
UNIVERSITY

GLASGOW

Department of
Computing Science

Declarative Support for Prototyping Interactive
Systems

Meurig Sage

A thesis submitted fo r a Doctor o f Philosophy Degree in Computing
Science at the University o f Glasgow

March 2001

© Meurig Sage 2001

ProQuest Number: 11007880

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007880

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

c o p y \

II

Abstract

The development of complex, multi-user, interactive systems is a difficult process that
requires both a rapid iterative approach, and the ability to reason carefully about
system designs. This thesis argues that a combination of declarative prototyping and
formal specification provides a suitable way of satisfying these requirements.

The focus of this thesis is on the development of software tools for prototyping
interactive systems. In particular, it uses a declarative approach, based on the
functional programming paradigm. This thesis makes two contributions. The most
significant contribution is the presentation of FranTk, a new Graphical User Interface
language, embedded in the functional language Haskell. It is suitable for prototyping
complex, concurrent, multi-user systems. It allows systems to be built in a high level,
structured manner. In particular, it provides good support for specifying real-time
properties of such systems. The second contribution is a mechanism that allows a
formal specification to be derived from a high level FranTk prototype. The approach
allows this to be done automatically. This specification can then be checked, with tool
support, to verify some safety properties about a system. To avoid the state space
explosion problem that would be faced when verifying an entire system, we focus on
partial verification. This concentrates on key areas of a design: in particular this means
that we only derive a specification from parts of a prototype. To demonstrate the
scalability of both the prototyping and verification approaches, this thesis uses a series
of case studies including a multi-user design rationale editor and a prototype data-link
Air Traffic Control system.

Ill

A b s tra c t.. II

L ist of T ab les... IX

List of F ig u re s ...X

A cknow ledgem ents.. XII

D eclara tion ... X III

PART I. INTRODUCTION.. 1

C hap te r 1 - In tro d u c tio n .. 2
1.1. Interactive System Design.. 2
1.2. The Software Engineering Lifecycle..2
1.3. Rapid Prototyping.. 3

1.3.1. The Need For Rapid Prototyping Programming T oo ls ... 3
1.3.2. Visual Programm ing..3
1.3.3. Declarative Program m ing.. 4

1.4. Formal M odelling.. 5
1.5. Thesis Contributions..5

1.5.1. Contributions to Declarative GUI languages...5
1.5.2. Contributions to Formal Verification...7

1.6. The Structure of this T hesis ...7

C hap te r 2 - The Case S tudies.. 9
2.1. Introduction...9
2.2. The Space G am e...9
2.3. The QOC Editor..9

2.3.1. Introduction...9
2.3.2. Design Rationale...10
2.3.3. Collaborative Softw are... 10
2.3.4. The Prototype System..10

2.4. The ATC System ..11
2.4.1. Introduction to Air Traffic C ontrol...11
2.4.2. Developing Air Traffic Control System s.. 12
2.4.3. Air Traffic Control Background... 12
2.4.4. The ATC Prototype.. 13
2.4.5. R edesign...16

2.5. Summary...16

PART II. DECLARATIVE RAPID PROTOTYPING...17

C hap ter 3 - D eclarative D evelopm ent o f In terac tive System s...18
3.1. Conceptual Architectures..18

3.1.1. The MVC M o d e l..18
3.1.2. The PAC M odel.. 19
3.1.3. The ALV M odel...19

3.2. Constraints & User interface languages..20
3.3. Model Based Approaches to Interface Development...20
3.4. Visual Approaches to Interface D evelopm ent.. 21
3.5. Java’s Swing - An Object Oriented A pproach... 22
3.6. Functional A pproaches... 24
3.7. Performing I/O in Haskell.. 24
3.8. Functional Callback based approaches... 26

IV

3.8.1. T kG ofer...26
3.8.2. D iscussion... 27

3.9. Stream processing - Fudgets... 28
3.9.1. Fudgets... 28
3.9.2. G adgets.. 29

3.10. Imperative Concurrency - H aggis..30
3.10.1. Virtual I/O ... 30
3.10.2. Declarative structured graphics.. 30
3.10.3. User interface, application separation...31
3.10.4. Compositional structure...31
3.10.5. An E xam ple..32
3.10.6. D iscussion... 32
3.10.7. Summary... 32

3.11. Functional Constraint based approaches.. 33
3.12. Clock...33

3.12.1. The C ounter..33
3.12.2. The Space Fighter Game..35
3.12.3. QOC Editor and file m anager... 37
3.12.4. Discussion... 38

3.13. Functional Reactive Programming...39
3.13.1. Fran benefits...39
3.13.2. A Case study with F ran ...40
3.13.3. Fran problem s.. 42

3.14. P idgets...42
3.15. Requirements for Declarative GUI Languages.. 45

3.15.1. High level and Declarative.. 45
3.15.2. Declarative Concurrency...45
3.15.3. Com positional.. 45
3.15.4. Component based application/interface separation..45
3.15.5. Visual Languages & Tool support.. 45
3.15.6. Scalability... 45
3.15.7. Efficiency.. 45
3.15.8. Platform Independence.. 46

C h ap te r 4 - F ranT k : A New A p proach ...47
4.1. Introduction.. 47
4.2. FranTk contributions... 47
4.3. The Basic C oncepts.. 48

4.3.1. Introducing Components.. 48
4.3.2. Configuring Com ponents... 48
4.3.3. Composing Com ponents.. 49
4.3.4. Configuring composite components...50
4.3.5. Rendering Components...50

4.4. Interactive Components - Representing State... 51
4.4.1. Representing State with B V ars.. 51
4.4.2. Using State - With Behaviors...51
4.4.3. Updating State- With Listeners.. 52
4.4.4. Composing L isteners.. 53
4.4.5. The complete interface..53

4.5. The Listener A lgebra.. 54
4.5.1. The Listener Combinators..54
4.5.2. Event-Listener Duality..56

4.6. Introducing W ires..57
4.7. Simple Dynamic Interfaces..58

4.7.1. Defining a Checkbutton... 59
4.7.2. Conditional d isp lays... 59

4.8. Displaying Dynamic C ollections... 60
4.9. Dynamic Collections... 61

4.9.1. List Collections... 61

V

4.9.2. Set Collections..63
4.9.3. Bag collections..63
4.9.4. Collection variables.. 64
4.9.5. Simplifying the name space...65

4.10. Adding Windows and M enus.. 66
4.10.1. Creating a W indow ... 66
4.10.2. Creating the M enus... 66
4.10.3. Creating new window instances... 67

4.11. Selectable Com ponents.. 68
4.12. Dynamic A nim ations..70

4.12.1. Introducing Canvases..70
4.12.2. A Dynamic Set of Moving B alls.. 71

4.13. Text Edits - A Document/View Architecture.. 72
4.13.1. Single-Line text entries.. 72
4.13.2. Multi-Line Text E ditors... 73
4.13.3. Document Updates.. 74
4.13.4. Edit Tags - Hypertext S upport...75
4.13.5. Edit Marks - Referring to a moving location.. 77
4.13.6. Interrogating a D ocum ent..77
4.13.7. Putting it all together - A Structured Text Editor... 77

4.14. Introducing true Concurrency...79
4.15. Alternative Design C hoices.. 80

4.15.1. Replacing Listeners... 80
4.15.2. Unifying Components and W idgets...82

4.16. Conclusions... 83

C h ap te r 5 - F ra n T k Developm ent T o o ls ..84
5.1. The System Architecture.. 84
5.2. The Interface Construction T ool...87

C h ap te r 6 - E valuating F ra n T k w ith The Case S tudies.. 89
6.1. The Space Game in Fran ...89
6.2. The QOC Editor..89
6.3. The ATC System ... 92

6.3.1. The Prototype D esign ... 92
6.3.2. The ATC Architecture..92
6.3.3. Building the ATC System in F ranT k .. 93
6.3.4. R edesign.. 95

6.4. Summary of Evaluation...99
6.4.1. High level and declarative...99
6.4.2. Declarative C oncurrency... 99
6.4.3. Compositional...99
6.4.4. Component based application/interface separation.. 99
6.4.5. Visual Tool support...99
6.4.6. Scalability..100
6.4.7. Efficiency... 100
6.4.8. Platform independence...100

6.5. Areas for Further W ork... 100
6.5.1. Debugging..100
6.5.2. Exceptions... 101
6.5.3. Usability of FranTk..101
6.5.4. Conclusions..101

PART III.IMPLEMENTATION... 102

C hap te r 7 - Im plem enting Functional Reactive P rogram m ing .. 103
7.1. FRP Combinators - A Semantics...103

7.1.1. A First Semantics.. 103

VI

7.1.2. A Second Sem antics...106
7.1.3. Comparing the Two Sem antics.. 107
7.1.4. Implementing Primitive Events.. 108

7.2. Efficient FRP Com binators... 108
7.2.1. Implementation Requirem ents..108
7.2.2. Implementing Listeners.. 109
7.2.3. Data Driven Events... 112
7.2.4. A Problem with Efficiency.. 114
7.2.5. A Problem with L aziness...116
7.2.6. Event T erm ination.. 118
7.2.7. Data Driven Behaviors..123
7.2.8. Eliminating W ork with W eak References..129
7.2.9. Summary..134

7.3. An Efficient Hybrid Solution?..134
7.3.1. Implementing E ven ts ..134
7.3.2. Implementing B ehaviors.. 138
7.3.3. Summary..140

7.4. A Third Data-Driven Im plem entation?...140
7.4.1. The Basic D efinitions...141
7.4.2. Basic Event Com binators... 141
7.4.3. Stateful Event C om binators.. 141
7.4.4. M em oisation... 142
7.4.5. Basic Behavior C om binators..142
7.4.6. Implementing Snapshot...143
7.4.7. Summary.. 143

7.5. Implementing Behavioral Collections... 143
7.5.1. In troduction...143
7.5.2. Implementing L is ts ..144
7.5.3. Generalising the collection approach.. 150

7.6. Summary...151

C h ap te r 8 - Toolkit independence in F ra n T k ... 152
8.1.1. The Abstract W idget Interface..152
8.1.2. Components and W idget Behaviors...154
8.1.3. Toolkit Dependent In terface... 158
8.1.4. Implementing Dynamic Documents...158

8.2. Conclusions...161

PART IV. FORMAL VERIFICATION... 162

C h ap te r 9 - P revious A pproaches to Form al D evelopm ent.. 163
9.1. Introduction ...163

9.1.1. Formal Modelling for U nderstanding... 163
9.1.2. Formal Modelling For Verification..164

9.2. York Interactor model... 164
9.3. The LOTOS Interactor M odel.. 166

9.3.1. TLIM - Tasks, LOTOS, Interactors and modelling... 167
9.3.2. A Brief A nalysis...167

9.4. Petri Nets and M IC O ...168
9.5. SpecTRM Requirements M odelling ..168
9.6. Requirements for Formal M odelling..169

9.6.1. Verification Tool Support.. 169
9.6.2. Link to Prototype..169
9.6.3. A pplicability..169
9.6.4. Scalability.. 170

C h ap te r 10 - D eriving a F orm al Specification...171
10.1. In troduction..171

vn

10.2. Overview o f LOTOS..171
10.2.1. ACT O N E .. 171
10.2.2. The Control L anguage..172
10.2.3. E-LOTOS..172

10.3. Converting FranTk into LO TO S...173
10.3.1. Generating a specification.. 173
10.3.2. Transforming Abstract BVars into Interactors...173
10.3.3. Translating Haskell into ACT O N E...174
10.3.4. Verifying Parts of a S ystem ...176

10.4. Implementing the algorithm ...177
10.5. D iscussion.. 178

C h ap te r 11 - P erfo rm ing F orm al V erifica tion ..179
11.1. LOTOS Sim ulation.. 180
11.2. M odel Checking.. 180
11.3. M odel G eneration...182

11.3.1. Model M inim isation..182
11.3.2. Symbolic Minimal Model Generation... 183
11.3.3. On-The-Fly Techniques..183
11.3.4. Compositional M odel Generation.. 183
11.3.5. Automated Support for Compositional Model Generation...184

11.4. M odel Checking W ith The fi-Calculus... 184
11.4.1. The Basics O f The ji-Calculus.. 184
11.4.2. Fixed P o in ts ...185
11.4.3. Simplifying Specification... 186
11.4.4. Verification with X T L .. 187

11.5. Formal Analysis in the Case Studies..187
11.6. Conclusions.. 188

PART V. CONCLUSIONS.. 189

C h ap te r 12 - Conclusions an d F u rth e r W o rk ...190
12.1. Background Summary..190
12.2. FranTk Contributions...190
12.3. Formal Verification.. 192
12.4. Problems and Future W ork .. 193

12.4.1. FranTk Design & Evaluation...193
12.4.2. FranTk Im plem entation..193
12.4.3. Formal Verification W ork.. 194

PART VI. APPENDIXES.. 195

A ppendix A F unctional Reactive P rogram m ing C om binators..196
A. 1 The Basic Concepts - Behaviors and Events... 196

A. 1.1 Listeners..196
A. 1.2 Events.. 196
A. 1.3 B ehaviors... 196

A.2 W hat can we really do with Events.. 197
A .2.1 The Event A lgebra...197
A.2.2 The History Based Com binators.. 198

A.3 W hat can we really do with Behaviors..200
A.3.1 Lifted Behaviors... 200
A.3.2 Reactive B ehaviors... 201
A.3.3 Turning behaviors into events...202
A.3.4 Sampling behaviors in the GUI m onad...202

A.4 Numeric Types..203
A.4.1 Basic Numeric T ypes..203

vin

A.4.2 Points and V ecto rs... 203
A.4.3 Vector S paces... 204
A .4.4 Transform ations..204
A.4.5 Fran overloaded functions...205

A ppendix B U sability E valuation fo r R apid P ro to ty p in g ..207
B . 1 Introduction..207
B.2 Usability Evaluation M ethods... 207
B.3 Low and High Fidelity Prototypes... 208
B.4 Analytical Evaluation.. 208
B.5 Expert Evaluation ..208

B.5.1 Cognitive W alkthrough...208
B.5.2 Heuristic Evaluation...208

B.6 User Based Evaluation..209
B.6.1 Where to Perform I t ? .. 209
B.6.2 How To Get Users To Interact With D esign?..210
B.6.3 How To Gather D ata? ... 212
B.6.4 How To Analyse D ata? ...213
B.6.5 H ow To Do Redesign?..215

B.7 Evaluating Multi-User Systems...215
B.7.1 Problems With Evaluating Co-Operative System s... 215
B.7.2 Possible A pproaches..216
B.7.3 Methods of A nalysis... 216
B.7.4 Heavier Weight Analysis M ethods... 217

B.8 Summarising Evaluation Techniques...219
B . 8.1 Evaluation o f the Acti v ity .. 219
B . 8.2 Evaluation of the T o o l..219

B.9 A Case Study - The QOC Evaluation.. 220
B .9.1 The System to be evaluated..220
B.9.2 The Study...221
B.9.3 The Evaluation R esu lts ...222

B.10 Conclusions... 226

A ppendix C C om bining In te rac to rs and H ag g is ..228
C. 1 Functional Programming & Executable Specifications...228
C.2 The Exam ple...228
C.3 LOTOS Specification.. 229

C.3.1 The Structure of the G am e...229
C.3.2 Handling Input and Output - Gam elO ... 230
C.3.3 The Rest of the System ,..232
C.3.4 Specifying The Data Types And Operations..233

C.4 Conversion to Haggis.. 233
C.5 Conclusions... 235

G lossary ..236

References.. 238

IX

List of Tables

Table 1 - Summary of Case Study Contributions...16
Table 2: LOTOS O perators..172
Table 3 - The Behaviour of <x> and [x] ...185
Table 4- Fixed Point Operators..185

X

List of Figures

Figure 1 - The Interactive G am e...9
Figure 2 - The QOC Editor.. 10
Figure 3 - A Controller’s View in the ATC Prototype...14
Figure 4 - Graphical Route E d ito r... 15
Figure 5 - Sending a Co-ordination M essage.. 15
Figure 6 - Seeheim M odel.. 18
Figure 7 - MVC M odel...19
Figure 8 - PAC M odel.. 19
Figure 9 - ALV M odel.. 19
Figure 10 - A Haggis P icture.. 30
Figure 11 - A Haggis Glyph Com ponent... 31
Figure 12 - A Haggis Interactive W idget... 31
Figure 13 - A Simple Interface in H aggis.. 31
Figure 14 - The Clock Architecture for the “Counter” ..33
Figure 15 - The Clock Architecture for Space Fighter G am e..35
Figure 16 - The Clock Architecture for the QOC E d ito r.. 37
Figure 17 - A Ball Following a Wave M otion.. 39
Figure 18 - Elements of the Thesis Prototyping System ...47
Figure 19 - A Simple Example in FranTk.. 48
Figure 20 - An Interactive Example in FranTk...51
Figure 21 - The t e l l L L istener... 53
Figure 22 - The m e rg e L L istener...54
Figure 23 - The s n a p s h o tL Listener...55
Figure 24 - The s c a n l L L istener... 55
Figure 25 - A FranTk W ire..57
Figure 26 - A Conditional Display in FranTk... 59
Figure 27 - A Dynamic Interface in FranTk...60
Figure 28 - Windows and M enus... 66
Figure 29 - Using a L istbox...68
Figure 30 - Using the s n a p l n d e x Function...69
Figure 31 - A Shared Text Editor in FranTk..73
Figure 32 - A Hypertext Viewer in FranTk..76
Figure 33 - A Structured E d ito r..78
Figure 34 - The f ixG U I Function.. 82
Figure 35 - The FranTk System Architecture E d ito r...84
Figure 36 - The FranTk Interface Construction Tool...87
Figure 37 - The System Architecture for the ATC System .. 93
Figure 38 - Tactical Data Entry W idget..96
Figure 39 - The mapLE function... 112
Figure 40 - Caching Events.. 114
Figure 41 - Wire References with Weak Pointers...131
Figure 42 - Event Propagation in the Presence of Caching.. 136
Figure 43 - York Interactor.. 164
Figure 44 - A York Button Interactor..165
Figure 45 - LOTOS Interactor.. 166
Figure 46 - LOTOS Button In teractor.. 166
Figure 47 - Relationship Between FranTk and Lotos Interactors...173
Figure 48 - Relationship Between an ABVar and LOTOS Interactor..173
Figure 49 - Restricting LOTOS interactor behaviour..177
Figure 50 - The Eucalyptus Interface...181
Figure 51 - Heuristic Evaluation Guidelines... 209
Figure 52 - Setup for E xperim ent..221
Figure 53 - The Interactive Game in Haggis... 229

XI

Figure 54 - The Inter-process Communication in the G am e.. 230
Figure 55 - The GamelO Interactor... 231
Figure 56 - The Interactor Network for the G am e.. 232
Figure 57 - Haggis Pause B utton ..234
Figure 58 - Haggis Game 10 In terac to r..234

xn

Acknowledgements

I would like to thank my supervisors Professor Chris Johnson and Professor Simon Peyton Jones for
their guidance, enthusiasm and support during this research. I would also like to thank Conal Elliott for
introducing me to Fran and Functional Reactive Programming, and for answering my questions so
enthusiastically. Finally, I would like to thank Tab Lamoureux and the UK’s National Air Traffic
Services for cooperating on the Air Traffic Control case study.

This research would not have been possible without financial support from EPSRC. I am also grateful
to Simon Peyton Jones and Microsoft Research for employing me, during the summer of 1999, as an
intern, to work on FranTk. I would also like to thank Phil Gray for giving me time off to complete the
writing up of this thesis.

Finally I ’d like to thank family and friends for giving me the support and encouragement necessary to
finish this thesis.

xm

Declaration

I hereby declare that this thesis has been composed by myself, that the work herein is my own except
where otherwise stated, and that the work presented has not been presented for any other university
degree before.

Sections 2.4, 6.3 and 11.5 contain revised versions of material published in [173], Chapter 4 contains
material published in [174]. Finally, Appendix C contains material previously published in [169] and
[170],

M eurig Sage

Part I. Introduction
The first part o f this thesis discusses why high level prototyping and formal verification are both
necessary (though not sufficient) for the design of complex, interactive systems. It argues that a mixture
of visual and declarative programming provide a powerful mechanism for interactive system
development. It also argues that formal verification is best applied later on in the design process once
an initial design has been developed.

2

Chapter 1 - Introduction

1.1. Interactive System Design

The development of complex, multi-user interactive systems requires high levels o f time and expertise.
Surveys of programming project [138] have shown that it is not uncommon to spend 50% of the
resources of a project developing the user interface. This is because it is generally impossible to
produce an interactive system that does everything required, first time round. Producing usable systems
requires an iterative approach with a reliance on user testing. There are principles, such as usability
heuristics [142] which can be used to encourage good design. However, even when developing
relatively simple systems, they cannot guarantee good products.

The development and evaluation of multi-user “Computer Supported Co-operative W orking” (CSCW)
systems is a particularly difficult problem. Such systems generally allow group awareness and support
co-ordination and communication between different users. These users must be able to understand the
common context that they are working within. Grudin[79] has argued that many early attempts at
developing CSCW systems failed because they did not map end user requirements to appropriate co­
ordination mechanisms. This means that usability heuristics will be even more difficult to use in a
CSCW project. Only through thorough evaluation can we hope to develop systems that truly support
their users. Good examples of such problems arise in the development of Air Traffic Control (ATC)
systems. Social studies of such systems [84] have shown that co-ordination between Air Traffic Control
Officers is subtle, complex, and often outwith the bounds of regulated procedures. The usability of
these ATC systems is sometimes in direct contrast to standard usability heuristics. Storrs and Windsor
[190], for instance, describe an ATC information display that seemed “conceptually difficult and
noisy” , but which controllers found more useful and usable than other “simpler” designs. A
development approach based around iterative, user-centred design is therefore important when
developing such systems, because designers’ intuitions cannot be relied upon.

Much of the research to aid user interface construction, has therefore been directed at providing rapid
prototyping systems[71]. This thesis builds on this research. It is concerned with software techniques to
support rapid prototyping. In particular, it is concerned with providing support for the development of
novel interfaces for complex, dynamic, multi-user systems. The first and most significant contribution
of this thesis, is the presentation of FranTk, a new functional Graphical User Interface Language, that is
suitable for prototyping complex, concurrent, multi-user systems. It allows systems to be built in a high
level, structured manner. In particular, it provides good support for specifying real-time properties of
such systems.

An additional requirement with such interfaces is the need to reason about concurrent behavior within
the interactive system. The complexity of large systems, such as those used in Air Traffic Control,
makes it difficult to test them fully. A secondary contribution of this thesis is a mechanism for
automatically deriving a formal specification from the high level prototype. This specification can then
be checked, with tool support, to verify some safety properties about a system.

This thesis demonstrates the validity of these techniques through the use of three large case studies.
These case studies represent three different levels o f complexity, culminating in the development o f a
multi-user, real-time, data-link Air Traffic Control simulator.

1.2. The Software Engineering Lifecycle

The domain of Software Engineering provides a number of approaches to developing large software
systems, such as Air Traffic Control systems. There are a number o f different software lifecycles which
consider how we should develop these systems. The first of these was the “waterfall model” [187],
which assumed a steady progression from requirements, to design, to development, to testing and
evaluation, to maintenance. There have been numerous more recent developments o f this model, which
attempt to encourage early evaluation and a more iterative approach to design. These tend to encourage
the use of prototyping in the requirements and design phase. Organisations such as the UK’s National

3

Air Traffic Services - which is responsible for the design of new Air Traffic Control Systems - carry
out detailed iterations through requirements, design, prototyping and evaluation phases before handing
off a final design to a software development company. This thesis concentrates on providing tools for
use in the prototyping phase. It does not concern itself with the final implementation and testing o f such
large systems.

1.3. Rapid Prototyping

1.3.1. The Need For Rapid Prototyping Programming Tools

Rapid prototyping tools must allow interactive systems to be developed at an appropriate level o f
abstraction. Developers should not be bothered by low-level programming details when attempting to
develop a prototype. This would only slow down an already difficult process. However, tools must
leave enough control in the hands of the developer for them to develop the interface that they desire.

It has been argued that rapid prototyping tools can be subsumed by a model based approach to
development. These attempt to actually derive the interface design from a selection of models. One of
the earliest, and most well-known of these model based approaches was Adept [103]. Adept was a
proof-of-concept prototype that would automatically generate an interface from a detailed task model.
In order to carry out this transformation it also made use of a very simple user model which described
user knowledge in terms of preferences for different styles o f interface (e.g. menus versus forms).

There are a number of fundamental problems, however, with trying to automatically generate interfaces
from task based models. An approach such as task modelling is only capable o f accurately considering
user activity at a very high level of abstraction. Adept removed control over the interface appearance
from the developer. Draper [40] argues that trying to specify plans for user behaviour down to a low
level can be dangerous:

"It would seem then that we cannot expect fixed and predictable behaviour from
human users even at quite "low" levels. Therefore whenever the device allows any
variation in method, task analyses are not likely to work at low levels."

Instead of trying to restrictively define what a user should do for each task, he argues that we should
create flexible interfaces that allow users to work in a variety of ways. A task model should therefore be
used in association with other contextual information to design a system. Therefore automatically
generating an interface from a task model may not be very effective.

Fields and Merriam [58] also argue that using a purely task-based approach can make it difficult to
consider important issues. They argue that an "information resources" based approach may also be
required, especially when considering complex multi-user domains such as Air Traffic Control. Task
based approaches tend to lead to action oriented designs, that consider only what a user must do.
However, many activities such as Air Traffic Control involve monitoring information. In these cases,
we must also consider what information users need to understand the behaviour o f a given system. One
of the major focuses of design here is therefore to consider how particular information resources will be
presented to the user. Model based designs will not be very effective here if they try to abstract away
from these presentation issues.

Because of these restrictions, model based approaches are too restrictive to apply to dynamic, complex
interfaces. They remove too much control over interface design from the developer. While modelling
can be used as part of the design process, a prototype interactive system still needs to be developed
separately, using some other technique.

1.3.2. Visual Programming

Visual approaches, that allow interfaces to be built by direct manipulation, represent a popular
declarative approach. Developers can define what an interface should look like, rather than saying how
it should be produced. Many visual based programming languages exist for developing user interfaces.
Visual toolkits are commonly provided to allow a developer to graphically build an interface. These
work well when applied to static interactive system, such as simple form based interfaces. It is usually

4

easier to draw such an interface than to program it. When developing standard application behavior,
such as “Print Dialogues”, development tools can provide application frameworks which fill in the
appropriate code. However, when developing novel, dynamic interactive systems it is still necessary to
write much of the interface and application using textual code.

Visual approaches have also been used to construct the architecture of an interactive system. The Clock
language uses such an approach[71]. Visual architectures can make it easier to explain the structure of a
system to a non-programmer. They can also make it easier to understand the structure of a large system.
For instance, class diagrams are commonly used in object oriented programming to provide an
overview of a system, as they summarise interaction between system components. Viewing such a
diagram is clearly easier than trawling through pages of code.

1.3.3. Declarative Programming

This thesis is concerned with declarative programming approaches, and in particular with the functional
programming paradigm. Declarative programming approaches allow a developer to specify what a
program should do, not how it should do it. When developing user interfaces, a traditional imperative
approach forces a programmer to state how both the application state and the interface change, on every
input, as a series o f actions. In contrast, in a declarative approach the programmer should provide one
definition of the appearance of an interface component that will describe its appearance for the duration
of the program. Functional programming emphasises composition. Values representing programs are
constructed by combining smaller units. A functional language for developing user interfaces should
therefore consider user interface components as values and allow them to be easily composed.

Over the last few years there has been a great deal o f interest in the development o f functional GUI
libraries. These have used a number of different mechanisms to allow programmers to structure their
code. Some such as TkGofer [204] have used traditional callback based approaches. These make it
difficult to structure complex interactive systems as the structure of the application is turned inside out
[137]. The application cannot call the GUI library, instead the application must be called by the library.
A more popular solution has been the use of imperative concurrency [62]. This style allows an
application to be structured as a number of threads that execute concurrently and consume user input.
However, these approaches require a programmer to handle the intricacies of full concurrent
programming, dealing with mutual exclusion and race conditions between processes. These approaches
all force a programmer to use a very imperative style of programming; an unfortunate requirement in a
declarative language.

In contrast, the User Interface Management Community has been investigating the use of “constraint”
based approaches for programming interactive systems [136]. Here an application is defined as having a
behaviour, responding to user input and updating its state. The appearance of the interface is defined as
a function of the application’s state. This allows a programmer to say what an interface should look
like, rather than saying how it should be implemented. This style is particularly powerful when defining
multiple views of the same state. One of the most well-known o f these systems, Garnet [136], was
implemented in Lisp. However, it still relied on side-effects to implement changes in the interface.

The languages developed in these two communities both use an imperative style of programming. The
difference has been described as being “Declarative in the Small versus Declarative in The Large” [71].
The languages developed in the functional programming community have been declarative in the small,
allowing individual aspects of a system to be written in a purely functional style. However, they have
been imperative in the large, forcing programmers to structure their programs as a set o f imperative
actions. In contrast, the user interface management community has concentrated on providing systems
that are declarative in the large, allowing user interfaces to be structured as a set o f constraints or
functions. However, being based largely in imperative languages they have not provided the advantages
of higher order functions, and referential transparency when building individual components.

There have been a few notable attempts to overcome these difficulties and combine the advantages of
both. These include Clock [71] and Pidgets [178]. One other important language seems to lend itself to
this style of programming. Fran [44] (Functional Reactive Animation) is a language developed for
constructing interactive animations. It uses a high-level modelling approach which allows programmers
to describe what an animation should look like, not how it should be implemented. It introduced a style

5

of programming known as Functional Reactive Programming (FRP) which has two key notions:
behaviors and events. Behaviors are time-varying, reactive values, while events are streams of values
that occur at a specific times.

This thesis draws from ideas in Fran and Clock to provide FranTk, a high level language for interactive
systems. The emphasis of this thesis is very practical. It concerns the development of a fully fledged
user interface library. Importantly, it is also concerned with applying such a library to significant case
studies. Though many toolkits have been developed, they are most often only evaluated in the context
of small examples. The case studies used in this thesis were chosen to be representative of larger real
world programs. In particular, these case studies have been chosen to demonstrate highly interactive,
dynamic, multi-user, real-time systems.

1.4. Formal Modelling

Formal specifications can be used to help develop interactive systems. They can be used to design
systems, and allow developers to prove the functional correctness o f their systems. For instance, we
could prove that a design meets specific, formally defined, requirements. This is important because
incremental development, based simply on prototyping and testing, cannot guarantee certain critical
system properties. When designing a system, there may be millions of possible system states. No
amount of testing can significantly test such large state spaces. The problem becomes particularly
significant when we wish to prove negative properties about a system. For instance, when designing a
rail track control system, we may wish to prove that “A route will never be set if conflicting routes are
set” [82]. This sort o f critical requirement is impossible to prove simply by user testing, given any
significant system. Though many of these critical requirements are what can be termed functional
(unrelated to the interface), many others will be related to user interactions. For instance, when
developing an air traffic control system there will be certain interaction requirements that will be
critical, such as "A control order can be sent to only one plane" [149].

Formal analysis can be used to verify completeness criteria about user interaction, to search for paths to
hazardous states that might be reached within an interface, and to verify consistency questions about
interaction when in different modes of a system [119].

Formal specifications have also been used to reason about usability properties o f a system [85]. Various
interaction concepts have been suggested. These include predictability, whether a system behaves as
expected; visibility, whether the necessary information is displayed to allow users to act successfully;
continual feedback, whether a systems provides the necessary feedback to allow users to understand
their actions; and reachability, whether a user can get to all states in a system, or whether they could get
stuck in an interaction deadlock. These principles, though important, are very general. This makes them
difficult to check. The use of formal methods to prove the usability o f an interface is a difficult, and
troubled issue. The notion of usability itself is still a difficult topic. The concept o f usability, especially
when dealing with a multi-user system, can only be understood in the context o f the application and
user’s work

This thesis presents a method that allows a formal LOTOS specification to be derived from a structured
FranTk prototype. The model can be analysed to verify important safety properties about the system.
This approach has been evaluated using the case studies.

1.5. Thesis Contributions

The major contributions of this thesis fall into two categories: those related to FranTk, and those related
to formal verification.

1.5.1. Contributions to Declarative GUI languages

The most significant contribution of this thesis is the presentation of FranTk, a new functional GUI
language, embedded in Haskell[158]. FranTk was designed to be used by programmers who are

6

fam iliar with functional programming1. It improves on previous functional GUI languages by
supporting a style of programming that is closer to the goal of being both “Declarative in the Large and
in the Small” . By doing this, it attempts to provide a more compositional style of programming than has
previously been possible in such languages.

This thesis presents a more efficient implementation of the core Functional Reactive Programming
combinators. This is significant because there are a growing number of other application areas to which
the FRP approach has been applied. These currently include robotics[155], multimedia[200] and
animation[44]. Current work at Yale University is investigating its application to Vision systems. The
search for more efficient FRP implementations is therefore important to all o f these application areas.

It is important to note here that this thesis does not attempt to evaluate the usability o f FranTk itself.
This would be a very significant task in its own right. Performing such evaluations has proved difficult
[92]. The usability of any language is heavily dependent on the skills o f the programmer, and their
experience with similar languages. Performing such an evaluation would be fraught with difficulty and
is therefore well beyond the scope o f this thesis.

Instead this thesis evaluates FranTk in terms o f a set of significant case studies. This is important
because only through such case studies can we determine how well a language scales to real-world
problems. These case studies therefore demonstrate only how well the designer o f the language was
able to use it. FranTk does, however, have a number of other users. Chapter 6 will briefly discuss some
of their comments about using the system.

Through the design and implementation of FranTk, this thesis makes the following contributions.

1.5.1.1. FranTk Design

• FranTk lifts Fran’s behaviors and events to widgets. This is the key to the declarative style of
programming. The appearance o f a widget can be defined in one function, fo r all time, in terms of
FranTk combinators. An interface can therefore be defined as a function of some application state.

• FranTk provides good support for dynamic in addition to static interfaces. The construction of
systems with dynamically changing number of components can be difficult in many GUI systems,
and frequently requires a very imperative and sometimes cumbersome style of programming. The
use of behavioral values and dynamic collections allows a single abstract model of an application
to be produced. We can then have multiple views of this model, providing good
application/interface separation.

• FranTk extends Fran with support for hierarchical interactive displays, allowing access to input
from individual components rather from one monolithic window. This is vital to allow a truly
compositional style of programming.

• FranTk separates visual composition from semantic wiring. These two concepts are fundamental to
GUI programming. The first involves geometric composition. For instance, placing one widget
above another. The second involves connecting user input from a widget to the application code.
This separation is made possible by the introduction o f listeners, consumers that respond to user
input. FranTk provides an algebra to compose these listeners in a functional style. This separation
allows a more compositional style o f programming.

• This thesis presents two visual tools, an architecture tool and a static widget construction tool,
which demonstrate how the advantages of visual programming could be incorporated into FranTk.

1.5.1.2. FranTk Implementation

• This thesis presents three novel, clever implementations of the core Functional Reactive
Programming combinators. Each implementation is significantly more efficient than the simple

1 Readers without the necessary background may wish to refer to [94] or [199] or [15], all of which
provide a good introduction.

7

streams implementation provided in the original versions of Fran[46]. Each implementation relies
for efficiency on two key features.

• Data Driven Behaviors and Events. The streams implementation of events and behaviors
requires that behaviors and events are sampled every time interval. This would be prohibitively
expensive in a large user interface, as every aspect of the interface would need to be
redisplayed every time any input was received. Instead FranTk, uses a data driven model.
Events and behaviors have invalidation actions associated with them. After any user input only
those components that rely on behaviors or events that have been invalidated need to be
redrawn.

• Weak Listeners and Finalisers. A simplistic implementation of the FRP combinators can easily
result in serious time and space leaks. Behaviors are updated by listeners as a result of user
input. This is useful only so long as the behavior is actually being used. However, often
behaviors will only be used for a fraction o f the lifetime of a program. For instance, if a
component were later removed from the screen and the behavior it relied upon was no longer
used it would be useful to remove the listeners which update it. For this purpose, FranTk uses
weak references and finalisers. These allow listeners to be deleted when they are no longer
needed, avoiding the potential time and space leaks.

• FranTk makes one further implementation contribution. It provides an efficient implementation of
incremental dynamic collections. Fran provides behavioral values. These could be used to
represent behavior collections of objects. For instance, we could display a dynamic list of objects.
However if we were to render such a behavior collection, each time an element were to be added
the entire collection would have to be redrawn. This would be prohibitively expensive if we
needed to continually recreate complex compound collections. FranTk’s incremental behavioral
collections overcome this problem. They can be both viewed as a behavior and efficiently and
incrementally rendered.

1.5.2. Contributions to Formal Verification

The secondary set of contributions relate to the generation of formal models of interactive systems. This
thesis does not attempt to use formal models to understand the usability o f a system. This has been
attempted by a number of others including Campos[23], Rushby[168], Levesonfl 19]. Instead it
concentrates on the use of formal methods to verify critical, application specific requirements. In
particular, this thesis takes one restricted view of formal methods. It assumes that they should be used to
find problems in a system, not to prove it correct. This thesis concentrates on providing an approach
which supports form al verification, o f complex, domain specific properties by form al methods experts.

In the field of formal modelling of interactive systems, this thesis makes one contribution:

• It presents a transformation mechanism that supports the creation of a formal, LOTOS,
specification, which given certain parameters can be derived automatically from a structured
FranTk prototype. This allows the generation of a formal model at relatively low cost. The model
can be analyzed to verify important safety properties about the system design. To make the
verification practical we focus on partial verification, focusing on critical areas of the design. This
avoids the state-space explosion problems faced when trying to perform exhaustive proofs about a
whole system.

This approach has been evaluated using the Air Traffic Control case study. The need for significant
case studies was very important. Only through the use of a significant, safety critical case study, such as
the Air Traffic Control system, can the utility o f such an approach be demonstrated.

1.6. The Structure of this Thesis

This thesis is structured into 5 distinct parts. Part I contains this introduction. It also contains Chapter 2,
which introduces the three case studies used in this thesis.

Part II o f this thesis presents the design of FranTk, a functional graphical user interface library. Chapter
3 discusses previous approaches to the declarative development of interactive systems. This chapter
also presents a set of requirements for the development of FranTk. Chapter 4 discusses the design of
FranTk, demonstrating its important features through the use of a range of small examples. Chapter 5
presents two visual tools that were developed to help with the construction of interactive systems in
FranTk. Chapter 6 evaluates FranTk in the context o f the three case studies, showing how it supports
the requirements in Chapter 3.

Part III o f this thesis discusses the implementation of FranTk. Chapter 7 discusses the important issues
that arose when implementing the core Functional Reactive Programming combinators. It also discusses
the implementation of dynamic collections. Chapter 8 discusses the FranTk GUI library highlighting
how it achieves a toolkit independent implementation.

Part IV discusses formal verification work. Chapter 9 discusses previous approaches to formal
modelling o f interactive systems. Chapter 10 presents the transformation mechanism that can be used to
convert elements of a FranTk program into LOTOS. Chapter 11 discusses formal verification
techniques in LOTOS, and evaluates the use of this approach with respect to the case studies.

Part IV contains Chapter 11, which presents conclusions and areas of further work.

Finally, this thesis contains three appendices. Appendix A introduces the basic concepts and functions
provided by Functional Reactive Programming. These are the combinators for Behaviors and Events.
Appendix B contains a brief discussion about usability evaluation in the design of interactive systems. It
discusses a small evaluation that was carried out when developing the QOC case study. Appendix C
discusses an earlier attempt to link formal specifications with functional GUI languages.

While this thesis may be read simply from start to end, there are several other possible routes through it
Readers only interested in using FranTk should concentrate on Part II: in particular Chapter 4, which
discusses the FranTk design. Readers without an understanding of Functional Reactive Programming
may also which to refer to Appendix A to gain an understanding of the basic FRP combinators. Readers
interested in FranTk may also wish to read Chapter 5 which discusses the visual tools. They should then
read Chapters 2 and 6 which discuss the case studies and the use of FranTk within them. Such readers
may also wish to read Chapter 3 to understand how FranTk fits into the broader family of Graphical
User Interface languages. Readers interested in the new Functional Reactive Programming
implementation need to read only Chapter 7. Readers only interested in the widget implementation,
such as those wishing to port FranTk to a new toolkit, should read Chapter 8. Readers only interested in
the formal verification work should read Part IV of this thesis and Chapter 2 to understand the case
studies.

9

Chapter 2 - The Case Studies

2.1. Introduction

In order to develop and evaluate the approach discussed in this thesis, I used a series o f case studies.
D eclarative program m ing languages and formal verification techniques are frequently only applied to
very sm all-scale exam ples. One o f the most significant factors about the work in this thesis is that I have
applied the approaches developed to three case studies, each increasingly com plex. D em onstrating the
scalability o f the approaches was o f prime im portance.

2.2. The Space Game

The first case study ([169],[170]) involved the developm ent o f a highly interactive, real-tim e user
interface. It is a space ship game, as shown in Figure 1. The user inputs com m ands via the keyboard. A
num ber o f enem y ships fly in waves across the screen. These destroy the p layer’s ship if they collide
with it. The player must avoid hitting the hills at the bottom , and the enem y ships. The aim is for the
player to destroy the enemy base when it is finally reached, while shooting as many enemy ships as
possible. There are buttons to allow the user to pause the game, restart it, or quit from it. The current
score will be displayed on the screen. T hough the graphics are only simple, the game requires real-tim e
anim ation. This exam ple therefore provides a highly reactive system, with a num ber o f different
interacting com ponents. The exam ple does not, however, have any significant notion o f
application/interface separation. There is only one view o f any o f the data and so there is no real need to
be able to provide an abstract model o f the gam e’s progress.

Enemy
base

Restart

Figure 1 - The In teractive Game

2.3. The QOC Editor

2.3.1. In troduction

The second case study ([171]) involved the design o f a m ultiple user, design rationale editor. This
provided for a fairly complex case study, where significant design decisions were needed and where
concurrency was required. This concurrency added an extra level o f com plexity that began to make
formal specification and proof helpful. For instance, in ensuring that locking properties are satisfied for
multiple users o f a shared workspace

10

2.3.2. Design Rationale

Design rationale has received a lot o f attention [133]. A num ber o f sem i-formal notations have been
developed that attempt to docum ent clearly why design decisions were made. The Q uestions, O ptions
and C riteria (QOC) notation is one such notation developed at Rank Xerox [183]. It is a graphical
notation that highlights key questions in a design, and links them with possible options and criteria that
support those options. Several studies (e.g. [183]) have highlighted the need for tool support for this
notation. A variety o f tools have been developed, frequently based on hypertext systems. However,
current tool support is frequently inadequate for designers' needs [185]. In particular, tools often
provide little support for m ulti-user activities. Buckingham Shum argues that design rationale itself is
still in its infancy. This makes it difficult to be sure exactly how designers will wish to use these tools.
Iterative developm ent is therefore required to explore different ways o f satisfying the needs o f
designers.

2.3.3. C ollaborative Softw are

This case study was appropriate because the developm ent o f collaborative softw are o f this form is still
in its infancy. It is frequently difficult to determ ine exactly how a group o f users may wish to
collaborate using a piece o f software. It is very easy to produce softw are that does not properly consider
how a group o f users may share a design, and so seriously hinder the use o f such a tool [13]. A design
therefore needs to be well thought out, and will frequently go through several iterations before it can be
useful. It can also be difficult to produce softw are for several users because o f the concurrency
involved. Complex locking mechanisms may be required that need serious thought [38J. A design
therefore needs to be well structured.

aled - QOC2 - What sort of = J n] * J ■

damela

meurig

Comments View
Q OC Window’ menu

QOC Comments View -4
Node

Ibeing
moved
n other

Q uestion Criteria
Main menu

1 oolbar L faster througlList o f Users U manual

»i»

Filfe QOC View C more efficien

0 mixedN ode being
M oved by me

C [cheaper to ndam ela

0 j automatic
▲QOC W indow g(Shared cursor

Buttons C no emergenc

N ode

Figure 2 - The QOC E ditor

2.3.4. The Prototype System

Figure 2 shows the interface for the prototype system we produced. It allows several users to build a
QOC rationale. Each user has a separate view o f the QOC collection. Each Q OC is m aintained in a
window. Different users can have windows open in different areas o f the screen. W ithin each window,
however, users' views are strictly W Y SIW IS (W hat-Y ou-See-Is-W hat-I-See). U sers can also note their

11

actions, and any extra textual information using a shared log. They can filter their own view, using the
view menu. They can filter their view of nodes to show only Questions and Decisions; Questions,
Decisions and Criteria; Questions and all Options; Questions, all Options and Criteria.

The level of sharing is important. In their current window, users can see changes made by anyone as
they happen. In contrast, they will only see the results o f changes in each of the other visible windows.
They can also see where the other users’ cursors appear in their own window. Users have a colour
associated with them, used for their cursor. A different colour scheme is used to represent changing
objects. Objects being edited by a user appear in green; objects being edited by another user appear in
red. Locking is at node level, so that two users can both act in the same window, but cannot both act on
the same node in the window simultaneously.

This example introduced some new requirements that were unnecessary in the “Space Fighter Game” .
In particular, it has a real need for separation between application and interface code. We require one
explicit underlying model o f the application, so that we can provide multiple views of the same data and
so that we can save and load the contents of the QOC to and from files.

The prototype system was evaluated through a multi-user usability trial (discussed in Appendix B). This
study was designed to formatively evaluate the case study. After each trial, incremental changes were
made to the interface to fix problems experienced that were discovered. This allowed me to test the
support for redesign that existed within the prototyping environment, and demonstrate whether the
interface developed in such a declarative system would be efficient enough to really use.

2.4. The ATC System

The third and most significant case study ([172], [173]) involved the development o f a prototype data-
link Air Traffic Control System. This system was developed in association with a human factors
specialist, at the UK’s National Air Traffic Services, who provided the necessary domain knowledge
and requirements. This section provides a detailed introduction to Air Traffic Control, discussing the
processes used, and the difficulties involved in developing such systems. This discussion demonstrates
why new prototyping tools are important. It then goes on to present the prototype system developed,
summarising its functionality. This demonstrates that the ATC system formed a significant case study.
Readers who are interested only in the interface developed with FranTk may wish simply to skip to
Section 2.4.4 and skim through that section.

2.4.1. Introduction to Air Traffic Control
Current ATC systems have a good safety record, but they are reaching their limits. Since 1987 the
demand for air transport has been expanding at roughly 6% per year. EUROCONTROL - the European
Organisation for the Safety of Air navigation - forecast that before 2015 air traffic levels will have
doubled compared with those experienced in 1997 [49].

“Current concepts have inherent limitations and cannot meet either the forecast traffic increase
or the users’ changing business needs. Particular shortfalls are:
• Rigid airspace divisions and route structures;
• Limited real-time information exchange;
• Reliance on increasingly congested radio communications;
• A lack of integrated planning between Air Traffic Management, airports and airspace

users;
• An inability to exploit aircraft avionics capabilities.
Traditional methods of increasing capacity by further sub-dividing airspace sectors have
reached their viable limit in some airspace areas.”

EUROCONTROL, the European Air Traffic Control Agency, aim to handle the problem with
improvements in planning and organisation, and an increased level o f automation. As one potential
solution, it is envisaged that more air-ground communications will take place via digital data-links,
allowing efficient communications between airborne and ground systems, and between adjacent sectors.
Controllers would be far more reliant on technology with such a solution. This has important
consequences for the design of human-system interaction.

12

2.4.2. Developing Air Traffic Control Systems

Air Traffic Controllers work in a complex collaborative environment. En-Route Air Traffic Control
involves flights travelling at high altitude across a number of different airspace sectors. Controllers
work in teams within each sector and must also negotiate with controllers from adjoining sectors. New
systems must therefore properly support this collaborative activity. Systems that reduce situational
awareness could have serious safety implications [122]. A human-centred approach to the development
of new ATC systems is therefore vital. Early user involvement is also needed to guarantee that new
designs really support and improve the efficiency of controllers’ work. Air Traffic controllers operate on
tight time scales. Systems that interfere with existing work practices, by slowing down controllers,
could be dangerous, and will be unacceptable. Numerous research projects have ultimately been
rejected by controllers as unusable [122].

To ensure safety and maintain controller confidence ATC systems must be reliable. However, a number
of problems with new systems have shown that this can be difficult. For instance, in 1992, while in
actual use, a new system in Canada faced significant problems. "The system crashed in tests and actual
use, freezing radar screens, displaying false information and even showing jets flying backwards". [202]

Organisations such as the UK’s National Air Traffic Services (NATS) use a number of approaches
when developing new ATC systems. These include formal approaches such as task analysis, human
factors guidelines and error analysis; and user oriented approaches involving distributed multi-user
simulations which take several months to develop. Full simulations must be used to gain an
understanding of how controllers react to new ATC systems. However, these are slow to develop and
demand too many resources to perform several design iterations. Smaller scale, more rapid approaches
to user interface prototyping are therefore also important.

Given the collaborative nature of Air Traffic Control, the effectiveness of a new interface depends not
only on the functionality of the system, but on the way it alters existing work practices. Simulations
must be as realistic as possible. Support for experimentation with several users is therefore important.
Prototyping tools should therefore support distributed, real-time, concurrent interaction. Despite the
need for realism, less authentic studies can still be useful as problems with a system will scale up and
out. If a controller finds a feature of an interface clumsy in a small-scale test, we can be reasonably sure
the same will be true in real use. This means that rapid approaches to multi-user interface development
can be very useful.

The development environment presented in this paper, fits in well here. It allows rapid prototyping and
formal verification, thereby supporting usability and safety analysis. The next section presents the
prototype Air Traffic Control system that was produced.

2.4.3. Air Traffic Control Background

The prototype system that was developed is for En-Route Air Traffic Control. An aircraft will be
controlled by a number of different Air Traffic Service Units (ATSU) during the course of its flight,
and is sequentially under the control of several controllers within a single ATSU.

The work in each sector is split into two major roles: a planning and tactical control. The planning
controller is responsible for co-ordinating aircraft entering the sector and handing off aircraft from the
sector. The tactical controller is responsible for communicating with aircrew and maintaining aircraft
separation. Controllers must therefore be aware of what their partner is doing. In the UK, sectors are
paired together. This means that the controllers covering the paired sectors sit side by side, with tactical
controllers immediately beside each other. This allows them to handle emergency situations that occur
at sector boundaries.

Controllers rely on flight plans, pilot requests, requests from other sectors, current weather and traffic
conditions to manage air traffic. To gain a 2-D representation of traffic positions, controllers use a radar
track data block, displaying aircraft and accompanying details showing the callsign and altitude.
Controllers use a number of different interfaces in different centres, but these usually include a mouse,
which can be used to calculate ranges between different aircraft and points.

13

Controllers use paper flight strips to keep a record of flight information and instructions. These also
provide a legal record of controller behaviour for use in accident investigations. Flight strips consists of
a band of paper printed with flight information containing the airline, flight number and type of aircraft
along with the authorised flight plan (speed, level, route). Controllers use flight strips both as a memory
aid and a means of communication [122]. Strips are laid out on a strip board. They can be arranged in a
number of ways, for instance, by time and way point. Controllers slide strips from left to right to
highlight different conditions such as two planes in conflict. Controllers can work simultaneously on the
same strip board, and refer to particular strips on the shared board.

Controllers and aircrew communicate using radiotelephony (R/T) for all explicit communications. This
provides a rapid and natural means of communication, which is particularly important when passing
urgent communications. All pilots on a given frequency can hear every transmission. This is known as
the “party line” . It allows pilots to build up a picture of traffic based on what they hear o f other
transmissions. However, the quality o f radio communications can be poor. Though controllers may be
sure a pilot has heard a clearance, they cannot be sure that the pilot has not misunderstood, especially
when communicating in an unfamiliar language. The effect o f the party line can also be confusing with
pilots responding to messages meant for other aircraft. Radio communications are also extremely
congested. Radio bandwidth is the limiting factor on further growth in many sectors [49]. This
congestion could be reduced. For instance, valuable bandwidth is being spent on passing routine sector
co-ordination and frequency transfer messages.

In the future, it is envisaged that more air-ground communications will take place via digital data-link.
It is hoped this will allow efficient communications between both airborne and ground systems, and
adjacent sectors.

A number of data link based services are being considered. Our prototype concentrates on providing a
subset of these services:

• ATC Communication Management (ACM).
• Clearance and Information Communications (CIC).

The ATC Communication Management service provides automated assistance to controllers and
aircrew when transferring between airspace sectors. This, in particular, supports the role o f the planning
controller.

The Clearance and Information Communications service provides support for clearance, request and
information dialogues between aircrew and controllers. Clearance dialogues allow the tactical controller
to send orders to pilots; request dialogues allow pilots to negotiate flight parameters, most often
heading or flight level, to minimise the cost o f the flight or to avoid bad weather. Information dialogues
allow the controller and pilot to share other information. Flight parameters can, for instance, be
automatically downlinked to avoid the need for controllers to use valuable bandwidth asking for them.
The CIC service therefore supports, in particular, the role of the tactical controller.

2.4.4. The ATC Prototype

The ATC Prototype that we produced allows several controllers to work together. It supports up to two
controllers, planning and tactical, in two adjacent sectors. This provides a reasonable simulation of the
paired sector setup discussed in the previous section. The prototype is heavily based upon designs
produced as part o f the EUROCONTROL EATCHIP Phase II HMI Catalogue[48], The prototype does
not consider the aircrew’s view. All aircraft are simulated by the system.

An individual controller's view can be seen in Figure 3. It shows how a controller would send a flight
clearance message to an aircraft, telling it to climb to flight level 240.

The interface provides a radar map of the sector with aircraft positions shown as blips. These show the
current location of an aircraft and its last three positions, giving a good idea o f aircraft acceleration.
Associated with each blip is a label known as a datablock showing the Aircraft Callsign, next sector (or
last sector if the aircraft hasn't entered this sector yet) and current flight level. Datablocks can appear in
different colours depending on the status o f an aircraft. For instance, an aircraft under the control of a

14

sector appears in black, an aircraft co-ordinating entry to a sector appears in blue. These labels will also
show data-link error m essages, and will highlight values undergoing data-link co-ordination. For
instance, aircraft BAW 33 has been sent a clearance to change its flight level.

data

Figure 3 - A C o n tro lle r’s View in the ATC Prototype

By moving the mouse over a datablock, the controller can cause a selected fl ig h t label to appear. This
shows more flight details, including dow nlinked flight param eters, and allows the controller to send
flight clearance and co-ordination instructions. This direct provision o f flight inform ation reduces the
need for radio com m unications between controllers and pilots. This allows controllers to keep their
attention on the radar rather than being forced to move to the edge o f the screen.

A more detailed fl ig h t data p lan w indow is also available. It allows controllers to interact with the
selected aircraft in a sim ilar manner. It also shows more details, including dow nlinked controller
preferences and the flight route. The plan shows inform ation on the currently hooked (currently
selected) aircraft, which will also be highlighted on the radar screen and on the A ircraft D isplay
window.

Controllers can send data-link m essages in a num ber o f ways. They can send individual clearance
messages. These can be im m ediate or conditional. For instance, Figure 3 shows the creation o f a
clearance to reach Flight level 240. T his is done using the tactical data entry w idget, which allows the
rapid creation o f com posite m essages, specifying heading, speed, and flight level. C ontrollers can send
flight route updates with the graphical route editor shown in Figure 4. They can alter the heading and
select and delete way points, seeing clearly the result o f the change.

Co-ordination m essages can be sent to the upstream sector (if accepting an aircraft), or to the
dow nstream sector (if transferring an aircraft). Figure 5 shows a controller accepting a flight into their
sector. They can either request the flight on a given frequency, or skip the flight telling it to pass to the
next sector. The default frequency is shown, and can be set using a menu. T ransfer o f flights between

A ircraft
Speedbird

mnvrc

Tactical
entry

Aircraft
Display

▼ | a m iT 9 | l 7 :1C STH

IB 7 4.7 TCP 1 2 4 0 1 7 :1 0
NRD ___

1B ? 47 t f f l | 2 « D 1 ' H
S T H

M essages
O u t
Wihdowjl

W datalink

TOl AC IBAW33I FL 250

A ircraft

W indow

15

sectors can therefore be carried out at the press o f a button. The appearance and behaviour o f this co ­
ordination widget is modal and depends on the current status o f the flight.

N ew
route

Figure 4 - G raphical Route E ditor

DLH5G1
OLD!

kjjjQjjim
SKIP

, Freq 101.4

PHONE

™J6»®88I

Figure 5 - Sending a C o-ordination M essage

T ransfer param eters, such as the T ransfer flight level, can also be negotiated, using a sim ilar widget to
that used to send a flight level clearance, by selecting the appropriate param eter on the selected flig h t
label.

W ith any o f these message creation approaches a data-link message can be sent or the ground system
can be updated, by selecting the PH ON E button. This can occur if a controller has been in radar contact
with a pilot, or has spoken to a controller in an adjacent sector. This is im portant because some
com m unication, particularly non-routine or urgent clearances will still be handled by radiotelephony.
Data-link cannot provide the same tone o f urgency as voice com m unication, and will be too slow for
such messages.

Data-link com m unication messages appear in the M essage In and M essage Out windows. These allow
controllers to keep track o f incom ing and outgoing messages. Both controllers within a sector can see
the same message lists providing a shared view o f data-link com m unication. C ontrollers can use the
labels that appear in these windows to respond to m essages. For instance, in Figure 3, an error message
and a Bight level message are both shown in the M essages O ut window. C ontrollers can either reply
that they are unable to co-operate with the request, or tell the pilot to standby, by pressing the U NBL
and STDBY buttons respectively.

The Aircraft Display window can also be seen in Figure 3. It shows electronic flight strips for each
aircraft. These can be highlighted by the controller, m oving them from left to right for the controller,
using the selection tags that appear on the sides o f the strips. The A ircraft D isplay window can be
ordered by flight level, entry time, exit time or organised by entry or exit point. In Figure 3, the A ircraft
Display is organised by entry point. In this case the strips are organised into colum ns by entry point.
W ithin each colum n they are arranged by time. This display is also shared between the planning and
tactical controller, providing another means o f m aintaining a shared awareness.

current
route ■

16

2.4.5. Redesign
The initial interface underwent a process of interactive redesign, at the NATS headquarters, where I
worked with a human factors specialist to change it to suit his needs. This process allowed us to test
how well FranTk supported arbitrary modification of an existing application; whether it was powerful
enough to support any change requested by the NATS specialist; and whether it was possible to develop
a prototype of sufficient quality for the needs of an end user.

2.5. Summary

We therefore have three case studies of increasing complexity that were used to evaluate the scalability
and applicability of the prototyping language, and the formal verification approach. The important
contributions of each case study are summarised in the table below.

Game QOC Editor ATC System
Scale -300 lines of code > 1500 lines > 5000 lines
Real-time properties Yes No Yes
Dynamic Displays Yes Yes Yes
Need for Application/Interface
separation

No Yes Yes

Multi-user No Yes Yes
Scope for verification No Little Yes
User testing and redesign No Yes Yes

Table 1 - Summary of Case Study Contributions

17

Part II. Declarative Rapid Prototyping
Part II o f this thesis presents FranTk, a new declarative language for developing interactive systems. It
compares it with previous languages and demonstrates its benefits through the three case studies
described in Chapter 2. This part is therefore aimed at readers interested in the design o f FranTk and
those readers interested in actually using it.

18

Chapter 3 - Declarative Development of Interactive Systems

A variety of languages exist to support the implementation of interactive systems. Some are based on
specific architectures to allow a structured design approach. Others allow developers more freedom in
how they structure a system. Some languages are visual and support development by direct
manipulation; others are purely textual. All languages should support the development of three areas.
They must support the development of the presentation or appearance of the interface; the dialogue
level that describes how user interactions are to be interpreted, and the link between the interface and
the underlying application.

In this chapter, I will review a number of these languages. When doing this I will consider a set of
general requirements that are important to the development o f the case studies discussed in the previous
chapter. In particular, these languages must provide good support in the following areas.

1. The development of systems with both static interfaces, and dynamically changing interfaces.
2. The separation of application and interface code, so that one abstract model of the application can

be maintained. To make this easier, some high-level mechanism should be available to ensure
consistency between the application model and interface views.

3. The provision of temporal operators to support real-time interfaces. This includes the development
o f animations where the value of some parameter may change with time; and the specification of
temporal predicates, such as time-outs, that are required by the Air Traffic Control case study.

I will first introduce a number of conceptual architectures, which attempt to support
application/interface separation. I will then introduce the general areas o f constraint based
programming, model based programming and visual programming. I will then discuss in more detail a
set o f languages for the development o f interactive systems. These include one object oriented
language, Java, and a number of existing functional Graphical User Interface languages. Each o f these
languages will be illustrated by at least one example, the development o f a “counter” , with an increment
and decrement button, and a label showing its current state. Finally, based on the general requirements
outlined above, and on issues raised in the discussion, I will present a set o f high level requirements for
declarative implementations of interactive systems.

3.1. Conceptual Architectures

A number of conceptual architectures exist to help consider how the presentation, dialogue and
application should be connected. The earliest of these, the Seeheim model[161] simply defined these
three layers. It suggested that each layer should be considered as a separate component, and that
communication could then take place between them, as shown below.

screen
update feedback calls

tokens tokens calls/

Presentation
layer

Dialogue
layer

Application
interface

Application

callbacks
Figure 6 - Seeheim Model

It therefore provides separation between the application and interface. However, as each layer is
monolithic, systems cannot be considered in terms of components. A number of approaches that allow
design in terms o f components, while still preserving application/interface separation, have been
developed more recently.

3.1.1. The MVC Model

The Model-View-Controller (MVC) methodology has proved very influential. It was first associated
with SmallTalk, as part of an object-oriented approach to design[70]. In MVC, a system is built using
components. Each component is made up of three parts. The model handles application data. A model
will contain an abstract representation of the data in a system. The model connects to a view that

19

maintains the appearance o f the component, and the controller, which handles user input. These
components can be combined into a hierarchy, as views can have subviews, which are themselves part
of a component.

model
M— — ►

view

controller

Figure 7 - MVC Model

3.1.2. The PAC Model
The Presentation-Abstraction-Control approach[32] below is similar to the MVC model. PAC programs
are organised into hierarchies of components. The abstraction is similar to the MVC model. The
presentation implements both the appearance of the component, and its interactive behaviour. The
control maintains consistency between the abstraction and presentation. The tree hierarchy allows
complex structures to be built up. Communication between different PAC components can take place
through the control components.

Abstraction Presentation

Control

PresentationAbstraction Presentation Abstraction

Control Control

Figure 8 - PAC Model

Both the PAC and MVC models therefore allow systems to be thought o f in terms of components. In
MVC it is less clear how communication should take place between different components. The PAC
tree makes it clear that this is handled through the control elements. Any MVC implementation must
answer this question.

3.1.3. The ALV Model

Another similar model is the Abstraction-Link-View (ALV) model[90] below show in Figure 9. ALV
programs are divided into two structures, the abstraction and the view. The abstraction covers the
application model; the view covers the interface appearance and updates. Each of these parts forms a
hierarchy. To maintain consistency between these two trees, constraints can be used. For instance, we
could specify that the text of a label showed some value from an abstraction component. These ALV
constraints are known as links and may be connected in any way between components in each tree. The
ALV model has been used as the basis o f the Rendezvous language[91].

Figure 9 - ALV Model

20

The use of constraints here, can be very powerful. Rather than having to explicitly worry about sending
updates between the abstraction and view, we can simply define a relation. This allows us to specify the
relationship between the two in a declarative way. However, given a complex enough system, a miriad
of constraints, going up and down the tree, could be difficult to understand and debug.

The application interface separation, provided by the models above, supports modularity in a design.
This separation could perhaps allow designers to produce several interfaces to the same underlying
application.

3.2. Constraints & User interface languages

Constraints can be used as a way of configuring interactive systems. They are fundamentally a
declarative formalism, in that the programmer thinks about what conditions need to exist, rather than
how they should be implemented.

They can also be used as a way of specifying the presentation of an interface. Geometric constraints can
be used to define layout rules between objects on a screen. We could, for instance, produce a box and
some text, and define the box to always surround the text. A variety of different interface languages use
constraints. The Rendezvous language, discussed in the previous section, is one example.

Probably the best known system that uses constraints is Gamet[136], It uses an approach based on the
MVC model to consider how systems should be structured. Constraints are used to maintain consistency
between MVC components. Garnet allows the use of one-way constraints. These operate in only one
direction. In the box and text example described above, though the size o f the box is guaranteed to
increase if the amount of text increases, if the user were able to increase the size of the box manually,
then the size of the text would not increase. Garnet’s successor, Amulet, supports Multi-way constraints.
In our example, these would guarantee that the size of the text would increase with that of the box. They
can, however, quickly become very complex to implement and use[136]. Garnet allows constraints to
be used to maintain consistency between any data in a system, not just to prescribe the appearance of
the interface. This provides for a very powerful system.

Garnet and Rendezvous support indirection in constraints. This means that, rather than having to
explicitly define a constraint between two components, we can instead attach a constraint to a pointer
variable. The constraint can then be set to point to different objects at run time. This supports the
definition o f reusable modular components. It also adds expressiveness. We could, for instance,
constrain a value to be based on a dynamically selected object[91].

However, the constraints available in Gamet can have serious problems[71]. Garnet permits two sorts
of behaviour which can result in systems that are difficult to debug: side-effects and constraint loops.

Side-effects allow other actions to be performed when a value is updated via a constraint. For instance,
Gamet uses constraint side-effects to dynamically create and destroy objects. This use of side-effects,
means that programmers must know the order in which constraints will be evaluated.

Gamet also allows constraint loops. This means that two objects can have constraints that link back to
each other. For instance, we could have two text boxes where the text in one box was constrained to be
the same as the text in the other. We would therefore have an infinite loop. When combined with side-
effecting this can be particularly dangerous. W e could imagine an object that as a side-effect creates an
instance of itself. This would result in infinite constraint loop, where instances of that object were
continually created. This form of looping cannot be detected by a compiler. Sometimes it may even be
undetectable at runtime[71]. These features can therefore make constraints very difficult to use.

3.3. Model Based Approaches to Interface Development

Section 1.3.1 introduced the model based approach to design. Recall that such systems attempt to derive
the interface design from a selection of models. In addition to proof o f concept prototypes, such as
Adept[103], there are a number of systems that allow real interfaces to be developed. One of these is
MOBI-D [162]. It allows more user control in the generation of an interface by allowing designers to

21

set style preferences that describe the type of interface to be produced. It also allows designers to
override the system choices so as to provide direct control over the type of interface to be produced.

These approaches are, however, restrictive. Though they allow the generation of an interface from a
model, or set of models, they do not allow the reverse. If problems are found in the resulting interface,
changes must be made in the original high-level models. The mappings between these models can be
complex enough to make this task difficult. The Teallach approach to model based design [78] attempts
to avoid some of these problems by allowing transformation in any direction. It uses a mixture of
models including a task model, a domain model, which defines the relationship with the underlying
application, in this case a database system, and a presentation model (which defines the surface level
issues of the interface). The Teallach project aims to allow partial translation between any of these
models, so that a designer can start by considering the appearance of an interface before going back to a
task model.

The automatic generation of interfaces is restricted to specific well-understood areas, where innovative
design in an interface is not required. The Teallach approach, for instance, was used only to develop
fairly standard interfaces to databases. Automated tools will generate reasonable, but unoriginal
interfaces for a given system. If we wish to produce a new interface that attempts to better support a
user’s activities then we need to involve creative design. The creation o f safety critical interactive
systems falls into this category. Here a range of interfaces need to be developed, with direct expert
involvement. The rationale for such designs must be clear, and responsibility for them must be explicit.
Automatic model based approaches to design will not be helpful here.

3.4. Visual Approaches to Interface Development

Visual approaches, that allow interfaces to be built by direct manipulation, represent another popular
declarative approach. Programmers can again define what an interface should look like, rather than
saying how it should be produced.

The MEAD system [13] provides support for the construction of multi-user interface prototypes. It was
developed to allow novel Air Traffic Control interfaces to be developed without the need for any
programming. Interfaces are defined using three distinct sets o f tools. An “Object Browser” is used to
create simple data types with attributes and unique identifiers. Instances of these objects can also be
created with given attribute values. Different views of this data can be created using the “View
Definition Tool” . These views can then be used to create “User Displays” . The User Display definition
tools allow objects to be displayed based on selection criteria (simple predicates). Presentation criteria
are used to define which type of view should be used for any given object based on its attributes.
Finally composition criteria are used to arrange collections of objects on a display. MEAD allows the
development o f fairly complex views. However, it does not allow these views to be defined as arbitrary
functions of the application state, such as the creation of a line with a height constrained as a function of
one or more object’s attributes. More significantly, MEAD provides only very simple support for user
interaction. Attributes can be edited textually via their views in user displays. The development of any
more complex user interaction, such as the use of buttons, sliders and popup-menus is therefore
impossible. Though MEAD proved useful for experimenting with possible ATC displays, it would be
no use for the creation of complex interactive interfaces such as those in the data-link ATC case study
used in this thesis.

HyperCard provides a good example of a visual approach for building interactive systems [9]. The
programmer builds an interface from a selection of predefined objects, such as buttons, text fields and
drawing tools. This allows designers to see what an interface should look like immediately. To define
more complex properties, the programmer can open up a property sheet. This is used by the
programmer to link the object to feedback, or to computation.

This direct manipulation style has problems. Certain things are difficult to define. For instance, while it
is easy to build a static interface, defining an interface that can undergo complex dynamic changes is
more difficult. Expressing complex layout rules, for example, to visualise graph structures can be
impossible [71].

22

Environments that combine visual and textual programming have been developed in an attempt to
combine the advantages of both. One of the most popular commercial systems is M icrosoft’s Visual
Basic [129]. Visual Basic allows interfaces to be drawn using a predefined toolkit o f components. The
attributes of these components can be edited using a property editor. These components are defined as
objects. To make these objects interactive, event handlers can be associated with them. These event
handlers are defined textually. They update application code or update the display by changing objects’
attributes. The relative simplicity o f Visual Basic makes it popular for novice programmers. However,
implementing complex programmes, particularly involving dynamically changing displays can be
difficult. Visual Basic provides poor support for understanding the structure of a large program, which
makes it difficult to incrementally modify such systems.

Some programming environments attempt to provide more structure, and allow the development of
more complex interactive systems by combining visual and constraint-based programming. Gamet, for
example, contains a tool called Lapidary [136]. This again allows designers to draw and define objects.
These objects can be linked to constraints. Lapidary allows programming by demonstration: the
designer can draw objects in different states, and Lapidary calculates the constraints to transform from
one to another. Eventually, however, the programmer must use textual programming approaches.

3.5. Java’s Swing - An Object Oriented Approach

There are a number of different object oriented languages that provide support for interactive system
development. One of the most recent and popular is Java’s Swing[194]. It supports both visual interface
programming and a model-view-controller programming style. In this section, I will briefly outline the
benefits and limitations of the support provided by Java.

JavaBeans [191] technology, of which Swing is a part, is designed to allow structured component based
programming to be used in combination with visual interface builders. JavaBean components are known
as Beans. Beans expose their features to builder tools by adhering to specific design patterns, and by
using the Java Reflection API. This API allows tools to ask a component what methods it supports at
run-time. Beans use events to communicate with other Beans. A Bean that wants to receive events (a
listener Bean) registers its interest with the Bean that fires the event (a source Bean). Builder tools can
examine a Bean and determine which events that Bean can fire (send) and which it can handle (receive).
Beans can be composed visually using a builder tool. They can be composed geometrically into more
complex displays; and they can be composed semantically by connecting listeners to events. However,
to provide any actual behavior Java code must be written.

As well as supporting simple properties and methods, Beans also support Bound properties. Simple
properties just support basic get and set methods. However, sometimes a component needs to be
notified when a component changes. Whenever a bound property changes, notification o f the change is
sent to interested listeners. A Bean containing a bound property must maintain a list o f property change
listeners, and alert those listeners when the bound property changes. This provides a simple but
powerful method of maintaining consistency between components that is an alternative to the use of
constraint based approaches. Java’s approach, however, has its limitations. Even using the
property Change support provided, it would still require a reasonable amount of code to define a new
bound property that was a function of several other bound properties.

Java’s Swing provides a separation between user interface components and models which provide an
abstract representation of some data. For instance, when implementing the “Counter” we could use a
BoundedRangeModel to represent the application state. This supports methods to set and get an
integer value, and to add a listener to hear about changes. To implement the example, we would
therefore create the label and two buttons. We add a C h an geL isten er to the model that sets the
value of the counter. We also add an A c tio n L is te n e r to each o f the buttons, which sets the model
to the appropriate value. The necessary code is shown below.

p u b lic c l a s s C ounter ex ten d s JP anel
im plem ents C h a n g eL isten er , A c t io n L is te n e r {

p u b lic Counter(BoundedRangeM odel s t a t e) {
l b l = new J L a b e l("C ounter:0");

23

in c = new J B u tto n ("i n c "); dec = new J B u tto n ("dec");
t h i s . s t a t e = s t a t e ;
s t a t e . ad d C h an geL isten er(t h i s);
i n c . a d d A c tio n L is te n e r (t h i s); d e c . a d d A c tio n L is te n e r (t h i s);

/ / Layout com ponents
setL a y o u t(n ew G rid L ayou t(2 ,1)) ;
a d d (l b l) ;
JP an el tmp = new JP an el(n ew F low L ayout()) ;
ad d (tm p); / / p la c e th e two b u tto n s in a p a n e l o f t h e i r own
tmp. a d d (i n c); / / to en a b le them to be s id e by s id e ,
tmp. a d d (d e c); / / below th e la b e l

}

JB utton in c ,d e c ;
JL abel l b l ;
BoundedRangeModel s t a t e ;

/ / Implement A c t io n L is te n e r ,
/ / T h is a c t io n i s perform ed on b u tto n c l i c k s
p u b lic v o id a ctio n P erfo rm ed (A ctio n E v en t e) {

i f (e . g e tS o u r c e () == inc) / / I f i t i s th e in c b u tto n , add 1
s t a t e . s e t V a lu e (s t a t e . g e tV a lu e ()+ 1);

e l s e i f (e . g e tS o u r c e () ==dec) / / w ith th e dec b u tto n , s u b tr a c t 1
s t a t e . s e t V a lu e (s t a t e . g e tV a lu e () - 1) ;

}

/ / Implement C h an geL isten er,
/ / S e t la b e l when s t a t e o f model ch an ges
p u b lic v o id stateC hanged(C hangeE vent e) {

l b l . s e t T e x t ("C ounter:"+ s t a t e . g e tV a lu e ()) ;
}

}

The layout combinators used are slightly clumsy. We need to create a subpanel in which to place the
two buttons. Layout would have been easier if we could provide a simple declarative definition of the
appearance of the interface: above (l b l , b e s id e (i n c , d ec)). While this use of layout
combinators can be avoided when building interfaces visually, it is still necessary when constructing
dynamic interfaces.

The use of abstract models is very important, as it satisfies the requirement of supporting
application/interface separation. There are a range of other models provided by Swing. For instance,
there is a L istM odel which defines the methods which components such as listboxes use to access
lists. Though Java provides L istM od els, they are less powerful than standard lists. For instance, it
would take a fair amount of code to define a L istM odel that was always sorted. Life also becomes
more difficult when modelling new data types. In this case, programmers would have to define a new
model class.

As we have seen, user interface components and models communicate via listeners. Java distinguishes
listeners based on what they can be added to, rather than simply on the type of information that they
consume. This means that to consume values of new types we must define new Listener classes. It is
also sometimes difficult to add a listener in two places. For instance, Java distinguishes between
M o u seL isten er ' s which hear about mouse clicks, and A c t io n L is te n e r ' s which hear about
action events (such as from buttons); yet both can be thought of simply as actions that are uninterested
in the data that they consume . Here we would need to duplicate code.

To support new data types it is necessary to define new kinds of events. However, doing so is tedious,
because the Java’s AW TEventM ulticaster class (which manages listener lists) only supplies a
fixed set of overloadings for the listener add and remove methods. New kinds of events may easily
have signatures that do not match any of the given overloadings. In such a case, the programmer of the
new kind of event must also implement all of the list management needed to support multiple listeners.

24

Conversion between listeners is also cumbersome. For instance, if we had an item listener (which hears
about selected objects), and wanted it to be fired every time a button was pressed, we would require to
write the code below. It creates a new A c tio n L is te n e r , which fires the ItemChange listener.

A c tio n L is te n e r 1 = new A c t io n L is te n e r () {
p u b lic v o id a ctio n P erfo rm ed (A ctio n E v en t e)
{ i . item StateC hanged (new Item Event (e . g e tS o u r c e () ,

Item E ven t. ITEM_STATE_CHANGED,
o b j , Item E ven t. SELECTED))

} } ;

In summary, Java’s Swing has a number of important features.
1. Through JavaBeans it supports visual construction of static interfaces
2. It supports application/interface separation via models.
3. It allows consistency to be maintained between models and views via listeners.

However, Java also has some limitations.
1. The way layout is handled is very imperative, making it less succinct than declarative alternatives.
2. Models and Listeners have been developed to handle very specific types of data. They have a range

of methods which make them useful for specific purposes, such as representing the state o f a slider,
but not for representing values of any given type. The mechanisms necessary to create new types of
Model and Listener are relatively cumbersome. Converting between different types o f listener is
also cumbersome.

3.6. Functional Approaches
The systems mentioned above though relying on declarative approaches, such as constraints, are all
based in imperative languages. They support potentially dangerous concepts such as side-effects, which
can make life difficult for programmers. An alternative approach is to use truly declarative languages to
implement systems. These can give designers greater faith in the correctness of their programs. They
are also potentially easier to relate back to design notations [3]. Functional programming provides one
such purely declarative framework. This sections discusses some functional approaches to interactive
systems development.

In particular, this section will concentrate on the use of Haskell [158]. Haskell is a purely functional
language that supports a number of useful features, including higher order functions, static polymorphic
typing, a lazy semantics, rich data types and a monadic I/O system.

Haskell has been the focus of a lot o f recent work on user interface toolkits. There have been four main
approaches used to structure user interface code in functional programming languages, and in Haskell
in particular.

• Callbacks - Systems such as TkGofer use a simple callback based approach to programming.
• Stream processing - User interface components can be viewed as stream processors, that consume

streams of user input and produce streams of output commands. Fudgets and Gadgets are two
systems that take this approach.

• Imperative concurrency - User interface components can be structured as a set of processes that
execute concurrently and consume user input. Haggis is a good example of such a system.

• Constraint based approaches - W e can introduce the notion of some form of reactive behavioral
value that can change value over time. We can then view an interface as function of some set of
values. Clock, Pidgets and Fran have all introduced such concepts.

I will first introduce the basic concept o f performing I/O in Haskell, before going on to discuss these
four approaches to interactive system development.

3.7. Performing I/O in Haskell

Haskell uses monadic 10 to support sequencing of actions. Older approaches to sequencing used stream
based I/O, which produced confusing code. For instance, the following simple program, copies its
standard input to its standard output [70]:

25

main ~ (S tr in p u t: - (S u c c e s s : _)) =
[ReadChan s t d in ,

AppendChan s td o u t in p u t]

How input, is transferred between ReadChan and AppendChan is unclear. The resulting confusion
caused serious problems for programmers learning to exploit functional programming.

Newer approaches based around monadic I/O provide a more imperative programming style, familiar to
most programmers [156]. The same program, with monadic I/O, would be:

main = do
ch <- getC har
putChar ch
main

getC har :: 10 Char
putChar :: Char -> 10 ()

The last two lines are examples of Haskell type signatures. In Haskell the syntax ‘ : : ’ is used to denote
that a value has a given type; the argument types are then separated by *-> ’; in type declarations, non­
capitalised names, like a here, are type variables, indicating polymorphism, i.e., the ability to work with
all types; application of a function ‘f ’ to arguments ‘x , y , . . . ’ is written simply ‘f x y
The first type signature, for instance, says that there is a function called ‘getC har’ who’s type is ‘10
Char’. The second says that ‘putC har’ is a function which takes one argument o f type ‘Char’ and
returns an a value of type ‘10 () ’.

The type 10 a can be thought of as an I/O action that returns a value of type a; the type 10 () is
therefore an action which when performed will do some computation and return no useful value. Here
we can think of () as the C or Java v o id type. Here getC har is therefore an 10 action that returns
the character read, and putChar is a function that takes a character and performs an 10 action that
prints the value and returns no result. The sequencing of actions is more explicit here; the input from
getC har - ch - is used by putChar.

The monadic expression above is special syntax for the standard monadic combinators.

c l a s s Monad m where
(>>=) :: m a -> (a -> m b) -> m b
re tu rn :: a -> m a
(>>) :: m a -> m b -> m b

a >> b = a >>= _ -> b

in s ta n c e Monad 10

Here M onad is a type class. This defines a general interface that may be implemented for a number of
different data types. This allows ad-hoc overloading in Haskell.

A monad is a family of types ‘m a ’ based on a polymorphic type constructor ‘m’, with functions
re tu rn , (>>=) and (>>) . Here the function (>>=) sequences two monadic actions, using the
result of the first in the second action. The function r e tu r n simply returns its argument value without
any additional computation. Finally the function (>>) acts like (>> =) except that the value returned
by the first argument is discarded, rather than being passed to the second argument. The expression
‘_ -> b’ is a Lambda expression, which denotes a function. After a ‘\ ’ we list the arguments of the
function, then a *->’ and then the result. We can therefore define the two expressions below in terms of
these monadic combinators.

do {x <- a c t ; f x] == a c t >>= \x -> f x
do { a c t l ; a c t 2 } == a c t l >> a c t2

Readers who require further explanation are referred to [201] or [94].

26

3.8. Functional Callback based approaches

User interfaces can be constructed in terms of callbacks. When creating a component, we associate an
action with it that will be performed when it hears some user input. For instance, we could define a
push-button using the following code:

b u tto n :: S tr in g -> 10 () -> 10 B utton

Here b u tto n is an 10 action that that takes two arguments, a String label to display and an action to
perform when clicked. When performed it produces a value of type B utton that represents a handle
through which the object can be accessed. We can now imagine a number of operations on these button
handles to change their appearance, such as setting the colour or changing the label.

se tL a b e l :: B utton -> S tr in g -> 10 ()

The button’s callback could therefore be set to perform one of these output actions.

