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Abstract

The development of complex, multi-user, interactive systems is a difficult process that
requires both a rapid iterative approach, and the ability to reason carefully about
system designs. This thesis argues that a combination of declarative prototyping and
formal specification provides a suitable way of satisfying these requirements.

The focus of this thesis is on the development of software tools for prototyping
interactive systems. In particular, it uses a declarative approach, based on the
functional programming paradigm. This thesis makes two contributions. The most
significant contribution is the presentation of FranTk, a new Graphical User Interface
language, embedded in the functional language Haskell. It is suitable for prototyping
complex, concurrent, multi-user systems. It allows systems to be built in a high level,
structured manner. In particular, it provides good support for specifying real-time
properties of such systems. The second contribution is a mechanism that allows a
formal specification to be derived from a high level FranTk prototype. The approach
allows this to be done automatically. This specification can then be checked, with tool
support, to verify some safety properties about a system. To avoid the state space
explosion problem that would be faced when verifying an entire system, we focus on
partial verification. This concentrates on key areas of a design: in particular this means
that we only derive a specification from parts of a prototype. To demonstrate the
scalability of both the prototyping and verification approaches, this thesis uses a series
of case studies including a multi-user design rationale editor and a prototype data-link
Air Traffic Control system.
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Partl. Introduction

The first part of this thesis discusses why high level prototyping and formal verification are both
necessary (though not sufficient) for the design of complex, interactive systems. It argues that a mixture
of visual and declarative programming provide a powerful mechanism for interactive system
development. It also argues that formal verification is best applied later on in the design process once
an initial design has been developed.



Chapter 1 - Introduction

1.1. Interactive System Design

The development of complex, multi-user interactive systems requires high levels of time and expertise.
Surveys of programming project [138] have shown that it is not uncommon to spend 50% of the
resources of a project developing the user interface. This is because it is generally impossible to
produce an interactive system that does everything required, first time round. Producing usable systems
requires an iterative approach with a reliance on user testing. There are principles, such as usability
heuristics [142] which can be used to encourage good design. However, even when developing
relatively simple systems, they cannot guarantee good products.

The development and evaluation of multi-user “Computer Supported Co-operative Working” (CSCW)
systems is a particularly difficult problem. Such systems generally allow group awareness and support
co-ordination and communication between different users. These users must be able to understand the
common context that they are working within. Grudin[79] has argued that many early attempts at
developing CSCW systems failed because they did not map end user requirements to appropriate co-
ordination mechanisms. This means that usability heuristics will be even more difficult to use in a
CSCW project. Only through thorough evaluation can we hope to develop systems that truly support
their users. Good examples of such problems arise in the development of Air Traffic Control (ATC)
systems. Social studies of such systems [84] have shown that co-ordination between Air Traffic Control
Officers is subtle, complex, and often outwith the bounds of regulated procedures. The usability of
these ATC systems is sometimes in direct contrast to standard usability heuristics. Storrs and Windsor
[190], for instance, describe an ATC information display that seemed ‘“conceptually difficult and
noisy”, but which controllers found more useful and usable than other “simpler” designs. A
development approach based around iterative, user-centred design is therefore important when
developing such systems, because designers’ intuitions cannot be relied upon.

Much of the research to aid user interface construction, has therefore been directed at providing rapid
prototyping systems[71]. This thesis builds on this research. It is concerned with software techniques to
support rapid prototyping. In particular, it is concerned with providing support for the development of
novel interfaces for complex, dynamic, multi-user systems. The first and most significant contribution
of this thesis, is the presentation of FranTk, a new functional Graphical User Interface Language, that is
suitable for prototyping complex, concurrent, multi-user systems. It allows systems to be built in a high
level, structured manner. In particular, it provides good support for specifying real-time properties of
such systems.

An additional requirement with such interfaces is the need to reason about concurrent behavior within
the interactive system. The complexity of large systems, such as those used in Air Traffic Control,
makes it difficult to test them fully. A secondary contribution of this thesis is a mechanism for
automatically deriving a formal specification from the high level prototype. This specification can then
be checked, with tool support, to verify some safety properties about a system.

This thesis demonstrates the validity of these techniques through the use of three large case studies.
These case studies represent three different levels of complexity, culminating in the development of a
multi-user, real-time, data-link Air Traffic Control simulator.

