented, and the implementation 
of the first (complete) and the second (close to completion) stages is discussed. A number of design ideas 
for the future is presented.

Finally, Chapter 8 summarises the thesis and presents the conclusions.



Chapter 2

PJama System and Its Evolution Model

In this chapter we first give an overview of the PJama system, which was the base system for developing 
and experimenting with persistent class and object evolution. In addition to PJama details, we also present 
the concept of orthogonal persistence, on which PJama is based, and a brief history of this project. We then 
establish the context of PJama evolution and consequently identify the functions it must fulfill in order to 
maintain the integrity of persistent applications while changing them (Section 2.2). We explain how, through 
several intermediate implementations, we came to the present persistent build technology, which combines 
evolution with smart recompilation (Section 2.3). In Section 2.4 we outline the layered architecture of our 
evolution system. Finally, in Section 2.5 we explain why our system has some constraints at present, and in 
Section 2.6 present the related work.

2.1 PJama Persistent Platform

Before we proceed to the details of the PJama platform which are important in the context of this work 
(Section 2.1.3), we will explain the principles of orthogonal persistence on which this platform is based 
(next section). We will also present the history of this project to the present time (Section 2.1.2).

2.1.1 Orthogonal Persistence

Orthogonal Persistence (OP) [AM95] is a language-independent model of persistence, defined by the fol
lowing three principles:

1. Type Orthogonality

2. Persistence by Reachability

3. Persistence Independence

12
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These were first introduced by Atkinson et al. [Atk78, ACC82, ABC+83], summarised by Atkinson and 
Morrison [AM95], and their applicability to Java analysed by Atkinson and Jordan [JA98, AJ99, AJOO]. 
Below we explain the above three principles in more detail.

2.1.1.1 Type Orthogonality

“Persistence is available for all data, irrespective of type.”

Many systems claim that they provide orthogonal (sometimes also referred to as transparent) persistence. 
However, deeper investigation often reveals that rather than allowing “any data type” to persist, they allow 
“any data type, provided something”. “Something” may be one of the following: the data type is a subclass 
of a persistent-enabled class, implements a certain persistent-related interface, has mapping-unmapping 
facilities defined on it, etc. It can be argued that this is not orthogonal persistence, and definitely not 
transparent, since the application programmer has to decide for each data type whether it can persist or 
not, and, in some cases, has to write mapping code by hand.

2.1.1.2 Persistence by Reachability

“The lifetime of all objects is determined by reachability from a designated set of root 
objects, the so-called persistent roots.”

This concept (also referred to as transitive persistence) is a natural extension to the world of long-lived 
objects, of main memory object management model that utilises garbage collection. A counter-example to 
this concept is a system which enforces the programmer to use explicit delete operations in order to reclaim 
space in the persistence storage, whereas the programming language that it targets is one with garbage- 
collected main memory.

2.1.1.3 Persistence Independence

“It is indistinguishable whether code is operating on short-lived or long-lived data.”

Again, a counter-example that demonstrates the benefits of this principle is a system that requires the pro
grammer to use separate (though in practice they are typically very similar) data structures (classes) for 
memory and disk data (objects). This can lead to parallel existence of two versions of the similar code, the 
API of the storage system “getting in the way” of the algorithm being implemented, problems with porting 
the existing code to a different storage system, problems with using third-party libraries over persistent data, 
etc.
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2.1.1.4 Benefits of Orthogonal Persistence

Given the above three principles, the number of operations required to use the orthogonally persistent sys
tem, and hence the amount of additional knowledge required from the programmer, are minimal. In fact, 
apart from the usual facilities that a programming language provides, the only extra persistence-specific 
calls needed are the following:

• Register and retrieve the persistent roots. The programming style that maximises the benefits of OP 
is when persistent roots are not associated with small object graphs, but rather with entire applications. 
Therefore, the calls that deal with persistent roots are invoked very rarely, typically only once inside 
the application-startup code. Code analysis by Grimstad et al. [GSAW98] supports this claim.

• Perform a checkpoint. This operation forces any changes performed on the data to propagate to the 
disk atomically and durably. If a previously transient object becomes persistent as a result of this 
operation, we say that this object is promoted into the store.

Another important benefit typically provided by an orthogonally persistent system, is incremental on-demand 
object fetching. This makes such systems much more responsive and eliminates the “big inhale” problem, 
which is a slow initialisation of a system due to fetching from disk all of the data that it needs (and often 
much data that it doesn’t need). A feature symmetrical to incremental object fetching is incremental object 
eviction, which removes currently unused persistent objects from main memory, thus allowing an application 
to work with large numbers of persistent objects using relatively small-size main memory.

2.1.2 History o f the PJama Project

PJama was initially started as a sub-project of the Forest project initiated by Mick Jordan and Michael 
Van De Vanter at Sun Laboratories (Sun Labs), California, in 1994. The goal of Forest was to investigate 
advanced, scalable and distributed configuration management for software development environments. In
stead of traditional, and apparently inappropriate, approach of using files, directories or ad-hoc persistence 
schemes, it was proposed to use some kind of persistent object technology [JV95]. The initial prototype was 
developed, written in C++ and using ObjectStore [LLOW91] for the persistent facilities.

In 1995 the growing popularity of Java became obvious, so the Forest team refocused their efforts on it and 
decided to re-implement their system in Java. However, no persistence mechanism was available at that 
time that was free of the pitfalls encountered when using ObjectStore (such as explicit free-space manage
ment or manual object clustering). Thus, in September 1995, the collaboration between Sun Labs and the 
Department of Computing Science of the University of Glasgow was initiated with the goal to investigate 
the feasibility of introducing orthogonal persistence to the Java programming language. This project was 
named PJava, standing for Persistent Java. However, that name was later reserved by Sun Microsystems, 
Inc. for their Personal Java product. Therefore the project was later renamed PJama. Meanwhile, the Forest 
team built the second prototype of their system, targeted for development in Java. It was written in Tcl/Tk 
[Ous93, Ous90], used files/directories for its persistent facilities, and was a temporary measure until the 
PJama system was operational.
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The development in Glasgow was led by Malcolm Atkinson, and the first two team members were Laurent 
Daynes and Susan Spence. Tony Printezis joined them later, in the end of 1995. The first usable version 
of PJama was shipped to Sun Labs from Glasgow in July 1996. It was based on Sun’s JDK 1.0 and used 
the architecture summarised in Figure 2.1(a). Durability and atomicity depended on Recoverable Virtual 
Memory (RVM) [SMK+94]. There was a buffer pool into which pages were brought, and a separate object 
cache, in which objects appeared to the VM as if they were in the standard garbage-collected heap. The 
persistent store was implemented as a single file that had flat structure, i.e. object addresses on disk (PIDs) 
were simply byte offsets from the start of the file. More features, such as sophisticated object cache manage
ment that included eviction of persistent objects to recycle the main memory space occupied by non-mutated 
persistent objects [DA97], explicit stabilisation (checkpoint) during execution, a simple disk garbage col
lector [Pri96, Ham97], etc., were added to it and a port to JDK1.0.2 was done before the first public PJama 
release, around January 1997. At the same time, the configuration management system developed by the 
Forest group was being rewritten in Java, using PJama for its persistent facilities. It was eventually named 
JP, after a series of name changes. More information on JP and the configuration management work is given 
by Jordan, Van De Vanter, and Murer [JV95, JV97, Van98, VM99, MV99].
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Modified
JVM
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Sphere
RVM

(a) Architecture for PJama (a) Architecture for PJama
versions 0.0, 0.1 and 0.3 version 1.0

Figure 2.1: Persistence Architectures used for versions of PJama

During 1997 and 1998, PJama Virtual Machine development slowly migrated from Glasgow University to 
Sun Labs, where Laurent Daynes moved in 1997. Bemd Mathiske joined the PJama Sun Labs team at 
about the same time, and was followed next year by Brian Lewis and Neal Gafter. A sequence of ports to 
1.1.x versions of the JDK were made. The PJama system based on the first Sun’s Java Virtual Machine 
(Sun’s Reference Edition Virtual Machine, informally known as Sun’s Classic JVM) and the initial flat 
stable store architecture, started being referred as PJama Classic. The work in Glasgow also continued, e.g. 
distribution support (persistent RMI [SA97, Spe99, SpeOO]) was implemented. In 1997 the author joined



CHAPTER2. PJAMA SYSTEM  AND ITS EVOLUTION MODEL 16

the PJama Glasgow team to work on evolution technology. At the same time, Craig Hamilton started to 
work on logging and recovery support for the next generation persistent store, and later played the key role 
in implementing low-level support for evolution (see Chapter 6).

The final PJama Classic release was based on JDK 1.2 Reference Edition. Due to a large amount of internal 
changes made in the Sun’s JVM between versions 1.1.x and 1.2, porting PJama to JDK1.2 proved more 
complex than originally anticipated. Still, after a substantial effort at Sun Labs, it shortly followed the 
release of JDK1.2. By August 1999, 150 sites worldwide had downloaded the PJama Classic system.

However, by the end of 1998 it was all but clear that the current PJama architecture, (which was initially 
viewed as write-and-throw-away prototype), was no longer adequate. First of all, it did not scale in several 
ways. The number of persistent objects that could be updated per stabilisation was limited due to the no
steal policy imposed on the buffer pool and object cache by RVM. This policy required all updated objects 
to be resident in the object cache and their corresponding store pages to be resident in the buffer pool until 
stabilisation operation has been committed. Then, only a single disk file could be used for a persistent 
store, hence store size was limited to 2GB — the maximum size for a Unix file. Addressing objects by 
their physical offsets rendered on-line object relocation (and hence any concurrent relocating disk garbage 
collection or reclustering schemes) virtually impossible, since if an object was relocated, its PID would 
have changed. The same problem was also precluding efficient and scalable implementation of store-level 
support for object evolution, forcing it to struggle with changing PIDs of evolving objects. Main memory 
management was also not completely adequate, since the object promotion mechanism imposed equal size 
requirements on the GC heap and object cache. Both of them had to be linearly proportional to the volume 
of promoted objects, since objects being promoted were copied from the heap to the object cache.

To address these and other problems, two fundamental design shifts were made. First, in the beginning of 
1997 the work on the new store architecture called Sphere started in the University of Glasgow. This store 
implementation was designed to be independent on any particular VM or other workload, communicating 
with it via clean and well-defined C language API. For more detailed Sphere overview, see Section 6.1. 
Second, by the end of 1998 Sun Microsystems already had two new Java Virtual Machines: HotSpot VM 
(see Section 7.1) and Sun Labs Research VM (SRVM), informally known as Exact VM (EVM) [WG98]1. 
Both of them were substantially faster, more scalable and reliable than the classic VM. Eventually EVM, 
which by that time looked more stable and scalable of the two, and, compared to the old Java VM, offered 
significantly improved pointer tracking, better memory management and a dynamic native compiler, was 
chosen as a platform for the development of new PJama architecture, denoted PJamai. This architecture is 
depicted on Figure 2.1(b), and its detailed description can be found in [LM99, LMG00].

Adding initial persistence support to EVM making it Persistent EVM (PEVM) started at Sun Labs in January 
1999 and was achieved in just about five months. Subsequent integration with Sphere also took very little 
time and was done completely remotely, i.e. there was no need for the developers of both parts of the 
system to work together at the same geographical location. The fast and successful delivery of the initial 
working version of PJamai proved the quality of modular design of PEVM and Sphere. It also justified 
our deliberate rejection of practically any kinds of optimisations at this stage of development. This was in

'Actually, this Java VM  was derived from the Sun’s Classic VM  and was originally called Exact VM. This name refers to its 
ability to support exact memory management, i.e. all the pointers on the runtime stacks and objects are known to the garbage 
collector (such an approach is also called non-conservative  or accurate  [Jon96]). EVM  was released by Sun in the JDK1.2, Solaris 
Production Release. However, in the subsequent JDK releases it was replaced with the HotSpot VM . At the same time, in Autumn 
1999, EVM  was renamed Sun Labs Research VM and was retargetted to purely research purposes.
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a sharp contrast with PJama Classic, where some early and unjustified optimisations have, due to gradually 
increasing complexity of the Sun’s VM itself, eventually resulted in a high amount of complex and hard 
to manage code. For example, one of these optimisations was saving classes in the persistent store in the 
format more close to the main-memory representation rather than as a usual class file, in the hope that this 
will speed up loading persistent classes. When this optimisation was removed as a matter of experiment, it 
appeared that the performance of the resulting “simplified” system improved, rather than degraded!

Over a year between spring 1999 and spring 2000 PJamai has undergone a series of gradual improvements 
and bug fixes. Persistent object eviction mechanism in PEVM was implemented, a number of internal opti
misations were made that significantly improved the performance, evolution functionality previously avail
able in PJama Classic was re-implemented and new evolution facilities added: persistent build technology 
(Chapter 3) and store-level support for scalable instance conversion (Chapter 6). The system achieved the 
level of scalability and robustness it never had before. Unfortunately, in summer 2000 the project was 
discontinued at Sun Labs. At present PJama is used as a research system at the University of Glasgow.

By this time, a number of application projects exploiting PJama were implemented. An interested reader 
can find this information, as well as the exhaustive description of all aspects of PJama, in [AJ00, AtkOO].

2.1.3 PJama Persistence Model Overview

PJama makes data continue to be available for as long as it may be accessed by some future computation, 
in other words, makes data (objects) and its schema (classes) persistent. In this section we are presenting 
the definition of precisely what data is made persistent and when this happens. This discussion of PJama’s 
persistent mechanism is closely based on the OPJ Specification [JA00].

2.1.3.1 When Objects are Made Persistent

Applied to PJama, the principle of persistence by reachability means that an object is made persistent at a 
checkpoint if it is peristence reachable. An object is persistence reachable if it is reachable by the standard 
rules for object reachability in the Java language, unless it is reachable solely through chains of references 
that pass through variables marked by the “transient” modifier2.

Continuing this definition, a reachable object, as specified by the Java Language Specification [GJSB00] 
(or JLS, as we will refer it from now), is any object that can be accessed in any continuing computation 
from any live thread. The question of what classes are reachable except those that are directly referenced 
as first-class objects by reachable objects, is more complex. We discuss it in detail in the next subsection. 
For now, we point out that if an instance is reachable, then at least its class, along with its superclasses and 
implemented interfaces, transitively, are also reachable.

According to another principle of orthogonal persistence, type orthogonality, all of the types defined in the

2In the Java language, the keyword t r a n s ie n t  has been reserved to denote transient fields in the context o f  Java Object Serial
ization [SunOOj]. We therefore have to use a different way to mark fields transient —  a special API call. This issue is discussed in 
detail in [PAJ99],
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JLS, in particular class ja v a . lang.Thread, can be used in a persistent application and can persist. The 
consequence of persistent Thread instances is that, on resumption, active threads should continue from their 
state at the previous checkpoint.

From these definitions it follows that active suspended threads are what are called roots o f persistence for 
the data promoted into the persistent store. However, it is possible that a persistent application terminates 
completely, i.e. all of its non-daemon threads exit, but it is still desirable to retain the accessible data in the 
store. This would require defining explicit roots of persistence. Also, in our high-performance implementa
tion of PJama, providing persistent native threads has proved too complex without severely compromising 
performance. For these reasons, the mechanism of explicit persistent roots management is predominant at 
present.

In the course of time PJama has undergone several persistent root models. The present one can be viewed 
as two-level. On the level above the Java language itself, the programmer can define the behaviour of the 
Persistent Java VM using command fine switches. The VM either automatically saves the main class into 
the store or not (the main class is the class that contains the public static void main (String args[]) 
method, which was an entry point in this particular application execution). When a class is saved into the 
store, its static variables are saved as well (note that this is a feature making PJama different from most of 
the other persistent solutions for Java presently known to us). Therefore if the main class M is saved into the 
store, its static variables are roots of persistence. During the subsequent runs of applications over this store, 
whether they initiate from the same class M or not, their code can access static variables of M and retrieve 
persistent data from them.

This behaviour might be convenient in some cases and less convenient in others. Since the experience of 
the PJama developers group shows that the second variant is more frequent, the default behaviour of the 
PJama VM is not to promote the main class. Instead, the application developer is free to choose any object, 
and make it an explicit root of persistence. This is done using a very simple API contained in the standard 
PJama library class org.opj .OPRuntime. This class contains a public static variable called roots, of 
jav a . lang.util. Set type. By calling its add (Object) method, e.g. by executing

org.opj.OPRuntime.roots.add(obj);

somewhere in the text of the application, the programmer makes obj an explicit root of persistence.

Note, though, that this API doesn’t actually contain a convenient mechanism for explicit retrieval of any 
particular root. This, however, is not required, because it is expected that the user will use class objects as 
persistent roots, e.g.

org.opj.OPRuntime.roots.add(M.class)

Once some class is made persistent, it will be automatically loaded from the store whenever it is requested by 
the running PJama application. Therefore if the above line was executed, and then the persistent application 
checkpointed successfully, this or another application running next time over the same store will get a 
persistent copy of class M, when it references this class. Again, the static variables of this class can be used 
to retrieve persistent data.
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2.1.3.2 The PJama API

The API of the latest version of PJamai (that is, the latest line of PJama releases based on PEVM; the 
API in the PJama Classic was slightly different) is available through the special package org.opj, which 
contains a number of classes. The main implementation class for this API is called org.opj .OPRuntime. 
The publically available members of this class are presented in Figure 2.2.

public static final

public static int c
public static void
public static void '

public static void
public static void

Figure 2.2: The essential PJama API.

The static variable roots allows programmers to explicitly introduce their own roots of persistence. The 
method checkpoint () causes the computation state to be preserved, and then the computation continues. 
The method suspend () causes the computation state to be saved for a future resumption, after which the 
execution of the JVM is terminated. The method halt () terminates the execution of the JVM without 
preserving the computation, so that resumption will be from the previously recorded state.

The methods dealing with runtime listeners allow application programmers to adopt the resumable program
ming style. A more complete description of the PJama API can be found in [AJOO], Chapter 5, and also in 
the PJama online documentation [PJaOO]. In addition to the API oriented towards application programmers, 
there is also a small API which should normally be used only by advanced programmers. It allows to e.g. 
check if a certain class or object is persistent, get its PID, etc.

Making objects persistent is very simple with the present PJama API, as illustrated in Figure 2.3. Here a 
common scenario is presented, when a single class is used as a container for one or more persistent roots. 
The class is added to the set of roots by a single call in the static initialiser, after which its static fields serve 
as persistent roots.

import org.opj.OPRuntime;

public class PersistentData {
static public java.util.Hashtable dictionary;

static {
OPRuntime.roots.add(PersistentData.class);

}
}

Figure 2.3: An example of using PJama.
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2.1.3.3 Class Promotion

We are going to return now to the discussion of class promotion strategy in PJama. But first a couple of 
remarks to give the reader a broader view of this question. In OODBMS, which are the class of systems 
functionally closest to PJama and other persistent languages, it is typically not classes themselves that are 
saved into the database. In a language such as C++, which is supported by most of OODBMS, compiled 
classes are something quite different from Java classes. A compiled C++ class is just binary code, basically a 
collection of subroutines representing class methods, which tells us practically nothing about, for example, 
the layout of objects of this class. So, instead, what is typically saved into the database is some kind of 
schema definition that can be either separately defined by the user or obtained by preprocessing the source 
code of classes. The actual details can vary significantly, though, and in some systems, e.g. GemStone/J 
[Gem98], the situation currently resembles PJama rather than more traditional OODBMS. Nevertheless, 
all of these systems consider classes as essentially descriptors of instance layout (inside a database) and 
placeholders for collections of methods (outside it). This is reflected, among other things, in the fact that 
none of the OODBMS known to us at present, save into the database static variables of classes.

In contrast, in PJama, as it was shown in the previous section, classes are also treated as first-class per
sistent objects. We believe preserving classes, including the code, along with persistent instances, is the 
most reliable way to preserve both structural consistency of the data (that is, correspondence between class 
definitions and real structure of their objects) and behavioural consistency (that is, formal correctness of the 
program in the sense that every method which is called is defined and every field which is read/written is 
defined). Preservation of these properties is, in turn, very important for large and long-lived applications, 
which may operate on large amounts of valuable data.

If classes were not promoted, then an accidental or malicious change to a class could introduce a mismatch 
between the real format of its persistent instances and its new definition, leading to program crash or data 
reading/writing errors. In Java it is also possible (since classes can be recompiled independently) that a 
method is deleted from one class, but is still called by another class. Therefore in case of careless code 
modification and compilation, it is quite easy to create a set of classes which are supposed to run together, 
but will really not (non-persistent Java applications can equally well suffer from this code inconsistency 
problem).

When a class becomes persistent, its static fields also become persistent. If this was not the case, then 
any state in the static fields, which is shared by all instances, would be lost; this would force the class 
implementation to change, breaking the concept of persistence independence.

The only time the static initialiser of a class is called is when the (not yet persistent) class is loaded from 
the file system. If a class becomes persistent, its static initialiser is not called when a class is fetched 
from the store. Otherwise, its static fields would potentially be re-initialised and their values could become 
inconsistent with the state of the persistent instances of that class. If some initialisation (e.g. a native library 
loading) must be performed every time a class is loaded from the store, this can be done by Action Handlers 
that PJama supports [JA98].

We have already mentioned that classes that are required to define the format of reachable instances, and that 
are referenced directly from persistent objects, are considered reachable. However, one other way for classes 
to become reachable exists: it is the reachability that is implicit in the class definition. We are talking here
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about symbolic references to other classes in the field declarations, method signatures and method bodies of 
a class. The discussion of the issues related to implicit class reachability can be found in [AJ99]. Eventually 
the solution was adopted which is presented in [AJOO], and we quote here the two paragraphs from this 
work.

A class C lass instance is persistence reachable if it is directly referenced under the standard 
rules for object reachability, or is referenced by a ClassLoader instance that is itself persistence 
reachable, if at least one of its instances is persistence reachable, or if some array of its instances 
is persistence reachable. A recent clarification to the JLS states that the bootstrap class loader 
instance is always reachable. It follows that all classes loaded by the bootstrap class loader 
(bootstrap classes) are persistence reachable, as are all the objects that are persistence reachable 
from static variables in those classes.

Any resolved (see JLS, Chapter 12) symbolic reference to a class C in the definition of some 
class CC will ensure that if CC is persistence reachable, then so is C. A symbolic reference exists 
from CC to C if C is the superclass of CC, or if CC implements C, if C is used as the type of 
a variable (static, instance or local) or as the type of the parameters or result of a method or 
constructor, or if CC uses a static variable of C. Note that this constraint does not restrict an 
implementation in its choice of eager or lazy resolution of symbolic references. However, once 
resolution has occurred, the binding must be maintained.

The implementation of JVM on which PJama is currently based (PEVM) resolves symbolic references in 
classes lazily. Therefore, of the implicitly reachable classes, only those that were actively used at least once 
are promoted. This makes practical sense, particularly with the contemporary releases of the Java Platform 
that contain roughly 4000 standard library (core) classes. The previous implementation of PJama (PJama 
Classic) used to resolve all symbolic references in classes transitively and eagerly on promotion. In some 
cases that could result in several thousand classes saved into the store unnecessarily — just because they 
were in the transitive closure of classes referenced by a single class really required by an application.

2.1.3.4 Representation of Classes in the Persistent Store

As mentioned in Section 2.1.2, in the PJama Classic implementation classes were saved in the store in the 
format close to their main memory representation. Quite “hairy” main-memory representation of a Java 
class, that consists of a large number of variable-size structures, was “flattened” when saving class into the 
store, and then “unflattened” when loading the class into main memory next time. This design, originally 
suggested to improve class loading time (no usual Java class file parsing and verification is required, some 
optimisations that the interpreter makes to bytecodes are preserved), eventually resulted in a number of very 
serious drawbacks. First of all, whenever something would change in the internal representation of class in 
the new release of the JVM, it had to be reflected in our code and in our disk format of classes, making stores 
created with older versions of PJama unusable. Then, the C code (often quite tricky) that dealt exclusively 
with flattening and unflattening classes (i.e. swizzling and unswizzling pointers inside class objects) had 
been, along with the memory class format defined by the JVM vendor (Sun), gradually becoming more 
complex from one JVM release to another. Its size has finally grown to the scary figure of more than 3000 
lines, and it became very difficult to manage. At the same time, the overall performance of the system
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compared to the one where classes are saved in their usual .c la s s  file format, has decreased, rather than 
increased, as our measurements have eventually shown.

All references from a persistent class object to other classes (as well as all other objects, e.g. constants 
defined in the class’s constant pool (see Section 3.3.2) were via PIDs. This was an additional burden for 
evolution, since patching these PIDs, which were not easy to locate inside a class object, was required if e.g. 
a change to class hierarchy was made. The whole idea of saving classes in such a format has proved totally 
inadequate in the end.

These problems were realised in PJamai for which a portable representation of class objects in the store was 
adopted. “Disk class object” now contains a reference to a persistent array of bytes with the corresponding 
class file contents, plus a small number of additional fields, e.g.

• transient fields map (information about fields that are transient in the PJama sense is not contained in 
the class file — rather, it has to be provided by the programmer with the help of explicit API calls and 
specially preserved by the persistent platform);

• pointer to the class loader instance for this class;

• pointers to arrays that contain, respectively, values of primitive and class type static fields of the class.

There are also several other fields, that are essentially redundant (i.e. their values can be obtained after 
parsing the class file), and exist mainly for convenience.

In such a format, all references from a persistent class on disk to other classes are strictly symbolic, which 
simplifies evolution a lot, since we don’t have to patch the pointers (PIDs) to evolving classes in non
evolving persistent classes during evolution. It is also easy to convert a store with classes in such a format 
from one hardware architecture to another (i.e. high-endian to low-endian and vice versa), since the locations 
of all numeric values in which bytes should be swapped during such a conversion, are well-known.

Lookup of persistent classes in the store is performed solely on the basis on their names, via the Persistent 
Class Directory (PCD) — a persistent data structure that maps combinations of class names and class loaders 
to the corresponding class objects.

2.1.4 Summary

PJama is the only system presently available and known to us that preserves class objects (including static 
variables and methods) in the store along with their instances. Moreover, more classes than just those that 
are required to define the format of persistent instances, are typically preserved. This is due to the model of 
class promotion, which is designed with the intention to preserve the behavioural consistency of a persistent 
application along with the structural consistency, thus making future computations consistent with the past. 
Classes are saved in the store in a portable format, which essentially consists of a class file byte array, a 
block of static variables, and some auxiliary fields. All references from a class to classes inside the store, 
are symbolic, which aids store-level support for evolution.
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2.2 Requirements for the PJama Evolution Technology

In the previous section we have demonstrated the reasons why class objects are made persistent in PJama, 
and why typically more classes than just those that have persistent instances, are promoted into the store. 
Since this mechanism exists precisely to prevent any (dangerous) changes to persistent classes and instances, 
the application developer needs special evolution technology that allows required (safe) changes to be per
formed. The main objective of this technology is to aid and facilitate safe changes. More precisely, we can 
formulate its responsibilities as follows:

1. Verify that the new set of classes, i.e. unchanged classes plus new versions of changed classes, plus 
any newly created classes, are mutually consistent. The criterion for this formal consistency that we 
adopt, is that all the classes in the new set are source compatible, that is, the Java source code of all 
these classes can be compiled together without problems.

2. For each changed class, check if the format of instances that it defines became different. If so, perform 
conversion of instances of this class, so that eventually all persistent instances agree with their classes.

3. If both of the previous tasks succeeded, replace classes and instances in the persistent store atomically 
and permanently.

This is not the only possible variant of requirements for the evolution technology. Another approach is 
called versioning. This term corresponds to a broad range of techniques, for which the common feature is 
long-term coexistence of multiple versions of either individual classes, or collections of classes {schemas), 
and/or instances in the formats corresponding to these different versions (see Section 2.6.1).

In PJama, however, we choose simpler requirements for the evolution technology, which we described 
above. This simplicity, first of all, provides greater robustness for the whole system. This is an important 
factor — our experience has shown that even the support for “simple” replacement evolution interferes 
significantly with many other parts of the PJama system. We have also heard that implementing versioning 
technology in other systems was sometimes a tremendous effort, with eventual very low end-user demand 
for this technology, e.g. as it happened in the O2 project (this was discussed at O2 Presentation at PASTEL 
meeting in 1998).

Another consideration is that PJama at present does not support multiple applications running concurrently 
over the same store. Hence so far we simply can’t experience most of the problems that might have provoked 
development of versioning techniques in other systems. Last but not least, due to its present age, available 
resources and the user base, the PJama evolution technology is oriented more towards development-time 
evolution, rather than deployment-time [ADHPOO]. Again, this makes the demand for versioning technology 
negligible at present.

2.3 Main Features of the PJama Evolution Technology

In the previous section we have formulated the requirements for the evolution technology in a relatively 
abstract fashion. We will now show how they are implemented.
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The front end of our evolution technology is a standalone utility, a command-line tool which the appli
cation developer invokes over the given store in order to evolve classes and convert instances. In addi
tion to this tool, there is a small additional API and functionality contained in one PJama library class 
(org .opj . u t i l i t i e s . PJEvolution), and some programming API/methodology that can be followed by 
the programmer and recognised by the evolution system. This API is used only when persistent object con
version is required. To simply replace classes when the format of their instances doesn’t change, it is enough 
to use just the evolution tool.

The front end of the PJama evolution technology has itself undergone intensive evolution over several 
successive releases. Its initial and present shapes differ significantly. To facilitate the reader’s understanding 
of the motivation behind the present design, and to answer the questions that may arise regarding other 
possible design alternatives, we will now describe the history of our successive evolution tools.

2.3.1 The History of Evolution Tools For PJama

The initial version of the PJama evolution tool was called op j subst and was purely a change validation and 
class replacement tool. This and other PJama tools are command-line utilities, in line with other utilities 
coming with the implementation of the Java platform on which PJama is currently based — Sun’s JDK. In 
order to evolve classes using op j subst, the application developer had to do the following:

1. Modify the . java sources for the classes.

2. Recompile them using the standard j avac compiler.

3. Run the tool over the given store, passing the classes to it, e.g.
op jsubst - s to re  mystore Cl C2

The tool then verified if the new versions of classes are valid substitutes for the old ones, and if they were, 
replaced the classes in the store. It also converted persistent instances in case their format had changed (see 
Chapter 4). If any problems were detected during verification or conversion, the tool would leave the store 
unchanged.

The problem with this evolution tool was that the user had to identify correctly which classes were modified, 
manually recompile them, and then pass them to the tool. If there are more than, say, five changed classes, 
the above procedure was likely to become quite inconvenient and error prone. Therefore we soon developed 
another tool, which was called opj c and was a hybrid of the j avac compiler and opj subst. The tool would 
take the . j ava sources for the modified classes, recompile them and then do all the things that opj subst did 
for those classes that had persistent counterparts. Thus, the application developer had to make fewer steps 
and had less information to keep in mind. An additional function of opjc was compilation of conversion 
classes (see Chapter 4) — these classes make use of some special Java language extensions and therefore 
can not be compiled by the ordinary j avac compiler.

However, both tools had a common disadvantage, which we will explain with a simple example. Suppose 
we initially have two persistent classes A and B presented in Figure 2.4.
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class A { class B {
void m () {

B. m () ;
}

} } '  '

Figure 2.4: An example of two persistent classes, one using another.

Suppose then that we delete method m () from B. In the JLS terminology, this change is both binary incom
patible  (because bytecodes of recompiled class B will not work correctly with class A anymore), and source 
incompatible (because the source files of classes A and B can not be compiled together anymore. Section 
3.3.1 tells more about source incompatibility). If, however, we invoke

>javac B.java
>opjsubst -store mystore B
or just
>opjc -store mystore B.java

then in either case, class B will be successfully recompiled and substituted, whereas class A will remain 
unchanged. The next run of the code of persistent class A will therefore crash with “method not found” 
exception.

This problem is not unique to PJama evolution, and its source is the Java model of compilation and linking, 
in which classes that eventually constitute a single application can be compiled and evolved separately. The 
fact that there is no need to link the entire application or bother about interdependencies between classes 
(as long as all changes to classes are compatible) is a great advantage of this model. Since incompatible 
changes are usually relatively rare, and since ordinary makefiles don’t help much in this case, as discussed in 
Section 3.1, developers often ignore the problems associated with such changes. Typically, if they make an 
incompatible change (and notice that, which is not always the case), they would just update the dependent 
classes they manage to identify and recompile them, or they would recompile the whole application. How
ever, we consider that in case of persistent applications, which operate on large and long-lived volumes of 
data, it is too dangerous to rely on the developer’s memory (and also on whether or not they understand that 
they make an incompatible change), since the cost of class incompatibility problems, when they propagate 
into the store during evolution and possibly show up much later, can be much greater than in conventional 
(transient) applications. On the other hand, repeated recompilation of the entire application can be too ex
pensive. Therefore our next step was to investigate how to make class evolution safe in the sense that no 
incompatible class changes could propagate into the store.

After considering some alternatives we finally chose to combine evolution with selective (or, as it also 
called, smart) recompilation of classes (see Section 3.1 for detailed discussion). We called this persistent 
build technology and developed a tool which controls both class recompilation and evolution. The main 
features of this tool, called opjb, are discussed in the next section.
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2.3.2 The Front End — the opj b Persistent Build Tool

When opjb is first invoked over the given store, it creates a persistent table which contains information on 
every evolvable class, its class file located on the CLASSPATH and its . j ava source file. This table, called 
Evolvable Class Directory (ECD) is then used to keep track of these classes and determine Java sources 
and/or class files that have changed between the invocations of the tool.

On the first invocation of the tool the developer has to provide it with enough information to locate all of the 
. j ava and . c la ss  files for the persistent classes. In the simplest case, when the tool is the first application 
invoked over an empty persistent store, it may look just like

>opjb -store mystore mypackage/*.java

The detailed explanation for more complex cases is presented in Section 3.2.2. On the subsequent runs 
the presence of the class management table in the store minimises the amount of information that should 
be repeatedly passed to the tool. In most cases, the developer simply modifies the .java  sources for the 
necessary classes and invokes opjb, e.g:

>opjb -store mystore

To add a class to the ECD (if this class is not yet persistent) the developer can invoke either of

>opjb -store mystore MyClass 
>opjb -store mystore MyClass.java

The tool checks whether any classes on the file system have changed compared to their counterparts in the 
persistent store. Classes on the file system exist both in the source and in the bytecode form. So the tool 
first recompiles the modified . j ava files (modification is recognised by comparing the timestamp and the 
footprint with the previously recorded values preserved in the store), then compares the changed .c la s s  
files with their older persistent versions. This comparison (or, as we call it, change validation) may reveal 
more classes that need to be recompiled. We say that these classes are potentially affected by incompatible 
changes. An example of such a change was presented in the previous section. Potentially affected classes 
then undergo the same recompilation and validation procedure. This process, described in detail in section 
3.3, continues transitively until there are no more classes to recompile or verify. After that, all classes that 
have changed are atomically replaced, and the ECD is updated.

Though in most cases the interaction between the developer and the tool is minimal, as above, sometimes 
more information should be specified. One such case is when the programmer needs to customise how 
the values of static variables are copied between the old and the new versions of an evolving class. The 
command line options of opjb that control that are described in Appendix A. Other cases are several 
operations supported by opjb that work on the level of class hierarchy rather than individual classes. They 
are discussed in the next section. Finally, if object conversion (see chapter 4) is to be performed, additional 
information may be required by the tool, as discussed in section 2.3.4.
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2.3.3 Support for Operations on the Class Hierarchy

Since PJama does not maintain an explicit database schema, changes to the class hierarchy such as adding 
a subclass, insertion of a class in the middle of the hierarchy or moving class around the hierarchy, happen 
implicitly, when the developer modifies the sources for the involved classes. For example, if class E is to 
be inserted in the middle of the class hierarchy (this operation is denoted “Evolution 1” in Figure 2.5), the 
developer simply has to change the source code for classes D1 and D2, replacing the “extends C” statement 
with “extends E”, and then to run the persistent build tool. Class E will be automatically promoted into the 
store. Thus the developer essentially does not have to bother most of the time, whether or not the changes 
they make affect the class hierarchy.

Evolution 1 Evolution 2

D2 D2 D2D1 D1

Figure 2.5: Class Hierarchy Evolution Example

However, if during the subsequent “Evolution 2” the developer changes the definitions of classes D1 and 
D2 back to the original form, class E will not be removed from the class hierarchy. The latter will be just 
re-shaped, as shown in Figure 2.5(c). In fact, that might be the developer’s intention. But if the developer 
wishes to remove class E completely, and, consequently, to migrate its instances, if they exist, to another 
class, then they need to explicitly specify the deletion operation, e.g.

>opjb -store mystore -del E

Needless to say, the definitions of former subclasses of E should also be updated accordingly. The fact that 
no classes reference class E anymore will be verified by the system. It will then check whether any persistent 
instances of E exist. If they do, then the programmer should also specify the default migration class or give 
the system a conversion class that will deal with instances of class E (see section 4.5.2 and Appendix A for 
more details).

Another class hierarchy level operation supported by PJama evolution system is class replacement. This 
can be viewed as class modification combined with a name change for this class, whereas its identity, which 
in this case is binding between its instances and the class object, remains unchanged. Bindings between 
persistent classes in the store are purely symbolic in PJama, as was explained in section 2.1.3.4, so the 
developer has to take care of preserving them manually, by changing the . j ava sources of the respective 
classes. To replace class C with class D, the developer should simply create the source code for class D and
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run the build tool with a special option, e.g.

>opjb -store mystore D.java -rep C D

The . j ava sources of classes that previously referenced C should be updated accordingly. The system will 
verify that no class in the store now references the name C, promote class D into the store, re-bind the existing 
instances of C to class D, and, finally, delete class C from the Persistent Class Directory.

2.3.4 Support for Object Conversion

If any classes are changed such that their instances need conversion, the user has a choice between relying on 
the default (automatic) conversion, or writing their own conversion code in Java (see Chapter 4 for details). 
In the latter case, one or more classes containing conversion code should be passed to the persistent build 
tool in addition to the evolved classes, for example:

>opjb -store mystore MyConvClass.java -convclass mypackage.MyConvClass

The mypackage .MyConvClass class is specified here twice, because this class is not a part of a persistent 
application. Therefore we have to explicitly specify the source file MyConvClass. java to make the tool 
compile it, and we also specify that class mypackage .MyConvClass is a conversion class.

If compilation and change validation proceed without problems, conversion of instances starts immediately. 
In other words, only eager conversion is implemented at present. See Section 2.5.2 for discussion of why 
lazy conversion is currently not supported.

2.4 PJama Evolution System Architecture Overview

The architecture of the PJama evolution system is outlined in Figure 2.6.

The system consists of three software layers. These layers are isolated from each other, communicating 
via clean programming interfaces. Layer isolation allows us to replace the code corresponding to each 
layer independently, with little or no disturbance to the other parts of the code. Such a replacement will 
be required, for example, if PJama migrates to a different JVM and/or persistent store. In fact, such a 
transition has happened already once, when our evolution technology was ported from the PJama Classic 
implementation based on Sun’s Reference Edition JVM to Sun’s Solaris Research VM plus Sphere store 
(see Section 2.1.2). During this transition, the lower software layers were changed quite significantly, but 
the upper layer remained practically unchanged [LMGOO].

The code in the upper layer implements the high-level functionality: interaction with the user, management 
of the ECD (see Section 3.2.1), change validation and recompilation of changed classes, and, in part, class 
replacement in store and instance conversion. For class compilation we use the standard j avac Java com
piler, which is written in Java itself. We have made a number of patches to it to enable its integration with
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Figure 2.6: PJama Evolution System Architecture

our system and to make it “understand” the special syntax which is used in conversion classes (see Chapter 
4).

The upper layer is written in Java, whereas the two other layers are written in C. Implementation in Java 
has a number of merits. It makes the code portable and gives it access to the large number of powerful 
facilities supported by the Java core classes, e.g. class reflection API or the classes implementing such data 
structures as sets or hashtables. The Java language also allows us to easily create and manipulate complex 
data structures of arbitrary size, which are used during class validation and recompilation. In general, we 
were trying to implement as much of the system as possible in Java.

The code of the middle software layer can be divided into two parts. The first part includes a number of 
miscellaneous utility functions supporting operations required by the upper layer, that can’t be implemented 
in Java or found in the Java core classes, e.g. advanced reflection facilities. The second part of this code 
works as a bridge between the upper layer and the store layer. It also includes some functions that have to 
be implemented in C to provide sufficient execution speed, e.g. the support for default instance conversion.

The lowest software layer supports the store-specific operations, the most important of which are instance 
lookup, low-level support for instance conversion and recovery. It is a part of the Sphere persistent store. 
The detailed technical description of this layer can be found in [HAD99], whereas in this thesis we provide 
a high-level overview of its design and present some performance measurements (see Chapter 6).
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2.5 The Present Constraints

2.5.1 No On-Line or Concurrent Evolution

The PJama evolution technology is currently off-line only, which means that when evolution runs, it should 
be the only activity on the given persistent store. The immediate reason for it is that PJama does not 
support multiple concurrent transactions on the same persistent store. Also, a reliable, industrial-strength 
implementation of concurrent evolution seems to be a complex problem, with some hard choices on both 
conceptual and technical levels. This may be a subject of future research.

2.5.2 No Lazy Object Conversion

At present we support only eager (immediate) conversion of persistent objects. Lazy or deferred conversion, 
where objects are converted at the fault-in time, when a usual application running over the given store 
requests them, is an alternative. Lazy conversion can be beneficial for some applications, first of all those 
where any significant downtime required to convert all of the evolving objects is undesirable. However, 
there are also a number of specific problems associated with lazy conversion. It looks technically difficult to 
implement it such that it does not compromise the performance of the system in the normal, non-evolution 
mode, and also to avoid imposing too much design complexity on many parts of the system that are not 
directly related to evolution support. The most fundamental problem, however, arises if we think about 
combining lazy conversion with user-defined conversion code.

This problem is described in, e.g. [FFM+95]. The authors call it a problem of combined complex and 
lazy modification. Complex modification is an evolutionary modification to an instance which involves 
accessing data not only of that instance, but of some others as well. The problems in this case can be caused 
by several reasons, and here is the simplest example. Suppose we have a conversion function for instances 
of class C that involves reading field f of an instance d of another class called D. At some point in time 
we have a persistent store with some of the instances of C converted and some not. Suppose then that a 
modification to D is introduced, such that field f is deleted. Nothing harmful would happen if conversion 
was performed eagerly for all instances of C and then for all instances of D. However, in the situation which 
we are describing, for some particular instance of C it can happen that d is converted before conversion of 
the corresponding instance of C is attempted. Therefore the latter conversion, when it is eventually initiated, 
will find d in already changed, unsuitable format.

In [FFM+95], where this problem was first presented, a mechanism of so-called shielding was suggested in 
order to eliminate it. It basically means retaining (invisibly for the programmer) the data in the old format 
as well as in the new one for every converted instance. A similar approach, also known as screening (which 
looks most consistent when it is combined with schema versioning or object versioning, that preserves and 
allows to access various versions of objects) was implemented in a number of systems, e.g. CLOSQL 
[MS92, MS93, Mon93] and ORION [BKKK87, Ban87, KC88].

We consider this approach too expensive and therefore impractical, since it means that a large amount 
of information (fields deleted in the course of evolution or even all of the old versions of each evolving 
instance) has to be kept in the database forever. Several alternatives to shielding (apart from relying on the
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user’s ability to recognise and avoid the above problems) can be suggested:

1. Simply rule out custom lazy conversion, allowing only default conversion to be done lazily. Default 
conversion does not set fields of any objects other than the current evolving one. It is not clear, though, 
how useful such a truncated lazy conversion functionality would be.

2. Allow custom lazy conversion, but prohibit reading/writing fields of objects other than the current 
one in conversion methods. This can be done by e.g. analysing conversion code and rejecting it if it 
attempts to access any fields or call any non-static methods of objects other than the current one.