3.8.1. TkGofer

The TkGofer toolkit [204] uses a callback based approach. TkGofer uses an interface to the popular
Tcl/Tk scripting language to provide a platform independent set of widgets. The layout and behavior of
components are described in Gofer (a variant of Haskell). TkGofer makes use of mutable variables to
allow interface components to have state. To create our example “Counter” with two buttons, up and
down, we would use the following code:

main :: 10 ()
main = s t a r t updown

updown :: GUI ()
updown = do s t <- n ew S tate 0

win <- mkWindow [t i t l e "up-down cou n ter"]
l b l <- mkLabel w in [t e x t "0"]

l e t a c t io n :: (In t -> In t) -> 10 ()
a c t io n f = do

v a l <- r e a d S ta te v
l e t v a l ' = f v
w r it e S ta te v v a l '
c s e t l b l [t e x t (show v a l ')]

in cb <- mkButton [t e x t " in c" , command (a c t io n in c)]
decb <- mkButton [t e x t "dec", command (a c t io n d e c)]
pack (above l b l (b e s id e in cb d e c b))

We create a mutable variable using n ew S tate , to store the state of the “counter”. We can then use and
update the value of that variable later. The GUI monad is built on top of the 10 monad and enables Tcl-
Tk actions to be carried out.

n ew S tate :: a -> GUI (S ta te a)
r e a d S ta te :: S ta te a -> GUI a
w r it e S ta te :: S ta te a -> a -> GUI ()

We then create a window, and within it we create a label and two buttons.

mkWindow :: [Conf Window] -> GUI Window
mkLabel :: [Conf L abel] -> GUI Label
mkButton :: [Conf B utton] -> GUI B utton

When creating widgets we pass in a list of configuration information. For instance, we pass the label
some text to display. Configuration information has a type associated with it, so only the correct options
can be passed to a given widget. The type, Conf L abel, represents any configuration information

27

that is valid for a label. TkGofer uses type classes to restrict which configuration information can be
passed to which component. For instance, there is a Has_Text class. It has one method, the text
method which takes a string and produces a configuration option. The t e x t option can only be used
with instances o f the Has_Text class. These include B utton s and L ab els, both components that
can display textual labels. (The constraint W idget w, means that components that can take t e x t
configuration options must all be instances o f the W idget class.)

c l a s s W idget w => H as_Text w where
t e x t :: S tr in g -> Conf w

in s ta n c e Has_Text B utton
in s ta n c e H as_Text Label

We compose widgets geometrically using combinators such as a b o v e and b e s i d e . These take two
widgets and return a F ra m e widget. W e then p a c k the created widget on to the screen.

a b o v e ,b e s id e :: (W idget w l,W id g et w2) => wl -> w2 -> Frame

pack :: (W idget w) => w -> GUI ()

Finally, we define the behavior of the buttons. W e do this using a com m and callback. Each button first
updates the state, by applying some function to the current value (either incrementing or decrementing).
It then resets the text on the label.

c l a s s W idget w => Has_Command w where
command :: GUI () -> Conf w

in s ta n c e Has_Command B utton

c s e t :: W idget w => w -> [Conf w] -> GUI ()

3.8.2. Discussion

The approach taken in TkGofer has a number of positive features.

• Typed configuration options - The use of configuration options makes it easy to create a
component which may also have a range of default values. The use o f type classes allows us to
easily constrain which options can be given to which component.

• Functional layout combinators - Widgets can be geometrically composed with a range of
functional combinators, making it easy to generate complex displays.

However, TkGofer also suffers from two major constraints.

• Grouping components - While we can compose pairs of components, we can’t apply these
composition operators to collections of components. For instance, it might be useful to have a
combinator that places a list o f components above each other. This is because different widgets
have different types, so we could not form a heterogeneous list consisting of buttons and labels.
Instead, we need to explicitly coerce each widget into a Frame and then compose them.

hbox :: [Frame] -> Frame
frame :: W idget w => w -> Frame
co m p o site = hbox [fram e la b ,fr a m e b tn]

This approach is less than ideal.

• Spaghetti of callbacks - Relying on callbacks can make TkGofer programs difficult to structure.
The user interface takes control from the application. In particular, components need to maintain
references to each other in order to perform their tasks. In our example, each button needs a
reference to the label and must update both the application state in the mutable variable and the
label’s display itself. When programming large systems these references turn the program into a

28

‘spaghetti of callback’ [137], making the structure difficult to understand. More powerful
mechanisms can be built on top of TkGofer to help overcome this problem, such as introducing an
MVC style o f programming [27]. Here components update a model, and widgets register interest in
the model to display its value.

3.9. Stream processing - Fudgets

The stream processing approach to programming considers a user interface to be a stream processor
that consumes user input and produces output events. We will consider two variants o f this approach,
Fudgets and Gadgets.

3.9.1. Fudgets

The Fudgets system [25] was the originator of the stream processing approach. An interface is
described in terms of a series of components or Fudgets. Each Fudget receives data on input streams
and sends it out on output streams. Fudgets can be combined to form composite Fudgets using a set of
combinators.

Fudgets can be connected together. For instance, we can connect the output stream from one fudget to
the input stream of a second using (>==<). To allow a Fudget to listen to two other Fudgets, we must
compose them together (using >+<). This forms a new Fudget that produces messages of a sum type.
Values will either be L e ft a, if they come from the left hand fudget, or R igh t a, if they come from
the right hand fudget. This tagging can become awkward when forming large Fudgets. To overcome it
we can sometimes generate Fudgets that send streams of the same type. For instance, in our example
“Counter” , we could create button Fudgets that send integer modifying functions. These can then be
composed without the need for tagging. The example “Counter” can be implemented in Fudgets as
follows:2

im port F udgets

main = fu d lo g u e (s h e l lF "Up/Down Counter" updown)

updown = in tH old erF >==< b u tton sF

b u tto n sF = buttonUpF >*< buttonDownF
where buttonUpF = buttonM sgF increm en t "up"

buttonDownF = buttonM sgF decrem ent "down"

in tH old erF :: F (I n t -> In t) a
in tH old erF = in tD isp F >=^A< sta teH o ld erS P 0

sta teH o ld erS P :: a -> SP (a -> a) a
s ta teH o ld erS P s = m apstateSP h o ld s

where
h o ld s f = l e t s ' = f s in (s ' , [s '])

buttonM sgF :: m -> S tr in g -> F C lic k m
buttonM sgF m s = tom sg >~=< buttonF s

where tom sg C lic k = m

We create two button Fudgets that transform their clicks into update functions, using the message
mapping combinator >A=<. W e then compose the two Fudgets with >*< to produce a composite
untagged fudget. Next we connect this composite fudget to a state holder that maintains the current
value of the fudget. Finally, we connect this state holder to an integer display fudget that displays
labels.

The Fudgets programming model combines the notions of semantic and geometric composition. We
compose Fudgets with respect to their input and output streams. They are then given a default layout. If

2 This example is taken from [144]

29

we need a display that is separate from the semantic composition, we must explicitly name Fudgets in
order to apply alternative layout combinators.

The basic model, demands that each fudget can read from only one, and write to only one other fudget.
This makes it difficult for a component to inform several other components of a state change. There is
no high level support for maintaining consistency between several Fudgets. Sharing data between
Fudgets is also impossible. All consistency conditions and data communication must be individually
programmed [71].

To summarise Fudgets allows applications to be composed in a functional style. However, it suffers
from a number of problems as a result:
• Need for explicit tagging when composing Fudgets. The use of one output stream makes it hard to

see where a fudget is sending its output values [62].
• Combination of semantic and geometric composition, makes it more difficult to produce complex

displays where the two concepts are not related.
• Parameterising a Fudget over the type of elements transmitted makes it difficult to provide

combinators to combine collections of components.
• Because of the static structure, it is also difficult to program systems with dynamically created and

deleted objects [144].

3.9.2. Gadgets
The Gadgets system developed by Rob Noble [144] attempts to overcome the problems visible in
Fudgets by introducing explicit channels. A user interface is considered to be a set o f components, or
Gadgets, that communicate on wires, channels with an input end and output end. We therefore define a
button as a Gadget, which displays a label, and takes a value, which it emits on a given output port,
every time the user clicks the button.

b u tto n :: S tr in g -> a -> Out a -> Gadget

The Gadget system introduces the notion o f a process to allow components to individually perform
calculations and communicate on wires. When a Gadget hears a value on a wire it must itself become
runnable and perform some communication. When one Gadget waits on some input from a user, it must
not block every other Gadget. We can create new processes using the spawn primitive:

spawn :: ComponentClass b => P r o c e ss a -> P ro cess b -> P ro c ess b

We can implement the example “Counter” as follows3:

co u n ter :: Gadget
co u n ter =

w ire $ \w l ->
w ire $ \w2 ->
l e t in c b tn = b u tto n "Inc" (o u t w l) increm ent

d ecb tn = b u tto n "Dec" (o u t w l) decrem ent
la b = la b e l "0" (in w2)

in
spawn (count 0 (in w l) (ou t w2)) (la b < |> (in c b tn <-> d ecb tn))

- - la y th e two b u tto n s s id e by s id e , under th e la b e l
where

count :: In t -> In (I n t -> I n t) -> Out S tr in g -> Gadget
count n i o = rx [from i $ \ f ->

l e t n' = f n in
tx o (show n ') $
cou n t n' i o]

We create two wires and four gadgets. The two buttons talk to the first wire, passing integer modifying
functions. A third gadget is spawned which maintains the state of the application. It reads values from

3 This example is taken from [62].

30

the first wire (using rx), and applies them to its current value before transm itting them on the second
wire (using tx).

The use o f wires in G adgets is a powerful concept. We can create a com ponent by passing in all the
argum ents necessary to generate it. This allows us to define a generic com ponent type and so define
com position functions that operate on collections o f com ponents. Each process can handle an elem ent
o f the application code. The sem antic wiring is no longer associated with the geometric com position
making the structure o f the program more modular.

However, G adgets relies on the older continuation passing I/O style (see Section 3.7). The need for true
concurrency makes non-determ inism an im portant issue. It is also still difficult to form complex
com positions o f wires or to specify com plex tem poral constraints.

3.10. Imperative Concurrency - Haggis
The Haggis toolkit developed by Sigbjorn Finne [62] provides a good exam ple o f an im perative
concurrency approach. An interactive system is defined as a num ber o f concurrent threads. These
com m unicate by m essage passing, and through shared data, im plem ented by a series o f im perative
com m ands.

Haggis makes use o f C oncurrent Haskell [157], This language extension supports lightweight
processes, and makes use o f monadic I/O. Program m ers can create new child processes with the
forklO function. Com m unication occurs asynchronously, through shared variables (M V ars) which
operate like sem aphores.

Haggis has a num ber o f key features, described below.

3.10.1. V irtual I/O
The use o f concurrency provides for m odular design. A com m on problem with many graphical user
interface systems is their reliance on an event loop, and callbacks. This style has well known problems
[137], Haggis, instead, treats the user interface as a virtual device, allowing the application to maintain
control. The concurrent features o f Haggis allow several virtual I/O devices to operate at once. For
instance, one process could block waiting for a mouse click while others go on with necessary work. It
is this feature that supports the im perative concurrent style o f programming.

3.10.2. Declarative s tru c tu red graphics
A further problem with the developm ent o f graphical interfaces is that conventional languages tend to
be highly im perative. This means that rather than considering how a picture should look, program m ers
must describe the sequence o f actions that must be used to render it. This added com plexity makes
m istakes more likely. In contrast, in Haggis all static graphical output is specified declaratively through
a Picture type [59]. Haggis provides operations to transform and com bine objects, along with an
extensive list o f graphical prim itives. For instance, we could specify the image shown in Figure 10 with
the associated code.

enemy = fillSolid $ withColour grey $
beside (ellipse (5,12))

(above thruster thruster)
where thruster = coverlay cross

(ellipse (15,6))
-- centre one image over another

cross = withColour black $
beside (rectangle (12,2))

(rectangle (2,8))

Figure 10 - A Haggis P icture

Haggis takes care o f converting pictures into calls to the window system, with the Glyph output
abstraction. The glyph function takes a picture and produces an interaction object that displays it.

31

picture

glyph

I
render

Figure 11 - A Haggis G lyph C om ponent

This declarative approach makes it easy to build, and manipulate com plex images. However, Haggis
provides a separation betw een static pictures and interactive w idgets such as glyphs. This makes it more
difficult to describe complex interfaces where individual com ponents may evolve dynamically.

3.10.3. User interface, application separation

Geom etric and sem antic com position are separated in H aggis. U ser interface com ponents are
represented by an object, from which we can extract a handle for visual com position. For instance, the
glyph output abstraction returns a Glyph handle, which the application can use, for instance, to update
the image. From this we can extract a D isplay H andle, which is a reference to the interactive graphical
surface.

glyph :: Picture -> Component Glyph
getDH :: Glyph -> DisplayHandle

This separation allows program m ers to build more m odular systems. We can define the appearance o f a
system and its behaviour separately.

3.10.4. Com positional s tru c tu re
Haggis provides layout com binators and other functions to com bine the Display Handies mentioned
above. For instance, we could make an interactive widget by com bining an input event controller with
the Glyph described above.

widget picture dc = do
gl <- glyph picture dc
catchMouseEv gl

This produces a widget as shown in Figure 12.

Event
han d le r

glyph

Figure 12 - A Haggis In teractive W idget

W e can then com pose these interactive objects to produce an interface as shown in Figure 13.

main = do
dc <- mkDC []
obj1 <- widget (text "press 1") dc
obj2 <- widget (text "press 2") dc
realiseDH dc (above obj1 obj2)

Figure 13 - A Simple In terface in Haggis

32

3.10.5. An Example

We can define the example “Counter” in Haggis as follows:

main = do
dc <- mkDC []
l b l <- la b e l (show "0")
b tn l <- b u tto n (t e x t "inc") increm en t
bnt2 <- b u tto n (t e x t "dec") decrem ent
b tn s <- hCombine [b tn l ,b tn 2]
forklO (in t e r a c t l b l b tn s 0)
re tu rn (vbox [getDH l b l , hbox [getDH b tn l,g e tD H b tn 2]])

where
in t e r a c t :: L abel -> B u tton -> In t -> 10 ()
in t e r a c t l b l b tn s n = do

f < - hGet b tn s
l e t n ' = f n
h S et l b l (show n ')
in t e r a c t l b l b tn s n

We create two buttons, an increment and decrement button. We compose the input from these two
buttons to form a composite button. The view consists o f a label above both buttons. We then start off a
concurrent process that maintains the value o f the label. When it hears an update-function message
resulting from a button click, it applies the function to its current value and displays it. The Haggis
approach therefore works well for simple examples like this, providing good semantic separation
between the view and the application.

3.10.6. Discussion

Dealing with dynamic interfaces, with varying collections of widgets on screen, is difficult in Haggis.
Haggis differentiates between widgets and pictures. The graphical combinators available for widgets
are much less powerful and less declarative. In particular, to handle collections of widgets we require to
use the Composite Container component which has an imperative interface. Providing an abstract
model of a collection of objects causes further problems. An application would be modelled as some
mutable state. A process would then be required which updated the display every time this state was
changed. To allow multiple views of this data we could have one application process which received
inputs on a channel and sent out updates on a channel. However, as this solution would be non-
deterministic there would be no guarantee that the set o f interfaces components would all be up to date.
Alternatively, each interface component could register update callbacks with the application. Doing this
we would have to be careful not to cause a deadlock. Either mechanism is somewhat clumsy and error
prone.

Concurrent communication in Haggis is based around shared semaphore variables. These provide a
very primitive interface for shared communication. It is, however, possible to build more powerful
communication mechanisms on top of these. Concurrent Haskell, for instance, also provides
asynchronous channels for message passing. The range of temporal operators is still somewhat limited.
For instance, to make one process suspend and resume another requires some fairly sophisticated
programming. One possibility is to introduce a set o f richer, synchronous communication primitives.
Inspired by work modelling interactive systems as LOTOS processes [152], I developed a set of
LOTOS like primitives for use with Concurrent Haskell and Haggis [170]. Using this new
communication library I developed the Space Fighter Game, introduced in Chapter 2. The combination
is discussed in Appendix C.

3.10.7. Summary

Haggis therefore provides a good powerful basic model to consider the design of interactive systems.
However, it has a number of problems.
1. The approach exposes programmers to the perils of concurrent programming, such as non­

determinism and synchronisation.
2. Processes can share data and so provide some form of data dependency between objects. However,

defining constraints between different processes is impossible.

33

3. Pictures are static datatypes. Interactive components must be composed together through their
Display Handles. The composition operators for Display Handles are less expressive. To build an
interface with a number of dynamic components we must either use Display Handles, and suffer
the lack of expressiveness in terms of image composition, or have a single process that accepts all
events and then uses these to manipulate individual picture components.

4. While it provides separation between application handles and display handles, it does not
explicitly support component based, application interface separation. This means it is up to the
programmer to attempt to build systems in a modular way. In particular, it is difficult to provide
multiple views of a dynamic interface.

3.11. Functional Constraint based approaches

There have been a number of attempts to develop functional languages based on constraint ideas. Three
examples of this approach are Clock [71], Pidgets [178] and Functional Reactive Animation [44].

3.12. Clock

Clock has been designed as a constraint based functional language [71]. It has a graphical architecture
language that can be used to describe how systems fit together and a textual language to describe the
behaviour of each component. It is based on the MVC model.

Programmers first structure a system by decomposing the interface from a root view into a tree of
views. This decomposition is based on a hierarchical display model o f an interface. Such Clock
architectures are produced interactively using a visual tool called ClockWorks [134]. This allows
programmers to design and modify their architectures easily. It provides easy access to a library of
components. Fast iterative design is therefore possible.

Each component in a Clock architecture tree contains an event handler, which takes user inputs and
sends updates. This event handler (EH) is similar to the controller part of the MVC model.
Components may also contain request handlers (RH) which represent the MVC model and can receive
inputs and accept requests. Finally, a component has a view, which is defined as a relation of the model.
This is therefore similar to the ALV models mentioned earlier. The behavior of each o f these
components is described textually.

We will consider three examples in this section, our “Counter” application, and the Space Fighter and
QOC editor applications from Chapter 2.

3.12.1. The Counter

The architecture for the “Counter” is shown in Figure 14.

^count^, E 9 UsetCount^
ConcurrentincrementCount^

decrementCountj, Counter
root ^count_

E0 u increwentCount^
buttomClick^ CounterViev decrementCount^

button <in activeC olou r]|
FlIFl u ^activeC olour^BJ L_1 ^.isA ctivatedj,

vnouseButtcm^ ButtocnView juttanClick^,

Figure 14 - The Clock Architecture for the “Counter”

34

The Counter component is a Request Handler. Counter has three methods, which we will use:
incrementCount, decrementCount and count. The first two methods update the value of Count by
incrementing and decrementing it, respectively. The last method requests the value of Count. The root
component is of class CounterView and contains both the view and the controller of the component.
The component accepts press events from its child buttons. It can use the count, incrementCount and
decrementCount methods.

The controller part of the component performs increment and decrement actions depending on which
button has been pressed.

b u tto n C lic k " in c ” = increm entC ount
b u tto n C lic k "dec" = decrem entC ount

The view part of the component is defined as follows:

v iew = above (numText cou n t)
(b e s id e (b u tto n "inc") (b u tto n "dec"))

This view uses a constraint from the model. It uses two instances of the button subview. Subviews are
identified by String names. These names are persistent. For instance, whenever a button subview with
the name "inc" is referred to for the remainder of the program, it means the same instance. Any local
state within the component will therefore persist. To create a new instance of a sub view with new state,
we would therefore need to define one with a different name. The view function simply specifies a
relation between the model and the user interface appearance.

This use of String names to distinguish components is clumsy and error prone. For instance, spelling
errors in component names will not be caught until runtime. It also makes it difficult to garbage collect
a component as there is no way to tell if it will be used again later in the program.

The complete code for the Count RH is:

ty p e Count - Num
setC oun t n = sa v e n
decrem entCount = sa v e (t h i s - 1)
increm entC ount = sa v e (t h i s + 1)
cou n t = t h i s
i n i t i a l l y = sa v e 0

The predefined function save, sets the new state o f the RH. The predefined function this returns the
current state of the RH. Therefore the count method simply returns the current value held in the RH,
and the incrementCount method sets the new value of the RH. The initially function says what to do
when an RH is created. Though some of this may not look safe, the semantics of Clock are defined to
guarantee referential transparency.

There is a strict set of rules defined to explain how these updates can be used. Updates can only travel
up the architecture tree. They are guaranteed to terminate at or before the root. Infinite constraint loops
are therefore impossible. Requests can also only travel up the tree, so a component can only use
constraints based on values in its parent components’ RHs. A component can use 0 or more instances of
each o f its subcomponents. These are created through the subview relationship.

The Clock architecture language provides good support for iterative design [71]. Requests and updates
from a component are routed automatically by Clock. Programmers do not explicitly say how
components are to be connected. The only explicitly defined relationship is the subview. Requests and
updates are simply routed up the tree to the first component that can deal with that type of action. This
means that it is easy to move objects around in the tree, as no explicit connections will be broken. For
instance, if we wished an RH that had been used by one component to be shared by several, we could
just move it up the tree. This would not cause any problems. However, this use of untargeted method
calls can be unhelpful. For instance, it makes it impossible to have two instances of the same request
handler in scope at the same time.

35

Clock also supports groupware applications [140]. View functions are provided to allow windows to be
opened up on different users screens. A distributed version has also been developed. Programmers can
define some parts o f the tree to exist on the user’s side while others exist on the client’s side. This aids
the development of groupware applications.

3.12.2. The Space Fighter Game

The first stage in producing an implementation in Clock is to produce the architecture. The architecture
for the Space Fighter game is shown in Figure 15. The system is made up o f the ToolBar and the
Screen. The screen decomposes into ShipViews, LaserViews and EnemyViews.

We next add the RHs necessary to implement the system. We use a Paused RH, which defines whether
the game is paused or not. We have a GameState RH which maintains the state o f the lasers, enemies
and ship. The RHs are then placed in the tree at the lowest level possible, so that they are visible to all
components that use them.

The graphical architecture makes it easy to see how the system is composed together. The separation
into RHs and control components affords good application/interface separation. In this example,
however, there is little need for any great separation because there is only one view o f the game.

3.12.2.1. The Game State Component

The GameState RH is associated root component. It consists of a list of lasers, enemies and ship data.
There is also a Boolean which is True if the game is over, and a current score.

ty p e GameState = ([L a ser] , [Enemy], S h ip ,S c o r e ,B o o l)

It has four update methods: ship move updates, timer updates; restart updates and quit updates, which
manually set the state to ‘gam e o v e r ’.

Paused
.lasers,
' jdiip.

Concurrent
<aar«eover>

quitfr
restart.
update;

root
E 0

toolbar
m k

^gaweover^
update^

Screen wove^ .inactiveColour.
.activeColour.

laser
E0 U
LaserViev

B u t t o nship

Figure 15 - The Clock Architecture for Space Fighter Game

On each timer update the component moves the enemies and lasers along the screen. This can only
happen when the game is not paused or over. Once the lasers and ships have been moved, we calculate
any overlaps, deleting any enemies and lasers that overlap, and ending the game if the ship overlaps
with an enemy.

36

tim er = sa v e (c o l l i d e (map (moveObj R igh t) l a s e r s ,
map (moveObj L e ft) en em ies,
s h i p))

When it receives move updates, it moves the ship in the required direction. It then calculates if the ship
overlaps any of the enemies and ends the game if it does.

move d ir e c t io n = sa v e (c o l l id e S h ip (moveObj d ir e c t io n s h i p))

It also accepts a restart update, which sets the game state back to that o f an initial game, and a quit
update which sets the GameOver Boolean value to True.

q u it = sa v e (l a s e r s , e n e m ie s , s h ip ,s c o r e ,T r u e)
r e s t a r t = sa v e in itg a m e

We are able to decouple move updates, from time based changes here, something that is impossible in
Haggis.

3.12.2.2. The Screen Component

The Screen component creates the whole screen appearance. It is significant here that though the
GameState RH is more closely associated with the Screen component it must reside in the root o f tree.
This occurs because components can only request values from parents in the tree. It is therefore a
feature of Clock that RHs may appear at initially confusing positions in the tree hierarchy.

The Screen component accepts keypress inputs and tick updates. The former moves the shape in a given
direction; the latter sends a timer update. These only happen when the game is not halted.

gam eh a lted = paused | | gameover
k ey p ress k = i f gam ehalted th en

noUpdate
e l s e i f k = = 'q ' th en

move L e ft
e l s e . . .

t i c k = i f gam ehalted th en noUpdate e l s e tim er

For its view it uses an instance o f the ShipView subview, and one EnemyView and LaserView for each
currently active object. Dynamic creation of objects is therefore done implicitly, by defining a mapping
of the current view.

v iew = i f gam eover th en View s [la r g e T e x t "GameOver", game]
e l s e game

game = Views (sh ipV iew "ship":
(map enemyView enem ies ++ map la serV ie w l a s e r s))

3.12.2.3. Discussion

The Clock approach allows for a fairly declarative implementation. Components each have views and
these can be easily composed, using a set of declarative combinators.

Clock lacks any explicit temporal operators except for the simple timer update. W ithin any one
component, as each event is evaluated, all values in the tree are constant. Sequencing occurs, to some
extent, by passing updates up the tree, firing constraints back down the tree. It is significant that the
pause behavior had to be programmed directly into the shape component. This means that the
architecture is not entirely modifiable. Support for a disable operator, to disable a subtree would have
been useful here.

37

3.12.3. Q OC E ditor and file m anager

The third C lock example is the QOC editor. The C lock architecture for this example is shown in Figure
16. Again the architecture structure is based on the visual appearance o f the system. Each user has an
editor view (E ditor) which consists o f the w orkspace and the tool bar (which has the save, create and
view buttons.) The w orkspace consists o f QOC windows. These each consists o f a set o f nodes
(Q uestions, Options and Criteria) along with connecting edges and possibly a rubber band line (if two
nodes are being connected.) A node has a label, a local editor (A nnota tions) for the user and a view o f
the shared log for that object (SavedA nnotation). An edge will also have a log, a view and possibly a
label. The system is built from a set o f relations. Some data is local to individual users, some is global
to all users. For instance, at the root level are RHs that hold inform ation about all the nodes, edges,
positions and the shared log. The list o f visible QOCs can be filtered. At the QOC window level the list
o f nodes will be filtered, to consist o f those that are visible because o f the current view.

W e partition the state into RHs. All inform ation about the current QOC set is held in the Q OCData RH.
This has operations to add and delete Q O Cs, and to add and delete nodes and edges from a given QOC.
This single RH is very m onolithic. U nfortunately, we cannot define RHs that contain other RHs. If we
could we might prefer to consider the Q O C D ata RH to consist o f a lists o f Q OCInfo RHs, that
m aintained the state o f each individual QOC.

The list o f visible QOCs and nodes and edges will be filtered. As an exam ple, we show how to display
the list o f visible QOC windows.

110 t:j f*O K >nS»»

,:<k*

Figure 16 - The Clock A rchitecture for the Q O C E ditor

We define an RH to contain the list o f invisible window names. This has updates to add and delete a
QOC name. It also provides a request that defines w hether a given QOC is visible. We then define the
w orkspace view as follows.

view = Views (map windowView (filter isVisible allqocs)

38

The use of constraints here is very powerful. The dynamic creation and deletion of objects is handled
automatically based on the current state o f the underlying application.

When a QOC is deleted by a user, we can remove it from the invisible list. However, if it were to be
deleted by another user there would be no mechanism to remove it from this list. Fortunately this does
not make the program incorrect, as subviews and therefore QOCs must have persistent unique String
names. Unfortunately, it does make the visible list redundantly long which makes it less efficient. This
problems results from the fact that we cannot receive events from higher in the tree, nor can we make a
RH ’s data dependent on that of another RH.

We can define the behavior o f a moveable component as follows. It receives mouse-button and motion
input. It can be moved and when moving is highlighted.

m ousebutton Down = s ta r tm o v in g myid
m ousebutton Up = stopm oving myid
m otion (x ,y) = s e t p o s i t i o n myid (x ,y)

v iew = i f ism ov in g myid th en
draw h ig h l ig h t ic o n

e l s e
draw u n h ig h lig h te d ic o n

The ability to use constraints here to describe the view is powerful. It makes it easy to see the
relationship between the state and view.

3.12.4. Discussion

The ability to use constraints to define an interface view is a very powerful feature of Clock. It also
provides good support for application, interface separation.

Clock does however have some problems. The first set o f these, result simply from its implementation
as a research prototype.

1. The graphics that can be produced by Clock are fairly limited.
2. There is no way to access code written in other languages from Clock. All application code must

therefore be developed in Clock. This severely limits its applicability to other systems.
3. The underlying functional language does not include type checking, and is in general fairly poor.

This means that defining application objects can be cumbersome and may be slow. The
optimisation work has instead gone into the network support and interactive graphical support.

4. Clock has no module structure, making it difficult to define modular code that can be reused in
different request and event handlers.

The design of Clock also has some more fundamental problems.
1. Clock does not support behavioural values that change as functions of time, except through the tick

update mechanism. This reduces the expressiveness of the language. We are also unable to define
mutually recursive behaviors. This makes it difficult to define a mutually recursive behavior
modelling the trajectory of a moving object, where the speed, location and acceleration might be
mutually dependent.

2. Clock relies on constraints and updates to implement all necessary temporal operators. This may
make it difficult to understand complex temporal relationships. This makes it more difficult to
define real-time functions. For instance, in our Air Traffic Control case study (introduced in
Chapter 2), we need to be able-to define time out predicates that result when a message has not
been received by an aircraft

3. The inability to define composite Request Handlers, which consist of other Request Handlers,
makes structuring complex application behavior difficult. In particular, where there is a complex
application that is used by all components, we end up with one very large, monolithic request
handler.

4. The use of untargeted updates and requests, can be useful. However, sometimes this can also be
very cumbersome. For instance, it makes it impossible to have two instances of a request handler in
scope at the same time.

39

5. The use of unique String names to distinguish instances of components is fairly clumsy, and makes
mistakes more probable. It also makes it difficult to finally garbage collect a component, as there is
no clear way to tell if its name (and it) will ever be used again. This makes the implementation
inefficient.

6. A Request Handler can neither hear update events from higher in a Clock tree, nor can it depend on
a Request Handler defined higher in a tree. This makes the definition of components, such as the
view filter component, quite awkward.

7. In general, the Clock tree structure, though useful can be overly cumbersome. In particular, it
would make it impossible to define a recursive, fractal view, where a component class could
contain instances, o f its own class. For instance, we might want windows that could contain
windows. This would require a more general graph structure rather than a simple tree structure.

8. All events in Clock travel up the tree. It is therefore impossible for parent components to filter
input, or disable children. For instance, to produce a window that disabled all its child components
on the press of a button would require the redesign of all child components to include a disable
operator. The possibility of instead taking a snapshot of the child’s view and using this until the
window were re-enabled might solve this problem.

3.13. Functional Reactive Programming

Fran (Functional Reactive Animation) [44] is a language for constructing interactive animations. It uses
a high-level modelling approach that allows programmers to describe what an animation should look
like, not how it should be implemented. Fran introduced the Functional Reactive Programming (FRP)
approach. The key notions that FRP introduces are behaviors and events. Behaviors are time-varying,
reactive values, while events are streams of values that occur over time. The FRP approach has also
been applied to a number of other application areas including robotics programming [155]. Courtney
has begun to apply the FRP approach to Java, to simplify the creation of Java Beans based interactive
systems [33]. His intention is to provide a tool to visually connect behaviors and events and link them
to interactive components. This work, though very interesting, is still in its infancy. The range of
combinators is very limited and is restricted to systems with static numbers o f components.

3.13.1. F ra n benefits
There are five key aspects that makes it a good candidate for forming the basis of a User Interface
development language.

1. B ehavioral M odelling. Fran uses first-class behavior values to model changing values in an
animation. A behavior value is a value that changes over time. It can be thought o f as

ty p e B eh avior a = Time -> a

As an example we can make a circle that follows the wave path shown in Figure 17. Its position is a
function of time; it moves along the screen as time passes, and up and down as the sin o f time.

moveXY tim e (s in tim e) c i r c l e

moveXY :: B eh avior Double
-> B eh avior Double
-> ImageB -> ImageB

tim e :: B ehavior Double

F igure 17 - A Ball Following a W ave M otion

2. E vent M odelling. Events, like behaviors, are first-class values. An event is a stream of values that
occurs at discrete points in time. It can be thought o f as

ty p e Event a = [(T im e ,a)]

40

We can use events to model happening in the real world, such as button presses; and predicates
based on behavior values, such as collisions between objects. For instance, a left button press is
simply l b p u , where u is a User argument. An event that occurs once, when the time is greater
than 5, is o n c e E (p r e d i c a t e (t im e >* 5) u) . They can be combined as l b p u . | .
o n c e E (p r e d i c a t e (t i m e >* 5) u) . The type signatures for the functions we have used
are shown below.

l b p : : U s e r -> E v e n t ()
p r e d i c a t e : : B e h a v i o r B o o l - > U s e r -> E v e n t ()
o n c e E : : E v e n t a - > E v e n t a
(. | .) : : E v e n t a -> E v e n t a -> E v e n t a
(> *) : : O rd a => B e h a v i o r a -> B e h a v i o r a -> B e h a v i o r B o o l

3. D eclarative R eactivity . Much of the power of Fran comes from the interaction of behaviors and
events. We can define “reactive behaviors” , that change as events occur. W e can therefore give a
declarative rather than an imperative semantics to state. For instance, we can describe a colour­
valued behavior that starts out white, and then changes to red when the left button is pressed, and
changes to green when the right button is pressed.

w h i t e ' s t e p p e r ' (l b p u -= > r e d . | . r b p u -= > g r e e n)

s t e p p e r : : a -> E v e n t a -> B e h a v i o r a

4. D eclarative Com position. Animations can be constructed compositionally. We can create two
balls following wave motions, one that moves as the sin and one as the cos o f time.

moveXY tim e (s in tim e) c i r c l e
' o v e r '
moveXY tim e (c o s tim e) c i r c l e

Note that these two animations evolve concurrently, and yet are described in a simple, deterministic
manner.

5. M odels and Views. We can define a behavior to represent the state of an animation and then
define a function that transforms this state into an image. For instance, we can describe a moving
object abstractly in terms of a data type with behaviors4. It has a colour and a location.

d a t a O b j e c t = O b j e c t (B e h a v io r P o i n t 2) (B e h a v io r C o lo r)

W e can then define a function that turns this colour and location into an image.

v ie w (O b j e c t p o s c o l) = m ove p o s (w i t h C o l o r c o l c i r c l e)

m ove : : B e h a v i o r P o i n t 2 -> Im ageB -> Im ageB
w i t h C o l o r : : B e h a v i o r C o l o r -> Im ageB -> Im ageB

The features discussed above provide a powerful approach to building interactive systems. We could
describe the state o f an interactive system as a behavior, reacting to user input events. These
components could be easily composed in a declarative manner. We could also support a Model-View
style of programming where the state of the application is described abstractly and the appearance
described as a function o f that state.

3.13.2. A Case study w ith F ra n
Fran is an animation environment, rather than a more general user interface toolkit. This makes it
difficult to define the QOC editor in Fran. We can, however, implement the space fighter game in Fran.
I will now discuss the most important aspects o f this implementation.

4 In Haskell new algebraic data types are defined using the keyword data . A datatype has a name and
one or more constructors. Each constructor may have one or more values associated with it. For
instance, the definition d a ta A lt = A lt A S tr in g | A ltB In t , defines a data type named
A lt, with two possible constructors A lt A and A ltB , each with a single value associated with them.

41

We define the Game data type to represent the state o f the game. This consists of a ship, an event
generating new lasers, an event generating new sets o f enemies and an event generating an occurrence
when the game ends.

d a ta Game = Game Ship (Event L aser) (Event [Enemy]) (Event ())

We can therefore have one simple abstract model of the state of the application.

We use the Renderable class to define how the Game state is displayed. W e display the ship, above the
lasers, above the enemies. This display continues until the game ends, after which we show the text
"Game over".

in s ta n c e R enderable Game where
rend er (Game s I s e s end) =

rend er s 'o v e r ' ren d er e s 'o v e r ' rend er I s
'u n t i lB ' end -=>
(s t r e t c h 5 $ w ith C o lo r w h ite $ showlm "Game Over")

Note that when applied to an Event, render applies the render function to every new occurrence of an
object and overlays it above all the previous instances. We therefore have one set o f functions that
define the view in terms o f the application.

We define the game itself as follows. It takes the user input, an event generating move occurrences, and
an event generating fire occurrences. W e create a ship. The game ends when the ship crashes. When a
fire event occurs, we snapshot the ship location and current time, and generate a new laser. Every
enemyTime seconds, we generate a new set of enemies. Lasers and the ships die when they collide
with enemies; enemies die when they collide with ships. We handle this by generating an abstract
collision set, or C o llid e rB .

game :: U ser -> Event (S .P o in t2 -> S .P o in t2) -> E vent () -> Game
game u moveE f ir e E = Game shipD mkLaser mkEnemy (crashE shipD)

where
shipD :: Ship
shipD = sh ip u moveE h itE n em ies

mkLaser :: Event L aser
mkLaser = a fte r E (withTimeE_ f ir e E 'sn a p sh o t' (lo c sh ip D)) u

==> \ ((t , p) , u) -> la s e r u t h itE n em ies p

mkEnemy :: Event [Enemy]
mkEnemy = a fte r E (withTimeE_ (alarmE u (s ta r tT im e u) enem yTim e)) u

==> \ (t , u) -> map (enemy u t h itL a s e r s) enemyBatch

h itE n em ies :: C o llid e r B
h itE n em ies = eventCB (mkEnemy ==> mergeCBs . map h itO b j)

h itL a s e r s :: C o llid e r B
h itL a s e r s = eventCB (mkLaser ==> h itO b j)

The ability to generate events that go off at a particular time interval, and the ability to make objects
depend on time is important. It allows us to specify the behavior o f the game at a very high level o f
abstraction. The ability to define a collision behavior as an abstract value with a simple set of
combinators is also useful. It makes the collision definition more compositional than would be possible
with an imperative definition.

W e define lasers, enemies and the ship in terms of a more general Object type. These have a location,
bounding box, a Boolean behavior defining whether they are dead, and an event that generates an
occurrence when they crash. Again we therefore have a simple abstract model of an object.

d a ta O bject = O bject (locO :: Point2B ,bboxO :: RectB,
deadO :: B oolB , crashOE :: Event ()}

42

W e create an object as follows. It has a bounding box, based on the current location and size. It is dead
once a crash event has occurred. It crashes when its bounding box collides with the relevant collision
set. Again this gives us a very simple definition of the behavior of an object within the system.

mkObject :: U ser -> Point2B -> S izeB -> C o llid e rB -> BoolB -> O bject
mkObject u lo c s i z e c o l l i d e d ie = O bject lo c bbox dead crashE

where
bbox = rect2 B lo c s i z e
dead = falseB 'untilB' crashE -=> trueB
crash = (testCB collide $* bbox)
crashE = onceE (predicate u crash)

All objects are members of the Obj class. W e can display any member of this Obj class in the same
way. W e display its image, at its current location, until it crashes, after which we display an empty
image.

instance Obj a => Renderable a where
render a = moveTo (loc a) (image a) 'untilB' crashE a -=> emptyImage

This implementation is declarative and very modular, consisting as it does of a collection of dynamic
components. It also has separation between the application Game state, and the view, which is defined,
using render, as a function of this state.

3.13,3. Fran problems

Fran as it exists in its basic form has two serious conceptual restrictions that must be overcome to
extend it to interactive systems design.

1. Hierarchical input. The most significant problem with Fran is that it does not provide any support
for constructing hierarchical interactive displays. All user input is accessed through the User
argument passed to the animation. This represents input at the level o f the entire graphics window.
There is no way to access interaction from only a single component, such as an individual button
on the screen. The only conceivable mechanism would be to use global mouse coordinates and
calculate whether they were within the bounding box of a given object. This approach does not
lend itself at all to building hierarchical collections of components, each with their own coordinate
systems. This is not usually a major problem in animations, however, the notion of individual
interaction objects is critical to the development o f standard user interfaces.

2. Dynamic collections. Fran provides Behaviors, that is values that change over time. W e could
therefore imagine having behavior collections of objects. For instance, we could display a dynamic
list o f objects. However if we were to render such a behavior collection, each time an element were
to be added the entire collection would have to be redrawn.. This would be prohibitively expensive
if we needed to continually recreate complex compound collections. In our space fighter game, we
defined the lasers and enemies as Events rather than Behaviors, to make them useably efficient.
This prevents us from being able to snapshot the current state of the lasers or enemies. Fran
requires some notion of an incremental behavioral collection that could be both viewed as a
behavior and efficiently and incrementally rendered.

3.14. Fidgets

Pidgets [178] is a system that has been designed along similar lines to FRAN. It uses an approach called
a “monad of imperative streams” to provide a temporal language. It supports the creation of a group of
dynamically evolving, concurrent objects. The basic concept in Pidgets is a Stream. A Stream produces
values, like a Fran event, and has a current value, like a Fran behavior. The current value of a stream is
the last one it produced. Unlike Fran behaviors, a stream will therefore not have a current value, until it
has produced its first value. Streams may also perform 10 actions, and so carry out some imperative
command. A program is evaluated at a series of steps, in a synchronous manner. At each step a stream
may produce a value, an stream therefore produces a list o f values over time. Components do not
compete for users events. Instead each event is passed to every object. For instance, every time the
mouse position changes, each object is informed of its new position.

43

We can implement the colour valued behaviour, from the Fran example (Section 3.13.1), as follows:

colourStep :: St Colour
colourStep = until (next mouseButton)

red
(until (next mouseButton)

green
colourStep)

A value of type St a , is a program that creates a Stream, that produces values of type a . The until
operator is similar to Fran’s. The next function guarantees that we must wait for the next step when the
mouseButton is pressed. W e can also have Boolean valued predicates, for instance, we could restrict
colourStep to only produce values until 10 seconds had passed:

restrictedColour :: St Colour
restrictedColour = until (liftl (> 10) time) colourStep nil

Here we say that until the current time is greater than 10 seconds, produce values from
colourStep. After that we produce nil, an empty stream.

A stream can be considered in terms of its status, that is its current value. Alternatively, a stream can be
considered in terms of events: we can also check to see when an object produces a new value. For
instance, we could write a function that writes to a file every time the colour (from
restrictedColour) changed.

fileWriter :: String -> St ()
fileWriter file = do

c <- restrictedColour
writeFilelO file (show c)

In this case, the syntax c <- c o lo u r S te p means for every value produced by
r e s tr ic t e d C o lo u r perform the following action. When r e s tr ic te d C o lo u r produces the
value n i l , f i l e W r it e r will cease.

Imagine that we wished to define instead a stream that on every keypress, sampled and displayed the
value of colourStep. We might try to define this as follows.

keyColour :: St Colour
keyColour = do
k <- keyboard
current colourStep

current :: St a -> St a

Every time a key is pressed, we sample the c o lo u r S te p stream using c u r r e n t . Unfortunately,
every time a key is pressed, the c o lo u r S te p stream is restarted, so keyC olour will only ever
produce the value red. To correct this we must use s t a r t .

keyColour :: St Colour
keyColour = do
c <- start colourStep
k <- keyboard
current c

start :: St a -> St (St a)

It decouples the steps in which a stream is started and accessed. It spawns a substream running
concurrently, and returns a program that may be used to create sink streams for the started stream.

44

Pidgets includes a Widget library. W e can define our example “Counter” as follows.

counter :: St ()
counter = do
w <- newVar
runWidget "counter" $
let lbl = textSt (liftl show (var v))

btnl = pushButton (updNext v increment) (text "inc")
btn2 = pushButton (updNext v decrement) (text "dec")

in above (lbl (beside btnl btn2))

We create a stream variable that stores the state of the counter. This has an action to update it, and a
function, v a r , that accesses its values. Instead of accessing its single value, we access a stream of
values, representing its state for all time.

newVar :: S t (Var a)
updNext :: Var a -> (a -> a) -> S t ()
var :: Var a -> S t a

We define our interface in terms of the Widget type. We run a Widget in a window, with a given title,
using runW idget. We create a text label using t e x t S t and text. We create a button using
pushB utton. This takes an action to perform on every click and an appearance widget, and produces
a button widget. By passing in the input action, we are able to define a generic Widget value, and so
easily compose them. As with Gadgets, this allows for good separation between “semantic wiring” and
geometric composition.

runW idget :: S tr in g -> W idget -> S t ()
pushB utton :: S t () -> W idget -> W idget
t e x t S t :: S t S tr in g -> W idget
t e x t :: S tr in g -> W idget
a b o v e ,b e s id e :: W idget -> W idget -> W idget

The Pidgets approach therefore has a number of positive features. It provides many of the same
advantages as FRAN support for: constraints, powerful temporal operators, composition of dynamically
evolving images, and status and event considerations. The Widget library provides some useful
concepts, such as a generic untyped W idget value.

However, it has a number of significant problems. Pidgets unifies three very separate concepts,
producing a value, having a value, and performing an action. This makes the type signatures appear
initially very confusing on many of the above functions. We cannot tell from the type signature whether
a value o f type S t () is a single action, or whether it produces a stream of () values. We cannot use
the type system to check that we are treating these different concepts correctly. There is also no
difference in type between an unstarted and a running stream. The start and next functions can be
conceptually very confusing. In particular, when a stream also performs an 10 action, we must be
careful with any use of start. By combining these concepts the choice of operator name can be
confusing. If we're treating a stream as having a value, then the name current, makes good sense. It
returns the current value of the stream. However, if we're treating a stream as producing values, then we
use current to get only the first produced value from a stream. This separation is also obviously
altered depending on whether the stream has been started earlier. If the stream has been started earlier it
will almost certainly have already produced a value, and current will return that value. If it is instead
started at the point o f use, then it may not produce a value for several steps. In this case current, will not
return a value immediately.

Pidgets also provides no support for dynamic displays with changing numbers of components. The
Widget library only really provides support for creating new windows, by performing successive
runW idget actions. This seriously restricts its potential.

45

3.15. Requirements for Declarative GUI Languages

Based on my analyses, presented in previous sections, there are a number of important requirements for
user interface programming languages. These do not represent a completely comprehensive set of
requirements and in particular do not concentrate on high level notions about the usability of the
language. Instead they represent a set o f design goals derived from carrying out numerous small
examples and the large case studies with Haggis, Clock and Fran.

3.15.1. High level and Declarative
In order to implement high level specifications, and allow designers to perform high level prototyping,
languages must themselves be very high level. High level functional concepts should be supported such
as higher order functions, and polymorphism. Languages should also support the concept of
behavioural values that may change over time, with predicates on these values. This enables both status
and event phenomena to be dealt with. Finally, languages should support the dynamic creation and
deletion of objects in a safe, referentially transparent way. In particular, throughout the language the
programmer should be able to use a declarative style, specifying what an interactive system should be
like not how this should be achieved.

3.15.2. Declarative Concurrency
Languages need to support concurrency, but at a high level o f abstraction. Approaches where
programmers must explicitly perform message passing between components, and handle the intricacies
of concurrent programming have problems. Instead, languages should support dynamically evolving
objects, where communication can happen via constraints. Concurrent support for multi-user systems is
necessary. However, there should be as little reliance on explicit concurrency as possible. This should
allow errors to be visible at compile time.

3.15.3. Compositional
Systems should support a compositional style o f programming. In particular, it should be possible to
form complex interactive components out of primitive ones and use them in an equivalent way. To aid
this, languages should support easy composition o f objects, each with local state.

Graphics need to be specified in a declarative way. There should be support for a wide variety of
possible appearances. Composition of dynamically evolving pictures should be possible, as is permitted
by Pidgets, Fran and Clock.

3.15.4. Component based application/interface separation
Languages should support the structuring of a system into components. If a conceptual architecture is
used as the basis then we can guarantee application/interface separation. This sort of support is
provided by Clock, with its basis in the MVC model. To allow this there should be good support for
separation between “semantic wiring” and geometric composition.

3.15.5. Visual Languages & Tool support
Where helpful, languages should aid development, in a visual way. Designers should be able to
consider architectures graphically. This should be possible through direct manipulation. They should
also, if possible, be able to design interfaces visually. This allows designers to easily design attractive
interfaces.

3.15.6. Scalability
The language should scale to easily handle large examples. UI languages often appear very
compositional, until they are used to structure very significant systems. In particular, it should not be
necessary to radically abandon the general programming paradigm, to handle big examples.

3.15.7. Efficiency
While languages should be easy to use, they also have to produce efficient systems. Otherwise, while
systems may be easy to develop, they will be of little use. This relates to the scalability issue. It should
be possible to run large programs without waiting noticeable periods of time for screen updates to
occur.

46

3.15.8. Platform Independence
A prototyping language should support the development of platform independent implementations. This
can be aided by building on a platform independent underlying toolkit, such as Tcl-Tk instead of
building from the ground up as has been done with most previous functional GUI systems.

47

Chapter 4 - FranTk: A New Approach

4.1. Introduction

The programming language, FranTk, presented here represents a new approach to User Interface
programming. The core FranTk library is the most important element of the prototyping environment
discussed in this thesis. There are two additional elements that make up the approach shown in Figure

Constraint based
Component Definitions

(described textually)

Interaction Objects
(derived from Visual

Interface Builder)

System Architecture
(built with visual tool)

Figure 18 - Elements of the Thesis Prototyping System

The prototyping environment supports a visual interface builder, and system architecture manager. The
static components of an interface can be constructed visually with an interface construction tool. A
structured architecture may also be developed. This architecture can be built visually. This supports the
designer’s understanding of the system structure. This architecture breaks the application down into a
tree of interaction components, and is based on that used in Clock. Components are described textually
in terms of FranTk combinators. Code can be automatically generated for each static widget that has
been built with the visual interface builder, to allow the widgets to be linked in with FranTk code.

FranTk makes use of a binding to the popular Tcl-Tk language [147], to provide a widget library. Tcl-
Tk provides a powerful set o f platform independent widgets. Prototypes can therefore run on UNIX or
the Windows family (95/98/NT/2000). To enable multi-user interaction, it makes use of (and needs) the
X Windows client-server architecture to allow several client interfaces to be run on different machines
from one UNIX server.

The core FranTk language has been released as a publicly available software library. It is therefore
intended for use by other people. However, the visual tools were only developed as proof-of-concept
prototypes and are not in a state to be used by others.

The remainder of this Chapter introduces the core FranTk language. This chapter uses a number of
small examples5. These examples serve a different purpose from the larger case studies discussed in
Chapter 2. They introduce important features o f FranTk. Chapter 6 will discuss how FranTk handled
the Thesis case studies themselves.

4.2. FranTk contributions

The major new contributions in FranTk are as follows:

• FranTk lifts Fran’s behaviors and events to widgets. This is the key to the declarative style of
programming. The appearance o f a dynamic widget can be defined once “fo r all tim e’’ in terms of
FranTk combinators.

5 This chapter assumes some familiarity with Haskell. Some elements of the basic syntax were
introduced in Section 3.7. Some attempt has also been made to introduce further syntax used in this
Chapter. Readers requiring further assistance are again directed to [199] or [94].

This chapter also makes use of a number of standard Functional Reactive Programming combinators. A
full summary of these combinators is given in Appedix A.

48

• FranTk extends Fran with support for hierarchical interactive displays, allowing access to input
from individual components rather from one monolithic window.

• FranTk separates visual composition from “semantic wiring” . These two concepts are fundamental
to GUI programming. The first involves geometric composition. For instance, placing one widget
above another. The second involves connecting user input from a widget to the application code.
This separation is made possible by the introduction o f listeners, consumers that respond to user
input. FranTk provides an algebra to compose these listeners in a functional style.

• FranTk provides good support for dynamic and static interfaces. This contrasts with many o f the
systems discussed in the previous Chapter where it can be difficult to construct systems with a
dynamically changing number o f components as they frequently require a very imperative and
sometimes cumbersome style o f programming.

4.3. The Basic Concepts

We begin with a simple example to introduce some basic concepts. Figure 19 shows two labels,
composed above each other. The top label shows the text “Hello W orld” , the bottom label shows the
time in seconds since the program was started. The concepts necessary to produce this interface will be
presented in this section.

■ J l l . l n l x l
Hello World

1.00

Figure 19 - A Simple Exam ple in F ranT k

4.3.1. In troducing Com ponents

The basic conceptual notion in FranTk for handling interaction objects is the C om ponent. For instance,
in our example we have two label components displayed one above the other. They appear in a window
component.

A C om ponent is an action that produces a W id g e tB .

type Component = GUI WidgetB

This definition uses the GUI monad, which is an extension of the standard 10 monad. Values o f type
GUI a represent actions that may have some side effect on the user interface, such as creating a label,
and return a value o f type a .

A WidgetB is an abstract data type representing primitive Tel toolkit widgets. A WidgetB may in
fact be made up of several primitive tel widgets, and may be dynamic, changing its appearance over
time. A W i d g e tB is therefore conceptually a w idget behavior. However, as with Fran’s ImageB type
(image behaviors), WidgetB is an abstract data type to allow an efficient implementation.

As well as basic Components such as labels and buttons, there are top-level window components that
contain basic components. We therefore have the concept o f a W Com ponent; a W indow component.

type WComponent = GUI WindowWidgetB

This is an action that produces a WindowWidgetB, which is an abstract representation o f a window
behavior (that will contain widgets).

4.3.2. C onfiguring Com ponents

In our example we have two labels with different appearances. One has a static appearance; one a
dynamic appearance. We create a label using the mkLabel function and configure it using the text
and textB functions.

49

mkLabel :: [Conf Label] -> Component
text :: Has_text w => String -> Conf w

W e use mkLabel to make a label. It takes a list of configuration information, in this case, some text to
display. As with TkGofer (Section 3.8.1) we use type classes to guarantee that only the correct
configuration information can be applied to any widget. The text function takes a String and returns
a configuration option that can be applied to any object that is a member of the Has_text class. This
class includes labels, as they are capable of displaying text.

W e therefore define the static “Hello World” label as follows.

label1 :: Component
labell = mkLabel [text "Hello World"]

In FranTk, we extend basic configuration with dynamic configuration options. Instead o f taking a static
value, a widget can be given a dynamic behavior value. This approach is the key to the declarative
nature of FranTk. Rather than having to carry out imperative updates to change a component’s
appearance, we can define, using a behavior, what it will look like fo r all time.

We can therefore define the timer label as follows.

Iabel2 :: Component
label2 = do
time <- timeTick 1
mkLabel [textB (liftl show time)]

textB :: Has_text w => Behavior String -> Conf w
timeTick :: Time -> GUI (Behavior Time)
liftl :: (a -> b) -> Behavior a -> Behavior b

The function timeTick creates a behavior that represents the time, and changes at a given frequency.
In our example, the time value changes every second. The function liftl maps a function over a
behavior, to yield a new behavior. This shows the benefit o f the GUI representation of a Component.
W e can create some local state for a component while still thinking of it as a value.

4.3.3. Composing Components

W e now have the definition of the two labels. We can compose them together to generate a new
component using a b o v e .

newlabel :: Component
newlabel = labell 'above' label2
class Packable w where
above :: w -> w -> w

instance Packable Component

Though components represent imperative actions that will each produce a widget, we can treat them as
an abstract value and so compose them declaratively. This satisfies our aim of supporting a
compositional style o f programming in FranTk.

As with Pidgets (Section 3.14) and Gadgets (Section 3.9.2), the representation of widgets as untyped
components makes them easy to compose. In contrast, systems which use typed widgets are less easily
composable. For instance, in Haggis or TkGofer a button and label are o f different types. This typing
was required to allow access to user input from the component, and to apply changes to the component,
such as resetting the label, later on. This approach makes it more difficult to geometrically compose a
list o f widgets as they must be transformed to an untyped display object first. In FranTk, all the
information necessary to define a component is passed in as a set o f parameters so this sort of extra

50

transformation can be avoided. This design choice is very significant and is discussed further in Section
4.15.

We can place a component in a window using the mkW indow function,

w in : : W C om ponent
w in = mkW indow [t i t l e " E x l"] n e w l a b e l

mkW indow : : [C o n f W indow] -> C o m p o n en t -> W C om ponent
t i t l e : : S t r i n g -> C o n f W indow

Again this takes a list o f configuration information and the component to display, and produces a
window for that component.

4.3.4. Configuring composite components

As well as applying configuration options to individual objects, we can apply them to composite
widgets. For instance, we might wish to make the background colour o f our whole window blue. It
would clearly be unfortunate if we needed to set each individual object’s background colour, as this
would make our programming style significantly less compositional. We can change the background
colour o f our example to blue as shown below.

w in 2 : : W C om ponent
w in 2 = w i t h S t y l e [b a c k g r o u n d b l u e] w in

c l a s s H a s S t y l e w w h e r e
w i t h S t y l e : : [C o n f S t y l e] -> w -> w

This uses the w i t h S t y l e function, which is a member of the H a s S t y l e class. All FranTk
component types, including C o m p o n en t and W C om ponent, are members of this class. The
w i t h S t y l e function takes a list o f S t y l e configuration options. These consist o f all options that it
makes sense to apply to a composite widget, such as formatting options; but not individual options such
as the text configuration option. These style options include a disable option, which disables the entire
composite widget. They are applied to every widget in the composite component, which can handle that
sort of configuration option. For instance, we can set the font size for a composite widget. Clearly only
those objects that can display text will need to have this option applied to them. If options are defined at
several levels, then the one at the lowest level in the tree will be applied.

4.3.5. Rendering Components

Now we need to render this window component onto the screen. We do this using r e n d e r ,

r e n d e r : : W C om ponent -> GUI ()

Finally, to run the GUI actions that we have produced we use start. This runs the action and then starts
up the Tcl-Tk event loop. This event loop will run until the graphical user interface quits, at which
point it will return.

s t a r t : : GUI () -> 10 ()

As s t a r t and r e n d e r are often used together there is a composite function display.

d i s p l a y : : W C om ponent -> 10 ()
d i s p l a y = s t a r t . r e n d e r

W e can therefore define main as follows.

m a in : : 10 ()
m a in = d i s p l a y w in

51

4.4. Interactive Components - Representing State

So far w e’ve dealt with an interface with a changing appearance but with no interaction. This section
demonstrates how interaction is handled in FranTk.

Consider the interface shown in Figure 20. It shows the simple “Counter” with a label, an increment and
decrement button, and a slider (known as a scale widget). This widget has a current value shown by the
slider and the label. Pressing the increment or decrement button, or moving the slider will change this
value. We therefore have multiple views o f the same data.

tk H@E3
27

inc I d ec

27

in r
Figure 20 - An Interactive Exam ple in F ran T k

4.4.1. Representing S tate with BV ars

To represent the state in the example we use a BVar. A value o f type BVar a represents some abstract
mutable state o f type a. It can be thought o f as a B ehavior Variable : that is a variable that contains a
behavior.

data BVar a

We can create a new BVar within the GUI or the 10 monad. Most commonly we use them within the
GUI monad.

newBVar :: a -> 10 (BVar a)
mkBVar :: a -> GUI (BVar a)

It i s p o s s i b l e t o g e t a b e h a v i o r f r o m a B V a r .

bvarBehavior :: BVar a -> Behavior a

The behavior therefore represents the value o f the counter at any give point in time. It is possible to get
an event from a BVar

bvarEvent :: BVar a -> Event a

The event from a BVar generates an occurrence every time the value o f the BVar is updated. In our
example we would therefore represent the state o f the counter as a value of type BVar Int.

The use o f BVars here is similar to the use o f stream variables in Pidgets (Section 3.14). They are a
fundamental and important feature o f FranTk. They provide us with a mechanism to represent state, but
to use it in a functional style.

4.4.2. Using S tate - W ith B ehaviors

What can we do with a behavior? We can tell the label and slider to display the behavior values that we
get from the BVar.

lbl :: BVar Int -> Component
lbl m = mkLabel [textB (liftl show (bvarBehavior m))]

As shown in section 4.3.2 we can tell a label to show a string behavior using t e x t B , and we transform
the integer behavior into a string behavior using liftl.

52

We can tell the slider to use the value of the BV ar with s c a le V a lB . This sets the value of the slider
to that of an integer behavior. (We will fill in the rest o f the definition later.)

s c a l e : : B V ar I n t -> C o m p o n e n t
s c a l e m = m k H S c a le [s c a l e V a l B (b v a r B e h a v i o r m)] (. .)

s c a l e V a l B : : B e h a v i o r I n t -> C o n f w
We can therefore easily provide multiple views of the state of an application.

4.4.3. Updating State- With Listeners

We can set the value of a B V ar using its L i s t e n e r .

b v a r l n p u t : : B V ar a -> L i s t e n e r a
b v a r U p d ln p u t : : B V ar a -> L i s t e n e r (a -> a)

A listener is an abstract type but it can be thought of as L i s t e n e r a = a -> GUI () . A value
of type L i s t e n e r a , is a function, that given a value of type a , performs a side-effecting GUI action
with it. Listeners are therefore consumers of values.

The listener accessed by b v a r l n p u t updates the B V ar with its given value. This will alter the value
of the B V a r ' s behavior and generate an event occurrence. The listener accessed by b v a r U p d ln p u t
updates the B V ar by applying the given function to its current value.

W e can therefore complete the definition of the slider as follows,

s c a l e m = m k H S c a le [. .] (b v a r l n p u t m)

m k H S c a le : : [C o n f S c a l e] -> L i s t e n e r I n t -> C o m p o n en t

The function m k H S c a le takes a listener argument, which is passed the current value every time the
slider updates the B V ar with its changed value. The slider simply updates the value of the BVar with
its changed value.

The introduction of listeners is a very important design choice. Initially this choice may seem strange.
The use of behaviors and events encourages a more functional style of programming. However, the use
of listeners introduces an imperative concept into this functional approach.

The introduction of listeners brings an important benefit. In a similar manner to Pidgets, we give
component-making functions a consumer (listener) argument which allows them just to yield their
visual aspect in the form of a Component. This approach makes geometric composition simpler. The
alternative would be to return a pair of visual and semantic handles, in the form of a W idget and an
Event providing access to all user input on that widget. This alternative makes component composition
more complex. To compose two components we would now require to compose their W idget and Event
parts. This style can become tiresome when composing complex collections of components, because
programmers are forced to continually compose and break down compound events. We will return to
this important design choice in Section 4.15.

At this point it is perhaps also useful to compare a FranTk BVar to a Java Beans Bound Property. A
Bound Property has a s e t method which updates its state; this role is fulfilled by the BVar’s Listener.
It is possible to g e t the value of a Bound Property, this is achieved through the BV ar’s Behavior
which can be sampled at any given time. Finally, it is possible to add a
P r o p e r t y C h a n g e L i s t e n e r to a Bound Property to hear about changes. This role is fulfilled by
the BVar’s Event. A FranTk Event is perhaps better understood as an Event Source. It is possible to add
Listeners to it to hear about changes. It is important to note that though BVars and JavaBean Bound
Properties have similarities, as we shall see, there is an algebra of combinators for Listeners, for
Behaviors and for Events which makes working with them much more succinct than with their Java
counterparts.

53

4.4.4. Composing Listeners

FranTk introduces combinators that allow listeners to be composed in a functional style. As an
example, consider the definition of the increment button in our example.

in c b :: BVar In t -> Component
in c b m = mkButton [t e x t "inc"]

(t e l lL in c (bvarU pdlnput m))

in c :: I n t -> In t
mkButton :: [Conf B utton] -> L is te n e r () -> Component

The function mkButton takes a list o f configuration information for a button. This defines its
appearance. Note that Button is also an instance of the H a s_ tex t class and so takes a text
configuration option. It also takes a listener which is passed the void value ‘ () ' every time the button
is pressed.

W e therefore need to make the button talk to the listener provided by the BVar. We do this using
t e l lL .

t e l l L :: a -> L is te n e r a -> L is te n e r b

Figure 21 shows how t e l l L works. It takes a listener expecting values of type a and a value of type a.
It produces a composite listener that, when it is fired, ignores its argument and always performs its
action with the given value.

Listener expects values
of type a

/^V alue of ̂ \
tellL Listener V _ tv p e a _ > / Value of type b

Figure 21 - The t e l l L Listener

In the definition of incb we therefore produce a listener that ignores its argument and always updates
the BVar using the function inc.

4.4.5. The complete interface

We create the final interface in two more stages. Firstly, we create the composite component.

counterB :: BVar Int -> Component
counterB m = above (lbl m) (beside (incb m) (decb m))
composite :: BVar Int -> Component
composite m = above (counterB m) (scale m)

Finally, we create a BVar to represent the state, and then render the component in a window6,

main :: 10 ()
main = display $ mkWindow [] compositeCounter
compositeCounter :: Component
compositeCounter = do (m <- mkBVar 0; composite m}

6 The operator ‘$ ’ is a Haskell infix operator. It is defined as f $ x = f x . In otherwords, it is
simply the “apply” operator. It is a way of avoiding parentheses. Without it the function above would
have to have been written as d is p la y (mkWindow [] co m p o siteC o u n ter).

54

4.5. The Listener Algebra

FranTk provides an algebra of listener combinators. Though a listener is essentially an imperative
callback, this algebra allows us to treat and compose them in a declarative manner. This algebra is dual
to the event algebra provided in Fran. Each operation in the event algebra has a corresponding
operation in the listener algebra. The choice of operators is therefore based on the set that have proved
useful when handling events in FRP. We will first present the most significant operations in the listener
algebra, and then define formally how these relate to the event algebra.

4.5.1. The Listener Combinators

The null listener is neverL, which does nothing with any value it receives.

neverL :: L is te n e r a

To merge two listeners we use mergeL. This makes a new listener which passes every value consumed
to its two argument listeners.

mergeL :: L is te n e r a -> L is te n e r a -> L is te n e r a

Listener 1

Listener 2

Figure 22 - The mergeL Listener

We can therefore define, allL, a combinator that merges a list of listeners.

allL :: [Listener a] -> Listener a
allL xs = foldr mergeL neverL xs

There is a comap function on listeners. In contrast to the standard map function, this applies what
appears to be an inverse function to a listener. It produces a listener that consumes values, and applies
the given function to these values before passing them on to the given listener.

comapL :: (b -> a) -> Listener a -> Listener b

We can therefore trivially define t e l l L in terms of comapL.

t e l l L a 1 = comapL (c o n s t a) 1

There is a filter function on listeners. This consumes values and passes them on to the given listener, if
they satisfy the given predicate.

filterL :: (a -> Bool) -> Listener a -> Listener a

W e can create a one shot listener that consumes one value and then behaves as neverL using onceL.
onceL :: Listener a -> Listener a

For instance, we might require a button that could only ever be pressed once. We could define this
using onceL.

mkOnceButton :: [ConfB Button] -> Listener a -> Component
mkOnceButton cs 1 = mkButton cs (onceL 1)

We can make a listener snapshot a behavior and consume its current value. For instance, we have
snapshotL.

snapshotL :: B eh avior b -> L is te n e r (a ,b) -> L is t e n e r a

55

As shown in Figure 23, every time the new listener consumes a value it samples the behavior and passes
the pair of values to its argument listener.

Listener 1

snapshotL

/behavicrt ‘ a
b

Figure 23 - The sn a p sh o tL Listener

This is a very useful combinator. It is often necessary to sample the state of the application when some
user input occurs. For instance, we may need to check which mode the system is in to interpret the
input. As an example, consider a distance converter. It could be represented in terms of two states. The
current units and the distance value represented in some neutral, arbitrary units such as Miles. We
assume the existence of a function to convert a value and units pair into a distance in Miles.

type Units = BVar Unit
type Distance = BVar Double
convert :: (Double,Unit) -> Double

To update the distance we would therefore need a listener that sampled the current units and
transformed the given value into Miles.

inputDistance :: BVar Double -> BVar Unit
-> Listener Double

inputDistance distBV unitsBV =
snapshotL (bvarBehavior unitsBV) $

comapL convert $
b v a r ln p u t d istB V

There is a listener equivalent of the s c a n l function.

scanlL :: (a -> b -> a) -> a -> Listener a -> Listener b

This works as shown in Figure 24. The listener’s current value starts with the initial value provided.
Every time the listener consumes a value b, it applies its update function f to its current value a and the
new value, b. It passes (f a b) to the argument listener, and updates its current value as well. This
function is used in Section 4.10.2.

b

Figure 24 - The s c a n lL Listener

We can define a “listener level switcher” . This creates a reactive listener that may itself change with
time.

sw itch erL :: L is te n e r a -> Event (L is te n e r a) -> L is te n e r a

Consider the listener s w i t c h e r L 1 e . When this composite listener consumes values, it starts by
passing them to the initial listener 1. Whenever the event e fires, it switches to a new listener and
passes all values consumed to it.

We can get access to the time that a listener consumes a value using wi thTimeL.

withTimeL :: L is te n e r (a,T im e) -> L is te n e r a

Here the type Time is a synonym for D ouble (semantically these time values must be non-negative),
and represents the number of seconds since the start of the program.

Listener expects
values of type a f a n

scanL (Current
Listener Vyalue (

56

We can make a listener that simply performs an 10 action using mkL.

mkL :: (a -> 10 ()) -> L is te n e r a

We can also make a listener that performs a GUI action using mkGUIL.

mkGUIL :: (a -> GUI ()) -> L is te n e r a

Composing listeners can be thought of as forming a pipeline through which data will pass. For instance,
consider comapL f $ comapL g $ 1 . Values consumed by this composite listener are first
processed by comapL f ; this generates a new value which is passed to comapL g; the final result is
then passed to 1.

Previous functional toolkits would require a programmer to write this sort of code in terms of an 10
action that sampled a mutable variable. With the listener algebra, programmers are able to manipulate
imperative actions and compose them in a declarative style.

4.5.2. Event-Listener Duality

The event and listener algebras in Fran are duals of each other7. We can therefore formally define a set
of relationships between them. The primitive combination operation for events and listeners is
a d d L isten er . This adds a listener to an event such that the listener is fired every time there is an
event occurrence. This function returns a remove action that can be called to unregister the listener’s
interest.

a d d L isten er :: E vent a -> L is te n e r a -> GUI (GUI ())

The relationship between events and listeners can be defined in terms of the addListener function.
For any e : : Event a, 1 : : Listener a, b : : Behavior b, f : : a -> b,
p : : a -> Bool, el : : Event b, n : : a, o p : : a -> b -> a,
11 :: Listener b, 12 :: Listener (a,b)

a d d L isten er neverE 1 <==> a d d L isten er e neverL

neverE :: Event a
- - an ev e n t th a t n ev er g e n e r a te s any o c c u r ren ce s

a d d L isten er (mapE f e) 11 <==> a d d L isten er e (comapL f 11)

mapE :: (a -> b) -> Event a -> E vent b
- - map a fu n c t io n over each ev e n t o ccu rren ce

a d d L isten er (f i l t e r E p e) 1 <==> a d d L isten er e (f i l t e r L p 1)

f i l t e r E :: (a -> B ool) -> E vent a -> E vent a
- - f i l t e r ou t ev en t o cc u r ren ce s th a t d o n 't match th e p r e d ic a te

a d d L isten er (onceE e) 1 <==> a d d L isten er e (onceL 1)

onceE :: Event a -> Event a
- - y i e l d an ev en t w ith o n ly one o ccu rren ce (th e f i r s t produced)

a d d L isten er (snapshotE b e) 12 <==> a d d L isten er e (sn ap sh otL b 12)

snapshotE :: B eh avior a -> E vent a -> E vent (a ,b)
- - sn a p sh o t a b eh a v io r on each ev e n t o cc u r s

a d d L isten er (sca n lE op n e l) 1 <==> a d d L isten er e l (sca n lL op n 1)

scan lE :: (a -> b -> a) -> a -> Event b -> Event a
- - accum ulate a v a lu e in a s im i la r way to sca n lL

7 The Event algebra operations are defined in Appendix A.

57

There are two combinators not included in the list above, m e rg e L and s w i t c h e r L . These both have
duals in the event algebra.

(. | .) , m e r g e E : : E v e n t a -> E v e n t a -> E v e n t a
s w i t c h e r E : : E v e n t a -> E v e n t (E v e n t a) -> E v e n t a

However, they cannot simply be defined in terms of each other because their types are too different.
The combinator m e rg e E takes two events rather than two listeners as arguments; the combinator
s w i t c h e r E , creates an event level switcher instead of an listener level switcher.

The event level switcher starts by generating occurrences from the first event. After every event-valued
occurrence, the switcher generates occurrences from the new event. Note that we can use the event-
level switcher to define a monadic instance for events. This begins by generating no occurrences (that is
it behaves like n e v e r E) . After every occurrence of e , it applies f , to create a new event, and
generates occurrences from this new event8.

(>>) : : E v e n t a -> (a -> E v e n t b) -> E v e n t b
e >>= f = n e v e r E ' s w i t c h e r E ' e ==> f

This allows us to define sequencing on events. For instance, the “o n ly A f t e r ” event below will only
generate occurrences from e2 , after e l has generated its first occurrence.

o n l y A f t e r e l e2 = o n c e E e l >> e2

This definition is in fact very similar to the monad of imperative streams used in Pidgets (Section 3.14).
The expression (d o {x < - e l ; f x }) , means after every occurrence x , produced by e l , generate
occurrences from the new event ‘f x \ The major difference is that events do not support imperative
actions explicitly, we must instead add a listener to the new event to get such an effect.

If we imagine a wire connecting a listener to an event, the event and listener combinators can be
interpreted as mechanisms to transform user input code at either end of the wire (Figure 25).

4.6. Introducing Wires

The BVar is not a FranTk primitive. The communication primitive is, in fact, the wire shown in Figure
25. A Wire is more limited than a BVar. In particular, it is stateless and has no behavior. It has only an
input listener and an event.

mkWire :: GUI (Wire a)
newWire :: 10 (Wire a)
wirelnput :: Wire a -> Listener a
wireEvent :: Wire a -> Event a

W e can define a BVar in terms of a wire.

data BVar a = BVar {
bvarUpdlnput :: Listener (a -> a),
bvarEvent :: Event a,
bvarBehavior :: Behavior a
}

Apply event
combinators

Apply _
listener

combinators

Figure 25 - A FranTk Wire

8 The use of quotation marks (eg 'sw itc h e r E ') turns a standard Haskell function into an infix
function.

58

new B V ar : : a -> 10 (B V ar a)
new B V ar a = d o

(l , e) < - n e w W ire
l e t e ' = a 1a c c u m E ' e
l e t b = a ' s t e p p e r ' e '
r e t u r n (B V ar 1 e ' b)

The definition o f a BVar relies on two Fran combinators. The BVar hears update function values on the
wire. These updates will modify its state.

It accumulates an event based value using accum E. This will therefore form an event that produces an
occurrence on every update, by applying the update function to the current B Var value9.

accum E : : a -> E v e n t (a -> a) -> E v e n t a

The function accu m E is defined in terms of s c a n lE .

accum E xO c h a n g e =
s c a n l E a p p l y xO c h a n g e
w h e r e

a p p l y : : a - > (a -> a) -> a
a p p l y a f = f a

The BVar’s behavior is formed by stepping through, changing on every event occurrence,

s t e p p e r : : a -> E v e n t a -> B e h a v i o r a

A stepper is in fact a version o f a more general reactive behavior combinator, that switches between
behaviors on event occurrence.

s w i t c h e r B : : B e h a v i o r a -> E v e n t (B e h a v io r a) -> B e h a v i o r a

s t e p p e r a e = l i f t O a ' s w i t c h e r ' (e ==> l i f t O)

We can use this approach to define other types of B Var, such as BVar collections discussed in Section
4.8.

It is sometimes also useful to be able to generate a BVar which listens to an input event as well its
actual listener. Again such a BVar can easily be defined. For instance, this function was useful in the
ATC case study, discussed in section 6.3.4

new B V arE : : a -> E v e n t (a -> a) -> 10 (B V ar a)
new B V arE a in p E = d o

(l , e) < - n e w W ire
l e t e ' = a 'a c c u m E ' (e . | . in p E)
l e t b = a ' s t e p p e r ' e '
r e t u r n (B V ar 1 e ' b)

4.7. Simple Dynamic Interfaces

The previous examples have shown how to implement simple interactive systems in FranTk. However,
they have involved only a static set of widgets on screen. That is, though the appearance of individual
labels has changed, the number of labels has not. The ability to handle dynamically changing
collections of components in FranTk is one of its major benefits.

There are two sorts o f dynamic display we could have. The first is a simple conditional display. Here
we can display one of two components depending on some state. The second sort of dynamism is the
introduction of new components on to a screen. We will introduce a conditional display in this section,
and then a full dynamic display in Section 4.8.

9 There are, in fact, some problems with the types of these functions (accumE, stepper) which will
be discussed in Section 7.2.5. This issue is also discussed in Appedix A.

59

■ES - i n i x i■HImm ■**-»** ■■■«»

r view

Figure 26 - A C onditional Display in F ranT k

Consider the interface shown in Figure 26. It consists o f two parts a checkbutton, and a composite
counter from Section 4.4. The checkbutton is used to control whether the counter component is visible
or not.

4.7.1. Defining a C heckbutton

We create a Boolean BVar that models the visibility o f the counter component. The checkbutton then
talks to this BVar. We define this using mkCheckbutton.

vischeck :: BVar Bool -> Component
vischeck visBv =
mkCheckbutton [text "view", checkVal True] (bvarlnput visBv)
mkCheckbutton :: [Conf Checkbutton] -> Listener Bool -> Component

We set its initial state using c h e c k V a l .

checkVal :: Has_checkVal w => Bool -> Conf w
instance Has_checkVal Checkbutton

4.7.2. C onditional displays

We c a n c o n d i t i o n a l l y d i s p l a y a c o m p o n e n t u s i n g i f B .

condCounter :: Component
condCounter = do
visBv <- mkBVar True
above (vischeck visBv)

(ifB (bvarBehavior visBv) compositeCounter emptyComponent)

class GBehavior w where
ifB :: GBehavior w => Behavior Bool -> w -> w -> w

instance GBehavior Component

When applied to components ifB b w l w2 produces a component which behaves as w l when b is
True and w2 otherwise. (Other members of the GBehavior class include Behaviors and Events.)
In this example we display the compositeCounter when the BVar has the value True and an
empty component otherwise.

emptyComponent :: Component

This provides us with our first mechanism for dynamically altering the number o f widgets on screen at
any given time.

tk HEsIEl
P view

45

inc | d ec

45

T E J "

60

4.8. Displaying Dynamic Collections
In the previous section, we discussed interfaces with conditional displays. Now we will consider
interfaces with a truly variable number of widgets on screen at any given time. For instance, consider
the interface in Figure 27. It shows a collection o f the conditional displays defined in Section 4.7. We
can add new components to the bottom of the window by pressing the Create button.

Create

r view

view

140

70

Figure 27 - A Dynamic In terface in F ranT k

We need to define the collection o f objects that are displayed on the screen. In most previous GUI
systems, we would do this by performing update actions that add and delete widgets from the screen. In
FranTk we define the appearance o f an interface based on some state for all time. We therefore need to
be able to define the user’s view as a function o f some abstract collection type. We do this using a
behavioral collection, in this case a list.

type ListB a

nabove :: ListB Component -> Component

In FranTk we represent a dynamic list o f objects as a ListB. To geometrically compose dynamic
collections, we use combinators such as nabove, which places a dynamic collection o f components
above each other. We can think o f a ListB as a behavior list (Behavior [a]). However, when
rendered the ListB will incrementally update the screen only making necessary changes, rather than
redisplaying everything.

To m a k e a l i s t c o l l e c t i o n w e u s e a s p e c ia l t y p e o f B V a r , a L i s t B V a r . We g i v e i t a n i n i t i a l l i s t o f

v a lu e s .

type ListBVar a
mkListBVar :: [a] -> G U I (ListBVar a)
newListBVar :: [a] -> 10 (ListBVar a)

We extract the dynamic list from the variable using collection.

collection :: ListBVar a -> ListB a

We can append items to a ListBVar using appendListB.

appendListB :: ListBVar a -> Listener a

To implement our example, we would therefore have the following code.

dynamicExample :: Component
dynamicExample = do

1st <- mkListBVar []
let create = mkButton [text "Create"]

(tellL condCounter (appendListB 1))
above create (nabove (collection 1st))

61

4.9. Dynamic Collections

As we saw in the previous section, behavioral collections allow us to model dynamic collections of
objects and treat them as behaviors. They can, however, also be incrementally rendered onto a display,
so that only changes to the collection are redrawn. Dynamic collections such as sets and lists are
defined in terms of a general behavioral collection type.

data CollB entry op c a

The type is parameterised over its collection type, c , element type, a , and update operations, op , and
internal structure, e n t r y . It models a static collection o f type c a . It is altered by incremental updates
of type o p a . It maintains internal data using the type e n t r y a . For the purposes o f this Chapter,
only the last two type parameters are important. The others will be explained when discussing the
implementation in Section 7.5.

4.9.1. List Collections

Using the generic CollB type, dynamic Lists are defined as shown below. They model a list of values,
and have a corresponding update and internal entry type.

type ListB a = CollB Entry ListUpd [] a
data Entry a
data ListUpd a

We can get a Behavior from a ListB.

listBehavior :: ListB a -> Behavior [a]

This allows us to treat ListB values as normal behaviors when convenient. For instance, we could lift
standard list functions and apply them to the list behavior, such as defining a lifted size function that
returns the length of the list for all time.

sizeB :: ListB a -> Behavior Int
sizeB 1 = liftl size (listBehavior 1)

We can therefore define lifted versions of all the standard list observer functions.

4.9.1.1. Creating list collections

We can create a ListB from an initial list and an update event. It begins by behaving as the initial list,
and then on every event occurrence, changes by applying the update function from the occurrence.

mkListB :: IList a -> Event (IList a -> IList a) -> ListB a
data IList a

This is therefore similar to the Fran behavior combinator, stepAccum, which creates a piecewise
constant behavior that is updated by event occurrences10.

stepAccum :: a -> Event (a -> a) -> Event a

The IList type is a special incremental list type that maintains incremental updates. The Haskell
Edison library [145], defines a general interface for dealing with functional data structures such as
Sequences and Sets. The IList type implements the Sequence interface, allowing us to treat

10 The function stepAccum is based on stepper. There is therefore also a problem with the type of
this function (there is a similar problem with mkListB). See Section 7.2.5, Section 7.5.2 and
Appendix A for more on this.

62

them in the same way as standard lists. This, therefore, provides a powerful, and familiar set of
operators for constructing dynamic lists.

in s ta n c e Sequence I L is t

We can, therefore, generate I L is t s using the standard Sequence constructors.

empty :: I L is t a
s in g le :: a -> I L is t a
from L ist :: [a] -> I L is t a

cons :: a -> I L is t a -> I L is t a - - add an e lem en t to th e fr o n t
snoc :: a -> I L is t a -> I L is t a - - add an e lem en t to th e back
append :: I L is t a -> I L is t a -> I L is t a

We can also apply standard list functions such as s i z e , map and f o ld to the list.