1.2. The Software Engineering Lifecycle

The domain of Software Engineering provides a number of approaches to developing large software
systems, such as Air Traffic Control systems. There are a number of different software lifecycles which
consider how we should develop these systems. The first of these was the “waterfall model” [187],
which assumed a steady progression from requirements, to design, to development, to testing and
evaluation, to maintenance. There have been numerous more recent developments of this model, which
attempt to encourage early evaluation and a more iterative approach to design. These tend to encourage
the use of prototyping in the requirements and design phase. Organisations such as the UK’s National



Air Traffic Services — which is responsible for the design of new Air Traffic Control Systems — carry
out detailed iterations through requirements, design, prototyping and evaluation phases before handing
off a final design to a software development company. This thesis concentrates on providing tools for
use in the prototyping phase. It does not concern itself with the final implementation and testing of such
large systems.

1.3. Rapid Prototyping
1.3.1. The Need For Rapid Prototyping Programming Tools

Rapid prototyping tools must allow interactive systems to be developed at an appropriate level of
abstraction. Developers should not be bothered by low-level programming details when attempting to
develop a prototype. This would only slow down an already difficult process. However, tools must
leave enough control in the hands of the developer for them to develop the interface that they desire.

It has been argued that rapid prototyping tools can be subsumed by a model based approach to
development. These attempt to actually derive the interface design from a selection of models. One of
the earliest, and most well-known of these model based approaches was Adept [103]. Adept was a
proof-of-concept prototype that would automatically generate an interface from a detailed task model.
In order to carry out this transformation it also made use of a very simple user model which described
user knowledge in terms of preferences for different styles of interface (e.g. menus versus forms).

There are a number of fundamentai problems, however, with trying to automatically generate interfaces
from task based models. An approach such as task modelling is only capable of accurately considering
user activity at a very high level of abstraction. Adept removed control over the interface appearance
from the developer. Draper [40] argues that trying to specify plans for user behaviour down to a low
level can be dangerous:

"It would seem then that we cannot expect fixed and predictable behaviour from
human users even at quite "low" levels. Therefore whenever the device allows any
variation in method, task analyses are not likely to work at low levels."”

Instead of trying to restrictively define what a user should do for each task, he argues that we should
create flexible interfaces that allow users to work in a variety of ways. A task model should therefore be
used in association with other contextual information to design a system. Therefore automatically
generating an interface from a task model may not be very effective.

Fields and Merriam [58] also argue that using a purely task-based approach can make it difficult to
consider important issues. They argue that an "information resources” based approach may also be
required, especially when considering complex multi-user domains such as Air Traffic Control. Task
based approaches tend to lead to action oriented designs, that consider only what a user must do.
However, many activities such as Air Traffic Control involve monitoring information. In these cases,
we must also consider what information users need to understand the behaviour of a given system. One
of the major focuses of design here is therefore to consider how particular information resources will be
presented to the user. Model based designs will not be very effective here if they try to abstract away

from these presentation issues.

Because of these restrictions, model based approaches are too restrictive to apply to dynamic, complex
interfaces. They remove too much control over interface design from the developer. While modelling
can be used as part of the design process, a prototype interactive system still needs to be developed
separately, using some other technique.

1.3.2. Visual Programming

Visual approaches, that allow interfaces to be built by direct manipulation, represent a popular
declarative approach. Developers can define what an interface should look like, rather than saying how
it should be produced. Many visual based programming languages exist for developing user interfaces.
Visual toolkits are commonly provided to allow a developer to graphically build an interface. These
work well when applied to static interactive system, such as simple form based interfaces. It is usually



easier to draw such an interface than to program it. When developing standard application behavior,
such as “Print Dialogues”, development tools can provide application frameworks which fill in the
appropriate code. However, when developing novel, dynamic interactive systems it is still necessary to
write much of the interface and application using textual code.

Visual approaches have also been used to construct the architecture of an interactive system. The Clock
language uses such an approach[71]. Visual architectures can make it easier to explain the structure of a
system to a non-programmer. They can also make it easier to understand the structure of a large system.
For instance, class diagrams are commonly used in object oriented programming to provide an
overview of a system, as they summarise interaction between system components. Viewing such a
diagram is clearly easier than trawling through pages of code.

1.3.3. Declarative Programming

This thesis is concerned with declarative programming approaches, and in particular with the functional
programming paradigm. Declarative programming approaches allow a developer to specify what a
program should do, not how it should do it. When developing user interfaces, a traditional imperative
approach forces a programmer to state how both the application state and the interface change, on every
input, as a series of actions. In contrast, in a declarative approach the programmer should provide one
definition of the appearance of an interface component that will describe its appearance for the duration
of the program. Functional programming emphasises composition. Values representing programs are
constructed by combining smaller units. A functional language for developing user interfaces should
therefore consider user interface components as values and allow them to be easily composed.