3. More sophisticated mechanism that includes code analysis may, in the case of field or method deletion, 
use preserved information about previous evolutions and determine whether there are any incomplete 
lazy modifications which need to access these fields or methods. It can then inform the user about the 
problem, and, for example, eagerly complete the previous lazy modifications.

Implementation of lazy conversion for PJama might be a good topic for a separate research project in the 
future. Lazy conversion in several commercial systems is discussed in Section 4.9. In these systems, this 
kind of conversion is restricted to avoid the complex form, which confirms our concerns.

2.5.3 No Support for Java Core Classes Evolution

The evolution technology for PJama currently does not support evolution of Java core classes, in other 
words, evolving persistent stores across Java SDK releases. Java core classes are a set of standard library 
package classes delivered with every Java implemenation/release, for example all classes for which fully 
qualified name starts with “ j ava . ”.

There are two problems with these classes. First, some of them, such as java.lang.Object, 
java. lang.Throwable or java. lang.ClassLoader, are intimately connected with the Java VM. The 
VM loads them in a special way, reads/writes their internal variables, maintains certain constraints associ
ated with them (e.g. it is not allowed to load a second copy of class Throwable, no matter with what class 
loader), etc. Therefore working with two copies of these classes — which the VM has to do during evolution 
— will require a number of patches to the VM code, which are likely to conflict with internal invariants and 
security mechanisms.

However, another, much more serious problem, is that changes to these classes are beyond our control, and 
their amount between successive versions of the Java SDK is high and does not seem to diminish in the 
latest releases. For example, our investigation for the relatively recent transition from Sun’s SDK version 
1.2 to version 1.2.2, which is considered a “minor upgrade”, has shown the figures summarised in Table 2.1 
(more complete historical data can be found in table 9.1 of [AJOO]):

If we wanted to support evolution of core classes and user classes that extend them in this particular case, 
we would have to analyse what has changed, at least in those 338 classes for which the format of instances 
has changed, and possibly write conversion code for them. Ideally, to avoid problems, we would also have 
to inspect all other changed classes. This is not likely to be an easy task, at least for a limited-size research
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Total number of old classes 4273
Total number of new classes 4337
Classes removed in the newer version 113
Classes added in the newer version 177
Classes changed 1256
Of those, changed minimally (code only) 695
Classes for which conversion of instances is required 338

Table 2.1: Changes to Java core classes between JDK1.2 and JDK1.2.2

group. Instead, the ideal situation would be if the programmer who modifies a class also determines how to 
evolve it — but that would be possible only in case of very close co-operation between the Java vendor and 
the PJama group, which is currently not the case. Therefore, our evolution technology at present does not 
support evolution of Java core classes. It is always assumed that those of them which are persistent are the 
same as their counterparts on the CLASSPATH.

2.6 Related Work — OODB Systems

Systems most close to PJama and other language-specific persistent platforms are OODBMS, and most of 
the research in management of change to persistent object schema and data has been done in the context of 
these systems. The number of such systems is large, and models of their support for change management 
vary tremendously. Below we discuss a number of aspects of change management technology, which we 
consider the most important, and illustrate them on concrete examples.

2.6.1 General Approaches to Change Management

A number of approaches to modifying the conceptual structure of an object database have been developed 
historically, which can be broadly categorised as follows [RasOO]:

• Schema evolution, where the database has one logical schema to which modifications of class defini
tions and class hierarchy are applied. Instances are converted (eagerly or lazily, but once and forever) 
to conform to the latest schema. Examples of systems that follow this approach are Orion[BKKK87, 
Ban87], OTGen [LH90], O2 [FMZ94, FFM+95], GemStone/J [Gem98, GemOO], Objectivity/DB 
[Obj99a, Obj99b, Obj99d, Obj99c], Versant [VerOO]. PJama also employs this technique.

• Class versioning, which allows multiple versions of each class to co-exist. Instances can always 
be represented as if they belong to a specific version of their class, but how this is done (e.g. by 
creating a separate image of instance for each class version or by keeping one version-specific copy 
of the instance and dynamically converting it every time it is accessed using a different class version) 
depends on the concrete system. Examples of systems implementing class versioning are CLOSQL 
[MS92, MS93, Mon93] and POET [POEOO].
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• Schema versioning, which allows several versions of one logical schema to co-exist simultaneously. 
Similar to the previous approach, instances can be represented in multiple ways to confirm to a specific 
schema version. Schema versioning has been explored in e.g. the works of Odberg [Odb94b, Odb94a, 
Odb95], it was once implemented for the O2 system [FL96].

It is possible for one system to employ more than one change management technique. For example, both
schema evolution and schema versioning were implemented for O2 [FL96].

The schema evolution approach provides the developers (maintainers) with a coherent and comprehensible
view of the database, and it is presently followed by most of the well-established contemporary commercial 
systems3. Systems that implement schema evolution typically provide a facility for default conversion, 
and most of them also provide some kind of custom conversion, that allows the developer to specify how 
data should be transformed (see Section 4.9). Conversion can be performed either eagerly only (e.g. in 
GemStone/J or PJama), or both eager and lazy conversion is allowed (e.g. in O2 and Objectivity/DB).

What sometimes is considered a drawback of schema evolution approach is that information about history of 
changes is lost, and thus a change, once performed successfully, can not be reversed. More serious problems 
may be experienced if one database serves a number of applications. In this case, it might be difficult to 
update all of these applications simultaneously with the database, so that they incorporate the changed class 
definitions.

Class versioning approaches, on the other hand, maintain information about all versions of each class. Thus 
the existing persistent objects may not be changed to reflect schema changes. To represent an object in a 
way conforming to the “current” class definition that is used when accessing it, default conversion (as in 
POET), error handlers or update/backdate methods (as in CLOSQL) can be used. However, as the number 
of versions for each class grows, the schema tends to become quite complex, making maintenance difficult. 
It becomes hard to obtain a coherent view of the database in presence of a large number of class versions. 
Furthermore, it seems unlikely that any non-trivial transformations (e.g. those that need to access objects 
outside the current one) can be represented by update/backdate methods — for instance, because other 
objects can also belong to versioned classes.

Schema versioning may somewhat alleviate the shortcomings of schema evolution and class versioning by 
providing a coherent view of the conceptual structure of the database, while at the same time preserving 
the history of changes and multiple views of data. It looks like a most reliable technique for maintaining 
forward and backward compatibility with existing applications. However, the historical information is not 
available at a finer granularity, as in class versioning. Then, schema versioning can be very expensive in 
terms of space usage, especially in the presence of a large number of versions. In some implementations, 
even minor class changes may lead to creation of a new schema version, which is a significant overhead.

To summarise, none of the existing general approaches to change management satisfies all of the (conflict
ing) requirements: coherency of the database view, automatic compatibility with the existing applications, 
and small space overhead. The schema evolution approach, however, is at least easier to understand, design 
and implement, and the most economic in terms of disk space. Therefore it is supported by most of the 
contemporary commercial systems.

3It’s worth noting that it is the only available approach in RDBM S, and it has proved commercially and practically successful.
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2.6.2 Types of Changes Allowed

An object database schema consists essentially of a hierarchy of classes, each of which defines members. 
Therefore, schema modifications can be broadly divided into modifications to class hierarchy and internal 
changes to a class, such as adding and removing fields or methods, or redefining them. Changes in each 
of the above categories (class hierarchy or internal class structure) may or may not lead to changes in the 
structure of class instances.

All of the systems that we have studied support arbitrary changes to class structure, i.e. allow to add, delete 
or modify data fields (attributes). Most of these systems, but not all of them, also support arbitrary changes 
to class hierarchy. However, some systems, e.g. O2 and POET, do not allow developers to add or delete 
classes to/from the middle of the class hierarchy (such classes are called non-leaf), and CLOSQL did not 
allow any changes to class hierarchy. Some other constraints are possible, i.e. in POET affected objects in 
a database should be necessarily eagerly converted once a non-leaf class is added or deleted, whereas other 
types of changes can be handled by lazy object transformations.

More information on various evolution models and supported changes can be found in the exhaustive survey 
of evolution facilities in OODBMS in Rashid’s PhD thesis [RasOO]. Object conversion support in a number 
of systems is discussed in Section 4.9

2.6.3 Data and Code Consistency Preservation

[Sj093a] categorises the effects of changes to the conceptual structure of a database into:

• Effects on other parts of the conceptual structure.

• Effects on existing data.

• Effect on application programs.

Most of the existing work on evolution in OODBMS is focusing on the first and second category of effects,
i.e. on preserving of what is called structural consistency of the database. Very little has been done in the 
latter area, i.e. on the issues of preserving behavioural consistency of applications (see the discussion on how 
this it is supported in PJama in sections 2.1.3.3 and 2.3.1). As for other systems, in [ABDS94], for example,
unsafe statements are detected at compile-time and checked at run-time by a specific clause automatically
inserted around unsafe statements. The exception handling code is provided by the programmer. Therefore 
behavioural inconsistency is not eliminated, but at least its dangerous effects are somewhat contained. In 
[Ala97, Ala99] reflective techniques are employed to overcome the type system inconsistencies. Both of 
these approaches seem to cure the consequences and not the source of the problem. Therefore, as pointed 
out in [RasOO], “PJama is the only system offering support for behavioural consistency and partial support 
for language type system consistency; the object migration features are type unsafe”. The latter statement is 
only partially true, more details on this issue are contained in Section 4.5.2.
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2.6.4 Support for Evolution in Java Binding

Since the primary focus of this thesis is evolution of Java applications, we were interested in whether the 
Java binding, available in practically all of the contemporary OODBMS systems, provides equally good 
support for evolution as other bindings (typically C++). It turns out that in all systems Java is supported 
considerably worse than C++4. In the ODMG 2.0 standard [Cat97], which is a standard for object-oriented 
databases, and which includes the specification for Java binding, schema access/change facilities using the 
latter are not specified at all5. Thus an implementation that follows the standard would not allow the Java 
applications to even traverse the database schema, let alone change it. Those systems which allow schema 
traversal (reflection) or evolution in Java do it in a non-standard, vendor-specific way.

Systems presently known to us that allow schema traversal and change through a Java API are GemStone/J 
and Versant. In both of them, however, conversion facilities are rather limited (see Section 4.9). The only 
system presently known to us which has more advanced conversion facilities, i.e. can run programmer- 
defined conversion code, and supports Java binding — Objectivity/DB — does not allow conversion code 
to be written in Java. For additional information on evolution support through different language bindings 
in several contemporary commercial systems, the reader is referred to [RS99].

2.7 Summary

In this chapter, we have presented the model of evolution support in PJama. We formulated the requirements 
that we wanted this model to satisfy, in which the focus is on aiding and facilitating safe and consistent 
changes. In our model, new definitions of classes, usually in the form of source code, are supplied by 
the developer to the standalone utility, an evolution tool called opjb. The tool compiles the given classes, 
often recompiling other classes as well to ensure consistency (compatibility) of changes, then validates 
the changes, and finally evolves the persistent store atomically and durably. Since multiple concurrent 
applications can not operate over a single PJama store at present, we did not consider the issues of concurrent 
or on-line evolution. We then discussed the main features of the PJama evolution technology in detail. 
First we described the history of evolution tools that we developed and thus showed how we came to the 
present technology, which combines build management and evolution. We then described how we support 
some operations on class hierarchy, for which just new definitions of changed classes may not be sufficient. 
Finally, we mentioned support for object conversion, which is discussed in detail in Chapter 4.

We then explained why our technology presently has some constraints: lack of on-line or concurrent evolu
tion, lack of lazy object conversion and lack of support for evolution of Java core classes.

The survey of the related work has shown that the approach taken by PJama (schema evolution in favour of 
class or schema versioning) is at least the easiest to understand by the user, and relatively easy to design and 
implement. It is also the most economic in terms of database space. These are probably the reasons for most 
of the contemporary commercial systems to support this approach. We then showed that PJama’s evolution 
support is unique among other systems in two respects:

4O f course, this may be a temporary effect, because the C++ systems are more mature.
5For C++ no schema modification API is specified as well —  only schema traversal API.



CHAPTER 2. PJAMA SYSTEM  AND ITS EVOLUTION MODEL 36

• PJama seems to be the only system that preserves behavioural consistency (performs safety checks 
on the code, not just the data).

• It is also the only system providing advanced conversion facilities (custom conversion code) in Java.



Chapter 3

Persistent Build Technology

In this chapter we describe our persistent build technology, which was first briefly presented in Section 2.3.2. 
Section 3.1 discusses build management in a broader context and explains why this technology for PJama 
took its present form. Section 3.2 describes the details of management of evolvable classes. Section 3.3 
discusses the algorithm which is used in the persistent build procedure, and presents a comprehensive table 
of source incompatible changes. The last two sections describe related work and outline possible future 
work directions.

3.1 Motivation and Context

The PJama persistent build technology is a combination of smart recompilation of classes and evolution. 
The initially pure evolution technology was given an ability to recompile classes in order to make evolution 
safer by preventing propagation of incompatible changes to classes into the store, as was explained in Section
2.3.1. We will now discuss this issue in more detail.

Initially we didn’t consider combining evolution and recompilation. Our approach was that these are two 
separate activities, and though evolution technology should guarantee safety, it should not deal with class 
recompilation. Rather, it should just be able to find and report the problems with class incompatibilities.

However, one problem with this approach is its technical complexity. In case of some simpler changes, 
such as method deletion, it is easy to analyse the .c la s s  file for class A and determine if it still calls 
method B . m (). However, for some other types of incompatible changes, e.g. when a particular interface I 
is deleted from a list of interfaces implemented by class C, it is quite difficult to determine whether any class 
referencing I is now incompatible with class C, i.e. is it, for example, trying to cast an instance of C or of 
one of its subclasses to type I. That would require development of sophisticated class bytecode inspection 
procedures. The complexity of this problem is illustrated by the fact that many of the incompatible changes, 
such as the above, are not captured by the bytecode verifier (at least of the Sun’s Solaris Research VM, 
which is our current Java platform). Instead of this (more desirable) behaviour, in that system at least, the 
problems caused by such changes are revealed only at run time.

37
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In addition, a couple of known types of source incompatible changes are binary compatible and simply can 
not be detected by bytecode analysis (see the tables in Section 3.3.1).

Class recompilation, on the other hand, re-uses the existing compiler, which is itself the best code con
sistency verifier. And, what turns out to be equally important, automatic or smart recompilation for Java 
is a very useful feature by itself. It is relevant to any large and complex Java application. To justify this 
statement, we will first discuss the issues with general application build management.

3.1.1 General Build Management

Build management is essentially a process of creating the executable code of an application out of the 
source code. The source code can be spread among many modules, that are typically first compiled into 
an intermediate form (e.g. object-code files) and then linked into the final application. In addition, these 
modules can be written in different languages, operations involved in application assembling may not be just 
compilation and linking, but, for example, source code generation, obtaining updated sources from a remote 
location in case the current sources are found obsolete, binary code surgery, etc. The two main issues in 
build management are therefore the following:

1. Optimising the number of recompilations. All modules that have changed should be recompiled, but, 
on on the other hand, unnecessary recompilations of the modules whose sources have not logically 
changed, should be avoided.

2. Making management of multiple diverse activities that can be involved during application build, more 
convenient.

Most of the aspects of the second issue is beyond the scope of this thesis, and the rest of this section discusses 
the techniques for optimising the number of recompilations.

3.1.1.1 Make

The classic tool to help rebuild applications after change is make [Fel79]. In order to determine dependencies 
between programming modules, their code should be investigated. Typically, the programmers derive the 
dependencies and specify them in a makefile manually. This information, together with some implicit rules, 
enables make to rebuild the executable code after a change has been made to the source code. The general 
rule used in make is stated as follows in [Fel79]:

To “make” a particular node N, “make” all the nodes on which it depends. If any has been 
modified since N was last changed, or if N does not exist, update N.

Creating and maintaining makefiles may be a cumbersome task; it is up to the user to continuously infer 
dependencies and ensure that the referenced files actually exist. For a programming language such as C,
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with relatively simple relations between the modules, there are several tools (e.g. makedepend [Bru91]) that 
automatically determine such dependencies and generate makefiles. However, it has been widely observed 
that make is not particularly helpful in avoiding unnecessary recompilations. For example, many C program
mers who worked with makefiles are familiar with the situation when a large number of files are recompiled 
after a small change is made to just one header file. It is unlikely that any language independent tool can be 
smart in this respect. To be fair, though, we have to say that generality and language independence is in some 
sense an advantage of make, since it does not only support compilation and linking — any user-specified 
commands can be executed on the files dependent on the ones that have been changed, and quite complex 
sequences of operations can be encoded.

3.1.1.2 Smart Recompilation

In large application systems, recompilations represent a significant part of the maintenance costs. For ex
ample, it has been once reported, that in a large Ada application more than half of the compilations were 
redundant [ATW94]. Avoiding unnecessary recompilations is therefore an important issue, and, as we have 
already mentioned, make is certainly not an ultimate solution here.

Primitive recompilation techniques have a result that if a module containing declarations is shared by many 
other modules, any change to that module initiates recompilations of all the other modules — whether or not 
they use a changed declaration. Tichy [Tic86] has proposed a “smart recompilation” method for reducing the 
number of recompilations after a change to such declarations. The compiler’s1 symbol table was extended 
to keep track of finer granularity dependencies between declarations (type definitions, constants, variables, 
etc.) in a compilation context and the items in the compilation units referencing the declarations. The 
possible changes in the context are classified. For each kind of change, the dependency information is used 
in a test to decide whether recompilation is necessary.

An extension of Tichy’s “smart recompilation” to “smarter recompilation” is described in [SK88]. It is 
argued that Tichy’s definition of compilation consistency could be relaxed without the risk of introducing 
new errors and thus reduce the turn-around time even further.

A proposal for reducing unnecessary recompilations by analysing the source code, detecting dependencies 
and then clustering related declarations, files, etc. is described in [SP89].

At present smart recompilation techniques are widely adopted in integrated development environment (IDE) 
products for popular languages. Most of the IDEs for C/C++, e.g. Microsoft Visual C++ [MicOOa] or 
Borland C++ Builder [BorOOa], have this feature2, as well as IDEs for Pascal and its descendants, e.g. 
Borland Delphi [BorOOb]. However, there seem to be very few implementations of smart recompilation for 
Java. We discuss this in more detail in the “Related Work” section of this chapter.

*A Pascal compiler was used in a prototype implementation, but the method is generally applicable
2Surprisingly, however, smart recompilation is not supported in C/C++ compilers for major Unix platforms, e.g. Solaris or 

Linux.
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3.1.2 Smart Recompilation of Java Applications

From the point of view of build management, Java is distinct from most of the other industrial-strength 
programming languages in at least one aspect, and it is its late linking model, which we discussed in Section
2.3.1. This model, on one hand, is a strength of Java, since (as long as binary compatibility is maintained) 
it allows applications to be constructed out of binary classes coming from different sources and updated 
independently. Being able to run applications assembled dynamically from distributed locations, e.g. various 
Internet sites, was actually the original purpose that led to this model. It converts the final linking phase into 
a lazy incremental resolution process that happens every time a new class is loaded by the JVM3.

An additional feature of Java, is that dependencies between programming modules (classes), can take many 
forms. Class C can call a method of class D, be D’s subclass, implement interface D, declare a local variable of 
type D in one of its methods, to name but a few. Some changes to D will affect C and some not, depending on 
the actual kind of relation(s) between C and D. For example, consider what happens if method m () is deleted 
from D. If C previously called this method, it should necessarily be updated and recompiled. However, if C 
simply declares a local variable of type D, nothing is need to be done with it.

Combined together and applied to large, complex applications with many internal dependencies, these two 
properties substantially reduce the degree of control over the consistency of the resulting binary application 
when a change to some class is made. There is no linking of the entire application, that could have diagnosed 
many of the problems such as “member declared but not defined”. And the complex nature of dependencies 
between classes makes the traditional hand-crafted makefiles very unreliable. Therefore the developers 
basically have a choice only between recompiling individual changed classes and recompiling the whole 
application. Since the latter is time-consuming4, the developers tend to use mostly the former option, and 
only occasionally the latter. Thus the problems they experience are mostly due to broken, or, worse than that, 
working but now-incorrect links. It would therefore make sense to define smart recompilation for Java as 
a technology that would guarantee change validation (or, in other words, source compatibility verification) 
and recompilation of all necessary classes after a change is made, yet avoiding the majority of redundant 
recompilations.

To be fair, we should mention that to comply with the standard, a Java compiler should contain a kind of 
“make” functionality, which tries to find the Java sources for all of the classes that the given class references, 
and recompile them if they are newer than the corresponding class files. This partially eliminates the above 
problem. However, j avac won’t work in the other direction, i.e. find any classes that depend on a given 
class. This is not supported for at least one reason: there needs to be some way of identifying the set of 
classes that constitute an “application” for which we want to maintain consistency. Some kind of a database 
need to be maintained, that refers to application classes and their sources. Ideally all of these programming 
units should be kept inside the database, to prevent malicious or accidental file deletions, moves, etc., but 
it is also acceptable to keep them on the file system and store paths to these files, plus some additional 
information in the database. A standard Java compiler does not support anything like that.

However, for a tool that always runs over a persistent store, the store itself can be used to host such a

3Som e development platforms for Java, e.g. Visual Cafe [WebOO] have an option that allows to com pile a Java application into 
a single binary executable file. This, however, makes the application non-portable, eliminating one o f  the main advantages o f Java.

4For the latest Java compilers written in C, compilation speed is typically much higher than for the original Sun’s j avac compiler 
written in Java itself, which we used in this work. But applications are also getting larger, and people are still unlikely to use the 
“recompile all” option all the time.
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database. For this reason, evolution for a persistent platform and smart recompilation work together in a 
very natural and convenient way.

An additional benefit of using tracking of incompatible changes and smart recompilation in persistent ap
plications evolution (and also runtime evolution, see Chapter 7) is that in both of these cases the persistent 
store (active VM) can contain more classes than the developer may think or expect. Classes can come from 
different sources, can be loaded dynamically using custom class loaders, or can be synthetic. “Recompile 
all” may simply not work for such classes, whereas the build management technology would necessarily 
inspect all of them and detect any potential problems.

3.2 Management of Evolvable Classes in PJama

PJama persistent build technology keeps track of every persistent class (excluding Java Core classes that 
can’t evolve, see Section 2.5.3), as well as of non-persistent classes that are part of persistent applications 
that run over a given store. We decided to manage persistent and non-persistent classes uniformly for the 
developer’s convenience. When the number of classes of which a persistent application consists becomes 
large enough, it is quite difficult for the developer to keep track of which classes are currently persistent and 
which are not. Therefore it would be very inconvenient to use the standard Java compiler for some classes 
and persistent build tool for the others. It is also useful to maintain source compatibility for as many classes 
as possible.

However, how does the tool know which non-persistent classes belong to the persistent applications running 
over a given store? One solution would be to manually maintain an explicit “project”, i.e. a list of all files 
of an application. It is done this way in many integrated programming environments, e.g. Forte for Java 
[SunOOb] or JBuilder [BorOOc]. This solution, though it gives the developer the greatest degree of control 
over the application, will require some manual work. It will again bring the issue of distinguishing persistent 
and non-persistent classes, since persistent classes must always be included in the “project”. It also exposes 
the system to inconsistent recording of this information by the developer.

Another solution would be to patch the VM such that every time a persistent application terminates, a special 
routine is called which iterates over all classes currently in memory and saves their names in the store. We 
believe this operation will not bring any noticeable latency to the system, so it might be implemented in 
future5. For now, however, a simpler solution is adopted: the developer informs the system about application 
classes by just using the tool consistently over the given store, i.e. calling opjb over the given store every 
time they would otherwise run j avac. Once the name of a . j ava source is passed to the tool, it registers the 
corresponding class and then keeps track of it on each invocation.

5This can be formed efficiently by iterating over the current class loaders. However, this would miss classes loaded by loaders 
that became unreachable and were garbage collected. In the present PJama context such class loaders are irrelevant —  we can’t 
evolve classes loaded by them (see Section 5.5.4). However, i f  this changes, then to register all classes ever loaded by the VM, we 
might modify class loaders to inform the op jb  databases o f the classes they load.
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3.2.1 Evolvable Class Directory

Evolvable Class Directory is the main persistent data structure supporting the persistent build technology. 
This structure contains the information on every evolvable class and is updated after each successful run of 
opjb. The format of records of which ECD consists is presented in Figure 3.1. Since it is a Java stmcture, 
we are presenting the original Java class describing an individual record:

public class ECDEntry {
String className;
String javaFileFullPath; 
long javaFileLastModified; 
long javaFileFingerprint;
String classFileFullPath; 
long classFileLastModified; 
long classFileFingerprint; 
boolean noJavaSource; 
byte[] classFile;

}

Figure 3.1: The Java class describing an ECD entry.

Most of the field names are self-explanatory. Fingerprints are long numbers, essentially check sums, that 
are calculated for the contents of both the . j ava and the .c la s s  files for the given class, and used for quick 
identity tests. The noJavaSource field is tru e  for those persistent classes for which . java sources are not 
available, e.g. third-party libraries. They are treated specially, as discussed in Section 3.2.3.

The c la s s F ile  field is n u ll for persistent classes and refers to an array containing class bytecodes for a 
transient class. This information is kept to enable comparison between versions of non-persistent classes. 
If a class subsequently becomes persistent, its class file is promoted into the store along with the static 
variables, etc., and in the ECD the c la s s F ile  for this class is set to n u ll.

3.2.2 Locating . c l a s s  and . j ava Files for Persistent Classes

The first time the tool is called over the given persistent store, it needs to locate the .c la s s  and .jav a  
files on the file system for all evolvable classes. The . c la s s  files are looked up in the directories specified 
in the standard CLASSPATH environment variable. Alternatively, the “-c la ssp a th  directories” command 
line option can be used, which overrides the settings in the environment variable. To specify the directories 
containing the source files for classes, the “-sourcepath  directories>'‘ command line option is used.

It is assumed that the source code for a class is contained in the file with the same name and the . j ava 
extension. In practice this, however, is not always the case. The javac compiler requires that the class 
whose source code is contained in a . j ava file, has the same name as this file. However, more than one top- 
level class may be contained in one source file, so it is actually only the name of the first class in the given 
source file which is checked, opjb first tries to find a file called package/C. java for a class package.C. 
If it can’t find a file with this name, it asks the developer to provide the full path to the file. The developer
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has to give the name of an existing file or abort the whole operation. The same thing happens if the tool is 
unable to find the source file in the previously stored location, e.g. if this file was moved.

3.2.3 Classes with no . j ava Sources

Our persistent build tool requires that for all evolvable classes the corresponding source files exist. We 
believe this is a sensible requirement, since, after all, changing the source code of a class is the only way to 
evolve it in PJama. If accidentally for some persistent class the source file is lost, the developer may use the 
functionality provided in the “engineering” class library for PJama to extract the bytecode of the class from 
the store, and then use one of freely available Java disassemblers to recreate the source code of this class.

However, one special case with respect to source code for class is allowed. It is due to the fact that some 
applications may use third-party class libraries, for which source files are unavailable. So on the first invo
cation of opjb over the store, the developer can specify the names of class packages for which source files 
do not exist, using special “-nosources” command line option (see Appendix A).

The tool will then treat all of the classes in these packages separately. It will not attempt to check or evolve 
these classes in the same way as all of the others, for two reasons. First, third-party library classes are not 
supposed to evolve frequently, so it will be wasteful to check them every time the user builds an application. 
Second, more importantly, it does not make sense to apply our standard procedure of change validation 
(source compatibility verification) and recompilation (see Section 3.3) to these classes, since they do not 
have source code to recompile, and since, according to the recommendations of the JLS, all changes to such 
classes should be binary compatible anyway. For these reasons, third party classes are evolved separately 
from other classes, bypassing most of the standard validation procedure, when the developer explicitly 
applies a special command fine key.

In summary, third-party classes available only in class file format can be replaced, but fewer safety checks 
are applied.

3.3 Persistent Build Algorithm

Below is the algorithm of operations performed by the PJama evolution tool:

1. Initialize to empty sets the following sets:
{U JF} - a set of updated .jav a  files;
{RJF}  - a set of recompiled .jav a  files;
{UC} - a set of updated classes;
{UCV}  - a set of updated classes for which the changes have been validated successfully;

2. Find any evolvable classes in the Persistent Class Directory (PCD) (see Section 2.1.3.4) that are so 
far not in the ECD. Find . j ava files for them and enter all relevant information into the ECD. Then 
find the .c la s s  files for them on the file system, and enter their paths into the ECD. However, take
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the dates and fingerprints for these class files from the persistent copies of these classes, not the file 
copies, since the ECD at this time will contain information on old class versions.

3. Put into the {UJF} set all .jav a  files which have been updated since the last run of the tool. These 
are the files for which actual date or fingerprint differs from that saved in the ECD, or which are 
newer than the respective .c la s s  files. The latter method, though less reliable, is the only way to 
spot a change to a . j ava file for a class which has just been entered into the ECD, i.e. for which the 
information on an older version of the . j ava source is not available.

4. Pass {UJF}  to the compiler. The compiler will produce a new . c la ss  file (maybe more than one) for 
each . j ava source. However, some of these .c la s s  files may be the same as their older versions. On 
the other hand, the compiler may pick up and recompile additional . j ava files not contained in the 
{UJF},  and produce some changed .c la s s  files. Therefore, find and add all .jav a  files processed 
by the compiler, to {RJF}.

5. Initialize {UC} and {UJF}  as empty sets. Find all .c la s s  files on the file system, which are not 
yet in {UCV}  and which have been changed since the last run of the tool, i.e. the fingerprint of the 
.c la s s  file has changed compared to the value preserved in ECD. Put these classes into {UC} and 
add them to {UCV}.

6. Validate each class C, in {UC},  i.e. compare its old and new versions:

(a) Check if the object format for C, has changed. If so, ensure there is a conversion method for this 
class or get the confirmation of default conversion from the user.

(b) Check if any changes to the new version of C, are source incompatible (see Section 3.3.1). For 
each detected source incompatible change:

i. Find all evolvable classes that may be affected by this change.
ii. Get the . j ava sources for these classes which are not yet in {RJF}  and add them to {UJF}.

(c) If {UJF}  is not empty, go to step 4.

In case of any problems this algorithm aborts without saving any updates to persistent data structures, in
cluding the ECD. However, the recompiled . c la ss  files remain in place. Algorithm abort can happen either 
if the system is unable to find a . j ava file for a class that should have one, or if errors are detected during 
recompilation, or during change validation, e.g. when a class that has some instances is made a b s tra c t and 
no way of converting these instances is provided.

The results of work of the code that implements this algorithm are recompiled classes on the file system plus 
the classes in the {UCV}  set that should now be substituted in the persistent store. “Physical” substitution of 
a persistent class involves copying the static variables between the old and the new class versions, updating 
the Persistent Class Directory (PCD) of the store, plus some low-level operations related to instance re
binding and possible conversion. The detailed description of this procedure is presented in Chapter 6.

3.3.1 Source Incompatible Changes

A source incompatible change to a class is a change to its . j ava source which, once made, may break the 
contract between this class and other classes that use it (its client classes), by either
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• preventing successful joint compilation of this class and classes that use it (its client classes); or

• causing an application that includes this class and its client classes, to run incorrectly, if client classes 
are not recompiled.

An example of a source incompatible change which causes the first of the above problems is deletion of a 
public method from class C. Another class which calls this method and is not updated accordingly, will not 
pass compilation with the new version of C. An example of the second kind of a source incompatible change 
is adding a s t a t i c  method m () to class C, which overrides a method with the same name and signature in 
C’s superclass S. The problem here is as follows: if there are any calls in the form C.m() in other classes, 
they were compiled into hard-wired calls S . m () in class binaries. Therefore, even in presence of the actual 
C. m () method, these classes will still call S . m (), until they are recompiled.

We have formulated the above definition of source compatibility after reading Chapter 13 of the JLS, which 
is the only place in this book where source compatibility is mentioned, though never detailed. JLS in fact 
describes only binary compatibility issues. Quoting the JLS, “a change to a type is binary compatible with 
(equivalently, does not break binary compatibility with) pre-existing binaries if pre-existing binaries that 
previously linked without error will continue to link without error”. So, binary compatibility is concerned 
about successful class linking and does not always guarantee formally correct program execution, i.e. the 
execution that the programmer would expect looking at the source code of classes (see examples of such a 
behaviour in e.g. JLS §13.4.23). Source compatibility, on the other hand, is about successful class compi
lation, and formally correct program execution. Several examples in the JLS show that the requirement for 
source compatibility is stronger than the requirement for binary compatibility, i.e. every source compatible 
change is also binary compatible, but not every binary compatible change is source compatible.

Our choice to maintain source compatibility, rather than binary compatibility, was made to ensure that the 
existing programs after a change work precisely as expected, and thus the application developers are given 
the most reliable support.

Tables 3.1 -  3.5 define all of the source incompatible changes to classes which are detected by the PJama 
evolution technology, and for each such change — the classes that may be affected by it. The list of source 
incompatible changes was created by studying Chapter 13 of JLS, and also the work by Drossopoulou et 
al. [DWE98] (the latter group worked on issues related to formal verification of Java programs for several 
years, and has discovered some “holes” in the JLS). Then we determined what statements in other classes, 
if not changed, will cause source incompatibility problems. These statements refer to C or I, the class or 
interface being changed, in some way. After compilation, these references are placed in various parts of the 
binary Java class (see details in the next section). Summarising the above information, we can finally derive 
criteria for selecting a set of classes that are affected by a particular change. In some cases we, however, 
extended these sets of classes, to avoid implementing complex procedures that parse method bytecodes. For 
example, it is clear that if class C is made a b s tra c t,  then only those classes which previously contained the 
“new C()” expression, need to be recompiled. We, however, replace the test for the presence of a bytecode 
corresponding to “new CO” with a simpler test for a reference to class C from the constant pool (see next 
section) of another class. Our observations, though currently limited to applications consisting of at most 
one or two hundred classes, show that the number of classes recompiled unnecessarily and, what is more 
important, the overall time overhead caused by such a lack of precision, is acceptable, i.e. is a small fraction 
of the total execution time. In future we may consider making our smart recompilation more precise by 
analysing the bytecodes of methods of client classes as well.
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Class and Interface Modifiers
Change to class C or interface I Potentially affected classes

Adding a b s tra c t modifier Classes referencing C (but not C array class) directly 
(see Section 3.3.2) from their constant pools.
In addition, check that there are no persistent instances 
of C, or that all such instances are migrating to other 
classes.

Adding f in a l  modifier Immediate subclasses of C.
Removing pu b lic  modifier Classes that are members of different packages and ref

erence C (or C array class) as follows: directly from their 
constant pools, as the type of a data field, as the type in 
a method (constructor) signature or a thrown exception, 
as a directly implemented interface or a direct super
class.

Table 3.1: Changes to class and interface modifiers and affected classes.

Superclasses and Superinterfaces
Change to class C or interface I Potentially affected classes
Deleting class (interface) S from the fist of super
classes (directly or indirectly implemented inter
faces) of class C

Classes that reference both S and C (or array classes for 
one or both) as follows: from their constant pools (di
rectly or indirectly), as a type of a data field, as a type in 
a method (constructor) signature or a thrown exception, 
as a direct or indirect superclass or superinterface.

Table 3.2: Changes to superclass/superinterface declarations and affected classes.
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Class and Interface Field Declarations
Change to class C or interface I Potentially affected classes
Adding a non-private field f to C that hides a non
private field with the same name in C’s superclass
S6

Classes that reference S. f

Deleting a non-private field f from C7 Classes that reference C. f
p u b lic  field f made p ro tec ted Classes referencing C. f that are members of different 

packages and are not C’s subclasses (direct or indirect)
p u b lic  or p ro tec ted  field f made “default ac
cess”

Classes referencing C. f that are members of different 
packages

p u b lic , p ro tec ted  or “default access” field f 
made p r iv a te

Classes that reference C. f

Non-private field f made f in a l Classes that reference C. f
A f in a l  modifier is deleted for f field which is 
a primitive constant, or its initial value changed8

All application classes

Non-private instance field f made s t a t i c  or vice 
versa

Classes that reference C. f

Non-private field f made v o la t i l e  or vice versa Classes that reference C. f

Table 3.3: Changes to field declarations and affected classes.

Method Declarations in Interfaces
Change to interface I Potentially affected classes
Adding method m ()9 Classes directly implementing I

Deleting method m () Classes referencing I . m ()

Table 3.4: Changes to interface method declarations and affected classes.

6This is a binary compatible change (JLS, §13.4.7). However, it is source incompatible.
7This means that the field is no longer declared  in class C. According to the Java class bytecode specification, all references to 

a field in other classes have a strict form C. f , so even if  f  is moved to a superclass o f  C, classes compiled against the old version o f  
C will not run with the new version.

8A field is called primitive constant if  it is f i n a l ,  s t a t i c  and initialised with a compile-time constant expression. The above 
change is binary compatible (JLS, §13.4.8). However, it is source incompatible, since pre-existing Java binaries include the value 
o f  the constant, rather than a reference to it, and will not see any new value for the constant, unless they are recompiled. This is a 
side-effect o f  the support o f conditional compilation in Java, as discussed in JLS §14.19.

9In JLS this change is considered binary compatible (§13.5.3). In [DWE98] the authors point out that it is source incompatible 
and also raise som e issues about how binary compatibility should really be defined.
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Method and Constructor Declarations in Classes
Change to class C Potentially affected classes
Deleting non-private method m () or constructor 
c ( ) 10

Classes referencing C. m () or C ()

Adding one or more constructors, all of which 
have non-zero number of parameters, to class C, 
which previously had no constructors11

Classes referencing parameterless constructor C ()

p u b lic  method m() or constructor C() made
p ro te c te d

Classes referencing C. in () or C () that are members of 
different packages and are not C’s subclasses (direct or 
indirect)

p u b lic  or p ro te c te d  method m() or constructor 
C () made “default access”

Classes referencing C. m () or C () that are members of 
different packages

p u b lic , p ro te c te d  or “default access” method 
m () or constructor C () made p r iv a te

Classes referencing C. m () or C ()

Changing the signature (includes the result type) 
of a non-private method m ()

Classes referencing C. m ()

Making a non-private method m () a b s tra c t Classes referencing C. m ()
Making a non-private method m () f i n a l12 Direct and indirect subclasses of C implementing m ()
Making a non-private instance method m() 
s t a t i c  or vice versa

Classes referencing C. m ()

Extending the set of exceptions thrown by non
private method m () or constructor C ()

Classes referencing C. in () or C ()

Adding to C a non-private method m (xxx) or con
structor C (xxx) which overloads an existing (de
clared or inherited) method m(yyy) or construc
tor C (yyy)13

Classes referencing C.m (yyy) or C (yyy)

Adding a non-private s t a t i c  method m() to 
class C, that overrides an inherited static method 
with the same name defined in class Csuper14

Classes referencing Csuper. m ()

Adding a non-private method m() to class C, 
when a method with the same name is declared 
in C’s subclass D, such that now m () in D over
rides or overloads m () in C15

D and classes referencing D.m()

Table 3.5: Changes to class method/constructor declarations and affected classes.

10For methods, this means that m() is no longer declared  in class C. According to the JLS, all references to this method in the 
bytecodes o f other classes have a strict form C.m, so even if  m() is moved to a superclass o f  C, classes compiled against the old 
version o f  C w ill not ran with this new version.

11 This is equivalent to deletion o f  the only existing parameterless constructor.
12Making a static method final is a binary compatible change (JLS, §13.4.16). However, it is source incompatible.
I3This is a binary compatible change (JLS, §13.4.22). However, it is generally source incompatible, because for some client 

classes a problem o f  finding the most specific (JLS, §15.11.2.2) method or constructor can arise.
l4This is a binary compatible change (JLS, §13.4.23). However, it is source incompatible, since due to strict references to method 

C sup er . m () from bytecodes o f  C’s client classes, their behaviour will be not as expected, if  their sources are not recompiled.
15Citing the JLS, §13.4.5, “Adding a method that has the same name, accessibility, signature, and return type as a method in 

a superclass or a subclass is a binary compatible change”. However, in a more general case, i.e. when the accessibility or the 
signature o f  the added method may be different, this kind o f  change is generally source incompatible. The compilation errors like 
“method made less accessible in a subclass” or “failure to find most specific method” may arise, or method calls can be re-bound 
to different methods during recompilation.
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3.3.2 References in Java Binary Classes

The table in the previous section gives the conditions under which classes should be recompiled, in a tech
nically precise form. Therefore, we use some terms, first introduced in the specification of Java binary class 
format, plus our own terms direct and indirect references from one binary Java class to another.

In order to develop a better idea of how Java binary classes reference each other, the reader is encouraged to 
read Chapter 4 of the Java Virtual Machine Specification [LY99], which details the class file format. Here 
we are presenting a short summary of class referencing issues.

A binary Java class references other classes only symbolically, i.e. by names. All these names are stored 
in the form of string constants in this class’ constant pool, which is a table of variable-length structures 
representing various constants that are referred to by the class. How can we find out which string con
stants contain real class names? We can do that firstly by tracing references from other entries of the 
constant pool, which have more explicit types, denoted as follows: CONSTANT_Class, CONSTANT.Fieldref, 
CONSTANT_Methodref and CONSTANT.InterfaceMethodref. These entries are added to the constant pool 
of class C if C references some other class D explicitly, or references D’s fields or methods. In addition, every 
class that declares its own fields or methods has a non-empty Field table and Method table. Entries of this 
table, denoted field_info and method_info, contain indexes into the constant pool, and at these indexes 
there are string constants (constant pool entries of type CONSTANT_Utf 8) representing the names and signa
tures of the respective fields and methods. The structure of each of the presented constant pool entry types, 
as well as of a Field/Method table entry, is depicted in Figure 3.2. Arrows represent indexes of other entries 
which an entry contains.

C O N S T A N T _C lass ---------------------------------------------------------------------------  C O N S T A N T _U tf8  (C lass nam e)

C O N S T A N T _ F ield ref ------------------ C O N S T A N T _C lass ----------------- C O N S T A N T _U tf8  (C lass nam e)
1--------------- - C O N ST A N T _N am eA ndT yper*~ C O N S T A N T _U tf8  (F ie ld n a m e)

^  C O N S T A N T _U tf8  (F ield  signature)

C O N S T  A N T _M ethod ref, 
C O N S T A N T  InterfaceM ethodref

C O N S T A N T  C lass C O N S T A N T _U tf8  (C lass nam e)

C O N S T A N T _U tf8  (M ethod nam  
C O N S T A N T _U tf8  (M ethod signature)

C O N S T A N T _N am eA nd T ype -p C O N S T A N T _ U tf8  (M ethod nam e)
I—

fie ld _ in fo , m eth od_in fo  {

n a m e j n d e x ; ------------------------------------------------------------------------------------ C O N S T A N T _U tf8  (F ield /m ethod nam e)
d e sc r ip to r jn d e x ; ------------------------------------------------------------------------------ C O N S T A N T _U tf8  (F ield /m ethod signature)

Figure 3.2: Binary Class Constant Pool Entries Structure

By saying that class C is referenced directly from the constant pool of another class, say D, we mean just that 
there is a separate CONSTANT_Class entry for class C in D’s constant pool. This kind of reference appears, 
for example, if “new C O ” statement or a declaration of a local variable of type C appears somewhere in the 
source code of D. CONSTANT_Class entries for C also appear in D’s constant pool (in addition to the relevant 
CONSTANT.Fieldref or CONSTANTJVIethodref entries), if class D uses a field or calls a method declared in
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class C.

On the other hand, if, for example, class D calls a “void m(C c) ” method of yet another class E, then the 
only reference from D to C will be through the signature of method m () which is stored in D’s constant pool. 
We call this an indirect reference to C from the constant pool of D.