4.9.1.2. Using dynamic lists

The dynamic list type implements many of the standard list functions. For instance, we can construct a
constant list behavior from a static list. We can also append dynamic lists, remove duplicate elements
from them (using nub), reverse them, map functions along them, filter them, partition them and sort
them.

from L ist :: [a] -> L istB a
append :: L istB a -> L istB a -> L istB a
nub :: Eq a => L istB a -> L istB a
r e v e r s e :: L istB a -> L istB a
map :: (a -> b) -> L istB a -> L istB b

f i l t e r :: (a -> B ool) -> L istB a -> L istB a
p a r t i t i o n :: (a -> B ool) -> L istB a -> (L istB a ,L is tB a)

s o r t :: Ord a => L istB a -> L istB a
so rtB y :: (a -> a -> O rdering) -> L istB a -> L istB a

It is also helpful to be able to apply behavior-based functions to them. For instance, we might wish to
take a changing number of elements from the front a list. We can do this using takeB, which takes an
In t behavior, instead of a simple static integer as its first argument. As an example of use, consider an
interface which should display only the first ‘n’ elements of some dynamic list where ‘n’ was controlled
by a user via a slider.

takeB :: B ehavior In t -> L istB a -> L istB a

We might also wish to s o r t , p a r t i t i o n or f i l t e r a list based on some behavior based function.

f i l t e r B :: (a -> B eh avior b) -> B eh avior (b -> B ool) -> L istB a
-> L istB a

p a r t i t io n B :: (a -> B eh avior b) -> B eh avior (b -> B ool) -> L istB a
-> (L istB a ,L is tB a)

sortByB :: (a -> B eh avior b) -> B eh avior (b -> b -> O rdering)
-> L istB a -> L istB a

These combinators each take a function to extract a behavior from a list element, and a function valued
behavior to apply. We need this flexibility, because the elements of a dynamic list may themselves be
dynamic. For instance, imagine that we were maintaining a collection of counter components, each with
a name and a B Var representing the state of the counter.

d ata C ou n terE lt = C ou n terE lt (name :: S tr in g , v a lu e :: BVar In t}
ty p e C ounters = L istB C ou n terE lt

63

W e might wish to display a list o f sorted labels and values. The list could be sorted into either
ascending or descending order, based on some Boolean behavior and the current value of the counter.

view :: Behavior Bool -> ListB CounterElt -> Component
view sortrule 1st =

nabove (fmap viewElt
(sortByB (bvarBehavior . value) (liftl sorter sortrule)

1st))
where

sorter True = (>)
sorter False = (<)
viewElt (nm val) = mkLabel [textB (liftl (nm ++ " " + +) val)]

We therefore have the ability to treat dynamic lists as simple Haskell values, and manipulate them in a
powerful, declarative manner. W e can use the ListB type when placing windows or widgets, or to
make menus, listboxes and text areas displaying dynamic data.

4.9.2. Set Collections

A dynamic set can be defined in terms of the general collection type as follows. It models a set of
values, with corresponding update and internal entry data.

type SetB a = CollB Entry SetUpd Set a
data SetUpd a
data Entry a

Again we can extract a behavior from a dynamic Set, in order to observe its current state.

setBehavior :: SetB a -> Behavior (Set a)

We create a dynamic Set using an initial static set and an event generating update functions11.

mkSetB :: ISet a -> Event (ISet a -> ISet a) -> SetB a

Here the ISet type implements Edison’s Set interface [145]. W e can therefore, for instance, create
sets, insert, delete, filter, partition, and construct the union, intersection and difference of ISet s.

The SetB type implements many of the standard Edison Set operations [145]. For instance, we can
create constant dynamic sets from lists and filter and partition them. We can also form the union,
intersection and difference o f two dynamic sets.

fromList :: [a] -> SetB a
filter :: (a -> Bool) -> SetB a -> SetB a
partition :: (a -> Bool) -> SetB a -> (SetB a,SetB a)
union, intersect, difference :: Eq a => SetB a -> SetB a -> SetB a

Finally, we can apply behavior valued filter and partition functions to a dynamic set, using a similar
interface to dynamic lists.

filterB :: (a -> Behavior b) -> Behavior (b -> Bool) -> SetB a
-> SetB a

partitionB :: (a -> Behavior b) -> Behavior (b -> Bool) -> SetB a
-> (SetB a ,SetB a)

4.9.3. Bag collections

We sometimes need to generate a collection with no initial notion of equality. W e might, however, still
be able to define some predicate when inserting an item, that specifies when it should be deleted. For
this, we can use a dynamic bag collection.

11 As with m k L istB there is again a problem with the type of this function.

64

type BagB a = CollB BagEntry BagUpd Bag a
data IBag a
mkBagB :: IBag a -> Event (IBag a -> IBag a) -> BagB a12

When adding an element we also pass in an event that will generate one occurrence when the item is to
be deleted.

insert :: a -> Event () -> IBag a -> IBag a
fromList :: [(a,Event ())] -> IBag a -> IBag a

This approach, though usually unnecessary, can sometimes be very useful. An example o f its use is
shown in Section 4.12.2.

4.9.4. Collection variables

As with standard behaviors, it is useful to have behavior collection variables. We can define a generic
behavior variable, GenBVar. This maintains a value, and a listener that expects update functions. In
FranTk, as we generally create behaviors using Behavior variables, it is useful to have one generic type
that can be reused.

data GenBVar a coll = GenBVar (Listener (a -> a)) coll

We have standard functions to extract the value, input listener, and update-input listener from a generic
behavior variable.

collection :: GenBVar a coll -> coll
collection (GenBVar _ c) = c
bvUpdlnput :: GenBVar a coll -> Listener (a -> a)
bvUpdlnput (GenBVar 1 _) = 1
bvlnput :: GenBVar a coll -> Listener a
bvlnput (GenBVar 1 _) = comapL const 1

For a given dynamic collection we can also extract a behavior, representing its state for all time. As an
example, consider the list behavior variable. This maintains a list collection and I L i s t valued updates.

type ListBVar a = GenBVar (IList a) (ListB a)

lbvarBehavior :: ListBVar a -> Behavior (c a)
lbvarBehavior c = listBehavior (collection c)

We can now define the L i s tB V a r operations used in Section 4.8. We create a L i s tB V a r by creating
a wire and then generating a L i s t B using the event stream from the wire.

mkListBVar :: [a] -> GUI (ListBVar a)
mkListBVar as = do

w <- mkWire
let 1st = mkListB (fromList as) (wireEvent w)
return (GenBVar (wirelnput w) 1st)

We can define the appendL istB listener, in terms of the update listener and the I L is t snoc
combinator, which adds an element to the end of a list.

appendListB :: ListBVar a -> Listener a
appendListB 1 = comapL snoc (cbvarInput 1st)

We can also define basic BVars in terms of these generic B Vars.

12 As with m k L istB there is again a problem with the type of this function.

65

type BVar a = GenBVar a (Behavior a,Event a)
bvarUpdlnput :: BVar a -> Listener (a -> a)
bvarUpdlnput (GenBVar 1 _) = 1
bvarlnput :: BVar a -> Listener a
bvarlnput (GenBVar 1 _) = comapL const 1
bvarBehavior :: BVar a -> Behavior a
bvarBehavior (GenBVar _ (b,_)) = b
bvarEvent :: BVar a -> Event a
bvarEvent (GenBVar _ (_,e)) = e

4.9.5. Simplifying the name space

W e now have a number o f data types that possess behaviors, events or listener updates. Unfortunately,
we have a large number o f functions to extract data from each of these types. Yet these extraction
functions are similar for each data type. We can use Haskell type classes to simplify the name space.

We can define a class, HasBehavior, for any object that has a behavior. This relies on functional
dependencies to work [104]. The result type a, must be extractable from the argument type c .

class HasBehavior c a | c -> a where
behavior :: c -> Behavior a

W e therefore have instances of this for B Vars, dynamic collections and dynamic collection variables.

instance HasBehavior (BVar a) a
instance HasBehavior (CollectionB f b c a) (c a)
instance HasBehavior (GenBVar a (CollectionB f u c a)) (c a)

This provides us, for instance, with a behavior function extracting a behavior list from a ListB.

behavior :: ListB a -> Behavior [a]

Similarly, we can define a class HasEvent for any object that has an event. In this case, we have
instances for B Vars and Wires.

class HasEvent c w | c -> w where
event :: c -> Event w

instance HasEvent (BVar a) a
instance HasEvent (Wire a) a

We can define a class, Has Input, for objects with an input listener, and a class HasUpdlnput, for
objects with an update input listener.

class Haslnput c w | c -> w where
input :: c -> Listener w

class HasUpdlnput c w | c -> w where
updlnput :: c -> Listener (w -> w)

Wires have only input listeners. Standard and collection BVars possess both input and update input
listeners.

instance Haslnput (Wire a) a
instance Haslnput (GenBVar a coll) a
in s ta n c e HasUpdlnput (GenBVar a c o l l) a

L istB V ars, for instance, have an update listener that expects I L is t based updates.

66

updlnput :: ListBVar a -> Listener (IList a -> IList a)

The use o f type classes here has allowed us to significantly simplify the name space, so that we have
only four basic operators, behavior, event, input and updlnput.

Using the generic dynamic collection type we can easily build a range o f specific collection types,
making the programming style very reusable.

4.10. Adding Windows and Menus

In FranTk, we can easily construct windows with menus, again including menus with dynamic numbers
o f components. For instance, consider the interface in Figure 28. It displays a dynamic list o f labels,

each with a unique integer value. We can add new items and delete existing items. We can also copy the
window, to create a new window that is a view on to the same collection. Each window has a menu bar
with one cascading menu. This offers three options, an "add" item button, a "copy window” button and

a "delete" button that displays a cascading menu with a delete button for every currently active item.

| . | n | x |

add I
r.m m i 1
copy 2

A

Figure 28 - W indows and M enus

4.10.1. C reating a Window

We define the window as follows.

window :: Listener () -> ListBVar Int -> WComponent
window addWindow 1st =
mkWindow [useMenu (createMenu addWindow 1st)]

(nabove (fmap label (collection 1st))
where label n = mkLabel [text (show n)]

mkWindow :: [Conf Window] -> Component -> WComponent

useMenu :: G U I Menu -> Conf Window

We create a window with a given menu (added with useMenu), displaying a label for each item in the
list. The ability to use one simple model o f the data (a ListBVar) and provide multiple views using
functions such as nabove is very significant. We have a very expressive and succinct way of
describing interface components.

4.10.2. C reating the M enus

We now create the menus required for the example. We create a menu with either a static, or a dynamic,
list of menu items.

mkMenu :: [Conf Menu] -> [Menultem] -> G U I Menu

mkMenuL :: [Conf Menu] -> ListB Menultem -> G U I Menu

In our example, we use two different types o f menu item, cascading menus and menu buttons.

mcascade :: [Conf Cascade] -> G U I Menu -> Menultem
mbutton :: [Conf MButton] -> Listener () -> Menultem

67

The “create” menu consists of two items an “add” button and a cascading “delete” menu, with a button
for every current item.

We define the delete cascading menu as follows.

d eletem en u :: L istB V ar In t -> Menultem
d eletem en u 1 s t =

m cascade [t e x t " d e le te"] (mkMenuL [] (fmap item (c o l l e c t i o n 1 s t))
where

item :: In t -> Menultem
item n = m button [t e x t (show n)]

(t e l lL (d e le t e n) (updlnput 1 s t))

The cascading menu consists of a list of numbered buttons, one for each active component in the
dynamic list.

We define the “add” menu item as follows.

addmenu :: L istBV ar I n t -> Menultem
addmenu 1 s t =

m button [t e x t "add"] (sca n lL in c 0 $ comapL sn oc $ upd lnp u t 1 s t)
where

in c :: In t -> a -> In t
in c n _ = n + 1

This uses sca n lL to accumulate new unique labels as it goes along. Every time the menubutton is
pressed it adds a new item to the list with a value one higher than the last item added.

The copy menu item simply fires the add-window listener when pressed.

copymenu :: L is te n e r () -> Menultem
copymenu 1 = m button [t e x t "copy"] 1

We can now define the menu bar.

createM enu :: L is te n e r () -> L istBV ar In t -> GUI Menu
createM enu 1 1 s t =

mkMenu [] [m cascade [t e x t "C reate"]
(mkMenu [] [addmenu 1 s t , d e letem en u 1 s t , copymenu 1])

]

4.10.3. Creating new window instances

To complete the example, we need to generate new windows every time a button is pressed. There are
two possible ways to do this. The simplest and least powerful mechanism is just to create a listener that
renders a new window every time it is fired. We render one initial window to start with.

runWindows :: L istBV ar In t -> GUI ()
runWindows 1 = do

l e t add = mkGUIL (render (window add 1))
rend er (window add 1)

However, we might wish to use and display a dynamic collection of windows. This would be important
if we had some abstract model of the set of windows on screen. We can create a dynamic list,
containing the lists to be displayed. To add a new window, we just append a new item to this list. We
then apply the window function to each element, to generate a dynamic list of windows, place them
(using p i l e) and then render them.

runWindows :: L istBV ar In t -> GUI ()
runWindows 1 = do

windows <- mkListBVar [1]
l e t add = t e l l L (snoc 1) (updlnput windows)
rend er (p i l e (fmap (window add) windows)

68

class Pile c w where
pile :: c w -> w

instance Pile ListB WComponent

FranTk therefore provides a flexible, powerful approach to allow the creation o f multi-window
programs, containing dynamic menus.

4.11. Selectable Components

W e need to be able to manipulate selectable components in FranTk. For instance, consider the
following interface. It contains two buttons and a listbox. Pressing the Create button adds items to the
listbox. Pressing the D elete button deletes the currently selected item.

1

3
4

Create

Delete

Figure 29 - Using a Listbox

We can implement this as shown below.

listcomponent :: ListBVar Int -> Component
listcomponent 1st = do
(selectedBv :: BVar [String]) <- mkBVar []
let create = mkButton [text "Create"]

(scanlL inc 0 $ comapL snoc $ updlnput 1st)
del = mkButton [text "Delete"]

(snapshotL_ (behavior selectedBv) $
comapL deletes $

updlnput 1st)
lstbx = mkListbox [listltemsLB (fmap show (collection 1st)),

listenSelection (input selectedBv)]
beside (above create del) lstbx

mkListbox :: [Conf Listbox] -> Component
listltemsLB :: ListB String -> Conf Listbox

We have a Create button that generates new items, with a unique name. It operates similarly to the
Create menu button from Section 4.10.2. We use a BVar to store the selection state o f the listbox. This
maintains a list of the String values o f the selected items. When the D elete button is pressed, we sample
the selection state using snapshotL_. We then update the list by deleting all the selected items, using
the deletes function. It is important to note that though this presents a different view from the menu
based one in the previous section, the underlying application data structure is identical: both simply use
ListBVars.

We create a listbox that displays all the items in the dynamic list, using listltemsLB. We tell the
selection BVar about all changes using the listenSelection option.

In general, any component that supports selection will implement the following two interfaces,
HasSetSelection and HasGetSelection. Note that these are overloaded on both the
component and the index type.

We can set the selection indices using the HasSetSelection class. This allows the selection to be
set initially, or to be updated by an event or to be based on a behavior.

69

class HasSetSelection w i where
setSelection :: i -> Conf w
setSelectionE :: Event i -> Conf w
setSelectionB :: Behavior i -> Conf w

We can access the selection in one of two ways. The first is the most obvious. We can add a listener to
the component that is told when the selection changes. This is the style we used in the example above.

class HasGetSelection w i where
listenSelection :: Listener i -> Conf w
snapSelection :: Event a -> Listener (a,i) -> Conf w

The second approach is slightly more complex but sometimes useful. We can pass an event and a
listener to the component. Every time there is an event occurrence, the selection state is sampled and is
passed on to the listener.

We could rewrite the example above to use this approach.

listcomponent :: ListBVar Int -> Component
listcomponent 1st = do
w <- mkWire
let mk = ... -- unchanged

del = mkButton [text "Delete"] (input w)
lstbx = mkListbox

[l is t lte m s L B (fmap show (c o l l e c t i o n 1 s t)) ,
s n a p S e le c t io n (e v en t w)

(comapL d e l e t e s (updlnput 1 s t))]
b e s id e ... - - unchanged

We create a wire that the Delete button talks to. The listbox, listens to the wire, samples its selection
and tells the ListBVar to delete the selected items. This therefore has the structure shown in Figure
30.

-K^UstBVaT)̂^ listboxbutton

Figure 30 - Using the s n a p ln d e x Function

This approach is therefore more complex. However, it has one important advantage over the listenlndex
based approach. If the selection state changes regularly, but is only sampled very occasionally, this
approach will be significantly more efficient. This is because we only perform work when we need to
sample the selection state, rather than every time it is changed.

If a component supports both the set and get interfaces for a given index type, then we can bind a BVar
to its selection state. This BVar will be updated every time the selection is changed by the user, and will
update the selection every time its state is changed.

useSelection :: (HasSetSelection w i,HasGetSelection w I) =>
BVar i -> Conf w

Listboxes support the set and get interfaces for three types o f index. Selection indices can be accessed
by their position in the listbox, or by the list item String, or by a special index type (Loc) that supports
positions and a tag (IEnd) meaning the last item in the list. W hen setting the selection using the String
form, every item with the String name will be selected.

instance HasGetSelection Listbox [Int]
instance HasSetSelection Listbox [Int]
instance HasGetSelection Listbox [String]
instance HasSetSelection Listbox [String]

70

instance HasGetSelection Listbox (Maybe (Loc,Loc))
instance HasSetSelection Listbox (Maybe (Loc,Loc))
data Loc = I Int | IEnd

FranTk therefore provides good support for selectable components. The use of behaviors and listeners
is again very powerful here. As with most model/view approaches it would be easy, for instance, to
create two listboxes that maintained the same selection state (by making them share the same selection
BVar).

However, the FranTk approach is more powerful than most model/view approaches, as we can easily
define values that are functions of several behaviors. For instance, we can provide a simple
implementation of two listboxes whose selection states are mutually exclusive. That is, any item
selected in the first listbox will be unselected in the second, and vice versa.

exclusive :: ListBVar Int -> Component
exclusive 1st = do

select <- mkBVar ([],[])
let lb set get =

mkListbox [listltemsLB (collection 1st),
listenSelection (comapL set (updlnput select)),
setSelectionB (lift2 get (behavior select)

(behavior 1st))]
beside (lb setl getl) (lb set2 get2)

setl,set2 :: [String] -> ([String],[String])-> ([String],[String])
setl xs (sl,s2) = (xs,s2 \\ xs)
set2 xs (sl,s2) = (si \\ xs,xs)
getl,get2 :: ([String],[String]) -> [String] -> [String]
getl (sl,s2) all = si
get2 (sl,s2) all = s2 'union' (all \\ si)

We model the selection state using a BVar with a pair o f String lists, one for each listbox. We create
two listboxes that both use and update this BVar. When we set the selection state in one component, we
unselect all those items for the other component (the \ \ operator deletes one list from another).
Significantly, the selection view is a function both of the selection state and the current list. There may
be elements that have been added and not explicitly selected in either listbox. However, to maintain the
selection invariant, they must be implicitly selected in one. To guarantee the selection invariant, the
second listbox selects all items explicitly selected in its box, and all items that have not been selected in
the first box. We can therefore maintain a complex invariant in a few simple lines o f code.

4.12. Dynamic Animations

FranTk, like Fran, also provides support for graphical animations. For instance, consider the animated
ball presented in Section 3.13.1. We will now see how to implement it in FranTk.

4.12.1. Introducing Canvases

We can compose standard components using geometric combinators such as above and beside.
However, to produce graphical animations we need to be able to compose pictures at arbitrary locations
on a screen. W e can do this using a Canvas component.

mkCanvas :: [Conf Canvas] -> CComponent -> Component

A Canvas is a widget that may contain canvas items. It contains a CComponent. A CComponent is
an action that produces a Canvas I tern.

type CComponent = GUI CanvasItern

This definition allows canvas items to have local state which is useful in our animated ball example.

71

movingball :: CComponent
movingball = do

time <- timeTickNow 0.1
moveXY 0 (sin time) (mkCOval (vector2XY 30 30) [fill red])

timeTickNow :: Time -> GUI (Behavior Time)

The t im e T ic k N o w operates like the t i m e T i c k function, introduced in Section 4.3.2, except that the
time behavior represents the time since the action was performed (rather than the time since the
beginning of the program).

4.12.2. A Dynamic Set of Moving Balls

In FranTk, we can also easily animate a dynamically changing collection of moving balls. For instance,
consider the following example. Every time the user clicks the mouse, a ball will be created. This will
follow the sine wave motion and will be deleted when it leaves the screen.

We first define a single bouncing ball. Its motion depends on a time valued behavior. It starts at a given
position, p , and moves across the screen. As the time behavior represents the interval since the
animation started, we offset the move by the time the ball was created. W e define a predicate event, that
generates one occurrence when the ball moves off the right hand side of the screen.

movingball :: TimeB -> (Point2,Time) -> (CComponent,Event ())
movingball time (p,t) =

let loc = (p . (point2XY 0 (sin (time - liftO t))))
in
(move loc (mkCOval (vector2XY 30 30) [fill red]),
onceE (predicate ((xval loc) >* liftO canvaswidth)))

To create the canvas we make a time behavior, that ticks every 100 milliseconds. We create a canvas
that contains the moving balls. To model the moving balls we use a dynamic bag collection. This relies
on the insert function, defined in section 4.9.3. We pile the bag elements on the screen using the pile
function.

canvas :: Component
canvas = do
bg <- mkBagBVar empty
time <- tickTimeNow 0.1
let addBall :: (Point2,Time)

-> (IBag CComponent -> IBag CComponent)
addBall p b = let (c,e) = movingball time p

in insert c e b
mousePressWithLoc 1 (withTimeL $

comapL addBall $
updlnput w) $

mkCanvas [width canvaswidth,height canvasheight]
(pile (collection bg))

class Pile c w where
pile :: c w -> w
instance Pile BagB CComponent

We listen to mouse presses (on mouse button 1) on the canvas using m ousePressW ithLoc, and tell
the wire about these presses.

mousePressWithLoc :: Has_Input w=> Int -> Listener Point2 -> w-> w

72

This operation is a member of the Has_Input class. This class provides a range of functions to listen
to user input such as key presses and mouse movement. Every interaction component type is a member
of the Has_Input class, allowing us to bind user input to any of them.

instance Has_Input Component , WComponent, CComponent

This is a very powerful mechanism. There is no difference between listening to user input on a primitive
or composite object, such as a collection of components. It makes the FranTk programming style very
compositional.

FranTk therefore allows the generation of complex animations in the same way as Fran does. However,
because animation objects can have local state, and we can listen to user input at any level, we can
develop a much wider range of possible programs.

4.13. Text Edits - A Document/View Architecture

In FranTk we have two different kinds of text edit widget; a simple single line text entry, and a complex
multi-line editor that supports powerful notions such as hypertext tags.

4.13.1. Single-Line text entries

The single line entry has a very simple interface.

mkEntry :: [Conf Entry] -> Component

It supports the selection interface, discussed in Section 4.11. W e can either get the currently selected
text, or selection co-ordinates. We can set the selection using the co-ordinates.

instance HasGetSelection Entry String
instance HasGetSelection Entry (Maybe (Int,Int))
instance HasSetSelection Entry (Maybe (Int,Int))
instance HasGetSelection Entry (Maybe (Loc,Loc))
instance HasSetSelection Entry (Maybe (Loc,Loc))
data Loc = I Int | IEnd

It also supports the cursor interface. This interface operates identically to the selection interface,
offering options to set the cursor with an index, and options to listen to changes or to snapshot the
cursor position.

Unlike any of the components we have seen so far, the contents o f a text entry can be changed directly
by user input as well as by any application code. W e therefore need to be able to access the current state
of a text entry. We do this using a mechanism similar to the HasGetSelection interface. We can
sample the contents of the text entry using an event and a listener.

snapEntry :: Event a -> Listener (a,String) -> Conf Entry

We can therefore easily define, for instance, a text entry widget that tells its state to an input listener
every time the return key is pressed. This makes use of keyPress function that provides access to any
keyboard input. The component communicates via a wire, to sample the entry’s state every time the
Return key is pressed.

mkEntryRtrn :: [Conf Entry] -> Listener String -> Component
mkEntryRtrn cs 1 = do
w <- mkWire
keyPress Return (input w) $ mkEntry ((snapEntry (event w) l):cs)

keyPress :: Has_Input w => Key -> Listener () -> w -> w

We can also use a dynamic list (ListB) to model the state of a text Entry. We can therefore listen to
IList updates on the text entry, and set its state to view a dynamic list. This new textLB

73

configuration option can be used in addition to the standard text , and textB options. This approach
allows us to easily define several component with views on to the same state.

listenEntry :: Listener (IList Char -> IList Char) -> Conf Entry
textLB :: ListB Char -> Conf Entry

4.13.2. Multi-Line Text Editors

FranTk supports full-blown multi-line text edit widgets. Edit widgets support the standard selection and
cursor interfaces. Locations are referred to via a pair consisting o f the line and column number.

mkEdit :: [Conf Edit] -> Component
instance HasGetSelection Edit (Maybe ((Int,Int),(Int,Int)))
instance HasSetSelection Edit (Maybe ((Int,Int),(Int,Int)))
instance HasGetCursor Edit (Maybe (Int,Int))
instance HasSetCursor Edit (Maybe (Int,Int))

Again we wish to be able to model the state o f an edit component abstractly, to allow multiple views of
the same state. We might expect to again do this using a dynamic list o f characters. However, there are
two important reasons why this is not practical.

1. Efficiency - Performing arbitrary updates to a large text buffer, modelled simply as a dynamic list
would be very inefficient.

2. Expressiveness - Multi-line text editors provide a range o f extra functionality, such as hypertext
tags. We need to be able to model the insertion of these tags, along with simple text.

FranTk therefore provides a new dynamic document type, which can be used to model the state o f an
editor. In keeping with the standard dynamic collections interface, FranTk provides a mechanism to
produce document behaviors in terms of a static document type (ID o c) and incremental updates; or
via a document behavior variable13.

data DocumentB
data IDoc
mkDocumentB IDoc -> Event (IDoc -> IDoc) -> DocumentB
data DocumentBVar
mkDocumentBVar :: IDoc -> GUI DocumentBVar

Using this type we can therefore easily produce a shared text editor with two windows that edit the
same document, as shown in Figure 31.

Figure 31 - A Shared Text Editor in FranTk

The definition consists o f two edit widgets that use the same document behavior variable.

13 As with mkListB there is again a problem with the type o f this function. See Section 8.1.4 for more
on this.

74

sh a red E d ito r :: Component
sh a red E d ito r = do doc <- mkDocumentBVar empty

l e t e d i t = mkEdit [useDocBVar doc]
b e s id e e d i t e d i t

useDocBVar :: DocumentBVar -> Conf E d it

The useDocBVar function is actually defined in terms of two more primitive functions.

useDocBVar docbv = composeConf (l is te n D o c (updlnput d o c b v))
(setD ocB (docB d o c b v))

composeConf :: Conf w -> Conf w -> Conf w

u pdlnput :: DocumentBVar -> L is te n e r (IDoc -> IDoc)
docB :: DocumentBVar -> DocumentB

l is te n D o c :: L is te n e r (IDoc -> IDoc) -> Conf E d it
setD ocB :: DocumentB -> Conf E d it

The composeConf function combines two configuration options to form a composite configuration
option. We can extract the document behavior using docB, and access the update listener using
updlnput. We can listen to all document updates on an edit widget using l is te n D o c . We can set
the edit widget to display a document behavior using setDocB.

It is also sometimes useful to be able to make an edit widget display an initial IDoc or IDoc valued
behavior. These are helpful when we do not need the full power of the document behavior interface.

se tlD o cB :: B eh avior IDoc -> Conf E d it

4.13.3. Document Updates

The document update interface, that allows incremental changes to a document to be programmed, is
simple but very powerful. There are two basic IDoc constructors: we can create an empty document, or
a document containing a String.

empty :: IDoc
fro m S trin g :: S tr in g -> IDoc

We can insert a String at a given index position, or delete everything between two index positions.

i n s e r t :: S tr in g -> TIndex -> IDoc -> IDoc
d e le t e :: TIndex -> TIndex -> IDoc -> IDoc

FranTk also supports the use of structured text. We can construct a document from structured text, or
insert some structured at a given index. We can also delete structured text by referring to its name, or
replace one named section of structured text with another.

s tr u c tu r e d :: S tr u c tu r e d -> IDoc
in s e r tS tr u c tu r e d :: S tr u c tu r e d -> TIndex -> IDoc -> IDoc
r e p la c e S tr u c tu r e d :: S tru c tu r ed -> Id en t -> IDoc -> IDoc

Structured text consists of standard text, E d itT ags and EditM arks. The latter two objects are
present in Tcl-Tk. An EditMark is an object that marks a particular location in a document; an
E ditT ag is an object that covers a section of a text in a document, and can be used to implement
hyperlinks and alternative displays. For instance, we could change the font of a single sentence within a
text area. Using the structured type we can define nested tags, containing further structured text. The
use of structured text allows us to include tags and marks using a simple, declarative style. We can
group a section of structured text and give it a particular name, to allow deletion later on.

d ata S tru c tu r ed = SText S tr in g
| STag E ditT ag

75

SGroup [Structured]
SNamed Structured Ident
STextTagged Structured EditTag
SMark EditMark

To define a given point in an edit area we use the T In d e x type.

data TIndex

This has constructor functions to define a point in terms of a line and column number. It also allows us
to refer to the start or end o f the text, to a particular mark, to the start or end o f a particular tag, or to an
offset from a given index.

tindex :: Int -> Int -> TIndex
tindexEnd :: Tindex
tindexStart :: Tindex
tindexMark :: Mrkldent -> Tindex
tindexTagFirst :: Tgldent -> Tindex
tindexTagLast :: Tgldent -> Tindex
tindexModMove :: Tindex -> ModMove -> Tindex

There are also a range of possible offsets, such as to the beginning or end of a line or word,

data ModMove = LineStart | LineEnd | WordStart | WordEnd | ...

Note that tags and marks are referred to using unique identifiers of type Tgldent, and Mrkldent
respectively. We can refer to the current selection and current insertion cursor using the tag and mark
interface.

selectTag :: Tgldent, cursorMrk :: Mrkldent

4.13.4. Edit Tags - Hypertext Support

An E d i tT a g can be used to alter the attributes or, or bind user input to a particular selection o f text.
We can make a tag using m k E d itT a g .

mkEditTag :: [Conf EditTag] -> GUI EditTag

The applicable configuration options consist o f things like text colour and font.

We can give an EditTag a particular unique identifier with useTgldent.

useTgldent : : Tgldent -> Conf w

It is this identifier that is referred to in the Tindex type.
We can access any user input on an edit tag. It is therefore a member of the H a s _ I n p u t class.

instance Has_Input (GUI EditTag)

An edit tag implements the selection interface. The selection in question defines area that the tag
covers.

instance HasGetSelection EditTag (Maybe (Int,Int))
instance HasSetSelection EditTag (Maybe (Int,Int))

As an example of the power of this interface, consider the hypertext viewer shown in Figure 32. The
ability to support hypertext is very important. Hypertext browsers are currently very common. Since the
almost universal acceptance of the web browser, hyperlinks are becoming a common feature of user
interfaces. Text editing systems such as Microsoft Word also support them.

76

Hypertext

This document
W h at is this all about. T o find out more try this

Figure 32 - A H ypertext Viewer in F ranT k

In our sim plified exam ple, a H ypertext docum ent consists o f a list o f hypertext tags. Hypertext entries
are either headings, in bold, 14 point font; hyperlinks to an address; or simple text.

type Hypertext = [HypertextTag]
data HypertextTag = Heading String | Text String

| Link String Address
type Address = String

We can display a hypertext page as follows. We create a hypertext page by providing a hypertext
behavior to display. W hen we find an address we pass the address to a listener, which will presumably
change the page.

hypertextPage :: Behavior Hypertext ->Listener Address-> Component
hypertextPage hypertext readPage = do
mkEdit [setlDocB $ liftl todoc hypertext),readonly True]
where
toDoc :: HyperText -> IDoc
toDoc text = structured (SGroup (map (tag readPage) text))

We make an edit widget that displays the hypertext, using setlDocB. Recall that setlDocB displays
an IDoc valued behavior. W e convert the hypertext into structured text to display it. We make the
hypertext page read only. We therefore need to convert each hypertext entry into a structured entry.

tag :: Listener Address -> HypertextTag -> Structured

Plain text is converted into plain structured text.

tag change (Text s) = SText s

A heading translates into tagged text. We add an edit tag to the text, which sets the font fo r that bit o f
text to 14 point, bold.

tag change (Heading s) =
STextTagged (s + + "\n")

(mkEditTag [font (namedFont "Helvetica" 14 [Bold])])

A hyperlink also translates into tagged text. In this case we make the tagged text blue, and bind mouse
presses with button I to tell the change listener about the address.

tag change (Link s addr) = STextTagged s
(mousePress 1 (tellL addr change) $
mkEditTag [foreground S.blue])

mousePress :: Has_Input w => Int -> Listener () -> w -> w

Finally we can make an instance o f the hypertext editor. We make a BVar that holds the current page.
Pressing a hyperlink will therefore cause the page to be set, by applying the g e tU R L function which
looks up the hypertext page associated with a given address.

77

hypertextviewer :: Component
hypertextviewer = do

pagestate <- mkBVar init
hypertextPage (behavior pagestate)

(mapIOL getURL $ input pagestate)
getURL :: Address -> 10 Hypertext

As an 10 action the getURL function could communicate without the outside world, perhaps through
the Foreign Function Interface that allows Haskell to talk to other languages. The use of structured text
makes it easy to define quite complex interfaces, such as hypertext browsers, in a simple declarative
style.

4.13.5. Edit Marks - Referring to a moving location

An EditM ark is a mark that can be placed in an edit area. It moves around as the text moves, and so
is a way of marking important points in the text such as the beginning of a section. We can create an
EditMark using mkEditMark.

mkEditMark :: [Conf EditMark] -> GUI EditMark

As with Edi tTags we can give an edit mark a unique identifier. We can set and access its location via
the selection interface.

useMrkldent :: Mrkldent -> Conf EditMark
instance HasSetSelection EditMark (Maybe Tindex)
instance HasGetSelection EditMark (Maybe Tindex)

Marks are useful for monitoring moving locations. They exist in many toolkits, and text editors such as
the Gnu Emacs editor. For instance, we could create a mark at the beginning of a chapter in a document,
and then monitor that position in a declarative manner using a FranTk B Var.

4.13.6. Interrogating a Document

FranTk provides a number o f declarative operators to interrogate a document. For instance, given two
behavior indices, we can extract a String behavior defining the text between those two indices, for all
time. As a second example, we can find all the tags that cover a given index, fo r all time. Using
behaviors we can therefore define a simple declarative interface to access a document14.

getText :: DocumentB -> Behavior (Tindex,Tindex)-> Behavior String
getTagsAt :: DocumentB -> Behavior Tindex -> Behavior [Tgldent]

4.13.7. Putting it all together - A Structured Text Editor

FranTk has been used to develop a simple declarative implementation of a structure editor for a simple
imperative language (see Figure 33).15 Bernard Sufrin and Oege De M oor have developed a simple,
purely functional, model of a structured editor [193]. This model was developed as an executable
formal specification. They model the editor as a Tree, with two basic types of operations: navigation
operations that alter which Subtree is selected; and update operations which modify the current
subtree. For the purposes of our discussion, we need to know that all edit operations are o f type Edit,
the complete editor is o f type EStatus, and the current subtree is of type SubTree. Finally, we need
to know that there is a function applyEdit, which applies an Edit update to an EStatus to yield a
new EStatus and a SubTree update.

applyEdit :: Edit -> EStatus -> (EStatus,SubTree)

14 More will be said o f the practicality of this interface in Section 8.1.4
15 This is work jointly carried out with Oege De M oor at Oxford.

78

There has been a reasonable am ount o f work attem pting to provide formal m odels, often executable, o f
interfaces such as text editors (eg [69]). This work has not, how ever, involved producing actual
G raphical U ser Interfaces because available toolkits were too low level. We have developed a FranTk
im plem entation o f this editor, which m aintains the declarative model. This dem onstrates that FranTk is
able to work at a higher level o f abstraction that o ther toolkits. The prototype has inspired others to
look at this area [106].

f i m Oiiwdton V ’« w

fi
X J - 1 *
*/ a ;
z b !
w hile h d (z—©> do

i f (l z mo d *01
then

fi
y (y * y) •

t.
(2/2)

$
e ls e

{
'A ! •“* U*y) #
Z i rr (z - 1)

t l
od

Figure 33 - A S truc tu red E ditor

The editor shows the currently selected subtree in grey. We can navigate around by typing, or by
clicking on an area of text. For instance, clicking on "While" selects all of the "While do" loop.

To create an editor, we take an initial tree status and create a C o m p o n e n t . To do this we first create a
BVar; this will model the current status of the tree and the latest (S u b T r e e) update. We convert this
BVar into a Document Behavior using f r o m E d i t T r e e . We create a read-only edit widget, that
displays the document behavior. We add a keyboard listener to this component that converts the
keyboard input to Edit updates and then applies them to the tree status via the tree BVar’s update-input
listener.

m k E d i t o r : : E S t a t u s - > C o m p o n e n t
m k E d i t o r i n i t T r e e = do

t r e e B v < - mkBVar (i n i t T r e e , e m p t y S u b T r e e)
l e t d o cB = f r o m E d i t T r e e t r e e B v i n i t T r e e
k e y P r e s s A n y (c o n v e r t T o E d i t s $

com apL (a p p l y E d i t . f s t) $ u p d l n p u t t r e e B v))
$ m k E d i t [r e a d o n l y T r u e , s e t D o c B docB]

To convert key inputs to Edit updates, we accumulate a current command String by parsing it; this
generates the update ‘J u s t E d i t ' 16 when a valid command has been fully entered. We then extract
all of these updates using mapMaybeL (which performs map then filter).

p a r s e : : (S t r i n g , M aybe E d i t) -> K ey -> (S t r i n g , M aybe E d i t)
m apM aybeL : : (a -> Maybe b) -> L i s t e n e r b -> L i s t e n e r a

c o n v e r t T o E d i t s : : L i s t e n e r E d i t -> L i s t e n e r Key
c o n v e r t T o E d i t s e d i t L = toC om m and $ mapMaybeL s n d $ e d i t L

toC om m and : : L i s t e n e r (S t r i n g , M aybe E d i t) -> L i s t e n e r K ey
toC om m and 1 = s c a n l L p a r s e (" " , N o t h i n g) $ 1

16 The value Just is part o f H askell’s Maybe type, representing values that may o r may not occur;
data Maybe a = Just a | Nothing.

79

To display the edit tree we must convert it into a Document Behavior, using the S t r u c t u r e d type.

f r o m E d i t T r e e : : B V ar (E S t a t u s , S u b T re e) -> E S t a t u s -> D ocum en tB
f r o m E d i t T r e e t r e e B v i n i t T r e e =

let mkTg :: (EStatus,SubTree) -> Maybe (Tindex,Tindex)
mkTg (eSt,_) = let x = getSelectedTag eSt

i n J u s t (t i n d e x T a g F i r s t x , t i n d e x T a g L a s t x)

s e l e c t : : L i s t e n e r E d i t
s e l e c t = com apL (a p p l y E d i t . f s t) $ u p d l n p u t t r e e B v

i n
m kD ocum entB

(s t r u c t u r e d ([S T ag (m k E d itT a g [b a c k g r o u n d B (g r e y 0 . 8) ,
s e t S e l e c t i o n B (l i f t l mkTg b h)]) ,

v ie w T r e e s e l e c t (s u b t r e e O f E d i t i n i t T r e e)]))
(e v e n t t r e e B v ==> \ (, t) ->

r e p l a c e S t r u c t u r e d (v ie w T r e e s e l e c t t) (g e tT a g t))

This definition has two important parts. We create an edit tag with colour grey to show the current
selection. W e set its indices, so that it covers the currently selected subtree. Each subtree has a unique
name defined by its location. We refer to the start and end of the tag that covers the subtree, by using
this unique name.

W e can map a subtree to a S t r u c t u r e d text view using v ie w T r e e . We also pass in a listener that
expects to hear about any navigation updates on the tree. We need these as we wish to navigate to a
subtree when we hear mouse clicks on one of the subtree keywords, such as "While". We implement
these keywords using tagged text, and the rest in terms o f normal text.

v ie w T r e e : : L i s t e n e r E d i t l -> S u b T re e -> S t r u c t u r e d

The structured text will be grouped with the subtree’s unique name. To replace a subtree, we therefore
replace the old subtree with the new one, using the location name.

As this example shows, the use of document behaviors and structured text provides a programming tool
with great expressive power. It has allowed us to develop a relatively simple, very high level
implementation of a structured editor. Though high level, the implementation is still efficient. It runs at
a usable speed, even when only run with “Hugs”, a Haskell interpreter.

4.14. Introducing true Concurrency

M ost of the time the declarative concurrency provided by FranTk through behaviors and events is
enough. There are, however, times when real pre-emptive concurrency can be helpful. FranTk provides
support for using Haskell threads along with the declarative behavior and event model.

Consider the following example. We have an interface to a theorem proving tool. This includes a
window with a text entry area to develop the proof and a button to run the prover. When we press the
prove button we don’t want the whole interface to hang. Instead it would be helpful to have the proof
computation occur in a different thread allowing the user interface to continue reacting to input.

W e can model this by having the main GUI thread fork off a worker thread to perform the computation.
The worker thread needs to be able to return its value and update the relevant BVar within the user
interface code by firing a listener. The GUI thread can’t block waiting for a result from the worker
thread and the worker thread shouldn’t directly update the listener itself. If this were to happen we’d
have to be worry about synchronisation issues within the GUI thread; otherwise the interface might
hang waiting for data from some background process.

Instead we provide primitives to allow worker threads to communicate through channel variables with
the GUI thread.

a d d C V a r L i s t e n e r : : C V ar a -> L i s t e n e r a -> GUI (GUI ())
a d d C h a n L i s t e n e r : : C h an a -> L i s t e n e r a -> GUI (GUI ())

80

These allow the listener to wait for input to appear on the channel variables. The C V ar version can be
used when the worker thread is only to return one value, as with our example above; the C h an version
can be used if the worker thread is to return a whole stream of values. Values appearing in a C V ar or
C h a n will be merged with the streams of values that occur from widgets such as buttons, guaranteeing
that the simple semantics o f the remaining FranTk code are maintained. In particular, this means that
after BVars are updated we can be sure that changes to any behaviors will be propagated to the
interface widgets before any further updates are made.

Note that it is only safe to have one thread, the GUI thread running FranTk GUI code. Other threads
should not directly attempt to alter the interface, or the BVars and wires making up the interface model.
Instead other threads talk to the GUI thread through the simple interface described above, updating the
behavioral model o f the interface data. This restriction is similar to the treatment o f the Swing GUI
thread and worker threads in Java. As with Java, actions within the GUI thread should be quick to
perform. Heavy weight computation should instead be delegated to worker threads.

Note that the GUI thread can communicate with its worker threads by non-blocking means, such as
sending requests down a channel.

In our example, we would therefore have code that looked something like the following. Imagine we
have a function r u n P r o o f that takes some data and generates a result, but is a heavyweight
computation.

r u n P r o o f : : P r o o f V a l -> 10 P r o o f R e s u l t

The p r o v e C o m p o n e n t is the button that runs the proof. It takes a Behavior modelling the current
proof and a listener that the proof result should be sent to, when the proof is complete. W e make a
listener that produces a worker. Every time it hears a proof value it creates a new C V ar and then forks a
worker thread to perform the calculation. This ends by telling its result to the C V ar. W e then add the
proof result listener to the C V ar.

p r o v e C o m p o n e n t : : B e h a v i o r P r o o f V a l -> L i s t e n e r P r o o f R e s u l t
-> C o m p o n en t

p ro v e C o m p o n e n t p r o o f B p r o o f R e s u l t =
m k B u tto n [t e x t " P r o v e "] (l i s t e n m kW orker)

w h e r e
l i s t e n : : L i s t e n e r P r o o f V a l -> L i s t e n e r ()
l i s t e n w o r k e r = s n a p s h o tL _ p r o o f B w o r k e r

m kW orker : : L i s t e n e r P r o o f V a l
m kW orker = mkGUIL $ \ p v a l -> do

c v a r < - l i f t I O new C V ar
l i f t I O $ f o r k l O $ d o r e s < - r u n P r o o f p v a l

p u tC V a r c v a r r e s
a d d C V a r L i s t e n e r c v a r p r o o f R e s u l t
r e t u r n ()

new C V ar : : 10 (C V ar a)
p u tC V a r : : C V ar a -> a -> 10 ()

We can therefore introduce real concurrency into an application where necessary, without making the
rest of the application unnecessarily imperative.

4.15. Alternative Design Choices

4.15.1. Replacing Listeners

The use of listeners in FranTk is an important design choice. They allow us to define a simple
Component type, by passing in a consumer argument when creating a component. However,
programming with listeners is less declarative, and less intuitive, than programming with Events.

81

Because listeners are consumers of event, not producers, functions such as com apL have initially
strange type signatures.

An alternative would have been to introduce typed Components. Here a Component is an action that
produces a WidgetB and a semantic value.

t y p e C o m p o n e n t a = GUI (W id g e tB ,a)

We therefore have the following definitions for some basic components.

m k B u tto n : : [C o n f B u t to n] -> a -> C o m p o n e n t (E v e n t a)
m k S c a le : : [C o n f S c a l e] -> C o m p o n en t (E v e n t I n t)
m k L a b e l : : [C o n f L a b e l] -> C o m p o n en t ()

When we create a button, we also get an Event generating an occurrence on every click. This definition
uses the common trick o f providing the value that the button will produce as an argument. In general,
where a component would take a Listener as an argument, it now produces an Event as a result.
However, when a Component does not produce any output, it has no associated Event and instead is of
type () .

Geometric combinators must now not only compose displays; they must also compose their semantic
output. The above and beside combinators therefore take an extra function argument that composes two
semantic objects to form a new one.

a b o v e , b e s i d e : : (a -> b -> c)
-> C o m p o n e n t a -> C o m p o n e n t b -> C o m p o n e n t c

Another useful combinator is mapC, which applies a function to a Component’s semantic value.

mapC : : (a -> b) -> C o m p o n e n t a -> C o m p o n e n t b

We can now define the example “Counter” from Section 4.4.
The button based “Counter” takes an Integer behavior to display, and generates a Component that
produces Integer updates. When composing the semantic output we merge the events produced by the
buttons, and ignore the useless value produced by the label.

c o m p o s i t e : : B e h a v i o r I n t -> C o m p o n e n t (E v e n t (I n t -> I n t))
c o m p o s i t e b =

l e t l b l = m k L a b e l [t e x t B (l i f t l sh o w b)]
i n c b = m k B u tto n [t e x t " i n c "] i n c r e m e n t
d e c b = m k B u tto n [t e x t " d e c "] d e c r e m e n t

i n (a b o v e s n d l b l (b e s i d e (. | .) i n c b d e c b))

The scale component has the same interface as the composite counter above. It generates a new update,
by mapping the c o n s t function across the component.

s c a l e : : B e h a v i o r I n t -> C o m p o n e n t (E v e n t (I n t -> I n t))
s c a l e b = mapC c o n s t $ m k S c a le [s c a l e V a lB b]

c o n s t a b = a

Finally, we need to produce the counter, with the appropriate wiring. We merge the semantic events
from both components , and form a behavior by stepping through the merged event, accumulating a
value by applying the update function.

c o u n t e r : : C o m p o n e n t ()
c o u n t e r = mapC (c o n s t ()) $ do

f ix G U I $ \ ~ (_ , e) ->
l e t b = s te p A c c u m 0 e
a b o v e (. | .) (s c a l e b) (c o m p o s i t e b)

82

The operator that makes it all work is the fixGUI function. This is a GUI version of the Haskell
fixIO function. It relies on laziness to allow its return value to be passed as an argument. We
therefore need to guarantee that we only use the result of the function lazily.

fixGUI :: (a -> GUI a) -> GUI a

For small examples this approach appears more declarative. We can dispense with the need for
listeners, adding only the minor inconvenience o f adding fixGUI. W e must simply be careful to only
use the result of fixGUI lazily. This example can be simplified further with the introduction of
recursive monadic bindings[47], which allow a set o f mutually recursive monadic definitions. With this
mechanism we could simply write the “c o u n t e r ” code as follows.

counter :: Component ()
counter = mapC (const ()) $ mdo

let b = stepAccum 0 (event w)
w <- above (.|.) (scale b) (composite b)
return w

However, the type of our geometric composition operators is more restrictive. It becomes difficult to
compose collections of components, particularly dynamic collections. W e can define the following
composition function. It merges all of its semantic events to form one composite event.

nabove :: ListB (Component (Event a)) -> Component (Event a)

However, for this to work we must tag and construct output into composite data types, and then untag it
later on. This can easily become both unwieldy and inefficient. In addition, it is particularly unclear
what to do about components with listeners in their configuration options. For instance, we cannot
easily define an equivalent of snapSelection.

snapSelection :: HasSetSelection w i => Event a -> Listener (a,i)

More significantly, there is also no simple equivalent to the use of listeners in structured text
EditTags (Section 4.13.4).

Though this design choice is a significant one, it is reversible. We can easily implement the alternative
style discussed in this section on top of FranTk. For instance, we define mkButton as follows.

mkButton cs a = do
w < - mkWire
b <- FranTk.mkButton cs (input w)
return (b,event w -= > a)

The Event style is perhaps better when handling small examples where all input components return the
same sort of value. For instance, we could imagine doing this with a calculator where every button
returned a calculator update function. In contrast, the Listener style scales better where it is more
difficult to merge all input into a single type. Where helpful, therefore, we can easily combine both
styles of programming.

4.15.2. Unifying Components and Widgets

W e could do away with the need for a separation between widgets and components, by using the
encapsulate function shown below.

Arguments fixGUI Result

Figure 34 - The fixG U I Function

-> Conf w

encapsulate :: GUI WidgetB -> WidgetB

83

This is similar to the encapsulate function in Pidgets, which turns a value of type St Widget into a
value of type Widget. This definition is permissible because a WidgetB is an abstract type that when
rendered, will generate an interface. The GUI action will therefore be run, when the WidgetB is
rendered. Two individual instances of the same widget will therefore have separate local states.

For instance, in the example below, mkw defines a counter button. It needs to be a GUI action because
it produces some local state, the value of the counter. W e can encapsulate the widget and display two of
them side by side. As the local state is only produced, when the composite widget is rendered, both
widgets will have their own local state, and will therefore maintain different counter values.

mkButton :: [Conf Button] -> Listener () -> WidgetB

example =
let mkW :: GUI WidgetB

mkW = do bv <- mkBVar 0
return (mkButton [textB (liftl show b)]

(tellL increment (updlnput bv)))
w = encapsulate mkw

in beside w w

This approach is potentially useful because it allows us to unify two separate concepts. However,
because of the prevalence of GUI actions in most FranTk applications, it is unclear whether it provides
any real benefits in practice.

4.16. Conclusions

This Chapter has presented FranTk, a toolkit for developing graphical user interfaces in Haskell. It
concentrates on providing a programming model that is both “declarative in the large and in the small” .
Chapter 1 argued that declarative languages should attempt to handle both. Programming in a functional
style is “declarative in the small” ; structuring interfaces in terms of a set of declarative constraints is
“declarative in the large” .

Though FranTk uses the GUI monad and listeners which introduce imperative features, programming is
still largely declarative. FranTk introduces the concept o f a listener as an abstract value. Listeners allow
imperative actions to be handled, but composed in terms of a functional algebra. The state of an
application can be defined as a behavior value. These values can be easily composed. Unusually this
extends to the ability to handle dynamic collections o f objects as values, treating them in a functional
manner. FranTk defines an interface in terms of components. These are constructed by passing in
configuration options, including dynamic options. This allows us to define a component’s appearance
for all time. A Listener argument is also passed in when creating a component, thereby separating the
semantic wiring from the visual Component. These components can therefore be geometrically
composed using simple, pure functions. However, a Component represents an action that produces a
widget. This allows it to have its own internal state.

FranTk therefore allows a compositional, declarative style of programming with both static and
dynamic user interfaces.

84

Chapter 5 - FranTk Development Tools

T his chapter presents two tools that can be used with FranTk to aid developm ent. The first is a system
architecture editor. This architecture is based on that provided by C lock and the tool is based on the
C lockW orks developm ent tool [134], The second tool is a graphical w idget builder, that allows static
interfaces to be constructed visually, and then allows FranTk code to be autom atically generated for the
widget. Both tools were developed as proof o f concept prototypes to attem pt to dem onstrate that visual
developm ent methods could be used with FranTk. They were developed to try to dem onstrate the
usefulness o f the general concepts and so were not intended for use by other developers.

5.1. The System Architecture

The system architecture tool allows system s to be constructed as a tree o f interaction objects. As with
C lock an interaction object represents som e widget on the screen, and the tree represents a hierarchical
decom position o f the interface. A screenshot from the editor is shown in Figure 35. It represents a
sim ple program that will display a button and a set o f labels. The visibility o f the whole interface is
affected by v i s R o o t . Each individual button or label will be visible when the root is visible and it
itself is visible.

FianTk

File Edit Edit class Edit component Group Generate

(visible

root

Request M ethods Buttons

Update methods
visibleB visibleL

setVistble
(visible

j (button

! (Button

Show A bstract BVar
m ethods

button
(Label

Hide
A bstract BVars button

associated

- - - — i....J i|

F igure 35 - The F ran T k System A rchitecture E d ito r

A ssociated with each interaction object is a set o f A bstract B ehavior Variables. These maintain the
state o f the application. They represent the shared state available to the com ponent and it’s children.
This makes it easy to decide what inform ation should be local to an individual user, and what should be
shared between several users.

Each A bstract B ehavior V ariable (A bstract BVar or A BV ar) has a num ber o f methods associated with
it. These methods can be update or request methods. U pdate methods change the state o f the object.
Requests access the state o f the object. A bstract BVars can be formed by com posing together sim pler
abstract BVars. This provides good m odularity and so supports com ponent reuse.

In terms o f Haskell, an A bstract BVar represents an abstract data type. The state o f an A bstract B V ar
will be m aintained internally using a set o f FranTk BVars. Update m ethods are listeners that alter the
state o f the ABVar. Request methods are functions that may return Behaviors, Events or other values
(such as other A bstract BVars).

85

To make use of the architecture tool, Haskell code is annotated to define which functions represent
ABVar updates, requests and the actual ABVar data types. Each ABVar should have also have one
constructor function to create values of the ABVar type. This constructor may take as arguments values
that are request and update methods from other ABVars. The constructor function is annotated with the
method names. These may also be specialised when individual instances o f the ABVar are created.
Unlike Clock, for individual instances these annotations may either mention just the method name, or
may also mention the name of the ABVar providing the method. In this way, one Abstract BVar can use
the value of another, and we can have more than one instance of an ABVar in scope at a time. Each
component has a view function defining how it will be displayed.

As with ClockWorks the architecture tool takes care of distributing requests and updates appropriately
down the tree. It traverses down the tree, matching component methods with their constructor uses. At
each level it maintains a map of method names to ABVars to calculate which names are in scope. The
tool then generates a control file that creates a component for each object in the tree, passing down the
appropriate request and update methods as parameters.

As a brief example consider the architecture shown in Figure 35. It makes three separate uses o f the
Visible Abstract BVar. The interface for the Visible type is shown below. Each definition has a special,
annotation comment associated with it. There are four types of annotation: (1) the A B V annotation,
specifying the name of the ABVar and datatype; (2) a Request or (3) an Update annotation, which
specifies the name of the method. Note that each method should take as its first argument the
appropriate ABV; finally, (4) there is a Cons annotation that marks the constructor for the ABV. This
takes the names of appropriate default methods that parameters will be linked to.

{- #ABV Visible -}
data Visible
{- #Request isVisible -}
isVisible :: Visible -> Behavior Bool
{- #Update setVisible -}
setVisible :: Visible -> Listener Bool
{- #Cons mkVisible isVisible -}
mkVisible :: Behavior Bool -> GUI Visible

When instantiating a value of type Visible, we can override the parameters in one of two ways: (1)
replace the default method with another; (2) use a specific value in place of a method. There are two
very common reasons when we may wish to override methods with a specific value. Firstly, there may
be no suitable method in scope. For instance, in our example the visRoot ABVar makes an
isVisible request, but as it is at the root there will be nothing to service the request. Secondly,
when displaying a collection of children, we may wish to instantiate each with a separate value. In this
case, the method would be overridden with a specific parameter. In our example, we will assume that
the Label component is generated using this approach. This provides a reasonable level of flexibility. In
contrast, Clock does not support the second style, and so a cumbersome workaround must be used.

Having defined the Visible type, we must now define each interaction object in the system. We define
an interaction object in terms of two parts:
1. A general, reusable interaction object (annotated with IObj). This consists of a data type

composing a set o f abstract behavior variables. There is also a view function that defines how to
display the interaction object in terms of this data type and its children. Note that the field name
associated with each ABVar matches the name shown in the graphical editor. The data type and
type definition of the view function will be automatically generated by the editor; the view function
itself must be defined by the programmer;

2. Specific instantiations or uses o f the object (annotated with UseObj). This will consist of two
parts. The first o f these is a type definition, defining how to construct a component for the
interaction object. Parent view functions will be passed a function o f this type to create children.
This is important because each child instance may either receive an individual parameter value, or
all may receive the same value. The latter can be automatically handled by the editor’s code
generator. Secondly, there is a constructor function to create the set o f behavior variables for the
component; the editor generates a best guess for this.

As an example, the Buttons, Button and Label interaction object definitions are shown below.

86

{ - #IObj B u tton s -}
d a ta B utton s = B u tton s {v isR o o t :: V is ib le }
v iew B u tton s :: V iew button -> V iew la b e l -> B u tton s -> WComponent

{ - #I0bj B utton -}
d a ta B utton = B utton { v is ib le B :: V is ib le }
view B u tton :: B utton -> Component

{- #I0b j L abel -}
d ata Label = L abel { v i s ib le L :: V is ib le }
view L abel :: L abel -> Component

Recall that the V i s ib l e ABVar constructor makes one default request (i s V is ib le) . When
instantiating the root interaction object, there will be no sources for the Visible ABVar to make its
request. We must therefore instantiate it with a specific value. In this case, we choose to do this inside
mkroot, we therefore pass no parameters in to the mkroot function.

{ - #UseObj r o o t -}
ty p e V iew root = WComponent
mkroot :: GUI B u tton s

When instantiating a button, we do not override the default request method (i s V i s i b l e is available
from the parent). The mkbutton function therefore accepts a value of type B eh avior Bool (the
request value). The editor automatically generates a best guess for the definition of this function.

{ - #UseObj b u tto n -}
typ e V iew button = Component
mkbutton :: B eh avior Bool -> GUI B utton
mkbutton bh mk = do (v <- m k V isib le bh; re tu rn (B utton v) }

The label object is more interesting. Each label instantiation is passed a separate Boolean behavior. The
Viewlabel constructor function must therefore include this value as a parameter. Again the editor can
generate a best guess for the definition of the m klabel function.

{ - #UseObj la b e l -}
ty p e V iew la b e l = B eh avior B ool -> Component
m klabel :: B eh avior Bool -> GUI Label
m klabel bh mk = do (v <- m k V isib le bh; re tu rn (L abel v) }

Finally, the editor will generate three functions that link together the tree of components. Note that
b u tto n is passed its parameter by the r o o t function; in contrast, la b e l receives its from
view B u tton s.

ro o t = do
bs <- mkroot
v iew B u tton s (b u tto n (v isR o o t b s)) la b e l bs

b u tto n v i s = do
b <- mkbutton v i s
view B u tton b

la b e l v i s = do
b <- m klabel v i s
view L abel 1

The annotations shown above will be automatically generated by the editor, when architectures are
constructed using it. In contrast, if annotations are added textually to a file, the editor can reload the file
and incorporate them. This provides a high degree of flexibility as a mixture of approaches can be used
when building a system. The editor retains the advantages of Clock, as a system architecture can be
built and viewed visually. In addition, it overcomes some of the restrictions in Clock, by providing
support for composite abstract behaviors, fully parameterised interaction objects and explicit event
routing.

87

We carried out no usability tests with the tool as it was a very early prototype with a num ber o f
cum bersom e interface features. These problem s would have served to mask the real issue o f whether the
visual program m ing style was useful. The tool was. however, used in the developm ent o f the case
studies. It was overly cum bersom e when dealing with small exam ples. However, when developing the
ATC case study there did appear to be a need for it. Further work is, however, necessary to dem onstrate
the real usefulness o f such a tool and technique.

5.2. The Interface Construction Tool

The second developm ent tool that was prototyped was a graphical interface builder, which allows static
interface com ponents to be constructed visually. FranTk code can then be generated by the tool to
integrate these com ponents into an application. A screen shot from the tool is shown in Figure 36.

Visual Tel - unknown.tel
File Edit Mode Compound Options Window Help

Status

label M Q I Q J I I t 5 . 5 : r : i i
□ □
□

gH flLw* i- :

□ s
Mj |F
0 f TAl

&*>l

|"
_i

FTT F?
nr P

H H H

EDIT

New Toplevel 1 USE

n j » button J
1— [~ J | New Toplevel 1 ■ ■

L n j ■ label
 ■------■—

- g j button

- 0 label

Reload Done

Figure 36 - The F ranT k Interface C onstruction Tool

Rather than construct a new tool from scratch, an existing Tcl-Tk editor, Visual Tel [7], was m odified
to provide the required functionality.

An interface com ponent is first constructed visually, using the editor. Individual com ponents can be
provided with explicit names. Once the static com ponent has been constructed, it is selected by clicking
on the root frame o f the item in the W idget T ree. The system then generates FranTk code for the
component. In particular, it generates a constructor function which expects to receive configuration
information for each explicitly named com ponent in the com posite com ponent. The value returned by
the constructor function depends on the object selected; for instance, if a top-level window were to be
selected the constructor would generate a value o f type W Com ponent. The editor generates a prim itive
Tcl-Tk constructor and explicit handles to access individual elem ents. These can be used to build and
update the com ponent.

From the program m er’s point o f view, the approach is fairly simple. For instance, in the example above,
we have a button and a label on a frame background. If the button were named m ybutton , the label were
named m ylabel, and the com posite com ponent were named M yC om ponent, then the editor would
generate code with the following interface.

mkMyComponent :: ConfMyComponent -> Component
data ConfMyComponent = ConfMyComponent {

mylabel :: [Conf Label],

mybutton :: [Conf Button]
}

To allow access to user input, we must extend the configuration options available to an object. For
instance, we add an o n C l i c k option for buttons that adds a listener to the button’s input. W e provide
similar options to access generic user input, and to listen to input on other components such as sliders.

onClick :: Listener () -> Conf Button

The interface construction tool therefore provides a simple but powerful tool for building complex
static interfaces. The generation of such interfaces is still easier using a good visual tool, than by using a
textual programming language. Unfortunately, again this tool had a number o f basic usability problems
which made it impractical to test it with other programmers. However, given a solid understanding o f its
quirks it did prove useful. Most of the basic interface components in the ATC system were developed
with it.

The visual tools presented in this chapter are both proof-of-concept prototypes. They were developed to
demonstrate that tool support could easily be provided for building FranTk based programmes, without
any major restructuring of the language. In particular, the inclusion of an architecture editor
demonstrates that a structured Clock-style architecture can be constructed on top of an existing
embedded language, rather than requiring the creation of such a language from scratch. The inclusion
of the GUI builder tool demonstrates that the use of a high-level language such as FranTk does not
preclude the use of the very popular “Visual Interface Construction” approach.

Chapter 6 - Evaluating FranTk with The Case Studies

This chapter will present and discuss the three major case studies carried out with FranTk. It will then
go on to evaluate FranTk in the context o f the requirements outlined in Section 3.15. Finally, it will
make some general remarks about how other FranTk users have found the system.

6.1. The Space Game in Fran

The Space Fighter Game provides the first case study covered in this thesis. This represented a test of
support for building reactive, time based interfaces. The FranTk API subsumes most of Fran, as it
provides support for both graphics and widgets17. We can therefore implement the game in a similar
manner to Fran. (The Fran implementation was discussed in Section 3.13.2.) There are two important
differences in the FranTk implementation:

1. We model all the lasers and enemies as dynamic collections. We use the dynamic Bag abstraction.
Game objects (enemies/lasers/ship) have no implicit notion of equality. We could have arbitrarily
added identifiers to each item; however, this would have been clumsy. The Bag abstraction
provides an alternative solution. Recall that each object has a predicate specifying when it should
be deleted, defined in terms of collisions with other objects on screen. We can use this predicate
with the Bag abstraction to arrange the appropriate deletion o f objects.

2. We replace image behaviors with canvas components

The FranTk implementation is therefore again simple and high level18.

6.2. The QOC Editor

The QOC editor can be implemented fairly simply in FranTk. Recall that it allows several users to build
a QOC rationale. Each user has a separate view of the QOC collection. Each QOC is maintained in a
window. Different users can have windows open in different areas of the screen. Within each window,
however, users’ views are strictly WYSIWIS (What-You-See-Is-What-I-See). Users can also note their
actions, and any extra textual information using a shared log. They can filter their own view, using the
view menu. They can filter their view of nodes to show only Questions and Decisions; Questions,
Decisions and Criteria; Questions and all Options; Questions, all Options and Criteria.

The level o f sharing is important. Users can see changes made by anyone as they are being made, in
their current window only. In contrast, they will only see the results o f changes in the other visible
windows. They can also see where the other users’ cursors appear in their own window. Users have a
colour associated with them, used for their cursor. A different colour scheme is used to represent
changing objects. Objects being edited by a user appear in green; objects being edited by another user
appear in red. Locking is at node level, so that two users can both act in the same window, but cannot
both act on the same node in the window simultaneously.

We provide an abstract QOC model that each user will share. A QOC editor has a current named file,
and a list o f QOCs.

data QOCFile =
QOCFile (filename :: BVar String, qocs :: ListBVar QOC}

17 FranTk does not currently support 3-D images and Fran’s sound interface. Given a sufficiently
powerful underlying toolkit, there is no reason why it cannot in the future.
18 Unfortuntely Tcl/Tk does not provide particularly good support for rapidly updated animations, so
the FranTk implementation runs less smoothly than the game produced with Fran. This problem could
be overcome by providing a FranTk binding to a toolkit with a more efficient graphics library, or by
providing a more efficient Tcl/Tk graphics plug-in.

90

Each QOC has a unique, automatically generated identifier, a name, a list of nodes and links, and some
attached notes (in the form of a dynamic document). It may be locked by a particular user, and so has
some locking information associated with it. Recall that an object will be locked when being modified,
and that partial changes will only be visible to users working within the same window. We therefore
associate a value with the lock, that represents the current value of the modified object. In the case of a
whole QOC, a user can change the name of the QOC. We therefore store a String with the lock. Finally,
it will also have a current set o f users, working on that QOC.

d a t a QOC =
QOC (u n i q u e : : I d e n t , nam e : : B V ar S t r i n g ,

n o d e s : : L i s tB V a r N o d e , l i n k s : : L i s tB V a r L in k ,
n o t e s : : D o c u m e n tB V a r , l o c k : : L o ck B V ar S t r i n g ,
c u r r e n t U s e r s : : S e tB V a r U s e r)

t y p e L o ck B V ar a = B V ar (M aybe (U s e r , a))

Each N ode has a name, node type (saying whether it is a question, option or criteria), a position (inside
the QOC window) and some attached notes. Again it also has a unique identifier and a lock status.
When locked a user may be modifying either the node position, its name or the node type.

d a t a N ode =
N ode (u n i q u e : : I d e n t , nam e : : B V ar S t r i n g ,

p o s i t i o n : : B V ar P o i n t 2 , n o d e t y p e : : B V ar N o d e T y p e ,
n o t e s : : D o cu m e n tB V a r,
l o c k : : L o ck B V ar (E i t h e r 3 P o i n t 2 S t r i n g N o d e T y p e) }

d a t a N o d eT y p e = Q | O | C | D

Each L in k connects two nodes, and has a link-type and label. Again it has a unique identifier and lock
status. When locked, the user may be modifying the link type or name.

d a t a L in k = L in k (u n i q u e : : I d e n t , n o d e l : : N o d e , n o d e 2 : : N o d e ,
l i n k T y p e : : B V ar L in k T y p e , l a b e l : : B V ar S t r i n g ,
l o c k : : L o ck B V ar (E i t h e r L in k T y p e S t r i n g) }

d a t a L in k T y p e = P o s i t i v e | N e g a t i v e

We must also model the set of active users. We can do this using a dynamic set. Each user will have a
name, a display (i.e. the name of the remote machine that they are working on), a cursor location (as
each user can see the others’ cursors) and a colour. Recall that each user has a colour for their shared
cursor on other displays.

t y p e U s e r s = S e tB V a r U s e r
d a t a U s e r = U s e r (n am e : : S t r i n g , d i s p l a y : : D is p la y N a m e ,

c o l o u r : : C o l o r , c u r s o r L o c : : B e h a v i o r P o in t2 }

Using FranTk, we can therefore provide a simple, declarative model of the QOC editor’s shared state,
and set of users. To create the interface, we provide each user with a view on to this shared state.

We define at each level how to display a single item (such as a U se rV ie w , QOC, N ode or L in k) . We
can then simply use multiple copies of this view at the level above. For instance, we define a function
u s e r V ie w to display a single editor instance for one user. We can then define the set o f user views as
a pile o f window components, with one for each user.

e d i t o r s : : Q O C F ile -> U s e r s -> W C om ponent
e d i t o r s q f i l e u s e r s = p i l e (fm ap (u s e r V ie w q f i l e u s e r s)

(c o l l e c t i o n u s e r s))
u s e r V ie w : : Q O C F ile -> U s e r s -> U s e r -> W C om ponent

We use this approach at each level, filtering where appropriate. For instance, within each QOC a user
can filter the set of visible nodes (e.g. to view on Questions). We do this by simply filtering the node
and link list based on the node type, according to a behavior based predicate, which represents the
current view mode. We do this using the f i l t e r B function.

91

v i s i b l e N o d e s : : B e h a v i o r (N o d eT y p e -> B o o l) -> L i s t B N ode
-> L i s t B N ode

v i s i b l e N o d e s p r e d n o d e s = f i l t e r B (b e h a v i o r . n o d e T y p e) p r e d n o d e s

At each level, the view definition is fairly simple. The QOCs are defined as a set o f windows. Each
QOC will itself contain a canvas. This canvas will contain a set of nodes and links constructed as
canvas components. Recall that extra comments about QOCs, nodes and edges can be added to shared
logs. W e must there create a subwindow, containing a multi-line edit widget for each notes document.

The definition of a component may require the creation of some local state. For instance, when viewing
a QOC window we must define a behavior variable to model the current node filtering predicate. This
BVar can then be passed to the filter menu and used to filter the visible nodes.

Each user’s view has a current QOC window. This is modelled as a BVar with the unique name of the
QOC. When displaying a component (QOC, node or link), we compare the component’s QOC and the
current QOC. If they are the same, we attempt to use the current value from the lock behavior variable,
otherwise we use the normal value. Clearly, we can only use the lock value if the item is actually
locked, otherwise we must still use the normal value.

g e t V a l u e : : B e h a v i o r I d e n t -> I d e n t -> L o ck B V ar a -> B e h a v i o r a
-> B e h a v i o r a

g e t V a l u e c u r r q o c u n i q u e lo c k b v v a l u e b =
i f B (l i f t l (== u n i q u e) c u r r q o c)

(maybeB valueb sndB (behavior lockbv)) valueb

As an example, we could now get the title of a given QOC using the g e t V a l u e function.

q o c t i t l e : : B e h a v i o r I d e n t -> QOC -> B e h a v i o r S t r i n g
q o c t i t l e c u r r q o c (QOC {nam e = n a m e b v ,u n iq u e = u n i q u e ,

l o c k = l o c k b v)) =
g e t V a l u e c u r r q o c u n i q u e lo c k b v (b e h a v i o r n am eb v)

We can implement node and edge views fairly simply. For instance, we can allow nodes to be moved by
the user by applying the d r a g g a b l e function. This function is passed a BVar which will model the
object’s position, and a BVar to model whether the object is moving. When the left mouse button is
pressed it starts the object moving; when the button is released it stops it moving. When the mouse is
moved, if the object is in motion, it updates the position BVar. As it can be applied to any canvas
component we therefore have a simple, reusable implementation of drag & drop.

d r a g g a b l e : : B V ar P o i n t 2 -> B V ar B o o l
-> C C o m p o n en t -> C C om ponen t

d r a g g a b l e p o s B v m o v in g B v c =
l e t s t a r t M o v i n g = t e l l L T r u e (i n p u t m o v in g B v)

s to p M o v in g = t e l l L F a l s e (i n p u t m o v in g B v)
m o v e l te m = i n p u t p o sB v 'w h e n L ' (b e h a v i o r m o v in g B v)

i n
m o u s e P r e s s 1 s t a r t M o v i n g $

m o u s e R e le a s e 1 s to p M o v in g $
m ouseM ove m o v e lte m $
m oveT o (b v a r B e h a v i o r p o sB v) $

c

We can therefore provide a relatively simple implementation of a powerful graphical editor. The use of
dynamic collections was particularly important in this case study. They enable us to provide simple
declarative models of complex, dynamic systems. We were able to develop the code in a consistent
style, providing a model of the shared abstract state o f the system. The complete system was then
composed out o f the individual element views.

92

6.3. The ATC System

6.3.1. The Prototype Design

The Air Traffic Control system provided a much more significant test o f FranTk. The ATC Prototype
that we produced allows several controllers to work together. It supports up to two controllers, planning
and tactical, in two adjacent sectors. This prototype was developed with the help of a Human Factors
expert at the U K ’s National Air Traffic Service, who acted as a customer and provided a realistic set of
requirements.

Recall that the interface provides a radar map of the sector with aircraft positions shown as blips (see
Figure 3 in Chapter 2). These show the current location of an aircraft and its last three positions, giving
a good idea of aircraft acceleration. Associated with each blip is a label known as a datablock showing
the Aircraft Callsign, next sector (or last sector if the aircraft hasn't entered this sector yet) and current
flight level. Datablocks can appear in different colours depending on the status o f an aircraft. For
instance, an aircraft under the control o f a sector appears in black, an aircraft co-ordinating entry to a
sector appears in blue. These labels will also show data-link error messages, and will highlight values
undergoing data-link co-ordination.

By moving the mouse over a datablock, the controller can cause a selected fligh t label to appear. This
shows more flight details, including downlinked flight parameters, and allows the controller to send
flight clearance and co-ordination instructions. This direct provision o f flight information reduces the
need for radio communications between controllers and pilots. This allows controllers to keep their
attention on the radar rather than being forced to move to the edge o f the screen.

A more detailed fligh t data plan window is also available. It allows controllers to interact with the
selected aircraft in a similar manner. It also shows more details, including downlinked controller
preferences and the flight route. The plan shows information on the currently hooked (currently
selected) aircraft, which will also be highlighted on the radar screen and on the Aircraft Display
window.

Controllers can send data-link messages in a number of ways. They can send individual clearance
messages. These can be either immediate (i.e. change now) or conditional (e.g. change by a given time).
Controllers can also send composite messages using a tactical data entry widget.

The simulator maintains a model of all the aircraft in the system, and a separate model for each
adjacent, computer controlled sector. Aircraft and adjacent sectors may behave as expected, or may
mutate and misreact to messages sent by a controller, according to a prespecified set of probabilities.
This is used to simulate failures during testing.

The case study therefore required the implementation of a large system, with a complex and powerful
functionality.

6.3.2. The ATC Architecture

In developing the ATC system, we made use of all the FranTk development tools. A screenshot from
the system architecture editor can be seen in Figure 37. It shows the architecture for the ATC system,
structured as a tree with each box representing an interaction component. Recall that the structure
represents the hierarchical display of the interface. The Simulator, consists of a set of Controller Views.
(A single Controller View was shown in Figure 3.) This in turn consists o f a Radar Area, showing all
Aircraft; a Messages In Window and a Messages Out Window, showing received and sent datalink
messages; a Flight Data Plan window; a Data Link Messages window; a Configure window (allowing
controllers to modify certain aspect o f the appearance o f their screen); and an Aircraft Display window.

In the system, all shared data is associated with the Simulator component, and data local to each
controller is held at or below the ControllerView level. The Simulator component is therefore a
complex component in its own right, as it maintains the complete model o f all the aircraft and simulated
sectors. Each of these interaction objects will have Abstract BVars associated with it. For instance, a
controller view shows information to a particular controller (ATCUser); has a GroundSystem associated

93

with its sector; a currently selected flight (CurrentFlight)\ and inform ation about which windows are
currently visible (W indowsVisible). This design allows for good application/interface separation. We
have a com plete model o f the behavior o f the ATC system, w ithout any reference to its appearance.

Ite I S S ai Sdfefflwcnw** Uam. Zmmm

r » ‘******0 |B | H ’ b i b i is i : E le i|:: » S»*.*, f

B I S H EJEJ n i a a
j- >■ $***>> »

jjjPf

LJ£i

mi. tii m. ii jaa_h La «i
f'ypfZ#!,t*m* j p r f t t X t M .J , p».#itoa%

_

Figure 37 - The System A rchitecture for the ATC System

6.3.3. Building the ATC System in F ranT k
Each user controls a sector. T heir view is based on their sec to r’s model o f the aircraft. However,
adjacent sectors and aircraft must react to com m unications. They wiil have behaviors and will generate
m essages. The sim ulation is therefore described as a collection o f behaviors (representing aircraft and
sectors) that com m unicate via events. Each adjacent sector and aircraft is modelled as a function which
accepts messages via an event stream, and produces an event stream generating a set o f response
messages. Each aircraft maintains an abstract trajectory model, and generates dow nlink m essages on its
event stream to inform each interested sector o f its flight param eters. The active aircraft are then
m odelled as a dynamic set. New aircraft are created on the basis o f an alarm event, that goes o ff
according to a plan (read in from an input file). A ircraft are deleted according to a predicate, which
specifies when the aircraft leaves user controlled sectors and therefore ceases to be useful.

Each sector itself maintains a dynamic collection o f aircraft which represents the sector’s view o f the
airspace. New aircraft are added when a sector receives an abstract boundary message from an adjacent
sector. New aircraft are deleted when they leave the visible airspace, again according to a predicate.
The sector com m unicates with others by receiving m essages on an event stream , and generating others
on another event stream. We therefore have a consistent high level approach to modelling
com m unication within the system; com ponents are specified as functions from events to events.

A Sector will autom atically generate certain messages. For instance, when a flight reaches a predefined
distance from the next sector an advance boundary inform ation m essage should be sent. T his is
specified as a predicate event.

abiMsg :: SectorPlan -> Behavior Location
-> Behaviour FlightPlan -> Event ABIMsg

abiMsg sectorplan locB flightplanB =
onceE (predicate (isWithinForABI sectorplan locB))
'snapshot_' flightplanB ==> mkMsg
where

mkMsg fplan = ABIMsg fplan

This says that once only (onceE), when the location is within the sector plan, sam ple (snapshot) the
current flight plan. Then generate an event, that is an A bstract Boundary• Inform ation M essage
(ABIMsg) containing the sam pled flight plan.

94

A similar approach can be used to generate time outs. When a message is sent to an adjacent sector or
aircraft, a timeout will be generated if the message has not been acknowledged within a given time. This
again can be specified using a predicate; predicate (time >* liftO (t + timeout)).
This time value will have been provided by the timeTick function introduced in section 4.3.2. The
existence of an explicit notion of time is therefore very powerful here. It allows us to program real time
systems at a very high level o f abstraction. This makes it easier to understand and reason about a
prototype’s behaviour, and so to find errors in a design.

The use o f Fran behaviors proved very useful when developing the ATC system. Using behaviors, we
can provide a simple, elegant model of an aircraft’s trajectory. The aircraft model then simply snapshots
the appropriate flight parameters when it needs to generate a flight-parameter downlink message.

For instance, we can model an aircraft’s flight level as a composition o f its cleared flight level and
vertical rate o f change. Given an initial flight level (e f 1), a cleared vertical rate of change (c v r c) , and
a cleared flight level (c f 1), we can describe the actual flight level o f the aircraft as shown below.

flightlevel :: Behavior Int
flightlevel = liftO efl + roundB (atRate (fromlntegral actualvrc))
actualvrc :: Behavior Int
actualvrc = ifB (flightlevel <* cfl)

cvrc
(ifB (flightlevel >* cfl) (- cvrc) 0)

atRate :: Behavior Double -> Behavior Double

This says that the flight level changes at the rate of the actualvrc, and starts out at efl. The actual
vertical rate o f change (actualvrc) is equal to the cleared vertical rate of change (cvrc) if the
flight is below the cleared flight level (cfl); it flies down at the cleared vrc (ie at - cvrc) if the flight
is above the cleared flight level, and is 0 otherwise. These definitions can be mutually recursive (that is
dependent on each other) because we are using a lazy functional language (where definitions are only
evaluated when they are needed). Using behaviors we can therefore easily model and compose dynamic
systems at a specification level, rather than at an implementation level.

A range o f different component behaviours can be defined with FranTk. However, a common style is to
define the behaviour o f a component in terms of a state transition function, that maps input data, and the
current state to a new state. These can be parameterised. For instance, Clearance models a flight
clearance for a given parameter. A value has either been cleared, or is clearing. In the second case we
have a clearing value, a copy of the old value, a clearing status, which says whether we’re waiting for a
logical acknowledgement message, or a pilot response, and the identifier for the message sent as a
clearance. A specific instantiation of a clearance might be for a flight level clearance. This consists o f
an actual level, and a conditional value. This can be one of a range of values including Now meaning
start climbing immediately, or B y P o in t , meaning reach the specified level by the given point.

data Clearance a =
Cleared (clearedVal :: a)

| Clearing (clearinglnfo :: a,
clearingMsgld :: ! Msgld,
clearingStatus :: ! ClearanceStatus,
clearedVal :: a
}

data ClearanceStatus = WaitingLack | WaitingResponse | ...
type ClearanceFL = Clearance (Int, Cond)
data Cond = Now | ByPoint Location | ...

A clearance is altered by datalink messages (DLMsg). These can be clearances with a unique message
identifier, and message body, or can be aircraft responses with a message reference. A pilot can agree to
co-operate (WILCO) or refuse (UNABLE). A logical acknowledgement message will also be sent.

95

data DLMsg a = ClearMsg {msgld :: Msgld,
msglnfo :: a}

Response {msgResponse :: Response, msgRef :: Msgld}
data Response = WILCO | UNABLE | LACK | ...

The behaviour of the Clearance is defined in terms of the state transition function,
handleClearance. The definition below shows one transition. If we are clearing and waiting for a
logical acknowledgement message, and we receive one, then we wait for a pilot response.

handleClearance :: DLMsg a -> Clearance a -> Clearance a
handleClearance (Clearing val msg WaitingLack oldval)

(Response Lack ref) =
Clearing val msg WaitingResponse oldval

The state is initially cleared, with a given value. Every time a DLMsg is received the
h a n d l e C l e a r a n c e function is applied to the message and the current state and a state transition
occurs.

state :: a -> Event (DLMsg a) -> Behaviour Clearance a
state val clearanceE =

Cleared a 'stepAccum' clearanceE ==> handleClearance

This modelling approach is very powerful. It allows the behavior of a system to be defined at a very
high level o f abstraction. The state-transition pattern is similar to the state machine model of many
high-level specification languages [10]. It is important because, as shown later, it allows us to derive a
formal specification.

6.3.4. Redesign

The ATC system was designed based on a set o f requirements, discussed with a human factor’s (HF)
specialist, at the UK’s National Air Traffic Services. I went down to NATS headquarters to perform
some redesign with the HF specialist. This allowed us to investigate whether FranTk was capable of
supporting any requested changes. It allowed us to test whether these changes could be carried out
quickly enough to support rapid iterative design. Finally, it allowed us to test whether the quality of the
resulting prototype would be sufficient for the needs of real users.