To be able to look up all these references, we have developed our own “advanced reflection” API. At present 
it is implemented partly in Java, and partly in C, in the form of Java native methods. The reason for using 
C is that we currently obtain most of the information we need by scanning the internal representation of 
classes in the JVM memory. This works very fast. However, to increase the code portability, this can be 
replaced with analysis of the class bytecodes, in which case this API can be rewritten in pure Java.

3.4 Related Work

3.4.1 Build Management in Persistent Platforms

Sjpberg’s PhD thesis [Sj093b] seems to be the only work at this time where build management in the context 
of persistent platform (in this case, Napier88 persistent language [MBCD89]) is investigated. The work 
addresses the general problem of supporting changes in large applications over long periods of time, includes 
one case study for a real industrial application, etc. Its main contribution is a persistent thesaurus mechanism, 
that analyses persistent software and stores information about name occurrences and dependencies between 
occurrences. The tools that use this information are a querying tool and EnvMake, whose functionality is 
similar to our persistent build tool. EnvMake could keep track of several kinds of dependencies to determine 
what operations had to be redone, but to a large extent the system depended on naming and file-usage 
conventions, that must be followed by programmers.

3.4.2 Smart Recompilation for Java

So far we have found three products supporting smart, or incremental, compilation of Java applications. 
Unfortunately, there are no publications on any of them, that would explain the product’s internals. Therefore 
the following discussion is based on our own informal evaluation and guessing.

3.4.2.1 Borland JBuilder

Borland JBuilder [BorOOc] IDE for Java supports smart compilation (called “smart checking” in its termi
nology), as one of the compiler options, along with two others: “recompile the current file” and “recompile 
the whole project”. When we evaluated this product, we found that it does not recognise all source incom
patible changes to classes. Unrecognised changes include, for example, modifying the value of a primitive 
constant and adding a non-private method to class that overloads an existing method.
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3.4.2.2 IBM Jikes

The second product supporting smart (incremental, in their terminology) compilation is the Java compiler 
called Jikes [IBMOOa], an open source project being developed at IBM. It is written in C++ and its sources 
are available for free, as well as the binary code for many hardware/OS platforms. This product is not an 
IDE, but a command-line compiler, which has an additional “incremental build” mode. The compiler enters 
this mode if it is invoked with a special “++” command-line option for a .java  source file containing the 
main (S trin g  args []) method, e.g.

>j ik e s  ++ myprog.java

This will compile myprog. j ava and other files that it depends on, as needed, and leave Jikes running. The 
developer can then change myprog. j ava or any of the source files it depends on, and simply hit “Enter” at 
the command line to tell Jikes to re-check the dependencies and only recompile files as required to bring the 
entire project up to date. The compiler will stay in this “hit Enter/rebuild” loop until the developer enters a 
“q”, which tells it to terminate.

Support for dependency checking looks good in this compiler — we tested it using our specification of 
source incompatible changes in Section 3.3.1 and did not find any “holes”. The only minor disadvantage that 
this system has is that its support for incremental build seems to be based on very close interaction with the 
compiler, and it uses compiler’s intermediate memory-intensive data structures, such as abstract syntactic 
trees, symbol tables, etc., which occupy a large amount of memory. This is what can be deduced from 
the documentation, which does not specify explicitly what mechanism is used to implement incremental 
recompilation or what checks are performed. Repeated creation and destroying of the supporting memory 
structures sometimes leads to noticeable latency on each invocation of rebuild.

3.4.2.3 IBM VisualAge

IBM VisualAge for Java [EBMOOb] seems to be the most sophisticated IDE for Java currently on the mar
ket. It provides visual project and class navigation, incremental compilation, source-level debugging, visual 
program design, and version control. In VisualAge, classes are presented to the developer as objects, refer
encing the objects for their members. All of these objects are contained in a special repository, eliminating 
the notion of source files. The developer edits, saves and recompiles methods individually. This is similar 
to the approach pioneered in Smalltalk (in fact, there is a hint in [AAB+99] that VisualAge itself is writ
ten in Smalltalk), and is in contrast with most of the other IDEs which operate with the more traditional 
file-based source code representation. The incremental compiler is invoked automatically whenever a new 
Java class, interface, or method is created, or an existing one is changed. It recompiles the changed item, as 
well as all of the other items within the work space, that are affected by this change (we say “items” since it 
looks as if the granularity of recompilations in VisualAge can be smaller than individual classes — perhaps 
it recompiles individual methods). We have not found any “holes” in its mechanism of class consistency 
validation. When the developer redefines or deletes a method, or imports a new class, interface, or package, 
the compiler immediately flags any inconsistencies created by that change.

However, the IDE’s high resource consumption, the fact that it is not available on all platforms, and finally 
the fact that it may not necessarily be useful in some situations where smart recompilation is still beneficial,
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is probably the only disadvantage of this product. Indeed, in [AAB+99], the authors (the developers of the 
Jalapeno JVM written in Java) express the following complaint:

“One source of perennial headaches is the impedance mismatch between Java’s compilation 
strategy and the make facility. There seems to be no way to ensure that class files are up-to-date 
short of erasing them all and rebuilding the whole system.”

Given that VisualAge and Jalapeno are being developed at the same company, and that the authors of the 
above quotation are well aware of VisualAge’s existence, it looks as if their problem was either that they 
were developing on a hardware/OS platform for which VisualAge was not available, or, more likely, that 
their build process was more complex than just a pure Java application build. A solution that may help in 
the latter situation is suggested in Section 3.5.2.

3.5 Future Work

3.5.1 Speeding Up Smart Recompilation

At present our mechanism analyses the actual class objects of client classes every time an incompatible 
change is detected to the “current” class. Such an implementation is relatively simple, but not speed-optimal, 
since, for example, it can result in repeated parsing of constant pools or method signatures of all of the 
application classes. So far in our informal experiments, where the largest application consisted of about 
100 classes, we did not notice any substantial slowdowns in the worst cases, when many classes were 
parsed over and over again (and we believe those time differences, about one or two seconds, which may 
have occurred, are not worth measuring). However, we realise that the situation may become worse for 
applications consisting of larger numbers of classes. Therefore in future it may be worth implementing an 
optimised variant of this technology that includes essentially a persistent cross-reference dictionary data 
structure.

For optimum performance, we propose maintaining a dictionary with n : n relationship between classes, an
notated with the dependency kind. For each class C there is a variable-size dictionary entry, which is divided 
into sections that represent types of references to C from its client classes, such as “extends”, “references 
from a method signature”, etc. In each such section, all of the C’s client classes which have a reference to 
C of the respective type, are recorded. Thus if class D extends C, declares a field of type C and declares a 
method m(C c ) , D’s name will be recorded in three sections of the dictionary entry for C: “extends”, “ref
erences from the constant pool” and “references from a method signature”. With such a scheme, once we 
have detected a change to C, we can instantly obtain all its client classes that may be affected by this change. 
However, once C is recompiled, we will have to update entries for all classes for which C itself is a client 
class, and delete C from records of those classes for which it is no longer a client.
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3.5.2 “JavaMake” Utility

Using almost the same technology as we currently have, it is possible to implement a standalone command 
line utility, let us call it j avamake, with the functionality similar to make, but for Java applications. Such a 
utility will use as its input a simple list of all application source files, the target directories for the . c la s s  
files, and the mapping between the source and the class where it can not be deduced from the file names. 
An algorithm used by this utility for determining which classes to recompile would be essentially the same 
as the one in opjb described in this chapter. However, there may be one difference. Our present implemen
tation relies on the fact that old class versions (except for those classes which have just been added to the 
application) are preserved in the persistent store, j avamake will either have to do the same, i.e. implement 
its own “persistent store” for old class versions, or work according to the part of the algorithm which is used 
when old class versions are not available. It seems to us that to force such a utility to always use the first 
option may not be practical, since it may not always be convenient for the developer to manage an additional 
class repository created by the utility. On the other hand, the presence of this preserved data would allow 
j avamake to still work correctly if, accidentally or deliberately, some classes are recompiled bypassing it 
(such events inevitably happen once the file system, with its freedom of changes and lack of access con
sistency control, is used). The advantage of such a utility over an IDE is that it is light weight, and that 
it can be easily used within more complex build procedures, that may involve many more operations than 
compilation of the sources of a single Java application.

3.5.3 Formal Proof of Completeness and Correctness

The tables of source incompatible changes and affected classes presented in Section 3.3.1 were defined 
using our knowledge of Java and experience, but they have no formal proof. Consequently, we can not 
be absolutely sure that these tables embrace all of the affected classes. There is more confidence that they 
cover all possible changes to Java classes, since, after all, the number of class elements is limited and the 
taxonomy of changes is created as a series of additions, removals and changes to these elements. Formal 
proof of completeness and correctness can probably be achieved using some kind of formal technique, e.g. 
similar to one used in [DWE98] and other works by this group (see [SLUOO]). This, however, might be a 
very difficult task, considering that, for example, the above group has, in our opinion, achieved quite modest 
practical results, despite using elaborate mathematical techniques. Basically they were able to prove some 
(already quite obvious) statements, such as that most of the binary compatible changes defined in the JLS 
are really safe. However, we presently can’t see how this machinery can e.g. automatically provide us with 
the list of classes affected by some unsafe change.

3.6 Summary

In this chapter we have explained the motivation for, and then described a technology that we had developed 
for PJama, which combines persistent class evolution and smart recompilation. This technology tracks 
incompatible changes that the developers make to Java classes, and guarantees that unsafe changes, i.e. 
those that break links between classes or make these links incorrect, do not propagate into the persistent 

| store. We have defined tables of incompatible changes and affected classes that we believe are complete,
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though we don’t have a formal proof for this.

Of the three products we found that support smart recompilation for Java, one implementation (Borland’s 
JBuilder) is weaker than ours (does not recognise some incompatible changes), whereas the others (IBM 
Jikes and VisualAge) work correctly, but rely on the compiler’s runtime memory-intensive data structures. 
None of these products documents how its implementation of smart recompilation works.

We believe that smart recompilation technology that both reduces compilation turnaround time and provides 
an additional degree of safety, is essential for development and maintenance of large and long-lived applica
tions. Tracking of incompatible changes may be less important during the development of relatively small 
Java applications in an IDE equipped with a very fast compiler, where “recompile all” command can be used 
frequently. However, we believe that smart recompilation is very important for safe upgrading of persistent 
applications and building large and complex Java applications.



Chapter 4

Persistent Object Conversion

In this chapter, we present our implementation of conversion for persistent instances of evolved classes,
i.e. the technology that makes instances consistent with revised definitions of their classes when necessary. 
Section 4.1 explains exactly what kinds of changes to classes result in the need to convert their instances. 
Section 4.2 presents the two main types of object conversion that can be used by the developer on PJama 
platform: default (or automatic) and custom (or programmer-defined). The next section describes in detail 
the mechanism for default conversion. Section 4.4 discusses a very important problem of naming for multi
ple class versions when custom conversion is used. In section 4.5 we describe bulk custom conversion, and 
section 4.6 presents another subtype of custom conversion — fully controlled conversion. The utilisation of 
all kinds of conversion is illustrated with a simple example that continues throughout this chapter. Sections 
4.7 and 4.8 explain the relatively minor issues of static variable conversion and access to private members 
in conversion code. Finally, sections 4.9 and 4.10 present related work and thoughts on future work.

4.1 When Conversion is Required

Evolutionary operations on classes may or may not affect persistent objects. Whether objects of some class 
are affected or not depends on whether the modification to the class is such that the format of its instances 
changes.

The most general and (hopefully) applicable to any persistent Java implementation rule for instance-format 
equivalence is strict equivalence of the number, names, types and order of all of the instance (non-static) data 
fields of both versions of the evolved class. The declared order of fields may be important, as it is in PJama, 
because the fields are typically laid out in objects in the same order as they are declared, and accessed by 
their physical offsets.

However, in PJama there are a number of cases when the type of a field can be changed, but the format of 
instances remains the same, and the compatibility between the current value of the field and the new field’s 
type is guaranteed. Examples of such changes are replacement of the primitive type sh o rt with the type 
in t  or replacement of a class type with its superclass type. It is possible for some primitive types in PJama

55
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to be compatible in the above way, because in the implementation of JVM on which PJama is currently 
based (Sun’s EVM), each primitive type field (except for fields of types long and double) occupies a fixed- 
size 32-bit slot in an object1. Class type fields are always physically compatible, because they are all just 
pointers to objects. However, there are only a limited number of cases when two class types are guaranteed 
to be logically compatible, i.e. the assignment of a field of one type to a field of another will never cause 
problems. It turns out that the rules of widening reference conversions (JLS, Chapter 5) are exactly what 
we need to define compatibility of class types, since our situation is equivalent to the one when the above 
conversions are used. As for scalar types, only the subset of widening primitive conversions where both 
arguments are of the same internal representation (which in our case means only integer), and occupy the 
same space in objects, is applicable — that is, guarantees the same object size and logical compatibility 
between old and new field types. Filtering out the JLS rules for widening conversions, we get the following 
types of, respectively, original and substitute data fields that are compatible in the context of class evolution 
in PJama:

• byte and sho rt or in t .

• sh o rt and in t.

• char and in t.

• Any class type S and any class type T, provided that S is a subclass of T.

• Any class type S and any interface type K, provided that S implements K.

• Any interface type J and any interface type K, provided that J is a subinterface of K.

• Any interface or array type and type Object.

• Any array type and type Clone able.

• Any array type SC [] and any array type TC [], provided that SC and TC are reference types and there 
is a widening conversion from SC to TC.

If the number, names and order of instance data fields of an evolved class are unchanged, and all changes to 
their types are compatible according to the above rules, the evolution system simply substitutes a class and 
doesn’t do anything with its instances. Otherwise, it is necessary to convert all persistent instances of this 
class (if they exist, which is always checked by the system; this operation is quite fast, see Section 6.1).

If a class that has some persistent instances is to be deleted from the class hierarchy, its “orphan” instances 
should be migrated to other classes.

Since the mechanism that we exploit looks very similar for both object conversion and migration, in the 
further discussion we will often use the term “conversion” in a wider sense to denote both kinds of operation: 
“real” conversion and migration.

'in  arrays, however, elements o f  these types always take the smallest possible space, e.g. 8 bits for type b y te  or 16 bits for type 
sh o r t .
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4.2 Types of Conversion: Default and Custom

If the application developer wishes to convert instances of an evolving class, they have a choice between 
default and custom conversion. If conversion, in the strict sense, is implied, i.e. some class has been changed 
and all instances of this class should be made compatible with its new definition, it is often enough to use 
default conversion. This means that for each persistent instance of the evolving class, the evolution system 
will automatically create a new instance in the new format. The data will be copied between the old and 
new instances according to the simple rules described in the section 4.3. Default migration is also applicable 
when the programmer wants all instances of a class nominated for deletion to migrate to a single other class.

However, sometimes the old and new definitions of a class, and especially the application logic behind them, 
are such that the conversion becomes non-trivial. For example, it might be necessary to recalculate sizes 
from feet and inches to centimetres or split a string field, e.g. a full person’s name, into several separate 
strings. Furthermore, transformations may be on a larger scale. For example, a value represented as a list 
of objects may be replaced by arrays holding each of the fields of these objects, and so on2. The most 
convenient option for the programmer in this case is to be able to encode such transformations in the same 
programming language that is used to create the data, in our case Java. This type of data conversion is called 
custom or programmer-defined.

In PJama, there are two ways of performing custom conversion. The first and simpler one is called bulk 
conversion. Bulk custom conversion is supposed to be used when all instances of some class should be 
converted in the same way. To perform it, the programmer should provide appropriate conversion methods 
written in Java. One such method can be defined for each evolving class. Conversion methods should have 
predefined names and signatures so that the evolution system can recognise them and call them with correct 
arguments. Conversion methods should be placed in one or more classes called conversion classes. Given 
these classes, the evolution system will scan the store linearly. For each detected instance of an evolved 
class it will call an appropriate conversion method, and that will create a new instance and initialise its fields 
appropriately.

During both default and bulk custom conversion, the evolution system automatically remembers all “old 
instance -  new instance” pairs. After conversion is finished, it “swaps” every old instance and the respective 
new instance, so the new instances take over the identity of the old ones. The details of this transition are 
discussed in Section 5.1.

Bulk custom conversion can be combined with default conversion, that is, in one evolution transaction 
instances of some classes can undergo default conversion, and others custom conversion. In addition, in 
the conversion methods the programmer can avoid writing the code that copies the contents of fields with 
the same names and types from “old” instances to “new” ones, again by applying default conversion. The 
descriptions of the available conversion methods and the details of combining default and custom conversion 
are discussed in Section 4.5.

In addition to bulk conversion, fully controlled custom conversion is available in PJama evolution technol
ogy. It is intended to be used when the developer wants to have complete control over how and in what order 
the instances are converted. To run fully controlled custom conversion, the programmer should simply put

C on versions where new field values depend on examining data outside the instance that is being converted are called complex 
conversions in som e parts o f the literature, e.g. [FFM +95]
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the method called conversionMain () into a conversion class. If this method is present, the evolution sys
tem will call it, ignoring any other conversion methods that might be present. No automatic linear scan of 
the store will be performed. The programmer has the total freedom and the full responsibility for the results 
of such conversion. In particular, the programmer should ensure that all instances of the modified class are 
either converted or made unreachable, and that the correspondence between the old and the new instances is 
established. “Swapping” of old and new instances, however, operates on JVM’s internals, and therefore is 
still performed automatically, after conversionMain () method termination.

It may be worth observing that fully controlled conversion is very similar to running an application against 
the store. The difference is that certain facilities, provided for evolution, are available to this application. 
The detailed description of fully controlled conversion is given in section 4.6.

4.3 Default Conversion

If during the change validation phase the persistent build tool detects a format-transforming modification to 
some class, and does not find a conversion method for it, it requests the programmer’s confirmation that they 
want to perform default conversion of instances of this class. If the programmer wants to perform default 
migration of instances of a deleted class, they should specify, together with a class to delete, a class to which 
they want to migrate the “orphan” instances.

The system then scans the persistent store, and for every instance of the evolved class which it finds, creates 
a new instance in the format of the new class version. The values of the fields that have the same name and 
the same or compatible (as specified in Section 4.1) type in both versions of the class are copied from the 
old instance to the new one. In addition to that, values are converted according to the standard Java rules 
between the same named fields of the following numeric types that are logically, but not physically (i.e. 
hardware-level) compatible:

• by te , sh o rt, char, in t  and long, f lo a t ,  double

• long and double

• f lo a t  and double

The fields of the new instance that either don’t exist in the old class version, or have a different type, which 
is not compatible with the old one in any of the above ways, are initialized with default values (as specified 
in the JLS), i.e. 0 or n u ll.

4.4 Custom Conversion: Class Version Naming

We are now going to discuss one of the most important issues that every implementation of programmer- 
defined conversion faces. It is formulated as follows: if in one piece of code we want to declare variables of
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two versions of one class that doesn’t change its name, how do we distinguish between these two versions? 
That is, if there is an evolving class called C, then declaration of a variable such as “C c ; ” could refer to 
either the old or the new version of C. How do we then declare variables of the other version of class C?

Among the contemporary persistent solutions for Java known to us, none supports Java conversion code. In 
fact the only product known to us at present, where simultaneous explicit handling of two versions of an 
evolving class in the conversion code is implemented, is O2 [FFM+95]. This former product used its own 
programming language, which allowed the programmer to declare a compound type of a variable in place, 
for example as presented in Figure 4.1. In-place class declarations were used to declare variables of old class 
type, whereas the new class version was called by its ordinary name. But the Java language does not allow 
classes to be declared in an arbitrary place and without methods. In addition, it can be very impractical to 
replicate such a class declaration every time the programmer wants to declare a variable of this type. We 
don’t know, for example, how to declare in the above way a class for a linked list element, where in the class 
definition there is a field of the same class type.

conversion function
mod_Obj(old_object : tuple(name : string, price : real)) in class C 
{ ... }

Figure 4.1: An example of conversion function declaration in O2 .

So, if we think about this problem in the context of Java, the first thing that comes to mind (and is actually 
used in some commercial systems, see Section 4.9) is to use Java reflection mechanism [SunOOe]. This 
way, we could declare variables of, say, old version of the evolving class as just Object type, and then use 
classes of the standard java . lang. ref lect package, such as java . lang. reflect .Field, to read/write 
data fields and call methods on them. The problem with this mechanism is that it is quite inconvenient to 
use. For example, if there is an integer field called price in the old version of class C, then to just read its 
value in the variable c_old, we have to write the Java code presented in Figure 4.2

Class C_old_version = c_old.getClass(); 
int price; 
try {
Field priceField = C_old_version.getDeclaredField("price"); 
price = priceField.getlnt(c_old);

} catch (Exception e) {
// Several different exceptions can be thrown by both lines above

}

Figure 4.2: An example of access to “old” fields via reflection.

Though we need to initialize a Field type variable only once, the code still remains rather cumbersome. 
Calling methods using reflection is even more inconvenient, since their parameters should be passed as an 
array, which first has to be declared and initialized. Considering all of the above, we have rejected the idea 
of using reflection in general case, though at present we still use it to access private class members during 
conversion (see Section 4.8).
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Another option that we have considered was to temporarily automatically rename old-version classes, so 
that names of their packages change in a regular way. Thus if we have an evolving class mypackage. C, then 
its old version would be temporarily assigned (by the underlying compiler and PJama VM mechanisms) a 
name of the form oldversion.m ypackage. C. This naming arrangement would exist only for the duration 
of conversion code execution, after which old versions of evolved classes are abandoned. It is undesirable 
to just put all of the “old” classes into the same package such as o ldversion  due to the possibility of name 
clashes between classes with same names initially declared in different packages.

This approach would allow programmers to declare variables of both old-version and new-version class 
types in the same piece of Java code and then refer to their fields and methods as usual, so it is much more 
practical than the previous one. However, it still has some drawbacks. One is that we will have to use the 
fully qualified name to refer to either old or new version of an evolved class, to avoid name clashes. With 
long package names this can be inconvenient. Another drawback is due to the fact that very often Java 
programmers declare fields and methods as “default” (also called “package”) or p ro tec ted . In both cases 
all classes in the same package can access these fields. If both the old and the new version of an evolving 
class are in the same package, we can put the conversion code into the class which is also a member of this 
package, and thus it would have free access to the “default” and p ro tec ted  class members. However, the 
presented approach prevents the programmer from doing that, forcing them to use reflection as a last resort.

So we have finally chosen the third solution, which is temporary automatic change of the old class version’s 
own name. To refer to the old version of an evolving class C the programmer adds a special predefined 
suffix $$_old_ver_ to it, which results in C$$_old_ver_ name. Our modified Java compiler and the PJama 
VM load from the persistent store and actually rename the appropriate classes in response to such mangled 
names. After conversion is finished, old versions of evolved classes are invalidated, so the only place where 
it is possible to operate on two versions of one class and distinguish them this way is in conversion code.

The unusual suffix $$_old_ver_ was chosen as an entirely valid sequence of characters to use in a Java 
identifier, which is, hopefully, unlikely to clash with any “normal” class name. That’s why it is a bit cum
bersome. We wanted to avoid more fundamental changes to the Java language, such as introducing new 
characters to denote old class versions. The present naming arrangement can even be viewed as not really 
breaking or extending the Java Language Specification, and it requires relatively small changes to the Java 
compiler. However, if we had more control over Java, we would probably opt for more compact form of 
the old-version suffix, for example a single “pound” (#) character, perhaps optionally followed by an integer 
denoting class version number, to accommodate further support for incremental evolution.

4.5 Bulk Custom Conversion

In the following discussion we will denote an evolving class for which conversion is required as C. Csuper 
means any superclass of C. Let us first describe the categories of conversion methods that correspond to 
categories of changes to class C.
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4.5.1 Class Modification

The signatures of the conversion methods recognised by the evolution system if class C is modified, are 
given below. The programmer can choose a suitable signature (only one method per evolving class) and 
write the method body.

public static void convert Ins tance (C$$_old_ver_ cO, C cl) 
public static C convert Instance (C$$_old_ver_ c) 
public static Csuper convert Instance (C$$_old_ver c)

The first, symmetric form of co nvertln stance  method is the most straightforward, and also the only one 
that supports automatic default conversion in addition to custom conversion. Before the system calls such a 
method, it creates an instance c l of new version of class C and copies from cO to c l the values of all data 
fields that have the same name and compatible types in both versions of class C. The new instance is created 
by just allocating memory, without invocation of a constructor.

The latter solution has been taken to avoid undesirable side effects, such as class instance counter increment 
or resource allocation, that the execution of a constructor might cause. However, it has one implication. 
It is due to the fact that Java classes are compiled such that the code for instance field initialisers is phys
ically placed in the body of the constructor, in addition to the constructor’s own code. Therefore if the 
programmer has declared, for example, a field new_f ie ld  in class C along with the initialiser, as shown in 
Figure 4.3, they should not expect this field to be initialized to value 1 automatically on entering the method 
convertln stan ce  (C$$_old_ver_, C). Instead, it will have the default value of 0.

class C {
int new_field = 1;

} ’ ’ ’

Figure 4.3: Instance field initialiser.

The second and third forms of the convertln stan ce  method are assymmetric. They allow the programmer 
to flexibly choose the actual class of the substitute instance during conversion. The second form can be 
used if the programmer wants to change the class of an instance to new version of C or to a subclass of the 
latter. The third form permits a replacement class that is a superclass of C or that just has some common 
superclass with C. Both of these methods should explicitly call the new operator to create a new instance and 
then explicitly copy all of the necessary data from c to the new instance.

The second form of co nvertln stance  is guaranteed to be type safe. This means that if there are any objects 
in the store that refer to instances of C, for example there are instances of class CRef that declares a “C c re f  ” 
field, then after conversion all references from instances of CRef remain valid, although now some or all of 
them can point to instances of C’s subclasses. That’s because Java, as any other object-oriented language, 
allows a class type variable to refer to an instance of a class that is a subtype of the type of this variable.

However, the third form of convertln stance  method can produce an instance of any of the C’s superclasses 
or any class that extends some superclass of C. Since the ultimate superclass of any Java class is Ob j ect, this
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means that in the extreme case, an instance of any class can be returned by such a method. Therefore the 
third form of co n v ertln s tan ce  method is type unsafe, and it is the programmer’s responsibility to arrange 
that there are no illegal references after conversion is complete.

The reason for introduction of this method is that it gives the programmer more freedom in restructuring the 
persistent data. Its use is justified (and safe without any additional measures) if it is necessary to migrate 
some of the instances of class C to another class D, which has a common superclass with C called S, and all 
of the references to instances of C in the store are already only through fields of type S. For example, assume 
that we have a hierarchy of persistent classes with the common abstract superclass Car and its subclasses 
Sport sCar, Lorry, Van etc. In the persistent objects, all references to instances of these classes are through 
fields of type Car. If we make some change to class Lorry, that will also require creation of its sibling class 
Truck, we can safely use the third form of convertln stance  method to convert some of the instances of 
Lorry to class Truck.

A special case of class modification is when C is replaced (i.e. modified and renamed simulatneously). Let 
us denote C’s new name NewC. Being informed by the programmer, the persistent build tool knows that C 
and NewC are really the old and new names of the same evolved class. Therefore semantically exactly the 
same set of conversion methods can be used in this case:

public static void co n v ertln stan ce  (C c, NewC nc)
public static NewC convertln stan ce  (C c)
public static C_and_NewC_super convertln s tance  (C c)

4.5.2 Class Deletion

If class C that has some persistent instances, is to be deleted from the class hierarchy, its “orphan” instances 
must migrate to other classes. The following methods can be used to perform migration:

public static void migratelnstance (C cO, Csuper_sub cl) 
public static Csuper migratelnstance (C c)

Class Csuper may not be nominated for deletion itself. Csuper_sub is a class which has a common (un
deleted) superclass with C.

As before, the first form of m ig ra te ln stance  method receives an initialised instance of the replacement 
class from the evolution system. The values of all fields with the same name and compatible types in this 
instance are already copied from the old instance. The second method should call the new operator and copy 
the necessary data between the instances explicitly. This form of the m igrate lnstance method is also type 
unsafe, and its existence is justified in the same way as the third form of convertln stance method (see the 
previous section).
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4.5.3 Conversion for Subclasses of Evolving Classes

If some class evolves such that the format of its instances changes, this will affect the format of instances 
of all of its subclasses. It is often the case that the conversion procedure for a subclass should be exactly 
the same as for its evolved superclass. To avoid unnecessary manual replication of conversion methods for 
every subclass of an evolved class, PJama supports automatically calling an appropriate conversion method 
for instances of a class that doesn’t have its own conversion method. The conversion method defined for the 
nearest superclass is called, if one exists.

This rule, however, is applicable only to the first form of convertln stance method. In other words, only 
if we have a void  co n v ertln s tan ce  (C$$_old_ver_, C) conversion method for a changed class C, this 
method will be called for instances of C’s subclasses. In all other cases the system would expect the developer 
to provide separate conversion methods for subclasses of C, or will perform only default conversion for them.

This restriction is due to both semantical and safety issues. Indeed, it is both “natural” and safe to have 
symmetric calls of the first form of convertln s tance  method for subclasses of an evolved class C. When 
such a method is called for an instance of any C’s subclass Csub$$_old_ver_, the system creates and passes 
to it as a second parameter an instance of the corresponding class Csub. This is what the programmer would 
expect, and this also guarantees the safety in the sense that no references to instances of Csub can become 
invalid.

On the other hand, in most cases the code in assymmetric forms of conversion methods depends significantly 
on the actual class of the passed instance. For example, an instance of an appropriate class should be created 
with new operator and returned if we want to preserve type safety. In our early experiments, application 
of the same assymmetric conversion method to instances of initially unanticipated classes appeared to be a 
source of errors. It either worked incorrectly or required to create cumbersome conversion code that would 
analyse the actual class of the passed instance — something that, as our experience has shown, is better done 
by implementing multiple conversion methods for different classes. For these reasons, the described facility 
was eventually turned off for all but the symmetric form of the convertln stance  method.

4.5.4 Semi-automatic Copying of Data Between “Old” and “New” Instances

As mentioned above, conversion methods that get an “old” instance as a single argument should create a 
replacement instance explicitly and they are fully responsible for copying data from one instance to another. 
However, even though the classes of these instances are most likely to be different and the class of the 
replacement instance may change from one invocation of the method to another, there can still be many fields 
with the same name and compatible types in both instances. To facilitate copying of such fields between 
instances, the following method is available in PJama standard class o rg .o p j . u t i l i t i e s . PJEvolution:

public static void copyDefaults (Object oldObj , Object newObj )

This method copies the values of all fields that have the same name and compatible types (as defined in 
section 4.1), from oldObj to newOb j, irrespective of their actual classes. The method uses Java reflection
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to find all such pairs. To speed up copying, it caches the results (mappings between fields) for each pair of 
classes it comes across.

4.5.5 onConversionStart () and onConversionEnd () Predefined Methods

The developer may include the following two methods with predefined names and signatures in every con
version class:

public static void onConversionStart () 
public static void onConversionEnd ()

If onConversionStart () method with the above signature is defined in a conversion class, it will be called 
before any conversion method is called, but after all static conversion methods (see Section 4.7) are called. 
onConversionEnd () method is called after all objects have been converted.

There can be as many onConversionStart () (as well as onConversionEnd ()) methods as there are con
version classes. The order of execution inside both groups is undefined.

4.5.6 An Example -  an Airline Maintaining a “Frequent Flyer” Programme

After presenting all available predefined conversion methods, we will finally illustrate their use in a simple 
example. Imagine an airline that maintains a database of frequently flying customers. Each person is 
represented as an instance of class Customer. Every time a customer flies with this airline, miles are 
credited to their account. When a sufficient number of miles has been collected, they can be used to fly 
somewhere for free.

Consider the case where the application developer wants to modify the definition of class Customer to 
represent postal address data more conveniently, as shown in Figure 4.4

class Customer { // Old class Customer { // Revised
String name; String name;
String address; int number;
int milesCollected; String street, city, postcode, country;

int milesCollected;
}

}

Figure 4.4: Two versions of evolving class Customer.

The single field address is replaced with several fields: number, street, etc., while other fields remain
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the same and should retain the same information3. In order to convert data, the programmer can write the 
conversion class presented in Figure 4.5.

class CustomerConverter { // The name is arbitrary-
public static void convertlnstance(Customer$$_old_ver_ oldC,

Customer newC) { 
newC.number = extractNumber(oldC.address); 
newC.street = extractStreet(oldC.address); 
newC.city = extractCity(oldC.address); 
newC.postcode = extractPostCode(oldc.address); 
newC.country = extractCountry(oldc.address);

}

... // Methods extractXXX not shown
}

Figure 4.5: A simple conversion class for evolving class Customer.

In the sole conversion method of this class, it is sufficient to deal only with the fields that have been replaced 
and added. The values of those that are unchanged, such as name and m ilesC ollected , are copied from 
the oldC object to the newC automatically.

Now imagine that the airline decides to change its policy and divide its customers into three categories: 
Gold Tier, Silver Tier and Bronze Tier, depending on the number of collected miles. In the new design, 
class Customer becomes an abstract superclass of three new classes, and each Customer instance should be 
transformed into an instance of the appropriate specialised class. In order to perform such a transformation, 
we have to use a conversion method that can create and return an instance of more than one class. The 
solution may look like the one presented in Figure 4.6

4.6 Fully Controlled Conversion

The mechanism of fully controlled conversion can be used if the programmer wants to convert instances of 
the evolved class in a predefined order (which is likely to be different from essentially unpredictalbe order 
of physical placement of objects in the store), considerably restructure the data in addition to conversion, get 
rid of some objects instead of converting them, and so on. To run fully controlled custom conversion, the 
programmer simply declares a method called conversionMain () in one of the conversion classes (there 
should be only one such method). If this method is present, the evolution system will call it, ignoring any 
other conversion methods that might be present. No automatic linear scan of the store will be performed, 
therefore it is solely the programmer’s responsibility to ensure that all instances of all of the modified classes 
are converted or made unreachable.

There are three differences between this and normal PJama application execution.

3Note that all evolvable classes referencing class Customer are checked to ensure that they are simultaneously transformed to 
use the new class definition (see Chapter 3).
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import org.opj.utilities.PJEvolution;

class CustomerConverter {
public static Customer convertlnstance(Customer$$_old_ver_ oldC) {

Customer newC;
if (oldC.totalMiles > 5 0 0 0 0 )  

newC = new GoldTierCust(); 
else if (oldC.totalMiles > 2 0 0 0 0 )  

newC = new SilverTierCust(); 
else newC = new BronzeTierCust();

PJEvolution.copyDefaults(oldC, newC); // Explicit copying of contents
return newC;

}

Figure 4.6: A conversion method returning instances of multiple types.

1. Temporary class renaming can be used.

2. Support is provided for arranging that new instances assume the identity of old instances (see below).

3. The checkpoint operation may not be used.

In case of bulk conversion, correspondence between an old and the corresponding new instance is established 
automatically by the underlying evolution system that calls a conversion method on the old instance. After a 
conversion method returns, the evolution takes the control and puts an “old instance - replacement instance” 
pair into a system table. Later the identity of the old instance is conferred on the new one, that is, all objects 
that pointed to the old instance now point to the new one instantaneously (the implementation details are 
explained in Chapter 6). Simultaneously the old instance vanishes from the computation space. If, however, 
the programmer opts for fully controlled conversion, they need to explicitly notify the system about every 
“old instance - replacement instance” pair. For that, there is a special method in the PJama standard class 
org.opj.utilities.PJEvolution:

public static native void preserveldentity (Object oldObj , Object newObj);

We illustrate the usage of fully controlled conversion by continuing the airline example. Assume that, 
in addition to sorting customers into three categories, an application developer also decides to save them 
into three separate collections instead of one array. Furthermore, at the same time the developer wants 
to get rid of those instances for which the collected miles have expired. In order to do that, a method 
presented in Figure 4.7 can be added to the conversion class in addition to the already existing Customer 
co n v ertln s tan ce  (Customer$$_old_ver_ oldC) method.

This example illustrates that fully-controlled custom conversion is most likely to be of use when an applica
tion is maintaining an extent (directly or indirectly) of all of the instances evolving.
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public static void conversionMainO {
// "Airline" is our main persistent class
Customer$$_old_ver_ allCustomers[] = Airline$$_old_ver_.allCustomers;
// Initialize the new copy of "Airline", creating empty collections, etc. 
Airline.initialize();

for (int i = 0;  i < allCustomers.length; i++) 
if (! milesHaveExpired(allCustomers[i])) {
// This instance is valid, so we convert it 
Customer c = convertlnstance(allCustomers[i]);
// Preserve the identity explicitly 
PJEvolution.preserveldentity(allCustomers[i], c);
// Put new instance into the appropriate collection 
if (c instanceof GoldTierCust)
Airline.goldC.add(c); 

else if (c instanceof SilverTierCust)
Airline.silverC.add(c); 

else Airline.bronzeC.add(c);
}

}

Figure 4.7: An example of fully controlled conversion implementation

4.7 Copying and Conversion of Static Variables

PJama supports persistence of static variables unless they are marked transient. This sets PJama apart 
from most of the other known persistence solutions for the Java platform, which treat static variables as 
implicitly transient [JA98]. Therefore the evolution system has to provide support for the conversion of 
static variables.

When the new version of class C is loaded, its static fields are initialised with their initialisers as usual. After 
the change validation phase of evolution is complete, for each class that will actually be replaced, the values 
of all of its static fields that have same names and compatible types in both versions are by default copied 
from the old version of class to the new one. The value of the field f is not copied, however, if f is s t a t i c  
f in a l  in either the old or the new version of class C.

This is because ordinary static fields often hold some information that is obtained during program execution. 
Such information is preserved between executions of a persistent program and, similarly, across subsequent 
evolved versions of the class. In contrast, s t a t i c  f in a l  fields typically serve as constants, not accumu
lating any information during runtime. However, if in some new version of a class such a constant has a 
different value, it is most likely that this change is intentional and should be propagated into the store. For 
example, the programmer might want to modify a message that the program prints, or change some numeric 
constant due to the change from one measure system to another.
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The programmer can override the above default rule for non-final statics of some class using a special 
command line option of the persistent build tool (see Appendix A). In that case the static variables of 
this class will have the values that were assigned to them by the static initialisers of the new class version. 
Similarly, copying of final static variables between the versions of a class can be enforced.

If simple copying of statics is not enough, a conversion method for statics can be used. This method’s 
signature is:

public static void co n v e rtS ta tic s  ()

If a method with this signature is present in a conversion class, it is called immediately after the default 
copying of statics, but before instance conversion starts (and therefore before any of onConversionStart () 
(see Section 4.5.5) methods are called). The code in this method can deal with all evolving classes and can 
refer to their old versions as usual, i.e. using the $$_old_ver_ suffix.

4.8 Access to Non-Public Data Fields and Methods

Class evolution and subsequent object conversion have nothing to do with the normal execution of a persis
tent application. Therefore the conversion code often needs access to private fields or methods of evolving 
classes. The problem is partially remedied by default conversion, which copies all fields with same names 
and compatible types between object versions, irrespective of their protection modifiers. Also, the program
mer can get access to non-public fields and methods by making conversion classes subclasses of evolving 
classes, putting them into the same package and even making a conversion class an inner class of an evolving 
class. However, these are pretty artificial measures that make the actual conversion code logic less clear, and 
they might not work if, for example, a single piece of conversion code needs to access several classes from 
different packages. Therefore we opted for allowing the conversion code to access data with any protection 
modifiers from any place in the conversion code.

Giving the application developer unconditional access to private members obviously violates the normal 
Java security rules. However, without this evolution facilities in many cases can become useless. Evolution 
is essentially a non-trivial operation, and it should be performed by a developer who is well aware of the 
persistent application structure. So at present we favour taking away access restrictions in the conversion 
code. To maintain security in future multi-user systems running on PJama platform, it would be more 
reasonable to permit access to the evolution facilities only to selected users or system administrators, or to 
refer an evolution to the security manager before it starts.

Currently the programmer gets access to non-public members that are not accessible from the given con
version class, via Java reflection facilities, i.e. methods implemented by classes in standard Java package 
ja v a . lang. re f  le c t  (see Section 4.4 which presents an example of using reflection). This is not the most 
convenient way from the programmer’s point of view, but it is at least consistent with the rest of the Java 
language. The latter, starting from JDK1.2, allows programs to suppress access checks performed by re
flected objects at their point of use. PJama evolution systems does that automatically for the programmer, 

i thus giving them free, though not the most convenient, access to all non-public members.
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4.9 Related Work

We now switch to considering instance conversion support in a number of commercial and experimental 
systems, contrasting their evolution facilities with those of PJama. Recognising that many of such products 
will release new versions with different properties, we have used the latest information available (usually 
from Web sites), and annotated the bibliography with the data that was obtained.

We have already mentioned in Section 2.6 that PJama is one of the very few (and the only one of those we 
managed to survey in detail and present here) systems that preserves methods and static variables of classes 
in the persistent store. Thus it is the only system that performs behavioural consistency checks. For this 
reason, we simply don’t mention support for static variables preservation and behavioural consistency in the 
discussion that follows, implying that it is not implemented.

We start the discussion with describing the object conversion support in Java Object Serialization (JOS) 
which is a standard persistence mechanism for Java. We then proceed to contemporary commercial OODB 
systems, and finally describe several experimental OODBMS.

4.9.1 Java Object Serialization

Since the JDK version 1.1, Java Object Serialization (JOS) [SunOOj] has been considered to be the default 
persistence mechanism for the Java language. JOS is a part of the standard ja v a . io  package and provides 
facilites to write/read (serialise/ deserialise) object graphs to and from bytestreams. Bytestream is an abstract 
representation, to which a disk file or a network connection may physically correspond. Sending objects over 
the network, specifically those that are arguments of remotely called methods, was actually the original use 
for JOS.

For a number of reasons, JOS can generally be considered only for persistence of relatively small amounts 
of non-critical data. It does not scale well: there is no way to change objects on the bytestream individually, 
and the entire bytestream should be read into memory and then written back to make any changes. It is also 
not orthogonal: for reasons of security, an instance is allowed to be serialised only if its class implements 
the standard ja v a .io .S e r ia l iz a b le  interface. Many of the Java core classes do not do this. This can 
also preclude successful re-use of classes for which source code is not available. No standard transaction 
facilities of any kind are provided for JOS.

By default JOS would not allow the developer to serialise objects using one class definition and then read 
them back using a changed class. This is done by calculating a special value, a 64-bit “fingerprint” for 
the class, when it is serialised. This fingerprint, which is called the serialVersionUID, is based on several 
pieces of class data, including all of the serialisable4 fields. When an incompatible change to a class is made, 
for example a serialisable field is added or deleted, instances of this class can no longer be deserialised 
(an exception is thrown), since the old (saved in the byte stream) and the new serialVersionUIDs of 
the class do not match. However, the developer may override this protection mechanism by explicitly 
assigning the old serialV ersionU ID  (which can be obtained for a class using special utility) to the new 
class version. This is done simply by defining a s t a t i c  f in a l  long variable serialVersionUID  in the

4A11 non-static fields o f  class are serialisable, except those marked with a Java t r a n s ie n t  modifier.
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new class version and assigning it the old value. After that, a byte stream can be deserialised. However, all 
fields added in the new class definition will be assigned default values and all deleted fields will be lost.

The above problem can be overcome by adding a special readObject (ObjectlnputStream ) method to 
the changed class (similarly, a writeObj ec t (Obj ectOutputStream) method may be used to customise the 
output, e.g. to encrypt some data fields as they are written to disk). readO bject () method overrides the 
default functionality used to read an object from the byte stream. Inside this method, the developer may use 
an instance of special inner class called O bjectlnputS tream .G etF ield, that allows to read the object into 
a “black box” and then obtain its fields using a reflection-type API, i.e. by passing field names to methods 
of O bjectlnputS tream .G etF ield . Suppose that in the old definition of class Person we had two S trin g  
type fields firstNam e and lastName, which in the new class definition are replaced with a single field 
fullName, containing essentially a concatenation of the first two. We can then add a readO bject method 
similar to one shown in Figure 4.8 to the new version of class Person.

p r iv a te  void readO bject(O bjectlnputS tream  ois)
throws IOException, ClassNotFoundException {

O bjectlnputS tream .G etF ield  gf = o is .r e a d F ie ld s () ;

/ /  Check ju s t  in  case i f  we have the new version  of Person in  the stream 
fullName = (S tring) g f .g e t ("fullName", n u l l ) ;

i f  (fullName == n u ll) {
/ /  This i s  the o ld  v e rs io n . C alcu la te  fullName.
S tr in g  lastName = (S tring) g f .g e t ("lastName", n u l l ) ;
S tr in g  firstName = (S tring) g f .g e t ("firstN am e", n u l l ) ;  
fullName = lastName + ", " + firstN am e;

}

. . .  / /  Set o th e r f ie ld s
}

Figure 4.8: An example of method performing conversion in Java Serialization

The main disadvantages of the reflection API is that the code employing it is cumbersome and can not be 
statically type-checked. Reflection is also likely to slow down conversion, since each access to a field of the 
old object requires a lookup in some kind of internal dictionary.

We have tested the behaviour of this mechanism if an object being converted refers to another object, also 
belonging to a changed class. In the above example, it can be done e.g. by adding a field Person next to 
class Person. If we then add the following line

Person p = (Person) g f .g e t ("n ex t" , n u l l ) ;

to the above code, it turns out that the conversion mechanism calls the readO bject () method recursively 
and returns the converted instance of Person in this statement. Therefore the conversion method cannot 
obtain instances in the old format except the current one, or any data from these instances that is specific to 
their old format. Such a mechanism, though it is type safe, reduces the capabilities of conversion and may
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cause scalability problems. For example, if it is used to convert instances organised in a structure such as a 
linked list, it will inevitably require a chain of recursive calls to set all the next fields, which may lead to 
VM runtime stack exhausting and application crash.

4.9.2 Commercial OODBMS

In this section we survey object conversion facilities provided in a number of contemporary commercial 
systems, and one (actually half-commercial, half-experimental) past system (O2 ).

4.9.2.1 Objectivity/DB

Evolution support and object conversion facilities in the commercial OODBMS Objectivity/DB [Obj99a, 
Obj99b, Obj99d, Obj99c], that supports C++, Java and Smalltalk bindings, are the most sophisticated among 
the systems that we managed to survey. Changes to classes allowed by this system can be arbitrary. Ob
jectivity supports three kinds of object conversion: eager (immediate in their terminology), lazy (deferred) 
and what is called on-demand, which basically means eagerly triggering previously defined lazy conversion 
on selected subsets of evolving objects at convenient times. Both default conversion and custom conversion 
functions are supported.

However, there are a lot of constraints imposed on either kind of conversion. Custom lazy conversion in 
Objectivity/DB is allowed to set only primitive fields of objects. The documentation does not explain the 
reasons for this constraint, nor does it say whether it is verified in any way by the system or what the 
consequences of breaking it can be. In addition, when lazy conversion is applied to an evolving object, the 
new shape of the latter is made permanent only if the object is accessed in an update transaction. If an object 
is accessed in a read-only transaction, the converted object will not be saved, and conversion will be repeated 
next time the object is accessed. This can lead to a significant overhead due to repeating conversions of the 
same object in an application which mostly reads data, e.g. a geographical information system, and that’s 
where the manual suggests using on-demand conversion. Sequential “overlapping” lazy conversions are 
highly discouraged — it is recommended that all of the evolving objects are first converted, using e.g. “on 
demand” method, before the next lazy conversion is applied to the database. Finally, lazy conversion can 
not be combined with class changes that affect the class hiearchy, e.g. moving persistent-enabled5 classes 
up or down the inheritance graph or deleting a persistence-capable6 class.

Custom conversion code in Objectivity/DB can be written in C++, but there is no sign in the documentation 
that custom conversion is supported in the Java binding. In C++, the application programmer has to use 
a kind of custom reflection API to access fields of both old and new copies of an evolving object. The 
documentation does not say anything about calling methods of evolving objects. It also recommends limiting 
the use of conversion functions to objects being converted, that is, not access other persistent objects from 
within a conversion function. Thus, complex conversion is not supported or at least discouraged.

5Persistent- enabled  class, in the terminology o f  Objectivity and other OODBM S, is a class whose objects can’t be persistent, 
but which can read and write persistent objects.

6Persistent-capable  class is a class whose instances can persist, and which can read and write persistent objects.
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4.9.2.2 GemStone/J

The commercial system GemStone/J [Gem98, GemOO] is based on the Java language, and many of its 
features are similar to the existing features of PJama. Its evolution facilities are, however, relatively limited. 
Access to them is mostly through API calls. Although GemStone/J supports concurrent access of multiple 
VMs to the same store, class evolution cannot be reliably performed in concurrent fashion. The manual 
recommends termination of all applications before starting transformation, and shutting down and restarting 
of the server VM after it is finished. Obvious complexity of implementation of the shared object cache 
mechanism that provides concurrent access to the same store, probably justifies these limitations.

Classes representing objects in GemStone/J database can be evolved arbitrarily, as in PJama. However, 
classes themselves (i.e. methods and static variables) are not saved in the database. Instead, essentially 
descriptors of their instances are saved. Therefore, very little consistency validation or safety checks can be 
performed.

As far as instance conversion (transformation, in GemStone’s terminology) is concerned, the flexibility 
is quite limited. No user-defined conversion functions are available. The only way of converting data 
is to specify mapping between old and new data fields. The programmer should create an object of the 
j av a . ut il. Dictionary standard Java class containing pairs of objects of the j ava. reflect. Field class. 
These pairs correspond to fields of old and new classes that should be copied between old and new instances. 
The programmer passes the map, together with old and new class objects, to the special method that creates a 
specification to transform the old class to new class. A method is also available, that creates a specification in 
the default way, where values of the fields with the same name and compatible types are preserved between 
versions. However, when this method is used, the information from deleted fields is lost and new fields are 
assigned equal default values. The transformation itself is performed eagerly, by calling yet another method. 
Many operations before and after it, such as loading new classes, should be performed manually.

4.9.2.3 Versant Developer Suite

Versant Developer Suite [VerOO] is a commercial OODBMS offering multiple language bindings, that in
clude C/C++ and Java. Its evolution facilities allow any changes to classes except adding and dropping 
non-leaf classes to/from the class hiearchy. It supports both lazy conversion and a variant of eager conver
sion. However, neither of them are sophisticated. Lazy conversion can perform only default transformations. 
As for the eager conversion, it has to be a combination of the following steps:

1. Having class C which we want to change such that the format of its instances changes, first create a 
new class D with the same definition. Then run a program which would create an instance of D for 
each instance of C, copy information between them and “repair” all references to instances of C from 
other objects, so that they now point to the respective instances of D. All these operations should be 
encoded “manually” by the developer.

2. Delete old class C — this would also delete all of its instances.

3. Create a new class C with new definition. Run a program which would create an instance of C for 
each instance of D, copy information from the former instance to the latter and perform the necessary
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transformations, and “repair” all references to instances of D from other objects, so that they now point 
to the respective instances of C.

4. Delete class D and all of its instances.

Thus, there is practically no dedicated support of the conversion process: the developer has to implement 
a one-off evolution system on each occasion. Such a technology looks very cumbersome, error-prone and 
hardly scalable.

4.9.2.4 POET Object Server Suite

POET [POEOO] is another commercial OODBMS, also offering C++ and Java bindings. Its evolution sup
port is based on explicit maintenance of class versions. This means that every time a class is added or 
class definition is changed, the developer has to register the new class definition in the class dictionary, 
which is a secondary database of classes that accompanies the “normal” database containing data. However, 
again, not the classes themselves, but essentially descriptors of their instances, along with the timestamp 
to distinguish class versions, are saved in the class dictionary. Objects are always accessed using the latest 
class version. Changes to classes can be arbitrary, but not all of them give the developer equal freedom in 
choosing conversion type (see below).

Object conversion can be performed in two ways. In the first scenario, an object is physically stored in 
the format corresponding to its creation time class version. However, it can be read and written using 
the latest class version — in that case default on-the-fly conversion is performed every time the object is 
accessed. In the second scenario, all objects can be eagerly converted to the latest format using an database 
administration tool or an API call. There is a category of changes to classes that can be handled only by 
using eager conversion, i.e. a database would not open after such a change is made if eager conversion 
has not been performed. The changes that require eager conversion are called complex and very complex 
in POET’s terminology. Those that are not implementation-specific (e.g. related to database indexing) are 
changes to class hierarchy, such as class deletion or insertion.

Conversion capabilities are limited to default functionality. There seems to be a possibility for changing the 
default values assigned to added fields (by overriding a callback method called during eager conversion), 
but the documentation is inconsistent in this respect, so we were unable to find exact information on this 
subject. Data contained in deleted fields is inevitably lost during conversion.

4.9.2.5 ObjectStore PSE

ObjectStore PSE (Personal Storage Edition) [Exc99] from Excelon Corporation (formerly known as Object- 
Design, Inc.), is a persistent storage engine for Java. It is available in two variants (what would otherwise 
be called “editions”), named PSE and PSE Pro. As if to increase the confusion with naming, there is also 
a third product from this family, called Java Interface to ObjectStore Development Client and officially 
referred to as “ObjectStore”. The latter is essentially a collection of Java APIs supposed to be used with
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third-party databases. In the following discussion we consider ObjectStore PSE/PSE Pro only and refer to 
them collectively as “PSE”.

PSE and PSE Pro are designed for single-user applications and provide transparent persistence in much the 
same way as PJama does. The difference between the PSE editions is in the maximum database size, degree 
of concurrency, support for recovery and disk garbage collection (available in PSE Pro only), etc.

Schema evolution and conversion support in PSE is quite limited. The developer has to use Java Object 
Serialization ([SunOOj], see also Section 4.9.1) to handle evolution. The manual suggests that the developer 
dumps the database into a file (serialised byte stream), modifies the classes and then re-creates the database. 
For database to be serializable, all of the classes in it should implement j ava. io. Serializable interface. 
Fortunately, adding an implemented interface to a class, as well as certain other changes, such as changes to 
methods, static fields, transient fields, and adding classes to hierarchy (the documentation does not explain 
whether only leaf classes are meant, or non-leaf classes can be added as well, as far as this does not change 
the format of instances of subclasses), do not require database rebuilding.

The first, and very serious problem with the above approach to conversion, is that it does not scale. A 
database which is to be evolved should be small enough to fit into heap space. Otherwise the documentation 
suggests to “customise the code that dumps and loads the database”. This can be very hard, if, say, the 
whole database contains a single graph structure with arbitrary connections between nodes. Then, it may 
not be possible to change all of the classes in the database to implement j ava .io. Serializable, since for 
some classes, e.g. Java core classes or third-party libraries, the source code may not be available. Finally, 
as was shown in Section 4.9.1, the conversion facilities in JOS are not very sophisticated. To perform any 
non-trivial conversions, the developer has to rely on various reflection mechanisms very heavily. This makes 
conversion code cumbersome, difficult to read and error-prone, since little or no type checking can be done 
at compilation time.

4.9.2.6 0 2

One of the most sophisticated evolution support technologies we have discovered was once developed for 
the 0 2 [FFM+95, FL96] OODBMS. Its primary mode of use was with applications in C and C++. Any 
schema modifications except adding or dropping non-leaf classes could be performed either incrementally, 
using primitives such as adding or deleting attributes to a class specified in a change definition language, or 
by redefining a class as a whole in the schema definition language. Structural consistency of changes was 
verified by the schema compiler.

Conversion of instances could be performed eagerly or lazily. Both default conversion and user-defined 
conversion functions were available. Migration of objects of a deleted class to its subclass was supported. 
Conversion functions (an example taken from [FFM+95] was presented in Figure 4.1) used a special syntax 
where the type for the old version of evolving class was defined “in place”. In Section 4.4 we expressed our 
concerns about such a syntax.

Versioning has also been implemented for 0 2 [FL96], making it the only system to support both adaptational 
and schema versioning approaches to schema evolution. This means that the schema and the underlying 
database could either be transformed completely, or new schema versions could be created and coexist si
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multaneously with the older ones. In the latter case, the identity of an object whose class had been evolved 
remained the same, but there was a separate physical record for such an object, corresponding to each class 
version. To maintain consistency between these records, the programmer had to provide a forward conver
sion function and a backward conversion function for each version of the evolved class. These functions 
were pieces of code responsible for updating a field in one representation whenever the corresponding field 
in the other representation was updated. For example, the field tem perature in the old version of a class 
may encode temperature in Fahrenheit and in the new version in Celsius. The corresponding conversion 
functions containing the formulae to convert the temperature would have been invoked automatically every 
time this field is updated in either representation.

4.9.3 Experimental OODBMS

A number of experimental OODBMS that have evolution facilities were implemented in the last decade. An 
exhaustive review of them can be found in Rashid’s PhD thesis [RasOO]. The latter, however, concentrates 
mostly on the higher-level aspects of their evolution models and does not tell much about the technical way 
of implementing instance conversion (updating). When we studied these systems, e.g. Orion [BKKK87, 
Ban87], F2 [AJEFL95, AJL98], CLOSQL [MS92, MS93, Mon93], Odberg’s approach [Odb95], etc., we 
found that they generally do not provide non-trivial programmer-defined object transformations. Some of 
the systems use only default conversion or its slightly modified variants (F2), for some others the examples of 
conversion code are hard to find or understand. Where examples of conversion (update/backdate, mutation 
propagation, etc. are essentially the synonyms of conversion) code are presented (CLOSQL, Odberg’s 
work), the code can access only the fields (attributes) of the copies of the current evolving (versioned) 
object. In Odberg’s work, where explanations are the most clear and to which we therefore refer, a separate 
mutation propagation function should be defined for each attribute, say x, of one class version, which is 
different in another class version. This function executes in the context of the other class version. This 
means that it can access all attributes of the other version, but can set only attribute x in the object of class 
version for which it is defined. In Figure 4.9 we provide an example of such a pair of functions.

This approach has a number of serious limitations. A conversion function can not access any objects outside 
a single version of the current evolving object, and it can only return a single value. The first constraint 
limits the possibilites for more general database reorganisation, e.g. converting a field containing the head 
of a list of objects to an array of this list’s elements. We found that such changes are sometimes required in 
practice. The second constraint, as we suspect, may in certain cases result in a large amount of redundant 
code, since different attributes may be computed using similar code.

Looking at the practical side of the things, mutation propagation functions are just pieces of C++ code, so 
to compile them in the correct context, the evolution system would have to extract them out of the above 
change specification file, combine them with some additional code and pass them to a C++ compiler.

The potential importance of being able to combine schema evolution with more general database reorgani
sation has been properly recognised only in one work [LH90]. A system called OTGen (Object Transformer 
Generator) is described in this paper, which assists the database administrator in understanding the effects 
of changes to class definitions, provides the default transformations, and provides the mechanism to allow 
overriding of the default transformations. The latter is performed using a tabular notation, i.e. special ta
bles which are first initialised by OTGen to carry out default transformations. These tables are relatively
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// Initial class version defined in Data Definition Language
CLASS Person { 

string name; 
int age;
int height; // Expressed in cm 
... // Method headers, etc.

}

// Changed class Person, defined in Change Specification Language
CLASS Person {
REM height; // Attribute height is removed
ADD int meter; // And replaced with two attributes that
ADD int cm; // directly correspond to it

// backward and forward mutation propagation functions
// (each function is in square brackets) 
height [return meter*100 + cm]
< - >

meter [return floor(height/100)] 
cm [return height - 100*floor(height/100)]

}

Figure 4.9: An example of conversion code from Odberg’s work

expressive: they allow the administrator to assign a number of different values, listed below, to a field in 
the converted object. A constant value different from the default one can be assigned; a context-dependent 
transformation, i.e. an assignment depending on the result of a boolean expression, can be made; a value 
can be copied from an arbitrary field of the corresponding unconverted object, or from a field of an object 
reachable from the unconverted one; a new object can be created and a reference to it assigned to a field 
in the converted object; and finally it is possible to specify that such a new object is to be shared between 
multiple converted objects. Still, this table-driven conversion allows the developers to move and copy data 
only between the old and new copies of an evolving objects, and objects reachable from the old one through 
a chain of fields. Methods can not be executed during such a conversion, and we understand that no real 
multi-step computations that transform information, can be performed.

4.10 Future Work

Several directions of future work on object conversion support can be envisaged, and they are presented in 
the following subsections.
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4.10.1 Dictionary-Assisted Conversion

At present conversion in PJama is supported in two ways: the primitive default object conversion, and the 
sophisticated custom conversion. These methods of conversion cover the broad range of changes that can be 
made. There are, however, two kinds of evolutionary change, which are not supported adequately by these 
mechanisms, since no real conversion of data contained in instances is required, but default conversion does 
not work either. This happens when:

1. Instance data fields of an evolving class are renamed without changing their types;

2. The type of a field is changed such that implicit type cast can not be performed. For a primitive data 
field it happens when precision can be lost, e.g. when type in t  is changed to type byte. For a class 
type field it happens when a new type is not a super-type of the old type, e.g. type j ava. la n g . Ob j ec t 
is changed to type j ava . la n g . S tring .

Presently in both of these cases the developer has to write custom conversion code in Java, which simply 
performs field assignments combined with explicit type casts. Execution of Java code, however, slows down 
conversion. For this reason, it might be worthwhile having an additional conversion option, something 
similar to dictionaries used in Gemstone/J (see Section 4.9.2.2), which, given a simple field mapping, would 
provide fast automatic conversion. This option was not implemented in PJama primarily because it is not 
very interesting research. However, we think that in a commercial system it would be useful. This option (at 
least for the case of simple field renaming, where no runtime errors due to runtime type incompatibility can 
happen) can also be used with lazy conversion, increasing its value if custom lazy conversion mechanism is 
not available.

4.10.2 Usability Aspects

The instance conversion technology that we have developed was so far used mostly by the author, and mostly 
in relatively small-scale experiments. Therefore, one of the most important directions of future work, if 
adoption of such a technology for more serious usage is considered, would be observation of independent 
professional developers using it over an extended period. This can help tease out conceptional, usability and 
engineering issues.

4.10.3 Concurrency and Scalability Issues

In Section 2.5.2 we have explained why lazy conversion is not implemented in PJama at present, and why 
we consider such a feature as lazy custom conversion quite controversial. However, a sensible alternative 
to it may be eager concurrent conversion — provided that an application(s) may temporarily abstain from 
using the objects that are being converted, or can tolerate blocking on access to an object which is not yet 
converted. It looks as if this research direction has not yet been explored.
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There is also an issue of conversion scalability, which is quite important for eager conversion, and can 
be illustrated on an example of ObjectStore system (see Section 4.9.2.5). Objectivity/DB system (Section
4.9.2.1) also seems to scale poorly if eager conversion is used. The solution to this problem in PJama is 
discussed in Chapter 6.

4.11 Summary

In this chapter, we have described how conversion of persistent objects, that is, updating them to make 
them comply with the new definitions of their classes, is implemented in PJama. We explained what kinds 
of changes to classes result in the change of format of their instances, and thus require conversion (this 
is partially an implementation-dependent issue). We have then described two major kinds of conversion 
available in PJama: default (automatic) and custom (programmer-defined). It was explained what kinds of 
changes can be handled successfully by default conversion, that does not require any intervention from the 
developer. We then concentrated on describing our support for custom conversion, which is available in 
two flavours: bulk and fully-controlled. The issue of referencing old and new classes in conversion code, 
which is common to both of these sub-types of custom conversion, was explained, several alternatives were 
discussed, and our final solution was presented. The core of this solution is a convention about referring to 
old versions of evolving classes by specifically mangled names. The PJama system (both the compiler and 
the VM) recognises such names and treats them specially, loading the respective classes from the persistent 
store, whereas classes with ordinary names, representing new versions, are loaded from the CLASSPATH.

We then described a number of methods with predefined signatures, that can be used in bulk conversion. 
Methods are available both for the case when a class is changed, and when a class is deleted (then we are 
talking about migrating its “orphan” instances to other classes). Some of the presented methods are type 
unsafe, but in our opinion this unsafety is justified, which is confirmed by examples of evolutionary changes 
to classes.

Support for fully-controlled conversion, allowing the developers to convert instances of changed classes in 
non-default order and combine conversion with arbitrary data restructuring, was described then. Both bulk 
and fully-controlled conversion technologies were illustrated with a simple continuing example.

Relatively minor issues of static variable conversion and of access to non-public members were discussed, 
and were followed by the survey of the related work. The survey has shown that P Jama’s conversion 
facilities are the most advanced among the systems considered. It also looks as if PJama is presently 
the only system supporting custom instance conversion programming in Java. Other systems, supporting 
multiple language bindings, seem to allow non-trivial conversions to be encoded only in C++.

Considering the future work, it was shown, that it might be worth equipping PJama with a third type of 
conversion, called dictionary-assisted, which is intermediate between the default and the custom conversion. 
We have also pointed out that the value of our technology would be really proved only if it is evaluated by 
independent software developers over extended period of time. Finally, we mentioned concurrency and 
scalability issues as possible directions of future research.

Lack of powerful and convenient evolution facilities, which we have observed in most of the presently
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available commercial OODBMS, may be one of the reasons why they have not yet achieved the same level 
of commercial success as relational DBMS. The capability of storing very complex data structures in a 
persistent object system should, in our opinion, be backed by the capability to evolve these structures in 
arbitrary ways, otherwise the usability of such a system degrades over time. We hope that our contribution 
to the research in evolution of persistent objects may help to stimulate adoption of more powerful solutions 
in commercial OODBMS.

Finally, we expect that a conversion technology similar to the one described in this chapter, can be also 
applicable in the context of run-time evolution for Java applications (see Chapter 7).



Chapter 5

Conversion Code Semantics and Internals

So far we were illustrating the conversion mechanism of PJama with very simple examples. However, 
when this mechanism is applied to some less trivial cases, e.g. when several classes are co-evolving in 
one atomic evolution step, evolving classes are used by other evolving classes, and so on — a number of 
additional issues become evident. The challenge here is to provide a conceptual framework which provides 
both freedom and safety, is readily comprehensible to the developer, and yet avoids commitments which 
over-extend the engineering requirements.

We describe these issues and the conceptual view of how they are resolved, in the following sections 5.1 - 
5.4, and some important implementation details — in section 5.5. In Section 5.6 we demonstrate how we 
evaluated our conversion facilities. Section 5.7 presents an alternative design of conversion code support 
mechanism, that, in contrast with the one implemented in PJama, does not require changes to the Java 
language — at a price of providing somewhat less convenience to the developer.

5.1 Stability of the “Old” Object Graph during Conversion

An important feature of the conversion mechanism implemented in PJama is the stability of the source 
(“old”) data. During conversion, newly-created instances are not automatically made reachable from any 
persistent data structure. “Old instance -  new instance” reference pairs are kept in a special system table 
instead, and the source object graph remains unaffected. All class type fields of an existing persistent 
object will continue to point to the “old” instances throughout the conversion code execution, irrespective 
of whether the referenced instance has already been converted or not. Equally, when class type fields of 
freshly created “new” instances are initialized by the default conversion mechanism, they also point to “old” 
objects, as illustrated in Figure 5.1.

This stability is essential for comprehensible conversion semantics — the programmer always knows unam
biguously which version of an object they are going to obtain by following a reference. Thus, Java’s type 
safety is preserved. Two separate worlds of objects — the “old” and the “new” one, with only logical links 
between some objects belonging to them, are maintained until conversion is finished. Then, the “old” objects

80
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are atomically “swapped” with their “new” counterparts, making the physical “old” instances unreachable 
and passing their identity to “new” objects. This has an effect of an instant “flip” that transforms the old 
object graph into the new (see Chapter 6 for the implementation details). The “old” instances can eventually 
be reclaimed by the disk garbage collector.

Reference patching
Initial object graph C onversion N ew  object graph

- v

0  "New" instance o f  the ev o lved  classOld" instance o f  the evo lved  class

Figure 5.1: Management of references during conversion

The fact that the old object graph remains stable during conversion and is visible to conversion methods in 
its entirety gives the programmer free access to all of the data in the unconverted format at any moment 
during conversion. We believe that this is very important, since, for example, in a complex conversion the 
data from an object other than the current converted one might be needed, which is deleted from the latter 
object during conversion. Thus, our semantics allows developers to “move” data between different evolving 
objects during conversion, irrespective of the order in which these objects are transformed. It also allows 
conversion code to collect summaries, e.g. sets, sums or averages, iterating over objects in the “old world”.

A new version for an “old” converted object, if it already exists, can be obtained using yet another method 
declared in the PJEvolution class called getNewObjectVersion (Object). To illustrate this, let’s again 
consider the example from the previous chapter, at a moment when the airline decides to divide its customers 
into three tiers. Imagine that there is a field reference of type Customer in both old and new versions of 
class Customer. This field points to a person that has once referred this customer to the airline. The airline 
decides that if the customer goes to the Gold Tier, then the one who has referred them gets bonus miles. The 
code that implements this logic is presented in Figure 5.2

Note that during conversion re ference  field of o ldc variable continues to point to an instance of 
Customer$$_old_ver_ irrespective of whether that particular instance has already been converted or not.

5.2 Loading Classes Referenced from Conversion Code

Conversion code is simply one or more normal Java classes. But a conversion class usually references 
classes with mangled names, such as C$$_old_ver_. Our modified Java compiler and the PJama VM in 
the evolution mode, both interpret the “old version” suffix specially. When the conversion class is resolved, 
every class that it references under a mangled name is loaded from the store, whereas a class with the same 
(modulo special suffix) name is loaded from the CLASSPATH.
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public static Customer convertlnstance(Customer$$_old_ver_ oldC) {
Customer newC;
if (oldC.totalMiles > 5 0 0 0 0 )  { 

newC = new GoldTierCust();

// Give bonus to the person who referred this customer 
Customer$$_old_ver_ ref = oldC.reference; // It's old instance 
ref.totalMiles += BONUS_MILES;

// See if "ref" has already been converted,
// and if so, update its new version
Customer refNew = (Customer) PJEvolution.getNewObjectVersion(ref) ; 
if (refNew != null) // ref has already been converted 
refNew.totalMiles = ref.totalMiles;

}

return newC;
}

Figure 5.2: Referencing both “old” and “new” instances in the conversion code

However, the conversion class may reference many more classes than just those for which two versions 
are explicitly declared in the conversion code. Every class referenced from the conversion class, should be 
loaded either from the persistent store or from the file system (the latter is also called CLASSPATH). Since 
such classes may be evolving themselves (not being mentioned under a mangled name does not mean that a 
class is not evolving), it does matter where they are loaded from. It is crucial to define this unambiguously 
and such that it is intuitively clear to the application developer.

The above rule about classes that are referenced both under a mangled and an original name is intuitive 
enough. Naturally, if some class is referenced only under a mangled name, the programmer would expect it 
to be loaded from the persistent store. If some class referenced under a mangled name is not found in the 
store, the evolution system throws an error and stops at the change validation stage.

However, for classes that we would like to reference by “ordinary”, non-mangled names, the situation does 
not look so unambiguous. Simple symmetry suggests that we load all classes with “normal” names from the 
CLASSPATH. But there is one complication here which is due to the “human factor”. A piece of conversion 
code would almost always reference a number of classes that are not evolving. These are first of all Java 
core classes (see Section 2.5.3 for details of why we can’t evolve these classes). In addition, many persistent 
application classes are usually involved, but do not evolve themselves, in a particular evolution transaction. 
To reduce the probability of errors and to make the conversion code less clogged with mangled names, we 
would like to avoid using mangled names for all these stable classes.

After careful consideration, we decided that stable classes can be named with ordinary, non-mangled names 
and the system should always load such classes from the persistent store. The primary argument for the 
second part of this decision is that a stable persistent class may contain static variables which were set 
during previous executions of the persistent application, and the values of these variables may be required
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by the conversion code.

To determine if some class referenced from the conversion class is stable or not, we apply the standard 
change validation procedure described in Section 3.3 to all such classes at evolution time. In this case, we 
are interested just in the “same - not same” answer. Java core classes can be detected immediately by their 
names and do not require the change validation procedure.

Thus, now we can formulate the precise rules defining where classes that are referenced from the conversion 
class are loaded from:

1. If the class has an “old version” name, it is loaded from the persistent store.

2. Otherwise, if the class is a Java core class, an attempt is made to load it from the persistent store. If it 
is not found there, the class is loaded from the CLASSPATH.

3. Otherwise, if the class is a stable user class, it is loaded from the persistent store.

4. Otherwise, the class is loaded from the CLASSPATH.

5.3 Programmer’s View of the Old Class Hierarchy

5.3.1 Uniform Renaming of Old World Classes

Evolving classes can be used by other classes. This fact, unfortunately, leads to a mismatch between the 
formal, declared type of a class type variable and its actual, runtime type. A simple example presented in 
Figure 5.3 illustrates this problem.

// Old version // New version
class LinkedListElement { class LinkedListElement {
LinkedListElement next; LinkedListElement next;

Object addedField;

} } ”

// Conversion method
public static void convertlnstance(LinkedListElement$$_old_ver_ ol,

LinkedListElement nl) { 
LinkedListElement$$_old_ver_ ol_next = ol.next; // Illegal?

}

Figure 5.3: An evolving class referencing an evolving class

What is the type of the field n ext of the old version of class L inkedListElem ent? We can only answer that 
it was formally defined as L inkedL istE lem ent, but when the above conversion code starts to run, its actual
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runtime type should be LinkedListElement$$_old_ver_. This follows from our decision to maintain two 
separate worlds of old and evolved classes and instances during conversion, as explained in section 5.1. 
However, this contradicts the normal rules of the Java language. The above conversion code is what the 
programmer would expect to see, but it would not be compiled by the ordinary Java compiler, even if the 
latter loads classes with mangled names from the persistent store. Clearly, an extension to the Java language 
specification is needed to resolve this mismatch, and some additional modifications to the compiler and the 
VM are required.

// Old version of class Csuper 
class Csuper { 
void ml () {. . .} 
void m2(Csuper cs) {...}

// New version of class Csuper 
class Csuper {
void m2(Csuper cs) {...} 
void m3() {...}

} }

// Old version of class C 
class C extends Csuper {
C c; 
int i;
boolean mb() { 

return D.m ();
}

// New version of class C 
class C extends Csuper {
C c;
int i, isquare; 
boolean mb() { 

return D.m() ;
}

) }

// Conversion class 
class ConvertC {
public static void convertlnstance(C$$_old_ver_ c_old, C c_new) { 

if (c_old.mb()) 
c_old.ml(); 

c_old.m2(c_old); 
c_new.m2(c_new);
c_new.isquare = c_old.i * c_old.i;
c new.m3();

}

Figure 5.4: An example of conversion code referencing old and new class versions implicitly.

There is also another source of similar type mismatches. So far we were talking just about “classes refer
enced by the conversion class”. Now let us consider the kinds of these references at the Java source code 
level. We suggest dividing all references from the class source code to other classes into explicit and im
plicit. Explicit referencing means that a class is explicitly named somewhere in the Java code, as a type of 
a variable or a formal parameter, in an explicit type cast, etc. However, in addition to that a class typically 
references a number of classes implicitly. For example, if we mention the field of an instance of some class 
inst. f in the source code of class C, we may not name the type of f at all. However, the class representing 
the formal type of f will nevertheless be referenced from the compiled bytecode of C. If C references some
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method defined in another class, simply as in s t  .m (), the reference to m’s defining class will necessarily be 
included in c ’s bytecode. Needless to say, some classes can be referenced both explicitly and implicitly.

In addition, a class can reference many classes recursively — via other classes.

It turns out that implicit links to classes can produce type mismatch problems during evolution. To illustrate 
them, consider the common case where several classes are being evolved in one go. These classes are often 
hierarchically related. Assume that class C and its superclass Csuper are being evolved simultaneously. 
Furthermore, C evolves such that its instances require conversion, whereas for Csuper this is not required 
(see Figure 5.4). But in the new version of class Csuper we delete an old method ml () and add a new one 
— m3 (). These methods are inherited by the old and the new versions of class C, and we need to call each 
of them during conversion, as shown in Figure 5.4.

ConvertC class references class Csuper implicitly, because methods ml (), m2 () and m3 () of that class are 
referenced. But the conversion code presented above contains no hint that there are actually two versions of 
class Csuper. The unchanged Java compiler will look up the name of the superclass in classes C$$_old_ver_ 
and C, find the name Csuper in both, and link both classes to physically the same superclass. The latter will 
be loaded from the CLASSPATH, since it is evolving and its name (no special suffix) does not suggest that 
it should be loaded from the store. The new version of Csuper does not define method ml (), therefore 
the compiler will issue an error message and stop. If ml () was defined in the new version of Csuper, but 
differently, the code would compile, but then would work incorrectly.

In the above example there is also a recursive reference from ConvertC to D — via the old version of class C 
that calls method D.m (). It would be natural to expect the old and new versions of C to call the appropriate 
versions of D.

/ /  Old v ers io n  of c la ss  Csuper 
c la s s  Csuper$$_old_ver_ { 

void  ml () { . . . }
void  m2(Csuper$$_old_ver_ cs) { . . . }

}

/ /  Old vers io n  of c la ss  C
c la ss  C$$_old_ver_ extends Csuper$$_old_ver_ {

C$$_old_ver_ c; 
in t  i ;
boolean mb() {

re tu rn  D$$_old_ver_.m();
}

} ’ ’ ’

Figure 5.5: Old class versions definitions as viewed by the evolution system

To solve all the above problems, we have chosen the following strategy. We arrange that both during com
pilation and execution of the conversion code the illusion is maintained that all persistent classes (except
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Java core classes) are given old-version names. Therefore, in the above example the application developer 
should write the conversion code as if the old classes were defined as in Figure 5.5

The classes are renamed irrespective of whether they are really evolving or not. This is because at the stage 
of conversion code compilation the compiler has not determined which classes are evolving. Thus to be 
on the safe side we assume that any class can be evolving. This means that every class loaded from the 
persistent store would have old-version name, at least at the compile time. Further details of how this is 
implemented are presented in section 5.5.2.

5.3.2 Supporting the Naming Arrangement for Stable Classes

The uniform renaming performed by the compiler, that was presented in the previous section, has one 
drawback — it conflicts with the naming arrangement for stable classes. In other words, in the conversion 
code, how can we denote a stable class S its ordinary, non-mangled name, as specified in Section 5.2, if type 
S is referenced from an old-version class? The example in Figure 5.6 illustrates this problem.

// Old version of class E as perceived by the programmer
// Class S is unchanged (stable) in reality
public class E$$_old_ver_ {

S$$_old_ver_ sField;

S$$_old_ver_ retSTypeResult() {

r
}

// Conversion method
public static void convertlnstance(E$$_old_ver_ e_old, E e_new) {

S s = e_old.retSTypeResult(); // Illegal?

} '

Figure 5.6: An example of referencing a stable class in the conversion code

The actual runtime class of both sides of the assignment expression in the conversion method will be the 
version of class S loaded from the store. This is achieved by the mechanism described in Section 5.2, after 
verifying that S has not changed. However, at the compile time the compiler doesn’t know if S is evolving or 
stable, and assumes that it is evolving1. Consequently, at the compile time the type for the left-hand side of 
the above expression will be S, that is, the version of class S loaded from the CLASSPATH, and the type for

*In principle, it could have been possible to re-organise the evolution process, so that compilation o f conversion class could be 
performed only in combination with checking all evolvable classes and then evolving the store. Thus it would have been known 
precisely which classes have been changed and which are stable. Further, evolution happening immediately after that would not 
give the developer a chance to change more classes and thus make conversion code incorrect. However, this would require further 
changes to the compiler and make it very tightly connected with the evolution tool. Our present solution, in our opinion, is more 
general and thus, we believe, more optimal than this one.



CHAPTER 5. CONVERSION CODE SEMANTICS AND INTERNALS 87

the right-hand side will be class S$$_old_ver_— the version of class S loaded from the store. The formal 
types, therefore, will be different and incompatible.

The solution to this problem, as well as to a number of others, is the provision of extended implicit type casts, 
described in the next section. The compile-time types in expressions similar to the above remain different, 
but they are made compatible (only one way, however — from the old class to the new one). This allows 
the above code to compile successfully. At run time only one version of class S exists — that is the version 
loaded from the store, and its real name is not mangled. How this is achieved is described in the section 
5.5.3. As a result, if we add the additional Java statements shown in Figure 5.7 after the first line in the body 
of the above conversion method, they will produce the output presented in the same figure.

System.out.printIn("The class of sField is " + e_old.sField.getClass()) ;
s = new S ();
System.out.printIn("The class of s is " + s.getClass());
System.out.printIn("These classes are equal? : " +

e_old.sField.getClass().equals(s.getClass()));

The class of sField is S
The class of s is S
These classes are equal? : true

Figure 5.7: Addition to the conversion method in Figure 5.6 and the resulting output

5.4 Extended Implicit Type Casts

The practice of writing conversion code has shown that sometimes the programmer needs to explicitly assign 
a value of an old-version class to a variable of the new-version class type. A classic example is evolving class 
C which has a field of type D (D is also evolving), and this field is renamed in the new version. If we have 
two versions of class C as presented in Figure 5.8, the default conversion will not copy the value between 
df ield and d_f ield because of the different names of these fields. Thus we have to do it explicitly, in the 
conversion method for class C. What we would like to be able to write is the conversion code presented in 
the same figure.

The previous section has explained that both the compile-time types and the runtime classes of these vari
ables are different, and under ordinary Java rules they are not assignment compatible. We should, however, 
mention one possibility to perform such an assignment. The actual instance to which c_old.dfield refers 
at the moment when the above method is called could have been already converted or not. So, if we really 
want, we can determine this using the API of the org.opj .utilities. PJEvolution class (see section
5.1). Furthermore, if it hasn’t been converted yet, we can explicitly call the conversion method for class D, 
get the new object for c_.old.df ield and finally assign it to c_new.d_f ield. But all this is rather complex 
and inconvenient and works only if there is a conversion method for class D. So, ironically, if D is stable, 
which is not known at the moment of compilation, there would be no workaround and the code would not 
compile. What we really need is, therefore, the compiler and interpreter support for appropriate type casts 
in cases similar to the above.
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// Old version of class C 
class C {
D dfield;

// New version of class C 
class C {
D d field;

public static void convertlnstance(C$$_old_ver_ c_old, C c_new) { 
c_new.d_field = c old.dfield;

Figure 5.8: Example where explicit “old-to-new” assignment is required, and desirable conversion code

Such a support has been implemented, so now the above conversion code is absolutely valid. It is, however, 
unsafe by definition. The compiler and the interpreter allow the programmer to assign to the variable a 
value of a type which can have a totally incompatible instance format. If class D is evolving, the value 
of c _ o ld .d fie ld  assigned to c_new.d_field will always be a reference to the instance of the old class, 
because our non-ambiguous conversion code semantics requires this. It will be changed to the reference 
to a “new” class instance only after all instances of all evolved classes have been converted. Therefore, if 
at any moment the conversion code tries to interpret c_new.d_f ie ld  according to its formal definition, i.e. 
as a value of a new version of class D, it is likely to cause an error, which can’t be prevented by the Java 
interpreter. The safety of the Java language is violated here rather explicitly and brutally. It is, however, not 
a bigger violation than the one which we would get automatically if the field d f i e l d  retained its name in 
the new class, and thus the default conversion mechanism copied the reference to the “old” instance into it.

The rules for extended implicit type casts make not only direct counterparts like D and D$$_old_ver_ com
patible, but also superclasses of evolved classes and their old counterparts, e.g. Dsuper and D$$_old_ver_. 
If in the assignment “a = b” both A and B are “normal” classes, the standard Java language procedure checks 
if either A and B are the same (trivial case), or if B is a subclass of A. We have extended this check in the 
following way: if B is found to be an old-version class (has a mangled name), then its new counterpart Bnew 
is looked up (if B is actually to be deleted, a transient counterpart is looked for its superclass, and so on). 
Then the standard validation procedure is performed for classes A and Bnew.

Coercions leading to lack of type safety, that we have introduced, are in conflict with the general design of 
Java, and we consider this unfortunate. In Section 5.7 we present an alternative design, which is free from 
most of the above problems, but at a price of decreased convenience for the developer, more cumbersome 
conversion code and probably less effective implementation. In the summary for this chapter we present 
further thoughts on this subject.

5.5 Implementation Issues

This section presents the most important (and not immediately obvious) issues in the implementation of 
the evolutionary instance conversion and class replacement mechanisms for PJama. Section 5.5.1 explains 
how the system implements fetching of old-version classes with mangled names such that name mangling
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does not have undesirable effects on the normal persistent application execution. Section 5.5.2 describes 
the compiler and runtime mechanisms that support the illusion that all old classes have old-version mangled 
names, and load all involved classes from correct sources. The next section explains how we arrange that 
stable classes are always loaded from the persistent store, no matter what kind of reference from what (old or 
new) class is followed. Finally, in Section 5.5.4 some issues related to using the Java class loader mechanism 
during conversion are explained.

5.5.1 Fetching Classes with Mangled Names

At present the PJama evolution technology supports only immediate, or eager object conversion. This, in 
particular, means that two versions of an evolving class should exist only during the limited time interval, 
while an evolution transaction is in progress. Within that interval the VM can be queried for a class with an 
old-version name at any moment. After transaction termination, there should be no accessible classes with 
old-version names in the store.

We modified the Persistent Class Directory code to handle mangled class names. This data structure maps 
the names of classes to the respective persistent class objects, and the PJama VM always queries it first 
when it resolves a symbolic reference to a class. PCD treats mangled class names specially only if the 
PJama VM is in the “evolution mode”, i.e. a special internal flag is set. This happens if our persistent build 
tool is running over a non-empty persistent store. In all other cases the PCD code will simply try to look up 
a class with the given name, without any specific name interpretation.

In order to prevent propagation of mangled class names into the store, the name of the class is never mangled 
in the array of class name strings contained in the PCD. Instead, the PCD dynamically interprets the given 
class name every time it is queried. Only the class name string contained in the main-memory copy of the 
class object is mangled. Class names contained in class objects are not subject to the PJama VM update 
tracking mechanism, therefore a mangled name can never propagate into the persistent store.

5.5.2 Implementation of Uniform Renaming of Old Classes

As we explained in Section 5.3.1, the modified Java compiler in the evolution mode gives the programmer the 
illusion that all persistent classes (except Java core classes) have old-version mangled names. To maintain 
such an illusion by eagerly renaming all persistent classes everywhere in the store would obviously be too 
expensive. Instead, on-demand renaming of classes actually involved in the given evolution is performed. 
We will now discuss how this is implemented.

As any Java class, a compiled conversion class references other classes symbolically via its constant pool. 
In Section 3.3.2 we have presented the constant pool structure and explained that a class can be referenced 
from the constant pool of another class both directly and indirectly. That is, essentially a class name can be 
a separate entry in the constant pool of another class, or can be only included into an entry corresponding to 
a signature of a member of this or another class. In order to maintain consistency, we should achieve a state 
where a name of an old-version class, wherever in the constant pool of a conversion class it is referenced, is 
always mangled. Looking at the example from Section 5.3.1 again, we observe that we should, in particular,
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create two separate entries in the conversion class constant pool for class Csuper. One entry with the name 
Csuper$$_old_ver_ represents an old class, that defines method ml (), and also m2 () applicable to c_old  
variable. Another entry, with Csuper name, should represent a class defining the method m3 ().