The results were very positive. I carried out a number of important changes to the prototype. I was able
to make all the necessary requested changes; the HF expert was impressed by the speed with which
changes were made, the interactive nature of the process and the quality of the resulting interface19. The
most important aspect was the development of a tactical data entry widget, to allow rapid messages to
be sent to a controller. The HF specialist had been considering such a widget for a while, but had not
had access to the necessary resources to have it properly prototyped. W e therefore spent some time
working on the design, until he was satisfied. The resulting interface proved useful for him. He
requested a copy of the final system, and as a result of this exercise the tactical data entry widget has
been recommended as the primary method of tactical message composition in EOLIA (the NATS
datalink project). The close user involvement therefore provided an important element of realism to the
evaluation. We were able not only to demonstrate a successful application of FranTk, but to produce a
prototype widget that has been successfully adopted by the end-user organisation.

The original data entry widget, and the new tactical data entry widget are shown in Figure 38.

The new widget allows the level, heading and speed to be set. The widget is opened to set a particular
value, such as the level. When opened, the relevant field will be selected (Stage 1 in Figure 38). When
the return key is pressed, if the value is invalid, the relevant field is highlighted in yellow (Stage 2 in
Figure 38). If the value is valid, the widget enters "send mode"; all fields are shaded in grey, and the
focus shifts to the send button (Stage 3 in Figure 38). The message may either generate a datalink

19 A letter from the NATS HF Specialist discussing his experience is enclosed at the end of this Thesis.

96

message or simply a ground system update, depending on the value o f the datalink checkbox. If one o f
the arrow buttons is pressed, a separate widget will appear to allow structured entry o f the data. For
instance, when the level button is pressed, the level widget will appear.

© B A W 22
Old W idget

cfl L ̂vrc L. j. so d l^ h d a i Tfixes
NRD AFX EFX BFX STH

0 1

p h o n e | finish| |

m m
3AW77)

Lev

270

280

290

300 —

310
320 ^

New W idget

E 1 E
1 1

Lev[[HeTB d Lev| 134s Lev| [230

Hdg 180 d Hdgl |1 7 0 ▼ | Hdgl [LID J

S pd 1400 d Spd] | i 300 * | Spd| 11400

send J 17 H* L-------J 17 datalink S i 0 17 datalink

Stage 1 Stage 2 Stage 3

Figure 38 - Tactical Data E ntry W idget

The existence of application/interface separation was very important to the successful integration of this
component. While behaving differently, both widgets serve the same purpose. They can both be defined
using almost the same type. We can therefore easily replace one with the other.

The original tactical data entry takes an event, which generates an occurrence, every time the widget is
to popup, with a value specifying the current necessary defaults for the interface. The second parameter
is a value of type T D C a l l . This provides a set of listeners which popup helper entry widgets, and a
listener that should be told of the resulting data link message.

m k T D E n try : : E v e n t R e q u e s t T a c t i c a l -> T D C a l l -> L i s t e n e r DLMsg
-> W Component

d a t a R e q u e s t T a c t i c a l = R e q u e s t T a c t i c a l {
t a c t i c a l F L : : R e q u e s t l n f o ,
. . . }

d a t a R e q u e s t l n f o a = R e q u e s t l n f o {
r e q u e s t C a l l s i g n : : C a l l s i g n ,
d e f a u l t V a l : : a ,
. . - }

d a t a T D C a l l =
T D C a l l { a s k L e v e l : : L i s t e n e r (R e q u e s t l n f o , L i s t e n e r L e v e l) , . . . }

The new tactical data entry widget was first created visually with the interface construction tool. This
allowed it to be designed with the Human Factors specialist’s direct involvement. The tool generated a
constructor function, mkTDE, which creates a tactical data entry component.

mkTDE : : ConfTDE -> W Com ponent

d a t a ConfTDE = ConfTDE {
w in d o w : : [C o n f W in d o w] ,
l e v e l : : [C o n f E n t r y] ,
l e v e l B : : [C o n f B u t t o n] ,
. ■ ■ }

97

The tactical data entry widget was then constructed using this interface. It requires one slight
modification; when the widget is popped up, one of the fields will be initially selected. We therefore
associate a value of type Open with the popup event, which specifies which field should be selected.

d a ta Open = OpenLev | OpenHdg | OpenSpd

mkTDEntry :: E vent (O p en ,R e q u estT a c tica l) -> TDCall
-> L is te n e r DLMsg -> WComponent

The widget must maintain some internal state. It uses a BVar to record whether or not it is in "Edit
Mode", i.e. whether a field is being edited; a BVar to store the current level, heading and speed values;
a BVar to represent the value of the datalink checkbutton; and a BVar that represents whether the
widget should be visible. Each of the current values is represented by a value of type "E ither a
S trin g" . This represents either the current value, or a String if the field contains an incorrect value.

d a ta E ith e r a b = L e ft a | R igh t b

mkTDEntry openE t d c a l l = do
ed itm ode <- mkBVarE True (openE -=> c o n s t True)

l e v e l <- mkBVarE (R igh t "") (openE ==> c o n s t . e x tr a c tL e v)
h ead in g <- mkBVarE (R igh t "") (openE ==> c o n s t . ex tractH d g)
sp eed <- mkBVarE (R igh t "") (openE ==> c o n s t . ex tra c tS p d)

d a ta l in k <- mkBVarE True (openE -=> c o n st True)
v i s i b l e <- mkBVarE F a ls e (openE -=> c o n st True)

Each of the above B Vars is updated by both its listeners, and by the open event. For instance, when the
widget is initially opened, the visible BVar is set to True. We therefore use the mkBVarE constructor,
which generates a BVar with an initial value that also depends on an initial event (initially presented in
Section 4.6).

When the window is popped up, or if the level, heading or speed key is pressed when the widget is not
in "Edit Mode", the focus will jump to the relevant entry field. We model the latter using a wire.
Relevant keyboard input on the window will generate an occurrence on this wire when the widget is not
in edit mode (the whenL combinator is similar to the Fran whenE combinator and is defined in a
similar manner, in terms of snapshotL and f i l t e r L) . We then simply merge the wire’s event with
occurrences from the open event.

keylnpW <- mkWire

l e t focusChangeE :: Event Open
focusChangeE = openE ==> f s t . | . ev en t keylnpW

k ey P ress (mapMaybeL fromKey (in p u t keylnpW)
'whenL' notB (b eh a v io r e d itm o d e)) $ do

Here the function fromKey has the type fromKey :: Key -> Maybe Open.

The widget will only be in “Send Mode”, when it is not in “Edit Mode” and all the fields contain valid
entries.

l e t v a l id = l i f t l i s L e f t (b eh a v io r speed) &&* l i f t l . . .
isSendMode = v a l id &&* notB (b eh a v io r ed itm ode)

We generate a Tactical Data Entry widget, with visibility dependent on the v i s i b l e BVar. The
visibility will be altered when the Tactical Data Entry window is closed, or when the “Send” button is
pressed. Each field and field button has a similar behavior, defined in terms of d isp E n try and
d isp B u tto n . The buttons’ behavior is fairly simple; it will fire the appropriate listener from the
TDCall set, thereby opening the appropriate helper widget.

98

let confs = ConfTDE [title callsign,
onClose (tellL False (input visible)]
(dispEntry parseLev showLev editmode

level focusChangeE isLev)
(dispButton askLev reqlnfo)

ifB (behavior visible) (mkTDE confs) emptyComponent

An entry field is used to edit each of the three data values (level, speed and heading). Each has five
important configuration options:

1. t e x t C o n t e n t s - the entry will show the value of its BVar;
2. b a c k g r o u n d e d o u r - when the field value is invalid the background will be yellow, otherwise

if the widget is in edit mode the background will be white, otherwise the background will be grey;
3. changeFocus - when a field is opened, the keyboard focus will be set to that field;
4. select - when a field is opened all the text in that field will be selected;
5. onReturn - when the return key is pressed, the input will be parsed, and the relevant data value

BVar will be updated. The widget will then leave edit mode.

dispEntry :: (String -> Either a String) -> (a -> String)
-> BVar (Either a String) -> BVar Bool
-> Event Open -> (Open -> Bool)
-> [Conf Entry]

dispEntry parse show dataValBV editmode focusChangeE isRelevant =
[textContents,backgroundColour,changeFocus,select,onReturn]

where
textContents =

textB (liftl (getValue show) (behavior dataValBV))
backgroundColour =

backgroundB (ifB islnvalid yellow
(ifB (behavior editmode)

white grey))
changeFocus =

setFocusE (filteredFocusE -=> True)
select =

setSelectionE (filteredFocusE -=> (Just (I 0,IEnd)))
onReturn =

snapReturn $
mergeL (comapL parse $ input dataValBV)

(tellL False $ input editmode)
filteredFocusE :: Event Open
filteredFocusE = focusChangeE 'suchThat' isRelevant
getValue :: (a -> String) -> Either String a -> String
getValue show (Left s) = s
getValue show (Right n) = show n
islnvalid = liftl isRight (behavior dataValBV)

We therefore have a high level implementation of the tactical data widget. The application/interface
separation in the implementation made it easy to incorporate a new tactical data entry widget, with only
a little new coding. In general, the development of a large, complex case study was relatively easy in
FranTk. We were able to construct the system using a consistent programming approach. The system
was easily designed in terms of a set of components, which were integrated in a compositional manner.
The use of dynamic collections to model the collection of aircraft, and datalink messages was again
important. The system provides a number of different views of an aircraft’s data and o f the datalink
message collection. For instance, the "Message In", "Message Out" and "Datalink Msgs" windows each
show a separate filtered view of the sectors datalink message set. A separate view o f each aircraft is

99

provided by the aircraft data block, selected flight label, Aircraft flight strip window, and the flight data
plan window. The ability to provide multiple views of a dynamic collection was therefore very
important. FranTk’s support for real-time predicates proved particularly useful when developing the
prototype. Predicates were used, for instance, to define time outs on datalink events.

6.4. Summary of Evaluation

This Chapter has shown how FranTk was able to cope with a set o f case studies o f increasing
complexity. At each stage we discussed how FranTk coped with the programming issues that arose. We
will now summarise how well it satisfies the requirements outlined in Chapter 3.

6.4.1. High level and declarative

FranTk provides a high-level approach to interactive systems design. The behavior of a system is
defined in terms of a set of B Vars. These can include dynamic collections, allowing a dynamic system
to be modelled declaratively. The appearance of an interface is then defined as a function of this state.
At no point do we require to imperatively define how an interface will change; instead, we simply state
what it should look like. Imperative actions are handled using the listener type; listeners can be
composed in terms of a high-level algebra of operators. The use of predicates is an important part of
this declarative programming approach. W e can provide a simple, high level specification of when a
change should occur, rather than requiring to check and make changes using an imperative approach.

6.4.2. Declarative Concurrency

FranTk clearly supports declarative concurrency. The ATC system, for instance, consists o f a number
of concurrently evolving components (such as aircraft). These are modelled in terms of behaviors and
events rather than requiring any explicit pre-emptive concurrency. FranTk provides support for explicit
concurrency where required; however, the support for declarative concurrency was sufficiently
powerful to support two different multi-user interfaces.

6.4.3. Compositional

FranTk provides a compositional programming style. Individual user interface components, are values
of type Component. These may be composed using a set o f declarative graphical combinators.
However, they may also contain internal state. Interactive components are all defined in terms of
functions that accept an abstract BVar (i.e. a collection of listeners, behaviors and events) and generate
a value of type Component. We can attach listeners to the user input from a component, including a
composite component; we can also apply a style (such as background colour) to a composite
component. Components are represented by untyped values, we can therefore compose collections of
components. While there is a separation between top-level windows, standard components, and canvas
components, this is necessary because each of these represent a separate class of widget; it does not
make sense to geometrically compose a top-level window and a button beside each other. We therefore
have a very compositional programming style.

6.4.4. Component based application/interface separation

FranTk provides good application/interface separation. Application code in terms of BVars, and
interfaces are defined as views of these BVars. The existence of dynamic collections is again very
important here. In each of our case studies we were able to provide an abstract model o f the system, and
then provide multiple views of this data. This was particularly important in the ATC system, where
there are many different views of the aircraft and datalink messages.

6.4.5. Visual Tool support

We presented two visual tools to aid the construction of interactive systems in FranTk; an architecture
editor and an interface construction tool. They were implemented only as proof-of-concept prototypes.
Both tools therefore had a number of low-level usability problems. They proved unnecessary in the first
two case studies; however, they did appear useful in the development of the ATC system. The interface
construction tool was the more useful of the two. The ATC system contained many popup-windows; all

100

of these were created with the tool. Such tools are commonplace in most interface development systems
and so the desire for such a tool is less controversial[139]. The usefulness o f the architecture tool is
more questionable. The FranTk architecture does improve on Clock’s architecture by providing support
for composite abstract behaviors variables, fully parameterised interaction objects and explicit event
routing. While it did appear useful in enabling me to understand the architecture of the ATC system, it
was certainly not indispensable. Further work would be necessary to perfect the tool and convincingly
demonstrate its importance.

6.4.6. Scalability

The FranTk language proved sufficiently scalable to handle a range of large examples. The ATC
system, for instance, was constructed in a consistent style. The programming approach did not need to
be radically altered to handle such a large system. Instead it scaled gracefully to handle the new system.

6.4.7. Efficiency

FranTk proved sufficiently efficient to handle all o f the case studies discussed in this thesis. The ATC
system ran sufficiently quickly for the NATS Human Factors specialist to use it for his purposes. All of
the examples in Chapter 4 run efficiently even under the hugs interpreter. This includes the structured
program editor discussed in Section 4.13.7. Unfortunately, the space fighter game does not run
smoothly under FranTk, because Tcl-Tk does not support sufficiently fast animation. However, this is
not a fundamental problem with FranTk, but could be overcome by providing a FranTk binding to a
language with more efficient graphics support. The equivalent program runs well enough under Fran.

6.4.8. Platform independence

The FranTk library was developed on top o f Tcl-Tk to provide a platform independent widget set.
FranTk will run anywhere that Tcl-Tk, and Haskell will run. This allows the development of an
interface with native look and feel which can run unaltered on Windows, Unix and Macs.

6.5. Areas for Further Work

6.5.1. Debugging

Currently FranTk provides only very primitive support for debugging. The issue of debugging in a lazy
functional language is an area of research in its own right. Because values are evaluated lazily, and
much Haskell code consists o f pure functions, we cannot simply provide a program trace by placing
print statements within program code. To attempt to overcome this problem all current Haskell
implementations come with the (non-standard) function t r a c e .

trace :: String -> a -> a

It can be applied to a value and prints a message when the given value is evaluated. FranTk provides
equivalents for events and behaviors which print a message when the given event has an occurrence or
when the value of the behavior is sampled. This approach has, however, a number of know problems.
The trace function can result in incomprehensible output, it tends to be invasive and it can change the
strictness of the things it is observing[68].

There are a number of promising areas of research within the Haskell community that are developing
significantly more usable and powerful debugging tools. For instance, Gill[68] presents two tools
Observe and HOOD that allow the observation of intermediate data structures after a program’s
execution. The ART project at York University is currently developing a tracer/debugger for Haskell.
This work is based on an earlier prototype that is distributed with one Haskell compiler[189]. It is not
immediately clear how easily the internal machinery of the FranTk implementation could be hidden
when using such a tool. One interesting area of future research would be to investigate how easily such
tools could be used in conjunction with a high level toolkit such as FranTk.

101

6.5.2. Exceptions

Recent work has introduced a new Exception mechanism into Haskell[160]. This allows exceptions to
be thrown by any Haskell function, and to be caught within the 10 monad. The use of behaviors and
events makes the use of such exceptions difficult. For instance, imagine that an exception was thrown
by Behavior value in a configuration option. It is not immediately clear where we should catch such an
exception. One solution might be to allow exception handlers to be passed along with behavior values
to generate configuration options. Further work is required to find the best mechanism with which to
integrate exception handling into a FranTk program.

6.5.3. Usability of FranTk

It is important to note that all o f the case studies discussed in this thesis were developed solely by
myself. There is therefore no evidence that others could have achieved similar results with FranTk.
There are a number of other programmers using it to develop a range of pieces o f software. All of these
programmers have had a solid understanding of Haskell: recall that FranTk was developed for those
familiar with functional programming.

FranTk has been used to produce a number of text editing interfaces. An Msc student at Oxford has
extended the structured editor discussed in Section 4.13.7. Another PhD student has also used it to
develop a simple interface to a theorem prover. FranTk is currently being used by another researcher to
develop a midi sequencer that allows musical scores to be edited visually and then played. It has also
been used on a number of other smaller projects by both undergraduate computing students and
researchers.

Feedback on FranTk has been generally positive. Those programmers that I spoke to have found it
reasonably easy to learn at least the basic concepts; one user described how they were happy that they
could “knock up a simple interface easily within half an hour” . Most of the confusion that has arisen has
been a result o f FranTk’s listeners. They seem to add an initial steep learning curve before programmers
become happy with using them. This initial feedback has, however, been very informal. As outlined in
Chapter 1, this thesis does not attempt to evaluate the usability o f FranTk as a GUI programming
language. Further work would be required to do this properly.

Myers et al[139] discuss the notions of ‘Threshold” and “Ceiling” as ways of categorising user
interface tools. The “threshold” is how difficult it is to learn to use the system; the “ceiling” is how
much can be done using the system. They argue that “most successful current systems seem to be either
low threshold and low ceiling or high threshold and high ceiling” . FranTk is clearly a high “Ceiling”
system as it has allowed a range of significant systems to be developed. However, it would also appear
to be a high ‘Threshold” system. Myers et al argue that tools should allow a “Gentle Slope” where new
concepts can be learned incrementally rather than creating “walls” in which a developer must stop and
leam many new concepts and techniques. There clearly are such “walls” in the use of FranTk. Further
work is required to determine where they are and to either simplify the conceptual model or provide
better tool support to overcome them.

6.5.4. Conclusions

In conclusion, FranTk satisfies all o f the requirements set out in Chapter 3, and proved sufficiently
powerful to handle a range of large case studies. It does, however, seem to have a fairly high threshold
when programmers are learning to use it. Further work is required to determine what aspects o f FranTk
make it difficult to leam and how to improve its usability for programmers. Further work is also
required to successfully integrate tools such as debuggers and language extension such as Haskell’s new
Exception mechanism.

102

Part III. Implementation
Part III of this thesis discusses the implementation of FranTk. It is separated into two Chapters.

Chapter 7 discusses the implementation of the core Functional Reactive Programming (FRP)
combinators. It discusses the semantics of FRP. It then presents three different novel and cunning
implementations, which are more efficient (both in terms of time and space) than existing FRP
implementations. Each of the first two implementations have their problems. The third requires further
research to determine whether it will really work. Chapter 7 also presents a clever approach to
implementing dynamic collections. This Chapter is therefore aimed at readers interested in the difficult
issue of implementing Functional Reactive Programming efficiently.

Chapter 8 discusses the implementation of the FranTk GUI library. Though FranTk has been
implemented on top of Tcl-Tk, it has been implemented in as toolkit independent manner as possible.
This Chapter is therefore of interest to readers wishing to understand how the FranTk GUI library
works and those wishing to port FranTk to an alternative GUI toolkit.

103

Chapter 7 - Implementing Functional Reactive Programming

There are two major aspects to the implementation of Functional Reactive Programming within FranTk.

The first aspect is the provision o f an efficient implementation of the core Functional Reactive
Programming combinators20. The FRP programming style is very succinct and expressive. This
unfortunately comes at a price. It is difficult to provide an efficient, robust implementation that is
entirely faithful to the formal semantics.

The development o f an efficient FRP implementation is important not just for FranTk. There are a
growing number of other application areas to which the FRP approach has been applied. These
currently include robotics[155], multimedia[200] and animation[44]. Current work at Yale University is
investigating its application to Vision systems. The search for more efficient FRP implementations is
therefore important to all o f these application areas.

Section 7.1 will first discuss the semantics o f FRP. There are two competing semantic models; one by
Elliott and Hudak [44] and one by Wan and Hudak [206]. Both have implementations using lazy
functional streams. Section 7.2 will then present a new data-driven implementation that provides
significantly greater performance. Section 7.2.8 will show how to improve on this data-driven
implementation by using weak references to make it more space efficient. Unfortunately, this
implementation is not entirely faithful to either o f the FRP semantic models, and requires changes to the
types of some of the basic operators (Section 7.2.5). Section 7.3 presents an alternative solution which
is a hybrid between the Elliott & Hudak functional streams implementation and imperative data-driven
evaluation. This hybrid is still an unfortunate compromise, as it is not entirely robust. Section 7.4
outlines a third data-driven implementation that appears to be faithful to the Wan and Hudak semantics.
Further work is required to verify that this implementation does indeed completely satisfy the
semantics.

The second aspect is the efficient implementation of incremental behavioral collections. This will be
discussed in Section 7.5.

7.1. FRP Combinators - A Semantics

The provision of a complete semantics for Functional Reactive Programming is an ongoing area of
research. There have been several attempts to tackle the issue. Elliott and Hudak[44] presented a
denotational semantics for the operators on events and behaviors. Wan and Hudak [206] present an
alternative formal semantics for FRP which differs from the original semantics in a few key aspects.
Finally, Daniels[35] devoted a PhD thesis to providing a complete semantics for a language
CONTROL, based on Fran.

Daniel’s CONTROL language uses a number of constructs not available in Haskell, and so cannot be
implemented as an embedded language. His semantics also has many similarities to that provided by
Wan and Hudak. This Chapter will therefore concentrate on the first two FRP semantic models. Both
have implementations based on lazy streams. The next two sections will briefly present the two
semantic models, they will explain the basic principles behind their implementation, and will highlight
the important differences between them.

7.1.1. A First Semantics

7.1.1.1. The Basic Semantic M odel
The original Elliott and Hudak paper assumes an abstract domain of polymorphic behaviors and events.
They define an interpretation of a-behaviors as a function from time to a-values, producing the value of
a behavior b at time t.

at : Behavior a -> Time -> a

20 The FRP implementation represents joint work with Conal Elliott and Simon Peyton Jones.

104

They define an interpretation on a-events as simply non-strict T im e X a pairs, describing the time
and information associated with an occurrence of the event.

o c c : E v e n t a -> T im e X a

Elliott and Hudak then define the semantics o f the event and behavior combinators. Here we will only
discuss a subset o f them; specifically the primitive time behavior, behavior-event reactivity, behavior
lifting and primitive events. Readers wishing a fuller discussion o f their semantics are directed to [44].

7.1.1.2. Two Initial Combinators - Time and Reactivity

The simplest primitive behavior is t im e ; a t [[t im e]] is just the identity function on T im e.

t im e : B e h a v i o u r T im e
a t [[t i m e]] t = t

The next significant combinator is u n t i l B , which defines reactive behaviors. Specifically, the
behavior ‘b u n t i l B e ’ exhibits b ’s behavior until e occurs, and then switches to the behavior
associated with e.

u n t i l B : B e h a v i o u r a -> E v e n t (B e h a v io u r a) -> B e h a v i o u r a
a t [[b u n t i l B e]] t = i f t <= t e t h e n a t [[b]] t e l s e a t [[b ']] t

w h e r e (t e , b ') = o c c [[e]]

Note that the inequality here ‘t <= tg’ means that the behavior changes after the event occurrence, not on
it. This allows the definition of self or mutually-reactive behaviors.

7.1.1.3. A Lazy Streams Implementation
At this stage it is useful to introduce the lazy streams implementation21. The simplest implementation of
behaviors and events could mirror their semantic representations.

d a t a B e h a v i o r a = B e h a v i o r (T im e -> a)
d a t a E v e n t a = E v e n t [(T i m e , a)]

We assume, for the moment, the existence of some function, o c c , that checks for an event occurrence
before a given time. To sample a reactive behavior, at time t , we first check whether the event e occurs
before t . If so, we sample the new behavior, b ' , that is part of the event occurrence, and if not we
sample b.

o c c : : E v e n t a -> T im e - > M aybe a

b ' u n t i l B ' e = B e h a v i o r s a m p le
w h e r e s a m p le t = c a s e (e ' o c c ' t) o f N o th in g -> b ' a t ' t

J u s t b ' -> b ' ' a t ' t

Unfortunately, this representation has two fundamental problems. It allows nothing to be remembered
from one sampling to another. This is very unfortunate, as we can clearly make incremental progress
when sampling a reactive behavior. If we sample at time t , and the reactive behavior has not changed,
then we know that if we check at a later time t ' , we need only check the event for occurrences between
time t and t ' . The second major problem occurs when trying to define o c c . The u n t i l B function
will often need to know that an event has no occurrence before a given time. Unfortunately, this may
happen before we know the actual time of the first occurrence. This results in an obvious contradiction.
Instead we need to represent an event as a stream of possible occurrences, and pad it with non­
occurrences. The o c c function can now simply search this list looking for a genuine occurrence before
a given time.

d a t a E v e n t a = E v e n t [P o s s O c c a]
t y p e P o s s O c c a = (T im e ,M a y b e a)

21 This section is a summary of the lazy functional streams discussion provided in [46].

105

We can define a behavior as a function that maps time streams to value streams.

d a t a B e h a v i o r a = B e h a v i o r ([T i me] - > [a])

a t s : : B e h a v i o r a -> [T im e] -> [a]
B e h a v i o r f ' a t s ' t s = f t s

The primitive behavior t im e is implemented as the identity.

t im e : : B e h a v i o r T im e
t im e = B e h a v i o r (\ t s -> t s)

To implement reactive behaviors we use the o c c s function, which is a list version of the o c c function
introduced earlier. W e need to scan through the list of event occurrences, enumerating behavior
samples.

o c c s : : E v e n t a -> [T im e] -> [M aybe a]

b ' u n t i l B ' e = B e h a v io r (\ t s - > l o o p t s (e ' o c c s ' t s) (b ' a t s ' t s))
w h e r e

l o o p t s @ (_ : t s ') (e : e s) (b : b s) =
c a s e e o f

N o th in g -> b : l o o p t s ' e s b s
J u s t f b ' -> f b ' ' a t s ' t s

W e will now return to the remaining FRP combinators defined by Elliott and Hudak.

7.1.1.4. Lifting
Elliott and Hudak define a set o f functions for “lifting” functions defined on static values to analogous
functions defined on behaviors. This lifting is accomplished by a family of lifting operators, defined for
each arity of function. These apply a function f to the values of a set of behavior arguments at time t .

l i f t n : (a x . . a n - > b) - > B e h a v i o r a i . . B e h a v i o r a n -> B e h a v i o r b
a t [[l i f t n f a x . . . a n]] t = f (a t t t a j j t) . . . (a t [[a n]] t)

The lifting combinators are implemented using the more general “$ * ’ combinator. This provides
function application for behaviors. For instance, l i f t l is implemented as follows.

l i f t l : : (a - > b) - > (B e h a v io r a -> B e h a v i o r b)
l i f t l f b = c o n s t a n t B f $* b

To implement the ‘$ * ’ combinator we sample the function and argument behaviors using the time
stream, and then zip together the two resulting lists, combining elements by applying the function to the
argument, using ($).

($ *) : : B e h a v i o r (a -> b) -> B e h a v i o r a -> B e h a v i o r b
f b $* x b = B e h a v i o r (\ t s - > z i p W i t h ($) (f b ' a t ' t s) (x b ' a t ' t s))

($) : : (a - > b) - > a - > b
f $ a = f a

7.1.1.5. Primitive Events

There are two basic primitive events: predicates and external events. Predicates are events that occur at
the first time that a Boolean behavior becomes true, after a given time.

p r e d i c a t e : B e h a v i o u r B o o l -> T im e -> E v e n t ()
o c c [[p r e d i c a t e b t 0]] = (i n f (t > t 0 | a t [[b]] t }, ())

External events are again functions of time. The meaning of an event l b p t 0, for example, is the pair
(t e , e) such that t e is the time of the first left button press after t 0.

106

lbp: Time -> Event ()

It is important to note that in this model all primitive events have a start time. We must therefore pass
this start time around explicitly. For instance, we would define a colour cycling function, which
switches between red and green, as follows. Note that in order to catch successive mouse clicks we
must pass the time of the last click to the next cycle.

cycle tO cl c2 =
cl 'untilB' lbp tO *=> cycle c2 cl

(*->) :: Event a -> (Time -> a -> b) -> Event b

This quickly becomes cumbersome22. Later work on Fran modified the notion of primitive events such
that they all depend on an environment (User) which provides both the input stream and the start time
to .

lbp : User -> Event ()
predicate :: Behavior Bool -> User -> Event ()

This environment argument must again be passed around as a parameter. It must be aged explicitly after
every event. Ageing causes each input stream within the User argument to drop all occurrences before
the time that the event occurred.

nextUser :: (User -> Event a) -> (User -> Event (a,User))

We can also explicitly age events as well.

withRestE :: Event a -> Event (a, Event a)

Elliott introduced a range of operators such as switcher that hide this ageing process from the user.

switcher b e = b 'untilB' withRestE e ==> \(b,e) -> switcher b e

We will discuss the implementation o f primitive events in Section 7.1.4.

7.1.2. A Second Semantics

While explicit ageing can frequently be hidden by such combinators, it can be a pain. Wan and Hudak
[206] present an alternate semantics for FRP which introduces implicit ageing. They parameterise all
behavior and event combinators with a start time and environment.

In their model, the meaning of a behavior, is a function mapping a start time, an environment (Elliott’s
User argument, which provides access to all input to the FRP system) and a time of interest to a value.
Start times relate to the reactive nature of FRP. In ‘b 'untilB' e’, if an event occurrence (t , b ')
of e causes the overall behavior to switch to b ' , we say that b ' starts at time t . A behavior is unaware
of any event occurrences that happened before its start time.

at : Behavior a -> Env -> Time -> Time -> a

The meaning of an event is a function that also takes a start time T and a time o f interest t, and returns
a finite list o f time-ascending occurrences of the event in the interval (T, t]. An event occurring
precisely at start time T is therefore not detected.

occ : Event a -> Env -> Time -> Time -> [Time x a]

To implement this model they too use a lazy streams implementation. The core data types, Behavior
and Event are implemented as:

22 It also results in an inherent space leak in an implementation, as we must hang on to an ever growing
stream of user input values.

107

type Behavior a = User -> [Time] -> [a]
type Event a = User -> [Time] -> [Maybe a]
data User

Note that these definitions are similar to the earlier ones. The important difference is that the
environment argument is now implicit rather than explicit.

To understand the changes that this model introduces it is sufficient to consider the new semantics of
untilB.

The semantics o f u n t i l B is now as follows. The behavior ‘b ' u n t i l B ' e ’ exhibits b ’s behavior
until e occurs, and then switches to the behavior associated with e . We have one significant difference,
the new behavior will start afresh at the time of e ’s occurrence.

If occ [[e]] T t = [(ti,bi) , (t2,b2) , . . , (tn,bn))] , then for any
re [T, t]
a t [[b untilB e]] env T r = a t [[b]] env T r, n=0 or r <= tl

at[[bi]] env t! r, otherwise

Reactivity can be implemented as follows.

untilB :: Behavior a -> Event (Behavior a) -> Behavior a
fb 'untilB' fe =

\user ts -> loop user ts (fe user ts) (fb user ts)
where
loop user ts@(_:ts') ~(e:es) (b:bs) =
let user' = age user in
b:case e of Nothing -> loop user' ts' es bs

Just fb' -> tail (fb' user' ts)
age :: User -> User

Note that the user argument is aged at each step, and that when the new behavior fb ' is started it uses
the aged user.

7.1.3. C om paring the Two Sem antics

The difference between these two semantics can be seen clearly in the following example. Consider the
behavior definition. The behavior b, switches from 0 to bl on a right button press. The behavior bl
switches from 1 to 2 on a left button press.

b = let bl = 1 'untilB' lbp -=> 2
in 0 'untilB' rbp -=> bl

Consider the case when the user presses the left button, then the right button. What is the value of b
after the right button has been pressed. There are two possibilities depending on which o f the two
semantics is used. If bl hears only input after the right button is pressed (i.e. it is restarted when the
right button is pressed) then b will have the value 1. However, if b l remembers about earlier input then
it will have the value 2.

We can achieve either effect with either semantics using different definitions. To get the value 1 as the
result, with Elliott and Hudak’s semantics, we must explicitly age the User argument.

b u = let bl u = 1 'untilB' lbp u -=> 2
in 0 'untilB' withRestE (rbp u) ==> \(_,u') -> bl u'

With Wan and Hudak’s semantics, we get the value 1 by default.

b = let bl = 1 'untilB' lbp -=> 2
in 0 'untilB' rbp -=> bl

108

To get the value 2 with Elliott and Hudak’s semantics we use the same User argument in the definition
of b and bl.

b u = let bl = 1 'untilB' lbp u -=> 2
in 0 'untilB' rbp u -=> bl

To achieve the same effect with Wan and Hudak’s semantics we must make use of the runningln
combinator. This takes a behavior and a function, using that behavior, and returns a new behavior. It
starts the argument behavior and the result behavior at the same time.

runningln :: Behavior a -> (Behavior a -> Behavior b) ->Behavior b
at [[runningln b f]] env T t = at [[f (start b env T)]] env T t
at [[start b envStart TStart]] env T t =at [[b]] envStart TStart t

We can now define b as follows. In the example, bl is started at the same time as b, and so it hears
input before the right button press as well as input afterwards.

b = let bl = 1 'untilB' lbp -=> 2
in runningln bl (\bl -> 0 'untilB' rbp -=> bl)

The two semantic models therefore differ in their treatment of ageing: the Elliott-Hudak model uses
explicit ageing of behaviors. The Wan-Hudak model uses implicit ageing.

7.1.4. Implementing Primitive Events

To create an event with an imperative handle, we use newPrimEvent. This uses a channel to allow
communication. The event is initially created with one non-occurrence at time tO. To tell the event
about future occurrences, we simply write values to the channel. To access all the occurrences of the
event, we use getChanContents. This turns a channel into a lazy stream of values. We can access
values from this stream, provided that we only ever evaluate the stream as far as the latest entry that has
been written to it.

getChanContents :: Channel a -> 10 [a]
newPrimEvent :: Time -> 10 (PossOcc a -> 10 (),Event a)
newPrimEvent tO =

do ch <- newChan
-- The following entry is in case the event gets queried at
-- time tO.
writeChan ch (tO, Nothing)
contents <- getChanContents ch
return (writeChan ch,Event contents)

Unfortunately, using a lazy streams implementation results in poor performance, as it relies on a
demand-driven approach. In order to actually run a program, based on this implementation, we must
sample every behavior at every time interval. We must also pad every event with a non-occurrence once
per sampling. This makes it difficult to define new primitive events, such as a FranTk wire. We must
pad these new primitive events with non-occurrences as well.

7.2. Efficient FRP Combinators

7.2.1. Implementation Requirements

To allow an efficient implementation of the FRP combinators, we must move instead to a data driven
approach. The Pidgets system, for instance, works in this way [177]. In the functional streams
implementation, values are pulled from the behavior set. We must therefore sample every behavior at
every time interval. In contrast, with a data-driven approach, changes are pushed towards constraint
variables. When user input occurs it updates the values of behaviors and events. We therefore only need

109

to update areas of the screen that depend on behaviors and events which have actually changed. It also
removes the need for padding of events with non-occurrences.

For FranTk, we need to support the following two imperative operators. Firstly, we need to be able to
create a Wire. Secondly, we need to be able to add a listener to an event, so that its action will be
performed on every event occurrence. Clearly, the second of these would be greatly aided by some form
of data driven approach.

newWire :: 10 (Wire a)
addListener :: Event a -> Listener a -> 10 Remover

Section 7.2.2 will first introduce the Listener implementation. Section 7.2.3 will then go on to present a
data-driven event implementation. Section 7.2.5 will discuss the problems with this implementation.
This interface also allows us to implement efficient data driven behaviors. If we know what events a
behavior depends on, we can invalidate and therefore evaluate it only when its dependent events occur.
We will see how this can be done in section 7.2.7.

7.2.2. Implementing Listeners

A naive implementation of listeners might follow their simple semantics as a callback, that performs an
action with some event occurrence.

newtype Listener a = Listener (Occ a -> 10 ())
type Occ a = (Time,a)

This implementation has a number of problems. Fundamentally, it is not sufficiently sophisticated to
allow the implementation of all the Listener combinators discussed in Chapter 4. In particular, there are
three important classes o f combinator that we must implement.

The first o f these classes includes any listener that should only perform an action a given number of
times. This includes onceL.

onceL :: Listener a -> Listener a

The onceL combinator requires some mechanism to guarantee that its callback action is only
performed once. This can be implemented by allowing a listener access to an unsubscribe action, that
notifies the object talking to it, that it is no longer interested in hearing values.

newtype Listener a = Listener (Remover -> Listener' a)
type Listener' a = Occ a -> 10 ()

Using such an unsubscribe action we can then implement onceL as follows. The onceL combinator
creates a new listener. The first time this new listener hears a value, it fires its action and then
unsubscribes from any future values. The onceL combinator therefore creates a listener that will
perform its action once for every source it is added to.

onceL :: Listener a -> Listener a
onceL (Listener 1) = Listener (\rm v -> do {1 v;rm})

The second class of listener combinator includes scanlL. Recall that scanlL is a listener equivalent
o f the scanl function. The listener’s current values starts with the initial value provided. Every time
the listener consumes a value, it applies its update function to its current argument and the new value. It
then uses the result to update its current value, and passes it to the argument listener.

scanlL :: (a -> b -> a) -> a -> Listener a -> Listener b

This form of listener therefore has some implicit state, a current value. We need to create this implicit
state before the listener is applied for the first time. We can do this with the following listener
representation

110

new type L is te n e r a = L is te n e r (10 (L is te n e r ' a))
ty p e L is t e n e r ’ a = Occ a -> 10 ()

We can implement this as follows. First we create the callback action for the argument listener. We then
create a new mutable variable (IORef), to hold the current state. Its initial value is a. Every time the
new listener is fired, it reads the value from this variable (using readlO Ref), updates it (using
w rite lO R ef), and then fires its argument listener.

sca n lL f a (L is te n e r a c t) = L is t e n e r $ do
op <- a c t
r e f <- newIORef a
l e t t e l l (t ,b) = do a <- readlO R ef r e f

l e t a ' = f a b
w rite lO R ef r e f a '
op (t , a ')

r e tu r n t e l l

The third class involves a switching listener. Here it is important that a listener can both create some
internal state, and return a remove action that should be performed by any enclosing listeners when
unsubscribing. An efficient implementation of sw itch erL relies on knowledge about event
termination, and so will be discussed in section 1.2.63.

Composing these three representations, we end up with the following listener representation. We can
make “structural optimisations” by including a NeverL constructor. For instance, applying a function,
such as map, to a NeverL listener returns a NeverL listener. We can therefore eliminate some
unnecessary work. For ease of use we define a simple constructor function mkPrimL, and a simple
destructor g e tP r im L isten er . We also define three extra combinators, mkL, mkL' and
g e tL is t e n e r '. The first of these creates a Listener from a simple callback function. The second and
third are equivalents of mkPrimL and g e tP r im L is ten er , except that they ignore the Remover
return value. This is important because the remover return value is only used by sw itch erL , and is
therefore otherwise just an unnecessary complication.

ty p e L is t e n e r ’ a = Occ a -> 10 ()

d a ta L is te n e r a = L is te n e r (Remover -> I0 (Remover, L i s t e n e r ’ a))
| NeverL

mkPrimL :: (Remover -> 10 (Remover, L is t e n e r ’ a)) -> L is te n e r a
mkPrimL f = L is te n e r f

g e tP r im L is te n e r :: L is te n e r a -> Remover->10 (Remover, L is t e n e r 1 a)
g e tP r im L is te n e r (L is te n e r mk) rm = mk rm
g etP r im L is te n e r NeverL rm = r e tu r n (r e tu rn () , c o n s t (r e tu rn ()))

mkL’ :: (Remover -> 10 (L is t e n e r 1 a)) -> L is te n e r a
mkL’ f = mkPrimL $ \rm -> do (op <- f rm ;return (re tu rn () ,o p) }

g e t L i s t e n e r ’ :: L is te n e r a -> Remover -> 10 (L is t e n e r ’ a)
g e t L i s t e n e r ’ 1 rm = fmap snd $ g e tP r im L is te n e r 1 rm

mkL :: (a -> 10 ()) -> L is te n e r a
mkL f = mkL’ $ \ _ -> r e tu r n (\ (_ ,a) -> f a)

We can now define most of the listener combinators in terms of a few primitive listener operations.
These are l i f tL l, l i f tL2, and l i f tLIO. These compose listeners and allow us to apply functions
over them. The first l i f tL l takes one listener and produces another by redefining its internal callback
action.

l i f t L l :: (L is te n e r ' a -> L is t e n e r ' b) -> L is te n e r a -> L is te n e r b
l i f t L l _ NeverL = NeverL
l i f t L l f 1 = mkPrimL $ \rm -> do

{ (r m ',o p l) <- g e tP r im L is te n e r 1 rm ;retu rn (rm ', f o p l) }

I l l

This can best be seen by example. For instance, we can define comapL in terms of l i f tL l.

comapL :: (a -> b) -> L is te n e r b -> L is te n e r a
comapL f = l i f t L l $ \ a c t (t , v a l) -> a c t (t , f v a l)

The function l i f tL2 allows us to merge two listeners and redefine their behavior.

l i f t L 2 :: (L is te n e r ' a -> L is t e n e r ' b -> L is t e n e r ' c)
-> L is te n e r a -> L is te n e r b -> L is te n e r c

l i f t L 2 f 11 12 = mkPrimL $ \rm -> do
{ (r m l,o p l) <- g e tP r im L is te n e r 11 rm;

(rm 2,op2) <- g e tP r im L isten er 12 rm;
r e tu r n (rml >> rm2, f o p l op 2)}

We can define mergeL using l i f tL2.

mergeL :: L is te n e r a -> L is te n e r a -> L is te n e r a
mergeL NeverL 1 = 1
mergeL 1 NeverL = 1
mergeL 11 12 = l i f t L 2 (\ a c t l a c t2 v a l -> do a c t l v a l ; a c t 2 v a l)

11 12

The l i f t L lO function creates its callback action, and then passes that, along with a remover to its
argument function, to generate a new callback action. Note that the remove action passed is the
sequential composition of the top level remove function, and the remove action returned from 1.

l i f tL I O :: (Remover -> L is t e n e r ' a -> 10 (L is te n e r ' b))
-> L is te n e r a -> L is te n e r b

l i f tL I O _ NeverL = NeverL
l i f tL I O f 1 = mkPrimL $ \rm -> do

(rm l,op) <- g e tP r im L is te n e r 1 rm
op <- f (rm >> rml) op
re tu rn (rm l,op)

We can define the onceL and scan lL combinators in terms of it.

onceL = l i f tL I O $ \ rm op ->
re tu rn $ \o c c -> do op o c c ; rm

sca n lL f a = l i f tL I O $ _ a c t -> do
r e f <- newIORef a
l e t t e l l (t ,b) = do

a <- readlO R ef r e f
l e t a ' = f a b
w rite lO R ef r e f a '
a c t (t , a ')

r e tu rn t e l l

If we need to fire a listener manually we can achieve this via g e tL is te n e r . This provides the
listener via an 10 action. It creates a mutable variable that will contain the listener’s callback action.
When we create the callback action, we pass in a remove action that sets the variable to contain a null
action. To talk to the listener we read the contents of the variable, and apply the current action to the
occurrence. Clearly this will do nothing when the listener has been removed.

g e t L is te n e r :: L is te n e r a -> 10 (Occ a -> 10 ())
g e t L is te n e r NeverL = re tu rn (c o n s t (r e tu rn ()))
g e t L is te n e r 1 = fmap snd $ f ix IO $ \ ~ (rm ,_) -> do

op <- g e t L is te n e r ' 1 rm
r e f <- newIORef op
l e t k i l l = w r ite lO R ef r e f (c o n s t (r e tu r n ()))
l e t t e l l occ = do (a c t <- readlO R ef r e f ; a c t occ}
r e tu rn (k i l l , t e l l)

112

We therefore have a fairly simple yet powerful listener implementation. We still need a definition of
s n a p s h o tL to snapshot behaviors, which will be provided when discussing demand driven behaviors
in section 7.2.7. We can also extend this algebra with listener valued switchers. Such an implementation
relies on the event termination operators, and so will be discussed in Section 7.2.6.

7.2.3. Data Driven Events

We now require to implement efficient, data driven events. The fundamental event operation that we
must support is addListener. This suggests a simple, elegant representation. W e make events
subscription functions for listeners.23 The implementation of addListener is therefore trivial. We
can perform important structural optimisations if we extend the definition with an explicit constructor
for NeverE.

data Event a = Event (Listener a -> 10 Remover)
| NeverE

type Remover = 10 ()
addListener :: Event a -> Listener a -> 10 Remover
addListener NeverE _ = return (return ())
addListener _ NeverL = return (return ())
addListener (Event add) 1 = add 1

This implementation has a major advantage. We can use event listener duality to implement the event
combinators. Recall from section 4.5.2 that when adding a listener to an event, we can either alter the
event with an event combinator, or the listener using a listener combinator. We first define a simple
primitive event combinator, which maps a listener combinator across an event. When we add a listener
to the event, we first apply the listener combinator to the argument listener, before adding the resulting
listener to the internal event (Figure 39). Clearly given a N e v e rE event we need do nothing.

mapLE :: (Listener b -> Listener a) -> Event a -> Event b
mapLE _ NeverE = NeverE
mapLE f e = Event $ \1 -> addListener e (f 1)

mapLE
event e add 1

F igure 39 - The mapLE function

Using this approach we can, for instance, define mapE and filterE in terms o f mapLE and the
equivalent listener combinators.

mapE :: (a -> b) -> Event a -> Event b
mapE f = mapLE (comapL f)
filterE :: (a -> Bool) -> Event a -> Event a
filterE f = mapLE (filterL f)

This approach breaks down with mergeE, because though there is an equivalent listener operation
(mergeL), there is no simple relationship between the two. We can, however, still provide a simple
and elegant definition of merge on events. When adding a listener to two events, we add the listener to
both and combine the remove actions. We can again optimise by using the knowledge that NeverE is a
left and right identity.

mergeE :: Event a -> Event a -> Event a
mergeE NeverE e = e
mergeE e NeverE = e
mergeE (Event addl) (Event add2) = Event $ \1 -> do

rml <- addl l;rm2 <- add2 1;return (rml >> rm2)

23 This elegant representation was suggested by Simon Peyton Jones.

113

One other combinator that cannot simply be defined in terms of its listener equivalent is switcherE,
the event level switcher.

switcherE :: Event a -> Event (Event a) -> Event a

Recall that the equivalent listener level switcher is o f type

switcherL :: Listener a -> Event (Listener a) -> Listener a

We must instead define a new listener combinator, s w i tc h L . This takes an event and a listener. It
produces a listener that consumes events. It starts by adding 1 to e . Every time the composite listener
is told of a new event, it switches l ’s interest to the new event, and drops its interest in the old one.
Note that this passes its argument listener a remover that will delete it from the current event, rather
than the remove action which will delete it from the switching event e e .

switchL :: Event a -> Listener a -> Listener (Event a)
switchL e l ' = mkPrimL $ \rm -> do
removerRef <- newIORef (return ())
(rmn,op) <-getPrimListener 1'(callRemover removerRef (return ()))
let 1 = mkL' $ _ -> return op
rm <- addListener e 1
writelORef removerRef rm
let f (_,newEv) = do

rmnew <- addListener newEv 1
callRemover removerRef rmnew

return (rmn >> callRemover removerRef (return ()),f)
callRemover ref rmnew = do

(rmold <- readlORef ref;writelORef ref rmnew;rmold}

We can then define switcherE in terms of this primitive.

switcherE e NeverE = e
switcherE e ee = mapLE (switchL e) ee

This creates a new event, which whenever a listener is added begins initially listening to e. It also adds
a separate listener to ee. Whenever this event-valued event occurs, it drops 1 ' s interest in the old
event and adds 1 as a listener to the new one. W e can again optimise using the knowledge that a
switcher will not change on a NeverE event, and so will instead behave simple as e.

This representation o f an event therefore says nothing o f its meaning; it only defines how it can be used.
In contrast, the functional streams representation contains only the event semantics, and says nothing
about how it can actually be used. Events are given meaning when we create a Wire. Recall that a
Wire is a primitive FranTk object, that contains two ends: an event end representing a stream of
occurrences and a listener end that talks to the event.

data Wire a = Wire (Listener a) (Event a)

To create a wire we therefore need to give meaning to the subscription function. To do this we create a
mutable set. The listener end tells every element in the set about new occurrences; the event end will
add listeners to the set. Note that when a listener is added, we pass the unsubscribe action to the
listener.

type ListenerSet a = MutSet (Occ a -> 10 ())
newWire :: 10 (Wire a)
newWire = do (set :: ListenerSet a) <- newMutSet

let add :: Listener a -> 10 Remover
add 1 = fmap snd $ fixIO $ \ ~(rm,_) -> do
(rmextra,fire) <- getPrimListener 1 rm
rm <- addToMutSet set fire
return (rm,rm >> rmextra)

114

tell :: Listener a
tell = mkL' $ _ -> return $ \occ ->

foreachlnMutSet set {$ occ)
return (Wire tell (Event add))

This definition relies on the existence of some mutable set with the following interface. Adding an
element returns a remove action. It is important that this remove action is idempotent, so it can be
passed around numerous times. It is also important that actions are performed in first-in-first-out (FIFO)
order. These operators also need to be efficient. Using a doubly-linked list representation we can
implement these functions, with O (1) complexity for insert and delete, and O(n) complexity for
traversal.

data MutSet a
addToMutSet :: MutSet a -> a -> 10 Remover
foreachlnMutSet :: MutSet a -> (a -> 10 ()) -> 10 ()

There are two further operators on mutable sets that we will need later. The first, killMutSet, clears
the set and kills it so that no new items can be added to it. It is important that killing the set really clears
it out, and invalidates every remove action, so that the actions no longer refer to, and therefore sustain
items in the set. The second operation returns the current size o f the mutable set; it will return
Nothing if the set is dead.

killMutSet :: MutSet a -> 10 ()
sizeMutSet :: MutSet a -> 10 (Maybe Int)

7.2.4. A Problem with Efficiency

The above event representation is very elegant. However, it suffers from a serious efficiency problem.
(It also has a semantic problem discussed in the next section.) We are applying combinators to listeners
rather than to the event. This means that on every event occurrence, a combinator will be applied once
per listener, rather than once only. This results in a mild performance problem with mapE, but in a
very significant performance problem with filterE. A filter will be redundantly applied to every
listener o f an event (as shown in the left diagram of Figure 40). If an event has a large number of
listeners, this will result in a lot o f unnecessary work. W e need to introduce some mechanism to
guarantee that filters are only applied once per event occurrence (as shown in the diagram on the right
of Figure 40.)

filterE filter,..

OCCw .___filter— ------ H2
w

filter ------ ►B

filterE

filter once

Figure 40 - Caching Events

We can solve this problem by introducing caching. We can define a simple cache action that creates a
new wire, and makes the old event talk to the new one. Again we optimise when the event is a NeverE
event.

cachelO :: Event a -> 10 (Event a)
cachelO NeverE = return NeverE
cachelO e = do
w <- newWire
addListener e
return (event

w)(input
w)

This cache action is an 10 action. However, our event combinators are all currently pure functions. We
therefore need to overcome this by using the special Haskell function unsaf ePerformlO.

unsafePerformIO 10 a -> a

This takes a Haskell 10 action, and turns it into a simple value. The action will be performed when the
value is evaluated. Clearly careless use of this function will break referential transparency, as the order

115

of evaluation now becomes important. Use of this function is therefore only usually safe, when we can
guarantee that the argument 10 action will produce the same result irrespective of when it is evaluated.

We can therefore define a simple c a c h e function, and a cached version of f i l t e r E , as shown below.
The next section will discuss where and when it is safe to use this c a c h e function.

cache :: Event a -> Event a
cache e = unsafePerformIO (cachelO e)

filterE f e = cache (mapLE (filterL f) e)

Unfortunately, this c a c h e action, while improving time efficiency, can cause a space leak. Using
caching we generate chains of events. Consider the following definition.

addListener (onceE (mapE f (filterE g e))) 1

When simplified, this translates to the following code.

do w <- newWire
addListener e (filterL g (input w))
addListener (event w) (onceL (mapL f 1))

It generates an event chain, as shown below. The event e , talks to the cache via filtered listeners; this
cache in turn talks to the listener 1. After the first occurrence, 1 will be removed from the cache. The
cache is therefore no longer used. Unfortunately, the cache’s listener will still remain in e,
unnecessarily.

e -> filterL -> cache -> (onceL (mapL f 1))

Similarly consider the following definition. This will result in an event chain. However, after the first
occurrence of e , it will delete the cache’s listener. However, 1 will still remain in the cache.

addListener (filterE f (onceE e)) 1

Such event chains become very common with caching. They will continue to be built throughout the
duration of a program, and if not also broken down, will result in a space leak. The second of these can
be dealt with using the event termination mechanisms discussed in Section 7.2.6. The first o f these can
be dealt with using weak references discussed in Section 7.2.8.

We can also implement a cached version of mapLE, that caches its latest value without any need to
create an entirely new listener set.

mapShareE :: (Listener b -> Listener a) -> Event a -> Event b
mapShareE _ NeverE = NeverE
mapShareE f e = unsafePerformIO $ do
-- make the caching ref
ref <- newIORef (error "nothing cached")
-- now add a single listener that updates this ref, when
-- the event fires, applying f. Note: that because listeners
-- are handled in FIFO order this is safe. It's the first
-- thing to get done with the cached event,
let setcache ref a = writelORef ref a
addListener (mapLE e f) (mkL $ setcache ref)
-- finally return an event, based on the old one that reads
-- the value of the cache
return $ mapLE e $ mapIOL (const $ readlORef ref)

116

7.2.5. A Problem with Laziness

7.2.5.1. Dealing with event history

As noted in the previous section, the data-driven event implementation applies any combinator for each
occurrence, once per listener, rather than once only. Caching can be used to overcome this. This works
well for combinators such as mapE, mergeE and mapMaybeE. These event combinators do not
depend on an event’s history. In other words, when processing an occurrence we do not need to know
about the value, or even the existence of any other occurrence.

There are some combinators, however, that depend on an event’s history and therefore on its start time.
These include o n c e E , s c a n l E and s w i t c h e r E .

As an example, consider the following definition of s c a n lE . It creates an event that accumulates a
value, based on a function, an initial value and an event.

scanlE :: (a -> b -> a) -> a -> Event b -> Event a
scanlE f a e = mapLE (scanlL fa) e

Every time a listener is added to the event, it will begin to separately accumulate its own value. Two
listeners added at different times would therefore consume different values. For instance, consider the
following example.

testscanl = do
w <- newWire
op <- getListener (input w)
let 11 = (mkL (\x -> print ("one",x)))

12 = (mkL (\x -> print ("two",x)))
let e :: Event String

e = scanlE (++) "" (event w)
addListener e 11
op (0,"a”)
addListener e 12
op (1,"b")

This will produce the “Output 1” shown below. With the Elliott-Hudak FRP semantics, we would
expect to see “Output 2” instead.

("one","a ") ("one","a")
("one","ab") ("one","ab")
("two","b") ("two","ab")
Output 1 Output 2

Why? W e add the first listener. It will create its own internal state, to hold the current accumulated
value. W e then fire op , causing the first listener to print “a” . Now we add the second listener. This now
creates its own internal state, to hold its accumulated value. When we fire o p a second time, listener
one will have accumulated a second value, producing “ab”. However, listener two will only have heard
the “b” value, as it will not know about the event history. That is, it will not know about the
occurrences that have been produced before it was added. This combinator does not therefore satisfy
the Elliott-Hudak FRP semantics.

In contrast, with the Wan-Hudak semantics an event must be provided with a start time. If we assume
that a d d L i s t e n e r provides this start time then “Output 1” above conforms to their semantics.

7.2.5.2. Introducing Caching

When we add the caching mechanism from Section 7.2.4, we get an alternative problem. Consider a
cached implementation of s c a n lE .

s c a n l E f a e = c a c h e (mapLE (s c a n l L f a) e)

117

When evaluated this will create a cached event, adding a listener to e that accumulates a value.
Listeners added to the scan event will now listen to the cached event. Each listener will therefore hear
the same value. The t e s t s c a n l example will now produce the output expected by the Elliott-Hudak
semantics (Output 2).

However, we could easily imagine rewriting the t e s t s c a n function as shown below. Here we have
replaced each use of e with the full s c a n l E based definition. Now this would again produce Output 1
described above. These two definitions therefore produce different results. Unfortunately, in a
referentially transparent language, these two definitions should be equivalent. In fact an optimising
compiler might replace either definition with the other, during either an inlining process, or if it were to
perform some form of common sub-expression elimination.

t e s t s c a n 3 = d o
w < - n ew W ire
o p < - g e t L i s t e n e r (i n p u t w)
a d d L i s t e n e r (s c a n l E (++) " " (e v e n t w))

(mkL (\ x -> p r i n t (" o n e " , x)))
o p (0 , " a ")
a d d L i s t e n e r (s c a n l E (++) "" (e v e n t w))

(mkL (\ x -> p r i n t (" t w o " , x)))
o p (1 , " b ")

W e therefore have a fundamental caching problem. The use o f caching is only safe when used with
combinators that do not rely on an event’s history.

7.2.5.3. A Solution by Redefinition
The current representation therefore has a fundamental problem. It attempts to ignore the notion of
“start time” entirely. This is a serious flaw. In the presence of caching the event combinators are not
referentially transparent. We need an alternative solution to solve this problem.

One solution is to change the type o f every history based combinator, to move it into the 10 (or GUI)
monad.

s c a n l E : : (a -> b -> a) -> a -> E v e n t b -> 10 (E v e n t a)
s c a n l E f a e = c a c h e lO (mapLE (s c a n l L f a) e)

o n c e E : : E v e n t a -> 10 (E v e n t a)
o n c e E e = c a c h e lO (mapLE o n c e L e)

These definitions are now safe. The start time of each new event is provided by the IO action. We can
describe the semantics of these combinators in terms of either the Elliott-Hudak or Wan-Hudak
semantics. Here we will use the Elliott-Hudak semantics. If we assume the existence of a definition of
s c a n l E (such as the functional streams one) named FRP. s c a n l E , then we can define this new
s c a n l E version in terms o f it. First, we get the current time, t . W e then use a f t e r T i m e , which
drops every event occurrence before t . We then make a scanning event based on this new event. This
definition therefore explicitly removes all o f the event history, before creating the new event.

s c a n l E f a e = do
{ t < - g e t T i m e ; r e t u r n (F R P . s c a n l E f a (a f t e r T i m e e t))}

a f t e r T i m e : : E v e n t a -> T im e -> E v e n t a

This discussion brings to light an important issue in the definition of a d d L i s t e n e r . What exactly is
its semantics? We really only wish to fire the listener on any future occurrence of event e.
Conceptually, we drop the event’s history before adding the listener. The definition of a d d L i s t e n e r
therefore involves an implicit use of a f t e r T i m e . Here a d d L i s t e n e r P r i m is assumed to be some
primitive implementation of addListener that applies its listener argument to every event occurrence.

a d d L i s t e n e r e 1 = d o (t < - g e t T im e ;
a d d L i s t e n e r P r i m (a f t e r T i m e e t) 1}

118

This also has an important consequence for event-listener duality. The equivalencies defined in Section
4.5.2 only hold if the given combinator does not use the event history, or does not have one. For
instance, the onceE equivalence only holds, if we first drop all previous occurrence from the event.
This happens because of the implicit afterTime in the definition of addListener.

do (t <- getTime;addListener (onceE (afterTime e t)) 1}
== addListener e (onceL 1)

By redefining the type of all history based FRP combinators, to move them into a monad, we can
thereby overcome the semantic problems discussed in this section. These changes also have a knock on
effect on the type o f some behavior combinators, discussed in section 7.2.7. This redefinition changes
the flavour of the language, by making 10 actions more prevalent. However in FranTk, all widget code
is defined in terms of the GUI monad. We can therefore easily integrate these 1 0 based combinators
into our code, at the expense o f making the examples in the previous chapter a little more imperative in
appearance. Section 7.3 will present a hybrid implementation that attempts to faithfully satisfy the
Elliott-Hudak semantics. Section 7.4 presents a refinement of this data-driven implementation that
attempts to faithfully satisfy the Wan-Hudak semantics.

7.2.6. Event Termination

On some occasions we can know when an event has terminated. In particular, this is important when
“connected” with caching. Recall the following example from Section 7.2.4. It has been rewritten to
take into account the new type of onceE.

do e <- onceE e
addListener (filterE f e) 1

This forms an event chain, with two cached events. However, after the first occurrence of e, the entire
chain can be broken down as the onceE definition will terminate the event. We can use this to prevent
the second of the space leaks, inherent in the use of caching.

7.2.6.1. Specifying Event termination
We can specify the rules for event termination in terms of the event algebra24. There are three important
combinators that will affect event termination.

1. When applying onceE to an event, the new event will terminate when either e terminates or after
the first occurrence of e.

termE (onceE e) == e -=> () .|. termE e

2. When merging two events, el and e2, the combined event will terminate when either el
terminates, and then e2 terminates; or when e2 terminates and then el terminates. (Here the
operator >> is the monadic event combinator, defining sequencing, discussed in Section 4.5.2.)
termE (el . | . e2) ==
(termE el >> termE e2) .|. (termE e2 >> termE el)

3. When applying switcher to an event, the new event will terminate when e e has terminated, and the
current (last) event has terminated. We define this by maintaining the current event in the event­
valued behavior currE. When e e terminates, we snapshot it and then wait for the last event to
terminate.

termE (switcherE e ee) ==
do {e <- termE ee 'snapshot' currE;termE e}

where currE :: Behavior (Event a)
currE = e 'stepper' ee

24 This approach was inspired by a suggestion from Conal Elliott.

119

We therefore have an elegant specification of the rules for event termination. We simply add a
termination event to a general event, and add a clean-up listener to the termination event, where
necessary, to delete any data structures that are no longer necessary.

d a ta E vent a = NeverE | E vent (L is te n e r a -> 10 Remover) TermE

We can give TermE the following interface. We can create a termination event. This creates a
terminate event, and a listener that can be fired to terminate the event. We can add a listener to a
terminate event that performs its action when the event terminates.

d a ta TermE
mkTermE :: 10 (L is te n e r () , TermE)
onTerm inate :: TermE -> L is te n e r () -> 10 Remover

For instance, we can then define a function newPrimWire. Given a termination event, it creates a new
wire. This new definition, adds a listener to the terminate action, that clears the listener set of the event.
This deletes all the event listeners, and kills the set so that no new listeners can be added. It then passes
the termination event on with its new event.

primNewWire :: TermE -> 10 (Wire a)
primNewWire termE = do

l s e t <- newMutSet
l e t add = ...
l e t t e l l = ...
onTerm inate termE (mkL_ (k illM u tS e t l s e t))
r e tu r n (Wire 1 (Event add term E))

k illM u tS e t :: MutSet a -> 10 ()

We can then define the standard newWire function in terms of this combinator. Here we pass in a
termination event that will never terminate.

newWire :: 10 (Wire a)
newWire = primNewWire neverTermE
neverTermE :: TermE

7.2.6.2. Implementing Event termination
We cannot simply implement a termination event as a standard event because we get caught up in a
recursive definition. We can, however, use the same approach. If we are careful, we can include extra
optimisations, as we know that the termination event will only ever fire once, when the event dies.

We can define a termination event as follows. It is useful to also have an 10 action saying whether the
event has now terminated.

d a ta TermE = TermE (onT erm inate_ :: L is te n e r () -> 10 Remover,
isT erm in a ted :: 10 B ool}

neverTermE :: TermE
neverTermE = TermE (_ -> r e tu r n (r e tu rn ())) (r e tu rn F a ls e)

onTerm inate :: TermE -> L is te n e r () -> 10 Remover
onTerm inate (TermE add _) 1 = add 1

We create a termination event in a manner very reminiscent of the newWire implementation. It has
three important differences. Firstly, the termination event has a boolean variable that records whether its
event has already terminated. We therefore need to set this variable to True when we fire the
termination action. Secondly, we can safely assume that an event will only terminate once. After we
have run each termination listener, we can clear out the listener set. Thirdly, the termination listener
may have been added to more than one event. However, we know that after it has been fired once, we
do not need to wait for any of the other termination sources to fire. We can therefore safely remove the

120

termination listener from all its sources. Recall that primitive listeners are constructed with the
following function.

mkL' : : R em o v er -> 10 (L i s t e n e r ' a)

Every time we register the listener, we receive as an argument the remove action to unsubscribe the
listener; we then generate the actual listener callback using this. In this case we want to store the
unsubscribe action and then return the actual termination action. We also store the listener in a variable.
Note that this termination action therefore performs 5 different actions: (1) it tells all its termination
listeners about the event termination; (2) it sets the termination boolean variable to True; (3) it clears
out the termination event’s listener set; (4) it clears its own listener from all the termination sources that
it is listening to; (5) finally, it sets its listener variable to contain a null listener. This means that if its
listener is ever added to another source again, it will do nothing.

m kTerm E : : 10 (L i s t e n e r () , TermE)
m kTerm E = do

v a r < - n ew IO R ef F a l s e
m s e t < - n e w M u tS e t
d i e R e f < - n ew IO R ef (r e t u r n ())
l e t a d d 1 = f i x I O $ \ r m - > d o

o p < - g e t L i s t e n e r ' 1 rm
a d d T o M u tS e t m s e t (o p)

t e l l r e f < - n ew IO R ef n e v e r L

l e t f i r e = mkL' $ \ r m - > d o
b < - r e a d lO R e f v a r
u p d lO R e f d i e R e f (\ o l d r m -> o ld r m >> rm)
r e t u r n $ \ v - > d o

{f o r e a c h l n M u t S e t m s e t ($ v) ;
w r i t e l O R e f v a r T r u e ;
c l e a r M u t S e t m s e t ;
c a l lR e m o v e r d i e R e f (r e t u r n ()) ;
w r i t e l O R e f t e l l r e f n e v e r L }

w r i t e l O R e f t e l l r e f f i r e

l e t f i r e L = mkL' $ \ r m - > d o
1 < - r e a d lO R e f t e l l r e f
g e t L i s t e n e r ' 1 rm

r e t u r n (f i r e L , T e r m E a d d (r e a d l O R e f v a r))

We now redefine the three special event combinators that will affect event termination. The definition
of event merging is the simplest. We merge the two events and merge their terminators.

m e rg e E : : E v e n t a -> E v e n t a -> E v e n t a
m e rg e E N e v e rE e = e
m e rg e E e N e v e rE = e
m e rg e E e l e2 = E v e n t (m e rg e e l e 2)

(m e rg e T e rm (t e r m E t l) (t e r m E t 2))

To merge two event terminators we must do two things. The merged termE will have terminated when
both of its arguments have terminated. To add a termination listener to the merged termE we add a
modified listener to both. The termination listener for one event will only be fired if the other has
already terminated.

m e rg e T e rm : : Term E -> Term E -> Term E
m e rg e T e rm t l t 2 = Term E a d d t e r m i n a t e d

w h e r e
t e r m i n a t e d = d o

b l < - i s T e r m i n a t e d t l
b2 < - i s T e r m i n a t e d t2
r e t u r n $ b l && b2

121

add 1 = do let ink :: 10 Bool -> Listener () -> Listener ()
mk isterm = liftLl $ \op v ->do

b <- isterm
if b then op v

else return ()
rml <- onTerminate tl (mk (isTerminated t2) 1)
rm2 <- onTerminate t2 (mk (isTerminated tl) 1)
return $ (rml >> rm2)

To understand the definition of onceE , we must recall that it now has an 10 based definition. W e now
explicitly create a new wire that will hear the single event occurrence, and add new listeners to it. To
redefine onceE we also create a new termination event. When the original event terminates, or has an
occurrence, we tell this new termination event. We use this new termination event when creating the
new wire. This guarantees that after onceE has terminated the new wire will be told; it will tell all its
termination listeners; and will also perform the necessary clean-up work. Note that because listeners are
executed in FIFO order, when event e generates an occurrence, the input listener o f w i r e w, and
therefore in turn all o f w’s listeners, will be fired before the termination listener is fired.

onceE :: Event a -> 10 (Event a)
onceE NeverE = return NeverE
onceE e = do
-- make a new termination action
(tellterm,tnew) <- mkTermE
-- as before create a new wire, to cache the single event -
-- occurrence, only now we also pass in the new termE
w <- primNewWire tnew
addListener e (onceL (input w))
onTerminate (termE e) tellterm
addListener e (tellL () tellterm)
return (event w)

Finally, we come to the definition of switcherE. Recall that this is also now an 10 based definition.
The semantics of switcher termination say that a ‘switcher e ee’ will terminate when ee has
terminated, and the current event has terminated. W e therefore need to keep track of which is the
current event, and whether the event ee has terminated.

A naive implementation might assume that we could use one boolean variable to record whether the
event ee has terminated, make ee set this when it terminates, and then add a termination listener to the
current event that first checks this variable and only terminates when it is True. Unfortunately, here we
come up against our fundamental termination assumption; that a termination event will only fire once.
We cannot safely guarantee that ee will terminate before the last (current) event. For instance, if the
last event were to be a NeverE, then it would clearly have already terminated. The termination event
for e e would therefore fire later.

Instead we must use one variable (curref) to store an action that says whether the current event has
terminated. When the switching event terminates, it checks whether the current event has terminated
(using this variable), and if it has, it fires the new terminate action. When the current event terminates, it
performs a similar action (this time checking the switching event using isTerminated).
On every occurrence of the switching event, we check the occurrence event. We set the current
termination action to that of this new event, and register interest in its termination event. Finally, we
must unregister interest in the previous event.

switcherE :: Event a -> Event (Event a) -> 10 (Event a)
switcherE e NeverE = return e

122

switcherE eO ee = do
(tellt,tnew) <- mkTermE
-- as before, except now using the termination event
w <- primNewWire tnew
addListener ee (switchL eO (input w))

curref <- newIORef (isTerminatedE eO)
let -- when the switching event terminates, check if the current

-- event has also terminated, and if so terminate
actee = liftLl $ \op v -> do

b <- readlORef curref >>= id
when b (op v)

-- when the current event terminates, check if the switching
-- event has terminated, and if so terminate
acte = liftLl $ \op v -> do

b <- isTerminatedE ee
when b (op v)

-- initially we're interested in termination of eO
rml <- onTerminateE eO (acte tellt)
removerRef <- newIORef rml
-- we're also always interested in termination of ee
onTerminateE ee (actee tellt)
-- whenever ee has an occurrence,switch interest to new event
let f e = do

writelORef curref (isTerminatedE e)
rmnew <- onTerminateE e (acte tellt)
callRemover removerRef rmnew

addListener ee (mkL f)
return (event w)

7.2.6.3. Implementing listener-level switchers

Given the event termination combinators, we can now create a listener switcher. It behaves as follows.
It starts by behaving as 1; on every occurrence of e e , it hears of a new listener, and instead behaves
like it. Recall that a listener has the power to remove itself from its source. There are important
restrictions on when it is correct to do this. These are very similar to the event-level switcher rules
above. The current listener should only be free to remove itself when the switching event has
terminated. Also when the switching event terminates, it should check whether the current listener has
tried to delete itself, and if so it should delete the whole listener.

We can implement this correctly using event termination. W e use a variable to store the current
listener’s information. This contains either (Just (rm, o p)) if there is a current listener, where the
pair represents the listener’s own remove action (rm), and consumer action (op). The current listener is
passed a remove action that checks whether the switching event has terminated. If so it removes itself; if
not it sets the current listener variable to Nothing. W hen the switching event terminates, if the listener
variable contains Nothing we perform the remove action. On every event occurrence, we change the
current listener information. W e store the new listener remove and consume action, and then perform
the remove action for the old listener, to stop it doing any extra work. The consume action for this
composite listener, consists o f reading the current o p v a r , and applying the current operation to its
argument, when there is a valid listener contained inside. Finally, we return remove actions to delete the
terminate and event listener, along with the actual operation.

switcherL :: Listener a -> Event (Listener a) -> Listener a
switcherL 1 NeverE = 1

123

switcherL 1 ee = mkPrimL $ \rmReal -> do
opvar <- newIORef Nothing

let dieL = do (b <- isTerminatedE ee;
if b then rmReal else writelORef opvar Nothing}

dieEE = do (mb <- readlORef opvar;
when (not (isJust mb)) rmReal}

val <- getPrimListener 1 dieL
writelORef opvar (Just val)
let f 1 = do

val' <- getPrimListener 1 dieL
mb <- readlORef opvar
maybe (return ()) fst mb
writelORef opvar (Just val')

rmEE <- addListener ee (mkL f)
rmT <- onTerminateE ee (mkL_ dieEE)
let tell occ = do (mb <- readlORef opvar;

maybe (return ()) (($ occ) . snd) mb}
return (rmEE >> rmT,tell)

This approach results in the correct semantics. For instance, consider the following two examples. In
the first case we have a switching listener, that only allows each of its current listeners to fire once. In
the second case, we have a switching listener that has o n c e L applied to it guaranteeing that the whole
listener will only be fired once.

switcherL (onceL 11) (ee ==> onceL)
onceL (switcherL 11 ee)

In the first case each current listener will be passed a modified remove action that prevents it from
removing itself, until the whole switcher has finished. In the second case each individual listener will be
passed a modified remove action, but the complete o n c e L listener will be passed the full remove
action, along with the delete action to stop the s w i t c h e r L from doing any further work.

The use of event termination therefore provides a powerful mechanism for both implementing efficient
event chaining, and to allow the correct and efficient implementation of other combinators such as
switcherL.

7.2.7. Data Driven Behaviors

7.2.7.1. The Basic Behavior Definitions

We now come to the implementation of efficient data driven behaviors25. The implementation of
behaviors is built on top of the simpler notion of a “sampler” , which is a sampling function that returns
a value and a boolean flag saying whether the sample value is at least temporarily constant.

type Sampler a = Time -> 10 (a,Bool)

A behavior is something that can be sampled, and that has an invalidation event, that occurs whenever a
constant segment ends.

data Behavior a = Behavior (sample :: Sampler a,
invalidateEv :: Event ()}

A constant segment is a period of time for which a behavior has a constant value. For instance, consider
the definition ‘0 ' s t e p A c c u m 1 e - = > i n c ’. Initially, it has the value 0, then 1 after e ’s first
occurrence, then 2 and so on. Between occurrences of e this value does not change and so we have a
constant segment.

25 This representation is due to Conal Elliott.

124

How can we tell whether a behavior will be temporarily constant? It will be, if it is: (1) a constant
behavior, (2) a reactive behavior (dependent on an event), and its current behavior is piecewise
constant; (3) a function application of a behavior to another behavior, where both are piecewise
constant. In contrast, a behavior based on the t i m e primitive will not be piecewise constant.

Using this representation we can provide simple definitions of constant and time behaviors. A constant
behavior always returns the same value. The t i m e behavior returns the current time as its value, and
will clearly not be constant26. Neither depend on an event in their definition.

c o n s t a n t B : : a - > B e h a v i o r a
c o n s t a n t B a = B e h a v i o r (\ _ -> r e t u r n (a , T r u e)) n e v e r E

t im e : : B e h a v i o r T im e
t im e = B e h a v i o r (\ t -> r e t u r n (t , F a l s e)) n e v e r E

We can define behavior function application which combines a function-valued behavior and
argument behavior as follows. It combines the sample values, and the constant flags. As noted earlier
the composition will only be constant, when both behaviors are constant. The invalidation event of the
pair contains the merged invalidation event of each.

($ *) : : B e h a v i o r (a -> b) -> B e h a v i o r a -> B e h a v i o r b
f b $* x b = B e h a v i o r s a m p le r i n v a l i d a t e

w h e r e
s a m p le r t = d o (f , f C o n s t) < - s a m p le f b t

(x , x C o n s t) < - s a m p le x b t
r e t u r n (f x , f C o n s t && x C o n s t)

i n v a l i d a t e = i n v a l i d a t e E v f b . | . i n v a l i d a t e E v x b

We can define the n-ary lifting functions in terms o f this operator.

l i f t O = c o n s t a n t B
l i f t l f b l = l i f t O f $* b l
l i f t 2 f b l b2 = l i f t l f b l $* b2

These combinators are used to define many lifted functions. Some functions, especially non-strict ones,
require special treatment. For example, a lifted conditional combinator might instead be defined as
shown below. Note that it optimises both by only sampling the left arm of the conditional when the
guard is True, and similarly for the right arm and False. The invalidate event again restricts
occurrences, based on the current value of the guard.

c o n d B : : B e h a v i o r B o o l -> B e h a v i o r a -> B e h a v i o r a -> B e h a v i o r a
co n d B e b b ' = B e h a v i o r s a m p l e r i n v a l i d a t e

w h e r e
s a m p l e r t = d o (c V a l , c C o n s t) < - s a m p le c t

(v V a l , v C o n s t) < - s a m p le (i f c V a l t h e n b e l s e b ') t
r e t u r n (v V a l , c C o n s t && v C o n s t)

i n v a l i d a t e = i n v a l i d a t e E v c . | . i n v a l i d a t e E v b ' w h e n E ' c
. | . i n v a l i d a t e E v b ' ' w h e n E ' (n o t B c)

7.2.7.2. Behavior Caching

This representation has a problem. It redundantly samples behaviors that are used more than once. As in
[46] we use a caching mechanism to avoid redundant computation. The important question is, how
much caching is enough? If, as with events, we assume no notion of history, then we can get a simple
efficient implementation, by caching only a single sample. We assume that sampling will take place at
strictly increasing time intervals, and in particular, that it is only safe to sample a behavior at the
current time. This unfortunately makes it impossible, for instance, to define a generalised time

26 The existence of the time behavior here is, strictly speaking, unecessary for FranTk, as time
behaviors are provided via timeTick and timeTickNow. However, its definition is given here as it
needed by Fran.

125

transform. This restriction will be explored further when discussing reactive behaviors in Section
1.2.1 A. We cache behaviors only when really required, as in " $* " or condB .

A Cache therefore consists o f an IORef with three values. A time representing the last time that the
cache was updated, a boolean value determining whether the cache contains a value from a constant
segment, and the actual sample value.

type BCache a = IORef (Time, (a,Bool))
newBCache :: 10 (BCache a)
newBCache=newIORef (minTime,(error "undefined cache value",False))

The basic mechanism to sample a cache is the caching sampler function. This takes a cache and a
sampler, and yields a caching sampler.

cachingSampler :: BCache a -> Sampler a -> Sampler a
cachingSampler cache sampler = \t -> do

(tLast, p@(_, isConst)) <- readlORef cache
if isConst || tLast==t then return p
else do p <- sampler t

writelORef cache (t,p)
return p

When we sample the cache we know we can use the currently cached value, either when it contains a
constant value, or when the current sample time is equal to the last sample time (as in this case a time
based behavior will return the same value).

We make a caching behavior from a sampler and invalidate event. At each invalidation, we check the
cache. If it contains a constant value, we replace the sample time by the invalidation time and mark the
cache as non-constant. There is a complication here. An event does not affect a behavior until
immediately after the event occurrence. To handle this we clear the behavior cache just after the event,
because other samples may occur between the invalidate event firing, and the actual change of the
behavior. These samplings could set the cache back to constant, before the value of the behavior has
changed, resulting in an incorrect result. We also assume that the time when the cache is sampled, is
strictly later than the time when the cache is reset, otherwise the cache’s value will still not be updated.
We can achieve this by updating the cache with the time when the invalidating event was fired, not
when the delayed action is run. Finally, when created we must also add a delayed action that resets the
cache to non-constant. This is because the same event that is used to invalidate the cache may also
create a caching behavior. Clearly in this case the cache’s value should change when the behavior
changes. Unfortunately, the cache will have missed this occurrence of the invalidation event. If the
cache is sampled before its behavior is updated, then we will again have an incorrect value in the cache.
Adding the delayed action therefore solves this problem.

cachingBehaviorlO :: Sampler a -> Event () -> 10 (Behavior a)
cachingBehaviorlO sampler invalidate = do

cache <- newBCache
let reset cache _ = do

te <- getTime
addDelayedAction $ do
(tLast, (x, isConst)) <- readlORef cache
when isConst $ writelORef cache (te, (x, False))

addListener invalidate (mkL (reset cache))
reset cache undefined
return $ Behavior (cachingSampler cache sampler) invalidate

This implementation relies on support for delayed actions. We need to be able to add an action and
guarantee that it will be performed in the future, after the current primitive event occurrence. More will
be said on delayed actions in Section 1.2.1.6.

addDelayedAction :: 10 () -> 10 ()

126

We can define a pure function version of this caching action using unsafePerformlO. Note that it
is safe to use this definition here, as the caching action will generate the same result irrespective of
when it is evaluated. It will always generate a new sampling action that returns the current value of the
cached behavior.

cachingBehavior :: Sampler a -> Event () -> Behavior a
cachingBehavior sampler invalidate =

unsafePerformlO $ cachingBehaviorlO sampler invalidate

We can now make any function exploit caching simply by replacing any call to B ehavior, with a call
to ca ch in g B eh a v io r .

7.2.73. Snapshotting Behaviors
The existence of a sampler action in a behavior makes it easy to define snapshot for events and
listeners. To snapshot a behavior on a listener, we simply sample the behavior at the occurrence time,
and then return a pair o f values containing the occurrence value and sample value. W e can then define
the event s n a p s h o t E combinator in terms of this listener combinator. Note that we cache the resulting
event, to prevent unnecessary work. Otherwise the behavior would be sampled on every event
occurrence, for every listener, rather than just once per occurrence. This caching is safe here as it only
changes the efficiency of the combinator, not its meaning.

snapshotL :: Behavior b -> Listener (a,b) -> Listener a
snapshotL b = liftLl $ \op (t,a) -> do

(b,_) <- sample b t
op (t, (a, b))

snapshotE :: Event a -> Behavior b -> Event (a,b)
e 'snapshotE' b = cache (mapLE (snapshotL b) e)

7.2.7.4. Reactive Behaviors
Reactive behaviors are based on the switcherB primitive.

switcherB :: Behavior a -> Event (Behavior a) -> 10 (Behavior a)

It can be implemented as follows. The implementation stores the sampler action for the current behavior
in a variable. The current behavior changes on every event occurrence. In particular, the semantics of
switcherB say that the behavior switches immediately after the event occurrence. There might,
however, be samplings on the current time, still waiting to be done. We must therefore delay the
sampler replacement with addDelayedAction. The behavior constructed by switcherB may
have constant segments. We must define an appropriate invalidation event. There are two possible
reasons to invalidate the behavior. The first is if the switching event occurs. The second is if the
constant segment of the current behavior ends. We define the second using switcherE. This
produces an event which behaves as the current invalidation event.

bO 'switcherB' e = do
samplerRef <- newIORef (sample bO)
let alter samplerRef b = do

addDelayedAction $ do
writelORef samplerRef (sample b)

addListener e (mkL (alter samplerRef))
e' <- invalidateEv bO 'switcherE' (e ==> invalidateEv)
let invE = (e -=> () .|. e')
let sampler t = readlORef samplerRef >>= ($ t)
return $ Behavior sampler invE

There is one obvious optimisation that we can apply to switcherB. If the switching event has already
terminated or is NeverE, the result of switcherB will simply be the initial behavior.

switcherB bO NeverE = return bO
switcherB bO e = do dead <- isTerminatedE e

if dead then return bO else ...