In order to support uniform renaming of old classes, the compiler was modified in the following way. During 
parsing of a conversion class, as soon as the compiler comes across a class name for the first time, it loads 
this class. Normally any class is loaded from the CLASSPATH, however in our implementation a class 
with a mangled name is loaded from the store. The compiler then marks this class as an old-version one. 
Subsequently, whenever a symbolic entry from the constant pool of such a class is requested, the compiler 
immediately mangles all class names in this constant pool entry (excluding the names of Java core classes) 
and returns the result. So, uniform class renaming happens lazily. The compiler code that requested a 
constant pool entry, will load all classes referenced in this entry from the store, because of the mangled 
names. The process will continue recursively. Thus at compile time every class reached from the explicit 
old-version class will be also old-version-named and loaded from the store. On the other hand, every class 
with non-mangled name will be loaded from the file system.

This uniform and consistent renaming allows the compiler to load classes from correct sources from wher
ever they are referenced, and to have precisely defined (“old” or “new”) class type for every field, formal 
parameter or local variable involved in the conversion code.

When the conversion class ConvertC is compiled, the mangled symbolic entries will be copied into its 
constant pool. As a result, in our example the constant pool of ConvertC will contain, in particular, the 
following symbolic entries: class names C, C$$_old_ver_, Csuper, Csuper$$_old_ver_; method signatures 
ml () with a reference to Csuper$$_old_ver_ as a defining class, m2 (Csuper$$_old_ver_) with the same 
defining class, m2 (Csuper) and m3 () with Csuperas a defining class.

At conversion run time, during conversion class resolution, all classes that the latter references will be 
loaded either from the store or from the CLASSPATH according to the rules given in Section 5.2, i.e. on the 
basis of their names plus their actual stable or evolved state. In turn, classes reachable from these classes 
will be loaded from the same source, i.e. either a persistent store (for old-version persistent classes) or the 
CLASSPATH (for the new-version classes). However, stable classes will always be loaded from the store 
(see next section). Thus the described technique of uniform class name mangling guarantees that during 
evolution, irrespective of the length of the path the given class is reached from a known “old” or “new” 
class, it will be loaded from the correct source.

To complete the picture, we have to mention that signatures of fields and methods that include mangled 
class names, such as m2 (Csuper$$_old_ver_), need additional attention at run time, during conversion 
code linking, when the respective field and method blocks are looked up in the actual persistent classes. 
Field and method blocks are essentially records containing signatures and other information and grouped 
into tables [LY99]. Every class has its own tables of field and method blocks. Lookup in these tables is 
performed by symbolic names. When a persistent class is loaded, these tables are created by the standard 
VM mechanisms, and the names that field and method blocks are assigned at that time are never mangled. 
Therefore to be able to link mangled signatures (in the conversion class constant pool) with appropriate 
blocks (in the actual referenced classes), we had to patch the field and method block lookup routines of the 
VM to take the special suffix into account. A similar modification has been performed on the Java bytecode 
verifier to prevent it from issuing “Field not found” and “Method not found” error messages when it comes 
across mangled signatures.
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5.5.3 Management of Stable Classes

As mentioned in Section 5.3.2, at conversion run time we want only one version for every stable class to be 
visible to the conversion code. It should be the version loaded from the persistent store, and it should have 
a non-mangled name. However, at conversion code compile time it is not known which classes are stable. 
Therefore class renaming described in the previous section is applied to all classes referenced from classes 
with explicitly mangled names. One consequence of this is that the compiler may create two symbolic 
references for a stable class in the conversion class constant pool — one with an original and one with a 
mangled name. In the example given in Figure 5.6, the conversion class will have references to both S 
and S$$_old_ver_ class names in its constant pool. When opjb is invoked, all class type references from 
a conversion class are resolved eagerly by our change validation code. As a result, the VM will load two 
identical, but physically separate versions of class S — one from the CLASSPATH and another from the 
store, and will create two physical pointers to them from the conversion class. We can’t prevent creation 
of these two class copies, since for some other technical reasons (actually an obscure problem in the JVM 
itself that we can’t fix) resolution of references from the conversion class must happen before any classes 
are checked and possibly found stable.

Two copies of a stable class are also created if we have an evolving class which references a stable class, 
and this reference is resolved in the old and the new copies of this class before we have information on 
stable/evolving status of the referenced class. Unlike the case of conversion classes, references from evolv
ing classes are generally not resolved eagerly. However, a reference from a class to its superclass is always 
resolved when the class is loaded into the VM memory, and some other references may become resolved as 
a side effect of reflection operations performed during substitutability checks.

Therefore, if we have a stable class S, then, for various reasons, by the time all classes are checked and 
determined to be stable or changed, there can exist a “wrong” copy of class S, loaded from the CLASSPATH, 
and referenced by conversion classes and evolving classes. All these references should be replaced with a 
reference to the persistent copy of S. Measures should also be taken to prevent loading stable classes from the 
CLASSPATH during conversion code execution, and to prevent mangling the names of stable classes. Here 
is the list of all stable class management operations performed by the evolution system after substitutability 
checks are complete and before conversion starts:

1. The pointers from the constant pool of each conversion class to transient versions of stable classes are 
switched to their counterpart persistent versions.

2. The pointers from new versions of evolving classes to transient versions of stable classes are switched 
to their counterpart persistent versions.

3. Transient versions of stable classes are deleted from internal JVM class tables to prevent the VM from 
accidental linking them to evolving classes.

4. The class names inside the stable class objects loaded from the store are changed back to the original, 
non-mangled form.

5. Further attempts to load stable class objects from the CLASSPATH, e.g. during resolution of new 
versions of evolving classes when conversion code is executed, are prevented. This is achieved by 
making our custom class loader (see next section) that normally loads classes from the CLASSPATH, 
aware of stable classes, and making it load them from the store.
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5.5.4 Dealing with Multiple Class Loaders

Every Java class loaded into the VM has two class loaders associated with it: the initiating class loader and 
the actual class loader (see [LY99], Chapter 5). The initiating class loader is the one that initiated loading of 
this class. However, it may delegate class loading to another class loader. For example, when class String is 
loaded by an application class loader, the resulting class in fact has NULL2 as its class loader. The application 
class loader will be its initiating class loader, and NULL will be its actual class loader. Technically it means 
that the class object will be placed into that application (initiating) class loader’s class cache, but will have 
NULL in its classloader field.

For application classes loaded in the ordinary way (i.e. not using any custom class loader) the initiating 
and the actual class loaders are always the same single dedicated class loader, called the Application Class 
Loader. In PJama we currently can evolve only such classes, the main reason for this being the implemen
tation difficulties of dealing with multiple “incarnations” of the same-named (but maybe not physically the 
same) class, where each “incarnation” is a class object loaded by a separate class loader. It is also not quite 
clear what the operation semantics should be in this case, e.g. whether all such classes should be evolved 
simultaneously or not.

Any JVM maintains the constraint that there should not exist two or more classes with the same name and 
the same actual class loader, as well as no two classes with the same name and initiating class loader, but 
different actual class loaders.

When a class is promoted into the store, the class loader that it references directly, i.e. its actual class loader, 
is also promoted. On the other hand, its class loader’s class cache, essentially an array of class objects 
present in every class loader object, is not used in PJama at all, so no link back from the class loader to 
the class is saved into the store. This patch was initially introduced to avoid problems in other parts of the 
PJama VM, but as we will see, it also simplifies evolution.

When we evolve classes, we load all of the substitute classes from the CLASSPATH with our own class 
loader. The fact that the substitute classes may have the same names as the original ones, but always a 
different class loader, helps to manipulate all of these classes within the VM memory easily. However, 
when the system replaces the original classes in the store, the substitute classes should be assigned the same 
“original” class loader to be compatible with all other non-evolved persistent classes when the persistent 
application resumes. We do not need to do any class replacements in class caches of class loaders, since 
these caches are not persistent.

Care has to be taken over when to patch class loaders in the new versions of evolved classes. If we do this in 
the VM memory, before promoting a class into the store (which is simple to implement), we will not be able 
to run conversion code after that. This is because it will reveal that we violated the JVM internal constraint 
that does not allow two physically separate classes with the same name and (now) the same class loader to 
exist in the VM memory simultaneously. However, we need to be able to promote an evolved class and then 
continue conversion, because this is required by our scalable conversion mechanism implemented in Sphere 
(see Chapter 6), which reads objects from the store, converts them and promotes the new objects back into 
the store one partition at a time. Therefore, patching the class loader of an evolved class is done at a low

2NULL denotes a special bootstrap class loader, which is not a Java object, but effectively a piece o f internal JVM code that is 
used to load the minimum necessary set o f  classes (including class ja v a . lang.ClassLoader itself) upon JVM startup.
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level, in the promotion routine of the PJama VM, so that the classes in the store are patched as they are 
promoted, but not changed in the main memory. During conversion, at the VM level different versions of an 
evolving class appear to have different class loaders. However, the new versions of classes already promoted 
into the store, reference the original, persistent class loader. After conversion finishes, the VM is shut down. 
Next time it is resumed to run a persistent application, it finds a set of classes with the same persistent class 
loader in the store.

It is worth noting that so far we were implying that there is only one “original” class loader for all changing 
classes. This constraint holds in persistent applications that don’t have user-defined class loaders. In such 
applications user classes have the same application class loader as both originating and actual class loader. 
Some Java core classes (which we can’t evolve so far anyway) may have a NULL bootstrap classloader. 
Otherwise, i.e. if user-defined class loaders exist, both change validation and class substitution will become 
much more complex, because there may be more than one persistent class with the same name in the store, 
etc. The validation part of the PJama evolution technology has some partially implemented provision for 
supporting that. But so far everything works on the assumption that all classes that are received by the 
substitution code within one evolution have the same original class loader.

5.6 Evaluation

During development and testing of the PJama’s evolution facilities, we have created more than 20 regression 
tests. Most of these tests exercise various aspects of object conversion, since this is the most innovative, and 
also technically the most difficult area. The tests were created to evaluate and validate the new concepts, 
and as response to discovered bugs, to prevent their re-appearance in future. Typically, each bug discovered 
after initial testing would have resulted in a new regression test or in adding theF code that would exercise 
this bug in one of the existing tests.

All of the tests are synthetic, essentially to allow their automatic execution and validation inside a gen
eral test suite which was developed for PJama. However, we also used a real-life application called GAP 
(Geographical Application of Persistence), which is being developed at the University of Glasgow by a 
succession of student projects (see e.g. [JapOO]). GAP is a relatively large system, currently consisting of 
more than 100 classes, of which about 30 are persistent. The size of the main persistent store containing the 
map of the UK as polylines composed into geographic features, is nearly 700MB. It will also load US Bu
reaux of Census TIGER geographical data. This gave us larger examples, e.g. the State of California maps 
occupy 2.75GB. So far the application’s facilities focus mainly on displaying maps at various scales (with 
user-controlled presentation) and finding requested objects. The author made a number of improvements to 
this system, using the evolution facilities of PJama whenever possible. This lead to discovering of a number 
of bugs, provoked several new ideas, and inspired a number of regression tests that imitate data structures 
and evolution steps in GAP.

In Appendix B one of the regression tests from the actual test suite of PJama, that imitates some aspects of 
GAP, is presented. We hope that it can serve as an illustration to this and previous chapters.

At present we are concerned by the fact that our concepts have not been evaluated by really independent 
software developers. Such an evaluation would be very valuable.
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5.7 Future Work — an Alternative Design Investigation

The need for a convenient instance conversion mechanism for the Java language is not unique to PJama 
platform. A similar mechanism would be desirable for any persistence solution for Java, e.g. Java Serializa
tion, OODBMS with Java binding, or Java runtime evolution. However, our present mechanism of instance 
conversion, more precisely, its part that deals with class renaming, is unlikely to be universally adopted. 
The reason is that this mechanism introduces extensions to the Java language, and, therefore, requires mod
ification of the Java compiler and the core of the JVM (e.g. the code that verifies class files and checks 
compatibility of types in assignments at run time). Despite all of the useful features that these language 
extensions bring, Sun Microsystems, which defines the standard for the Java language, is reluctant to adopt 
such extensions. People who work on the Java specification believe that the language is already overloaded 
and further extensions should be adopted only if the demand for them is really compelling and there are no 
conventional alternatives to them in the present Java implementation [BraOO]. At least the first part of this 
requirement is probably not true about instance conversion, at least presently. Therefore it makes sense to 
think about a different mechanism, that might be less convenient, but does not require changes to Java and 
as such can be easier to implement and adopt for various platforms.

5.7.1 Changes to Java with the Present Mechanism

The changes to the Java language that our present conversion mechanism introduces are:

1. A special way of loading classes with specifically mangled names. A mangled name signals to the 
compiler and then the VM to load a class with the respective ordinary name from the persistent store, 
instead of the normal CLASSPATH, and then to mangle its name.

2. A mechanism for lazy uniform renaming of old classes, described in Sections 5.3.1 and 5.5.2.

3. Extension of the rules for implicit type casts of the Java language, described in Section 5.4.

4. Special management of stable classes, described in Sections 5.3.2 and 5.5.3.

We have also introduced type unsafety to Java, which contradicts with the language specification. Type 
unsafe assignments can be explicitly made, since they are allowed under item 3 above. In addition, the 
default conversion mechanism combined with our treatment of two separate object worlds (Section 5.1) 
is another source of type unsafety. For example, assume that we have evolving classes C and D and the 
conversion method for C, shown in Figure 5.9. When conversion method is called, the runtime class of the 
value that has just been automatically assigned to c_new.d_f ie ld  variable by the default conversion, will 
be D$$_old_ver_. Consequently, the assignment in the conversion code will yield an incorrect result, with 
the compiler unable to recognise the problem.

A solution that has more chance to be widely adopted than our present one, should avoid any of the listed 
changes to the Java language and, ideally, should eliminate the above type unsafety problem. Yet it would 
be very desirable to retain the main feature of our present mechanism, that is, refer to old classes by mangled 
names instead of using reflection. One such solution is presented in the next section.
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class C { // Common part of the old and new versions
D d_field; // of the evolving class C

}

class D { // old version class D { // new version
int x; double y;

} } "

void convertlnstance(C$$_old_ver_ c_old, C c_new) {
double y = c_new.d_field.y; // Compiles, but wrong value at runtime!

} "

Figure 5.9: Example of type unsafety in conversion code.

5.7.2 A Solution That Does not Change the Java Language

5.7.2.1 Class Naming and Stable Class Issues

The main difference between our present mechanism and the proposed one is that in the latter, class renaming 
at compilation time should be performed eagerly and statically. Before conversion class compilation, copies 
of all of the old classes should be automatically extracted from the persistent store and renamed (mangled). 
Class file names themselves, and the names of all old persistent classes in any context inside these class 
files, should be eagerly mangled. After such a preprocessing, the old classes should be placed onto the 
standard CLASSPATH, where their new versions are already residing. Therefore, a standard unchanged 
Java compiler can pick them up and thus compile a conversion class.

At run time, we should take care of class renaming and of binding the existing (persistent) instances to 
classes with mangled names. This can be done in different ways depending on the concrete context:

• In an OODBMS with multiple possible language bindings, or in case of Java Serialization, i.e. when 
Java class objects are not stored in the database (serialized stream), we can just re-use the mangled 
classes located on the CLASSPATH.

• In PJama or a similar persistent platform, we can use a mechanism similar to the present one (de
scribed in Section 5.5.1), that dynamically renames every class loaded from the store during conver
sion code execution. It should also preprocesses each class file, mangling symbolic references to other 
classes inside it once and forever (in contrast with the present mechanism).

• In case of runtime evolution, all old classes are already in memory and all objects are bound to them. 
We suspect that we will have to rename all of these classes eagerly rather than lazily, e.g. because 
of various internal naming consistency checks and assertions that the VM might have. In presence of 
such assertions, we might be unable to have some old classes renamed and some not, as is the case 
with lazy renaming.
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There is a certain tension in this model considering the treatment of stable classes. If we eliminate their 
special handling and mangle all extracted persistent classes absolutely uniformly, the result will be that 
during conversion we may get two versions for each stable class — one reached via an old class and loaded 
from the store, and another reached via a new class and loaded from the CLASSPATH. These classes, 
however, are internally equivalent. Presence of two differently named copies of the same class will result in 
formal incompatibility between existing persistent instances of this class and new instances created during 
conversion (extended implicit type casts, that are used in our present model to eliminate this problem, 
contradict with the Java language specification and should not be used in the new model). If these new 
instances are then promoted into the store, it will lead to promotion of the transient copy of the stable class, 
thus creating two persistent copies of the same unchanged class — unless some very special measures are 
taken.

Therefore, it seems more reasonable to combine extraction and mangling of old class versions with their 
preliminary analysis. The latter would determine which classes have actually been modified compared to 
the new counterparts, and it is important that the situation does not change by the time the conversion starts 
(perhaps the system should verify that). Having the information on changed classes, we avoid mangling the 
names of stable classes in references from old class versions, and, therefore, will need only one (persistent) 
copy of each stable class during conversion code compilation and run time. However, these copies of stable 
classes can contain references to old versions of evolving classes, which we will necessarily have to mangle. 
Thus, stable classes will not look “entirely stable” anymore, since some of their fields, etc. may have 
explicitly old-version types, and the developer will have to take that into account when writing conversion 
code. The system will also have to take care about restoring the original, non-mangled version of a stable 
class on the CLASSPATH once conversion is complete. But otherwise, this model of stable class handling 
looks feasible.

Since extended type casts mechanism is eliminated, something has to be done in order to handle cases such 
as the one described in Section 5.4, i.e. to support copying the contents of a renamed field of evolving 
type, between the old and the converted object. A mechanism of conversion dictionaries that was proposed 
in Section 4.10.1 can be used in this situation, if such a transformation should be performed in the same 
way for all instances of the evolving class. However, sometimes more flexibility may be required. That 
is, for some evolving instances, the value should just be copied from the old field to the new one, and for 
some others it should be, say, copied from a different field or set to nu ll. To handle this (probably quite 
infrequent) case, a special reflection API, which is aware of correspondence between old and new types, can 
be used. To make it more type safe, actual assignments that it performs can be deferred until the conversion 
method returns, so that inside the conversion method it would not be possible to have an object field holding 
a value of an incompatible class type.

5.7.2.2 Type Unsafety Issues

The design presented above solves all of the “practical” problems of flexible conversion without the need 
to change the Java language, the compiler and the interpreter part of the JVM. It will allow the developers 
to achieve the same results as with the present mechanism, at a price of some increase in the complexity of 
the conversion code. E.g. look at the functionally equivalent pieces of conversion code presented in Figure 
5.10.
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// Old version // New version
class LinkedListElement { class LinkedListElement { 
LinkedListElement nxt; LinkedListElement next;

Object addedField;

} } '

// Conversion method in the old model
public static void convertlnstance(LinkedListElement$$_old_ver_ ol,

LinkedListElement nl) { 
LinkedListElement$$_old_ver_ ol_next = ol.nxt; 
if (isValidElement(ol_next)) 
nl.next = ol_next; 

else
nl.next = null;

} '

// Conversion method in the new model
public static void convertlnstance(LinkedListElement$$_old_ver_ ol,

LinkedListElement nl) { 
LinkedListElement$$_old_ver_ ol_next = ol.nxt; 
if (isValidElement(ol_next)) { 
try {
PJEvolution.set_field(nl, "next", ol_next); // Calling reflection 

} catch (Exception e) {

} "

} else 
nl.next = null;

Figure 5.10: Conversion code in old and new models.

The only remaining problem with this design is that it does not eliminate type unsafety in cases similar to 
the one that was presented in Figure 5.9. This unsafety arises in two cases:

1. Default conversion assignments to the fields of the converted object, that are performed before the 
conversion method is called for this object.

2. Conversion code operating on one evolving object and trying to access the new copy of another evolv
ing object.

It may well be that the best solution will be a “pragmatic” one, in which these problems are simply ignored. 
After all, conversion is always a non-trivial operation, which is supposed to be performed by a developer
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who understands very well the implications of what they are doing. Some security mechanism could verify 
that the agent provoking the evolution is acceptable.

However, to eliminate at least the safety breach numbered 1 above, we can change the way the default part 
of conversion is performed during custom conversion. Instead of copying the fields with the same names 
and compatible types before the conversion method is called, we can do it after that, at least for fields of 
non-primitive types. There is one implication here, which is due to the fact that the conversion method 
may override some of the default assignments. If on entry into the conversion method, all fields in the 
“new” object have n u ll values, and on the exit some have non-null, the default conversion code may itself 
assign the default values only to those fields which are n u ll. But what happens if the programmer wants to 
explicitly assign the n u ll value to some field?

To solve this problem, the conversion mechanism may, instead of n u ll, assign all of the class type.fields 
in the new copy of the evolving object to special “dummy” objects. These may be objects of the respective 
class type, just one instance of each class for the whole evolution transaction, created only once without 
using a constructor (to avoid any side effects) and destroyed in the end. On the exit from a conversion 
method, only the fields referring to such known objects will be subject to default assignments. Assignments 
using the conversion dictionary and the “deferred assignment” reflection mechanism will be performed at 
the same time.

It remains not entirely clear how to deal with the “loophole” numbered 2 above (and whether it is worth 
dealing with it at all). Default conversion assignments and dictionary assignments to the fields of the new 
object can be deferred until all objects have been explicitly converted. This will lead to a second pass 
over all evolving objects — which we effectively have in PJama already (see Chapter 6), but which may 
not necessarily be practical in other systems. Then, it is not a problem to defer until very late default and 
dictionary-assisted assignments, since they are performed in the same way for all instances. But what to 
do with reflection-assisted assignments, which can vary from one instance to another? If we want to defer 
them too, we will have to store the information about such assignments for each instance, probably causing a 
substantial memory overhead. Alternatively, it may be worth thinking about implementing a totally different 
technique, which will analyse the bytecodes of the conversion method and forbid operations such as access 
to evolving-type fields of the new copies of evolving objects.

5.8 Summary

In this chapter we have first explained the semantics underlying execution of PJama conversion code. Ac
cording to this semantics, the complete and unchanged view of the “old object world” is provided by the 
system to the developer until all objects are converted. We have then explained the issues related to loading 
of old versions of changed classes during conversion, mangling their names, and handling classes that do 
not evolve (stable classes), for which only one version should exist during conversion. These issues have 
been resolved by introducing the mechanism of lazy name mangling and by extending the Java implicit type 
casting rules to allow casts between the versions of evolving classes.

The above type casts, and also assignments that in some cases can be made by default conversion when 
it is combined with custom conversion, are type unsafe. As such, these extensions contradict with the
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specification of the Java language, break one of the cornerstones of its ideology, and require changes to 
a Java compiler and to the core of the JVM. On the other hand, they provide substantial convenience to 
the developer who writes conversion code. Nevertheless, we realise that the above negative properties 
make the wide adoption of these extensions to Java unlikely. For this reason, we have also proposed an 
alternative design of instance conversion mechanism for Java, in which most of the unsafety problems are 
eliminated. This, however, is achieved at a price of making conversion code somewhat harder to write 
and more cumbersome. Furthermore, eliminating some “last bits” of type unsafety may require substantial 
increase of evolution mechanism design complexity.

In general, class evolution and language type safety seem to be fundamentally in conflict. On the other hand, 
the very process of co-ordinated code and data evolution is outside the scope of semantic definitions for Java 
and most other languages. Given the presence of long-lived and long-running systems that inevitably need 
to evolve, this appears to be an issue for language designers to consider further.



Chapter 6

Store-Level Support for Evolution

High-level support for evolution in a persistent object system — that is, language extensions and VM runtime 
mechanisms — are only a part of the evolution story. The main reason why special store-level support is 
also needed, is that a persistent object system can typically store many more objects in the persistent store 
than can fit into a computer’s main memory, even virtual memory. This makes effective (in terms of memory 
and disk space required and performance) and safe conversion implementation an issue, since:

• We support (only) eager object conversion, so all evolving objects should be converted in one go, 
independent of their total size;

• Conversion process should be safe, i.e. if a Java runtime error or a system crash occurs mid-way, 
objects must not be left in half-transformed, and thus effectively unusable state. Furthermore, unless 
all of the objects have already been converted on the JVM level, the process should be rolled back 
(not forward) by the system recovery mechanism, since a runtime error can manifest a deeper semantic 
problem, and eventually a change to the developer-supplied conversion procedure may be required.

There are also some less significant, but still important concerns, which will be explained throughout this 
chapter. Fortunately, the present persistent store sub-system of PJama called Sphere was designed from the 
beginning with many of these concerns in mind. Therefore, when it came to store-level implementation of 
evolution support, our work was significantly facilitated. Still, Sphere is a quite complex system; therefore 
to speed-up the work, a large part of it was performed by Craig Hamilton, who by that time had worked on 
Sphere for two years. The author is deeply grateful to him, since without his help this work would definitely 
have taken much more time and effort. Craig and Tony Printezis, the main designer of Sphere, were also 
involved in obtaining the experimental performance results presented in this chapter.

The structure of this chapter is as follows. Section 6.1 presents an overview of Sphere, with the emphasis 
I on its features important for evolution. Section 6.2 formulates precisely the goals that we wanted to achieve.
| The next section considers several variants of store-level evolution algorithms, explains the reasons for
| choosing the present algorithm and discusses its tradeoffs. Finally, in Section 6.4, the initial performance

results are presented.

100
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Parts of the work in this chapter have been previously published as papers [DH00, ADHPOO].

6.1 Sphere Persistent Store Overview

The architecture of Sphere is detailed in [PAD98, Pri99, PriOO], This system, among other merits, has a 
number of features that facilitate evolution. These features are listed below:

• The store is divided into partitions. This was introduced to permit incremental store management 
algorithms, such as disk garbage collection and evolution. Partitions can be moved and resized within 
the store, while retaining their identity. Objects can be moved within partitions without changing their 
identity, i.e. P/Ds.

• An object P!D  in Sphere is logical. This means that instead of a physical offset of the object in the 
store (as it used to be in PJam a Classic), a PID  contains a combination of the logical ID of the store 
partition where the object resides, and the index of the object’s entry in the indirectory of this partition 
(Figure 6.1).

P ersis ten t Id en tifie r (PID)

Logical Partition ID Indirectory Index

P artitio n
Indirectory free-list

H eader O bject spac* Indirectory

Figure 6.1: PID format and partition organisation.

•  A single partition can contain only certain kinds of objects. For example, instances and large scalar 
arrays are always kept in separate partitions. This can greately speed up the lookup of evolving 
objects, since partitions containing unsuitable object kinds simply do not need to be inspected.

• Each Sphere object that corresponds to a Java instance holds a reference to a descriptor. Descriptors 
are internally used objects that describe the layout (e.g. location of pointer-type fields) of objects of 
the same type. A descriptor is lazily replicated in each partition that contains objects that need to be 
described by it. If one or more instances of the same class reside within a partition, then a copy of 
their class’s descriptor must be present in that partition. Conversely, if no instances of a class exist in 
a partition, no descriptor for that class will be present. There is a descriptor index in each partition.



CHAPTER 6. STORE-LEVEL SUPPORT FOR EVOLUTION 102

Using these properties of descriptors we can rapidly discover whether any instances of a class exist 
within a partition, without the need to maintain exact class extents.

•  Sphere is fully transactional. If a computation that runs on behalf of some transaction modifies the 
contents of the store and then crashes before committing the updates, the store layer will automati
cally perform recovery on restart, returning its contents to the initial state, as they were before the 
failed transaction started. Transactional behaviour is achieved by logging operations which change 
the contents of the store (see [Ham99, MHL+92]).

With such a rich infrastructure available to us, we could set up ambitious goals for our store-level evolution 
support mechanism. These goals are presented in the next section.

6.2 Goals for the Evolution Platform

Due to Sphere’s descriptor mechanism, replacement of classes in the persistent store is not a problem. All 
objects reference a class via its descriptor, so to successfully replace a class in the store it is enough to 
promote its new version and then to patch each descriptor (there may be no more than one descriptor for a 
given class in a partition) to make it point to this new version. Since each partition contains an index of all 
descriptors residing in it, descriptor lookup is very fast. Furthermore, if a class has changed insignificantly, 
e.g. just method code has been modified, whereas the all of the other data structures representing this class 
remain unchanged, then we can apply an optimisation. We simply promote the new bytecode array into the 
store and patch the pointer to the bytecodes in the class object (see Section 2.1.3.4 for details of disk class 
object representation details). The PID of the class object remains the same then, and we don’t need to patch 
any descriptors.

Therefore, the main concern about evolution support on the persistent store level is the implementation of 
object conversion mechanism. We have formulated our requirements to this mechanism as follows:

1. It should be scalable. Here we will define scalability as a combination of two sub-requirements. First, 
the growth of the number of evolving persistent objects should not cause a proportional (or, ideally, 
any) growth of the amount of main memory required to perform evolution successfully. Second, the 
performance (time to evolve a single object) should not noticeably depend on the total number of 
evolving objects.

2. It should be safe (atomic). That is, any failure at any stage of evolution, whether caused by an 
exception in the programmer-defined conversion code or an OS/hardware problem, must leave the 
store in either its original or its final (evolved) state.

3. It should be complete and general-purpose, i.e. support the semantic properties of conversion de
scribed in Section 5.1.

The next section explains why the above requirements presented a challenge in the context of PJama, and 
our solutions.
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6.3 The Store-Level Evolution Algorithm

6.3.1 Terminology

Throughout this chapter we will use the following terminology. We refer to the persistent objects that are 
undergoing evolution as evolving objects. During the execution of conversion methods and for some period 
thereafter, these objects exist simultaneously in their old form, old object, and their new, converted form - 
converted object. An unpredictable number of new objects can also be produced by the conversion code, 
e.g. if we replace an integer field date  in an evolving object with a new instance of class Date.

6.3.2 Temporary Storage for Converted Objects

The fundamental consequence of the requirement 3 in the previous section is that the store-level evolution 
mechanism (evolution foundation, as we will denote it for short) is not allowed to replace any old objects 
in the store with their converted counterparts until all objects have been evolved. In other words, whenever 
an object with a certain PID is requested from the store, and this object is an evolving object, the old object 
should be returned. Therefore we have to keep both old and converted objects alive and accessible (though 
not necessarily resident in main memory) until the end of the evolution transaction.

This presents a challenge to the evolution foundation. The simplest solution — to keep converted objects 
in main memory until all evolving objects are converted, and then to put them into the store in place of old 
objects — does not scale, since it does not satisfy the requirement 1 in the previous section. We will now 
consider the alternatives.

Two places suitable for temporary storage of converted objects can be envisaged: some kind of custom vir
tual memory and the persistent store itself. The first variant, however, can be ruled out almost immediately, 
the main reason being that Sphere stores, and thus the space that evolving objects may occupy, can grow to 
sizes much larger than the virtual memory limit on the 32-bit hardware, which is most popular at present.

If we try the second approach, we can sketch the following general design. Evolving objects are processed 
in portions small enough to fit into the main memory. As soon as all of the objects in that portion are 
processed, the converted objects are saved (promoted) into the store. Both the old and the converted objects 
can then be evicted from the main memory, either immediately or lazily, as further portions of objects are 
processed. This is repeated until all of the evolving objects are converted, and has the effect of producing 
the two “object worlds” - the old and the new one. Then these worlds are collapsed: each old object is 
substituted by the corresponding converted one.

6.3.3 Associating and Replacing Old and Converted Objects

The presented design addresses the most fundamental issue of low-level evolution support — scalability. 
However, looking at it in more detail reveals a number of other issues. The first of them is the question 
of how to store the association between old and converted objects, which, when the objects are promoted
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into the store in a usual way, will be a table of “old PID, new PID” pairs. This association should be 
preserved throughout the conversion process, until collapsing starts, which needs this information. Once 
again, the simplest solution — a main memory table containing PID  pairs {PID-table, as we will denote 
it), can, unfortunately, cause scalability problems. For example, assume that we need to convert 229 objects 
(Sphere allows us to save more in a single store, but let us consider a realistic case when just a part, not all 
of the objects in the store, are being converted). An object PID  is currently 32-bits, therefore a pair of PIDs 
will occupy 8 bytes. So we will need 232 bytes to store the P/D-table — the whole virtual memory available 
on a 32-bit machine. This is unacceptable, so we need to think of how to save parts of this table to disk 
during conversion, or how to preserve the association between objects in some other way.

Saving parts of the PID-table to the store is possible if the table itself is made a persistent object. Further, 
the associated overhead can be made relatively low if this table is constructed as a linked list of arrays (sub
tables). Every time a portion of objects is converted and promoted into the store, the next sub-table is also 
promoted. The disadvantage of this approach is that the table itself occupies space in the store, which may 
be comparable to the space occupied by the evolving objects, as we have just seen. Managing this persistent 
table also increases log traffic.

There is also an issue of how to replace old objects with the respective converted ones in the store. The 
main problem here is that a converted object can be, and in practice almost always is, physically larger 
than the old object, since changes to classes tend to add, rather than delete information in them. Therefore 
it is generally not possible to overwrite an old object with a converted one, unless all objects that follow 
the old object are “shifted” within their partition. However, the size of the partition may be insufficient to 
accommodate the total difference in size between the converted and old objects. And to change partition 
size in Sphere, another partition would have to be created and the information from the old one copied to 
the new one. Therefore, the only way to substitute old objects with the converted ones will be to create a 
new partition of sufficient size and copy all objects from the old partition into it, replacing old versions of 
evolving objects with converted ones. Then the logical ID of the old partition should be transferred to the 
new one. After that, the old partition can be discarded. Even if a crash occurs at some stage of this process, 
it is always possible to resume partition transformation after system re-start, since all information needed to 
complete it successfully is in the persistent store.

The above algorithm is depicted in Figure 6.2, where the store containing a single partition with evolving 
objects is shown. During phase (a) old objects from the evolving partition are read into main memory, then 
the corresponding converted objects, one new object and a PID-table are created. During phase (b) all of 
this data is promoted into the persistent store. In phase (c) the contents of the original evolving partition are 
copied into a new partition, simultaneously replacing each old object with the corresponding converted one. 
Finally, in phase (d) the new partition takes the identity of the old one, and the old partition is discarded, 
as well as all temporary objects. Lack of space does not allow us to illustrate the algorithm on a store with 
two or more evolving partitions. However the reader should be aware, that none of the old partitions can be 
discarded until all objects are evolved, otherwise recoverability of the process will be impacted.

To summarise, the solution that involves a global persistent PID-table, solves the problem of scalability, 
but results in a significant overhead in the terms of persistent store usage. Additional space in the store is 
required for the PID-table. Additional temporary partitions should be allocated, which can not be released 
until evolution completes. And, finally, the number of PIDs needed temporarily is equal to the number of 
evolving objects. For this reason, in the worst case we would be unable to convert a store that contains an 
amount of objects greater than a certain threshold, since we would simply run out of PIDs.
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Therefore a solution which we have eventually adopted does not involve a global P/D-table and uses a 
different technique for associating old and converted objects. It is presented in the next section.

6.3.4 The Store-Level Instance Conversion Algorithm

To avoid both allocation of a new PID  for each converted object and the need for a global P/D-table, 
we decided to save converted objects in the limbo form. A limbo object does not have its own PID and 
physically resides immediately after the live object to which it corresponds. “Old object - converted object” 
pairs packed into “live object - limbo object” conglomerates consume no additional PIDs and the lowest 
possible additional space, and exist until all of the evolving objects are converted. If a crash occurs in the 
middle of the evolution transaction, limbo objects are discarded automatically, since they are “visible” only 
to the evolution system. No additional actions to recover the system in this case are required. After all 
evolving objects are converted, objects in each “live-limbo” pair are swapped, so that each converted object 
becomes “live”. Subsequently, old objects which now are marked as empty gaps, can be reclaimed by the 
disk garbage collector.

We will now present the detailed description of the main steps of store-level instance conversion:

1. Preparation fo r  Conversion: Marking phase of Sphere’s off-line cyclic garbage collector for the 
whole store (SGGC, see [PriOO]) is carried out. This ensures that all of the garbage objects are marked 
so that they will not participate in evolution and hence be resuscitated by being made reachable.

2. Conversion o f  all o f  the Evolving Instances: The store is traversed, one populated partition, p, at a 
time, visiting only partitions with relevant regimes (so that, for example, partitions containing only 
scalar arrays need not be visited). For each class C whose instances are evolving, C is looked up in p’s 
descriptor table. If no descriptors are found, we skip to the next partition. Conversely, if a descriptor 
for C is found, objects in p (partition #1 in Figure 6.3) are scanned sequentially. For each non-garbage 
evolving object, default and/or custom conversion is performed. The net effect of all transformation 
operations is that a converted instance is created, and possibly some new objects (Figure 6.3(a)). The 
“old instance PID , converted instance memory address” pair is recorded.

When all of the evolving objects in p have been processed, all of the converted objects are promoted 
into a new partition (partition #2 in Figure 6.3(b)).

After that the most important sub-phase of low-level conversion begins. Using a slightly customised 
copying garbage collector, the contents of p are copied into a completely new partition. Whenever the 
old copy of an evolving object is transferred, the corresponding converted object is fetched and placed 
directly after it in the limbo form (Figure 6.3(c)). On completion of this partition sweep, the logical 
ID of partition #1 is transferred to the new partition, and the original partition is returned to free space. 
Thus in the resulting partition (physically new partition with logical ID 1, Figure 6.3(d)), the old form 
of each evolving instance is directly referenced by its unchanged PID, and the limbo form resides in 
the bytes that follow it, no longer directly referenced by a PID. Temporary converted objects (objects 
1' and 3' in partition #2) are marked free, so that the space in this partition can be re-used in future.

If phase 3 does not occur, e.g. due to a crash, the limbo objects will be reclaimed by the next garbage 
collection. Hence the reachable store currently has not changed, it has only expanded to hold unreach
able limbo objects not visible to applications, and new instances reachable only from them.
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3. Switch from the Old World to the New World: At the end of the previous phase all of the new format 
data are in the store but unreachable. Up to this point recovery from failure, e.g. due to an unhandled 
exception thrown by a custom conversion function, would have rolled back the store to its original 
state. We now switch to a state where recovery will roll forward to complete the evolution, as, once 
we have started exposing the new world, we must expose all of it and hide the replaced parts of the 
old world.

A small internal data set is written to the log, so that in the event of system or application failure, 
there is enough information to roll forward, thus completing evolution. This set essentially records 
all of the partitions that contain limbo objects. Each partition in this set is visited and all “live object 
- limbo object” pairs are swapped, i.e. the old object is made limbo (marked as re-usable space), and 
the converted limbo object is made live (Figure 6.3(e)). The next garbage collection will reclaim the 
re-usable space (Figure 6.3(f)).

Once this scan has completed, the new world has been merged with the unchanged parts of the old 
world.

4. Commit Evolution: Release the locks taken to inhibit other use of the persistent store and write end- 
of-evolution record to the log.

6.3.5 Tradeoffs

The advantages of the above solution are the very low disk space and log traffic overheads. Indeed, use of 
limbo objects to arrange that both old and converted objects and their dependent data structures can co-exist 
in the store avoids writing images of evolving objects into the log. Also, only two extra partitions are needed 
to complete evolution, and a small number of extra PIDs. The implementation of this functionality was 
relatively simple, since the code of the disk garbage collector was largely reused. Having these properties, 
the implementation also performs quite well (see Section 6.4).

However, the drawback of this solution is that during evolution, once a converted object is turned into limbo 
state, it becomes inaccessible. That’s because such an object does not have its own PID and is not recognised 
as a first-class store object. On the PJama VM level, once a converted object is promoted into the store and 
made a limbo object, its PID (which is now meaningless) is discarded, and any updates to this object will 
not propagate into the store.

Our present experience shows that in most cases the conversion code does not need to revisit a converted 
copy of an evolving object after the latter is created. However, the conversion code will need to do this if, 
for example, during conversion we want to create a forward chain of objects.

The limbo object solution also does not give any advantages in the case of fully controlled conversion, 
where the order of faulting of evolving objects can be arbitrary. For this reason, our present implementation 
of fully controlled conversion, though operational, does not scale. In this conversion mode, all evolving 
objects are loaded into memory on demand. Only after developer’s conversion code terminates, evolved 
objects are sorted by partitions and the standard conversion operation described above is applied to each 
group, sequentially.

A solution which permits revisiting the converted objects can be envisaged, that still exploits limbo objects.
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For it, Sphere primitives that read and update a limbo object, given the PID of the corresponding live object, 
will be required. However, the main challenge will be to design and implement the management of limbo 
objects in the Java heap. Since in the PJama VM two objects can never have the same PID, limbo objects 
will have to be treated not as normal persistent objects. Probably a separate table that maps PIDs to memory 
objects, equivalent to the main PJama ROT (Resident Object Table), will be required for them. The PIDs 
of the corresponding live objects will be re-used for limbo objects. The garbage collection, eviction and 
update tracking/saving code of the PJama VM will have to be modified. But, provided that these changes 
are made in a comprehensible way and do not compromise the performance of ordinary PJama applications, 
this approach seems reasonable.

However, the problem of how to make fully controlled conversion scalable still remains. The only solution to 
it that we can currently see uses periodic saving of converted objects to the store, plus a persistent PID-table, 
essentially as described in the beginning of Section 6.3.3.

6.4 Initial Performance Evaluation

We have measured the time that it takes for our system to evolve a store with a certain number of evolving 
objects. The number of factors on which this may depend is large, so we concentrated on the following 
issues:

• Verify that the time grows linearly with the number of evolving objects.

• Explore the impact of non-evolving objects in the store on the performance, particularly when their 
number is much greater than that of those evolving.

• Explore how the complexity of the objects and of the conversion code affects the evolution time.

• Validate synthetic tests with some real-life applications.

6.4.1 Benchmark Organisation

Our benchmark consisted of three synthetic tests, the main properties of which are summarised in Table 6.1.

Test No. Description Objects Change
1 Simple class simple simple
2 001 benchmark complex simple
3 001 benchmark complex complex

Table 6.1: Benchmark organisation

In all three tests we varied the number of evolving objects (denoted n) in the store between 20,000 and 
200,000. The second varying parameter was the number of non-evolving objects per evolving object, de
noted by g for Gap. This varied from 0 (all of the objects in the store are evolving) to 9 (9 non-evolving
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objects per one evolving object). The objects were physically placed in the store such that evolving and 
non-evolving objects were interleaved. This is illustrated in Figure 6.4. From the evolution point of view, 
this is the worst possible store layout, since we have to scan and evolve all of the partitions.

All of the tests were run with a constant Java heap size of 24MB (that is the default size for PJama), which, 
in the worst case, is an order of magnitude less than the space occupied by all the evolving objects. The 
Sphere disk cache size was set to the default value of 8MB.

Non-evolving objectEvolving object

Figure 6.4: Test store layout example

In test 1 the old and the new versions of the evolving class were defined as presented in Figure 6.5. Default 
conversion was applied to instances of C. According to the rules of default conversion, the values of fields i 
and j were automatically copied between the old and the converted object, and the k field was initialized to 
0.

// Old version // New version
public class C { public class C {

int i; j; int i, j ;
int k;

r  i"
Figure 6.5: Old and new versions of the evolving class in test 1.

Tests 2 and 3 were performed over stores populated with instances of the class called Part from the adapted 
version of 001 benchmark, which we have taken from Chapter 19 of [ZCF+97]. The initial Java version 
of this class is presented in Figure 6.6. As defined in the 001 benchmark, an object of class Part contains 
a unique id and exactly three connections to other randomly selected parts. Instances referenced from the 
given Part instance p are stored in the p’s to list. In turn, all instances that reference p in their to lists are 
stored in the p ’s from list, allowing a reverse traversal. The values of other fields are selected randomly from 
a given range.

In test 2 the only change in the new version of class Part was a different type of its id field — it was 
changed to long. Java types int and long are logically, but not physically compatible. This means that 
the values of the former type can be safely assigned to the fields of the latter, but the size of fields of these
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import java.util.LinkedList;

public class Part { 
int id;
String type; 
int x,y; 
long build;
LinkedList to;
LinkedList from;

// Methods to set/get fields, etc.
}

Figure 6.6: The initial version of the evolving class in test 2.

types are different (32 bits and 64 bits respectively). So object conversion is required in this case, but default 
conversion is enough to handle information transfer correctly.

In test 3 a more complex change was applied: the type of to  and from fields was changed to ja v a . u t i l  .Vector. 
The objects contained in the fist can’t be copied into another data structure automatically, so the conversion 
class presented in Figure 6.7 was written. As a result of conversion, for each P art instance, two new objects 
are created, and six objects are discarded.

import java.util.LinkedList; 
import java.util.Vector;

public class ConvertPart {
public static void convertlnstance(

Part$$_old_ver_ partOld,
Part partNew) { 

int toSize = partOld.to.size() ; 
partNew.to = new Vector(toSize); 
for (int i = 0; i < toSize; i++) 
partNew.to.add(partOld.to.get(i));

int fromSize = partOld.from.size(); 
partNew.from = new Vector(fromSize); 
for (int i = 0; i < fromSize; i++)
partNew.from.add(partOld.from.get(i));

}

}

Figure 6.7: Conversion class used in test 3.

In each test run we were invoking our build tool that analyses and recompiles classes and then initiates 
instance conversion. It was only the instance conversion phase which we measured. In each test we measured
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the Total Time, defined as the time elapsed between the start and the end of conversion. We also measured 
the Sphere Time, defined as the time spent within the Sphere calls corresponding to step 2, part 2 and step 
3 of the evolution algorithm (see Section 6.3.4). The difference between Total Time and Sphere Time was 
called the M utator Time.

Every test run with the same values of n and g  parameters was repeated ten times, and the average time value 
was calculated after discarding the worst case. All experiments were run on a lightly-loaded Sun Enterprise 
450 server with four1 300MHz UltraSPARC-II CPUs [SunOOq], an UltraSCSI disk controller, and 2GB of 
main memory. The machine runs the Sun Solaris 7 operating system. The Sphere configuration included 
a single 1GB segment and a 150MB log. The store segment and the log resided on the same physical disk 
(9.1GB Fujitsu MAB3091, 7,200rpm [FujOO]). Both the store and the log file were placed on the same disk 
as a pessimal arrangement to accentuate effects due to log writes.

6.4.2 The Experimental Results

In tests 1 and 2 we observe completely uniform behaviour, characterised by almost perfectly linear growth 
of the evolution time with both n and g. In test 1 the minimum and maximum total time values were 1.25 
and 57.38 sec, whereas in test 2 they were 2.42 and 75.10 sec, respectively.

The 3-dimensional figures 6.8 and 6.9 show the total time taken during the evolution phase, with a further 
breakdown indicated at the extremes of both axes. For testl, Figure 6.10 shows the breakdown in more 
detail for a fixed g  =  0, varying n. Figure 6.11 shows the same breakdown, this time for a fixed n =  200,000, 
varying g.

Graphs for all experiments at each value of n and g were generated, yielding the same typical set of results; 
namely that as the number of evolving objects increases (Object Gap decreases), less of the total time is 
spent within the Sphere kernel, than within the Mutator.

Linear growth of the time with n means that the scalability requirement for evolution technology is satisfied 
withing the range explored. Despite the fixed Java heap size, the time grows proportionally with the number 
of evolving objects.

The growth of evolution time proportionally with the object gap (this parameter can also be interpreted as 
the total number of objects in the store), illustrates a trade-off we have made. When a partition is evolved, all 
of the objects contained in it are transferred into a new partition, thus a comparable amount of time is spent 
handling both evolving and non-evolving objects. The alternatives are to explicitly maintain exact extents 
or to segregate classes. Either would impact normal executions, we believe significantly2.

On the other hand, the current implementation’s results are quite acceptable: the time it takes to convert 
a store in which only 1/10th of the objects are actually evolving is only about 4 times greater than the

, The evolution code makes very little use o f  multi-threading.
2With an explicit extent, every object creation has to perform an insert and additional space is required. Such extents increase 

the complexity o f  garbage collection, which has to remove entries. Regime scheme implemented in Sphere already provides as 
much segregation as the mutator chooses. We currently segregate into four regimes: large scalar arrays, large reference arrays, large 
instances and small instances. As segregation is increased, clustering matching access patterns is reduced.
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Figure 6.8: Test 1 results
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Figure 6.9: Test 2 results
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Figure 6.10: Test 1 results -  fixed g =  0
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time it takes to evolve the store containing only evolving objects. We also performed experiments with the 
stores where evolving and non-evolving objects were laid out in the store in two solid blocks, i.e. optimally 
clustered. On average, the slowdown for the store with g =  9 compared to the store with g =  0 was only 
about 5%.

In test 3 (Figure 6.12) we observe the same linear behaviour of Sphere, however the total time demonstrates 
a strange “quirk” in the part of the graph, where the number of objects is the greatest and they are packed 
densely. The cross-section of this graph at the constant value of n =  200,000 is presented in Figure 6.13. 
The behaviour is caused by a pathology in the upper software layer, i.e. JVM and Object Cache3.

S p h e r e  ---©-— 
Mutator

Total • —
Tim e (se c s )

300
250
200
150
100

-0'

Object Gap

Evolving O bjects (xIO.OOO1)4 16
20

Figure 6.12: Test 3 results

To verify the linearity of our system’s behaviour for much larger number of objects, we have performed the 
same evolution as in test 1, but with fixed g — 5 and with the number of objects varying between 100,(XX) 
and 2,000,000. The results are presented in Figure 6.14. At the highest point in the graph, the store contains 
approximately 12,000,000 objects of which 2,000,000 interleaved objects are evolved.

In all of our tests we measured the amount of log traffic generated as part of evolution. Building limbo 
evolved objects generates no additional log traffic, as this step is performed as part of disk garbage collection, 
which itself has been optimised for very low log traffic (see [HAD99, PriOO]). Evolution only requires the 
generation of a log record for every evolving object at commit time i.e. when swapping the state of limbo 
objects to make them live (step 3). Each log record is of a fixed size of 64 bytes (of which 40 bytes are 
system overhead), regardless of object size. In real terms 200,000 evolving objects generates approximately 
16MB of log traffic. We anticipate that a further reduction in log traffic is possible by optimising the log

’This problem was investigated and it was found that its source is PEVM memory management, specifically the persistent object 
eviction mechanism.
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records associated with swapping the limbo states. We believe we can cache the information, generating log 
records which represent a vector of swapped states, rather than the current one-per-object.

In all of the above tests we observed the time per evolving object. For each test we have calculated average 
total and average Sphere time per object (in test 3 not taking into account the pathologically behaving part 
of the graph). The results are summarised in Table 6.2.

Test Test 1 Test 2 Test 3
Object size (words) 2 - 3 7 - 8 7 - 7
Average total time per object 
(ms)

0.174 0.182 0.624

Average Sphere time per object 
(ms)

0.102 0.130 0.143

Table 6.2: Summary of the experimental results obtained in synthetic tests.

Comparing the time for test 1 and test 2, we observe relatively small change of time (30% for Sphere and 
almost 0% for total time), whereas the object size has grown about three times. We can conclude that at 
least for small objects and simple conversions the number of evolving objects matters much more than their 
size. Consequently, effects such as significant difference in conversion time for stores of the same size are 
possible.

6.4.3 A Real-Life Application

To validate our synthetic tests with a real-life application, we performed several experiments with GAP 
(see Section 5.6 for more details). In our evolution experiments we were changing persistent instances of 
“geographical line” class, subclasses of which represent such geographic features as roads and rivers. The 
form of vector data storage for such a feature can be in two forms shown on Figure 6.15.

GeogrLine GeogrLine

int x[] GeogrPoint[]

int y []
GeogrPoint

Figure 6.15: Representations of Geographical Lines

During GAP development, both of these representations were tried, so we decided that conversion between 
them is a good example of a “real-world” schema change. We converted successfully about 900,000 line
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objects (complete UK data store, about 700MB in size), which took about 30 minutes. We also performed 
several experiments with smaller numbers of objects and observed practically linear time growth.

6.4.4 Related Work

To our surprise, we have managed to find very few research works that deal with scalability and recover
ability of evolution and its performance. On the other hand, the documentation on the commercial systems 
which we could get hold of seems to generally ignore this problem. However, at least in one case an inde
pendent report reveals it, as we will see. Below is what we were able to find out.

There is one work where the O2 system is benchmarked, which was published in 1994 [FMZ94]; an extended 
version of this appears in [ZCF+97]. In that work the authors concentrate on measuring and comparing the 
performance of immediate and deferred updates to variable size object databases. Since in PJama we have 
currently implemented only immediate (eager) conversion facilities, this work is of no direct relevance to 
us. It is also not clear, whether the requirements of scalability and safety were considered at this stage in the 
experimental design or product prototype. It is hard to compare the performance results, since in this work 
the authors did not specify exactly the changes they were making, and the hardware they used is almost 
obsolete by today’s standards, so that equivalent times cannot be calculated.

The RD45 project at CERN has focused on the problems of providing persistent storage for vast quantities 
of data generated in physics experiments since 1995. At present the main system selected for use in this 
project is Objectivity/DB [Obj99a, Obj99b, Obj99d, Obj99c]. Its evolution facilities are quite sophisticated, 
as was discussed in Section 4.9.

Two CERN internal reports [Eur97a, Eur97b] contain some performance measurements for evolutionary 
object conversion with this system. Unfortunately, they mainly cover lazy conversion performance. Again, 
the hardware configuration used in the experiments (90MHz Pentium PC with 64MB memory and 1GB hard 
disk), does not allow us to compare absolute performance values. The report also shows that the time was 
linear in the number of objects evolving, and not particularly sensitive to object size.

As for the scalability and recoverability requirements, it looks as if Objectivity/DB satisfies the latter but 
does not satisfy the former, at least when eager conversion is applied. The documentation does not say 
anything, but according to [Eur97b], during evolution this system gradually loads all the evolving objects 
into RAM and keeps them there until the end of the transaction. This limits the amount of objects that can 
be converted in a single transaction to the amount that can fit into main memory and effectively prevents 
complex conversion of large databases.

6.5 Summary

In this chapter we have established the goals for our design of the low-level conversion support mechanism 
for the PJama system (scalability, safety and completeness). We then explained the issues that we encoun
tered due to these requirements. We have presented one possible design of such a system, explained its 
drawbacks (high consumption of persistent store resources), and then presented our current design, which is
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much more economic in this respect. The evaluation of this system has confirmed that it scales very well and 
that the performance is as expected, i.e. the time to convert objects depends linearly on their number. The 
absolute performance figures look good, but the virtual absence of similar published data for other systems 
makes comparisons difficult.

At present the importance of scalability and safety of eager object evolution is probably underestimated by 
researchers and developers. This may be due to the fact that, as we explained in this chapter, this becomes a 
real issue only if the higher-level conversion technology is sophisticated and provides the developer with the 
way to access data beyond the current object being converted. Some of the well-established modem com
mercial systems restrict evolution to avoid complex conversions. Nevertheless, even with these constraints, 
some of their conversion implementations do not appear to scale at this time.

There is also very little information in the literature on the performance of eager conversion. Again, it is 
more likely to be an issue if higher-level mechanism is non-trivial.



Chapter 7

Runtime Evolution of Java Applications

So far we were talking about off-line evolution of persistent classes and data. In this chapter, the technology 
of runtime evolution (dynamic class redefinition) of Java applications is described. The author started to 
work on it at Sun Microsystems Laboratories in August 2000 as an intern, and is continuing at present as an 
employee. Runtime evolution technology allows developers to change class definitions while the program 
containing these classes is active.

Runtime evolution has a lot in common with persistent class evolution. We believe that the experience 
gained during the work on persistent application evolution can be re-used in the following aspects:

• We believe that all possible safety checks and guarantees are of special importance for runtime evolu
tion, since this technology is being designed specifically to prevent interruptions, especially the abrupt 
ones (such as a runtime error), of target applications. An approach equivalent to the one taken in the 
opjb (see Chapter 3), which involves class compatibility checks and specific actions in response to 
incompatible changes, should be followed to ensure that an intended change is type safe in the context 
of the current application.

• As with persistent application evolution, we will need to be able to convert existing instances if the 
new version of their class defines a different format for them (Chapter 4). Similar kinds of conversion,
i.e. default and custom, would be desirable to implement.

• Problems of scalability and durability of conversion similar to those identified in Chapter 6 may arise, 
and perhaps the existing experience may be utilised in solving them.

On the other hand, runtime evolution is inherently more difficult than persistent class and data evolution. In 
case of persistent application evolution as it is implemented in PJama and other persistent systems known 
to us, an application being evolved is shut down, and thus what is actually evolving is a relatively loose 
collection of persistent classes and their instances. A running application, in contrast, has additional state, 
the main part of which is the contents of the stack(s) of its thread(s). Thus, to evolve an application dynam
ically, we have to somehow match its current code and the current state of its stack with the new code (and 
possibly new stack format that it defines). It is hard to see how this can be performed in an arbitrary case,
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and thus our current goal is to identify possible specific cases, when this transition can be performed such 
that its effects are predictable.

Technically, supporting runtime evolution is also more difficult. One reason is that when it comes down 
to implementation of class replacement, whether it is a persistent store or an active VM, a major part of 
the operations that the evolution technology performs is switching and fixing various links between classes, 
their instances, and classes and internal VM structures. However, when a Java application is mnning, the 
number and complexity of such links is an order of magnitude greater than when an application is saved as 
a quiescent collection of classes in the persistent store.

For these reasons, the decision was taken to implement runtime evolution for Java in a number of stages. On 
the first stage, a very limited set of evolution facilities should have been implemented, which would allow 
only very restricted changes. On the other hand, it would have required a minimum implementation effort. 
Restrictions also mean that changes that are allowed are simple and thus their consequences can generally 
be predicted and controlled by the developer who initiates the change.

On the following stages, the number of kinds of allowed changes and, consequently, implementation com
plexity, should gradually increase. We believe that in future, additional functionality would be also required, 
that would help the developer to understand the consequences of changes, or e.g. apply these changes only 
when certain conditions are met, such that their results become predictable.

Thorough testing and evaluation of mechanisms developed at a previous stage should be performed before 
proceeding to the next stage, possibly causing adjustment of the next stage goals. This should prevent 
sudden emergence of unforeseen fundamental problems.

This chapter is stmctured as follows. We first describe our implementation platform — Sun HotSpot Java 
VM. Implementation stages as we currently see them are presented in Section 7.2. Section 7.3 describes the 
first stage, which has already been accomplished, on which only changes to method bodies are allowed. In 
Section 7.4 the second implementation stage, which is now close to completion, is discussed. At this stage, 
we impose fewer restrictions on the allowed changes. However they still should be binary compatible, and 
we don’t support modifying the instance format. Section 7.5 discusses the directions for the future work, 
including one interesting application of class redefinition technology — dynamic fine-grain profiling. We 
then present the review of the related work and our conclusions.

In this chapter, in addition to the JLS (Java Language Specification, [GJSBOO]), we will often reference the 
JVMS, which is short for Java Virtual Machine Specification [LY99].

7.1 HotSpot Java VM

The HotSpot VM is Sun’s present Java VM, available in the JDK releases starting from JDK1.3. It was first 
officially launched in April 1999. In this section, we first present a historical note on this system, and then 
describe its features that are important in the context of our work.
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7.1.1 A Historical Note

The following information was kindly provided by Robert Griesemer from JavaSoft, to whom the author is 
sincerely grateful.

Many of the ideas that eventually ended up encoded in the Java HotSpot Virtual Machine have their roots 
in much earlier systems, specifically the implementations of Smalltalk and SELF programming languages. 
While dynamic code generation has been used before for a variety of applications, the seminal work by 
Deutsch and Schiffman for the Smalltalk-80 system [DS84] is a key piece in the puzzle. Their system dy
namically compiled individual methods into native machine code to speed up an otherwise comparatively 
slow Smalltalk bytecode interpreter. Their system influenced many other Smalltalk systems. Later, both the 
Smalltalk language and its implementation inspired the pure object-oriented language SELF by Ungar and 
Smith [US87]. A straightforward SELF interpreter runs even slower than a comparable Smalltalk interpreter 
and thus more sophisticated compiler technology was required. Significant performance improvements were 
achieved by Hoelzle in 1994 with his adaptive compilation system for SELF [Hol95]. In Hoelzle’s system, 
frequently used methods were recompiled and inlined into the caller methods; in addition more sophisti
cated object-oriented optimisations (such as the elimination of block instantiation via block infining) were 
introduced. The system also featured a mechanism called deoptimisation, which allowed the replacement of 
an optimised method activation by its corresponding interpreted equivalent (or several of them, if inlining 
occurred). Deoptimisation allows source-level (i.e., bytecode level) debugging of optimised code and also 
enables more sophisticated optimisations in the compiled code. The reader can find more information on 
the SELF project, including a number of publications, on the SELF Web site [SunOOr].

In 1994, two key engineers from the SELF group joined a small startup company called LongView Tech
nologies LLC, commonly known as Animorphic Systems, in Palo Alto, California. At Animorphic Systems, 
many ideas found in the original SELF implementation were refined, and combined with state-of-the-art 
memory management and a high-performance interpreter. Animorphic’s goal was to evolve the SELF tech
nology to product quality and (re-)apply it to a new Smalltalk implementation called Strongtalk [BG93]. 
In 1995, with the advent of Java, the Animorphic team refocused and applied the same, somewhat mod
ified, technology to their own clean room implementation of a Java virtual machine. Both Animorphic’s 
Smalltalk and the Java HotSpot technology were advertised at the OOPSLA’96 conference exhibition. In 
1997, Animorphic Systems was acquired by Sun Microsystems. The complete Animorphic engineering 
team continued with the further development of their Java virtual machine, which replaced Sun’s Classic 
VM in 2000, with JDK1.3 release. Sun is continuing to evolve the HotSpot technology which by now 
includes significant improvements in compilation technology, garbage collection, thread synchronisation, 
internal data structures, and is covered by many patents.

7.1.2 The Features of the HotSpot JVM

The following discussion is based on the Sun’s white paper [Sun99b], certain materials available internally at 
Sun, studying the source code of HotSpot VM, and the author’s personal communication with the developers 
of this system.
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7.1.2.1 Mixed Mode Application Execution

Straight bytecode interpretation is too slow for most industrial-strength Java applications. Therefore these 
days all of the industrial JVMs include compilation of the bytecodes to platform-specific native code to 
achieve reasonable program execution speed. Several strategies have been developed to address this need. 
They can be categorised broadly by whether the compilation to native code takes place before run time (static 
compilation) or during runtime (dynamic compilation). Static compilation for Java is presently supported by 
several systems, e.g. Visual Cafe [WebOO] and JOVE [InsOO]. In contrast, HotSpot, as well as previous Sun’s 
JVMs (Classic VM and EVM [WG98]) implement dynamic compilation. IBM’s Jalapeno JVM [AAB+99, 
ACL+99] does not have an interpreter at all, and dynamically compiles the Java code.

HotSpot VM is equipped with both a dynamic compiler and an interpreter, and runs applications in mixed 
mode. This means that only parts of an application are compiled, whereas the rest is interpreted. Such a 
strategy is used to minimise total execution time, since it is observed that most of the applications spend 
most of their time in only a small portion of their code. HotSpot identifies at run time those parts of an 
application’s code that are most critical for performance. The easiest way to do that is to associate a counter 
with each method entry and each loop of the application and increment this counter every time the given 
method is called or the loop is re-iterated in the interpreter. Those methods which are found to be called 
most, or which contain the most intensive loops (“hot spots”, hence the name of this VM) are compiled and 
optimised, without wasting time and space compiling seldom-used code.

A discussion comparing the merits of static and dynamic compilation can certainly be very interesting (e.g. 
such issues as code portability, support for dynamic class loading and reflection, etc. are quite hard in case 
of static compilation), but it is out of scope of this thesis. What is relevant for this work is the ability of 
one approach or another to support runtime evolution of applications. From this point of view, there are two 
extremes — a purely interpretative VM, and a native compiler that creates a monolithic native executable 
file for a Java application. In the first case, runtime evolution implementation is technically the easiest, 
whereas in the second, we believe, it is hardly possible at all. This is due to the difficulties of inspecting 
and changing the internal structure of an application once it is loaded and running. It turns out that HotSpot 
VM with its mixed mode application execution and a number of additional facilities, originally designed for 
different purposes, (see further discussion) provides a reasonable compromise, allowing dynamic evolution 
with a moderate investment of technical effort.

We will now discuss the implementation of the interpreter and the compiler in HotSpot in more detail, with 
the emphasis on how certain features facilitate or make difficult the implementation of runtime evolution.

7.1.2.2 The Fast Interpreter

HotSpot is presently equipped with a fast interpreter, the design of which is different from that in previous 
Sun’s VMs. The earliest implementation of the interpreter in the Classic VM followed a simple pattern, the 
main element of which was a loop combined with a sw itch statement, as sketched in Figure 7.1.

Such a design is not speed-optimal, for several reasons. First, the sw itch statement performs repeated 
compare operations, and in the worst case it may be required to compare a given command with all but one 
bytecodes to locate the required one. Second, it uses a separate software stack to pass Java arguments, while
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while (thereAreMoreBytecodes()) { 
b = nextBytecode() ; 
switch (b) {
case instr_x : do_this(); break; 
case instr_y : do_that();

break;

r
}

Figure 7.1: The core of a simple interpreter.

the native C stack is used by the VM itself. A number of JVM internal variables, such as the program counter
or the stack pointer for a Java thread, are stored in C variables, which are not guaranteed to be always kept in
the hardware registers. Management of these software interpreter structures consumes a considerable share 
of total execution time.

The interpreter in HotSpot is designed in a radically different way, in order to minimise the gap between the 
VM and the underlying hardware. Omitting some second-order technical details, its architecture looks as 
follows. Instead of using a switch, addresses of the pieces of the VM code responsible for interpretation 
of individual bytecodes are looked up by the interpreter in a special table. In other words, for a particular 
bytecode with the value, say, 5, the interpreter just goes to the fifth table entry, gets the address of the code 
and jumps to it. However, to be able to create such a table with pointers to code sections (not procedures, 
for which a high-overhead c a l l  instruction instead of a jump would have to be used), these code sections 
have to be generated at interpreter start-up. This is the only way (in standard C/C++) to obtain the runtime 
address of a code section and place it into the instruction lookup table. Therefore, a considerable part of the 
HotSpot interpreter code looks like quasi-assembler, but is actually a C++ code that, upon the VM startup, 
generates native machine code, which then works as a part of the interpreter. An example of a function that 
generates interpreter code for Java bytecode pop instruction (for Intel architecture) is presented in Figure 
7.2.

void TemplateTable::pop() {
// Some assertions here are omitted by us for clarity 
  popl(eax);

}

Figure 7.2: An example of interpreter code generation

This remarkably short example also illustrates that a native hardware stack is used by the interpreter, i.e. 
all Java arguments (along with the VM internal information passed to methods) are put onto it. Certain 
dedicated registers are used to hold Java program counter, stack pointer, and other internal variables.

It is worth noting, that in the last releases of Sun’s Classic JVM the main interpreter loop was also rewritten 
in assembler for speed-up, and table-driven lookup of code sections that interpret particular bytecodes was 
also used. However, instead of dynamic generation of the interpreter code, that can be supported by any
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standard C/C++ compiler, a non-standard mechanism available in GNU C/C++ was used, that allows the 
programmer to manipulate source code labels in the same source code. Using this mechanism, it is possible 
to fill in a table with the addresses of static sections of code. However, in other aspects this interpreter 
implementation was much less sophisticated than in HotSpot. In EVM it was eventually abandoned, for the 
sake of code portability and maintainability, once the measurements had shown that the real speed-up due 
to the implementation in assembler, was rather small, of the order of 5-10 per cent. In the presence of the 
fast enough dynamic compiler, this speed up was not worth the maintenance effort.

Overall, the gap between the VM and the real machine is significantly narrowed by the HotSpot interpreter, 
which makes the interpretation speed considerably higher. This, however, comes at a price of e.g. large 
machine-specific chunks of code (roughly about 10 KLOC (thousand lines of code) of Intel-specific and 
14 KLOC of SPARC-specific code). Overall code size and complexity is also significantly higher, since 
e.g. the code supporting dynamic code generation is needed. Obviously, debugging dynamically generated 
machine code is significantly more difficult than static code. These properties certainly do not facilitate 
implementation of runtime evolution, but they don’t make it infeasible either.

7.1.2.3 The Compilers and Decompilation

At present, there are two native compilers available in HotSpot. The first of them is a relatively lightweight 
one (informally known as Cl), oriented towards client-side applications, where fast startup due to fast dy
namic compilation, and small footprint is more important than the quality and thus the speed of the code 
produced. The second compiler, C2, is relatively slow, but produces high-quality native code. It is thus 
more appropriate for server-side applications, where compilation time is almost irrelevant compared to the 
importance of the ultimate execution speed. Only one compiler can be used during a single VM session, 
and it can be chosen through a command-line flag. This is due to the fact that e.g. the stack formats for Java 
method calls defined by the two compilers are different, which makes dynamic switching from one compiler 
to another impractical.

One optimisation (it will be explained later why it is important for our work) supported by the compilers1 
is aggressive method inlining. “Aggressive” here means that a larger number of methods can be inlined that 
would be possible to if compilation was purely static (more precisely, if its results could not be changed 
later). If compilation is static in this sense, a method can be inlined only if the compiler can determine 
that a certain call cite is strictly monomorphic, i.e. only one method implementation can be called from 
it. Practically in Java it means that a method is either s ta t i c ,  or can not be overridden in a subclass (i.e. 
p r iv a te  or f in a l) , or there is a special case such as the one below, where it is possible to determine through 
static analysis that the call is monomorphic:

int res = new C().m();

However, in certain cases static analysis can not guarantee that a call site is monomorphic, whereas the 
situation at run time suggests that it is, at least for some period of time. For example, if we have a piece of 
code similar to the one presented in Figure 7.3, and observe that C is a leaf class (more precisely, that there

'Actually, at present only by the C2 compiler, though the implementation o f  the same optimisation in the Cl is under way.
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are no subclasses of this class currently loaded), we can inline the above call2. The problem is, what to do 
if later a subclass of C that overrides m () is loaded?

void m(C c) { 
c .m();

} ’ ’ ’

Figure 7.3: An example of a non-guaranteed monomorphic call site.

In the HotSpot compilers this problem was solved with the help of the so-called deoptimisation technology 
(initially introduced in the SELF system [Hol95]). Initially, the compiler uses runtime analysis to perform 
inlining aggressively. When each particular inlining is performed, the information about the method that 
inlines another one at a non-monomorphic call site, essentially a “caller method - callee method” pair, is 
recorded. Once a class is loaded, it is checked if it overrides any previously inlined methods, and if it does, all 
dependent methods are deoptimised. The latter means that the VM switches from executing their compiled 
code (containing inlinings that became incorrect) back to interpretation (which always calls methods via the 
dynamic dispatching mechanism). Later the deoptimised methods may be recompiled.

Technically deoptimisation is very hard, since the VM has to determine precisely the point in the interpreted 
code that corresponds to the point in the compiled code, create an interpreter-specific stack frame from the 
corresponding stack frame of the compiled method, and replace this frame on the hardware stack. This is 
done eagerly for all of the method activations currently on stack.

For runtime evolution support in production mode, when the Java code is compiled and optimised for high 
performance, the presence of the deoptimisation mechanism is very valuable. Methods of classes that are 
being dynamically redefined could be previously inlined, so once a class is redefined, all methods that 
depend on its methods in this way, should be deoptimised. Note that s ta t ic ,  f in a l  and p r iv a te  methods, 
whose call sites are always strictly monomorphic, can be redefined too. Therefore, even if HotSpot supported 
only limited, non-aggressive inlining, we would have to develop some sort of deoptimisation technology for 
our own purposes, or disable inlining of methods (even of the p r iv a te  ones, since in Java they can be called 
not only from their defining class, but also from the inner classes of this class). Fortunately, we could re-use 
the existing technology, and had to only slightly customise it to support recording information about inlining 
of otherwise irrelevant s t a t i c ,  f i n a l  and p r iv a te  methods. This information is recorded in a special way, 
so that it is not taken into account by the “normal”, non-evolutionary deoptimisation mechanism.

7 .1 .2 .4  M e m o r y  M a n a g e m e n t

The first Sun JVM, the Classic VM, employed object handles to simplify implementation of garbage col
lection. A handle was a small fixed-size data area associated with a Java object and containing a pointer to 
the latter. All Java objects pointed to each other indirectly, via their handles. Thus during garbage collection 
objects could be moved around freely without changing pointers to other objects inside them — only the

C om p ilation  in HotSpot happens only after the VM  realises that the given method is used heavily enough. If a method was 
called many times and the given call site in it is still monomorphic, it is unlikely that it will become polymorphic in the near future. 
Thus this kind o f  optimisation is justified.
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pointer to each object in its handle needed to be patched.

However, it appears that accessing objects via handles slows down execution of Java applications signifi
cantly (this problem was first observed, and the VM without handles implemented, for Smalltalk by Ungar 
[Ung86]). Therefore the next generation Sun’s VMs, i.e. EVM and HotSpot, are both “handleless”. Java 
objects in these VMs point to other objects directly. Other modem JVMs, e.g. IBM Jalapeno, are also 
handleless.

Handles would simplify runtime evolution in cases when it is required to replace the internal class object 
for an evolving class, or to convert objects, creating their new versions on the heap. In both cases, we 
need to patch pointers: from instances to their class or from non-evolving instances to the evolving ones. 
If handles exist, it is enough to scan and patch just them; without handles, scanning the heap and patching 
direct pointers in objects themselves is required. However, this is unlikely to be especially difficult, since 
similar heap scanning and pointer patching are performed during the last phase of garbage collection. Thus 
we believe that the HotSpot VM garbage collector and the infrastructure for it which can be used separately 
(e.g. there is a readily available C++ class in HotSpot that allows iteration over all of the objects in the 
Java heap), is likely to satisfy our needs. Most importantly for us, this GC is fully accurate, which means 
that when it runs, it knows the location of all of the pointers to Java objects. This is generally not an easy 
thing to do, e.g. special measures are required to locate pointers that reside on native execution stacks or 
created in the native methods. For these reasons, garbage collectors of earlier JVMs, e.g. Sun’s Classic VM, 
were non-accurate or conservative [BW88]. In some cases they had to consider as a putative pointer some 
memory words that looked “suspicious”, i.e. contained a value that could be interpreted as a pointer. Since it 
was not known for sure whether or not such a word is really a pointer, its contents could not be changed and 
thus the contents of the memory area at which it was pointing could not be relocated. In contrast, accuracy, 
or exact memory management of the HotSpot garbage collector allows it to reclaim reliably all inaccessible 
object memory, and to relocate any object. In our case it also guarantees, that if we convert an object and 
thus create a new copy for it (effectively relocating this object), we will be able to patch all of the pointers 
to it reliably.

The HotSpot VM garbage collector is also incremental, significantly reducing user-detectable garbage col
lection pauses. The incremental collector scales smoothly, providing non-disruptive, relatively constant 
pause times, even when extremely large object data sets are being manipulated. This guarantees good 
behaviour for high-availability server applications, highly interactive applications, and applications manip
ulating very large sets of live objects. Some parts of the garbage collection functionality are inherited by 
HotSpot from EVM [AD97, ADM98, WG98], where they were first proved highly effective.

7.1.2.5 Internal Data Structures

The initial design of the internal representation of Java objects and classes in the VM memory affects the 
implementation of runtime evolution quite significantly. Comparing how similar things were implemented 
in different VMs, we come to the conclusion that variations in their design, even relatively small ones 
(which, nevertheless, are very hard to change once the system is mature, can lead to dramatic variations in 
the evolution implementation complexity.

Consider the internal representation of a class object in the HotSpot VM memory, a fragment of which is
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presented in Figure 7.4. A tag on the top of each box on this figure denotes the type (the real internal 
HotSpot’s C++ class names are used) of the respective object. Those types whose names end with . .  Oop are 
“quasi-Java” objects: they are invisible to Java applications that the VM runs, but are allocated on the Java 
heap. Thus, the garbage collector treats them as Java objects, so they can be moved to compact the heap and 
garbage collected once they become unreachable3. Pointers from one object to another are usually p r iv a te  
fields of the respective C++ classes, accessible through accessor methods, names of which are printed over 
the corresponding arrows.

instanceK lass

co n sta n ts!) constantPoolOop

cache(
constantPoolC acheO op

m ethods!) pooljholderf)
obj Array Oop

constan ts!)

m ethodO op

coded . nmethod

method!

Figure 7.4: Internal representation of a class object in HotSpot VM

The main part of the class object has type instanceK lass, to which (more precisely, to its embracing quasi- 
Java object) instances of this class point directly4 Two objects to which an instanceK lass points in turn, 
are most relevant for our work. One is the array of methods, which contains pointers to method objects for 
all methods defined in this class. The second object (actually a pair of objects) represent the constant pool 
(see JVMS, §4.4 and Section 3.3.2) of the class.

3 Actually, the main part o f  the class object, in s ta n c e K la s s ,  is embedded itself inside such a quasi-Java object —  we don’t 
show this embracing object just for the sake o f clarity. Such a form o f  embedding is used in internal HotSpot types very often.

4In contrast, in EVM instances pointed to a special data structure called near class, and the latter pointed to the main class 
object. A near class contained, in particular, the pointers to the instance layout map and the VMT for the given class.
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The constantPoolOop type object directly follows the constant pool structure in the class file, i.e. maps 
indexes to the respective constants, allowing to store (at class creation time), and then fetch, constants of 
types that correspond literally to those defined in the specification for Java class files. E.g. having an index 
for a method entry, one will obtain two other indexes and eventually the symbolic names of this method and 
its defining class. For any but a very primitive interpreter, this level of service is unacceptably slow. For 
example, what an interpreter really requires when it comes across a virtual method call, is an index into the 
virtual method table (VMT) for this method. This index, combined with the actual class of the instance on 
which a method is executed, will yield the correct Java method object with the bytecodes to execute.

In order to cache information such as the above, for method calls and field reads/writes, an additional struc
ture called constant pool cache is employed in HotSpot. constantPoolCacheOop is a quasi-Java array, en
tries of which, however, point to non-Java objects of ConstantPoolCacheEntry type. There is one-to-one 
correspondence between each such object and an entry of either CONSTANT.Fieldref, CONSTANT_Methodref, 
or CONSTANT.InterfaceMethodref (see Section 3.3.2) type in the class’s constant pool. A 
ConstantPoolCacheEntry object contains information relevant for an entry type (field or method). For 
example, for a static method entry it contains a direct pointer to the respective method object, whereas for 
a virtual method it contains its VMT index. Some less essential information, such as Java access codes for 
fields and methods, is also stored in these objects. When a Java class is being linked after loading, the VM 
parses and rewrites (in HotSpot’s terminology) the bytecodes of its methods. This means that for each byte
code that calls a method or reads/writes a field, the index into the constant pool is replaced with the index 
into the constant pool cache. The essential contents of constant pool cache entries are, however, initialised 
lazily, i.e. when a method is first called or a field is first accessed.

A method object (methodOop) contains the bytecodes of the respective Java method and all other information 
necessary to run this method, e.g. the exception table, number of parameters/local variables, etc. Bytecode 
array, line number table (for exception handling/debugging), local variable table, and exception table are 
embedded into a methodOop object. However, the compiled code, created only for “hot” methods, is placed 
into a separate object of type nmethod.

Deoptimisation mechanism, first briefly described in Section 7.1.2.3, which is vital for our evolution tech
nology, works as follows. If it has been found that certain method inlines contained in the compiled code of 
method m () became incorrect, we have to do two things: switch from the compiled code to interpretation 
of m () immediately, and prevent other methods from calling and executing the (now incorrect) compiled 
code of m (). Since calls to compiled methods from other compiled methods are direct, i.e. performed with 
a “c a l l  addr” processor instruction, we can’t simply delete a compiled method. Instead, the link between 
methodOop and nmethod is cut, and a software trap (effectively a jump to the special handler function) is 
placed in the beginning of the compiled code for m (). Once this nmethod is called, a handler takes control, 
goes to the calling site and essentially overwrites it. The VM is then forced to re-resolve a call at this site 
through the constant pool cache, and will eventually get either the interpreted code, or the new nmethod, 
which by that time may have already been created.

The last part of the class representation which is relevant for our work is the virtual method table (VMT, or 
klassVTable as the respective HotSpot type is called), the interface method table (klassITable, the same 
purpose structure, but for interface methods) and static fields representation. Unfortunately, in this respect 
the HotSpot VM is not ideal for our purposes. In order to speed up access to methods and static variables, 
both of the above tables and the static fields are embedded directly into the instanceKlass object. This 
is in contrast with e.g. earlier Sun’s JVMs (see e.g. [DA97]), where these were separate array objects,
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referenced from the main class object. Embedding means that if we add a virtual method or a static variable 
to the class, its original instanceK lass object will become unusable5. A new class object has to be created 
for this class, and, in case of added virtual method, the same thing should be done for all of its subclasses. 
Then all of the pointers to this class object must be patched, so that they point to the new class version.

7.1.2.6 Code Size and Quality

HotSpot JVM source code currently comprises approximately 250 KLOC of processor- and OS-independent 
code, about 35 and 44 KLOC of, respectively, Intel- and Sparc-specific code (primarily used by the inter
preter and the two compilers), and about 5 KLOC of code for each OS supported (currently Solaris, Linux 
and Windows). A relatively small amount of code, 1-2 KLOC in each case, is both processor- and OS- 
specific (there are just four of such cases, since only one OS, namely Solaris, is available for both Sparc and 
Intel processors). Thus, in general, HotSpot is a fairly large system.

Of the three JVMs whose source code the author worked with: Sun’s Classic JVM, EVM, and HotSpot 
— the latter has the best code quality. In part this is due to the C++ implementation language (the other 
two VMs are written in C). Despite the lack of safety of C++ inherited from C, it is still an object-oriented 
language, and therefore coding in it provides a better code organisation almost for free. Indeed, just the 
fact that data and code which operates on it are grouped together in classes, greately improves code clarity 
and facilitates understanding it. Hierarchical class organisation, that leads to grouping more general and 
more specific functionality in different classes, also helps in understanding and extending the code. It 
also facilitates organising code in such a way that it can be effectively re-used, even in unanticipated ways. 
HotSpot code follows this discipline consistently enough, providing in many cases good and easily accessible 
infrastructure for those who wish to extend it. This was supported much less well in Sun’s previous JVMs.

One other advantage of C++ relevant for a VM implementation is a certain level of memory management 
automation available in it. For example, in any JVM we have to manipulate Java objects in the VM runtime 
code. When this code runs on behalf of a normal application Java thread, GC can happen at any time. 
Locations of all pointers to Java objects should be known to the GC, therefore pointers to Java objects 
within the JVM code can rarely be passed as such. Instead, we have to hide them behind handles, which 
are pointers to some locations, essentially pools of object pointers, managed by the VM. Once garbage 
collection happens, the pointers in the pools are updated, but the values of handles (which at this time can 
be contained in hardware registers or C stack frames) need not be changed. Thus, we ensure GC safety, but 
get a problem of management of handles themselves. Namely, we should deallocate a handle once we don’t 
need the Java object that it references anymore. Manual management of explicit deallocations of handles in 
EVM (which is written in C) was a headache, whereas in HotSpot handles are implemented as C++ class 
instances. Thus, if a handle is declared as a local variable of some function, a destructor for it, which will do 
all the necessary cleanup, is executed automatically once the handle goes out of scope. The same happens 
with some other structures implemented as C++ classes, e.g. various locks. Overall this noticeably improves 
code maintainability.

The coding style of HotSpot follows reasonable discipline. For example, the majority of data fields in

5To “expand” the class object in place would require sliding all o f the objects that follow it in the heap, and patching the 
addresses —  similar to what happens during mark-and-compact GC. This is even more expensive than allocating a new class object 
and patching pointers to it.
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classes are private, with names starting with underbar, e.g. in t  _some_f ie ld . This allows a programmer 
to distinguish object fields from method local variables immediately when looking at an arbitrary piece of 
code. Fields that are required outside the class are accessible via accessor methods that also follow the 
naming convention. In the above case two accessor methods would be called in t  some_f ie ld  () and void 
se t_some_fie ld ( in t) . Though this might not seem a great breakthrough, following this discipline saves 
somebody who tries to understand, extend and debug the code, innumerable lookups in a large number of 
files just to find out the most elementary things.

Unlike the two earlier Sun’s JVMs, HotSpot does not suffer from excessive use of C macros, especially 
nested ones, which were debugging nightmare when working with those VMs.

The amount and quality of comments in HotSpot sources is much greater than that in the Sun’s Classic JVM, 
and also looks greater than in the EVM. Unfortunately, however, very little alternative documentation exists 
for HotSpot (though the source code of its earlier versions is freely available, see [SunOOi]). Absence of the 
alternative documentation leads to the fact that the knowledge of many important internals of this project 
exists essentially only in the heads of its developers at JavaSoft. This is in sharp contrast with e.g. IBM’s 
Jalapeno project with its large number of publications [IBM01]. The latter is primarily a research project 
(unlike HotSpot, which is a product), but papers also appear on the IBM Development Kit (IBM DK), which 
is IBM’s rival product (see e.g. [GBCWOO, SOT+00]).

7.1.3 Summary

HotSpot is a high-performance industrial Java VM that can be tuned at start-up time for both client-side and 
server-side optimal performance. The price of its high performance is increased code size and complexity, 
which makes changes and extensions that were not originally anticipated harder to perform. Nevertheless, 
for the purposes of this work HotSpot proved to be malleable enough. Certain properties of this system, 
such as support for compiled method deoptimisation, the infrastructure for iterating over Java objects and 
stack frames, and quite good code quality, facilitate implementation of runtime evolution a lot. Others, like 
the specific design of the interpreter, are almost neutral. Finally, the design of some internal data structures 
makes our work harder, and may also affect the performance of the resulting evolution sub-system. Overall, 
however, our impression is that HotSpot, at least compared to Sun’s previous JVMs (Classic and EVM), is 
more suitable for experimental work, particularly for adding runtime evolution support.

7.2 Staged Implementation

Since implementing runtime evolution for Java is a risky research work, with many conceptual and technical 
aspects still not entirely clear, it was decided from the beginning to split this work into a number of stages. 
Each stage corresponds to a certain reasonably consistent level of functionality, that can be delivered with 
some release of the HotSpot JVM. Currently envisaged stages look as follows:

1. Changing method bodies only. At this stage, only one kind of change to classes is allowed and 
supported, and these are changes to method bodies (code) only. Everything else in the new class
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version should remain exactly as it was in the old class version. This stage is essentially complete now, 
the code is being tested and should eventually be included in the Sun’s JDK1.4 release, scheduled for 
November 2001.

2. Binary (source) compatible changes. At this stage, only binary (source) compatible changes to 
classes (see JLS, Chapter 13) should be allowed. The reason for this to be a separate implementation 
stage is that incompatible changes are much more difficult to handle in the context of the running VM 
than in the context of the evolution of a loose collection of classes. The reader may recall (Chapter 
3) that in the latter context, if we detect an incompatible change to a class, we just ensure that the 
new set of classes is mutually consistent. We do that by selective recompilation of classes that depend 
on the changed class. In the context of the running VM, we can also feed to it the new, consistent 
set of classes. The problem is, what shall we do in certain cases, e.g. when a class is made f in a l  
while there are still some loaded subclasses of it. We currently believe that eventually (during the 
subsequent stages) the VM should check all such cases and abort the redefinition operation if any 
internal invariant (type safety) violation is detected.