127

This simplification shows why the definition of switcherB must be 10 based. The switcherB primitive
depends on the event history to know which is its first occurrence. However, in the current
implementation events do not store any history. It therefore matters when we evaluate switcherB. As
with the history based event combinators we can define this 10 based switcher in terms o f the Elliott-
Hudak FRP semantics using afterTime.

switcherB b e = do
t <- getTime
return (FRP.switcherB b (afterTime e t))

This change has a knock-on effect on several o f the combinators discussed in the previous Chapter. The
constructors to make behavioral collections all rely on switcherB. These must therefore all become
10 (or GUI) based actions. Though an inconvenience, this is not a major “crisis” , as most o f the time
we create behaviors using B Vars. These are therefore already GUI based actions.

Though we can define stepper in terms of switcherB, we can in fact define a more efficient
implementation. This implementation relies on the knowledge that the behavior will be piecewise
constant, only changing when its switching event occurs.

stepper :: a -> Event a -> 10 (Behavior a)
xO 'stepper' e = do

samplerRef <- newIORef xO
let alter samplerRef x = do

addDelayedAction $ do
writelORef samplerRef x

addListener e (mkL (alter samplerRef))
let sampler t = do

x <- readlORef samplerRef
return (x,True)

return $ Behavior sampler (e -=> ())

7.2.7.5. Delayed Actions
The semantics of switcher/stepper/untilB says that the behavior changes immediately after the
occurrence time. In order to implement this semantics robustly, we don't update the behavior right
away. Instead we add the update 10 action to a collection of "pending actions". For each "primitive
event" occurrence, we execute and clear the pending actions. For this to work, we must guarantee one
important property. All of the delayed actions in the collection must be independent. W e therefore need
not assume any special ordering. The only time that we add delayed actions is to update a behavior
variable, and to set a cache to non-constant. Neither of these actions involve sampling another behavior,
or event and they are therefore safely independent.

7.2.7.6. Introducing Workpools
To efficiently exploit behaviors, we need to perform some actions as often as necessary, rather than a
pre-determined number o f times. For instance, when an aspect o f a GUI element’s display depends on a
behavior, we only want to update the display when the behavior is updated, rather than after every time
sample. To express this notion, we extend the listener idea to include adding a listener to a behavior.

To allow this to work we need an interface like the one below. We can add a listener to behavior, and
run every behavior.

addListenerB :: Behavior a -> Listener a -> 10 Remover
runlOBsOnce :: 10 ()

For this to work, the listener’s actions must be idempotent. This assumption is critically important,
since it allows the implementation to be efficient in the common case that a behavior being output is
temporarily or permanently constant. This seems a reasonable restriction because the timing or number
of executions cannot be specified, and so non-idempotent actions will have non-deterministic results.

Since we have listeners on events and behaviors (as well as CVars and Channels in the concurrency
interface discussed in the Section 4.14), we can introduce a type class to simplify the name space.

128

c l a s s H a sL isten er c where
a d d L isten er :: c a -> L is te n e r a -> 10 Remover

in s ta n c e H a sL isten er B eh avior
in s ta n c e H a sL isten er E vent

To implement a d d L isten er we maintain a pool of work items, each of which contains a sampler and
a variable. The variable stores the remove action, to delete the item from the pool. In particular, this
stores a Maybe value, which will contain the remove action only when the item is in the pool.

d a ta Workltem = Workltem {
removerRefW :: (IORef (Maybe R em over)), - - remove from w orkpool
t io b :: (Sampler (10 ())) - - to do
}

ty p e WorkPool = MutSet Workltem

The Workpool is traversed as frequently as possible. For each item, the IO valued sampler is sampled,
and the action is invoked. If the behavior is currently constant, the item is removed from the work pool,
otherwise it is kept.

doWork :: Time -> WorkPool -> 10 ()
doWork t p o o l = do foreach ln M u tS et p o o l (doOne t)

r e tu r n ()

doOne :: Time -> Workltem -> 10 ()
doOne t (Workltem remv sam ple) = do

mb <- readlO R ef remv
c a s e mb o f

N oth in g -> re tu rn ()
J u s t rm -> do { (i o ,c o n s t) <- sam ple t ;

io ;
when c o n s t (do (rm ;w ritelO R ef remv N o th in g })}

When adding a behavior listener, we first get the listener operation passing in the complete remove
action to end all of the item’s work. We create an 10 valued sampler. It samples the behavior and
returns the action to fire the listener with the current behavior value. We make a workpool item, and
first restore the item to the workpool. We also add a listener to the invalidation event. This will restore
the item to the workpool whenever a constant segment ends. When restoring an item we first check
whether it is already in the pool. We only add it if it is not.

ty p e WorkPool = MutSet Workltem

addWorkltem :: WorkPool -> B ehavior a -> L is te n e r a -> 10 Remover
addWorkltem p o o l b 1 = f ix IO $ \a l lr m -> do

op <- g e t L is te n e r ' 1 a llr m
l e t sam pler t = do (v ,c) <- sam ple b t ; r e tu r n (op (t , v) , c) }
rem overRef <- newIORef N oth in g
l e t item = Workltem rem overRef sam pler
l e t r e s to r e = restoreW ork ltem (addToMutSet p o o l item) rem overRef
r e s t o r e
remove <- a d d L isten er (in v a lid a te E v io b) $ mkL_ r e s t o r e
r e tu r n $ do (mb <- readlO R ef rem overR ef;maybe (r e tu rn ()) id mb;

w rite lO R ef rem overRef N oth ing;rem ove}

restoreW ork ltem :: 10 Remover -> IORef (Maybe Remover) -> 10 ()
restoreW ork ltem add rem overRef = do

mb <- readlO R ef rem overRef
when (n ot (i s J u s t mb)) $ do

{rm <- ad d ;w rite lO R ef rem overRef (J u s t rm) }

The important remaining question is how frequently do we need to run the workpool? A Fran animation
will have many behaviors based on time, and it is important to update the animation image regularly. It
is therefore clearly important to have a timer that runs the workpool very regularly.

129

However, in a FranTk program it is far less common to include time based behaviors. This is because
most GUI programs do not contain animations or other components that must be updated at a given
rate; instead they simply react to user input. In addition, those programs that do rely on time will often
only need to be refreshed at a significantly lower rate. W e therefore need an alternative approach. The
option adopted in FranTk is to run the workpool after every primitive event. A primitive event is, for
instance, a mouse click or keyboard event. FranTk supports a global timer that will run only when there
are non-constant behaviors in the workpool. The rest o f the time this timer will be deactivated. We can
set the refresh rate using the s e t R e f r e s h R a t e . The GUI monad maintains in its environment the
current refresh rate, and this is used when running the pool.

setRefreshRate :: Time -> GUI ()

As an alternative, recall that FranTk supports the timeTick function. This creates a time behavior
that is refreshed every t seconds. This behavior will have its own, private timer. This provides a more
efficient mechanism if we need to have several behaviors each with significantly different refresh rates,
as they will all be updated at their own individual refresh rate, rather than simply at the fastest one.

timeTick :: Time -> GUI (Behavior Time)

7.2.8. Eliminating Work with Weak References

The implementation discussed so far is reasonably efficient in terms of time-performance, as it uses a
data driven update mechanism. It does, however, still suffer from a number of time and space-
performance problems. We noted that event-caching can result in space leaks as we end up with chains
of events that will not be broken down. The event termination mechanism can solve one class o f these
space leaks, by breaking down a chain from the server end. However, there is another class that still
needs to be dealt with. We need to be able to break down a chain from the client end. The problem with
our representation is that a listener will keep talking to the event it is driving, even after it has no
listeners and there is no longer a reference to the event.

The implementation of behaviors suffers from a similar problem. Consider the behavior
‘bO ' s w i t c h e r B ' e ’ in which bO and each new behavior generated by e is itself reactive.
Whenever we lose interest in a reactive behavior, assuming there are no more references to it, the state
variable it contains is no longer useful, nor is the work it takes to update it, which may come from a
chain of events. However, the event chain side will contain a reference to the state variable, so it will
not be reclaimed, and neither will the event chain.

All of this unnecessary work results in both a time-leak, because we will have many event chains
redundantly firing, and a space-leak, because these event chains remain redundantly in existence. W e
need some mechanism to prevent unnecessary work by breaking down event chains when they have no
more real subscribers.

We can solve these problems using weak pointers and finalisers [159]. These concepts are also present
in other garbage collected languages such as Java. A weak pointer is a second class reference to an
object, that does not keep the object alive. When all first-class references to an object are garbage
collected, the object will therefore be garbage collected, irrespective of whether there are any weak
references. A Finaliser is an action that will be run when an object dies. Haskell supports the following
interface for using weak pointers27.

27 This interface is supported by GHC and Hugs. There is in fact a subtle problem with this interface.
Standard weak pointers can have problems in GHC, because the thunks that weak pointers are using as
keys can get optimised away. For instance, if readlORef is partially applied to an IORef, then the
box that is holding the ref cell is discarded, leaving only the primitive ref cell. The weak pointer
therefore dies as the IORef it was pointing to is gone. Instead GHC supports a function
mkWeaklORef , which is a specialised version, o f mkWeakPtr that works for IORef s. The key to
the weak pointer is the primitive mutable ref cell inside the IORef box. This cannot be optimised away
and the IORef will therefore stay alive. For simplicity, we will, however, just use mkWeakPtr in the
following discussion.

130

mkWeakPtr :: a -> Maybe (IO ()) -> IO (Weak a)
deRefWeak :: Weak a -> IO (Maybe a)
addFinalizer :: a -> IO () -> IO ()

The function mkWeakPtr creates a value of type Weak a, which is a weak pointer to an item. It also
takes a Maybe finaliser, o f type IO () . The deRefWeak function de-references a weak pointer,
turning it into Just a, if the value is alive, and Nothing otherwise. The addFinaliser function
simply adds a finaliser to an object. We can use this interface to implement truly efficient event-chains.

One potential implementation of mkWire might work as follows. Instead of making a listener talk
directly to an event, we instead make it talk to its listener set via a weak reference. This guarantees that
the listener set only stays alive as long are there is a reference to the event. Unfortunately, this simple
model has a problem. Consider the following code:

main _ = do
w <- newWire
addListener e (mkL print)
performGC
fire <- getListener 1
fire (1, " 1")

This will print nothing. This is because once we have added the listener, we drop the reference to e , and
then garbage collect. As 1 does not keep the listener set within e alive, the listener set is garbage
collected and so nothing happens. Instead we need to ensure that the listener keeps its listener set alive
as long as there are elements in the listener set. Is this important. Yes! Significantly, it arises when we
add a listener to a behavior. The work item is removed from the pool when it is constant. Then the only
reference to it is in the listener on the item’s invalidate event.

We therefore need an alternative event finalisation semantics. A wire with listener (1) and event (e) will
sustain its listener set according to the following rules.
1. An event remains alive as long as its internal listener set is alive.
2. When 1 remains alive, (i.e. there is something that can talk to the event), and there are any listeners

to e , or there is a reference to e (that could therefore add a listener in the future), the listener set
remains alive.

3. If 1 is alive, but there are no listeners and there is no reference to e, the listener set dies.
4. If 1 dies (i.e. there ceases to be anything that can talk to the event) then the listener set dies, and the

event terminates.

Recall that listeners can hear about their own remove actions. We can use these remove actions to
unregister a wire’s listener from all its sources when its event dies. We can therefore break down event
chains from the client end using this mechanism.

The wire’s listener talks to the listener set via a variable. Its reference can be either Passive,
Active or Dead.

type ListenerSet a = MutSet (Occ a -> IO ())
data Status a = Passive | Dead | Active (ListenerSet a)

The listener therefore only sustains the listener set when it is actually active. When the listener end (i.e.
the listener variable) dies, we run a finaliser that kills the listener set.

The event end has a direct reference to the listener set. It therefore sustains it as long as the event is
alive. The event end also maintains a weak reference to the listener end. The finaliser for the listener set
uses this reference to set the listener end to Dead. When the listener set is emptied, this reference is
used to set the listener end to Passive. If the listener set is empty, and a listener is added, this
reference will be used to set the listener end to Dead. This story is illustrated in Figure 41.

131

finaliser finaliser
sets ref to DeiA kills the weak
weak

Dead I Passive I Active ref

lset

Eventlistener
ref

Figure 41 - Wire References with Weak Pointers

We need to refine this model a little. To handle event termination we instead make the central object a
variable containing both the listener set and the event terminate action. This guarantees that the event
terminate action is also only sustained as long as the event is alive. If all future references to it are lost,
then the terminate event will not be sustained. This is necessary as the terminate event may end up with
a direct reference to the actual wire’s event. If the listener had a direct reference to the terminate event,
the event would still be unnecessarily sustained. In this model the listener sustains this central variable,
when it is active.

type MainRef a = IORef (ListenerSet a, IO ())
data Status a = Passive | Dead | Active (MainRef a)

We can therefore implement a new primitive wire constructor. This takes a finaliser action that will be
performed when the event dies, and a termination event.

primNewWire :: IO () -> TermE -> IO (Wire a)
primNewWire final termE = do

As before we first create a mutable listener set for the wire.

lset <- newMutSet

We also create a terminate event that will be fired when the event terminates.

(tellterm,newtermE) <- mkTermE
tellt <- getListener tellterm
eref <- newIORef (lset,do {t <- getTime;tellt (t ,())})

We create a kill variable that contains a Maybe value for all the remove actions for sources that the
wire’s listener has been added to. The actions in this kill variable will be performed when the event
dies. Once the event has been killed this Maybe ref will be set to Nothing, thereby preventing any
further kill actions from being added.

killref <- newIORef $ Just (return ())
let addKill k = updlORef killref (fmap (\old -> old >> k))
let fireKills = do {mb <- readlORef killref;

writelORef killref Nothing;
maybe (return ()) id mb}

Initially, the event has no listeners and so its listener reference is passive.

tellref <- newIORef Passive

When the listener end or event end dies it has an action that will be run.

eKillRef <- newIORef (return ())
lKillRef <- newIORef (return ())

132

We make a weak reference to the listener end; its finaliser kills the event end when the t e l l r e f dies.
Similarly, we make a weak reference to the event end (i.e. the listener set); its finaliser kills the listener
end when the listener set dies.

lwp <- mkWeakPtr tellref (callRemover eKillRef (return ()))
ewp <- mkWeakPtr eref (callRemover lKillRef (return ()))

We also add a listener to the dependent termination event, that was passed in as an argument at the start.
It will also kill the event end. Note that this again uses the weak reference so that the termE does not
keep the central object alive. This is not now strictly necessary, because the wire’s listener will die
when the previous event terminates anyway. However, it can result in faster destruction of event
chains.

rmT <- onTerminate termE
(mkL_ (do(callRemover eKillRef (return ())}))

When the event end dies, it fires the lKillRef. This sets the tellref to Dead; fires the kill
actions, to remove the wire’s listener from all its source events; runs the final action; and invalidates the
eKillRef , as it no longer needs to be fired.

let alter :: (a -> IO ()) -> Weak a -> IO ()
alter act wp = do

(mb <- deRefWeak wp;maybe (return ()) act mb}
writelORef lKillRef $
do (alter (flip writelORef Dead) lwp;fireKills;final;

writelORef eKillRef (return ())}
When the listener end dies it kills the listener set and also tells the termination event that the event has
terminated. It nins the final action, removes the termination listener, and invalidates the lKillRef, as
it no longer needs to be fired.

writelORef eKillRef $
do (alter (\ref -> do {(mset,tellt) <- readlORef ref;

killMutSet mset;tellt}) ewp;
final;rmT;writelORef lKillRef (return ())}

When we add an action to the event, we add it to the listener set. W e also check if the listener set was
previously empty, and if so we set the listener end to Active. If the listener set has already been
killed (i.e. sizeMutSet returns Nothing) we do nothing.

let add :: Listener a -> IO Remover
add 1 = do

(lset,_) <- readlORef eref
szMb <- sizeMutSet lset
case szMb of
Nothing -> return (return ())
Just sz -> fmap snd $ fixIO $ \ ~(rm,_) -> do

(rmextra,fire) <- getPrimListener 1 rm
when (sz == 0) $
alter (\r -> writelORef r (Active eref)) lwp

rm <- addToMutSet lset fire
rm <- mkRemover (remove rm)
return (rm,rm»rmextra)

The mkRemover function makes a one-shot (idempotent) action from a simple action. W e do this with
remove. The remove function takes a remove action to delete an item from the mutable set and wraps it.
When a listener is removed, we carry out the remove action. We also check to see if the listener set is
now empty, and if so we set the listener end to Passive. Note that we use a weak reference to the
listener set here so that this new remove action does not, itself, sustain the set.

133

remove :: Remover -> Remover
remove rm = do

rm
mb <- deRefWeak ewp
case mb of Nothing -> return ()

Just eref -> do
(lset,_) <- readlORef eref
mbSz <- sizeMutSet lset
when (maybe False (==0) mbSz)

(alter (\r -> writelORef r Passive) lwp)

To tell the event about an occurrence we must first check the listener end variable. If the reference is
dead, or passive we do nothing. If it is active, we apply the occurrence. When generating the remove
action we add the remover to the to the kill variable and then simply return the tell action.

let tell occ@(t,a) = do
val <- readlORef tellref
case val of Active eref -> do (set,_) <- readlORef eref

foreachlnMutSet set ($ occ)
_ -> return ()

let tellL = mkL' $ \rm -> do {addKill rm;return tell}
return (Wire tellL (Event add newtermE))

W e now have a complete definition of primNewWire, that will break down event chains when they
are no longer needed. Note significantly that we no longer need to pass in the termination event to the
new event. This is because when its listener dies we know anyway that an event has terminated. It is still
useful to return a termination event, as this is still necessary to define functions such as switcherL.
However, the weak pointer approach subsumes the event termination mechanism, removing the
necessity to perform extra work when defining the cached versions of switcherE and onceE. It can,
however, be more efficient to support both approaches, as event termination will result in faster
destruction than the weak reference approach.

W e can refine this definition still further, by passing in a subscription and unsubscription function,
when we create a new wire. Whenever the listener set is emptied we run the unsubscribe action. When a
listener is added to an empty l s e t , we run the subscribe action.

This implementation will deal with event chains. We still, however, need to deal with unnecessary work
in switcherB. We can do this by introducing an addWeakListener function. This adds a listener
that remains only as long as its client (IORef) is alive. Note that the listener does not keep the client
alive. When the client dies we delete the listener from the event. As we now have a general class of
functions with listeners, the addWeakListener function simply works with members of this class.

addWeakListener :: HasListener c => c a
-> (IORef b -> a -> IO ()) -> IORef b
-> IO Remover

addWeakListener e lisf client =
fixIO $ \ remLis -> do

wp <- mkWeakPtr client remLis
remLis <- addListener e $ mkL $ \x -> do

mbClient <- deRefWeak wp
case mbClient of

Nothing -> remLis
Just client -> (lisf client) x

return remLis

We can use this definition in the definitions of sw itch erB , s te p p e r and cach eB eh av ior . All of
these functions have a state variable, that can be used as the client. We can therefore easily replace the
definition of a d d L isten er , with addW eakListener.

134

7.2.9. Summary

The data driven implementation discussed in this section is both space and time efficient. Events and
behaviors are only updated when necessary, as changes are pushed from the source, rather than pulled
as in the functional streams approach. The use of weak references prevents unnecessary work by forcing
server listeners to stop talking to client events when they are no longer needed.

However, as we have seen, this implementation also has a fundamental referential transparency
problem. As events maintain no history, we must redefine the types of any history based event or
behavior combinator, to work in the IO (or GUI) monad.

7.3. An Efficient Hybrid Solution?

This section will present a hybrid implementation that combines the Elliott-Hudak functional streams
implementation with the data-driven implementation. This hybrid is faithful to the Elliott-Hudak formal
semantics. However, it has one unfortunate robustness problem, which will be discussed as we go
along.

7.3.1. Implementing Events

7.3.1.1. Defining events

To provide a correct implement of events we merge the functional streams representation with the data-
driven representation.

d a ta Event a = NeverE | E vent [PossO cc a] G etLastO cc InvE

An event is now considered to consist of three parts.

1. A stream of possible (Maybe) occurrences. This stream is a lazy list implemented in a similar
manner to the streams representation.

type PossOcc a = (Time, Maybe a)

2. One problem with the streams approach is the need for events to have non-occurrences for each
and every sample time. We overcome this by giving an event an IO action that returns information
about the latest occurrence (LastOcc). This contains two values. The first is the time of the latest
occurrence. An event may end up having several occurrences in the same time interval. The second
value therefore specifies how many occurrences there have been at that time. When reading from
an event stream, we therefore need to get the last occurrence information. It is only safe to read
from the stream up until the last occurrence. To allow this to work, we must guarantee that an event
has at the very least, once possible occurrence at the given occurrence time. This means that we
may need to pad the event with at most one non-occurrence at time lastocc.

data LastOcc = LastOcc Time Int
type GetLastOcc = IO LastOcc

3. Finally, an event contains a invalidation event, that is simply a data-driven events as discussed in
the previous section. Note that this no longer contains any information about the current value of an
event.

type InvE = DataDriven.Event ()

By merging both concepts we end up with a representation that contains information about how an
event should be used (the InvE) and about its semantics (the stream of possible occurrences).

7.3.1.2. Implementing some basic combinators

With this implementation we can implement many of the event combinators using the streams approach.
For instance, we can implement mapE as shown below. This maps its function argument across every
real occurrence in the list.

135

mapE :: (a -> b) -> Event a -> Event b
mapE _ NeverE = NeverE
mapE f (Event possOccs get inv)=Event (map apply possOccs) get inv
where apply (te;Just a) = (te,Just (f a))

apply (te,Nothing) = (te,Nothing)
We reintroduce the generalised mapping combinator, h a n d le E . The function argument takes the
occurrence time, the value, and the rest of the event after that occurrence.

handleE :: Event a -> (Time -> a -> Event a -> b) -> Event b
handleE NeverE _ = NeverE
handleE (Event possOccs get inv) f = Event (loop possOccs) get inv
where loop [] = []

loop ((te, mb) : possOccs') =
(t e , fm ap (\ x -> f t e x (E v e n t p o s s O c c s ' g e t i n v)) mb)

: loop possOccs'
Similarly, because we have access to the occurrence stream, we can use a purely stream based
implementation to implement s c a n lE .

We can implement m apM aybeE in terms of the streams implementation. However, again it is more
efficient to cache it.

mapMaybeE :: Event a -> (a -> Maybe b) -> Event b
mapMaybeE NeverE _ = NeverE
mapMaybeE (Event occs get inv) p =

c a c h e (E v e n t (f i l t e r S t r e a m p o c c s) g e t i n v)

7.3.1.3. A problem with mergeE
We come across an immediate difficulty when trying to implement m e rg e E . The purely stream based
implementation is shown below. Unfortunately, this definition is one o f a number that relies on the
existence of non-occurrences at every sample time. When checking for a possible occurrence on one
stream, the definition assumes the existence of an occurrence in the other stream. This restriction is
obviously not satisfied by our new representation.

merge :: [PossOcc a] -> [PossOcc a] -> [PossOcc a]
merge [] os' = os'
merge os [] = os
m e rg e o s@ (o @ (te , _) : o s R e s t) o s ' @ (o ' @(t e ' , _) : o s R e s t ')

| t e <= t e ' = o : m e rg e o s R e s t o s '
| o t h e r w i s e = o ' : m e rg e o s o s R e s t ’

To solve this problem, we must use a mixture of the two combinator approaches. We first get the event
history from both events. We create a new wire, with an initial history formed by merging both event
histories, and a last occurrence time. This is formed by merging the two last occurrence values. Merging
takes the latest of the two occurrences. When both values occur at identical times we add their
occurrence numbers together. We then add a listener to both of the argument events, that talks to the
merged event.

mergeE :: Event a -> Event a -> Event a
mergeE el e2 = unsafePerformlO $ do
(lstl,occsl,el') <- aftercurrent el
(lst2,occs2,e2') <- aftercurrent e2
w <- primNewWire (merge occsl occs2) (mergeLast lstl lst2)

(mergeTerm el e2)
addListener el (input w)
addListener e2 (input w)
return (event w)

mergeLast lstl@(LastOcc tl nl) lst2@(LastOcc t2 n2) =
if tl == t2 then (LastOcc tl (nl+n2))
else if tl > t2 then lstl
else lst2

136

This definition has one important semantic problem. The stream merge function guarantees that if two
events have an occurrence at the same time, then the occurrence in the left stream will happen before
the occurrence in the right stream. Unfortunately, the situation is not so simple for the data-driven
listener implementation. In a simple approach, without event caching, we can guarantee this ordering,
because the Fran time changes on each primitive event. The only way to generate two occurrences with
the same time, is to generate two events that are functions of the same primitive event. For instance, we
could define e . | . (filterE even (mapE f e)) . Any listener added to this merged event
will first be added to e and then to the filtered version of e. The listener will therefore be fired for e
before the filtered e, as listeners are executed in FIFO order. Unfortunately, in the presence of caching
this becomes infinitely more complex. For instance, the above example will generate the event chain
shown below. If we assume that filterE has already been evaluated we end up with the following
situation: the filterE listener is added to e; then the mergeE' s listener is added to e and then to
filterE. When e is fired, it will first tell filterE, then the merge; then e will tell the left arm of
the merge. This clearly results in an inversion of the desired effect, because the right arm of the merge
hears an occurrence before the left arm.

In general, with the current data-driven event representation, it seems impossible to correctly order
event occurrences. Unfortunately, it also seems impossible to recall the actual ordering of the semantic
data-driven actions using the stream of occurrences. W e therefore have our first fundamental problem
with this implementation. A merge event will be unsafe when (1) on merging, both events have a
history; (2) in each history, both events have an occurrence at an identical time; (3) the merged event is
then passed to a function that uses the history, and cares about the ordering. Fortunately, this set of
circumstances has arisen only rarely in the FranTk examples that have been tried so far. However, the
restriction is unfortunate and unpleasant as it forces the programmer to carefully consider any use of the
merge combinator.

As an aside, it is interesting to note that while Elliott and Hudak defined a semantics for such
simultaneous occurrences, Wan and Hudak do not. They state that the results o f a simultaneous
occurrence with merge are non-deterministic. As a result, the non-determinism in the implementation
presented here does not violate their semantics.

7.3.1.4. Creating a wire
W e can define the wire constructor using the data driven occurrence mechanism. We create an
imperative, data driven wire. We also create a channel to maintain the lazy stream, and a variable to
store the time of the last occurrence. We modify the listener returned by the imperative wire. It now
tells the channel about its occurrence value. It increments the latest occurrence variable, and then tells
the imperative wire to fire all its listeners. As this wire may be based on an event with a history already,
we pass in an initial latest occurrence time and list o f initial values.

primNewWire :: [PossOcc a] -> LastOcc -> TermE -> 10 (Wire a)
primNewWire occs last terme = do
chan <- newChan
lastref <- newIORef last
let tellChan (t,a)= do writeChan chan (t,Just a)

(DataDriven.Wire 1 inve) <-
DataDriven.primNewWire (return ()) terme

let l 1 = liftLl (\op occ@(t,_) -> do (tellChan occ;op (t, ())}) 1
cs' <- getChanContents chan
let cs = occs ++ cs'
return (Wire I 1 (Event cs (readlORef lastref) inve))

filterE even
(mapE f e)

 — !--

Figure 42 - Event Propagation in the Presence of Caching

e .|. filterE even e

(LastOcc t 1 n 1) <- readlORef lastref
writelORef lastref $

if t == t ’ then LastOcc t (n'+l)
else LastOcc t 1

137

We define an a f t e r c u r r e n t function that returns three values, the data about the last occurrence
time, the list of occurrences that have happened before now, and a new event after all these occurrences
have been stripped. It applies the s p l i t O c c s function which attempts to split the occurrence list at
the last occurrence time. This function returns three values: the occurrence time that the list was really
split at (if the list terminated before the occurrence time it will return the terminated occurrence), and
the lists before and after the split. We add one non-occurrence at that last time, as we have to maintain
the invariant that there is AT LEAST one possible occurrence in the stream at all times. Note that
a f t e r c u r r e n t is lazy in both the result of g e t L a s t and in the event’s stream. This will be
important when we come to dealing with snapshot.

aftercurrent :: Event a -> 10 (LastOcc,[PossOcc a],Event a)
aftercurrent NeverE = return ([(0,Nothing)],LastOcc 0 l,NeverE)
aftercurrent e@(Event occs getLast inv) = do

1 <- getLast
let (1' , pre' , os ') = splitOccs run 1 os
let get' = do

last'@(LastOcc tl' n') <- get
return $ if tl' == occTime 1' then

(LastOcc tl' (n' - occNum 1' +1))
else last'

return (1',pre1,Event ((occTime 1 Nothing):os 1) get1 inv)

To cache an event, we use a similar mechanism to that used for data driven events, except that we also
access the previous occurrences.

cache :: Event a -> Event a
cache NeverE = NeverE
cache e@(Event occs get inv) = unsafePerformlO $ do
(1st,occs,e ’) <- aftercurrent e
w <- primNewWire occs 1st (termE e')
addListener e ‘ (input w)
return (event w)

To add a listener to an event, we check if it has terminated: if so we do nothing; if not we create a
variable to store the current occurrence list, and previous occurrence time. Note again that adding a
listener is not strict in the occurrence list. We modify the listener, using fire, and add it to the data-
driven invalidation event. Every time we fire the listener, we check the current and last occurrence time.
If they are the same, we do nothing. Otherwise, get the occurrence stream, and break it at the last
occurrence. We then update the occurrence stream variable. Only when the occurrence is a real one (i.e.
it has the value Just a), do we perform the listener’s action. If the occurrence list has for some reason
already terminated, we clean up and remove the listener.

addListener :: Event a -> Listener a -> 10 Remover
addListener NeverE 1 = return (return ())
addListener e NeverL = return (return ())
addListener (Event occs getLast inv) (1 :: Listener a) = do
isdead <- isTerminatedE inv
if isdead then return (return ())
else do
ref <- newIORef occs
prevref <- getLast >>= newIORef
let fire :: Remover -> Listener' a -> 10 ()

fire rm op = do
last@(LastOcc t n) <- getLast
last' <- readlORef prevref
unless (last == last') $ do
all <- readlORef ref
case dropOccs (LastOcc t (n-1)) all of
(t ,Nothing):rest -> writelORef ref rest
(t,Just val):rest -> do{writeIORef ref rest;op (t,val)}
[] -> do {writelORef ref [];rm)

DataDriven.addListener inv
(liftLIO (\rm op -> return (_ -> fire rm op)) 1)

138

7.3.1.5. More complex combinators

We might consider trying to implement onceE by simply applying the once combinator. To allow
event termination to work we also cache the event.

onceE :: Event a -> E vent a
onceE NeverE = NeverE
onceE (Event o c c s g e t in v) = cache (Event (once o c c s) g e t in v)

where once [] = []
once (o :o s) = o : i f i s J u s t (snd o) th en [] e l s e once os

We can implement sw itch erE using a combination of the data-driven switcher implementation and
a fte r S w itc h e r . The a f te r S w itc h e r function should apply a stream based switcher function to
the events’ previous occurrences. It returns the last occurrence time, the list of possible occurrence, the
latest current event and the remaining switch event.

a f t e r S w itc h e r :: E vent a -> E vent (Event a)
-> 10 (L astO cc ,[P o ssO cc a] ,E v e n t a ,E v e n t (E vent a))

7.3.1.6. Saving space
As this hybrid implementation has access to a complete event stream, it is often necessary to be able to
generate a new event, with occurrences only after a given time. We can do this using a f terTimeE.
We drop all occurrences before the given time. We add one non-occurrence at time t . Until the last
occurrence time becomes greater than t, we simply return that occurrence as the latest. This maintains
the stream invariant that there is one possible occurrence at, or after the current LastO cc value.

a fterT im eE :: E vent a -> Time -> E vent a
afterT im eE (Event o c c s g e t in v) t =

E vent ((t , N o th in g) :dropW hile ((<= t) . f s t) o c c s) g e t
(D ataD riven . a fterT im eE in v t)

where
g e t ' = do la st® (L a stO cc t 1 n 1) <- g e tln v E in v

re tu rn $! i f t 1 > t th en l a s t e l s e LastO cc t 1

This function is very important. It has two uses. Firstly, we may need it for semantic reasons. For
instance, we may wish to create a behavior that showed the number of mouse clicks, after a given event.
In the data-driven approach, such a behavior could only be created in the IO monad, and so would have
an implicit a f terT im e. In contrast, with the hybrid implementation, as an event now has a history, we
must do this explicitly. The second reason is for efficiency. Because we’re hanging on to event
histories, they will build up. This could again result in a space leak, if we redundantly retain a copy of
the complete history. Fran uses a generalised class, A geable, and a function a fte r E to overcome
this. The event a fte r E simply pairs up event occurrences with aged values. It is always safer to
remove event histories wherever possible using this function.

c l a s s A geable a where
a fterT im e :: a -> Time -> a

a fte r E :: A geable bv => Event a -> bv -> Event (a ,b v)

By judicious use of caching when implementing the event combinators we have guaranteed that the
data-driven event will only fire when there is a real occurrence. Only f i l t e r E , onceE and
afterT im eE will cause non-occurrences to appear. We have cached both of the first and the
definition of afterT im eE applies both to its data-driven event, and its stream list. This guarantee is
useful as it makes the implementation more efficient and helps when defining behaviors next.

7.3.2. Implementing Behaviors

We now come to the implementation of a behavior. One possible representation of a behavior is again
to merge the stream based and data-driven implementation. However, because events are no longer
guaranteed to have non-occurrences at every sample time, we cannot implement a simple declarative
version of sw itcherB .

139

We instead use the following representation. A behavior contains a B S t r u c t which represents the
structure of the actual behavior, and a data driven behavior, which contains an imperative sampler and
an invalidation event.

data Behavior a = BehaviorB (BStruct a) (DataDriven.Behavior a)

at :: Behavior a -> Time -> 10 (a,Bool)
at (Behavior _ b) t = sample s t

The B S t r u c t type represents the structure o f the actual behavior. A behavior is either constant; time
based; a s w i t c h e r ; a s t e p p e r or a function application o f one behavior to another. The function
application uses existential types[l 15]. The type b is existentially qualified in the constructor. The only
thing we can do with a value of type b , is to apply th e (b -> a) function to it. W e can, however,
deconstruct the behaviors themselves.

data BStruct a = ConstantB a
TimeB (Time -> a)
SwitcherB (Behavior a) (Event (Behavior a))
StepperB a (Event a)
forall b . AppB (Behavior (b -> a)) (Behavior b)

The definitions of c o n s t a n t B , time, and behavior function application ($*), can be defined in
terms of the B S t r u c t and data-driven implementations. We can perform a simple optimisation when
applying ($ *) to two constant behaviors. This will simply generate another constant behavior.

BehaviorB (ConstantB f) _ $* BehaviorB (ConstantB x) _ =
constantB (f x)

When implementing s t e p p e r and s w i t c h e r we use the event history, to decide which is the current
value. The a f t e r C u r r e n t M b function simply returns a M aybe value, representing the last real
occurrence if there was one, instead of returning the entire list of previous occurrences. If the event has
terminated we can then simply return a constant sampler. Otherwise we perform as before. Note that
because we have guaranteed that the imperative invalidation event will only fire when there is a real
occurrence in the stream, we can safely use just it.

afterCurrentMb :: Event a -> 10 (Maybe a,Event a)
stepperlmperative :: a -> Event a -> DataDriven.Behavior a
stepperlmperative xO e@(Event _ _ inve terme) =

unsafePerformIO $ do
(mb,ev) <- afterCurrentMb ev
let x = maybe xO id mb
samplerRef <- newIORef xO
let alter samplerRef x = do

addDelayedAction $ do
writelORef samplerRef x

addWeakListener e alter samplerRef
let sampler t = do

x <- readlORef samplerRef
return (x,True)

return (DataDriven.Behavior sampler inv)

To implement snapshot we again unite the data-driven and stream based implementations. W e create a
new wire that the original event talks to. The new wire’s listener snapshots the behavior. We perform a
stream based snapshot of the event’s previous occurrences with the behavior.

snapshot ev bh = unsafePerformIO $ do
(t,occs,ev') <- aftercurrent ev
let bs = unsafePerformIO $ sampleAts bh (map fst occs)
w <- primNewWire t (snapStream occs bs) (termE ev)
addListener ev' $ snapshotL bh (input w)
return (event w)

140

This definition uses the sampleAts function. This samples the behavior at a list of times, by applying
a stream based sampler to the BStruct. The sampler is an 10 action because, when it comes across a
switcher or stepper, it only looks for occurrences before the last occurrence time. This is therefore safe
as it does not search the event streams for future occurrences. This function is therefore only safe if the
maximum time in the time stream is before the time when sampleAts is applied.

sampleAts :: Behavior a -> [Time] -> 10 [a]

The snapshot function is supposed to be lazy in its behavior argument. We can overcome this by
applying the sampleAts function lazily, using unsafePerformlO. This is safe because the last
occurrence time we sample against was before the aftercurrent action is evaluated. At any time
after this the sampleAts function will therefore return the same result. The implementation of
snapStream requires to be completely lazy in bs. If it is, then bs, and therefore the behavior, will
only be evaluated when we actually evaluate one of the new occurrence values in the resulting
snapStream.

This observation is very important. The snapshot function needs to be lazy to allow the safe definition
of self-reactive, and mutually-reactive behaviors. For instance, we might have the following definition.
Here we have two integer valued events and two behaviors. Each behavior depends on one o f the
events, and shows the last value o f the other behavior. Clearly if snapshot was strict in its behavior
argument, when evaluating one behavior, we would end up evaluating the snapshot event, which would
end up evaluating the other behavior. This would therefore fail.

el,e2 :: Event Int
bl,b2 :: Behavior (Int,Int)
bl = (0,0) 'stepper' (el 'snapshot' fstB b2)
b2 = (0,0) 'stepper' (e2 'snapshot' fstB bl)

Any combinator that is strict in the previous occurrence list will still result in unacceptable strictness.
The combinators shown so far have all been lazy. (Recall that caching and addListener were both
lazy). One problem exists with switcherE. We must add a listener to the current event, which will
obviously depend on the switching event’s occurrence list. We can fix this by delaying this
addListener action, and making afterSwitcher lazy by using unsaf ePerf ormIO. Though
this works, the solution is frankly a hack.

7.3.3. Summary

This section has presented a hybrid FRP implementation that attempts to be faithful to the Elliott-Hudak
semantics. In this it largely succeeds. Unfortunately, it is not perfect. Under certain circumstances
mergeE will not be referentially transparent. This implementation therefore represents a step forward
in developing FRP implementations, rather than the end o f the story. In particular, it is presented to
demonstrate the difficulties in implementing a correct, robust and efficient implementation of FRP, and
is intended to act as inspiration for future work in this area.

7.4. A Third Data-Driven Implementation?

So far we have seen two possible data driven implementations. The first satisfied neither of the FRP
semantic models. The second attempted to satisfy the Elliot-Hudak semantics. A third alternative is to
try to refine the data-driven implementation to satisfy the Wan-Hudak semantics. This section outlines a
plan of how this could be done. Future work is required to thoroughly test and validate these ideas.

Recall that the Wan-Hudak semantics defines events and behaviors as functions of both a start time and
a sample time. Recall also the effect this has on combinators such as untilB. As before the behavior
‘b 'untilB' e’ exhibits b’s behavior until e occurs. It then switches to the behavior associated
with e. However, the new behavior will start afresh at the time o f e ’s occurrence. This is very
significant. It means that such combinators do not hold onto an event’s history. This results in a strong
similarity to the data-driven implementation discussed in section 7.2.

141

7.4.1. The Basic Definitions

An event is a function from StartT im e -> (Time -> O ccu rren ces). We therefore have two
parts. An E vent is a function that takes a start time and produces a started event of type E a.
Performing the 10 action starts the event.

d a ta E vent a = E vent (Time -> 10 (E a))

A started event of type E a allows listeners to hear about occurrences. It is therefore a subscription
function for listeners.

ty p e E a = L is te n e r a -> 10 Remover

We therefore differentiate internally between a started event, and an unstarted event. The internal event
will not see any occurrences before the start time.

We can use a similar mechanism for behaviors. A B e h a v i o r is function from a start time, that
produces a started behavior o f type B a.

d a ta B eh avior a = B eh avior (Time -> 10 (B a))

A started behavior of type B a is identical to our first data driven behavior definition (section 7.2.7).
It contains a sampler action and an invalidation event.

d a ta B a = B (Sam pler a) (E ())

7.4.2. Basic Event Combinators

We can implement the event algebra in terms of a few basic event combinators. The most primitive
event combinator is mapIOFE. It takes an IO valued function to be applied to a started event and start
time, and an event and generates a new event.

mapIOFE :: (E a -> Time -> IO (E b)) -> Event a -> E vent b
mapIOFE f (Event mk) = Event $ \ t ->

do e <- mk t
f e t

We can define the mapLE function in terms of this. Recall that many of the event algebra combinators
are defined in terms of this (section 7.2.3).

mapLE :: (L is te n e r b -> L is te n e r a) -> Event a -> Event b
mapLE f = mapIOFE (\a d d t -> re tu rn $ \1 -> addL t add (f 1))

The mapLE maps a listener combinator across an event. When we add a listener to the new event, we
first apply the listener combinator to the argument listener, before adding the resulting listener to the
internal event. This function makes use of addL to add the listener. This takes a start time, started event
and a listener and makes the listener hear every event occurrence after the start time. This is important
because the formal semantics says that an event produces a finite list of time-ascending occurrences in
the interval (T, t] , where T is the start time. Occurrences at the start time are therefore ignored.

addL :: Time -> E a -> L is t e n e r a -> 10 Remover
addL t e 1 = e (afterT im eL 1 t)

7.4.3. Stateful Event Combinators

There are a number of stateful event combinators that depend on an event’s start time. For instance,
sca n lE is one of them. These were the combinators that caused problems with the first data driven
implementation (see Section 7.2.5).

142

To define scanlE we need to create an IORef to store the current value of the event. W e do this
when the event is started. Then on every occurrence we apply f to the occurrence value and current
value, and update the IORef. All listeners to the new event just read the value of this IORef. Note
that because listeners are handled in FIFO order this is safe. The IORef will be updated before any
dependent listener is fired.

scanlE :: (a -> b -> a) -> a -> Event b -> Event a
scanlE f a = mapIOFE $ \e tO -> do

ref <- newIORef a
addL tO e

(mkL $ \b -> do v <- readlORef ref
let v' = f v b
writelORef ref $! v'
return ())

return $ \1 -> addL tO e (comapIOL (const $ readlORef ref) 1)

We can use a similar mechanism for other stateful event combinators such as switcherE.

7.4.4. Memoisation

There is a performance problem with this implementation o f Events and Behaviors. If we define a event
or behavior once and use it in two different places, the IO action to start it will be run twice. However,
if both uses have the same start time then they will perform identical, and redundant work. We can use
lazy memoisation to solve this problem. For each behavior and event, we can create a map which relates
start times to started behaviors or started events. When we start an event we first look up in the map the
current start time: if the event has already been started at that time we can just use the stored value.
Otherwise we must start it for and store it.

memo :: (Time -> IO a) -> (Time -> IO a)
memo f = unsafePerformIO $ do
mp <- newWeakMap
return $ \t -> do mb <- get mp t

case mb of Just a -> return a
Nothing -> do

a <- f t
put mp t a
return a

To make this space-efficient we can use a WeakMap. This makes use of weak pointers and finalisers to
guarantee values that are no longer needed will be cleared out when their keys are no longer accessible.

newWeakMap :: IO (WeakMap a)
put :: WeakMap a -> Time -> a -> IO ()
get :: WeakMap a -> Time -> IO (Maybe a)

7.4.5. Basic Behavior Combinators

We can define the Behavior combinators in a similar manner to the event combinators. For instance, we
can define stepper as follows. W e create a new behavior which when started, starts its argument
event. It then starts listening to changes after that.

stepper :: a -> Event a -> Behavior a
stepper a (Event mke) = Behavior $ memo $ \t0 -> do
e <- mke tO
ref <- newIORef a
let alter v = addDelayedAction $ writelORef ref v
addL tO e (mkL alter)
let sample t = do v <- readlORef ref

return (v ,True)
return $ B sample (mkEv $ addL tO e $ \1 -> tellL () 1)

143

The definition is very similar to that contained in section 12 .1 A . It has two important differences.
Firstly, it is a pure function as it performs the necessary initialisation actions as part o f its “start action”.
Secondly, we add the alter listener to e so that it hears occurrences strictly after the start time. Again
this is done because the Wan-Hudak semantics state that a behavior can only hear change events
immediately after its start time.

7.4.6. Implementing Snapshot

For snapshot we might expect to start the event, start the behavior and then make a new event which
adds modified listeners to the old event which sample the behavior before firing. However, here we
have a big problem: snapshot has to be lazy in b fo r self-reactive behaviors to work.

So we have a workaround. Instead of starting b immediately, we delay starting b by using a delayed
action. The delayed action still uses the same start time for b, it just performs the action slightly later. It
then writes the started behavior to the IORef. The snapshotting event then just reads the behavior from
this IORef to snapshot it.

There are two potentially critical problems here. Firstly, we would have a serious problem if we tried to
snapshot the behavior before the delayed action fired, because the value in the IORef would be
undefined. Fortunately, the formal semantics saves us from this: events can only hear occurrences
strictly after their start time. This first problem cannot therefore occur. To prevent it we again use
addL to guarantee that listeners added to the new event only hear occurrences strictly after the start
time.

The second problem comes from adding a delayed action which starts b. If b itself involved a snapshot
then this could add another delayed action, that also needs to be run. With a self-reactive definition we
might expect to end up in an infinite loop. Fortunately this can be avoided, because all behavior starting
actions are memoised. Therefore if we try to start a behavior for a second time with the same start time,
we just lookup and use a value. We don't rerun the start code. An infinite loop will therefore be
avoided.

snapshotE :: Event a -> Behavior b -> Event (a,b)
snapshotE (Event e) b = Event $ memo $ \t0 -> do

eV <- e tO
ref <- newIORef undefined
addDelayedAction $ do (b' <- mkB b tO;

writelORef ref (sampleB b')}
let sample t = do {sample <- readlORef ref; sample t}
let fl = liftLl $ \op (t,v) -> do (b,_) <- sample t

op (t, (v,b))
return $ \1 -> addL tO eV (fl 1)

7.4.7. Summary

The implementation outlined in this section appears to be promising. The Wan-Hudak semantics seem
to sit well with a data driven implementation. This approach has not, however, been fully tested. Further
work is required to determine whether this approach really does provide a robust, efficient,
implementation faithful to their FRP formal semantics.

7.5. Implementing Behavioral Collections

7.5.1. Introduction

The implementation of dynamic collections requires some clever coding. To work efficiently it should
be possible to render them incrementally and treat them as standard behaviors. To achieve this we can
consider a collection to consist o f two parts, a simple behavior representing its value at any given time,
and an event generating individual incremental changes. There is one important issue that must,
however, be considered. This issue is best understood in the context of a concrete example. For
instance, imagine if we were to implement a dynamic collection of type C o l l , with two incremental
updates, insert and delete. We might consider representing it as follows.

144

ty p e C o ll a
d a ta C ollB a = C ollB (B eh avior (C o ll a)) (Event (CollUpd a))
d a ta C ollU pd a = I n s e r t a | D e le te a

This representation has two unfortunate consequences which arise when trying to implement a map
function. We could not implement a map function with the following standard type.

map :: (a -> b) -> C ollB a -> C ollB b

We would instead have to guarantee that the result type of the argument function also had equality
defined upon it. Furthermore, the notions of equality would have to be equivalent. In other words map
could only be implemented with injective functions.

map :: Eq a ,E q b => (a -> b) -> C ollB a -> C ollB b

For instance, if we were to apply f to a list of type a, for x and y of type a,

(x == y) <==> f x == f y

This implementation also has an efficiency problem; when mapping a function across the collection
update we would end up applying the function to both I n s e r t and D e le te updates, which might end
up being fairly expensive.

Instead, we can associate a unique identifier with each element in the collection. We can then refer only
to this unique identifier when deleting items. This guarantees that altering the value of each entry will
have no effect on D e le te operations.

d a ta C ollB a=C ollB (B ehavior (C o ll (E ntry a))) (Event (CollU pd a))
d a ta E ntry a = E ntry (ename :: Id en t, e v a l :: a}
d a ta CollU pd a = I n s e r t E ntry | D e le te Id en t

We can generalise this approach, to define a parameterised dynamic collection type. It is used to model
a collection of type “c a”. A value of type “evop a” represents an incremental update to a
collection. Internally we store a behavior containing a collection of values of type “E ntry a” .

d a ta C o lle c t io n B evop c a =
C o lle c t io n B (B eh avior (c (E ntry a))) (Event (evop a))

We could, in fact, generalise this still further by parameterising over the E ntry type. In the case of sets
and lists, the two dynamic collection types implemented so far, this representation is sufficient.

d a ta C o lle c t io n B f evop c a =
C o lle c t io n B (B eh avior (c (f a))) (Event (evop a))

The next important question becomes, how do we generate these unique values. Section 7.5.2 will show
how this can be done with list collections; section 7.5.3, will then generalise this mechanism, discussing
briefly how it applies to sets.

7.5.2. Implementing Lists

We can represent a dynamic list as a collection and a list update. List updates either consist of a single
reset action, or a list of modifier actions that insert new items at a given position, delete a given item,
move an item to another location in the list.

ty p e L istB = C o lle c t io n B E ntry L istU p d a tes [] a

d a ta L istU p d a tes a = LUpds [L istU p d ate] | R esetL [L is tE n tr y a]

d a ta L istU p d a te a = In ser tL [L is tE n tr y a] Pos
| D e le teL Id en t
j MoveL Id en t Pos

145

data Pos = Front | Back | Before Ident | After Ident

7.5.2.1. The Static IList Type

The important question is, how do we generate unique identifiers for entries. Section 4.9.1 presented an
interface for dynamic lists in which programmers do not have explicit access to the ListUpdates
type. Instead, recall that a dynamic list is generated using the static incremental list (IList type),
which supports the standard Edison Sequence interface28.

mkListB :: IList a -> Event (IList a -> IList a) -> ListB

It is this IList type that can be used to generate unique names and updates. W e can define the IList
type as shown below.

data IList a = IList [Entry a] NameGenerator (ListUpdates a)
newtype NameGenerator =

NameGenerator (forall a . a -> (Entry a,NameGenerator))

An incremental list consists o f four parts, a list o f entry elements which represents the current state o f
the list, a unique name generator and the updates so far. Note that the generator is a data type containing
a polymorphic function that will generate an Entry value for any type. This IList may have been
newly generated, for instance, by using the empty constructor. Alternatively, the IList may have
been generated by simply modifying the previous list. For instance, by inserting a single element. If the
IList is a new list then the updates will be a Reset update. Otherwise it will contain a list o f inserts,
deletes and moves. We will refer to a list made from a previous one as a modified list.

We can now define the basic constructors. For instance, to create an IList from a list of values, we
generate a list of entries, and a single reset update. This function uses toEntries, which is simply a
list version of the basic name generator.

fromList :: [a] -> IList a
fromList xs =
case toEntries xs initGen of

(xs,gen) -> IList xs gen (ResetL xs)
initGen :: NameGenerator
toEntries :: [a] -> NameGenerator -> ([Entry a],NameGenerator)

We can insert an element at the beginning of a list, using c o n s . This generates a unique name for the
new element, adds it to the list, and adds an insert update to the list o f updates.

cons :: a -> IList a -> IList a
cons a (IList es gen us) =
case gen a of
(e,gen) -> let es' = (e:es)

in IList es' gen (addUpds es' [InsertL [a] Front] us)

When adding more updates, there are two possibilities: (1) we are dealing with a modified list, in which
case we add the new updates to the old updates; (2) we are dealing with a reset. In this case, the new list
is not a modified list, so one reset update will be enough to change the list. We change this operation to
reset to the latest list value.

addUpds :: [Entry a] -> [ListUpdate a] -> ListUpdates a
-> ListUpdates a

addUpds es us (LUpds us') = LUpd (us++us')
addUpds es _ _ = ResetL es

28 Recall that the Haskell Edison library [145], defines a general interface for dealing with functional
data structures such as Sequences and Sets.

146

We can define filter fairly simply, we partition the list based on the predicate. We keep all the
elements that satisfy the predicate (forming the new list), and delete every element that does not satisfy
the predicate. Other delete functions would, therefore, use a similar approach. Note that for deletion
equality o f two entries is not dependent on their actual values. Two entries with the same value will still
have different unique identifiers. We can therefore define a variety of delete functions, for instance, the
standard drop function, which drops the first n elements o f a list. This would have been significantly
more difficult if deletion equality was dependent on equality between element values, as a list could
only safely have one entry with a given value.

filter :: (a -> Bool) -> IList a -> IList a
filter p (IList xs n ops) =
case L.partition (p . eitem) xs of
(keep,remove) ->

IList keep n
(addUpds keep (map (DeleteL . ename) remove) ops)

W e can implement reverse in terms of a series o f move actions. We reverse the actual entry list, and
then generate a series o f Move updates, that move the element to the back of the list. As we are
accumulating a reversed sequence o f updates (we always insert new updates at the beginning of the
update list) this will have the effect o f reversing the list.

reverse :: IList a -> IList a
reverse (IColl xs n ops) =

let new = reverse xs
op = map (\e -> MoveL (ename e) Back) xs

in IList new n (addUpds new op ops)

When appending two lists we need to check if either is a modified list. By doing this we can ensure that
we generate an insert update instead of a reset update where possible, as this will be more efficiently,
incrementally rendered. Both lists will have been independently using the name generation function.
We therefore need to rename one of the lists, to guarantee that both use the name space. We then simply
append both entry lists. If neither list is a modified list we generate a reset update, otherwise the new list
is added to the modified list. Note that if both are modified lists we need to pick one as the real
modified list and one as the new list.

append :: IList a -> IList a -> IList a
append 11@(IList lsl nl usl) 120(IList ls2 n2 us2) =
if isModified us2 then
let (lsl',n) = toEntries (map eitem lsl) n2

new = lsl' ++ ls2
in IList new n (addUpds new [InsertL lsl1 Front] us2)

else if isModified usl then
let (ls2',n) = toEntries (map eitem ls2) nl

new = lsl ++ ls2'
in IList new n (addUpds new [InsertL ls21 Back] usl) b2

else
let (lsl‘,n) = toEntries (map eitem lsl) n2

es = lsl1 ++ ls2
in IList es n (ResetL es)

We can easily define destructors that access the IList, such as toList.
toList :: IList a -> [a]
toList (IList xs _ _) = map eitem xs

We can therefore implement a complete set of functions to access, create and modify incremental lists.
When using these functions, it is obviously more efficient to modify the old list than completely replace
it.

We now need to define the dynamic list constructor function. We generate an event that accumulates
the current IList, starting with the initial IList. It does this using the apply function. When
applying a list update, we are only interested in the current entry list and name generator; we drop the

147

old list of updates, so that each event occurrence simply generates a new list of updates. To generate the
update event, we simply extract the updates list (reversing it, so that updates are now correctly ordered).
To generate the behavior, we simply step through every list of entries. Note that when using the data-
driven FRP implementation, sca n lE and s te p p e r are IO actions, and so mkListB must also
become an IO action; if using the hybrid implementation, mkListB could be a pure function.

mkListB :: I L is t a -> Event (I L is t a -> I L is t a) -> IO (L istB a)
mkListB 1 e = do

(ev ' :: E vent (I L is t a)) <- sca n lE a p p ly 1 e
l e t o p sev :: E vent (L istU p d a tes a)

op sev = e v 1 ==> toOps
(b :: B eh avior [E ntry a]) <- s te p p e r (t o L is t 1) (e v 1 ==> to L is t)
r e tu r n (C o lle c t io n B b op sev)

where a p p ly :: (I L is t a -> I L is t a) -> I L is t a -> I L is t a
a p p ly f (I L is t I s n _) = f (I L is t I s n (LUpds []))

t o L is t :: I L is t a -> [E ntry a]
t o L is t (I L is t I s _ _) = I s

toOps :: I L is t a -> [L istU p d a te a]
toOps (I L is t _ _ u@(ResetL _)) = u
toOps (I L is t _ _ (LUpds u s)) = r e v e r s e us

We therefore have a simple, elegant implementation of the dynamic collection constructor, which
allows dynamic lists to be created using a high-level mechanism, and is efficient to use.

7.5.2.2. ListB operators

We now need to define the dynamic list combinators themselves. These fall into three general
categories. Good examples of these categories are provided by map, f i l t e r and f i l t e r B .

The simplest class of combinators are those that only need to apply a given function to the elements in
the dynamic list, such as map. To map a function across a list, we apply the function to each entry in the
behavior, and to the value contained in each update (clearly only when it is an I n s e r t update do we
need to do anything.) The fmap function is implemented by any member of the F unctor class, and
supports mapping a function across a data type.

map :: (a -> b) -> L istB a -> L istB b
map f (C o lle c t io n B b e) = C o lle c t io n B (l i f t l (fmap (fmap f)) b)

(e ==> fmap f)

The second class of functions are those that apply static functions to a dynamic list. These include the
basic filter function, which applies a static filter function to the list. This is used to filter the dynamic
list for all time.

We can implement this as follows.

f i l t e r :: (a -> B ool) -> L istB a -> L istB a
f i l t e r p (C o lle c t io n B b e) =

C o lle c t io n B (l i f t l (f i l t e r (p . e ite m)) b)
((ev 'sn a p sh o t' b) 'mapMaybeE' h an d le)

To modify the behavior, we can simply filter it. To modify the update event, we need to snapshot the
previous list and apply the handle function to the pair of values. If the update is a reset, we simply filter
the new reset list. If not, we need to apply each of the individual updates.

where
h an d le :: (L istU p d a tes a ,[E n tr y a]) -> Maybe (L istU p d a tes a)
h an d le (R esetL r ,_) = J u s t (R esetL (f i l t e r (p .e ite m) as))
h an d le (LUpds u s ,e s) = LUpds (snd (mapAccumMbL doOne e s u s))

148

Each of the update functions refers to a list position, which is valid in the old list, but may not be valid
in the new list. We therefore need to translate between old positions and new positions. To do this we
need access to the original list. We have access to, e s , the snapshot result, which represents the list
state just before the current updates. As we test each update, we therefore need to accumulate a new list,
by applying each individual update in turn. W e therefore use mapAccumMbL, which maps an
accumulating function along a list. We use applyLUpd, at each step to apply the latest update to the
entry list, to generate a new entry list.

mapAccumMbL :: (a -> b -> (a, Maybe c)) -> a -> [b] -> (a, [c])

When applying an insert update, we check whether the item should be in the list. Only in this case do
we pass on the insert action. We translate the location to a new location using realLoc. When
deleting an item from a list, we lookup the item, and again only delete it if the item satisfies the
predicate (and is therefore in the filtered list). On a move update, we again check if the item satisfies the
predicate. Only then do we move it to its new recalculated position.

doOne :: [Entry a] -> ListUpdate a
-> ([Entry a],Maybe (ListUpdate a))

doOne (op@(InsertL ent@(Entry id a) pos),bs) | p a =
let upd = (InsertList n a (realLoc p bs pos))
in (applyLUpd op es,Just upd)

doOne (op@(DeleteL n),bs) | maybe False p (lookup n bs) =
Just (applyLUpd op es,Just op)

doOne (MoveL x pos,bs) | maybe False p (lookup x bs) =
let upd = MoveL x (realLoc p bs pos)
in (applyLUpd op es,Just upd)

doOne es op = (applyLUpd op es,Nothing)
applyLUpd :: ListUpdate a -> [Entry a] -> [Entry a]
realLoc :: (a -> Bool) -> Entry a -> Pos -> Pos

Both of the above classes of function apply their updates to behavior and update events separately. In
theory, this might result in a performance problem; however, in practice it does not appear to be a major
issue. There are two cases when we may end up with a problem; (1) if we were to apply such an
approach when mapping an IO action across a dynamic list. In this case we would end up applying the
action more than once, which would be incorrect; (2) when applying behavior based functions to update
a collection, such as f i l t e r B , where we end up with unacceptable performance.

We can implement mapIOLB, by applying the action to the event, and then generating a new list. We
must sample the behavior at the current time, to get the initial state for the new dynamic list.

mapIOLB :: (a -> IO b) -> ListB a -> IO (ListB b)
mapIOLB f (CollectionB b e) = do
t <- getTime
curr <- b 'at' t
w <- newWire
addListener e (mapIOL f (input w))
curr <- mapIO f curr
b <- stepper curr (event w)
return (CollectionB b e)

The implementation of functions such as filterB requires some sophistication. Recall that these
combinators each take a function to extract a behavior from a list element, and a function valued
behavior to apply. We need this flexibility, because the elements o f a dynamic list may themselves be
dynamic.

filterB :: (a -> Behavior b) -> Behavior (b -> Bool)
-> ListB a -> ListB a

W e need to generate an update in one of three cases: (1) when the initial dynamic list generates an
update; (2) when the value of the predicate behavior changes; (3) when the value of one of the extracted
behaviors changes.

149

To achieve this we create an accumulating event, containing the current Boolean filter function; a list of
elements, one for each dynamic list entry, with an identifier, list value, current extracted behavior value,
and a Boolean representing the result o f applying the filter function to the extracted behavior value; and
finally, the last list-update operations. Every time the filter function changes, a list operation occurs, or
a value changes, this event should generate an occurrence.

type Listltem a b = Entry (a,b,Bool)
type Accumlnfo a b = (a -> Bool,[Listltem a b],[ListUpdates a])

To generate the change event that updates this filter function we need to first make a behavior list with
an entry containing not only the value a, but the behavior b and an event stream of type b, that occurs
every time the behavior b changes. This assumes the existence of a function, toStream which turns a
behavior into an event stream. Such a function could be implemented using newWire, and the
workpool interface discussed in Section 12.1 .6 .

fromA :: (a -> Behavior b) -> a -> IO (a,Behavior b,Event b)
fromA fb a = do

let b = fb a
e <- toStream b
return (a, b, e)

toStream :: Behavior a -> IO (Event a)

We apply this function to the list. We also extract an event for the predicate, which generates an
occurrence every time the value of the predicate behavior changes.

filterB extract predB 1 = unsafePerformIO $ do
1@(CollectionB behl evl) <- mapIOLB (fromA fb) 1
predE <- toStream predB

We then sample the current state of the new list. For each item in the list, we sample the extracted
behavior, and compute whether the item should be in the new list or not. We use this to generate an
initial Listltem for each entry and an initial list o f items that will be in the new dynamic list.

let check :: Entry (a,Behavior b,Event b)
-> IO (Maybe (Entry a),Listltem a b)

check (Entry id,(a,b,_)) = do
v <- b 'at' t
if pred v then return (Just (Entry id a),

Entry id (a, v, True))
else return (Nothing,

Entry id (a, v, False))
t <- getTime -- get the time
pred <- at predB t -- sample the predicate at that time
xs <- at behl t -- sample the initial list at that time
(inits,gens) <- fmap unzip $ mapM check xs

We then generate the accumulating info event and finally make a new list from its updates and the
initial list of values.

co <- changeOpsE xs evl
e <- (accumE (pred, gens, []) $

predE ==> flip changePredOp
• I -co ==> flip changePredEvs)

return $ newListB (catMaybes inits) $ e ==> threeVal

150

The changeOpsE function generates a change event. This consists of either a list update, with a value
of type (a , b) or a change event marking an alteration in one of the updated behaviors. We do this by
using the event stream from the list item, and allowing it to generate occurrences until its associated
entry is deleted.

d a ta Change a b = ValChange Id en t b | L istO p (L istU p d a tes (a ,b))

changeOpsE :: [E ntry (a ,B eh a v io r b ,E v en t b)]
-> E vent (L istU p d a tes (a ,B eh a v io r b ,E v en t b))
-> IO (E vent (Change a b))

We update the list information using the change event, creating an insert update when an element
becomes visible, and a delete update when an element becomes invisible. When a value changes, we
generate an insert or delete update as appropriate. When the predicate event changes, we apply the new
predicate, and alter only those items whose values have changed.

changePredOp :: L i s t ln f o a b -> (b -> B ool) -> L i s t ln f o a b

changePredEvs :: L i s t ln f o a b -> Change a b -> L i s t ln f o a b

This mechanism is complex but reasonably efficient. It also generalises to cover the complete class of
functions that accept behavioral updates. For instance, to perform a behavioral sort we use a similar
mechanism, except that we accumulate the ordering function, instead of a predicate.

7.5.3. Generalising the collection approach

We can generalise much of the approach in the previous section to allow it to apply to any form of
collection. If we parameterise over the individual update and collection type, we can reuse the list
update, and incremental list type.

d a ta C o llU p d a tes upd c a = R ese t (c a) | CUpds [upd a]
d a ta I C o ll upd c a =

I C o ll (c (E ntry a)) NameGenerator (C ollUpd upd c a)

We can define the list equivalents of these as follows.

ty p e L istU p d a tes a = C o llU p d ates L istU p d a te [] a
ty p e I L is t a = I C o ll L istU p d a te [] a

Using this mechanism, we can define the set equivalents. A set update, consists simply of an insert and
delete update, but no move operation. We could easily imagine applying a similar mechanism to other
types of collection, such as trees.

ty p e I S e t a = I S e t SetU pdate S e t a
ty p e S etU p d ates a = C o llU p d ates SetU pdate [] a
data SetUpdate a = Inserts (Entry a) | Deletes Ident

Given this type, we can define a general dynamic collection constructor that creates a general collection
out of an incremental static collection and event.

mkCollB :: IC o ll upd c a -> Event (I C o ll upd c a -> I C o ll upd c a)
-> C o lle c t io n B E ntry (C o llU p d ates upd) c a

mkCollB 1 e = do

(ev ' :: Event (I C o ll upd c a)) <- sca n lE a p p ly 1 e
l e t o p sev :: E vent (C o llU p d ates upd c a)

op sev = e v 1 ==> toOps

(b :: B eh avior [E ntry a]) <- s te p p e r (to C o ll 1) (e v 1 ==> to C o ll)
re tu rn (C o lle c t io n B b op sev)

151

where apply :: (IColl upd c a -> IColl upd c a)
-> (IColl upd c a -> IColl upd c a)

apply f (IColl Is n _) = f (IColl Is n (CUpds []))
toColl :: IColl upd c a -> c (Entry a)
toColl (IColl Is _ _) = Is
toOps :: IColl upd c a -> CollUpdates upd c a
toOps (IColl _ _ u@(Reset _)) = u
toOps (IColl _ _ (CUpds us)) = reverse us

W e can also reuse similar mechanisms when implementing the remaining dynamic collection
combinators. For instance, we can define a map function for any dynamic collection, whose static
collection type support mapping (i.e. is an instance of the F u n c t o r class). We therefore have a
generic dynamic collection type that should be usable with any functional data structure.

7.6. Summary

This Chapter has presented the important issues in the implementation of the FranTk core. The most
difficult was the development o f an efficient, correct, robust implementation of the core FRP
combinators. This Chapter discussed the two current semantic models for FRP, the first by Elliott and
Hudak; the second by Wan and Hudak. This chapter discussed three possible implementations. The first
is a purely data-driven implementation. This implementation is efficient and robust. Unfortunately, it
requires a change in the type of any combinator that relies on an event’s history. The data-driven
representation does not store an event’s history and therefore any such combinator must be an IO
action. In FranTk, this is not a particularly problematic restriction, as all FranTk programs use the GUI
monad. The second implementation is a hybrid that combines the streams and data-driven approaches.
It attempts to remain faithful to the Elliott-Hudak FRP semantics. Unfortunately, this implementation is
not entirely robust. In particular, the use o f merge is not referentially transparent in the presence of
simultaneous event occurrences. This implementation therefore serves more as an example of the
difficulties that can arise when implementing FRP. This implementation can be more prone to space
leaks as it keeps track of an event’s history. The final implementation discussed in this Chapter is a
refinement of the data-driven implementation that attempts to satisfy the Wan-Hudak semantics. This
approach appears promising. However, further work is required to test and validate it. The development
o f a truly efficient, robust implementation that is faithful to the formal semantics o f FRP remains a topic
for future research.

152

Chapter 8 - Toolkit independence in FranTk

The implementation of FranTk consists of two parts; (1) implementation of the core FRP combinators
and dynamic collections; (2) implementation of the FranTk widget toolkit. The previous Chapter
covered the former, the latter will be discussed in this Chapter.

Though FranTk has been implemented on top of Tcl-Tk, the widget set has been implemented in as
toolkit independent a manner as possible. This should make it relatively easy to port to other toolkits29.
To achieve this the toolkit implementation consists o f four parts.

1. Initial Exports - this interface should define some basic primitive types used throughout FranTk.
2. Toolkit independent widgets - these define an abstract widget classes interface, which provides an

imperative widget interface, and the GUI monad.
3. Components interface - this defines behavioral widgets, and components in terms of the abstract

widget interface.
4. Toolkit implementation - this provides a toolkit specific implementation o f the abstract widget

interface, such as a Tcl-Tk interface, and provides a set o f widget components that can be created.

8.1.1. The Abstract Widget Interface

The abstract widget interface defines four different classes, that should be implemented by a toolkit.

1. W idget Item - the widget item interface should be supported by any widget. It supports four
actions. A widget can be destroyed; it has a unique identifier; it can be configured to set values
such as colour, using a C o n f i g type which is exported by the initial exports interface; it has an
a c c e p t s function which specifies whether the widget accepts a given configuration option;
finally, it has a method to add a finaliser, which is an action that will be run when the widget is
destroyed.

class Widgetltem w where
cset :: w -> [Config] -> IO ()
accepts :: ConfigName -> Bool
destroy :: w -> IO ()
uniqueld :: w -> Ident
addFinaliserW :: w -> IO () -> IO ()

2. Window Item - a window item is a top-level window. It can be mapped, unmapped, iconified, and
deiconified. We can also get a panel from it to display panel item widgets in. It is assumed that
there will be one window panel in the window. We should make sub panels from the window panel
the rest of the time. The idea of using panel’s here is similar to the Java Swing toolkit.

class Widgetltem w => Windowltem w where
showWindow :: w -> IO ()
hideWindow :: w -> IO ()
iconifyWindow :: w -> IO ()
deiconifyWindow :: w -> IO ()
getWinPanel :: w -> IO Panel

3. A Panel item - A panel item is a widget that can be added to a panel. In particular, it can be added
to a grid or box, formed from the panel. Box items have an ordering, and a panel item can be raised
and lowered within that ordering.

class Widgetltem w => Panelltem w where
gridAdd :: w -> Grid -> GridLoc->[GridBagConstraint]-> IO Remover
boxAdd :: w -> Box -> PlacePos Ident -> [Packlnfo] -> IO Remover
raise :: w -> Maybe Ident -> IO ()
lower :: w -> Maybe Ident -> IO ()

29 For instance, there are currently plans to port FranTk to use the GTK Open Source GUI Toolkit.
Information on GTK can be found at http://www.gtk.org.

http://www.gtk.org

153

4. A Canvas item - a canvas item, is a graphics item that can be placed on a graphics canvas. Items
added to such a canvas are placed at a specific location. This location is defined by a
transformation; the t r a n s f o r m l t e m function transforms a canvas item in terms of the canvas
co-ordinates. A canvas item can be mapped, unmapped, and raised or lowered in the canvas
stacking order.

c l a s s W id g e t l t e m w => C a n v a s l t e m w w h e r e
s h o w lte m : : w -> IO ()
h i d e l t e m : : w -> IO ()
t r a n s f o r m l t e m : : T r a n s f o r m 2 -> w -> IO ()
r a i s e l t e m : : w -> M aybe I d e n t -> IO ()
l o w e r l t e m : : w -> M aybe I d e n t - > IO ()

A panel is a data type that supports three functions, to create a subpanel, make a grid from the panel,
and make a box from the panel.

d a t a P a n e l = P a n e l { m k S u b P a n e l : : IO P a n e l ,
s e t G r i d L a y o u t : : IO G r i d ,
s e tB o x L a y o u t : : IO Box}

Grids allows elements to be laid out in a 2-D grid. Boxes allow items to be laid out in either a
horizontal or vertical form. Items can also be padded, or made to fill extra space. Both of these layout
are very general and are supported, for instance, by both Tcl-Tk and Java layout managers.

Any widget that supports user input, should implement the Bindable interface. The bind function
adds a listener to the widget, for a particular action. The Action type specifies which type of input we
are interested in (such as mouse clicks). The listener hears general values of type UserAction. This
returns a remove action to unregister interest in the widget.

class Widgetltem w => Bindable w where
bind :: w -> Action -> Listener UserAction -> IO (IO ())

The abstract widget interface also defines the GUI monad. This monad passes around a value of type
GUIDef, which contains a number of values. The first of these is the explicit state for accessing the
underlying toolkit, which is a value of type GUI Info, imported as one of the initial exports. It also
contains a variable for a unique name supply, a mutable set o f remove actions for active widgets, a
reference to the current, and root window, and to the current canvas, if there is one.

When defining the GUI monad we need to lift a reasonable set of IO actions into the GUI monad. In
addition, we lift the Listener implementation into the GUI monad. To do this we define a new listener
type, that is a function from a G U ID ef value representing the state of the GUI monad to primitive
listeners. W e can therefore define GUI action listeners using this mechanism.

type Listener a = GUIDef -> Prim.Listener a

W e lift the basic listener operations so that they work on this new type. For instance, we can redefine
l i f t L l as follows. Recall from Section 7.2.2 that the whole of the listener algebra is defined in terms
of three of these basic lifting functions.

l i f t L l : : (L i s t e n e r ' a -> L i s t e n e r ' b) -> L i s t e n e r a -> L i s t e n e r b
liftLl f 1 = \g -> L.liftLl f (1 g)

We lift the a d d L i s t e n e r function so that it too works within the GUI monad. This provides the
listener with the current G U ID ef. The listener’s action is therefore evaluated in the environment
context that it was added in.

a d d L i s t e n e r : : E v e n t a -> L i s t e n e r a -> GUI (GUI ())
a d d L i s t e n e r e 1 = do

s t < - g e tG u iD e f
rm < - l i f t I O $ P r i m . a d d L i s t e n e r e (1 s t)
r e t u r n (l i f t I O rm)

154

Every widget in FranTk is wrapped in a PrimWidget. A PrimWidget has access to the GUIDef
state from when it was create, the widget itself, an action to hide the widget, and a weak reference to the
hide action. It also has a variable storing the names of all the Config options that have already been
applied to the widget. This is used when displaying a Widget Behavior (see Section 8.1.2)..

data PrimWidget w = PrimWidget {
guiDef :: GUIDef,
widgetPrim :: w,
hideRef :: RemRef,
hideRefWP :: (Weak RemRef),
usedconfigs :: IORef [ConfigName]
}

To make a PrimWidget, we first extract the current GUIDef. W e then create the widget using the
current window. We make a variable to hold the hide action for the widget. W e then create a weak
reference to this hide variable, with a finaliser that destroys the widget. Recall that in GUIDef there is a
mutable list of visible items. When a widget is visible, then its hide variable goes in this list. This
variable remains live until the widget becomes invisible and there are no other references to it that
could make it visible again. At this point we can safely destroy the widget using the finaliser. When we
show the widget we make it active by adding its remover variable to the active widget set. We then
place the remove action for the set in the remover IORef. When we make the widget inactive we can
then just run the remover IORef.

We can now define typed configuration options. A configuration option is an action that can be applied
to a widget. The action has perhaps a configuration name associated with it, if the action is associated
with a given configuration option. A configuration option therefore has a notion o f equality. Two
configuration options are equal if they have configuration names that are equal.

data Conf w = ConfGUI (Maybe ConfigName) (w -> GUI ())

We can define behavioral configuration options in terms o f static ones, using the workpool interface.
Given a C o n f ig name, a function to create a C o n f ig from a value, and a Behavior; we create a
configuration option. We add a listener to the behavior that sets the configuration option every time the
value changes. We add the remove action as a finaliser for the widget. This guarantees that the widget
will be updated after it is destroyed.

confB :: ConfigName -> (a -> Config) -> Behavior a ->Conf w
confB confname conf val =
ConfGUI (Just confname)

(\w -> do rm <- addListener val (mkL $ cset w . conf)
addFinaliserW w rm)

One useful optimisation is to only apply configuration updates when a widget is actually visible. When
invisible we record any changes that must be made to the widget, by storing the latest update action in a
finite map, with an entry for each C o n fig N a m e . When the widget is redisplayed we then simply apply
all the latest updates. This approach is particularly useful if some aspect o f a widget’s appearance is
updated regularly when it is invisible.

8.1.2. Components and Widget Behaviors

Widget behaviors are defined in terms of an abstract widget type. They may be dynamic and map down
onto several primitive widgets. We define a generic parameterised abstract widget type, and then
several specific instantiations o f it: for a top-level window; standard widgets, such as buttons and
labels; and canvas items, that represent graphical objects. Note that each of these map down to a
specific interface type, defined in the abstract widget interface. This approach was inspired by the Fran
ImageB type, which provides an abstract data representation of a dynamic image.

A generic widget is an abstract data type. It may be a simple widget, an empty widget, the composition
of two widgets, a dynamic pile o f widgets (modelled as a list behavior), a behavioral conditional choice
or a widget switcher. We may add a listener to all of the input in a widget behavior, using
Grablnput. Finally, we may associate a list of style configuration options with a widget.

155

data GWidgetB a =
GWidgetB a
EmptyW
Grablnput Action (Listener UserAction) (GWidgetB a)
Compose (GWidgetB a) (GWidgetB a)
PileW (ListB (GWidgetB a))
CondW BoolB (GWidgetB a) (GWidgetB a)
SwitcherW (GWidgetB a) (Event (GWidgetB a))
WithStyle [Conf Style] (GWidget a)

We also define a generic component type based on the generic widget type.

type GComponent a = GUI (GWidgetB a)

We define specific instantiations of this widget type. For instance a WindowWidgetB is a generic
widget containing a window item. Here we use an existential type to wrap a primitive widget. A
window widget can therefore contain any object that is an instance of the Windowltem, and
Bindable classes.

type WindowWidgetB = GWidgetB WW
data WW = forall w . (Bindable w, Windowltem w)=>WW (PrimWidget w)

Standard widgets are based on the Panel Item interface. They may also specify layout information.
This will either be a packing mode (above or beside), or new pack information (either static or
behavioral), specifying whether widgets are to be padded, or expanded when placed in a box. We can
use a similar mechanism to place objects in a grid.

type WidgetB = GWidgetB PW
data PW = forall w . (Bindable w ,PanelItem w) =>PW (PrimWidget w)

WithPack [Packlnfo] WidgetB
WithPackB (Behavior [Packlnfo]) WidgetB
WithPackMode PackMode WidgetB

We can define a canvas widget in a similar manner, where items are behavioral transformations, or
primitive widgets based on the Canvas I tern class.

type CanvasWidgetB = GWidgetB CW
data CW = forall w . (Canvasltem w,Bindable w) =>CW (PrimWidget w)

| Transform2W Transform2B CanvasWidgetB

We can define the display combinators in terms of these data types. For instance, the above combinator
sets the packing mode to PackAbove, and then composes its two argument widgets.

instance Packable WidgetB where
above wl w2 = GWidgetB $ WithPackMode PackAbove $ Compose wl w2

The nabove combinator (which packs a dynamic list o f widgets above each other) simply sets the
pack mode to PackAbove, and then generates a pile from the given dynamic list.

instance PackCollection ListB WidgetB where
nabove Is = GWidgetB $ WithPackMode PackAbove $ PileW Is

We can easily define the Component interface on top of this widget interface. For instance, we define
the above combinator as follows. It simply runs both of its child widget actions, and then places the two
widget behaviors above each other.

instance Packable Component where
above wl w2 = do x <- wl

y <- w2
return $ x 'above' y

156

To place a dynamic list of C o m p o n e n ts above each other, map across the L i s tB , applying each GUI
action, to generate a L i s t B of widget behaviors. W e then just compose this new list.

i n s t a n c e P a c k C o l l e c t i o n L i s t B C o m p o n e n t w h e r e
n a b o v e I s = d o ws < - mapGUI i d I s

r e t u r n $ n a b o v e ws

Given these abstract types, we define a set o f display functions, that display window, standard and
canvas widget behaviors. We can define a display function, that displays an abstract widget. This
requires a function to display a primitive item; a function to make a group for moving items in the
stacking order; some type specific display information, and a value of type D i s p l a y I n f o which
represents the current display state.

d i s p l a y W : : (D i s p l a y l n f o -> b -> a -> IO ())
-> (D i s p l a y l n f o -> b -> IO (MkMoveOp b))
-> D i s p l a y l n f o -> b
-> W id g e tB a
- > I O ()

W e use the D i s p l a y l n f o type to pass information down to all child widgets. Widgets may be visible
at any given time; will be deleted on a given event; appear in some form o f pile; may have listeners on
their user input; and may require access to a unique name supply. There is also a current list of
configuration operations, representing the current style.

d a t a D i s p l a y l n f o = D i s p l a y l n f o (v i s i b l e : : B o o lB ,
d i e E : : (E v e n t B o o l) ,
p A r r a y : : P i l e A r r a y ,
b i n d E v e n t s : : [B i n d] ,
n am e R e f : : IO R e f I n t ,
c u r r e n t S t y l e : : [C o n f S t y l e] }

t y p e B in d = (A c t i o n , L i s t e n e r U s e r A c t i o n)

The P i l e A r r a y type models a mutable Pile o f objects. Objects can be made visible and invisible and
can be moved about in the stacking order. Piles can also have Groups. A group models a group of
elements that can be moved en-masse. Groups can be moved in relation to other groups, or to other pile
elements. The P i l e A r r a y type is implemented using an extensible, mutable array, for fast update and
access. Each element has a unique abstract identifier. Each entry also has a value of type I d e n t , which
represents the name of the object it is referring to (such as the widget Id). Elements have a Boolean
saying whether visible, and a pointer to the element above, below, and to the visible element above and
the visible element below.

The implementation of most of the display functions are fairly simple.

• To display an empty widget, we do nothing.
• To display two composed widgets, we display the first, then the second.
• To display a simple widget, we invoke the given display function.
• W hen we find a new W i t h S t y l e definition, we override the current style with the new style

information (we can do this because configuration options can be compared for equality).
• When we find a G r a b l n p u t we add the action and listener to the bind list. If the action is already

in the bind list, we simply merge the new listener with the current listener.
• When displaying a conditional widget, we render both widgets, modifying their visibility with the

conditional Boolean behavior.
• When displaying a switcher widget, we first display the initial widget. We add a listener so that on

every occurrence, we display the new widget. We stop doing this when the die event from the
parent generates an occurrence. When displaying each child widget, we modify its die event, so
that it is deleted on the next occurrence from the switching event.

Rendering a dynamic pile of widgets requires a bit more sophistication, and is therefore worthy of
further comment.