It is also not entirely clear yet, what kind of class compatibility — binary or source — should be 
checked. If only the VM side of evolution mechanism (see Section 7.3.2) is considered, we would 
rather talk about binary compatibility verification only. One reason is that in several cases source 
compatibility can be ensured only if the source code for a class is available. For the VM it seems 
inappropriate to deal with the source code for classes. On the other hand, an evolution tool which we 
eventually would like to develop, may (mandatorily or optionally) check source compatibility as well.

3. Arbitrary changes, except the changes to instance format. At this stage, any changes to classes 
should be allowed and supported, with the exception of those that affect the format of their instances. 
In principle, however, even the latter kind of changes may be allowed, provided that at the moment of 
transition there are no live instances of the modified class.

4. Arbitrary changes. All kinds of changes are allowed. If any of them leads to instance format modi
fication, all of the affected instances should be converted to make them match new class definition.

Support for changes to instance format should not necessarily be implemented in the very last stage, though. 
Implementing instance conversion and supporting incompatible changes are “orthogonal” issues, i.e. com
patible changes (e.g. adding a public instance field to a class) may require instance conversion, or changes 
not requiring instance conversion may be incompatible.

Most of the code supporting the evolution functionality is currently being written in C++, as a part of the 
JVM. That is because most of the operations it is currently performing are low-level and JVM-intemal. In 
future certain higher-level operations may be more adequately implemented in Java, as it was in PJama (see 
Section 2.4. This will also prevent bloating the core JVM code.

In the following sections, we explain why the presented levels of functionality were chosen for different 
stages and describe the accomplished work, as well as design ideas not yet implemented.
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7.3 Stage 1: Support for Changing Method Bodies

Stage 1 goals were chosen as they are essentially for two reasons. First, intuitively, only allowing changes to 
method bodies suggests that resulting disruption to the internal JVM structures is going to be minimal, and 
so is the implementation effort and the probability of serious unforeseen problems. Such changes can not be 
unsafe in the sense of binary or source incompatibility, thus there is no need to develop a substantial piece 
of functionality that deals with this aspect of change safety. On the other hand, this level of functionality 
looks useful and general enough (unlike, for example, the capability to patch only individual bytecodes in 
methods, without changing method size, as implemented in e.g. [ChiOO]).

Another reason was that this level of class modification functionality is typically supported by advanced 
debuggers, e.g. the one implemented in IBM’s VisualAge IDE [IBMOOb]. In the debugger which has this 
facility, the developer can change the code of any method of the target application and resume debugging 
of the modified code. If the changed method is active (is on stack), the debugger would typically pop all of 
the active frames for this method. Support for more complex changes in the debugger does not make much 
sense: in this case it is cheaper to modify, recompile and restart the whole target application. Sun’s nearest 
practical goal is, therefore, to equip HotSpot with the support for changing methods in the debugging mode, 
so that it matches or is ahead of other JVMs on the market.

Despite the fact that the goals at this implementation stage are quite limited, there are still a number of 
issues, both conceptual and technical, that should be resolved to make this technology work. In the following 
subsections, we describe these issues and our solutions.

7.3.1 Dealing with Active Methods

A class that we are replacing can have active methods. The new version of such a method may be different, 
but in the VM running in production mode we in general can’t pop frames of arbitrary active methods, 
since this may lead to incorrect behaviour of the target application. Thus, the biggest problem of runtime 
application evolution — of matching the old and the new program code and state when the execution is at 
an arbitrary point — comes to the fore. If we change only methods, several solutions to this problem can be 
considered:

1. Wait until there are no active old versions of evolving methods. This provides the “cleanest” way of 
switching between the old and the new program, in the sense that at no time does a mix of old and new 
active code exist. However, this solution may not always work, e.g. if one of the evolving methods is 
the main method of the program.

2. Currently active calls to old methods complete, all new calls go to new methods. This solution is 
technically the easiest.

3. All existing threads continue to call old methods, whereas new threads created after evolution call only 
new methods. This may be the most suitable solution for certain kinds of applications, e.g. servers 
that create a new, relatively short-lived thread in response to every incoming request.
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4. Identify a point in the new method that corresponds to the current execution point in the old method, 
and switch execution straight from the old method code to the new one. In certain cases, e.g. when 
a method being evolved never terminates, and the changes are purely additive and free of side effects 
(for example, trace printing statements are added), this can be the desired and useful semantics. How
ever, in more complex cases it may be very hard for the developer to understand all of the implications 
of a transition from one code version to another at some arbitrary point. One other application of the 
mechanism developed for this policy may be for dynamic fine-grain profiling (see Section 7.5.4).

It looks as if none of these solutions is a “single right” one. Rather, they are different policies, and each of 
them may be preferable in certain situations. However, solution number 2 looks much easier to implement 
than the others, and thus it is the only one which is currently supported. Our present design ideas for other 
method switching policies are discussed in detail in Section 7.5.3.

7.3.2 Interface to the Runtime Evolution Functionality

At present the core of the runtime class evolution functionality is implemented as two calls, 
Redef ineC lasses () and PopFrame () in the Java VM Debugging Interface (JVMDI) [SunOOl], which in 
turn is a part of Java Platform Debugger Architecture (JPDA) [SunOOk]. At the moment of writing the de
scription of these calls has not yet been finalised and included in the publically available copy of the JVMDI 
Specification. For this reason and for convenience, we present the initial specification of the above two calls 
in Appendix C.

Note that the Redef ineC lasses () call accepts the actual class object to redefine, not the class name. This, 
in particular, means that the issue of dealing with multiple classes with the same name, loaded by different 
class loaders, should be addressed by the evolution tool, rather than the VM. We hope that the GUI tool 
with sufficient visualisation facilities would allow the user to conveniently specify which class(es) should 
be actually redefined.

JPDA is the open standard, to which a JVM and/or a debugging tool of any vendor may conform. This 
should allow a programmer to debug an application in the VM supplied by one vendor using a debugger 
tool from another vendor. The reader can find the complete description of the JPDA design and APIs in the 
documentation referenced above. Below we present a quick overview.

In JPDA (see Figure 7.5) the debugging tool (debugger) and the target JVM (debuggee) run in separate OS 
processes, on the same or different machines. A relatively compact debugger back end is a part of the JVM, 
activated if the latter is started in debugger-enabled mode, using several special command line options. It 
runs in a dedicated thread and provides a way both to inspect the state and to control the execution of the 
target application. The native C interface that the back end implements (JVMDI) is a two-way interface. A 
JVMDI client can query and control the target application through many different functions in this interface. 
On the other hand, the client can be notified of interesting occurrences through events that the VM generates 
in the debugger-enabled mode.

Running the debugger back end in the same virtual machine as the target application, and the front end — 
in a separate process, provides maximal control over the target application with minimal intrusion on the 
part of the debugger. The code of the back end is relatively compact and consumes a minimum amount
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Figure 7.5: Java Platform Debugger Architecture (JPDA).

of resources. Since it is the native C code, it will not struggle with the target application for Java-specific 
resources, such as Java heap space, so the overhead and the intrusion it introduces are minimal. On the other 
hand, the debugger may be implemented as a portable Java application, free to use GUI APIs and other code 
that consumes significant amounts of RAM and/or processor cycles.

Debugger back end and front end communicate with each other over a communication channel, using Java 
Debugging Wire Protocol (JDWP). This protocol defines the format of information and requests transferred 
between the debuggee VM and the debugger front-end. JDWP itself does not define the transport mecha
nism. What is presently supported by the HotSpot JVM and Sun’s debugging tools are sockets and (under 
Windows only) shared memory. The specification of the protocol allows the debuggee and the debugger to 
run under separate VM implementations and/or on separate hardware/OS platforms. It does not specify the 
programming language for either side, which means that e.g. the debuggee VM can be written in Java itself.

Information and requests specified in JDWP are roughly at the level of the JVMDI, but also include addi
tional information and requests necessitated by bandwidth and signal rate issues, e.g. information filtering 
and batching.

For the debugger front end, Sun provides its own Java class library called Java Debugging Interface (JDI) 
which defines a relatively high-level interface to the debugging functionality in Java. It therefore can be 
easily integrated into a portable standalone debugging tool or an IDE written in Java.

To support runtime class redefinition, JDWP was extended to include the commands corresponding to 
R edefineC lasses and PopFrame. To make this functionality available for target applications running in 
production mode6, the format of the debugging-related command line options of the JVM was extended. It 
is now possible to start the VM in the mode with the thread listening to the JDWP channel, as well as the 
class redefinition functionality, enabled, and the rest of the debugging functionality disabled.

6Currently, HotSpot provides the complete debugging functionality only in purely interpreter mode. Furthermore, in the standard 
debugging-enabled mode, an additional overhead is introduced by e.g. the interpreter making JVMDI calls on method entry/exit, 
class loading, etc.
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7.3.3 New Class Version Loading and Validation

In order to redefine a class at run time, if only its method bodies have been changed, we first perform the 
following steps (see Section 7.1.2.5 for relevant terminology):

1. Create an internal class object (instanceK lass) out of the bytecodes of the new class version, using 
standard JVM class file parsing and class object creation mechanisms, and parts of the standard class 
linking mechanism. Such a strategy allows us to re-use the existing JVM code and create the necessary 
internal JVM structures that will be needed to correctly support dynamic class redefinition. The 
following operations are performed:

(a) Parse the passed class file, creating instanceK lass object. The whole operation is aborted if 
any of the usual problems, such as unsupported class version or class format error, are detected.

(b) Verify the bytecodes, using standard Java verification mechanisms. Again, the whole operation 
is aborted if problems are detected.

(c) Rewrite the bytecodes, so that they work with the constant pool cache (see Section 7.1.2.5) rather 
than the standard constant pool.

The following operations, which are standard for normal class loading and linking, are not performed:

(a) Adding the new class to the JVM internal class dictionary (a structure mapping class name and 
loader to the class object) and to the loader constraints (see JVMS, §5.3.4). The new class 
object is not treated as a separate class; it is just a placeholder, pointing to other objects such as 
methods and constant pool, which we will then link to the original class object.

(b) Recursive linking of superclasses and superinterfaces of the loaded class. Not needed, since 
changes to class hierarchy are not allowed, thus all of the superclasses and superinterfaces of the 
changed class are already loaded and linked.

(c) Initialisation of klassVTable and k lassIT ab le  of the new class. That is not required, because 
new instanceK lass will not be used as a real working class object.

(d) Execution of static initialisers of the new class version. This is in accordance with the spec
ification, which shares the view according to which reflective changes should not cause any 
otherwise “normal” initialisations.

2. Validate the changes, i.e. compare the old and the new class versions. If any of the following is not 
true, abort the whole operation:

(a) The superclasses for the original and the new class objects are the same.

(b) The number, names and order of directly implemented interfaces are the same. The order of 
interfaces is important since it affects the format of k lassIT ables.

(c) The number, names, type and order of the fields declared in the old and the new class versions 
are the same. The order is important as it affects the format of instances and of the static variable 
block in the instanceK lass.

(d) The number, names, signatures and the order of methods declared in these classes is the same. 
The order is important as it affects the klassVTable.



CHAPTER 7. RUNTIME EVOLUTION OF JAVA APPLICATIONS 137

After all new classes are loaded and the changes are validated, each new class object is appended to the 
class cache of the class loader of the original class. Each Java class loader has such a class cache (which is 
just a Java V ector type object in class j  av a . la n g . ClassLoader), to which class objects can be appended, 
but can never be removed. It exists solely to prevent unloading of otherwise unreachable classes, since 
the JLS specifies that a class becomes unreachable only if its class loader becomes unreachable. Why we 
need to perform this operation will be explained below, when we discuss the operations during actual class 
transformation.

7.3.4 Class Transformation inside the JVM

Note that the above operations were performed within a standard Java thread, that runs concurrently with 
other threads. This normal execution mode reduces latency and enables garbage collection. The latter may 
be required, since when classes are loaded, a number of object allocations on the Java heap are performed. 
On the other hand, at the time of actual class transformation we should exclude any interference from other 
application threads. Otherwise, such a thread may attempt to access a class in the middle of transition, when 
it is in half-transformed state, and the consequences will be unpredictable. We also may need to inspect 
the stacks of Java threads and possibly patch them, which also requires all these threads to be blocked. 
Therefore, class transformation happens inside a special HotSpot system thread, which first suspends all 
other threads and prohibits garbage collection.

Technically, such a specialised system thread can be implemented in HotSpot by simply deriving a subclass 
from a special VM_Operation class and overriding its designated methods. The functionality implemented in 
the base VM_Operation class guarantees that the supplied code will be executed in a system thread, whereas 
all application threads will be blocked. Furthermore, each of these threads will be at a safe point, i.e. a state 
when the location of all of the pointers to Java objects is known7. The latter property allows us to walk 
stacks of these threads and patch them. In future, this should also allow us to perform object conversion, 
that requires updating all pointers to converted objects.

So, we invoke a method of our subclass of VM_Operation, and class transformation starts. How pointers 
in the two class objects are patched during this operation is presented in Figure 7.6. Those links which we 
switch from the structures of the original class to the counterpart structures of the new one and vice versa, 
are shown as red arrows that cross the boundary between the class objects. Objects that become unused 
either immediately after transformation (the new instanceK lass and its array of method pointers), or as 
soon as no old methods are executed anymore, are depicted as shaded.

Links from klassVTable and k lassIT ab le  of the new instanceK lass object to the virtual methods are 
simply not set, since the corresponding initialisation function is not executed for the new instanceK lass. 
Other pointers are set or cleared during the following essential steps that our code performs:

1. If working in the debugger, remove all of the breakpoints in the methods of the class being replaced. 
This specification requirement was introduced to support both sophisticated and naive debugging 
agents. The latter may not distinguish between methods that have really been changed and that have

7This is required, in particular, to perform exact garbage collection. HotSpot’s garbage collector entry code is also implemented 
as a VM .Operation subclass.



CHAPTER  7. R UNTIME E VOL UTION OF JAVA APPLICATIONS 138

Old class objectinstanceK lass

constantPoolO op

constantPoolC acheO op

objA rrayO op

m ethodO op

nm ethod

t rap

instanceK lass
New class object

constantPoolO op

constantPoolC acheO op

objA rrayO op

m ethodO op

Figure 7.6: C lass transform ation when m ethod bodies only are changed.



CHAPTER 7. RUNTIME EVOLUTION OF JAVA APPLICATIONS 139

not, while breakpoints in the changed methods should be necessarily deleted. A sophisticated client 
can re-instantiate the breakpoints in the methods that have not actually been changed (see Section
7.3.5) after redefinition is complete.

2. If the class being redefined has any compiled methods (nmethods), deoptimise them, i.e:

• for those of them which are on stack, switch to interpretation of their (still old) code;

• make each such nmethod non-entrant (unexecutable) by replacing its first instruction with a trap, 
and cutting the link between the methodOop and nmethod.

The effect of these operations is that some previously compiled code that calls a (now non-entrant) 
compiled method n would get into a trap, and the trap handler would eventually redirect it to the new 
version of this method through the patched constant pool cache (see below).

3. Deoptimise all the compiled code that depends on the class being redefined (i.e. inlines any of its 
methods). Execution of dependent methods will continue in the interpreted mode, in which the calls 
to the methods of the modified class will bind correctly to the new versions of these methods8.

4. Patch the indexes into the constant pool from the array of fields (not shown on the figure) of the 
original instanceK lass. This is required, since the layout of the new constant pool can be different, 
so the old indexes in the array of fields, that correspond to field names and signatures, can become 
invalid.

5. Make the original instanceKlass point to the new constant pool object, and make the latter point 
back to the original instanceKlass. This is required, since in the new class version the contents of 
the constant pool may be different.

6. Make the new instanceK lass point to the old constant pool object and the old array of method point
ers. We have previously protected the new class object from being garbage collected by its inclusion 
in the class loader’s class cache. This was done just in order to protect the above objects. Otherwise,
i.e. if all old methods become unreachable, it may happen that the garbage collector attempts to col
lect those of them which still have an activation on the stack after class redefinition is complete. Our 
solution here is of course quite conservative; on the other hand, the space overhead due to presence of 
multiple old class versions in memory looks small compared with the total space occupied by objects 
in large Java applications. Modifying the GC so that it scans stacks for method activations and treats 
those as references to their method object, i.e. as roots, could be a better approach; however we are 
not sure that this would not break other VM invariants. Another argument for our present solution is 
that it should allow to perform a class replacement “undo” quite easily.

7. Replace the methods, i.e. make the original instanceKlass point to the new method pointer array.

8. In the production mode, mark each old method with a special “obsolete” flag. This is done to prevent 
repeated compilation of old methods and subsequent calls of this, effectively old code, in certain 
situations.

8Note that this may not necessarily work for an arbitrary Java interpreter implementation. Practically all o f  the Java interpreters 
optim ise certain bytecodes by physically replacing them with their “quick” versions. A  quick bytecode references a resolved field 
or method in a shorter way than the standard bytecode, e.g. it may contain just the number o f the virtual method in the VMT, 
instead o f its constant pool index. The problem for us arises when this index is made embedded in the method body, and no way is 
provided to trace back to the real defining class and method behind this index (as it was the case in Sun Classic JVM). Fortunately, 
in HotSpot quick bytecodes refer to constant pool cache, which contains all the necessary information about the referenced fields 
and methods.
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9. In the debugger mode, compare methods within each “old -  new” pair, and mark obsolete only those 
which have been really changed. “Obsolete” flag will be used by JVMDI functions that inspect the 
stack on the debugger’s request and return IDs for methods on stack. According to the specification, a 
universal “obsolete ID” should be returned for all methods that have been changed and are still active. 
Methods that have not really been changed in the new class version are handled in a special way (see 
Section 7.3.5 for details), so that eventually valid IDs can be returned for them.

10. Re-initialise the klassVTable and k lassIT ab le  of the original instanceK lass tables, so that the 
pointers from them are redirected to the new methods.

11. Iterate over all classes currently loaded, except Java core classes, which are guaranteed to not reference 
our evolving application classes. For each class C, scan its constant pool cache and replace all pointers 
to old methods of the evolving class with the pointers to the corresponding new methods. If C is a 
subclass of the evolving class, scan and do the same patching for its klassVTable and k lassIT ab le .

7.3.5 Methods, Equivalent Modulo Constant Pool

The semantics of changing methods in the debugging and in the server contexts are different. What the user 
would expect during debugging, is the capability to change methods individually. From the user’s point of 
view, they just fix a method, after which the debugger pops all of its stack frames, so that this method’s old 
code will never be re-entered. Other methods of the same class remain as they were. In other words, after 
replacement has happened, there is still effectively a single version for each method in a class to which the 
change was applied.

The semantics for the change in the server context that we currently support, is different: for a changed 
method both the old and the new version are allowed to coexist until the old version code terminates. In fact, 
for an unchanged method two versions (though they are functionally absolutely equivalent) may coexist in 
the same way as well.

The reader may have noticed that the transformation technique depicted in Figure 7.6 reflects the second 
type of semantics. We will now describe how we support the first one.

What we need is, first of all, to be able to distinguish between changed and unchanged methods. It turns 
out that simple literal comparison of bytecodes for each “old -  new” pair of methods will not always work. 
That is because some method that has been really changed may, for example, define new constants in the 
constant pool, or not use some constants that its old version used. As a result, the layout of the constant 
pool in the new class version may change, the indexes for the same constants may become different in 
the old and the new class versions, and eventually the bytecodes for two methods that are functionally 
equivalent may now look different. To reliably compare two method versions we, therefore, have to parse 
their bytecodes, comparing them one after another. For those bytecodes which have a constant pool index 
argument, we compare the actual values of constants at the two indexes, and if they are the same (though the 
indexes themselves may not be the same), we consider the pair of bytecodes equivalent. If two methods are 
compared using this method and found equivalent, we say that they are equivalent modulo constant pool.

Now that we know which methods have been actually changed and which not, we can pop the frames of 
the changed methods, and thus effectively a single version for each such method will remain alive. But
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we can’t do the same with unchanged methods, and if such a method has some invocations on stack, we 
end up with effectively two functionally equivalent versions (methodOops) of such a method: the “old” 
one referenced from the stack frames, and the “new” one referenced from the class object. In JVMDI, 
methods are referenced through special objects (jmethodlDs), that internally consist of a pointer to the 
instanceK lass object and an index into its method array. So, all jmethodlDs will now automatically point 
to the new code, whereas the VM will be executing the old one. Consequently, if we try to set a breakpoint 
in the method (this operation also goes through its jmethodID), it will be set in the new code and have no 
effect in the old (and still running) code.

To fix this problem, we scan the stacks of the Java threads and patch all the pointers to old method versions, 
so that they now point to the respective new method versions. An interpreter stack frame also contains a 
pointer to the constant pool cache of the method’s class — this also needs to be updated. Finally, we update 
the value of the “current bytecode pointer” in each patched stack frame — this pointer is a machine address, 
so it has to be updated once a method is effectively relocated.

If any breakpoints existed in the unchanged methods, they should be re-instantiated by the debugging client 
in the new method version after redefinition is complete (this, as well as the other aspects of breakpoint 
handling, is a specification requirement imposed by Sun and beyond the author’s control).

7.3.6 Summary

At the implementation stage 1, our runtime evolution technology supports changes to method bodies only. 
The implementation is now fully operational, and the code is the part of the HotSpot JVM scheduled for 
release in the end of the year 2001. Changes to classes are supported via a single C call in the JVMDI 
(JVM Debugging Interface). This facility works in both the debugging and the production JVM modes. In 
the latter, however, it is supported only for one of the two HotSpot dynamic compilers, namely the “server 
compiler” (C2). This temporary restriction is due to the fact that so far another compiler, Cl, does not yet 
support compiled code deoptimisation. Considering that runtime evolution in production mode is targeted 
at long-running server-side applications, for which C2 is used, this restriction is not a serious problem.

7.4 Stage 2: Support for Binary Compatible Changes

The reasons for choosing this stage’s goals as they are, were first explained in Section 7.2. By allowing bi
nary compatible changes only, we avoid the difficulties of verifying that the new class version does not break 
certain internal JVM invariants. For example, if we allow binary incompatible changes, we should imme
diately reject a class that became f in a l ,  if it already has loaded subclasses. We discuss this in more detail 
in Section 7.5.1. Here we will just note that our informal experience is that most of the changes performed 
during application evolution, tend to extend the application by adding new classes, fields and methods. Most 
of such changes are binary compatible. We therefore believe that support for binary compatible changes will 
satisfy a significant part of the demand for runtime evolution.

The interface to runtime evolution functionality and the policy of dealing with active methods remains 
the same at this implementation stage. Therefore we will proceed straight to the technical details of class



CHAPTER 7. RUNTIME EVOLUTION OF JAVA APPLICATIONS 142

redefinition. With the changes allowed at this implementation stage, this procedure becomes more complex. 
It now includes the following phases:

1. New class versions loading;

2. Change validation and replacement method determination;

3. New class version unregistering and re-registering;

4. Subclass expanding;

5. Class replacement.

Not all of these stages are likely to be applicable in the “general case”, i.e. for any other JVM, though we 
believe that for any JVM complying with the JVMS, loading of new classes and change validation will have 
to be performed in essentially the same way. Class unregistering and re-registering probably have to be very 
similar too. On the other hand, the need to use one or another replacement method depending on the nature 
of changes to the class, and the need to expand, as we call it, the subclasses of some of the changed classes, is 
dictated solely by the fact that in HotSpot VM virtual method tables and static variables are embedded inside 
class objects, rather than stored in separate arrays. This optimisation was originally introduced to speed up 
execution by getting rid of several intermediate instructions that are required to follow the pointer from 
the class object to the separately stored VMT or a static variable. Though other alternatives, that provide 
the same speed-up without compromising “serviceability”, might be possible in principle, at present we 
are unable to change this arrangement, since a vast amount of the VM code depends on the present class 
structure.

In the following sections we explain why each of the above stages of class redefinition is necessary in 
HotSpot and describe how it is implemented.

7.4.1 Loading New Class Versions

Allowing less restrictive, though binary compatible, changes means, among other things, that new classes 
can be inserted into the class hierarchy. This fact leads to a significant change to the class loading procedure 
for the implementation stage 2. At the previous stage, it was enough to just parse the bytecodes for the new 
class version, passing the parsing code the same class loader that loaded the old class version. The result 
was that the new class version would always link to the old superclass, as shown in Figure 7.7 (a), even if 
several hierarchically related classes were replaced. It worked like that since the old class loader assigned to 
the new class version would always pick up the old, already loaded superclass for this class. This behaviour 
was absolutely correct at this stage, since no changes to the class hierarchy were allowed, the old class object 
was re-used for the new class version, and class interface remained the same — thus verification of the new 
class version against the old and the new superclass would yield the same result.

However, none of the above is true once less restrictive changes are allowed. New classes may be inserted 
into the class tree. If new methods and static variables are added, the internal class object for the new 
class version may become larger than the old one (since virtual method tables and static variable slots are
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Figure 7.7: Linking hierarchically related classes during redefinition.

embedded inside the class object), and thus it would not be possible anymore to re-use the old class object. 
Finally, since the interface and the layout of the superclass may change, the code verifying its changed 
subclasses will need the link to the new, not the old superclass version. Therefore the links between classes 
in the hierarchy should look as shown in Figure 7.7(b)9.

To support this kind of class loading and linking, we had to implement our own class loader (see the spec
ification for the ClassLoader class in [SunOOe]), called HotSwapClassLoader. This class loader is quite 
simple: it has a constructor and just two methods. The constructor takes an array of classes to redefine 
(i.e. class objects for their old versions) and the bytecodes of their new versions. The second method, 
defineStartingClass (Class C), is called by our JVM-intemal code to notify HotSwapClassLoader 
about the old class C, whose new version we are going to load. This is done to make HotSwapClassLoader 
remember C’s original class loader CL, which should be used to locate and load any of the C’s superclasses 
that are not being redefined themselves. The last method of HotSwapClassLoader is a standard method 
for all class loaders called loadClass (String name). We call it explicitly for C’s new version, and then 
the JVM calls it to load all of C’s superclasses recursively, until an already loaded superclass with the same 
defining class loader is found. Our implementation of this method compares the given class name with the 
names of the classes nominated for redefinition. If a match is found, the corresponding new bytecodes are 
passed to the standard def ineClass () method, and the resulting class object is returned (class Cl in Figure 
7.8(a)). If a match is not found, it means that loadClass () was called recursively for some superclass of the 
new class version, and this superclass is not nominated for redefinition. In this case, HotSwapClassLoader 
calls the loadClass () method of the original class loader CL (see above). This method will either return 
the already loaded common superclass of both the old and the new class versions (class C2 in Figure 7.8(b)), 
or will load the completely new class, that was inserted into the hierarchy (class D in Figure 7.8(c)). In the 
latter case, loading will continue recursively until a common superclass for both versions is reached (class 
C2 in Figure 7.8(d)).

9Note, however, that to optimise the performance and continue to provide support for debuggers, we still use the technology of  
method only replacement, as implemented at stage 1, i f  only the bodies o f  a class’s methods are actually changed. Therefore, the 
eventual shape o f  the class hierarchy may be a combination o f  those presented in Figure 7.7 (a) and (b). But while we are loading 
the classes, we don’t know exactly how each class was modified, so we have to use the conservative strategy (b).
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Figure 7.8: Loading new class versions.

7.4.2 C hange V alidation and  R eplacem ent M ethod D eterm ination

After all of the new class versions are loaded, we compare each pair of class versions. This procedure has 
two goals:

1. Validate the changes, ensuring that they are binary compatible. If any change is incompatible, abort 
the whole operation, i.e. do not change any classes and return the error code.

2. Determine the replacement method to be used for each pair of class versions.

The validation procedure checks that all o f the changes to the class are binary compatible, as specified in the 
JLS, Chapter 13. In addition, we should check that the instance format has not changed, since at present we 
don’t support instance conversion. The change validation algorithm takes the following form:

1. Compare the class modifiers:

(a) Check that access modifiers for the new class version are not more restrictive than for the old 
one;

(b) If the new class is f i na l ,  check that the old class is also f inal .  The same with the a b s t r a c t  
modifier.
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2. Check the superclasses: make sure that the old superclass is one of superclasses of the new class 
version. Class names instead of class objects themselves are compared, since an arbitrary mix of 
old/new/unchanged classes is possible at this time.

3. Check the interfaces. New class version should implement, directly or indirectly, all of the interfaces 
that the old one implements directly. Again, we compare the names of the interfaces rather than the 
class objects for them.

4. Check the fields defined in the class versions:

(a) For the instance fields, the number, names, signatures and offsets within a class instance should 
be exactly the same in both versions. Access modifiers can be changed to be less restrictive. If 
some field is f in a l  in the new class version, it should also be f in a l  in the old class version.

(b) For the static fields, the order is not important, p r iv a te  fields can be deleted freely, and new 
fields can be added. Each non-private field in the old class version should have a counterpart 
with the same name and signature in the new class version. For such fields, access modifiers can 
be changed to be less restrictive. If some field is f in a l  in the new class version, it should also 
be f in a l  in the old class version.

5. Check the methods and constructors (the latter are treated internally as static methods with a same 
special name). The order of methods is not important. Private methods can be deleted, and new 
methods can be added. Each non-private method in the old class version should have a counterpart 
with the same name and signature in the new class version. For such methods, access modifiers can 
be changed to less restrictive. If some method is f in a l  in the new class version, it should also be 
f in a l  in the old class version. The same with a b s tra c t modifier.

In parallel with change validation, we collect information that determines the replacement method to be 
used for each pair of class versions. Currently two such methods are available. The first is the one which 
we implemented at the previous implementation stage, and is described in Section 7.3.4. It is used if we 
determine that only the method bodies of the given class have been changed. Otherwise, the second method 
is used, which involves complete replacement of the class object. It is described in Sections 7.4.4 and 7.4.5.

7.4.3 Unregistering and Re-registering New Classes

After all of the new classes are loaded and the changes are validated, we need to assign the original class 
loader to each new class version, so that it can correctly substitute the old class version. This operation 
requires manipulations with certain internal JVM structures, and can lead to creation of new Java objects, 
so it can not be performed in the system thread, where garbage collection is prohibited.

When a new class version is loaded with HotSwapClassLoader, it is registered with this class loader in the 
internal JVM dictionary that maps “class name -  class loader” pairs to class objects. In addition, the class 
object points to the class loader, and the latter points to the class from its class cache. Therefore to make 
new class versions valid substitutes for the original classes, we do the following:

1. Remove the original and the new classes from the dictionary;
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2. Switch the pointer in the new class version from HotSwapClassLoader to the original classloader for 
the old class version CL;

3. Re-register the new class version in the system dictionary, with CL. This operation will also add the 
new class to CL’s class cache.

4. Check the superclass S of the new class. If its actual class loader is HotSwapClassLoader, there 
are two possibilities: this is a new version for a class that is itself nominated for redefinition, or it is 
a new class that has just been inserted into the class hierarchy. If among the classes nominated for 
redefinition we find a class with the same name S, we stop this local class loader fix up recursion, since 
S will be dealt with in its own time. Otherwise we go to Step 1 (though there will be no “original” 
class on the subsequent iterations), and repeat this and the following steps recursively until the class 
loader for some S is not HotSwapClassLoader.

Note that we do not delete the old class version from the CL’s class cache. This is done, as in the alternative 
procedure where only methods are replaced, to prevent garbage collection of methods of the old class version 
which may potentially remain active forever, and also to facilitate the “undo” operation.

7.4.4 Subclass Expanding

For the same reason as class unregistering, this operation is also performed in a Java thread, i.e. with garbage 
collection enabled and other threads running in parallel.

Special treatment of subclasses is required because each class has at least as many entries in its VMT as 
its superclass, and because HotSpot VM stores VMTs inside class objects (see Figure 7.4). Therefore, once 
the VMT becomes larger in some class, we have to replace the whole class object for this class, and we 
then have to do the same for all of its subclasses. The difference between class redefinition and subclass 
expanding is that for a class being redefined the standard mechanism of class creation out of bytecodes 
is used, whereas for its subclasses, to save time and memory, we use our own non-standard “class object 
expansion” mechanism.

This mechanism works as follows. We first recursively collect all of the subclasses of each class nominated 
for redefinition. These subclasses are placed in a special array. The collection procedure is organised such 
that classes appear topologically sorted in this array, i.e. a superclass always occupies a position with a 
smaller number than its subclass. We then scan this array sequentially, and for each class (old class version) 
in it calculate the klassVTable and klassITable (see Section 7.1.2.5) sizes for the new class version. We 
then allocate memory for the new class version object and copy most of the information into it from the old 
class version. Virtual method tables, however, are filled in based on the information in the superclass new 
version (which is already available by that time, since the array is topologically sorted).

Finally, we unregister the old class version and register the new one with the class dictionary, similar to the 
way in it was done with the classes nominated for redefinition.
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7.4.5 Class Replacement

As already mentioned, class replacement at implementation stage 2 can be performed according to one of 
two methods, depending on the nature of changes to the class. If the changes involve only method bodies, 
class transformation is performed exactly as described in Section 7.3.4. Otherwise, the operations described 
below are performed.

1. Deoptimise any compiled methods of the class being redefined (exactly as in item 2, Section 7.3.4).

2. Deoptimise all of the compiled code that depends on the class being redefined (exactly as in item 3, 
Section 7.3.4).

3. Determine the common (for the old and the new class version) subsets of static variables and methods

4. Copy the values of the common static variables from the old class version to the new one.

5. Iterate over all of the classes currently loaded, except Java core classes, which are guaranteed to not 
reference our evolving application classes. For each class C, scan its constant pool cache and replace 
all pointers to old methods of the evolving class with the pointers to the respective new methods. Do 
the same with the pointers to the static fields of the evolving class.

Once the above procedure is complete for all redefined classes, we perform the last phase of class replace
ment — instance rebinding. We iterate over all of the objects in the Java heap, and for each of them that 
happens to be an instance of a class nominated for redefinition and replaced as above, or a subclass of such 
a class, we switch the class pointer to the new class version.

Note that the described complex procedure can in principle be avoided in the intermediate case, i.e. when 
changes to a class involve more than just the bodies of its methods, but the number of its virtual methods 
and the number of the static variables it defines remains the same. In that case, we can avoid creating a new 
class object for the new class version, subclass expanding and instance rebinding for all of these classes. We 
will have to replace the method array and the constant pool for the class, as we do in the method only class 
transformation, and we will have to modify in place the VMT and the array of static variables for this class 
and its subclasses. This optimisation may be implemented in future.

7.4.6 Summary

At the implementation stage 2, our runtime evolution technology should support any binary compatible 
changes to classes, excluding those that affect the format of class instances. The implementation is now 
complete, and we are testing it, currently using synthetic tests. Once it is tested properly, we plan to start 
experimenting with “real-life” applications.
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7.5 Future Work

7.5.1 Stage 3: Support for Binary Incompatible Changes

We have already mentioned in Section 7.4 that binary incompatible changes can potentially break a number 
of internal JVM invariants, e.g. the rule that a f in a l  class should not have subclasses or that there should 
be no calls to a b s tra c t methods. Invariants like these are normally checked by the JVM during class 
loading and linking (see JVMS, §2.17.2 and §2.17.3, respectively), and these checks will automatically be 
performed for a new version of a class being redefined, once this new version is loaded. However, since the 
old version of this class has been inside the JVM for some time, there may be other classes that use it, i.e. 
have symbolic links or already resolved, physical pointers to this class or its members. Binary incompatible 
changes mean by definition that some of these links may now become invalid, so we need to verify if any 
constraint is actually violated, and abort the whole operation if this is the case.

The reader can observe that this is problem is very similar to the one which we encountered in PJama, and 
which we solved by using selective class recompilation (see Section 3.1 for details). However, there are a 
number of differences between the PJama context and the dynamic class redefinition, which do not allow 
us to re-use the same solution, at least for all possible change policies. The most fundamental difference is 
that in PJama we operated on a quiescent store, with the persistent application shut down, and could thus 
replace one consistent set of classes with another consistent set, and then re-start the application. When we 
dynamically replace a class, we, in the general case, still have some old code that has not yet completed 
execution (and may never terminate). So, in the general case our new class versions have to be consistent 
not only between themselves, but also with the old class definitions. There are also less fundamental con
siderations, e.g. about whether or not the JVM can, in an arbitrary case, trust the evolution tool (which may 
come from a different vendor) in its ability to provide a consistent set of classes, etc. Therefore, it currently 
seems that the safest option is to repeat the standard checks performed during linking for all of the classes 
that use the class being redefined, to make sure that none of the binary incompatible changes to this class 
introduces any actual problem.

This is unlikely to be an easy task. To write our own verification code, which does essentially the same job 
as the already existing standard code, is obviously not a good solution. On the other hand, if we try to re-use 
the standard JVM class verification code, we can potentially expect problems that are due to the difference 
in class representation at the time when this code is normally invoked and at the time when we want to 
re-invoke it. In the latter case, method bytecodes, for example, are already rewritten for speed-up, whereas 
the verification code might need to analyse the original bytecodes. Another problem is that we have to avoid 
making any classes point to the new copy of the redefined class until all of the verification procedures have 
completed successfully — but these procedures themselves normally require the class being verified to point 
directly to other classes (at least to its superclass). Therefore, it looks as if in order to implement support for 
binary incompatible changes, we will have to carefully inspect, and possibly patch, the standard verification 
code, to make it work in non-standard circumstances.

There is also a question of when to report any detected problems. According to the JVMS, §2.17.3, if an 
error occurs during resolution, an exception is thrown at the first point in the program that actually uses a 
symbolic reference that caused the problem. So, for example, if the code contains a new operator for class 
C that was made a b s tra c t,  it will start and run without problems up until the moment when this operator
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is to be executed. Only at that point an InstantiationError will be thrown. If C had originally been 
non-abstract and was changed to abstract by our redefinition mechanism before a particular new C() 
operator was reached, the JVMS-compliant behaviour looks consistent. But when should the VM report the 
problem with the new C () operator for class C redefined to abstract, if this operator was already executed 
successfully one or more times? Clearly, this is out of scope of the JVMS, and it is yet to be specified 
what should happen in this case. The author’s opinion is that the problems like this one should be checked 
and reported eagerly, to ensure maximum change safety — which will again require re-using the existing 
verification code in a non-standard way, or writing our own code.

7.5.2 Instance Conversion

Once we allow the instance format of a class to change, we would have to implement instance conversion. 
We believe that the same kinds of conversion as in PJama, i.e. default and custom conversion (see Section 
4.2), should eventually be implemented. At present we can hardly imagine making as complex changes to 
classes at run time as in the case of persistent application evolution, since making a complex change at run 
time would require the engineers to take many more possible effects into account. Thus it will probably be 
enough to implement only bulk (Section 4.5) and/or dictionary-assisted (Section 4.10.1) forms of custom 
conversion.

Lazy conversion implementation, which is probably even more desirable in the context of runtime evolution, 
since it minimises latency, seems very problematic for a handleless VM such as HotSpot. If the new object 
version is larger than the old one, the object has to be relocated. Since the pointers to this object are direct, 
all of them have to be located and patched at once. This operation would have a prohibitive cost if it is 
applied to each object individually, over and over again. An alternative solution may be to put a forwarding 
pointer to the new object at the old object location, and modify the VM such that on every object access it 
checks for a forwarding pointer and follows it. The GC code will have to be modified too, so that it takes 
forward pointers into account. But even if we find a convenient way of distinguishing between the normal 
object and the forward pointer, this solution will still have a major drawback of increasing the cost of each 
object access and thus the (probably significant) VM slowdown. Thus, it may be more feasible to implement 
eager concurrent conversion, which would work in much the same way as incremental concurrent garbage 
collection (and can actually re-use the code of the latter). Such a mechanism will convert objects in parallel 
with the normal execution of the evolved application, and will only block an application thread if it tries to 
access an object which has not been converted yet.

Eager conversion implementation seems to be easy enough, provided that we find a way to re-use the existing 
GC code that relocates objects. Whether conversion scalability problems, which required a significant effort 
to overcome in PJama (see Chapter 6), are going to be an equally serious issue in case of runtime evolution, 
is to be investigated.
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7.5.3 Implementing Multiple Policies for Dealing with Active Old Methods of Changed 
Classes

Several policies for dealing with active methods of old class versions, that we can think of, were first briefly 
presented in Section 7.3.1. We will now discuss possible ways of implementing these policies.

7.5.3.1 On-the-fly Method Switching

This policy means that we identify a point in the new method that “corresponds” to the current execution 
point in the old method, and then continue execution from this point in the new method. The main conceptual 
issue here is how to define the above “correspondence”. The answer that we suggest is to compare the 
bytecodes of the old and the new methods, in much the same way as utilities like Unix d if  f compare texts. 
We should, of course, take into account (as we do when we compare methods for equivalence, see Section
7.3.5) that the constant pool layouts and thus indexes into the constant pool may be different in method 
versions. Textual comparison of the bytecodes will identify the minimum differences and, consequently, the 
matching segments. If the current execution point is in such a segment, we can find the matching point in 
the new bytecode and switch the execution to it.

The above description of bytecode comparing, matching point identification and execution switching implies 
that this process happens for bytecodes in the interpreted mode. If the code we are going to redefine has 
been compiled, HotSpot always allows us to first deoptimise it, i.e. switch to its interpretation.

The above method of establishing matching points in bytecode versions does not, of course, guarantee the 
“correct” execution of the program being transformed — as our technology in general does not guarantee 
it. However, we currently can identify one case when such a transition is likely to be harmless. That is the 
case when the changes to the bytecodes in the new version are purely additive, and the added code does not 
produce any known harmful side effects. Examples of such modifications are adding code that prints some 
tracing information, e.g. to help identify a bug, or supports profiling (see Section 7.5.4). Other cases, where 
an experienced developer is likely to be able to predict the effects of a transition, may also be possible. In 
any case, in the end we have to trust the skill of the software engineer initiating the change, but we would 
like to provide as much support for them as possible.

If in the new bytecode version some old code fragments are not present, a question arises of how to perform 
transition if the execution is currently inside one of these deleted code fragments. A sensible answer to it 
may be to wait until this code fragment is complete, i.e. until the execution reaches a “common point”. A 
mechanism of temporary bytecode patching and event notification, similar to the one used to set breakpoints, 
can be used to implement this efficiently.

Identifying common fragments in method versions is not the only problem with implementing this mecha
nism. The new method code will inherit the current method frame (JVMS, §3.6) from the old method, that 
is already populated with local variables and the operand stack (JVMS, §3.6.2) contents. Obviously, the 
execution can continue correctly after the transition only if the old, inherited frame layout in the transition 
point is the same as the new code expects (or we can somehow “re-shuffle” the frame contents to make them 
consistent with the new code). This layout includes the number, names, types and order (i.e. slots allocated) 
for the local variables, and the number and types of the operands currently in the operand stack. The max
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imum depth (JVMS, §3.6.2) of the operand stack may also be important, if a JVM allocates Java operand 
stacks as fixed-size frames10. Therefore, if the maximum stack depth changes for the substitute method, we 
should either reject it or take care about expanding the window for the operand stack.

Furthermore, to support following the pointers from the Java stacks during GC, HotSpot prepares stack maps 
for each method, that contain pointer locations. They may also need to be updated for the substitute method.

Whether all of the details of the frame layout should be checked in the general case, how to do that, and 
whether supporting this general case is worth the effort, remains a question. However, temporarily leaving 
most of the above safety issues behind, we have, as a matter of experiment, implemented the functionality 
that can substitute methods and switch execution on-the-fly. In the simple tests, where we were just adding 
System.out .p r in tIn  () statements to our code, and did not introduce any changes to the stack layout, it 
worked well for us. Thus, we believe that at least limited applications of this technology guaranteed to not 
violate safety restrictions, e.g. the one discussed in the next section, and also dynamic fine-grain profiling 
discussed in Section 7.5.4, can be utilised almost immediately.

7.5.3.2 Wait Until No Active Old Methods

This policy of handling active methods is the “cleanest”, since it guarantees that two versions for any method 
can never co-exist simultaneously for a given application. Of course, such a (potential) convenience comes 
at a price: the developer who would like to use this policy must somehow make sure that the execution 
will actually reach the point when there are no active old methods. This may become quite complex if an 
application is multi-threaded.

The implementation of this policy would have to keep track of all of the activations of the old methods. 
Once the last such activation is complete, the threads should be suspended and method replacement should 
be performed. Again, this task is more complex in case of a multi-threaded application, since it may happen 
that while one thread completes the last activation of the old method, another thread calls this method once 
again.

Method entries and exits can be tracked using, for example, the already available mechanism of debugging 
events generation. However, this mechanism, as well as the rest of the debugging functionality, works 
only in the purely interpreted JVM mode, while we want our technology to work for the compiled code of 
server-type applications. Debugging events generation is also expensive, since the event is generated upon 
entry into and exit from every method. One possible alternative may be to implement this policy using the 
mechanism of on-the-fly method switching discussed in the previous section. This way, method redefinition 
will consist of the following two stages. On the first stage, we patch the code of the old methods, adding 
to them the calls to two methods predefined in our own special class. These calls increment and decrement 
a counter, which is initially set equal to the total number of activations of the old methods. The method 
that decrements the counter should check if it becomes equal to zero. When this happens, it should call the 
standard class redefinition procedure, that will redefine the classes as originally requested by the user.

Alternatively, at least in the case of a single-threaded application it is possible to patch only the outermost

I0Fortunatdy, it is not the case with HotSpot, which allocates Java operand stacks on the top o f  the native stack, thus allowing 
the former to grow freely.
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activation of the old method m (), replacing on the stack the original return address in this activation with the 
address of our own code. The latter will perform class redefinition and then resume the normal execution 
from the saved original address. This way we will avoid the overhead of the calls that increment and 
decrement the counters.

7.5.3.3 Old Threads Call Old Code, New Threads Call New Code

This policy looks more difficult to implement than the others, since it allows the old and the new code to co
exist forever, and the old code can be called over and over again. It could have been possible to implement 
it in a relatively simple way by allowing two copies of the same class to co-exist legally, and making only 
one copy “visible” to each thread (this would require indexing the class dictionary by thread ID in addition 
to class name and loader). Unfortunately, an object may not belong exclusively to one thread, and we would 
have to somehow use one or another class for the same object depending on the thread in whose context 
the execution of a particular method on this object happens (this, by the way, makes this policy hardly 
compatible with changes to instance format). This can be done by creating multiple copies of the VMT 
and method arrays for the same class, and dispatching each method call depending on the thread. Such a 
modification to the JVM is obviously too expensive compared to the limited importance of the goal that it 
should achieve.

So, a better alternative may be to once again use bytecode instrumentation instead of a serious JVM modi
fication. Instead of making the JVM dispatch calls depending on the thread that makes a call, we can make 
the bytecodes themselves do that. We can synthesise a method that will check the thread that executes it, 
and, depending on whether it’s an “old” or a “new” thread, call an appropriate “old” or “new” method. All 
of these methods: the old, the new, and the dispatcher, will have to belong to the “temporary new” class 
version, that our technology would synthesise. The standard method replacement policy, where old calls 
are allowed to complete and new calls go to new code, will be used to replace the old class version with 
the “temporary new” version. The latter will have to be used until all of the “old” threads, i.e. threads that 
may call the class that was redefined, and that were created before it was redefined, terminate. After this 
happens, we can replace the “temporary new” class version with the original new class, thus eliminating the 
overhead imposed by bytecode-level call dispatching.

It is currently unclear to us how, if possible at all, to determine whether or not an arbitrary thread may 
call the given class. Perhaps the developer can specify this explicitly, or perhaps the overhead due to call 
dispatching will be tolerable, and thus the synthetic class can be used as an ultimate new class version.

7.5.4 Dynamic Fine-Grain Profiling

One interesting application of class redefinition technology and the on-the-fly method switching policy may 
be dynamic fine-grain profiling of Java applications. The standard profiling mechanism presently available 
in HotSpot JVM is called Java VM Profiling Interface (JVMPI) [SunOOo], and its architecture has much in 
common with JPDA (see Section 7.3.2). This mechanism has a granularity limited to a method, since it only 
generates an event on method entry and exit. This mechanism is also somewhat expensive, since it is only 
possible to configure it to generate an event on entry into/exit from each method. Thus, if the user wants
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to profile just one method, it is the profiling tool’s responsibility to extract the required information out of 
the flow of incoming events. To the best of the author’s knowledge, no other JVM at present implements 
anything more sophisticated. Therefore, if the user wants to measure the time spent in a code section smaller 
than a method, the only solution is to explicitly bracket the measured code with the user’s own measurement 
code, e.g. calls to System. currentTimeMillis (), recompile and re-run the application. Obviously, this 
is a very tedious procedure, especially when it is used to gradually narrow down the suspicious code area in 
order to find out which piece is a bottleneck.

Our class redefinition mechanism can be used to implement cheap, dynamic fine-grain profiling by essen
tially automating the above procedure11. Calls to an equivalent of System.currentTimeMillis ( )12 can 
be inserted into the original method bytecode, around the code section that the user wants to measure. The 
return statements inside this code section, which is a headache if this procedure is performed manually, 
can be handled automatically. Then, an original method can be replaced with the patched one, such that, if 
necessary, the execution switches to it on the fly, as discussed in Section 7.5.3.1. This can be repeated an 
arbitrary number of times during the same session, allowing the user to change the profiled code section(s) 
and observe the results without interrupting the running application.

7.6 Related Work

A number of techniques for dynamic evolution of software applications exist at present. In the following 
discussion, we loosely classify them according to the semantics of changing code and the programming 
interface.

7.6.1 Dynamic Class Versioning

In in the work by Hjalmtysson and Gray [HG98], dynamic classes for C++ are described. A dynamic class 
is a class, written in accordance with the special rules, whose implementation can be changed dynamically 
during program execution. However, its external interface may not change. Furthermore, the link between 
an existing object and its defining class may not be changed. This leads to multiple versions of the same 
class coexisting simultaneously, with objects being partitioned between them.

This technique intentionally does not involve any modifications to the runtime system or language exten
sions. Instead, a proxy (wrapper) class, associated with every dynamic class, dispatches method calls to an 
appropriate class version depending on the object on which a method is executed. A proxy class itself is an 
instance of a generic template class. Instances of a dynamic class are created using the latest version of this 
class, by invoking a constructor of the proxy class, which in turn calls a factory method of the dynamic class 
(which should necessarily be provided by the programmer).

This technique has a number of drawbacks. It requires that the application itself provides the mechanism, e.g.

11 The author originally discovered this solution him self —  only to find out later that some Smalltalk system(s) used to use the 
same mechanism.

,2For more precise measurements, and to avoid the overhead o f  extra Java calls, we can actually insert a special bytecode, that 
would directly call an appropriate C function.
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an external event handler, that would respond to some particular user action and load the new class version on 
demand. It requires any dynamic class to be written as two classes: an abstract one that defines the interface, 
and its descendant(s) that implement this interface and are effectively dynamic class versions. Only a single 
constructor is allowed for a dynamic class, and there are certain complications with inheritance from such 
a class. Static method redefinition cannot be supported by this mechanism. Two-level call dispatching by 
the proxy class imposes an overhead on each dynamic class method call, though the authors claim that this 
problem is not going to be serious, since, at least in their application domain (programmable networks), 
most of the dynamic classes are not the finest-grained classes in the system, and their methods are called 
relatively rarely. If a similar system were implemented for Java (there should be no difficulties with this), 
the performance penalty would likely be higher, since the cost of an additional method call is much higher 
in Java than in C++.

Overall, this technique is probably the best solution for C++ as a compiled language with inherently little or 
no possibility to inspect and modify a running application. However, in our opinion, it is too primitive for 
Java, considering what can be achieved by modifying the JVM.

7.6.2 Load-Time Transformation

Several projects, e.g. Binary Component Adaptation [KH98], JOEE [CCK98], Javassist [ChiOO], and Open- 
JIT [OSM+00] exist, that support modification or generation of classes at load time (before or during class 
loading). The primary use of this technique is to optimise or reconfigure applications by generating spe
cialised classes, or instrumenting the existing ones. For example, a system for load-time transformation of 
Java classes may allow the developer to change the class name, add an implemented interface, add a method, 
or perform certain modifications to an existing method. This functionality may be useful in some situations, 
for example to facilitate evolution of Java interfaces. Adding a method to an interface is a binary incompat
ible change, and all classes that implement this interface should be changed at once to implement the added 
method. If at least the default implementation of the added method is simple enough, e.g. can be written 
using only the methods previously defined in the same interface, a load-time class transformation system 
can solve the problem of interface evolution by synthesising, at load time, such a default method for each 
class implementing the modified interface. Furthermore, this can be the only solution if the source code for 
classes is not available.

However, this method’s fundamental limitation is that it is not possible to modify classes and objects already 
present in the VM. Also, to modify a method, such systems typically require the developer to specify changes 
at the bytecode level. Alternatively, some of them provide an inevitably limited number of higher level 
primitives, such as “change a field access expression to access a different field” or “replace a new expression 
with a s t a t i c  method call”.

7.6.3 Dynamic Taping

Smalltalk [GR83, Gol84] and CLOS [Sla98] support dynamic typing, that allows both the class itself and the 
pointer from an instance to the class to be changed freely at run time. Data fields and methods may be added 
or removed, method code can be changed, and so on. This evolution mechanism can be used both internally
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from within the program (i.e. the code can modify itself), or externally (e.g. from an IDE), as in our system. 
There are virtually no constraints on the operations that can be performed. This, however, means that no 
type safety checks of any kind are performed by the system when a change is made, and any unsafe changes, 
such as deleting a data field or method which is still used by the code, can be made. For these languages 
this is not considered a problem, since, in contrast with Java, they are type unsafe from the beginning, and 
their runtime system supports complete runtime type checking (with all the associated overhead). The latter, 
however, guarantees just that an error made during class redefinition will manifest itself later as a “graceful” 
runtime exception, rather than strange program behaviour or runtime system crash.

As for Java, so far very little has been done in the area of truly runtime (not class load time or link time) 
class redefinition. Presently we are aware of one example [MPG+00]. The system was implemented for Sun 
Classic JVM, JDK1.2. It supports only binary compatible changes to classes, but also allows the developer 
to modify classes such that the format of their instances changes. The latter is backed by the mechanism 
of essentially lazy conversion, which is facilitated by the presence of handles in the Classic JVM. Thus, 
instance conversion happens in two phases. On the first phase, all of the instances of the modified class are 
eagerly located, a special flag is set in the instance header to indicate that the instance should be converted, 
and the class pointer in this instance’s handle is switched to the new class version. The second phase is 
lazy: an instance is converted (using default rules) and relocated when the JVM tries to access it. Upon an 
instance relocation, only the pointer to this instance from its handle needs to be changed.

When reported, this system had some serious limitations. Classes that have methods active at the moment of 
evolution, simply can not be evolved: the system throws an exception and it is up to the developer to handle 
it. Evolution support for compiled methods is not available, thus the dynamic native compiler in the JVM is 
disabled. Only classes loaded by a special class loader (which also provides an API for class redefinition) 
can be redefined. Though the latter design feature is intentional, we suspect that it may not be very practical 
if the system is used for existing applications.

7.7 Summary

In this chapter, we have described the technology for runtime evolution of Java applications (dynamic class 
redefinition), that allows developers to modify running Java applications. The technology is being developed 
for the HotSpot JVM, Sun’s main production JVM at present. The most important features of this JVM, and 
their effect on the runtime evolution implementation, were discussed in Section 7.1. We then introduced 
our plan of staged implementation of our technology, where each stage corresponds to some, relatively 
consistent, level of functionality. Since our technology allows developers to evolve classes whose methods 
are currently active, we have also suggested several possible policies for dealing with such methods. These 
policies are independent of the functionality levels corresponding to the above implementation stages. The 
same is true about the support for instance conversion, which can be introduced at any stage except the first 
one.

In the first stage we allow the developers to modify only the method bodies of classes. We support only 
one policy for dealing with active methods: “active calls to old methods complete, new calls go to new 
code”. This functionality is completely operational now, and will be included in the forthcoming release of 
HotSpot/JDK (JDK 1.4), scheduled for the end of year 2001.
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In the second stage, which is now close to completion, we support less restrictive, though only binary com
patible, changes to classes. In the third stage, we are planning to support all possible changes, including the 
binary incompatible ones, provided that they are type safe in the context of the current running application. 
We expect that it will not be easy to implement type safety verification, since in the context of the running 
application we will not be able to re-use our solution with smart recompilation (Chapter 3), which worked 
well for us in PJama.

In Section 7.5 we presented our thoughts on the following aspects of the future work: support for binary 
incompatible changes, instance conversion, and implementation of the remaining policies for dealing with 
active methods. We also suggest that the mechanisms developed for dynamic class redefinition can be 
re-used to implement dynamic fine-grain profiling of Java applications.

Making small changes to Java applications, such as fixing minor bugs or adding trace printing statements, is 
easy, in the sense that their results are predictable. Once more serious changes are supported by the runtime 
system, the biggest problem, in our opinion, will be to ensure that the transition from the old code to the 
new one happens smoothly, without runtime errors or undesirable effects. It is hard to see at present what 
kind of mechanisms can aid the developer in this respect, but we believe that such an automatic support will 
be absolutely crucial to make the technology for serious runtime application changes widely accepted.



Chapter 8

Review, Conclusions and Future Work

In this chapter, we first review the thesis (Section 8.1). In the next section, we present our thoughts on 
the future work. Its directions that we propose include runtime evolution of Java applications (this work is 
actually in progress now), design of VMs supporting runtime evolution, and further development of ideas 
related to smart recompilation and object conversion. Finally, we present conclusions

8.1 Thesis Review

This thesis addressed three issues, that are all relevant to management of changes to large and long-lived, or 
enterprise, Java applications: evolution of classes, evolution of persistent objects, and runtime evolution of 
applications. Our goal was to design, implement and assess powerful and flexible technologies that would:

• Allow the developers to perform any kinds of changes to applications and persistent objects.

• Scale well.

• Guarantee maximum possible level of safety of changes.

The following aspects of change safety were addressed:

• Type safety. Any change to a Java class which may potentially violate Java’s type safety invariants, 
should be checked to ensure that it is deleterious in the context of the particular application being 
evolved.

• Persistent store (database) transformation safety. The underlying support mechanism should guarantee 
that links between objects can not be re-arranged such that type safety may be violated. If a Java 
runtime error or a system crash occurs mid-way through the conversion process, objects must not be 
left in half-transformed, and thus effectively unusable state.
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The work that has led to solutions addressing evolution of Java classes and persistent objects, was performed 
in the context of the PJama orthogonally persistent platform. For it, we have implemented the following:

• The technology which we call persistent build, that supports evolution of persistent classes (that is, 
their physical replacement in the persistent store), and ensures type safety of changes with the help of 
smart recompilation. For PJama, it was implemented in the form of a standalone “build and evolve” 
tool called op jb. However, our technology of smart recompilation for Java is general and independent 
of any particular Java compiler. Thus, it can be easily re-used with any IDE for Java, or in a standalone 
Java-specific utility similar to make.

• The technology for powerful, flexible, scalable and recoverable conversion of persistent objects. 
Power and flexibility are achieved by providing several conversion types: default and custom, and 
within the latter — bulk and fully controlled. While default conversion completely automates simple 
object transformations, advanced custom conversion forms support arbitrarily complex changes to 
persistent objects and their collections. This is achieved first of all by using a special mechanism of 
temporary renaming of old versions of evolving classes. It allows the developers to write conversion 
code in Java, that can manipulate with an arbitrary mix of old and new classes and their instances. 
While the presently implemented variant of this mechanism introduces certain non-standard exten
sions to the Java language, we also suggest an alternative design where the language modification 
is avoided — at a price of somewhat reduced developer’s convenience. We believe that a similar 
mechanism can be very useful, and not difficult to implement, for other persistent object solutions for 
Java.

Scalability and recoverability properties of our system, that were implemented in the underlying per
sistent store system, Sphere, allow the developers to convert persistent stores of arbitrary size with 
limited size main memory, and guarantee that evolution either completes successfully or is rolled 
back.

PJama evolution system was evaluated on a large number of synthetic tests and on one relatively large 
persistent application, a geographical system called GAP. This work resulted in a better understanding of 
the evolution problems and in a number of improvements to our system. The experiments we performed 
have confirmed the scalability of our system, proved the conversion time to depend linearly on the number 
of evolved objects, and proved the ability of the system to evolve large amounts of data successfully.

The work on runtime evolution of Java applications was performed in the context of the HotSpot JVM, 
which is the present production JVM of Sun Microsystems, Inc. The problems of class and object evolution, 
such as type safety preservation and low-level link rearrangement, become much more complex once they 
are considered in the context of a running application, that has active methods of old class versions, multiple 
physical links between classes, objects, and the VM internal structures, etc. Therefore, a plan of staged 
development was devised, where each stage corresponds to some, relatively consistent functionality level, 
that can be included in a release of the JVM. From the beginning, this functionality should allow engineers 
to change Java applications that run in production (as opposed to debugging) mode, and may have active 
methods for classes that are being redefined. We have suggested several policies for dealing with active old 
methods, each of which may be more suitable for a particular class of applications.

The access to this functionality is currently through a single call in the JVM Debugging Interface (JVMDI) 
C language API. It is planned that in future a special GUI evolution tool, similar to existing debugging tools,
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will be developed. As with the debugging tools, it would communicate with the JVM through a remote 
connection, allowing the developers to connect to a running JVM and modify the application that is running 
on-the-fly.

In the first implementation stage, which is now complete and operational, our technology supports changes 
only to method bodies, and provides a single policy for dealing with active methods, that allows all of the 
calls to old methods to complete, while dispatching all of the new calls to new methods. In the second 
implementation stage, which is now close to completion, we will be supporting any binary compatible 
changes to classes, that do not require instance conversion.

8.2 Future Work

8.2.1 Runtime Evolution — Work in Progress

The work on runtime evolution continues. After finishing and testing the implementation stage 2, we will 
consider several possible directions of future work.

• Proceeding straight to stage 3, in which the system should support any changes to classes, including 
those that are binary incompatible, provided that they do not violate type safety invariants for the 
particular application being evolved (Section 7.5.1).

• Implementing object conversion in the context of runtime evolution, thus making the system support 
changes to classes that affect the format of their instances (Section 7.5.2).

• Implementing additional policies for dealing with active old methods (Section 7.5.3).

• Re-using the existing and planned technology to implement dynamic fine-grain profiling for Java 
applications (Section 7.5.4).

To determine the highest priority direction from the above, it would be desirable to first experiment with the 
technology that is already available. Obtaining an application that can be considered “real-life”, and trying 
to improve it using this technology, may be very effective in determining what needs to be improved, as it 
was the case for PJama evolution technology, when we used it in the course of our work on improving the 
GAP system.

We have already experimented with small changes to applications, mostly those that were free of delete
rious side effects, and believe that even this level of functionality can be quite useful in certain situations, 
e.g. when it is necessary to diagnose a bug without stopping a running application, or tune it for better 
performance. However, so far it is difficult for us to imagine how serious changes to running applications 
can be made — mainly because we don’t know how a developer can predict and take into account all of 
the possible effects that a change at an arbitrary moment of time can produce. Thus, we believe that in the 
long-term prospective it would be very important to think about some mechanism that would automate the 
prediction of a useful proportion of the effects of runtime evolution (at least the known undesirable ones) 
and possibly help to eliminate them.
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8.2.2 Development of VMs that Support Runtime Evolution

At present we are working with the JVM which was not originally designed to support runtime evolution. It 
seems primarily a lucky coincidence (but also perhaps its developers’ foresight due to their experience with 
SELF) that it has some properties, such as the support for deoptimisation of compiled code, which make 
runtime evolution in production mode possible. On the other hand, other properties, such as the monolithic 
internal representation of class objects, makes runtime evolution implementation more difficult, and will 
inevitably affect its performance (see Section 7.1.3 for details).

Currently we can formulate some requirements which are worth taking into account when starting to develop 
a new VM, if it is planned that it is to support runtime evolution. Much the same requirements can also be 
applied to design of persistent stores which may contain classes for persistent objects.

Our most important observation is that, whenever possible, monolithic and hence non-malleable internal 
representations of classes should be avoided. Data structures that represent classes occupy a small amount 
of space compared to instances, and access to most of them (except VMTs and structures similar to constant 
pool caches in HotSpot), happens relatively rarely. Therefore space and performance gains due to their 
tight packing is likely to be negligible, whereas the general maintainability of the system, and its ability 
to accommodate extensions that support evolution, can suffer significantly. This was our experience with 
representation of classes in the original persistent store for PJama (see Section 2.1.3.4), and then with 
HotSpot (see Section 7.1.2.5). Once a class is represented as a collection of separate entities that can be 
replaced individually, evolution implementation becomes much simpler. Its performance also improves 
significantly, since many extensive pointer rearrangement operations become unnecessary. For the last point, 
it is most important to design the class representation such that it is not required to patch pointers from 
instances to their class when the latter is changed. An exception to this rule may be the case when a change 
to the class requires instance conversion — then the instances typically need to be relocated anyway. In 
Sphere persistent store this was achieved with the help of descriptors (see Section 6.1), and in a VM for 
an object-oriented language it may be solved by using data structures such as near classes used in EVM 
[WG98].

Another requirement is that whenever certain optimisations to the VM, such as replacing some bytecodes 
with the “quick” versions or replacing symbolic links with direct pointers, are introduced, an easy way to 
find out what the initial representation for an optimised item looks like, should be provided. In HotSpot the 
presence of such a support in the constant pool cache facilitated our work a lot (see Section 7.3.4), whereas, 
for example, in the Sun’s Classic JVM it was impossible to find out to what original constant pool item an 
argument of a “quick” bytecode corresponded.

More requirements will probably be formulated in the course of future work on runtime evolution support 
in HotSpot.

Considering support for evolution of persistent objects, one problem at present is evolution of Java core 
classes (see Section 2.5.3). These classes may have persistent instances, however their evolution is beyond 
the control of the platform’s users. Thus, it should be the Java platform vendor’s responsibility to provide 
the conversion code, or at least the specification of how instances of these classes should be converted, if 
definitions of any of them are changed.
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8.2.3 Other Directions of Future Work

Other directions of future work may include:

•  Work on smart recompilation for Java and other languages. A short-term goal may be to develop a 
standalone Javamake utility (see Section 3.5.2) that uses a method for determining classes to recom
pile which is similar to the one presented in this thesis. Other methods, e.g. the one presented in 
Section 3.5.1, may be subsequently considered for implementation, depending on the performance of 
the initial implementation.

A long-term goal may be to try to devise a formal proof of completeness and correctness of the data 
contained in our tables of source incompatible changes (Section 3.5.3). It would be most valuable 
if the resulting apparatus could be then used for other languages, and/or a formal methodology for 
determining incompatible changes and affected programming modules in any language could be de
veloped.

•  Work on persistent object conversion. In the short-term prospective, it would be very interesting 
to try to implement a solution for Java object conversion that we proposed in Section 5.7.2. This 
solution exploits our idea of old class version renaming, which is a key to powerful and flexible 
custom conversion mechanism. Yet it does not use any extensions to the Java language (unlike our 
current solution), and therefore has much more chance to gain acceptance with the other persistent 
object solutions for Java.

In the longer-term prospective, exploration of alternative conversion strategies, e.g. custom lazy con
version or eager concurrent conversion (see Section 4.10), as well as the evaluation of the usability 
aspects of various conversion methods, can be an interesting research topic.

• So far our evolution technology is oriented more towards development-time evolution, rather than 
deployment-time (see Section 2.2). An industrial-strength persistent platform will need support for 
the latter, since for it the developers and users would certainly be different people, and the users 
may not be as skilled and knowledgeable about the system internals as the developers. Therefore the 
facilities would be required, that would automate higher-level aspects of evolution procedures and 
help the users to plan and conduct changes.

8.3 Conclusions

Long running applications and applications combining software with long-lived objects are now common 
place. All of these applications require better support for change. The evolution technology pioneered in this 
thesis is, we believe, a significant step in the long journey of accommodating change in software systems.



Appendix A

Command Line Options of the PJama 
Persistent Build Tool

The persistent build tool for PJama, called opjb, is invoked as follows: 

opjb [options] [ .ja v a  f i l e s ]  [c lasses] [@files]

The arguments can be in any order, except that the -store option, if present, should always be the first 
(this is the requirement of the underlying PJama system itself). The tool always runs agains a persistent 
store, either explicitly specified with the -store option (see below), or implicitly specified through the 
environment variable, PJAVA_STORE. To shorten or simplify the opjb command, one or more files may be 
specified that themselves contain one argument per fine, using the @ character plus the filename.

If any . j ava files are specified, they will be compiled, and, if compilation is successful, the resulting classes 
will be added to the Evolvable Class Directory (ECD) of the current persistent store. If any classes are 
specified, they will also be added to the ECD.

-s to re  <store> , -co n fig  <store> specifies the persistent store to be used (full path re-

-rep la ce  cold  c lass>  <new class> , -rep  specifies a persistent class to replace with a new class 
cold c lass>  cnew class>

quired)

-delete cclass>, -del cclass> 
[-mig cother_class>]

specifies a persistent class to delete, and, optionally, a 
class to which to migrate the ’orphan’ instances
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-sns

-scf

-convclass <conversion class>

-classpath directories separated 
by colons>

-d <directory>

-sourcepath directories separated 
by colons>

-vonly

-nosources <package name>

-verbose 

-lpclasses 

-g, -g:none,
-g:{lines,vars,source}, -0,
-nowarn, -deprecation, -encoding

a flag that can be used after the name of a class that is being 
substituted or replaced, to indicate that values of its s t a t i c  
non-final variables should not be copied from the old class 
to the new one

a flag that can be used after the name of a class that is being 
substituted or replaced, to indicate that values of its s t a t i c  
f in a l  variables should be copied from the original class to 
the substitute one

specifies a conversion class

specifies the path in which to look up the .c la s s  files. 
Otherwise the current value of the CLASSPATH environment 
variable is used.

specifies the directory in which to place generated class 
files

specifies the path from which to look up the . j ava files

verify only mode - no changes to the will be made

specifies a package for which there are no . j ava sources

output messages about what the tool is doing

print a list of all user persistent classes in the given store

these are the options of the underlying javac Java com
piler that make sense in the context of opjb and therefore 
accepted by it. See the online Java SDK Tools documenta
tion [SunOOf] for their explanation

-cverbose output messages about what the compiler is doing (equiva
lent to the -verbose option of the javac



Appendix B

Conversion Code Examples

In this appendix, we present one of the tests from our regression test suite. It consists of a number of 
classes, resembling those used in the GAP geographical information system. Classes have undergone two 
evolutions, resulting in three versions of code and two conversion classes.

B.l Version 1 of the Code

package geogrdata;

//An interface to represent an object that has name (geographic identity) 
public interface NamedGeogrObject { 
public String getNameO;

public void setName(String name);
}

/ / -------------------------------------------------------------------------------------------------------------------
package geogrdata;

// Geographical point object, that has location and geographic identity 
public class GeogrPoint implements NamedGeogrObject { 
private int X, Y; 
private String Name;

private GeomLine[] links;

public GeogrPoint(int X, int Y) { 
this.X = X;
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this.Y = Y;
}

public String getNameO { 
return Name;

}
public void setName(String Name) { 

this.Name = Name;
}

public GeomLine [] getLinksO { 
return links;

)

public void setLinks(GeomLine links []) { 
this.links = links;

}
public int getX() { return X; } 

public int getY() { return Y; } 

void setX(int X) { this.X = X; } 

void setY(int Y) { this.Y = Y; }
}

/ /   -----------------------------------------------------------------------------------------
package geogrdata;

// Abstract geometric polyline - an object without its own geographic identity 
public class GeomLine {
private GeogrPoint allPoints[]; // (Non-economic) representation of coordinates

public GeomLine(GeogrPoint allPoints []) { 
this.allPoints = allPoints;

}

public GeogrPoint getStartPoint() { 
return allPoints[ 0 ] ;

}

public GeogrPoint getEndPoint() {
return allPoints[allPoints.length-1];
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public GeogrPoint [] getPointsO { 
return allPoints;

}
}

/ / ---------------------------------------------------------------------------
package geogrdata;

// Geographic polyline - an object with coordinates and geographic identity 
public class GeogrLine extends GeomLine implements NamedGeogrObject {
private String name;

public GeogrLine(GeogrPoint allPoints [], String name) { 
super(allPoints); 
this.name = name;

}

public String getNameO { 
return name;

}
public void setName(String name) { 
this.name = name;

}
}

/ / ----------------------------------------------------------------------------------------------------------
package geogrdata;

// Abstract geometric area - an object without geographic identity 
public class GeomArea {
private GeomLine allLines [];

public GeomArea(GeomLine allLines[]) { 
this.allLines = allLines;

}

public GeomLine [] getLinesO { 
return allLines;

)
)

//
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package geogrdata;

// Geographic area - an object with coordinates and geographic identity 
public class GeogrArea extends GeomArea implements NamedGeogrObject {
private String name;

public GeogrArea(GeomLine allLines[], String name) { 
super(allLines); 
this.name = name;

}

public String getNameO { 
return name;

}

public void setName(String name) { 
this.name = name;

}
}

/ /     ---------
package geogrdata;

import java.util.Hashtable;

// Geographic area with some additional attributes (an attribute can be any object) 
public class AttrGeogrArea extends GeogrArea {
private Hashtable attributes;

public AttrGeogrArea(GeomLine allLines[], String name) { 
super(allLines, name); 
attributes = new Hashtable();

}

public void setAttribute(Object attr, Object value) { 
attributes.put(attr, value);

}

public Object getAttribute(Object attr) { 
return attributes.get(attr);

}
}

/ /  ---------
package geogrdata;
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import org.opj.OPRuntime;

// Class representing complete geographic database 
public class GeogrBase {

static public GeogrLine[] geogrLines; 
static public GeogrPoint[] geogrPoints; 
static public GeogrArea[] geogrAreas;

static {
OPRuntime.roots.add(GeogrBase.class);

}
}

B.2 Version 2 of the Code

Only changed and added classes are presented. The main difference between Version 1 and Version 2 is 
that in the latter, representation of coordinates of geographic polylines is changed. Also, class GeomPoint 
is added to represent an abstract point object, eliminating the initial inconsistency in the design.

package geogrdata;

// Abstract geometric point - an object with location but no geographic identity 
// This is a new class, 
public class GeomPoint { 
protected int x, y;

public GeomPoint(int x, int y) { 
this.x = x;
this.y = y;

}

public int getX() { return x; }

public int getY() { return y; }

void setX(int X) { this.x = x; }

void setY(int Y) { this.y = y; }
}
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package geogrdata;

// Geographic point object - now a descendant of GeomPoint 
public class GeogrPoint extends GeomPoint implements NamedGeogrObject { 

private String name; // This field was called "Name"

private GeomLine links[];

public GeogrPoint(int x, int y, String name) { 
super(x, y); 
this, name = name;

}

public String getNameO { 
return name;

}

public void setName(String name) { 
this.name = name;

}

public GeomLine [] getLinksO { 
return links;

}

public void setLinks(GeomLine links[]) { 
this.links = links;

}
}

/ /   -----------------------------
package geogrdata;

// Abstract geometric polyline - an object without its own geographical identity 
public class GeomLine {

// New, more economic representation of coordinates - was GeogrPoint allPoints[]
public GeomPoint startPoint;
public GeomPoint endPoint;
private int allPointsX[] ;
private int allPointsY[];

// Constructor and methods interface have been change to optimally work with
// new representation of coordinates.
public GeomLine(int allPointsX[], int allPointsY[] ,

GeomPoint startPoint, GeomPoint endPoint) {
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this.allPointsX = allPointsX; 
this.allPointsY = allPointsY; 
if (startPoint == null)
this.startPoint = new GeomPoint(allPointsX[0] , allPointsY[0]); 

else
this.startPoint = startPoint; 

if (endPoint == null) {
int endlnd = allPointsX.length - 1;
this.endPoint = new GeomPoint(allPointsX[endlnd], allPointsY[endlnd]);

} else
this.endPoint = endPoint;

}

public GeomPoint getStartPoint() { 
return startPoint;

}

public GeomPoint getEndPoint() { 
return endPoint;

}

public int[] getXCoordsO { 
return allPointsX;

}

public int[] getYCoordsO { 
return allPointsY;

}
}

/ /   .  .    --------------------------
package geogrdata;

// Geographic polyline - an object with coordinates and geographical identity.
public class GeogrLine extends GeomLine implements NamedGeogrObject {
private String name;

// Constructor was fixed according to the change in its superclass
public GeogrLine(int allPointsX[], int allPointsY[], String name,

GeomPoint startPoint, GeomPoint endPoint) { 
super(allPointsX, allPointsY, startPoint, endPoint); 
this.name = name;

}

public String getNameO { 
return name;
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}

public void setName(String name) { 
this.name = name;

}
}

B.3 Conversion Class 1

Here is the conversion class used to convert the instances of the classes changed from Version 1 to Version 
2.

import geogrdata.GeogrPoint$$_old_ver_; 
import geogrdata.GeomLine$$_old_ver_; 
import geogrdata.GeogrPoint; 
import geogrdata.GeomLine; 
import geogrdata.GeomPoint;

import org.opj.utilities.PJEvolution; 
import java.lang.reflect.Field;

public class ConvertGeogrBase {
static Field allPointsX, allPointsY;

public static void onConversionStart() {
// This method is executed once, before conversion methods for 
// instances. We use it for obtaining field objects. We can use 
// reflection freely to access private data in conversion code.
Class classGeomLine = GeomLine.class;
try { // Get reflection objects for private arrays of coordinates
allPointsX = classGeomLine.getDeclaredField("allPointsX"); 
allPointsY = classGeomLine.getDeclaredField("allPointsY");

} catch (Exception e) {
System.out.println(e);
System.exit(-1);

}
}

public static GeomPoint convertlnstance(GeogrPoint$$_old_ver_ oldp) { 
if (oldp.getName() != null || oldp.getLinks() != null) {
GeogrPoint newp = new GeogrPoint(oldp.getX(), oldp.getYO, oldp.getName()); 
PJEvolution.copyDefaults(oldp, newp); 
return newp;

} else {
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// GeogrPoints which in reality were just geometric points, should
//be converted to instances of GeomPoint
GeomPoint newp = new GeomPoint(oldp.getX() , oldp.getYO ) ;
return newp;

}
}

// This conversion method will be used for instances of both class GeomLine 
// and GeogrLine, which is GeomLine's descendant
public static void convertlnstance(GeomLine$$_old_ver_ oldl, GeomLine newl) { 
GeogrPoint$$_old_ver_ points[] = oldl.getPoints() ; 
int len = points.length; 
int x[] = new int [len]; 
int y[] = new int [len] ; 
for (int i = 0; i < len; i++) { 
x[i] = points [i] .getX() ; 
y [i] = points [i] .getYO ;

}

try {
allPointsX.set(newl, x); 
allPointsY.set(newl, y) ;

} catch (Exception e) { // Reflection can produce exceptions
System.out.println(e);
System.exit(-1);

)
newl.startPoint = points [ 0 ] ;
newl.endPoint = points[points.length-1];

}
}

B.4 Version 3 of the Code

Here we have found that the class AttrGeogrArea is inadequate. The only attribute that a geographic 
area can have is SOLID, equal to either TRUE or FALSE. Therefore to have a hash table o f attributes in each 
geographic area object is wasteful. We delete the AttrGeogrArea class, at the same time adding the s o l id  
field to class GeogrArea. All instances o f AttrGeogrArea are migrated to class GeogrArea, with the s o l id  
field set to an appropriate value.

package geogrdata;

// Geographic area - an object with coordinates and geographic identity 
public class GeogrArea extends GeomArea implements NamedGeogrObject {
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private String name;
private boolean solid; // The only possible attribute of geographic area

public GeogrArea(GeomLine allLines[], String name, boolean isSolid) { 
super(allLines) ; 
this.name = name; 
this.solid = isSolid;

}

public String getNameO { 
return name;

}

public void setName(String name) { 
this.name = name;

}

public boolean isSolid() { 
return solid;

}
}

B.5 Conversion Class 2

Here is a conversion class with a method to migrate instances of deleted class AttrGeogrArea to class 
GeogrArea.

import geogrdata.GeogrArea$$_old_ver_; 
import geogrdata.AttrGeogrArea$$_old_ver_; 
import geogrdata.GeogrArea;

import org.opj.utilities.PJEvolution; 
import java.lang.reflect.Field;

public class ConvertGeogrAreas { 
static Field solidField;

public static void onConversionStart() {
// Since the "solid" field is private, we have to use reflection to set it 
Class classGeogrArea = GeogrArea.class; 
try {

solidField = classGeogrArea.getDeclaredField("solid");
} catch (Exception e) {
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System.out.printIn(e);
System.exit(-1) ;

}

}

public static void migratelnstance(AttrGeogrArea$$_old_ver_ oldA, GeogrArea newA) { 
boolean solid = ((String) oldA.getAttribute("SOLID")).equals("TRUE"); 
try {
solidField.setBoolean(newA, solid);

} catch (Exception e) {
System.out.println(e);
System.exit(-1);

}
}

}



Appendix C

Specification of JVM Calls Supporting 
Runtime Class Evolution

In this appendix, we present the specification of the two calls that presently implement runtime class evolu
tion functionality, and which are a part of the Java Virtual Machine Debug Interface [SunOOl].

C.l RedefineClasses ()

typedef struct { 
jclass clazz; 
jint class_byte_count; 
jbyte *class_bytes;

} JVMDI_class_definition;

jvmdiError
RedefineClasses(jint classCount, JVMDI_class_definition *classDefs);

All classes given are redefined according to the definitions supplied. If any redefined methods have active 
stack frames, those active frames continue to run the bytecodes of the original method. The redefined 
methods will be used on new invokes. Any JVMDI function or event which returns a jmethodID, will 
return OBSOLETE_METHOD_ID when referring to the original method (for example, when examining a stack 
frame where the original method is still executing) unless it is equivalent to the redefined method (see 
below). The original method ID refers to the redefined method. Care should be taken thoughout a JVMDI 
client to handle OBSOLETE_METHOD_ID. If reseting of stack frames is desired, use PopFrame to pop frames 
with OBSOLETE_METHOD_IDs.

An original and a redefined method should be considered equivalent if their bytecodes are the same except 
for indicies into the constant pool and the referenced constants are equal.

/* Class object for this class */
/* number of bytes defining class (below) */ 
/* bytes defining class */
/* (in Class File Format of JVM spec) */

175
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This function does not cause any initialization except that which would occur under the customary JVM se
mantics. In other words, redefining a class does not cause its initializers to be run. The values of preexisting 
static variables will remain as they were prior to the call. However, completely uninitialized (new) static 
variables will be assigned their default value.

If a redefined class has instances then all those instances will have the fields defined by the redefined class 
at the completion of the call. Preexisting fields will retain their previous values. Any new fields will have 
their default values; no instance initializers or constructors are run.

Threads need not be suspended.

All breakpoints in the class are cleared.

All attributes are updated.

No JVMDI events are generated by this function.

This is an optional feature which may not be implemented for all virtual machines. Examine 
can_redefine_classes, can_add_method and can _ u n re stric ted ly _ red e fin e .c la sses  of G e tC ap a b ilitie s  
to determine whether this feature is supported in a particular virtual machine.

Parameters:

classC ount : the number of classes specified in classDefs. 
c lassD ef s : the array of new class definitions.

This function returns either a universal error or one of the following errors:

JVMDI_ERROR_NULL_POINTER
Invalid pointer: c lassD efs or one of class_bytes is NULL.

JVMDI_ERROR_INVALID_CLASS
An element of c lassD efs is not a valid class.

JVMDI_ERROR_UNSUPPORTED_VERSION
A new class file has a version number not supported by this VM.

JVMDI _ERROR_I NVALI D_CLAS S-FORMAT
A  new class file is malformed (The VM would return a ClassFormatError). 

JVMDI_ERROR_CIRCULAR_CLASS_DEFINITION
The new class file definitions would lead to a circular definition (the VM would return a
C la ssC irc u la rity E rro r) .

JVMDI_ERROR_FAILS_VERIFICATION 
The class bytes fail verification.
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JVMDI _ERROR_NAMES_DONT_MATCH
The class name defined in the new class file is different from the name in the old class object. 

JVMDI_ERROR_NOT_IMPLEMENTED
No aspect of this functionality is implemented (can_redef in e .c la s se s  capability is false). 

JVMDI_ERROR_ADD_METHOD_NOT_IMPLEMENTED
A new class file would require adding a method, (and can_add_method capability is false).

JVMD I _ERROR_SCHEMA_CHANGE_NOT_IMPLEMENTED
The new class version changes fields (and can_unrestric ted ly_redef ine_classes capability is false). 

JVMDI_ERROR_HIERARCHY_CHANGE_NOT_IMPLEMENTED
A direct superclass is different for the new class version, or the set of directly implemented interfaces is 
different (and can_unrestric ted ly_ redef in e .c la s se s  capability is false).

JVMDI_ERROR_DELETE_METHOD_NOT_IMPLEMENTED
The new class version does not declare a method declared in the old class version (and 
can _ u n restric ted ly _ red ef in e .c la s se s  capability is false).

JVMDI_ERROR_CLASS_MODIFIERS_CHANGE_NOT_IMPLEMENTED
The new class version has different modifiers (and
can_make_binary_compatible_changes capability is false).

JVMD I -ERROR_METHOD_MOD I FI ERS _CHANGE_NOT_IMPLEMENTED
A method in the new class version has different modifiers than its counterpart in the old class version (and 
can_make_binary_compatible_changes capability is false).

C.2 PopFrame ()

jvmdiError
PopFrame(jthread thread);

Pop the topmost stack frame of thread’s stack. Popping a frame takes you to the preceding non-native frame 
(popping any intermediate native frames). When the thread is resumed, the thread state is reset to the state 
immediately before the called method was invoked: the operand stack is restored (object ref if appropriate 
and arguments are added back), note however, that any changes to the arguments, which occurred in the 
called method, remain; when execution continues, the first instruction to execute will be the invoke. Note 
that if there are intervening native frames, the called method will be different than the method of the popped 
frame.

Between calling PopFrame and resuming the thread the state of the stack is undefined. To pop frames beyond 
the first, these three steps must be repeated:
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1. suspend the thread via an event (step, breakpoint, ...)

2. call PopFrame

3. resume the thread

Locks acquired by a popped frame are released when it is popped. This applies to synchronized methods 
that are popped, and to any synchronized blocks within them, but does not apply to native locks.

f in a l ly  blocks are not executed.

Changes to global state are not addressed.

If this function is called for a thread different than the current thread, the specified thread must be suspended. 
The thread must be in a Java programming language or JNI method.

All frame IDs for this thread are invalidated.

No JVMDI events are generated by this function.

This is an optional feature which may not be implemented for all virtual machines. Examine can_pop_f rame 
of G e tC ap a b ilitie s  to determine whether this feature is supported in a particular virtual machine.

Parameters:

th read  : the thread whose top frame is to be popped.

This function returns either a universal error or one of the following errors:

JVMDI _ERROR_INVALID_THREAD 
Thread was invalid.

JVMDI _ERROR_NULL_POINTER 
Invalid pointer.

JVMD I _ERROR_THREAD_NOT_SUS PENDED 
Thread was not suspended or current thread.

JVMDI_ERROR_NO_MORE_FRAMES
There are no more Java programming language frames on the call stack.

JVMD I _ERROR_NOT_IMPLEMENTED
This functionality is not implemented (can_pop_frame capability is false).
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