157

To render a pile we need support for restacking. To do this we use the grouping function. This first
makes a generic group, and returns an operation that can be used by individual stacking groups. This is
done by returning a value o f type MkMoveOp. This contains updated display information, and a
generation function. W e make specific groups, using this function. To do this we require to provide a
name, and an initial position. This action returns a new display information object, and a listener that
should be told about restacking of the group.

type MkMoveOp b = (Displaylnfo,b,MkMoveOp' b)
type MkMoveOp' b = Displaylnfo -> b -> Ident -> PlacePos Ident

-> IO (MoveOp,Displaylnfo,b)
type MoveOp = Listener (PlacePos Ident)

Given this grouping interface, we render a pile in the following manner. We firstly group the whole
pile, by running the function to generate the MkMoveOp value. We then sample the current state o f the
pile (from the list behavior’s sampler). W e display this initial list, and add a listener to the update event
which updates the display. W e stop listening to display updates, when the parent’s die event generates
an occurrence. To display an individual item, we make a group for the item, getting back a move
listener. W e add the move listener, to the update event, to allow it to hear about restack events. We
display the item, altering its die event. This allows us to arrange that the item is deleted either when its
parent deletes the whole pile, or when the update generates a delete for the item (i.e. on a reset, or a
delete of that element).

The mechanism to generate a group depends on the type o f widget we are displaying. When displaying
a panel item, we can simply create a new panel, to contain the whole group. On each move update we
first move the item in the pile array. We can then restack the panel, using the pile array to compute its
new position.

For widget types that do not support such a mechanism, such as canvas widgets, we can use the
PileArray group support. To use this, we need a lookup table to map from object names (of type
Ident) to group references, because ListB move updates are specified in terms of the entry name,
but PileArray restacking is specified in terms of group references. We add the object name and
group reference to the lookup table at the start, and remove it when the item is deleted. On each move
update, we then simply get the group reference of the new object, and move the group. To complete the
implementation we pass an event to each primitive widget, that specifies when to restack. The primitive
widget then looks up its new position in the pile array, and restacks to the new position.

mkMover :: PileArray -- the pile
-> IORef (FiniteMap Ident GroupRef)
-> Ident -- the identifier of this object
-> GroupRef -- the restacking identifier of this object
-> Event () -- the die event, saying when to stop
-> IO (Listener' (PlacePos Ident))

mkMover pa fmv ident gref dieE = do
let findElt v n = do fm <- readlORef v;return (lookupFM fm n)
updlORef fmv $ \fm -> addToFM fm ident elt
addListener (onceE dieE) $

mkL_ (updlORef fmv (\fm -> delFromFM fm ident))
let movelnPile pos = do

posg <- mapIO (findElt fmv) pos
movePileElt pa gref posg

return (movelnPile)

To display an individual primitive widget, we insert it into the pile, associating with the item any groups
that it may be in. This generates a unique pile array name for the element. When we show and hide the
widget we must update the pile array. When we delete the widget, we delete it from the pile. The use of
the pile array is therefore very significant. It keeps track o f the position and visibility o f each individual
item in a particular display area. This ensures that when we display or restack an item, we can find its
location in the stacking order o f only the currently visible items.

158

insertPileElt :: PileArray -> Ident -> EltName -> [GroupRef]
-> 10 EltName

hidePileElt :: PileArray -> EltName -> 10 ()
showPileElt :: PileArray -> EltName -> 10 ()
deletePileElt :: PileArray -> EltName -> 10 ()

W e also apply the appropriate display actions for the widget type. We add a listener to the visibility
behavior, that shows and hides the item. For instance, we would insert a Panel Item widget into the
current box, using the current packing mode and options. When the item is hidden, we remove it from
the box. We bind all o f the current user input listeners to the widget. To apply style attributes, we first
lookup which configuration options have already been applied to the widget (using the variable from
the PrimWidget). These will have been applied when the widget was created, and override any from
the style attribute list. W e delete any configuration options that have already been used from the current
style attribute list. We check which o f the remaining style attributes are applicable (using the accepts
function) and apply these.

8.1.3. Toolkit Dependent Interface

The toolkit dependent interface is then defined on top of this abstract interface. To do this we must
define an instance of the relevant classes for each widget. For instance, for a button widget, we must
define, an instance, o f Widgetltem, Panel I tern and Bindable. We also define the available
configuration classes using the C o n f type, with appropriate instances for each available widget.
Finally, we define the set o f available widget types, with a constructor for each to generate a
component.

8.1.4. Implementing Dynamic Documents

The implementation of FranTk also requires an implementation of the dynamic document type. We can
implement a dynamic document in terms of some mutable document representation, and an event
generating document updates.

data DocumentB = DocB {mutDoc :: MutDoc,updDoc :: Event DocUpd}

Updates in FranTk, are defined in terms of the structured document type. We can insert a structured
update, reset a document to contain a new structured type, or replace one structured update (of a given
name) with another. Each of these updates contains a unique identifier, which represents the originator
of the update. This may either be the name of a given edit widget, or noEdit, if the update came from
the application code. This identifier is useful when an edit widget is both sending updates to, and
receiving updates from, a dynamic document. In this case an edit widget, will hear the updates it
generated. It would clearly be incorrect for it to apply these. The widget can fix this by filtering out all
those updates that originated from it (i.e. have its identifier).

data DocUpd = InsertStructured Ident Structured TIndex
ReplaceStructured Ident Structured Ident
ResetStructured Ident Structured
DeleteBetween Ident TIndex TIndex

noEdit :: Ident
data Structured = SText String

STag EditTag
SGroup [Structured]
SNamed Structured Ident
STextTagged Structured EditTag
SMark EditMark

We define a dynamic document in terms of an IDoc type. One simple representation of an IDoc is a
list o f document updates.

data IDoc = [DocUpd]

The structured IDoc constructor therefore simply produces a reset update.

159

structured :: Structured -> IDoc
structured = [ResetStructured noEdit s]

The insertStructured update simply adds an insert update to the current update list.

insertStructured :: Structured -> TIndex -> IDoc -> IDoc
insertStructured s t ds = (InsertStructured noEdit s t):ds

We generate a document by first accumulating a current IDoc update. On every occurrence, we
generate a new update list, ignoring the previous update list. Note that as we accumulate the update list
in reverse order, we must reverse the order of the updates before passing them on. W e then generate a
mutable document based on this event.

mkDocumentB :: IDoc -> Event (IDoc -> IDoc) -> IO DocumentB
mkDocumentB init e = do

e' <- accumE init (e ==> \ f _ -> reverse (f []))
md <- mkMutDoc init e'
return (DocB md e')

We now reach the thorny issue of how to implement the MutDoc. The preferred representation would
be a simple behavior of some static document type.

type MutDoc = Behavior Doc

We might have a function to generate an empty document, and a function to apply a list of document
updates to a document. Using this interface we could generate a MutDoc simply using s te p p e r and
scan lE .

emptyDoc :: Doc
applylDoc :: Doc -> IDoc -> Doc
mkMutDoc :: IDoc -> Event IDoc -> IO MutDoc
mkMutDoc id e = do

let initdoc = applylDoc emptyDoc
e <- scanlE applylDoc initdoc e'
stepper initdoc e

W e might then have observation functions to, for instance, extract the text in a document. Using such a
static extraction function, we could define the behavioral function getText.

getTextDoc :: Doc -> (TIndex,TIndex) -> String
getText :: DocumentB -> Behavior (TIndex,TIndex)

-> Behavior String
getText (DocumentB mutb _) bh = lift2 getTextDoc mutb bh

Such a representation relies on an efficient, purely functional, implementation of a document, which
has, unfortunately, proved difficult to achieve. Documents need to support insertion and deletion at any
given location, which is difficult (though not impossible) to efficiently achieve in a purely functional
implementation. More significantly, documents must also support EditTags and EditMarks. These
each take individual configuration information, which may be behavioral, and most significantly may
change their locations. We therefore need to convert these index changes into changes in the document.
In addition, the DocumentB type must support indexing via the TIndex type. This allows locations in
a document to be referred to in terms of tag and mark indices. These will clearly also change as the
document is modified.

One possible representation might be to define a document as a list o f lists o f segments. A segment
represents either a tag start, tag end, a mark or a piece of text. A list of segments represents the contents
of one line. A list o f list o f segments therefore represents the complete document. We maintain a record
of the current marks and tags, recording their current location, and relevant configuration information.
Unfortunately, such a representation proved too slow when dealing with very large documents. The

160

development o f a truly efficient, functional representation of a FranTk document therefore remains
something for future research.

data Doc = Doc Tags Marks TextState
type TextState = [[Segment]]
data Segment = TagStart Ident | TagEnd Ident | Mark Ident

| Text String
type Marks = FiniteMap Ident Marklnfo
data Marklnfo = Marklnfo Ident (Int,Int) [Conf EditMark]
type Tags = FiniteMap Ident Taglnfo
data Taglnfo = Taglnfo Ident (Int,Int) (Int,Int) [Conf EditTag]

One solution is instead to really represent a MutDoc as a mutable data structure. This restricts us to use
of documents only in the IO monad. Observation functions would therefore have to be IO actions.

data MutDoc
mkMutDoc :: IDoc -> IO MutDoc
applylDoc :: MutDoc -> IDoc -> IO ()
getTextMutDoc :: MutDoc -> (TIndex,TIndex) -> IO String

As we have moved to the IO monad, a MutDoc could either be implemented in Haskell in terms of
mutable variables, or in terms of a C data structure. In fact the current FranTk implementation maps the
MutDoc type down to the C data structure that Tcl-Tk uses to store the contents of an edit widget. This
data structure has already undergone a considerable amount o f optimisation, and therefore seemed a
reasonable choice. This choice obviously makes the MutDoc representation Tcl-Tk specific. However,
the MutDoc type must map exactly to the behavior of an edit widget to allow correct use, so this is a
necessary (if unpleasant) restriction anyway.

Given a mutable document representation, we can generate a dynamic document as follows. We
generate an initial document from the IDoc type. W e then add a listener to the event, that updates the
mutable document on every occurrence. Note that this uses a delayed action, to guarantee that changes
to the behavior happen immediately after the event.

mkMutDoc idoc e = do
md <- mkMutDoc idoc
let upd ref v = addDelayedAction $ appylDoc ref v
addWeakListener e' upd md
return md

If we are using the data-driven behavior implementation, perhaps surprisingly, we can still implement
behavior based functions that access the mutable document. For instance, we can implement, getText
as shown below. Recall that a Behavior consists o f an imperative sampler, and an invalidation event.
The data-driven implementation already has the pre-condition that it is only safe to sample a reactive
behavior at the current time. We can therefore simply implement a sampler that performs an imperative
request action on the mutable document. This demonstrates a very powerful feature of the data-driven
representation, it allows the implementation of a declarative interface to mutable objects.

getText :: DocumentB -> Behavior (Tindex,Tindex)
-> Behavior String

getText (DocumentB mutd ev) bh =
Behavior (\t -> do (bl,c) <- bh 'at' t

s <- getTextMutDoc mutd bl
return (s ,c))

(ev -=> ())

If we were using the hybrid FRP implementation this would not be possible. Instead we would have to
implement a snapText function that sampled the document on a given event. By using
addListener here, we have implicitly dropped the history from the event, and therefore we need not
have access to the any of the previous values of the mutable document.

161

snapText :: DocumentB -> Event (TIndex,TIndex)
-> GUI (Event String)

snapText (DocumentB mutd _) ev = do
(l,e) <- mkWire
addListener ev (mapIOL getTextMutDoc 1)
return e

The implementation of a purely functional document behavior is therefore still an issue for future
research. However, when using the data-driven FRP implementation it costs nothing to instead use a
mutable document representation.

8.2. Conclusions

The FranTk widget library that has been implemented in a toolkit independent manner. This should
make it relatively easy to port it to other GUI toolkits. Future work will investigate how easy this is in
practice. In general, the implementation of FranTk was a significant undertaking, consisting o f roughly
12500 lines of code (-2000 for the Fran core, -7500 lines of code for FranTk, and -3000 for
TclHaskell (the low-level Tcl-Tk binding)).

162

Part IV. Formal Verification
Part IV o f this thesis argues that formal verification can be successfully applied to aspects o f an
interactive system. It presents a method for deriving a formal specification from a FranTk prototype and
demonstrates how this technique was used to prove formal properties about the QOC editor and the
ATC system.

163

Chapter 9 - Previous Approaches to Formal Development

9.1. Introduction

A variety o f notations have been developed and used to aid interactive system design. These include
graphical formalisms such as Petri Nets [149], tabular notations such as User Action Notation (UAN)
[86], and textual formalisms such as process algebras [151] and mathematical specification languages
(eg Z) ([1], [85]). Hybrid notations have also been developed, that combine graphical with textual
representations [41]. We therefore need to carefully consider criteria for any comparison. This chapter
first discusses how specifications can be used either to aid a developer’s understanding, or to support
verification. We will then consider a selection of different notations and discuss the facilities that they
provide. This thesis concentrates on notations which support some form of formal verification. This
chapter therefore presents three formal approaches to interactive systems modelling: the LOTOS
interactor model, the York interactor model and the ICO Petri net based modelling approach. It will
also discuss SpecTRM [120], a notation for modelling safety critical systems, which provides support
for both reasoning and verification. It will then discuss the role o f formal modelling in this thesis and
present a limited set o f requirements that fit the goals in this thesis.

9.1.1. Formal Modelling for Understanding

Formal specifications can be used to aid designers in understanding the behaviour o f their system. Even
when proof is not necessary this can be useful. For instance, User Action Notation specifications have
been used simply to understand the behaviour o f multi-user systems. For instance, in [171] we
demonstrated how UAN could be used to reason about locking strategies in the multi-user QOC editor
case study. A variety of locking strategies are possible, some more stringent than others. The semantics
o f each approach, and the resulting effect on user actions can be considered using formal notations to
help determine the merits of each.

Formal specifications can also be related to usability inspection approaches. For instance, the cognitive
walkthrough technique helps designers to uncover potential usability problems [208]. Designers can
consider a description of the design, along with a description of the tasks that a user needs to perform.
This description can be used to look for problems in a design and to see how easily it affords certain
actions. A clear and easily understood specification could be useful here as part o f the design
description. While prototyping and user centred evaluations provide the best way to find usability
problems, re-designing a system to remove them requires careful consideration. Lightweight formal
modelling can help designers to consider these issues.

Specifications can be used to help designers to consider the predictability of a system. For instance, a
specification can be used to consider how each task is performed. We could check that similar tasks
were performed in a consistent, predictable way. This sort o f analysis relies on a notation being easy for
a designer to read. If a requirements specification can be easily understood by domain experts, then it
can be used to reason about potential problems in a design; for instance, to consider mode confusion
errors within a system [117].

The search for a single specification language to use when constructing a system seems impossible[56].
Instead a range of different modelling languages can be used to consider a design. Maintaining
consistency between these different models can then become an important problem. Some form of
literate development approach ([29], [101], [19]) providing automated links between different
specifications can aid here. One highly-influential commercial modelling language, the Unified
Modeling Language (UML) has attempted to support this form of approach [163]. Requirements
specifications can be constructed in terms of a range of notations including use cases, time diagrams,
and state charts. Explicit links can then be defined between each model, making it clear when changes
in one will affect changes in another. However, even such integrated approaches are limited. The UML
approach does not provide any particular support for specifying user interfaces. Based on a set of
studies Jones [105] argues that designers will always step outside the bounds of a given modelling
language, when engaged in creative discussion. The development of languages to allow designers to

164

understand and manually reason about interactive system development therefore remains a significant,
and complex research area. It is an area that this thesis will not attempt to address.

9.1.2. Formal Modelling For Verification

A Department of Trade and Industry study looking at formal methods [10] highlighted their inability to
handle human-computer interaction as one important reason why they had not received significant
uptake in industry. The use of formal modelling to consider interaction issues is therefore important.

Formal specifications can be used to help developers to prove the functional correctness o f their
systems. For instance, we could prove that a design meets specific, formally defined, critical
requirements. This is important because incremental development, based simply on prototyping and
testing, cannot guarantee certain critical system properties. When designing a system, there may be
millions o f possible system states. No amount of testing can significantly test such large state spaces.
The problem becomes particularly significant when we wish to prove negative properties about a
system. For instance, when designing a rail track control system, we may wish to prove that “A route
will never be set if conflicting routes are set” [82]. This sort o f critical requirement is usually
impossible to prove simply by user testing, because generating a complete set o f test cases may be
impossible. Though many of these critical requirements are what can be termed functional (unrelated to
the interface), many others will be related to user interactions. For instance, when developing an Air
Traffic Control system there will be certain interaction requirements that will be critical, such as "A
control order can be sent to only one plane" [149]. It is possible to automatically detect certain types of
consistency and completeness problems with a specification [120]. For instance, a system can be
checked for mathematical completeness, and non-deterministic behavior under the same conditions.

There has also been considerable research into how to prove usability principles, using formal
specifications [41]. Various interaction concepts have been suggested. These include predictability,
whether a system behaves as expected; visibility, whether the necessary information is displayed to
allow users to act successfully; continual feedback, whether a systems provides the necessary feedback
to allow users to understand their actions; and reachability, whether a user can get to all states in a
system, or whether they could get stuck in an interaction deadlock. These principles are important. For
instance, an unpredictable system will confuse users. This could lead to dangerous problems in a safety
critical environment. However, they are also very general. While they have been formalised, they can
still result in meaningless results if applied without great care. For instance, deciding on the necessary
information for visibility is obviously a task dependent and often complex process. This thesis therefore
concentrates on application dependent verification, rather than on these high level principles.

9.2. York Interactor model

The “interactor” model, developed under the Esprit Basic Research Action Amodeus project [41], treats
systems as groups of interacting components, each with a state and a behaviour. This is therefore a
component based approach, that allows for modular specifications. Designs attempt to relate tasks to
interactors and so provide a user centred approach to system modelling. There are two variations on the
interactor model, the York and LOTOS variants.

The York model uses a state based approach. The York model (see Figure 43) considers an interactor to
consist o f an internal state, which is reflected through some rendering relation (rh o) , onto some
perceivable representation (P). Interactors communicate with the outside world via a set o f events.
There are two types of event: stimuli, produced by other agents in the environment, and responses,
generated by the interactor [85].

rho
State

Figure 43 - York Interactor

165

For instance, consider a simple button. It can be enabled or disabled. This value is changed by the
toggle action. When enabled, the button can be selected, by being pressed. It also has a label which can
be updated.

The button interactor therefore has a set o f events, through which it can communicate with other agents.
It has an internal state that is modelled by a group o f attributes. The attributes can be altered by events.
The behaviour axioms explain how this happens. A statement P=> [A] Q, means when P is true, if the
event A occurs, then Q will be true afterwards. For instance, axiom 1 says, if the button is enabled and
the value o f selected is initially equal to X, then after a button press, the value of selected will be not X.
Interactors can then be composed to form more complex interactors.

interactor [button]

Events
press.toggle

State attributes
lab e l: String
se le c te d : Bool
enabled : Bool

Behaviour
1 enabled A selected = X => [press]selected = not X
2 enabled = X => [toggle]enabled = not X

Rendering
output = labelA (not enabled A grayed_out)

A (selected A pressed)

Figure 44 - A York Button Interactor

The development process using York interactors starts by considering the components that make up a
system at the highest level. These will, generally, be described using natural language. These
components will then be decomposed into lower level interactors, and the internal definitions will be
refined to include more detailed and formal descriptions. For instance, in the initial design of an aircraft
warning system, we might define two interactors, the pilot and the environment. W e could then go on to
break down the environment into the components that monitor sub-systems such as engines and
hydraulics [55].

The York model makes it easy to consider the state of the system, and the internal description of
interactors. It is, however, more difficult to consider how they combine together. Its graphical
representation is also relatively poor.

One of the major problems with York interactors was the lack of tool support to allow automated
verification. Recent work has begun to overcome this problem. Campos and Harrison([23], [24]) have
developed a compiler to convert York interactors into SMV (a model checking tool). The SMV tool
specifies a system as a set of state variables and transitions. They have now applied the approach to a
few case studies; including a small e-mail client [22], an audio-visual communication system [23] and a
simple model o f a moded aircraft panel [24]. The last was based on an existing case study by Leveson
and Palmer [118]. It did not therefore result in any new discoveries. Though the SMV compiler is a
useful tool, it must still be used with care by a formal methods expert. The finite state machine
produced by an arbitrary specification can easily become too large to be practical. The specification
must therefore be carefully reduced, by removing state variables, and decreasing the size of variable
domains. This must be carried out carefully in order not to affect the meaning of the specification.

166

9.3. The LOTOS Interactor Model

The other interactor model, developed during the Amodeus project, is the LOTOS interactor model
(LIM) [151]. It has been developed at CNUCE-CNR in Italy, and uses a process algebra based
approach. It views an interactor as an object that can:

• “receive (and accumulate) output from the application side (oc),
• receive an output trigger (ot), the interactor then sends output to the user side (os),
• receive (and accumulate) input from the user side (im), and provide feedback toward the user (os)
• receive an input trigger (it) that causes the interactor to send the accumulated input to the

application side (is)."

Internally an interactor has four components (see Figure 45). The collection maintains a representation
of the model o f the interactor. When triggered by the event ot, it passes output (using the event uc) to
the presentation, which performs the actual rendering. Input from the user side is received by the
measure which, when triggered, passes it (using the event md) to the abstraction. The abstraction alters
the input into the form that the application requires; for instance, turning a button click on a menu, into
a message saying which menu element had been chosen. The measure may provide feedback on user
input, using the event me, for example, to make a button look pressed. The measure may also tell the
presentation to modify any new output data. For instance, if a button interactor were told to change its
label (by the event oc), the measure would be informed (by the event uc) and could tell the presentation
(using the event me) whether the button should be drawn in the pressed state.

ot-

<rs±)(eE]

OC i I Is.
-5* collection abstraction |

■kujc | md
J presentation ^ — measure

dEd>le

osyr ^ Im

Figure 45 - LOTOS Interactor

We could define a button interactor as follows:

Button[mousedown, mouseup, getButtonClick.setLabel.ot.os]
(pic:Picture, n:Any)

setLabel
►ot

enable

os

>ei i__t, ;et

f t - , button

etButtonClick
disable

mouseUp
mouseDown

Figure 46 - LOTOS Button Interactor

This receives input which, is either a mouse press (mousedown), or a successful click (mouseup). Each
will cause feedback: the button will appear to be pressed and then unpressed. A successful mouse click
is the input trigger, which causes the value n to be sent to the application side. The interactor can also
receive output (setLabel) that gives a picture to display on the button. The button can also be enabled,
so that it accepts input, or disabled, so that it does not.

The LOTOS interactor model provides one further graphical representation to help understand the
composition of processes, the Process Interactor Network [50]. Here processes are represented by
named boxes, communication gates by circles and communication by lines. This further representation
complements the graphical interactor diagrams above.

167

The LOTOS interactor model therefore provides a model that can be used to consider architectural
system design.

9.3.1. TLIM - Tasks, LOTOS, Interactors and modelling

This LOTOS interactor model has been integrated into a more complete method for developing
interactive systems. This method, the ‘Tasks, LOTOS, Interactors and Modelling” (TLIM) method,
combines the lower level architectural view o f the system provided by LIM with a higher level task
view [153]. This combined modelling approach can be used at various stages in the design.

It consists o f several phases:
1. An initial, informal phase, where user requirements are determined and a task analysis is produced.
2. The tasks are then structured, and described in a hierarchical graphical notation. This notation

“ConcurTaskTrees” combines ideas from hierarchical task analysis, with temporal operators from
LOTOS. A high level task-based design is therefore possible.

3. This task specification is then transformed into an interactor based architectural description, based
on the LOTOS interactor model described above. This model is system based, and considers both
the interaction objects visible to the user, and the internal application based objects. This
transformation is intended to be semi-automatic.

4. This architectural description can be transformed into a LOTOS specification. The user behaviour
can also be specified in more detail in LOTOS. This formal specification can be used to check
properties o f the design, using automatic model checking tools. Requirements can be defined in
ACTL, a branching time temporal logic. These consist of statements about when it is possible to
perform certain actions. Designers can then verify whether their specification satisfies these
requirements. This sort of analysis can prove particularly useful when designing safety critical
systems.

5. The architectural description can also be used to develop a prototype. This implementation could
take several forms, and relies on the existence o f some user interface programming language. The
current CNUCE research is considering the use of object oriented approaches for this phase.

9.3.2. A Brief Analysis

As an international standard, LOTOS has been the focus o f a good deal o f work on formal verification
tools. This provision o f automatic tools makes it possible to prove complex interaction safety properties
that may be significant to the design. More will be said on these tools in Chapter 11.

The TLIM method provides a behaviour oriented view of system design. It is concerned mainly with the
external behaviour of interaction objects and their communication. It uses a “constructive” style of
specification, where the effect of events is described. In contrast, the York approach is a “model
oriented” approach where relationships are specified, and interactors are defined to obey specific
predicates [41]. The graphical notation used in the LOTOS Interactor Model is perhaps clearer than that
used in the York interactor model, as it shows how user events relate to application based events, and
how they are structured together.

However, LOTOS specifications can be hard to understand at first, and can prove overly complex when
dealing with small systems [148], The current approach to TLIM also lacks real time operators. This
problem can, however, be overcome by using newer versions of LOTOS, such as the new E-LOTOS
standard [97], which possess real time operators.

More fundamentally, the LOTOS interactor model suffers because it is a purely event based approach.
It is therefore more difficult to consider the state o f the system. Certain concepts, such as relations
between component’s states are impossible to define. For instance, a folder window displays a function
of the contents of the folder. If we use only an event passing approach, then the folder window
component must communicate explicitly with the folder component to maintain consistency between
their data. While concepts such as mouse clicks are certainly events and should be treated as such; a
mouse position is a status phenomenon. Thinking about such concepts purely in terms of events, for
instance a mouse motion event, can make it difficult for a designer to understand a problem properly
[38],

168

The LOTOS interactor model has been applied to a range of case studies including MATIS, an airline
booking system, and CERD, a component o f an air traffic control system [152]. The LOTOS interactor
model is currently undergoing further work as part o f the MEFISTO European project, investigating the
use of formal modelling approaches in Air Traffic C on tro l.

9.4. Petri Nets and MICO

Palanque and Bastide [12] have developed an integrated approach based around Petri nets and object
oriented design. This method, the MICO method, uses Petri nets to produce both a task and a system
model. These models can be automatically combined, to check for conformance between them.
Designers can therefore check that the system model supports all necessary tasks. This approach relies
on the Interactive Cooperative Objects (ICO) formalism. This formalism borrows concepts from the
object-oriented paradigm, including dynamic instantiation, inheritance and client/server relationships.

The ICO model was originally designed to handle event driven interfaces. The behaviour of a system is
described using Petri nets, while the components are described as objects. The actions that can be
performed in the Petri net, are therefore supplied by object definitions. The ICO model uses timed Petri
nets to allow real-time concepts to be discussed. Petri nets describe a system in terms of state variables
(named places, shown as ellipses), and by operations (called transitions, shown as rectangles). These
components are connected by arcs. The system state is given by the marking of the net, shown by a
distribution of tokens on the net’s places. State changes result from the firing of transitions, resulting in
a new token distribution. To fire a net, all input places must be marked. Then tokens are removed from
the input places and are deposited on the new output places.

The ICO formalism is also being developed as part of the MEFISTO project. Recent work has extended
the ICO formalism to cover other aspects such as services, state and presentation. An ICO offers a set
of services that define the programming interface offered by the object to its environment. The state of
an ICO is the distribution and the value of the tokens in the object's Petri Net. Because services are
related to transitions, the current state may influence the availability of services, and conversely the
performance o f a service will alter the state. Rendering functions can be associated with places, thereby
specifying what effects a dialog change has on an interface. Recent work has begun to link Visual Basic
prototypes to ICO models. This allows changes to the dialog petri-net to be viewed as the interface is
used.

The MICO approach has a number of positive features. Again system requirements can be specified in
ACTL and proved using automated tools. A study by Palanque, Patemo et al [148], suggested that Petri
Nets provide a good way of representing small-scale descriptions o f systems, and of representing
abstract views of a system’s behaviour. However, they perform more poorly than LOTOS when
describing more detailed specifications. The composition operators in LOTOS make it easier to build
large, detailed, modular systems [148]. The MICO method also suffers from some of the other
disadvantages associated with the LOTOS model, as it is also an event based approach. MICO objects
are used to describe components, we therefore have some notion of internal state. However, it is still
not possible to consider status phenomena.

9.5. SpecTRM Requirements Modelling

Leveson has been working on the development of a formally based approach to requirements
specification [120]. SpecTRM (Specification Tools and Requirements Methodology) is a CAD system
for digital automation. It is intended to aid engineers in developing complex, safety critical systems. It
emphasises early discovery of errors, through early analysis; recording requirements and design
rationale; and reuse in system design. It provides a set of tools to support a range of different forms of
analysis, including safety analysis, test data generation and completeness and consistency analysis. It
uses a state-machine requirements modelling language based around a state charts variant. A black box
modelling approach is used. That is, models describe component behavior only in terms of outputs and
inputs that stimulate or trigger those outputs. A model does not include any information about internal
design, only about externally visible behavior. This allows the construction and analysis of systems a
compositional manner; review and analysis o f the specified behavior o f a component can be separated
from review and analysis o f the internal design and implementation of the component.

169

The language has been designed explicitly with readability in mind. The graphical and tabular nature of
the language makes it easy to show to engineers. The language is, however, based on an underlying
formal model, the Requirements State Machine. Using this formal model it is possible to check
automatically for a number of basic properties, such as completeness, and non-determinism. They
define requirements completeness as "the specification being sufficient to distinguish the behavior of
the desired software from that of any other, undesired program" [88]. To guarantee this, each state
must have a single (and therefore deterministic) response for every possible input. A specification can
be analysed in small pieces, allowing incremental construction and analysis. Models are, therefore,
defined in terms of hierarchical state machines. To prevent a state space explosion, all o f the analysis is
performed directly on the model without generating the full finite state machine for the system. They
define a set of restricted composition operators for RSM. Individual components can be analysed for
basic properties. A set o f rules have been defined which determine if these properties are maintained
when hierarchies, parallelism and event propagation are introduced.

The approach has been applied to a number of major case studies. RSML (SpecTRM ’s predecessor)
was applied to TCAS II, a complex, airborne, collision-avoidance system required on all commercial
aircraft with more than 30 passengers that fly in US airspace [88]. The automated tools were able to
show a non-determinism in the TCAS specification that was unplanned, unobvious and had serious
safety implications. SpecTRM was also applied as part of a NASA funded safety analysis of Air Traffic
Control upgrades [119]. The SpecTRM modelling and analysis approach has therefore proved to be
useful and scalable.

However, the range of properties that can be tested for automatically with SpecTRM is still very
limited. Other verification approaches, such as model checking, are more powerful, allowing more
complex properties to be checked. However, scalability is much more of an issue with these more
powerful verification approaches.

9.6. Requirements for Formal Modelling

There are, therefore, a range of formal modelling approaches that can be applied to interactive systems.
Formal models can be used either to help developers reason about and therefore understand a system
and to allow automated verification of important properties. Both o f these are complex areas in their
own right. This thesis focuses only on support for automated verification. As a result, issues such as the
readability o f a notation can be ignored. There have been two classes of approaches discussed in this
chapter: (1) restricted, but easily scalable, verification approaches, such as those provided by
SpecTRM; and (2) powerful, but more complex verification approaches as supported by interactor
modelling approaches. The latter are explicitly based in formal, mathematical languages. Their use is,
therefore, geared towards formal methods experts. This thesis adopts the latter approach, and considers
its use for checking domain and task specific problems, rather than for guaranteeing higher level
usability properties. We are therefore interested in approaches which support form al verification, o f
complex, domain specific properties by form al methods experts. Any approach that wishes to support
this goal must therefore satisfy a number of requirements.

9.6.1. Verification Tool Support
The language must have good tool support. This support must allow specifications to be checked for
both validity (i.e. syntax and type checking), but must also support some form of formal verification,
such as model checking.

9.6.2. Link to Prototype
It must be easy to develop a specification based on an interactive system prototype. This should
preferably be supported by some form of transformation tool, or compiler. This compiler should
provide good support for partial verification of a system, because any realistically large system will be
far too large to model check in one go.

9.6.3. Applicability
Using the approach it should be possible to find problems with the specification. By using only partial
verification it is very difficult to argue that we have proved that a system is safe. In contrast, partial
verification is only really useful i f it discovers problems that would otherwise not have been found.

170

This thesis therefore considers formal methods to be simply another mechanism for finding problems
with a system.

9.6.4. Scalability
Any approach should be applicable to large systems. It is only in the development of such systems that
realistic and useful problems will be found.

This thesis builds on the LOTOS interactor work. It presents a method that supports the creation of a
formal, LOTOS, specification, which given certain parameters can be derived automatically from a
structured FranTk prototype. The model can be analysed to verify important safety properties about the
system design. Chapter 9 will discuss the transformation process; Chapter 10 will discuss the
application of LOTOS model checking technology to the case studies.

171

Chapter 10 - Deriving a Formal Specification

10.1. Introduction

As we saw in the previous chapter, a system can be formally modelled in LOTOS as a network of
interacting components or "interactors". An interactor is represented as a process that has a state, and
accepts updates, that change its state. It also receives requests that make queries about its state. As
discussed in the previous chapter, this interactor modelling approach has been applied to a range of
application areas, including Air Traffic Control. Developing LOTOS interactor models requires a
considerable amount of effort. The ability to automatically generate them is, therefore, important.

We could have attempted to analyse the original Haskell program using Equational Reasoning. This
approach allows us to prove equality between different functions, by simplifying them using equational
laws. However, it cannot be easily applied to applications that make extensive use of input/output.
Thomson [199] applied basic modal logic to Fran, allowing him to reason about temporal properties.
However, in his approach all reasoning was done manually. In contrast, a LOTOS model can be
analysed, using model-checking tools, such as the CADP toolset [66].

The state space explosion problem makes it totally impractical to attempt to generate the entire state
space of any realistically large system. We therefore instead provide support for generating models of
manageable components o f a system. Verification must (and should) therefore be focused only on
critical aspects o f a system.

An interactor network is similar to the architecture model discussed in Chapter 5: an Abstract Behavior
is similar to a LOTOS interactor. This chapter will first introduce the basics o f LOTOS, and will then
show how to convert from a FranTk architecture to a LOTOS interactor model.

10.2. Overview of LOTOS

LOTOS is a standardised Formal Description Technique for the specification of concurrent systems. It
consists of two sub-languages, a data part and a control part.

10.2.1. ACT ONE

The data part is based on algebraic abstract data types. Data is specified in the ACT ONE specification
language. A data type is described in terms of a set o f operations, and a set of equations. As an example
consider a partial definition of the Boolean type.

type Boolean is
sorts Bool
opns false : (*! constructor *) -> Bool

true : (*! constructor *) -> Bool
not : Bool -> Bool
and, _or_ : Bool, Bool -> Bool

eqns forall x, y : Bool
ofsort Bool

not (true) = false;
not (false) = true;
x and true = x;
x and false = false;
x or true = true;
x or false = x;

endtype

The Boolean data type defines the sort Bool. It has two constructors true and false, and a set of
operations. (In reality, the Boolean type would need more than just the four operations given). Some of
these are infix operators shown as _a_. The meaning of these operations is defined in terms of a set of

172

equations that describe their relationships. These equations are used to rewrite a compound expression
until it becomes a constructor. Data types can import other types. The ACT ONE language is
monomorphic, strict and first-order, (i.e. functions cannot be passed as values.) These restrictions have
to be overcome when transforming a polymorphic, lazy, higher order FranTk program into LOTOS.

ACT ONE is a relatively expressive language. It is, however, fairly cumbersome to use. Its syntax can
be clumsy, for instance, it does not support if-then-else expressions. It has no primitive data types.
Instead, all data must be defined in ACT ONE. This means that there is no syntactic sugar for types
such as strings. As we must enumerate every possible constructor, it makes it impossible to define
continuous types such as Reals. Some LOTOS tools, such as those discussed in the next chapter, allow
ACT ONE data to be linked in with C code. A mapping must, however, still be produced between each
C value and ACT ONE constructor.

The differences between FranTk and ACT ONE data make defining a mapping between them a
complex problem. More will be said on this translation process in Section 10.3.3.

10.2.2. The Control Language

The control part of a LOTOS specification is based on process algebra, combining features of CCS and
CSP. A concurrent system is considered to be a collection of processes that communicate
synchronously; that is they rendezvous at particular points. LOTOS has an interleaving semantics. This
means that concurrent sets of actions are interleaved together to form a sequence. Two actions cannot
therefore be carried out at exactly the same instant in time. LOTOS specifications are composed
together using the operators in Table 1.

stop An inactive behaviour, representing deadlock
G !V ?X:S ; B Interact on gate G, sending value V and receiving a value of sort S henceforth to be

referred to as X. Then behave as process B.
B1 [] B2 Behave as B 1 or B2, whichever starts first
[E] -> B If E is true then behave as B
B1 |[G l,..G n]|B 2 B1 in parallel with B2, synchronised on gates G1 ..

synchronisation, || means full synchronisation)
Gn (||| means no

hide G1 .. Gn in B make gates G1 .. Gn invisible from the outside, these actions are replaced by the
internal action i

exit successful termination
B1 » B2 B 1 followed by B2, when B 1 terminated successfully
B1 [>B 2 behave as B1 until either B1 terminates or B2 performs its first action, after which

point behave as B2
P [Gl..Gn] (Vl..Vm) Call process P, with gates G1 .. Gn and value parameters (VI .. Vm)

Table 2: LOTOS Operators

10.2.3. E-LOTOS

The new E-LOTOS standard replaces ACT ONE with a functional language for describing data. This
would reduce the semantic jum p from Haskell. E-LOTOS, however, still uses a first order language so
some of the same changes would still be required. The E-LOTOS standard also simplifies the control
syntax, and adds explicit real-time support. This addition, in particular, would have been useful when
transforming real-time FranTk programs into LOTOS.

One of the reasons for choosing LOTOS was the assumption that E-LOTOS tools would have become
available quickly enough to use during this thesis. Unfortunately, though verification tools have now
begun to appear [182], they appeared to late for use in this thesis. This thesis therefore only discusses
translation into LOTOS.

173

10.3. Converting FranTk into LOTOS

10.3.1. G enerating a specification

An interactor network is similar to the architecture model discussed in Chapter 5. We can consider a
LOTOS interactor to be equivalent to an Abstract Behavior. Both have a state, and accept updates from
the user side. They also both receive values from the application side via requests.

We can translate a FranTk architecture into an interactor network in three stages.
• Turn each Abstract BVar into an interactor
• For each subview relationship a parent component can send disable and enable events to its

children.
• Link requests and updates between components.

parent make request

take request

i
take update

< —
FranTk
event handler

make request

----- ►

LOTOS
interactor

make update

^ receiveEnabled

make update
children display take request take update

F igure 47 - R elationship Betw een F ra n T k and Lotos In terac to rs

There are two significant differences between the LOTOS specification and the FranTk architecture.
Firstly, FranTk implicitly updates values through behavior requests. Programmers must explicitly send
updates up the tree (towards the application). FranTk then sends request values back down the tree
(towards the user), after evaluating constraints. In LOTOS this must be modelled as a synchronisation
phase, where updated request values are propagated around the interactor network. For a distributed,
multi-user system, each distributed component has a separate synchronisation phase.

Secondly, if we later wish to verify properties about our specification we need to produce a finite
LOTOS specification, that is a specification with a finite number of states. LOTOS model checking
tools, such as Eucalyptus discussed in the next chapter, produce a state transition graph equivalent to the
LOTOS specification. To be able to do this we need to be able to enumerate every possible transition,
and therefore every possible gate and value that will be produced. As requests and updates become
LOTOS gates, the set o f values that they actually use must therefore be finite. An interactor
specification must also have only a finite number o f instances of any given component.

Translating arbitrary Fran component definitions into LOTOS can be a very complex procedure.
However, we can easily handle the subset o f behaviours that have been defined as state transition
functions. Concentrating on this subset o f the prototype may seem restrictive. However, the high level
behavioural models, such as the aircraft trajectory in the ATC system, can be understood relatively
easily and are not amenable to model checking. State transition functions involve far more conditions
and, at least in the case studies undertaken in this thesis, turned out to be found at the critically complex
areas of the design. For instance, with our ATC system, the critical areas of interest are the data link
communications, both between sectors and between aircraft and controllers.

10.3.2. T ransform ing A bstrac t B V ars into In terac to rs

The transformation of a Clock abstract data type into a LOTOS interactor is done in two parts. We must
provide an interactor process to describe the behaviour and an ACT ONE data type to describe the state
of the object. The relationship between an Abstract BVar and a LOTOS interactor can be seen in Figure
48: make request I

take request ABVar make request LOTOS
interactor

take update make update

make update

take request take ipdates
F igure 48 - R elationship Between an A B V ar and LO TO S In te rac to r

174

As an example, consider the clearance interactor in the ATC system. It has two methods, a request that
accesses the current clearance value, and a listener update that is told of DL message updates. (This
information is available from the Architecture model).

ABVar: C1earanc eFL
r e q u e s t s :c le a r a n c e S ta te :: C learanceFL -> B eh avior C learanceFL
u p d ate: c learanceM sg :: L is t e n e r (DLMsg (C o n d ,In t))

The C l e a r a n c e F L interactor is modelled as shown below.

p r o c e s s C learanceFL [c lea ra n ceM sg ,sa m p le] (f :C learanceFL) : n o e x it :=
clearanceM sg?m :DLM sgPairCondlnt;
C learanceFL [. . .] (h a n d leC lea ra n ce (m, f))
[]
sa m p le !f; C learanceFL [. . .] (f)

endproc

p r o c e s s RunClearanceFL [c le a r a n c e M sg ,sa m p le]:n o e x it :=
ClearanceFL [c lea ra n ceM sg ,sa m p le] (in itC le a r a n c e)

endproc

The definition can be read as follows. The C l e a r a n c e F L process handles two events (clearanceMsg
and sample), and has a state (f the current clearance value). It can receive a clearanceMsg event,
accepting (?m) a message, after which it continues, updating the value o f the flight level clearance (j).
Alternatively {[] choice operator), it can synchronise with a sample request sending out (!f) the current
clearance state. In general, we generate one gate for each listener update. In addition we generate a
single sample gate, which returns the entire state o f the interactor. Note that behavioral values can be
replaced with static ones, because the entire interactor state will be resampled every time it changes.
Finally, we have a run process which calls the interactor with the initial data value.

10.3.3. Translating Haskell into ACT ONE

If an ABVar is defined as a state transition function, we can produce ACT ONE data type descriptions
for the equivalent Haskell data types and functions. ACT ONE supports overloading, so that operations
can have the same name, but full polymorphism is not supported. We must therefore generate a data
type for each instance of a polymorphic Haskell data type. For instance, part of the automatically
generated ACT ONE definition for the Clearance data type is shown below.

ty p e C learanceFL i s P a irC o n d ln t, DLMsgPairCondlnt, . . .
s o r t s C learanceFL
opns

C lea red (*! c o n s tr u c to r *) : P airC on d ln t -> C learanceFL
C le a r in g (*! c o n s tr u c to r *) :

P a irC on d ln t, M sgld, C le a r a n c e S ta tu s , P a irC on d ln t -> C learanceFL
h a n d leC lea ra n ce : DLMsgCondlnt, C learanceFL -> C learanceFL

eqns . . .
h a n d leC lea ra n ce (C le a r in g (v a l , , m sg ,W a itin g L a c k ,o ld v a l) ,

R esponse Lack r e f) =
C lea r in g v a l msg W aitin gR esp onse o ld v a l

en d typ e

A few further changes are in general required:
• Curried Haskell functions (such as f a b) become uncurried ACT ONE operations (i.e. f

(a , b))
• W e must convert lambda expressions into separate functions.
• We must convert if-then-else and case expressions into equations.
• We must turn higher order functions into first order ACT ONE expressions.

The first and second of these are trivial. The third can also be done fairly simply.
An expression of the form, i f - p - t h e n - a - e l s e - b becomes the equation p => a; not (p) => b.

175

An expression of the form c a s e x o f (p i -> a ; p 2 -> b b e c o m e s a new set of equations
f (p1) = a;f (p2) = b; ...

The last o f these is more complex. Haskell supports functions such as map, that take others as
arguments. It also allows functions to be partially applied. In ACT ONE neither of these is possible.
Instead we generate a data type with constructors for each use of partial evaluation, and an application
function that will be called when arguments have been passed to a function. For instance, consider the
following example Haskell code. It demonstrates the use of higher order functions. The apply function
performs simple function application.

module Test where
apply :: (a -> b) -> a -> b
apply fun val = fun val
f :: Int -> Int
f x = x + 1
result :: Int
result = apply f 1

For ACT ONE, we generate a type, Int_Int, to handle the higher order function. We have one
function argument, / . We therefore require one constructor to cover the use of this function. Note that
the type of the constructor is Int_Int, matching an Int-> Int function. When this function is
finally applied, we replace its use with applySrt. This takes a constructor, and value and determines
what to apply to the value based on the constructor. The apply function therefore simply needs to call
applySrt. The resl function then simply calls apply with the constructor for f .

type Test is Int
sorts Int._Int
opns

fCon (*! constructor *) : -> (Int_Int)
applySrt : (Int_Int),Int -> Int
apply : (Int_Int),Int -> Int
f : Int -> Int
res : -> Int

eqns forall v2_val:Int,v3_x:Int,vl_fun:(Int_Int)
ofSort Int
applySrt (fCon,varl) = f (varl);
ofSort Int
apply (vl_fun,v2_val) = applySrt (vl_fun,v2_val);
f (v3_x) = plus (v3_x,One);
res = apply (fCon,One);

endtype

This shows the basic approach to handling higher-order functions. W henever we have a function value,
we replace it with a constructor and an application function. We can sometimes avoid the need for this
sort of generation by inlining definitions involving higher order functions. For instance, if we inline the
a p p l y function, (replacing all uses by its definition) we remove the need for a higher order function in
this example.

When generating ACT ONE code, it can be very easy to generate intractably large LOTOS definitions.
We noted earlier that to allow automated model checking a LOTOS specification must contain a finite
number of states. When transforming an ABVar into LOTOS we must be able to enumerate every
possible request that the ABVar may offer, such as every possible clearance value in the
ClearanceFL interactor. Clearly if the Clearance definition relied on large or even unbounded types
such as integers or strings, we would not be able to generate a finite number of states. We must use a
similar approach to that used by Campos and Harrison in their Interactor->SMV compiler[23]. We must
reduce the domain of state variables. We do this by replacing types with enumerated data types. For

176

instance, we could replace the Integer type with an enumerated type specifying a small set of integers
actually used in the ABVar. There are often parts o f a data type that are irrelevant for a given test, in
these case we can enumerate only a single value. These assumptions must be recorded and justified by
the developer when applying this approach. When converting a FranTk program to LOTOS, the
developer provides a set o f definitions which override those in the actual FranTk program. These
definitions can include functions as well as data type enumerations.

W hen overriding, type synonyms may be considered to be separate types. A type synonym inherits the
enumeration of its original type unless a more specific one is provided. For instance, if we had the type
synonym type Label = String in a FranTk program, we might well wish to provide separate
enumerations for Labels and Strings.

data String = One | Two
data Label = Lbll | Lbl2

If FranTk programs make good use o f type synonyms this can significantly reduce the size of the state
space. If the example above did not use a type synonym then all o f the necessary values would have
been required in the enumeration of String.

We must therefore be careful when transforming Haskell code into ACT ONE. There are a number of
important issues:
• syntactic differences such as currying, conditional and lambda expressions
• polymorphism and parameterised data types v simple overloading
• higher order functions v first order functions
• the generation of finite types.

10.3.4. Verifying Parts of a System

Instead o f generating a LOTOS specification for the entire ATC system, which would be intractably
large, we can select individual components and produce a smaller specification of only the critical
elements o f the system. Again the developer must document and justify the choice of these elements.
This selective generation can be done in one of two ways. We can select an individual abstract
behaviour and produce a LOTOS model of it alone. Alternatively we can transform a subtree of the
architecture into an interactor network.

10.3.4.1. Verification with a Single Interactor

By analysing individual Abstract Behaviors, we can carry out analysis early on, when only a small part
o f the whole system may have been implemented. A control process is generated, which runs in parallel
with the abstract behaviour process, and repeatedly performs one o f any valid update actions followed
by a sample event. These valid events are defined as a constraining function o f all available input
events. For instance, for a given test we may wish to constrain the test to use only a restricted set of the
available updates. Alternatively, we may wish to constrain the possible update values. For instance,
with the C l e a r a n c e F L interactor we would want to restrict ourselves to a finite sequence of
clearance events that have consecutive message identifiers.

10.3.4.2. Transforming an Interactor Network

We can generate a LOTOS specification for a tree of components. When doing this we can again define
a constraining process, to run in parallel with each ABVar process, which restricts the available updates
to an ABVar. The use of such constraining processes is necessary to allow compositional model
generation, discussed in the next chapter (section 11.3.5).

Here we must restrict the behaviour o f the interactor process so that it maintains the communication
order and concurrency control used in FranTk. In FranTk we can consider evaluation o f user input to
happen in three distinct phases. Firstly, after some user input, all resulting updates are sent via listeners
and events to the appropriate BVars. This will be referred to as the update phase. Secondly, the system

177

then samples all Behaviors. This results in propagation down the architecture tree. It will be referred to
as the request phase. Thirdly, the view of each component is recomputed and redisplayed in a redisplay
phase. On start up, the system performs one request and redisplay phase, thereby sampling the initial
state o f each component. FranTk also supports a system clock which provides the current time, and
ticks just before every sample.

W e run the interactor network in parallel with a control process. This starts and stops each phase and
generates a tick update before each sample. Any time based interactor, such as one that depended on a
time based predicate would listen to this tick update. The system clock is modelled as an interactor,
which is updated by this tick, and which provides access to the current time as a request gate.

This means that we need to restrict the behaviour of the LOTOS interactor network so that updates,
requests and redisplays happen in these three distinct phases. To satisfy this we make use of input and
output triggers to restrict when interactors may receive input. These triggers are used by each interactor
to synchronise with other interactors in the interactor network. The relationship between a FranTk event
handler and a LOTOS interactors can be seen graphically in Figure 49.

parent

take request

take update

make requ^gt___________ ^ make update

FranTk i^ake request startRetf LOTOS
event handler interactor

— ►

receiveEnabled
startUpdate

make update
children

f
display take request fake update

F igure 49 - R estric ting LO TO S in te rac to r behaviour

Rather than provide a translation of the view function of each component, transformation is considered
to take place on abstract interaction objects. That is, a tree of Abstract BVars is considered to have a
user interface which consists o f a set of update methods (representing user input) and request methods
(representing display updates). The developer selects a set o f request methods which they are interested
in, and a set o f update methods that will be considered as user actions. They can also specify a set of
other methods in which they are interested; all others will be considered to be internal events. LOTOS
provides the ability to hide internal events, thereby allowing us to make observable only those events in
which we are actually interested. When generating the finite state machine, we can reduce it with
respect to observational equivalence. This produces a considerably smaller state space, in which only
the observable events remain (but with the original ordering guaranteed) [111].

When displaying an interactor tree, a component must enable and disable instances of its children where
appropriate. We could dynamically create a new process every time we create a new child and then
destroy that process when the child is deleted. However, the ability to recursively and dynamically
create processes allows for the existence of an infinite number of processes. LOTOS verification tools
will often have difficulty with this form of behaviour. Many, such as those in the Eucalyptus tool set
used in the next chapter, forbid this style of specification. Instead we must create a finite, given number
of child processes at the start and then disable and enable these when necessary. This requires us to
enumerate the complete set of children that may ever exist, and produce an instance of the child process
for each. We must also provide the algorithm with the complete set of instances of each component that
may exist. This list o f instances of each child is provided as input to the activator. Finally, a component
may only enable its children if it is itself enabled.

10.4. Implementing the algorithm
This approach has been used in a small prototype compiler, implemented in Haskell. The compiler
requires several input parameters. Firstly, it must be told which subset o f the architecture tree to
transform. Secondly, it expects an input file containing any necessary overriding definitions for
functions and data types in the system (this includes, for instance, enumerations of unbounded
datatypes). Thirdly, it expects a restriction file that restricts the updates available to each interactor.
Finally it expects a file enumerating all the components in the system (as each component must have a
finite number of children).

178

It then carries out the transformation in several phases:
• It parses the set of relevant Haskell files;
• It finds each relevant ABVar, and its set o f update and request methods.
• It generates code for the set o f methods, and for each data type and function used by this set of

methods.

The compiler currently only supports a basic subset o f Haskell 98. It supports components written in a
simple state-transition style, and it does not include support for advanced features such as type classes.
The compiler was developed as a proof-of-concept prototype; it was not intended for, and has not been
used by any other developers.

10.5. Discussion
This chapter has described an approach that can be used to transform parts of a FranTk program into a
LOTOS interactor specification. The algorithm has been implemented as a prototype compiler in
Haskell. The approach provides a rapid way to generate formal specifications from a prototype.

However, the transformation must be applied very carefully. It can only be applied to elements of a
FranTk program written in a state-transition programming style. Care must be taken to generate finite,
small specifications. It is very easy to generate intractably large specifications using the approach. The
compiler can therefore only be sensibly used by a formal methods expert, with a sound knowledge of
LOTOS, and a reasonable understanding of the intricacies of the transformation approach. It is not,
therefore, a panacea that allows formal methods to be used by non-specialists; it is simply a tool for use
by formal methods specialists in the development of specifications for a prototype interactive system.

179

Chapter 11 - Performing Formal Verification

Formal analysis can be used to verify completeness criteria about user interaction, to search for paths to
hazardous states that might be reached within an interface, and to verify consistency questions about
interaction when in different modes of a system. Mode confusion can be a serious problem in complex
systems [176]. Studies have shown that with aircraft automation pilots can lose track of automation
behaviour and perform the wrong action, an error of commission. In more complex settings, errors of
omission can be dominant. Here the operator fails to take a required action, often because a system has
done something undesirable, perhaps because of an unnoticed mode change.

Leveson et al [117], Javaux [96] and Rushby [168] have shown that state based modelling can help in
finding "accidental complexity" within system designs that make mode confusion errors more likely.
They suggest a number of different criteria for analysis. Many o f these criteria require designers to
manually analyse a specification. A LOTOS specification is not sufficiently readable to make this
practical. However, some criteria can be analysed automatically. In particular, we can search for
inconsistent behaviour in an interface, where similar tasks or goals are associated with different actions.

Given a specification it is important to be able to reason about it. This can, for instance, be done, by
simulating the specification to check that particular sequences of actions are possible (e.g. [198]). We
cannot, in general, prove with such a technique, that a particular sequence of actions will not happen.
W e may also not be able to prove that a sequence of actions is possible with only finite resources.
However, this is often very important.

Model checking provides a more powerful approach for carrying out such verification. For instance, the
use o f model checking tools to test for problems such as mode confusion is currently a popular area of
research (e.g. [24]). Given some specification that can be translated into a Finite State Automaton, such
as a LOTOS specification, and some temporal logic formula, a model checker can perform a fully
automated proof o f whether the specification satisfies the formula. This makes it easier to perform
complex proofs in the context o f iterative design. Changes to a specification will require only that the
temporal formula be checked automatically against the new specification. This form of rechecking can
be as automatic as using regression tests in software design. This is in contrast to Theorem Proving,
where a whole series of lemmas may be required, before a formula can be completely proven again.

However, model-checking environments also tend to have some disadvantages. In general, they can
only perform proofs across finite systems, using finite types. We therefore need to produce a LOTOS
specification with a finite state space. For instance, with our QOC editor specification we proved
properties about an instance where there are only a finite, and given number of users, nodes and edges
in existence. The generation algorithm discussed in the previous chapter produces such a specification.
Even if we have produced a finite specification, the state space explosion problem may still make model
checking impractical. The problems arise when trying to convert a specification into a finite state
automaton. It can be well beyond the available computing resources to enumerate the entire state space
of a specification. Solutions to these problems do, however, exist. We can for instance use
compositional model generation [53] to generate the state machine in several steps.

There has been some other work using model checking with interactive systems specifications before.
Patemo [152] used LITE, a LOTOS model checker, to verify properties about interactor specifications
written in ACTL, an action based temporal logic. However, LITE only worked with basic LOTOS; that
is on LOTOS specifications that did not make use of ACT ONE data. Specifications could simply be
produced using the core LOTOS operators outlined in Table 2 (on Page 172). This restriction reduced
the generality of the approach. In contrast, this chapter applies model checking technology for full
LOTOS to verification of interactive systems.

In this chapter, I will firstly give a brief introduction to simulation techniques, and explain why they are
not capable of performing all necessary forms of verification. I will then go on to consider model
checking with the Eucalyptus toolset [66] for LOTOS. I will discuss model generation approaches that
can avoid some of the state space explosion problems. I will argue that compositional model generation,
in particular, is well suited to interactor specifications, and show how it can be automatically supported

180

by the FranTk-LOTOS compiler discussed in the last chapter. I will then show how model checking,
with the p-calculus (a modal logic), can be used to prove important properties about a specification.

11.1. LOTOS Simulation

LOTOS simulation tools, such as LOLA [43], can be used to perform some reasoning and verification
with a specification. For instance, [198] has shown how to use LOLA for a form of verification known
as property testing. We can attempt to check safety properties, which state that something bad should
not happen. Given a specification, we can define a dangerous trace of actions as a LOTOS process,
which ends with a testUnsafe event. W e can compose this unsafe process in parallel with the
specification, to form a test process. If the testUnsafe event is reached by this test process then we have
determined that the specification is unsafe.

For instance, we could define the locking property for the QOC case study as follows.

process unsafe [lock.lock,testUnsafe] :exit :=
lock?user:String?id:String;lock?user2:String [user ne user2]!id;testUnsafe;exit

endproc

It says that if one user can lock an object, and then a second user (where user does not equal user2) can
lock an object, then we have reached an unsafe state.

We can use LOLA to check whether we can reach the unsafe event. If a specification contains non-
terminating processes, as all specifications produced by the algorithm in the previous chapter will, then
an expansion depth must be specified. This restricts how much of the state space must be explored. If
the undesired behaviour occurs within the given depth we have proved that the specification is unsafe.
However, if the undesired behaviour does not occur, then we have simply shown that our specification
may be safe with a degree of confidence determined by the expansion depth.

Thomas [198] shows how to expand a combined test process, to try to prove that the test is never
passed. If we have a process that has a finite number o f states, but that never terminates we can
transform the test specification into a set o f recursive equations and then examine the non-recursive
prefixes to ensure that the test event does not occur. This approach, however, requires us to find these
recursive prefixes by hand. This means that we must also reduce our specification to a manageable size
by hand, extracting only the parts of our specification that we wish to reason about.

Markopoulos [127] used this sort o f approach to demonstrate task conformance between a task
definition and a system specification. He generated a number of action sequences that represented
important activities in the task model, and used LOLA to try to demonstrate that these action sequences
were possible in the system specification. This approach can therefore demonstrate that the temporal
ordering, defined in the task model, is maintained by the system model.

The advantage of using simulation tools such as LOLA is that we can specify processes that can have an
infinite number of states, and therefore that may use non-finite data (such as all the natural numbers), or
that may dynamically create new instances of a particular process. This is because we only expand a
process to a particular depth. However, we can only reason about processes up to that particular depth.
Even given a process with a finite number of state, we may still not be able to verify that a particular
trace does not occur. More advanced verification tools and techniques are therefore necessary.

11.2. Model Checking

The Eucalyptus toolset [66] provides an interface to a set of LOTOS tools. An important part o f it is
CADP (Caesar Aldebaran Development Package) which provides a model checker for LOTOS. It
provides facilities for transforming a LOTOS specification into a transition graph known as a labelled
transition system (hereafter referred to as an LTS), and for proving properties about this LTS using a
variety of temporal logics.

It consists o f several parts:

• C A ESA R which com piles a LOTOS program into a transition system. The ACT ONE data part is
first com piled into C code by C A ESA R.A D T which is used to com pute this graph.

• A LD EBA R A N is a verification tool for com paring or reducing specifications according to
b isim ulation relations.

• O PEN /C A ESA R - consists o f several tools fo r exploring transition graphs. It includes a tool
(X SIM U LA TO R) for sim ulating a specification, and tools for on-the-fly exam ination o f a LOTOS
specification.

• X TL [128] is a program m able tem poral logic checker. It uses a special functional program m ing
language which can be used for graph exploration. X TL supports definitions for tem poral logics,
including the (i-calculus used in this chapter.

EU C A LY PTU S provides an X-W indow s based, graphical user interface to allow access to this set o f
tools (see Figure 50). The left side o f the interface provides an icon for each file. For each icon a pop­
up menu provides access to the set o f possible operations. The right side o f the interface contains a text
w indow show ing the output from the operation. T his provides a fairly basic, but sim ple interface to the
toolset. As model checking tools are fully autom ated, and so require no user involvem ent during
verification, this form o f interface is sufficient. M ore sophisticated interfaces are needed for interactive
theorem proving where user involvem ent in the proof process is significant [3].

Vi OK

J J

Figure 50 - The Eucalyptus Interface

The EU C A LY PTU S tools have been used on a variety o f significant case studies. These include
specifying distributed systems; network protocols; hardw are protocols such as the Pow erScale, a
m ultiprocessor architecture based on PowerPC processors and used in B ull’s Escala servers and
w orkstations [26]; and em bedded software, such as the Bight warning system o f the Airbus 330/340
[65].

I will now discuss model generation, and then model checking with the CA D P toolkit.

182

11.3. Model Generation

The semantics of a LOTOS specification is described in terms of a labelled transition system (LTS).
The CADP tools can generate the LTS for a finite LOTOS behaviour. This means that dynamic creation
of processes is impossible because this would lead to possibly infinite behaviour. It is, therefore, not
permitted to write expressions such as:

p r o c e s s X = P | | | X

CADP is also incapable of dealing with expressions that make unrestricted use of types with an infinite
number of values, such as integers. This is because, when producing a transition graph for a
specification, CADP will have to enumerate every possible transition. For instance, if we used an
integer type then performing the gate X! 1 would be possible, but attempting to perform X ?In teger
would require CADP to generate an X transition for every integer. The generation algorithm discussed
in the previous chapter produces a finite specification.

However, even with a finite specification it may still be impossible to produce the LTS, if the
specification is too large. A specification can easily expand into a graph with many millions o f possible
states. The maximum number of states that can be handled by CADP is dependent on the amount of
memory in the given workstation. Using around 30Mb of RAM Aldebaran can handle only a few
million states. We therefore need more sophisticated approaches to model generation. These minimise
graphs with respect to bisimulation relations, and include such as compositional, symbolic and on-the-
fly graph reduction techniques.

11.3.1. Model Minimisation

There are a number of relations that can be used to compare LOTOS expressions. We can make use of
these relationships to reduce a large transition graph into a smaller one. For each behavioural relation,
R, the minimisation of a given LTS S with respect to R, involves finding the smallest LTS (in number
of states) which is R-equi valent to S [111].

Though a variety of relations exist we will consider two here, observational equivalence (a coarse
relation) and strong bisimulation (the finest relation). Both these relations maintain safety properties: so
that if a process S deadlocks, then its minimised form will also deadlock. This holds because the
minimised form of S may only perform a sequence of events, if S can also perform that sequence of
events.

For two LTS, LI and L2 , to be equivalent, then if LI performs a sequence of actions L2 must be able
to perform the same action, and vice versa. The restriction on which sequence of actions to consider
marks the difference between observational and strong equivalence. With observational equivalence,
we care only about sequences of observable events. LOTOS considers all hidden events to be
unobservable; unobservable events are represented by the internal event i. Occurrences of this internal
event i, are therefore ignored. With strong bisimulation if LI performs the internal event i, then L2 must
also perform /. We can define this formally as follows:

Definition 1: a labelled transition system L, is a quadruplet L=(Q,A,T,qO) where Q is a finite set of
states, A is a finite set o f actions, T is a transition relation (T c Q x A x Q) and qO an element of Q
called the initial state. W e denote a transition (p,a,q) e T by p a—» q.

Definition 2: For each relation R e Q x Q, we define:
B l (R) = K pl,p2) | V 1 e L, (V q l . (pi q l => 3 q2 . (p2 -> q2 A (ql,q2) eR)) A

(V q 2 . (p 2 U q 2 = > 3 q l . (p i - > q l A (q 1 ,q2) e R))}
The bisimulation equivalence « L for the language L is the greatest fixed point of BL.

Depending on how we define L we can produce different relations. Strong bisimulation is defined
when L = {{a} | a e A } ; observational equivalence is obtained when L = i* U {i*ai* | a e A}.

183

Reduction with respect to observational equivalence is particularly useful when considering interactive
systems. Though a system may have a complex internal behaviour, we only need to consider those input
and output events observable to the user. In the previous chapter, the transformation algorithm produces
a specification where a small set o f events (those which we wish to reason about) are visible, and all
others are hidden. When producing the LTS of such a specification, if we reduce the model with respect
to observational equivalence, then we can produce a much smaller LTS. It will contains only those
events about which we wish to reason, but will have the same behaviour as the full specification with
respect to those events. For instance, with the QOC editor, the LTS after reduction had around a
thousand states; in contrast the full transition system would have consisted of many millions of states.

11.3.2. Symbolic Minimal Model Generation
As discussed earlier, it is often not possible to produce the entire graph of a LOTOS expression because
it becomes unmanageably large. However, when reduced with respect to a bisimulation relation we may
get a LTS that is o f a manageable size. One approach to solving this problem is therefore to produce the
graph and minimise it simultaneously. This is known as minimal model generation [53]. This form of
generation can be very effective when the size of the reduced state space is small but the full state space
contains many millions of states.

11.3.3. On-The-Fly Techniques
Another effective way of handling large specifications, is to use on-the-fly analysis [54]. Caesar can
produce an abstract representation of a LOTOS specification, rather than enumerating the whole state
space. Given such an abstract representation, we can attempt to perform verification with the abstract
model. In this case, the LTS is generated as it is needed to perform the verification. This can be very
effective if we only need to check a part o f the whole LTS to perform this verification. CADP allows
verification from simple deadlock detection, to comparisons of LTSs and evaluation of p-calculus
formulas all to be done on the fly.

11.3.4. Compositional Model Generation
CADP also support compositional generation of a LTS. For a LOTOS specification with a number of
parallel processes, we can generate the LTS for each process. These can be reduced with respect to a
bisimulation relation, before being composed together to form the whole system. This approach can be
more effective than either of the two previous techniques [111], handling larger specifications, and
doing so far more rapidly.

This sort of approach is particularly applicable to interactive system specifications. These consist of
sets of abstract components, which, are themselves, formed from sub-components. For instance, in the
QOC editor, a window work area consists o f a set of nodes and edges. These abstract components
contain internal state, and therefore behaviour, which will be hidden at higher levels. In particular, an
interactor specification generated by the algorithm in the previous chapter will be formed from a
hierarchical tree of processes. W e can therefore generate the complete LTS for the specification by
generating the LTS for each component at a given level o f the tree and then composing these together at
the level above.

Compositional model generation must, however, be done carefully. In a constraint-oriented
specification, such as the ones produced by the FranTk-LOTOS generation algorithm, two processes
P | | Q will strongly constrain each other’s behaviour. Generating P or Q separately may produce a
far larger graph than their composition [111]. This will certainly be the case in a generated interactor
network, where, for instance, an ABVar interactor will actually receive only a small number o f updates
from the restricted set o f components in existence, but which will in theory be able to receive a far
larger set of updates.

This problem can be overcome by synchronising P or Q with an environment E ([154], [111]). This
environment E should be defined such that for every event, e , in P, if P | | Q can perform e , t h e n P
| | E must be able to perform e. The process E is therefore a “conservative approximation” [154] of

the rest of the system, as seen from P. That is, E allows all executions that P can go through as part of
the whole system. This solution can be applied very easily to an interactor specification generated from
FranTk. An automated approach for supporting this will be presented in the next section.

184

Where necessary the three approaches can be combined. For instance, we could generate all the
separate processes in a specification, and then compose them using minimal model generation, or verify
the composition of transition graphs on-the-fly. When developing the Thesis case studies the two most
useful techniques appeared to be compositional model generation and model minimisation.

11.3.5. Automated Support for Compositional Model Generation

The FranTk-LOTOS compiler provides some automated support for compositional model generation.
This is very important as Pecheur [154] argues that dividing a specification into suitable components,
and restricting these components with a suitable environment process, can be a very complex task.

This automation is done in two stages. W e can restrict every interactor so that it only accepts the
updates, that would be provided by the system. We can then restrict every interaction object process so
that it only accepts requests that will be provided by these restricted ABVars. A list of possible updates
must be given to the FranTk-LOTOS compiler for every ABVar to be restricted. This is done using the
restriction file mentioned in the previous chapter. We can then generate the LTS for the restricted
ABVar. From this, we can automatically extract all possible sample actions and form a restrictsample
process. Finally, we can generate a process call for every component instance, and restrict it with
respect to all relevant requests.

The complete generation of an LTS will therefore be done in 4 phases:
1. generate the LTS for each ABVar interactor;
2. generate all the restriction processes for each component interactor from these LTSs;
3. generate the LTS for each interaction object component;
4. finally, generate the complete LTS, by composing the LTS hierarchically up the tree.
At each stage we reduce a given LTS with respect to observational equivalence, before composing it
with its parent.

This approach is very effective. It maps well onto component based interactive systems specifications.
This has allowed it to be fully automated using the FranTk-LOTOS compiler. It will allow generation of
far larger specifications than are possible without compositional generation.

11.4. Model Checking With The |H-CaIculus

Once we have generated the LTS for a given specification we can perform a variety of types of
verification. For instance, we can automatically search for any deadlocks with Aldebaran [67]. We
could also compare a specification with a test process as discussed in section 11.1. However, a more
“powerful” way of verifying properties is to evaluate temporal logic expressions against the LTS. In this
section we consider one such logic, the p-calculus, a branching-time modal logic. Most prepositional
temporal and modal logics used in computing are sub-logics of the modal ^.-calculus [214]. In it we can
express a range of properties covering liveness (such as "eventually an action will happen"), safety
(such as "it is always possible to do an action") and fairness (such as "infinitely often an action can
happen").

11.4.1. The Basics Of The p.-Calculus

The fi-calculus is a branching time modal logic that can be used for model checking [66]. It is used to
express the capacity to perform some action. Consider the following LOTOS process:

P I = A ; B ; P i [] C ; P 1

It perform the events a then b , or c forever. W e can consider two properties that are true for this
definition. These are:

< " A " > T - In the current state (i.e. at first) it is possible to perform action A
[" B "] F - In the current state (i.e. at first) it is not possible to perform action B

185

Informally, <x>P means that there exists an a-transition from the current state, and after it P is
satisfied; [x] P means that after all ^-transitions from the current state, P is satisfied. Here a transition
is an event such as A, B and C in the process PI.

In general, we express the capacity to perform some action, a, as <a>T and incapacity as [a] F. We
can also express that any action is possible or impossible < . >T and [.] F . The former therefore
means that we will not deadlock, and the latter means that we will.

W e can summarise the behaviour o f <x> and [x] in the following table. The first column represents
the case when the desired action is available, the second when the desired action is not available.

Action x is available Action x is not available
<x>T True False
<x>F False False
[x]T True True
<x>F False True

Table 3 - The Behaviour of <x> and [x]

11.4.2. Fixed Points
So far we have expressed formulas that hold only over the current state. We need, however, to be able
to express formulas that hold over some future state, possibly even over every state. This can be done
by making use of two important operators, gfp (greatest fixed point) and lfp (least fixed point). These
operators take the form g f p X . p X a n d l f p X . p X where X ranges over a family of
prepositional variables. (The g f p operator can also be written as v, while l f p can be written as p..)

They are best understood by example. If we wish to state that it is never possible to perform an event D
we can do this as follows:

g f p X . ([" C "] F a n d [.] X)

This is a recursive definition. It says that in the current state it is not possible to do a D-event and, after
any transition [.] the definition still holds (i.e. it is not possible to perform a C).

If we wish to express that in some future state it will be possible to perform a B-event, we can use the
following:

l f p X . (<"B">T o r < .> x)

This says that in the current state we can perform a B, or after some action (< . >) the definition is True
(i.e. it may now be possible to perform a B).

It is significant that one of these definitions uses the g f p operator, and the other uses l f p . They have
subtle, but significantly different meanings and often give different results when used. Intuitively l f p
should be used to express eventualities, that is something may eventually become true, g f p should be
used to express necessity, that is that some condition must always be true. The g f p will produce the
largest process that satisfies the given expression, while l f p will produce the smallest. The g f p can
sometimes return the infinite process as a result while l f p may return the empty process. The table
below shows when to use both definitions.

l f p g fp
f X = <a>T or [b]X use Infinite process may be generated
f X = [a]F and [b]X null process may be generated Use

Table 4- Fixed Point Operators

186

11.4.3. Sim plifying Specification

Using fixed point operators, we can express a wide range of properties. However, fixed point operators
can be difficult to read and understand when they become nested. To overcome this problem, a number
of macros can be used. (These form part of the LTAC temporal logic that is defined in terms of the (i-
calculus.)

For instance, we can express that a process never deadlocks, or that it is always possible to perform a
particular action using the ALL operator:

ALL (< . >T) says that it is always possible to perform some action, that is we never deadlock
ALL (["D"] F) says that it is never possible to perform an event D
ALL (< " A" >F) says that it is always possible to perform an event A

(ALL (p) = g fp X . p and [.] X.)

With respect to process Pi, the first two of these statements are True, and the last is F a ls e (as after
we have performed an A, we can only perform a B). The ALL operator is therefore used to express
safety properties, that may be important when verifying an interactive system, such as "At any point a
control order can only be sent to one plane".

There are several other macros that are useful. We can state that we will inevitably reach a state where
we can perform an A using the INEV operator:

INEV (< " A " >T) says that inevitably we will be able to perform an A
INEV (< " B " >T) says that inevitably we will be able to perform a B

(INEV (p) = l f p X . P or [.] X)

When applied to process Pi, the first of these formulas is True, as in the initial state we can perform
an A. The second of these formulae is F a lse , however, as we may continue to perform the action D
forever, and so because we never perform an A, we will never be able to perform a B.

The inevitably operator can therefore be used to express liveness properties that state that we can
eventually do some action. This can be important when verifying interactive systems, as we need to
express requirements such as "when a command is sent it will eventually reach a plane, and after this
there will be some feedback".

We can state that in some future state it will be possible to perform an A, using the potentially (POT)
operator:

POT (< "A" >T) says that in some future state we will be able to perform an A
POT (< " B " >T) says in some future state we will be able to perform a B

(POT (p) = l f p X . P or <.>X)

When applied to PI both these formulae are True. We can therefore use the potentially operator to
express reachability concerns with an interactive system, saying that after some point it will be possible
to perform an action.

Finally, we can express that some expression is True until some event using the until operators. Two
such operators exist, strong until (SU) and weak until (WU). Strong until is equivalent to weak until,
except that the future change event must occur. For instance:

WU ["B"] F <"A">T says that we cannot perform a B until such time as an A occurs, but an A
need not occur
SU [" B "] F < " A " >T says that we cannot perform a B until such time as an A occurs, additionally
at some point we must perform an A

187

(WU (p i , p 2) = g fp X . p i or [.] X)
(SU (p l ,p 2) = l f p X . p i or [.] X)

The until operators are useful as they allow the expression of interaction properties such as "A message
may not be sent to the second plane, after sending it to the first".

11.4.4. Verification with XTL
Verification of p-calculus formulas is done using the LTS-specific functional language XTL [128]. This
language allows the definition of macros. Several temporal logics have been defined in it including the
p-calculus. XTL provides functions for handling states, transitions and labels, and sets thereof. It can
match gates, and be used to do pattern matching on the labels of transitions. For instance, the following
function searches for some transition of G with integer parameter larger than 10 [154]:

e x i s t s T : edge where
T -> [G ?X : in t e g e r where X > 10]

e n d _ e x is t s

This ability to carry out pattern matching is very powerful, and allows us to write more general
formulas than is often possible with model checking. For instance, the older p-calculus tool, Evaluator,
is only capable of matching gates with explicit-value data. The current transformation algorithm used in
CADP to produce a LTS loses some of this type information. Instead of providing access to the
complete set of ACT ONE sorts and equations defined in the specification, all values are translated into
one of three types, booleans, integers or, if neither o f the above is appropriate, strings. Future versions
of CADP should, however, overcome these restrictions.

11.5. Formal Analysis in the Case Studies

We applied formal analysis to both the QOC editor and the ATC case study. With the first of these we
were able to prove some simple properties. For instance, we verified that our system implementation
supported the locking properties that were highlighted in the design:

• No two users can alter the same node at the same time;
• If one user has locked a node it cannot be deleted by another user, even with delete group.

However, these checks were fairly trivial; we did not find any problems with the system. The ATC case
study provided more interesting results.

The ODIAC working group, at EUROCONTROL, has specified a number of data-link communication
protocols. When developing our prototype, some of these protocols were available as transition
diagrams, however, some were only available as natural language descriptions. We therefore wanted to
verify that our prototype correctly, and robustly, supported these protocols, and that our interpretation
o f the natural language descriptions was consistent and complete.

We analysed the prototype with respect to each of the three major communication protocols: transfer
between sectors, negotiation of transfer parameters, and flight clearances. W e used a mixture of simple
simulation, to step through the specification, and model checking to carry out the analysis. We
compared the behaviour o f the system under these communication activities to check whether errors
were handled consistently. For instance, if several messages were to be sent in quick succession and
some of them failed, would error messages creation, and future system behaviour in response to
controller commands, be consistent.

We found one significant problem in the prototype. We do not claim that using formal verification was
the only way to find this problem; other approaches, such as state-chart based walkthroughs may also
have found it. However, it had lain undiscovered in the code despite a reasonable amount of testing.

The following modal logic formula specifies that always (ALL) after an ATC Communication
Management message is sent, the message will inevitably be displayed as accepted (DISPACPT ! m)
or a failure message will be displayed (DISPFAIL ! m).

188

ALL ([] (SENDACM ?m:Msg,
INEV ((<> (DISACPT! m))

o r
(<> (DISPFAIL !m))

)

)

)

This formula did not hold true, and CADP provided a counter example. The problem occurred if two
messages were to be sent by the controller in quick succession. If a logical acknowledgement message
were to be received for the second message before the first message timed out, then the time out on the
first message would be ignored. This would result in the system continuing to wait for a reply and so
neither an accept nor a fail message would be displayed to the controller.

This verification complements formal approaches such as Leveson’s Requirements State Machine
(RSM), used in SpecTRM [120]. The LOTOS specification is at a similar level of abstraction to
Leveson’s SpecTRM-RL. Both provide black box models of a system, concerning themselves with the
externally visible behaviour o f system components and their interacting behaviour.

Leveson’s approach is more general. It covers all aspects of the requirements process. It also allows a
global analysis o f the entire system, for properties such as completeness criteria. The modelling
language used in SpecTRM is also far more readable, as it uses a mixture of graphical and tabular
notations. However, our LOTOS specification provides a powerful model of the user interface of the
system. As it is derived from the prototype, it reduces the time necessary to develop a formal
specification, and is well integrated into the development o f the interactive components o f a complex
system. Though it is not very readable, it can be executed, allowing specialists to step through the
specification. It can be used to automatically verify more complex properties of a system than is
possible with SpecTRM.

11.6. Conclusions
It can be very important to perform verification with a specification. Model checking provides an
effective way of doing this. The Eucalyptus toolkit provides a powerful set of tools that can be used to
carry out model checking with LOTOS. We have to be careful when generating a state model from a
LOTOS specification. It can be difficult to avoid the sate space explosion problem. However,
compositional model generation provides one powerful way of doing this. We can support this form of
model generation in our FranTk-LOTOS compiler by producing extra code, and restricting the
behaviour o f each component automatically.

The p.-calculus, supported by XTL, provides a powerful tool for model checking. It can be used to
express a wide range of temporal properties that we may wish to hold true about a LOTOS
specification. The verification with the ATC system did prove useful finding an error in our prototype.
However, the verification tools must be used with great care. Their use requires a working knowledge
of temporal logic; logic formula must be applied with care, as not all will return a result in a sensibly
small period of time.

189

Part V. Conclusions
Part V of this thesis presents conclusions about both the FranTk GUI library and about the formal
verification work. It also highlights areas requiring future work.

190

Chapter 12 - Conclusions and Further Work

12.1. Background Summary

The focus of this thesis was on the development of tools to support prototyping and verifying
interactive systems. The creation of complex, multi-user systems is a difficult process. It requires an
iterative development approach. Such systems must allow group awareness and support co-ordination
and communication between different users. These users must be able to understand the common
context that they are working within. This means that usability heuristics will be even more difficult to
use in a CSCW project. Only through thorough evaluation can we hope to develop systems that truly
support their users. A good example of such problems arise in the development of Air Traffic Control
systems. Social studies o f such systems [84] have shown that co-ordination between Air Traffic Control
Officers is subtle, complex, and often outwith the bounds of regulated procedures; the usability o f these
systems can be in direct contrast to standard usability heuristics.

12.2. FranTk Contributions

There is therefore a need for good prototyping tools, that support the rapid development o f complex,
interactive systems. The first and most significant contribution of this thesis, is therefore the
presentation of FranTk, a new declarative prototyping language for creating complex, dynamic
interactive systems. It has been applied to a range o f case studies including two multi-user systems.

FranTk draws on ideas from both Clock and Fran. It concentrates on providing a programming model
that is both “declarative in the large and in the small” . This allows systems to be built in a high level,
structured manner. In particular, it provides good support for specifying real-time properties of such
systems. This thesis has discussed the development of a fully fledged user interface library. It has been
released as a publicly available toolkit (http://www.haskeIl.org/FranTk).

FranTk was developed to satisfy a set of high-level requirements. It should be:
• High level and declarative;
• Support declarative concurrency;
• Provide a compositional programming style;
• Support good application/interface separation;
• Provide tool support where appropriate;
• Be scalable, and therefore applicable to large systems;
• Be efficient enough to handle large systems.

FranTk provides a number o f major contributions that satisfy these requirements:

• FranTk lifts Fran’s behaviors and events to widgets. This is the key to the declarative style of
programming. The appearance of a widget can be defined fo r all time in terms of FranTk
combinators. An interface can therefore be defined as a function of some application state. At no
point do we require to imperatively define how an interface will change; instead, we simply state
what it should look like.

• FranTk provides good support for dynamic as well as static interfaces. The construction of systems
with a dynamically changing number of components can be difficult in many GUI systems, and
frequently requires a very imperative and sometimes cumbersome style of programming. FranTk
provides dynamic collections. These can be used to model dynamic applications, such as sets of
aircraft, in a declarative style. They can be rendered efficiently in an incremental manner. The use
of behavioral values and dynamic collections allows a single abstract model of an application to be
produced. We can then have multiple views of this model, providing good application/interface
separation. This separation is particularly important in the development of multi-user systems.

http://www.haskeIl.org/FranTk

191

• FranTk extends Fran with support for hierarchical interactive displays, allowing access to input
from individual components rather from one monolithic window. This was vital to allow a truly
compositional style of programming.

• FranTk separates visual composition from semantic wiring. These two concepts are fundamental to
GUI programming. The first involves geometric composition. For instance, placing one widget
above another. The second involves connecting user input from a widget to the application code.
• This separation is made possible by the introduction of listeners, consumers that respond to

user input. FranTk provides an algebra to compose these listeners in a functional style.

• This separation allows individual user interface components to be represented by untyped
values, we can therefore compose collections of components. While there is a separation
between top-level windows, standard components, and canvas components, this is necessary
because each of these represent a separate class of widget; it does not make sense to
geometrically compose a top-level window and a button beside each other. In addition,
because FranTk components are actions which produce widgets, they may have internal state.
However, components may be treated as values, they can be geometrically composed used
pure functions. We can attach listeners to the user input from a component, including a
composite component; we can also apply style configuration options to a composite
component. We therefore have a very compositional programming style.

• FranTk clearly supports declarative concurrency. The ATC system, for instance, consists of a
number of concurrently evolving components (such as aircraft). These are modelled in terms of
behaviors and events rather than requiring any explicit pre-emptive concurrency. FranTk provides
support for explicit concurrency where required; however, the support for declarative concurrency
was sufficiently powerful to support two different multi-user interfaces.

• FranTk provides a more efficient implementation of the core Fran combinators. This thesis has
presented three possible implementations of the core combinators. Each implementation relied on
two key features for efficiency.

• Data Driven Behaviors and Events. A simple implementation of events and behaviors requires
that behaviors and events are sampled every time interval. This would be prohibitively
expensive in a large user interface, as every aspect of the interface would need to be
redisplayed every time any input was received. Instead FranTk, uses a data driven model.
Events and behaviors have invalidation actions associated with them. When the listener talking
to the event or behavior is fired the invalidation action is performed. After any user input only
those components that rely on behaviors or events that have been invalidated need to be
redrawn.

• Weak Listeners and Finalisers. Once a BVar has been created, the listener will begin talking to
the BVar, passing on every value it hears. This is useful only so long as the event or behavior
from the BVar is in use. However, often these will only be used for a fraction of the lifetime of
a program. For instance, if a component were later removed from the screen and the behavior it
relied upon was no longer used it would be useful to remove the listener as well, to prevent
unnecessary work. For this purpose, we use weak references. Weak references allow us to add a
finaliser to an object, which is an action to be run when the object is garbage collected. This
mechanism is used to delete listeners. When the clients (the events and behaviors) that a
listener can talk to are all garbage collected, a finaliser will be run to delete the listener.

• FranTk makes two further implementation contributions.
• Incremental Dynamic Collections. The implementation of efficient dynamic collections

requires some extra sophistication. A collection behavior is considered to consist of two parts, a
simple behavior representing its value at any given time, and an event generating individual
incremental changes. To allow the definitions of functions such as map, and to ensure
efficiency, each value is associated with a unique identifier. These unique identifiers and
associated incremental updates are generated through a static, incremental collection data type.

192

• Toolkit independent implementation. Though FranTk has been implemented on top of Tcl-Tk,
the widget set has been implemented in as toolkit independent a manner as possible. This
should therefore allow it to be ported to other toolkits at a later point.

• W e have presented two visual tools for use with FranTk. The first is an architecture editor which
can be used to help structure large FranTk programs. The second is an interface construction tool
which can be used to visually construct and integrate static widgets. These were both developed as
proof of concept prototypes to demonstrate that such tools could be easily integrated into a
declarative GUI language such as FranTk.

FranTk has been evaluated through a number of significant case studies. In particular, the ATC system
provided a very effective test o f the scalability and applicability o f FranTk. It makes use o f most of the
features provided by FranTk. In particular, the system makes use of dynamic collections to model
aircraft and datalink messages. It includes a number of different views of each of these collections. The
ATC system also makes heavy use of real-time predicates, to support concepts such as message time
outs.

The ATC system design was based on a set o f requirements, discussed with a human factor’s (HF)
specialist, at the UK’s National Air Traffic Services. The system underwent a process of redesign with
the HF specialist. This allowed us to investigate whether FranTk was capable of supporting any
requested changes. It allowed us to test whether these changes could be carried out rapidly enough to
support rapid iterative design. Finally, it allowed us to test whether the quality of the resulting prototype
would be sufficient for the needs o f real users. We were able to carry out a number of important
changes. The HF specialist was impressed by the speed with which changes were made, the interactive
nature of the process and the quality of the resulting interface. We were able to develop a tactical data
entry widget which has since been recommended as the primary method of tactical message
composition in EOLIA (the NATS datalink project). The close user involvement therefore provided an
important element of realism to the evaluation. W e were able not only to demonstrate a successful
application of FranTk, but to produce a prototype widget that has been successfully adopted by the end-
user organisation.

12.3. Formal Verification

Formal specifications can be used to help develop interactive systems. Formal analysis can be used to
verify completeness criteria about user interaction, to search for paths to hazardous states that might be
reached within an interface, and to verify consistency questions about interaction when in different
modes of a system. This thesis does not attempt to use formal methods to understand the usability o f a
system. Instead it concentrates on the use of formal methods to help verify critical, application specific
requirements. In particular, it takes one restricted view of formal methods. It assumes that they should
be used to find problems in a system design; not to somehow prove that the system works. Verification
provides one mechanism of increasing confidence in a system, but it only becomes really worthwhile if
it can be used to actually find hidden problems. In Chapter 9 we discussed two classes of approaches:
restricted, but easily scalable, verification approaches, such as those provided by SpecTRM; and
powerful, but more complex verification approaches as supported by interactor modelling with heavy
weight formal methods. The latter are therefore explicitly based in formal, mathematical languages.
Their use is therefore geared towards formal methods experts. This thesis adopts the latter approach,
and considers its use for checking domain and task specific problems, rather than for guaranteeing
higher level usability properties. This thesis concentrates on providing an approach which supports
form al verification, o f complex, domain specific properties by form al methods experts.

In the field of formal modelling of interactive systems, this thesis makes one contribution:

• It presents a method that supports the creation of a formal, LOTOS, specification, which given
certain parameters can be derived automatically from a structured FranTk prototype. This allows
the generation of a formal model at relatively low cost. The model can be analyzed to verify
important safety properties about the system design. To make the verification practical we focus on
partial verification, focusing on critical areas of the design. This avoids the state-space explosion
problems faced when trying to perform exhaustive proofs about a whole system.

193

This approach has been evaluated using the ATC case study. The need for significant case studies was
very important. Only through the use of a significant, safety critical case study, such as the Air Traffic
Control system, can the utility of such an approach be demonstrated. Using the case study we were able
to find a previously undiscovered bug in our ATC prototype. The verification tool therefore proved a
useful addition. However, we do not claim that this problem could only have been found through heavy­
weight formal methods. Other approaches, such as state chart based walkthroughs may also have found
the problem.

12.4. Problems and Future Work

There are a number of important issues which remain to be addressed. These issues can be separated
into three areas: the design and evaluation of FranTk, the implementation of FranTk, and the formal
verification work.

12.4.1. FranTk Design & Evaluation

• There are a number of language extensions and tools that could prove useful for FranTk
programmers. In particular it is currently unclear how to use the new Haskell Exception mechanism
within a FranTk program. There is also little explicit debugging support within FranTk. More
powerful debugging tools are currently an important area of research within the Haskell
community. It is not immediately clear how easily the internal machinery of the FranTk
implementation could be hidden when using such a tool. One interesting area of future research
would be to investigate how easily such tools could be used in conjunction with a high level toolkit
such as FranTk.

• This thesis has purposefully said very little about the usability of FranTk. A competent study of the
issues was outside its scope. Section 6.5.3 briefly discussed some informal reactions from
functional programmers who have used FranTk. Though reactions were generally positive there are
clearly some problems in the usability o f the language. The use of listeners seems to be an initial
conceptual hurdle. Their use was a fundamental design choice. It allows separation between
semantic wiring and geometric composition. However, they also introduce an imperative feature
into the otherwise declarative model. It remains to be seen whether there is a better way of handling
them. Further work is required to properly evaluate the usability of FranTk, in order to determine
where problems exist and to either simplify the conceptual model or provide better tool support to
overcome them.

12.4.2. FranTk Implementation

• This thesis presented three FRP implementations. Neither of the first two were perfect. The first
implementation was a purely data-driven implementation. This implementation is efficient and
robust. Unfortunately, it requires a change in the type of any combinator that relies on an event’s
history. The data-driven representation does not store an event’s history and therefore any such
combinator must be an 10 action. In FranTk, this is not a particularly problematic restriction, as all
FranTk programs use the GUI monad. The second implementation was a hybrid that combined the
streams and data-driven approaches. Unfortunately, this implementation while generally faithful to
the Elliott and Hudak formal semantics o f FRP is not entirely robust. In particular, the use of
merge is not always referentially transparent. This implementation therefore serves more as an
example of the difficulties that can arise when implementing FRP. The third implementation
presented in this Thesis looks, perhaps, the most promising. It is a refinement o f the basic data-
driven implementation, which attempts to satisfy the Wan-Hudak semantics. Further research is
required to determine whether this approach will actually work. The development o f a truly
efficient, robust implementation that is fa ith fu l to the form al semantics o f FRP therefore remains a
topic fo r further research.

• A number of other aspects of the implementation are still incomplete. Most significantly FranTk
does not include a purely functional document implementation. Instead it uses a mutable (C based)
document model. The implementation of a purely functional document behavior is therefore still an
issue for future research.

194

• Though providing acceptable performance, FranTk is still fairly memory intensive30. Its
performance is usable for a prototyping environment. However, it remains to be seen whether it
could be optimised sufficiently for use in real products.

• Though two of the case studies were multi-user systems, they each had a fully centralised
implementation using the X-windows client-server model. This is because there is currently no
distributed version of Haskell available. In contrast, by using its structured architecture, Clock
provides automated support for providing semi-replicated implementations of a system [74]. It
would be interesting to see whether similar techniques could be applied to a FranTk program, given
that they rely on similar architectures.

12.4.3. Formal Verification Work

• The LOTOS transformation algorithm represents only an initial step towards providing
specifications of interactive systems. The approach as outlined in this thesis has a number of
serious limitations.
• It allows only the transformation of sections of FranTk code written in a simple state-transition

style. This leaves out large sections of a FranTk program.
• It must be used with great care, in order to generate tractably small specifications. We have not

provided anything other than a set o f very high level guidelines for use of this approach. The
development of a real methodology to support use of this tool is one possible future area of
research.

• We have not provided a proof that the transformation algorithm really generates a correct
model o f the system. This remains another possible future addition.

• The use o f LOTOS as the verification language is itself questionable. It was chosen because of
the existence of the LOTOS interactor model, and its previous application to interactive
systems. However, basic LOTOS has a number of restrictions, such as no support for real-time
specifications. It was hoped that robust tools for the new E-LOTOS language, which does
provide real-time operators, would have become available. A transformation to E-LOTOS
remains an area for future research. It is also likely that there are better target languages
available to perform verification on interactive systems. The choice of the best specification
language remains an area for future research.

• This thesis has focused on providing links to heavyweight mathematical languages, in particular
LOTOS. One interesting area of research would be to provide instead a link to more readable
notations such as Leveson’s SpecTRM.

30 The ATC simulation runs in between 30 and 40 Mb of memory, when compiled with the Glasgow
Haskell Compiler (GHC). Though significant, this is arguably within the same ball park as Java’s
Swing.

195

Part VI. Appendixes
There are three appendixes in this thesis. Appendix A introduces the basic concepts found in Functional
Reactive Programming: Listeners, Events and Behaviors. Appendix B contains a brief discussion about
usability evaluation in the design of interactive systems. It discusses a small evaluation that was carried
out when developing the QOC case study. Appendix C discusses an earlier attempt to link formal
specifications with functional GUI languages.

196

Appendix A Functional Reactive Programming Combinators

This appendix provides a basic introduction to the 2 key concepts in Functional Reactive Programming:
Events and Behaviors. It presents the algebra of operators available for each. The other fundamental
concept introduced by FranTk is the Listener. This appendix briefly discusses Listeners. However, the
algebra of Listener operators is discussed in Section 4.5. Many of these FRP operators are unnecessary
for day-to-day FranTk programming. However, they can be extremely important and they form the basis
of the implementation of types such as B Vars.

Chapter 7 discusses 2 different semantic models for FRP and presents 3 different data-driven
implementations. The types of the operators in this appendix fit with the first implementation discussed
in Section 7.2. Some of these operators therefore have different types than in the original Fran
distributions.

A .l The Basic Concepts - Behaviors and Events

To begin with, let’s consider the basic definitions.

A.1.1 Listeners

A Listener is an abstract type, but it can be thought o f as Listener a = a - > GUI () . A
value of type Listener a , is a function, that given a value of type a, performs a side-effecting GUI
action with it. Listeners are therefore consumers of values. Recall from Section 4.5 that this has
important consequences for how the listener algebra is structured. The types seem to be reversed as we
apply a function to values that a listener is about to receive before passing them to a listener to be
consumed.

A.1.2 Events

E v e n t s are used to model things that happen at discrete points in time, such as mouse clicks. E v e n t s
can be thought o f in terms of a declarative or an imperative semantics. In declarative terms, an E v e n t
is a stream of occurrences, each of which has a specific value and a time that it occurred. The type
E v e n t a therefore denotes a source that generates values of type a at each occurrence.

Events are producers of values. Because Events produce values and Listeners consume them, we can
connect them together. This results in the imperative interpretation of Events. From this standpoint, an
Event is something that we can add Listeners to. These will perform actions on every event occurrence.
Listeners and events meet with addListener.

addListener :: Event a -> Listener a -> GUI Remover
type Remover = GUI ()

The function addListener adds a listener to an event. The remove action that is returned will then
delete that listener when necessary at a later date. Events therefore serve client Listeners.

The name Event is perhaps confusing because an Event is not a single occurrence, but a stream of or
a source for occurrences. A better name might be EventSource; however, the name Event remains
for historical reasons.

A. 1.3 Behaviors

The final fundamental concept is the Behavior. A Behavior is a continuous value that changes
over time. A value of type Behavior a is a time varying value of type a: i.e. it is conceptually a
function from Time -> a.

Behaviors therefore have values. The value of a behavior can be sampled (snapshotted) on an event
occurrence or when a listener is fired. Events can be used to build reactive behaviors which change
course in response to events.

197

A.2 What can we really do with Events

This section begins by presenting the basic Event algebra. It then goes on to discuss the more
problematic issue of history based combinators. The algebra of operations available on events resemble
closely those available for listeners (Section 4.5.2 discussed this Event-Listener duality).

A.2.1 The Event Algebra

We can make an Event that never produces any occurrences using n e v e r E .

n e v e r E : : E v e n t a

We can merge two Events using m e rg e E . This forms a new Event by merging the occurrences of both
argument events based on their occurrence times. There is also an infix version of this function . | .
Here we see the first o f a number o f infix operators that make up the Event algebra.

m e r g e E , (. | .) : : E v e n t a -> E v e n t a -> E v e n t a

Again there is a list version of merge for events

an y E : : [E v e n t a] -> E v e n t a
an y E = f o l d r (. | .) n e v e r E

We can map functions over events using mapE. This applies the given function to every occurrence o f e
to yield a new Event.

mapE : : (a -> b) -> E v e n t a -> E v e n t b

There are also infix operator versions of mapE, including a version that ignores the value produced and
just uses an alternative constant value.

(==>) : : E v e n t a -> (a -> b) -> E v e n t b

(-= >) : : E v e n t a -> b -> E v e n t b
e -= > b = e ==> \ _ -> b

We can apply a filter function to events in a similar way to listeners. These functions all filter the
occurrences produced by an event based on a given predicate.31

m apM aybeE : : E v e n t a -> (a -> M aybe b) -> E v e n t b

f i l t e r E : : E v e n t a -> (a -> B o o l) -> E v e n t a
f i l t e r E e f = m apM aybeE (\ v -> i f f v t h e n J u s t v e l s e N o th in g)

f i l t e r E _ : : E v e n t a -> (a -> B o o l) -> E v e n t ()
f i l t e r E _ e f = f i l t e r E e f -= > ()

We can also take an Event of M aybe valued occurrences, and drop all those that are N o th in g , using
i s J u s t E .

i s J u s t E : : E v e n t (M aybe a) -> E v e n t a
i s J u s t E = m apM aybeE i d

As with listeners we can convert an Event with occurrences that contain lists of values into occurrences
for each value.

m apE s : : E v e n t a - > (a - > [b]) -> E v e n t b

31 The Haskell Maybe type represents values that may or may not occur:
data Maybe a = Just a | Nothing

198

fromListE :: Event [a] -> Event a
fromListE = mapEs id

We can sample the time when an Event occurs using withTimeE.

withTimeE :: Event a -> Event (a, Time)
withTimeE_ :: Event a -> Event Time

We can sample behaviors on Event occurrences using s n a p s h o tE .

snapshotE :: Event a -> Behavior b -> Event (a,b)
snapshotE_ :: Event a -> Behavior b -> Event b

To aid in debugging there is traceE which prints a String on every Event occurrence.

traceE :: Show a => Event a -> String -> Event a

A.2.2 The History Based Combinators

All of the Event combinators seen so far are unaffected by an event’s history. In other words, each
Event occurrence is unaffected by those from the past. There are, however, some Event (and Behavior)
combinators which depend on an event’s history. As a simple example, consider oneeE. This generates
a one shot Event: it generates only one occurrence from its argument Event and then behaves like
neverE. In Fran this has the type:

onceE :: Event a -> Event a

The existence of future occurrences clearly depend on the existence of a past occurrence. The important
question is when do we start listening for the first (and only) occurrence. Initially, we might assume that
the answer to this would be simple. However, imagine that we had an Event which generated left mouse
press occurrences (lbp). This might generate occurrences from the beginning o f the program. Imagine
that at some later point in the program we wished to add a listener to print a message based on the next
left mouse press. We might try to use onceE. However, we would not be interested in all previous
event occurrences (the event history), just the latest one. It is sometimes useful to be able to apply a
combinator that accesses this history. However, it both leads to an inherent space leak if we hang on to
the entire history; and we must be able to access the event occurrences that occurred after a given time.

The two semantic models presented in Section 7.1 grapple with this problem and handle it in different
ways. The first assumes that events will maintain their history and that an explicit action must be taken
to age the event (and ignore this history). In contrast, the second assumes that events will be aged
implicitly and that an explicit action must be taken to hang on to this history. Chapter 7 presents three
different implementations which attempt to handle this problem according to the different semantic
models. The second and third attempt to implement the two respective models.

The first implementation takes a slightly different approach (discussed in Section 7.2.5), but is closest
in spirit to the second model. That is it assumes implicit ageing. All o f the Event (and Behavior)
combinators that depend on an Event’s history are moved into the 10 (and GUI) monad. They become
actions that respond to event occurrences only once they have been performed. Consider the onceE
combinator. It now takes the type:

onceE :: Event a -> GUI (Event a)

When this action is performed it yields a new event which will generate only one occurrence (the first
occurrence after the action has been performed).

We can ask for only distinct occurrences of an Event using distinctE.

distinctE :: Eq a => Event a -> GUI (Event a)

We can associate the values from an Event stream with the values from a list using w i th E le m E .

199

w ith E le m E : : E v e n t a -> [b] -> GUI (E v e n t (a , b))
w ith E le m E _ : : E v e n t a -> [b] -> GUI (E v e n t b)
w ith E le m E _ e b s = w ith E le m E e b s ==> s n d

We can define a version of scan on events. The function s c a n l E f aO e yields a new Event that
maintains a current internal value, a , (with initial value aO). On every occurrence of value b , it applies
f a b , to yield a new internal value. The new Event produces this new value as its occurrence value.

s c a n l E : : (a -> b -> a) -> a -> E v e n t b -> GUI (E v e n t a)

W e can accumulate a value via a function valued Event using accum E which can be defined in terms
of s c a n lE .

accum E : : a -> E v e n t (a -> a) -> GUI (E v e n t a)
accum E aO e = s c a n l E (\ a f -> f a) aO e

W e can generate a tick event that goes off at a given interval using a la rm E .

a la r m E : : T im e -> GUI (E v e n t ())

W e can generate an Event level switcher using s w i t c h e r E .

s w i t c h e r E : : E v e n t a -> E v e n t (E v e n t a) -> GUI (E v e n t a)

The event level switcher starts by generating occurrences from the first event. After every event-valued
occurrence, the switcher loses interest in the old event and generates occurrences from the new event.

If we don’t want to lose interest in the first Event we can do this using manyE.

m anyE : : E v e n t a -> E v e n t (E v e n t a) -> GUI (E v e n t a)

We can use the event-level switcher to define a monadic-like instance for events. This begins by
generating no occurrences (that is it behaves like n e v e rE) . After every occurrence of e , it applies f , to
create a new event, and generates occurrences from this new event.

b in d E : : E v e n t a -> (a -> GUI (E v e n t b)) -> GUI (E v e n t b)
b in d E e f = n e v e r E ' s w i t c h e r E ' (e ==> f)

Because some event combinators require to work in the GUI monad it is in fact more useful to have a
bind combinator o f the following type.

b in d E : : E v e n t a -> (a -> GUI (E v e n t b)) -> GUI (E v e n t b)

This allows a GUI valued function to be applied to the result. For instance, consider the definition o f a
double click. This takes a timeout value and a click event and generates double click occurrences. After
every click it sets an alarm which will tick at a given time. It then merges this alarm with the click. The
alarm generates the value Nothing, denoting a failure and the click generates the value Just () denoting a
success. W e accept only the first occurrence from this combined event, to ensure that we can only either
timeout or succeed. Finally, we filter to accept only the successes.

d o u b l e c l i c k : : E v e n t () -> GUI (E v e n t ())
d o u b l e c l i c k t i m e o u t v a l c l i c k = do

c l i c k 'b i n d E '
\ _ -> d o (e < - a la r m E t i m e o u t v a l ;

fm ap i s J u s t E $
o n c e E (e -= > N o th in g . | . c l i c k -= > J u s t ()) }

We can define the b in d E function by making use of mapGUIE. This takes a GUI valued function to
apply to each occurrence and an event and by performing a GUI action, returns a new Event which
generates the resulting values.

200

mapGUIE :: (a -> GUI b) -> Event a -> GUI (Event b)

Using this we can define bindE. It first applies f to each event occurrence, and then makes a switcher
based on this new event.

bindE e f = do
e' <- mapGUIE f e
neverE 'switcherE' e'

A.3 What can we really do with Behaviors

We now come to Behaviors. There is one simple built in behavior, c o n s t a n t B which is a behavior
that always has a single constant value.

constantB :: a -> Behavior a

Fran supports a second primitive behavior time, which represents the current time (specifically the
time since the beginning of the program). This works well for animations, where the screen will be
refreshed regularly. In GUIs, it is generally useful to have more control over the refresh rate o f such a
behavior. FranTk therefore supports two GUI valued actions which produce a time valued behavior
with a given refresh rate. The first gives the time value since the beginning of the program; the second
given the time since the action was performed.

timeTick :: Time -> GUI (Behavior Time)
timeTickNow :: Time -> GUI (Behavior Time)

To avoid clutter in type signatures involving B e h a v i o r many types have pre-defined synonyms for
their behavioral counterparts. For instance, there is S t r i n g B for B e h a v i o r S t r i n g . A full list is
available with the type signature summary at the end of this appendix.

A.3.1 Lifted Behaviors

We say a type or function, which has been raised from the domain o f ordinary Haskell values to
behaviors is "lifted". For example, a function such as

(&&) :: Bool -> Bool -> Bool

can be promoted to a corresponding function over behaviors:

(&&*) :: BoolB -> BoolB -> BoolB

The type BoolB is a synonym for Behavior Bool; most commonly used types have a behavioral
synonym defined in FranTk. The name &&* arises from a simple naming convention in Fran: lifted
operators are appended with a * and lifted vars are appended with B.

The renaming required by && can sometimes be avoided using type classes. For example, an instance
declaration such as the following

instance Num a => Num (Behavior a)

allows all o f the methods in Num to be applied directly to behaviors without renaming. Constant types
in the class definition cannot be lifted by such a declaration. In the Num instance above, the type of
f romlnteger is

fromlnteger :: Num a => Integer -> (Behavior a)

201

The argument to f r o m l n t e g e r is not lifted - only the result. This allows integer constants to be
treated as constant behaviors. While f r o m l n t e g e r works in the expected way, other class methods
cannot be used. In the declaration

instance Ord a => Ord (Behavior a)

is not useful since it defines operations such as

(>) :: Behavior a -> Behavior a -> Bool

Unfortunately, FranTk needs a > function which returns Behavior Bool instead o f just Bool. The
Eq and Ord classes are not lifted using instance declarations. Rather, each method is individually
renamed and lifted. These are the lifting functions: they transform a non-behavioral function into its
behavioral counterpart:

($ *)

l i f tO
l i f t O

lif tl
liftl f bl
lif t2
lift2 f bl b2
lift7 ...

Using these functions, the definition of (>*) is

(>*) = lift2 (>)

Many standard Haskell Prelude functions have been lifted in FranTk via overloading. For instance,
behaviors are instances of Num, Integral, Fractional, Floating.

There is one important new type class: G b e h a v io r . This provides a behavior based conditional
operation.

class GBehavior w where
ifB :: BoolB -> w -> w -> w

Its instances include

instance GBehavior (Event a)
instance GBehavior (Behavior a)
instance GBehavior Component
instance GBehavior WComponent

A.3.2 Reactive Behaviors

Events are used to build reactive behaviors which change course in response to events. Reactive
behaviors are defined using the switcherB function:

switcherB :: Behavior a -> Event (Behavior a) -> GUI (Behavior a)

The function s w i t c h e r b e starts off behaving like b. On every behavior-valued occurrence o f e , it
switches to (and therefore behaves like) the new behavior. It is important to note that this is a GUI
action. This is because the switcher is affected by the switching event’s history. The new switcher only
notices changes that have occurred after the action has been performed (to generate the new behavior).

:: Behavior (a -> b) -> Behavior a -> Behavior b

:: a -> Behavior a
= constantB
:: (a -> b) -> Behavior a -> Behavior b
= liftO f $* bl
:: (a -> b -> c) -> Behavior a -> Behavior b
-> Behavior c
= liftl f bl $* b2

202

We can define two very important behavior based functions on top of these.

A s t e p p e r is a switcher which generates a behavior from constant pieces.

s t e p p e r : : a -> E v e n t a -> GUI (B e h a v io r a)
s t e p p e r xO e = s w i t c h e r B (c o n s t a n t B xO) (e ==> c o n s t a n t B)

We can use s te p A c c u m to generate a switcher that starts out behaving as xO and is updated by the
function-valued occurrences o f its c h a n g e event.

s te p A c c u m : : a -> E v e n t (a -> a) -> GUI (B e h a v io r a)
s te p A c c u m xO c h a n g e = d o (e < - accum E xO c h a n g e ; s t e p p e r xO e}

For instance, we can define a counting behavior with s te p A c c u m that counts the number of Event
occurrences since it was created.

countB :: Event () -> GUI (Behavior Int)
countB e = 0 'stepAccum' e -=> (+1)

The implicit parentheses are around the -= > expression, since ' s te p A c c u m ' has a lower fixity than
- = > .

On top of this we have u n t i l B . This behaves as a until the next occurrence of e after which it
behaves as the behavior provided by the occurrence.

u n t i l B : : B e h a v i o r a -> E v e n t (B e h a v io r a) -> GUI (B e h a v io r a)
u n t i l B a e = d o (e ' < - o n c e E e ; s w i t c h e r B a e '}

A.3.3 Turning behaviors into events

We can turn a behavior into an Event using to S t r e a m .

t o S t r e a m : : B e h a v i o r a -> GUI (E v e n t a)

This produces a stream of values every time the behavior changes. This assumes a discrete model of
time and behaviors. FranTk provides this by providing only reactive Behaviors. Fran does not as it
provides the continuous behavior, t im e .

We can define a predicate function in terms of this that generates an Event every time a Behavior has
the value T ru e .

p r e d i c a t e B : : B e h a v i o r B o o l -> GUI (E v e n t ())
p r e d i c a t e B b = fm ap (f l i p f i l t e r E _ i d) $ t o S t r e a m b

A.3.4 Sampling behaviors in the GUI monad

Sometimes it may be necessary to sample a behavior from the GUI monad. At any time a behavior has a
given value. It is therefore possible to get its value using g e tT im e and a t . The latter samples a
behavior at a given time, the former returns the current time in seconds. These two are in fact the
primitives used by the various w i th T im e and s n a p s h o t functions.

g e tT im e : : GUI T im e
a t : : B e h a v i o r a -> T im e -> GUI a

It is important to note here that the time is constant in any step. A step begins whenever some user input
is handled. A behavior will therefore not change until immediately after the input Event that updates it.
All updates based on the input will be handled, all behaviors will then change and the display will be
updated.

203

A.4 Numeric Types

There are a number o f numeric types defined as part o f Fran and FranTk. These numeric types and
functions are available both a static values and as behaviors.

A.4.1 Basic Numeric Types

All scalar types are essentially the same in Fran and FranTk. Synonyms allow type signatures to contain
extra descriptive information such as Fraction for values between 0 and 1 but no explicit type
conversions are required between the various scalar types.

type RealVal = Double
type Length = RealVal
type Radians = RealVal
type Fraction = RealVal
type Scalar = Double

— non-negative
— 0 .. 2pi (when generated)
— 0 to 1 (inclusive)

type Time
type DTime

Double
Time -- Time deltas, i.e., durations

data Point2 -- 2D point
data Vector2 -- 2D vector
data Transform2 -- 2D transformation
type RealB
type FractionB
type RadiansB
type LengthB
type TimeB
type IntB
type Point3B
type Vector3B
type Transform3B

Behavior RealVal
Behavior Fraction
Behavior Radians
Behavior Length
Behavior Time
Behavior Int
Behavior Point3
Behavior Vector3
Behavior Transform3

A.4.2 Points and Vectors

Fran and FranTk support vectors and points. These are two distinct types. It is therefore not possible to
use + to add a point to a vector. Vectors are a member of the Num class (making them numbers) while
points are not; thus + works with vectors but not points. Although it is in class Num, the * operator
cannot be used for vectors.

Read the ‘ . ’ in the operators below as ‘point’and ‘~’as ‘vector’. Thus . + ̂ means ‘point plus vector’.

origin2
point2XY
point2Polar
point2XYCoords
point2PolarCoords

Point2B
RealB -> RealB -> Point2B
LengthB -> RadiansB -> Point2B

-> (RealB,RealB)
-> (RealB,RealB)

Point2B
Point2B

distance2
distance2Squared
linearInterpolate2
(. + *)

(.-*)
(. - .)

Point2B
Point2B
Point2B
Point2B
Point2B
Point2B

-> Point2B -> LengthB
-> Point2B -> LengthB
-> Point2B -> RealB -> Point2B
-> Vector2B -> Point2B
-> Vector2B -> Point2B
-> Point2B -> Vector2B

xVector2, yVector2
vector2XY
vector2Polar
vector2XYCoords
vector2PolarCoords

Vector2B -- unit vectors
RealB -> RealB -> Vector2B
RealB -> RealB -> Vector2B
Vector2B -> (RealB, RealB)
Vector2B -> (RealB, RealB)

204

instance Num Vector2
-- vectors are a numeric type, however the functions fromlnteger, *
-- may not be used

A.4.3 Vector Spaces

The vector type and the scalar numeric types (Float and Double) support several standard mathematical
operators. The following operators are therefore allowed on general vector spaces.

zeroVector
(*A) r/)
r+-}, r-~)
dot
magnitude
magnitudeSquared
normalize

VectorSpace v => Behavior v
VectorSpace v => ScalarB -> Behavior v -> Behavior v
VectorSpace v => Behavior v -> ScalarB -> Behavior v
VectorSpace v => Behavior v -> Behavior v -> Behavior v
VectorSpace v => Behavior v -> Behavior v -> ScalarB
VectorSpace v => Behavior v -> ScalarB

VectorSpace v => Behavior v -> ScalarB
VectorSpace v => Behavior v -> Behavior v

instance VectorSpace Double
instance VectorSpace Float
instance VectorSpace Vector2
instance VectorSpace Vector3

A.4.4 Transformations

The type Trans forma tion2B represents geometric transformation on widgets, points, or vectors.
The basic transformations are translation, rotation, and scaling. Complex transformations are created by
composing basic transformations. The class Trans formable2 contains 2D transformable objects.

class Tranformable2B a where
(*%) :: Transform2B -> a -> a -- Applies a transform

These are the operations on 2D transforms:

identity2
translate2
rotate2
compose2
inverse2
uscale2

Transform2B
Vector2B -> Transform2B
RealB -> Transform2B
Transform2B -> Transform2B -> Transform2B
Transform2B -> Transform2B
RealB -> Transform2B -- only uniform scaling

move :: Transformable2B a => Vector2B -> a -> a
move dp thing = translate2 dp *% thing
moveXY :: Transformable2B a => RealB -> RealB -> a -> a
moveXY dx dy thing = move (vector2XY dx dy) thing
moveTo :: Transformable2B bv => Point2B -> bv -> bv
moveTo p = move (p origin2)
stretch :: RealB -> ImageB -> ImageB
stretch sc = (uscale2 sc *%) -- 1.0 = 180 degrees
turnLeft, turnRight :: Transformable2B a => FractionB -> a -> a
turnLeft frac im = rotate2 (frac * pi) *% im
turnRight frac = turnLeft (-frac)
instance Transformable2B Point2B
instance Transformable2B Vector2B
instance Transformable2B RectB

A transformation that doubles the size of an object and then rotates it 90 degrees would be
rotate2 (pi/2) 'compose2' uscale2 2.

205

Note that the first transform applied is the one on the right, as with Haskell’s function composition
operator (.).

A.4.5 Fran overloaded functions

Many Prelude functions have been lifted in Fran and FranTk via overloading:
(+) :: Num a => Behavior a -> Behavior a -> Behavior a
(*) :: Num a => Behavior a -> Behavior a -> Behavior a
negate :: Num a => Behavior a -> Behavior a
abs :: Num a => Behavior a -> Behavior a
fromlnteger :: Num a => Integer -> Behavior a
fromlnt :: Num a => Int -> Behavior a
quot :: Integral a => Behavior a -> Behavior a -> Behavior a
rem :: Integral a => Behavior a -> Behavior a -> Behavior a
div :: Integral a => Behavior a -> Behavior a -> Behavior a
mod :: Integral a => Behavior a -> Behavior a -> Behavior a
quotRem :: Integral a => Behavior a -> Behavior a ->

(Behavior a, Behavior a)
divMod :: Integral a => Behavior a -> Behavior a ->

(Behavior a, Behavior a)
fromDouble :: Fractional a => Double -> Behavior a
fromRational:: Fractional a => Rational -> Behavior a
(/) :: Fractional a => Behavior a -> Behavior a -> Behavior a
sin :: Floating a => Behavior a -> Behavior a
cos :: Floating a => Behavior a -> Behavior a
tan :: Floating a => Behavior a -> Behavior a
asin :: Floating a => Behavior a -> Behavior a
acos :: Floating a => Behavior a -> Behavior a
atan :: Floating a => Behavior a -> Behavior a
sinh :: Floating a => Behavior a -> Behavior a
cosh :: Floating a => Behavior a -> Behavior a
tanh :: Floating a => Behavior a -> Behavior a
asinh :: Floating a => Behavior a -> Behavior a
acosh :: Floating a => Behavior a -> Behavior a
atanh :: Floating a => Behavior a -> Behavior a
pi :: Floating a => Behavior a
exp :: Floating a => Behavior a -> Behavior a
log :: Floating a => Behavior a -> Behavior a
sqrt :: Floating a => Behavior a -> Behavior a
(**) :: Floating a => Behavior a -> Behavior a -> Behavior a
logBase :: Floating a => Behavior a -> Behavior a -> Behavior a

These operations correspond to functions which cannot be overloaded for behaviors. The convention is
to use the B suffix for single argument functions and a * suffix for operators.

fromlntegerB
toRationalB
toIntegerB
evenB, oddB
toIntB
properFractionB
truncateB
roundB
ceilingB
floorBr*)

(= = *)

Num a => IntegerB -> Behavior a
Real a => Behavior a -> Behavior Rational
Integral a => Behavior a -> IntegerB
Integral a => Behavior a -> BoolB
Integral a => Behavior a -> IntB
(RealFrac a, Integral b) =>

Behavior a -> Behavior (b,a)
(RealFrac a, Integral b)
(RealFrac a, Integral b)
(RealFrac a, Integral b)
(RealFrac a, Integral b)
(Num a, Integral b) =>

Behavior a -> Behavior b -> Behavior a
(Fractional a, Integral b) =>

Behavior a -> Behavior b
Eq a => Behavior a -> Behavior a ->

=> Behavior a
=> Behavior a
=> Behavior a
=> Behavior a

-> Behavior
-> Behavior
-> Behavior
-> Behavior

-> Behavior a
BoolB

206

(/=*) :: Eq a => Behavior a -> Behavior a -> BoolB
(<*) :: Ord a => Behavior a -> Behavior a -> BoolB
(<=*) :: Ord a => Behavior a -> Behavior a -> BoolB
(>=*) :: Ord a => Behavior a -> Behavior a -> BoolB
(>*) :: Ord a => Behavior a -> Behavior a -> BoolB
notB :: BoolB -> BoolB
(&&*) :: BoolB -> BoolB -> BoolB
(||*) :: BoolB -> BoolB -> BoolB
pairB :: Behavior a -> Behavior b -> Behavior (a,b)
fstB :: Behavior (a,b) -> Behavior a
sndB :: Behavior (a,b) -> Behavior b
pairBSplit :: Behavior (a,b) -> (Behavior a, Behavior b)
showB :: (Show a) => Behavior a -> Behavior String

207

Appendix B Usability Evaluation for Rapid Prototyping

B .l Introduction

This thesis is about prototyping tools for developing interactive systems. The purpose of prototyping is
to support iterative design and so provide systems that can be evaluated. It is therefore useful to
consider the range of techniques available for performing usability evaluations. There are a variety of
techniques available to perform such evaluations ranging from quantitative[196] to qualitative
approaches[203], and from analytical techniques[142], through structured lab experiments [175] to
fully situated field trials [11]. The choice of which technique to use depends on the purpose o f the
evaluation, and what sort of system is being evaluated. This appendix discusses briefly the various types
of evaluation and suggests what might be achieved with each. It highlights those that require software
prototypes, and outlines what the technique requires from a prototype. It then selects a set o f techniques
appropriate for use with rapid prototyping, in the early stages of iterative, multi-user, interactive
systems development. It goes on to discuss the evaluation of the multi-user, design rationale editor
developed as the QOC case study (see Chapter 2), using the selected set of approaches. It outlines the
objectives and setup o f the evaluation, the results o f the evaluation and conclusions about the methods
used.

B.2 Usability Evaluation Methods

There are a great variety of techniques for performing evaluations. The Usability Now programme of
the DTI [126] recognised a number of evaluation methods:

• A nalytical evaluation - the use of theoretically based, analytical methods to look in detail at a
design. These approaches include psychologically based models such as GOMS, Cognitive
Complexity Theory and SANE and the use of formal methods in HCI [37] (see Chapter 8). These
approaches tend to focus on quite detailed aspects of a design such as menus or dialogue design.

• E xpert evaluation - the use of expert knowledge in evaluation interfaces. These approaches
include cognitive walkthrough[121] and heuristic evaluation[142].

• Survey evaluation - these approaches involve using questionnaires and interviews to find out
information from real users about a design. Questionnaires can ask users to write about specific
questions in detail, or can provide sliding scales where users provide values to get details such as
satisfaction with a system.

• E xperim ental evaluation - these are focused studies attempting to answer specific design
questions. They are performed with real users. For instance, we could perform an experiment to
find which of two sets of icons were more recognisable.

• O bservational evaluation - real users can be observed performing task o f varying complexity.
These observations can take place in a lab setting or in the field. They can be performed with both
fully operational software systems and simple paper prototypes. They can be used to provide both
qualitative data, such as what sort o f problems users had, and quantitative data, such as how long it
took a user to perform a particular task. At their most sophisticated these studies may involve long
term studies in the field, making use of ethnographic techniques to gather data.

Evaluations can be designed to be both formative and summative. Formative evaluations are used to
feed into designs and help guide them. Summative evaluations are used to try to validate that a system
is really usable and meets its requirements. Most of the above approaches can be used for either
purpose. With summative evaluations, we must, however, be very careful. Their scope must be broad
enough to really try to both verify that a system meets a set of requirements, and validate that it is
actually of use. Complex field trials, that test a system in its final place of use, may be necessary before
the latter can really be claimed. This appendix concentrates on the goal of providing formative
information for redesign, as this is the focus of evaluation for rapid prototyping.

208

B.3 Low and High Fidelity Prototypes

Evaluations can be performed with both paper based and fully implemented prototypes. The former
involve the use of low-fidelity prototypes that can cover a variety of issues. For instance, cardboard
models of computers can be used to show the size and layout of hardware and to provide details about
the size of buttons that people might want. Sketches can show what an interface could look like. Users
can step through interaction by selecting objects on a sheet and having the evaluator place the next
sheet in front o f them. Anecdotal evidence suggests that rough images can encourage people to talk
about fundamental issues, while more polished interfaces make people worry about low-level, “look”
issues[113]. Paper prototypes can also be modified by users and designers allowing co-operative
redesign [17]. However, people often have difficulty understanding exactly what interaction will really
be like. It will not be possible to discover subtle or complex usability problems if the user is not able to
actually use a system for real. There is therefore still an important need for software prototypes early in
the design process.

B.4 Analytical Evaluation
There are a number of ways of going about analytical evaluations. They generally rely on some formal
model of the system and some abstract notion of usability or model of the user’s activity. There are a
number of approaches based around cognitive models of the user’s activity. These approaches tend to
provide very low level information that can be used to think about specific design questions; for
instance, an analysis of the number of keystrokes involved in a set of different designs. These
approaches do not rely upon having access to a working system prototype. They are therefore not
directly relevant to the prototyping work in this thesis. As they do not involve users they are dependent
on design assumptions, and are fairly restrictive. They are best used in addition to other more user-
centred styles of usability testing.

B.5 Expert Evaluation
There are a number of approaches to expert evaluations: the two most commonly referenced are the
cognitive walkthrough[121] and heuristic evaluation! 142].

B.5.1 Cognitive Walkthrough
The Cognitive Walkthrough is an approach that attempts to simulate the interaction involved in
performing a task. It may be performed with a model of a system [36] or with the system itself [42]. It
was originally designed to evaluate simple “walkup and use” systems. It is based on a theory of
exploratory learning, and some guidelines. Its theoretical basis therefore requires a good knowledge of
psychology such as goal structures and activation of goals. However, it can be used by designers
without this sort of psychological background. A study by John[98] found that “little or no experience
in either user interface evaluation or cognitive psychology is required of the user [of the CW
technique.]”

The approach can, however, be very time consuming[167]. For instance, John [98] found that an
evaluator took 16 hours to perform a walkthrough o f just over 100 user actions. The Cognitive
Jogthrough [167] was developed to deal with this problem. This involved a group walkthrough using a
version of Rieman’s Walkthrough evaluation sheet. The discussion was moderated to keep it on track,
and recorded to prevent the need to wait for a reporter. In a ninety minute walkthrough about 30 user
actions were discussed. The group still found it too time consuming to evaluate all core tasks with this
approach. These methods would tend to be used with a design specification; however, they can be used
with actual software prototypes. Again they rely on the design group’s intuitions being correct. As
discussed in Chapter 1 this may not always be the case, especially with complex systems such as Air
Traffic Control systems.

B.5.2 Heuristic Evaluation
Heuristic evaluation[142] involves having a group of evaluators look at an interface and judge it against
a set of recognised principles, as shown in Figure 51. It is less formal than structured walkthrough
methods and so was intended to be cost effective. In one study Nielsen[142] found that it could pick up
between 20 and 60% of problems found in actual use. It can also generate “false positives” , that is
problems that are never experienced in real use. It can be carried out with a system specification or a

209

real prototype. With the specification, it can be applied earlier; however, with a real prototype it will
frequently be more effective.

• Use a simple and natural dialog • Provide clearly marked exits
• Provide an intuitive visual layout • Provide shortcuts
• Speak the user’s language • Provide good help
• Minimise the user’s memory load • Allow user customisation
• Be consistent • Minimise the use and effects o f modes
• Provide feedback • Support input device continuity

Figure 51 - Heuristic Evaluation Guidelines

There have been a number of comparative studies of heuristic evaluation and cognitive walkthrough
[99][36] [42]. These studies have shown that the two techniques are complimentary. Heuristic
evaluation tends to find higher level problems, while cognitive walkthrough finds lower-level problems.
In one experiment, applied to a real prototype the evaluators found that both techniques took about the
same amount o f time, and they found no clear difference in the number o f problems found between both
methods [42]. Judgements about the severity o f problems are not well supported by either technique
[98]. The effectiveness of these techniques is therefore very limited. Studies have tended to concentrate
on systems designed for novice users. Though they can be useful, the lack of real user involvement can
be problematic. User-centred evaluation is still necessary.

B.6 User Based Evaluation

The alternative to expert and analytical approaches are techniques that involve real users. There are a
number of ways of going about these. However, their effectiveness centres on being able to involve a
representative set o f participants from the end-user population. This involvement should help to
overcome the considerable knowledge differences that can exist between design teams and the
consumers that a system is intended for.

While iterative development and user involvement can be vital to the development of good applications,
they are not always possible [80]. When developing “off the she lf’ software for general groups of users
it may be difficult to gain access to a truly representative set o f participants. Even when developing for
more specific groups of users, there may be problems. Management at customer sites may not see the
benefits o f taking users away from their regular work. Usability issues have to fit into the broader area
of product development. For instance, marketing groups may see themselves as the only legitimate
group who should have contact with customers and may be worried that developers will alarm
customers, or have a negative effect on the product’s image. Competitively bid contracts may involve
one group developing requirements, while another performs the design. User involvement may
therefore be difficult or impossible in the late stages of product development. However, the difficulties
and importance of developing a good interface to a system, make it important that users are involved in
the design.

There are a number of important questions to answer when performing a user based evaluation:
• Where to perform it?
• How to get users to interact with the design?
• How to gather data?
• How to analyse data?
• How to redesign?

B.6.1 Where to Perform It?
Evaluations can take place in some form of lab, or at the user’s place of work (in the field).

B.6.1.1 Lab Testing
Lab studies can be very useful for certain kinds of testing. For instance, Philips[205] favour them for
focus groups sessions in early development; prototype testing that can’t be done in context; the study of

210

novice users exploring an interface; comparative testing; fine tuning near the end of a design. Usability
labs themselves usually contain recording equipment, such as video cameras and scan converters. The
latter takes images directly from the VGA output of a computer. These provide a good means of
gathering data. Labs may also have large one-way mirrors, allowing a group of people to watch the
evaluation progress. This may let design teams and management view the test. Viewing problems with a
design as they occur is a far more effective way of conveying them than simply reading about them
[205], When evaluating some software, lab tests may be the only possible approach. For instance, it is
clearly not possible to evaluate a prototype Air Traffic Control system in real use. Here realistic, lab
based simulations are the only option.

B.6.1.2 Field Studies
Where possible, field studies can be a far more effective way of evaluating systems [205] [167]. The
situated nature of work is very important [191]. Suchman argues that the way people carry out their
work is deeply situated in the context o f their work. Any evaluation that takes place in a different
context could result in very different results. Zirkler et al [213] discuss the approach taken by an
electronic publishing company. They found that the work environment plays a critical role in
determining how customers use their products. Customers changed their use of the software
significantly in the lab as opposed to in their place of work. In the field, customer were able to refer to
their own work samples during evaluations. For busy customers, carrying out any evaluation at their
place o f work may also be more efficient. It should be noted that there are still significant differences
between demonstrating a piece of software at a user’s place of work, and actually carrying out a
realistic evaluation in the field. Prototypes for demonstration purposes must be mobile, for instance, this
could be done with a laptop. Prototypes for situated field trials must actually integrate with systems in
the user’s place of work.

B.6.2 How To Get Users To Interact With Design?
Designs can be presented to users through a variety of techniques. These include demonstrations,
directed dialogues, by having users perform a set o f basic given tasks, allowing free use to do some
actual real work, or by carrying out an actual situated study of the system in the users place of work.

B. 6.2.1 Demonstrations
A system can simply be demonstrated to a user, using for instance a live demo or a video recording.
This sort o f activity can give users a general idea of what a system will be like, and allow some
feedback. Demonstrations can be used to focus later evaluations; allow a larger group of users an
understanding of the system; and give users a chance to start thinking about a design [213], A prototype
for such an evaluation need only implement the necessary functionality to run the demonstration; it does
need to be ready early in the design process. Usability testing of prototypes with users can get more
reliable data when performing specific tasks than when just demonstrating an interface. Users may
come to rapidly different subjective opinions, especially if problems are glossed over [196] [114].

B.6.2.2 Directed Dialogues
A more user involved form of demonstration is a directed dialogue [150], The customer is directed, by
a tutor, through a task, which is to be performed with the simulated system. If the customer has
difficulty, the tutor guides them to screen areas to help them on. This progressively discloses
information to the user until they are able to understand how to perform the task. This can be done with
one or more users[131]. The focus is on seeking feedback from users about specific tasks with a given
design. It can be used with paper based prototypes, as the user is being shown a system and asked about
their understanding of it, rather than having to use it themselves. However, it can also benefit from the
use of a software prototype. Again the prototype need only implement the minimal set o f user interface
level features necessary. For instance, it need only simulate the minimal necessary amount of
underlying application behavior.

B.6.2.3 Evaluation with simple tasks
Users can be given a prototype of a system and be asked to carry out a set o f very specific tasks (e.g.
[212]). These may be at the level o f finding a specific bit o f data from a database, or making some
specific changes to a paragraph in a text editor. Scenario design is very important here, as the tasks
tested need to be realistic. If the scenarios are badly designed the evaluation could be testing irrelevant
details. This sort of evaluation can help test very specific aspects of a system, and see whether users
really are capable of using and understanding it. They test user understanding better than

211

demonstrations or directed dialogues because the user is in control. This sort o f evaluation will only
verify that a system is usable for a specific set of tasks, it will not validate that the system will really
support the user in their day to day work. High level misunderstandings about the nature of
requirements will not be caught. This approach can be used to test a partial prototype of a system, as
only the features necessary for the specific evaluation need to be implemented [211]. The
implementation of these tasks must, however, be more complete than for demonstrations or directed
dialogues.

B.6.2.4 Evaluation with free use
W e can choose to evaluate a system by allowing users free use of the system. In this case they will be
given a high level goal and be allowed to proceed in using the system to carry out this goal. The choice
o f high-level task is again important here. It can be useful to get users to try out some realistic work
with a system [203]. For instance, we might get them to write a short paper with a word processor. This
kind of evaluation takes more time. It is semi-situated, in that users are performing realistic tasks with a
system. The complexity of the task determines how long the evaluation should take. A good free
evaluation might unravel over an extended period of time. It might be used as a longitudinal study, to
determine how users both leam to use a system, and then work with it when they become skilled [130].
Where possible, this form of evaluation may be carried out in the users workplace. This could be
particularly important if the environment in which a user works has an effect upon their use of a system.
Such cases might, for instance, involve high background noise, or low light level.

In order to support such evaluation, a prototype must provide a realistic implementation of a system. It
needs to implement all o f the user interface features required for such use. It does not, however, need to
implement all underlying application behavior. For instance, the prototype does not need to talk to the
real back end systems, such as existing data bases, that would exist in real use. These can instead be
simulated. As another example, a prototype Air Traffic Control system does not need to communicate
with real planes; and does not necessarily need to be implemented as a distributed system. It only needs
to simulate the behaviour of aircraft sufficiently for a controller to be able to interact with them.

B. 6.2.5 Situated Evaluation
The most complex style o f evaluation is a situated evaluation that tests a version of the system in the
users own workplace, where it is used for real work. This form of evaluation will find a whole host of
problems that result from the complex nature of the workplace. Lab tests can provide some information,
but to truly understand a system, users need to be able to try out software in their own environments for
reasonable periods of time. Situated studies look at how well the system fits into the workplace, not
simply how well it fits the requirements as understood by the design team. This style of evaluation
becomes more important when evaluating multi-user systems, as discussed in Section B.7.

Beta testing can be used to find usability problems as well as simply looking for bugs and performance
problem. Smilowitz et al [186] compared lab, forum and beta tests as a way of performing usability
testing. In the beta tests, participants were able to download the software and try it out in their real
work environments. They were asked to observe and record problems in their use of the software tool.
Such tests make data capture more difficult. They found that beta testing found the same number of
problems as lab testing, though it found a lower percentage of severe problems. In such cases,
understanding the exact nature of the users problems depends heavily on their ability to record them
accurately.

A situated evaluation or beta testing requires a complete - or at least almost complete - implementation
of a system. It must be possible to perform real work, rather than simply simulating it. It need not, and
almost certainly will not, implement all features of the proposed system. However, the core features that
it does implement must be fully operational. For instance, it must have real underlying application
support to handle data from existing databases.

B.6.2.6 Prototyping and Evaluation in this thesis
The prototypes that were developed in this thesis were aimed at the first four types of evaluation. The
systems could be demonstrated to the user or designer, or be evaluated with simple tasks. For instance,
this took place with the ATC case study. A Human Factors expert performed specific tasks with the
ATC system, and discussed desired redesigns. The usability evaluation carried out with the QOC editor
was more complex, requiring free use of the system. The development of systems for situated

212

evaluation is a more difficult issue, as these require more realistic implementations. Such evaluations
are therefore unsuitable for the early stages of iterative development.

B.6.3 How To Gather Data?
There are a variety of evaluation techniques that can be used to gather data. These will be discussed
briefly, as we made use of a number of techniques in the QOC evaluation, discussed in Section B.9.
These include:
• concurrent verbal protocols, or “think-alouds” where a user talks through what they are doing;
• retrospective verbal protocols, where users go back through what they have done and discuss it;
• system logs, that record user interaction at the keystroke level;
• surveys such as interviews and questionnaires;
• and video and audio recordings of user interaction.
•

B. 6.3.1 Concurrent verbal protocols
One of the simplest and most popular approaches to gathering data during an evaluation is to use a
“Think-aloud” protocol [212][114][109]. Here a user is requested to talk through what they are doing as
they are doing it. This allows an understanding of what is really happening when problems occur.
Nielsen argues that it “may be the single most valuable engineering method” [143]. It can, however, be
difficult to get users to explain what they are doing without sufficient practice. It may feel unnatural and
interfere with the task that they are performing [213].

One approach that tries to overcome this problem is co-operative evaluation[212]. Here the evaluation
becomes a conversation between the participant and the person running the evaluation. Users are asked
to consider themselves as co-evaluators, and are asked questions such as “What will the system do if
...?” . A study with a group of software engineers showed that this method could be effective, even with
very little training. An alternative is to use a co-discovery approach[196]. Here a group of users work
together to perform a task and therefore discussion should ensue that results in them naturally thinking
aloud. Participants need to be equally matched for this to work; otherwise, it may turn into a lesson
where one participant attempts to teach another. This also mirrors how new users may learn to use a
new system; learning is often done in groups [167]. Molich [131] found that performing a think-aloud
with a group of three to five users should find somewhere between 50% and 90% of problems. Unlike
expert evaluations, these approaches do not generate “false positives” ; all problems are faced by real
users in practice. These approaches are therefore fairly cheap and effective ways of carrying out
usability evaluation.

B.6.3.2 Retrospective verbal protocols
To avoid interrupting the user during an evaluation, a retrospective verbal protocol can be used. In this
case, the user is taken back through their earlier interaction and questioned about it. The replay of
earlier events can take place via videotapes (e.g. [192]) or by having users retype the keystrokes that
they previously performed from recordings in a system log [211]. Users may reinterpret their previous
actions incorrectly; however, this can be an effective way of getting data. Henderson [89] found that
concurrent and retrospective verbal protocols tend to find the same set o f problems. Both concurrent
and retrospective verbal protocols are centred around user discussions and so require no explicit tool
support themselves. Because of the need for some recording of the user’s activity, retrospective verbal
protocols are usually more time consuming than concurrent ones.

B.6.3.3 Software logging
Software logging requires explicit tool support. For instance, the Microsoft Usability lab has developed
logging tools that handle time stamping and storage of user interaction[93]. Their tools locate episodes
based on which events denote the beginning and end of the episode. Different user intentions may
produce the same event. Events must therefore be examined in the context of the surrounding data.
Event data can be filtered, and keystrokes can be compressed, for instance, into words that the user
typed. Playback tools can then be used to replay the results o f event logging software, but they only
work when the playback computer is in exactly the same state as the original computer.

Software logs provide a detailed record of what the user did. They are amenable to automatic searches,
and quantitative analysis. The mass of data gathered can, however, be intimidating. Analysis can
therefore be time consuming. More importantly, they do not provide an understanding of why a user

213

behaved in the way that they did. They must therefore be used in addition to verbal protocols and
survey approaches.

FranTk currently provides no explicit support for software logging. Future work could investigate how
to integrate this into the toolkit.

B.6.3.4 Survey approaches
To compliment data gathered by direct observation, survey approaches are often used [51][63].
Debriefing sessions can be used. These may be less formal than retrospective verbal protocols, simply
discussing the user’s views about the system. Pre and post evaluation questionnaires can also be used
[167]. Pre-evaluation questionnaires can find background about users that may affect their performance
during the evaluation. Post-evaluation questionnaires allow users to note complaints, or grade the
system.

Questionnaires also exist to attempt to fathom user performance. For instance, the NASA developed
Task Load Index (TLX), is an internationally recognised approach to data gathering [14]. It attempts to
assess a user’s subjective workload. It uses six scales that cover factors that influence experience of
workload. These cover areas such as mental and physical demand, time pressure, frustration, effort and
performance. Each is measured on a sliding scale, and is compared pairwise with the other factors for
importance. This captures factors that may be very important but is still relatively easy to carry out.

B.6.3.5 Video and audio recording
Video and audio recording are very popular ways of gathering data during an evaluation (e.g.
[11][123][130] [150][205]). Audio data can be used separately and transcribed using conversation
analysis techniques (e.g. [135]). This makes it far easier to study in detail and search through. This can
be used in conjunction with system logs to provide an understanding of the context of the user activity
[93]. Together audio and video recordings can be very effective capturing subtle user activity. Several
cameras can be employed to capture what happens on screen, users’ expressions and gestures. Video
recording can also be an effective way to “sell the results” to management and designers [205].

Video analysis can have problems. While recording can capture most activity; it cannot always capture
everything. Video data seen out o f context can be misconstrued [124]. Involving participants in the
analysis can make up for this [192]. Video can simply be used as the focus for discussion between
designers and participants. It is also important to minimise distractions when performing an evaluation
[175]. Participants can be easily intimidated by recording equipment. However, researchers at Philips
have found that participants soon forget about well placed video equipment [205].

Video analysis has a reputation for being time consuming [123]. It can be cumbersome to edit, and
difficult to locate information. This can be made even more difficult if several cameras are used during
evaluation. Editing equipment can help here by merging video streams onto a single tape. This style of
equipment was used in the QOC evaluation discussed in this appendix. A large observation team may
offset the need for video recording [196]. However, such a team may be significantly more off-putting
for a user. Video analysis tools can help. For instance, the ability to tag particular events on a tape and
then provide random access can be very powerful [123], Tool that allow system logs to be combined
with video tapes can also be very powerful. The level of analysis required becomes an important issue
here. Video recordings can be used simply to elicit retrospective discussions with participants, and help
recall some key episodes of the interaction. This style o f analysis requires much less time, effort and
software support. It is, however, less effective than more detailed tool supported analysis.

B.6.4 How To Analyse Data?

There are a variety of techniques that can be used to analyse the data gathered during an evaluation.
These approaches fall into two camps: quantitative and qualitative methods. Quantitative approaches
look for measures and values that can be considered and compared; qualitative approaches look for
detailed process information, the “how and why” of what actually happened.

B. 6.4.1 Quantitative Approaches
One of the most significant features of quantitative data is that it can be used in a cost-benefit analysis.
It can be used to determine how effective a new interface may be; for instance, timing information can

214

show why a new interface will save money [196]. It can, however, be very expensive to perform such
evaluations. BT estimated that to perform an evaluation using 20 participants on 5 tasks cost £1500 to
recruit participants, £500 of material, 10 person days to plan, 30 days to undertake the trial, and 30 days
to analyse the results[63]. Trials o f this sort are not conducive to rapid, user-centred, iterative
development.

Considerably cheaper quantitative studies can be carried out, however. Szczur et al [196] discuss a low
cost quantitative approach to evaluation based on usability metrics. Evaluations involved 1 hour
sessions that tested 12 categories with 45 individual tasks. The usability metrics suggested include time-
to-leam, memory retention, number of errors and user perception. These can give details of how
successfully users perform the designed tasks. Computer logs, audio tapes and direct observation can be
used for quantitative measurements. Attitudes based on interviews and questionnaires can be gathered.
To make such usability tests amenable to statistical decision making requires a significant number of
participants. This significantly raises their cost. Expert judgements are still required to determine when
a system satisfies the usability criteria.

Statistical techniques exist for analysing quantities of data. For instance, tools such as SHAPA and
MRP exist that can be used to look for cycles o f behaviour that reoccur. Cuomo [34] used such tools to
find a commonly repeating pattern in user interaction. Future design work could then be applied to
increase the efficiency with which users can perform such actions. However, the key to such analysis is
interpreting the statistics. We can only use such data if we also understand what the user is actually
doing. Qualitative data is therefore necessary to complete such analyses.

Quantitative approaches can be very powerful for comparative studies. These allow a measure of
success to be defined. For instance, we could compare a specific aspect o f two designs based on timing
criteria, or workload measures such as the NASA TLX. Significantly such experiments should be
replicable. Experimental set-up is very important here. Designs must be compared with equivalent
evaluators, and with a large enough number to ensure statistically relevant results. Between-group and
within-group experiments are possible [141]. In the former, two separate groups of participants are
used. In this case care must be taken to match each group’s experience. In the latter setup, the same
participants can be used in each experiment. In this case, groups must be counter balanced. Half the
group should use one design first; the other half should use the other. To analyse such results, we must
assume that the effects of learning are symmetrical. Comparative statistical methods can be used to
analyse the results such as t-tests or ANOVAs [51]. Different techniques are required to compare within
and between subject groups [141], These sorts o f experiments can only be used to answer small scale
design questions. When performing large, complex tasks, there are too many dependent variables. Users
may carry out a task in one of so many ways. The effect of a participants experience also becomes a
very serious issue. The situated nature of work also becomes important. A particular design may
perform well under lab conditions, but suffer significantly in real world conditions. Ensuring ecological
validity is therefore a significant problem.

B.6.4.2 Qualitative Approaches
The quantitative approaches discussed above can be used to compare designs, and to find if problems
exist, such as whether specific tasks are performed too slowly. However, they cannot be used to find
what the actual problems are, why they occurred and how they can be solved. Qualitative data is needed
to find out how to go about redesign. The objective in qualitative analysis is different from quantitative
experiments. Wright and Monk [211] argue that though results still need to be as generalisable as
possible, the time scale involved in rapid prototyping is far too short to include an evaluation method
that would be considered scientifically, statistically valid. Formative evaluation is not about validating a
design; it is about finding as many problems as possible. Generality is only really significant if changes
are suggested that are very expensive or seem counter-productive. Twidale argues that “All problems
with a system scale up and out: any success may not” [203]. Interface features which feel cumbersome
in small tests will almost certainly irritate in real use.

W e can look for different types of problems in evaluation data. For instance, we can look for critical
incidents. These refer to cases where a non-optimal path has been taken by the user when performing
some task. These commonly occur when a user makes an error and has to recover from it. They also
occur when a user has to perform more actions than is strictly necessary, such as might occur when
having difficulty finding a menu item. This sort of analysis requires an understanding of the task that a

215

user is performing and probably the strategy that they are using to perform it [211]. Finding critical
incidents can therefore be difficult. The notion of optimal paths becomes even more difficult in learning
or exploratory phases of interface use.

An easier form of analysis is to look for breakdowns. Winograd and Floris[210] argue that a system is
usable when it allows tasks to be carried out in a “transparent way” . When the computer becomes the
central focus of the user rather than the task in hand, then a “breakdown” has occurred. In these cases,
we look for cases when the user has to think about how to fix a problem with the interface, for instance,
when it becomes excessively awkward to use. Finding breakdowns requires verbalisations from the
user. A concurrent verbal protocol should be used so that we can tell when the user is facing problems.
Wright and Monk[211] found that breakdowns are easier to find than critical incidents, as they involve
an obvious complaint by the user. They argue that “most critical incidents are accompanied by a
breakdown b u t ... the converse is not true” . Breakdowns also tend to result from more critical problems
in a design.

There are a number of more complex approaches to evaluating qualitative data such as distributed
cognition and ethnomethodology. I will return to these when discussing multi-user evaluation, in section
B.7.3, as they have been developed to apply to environments involving groups of users.

B.6.5 How To Do Redesign?
Once we have data from an evaluation, working out how to use it in redesign is important. Often the
insights gained from think-aloud style evaluations are enough to work out what problems a user is
having, and to carry out redesign. However, care must be taken in redesigning properly, or the benefits
of evaluation may be missed. Too little design analysis may result in numerous iterations, without
removing significant design defects [207].

Structured approaches exist that attempt to guide redesign. Sutcliffe et al [194], for instance, show how
model matching can be used to consider usability problems. They compare hierarchical task-action
models of what the user tried to do with system models. These are used to guide redesign. For these to
work, a high-level system specification must exist. W e must be careful with such approaches. They can
encourage overly restrictive systems that support simply what users did under one set of circumstances,
rather than supporting their more general high level goals.

An alternative approach to this is to involve users more thoroughly in cooperative design [112]. For
instance, technological redesign can involve a playschool session where groups of users discuss the
system and try out various redesigns with paper and pencil sketches [166]. Wilson et al [209] discuss a
case study that tried to encourage user involvement in the design. Two users co-operatively developed
task models, and redesigned paper and pencil prototypes. They argue that such approaches can be
powerful, but need to be carried out carefully. Users must not be expected to be full designers
themselves. This may place too great a burden on them. If only a small number of users are involved,
they may be unrepresentative of the general user population, especially if they have become heavily
immersed in a particular design.

B.7 Evaluating Multi-User Systems

The evaluation approaches discussed so far have concentrated on techniques for evaluating single user
systems. There are a host o f additional problems that occur when evaluating multi-user systems.

B.7.1 Problems With Evaluating Co-Operative Systems
The evaluation of co-operative systems requires a more complex and widespread evaluation approach.
Grudin [81] has identified a number of serious problems that can occur because computer support for
groups of people has a number of different characteristics from that designed simply for single users.
There have been a number of major groupware failures that have resulted from this situation. For
instance, when those who do the real work are different from those who benefit from the system, there
may be no incentive to use a system.

The situated nature of work is particularly significant. Social and political aspects o f a workplace are
important[81]. For instance, meeting systems have failed because users were unwilling to admit that
particular meetings were of low priority. Design argumentation software has failed because it does not

216

support non-rational decision making. For instance, one such system failed because the manager wanted
his group to project a strong sense of consensus. Groupware systems require to be adopted by a critical
mass of users to be worthwhile. Lab tests can fail to bring out basic practical problems. For instance,
co-authoring software which looked great in the lab has failed because users have been unwilling to
give up their favourite authoring software. A highly-motivate group can make even an awful group
application work; a badly managed installation can destroy even the best o f products. The actual
procedures which people use to carry out their work are far more complex than those used in
handbooks. They are usually far more flexible. High-level organisational rules may vanish at the group
level. A simple evaluation of basic workplace tasks will therefore be invalid.

Determining what problems exist within an organisation can also be difficult. For instance, in one
project involving engineers and architects, delays were occurring[165]. The manager thought it might
be lack of communication and installed video conferencing software. Unfortunately, things became
worse. Engineers were over-committing themselves to attempt to keep up good working relationships
with the architects. With more communication this problem simply became more problematic.

B.7.2 Possible Approaches
There have been some attempts to develop specific methodologies for evaluating co-operative systems.
For instance, Ross et al[166] argue that evaluating CSCW systems requires a number of techniques.
Evaluation is required of both the collaborative activity through a theoretically driven evaluator’s
perspective, and of the tool itself through a practical participant’s perspective. Evaluating the
technology is a process o f verification. It demonstrates that the software meets the design requirements
and has no major usability problems. It should be carried out early on, and such evaluation can take
place in the lab. New technology will change how work is carried out in an organisation. Evaluating the
activity is a higher level problem and is more sensitive to the situation in which the system will be used.
It is a process of validation; validating that the overall redesign of the work situation is actually
effective and suits the needs of the organisation as a whole. This sort o f validation needs to take place
in the field. The issue of multiple stakeholders is particularly important here. For instance, a system can
make the work for a group of employees less interesting while providing useful information for
management. Evaluations must be sensitive to these differing needs.

B.7.3 Methods of Analysis
There are a number of relatively light-weight approaches that can be used to analyse data from a multi­
user evaluation. They include looking for conflicts in the use of a shared system, breakdowns or looking
for process dependent variables. They are designed for evaluations involving “free use” (see Section
B.6.2.4). They do not, however, demand that an evaluation be carried out in a fully situated, work-place
study. They can therefore be used to evaluate the tool itself in an initial study.

B. 7.3.1 Conflict Detection
Morris et al[135] discuss the evaluation of a shared windowing system. They used lab based
experiments with a mixture of observational, survey and experimental evaluation to remove gross
errors. They used software logging to capture user interactions. They used conflict detection with the
log to highlight where two users tried to act on the same object. As these could be difficult to interpret
from the logs, the context of use, including audio transcripts and video logs, was compared to find out
exactly what was happening. This sort of approach focuses attention on low-level details about user
interaction.

B. 7.3.2 Breakdown analysis
The notion of breakdown analysis, initially discussed in section B.6.4.2 has been extended by Scrivener
et al [180]. They distinguish a number of different classifications of breakdown.
1. User and tool - breakdowns can occur with actual use of the software;
2. User and task - breakdowns can occur when a user does not understand the task in hand, or does

not have the necessary knowledge to carry it out;
3. User and environment - breakdowns can occur with the environment that the user is working in;
4. User and user - breakdowns can occur in communication between different users, if several users

are working cooperatively with some system.

Analysis of user-tool breakdowns is equivalent to that discussed for single-user evaluation. Analysis of
user-user breakdowns can cover low level problems caused by poor design of the tool. For instance, in a

217

synchronous groupware product the tool may make it difficult to understand what another user is doing.
Alternatively, the breakdown in communication may be caused by poor design of the collaborative
activity itself. Breakdowns with the task are problems with the collaborative activity. Finally,
breakdowns with the environment result from problems in the context and environment in which a user
is working.

B. 7.3.3 Finding process dependent variables
M onk & McCarthy[132] discuss a number of factors that they used to evaluate a text communication
system. They looked at process dependent variables that could be affected by the alternative
communication medium. People will go along way to protect their primary task, for example, the actual
topic under negotiation and so secondary tasks, such as communication style itself, may suffer. They
used transcripts to look at concepts such as utterance and interruptions, task focus and the need for
explicit topic openings. This approach gave them more significant results than more crude measures of
task performance. This approach is a qualitative analysis mechanism that can be used with data
gathered from lab tests or situated trials.

B. 7.3.4 M ulti-user heuristic
Rodgers[165] adapts some concepts from Green’s work that should be considered when evaluating
multi-user systems: distributed knock-on viscosity and gradient of resistance. The former refers to extra
activities that some users must perform to get a system to work. The latter refers to problems making
changes to a prototype or system. For instance, the more established a working practice, the greater the
resistance to change.

Ross et al [166] found a number o f general categories to be important in the results o f an evaluation of a
shared text editor. These heuristics mirror some, and expand on other, single-user usability heuristics as
discussed in section B.5.2. These new heuristics include:
• feedback and awareness - are users aware of what they and others are doing;
• focus - are users aware of change without being overwhelmed;
• coordination - how do users get to perform activities;
• ownership and control - are users happy about who owns what, who has precedence or permission

to change data;
• communication - is both peripheral and explicit communication well supported in the group. The

former refers to communication that occurs as a side-effect o f something else, but still serves to
enhance awareness in the system;

• mental models and metaphors - how do users deal with notion o f self + task + computer + group +
group task.

• consistency - do metaphors convey the “beingness” and awareness in a system. The lack of
standards in groupware systems makes this less of a problem but there is a need to be consistent
with single user systems.

B.7.4 Heavier Weight Analysis Methods
There are a number of more complex theoretical techniques that can be used to gather detailed
information from situated field trials. These include conversation analysis, interaction analysis,
distributed cognition and ethnomethodology.

B. 7.4.1 Distributed cognition
The understanding that actions are situated and that group work relies on social factors has led to a
change in the cognitive science community. Theories such as distributed cognition have been
developed. The main goal is to consider cognition as a group activity, which takes place through the
“propagation of representational state across media” . Such media can include external objects such as
computer and paper based displays. For instance, when studying navigation on a ship, rather than
looking at individual members of a team and their tasks, it looks at how distributed activities are carried
out, the way knowledge is transmitted between team members and the artefacts that are used for this
purpose. It involves detailed video analysis to look for subtle incidents that take place and underlie
group activity. Gestures and glances can be very important in this. It has been applied to look at Air
Traffic Control, software engineering and hospital wards [83][165]. It can be a very expensive
technique to use requiring very detailed analysis of small sections of video tape.

218

B.7.4.2 Interaction analysis
Suchmann and Trigg [192] present interaction analysis. This is the study of the interaction of people
with each other and with the material world. They look for categories o f different types of interaction,
and evidence for each. They used three different recording approaches: setting-oriented - looking at a
particular location; person-oriented - following an individual around; and object-oriented - tracking a
particular piece of technology or other artefact (such as a paper record). This approach is designed to
consider situated activity and again makes intensive use of video analysis.

B. 7.4.3 Conversation analysis
Conversation analysis can provide detailed information about interaction between participants in a
study. For instance, people co-ordinate on content and find common ground for communication in a
process called grounding. Grounding [28] is the collective process participants use to try to reach a
mutual belief. Acknowledgements and back-channel responses (e.g. “uh-huh”) are important to this
process.

There are a number o f constraints on grounding that can be affected in multi-user systems:
1. co-presence - being in the same physical environment;
2. visibility - the ability to see each other;
3. audibility - the ability to hear each other clearly;
4. cotemporality - whether communication is synchronous or asynchronous (as happens with e-mail);
5. simultaneity - can both communicate at once;
6. sequentiality - can communications get out of order;
7. reviewability - can a user review messages sent by the other person, for instance, with a written

message;
8. revisability - can a user revise messages before sending them, allowing repair to be done privately

rather than publicly.

These constraints can affect how easy users find communication and how easily they can work together
in a collaborative system. Conversation analysis involves studying transcripts to investigate how
communication and co-ordination are being affected by the new system. Again this makes it a heavy­
weight method. However, a basic understanding of grounding and the constraints upon it can be used as
heuristics or as guidelines when carrying out a more light-weight study.

B. 7.4.4 Ethnomethodology
The need to study work in context, and therefore to perform situated evaluations, has led to the
adoption of ethnographic methods within the CSCW community. Lucy Suchman used
ethnomethodological approaches as the basis of her “Plans and Situated Actions” [191]. This inspired
much of the work in this area. She argues that human activity is richly context based; it can be
impossible to remove human activity from its context. There are two basic premises: “first, that what
traditional behavioral sciences take to be cognitive phenomena have an essential relationship to a
collaboratively organised world of artefacts and actions, and secondly, that the significance of artefacts
and actions, and the methods by which their significance is conveyed, have an essential relationship to
their particular, concrete circumstances” .

Hughes et al [95] have attempted to show how ethnography can be used in design. They suggest several
approaches.
• Concurrent ethnography - where design is influence by an on-going ethnographic study while

developing a system. They tried out the approach with an air-traffic control system going through
the cycle of fieldwork>prototype iteration>fieldwork about four times. The team was small enough
to allow an informal transfer o f information between ethnographers and designers.

• Quick and dirty ethnography - brief studies are undertaken to provide a general but informed
sense of the setting. This was carried out in an industrial environment, on a larger project. The
study was able to influence the design, focusing on informing strategic decision making. The team
found diminishing returns with extended trials.

• Evaluative ethnography - verify or validate a set o f already formulated design decisions. This
was used as a sanity checking method, to evaluate a model of work in a financial company.
Ethnography was used to tweak the systems.

219

• R e-exam ination of previous studies - previous studies can be re-examined to inform initial
design thinking. This is a cheaper method as it attempts to reuse existing data. However, it may be
dangerous if the context o f work is too different.

Ethnographic methods face problems [95]. There are problems of scale. It is relatively easy to study
small scale confined environments. Scaling up to environments with work distributed in time and space
can be difficult. Secondly, time pressures are very important. Social research can last years. This sort of
time-scale is totally impractical for design. The ethnomethodological approach insists on a rigorously
descriptive rather than theoretical program. This produces rich descriptions of work in context, but
creates problems when trying to produce models and ideas about design. These rich descriptions can be
difficult to communicate to designers as they are typically lengthy and discursive. The introduction of
technology to support large-scale activities can transform small scale ones, thereby undermining the
large ones. This has been described as the “paradox of system design” [20]. Ethnographic methods are
therefore not a ready made solution. Decisions about how to use data from ethnographic studies are still
difficult. However, these methods can provide very rich data which can be very useful if carefully
integrated with design.

B.8 Summarising Evaluation Techniques
This appendix has highlighted a number of techniques for evaluating interactive system. These have
covered both single and multi-user systems. This section will summarise these and highlight those for
which the prototypes developed in this thesis are suitable.

As we have seen evaluations can take a number of forms. The variation falls along a number of axes.
• W hat aspect to evaluate - tool or activity;
• W hat scale o f evaluation to carry out - from demos, through simple task based evaluations and free

use, to fully situated evaluations;
• W here to carry out the evaluation - lab or field;
• What style o f prototype to use - from low fidelity paper prototypes, through initial software

prototypes, to full-scale implementations;
• What sort of analysis - quantitative v qualitative analysis.

These axes are not orthogonal; not all combinations make sense. The first axis provides the important
dividing line.

B.8.1 Evaluation of the Activity

The more complex of the two aspects is evaluating the activity. This involves evaluating the new work
practices which introduction of the new technology will produce. Such evaluations must take place in a
realistic setting; this usually means a fully situated field trial. Such evaluations do not necessarily
require a prototype system; they can be used to evaluate a model o f activity being used for design. In
this case they can be used in the early requirements gathering phase. An example of this is the use of
“evaluative ethnography” to test a set of design decisions. This sort of trial will also feed into smaller
scale, tool based evaluations, as the activity model will be used to guide design of tasks for lab trials.
To really understand what will happen when a new system is introduced, we must evaluate the tool and
the new work practices together. This must be done with a realistic prototype. Such studies are not
always possible in the field. For instance, it is clearly not possible to test a prototype Air Traffic Control
system with real work. Such studies must take place in realistic setups. For instance, NATS uses full
scale simulation suites that accurately replicate the environment in which controllers work. These sort
of situated (or semi-situated) studies are generally beyond the scope of early prototypes of the form
developed in this thesis.

B.8.2 Evaluation of the Tool
The prototypes developed in this thesis are more suitable for tool centred evaluations. Such studies
must be intelligently designed, making use of realistic tasks. These studies clearly also involve the
evaluation of low-level aspects of the activity or individual tasks, such as how users perform basic co­
ordination with a tool. They do not, however, concern themselves with a global view of the activity as a
whole.

220

Tool centred evaluations can take a number of forms, from early demonstrations with either paper or
software prototypes, through to “free use” with an initial software tool. These studies can take place in
the lab or at the user’s place of work. However, in the latter case they are different from fully situated
trials, as they will still not take place in the full working environment. They may seek different styles of
data:
• early feedback on a design - this can use demonstrations, and involves gathering simple qualitative

data;
• finding major usability problems - while this can be done with directed dialogues, it generally

involves use of an actual software prototype. Again this involves gathering qualitative data;
• fine tuning - evaluations can seek to find and tune important activities. For instance, we might wish

to speed up an important interaction technique. This generally involves gathering both qualitative
and quantitative data.

When carrying out early iterative design it is important to recall that “All problems with a system scale
up and out: any success may not”[203]. Such evaluations should concentrate on finding these usability
problems. The exact techniques chosen depend on the system being evaluated. We can evaluate either
single-user or multi-user aspects o f a CSCW system. For instance, it would be less relevant and more
difficult to evaluate in single-user mode a tool that was designed only for communication, such as a text
based talk system.

There are a number of general techniques suitable for this style of evaluation.
• Scale - Such evaluations can involve anything from demonstrations to free use;
• Data gathering - gathering data via verbal protocols, such as “think-alouds” or “co-discovery” is

probably the most effective way. Audio and video data can also be gathered, and used with
retrospective verbal protocols.

• Data analysis - Analysis of gross errors such as breakdowns or conflicts in a multi-user system.
Video analysis can also be used. While analysis can be very heavy-weight, this is only necessary if
seeking subtle data. If looking for gross errors such as breakdowns, then analysis can be more
lightweight.

B.9 A Case Study - The QOC Evaluation

B.9.1 The System to be evaluated

The use o f rapid evaluation techniques will now be demonstrated through an evaluation case study of
the QOC multi-user design rational editor. The editor was designed for the Questions, Options, Criteria
(QOC) notation. The interface was introduced in Chapter 2. Each user has a separate view of the QOC
collection. Each QOC is maintained in a window. Different users can have windows open in different
areas of the screen. Within each window, however, users views are strictly WYSIWIS (What-You-See-
Is-What-I-See). The level of sharing is important. Users can see changes made by anyone in any of the
other visible windows. They can also see where the other users’ cursors appear in their own window.
Users have a colour associated with them, used for their cursor. A different colour scheme is used to
represent changing options. Objects being edited by a user appear in green; objects being edited appear
in red. Locking is at node level so two users can both act in the same window but cannot both act on the
same node. The prototype was initially developed in the Clock language (see Section 3.12). It was this
version which was evaluated. A version was later developed in FranTk.

This study had several meta-level purposes.
• It demonstrates that the prototype developed was sufficiently efficient for real evaluation. It is

important to note that while the Clock version was evaluated, the FranTk implementation was more
efficient and so would have been adequate for this purpose.

• It provided some real redesign that had to be done to the prototype. The changes made to the Clock
prototype were later made to the FranTk system.

• It demonstrates that the system developed was capable of carrying out an actual task.
• It provides an interesting case study in evaluation itself, and provided some interesting results

about use of a shared editor.

221

B.9.2 The Study

B.9.2.1 The Task
Several groups of users worked together to summarise a section of an accident report using the QOC
notation. There were four pairs and one group of three users.

Users were first given a chance to learn to use the system. This involved trying out the interface by
cooperatively producing a given QOC. The users then went onto the main task. They were provided
with several pages of the London Ambulance Service (LAS) report and given a brief overview of what
was involved in the area that they were discussing. The section in question contained details on why the
LAS might want a computer aided dispatch system, whether they might go for an existing system and
who they could buy one from. The participants were asked to analyse and summarise the decisions
made in this restricted section of the report through the use of a set o f QOCs. The whole task took just
over an hour for each group.

The choice of task was important. The study was concerned with the tool itself. This included how well
it supported the basic task of producing and modifying QOCs, and how well it supported co-ordination
and co-operation through the various shared awareness mechanisms. This meant that we required a task
which involved discussion, and in which the focus o f the users should be on gathering and summarising
data; breakdowns would therefore occur when the focus of the user became the tool itself rather than the
task in hand. However, the task had to be sufficiently consistent so that each group would at least use
the same data, even if they gathered and handled it differently. The goal was to summarise a design
rational from a specific document. This meant that the each group should have had the same general
style o f discussion, as they were working with the same basic information. This kept the task consistent
between groups of users. The evaluation was also able to provide feedback about the different
mechanisms that each group used to summarise the data. However, it remains an open question whether
such a scenario would actually be realistic in any given work environment.

B.9.2.2 The physical setup
The evaluation was set up to look at distributed use of the system. Even in such a setup audio
communication between participants would be vital. The participants therefore needed to be placed so
that they could not see each other, but could hear each other. Participant could have been placed in
separate rooms and have communicated over a telephone. However, it was felt that it would be
logistically simpler to place them in a single room separated by a partition. This would result in similar
interaction properties, but made it easier to monitor what each of the participants was doing. The full
setup can be seen below.

User 2

CD
User 1

cb
Usability lab/
Digital video
mixer

camera

Scan converter

Figure 52 - Setup for Experiment

B.9.2.3 Information gathering
I made use of a think-aloud, co-discovery protocol. The existence of multiple users testing the same
piece of software made this very simple. Participants discussed their work. They also discussed
problems with each other during the evaluation. For instance, they had to learn co-operatively how to
use the system. This worked very naturally. The first reaction of any participant to a problem was to ask
their partner about it. This is unsurprising as most users when working in company tend to learn by
discussion rather than by reading user manuals [167]. As the participants were in the same room I could

222

monitor what both were doing. In the case of a major breakdown between the user and tool I could
interfere and switch to a co-operative evaluation style, allowing the user to elaborate on their problem
and so to fully understand it.

The participants were also recorded with video cameras and a scan converter to record the output from
the screen. To be specific, one user was recorded with a camera and one with a scan converter. Users
were given radio microphones. The recording was carried out with a portable usability lab. This
allowed the output from the video recordings to be combined onto one screen, and composed the input
from the radio microphones. The two images were scaled and placed one on top of the other. This
produced an image that while no longer fully readable, was still good enough to provide an
understanding of the general user interaction. When evaluating with three participants we were able to
record only two of the users’ screens, along with audio from each user.

I carried out interviews with the participants at the end of each session. The participants were therefore
able to express their subjective opinions about use of the system. As advised in Fowler et al[63], I did
not show video tapes to participants immediately after the evaluation sessions, but instead discussed
problems noted on paper. This proved effective enough for discussing the major breakdowns that were
noticed during the evaluation itself; the problems were generally memorable and the prototype itself
could be used to highlight points in the discussion. While the use of video tape might have added to the
discussion, the logistics of finding appropriate points on the tape for discussion would have been
cumbersome and forced unacceptable pauses in the discussion. The users were somewhat tired and were
certainly not in a position to immediately spend another hour studying a videotape. Users were also
given the NASA TLX questionnaire to attempt to highlight which areas of workload were most
significant in the evaluation.

B.9.2.4 Data analysis
During the evaluation I was able to pick up major breakdowns or User Interface Disasters as Molich
[131] terms them. After the evaluation, video analysis was carried out. Here I was able to look for more
subtle problems than could be caught during the evaluation itself. The analysis focused on looking for
breakdowns, critical incidents where possible and problems in each of the multi-user heuristic
categories suggested by Ross [166]. I also looked for more general patterns in the way each of the
groups worked. Due to timing and logistical constraints, I was unable to show and discuss the videos
with each set of users. In retrospect this was a bad idea. The number and scale o f the problems caught
in the actual evaluation sessions was deceptively impressive. There were a number of minor
breakdowns that were caught only during the video analysis. More significantly, the search for general
patterns of behaviour was only really possible using the video tapes. The audio conversation helped to
convey what the user was doing. However, it was not always perfect at doing this. A better evaluation
setup would have involved video analysis immediately after the evaluation, with further discussion with
participants later in the day.

B.9.2.5 Redesign
During the usability evaluation I used what has been termed a progressive usability format [109]. This
meant that major usability problems were fixed after each test session, before the next group of
participants used the system. This was useful because it meant that participants in each session did not
spend their time struggling with the same basic problems found in the previous session. Instead, they
were able to work on and find new issues. Large usability problems often mask smaller ones that might
otherwise be found [51].

B.9.3 The Evaluation Results
A number of problems were raised relating to both single and multi-user issues. Some of these were
simple ones that should have been caught by basic modelling or heuristics. Others, however, were more
serious high-level issues that could only really be considered as part of a user evaluation.

B. 9.3.1 Single User Problems
During the evaluation we found a host o f problems that applied to single user issues in the design.
Heuristic evaluation and more detailed modelling could have caught a basic set of these problems. For
instance, we can categorise a number of these problems as violating task conformance, visibility or
predictability.

223

A number of problems crept into the prototype as a result o f inadequately thought out redesigns. These
problems were usually very low level issues. In the pilot study users complained that it took too long to
add new nodes (they had to go through the menu system). A toolbar was added to allow new questions,
options and criteria to be created more quickly. Unfortunately, not enough feedback was provided about
the generation process and there was no way to stop creating a node. These two problems are violations
of visibility and reachability properties, and so should have been caught by heuristics: not enough data
was provided about the state o f the interaction (we’re trying to create a question) and not every state
can be reached (want to stop creation part way through).

A check for task conformance in the specification could also have prevented another simple problem.
(That is checking to see if the system supports each task required.) A node has both a type (Q ,0,C) and
a name. Initially, there was only one menu command “Edit node” that allowed both to be edited. Both
users took several attempts to find how to edit a name, while one assumed that it was impossible to edit
the type of the node, and so accomplished a change by deleting and recreating. This is a clear example
of a critical incident where a user followed a non-optimal path to achieve a goal.

Some more complex issues arose relating to single user issues. An imperfect understanding of the users’
task caused further confusion. A QOC may have consequent QOCs which follow on from an option.
Several users concluded from this that to create a consequent question, they should use the pop-up
menu available from a current option. Instead the design model assumed that a new QOC would first be
created and that they would later be connected. A better understanding of the users’ task was required
to solve this.

A greater understanding of the strategies used to create QOCs was also gained during the evaluation.
Users were looking through a body of data and using QOCs to summarise and analyse the data. The
general strategy appeared to be: (I) read through a section and work out what it was about; (2) work out
the “Question” being discussed; (3) choose options corresponding to those available; (4) select relevant
criteria. Several users first added a set of boxes for each criteria that they would need; then they named
them; finally, they connected them to options. This creation strategy therefore followed a very modal
approach: Create Question, Create Options, Create Criteria, connect them. In the interview section, two
of the users noted that they found the mechanism of “click to create, click to place” frustrating. Given
the modal strategy it might therefore have been appropriate to have used a modal interface as happens
in normal drawing tools. Though some of this analysis came from the post evaluation interviews, the
video analysis proved very valuable in finding supporting evidence for this hypothesis.

Finally, several users felt that the QOC notation as it stood was inadequate for the task in hand. Nodes
could be annotated with page and section numbers to relate objects to sections of the report. However, a
greater flexibility in appearance was requested to distinguish between concepts that were explicit in the
report; implicit in the report (and inferred by the analyser); and concepts missing from the report, but
worthy of note. This sort of classification could refer to both options and criteria, and to judgements
about whether options fulfilled criteria, how well they fulfilled them and how important these criteria
were.

B. 9.3.2 Multi-user issues
There were a number of multi-user issues raised during the evaluation that referred to both interaction
level notions such as shared awareness and higher level issues about the way that users went about
working together. While I had rough intuitions about some of these issues immediately after the
evaluation, the video analysis was very important for these discoveries, particularly those involving use
of the shared cursor.

I found the categories of issues (Feedback and Awareness; Focus; Coordination; Ownership and
Control; Communication; Mental Models and Metaphors; and Consistency) raised in [166] to be useful
here. It was also helpful to try to understand shared interaction by looking at the objects used to carry
out that shared interaction.

Feedback and Awareness
Provision o f feedback is very important in groupware applications, as users must be aware of both what
they themselves and the other participants are all doing. Shared awareness gives “an understanding of
others, which provides a context for your own activity” [39]. Users need to be able to answer questions

224

about “Where am I?” , “What am I doing?” , “Where are you?”, “What are you doing?” and “Who did
that?” [130].

Shared awareness was provided in two ways in the system. Users could see changes being made by
others in their current window. Any object being changed appeared in red. Secondly, there were shared
cursors which showed the position of other users in a window relative way. This could, however, be
confusing when a cursor vanished from a window. Several breakdowns were observed, where users
explicitly asked “where have you gone?” . Providing highlighted information about which window each
user was in may have helped here.

This shared awareness information was used intensively. The shared cursors were particularly helpful.
Having a general awareness of where the other user was seemed to be important to most o f the
participants. However, there were different opinions about how much shared information was
important. Two participants felt that knowing exactly what their partner was up to was very important.
This extended to the point where users wished to be able to see pop-up menus being selected by their
partner. In the absence of this extra information, the shared cursor was used to provide this information.
One participant could watch their partner’s cursor and by its position infer what exactly they were
doing. In contrast, several other participants were far less concerned with this information, and felt
providing more information would just be noise. This shows the need for tailorable awareness
information. A simple solution would have been to provide text labels for objects being changed by
others, explaining what was happening to them. Activation o f these labels could then be user controlled.

Understanding who was doing what proved easy in the two person tests. The shared cursors and
green/red colour scheme proved effective once users got used to them; adjustment was very rapid.
However in the three person test understanding was much more difficult. This is unsurprising as the
red/green colour scheme was designed for pairs. There were two main coping strategies. Firstly, the
shared cursors were again used to provide information about who was over a particular object and so
who was editing it. Secondly, a list of users currently editing in a window appeared in the top right of
that window. This information was far more heavily used. However, as it appeared in a different place
on the screen it proved difficult to get at.

The importance of understanding “who was doing what” was heavily task dependent. This was
particularly noticeable in the three person trial. In the initial warm up task where all three users were
working simultaneously to try to create a single QOC, they became rapidly confused. There was very
little understanding o f who was doing what. However, when they moved on to the main task these
problems reduced to relatively usable level. Discussion and negotiation became more important; it was
rare for all three users to be modifying the same QOC simultaneously. This may well have been a
coping strategy as a result o f earlier problems. However, this still demonstrates the importance of
considering low level usability problems in the context o f a realistic task.

Focus
In systems with multiple users there may be an overwhelming number of actions happening at once.
Noticing what has changed recently or attracting attention can be difficult. In our study, however, these
problems were not significant. The size of groups meant that two users could talk to attract each others
attention without interrupting others work. This would have been far more problematic if we had scaled
up to four users. Focusing other users attention on a particular object on the screen was also not a
serious problem. Users tended to say where to look, referring to an item by name. Gesturing with their
cursor was then used as a more specific focusing mechanism. An awareness of what their partner was
doing was important here.

Coordination & Control
Coordination activity to decide who is going to do what, and who can do what, is very important in
multi-user activities. There are different levels o f this: from general work organisation to low level
interaction.

The use of explicit system based roles have been suggested[ll] to control who can do what. For
instance, a system could have editor and reviewer roles, where one changes a document and others can
comment but not modify. However, several studies have found that roles tend to change dynamically
during group interaction [135] [130]. Dourish and Bellotti [39] argue that shared awareness can be used

225

instead; rather than explicitly defining roles and controlling who can do what, if users can tell what is
happening then they can negotiate their behavior dynamically. W e also found that roles tended to be
varied and dynamic. There were a number of different cooperative styles used during the evaluation.
The styles used mirrored those found in group writing: scribe/consultant writing (where one users writes
suggestions made by the other), parallel writing (where users write simultaneously but separately) and
joint writing (where users actually write together).

The most common style of editing in our study was a joint writing style. All groups at some point used a
very synchronous collaboration style, where often two people would make changes to different parts of
the same QOC. This sort o f activity would usually take place after a discussion about what needed
changed. A less common variation on this was when two users negotiated by changing. For instance
deciding what a question should be by both attempting to change it until they were happy. It took a little
time for some groups to scale up to this sort o f activity. For instance, one group started off using a turn
taking style to make an initial QOC before they became happy enough to try out joint creation. At this
stage a scribe/consultant role was also sometimes used. For instance, after finding some criteria in a
document, one user would read them out while another added them in. However, this style was far less
common.

There were different levels of parallel writing. For instance, one user could look at options for a
particular question, while another looked for criteria. Truly parallel writing, working on separate QOCs
was far less common. Two of the pairs never tried using this parallel writing style. They just
collaboratively negotiated their way through each QOC. In contrast, one o f the pairs did spend most of
their time using this style o f work. They initially negotiated the general structure. Then after negotiating
the first question and set o f options, one of them went on to add criteria while the other went on to the
consequent question. In the three person group, a mixture of these styles could be seen at any one time.
Two of the team spent much o f their time negotiating one set of criteria, while the other member started
looking at a second separate QOC.

In the joint writing sessions, coordination was very important. Locking was at object level, so when an
object was in use no one else could alter it. Users could achieve a very fine grain of interleaving
actions. For instance, one user added criteria while another connected them up to options. Even this
level of locking proved too coarse though. Having the ability to connect between objects that another
user was editing proved important. This was the only collaborative activity that two users wished to be
able to perform on the same object.

Communication
In collaborative activity communication is very important. It can be explicit or peripheral! 166]. The
latter is where communication occurs as a side-effect of something else, as opposed to direct discussion.
In this study, voice communication was very important. Users would not have been able to proceed
without the ability to talk to each other. The problems of private and public communication were not
very important here, as there were not enough participants in any group to allow more than one
conversation. Morris [135] found that for groups of four people, users could still successfully arrange
their own social protocols for use of a single voice channel.

This category relates closely to feedback and awareness as a greater awareness meant a need for less
explicit communication. For instance when one pair of users were working separately on different
QOCs they needed to occasionally keep track of what their partner was doing. One user, who was
particularly concerned about knowing what her partner was doing, kept her windows set up so that she
could see what he was doing at all times. In contrast, her partner would explicitly ask how she was
getting on. Supporting these various approaches to communication was therefore important.

The main form of peripheral communication was awareness of the other user’s shared cursor. Though in
all groups users seemed to be using it for general awareness information, there was a distinct lack of
any references to shared cursor locations in conversation. None of the users made use of phrases such
as “look here” ; references were always to explicit objects. However, all but one user did gesture with
their cursor, moving and pointing it at objects that they were talking about. Users would also follow
each other’s cursors about. For instance, one user taught her partner how to connect between nodes in
two different windows, gesturing with her cursor; her partner performed the actual actions mirroring her
movements with his cursor. This lack of explicit verbal telepointer references has been mirrored in

226

other studies. In one study, Mitchell [130] found that telepointers were often seen as limited as they
could be difficult to draw attention to. One user suggested that they should be able to use drawing as a
method of focusing attention. He would have liked to be able to temporarily circle objects for example.
This more explicit and noticeable behaviour may have made communication easier.

Ownership
When several different people are creating a document, the issue of who owns what, and who can
change it is important. The issue of ownership of objects did arise in this study, especially in the three
person group. The level of concern depended on how closely users were working together. Where users
were working collaboratively on the same QOC using a joint writing style, there was less concern.
However, unless an object had been created after explicit negotiation, participants tended to at least
announce their intention to change an object. For instance, with comments such as “I ’m messing with
your criteria” . During one session in particular, there was considerable disagreement between two
participants about the naming of several criteria. To handle this problem, rather than argue by changing,
participants made their feelings known by adding textual comments to objects (through the pop-up post
it note system). When users were working on separate QOCs this notion of ownership became more
important. For instance, one user finished his QOC and then moved to his partners. He first explicitly
asked permission to help, but still felt unsure about adding extra data: “You know what those criteria
are for so you should probably just connect them” .

The power to make any desired change was noted several times in the three person group. One user
noted that “this is a socialist program”, as each user had the same rights and nobody truly owned
anything. One of the other users noted that she felt that they’d been a bit too polite when they first
started using the system, as they negotiated very carefully what they could change.

Other issues
Issues of mental models & metaphors and consistency were less important in this study. None of the
participants had any really significant experience with groupware applications; most had none at all.
The issue of previous experience did arise once. One group had some experience of turn taking systems
and so assumed that locking would be at window level. This assumption continued to control their
behaviour, even when they discovered that they could make certain changes simultaneously. Getting
over the notion of window level awareness with object level locking was therefore more difficult than
anticipated. The same pair also felt uncomfortable about saving when their partner was working, even
though the system allowed it.

B. 9.3.3 Conclusions about the case study
The co-discovery, think aloud procedure proved to be an effective way of finding many basic problems
in the system. All single user problems were found in this manner. Most breakdowns in multi-user
activity were also visible at this stage. However, developing a proper understanding of user activity,
particularly in the case of shared interaction really required basic video analysis. A fairly lightweight
analysis o f the video tape (2-3 times through each tape, with pauses at appropriate points) provided a
basic insight into the strategies used by each group. Most of these strategies were again visible during
the actual evaluation and interview. However, to find supporting evidence it was necessary to make use
of the video tapes. The use of shared cursors was the major issue which became much clearer as a
consequence of looking at the video footage. To truly understand what was going on, a retrospective
discussion with the users and the video tapes would have been helpful.

B.10 Conclusions

This appendix has discussed a range of techniques for carrying out single and multi-user evaluations. It
has highlighted the difference between tool centred evaluations, concentrating on low-level interaction
issues, and activity centred evaluations which try to evaluate the tool and new work practices as a
whole. It is important to note that both evaluation styles are concerned with the mechanisms used to
carry out a set of tasks. Tool centred evaluations, such as the case study discussed in this appendix, are
still concerned with how a user, or group o f users achieves their goal. More complex situated studies,
must consider these issues and consider what other factors affect the general activity.

227

The prototypes developed with FranTk in this thesis are more suitable for tool centred evaluations. I
have concentrated, in particular, on qualitative evaluation mechanisms that attempt to gather data about
a users problems, rather than demonstrating some result through quantitative data. Such qualitative
studies are more appropriate for the evaluations in the early stages of rapid, iterative development. In
particular, I demonstrated that a mixture of co-discovery think aloud procedures and lightweight video
analysis were easy to perform and were effective for finding a large number of usability problems, and
developing a general understanding of single and shared user activity.

228

Appendix C Combining Interactors and Haggis

Part IV of this Thesis described one approach to combining formal specifications of interactive systems
with high level prototypes. This Appendix discusses an earlier attempt to provide links between these
two areas. One possible combination of notations and implementation languages, is to link the LOTOS
interactor model to Haggis32. There is a strong link between the two systems. Both support concurrent
programming, with event based message passing between components. Haggis provides a high level
language with efficient support for structured graphics, and interactive components. LOTOS provides a
set o f powerful temporal operators to allow components to be composed. It also provides reasoning
power, which is necessary to aid programmers to understand the concurrent interaction in the system.
We can therefore develop programs in a structured way, at a high level o f abstraction.

To show how this can be done, we use, as an example, a highly interactive game (the space fighter
game from Chapter 2). W e specify it in LOTOS, and convert this into Haggis code. Our example shows
the power of the Haggis framework: the Haggis representation is at almost the same level of abstraction
as the specification. This example is relevant as it demonstrates that Haggis can deal with the kind of
highly interactive systems that declarative languages are frequently bad at handling.

C.l Functional Programming & Executable Specifications
Previous work by Alexander [5], has shown the strong link between formal specifications and
functional programming. Alexander used eventCSP, a subset o f the concurrent specification language
CSP, to specify human-computer interaction [5]. For instance, consider a Quit button, that may appear
to be pressed or unpressed, with an updateable label. We could specify it as follows:

quitB = (mouse-down-in-button-> pressedButton ->
((mouse-up-in-button -> quit -> exit)
[] (mouse-up-outside-button -> quitB)))

[] (setLabel -> upDateLabel -> quitB)

Alexander argued that it is easy to understand and reason about the interaction in this specification.
Possible sequences can be built using the prefix (->) operator. Different paths are shown using the
choice ([]) operator.

Alexander used an executable subset of VDM (Vienna Development Model) to describe the data, and
operations used in eventCSP. This language, called “me too” , used pre and post conditions to describe
the events [5], She used a functional language to execute these specifications. We develop her
approach, by using newer developments in functional languages, which make executing specifications
easier.

C.2 The Example
In the past, Haggis has been used to build relatively simple systems [62]. As a more complex example,
we describe the development o f a highly interactive, real-time user interface. It is a space ship game, as
shown in Figure 53. The user inputs commands via the keyboard. A number of enemy ships fly in
waves across the screen. These destroy the player's ship if they collide with it. The player must avoid
hitting the hills at the bottom, and the enemy ships. The aim is for the player to destroy the enemy base
when it is finally reached, while shooting as many enemy ships as possible. There are buttons to allow
the user to pause the game, restart it, or quit from it. The current score will be displayed on the screen.
Though the graphics are only simple, the game requires real-time animation. This example therefore
provides a highly concurrent system, with a number of different interactors: the game and all the
buttons. The specification concentrates on this concurrency.

32 This chapter is based on a paper that appears in the proceedings of DSVIS[170].

229

Restart!

Figure 53 - The In teractive Gam e in Haggis

C.3 LOTOS Specification
In com m on with the C N U C E approach to interactors [151], we specify our system in LOTOS.

C.3.1 The S tru c tu re of the Gam e
The game can be m odelled as six interacting processes:
• an in teractor for the Quit Button (Quit)
• an interactor for the Restart Button (Restart)
• an interactor for the Pause Button (Pause)
• an interactor for the Game Input and O utput (GamelO)
• an output interactor to display the score (Score)
• an application process for the Game itself (App)

These can then be synchronised over a num ber o f events to allow the necessary com m unication. The
two processes M ain and Game are used to com pose the com ponents above, and define how they
interact.

process Main[nscore,sendpause,
display.input,
restart]:noexit:=

hide oc,is,it,iw in
((GamelO[oc,display,sendpause,input,is,it,iw] |[oc,is,it,iw]| App[it,iw,is,oc,nscore])
[> (Restart[restart]
» Main[nscore,sendpause, display,input,restart]))

endproc

process Game[display,input,restart,
pause, quit]:exit:=

hide nscore,sendpause in
((Main[nscore,sendpause,display, input,restart] |[nscore,sendpause]|

(Score[nscore] ||| Pause[sendpause,pause]))
[> Quit[quit]

endProc

230

OD,l!
it, rwGam el

Score

d isab le

P a u se

Restart

Quit

Figure 54 - The Inter-process Communication in the Game

In LOTOS, a \[c]\ b means run process a in parallel with process b, synchronising over gate (event) c;
a HI b means run processes a and b in parallel without any synchronising; and a [> b means run
process a until b starts. A process definition P[a], means process P with gate a\ hide a in P means that
event a is visible only in process P.

Our specification can be described informally as follows. The Game continues to run, with input being
passed from GamelO to App and output from App to GamelO and Score, until the Restart interactor
fires (i.e. the Restart button is pressed). At this point Main starts all over again. When the Pause
interactor is fired, the game will be paused, and will remain so until unpaused. This all continues until
the Quit interactor is fired.

Standard LOTOS does not provide a suspend/resume operator. This operator would make it easier to
implement the pause button. A suspend/resume operator has been added to the new LOTOS standard,
E-LOTOS [97]. In E-LOTOS, a |> b (suspend/resume operator) means run process a until b starts,
when b finishes, continue with a. No tool support currently exists for E-LOTOS so this new operator is
not supported. I have therefore not used it in this example.

In the diagram above we can see a graphical representation of the communication in the system. In this
Process Interaction Network, processes are represented by named boxes, communication gates by
circles, and communication by lines [50]. From this diagram and LOTOS specification we therefore
have a clear understanding of how the system fits together.

C.3.2 Handling Input and Output - GamelO
We will now show how one of the above interactors, the GamelO process, can be defined. The GamelO
process shown below performs two purposes. It receives input from the user and passes it to App. It also
receives pictures from App and displays them to the user. This is, therefore, a simplified version of a
CNUCE interactor. The Collection and Presentation have been combined into one component
GameOutput. The Measure and Abstraction remain in modified form as Gamelnput and Buffer. As
there is no immediate feedback from user input, the Gamelnput and GameOutput processes are
unconnected. Output sent to the interactor should be immediately displayed, so we assume that an
output collect action is also an output trigger.

231

collect

r Buffer
GameOutput putBuffer f

--------- 3!----------
Gamelnput

^ -----

InpTrigger
I rip Watt

draw pause getlnp

Figure 55 - The GamelO Interactor

The Gamelnput process can be specified as follows:

process Gamelnput [putBuffer,getlnp,pause]
(kb:Keyboard):noexit :=

(pause;putBuffer! Pause;
pause;putBuffer! Unpause;
Gamelnput [putBuffer,getlnp,pause] (kb))

[]
(getlnp!kb?inp:KeyboardEv;
([valid inp] -> putBuffer!(interpret inp);

Gamelnput [putBuffer,getlnp,pause] (kb)
[]
[not (valid inp)] ->

Gamelnput [putBuffer,getlnp,pause] (kb)))
endproc

It either collects input events and places valid ones in a buffer, or is blocked by a pause event until
another pause event occurs. Pause and unpause events, are also placed as input into the buffer. This
LOTOS code is fairly expressive. However, In some places it uses an unusual syntax. Conditional
expressions (such as [valid inp] -> ... [] [not (valid inp)[-> ...) are expressed in a way that will be
unfamiliar to most programmers. This may make the language less visually appealing.

The Buffer process can be specified as follows:

process Buffer [putBuffer,inpTrigger,inpWait,inpSend]
(ns:seq lnputEvent):noexit:=

inpTrigger;inpSend!(first ns);Buffer [...] (rest ns)
[] putBuffer?inp:lnput;Buffer [...] (add inp ns)
[j inpWait;

[null ns] -> putBuffer?inp:Input;
inpSendlinp;

Buffer [...] ns
[] [not (null ns)] -> inpSend!(first ns);

Buffer [...] (rest ns)
endProc

It allows the application (App) to acquire input in one of two ways. The inpTrigger event may fire.
This means that the application asks for the next piece of input. If there is none, it merely gets back the
value Nothing, otherwise it gets back the first input event. Alternatively, the application may use
inpWait. This causes it to wait until some piece of input is actually available. The inpTrigger and
inpWait actions are both used by App. The Game should continue whether the user sends input or not,
therefore usually App will use inpTrigger. However, when App receives a pause event, it should block
until an unpause event. This is done, by using inpWait.

The Buffer process is an example of asynchronous communication in LOTOS. If two processes
communicate via it, the sender need not wait for the receiver before it can continue. We shall exploit
this fact in the conversion to Haggis code.

232

The GameOutput process is much simpler, it collects pictures from the application and draws them on
the screen.

process GameOutput[collect,draw] (screen:Screen):noexit :=
collect?pic: Picture;
draw! pic;
GameOutput[collect,draw] screen

endproc

The complete interactor is therefore formed, by running in parallel the three components:

process GamelO[collect,draw,pause,getlnp,inpSend,inpTrigger,inpWait] :=
hide putBuffer in
(Gamelnput[putBuffer,getlnp,pause] kb

|[putBuffer]|
Buffer[putBuffer,inpTrigger,inpWait,inpSend] (emptyBuffer))

GameOutput[collect,draw] screen
endproc

From this specification, we can clearly see, and reason about, how the GamelO process operates, and
interacts with other processes.

C.3.3 The Rest of the System
The Pause, Restart and Quit interactors are simply instances of the button interactor defined earlier.
The Score interactor is simply a label that behaves identically to GameOutput.

II*

^ Score ^ ^ GamelOGamelO

1 If

~ 1 Restart f I ~~~ Jl

Figure 56 - The Interactor Network for the Game

The interactors can be represented as an interactor network shown in Figure 56. This demonstrates how
the interactors can be combined together, by linking their inputs and outputs. Black circles represent an
interactor being connected to the user output, white circles to user input. This provides another way of
understanding how the system fits together.

We therefore have a clear, high level specification which designers may use to reason about a proposed
system. They could, for instance, use a tool such as Caesar/Aldebaran [67], to prove that their
specification preserved certain predefined properties. Design errors could therefore be found prior to
implementation.

233

There are further benefits to the use of interactors. The modularity of the specification makes it easy to
replace individual agents. For instance, we could easily reuse the interface components with a different
application. To do this we could replace the application process {App), and then with only minimal
modification, o f the GamelO interactor (to respond to any change of input keys), we could produce an
entirely different game.

C.3.4 Specifying The Data Types And Operations

In common with Alexander [6], we use an executable subset o f VDM to define the data and operations
in our specification. This allows a more easily programmable notion of state with invariants and
operations. This approach proves particularly useful when specifying the application {App) process,
which maintains data about the lasers, enemies, ship and background. W e have, for instance, access to
sequences to maintain the data about collections of lasers and enemies.

As an example, we will show how the ship data can be specified. Its position, width and height are
maintained using a rectangle data type. The ship also has an image pic, which will be displayed at its
current position, using the shipPic function. There is an invariant (mv). The ship must remain on screen
at all times, that is its x position must be greater than 0 and less than the width of the screen (minus its
own width, so that all o f the ship is displayed). The equivalent is true for its y position with respect to
screen height and its own height. The ship’s data is all packaged up within a Haskell record. The
invariant will be applied to any attempt to alter the record, for instance, when we try to move the ship.
This would appear in Haskell as follows:

data Ship = Ship {rect :: Rectangle,pic :: Picture}
inv ship =
let (Rect x y w h) = rect ship
in
x >= 0 && x <= screenWidth - w && y < screenHeight - h && y >= 0

shipPic ship = let (Rect x y w h) = rect ship in placeAt (x,y) pic

In Haskell record fields, such as rect, are applied to a record as functions, using the syntax rect ship
rather than with the more common ship, rect syntax.

W e therefore abandon the ACT ONE algebraic data specification language, normally used with
LOTOS, as it lacks modularity. The new LOTOS standard, E-LOTOS, itself replaces ACT ONE with a
more functional style because of the difficulty programmers had with it [Jeffrey 1996]. Our approach
overcomes some o f the problems with LOTOS interactors, as they now have both a behaviour and
internal state, but with the behaviour still clearly visible on top.

W e compose the components (lasers, enemies, ship and background) together in a functional way.
However, the solution is not perfect. Each component should change over time. However, there is a
single control component, the App process, which accepts all user input and passes it to the collection
of components. We would have a more modular solution, if we could make each individual component
dynamic, and then compose them together.

C.4 Conversion to Haggis

We can convert LOTOS specifications into Haggis code as follows:
• events become Haggis I/O actions; these 10 actions need to be defined. They can be presentation

layer events, defined using structured graphics, and Haggis interaction objects. They can perform
communication between interactors, or can alter the system state (application layer);

• LOTOS communication is converted into Haskell code using our extended concurrency library.
This provides programmers with synchronous communication, through a library of LOTOS like
operators. We also include asynchronous communication along channels. This provides a more
efficient and, arguably, a more elegant way of implementing any asynchronous communication in a
LOTOS specification. Asynchronous and synchronous communication can be combined freely
within this system. Synchronous LOTOS communication becomes synchronous Haskell

234

communication, and asynchronous communication, simulated in LOTOS, becomes asynchronous
Haskell communication;

• the data manipulation operations are already executable.

Haggis provides a number of abstractions that make this conversion easier. This is important if
specifications and prototypes are to be cost effective. We make use of the button abstraction, to allow
an implementation of the button interactors. This abstraction is equivalent to the interactor described
earlier. It takes a picture to display (pic), and a value (n) to return on any successful button click; it
provides setLabel, and getButtonClick operations, and provides equivalent feedback on user actions.
The Pause interactor can be seen below. Input is sent from the interactor via the pauseBtn channel.
Another process can receive this data by using the getButtonClick pauseBtn operation. The trigger that
causes input to be sent, is a button click.

pause Htn

i--------- hPause Button
't t 1

button im age button click

Figure 57 - Haggis Pause Button

We can translate the GamelO process fairly simply. The Buffer process can be replaced by an
asynchronous channel, as it is an example of a LOTOS specification, o f asynchronous communication.
Specifically, consider a channel with three operations sendChannel, which sends a value along the
channel, waitChannel, which blocks until a value is received, and getChannel, which either returns the
next value from the channel, or Nothing if the channel is empty. Placing values into the buffer
(putBuffer) can be done with sendChannel. The Buffer will be triggered by waitChannel or
getChannel, either o f which will cause input to be sent out from the buffer. waitChannel is equivalent to
the inpW ait branch of the Buffer process; getChannel to the inpTrigger part of the Buffer process.

setPlcture InpSendChan

waitChannel
getChannel

render Image pauseBtn kb

glyph

Figure 58 - Haggis Game IO Interactor

The GamelO interactor would therefore function as shown above. The Gamelnput process sends input
via the inpSendChan channel. Input is taken from this channel by either a waitChannel or a getChannel
operation. These operations use the inpSendChan. Input is received from both the Pause button (via the
pauseBtn channel) and the Keyboard (via the kb channel). The Gamelnput process can therefore be
defined in Haggis as follows:

gamelnput :: Button ()
-> Keyboard
-> Channel InputEvent
-> EventIO ()

gamelnput pauseBtn kb inpSendChan =
choose
(event (getButtonClick pauseBtn) -=> do
sendChannel inpSendChan Pause
receive (getButtonClick pauseBtn)
sendChannel inpSendChan Unpause
gamelnput pauseBtn kb inpSendChan)

• I *(event (getKeyboardEv kb) ==> \inp ->
if valid inp then do
sendChannel chan (interpret inp)
gamelnput pauseBtn inpSendChan kb

else
gamelnput pauseBtn inpSendChan kb)

235

The .|. symbol is our choice operator. The expression event e = = >Xx -> a, means perform event e, and
then let jc equal the result o f e in action a. Choice can take place between event guarded expressions.
The syntax is similar to that used in Functional Reactive Programming.

W e can implement the GameOutput process very simply as a Glyph. It receives pictures to display via
set Picture, and renders them on the screen.

The above translation has shown that we can easily convert the interactors specification into executable
code. We have therefore dealt with the behaviour o f the system. As a final step, we will show how to
describe what the system looks like, and so build the full screen shown earlier. Again, we are concerned
with supporting full graphical interaction as easily as possible.

We build the screen with six types of operation. The mkDC operation creates a Display Context dc,
which contains information about style values and the window that will be created. The button
operation creates a button as described earlier. The label operation creates a label displaying the given
string, which may be updated (using the Ibl handle). The glyph operation creates a simple output area
containing the specified picture. The catchKeyboardEv operation makes the glyph interactive and able
to receive keyboard events (via the kb channel). Finally the realiseDH operation renders the
components on to a window using the vbox combinator to place Display Handles above one another,
and using hbox to place Display Handles next to one other.

screen = do
dc <- mkDC [];
(rbutton,rdh) <- button (text "Restart") True dc;
(pbutton,pdh) <- button (text "Pause") True dc;
(qbutton,qdh) <- button (text "Quit") True dc;
(_,ldh) <- label "Score:" dc;
(lbl,ldh2) <- label "0" dc;
(gl,screendh) <- glyph screenlmage dc;
(kb,sdh) <- catchKeyboardEv screendh
realiseDH (hbox [sdh,vbox[ldh,ldh2,pdh,rdh,qdh]])

The separation provided here between the appearance of the interface, and the underlying behaviour is a
powerful feature. It adds to the separation between the interface and application. However, it is only
fully possible as we have a fairly static interface.

The system can now be run, and tested on users. At this stage, problems with the interface can be
discovered and used to reshape the initial specification. For example, early prototypes of the system did
not provide a pause button. This was clearly necessary to allow users to abandon the game temporarily.

C.5 Conclusions
Through our short example, we have shown that functional languages make good tools for transforming
high-level concurrent specifications into executable code. In particular, the Haggis system provides a
high level compositional concurrent interface that makes this fairly. W e start with a high level, modular,
LOTOS specification that can be used to reason about possible interaction problems in a system, using
tools such as LITE. We can then easily transform this into executable Haggis code. The resulting
executable system supports user testing. The high level specification can be used to target resulting
evaluations. This all provides for an iterative, user centred approach to design.

However, the LOTOS-Haggis combination is not perfect. The specification is purely event based.
While each interactor can have a fairly complex internal state, sharing this state between interactors is
more difficult. Haggis does not permit Declarative Concurrency, by permitting constraints to be
defined between evolving processes. It does not support dynamically evolving structured graphics. This
makes it more difficult to build systems in a structured way. Some aspects of the LOTOS specification
may not be very visually appealing. Because of this purely event based approach, it can be difficult to
consider some usability properties, such as visibility. This is because it is difficult to understand the
mapping from the state of components to the interface. Finally, there are still some problems in
providing a smooth combination of notation and implementation as all predefined Haggis components
communicate in an asynchronous, rather than a synchronous manner.

236

Glossary33
Algebraic type An algebraic type definition
states what are the constructors of the type.
For instance, the declaration

data Tree a = Leaf Int
| Node Tree Tree

says that the two constructors o f the Tree type
are Leaf and Node, and that their types are,
respectively,

Leaf :: Int -> Tree,
Node :: Tree -> Tree -> Tree.

Application This means giving values to some
or all arguments of a function. If an n-argument
function is given fewer than n arguments this is
called partial application.

Action An 10 action in Haskell is a value of
type 10 a , which performs some side-
effecting operation (such as printing to or
reading from a file) and returns some value, a .

Behavior In Functional Reactive Programming
a Behavior is a time-varying value. The
simplest conceptual model is:

type Behavior a = Time -> a

Callback An action passed to an object that
can be performed by the recipient. For
instance, a button is passed a callback action
which it performs when it is clicked.

Combinator Another name for a function.

Constraint A definition that states that one
value depends on another. For instance, we
could have a graphical constraint that defined a
box that surrounded a circle. With a constraint
style of programming, when a value is
changed, all those values that depend on it
should be updated.

Constructor An algebraic type is specified by
its constructors, which are the functions which
build elements o f the algebraic type.

Context The definition which appears before
=> in type and class declarations. A context M
a, means that the type a must belong to the

class M for the function or class definition to
apply. For instance, Eq a means that a value
must have equality defined upon it.

Curried function A function of at least two
arguments, which takes its arguments one at a
time, rather than in a tuple.

Derived class instance An instance of a
standard class which is derived by the compiler
rather than by the programmer.

Event An event represents a stream of values
that occur at discrete points in time. An event
can be used to model concepts such as mouse
clicks. Every time the mouse is pressed, the
event stream will generate an occurrence.

Functional Reactive Programming A
declarative programming style based around
the use of behaviors and events.

Higher-order function A function is higher-
order if any of its arguments, or its result are
themselves functions.

Imperative concurrency A functional GUI
that uses an approach based on imperative
concurrency, structures user interface
components as a set o f processes, that execute
concurrently and consume user input. Here
processes are created, and their behavior is
defined, using 10 actions. Haggis is a good
example of such a system.

Lambda expression An expression which
denotes a function. After a ‘V we list the
arguments of the function, then an *-> ’ and
then the result. For instance, the following
lambda expression adds two numbers together.

\x y -> x + y

Lazy evaluation In a function application only
those values which are needed will be
evaluated, and only the parts o f data structures
which are needed will be examined.

Memoization Keeping the value of a sub­
computation (in a map for instance) so that it
can be reused rather than recomputed.

33 The descriptions for a number of these terms are taken from [201].

237

M onad A monad consists of a type class with
at least two functions, r e t u r n and >>=.
Informally, a monad can be seen as performing
some form of action before returning a result.
The first monad function simply returns a
given value; the second sequences two
monadic operations.

O ccurrence An event occurrence is a
(Time,value) pair that is generated by an event
when it occurs. For instance, a mouse motion
event generates occurrences with a time and a
mouse location, whenever the mouse is moved.

P artia l app lication If an n-argument function
is given fewer than n arguments this is called
partial application. The application is partial,
because the result can itself be passed further
parameters.

P u re program m ing language A functional
programming language is pure if it does not
allow side-effects. For a given argument, a
pure function returns the same value
irrespective of when it is called.

Sem antic w iring Within user-interface code
the semantic wiring connects user input from a
widget to the application code. In contrast,
geometric composition involves organising the

layout o f a screen. FranTk separates these two
concepts.

Side effect If evaluating an expression can
cause other things to happen, besides a value
being produced, then that function is impure.
In Haskell such side-effecting actions can only
happen within a m onad.

S tream A stream is a channel upon which
items arrive in sequence. In Haskell we can
think of lazy lists in this way.

S tream processing A functional GUI system
that uses stream processing, views user
interface components as stream processors,
that consume streams of user input and
produce streams of output commands. Fudgets
and Gadgets are two systems that take this
approach.

Type class A collection of types. A class is
defined by specifying a signature; a type is
made an instance of the class by supplying an
implementation of the definitions o f the
signature for the type.

238

References
[1] Abowd, G. Agents: Communicating Interactive Processes. In D. Diaper et al (eds.) Human

Computer Interaction - INTERACT VO, 1990, North Holland Press.

[2] Abowd, G. and A. Dix Giving undo attention. Interacting with Computers, 1992. 4(3):317-342.

[3] Aitken, J.S., et al., Interactive Theorem Proving: An Empirical Study o f User Activity. Journal of
Symbolic Computation, 1998. 25(2): p. 263-284

[4] Alexander, H. Executable specifications as an aid to dialogue design, in Human Computer
Interaction - INTERACT’87. 1987. Stuttgart University, Germany: North Holland.

[5] Alexander, H. (1990), Structuring dialogues using CSP, in Formal methods in Human computer
interaction, M. Harrison and H. Thimbleby, Editors. 1990, Cambridge University Press

[6] Alexander, H. and V. Jones, Software design and prototyping using me too. 1990: Prentice Hall

[7] Allen, S. Visual Tel, 1996. available from http://vtcl.sourceforge.net/

[8] Andersen, H.R. M odel Checking and Boolean Graphs. Theoretical Computer Science, 1994.
126(1): p. 3-30.

[9] Apple Computer Inc., HyperCard Reference. 1990: Claris Corportation.

[10] Austin, P., D TI Report on Formal Methods in Industry, 1993: UK Department of Trade and
Industry.

[11]Baecker, R. et al. The User-Centred Iterative Design o f Collaborative Writing Software, in
Proceedings of INTERCHI’93. 1993. p. 399-405. Amsterdam, Holland: IOS Press and ACM Press.

[12]Bastide, R. et al. Integrating Rendering Specifications into a Formalism fo r The Design o f
Interactive Systems, in Design, Specification and Verification o f Interactive System s’98. 1998.
p. 171-191. Abingdon, UK: SpringerWienNewYork.

[13] Bentley, R. Supporting multi-user interface development fo r cooperative systems, PhD thesis,
1994, Lancaster University.

[14]Bevan, N. and M. Macleod, Usability Measurement in Context. Behaviour and Information
Technology, 1994.13(1,2): p. 132-145.

[15]Bird, R. and P. Wadler, Introduction to Functional Programming, Prentice Hall International
Series in Computer Science, ed. C.A.R. Hoare. 1988: Prentice Hall.

[16] Bowers, J. The Work to Make a Network Work: Studying CSCW in Action. Proceedings o f ACM
CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. p. 287-298. Chapel Hill,
United States: ACM Press.

[17] Bowers, J. and J. Pycock, 1994, Talking through design: requirements and resistance in
cooperative prototyping, in Proceedings o f C H I’94. 1994. p. 299-305. Boston, United States:
ACM Press.

[18]Breedvelt-Schouten, I.M., F.D. Patemo, and C.A. Severijns. Reusable structures in task models, in
Design, Specification and Verification o f Interactive SystemsV7. 1997. p. 225-241. Granada,
Spain: SpringerWienNewYork.

[19] Brown, J., T.C.N. Graham, and T. Wright. The Vista environment fo r the revo lu tionary design o f
user interfaces, in Proceedings o fC H I’98. 1998. p. 376-383. Los Angeles, USA: ACM Press.

[20] Button, G. and P. Dourish. Technomethodology: paradoxes and possibilities, in Proceedings o f
CH I’96. 1996. p. 19-26. Vancouver, Canada: ACM Press.

[21] Campos, J.C. and M.D. Harrison, Formally verifying interactive systems: A review, in Design,
Specification and Verification o f Interactive System s’97. 1997. p. 109-125. Granada, Spain:
SpringerWienNewYork.

[22] Campos, J.C. and M.D. Harrison, The Role o f Verification in Interactive System Design, in Design,
Specification and Verification o f Interactive System s’98. 1998. p. 155-171. Abingdon, UK:
SpringerWienNewYork.

http://vtcl.sourceforge.net/

239

[23] Campos, J.C. and M.D. Harrison Using Automated Reasoing in the design o f an audio-visual
communication system. In Design, Specification and Verification o f Interactive System s’99. 1999.
p. 167-188.: SpringerWienNewYork.

[24] Campos, J.C. and M.D. Harrison (1999), From Interactors to SMV: A Case Study in the Automated
Analysis o f Interactive Systems, 1999, York University Technical Report,
ftp://ftp.cs.vork.ac.uk/reports/YCS-99-317.ps.gz

[25]Carlsson, M. and T. Hallgren: Fudgets - Purely Functional Processes with applications to
Graphical User Interfaces, PhD thesis, 1998, Chalmers University of Technology.

[26] Chehaibar, G. et al. Specification and Verification o f the PowerScale Bus Arbitration Protocol: An
Industrial Experiment with LOTOS, in Proceedings of. the Joint International Conference on
Formal Description Techniques fo r Distributed Systems and Communication Protocols, and
Protocol Specification, Testing, and Verification F0RTE/PSTVV6. 1996. p. 435-450.
Kaiserslautern, Germany.

[27] Claessen, K., T. Vullinghs and E. Meijer. Structuring Graphical Paradigms in TkGofer. in
Proceedings of. Proceedings o f the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97). 1997. p. 251-262.: ACM

[28] Clark, H. and S. Brennan, Grounding in Communication, in Readings in Groupware and
Computer-Supported Cooperative Work, assisting human-human collaboration, R. Baecker,
Editor. 1993, Morgan Kaufman Publishers.

[29] Clark, S. Literate Development, PhD thesis, 1997, University of Glasgow.

[30] Conklin, J. and M.L. Begeman gIBIS: A Tool fo r A ll Reasons. Journal o f American Society for
Information Science, 1989. 40(3): p. 200-213.

[31]Coplien J. and D. Schmidt: Pattern Languages o f Program Design, 1995, Addison-Wesley.

[32] Joelle Coutaz (1997) PAC-ing the Architecture of Your User Interface, in Proceedings of the 4 th
Eurographics Workshop on Design, Specification and Verification of Interactive Systems, Springer
Verlag, 1997.

[33] Courtney, A. Frappe: FRP in Java, draft submitted to ICFP2000.

[34] Cuomo, D Understanding the applicability o f sequential data analysis techniques fo r analysing
usability data. Behaviour & information technology, 1995. 13(1-2): p. 171-182.

[35] Daniels, A. A semantics fo r functions and behaviors, PhD Thesis, 1999, University of Nottingham.

[36]Desurvire, H.W. J.M. Kondziela and M.E. Atwood, What is Gained and Lost when Using
Evaluation Methods Other than Empirical Testing, in Proceedings o f the HCV92 Conference on
People and Computers VII. 1992. p. 89-102.

[37]Dix, A. Formal Methods fo r Interactive Systems, 1991, Academic Press.

[38]Dix, A. and G. Abowd, (1996) M odelling status and event behavior o f interactive systems.
Software Engineering Journal, 1996. 11(6): p. 334-346.

[39]Dourish, P. and V. Bellotti Awareness and Coordination in Shared Workspaces, in Proceedings o f
ACM CSCW ’92 Conference on Computer-Supported Cooperative Work. 1992. p. 107-114. : ACM
Press

[40]Draper, S.W. The notion o f task in HCI. in Proceedings of. INTERCHI’93. 1993. p. 207-208.
Amsterdam, Holland: IOS Press and ACM Press.

[41] David Duke(1995), Michael Harrison, Joelle Coutaz, Laurence Nigay, Daniel Salber, Giorgio
Faconti, Menica Mezzanotte, Fabio Patemo and David Duce, Theoretical Framework with
Reference Model and Multi-Agent Presentations, ESPRIT Basic Research Action 7040 Amodeus
Project deliverable, document D9.

[42]Dutt A., H. Johnson and P. Johnson, Evaluating Evaluation Methods, in Proceedings o f the HCI'94
Conference on People and Computers IX. 1994: Cambridge University Press.

[43] Eijk, P. v. and H. Eertink. Design o f the LotosPhere symbolic LOTOS simulator, in Proceedings o f
Formal Description Techniques, III - Proceedings o f the FORTE 90 Conference. 1991
Amsterdam: North-Holland.

ftp://ftp.cs.vork.ac.uk/reports/YCS-99-317.ps.gz

240

[44]Elliott, C. and P. Hudak. Functional Reactive Animation, in Proceedings o f the 1997 ACM
SIGPLAN International Conference on Functional Programming: ICFP’97. 1997. p. 263-273.
Amsterdam: ACM.

[45] Elliott, C. (1997b), Modeling Interactive 3D and Multimedia Animation with an Embedded
Language, in Proceedings of. Proceedings o f the Conference on Domain-Specific Languages
(DSL-97). 1997. p. 285-296. : USENIX Association.

[46] Elliott, C. Functional Implementations o f Continuos Modeled Animation, in Proceedings of.
PLILP/ALP 1998. 1998. p. 284-299. Lecture Notes in Computer Science, 1490,: Springer Verlag

[47] Erkok, L. and J. Launchbury. Recursive monadic bindings, in Proceedings of. Proceedings o f the
2000 ACM SIGPLAN International Conference on Functional Programming: ICFP'00. 2000.
p i74-185. Montreal, Canada: ACM Press.

[48] EUROCONTROL, EATCH1P Phase III H M I Catalogue. Available at
http://www.eurocontrol.be/projects/eatchip/hmi/, 1998.

[49] EUROCONTROL, A TM Strategy fo r 2000+ , Volume 2. Available at
http://www.eurocontrol.be/projects/eatchip/atmstrat/, 1998.

[50]Faconti, G.P. and e. al, Graphical Process Interaction Networks fo r Lotos Parallel Expressions, .
1993, Amodeus Project Document, SM/WP25.

[51]Fath, J., T. Mann, and T. Holzman, A practical guide to software usability labs: lessons learned at
IBM. Behaviour & information technology, 1994. 13(1-2): p. 94-105.

[52] Fernandez, J.-C., Kerbrat, and L. Mounier. Symbolic Equivalence Checking, in Proceedings o f the
5th Workshop on Computer-Aided Verification. 1993 Lecture Notes in Computer Science, 697,
Heraklion, Greece: Springer-Verlag.

[53] Fernandez J.-C. and L. Mounier. A Tool Set fo r Deciding Behavioral Equivalences, in Proceedings
of. Proceedings o f CONCUR’91. 1991 Amsterdam, Netherlands.

[54] Fernandez , J.-C. and L. Mounier, A Local Checking Algorithm fo r Boolean Equation Systems, .
1995, Rapport SPECTRE, 95-07, VERIMAG, Grenoble.

[55] Fields, R.E. (P.C. Wright, and M.D. Harrison, A fram ework fo r refining the environment o f an
interactive system to an artefact, 1994. Unpublished, available at
http://dcpu 1 .cs.york.ac.uk:6666/~bob/papers.html

[56] Fields, R.E. N. Merriam, and A. Dearden. DMVIS: Design, modelling and validation o f interactive
systems, in Design, Specification and Verification o f Interactive System s’97. 1997. p. 29-45.
Granada, Spain: SpringerWienNewYork.

[57] Fields, R.E. and N. Merriam. Modelling in Action. Reports from the D SVIS’97 working groups, in
Design, Specification and Verification o f Interactive Systems’97. 1997. p. 307-320. Granada,
Spain: SpringerWienNewYork.

[58]Fields, R.E. N Merriam (1998), Inference and Information Resources: A Design Case Study, in
Proceedings of. Design, Specification and Verification o f Interactive System s’98. 1998. P41-57.
Abingdon, UK: SpringerWienNewYork.

[59]Finne, S., and S.L. Peyton Jones. Pictures: A simple structured graphics model, in Proceedings o f
Glasgow Functional Programming Workshop. 1995 Ullapool.

[60]Finne, S. and S.L. Peyton Jones. Composing the User Interface with HAGGIS, in Proceedings of.
Summer School on Advanced Functional Programming. 1996. p. 1-37. Lecture Notes in Computer
Science, 1129, Olympia, WA..

[61]Finne, S. and S.L. Peyton Jones: Composing the User Interface with HAGGIS, Summer School on
Advanced Functional Programming, Olympia, WA, Aug 25-30, Springer Verlag LNCS, 1996.

[62]Finne, S. Composing Graphical User Interfaces in a Purely Functional Language, PhD thesis,
1998, University of Glasgow.

[63]Fowler, C., et al., Using the usability laboratory: B T ’s experiences. Behavior and Information
Technology, 1994.13(1,2): p. 146-153.

[64] Fuchs N.E., Specifications are (preferably) executable. Software Engineering Journal, 1992. 7(5):
p. 323-334.

http://www.eurocontrol.be/projects/eatchip/hmi/
http://www.eurocontrol.be/projects/eatchip/atmstrat/
http://dcpu

241

[65] Garavel H. and R.-P. Hautbois. An Experiment with the LOTOS Formal Description Technique on
the Flight Warning Computer o f Airbus 330/340 Aircrafts, in Proceedings o f First A M A ST
International Workshop on Real-Time Systems. 1993 Iowa City, Iowa, USA

[66] Garavel, H. An Overview o f the Eucalyptus Toolbox, in Proceedings o f the COST 247
Interanational Workshop on Applied Formal Methods in System Design. June 1995. p. 76-88.
University of Maribor, Slovenia.

[67] Garavel, H., et al. CAD P’97 - Status, Applications and Perspectives, in Proceedings o f 2nd COST
247 International Workshop on Applied Formal M ethods in System Design. June 1997, Zagreb,
Croatia.

[68] Gill, A. Debugging Haskell by Observing Intermediate Data Structures, in Proceedings of.
Proceedings o f the 2000 ACM SIGPLAN Haskell Workshop. September 2000. p. 70-82. Montreal.

[69]Goldson, D. Abstract modelling o f interactive Systems. Human-Computer Interaction -
INTERACT’97, July 1997, p. 134-142, Sydney, Australia: Chapman & Hall.

[70] Gordon , A.D. and K. Hammond. Monadic I/O in Haskell 1.3. in Proceedings o f 1995 ACM
SIGPLAN Haskell Workshop. 1995. p. 50-69. La Jolla, California..

[71] Graham, T.C.N., Declarative Development o f Interactive Systems. Berichte der GMD. Vol. 243.
1995, Munich: R. Oldenbourg Verlag.

[72] Graham, T.C.N. and T. Umes. Linguistic Support fo r the Evolutionary Design o f Software
Architectures, in Proceedings of. Eighteenth International Conference on Software Engineering.
1996. p. 418-427. Berlin, Germany: IEEE Computer Society Press.

[73] Graham, T.C.N., et al., The Clock Methodology: Bridging the Gap Between User Interface Design
and Implementation, York University Technical Report CS-96-04. York University, August 1996.

[74] Graham, T.C. T.C.N. and T. Umes. Semi-replicated implementations o f a distributed architecture.
in Proceedings of. Design, Specification and Verification o f Interactive Systems'99. 1999:
SpringerWienNewYork.

[75] Gray, P. D. England, and S. McGowan, XUAN: Enhancing the UAN to capture Temporal
Relations among Actions, Technical Report IS-94-02, Department o f Computing Science,
University of Glasgow.

[76] Green T. Cognitive dimensions o f notations, in Proceedings of. People and Computers IV. 1989.
p.443-460 : Cambridge University Press.

[77] Greenberg , S. and D. Marwood. Real Time Groupware as a Distributed System: Concurrency
Control and its Effect on the Interface, in Proceedings o f ACM CSCW'94 Conference on
Computer-Supported Cooperative Work. 1994. p. 201-217. : ACM Press.

[78] Griffiths, T. and e. al. An Open-Model-Based Interface Development System: The Teallach
Approach, in Draft Proceedings of. Design Specification and Verification o f Interactive
System s'98. 1998 Abingdon, UK.

[79] Grudin, J. Why CSCW applications fail: problems in the design and evaluation o f organisational
interfaces, in Proceedings o f ACM CSCW'88 Conference on Computer-Supported Cooperative
Work. 1988. p. 85-93. Portland, Oregon: ACM Press.

[80] Grudin J., Obstacles to user involvement in software product development, with implications fo r
CSCW. International Journal of Man Machine Studies, 1991. 34(3): p. 435-452.

[81] Grudin, J., Groupware and social dynamics: Eight challenges fo r developers. Communications of
the ACM, 1994. 37(1): p. 92-105.

[82] Hall, A. Do interactive systems need specifications, in Design, Specification and Verification o f
Interactive Systems'97. 1997. p. 1-13. Granada, Spain: SpringerWienNewYork.

[83] Halverson, C. Distributed Cognition as a Theoretical Framework fo r HCI: Don't Throw the Baby
out with the bathwater, the importance o f the cursor in A ir Traffic Control, technical report 9403,
Department o f Cognitive Science, University o f California.

[84] Harper, R., J. Hughes, and D. Shapiro, Harmonious working and CSCW: computer technology and
airtraffic control, in Studies in CSCW: Theory, Practice and Design, J.Bowers and S. Benford,
Editors. 1991, North Holland: Amsterdam.

242

[85] Harrison , M.D. and D.J. Duke. A review o f formalisms fo r describing interactive behaviour, in
Proceedings o f IC SE ’94 Workshop on SE-HCI. 1994 Lecture Notes in Computer Science, 896:
Springer Verlag.

[86]Hartson, H.R., A.C. Siochi, and D. Hix, The UAN: A User-Oriented Representation fo r Direct
Manipulation Interface Designs. ACM Transactions on Information Systems, 1990. 8(3): p. 191-
203..

[87] Hayes, I.J. and C.B. Jones, Specifications are not (necessarily) executable. Software Engineering
Journal, 1989. 4(6): p. 330-338

[88]Heimdahl, , M. and N. Leveson, Completeness and Consistency in Hierarchical State-Based
Requirements. Transactions on Software Engineering, 1996. 22(6): p. 363-377.

[89] Henderson, R., et al., An examination o f fo u r user based software evaluation methods. Interacting
with computers, 1995. 7(4): p. 412-432.

[90] Hill. R. The abstraction-link-view paradigm: Using constraints to connect user interfaces to
applications, in Proceedings o f AC M CH I’92 Conference on Human Factors in Computing
Systems. 1992. p.335-342. : ACM Press.

[91] Hill, R. The RENDEZVOUS Constraint M aintenance System, in Proceedings of. AC M Symposium
on User Interface Software and Technology. 1992. p.225-234. : ACM Press.

[92] Hoc, J.M., T.R.G. Green, R. Samurcay and D.J. Gilmore (eds), Psychology o f Programming,
Computers and People Series, 1990, Academic Press Ltd.

[93]Hoiem, D. and K. Sullivan, Designing and using integrated data collection and analysis tools:
challenges and considerations. Behavior and information technology, 1994.13(1,2): p. 160-170.

[94]Hudak, P. The Haskell School o f Expression, Learning Functional Programming Through
Multimedia, 2000, Cambridge University Press.

[95] Hughes, , J., et al. Moving out from the Control Room: Ethnography in System Design, in
Proceedings o f ACM CSCW ’94 Conference on Computer-Supported Cooperative Work. 1994. p.
429-439. ACM Press.

[96]Javaux, D. and P Poison, A method fo r predicting errors when interacting with Finite State
Machines, to appear in Elsevier Reliability Engineering and System Safety Journal.

[97] Jeffrey, A. and G. Leduc, E-LOTOS core language. Output of the Kansas City meeting, version
1996/09/20, (ISO-IEC/JTC1/SC21/WG7).

[98] John, B. and H. Packer. Learning and Using the Cognitive Walkthrough Method: A Case Study
Approach, in Proceedings o f CHV95. 1995. p. 429-436 : ACM Press.

[99] John, B and S.J. Marks Tracking the Effectiveness o f Usability Evaluation Methods, Computer
Science Technical Report CMU-CS-96-160, 1996, Human Computer Interaction Institute,
Carnegie Mellon University, USA.

[100] Johnson, C.W. and M.D. Harrison, Using temporal logic to support specification o f
interactive control systems. International Journal of Man-Machine Studies, 1992. 37(3): p. 357-
385.

[101] Johnson, C.W. Literate specifications, Software Engineering Journal, 1996,11(4): p. 225-237.

[102] Johnson, C.W. Utility o f User interface notations, submitted to the Journal of Human
Computer Interaction, 1997.

[103] Johnson, P., S Wilson, P Markopoulos & J Pycock AD EPT - Advanced design environment
fo r prototyping with task models, Demonstration abstract in Proceedings o f INTERCHI’93, 1993,
pp 56. ACM Press.

[104] Jones, M.P. Type Classes with Functional Dependencies, in Proceedings of. 9th European
Symposium on Programming: ESOP 2000. 2000. Lecture Notes in Computer Science, 1782,
Berlin,Germany: Springer-Verlag.

[105] Jones S. and J. Sapford, The Role o f Informal Representations in Early Design, in
Proceedings of. Design, Specification and Verification o f Interactive System s’98. 1998 p .l 17-134.
Abingdon, UK: SpringerWienNewYork.

243

[106] Kahl, W., O. Braun, and J. Scheffczyk, Editor Combinators - A First Account, Technical
Report Nr. 2000-01, 36 pages Fakultat fur Informatik Universitat der Bundeswehr Munchen, June
2000 .

[107] Karat, C.M., R. Campbell and T. Fiegel 1992, Comparison o f empirical testing and
walkthrough methods in user interface evaluation, in Proceedings o f CH I’92. 1992. p. 397-404. :
ACM Press.

[108] Kerbrat, A. and S.B. Atallah. Formal Specification o f a Framework fo r Groupware
Development,, in Proceedings of. Proceedings o f the 8th International Conference on Formal
Description Techniques fo r Distributed Systems and Communication Protocols FO RTE’95.
1995Montreal, Canada.

[109] Knutson, J., T. Anand and R. Henneman, Evolution o f a User Interface Design: NCR's
M anagement Discovery Tool (MDT). in Proceedings o fC H IV ?. 1997. p. 526-553 : ACM Press.

[110] Krasner, G. and S. Pope, A cookbook fo r using the model-view-controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1988. 1(3): p. 26-49.

[111] Krimm , J.-P. and L. Mounier. Compositional State Space Generation from Lotos Programs.
in Proceedings of. Proceedings o f TACAS’97 Tools and Algorithms fo r the Construction and
Analysis o f Systems. 1997University of Twentee, Enschede, The Netherlands.

[112] Kyng , M., Designing fo r cooperation: cooperation in design. Communications of the ACM,
1991.34(12): p. 65-73.

[113] Landay, J. and B. Myers. Interactive Sketching fo r the Early Stages o f User Interface Design.
in Proceedings ofC H I'96. 1995. p. 43-50: ACM Press.

[114] Lauesen, S. Usability Engineering in Industrial Practice. Human-Computer Interaction -
INTERACT’97, July 1997, p. 15-22, Sydney, Australia: Chapman & Hall.

[115] Laufer K. Type Classes with Existential Types. Journal of Functional Programming, 1996.
6(3): p. 485-517.

[116] Leveson, N., M. Heimdahl, H. Hildreth and J.D. Reese Requirements Specification fo r
Process Control Systems. IEEE Transactions on Software Engineering, 1994. SE-20(9): p. 684-
707.

[117] Leveson, N., L. Pinnell, S. Sandys, S. Koga, J.D. Reese, Analysing Software Specifications fo r
Mode Confusion Potential, in Proceedings of. Proceedings o f Workshop on Human Error and
System Development. March 1997, Glasgow.

[118] Leveson, N . and E. Palmer. Designing automation to reduce operator errors, in Proceedings
o f the IEEE Systems, Man and Cybernetics Conference. 1997.

[119] Leveson, N. et al., Safety Analysis o f A ir Traffic Control Upgrades, NASA funded project
report, September 1997.

[120] Leveson, N. .D. Reese, and M. Heimdahl. SpecTRM: A CAD System fo r Digital Automation.
in Proceedings of. Proceedings o f DASC'98, (Digital Avionics System Conference). 1998, Seattle.

[121] Lewis, C., P. Poison, C. Wharton and J. Rieman, Testing a Walkthrough methodology fo r
Theory-based design o f Walk-up-and-use Interfaces, in Proceedings of ACM CHI’90 Conference
on Human Factors in Computing Systems. 1990. P. 235-242. Seattle, USA: ACM Press.

[122] Maclean, A., R. Young, V. Bellotti, and T. Moran, Questions, Options and Criteria: Elements
o f Design Space Analysis, in [133].

[123] Mackay W.E., R. Guindon, M. Mantei, L. Suchman and D. Tatar. Video: Data fo r studying
human-computer interaction, panel discussion in Proceedings o f ACM CH I’88 Conference on
Human Factors in Computing Systems. 1998. p. 133-137: ACM Press.

[124] Mackay, W.E.. Ethics, Lies and Videotape..., in in Proceedings o f ACM CH I’95 Conference
on Human Factors in Computing Systems. 1995. P138-145. Denver, CO, USA: ACM Press.

[125] Mackay, W.E., A.-L. Fayard, L. Frobert and L. Medini. Reinventing the Familiar: Exploring
an Augmented Reality Design Space fo r A ir Traffic Control, in Proceedings o f ACM C H I’98
Conference on Human Factors in Computing Systems. 1998. P558-565. Los Angeles, USA: ACM
Press.

[126] Macleod, M. An introduction to usability evaluation, 1992, Usability Now! DTI project report.

244

[127] Markopoulos, P. A compositional model fo r the form al specification o f user interface
software, PhD Thesis, 1997, QMW College, University of London.

[128] Mateescu, R.. and Garavel, H. XTL: A Meta-Language and Tool fo r Temporal Logic Model-
Checking, in Proceedings o f the International Workshop on Software Tools fo r Technology
Transfer STTT’98. July 1998. Aalborg, Denmark.

[129] M icrosoft Corporation, Visual Basic Users Guide.

[130] Mitchell A., Posner I. and Baecker I. Learning to write together using groupware, in in
Proceedings o f AC M C H I’95 Conference on Human Factors in Computing Systems. 1995. P288-
295 Denver, CO, USA: ACM Press.

[131] Molich, R. Preventing user interface distasters. Behavior and Information Technology, 13:(1,
2):154-159.

[132] Monk, A., J. McCarthy, L. Watts and O.D. Jones. Measures o f Process, in CSCW
Requirements and Evaluation, P.J. Thomas, Editor. 1996, Springer.

[133] Moran, T.P., J.M. Carroll (eds) Design Rationale: Concepts, techniques and use, 1996,
Hillsdale, Lawrence Erlbaum Assoociates.

[134] Morton, C.A. Tool Support fo r Component Based Programming. York University Technical
Report CS-94-02. M.Sc. Thesis, York University, May 1994.

[135] Morris, M., T. Plant, P. Hughes, Co Op Lab: Practical Experiences with Evaluating a Multi-
User System, in People and Computers XII: Proceedings o f H C I’92, 1992. p355-368: Cambridge
University Press.

[136] Myers, B.A., et al., Garnet: Comprehensive Support fo r Graphical Highly-Interactive User
Interfaces. IEEE Computer, 1990. 23(11): p. 71-85..

[137] Myers, B.A. Separating application code from toolkits: Eliminating the spaghetti o f callbacks.
in Proceedings o f the ACM SIGCHI'91 Conference on User Interface Software Technology.
November 1991. p .211-220 :ACM Press.

[138] Myers, B.A. and M.B. Rosson. Survey on user interface programming, in Proceedings o f
ACM CHI'92 Conference on Human Factors in Computing Systems, May 1992. p. 195-202: ACM
Press.

[139] Myers, B.A., S.E. Hudson and R. Pausch, Past, Present and Future o f User Interface Software
Tools. ACM Transactions on Computer-Human Interaction, 2000, 7(l):3-28.

[140] Nejabi, R. Linguistic Support fo r Developing Groupware Systems. M.Sc. Thesis, July 1995,
Department o f Computer Science, York University, Canada.

[141] Newman, W. and M. Lamming, Interactive System Design, 1995, Addison Wesley.

[142] Nielsen, J. and R. Molich Heuristic Evaluation o f User Interfaces, in Proceedings o f ACM
CHI'90 Conference on Human Factors in Computing Systems, 1990. p.249-256. Seattle, WA,
USA: ACM Press.

[143] Nielsen, J. Usability Engineering, 1993, Boston, MA: Academic Press.

[144] Noble, R. Lazy Functional Components fo r Graphical User Interfaces, PhD Thesis, 1995,
Department o f Computing Science, University o f York.

[145] Okasaki, C. An Overview o f Edison, in Proceedings o f 2000 ACM SIGPLAN Haskell
Workshop, September 2000, p.34-46. Montreal Canada.

[146] Olsen, D.R Presentational syntactic and semantic components o f interactive dialogue
specification, in User Interface Managements Systems: proceedings o f the Workshop on User
Interface Systems held in Seeheim. G.E Pfaff, Editor, p. 125-133. Springer, Berlin, 1985.

[147] Ousterhout, J. Tel and the Tk Toolkit, 1992, Addison-Wesley.

[148] Palanque, P., F. Patemo, R. Bastide, M. Mezzanotte. Towards an integrated proposal fo r
interactive systems design based on TLIM and MICO, in Design, Specification and Verification o f
Interactive Systems'96. June 1996. p. 162-187, Namur, Belgium: SpringerWienNewYork.

[149] Palanque, P., R. Bastide, F. Patemo. Formal Specification as a Tool fo r Objective Assessment
o f Safety-Critical Interactive Systems, in Human-Computer Interaction - INTERACT’97, July
1997, p.323-331, Sydney, Australia: Chapman & Hall.

245

[150] Palmiter, S., G. Lynch, S. Lewis and M. Stempski Breaking away from the conventional
“usability la b ”: the Customer-Centred Design Group a t Tektronix, Inc. Behaviour and
Information Technology, 1994,13(1,2): 128-131.

[151] Patemo, F. A methodology to design interactive systems based on Interactors, ESPRIT BRA
7040 Amodeus 2 Technical Report WP7, February 1993.

[152] Patemo, F. and M. Mezzanotte. Formal Analysis o f User and System Interactions in the
CERD Case Study in Proceedings o f EHCl'95, IFIP Working Conference on Engineering fo r
Human-Computer Interaction, August 1995, p.213-226, Wyoming, USA: Chapman & Hall.

[153] Patemo, F., C. Mancini and S. Meniconi. ConcurTaskTrees: a diagrammatic notation fo r
specifying task models, in Human-Computer Interaction - Interact ’97, July 1997, p.362-370,
Syndey, Australia: Chapman & Hall.

[154] Pecheur, C. Advanced Modelling and Verification Techniques Applied to a Cluster File
System, INRIA Research report 3416, May 1998.

[155] Peterson, J., P. Hudak, and C. Elliott. Lambda in Motion: Controlling Robots with Haskell, in
Proceedings o fP A D L 1999. 1999. p. 91-105. Lecture Notes in Computer Science, 1551: Springer-
Verlag.

[156] Peyton Jones, S.L. and P. Wadler, Imperative functional programming, in Proceedings o f
AC M Conference on the Principles o f Programming Languages: P O PL’93, January 1993, p.71-
84: ACM Press993.

[157] Peyton Jones, S.L, A. Gordon and S. Finne. Concurrent Haskell, in Proceedings o f ACM
Conference on the Principles o f Programming Languages: POPL'96, January 1996, p295-308. St.
Petersburg Beach, Florida: ACM Press..

[158] Peyton Jones, S.L. et al, The Haskell 98 Report, http://www.haskell.org

[159] Peyton Jones, S.L., S. Marlow, and C. Elliott. Stretching the Storage Manager: Weak Pointers
and Stable Names in Haskell, in Proceedings o f 11th International Workshop on the
Impelementation o f Functional Languages: IFL'99. September 1997. p. 37-58. Nijmegen,
Netherlands. To appear in Springer Verlag’s Lecture Notes in Computer Science Series.

[160] Peyton Jones, S.L. Tackling the awkward squad: monadic input/output, concurrency,
exceptions, and foreign-language calls in Haskell, to appear in the 2000 M arktoberdorf Summer
school.

[161] Pfaff G.E. (ed), User Interface Managements Systems: proceedings o f the Workshop on User
Interface Systems held in Seeheim, p. 125-133. Springer, Berlin, 1985.

[162] Puerta, A. and J. Eisenstein, Interactively Mapping Task Models to Interfaces in MOBI-D, in
in Draft Proceedings o f Design, Specification and Verification o f Interactive Systems'98. 1998.
Abingdon, UK.

[163] Ramage, M. Developing a methodology fo r the evaluation o f cooperative systems, in
Proceedings o f IRIS (Information Systems Research in Scandinavia), August 1997, Norway.

[164] Rational Software Corporation. Unified Modeling Language Notation Guide, version 1.0,
1997, Rational Software.

[165] Rogers, Y. Exploring Obstacles: Integrating CSCW in Evolving Organisations, in
Proceedings o f ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. p.
67-77: ACM Press.

[166] Ross S., Ramage M. and Rogers Y., PETRA: Participatory Evaluation Through Redesign and
Analysis Interacting with Computers, 7(4):335-360.

[167] Rowley, D and D. Rhoades. The Cognitive Jogthrough: A Fast Paced User Interface
Evaluation Procedure, in Proceedings o f ACM CHI'92 Conference on Human Factors in
Computing Systems. 1992. p.389-395 : ACM Press.

[168] Rushby, J. Using model checking to help discover mode confusions and other automation
surprises, to appear in Elsevier Reliability Engineering and System Safety Journal.

[169] Sage, M. and C.W. Johnson Interacting with Haggis: Implementing Agent Based
Specifications in a Functional Style, in Human-Computer Interaction - INTERACT’97, July 1997,
p. 126-133, Sydney, Australia: Chapman & Hall.

http://www.haskell.org

246

[170] Sage, M. and C.W. Johnson Interactors and Haggis: Executable specifications fo r interactive
systems, Design, Specification and Verification o f Interactive Systems’97. 1997. p. 93-109.
Granada, Spain: SpringerWienNewYork.

[171] Sage, M. and C.W. Johnson Pragmatic Formal Design: A Case Study in Integrating Formal
M ethods into the HCI Development Cycle, in in Design, Specification and Verification o f
Interactive System s’98. 1998. p. 134-155. Abingdon, UK: SpringerWienNewYork.

[172] Sage M. and C.W. Johnson A Declarative Prototyping Environment fo r the Development o f
Multi- User Safety Critical Systems, in Proceedings o f International System Safety Conference
1999 (ISSC ’99), August 1999.

[173] Sage, M. and C.W. Johnson Formally verified, Rapid Prototyping fo r A ir Traffic Control, to
appear in Elsevier Reliability Engineering and System Safety Journal.

[174] Sage, M. FranTk: A Declarative GUI language fo r Haskell, in Proceedings o f Fifth ACM
SIGPLAN International Conference on Functional Programming, IC FP’2000, September 2000,
p i06-118, Montreal, Canada : ACM Press.

[175] Salzmann, M. and S.D. Rivers, Smoke and mirrors: setting the stage fo r a successful usability
test. Behavior and Information technology, 1994,13: (1 ,2): 9-16.

[176] Sarter, N and D. Woods How in the world did I ever get into that mode?: M ode error and
awareness in supervisory control, Human Factors Journal, 1995,37: (1): 5-19.

[177] Scholz, E. and B. BokowSki. PIDGETS++ - a C++ fram ework unifying postscript pictures,
gui objects, and lazy one-way constraints in Conference on the Technology o f Object-Oriented
Languages and Systems (TOOLS USA 96), 1996, Santa Barbara, California: Prentice-Hall.

[178] Scholz, E. Imperative Streams - A Monadic Combinator Library fo r Synchronous
Programming, in Proceedings o f Fourth ACM SIGPLAN International Conference on Functional
Programming, IC F P ’99, September 1999, p261-272 :ACM Press.

[179] Scholz, E. A fram ework fo r programming interactive graphics in a functional programming
language, PhD thesis, 1998, Freien Universitat Berlin.

[180] Scrivener, S., S. Urquijo, H. Palmen, Breakdown analysis in CSCW Requirements and
Evaluation, P.J. Thomas, Editor. 1996, Springer.

[181] Shapiro, D. The limits o f Ethnography: Combining Social Sciences fo r CSCW, in Proceedings
o f ACM CSCW'94 Conference on Computer-Supported Cooperative Work, 1994, p 4 17-428 : ACM
Press.

[182] Sighireanu, M. and Mateescu, R. Validation o f the Link Layer Protocol o f the IEEE-1394
Serial Bus ("FireWire"): an Experiment with E-LOTOS, in Proceedings o f the 2nd COST 247
International Workshop on Applied Formal Methods in System Design, June 1997, Zagreb,
Croatia.

[183] Shum, S QOC Design Rationale Retrieval: A Cognitive Task Analysis & Design Implications,
Rank Xerox EuroPARC, 1993, Technical Report EPC-93-105.

[184] Buckingham Shum, S. A. Blandford, D. Duke, J. Good, J. May, F. Patemo and R. Young,
Multidisciplinary Modelling fo r User-Centred System Design: An Airtrafftc Control Case Study in
Proceedings o f the HCT96 Conference on People and Computers XI, 1996, p 201-209 : Springer
Verlag.

[185] Buckingham Shum, S Analyzing the Usability o f a Design Rationale Notation, in [133].

[186] Smilowitz, E., M. Darnel and A. Benson, Are we overlooking some usability testing methods?
A comparison o f lab, beta and forum tests. Behavior and Information Technology, 13:(1,2): 184-
190.

[187] Sommerville, I. Software Engineering, 4th ed, 1992, Reading, Mass: Addison-Wesley.

[188] Song, G. Mixing Visual and Textual Programming in a Functional Language. M.Sc. Thesis,
Department of Computer Science, York University, May 1995

[189] Sparud, J. and C. Runciman Tracing lazy functional computations with Redex trails, in
Procedeedings o fP L IL P ’97, 1997, p291-308, Lecture Notes in Computer Science, 1292: Springer.

[190] Storrs G. and P. Windsor, Rapid prototyping fo r requirements capture, in Proceedings o f
ATIS, London 1992.

247

[191] Suchman, L. Plans and Situated Actions: The Problem o f Human-Computer Communication,
1987, New York. Cambridge University Press.

[192] Suchman, L and R. Trigg Understanding Practice: Video as a Medium fo r Reflection and
Design, in Design at Work: Cooperative Design o f Computer Systems. J. Greenbaum and M. Kyng,
Editors. p65-89, Hillsdale, NJ:Lawrence Erlbaum.

[193] Sufrin, B. and De Moor, O. Modeless Structured Editing, in Proceedings or the Oxford-
Micro soft symposium in Celebration o f the work o f Tony Hoare, September 1999, Cornerstones in
Computing Series, MacMillan, to appear 2000.

[194] Sun Microsystems, The Java 2 Tutorial, http://www.iavasoft.com/

[195] Sutcliffe, A.G. From U ser’s Problems to Design Errors: Linking Evaluation to Improving
Design Practice Practical Evaluation Methods fo r Improving a Prototype, in People and
Computers VII: Proceedings o fH C I’92, p 117-134 : Cambridge University Press.

[196] Szczur, M. Usability testing on a budget: a NASA usability test case study. Behavior and
Information technology, 1994,13: (1,2) : 106-118.

[197] Telford, E. Developing a UAN Browser in ClockWorks: a Case Study o f Incremental
Development using the Clock Methodology. York University Technical Report CS-96-03. York
University, Canada, June 1996.

[198] Thomas, M. The Story o f Therac-25 in LOTOS, High Integrity Systems Journal, 1994, 1:(1):
' '3 -1 6 ..

[199] Thompson, S. A Functional Reactive Animation o f a Lift using Fran, Technical Report, TR5-
98, Computing Laboratory, University o f Kent, UK, May 1998.

[200] Thompson, S., H. Cameron, P. King, Modelling Reactive Multimedia: Events and Behaviors.
To appear in the Journal o f Multimedia Tools and Applications.

[201] Thompson, S. The craft o f functional programming, 1999, Addison Wesley.

[202] Toronto Star. Bugs mar new air control system. 3 August 1992

[203] Twidale, M. T. Rodden and I. Sommerville, The D esigner’s Notepad: Supporting and
understanding cooperative design, in Proceedings o f Proceedings o f the Third European
Conference on Computer-Supported Cooperative Work :ECSCW’93, 1993, p93-108, Milan, Italy :
Kluwer Academic Publishers.

[204] Vullinghs, T., Tuijnman, D. and Schulte, W. Lightweight GUIs fo r functional programming,
in Proceedings o f Symposium on Programming Languages: Implementations, Logics and
Programs: P LILP’95, 1995, p341-356, Lecture Notes in Computer Science, 982, Springer Verlag.

[205] Vries, G.d., T.v. Gelderen, and F. Brigham, Usability Laboratories at Philips: Supporting
Research, Development, and Design fo r Consumer and Professional Products. Behaviour and
Information Technology, 1994. 13(1,2): p. 119-127.

[206] Wan, Z. and P. Hudak, Functional reactive programming from first principles in Proceedings
o f the ACM SIGPLAN '00 Conference on Programming Language Design and Implementation
(PLDI’00), June 2000, p 242-252, Vancouver, BC : ACM Press.

[207] Wesson, J., G.d. Kock and P. Warren, Designing fo r Usability: A Case Study, in Human-
Computer Interaction - INTERACT’97, July 1997, p.31-38, Sydney, Australia: Chapman & Hall.

[208] Wharton C., J. Rieman, C. Lewis and P. Poison The cognitive walkthrough method: a
practitioners guide, in Usability Inspection Methods, in J. Nielsen and R. Mack, Editors, 1994,
John Wiley, New York.

[209] Wilson, S., M. Bekker, P. Johnson and H. Johnson, Helping and Hindering User Involvement
- A tale o f everyday design, in Proceedings o f ACM CHI'97 Conference on Human Factors in
Computing Systems, 1997, p l7 8 - l85 : ACM Press.

[210] Winograd, T. and F. Floris, Understanding Computers and Cognition: A New Foundation fo r
Design, 1986, Ablex, Norwooed, NJ.

[211] Wright, P. and A. Monk Evaluating fo r design, in People and Computers V: Proceedings o f
H C I’89, 1989, p345-358 : Cambridge University Press.

[212] Wright, P. and A. Monk Cooperative Evaluation - The York Manual. University o f York,
York 1991.

http://www.iavasoft.com/

248

[213] Zirkler, D. and D. Ballman, Usability testing in a competitive market: lessons learned,
Behavior and Information Technology, 13:(1,2): 191-197.

[214] Zucker, J. The Propositional jLl-Calculus and its Use in M odel Checking, in Lecture Notes in
Computer Science 693: Functional Programming, Concurrency, Simulation and Automated
Reasoning, P.E. Lauer, Editor, 1992, Springer Verlag.