Over the last few years there has been a great deal of interest in the development of functional GUI
libraries. These have used a number of different mechanisms to allow programmers to structure their
code. Some such as TkGofer [204] have used traditional callback based approaches. These make it
difficult to structure complex interactive systems as the structure of the application is turned inside out
[137]. The application cannot call the GUI library, instead the application must be called by the library.
A more popular solution has been the use of imperative concurrency [62]. This style allows an
application to be structured as a number of threads that execute concurrently and consume user input.
However, these approaches require a programmer to handle the intricacies of full concurrent
programming, dealing with mutual exclusion and race conditions between processes. These approaches
all force a programmer to use a very imperative style of programming; an unfortunate requirement in a
declarative language.

In contrast, the User Interface Management Community has been investigating the use of “constraint”
based approaches for programming interactive systems [136]. Here an application is defined as having a
behaviour, responding to user input and updating its state. The appearance of the interface is defined as
a function of the application’s state. This allows a programmer to say what an interface should look
like, rather than saying how it should be implemented. This style is particularly powerful when defining
multiple views of the same state. One of the most well-known of these systems, Garnet [136], was
implemented in Lisp. However, it still relied on side-effects to implement changes in the interface.

The languages developed in these two communities both use an imperative style of programming. The
difference has been described as being “Declarative in the Small versus Declarative in The Large” [71].
The languages developed in the functional programming community have been declarative in the small,
allowing individual aspects of a system to be written in a purely functional style. However, they have
been imperative in the large, forcing programmers to structure their programs as a set of imperative
actions. In contrast, the user interface management community has concentrated on providing systems
that are declarative in the large, allowing user interfaces to be structured as a set of constraints or
functions. However, being based largely in imperative languages they have not provided the advantages
of higher order functions, and referential transparency when building individual components.

There have been a few notable attempts to overcome these difficulties and combine the advantages of
both. These include Clock [71] and Pidgets [178]. One other important language seems to lend itself to
this style of programming. Fran [44] (Functional Reactive Animation) is a language developed for
constructing interactive animations. It uses a high-level modelling approach which allows programmers
to describe what an animation should look like, not how it should be implemented. It introduced a style



of programming known as Functional Reactive Programming (FRP) which has two key notions:
behaviors and events. Behaviors are time-varying, reactive values, while events are streams of values
that occur at a specific times.

This thesis draws from ideas in Fran and Clock to provide FranTk, a high level language for interactive
systems. The emphasis of this thesis is very practical. It concerns the development of a fully fledged
user interface library. Importantly, it is also concerned with applying such a library to significant case
studies. Though many toolkits have been developed, they are most often only evaluated in the context
of small examples. The case studies used in this thesis were chosen to be representative of larger real
world programs. In particular, these case studies have been chosen to demonstrate highly interactive,
dynamic, multi-user, real-time systems.

1.4. Formal Modelling

Formal specifications can be used to help develop interactive systems. They can be used to design
systems, and allow developers to prove the functional correctness of their systems. For instance, we
could prove that a design meets specific, formally defined, requirements. This is important because
incremental development, based simply on prototyping and testing, cannot guarantee certain critical
system properties. When designing a system, there may be millions of possible system states. No
amount of testing can significantly test such large state spaces. The problem becomes particularly
significant when we wish to prove negative properties about a system. For instance, when designing a
rail track control system, we may wish to prove that “A route will never be set if conflicting routes are
set” [82]. This sort of critical requirement is impossible to prove simply by user testing, given any
significant system. Though many of these critical requirements are what can be termed functional
(unrelated to the interface), many others will be related to user interactions. For instance, when
developing an air traffic control system there will be certain interaction requirements that will be
critical, such as "A control order can be sent to only one plane" [149].

Formal analysis can be used to verify completeness criteria about user interaction, to search for paths to
hazardous states that might be reached within an interface, and to verify consistency questions about
interaction when in different modes of a system [119].

Formal specifications have also been used to reason about usability properties of a system [85]. Various
interaction concepts have been suggested. These include predictability, whether a system behaves as
expected; visibility, whether the necessary information is displayed to allow users to act successfully;
continual feedback, whether a systems provides the necessary feedback to allow users to understand
their actions; and reachability, whether a user can get to all states in a system, or whether they could get
stuck in an interaction deadlock. These principles, though important, are very general. This makes them
difficult to check. The use of formal methods to prove the usability of an interface is a difficult, and
troubled issue. The notion of usability itself is still a difficult topic. The concept of usability, especially
when dealing with a multi-user system, can only be understood in the context of the application and
user’s work

This thesis presents a method that allows a formal LOTOS specification to be derived from a structured

FranTk prototype. The model can be analysed to verify important safety properties about the system.
This approach has been evaluated using the case studies.

1.5. Thesis Contributions

The major contributions of this thesis fall into two categories: those related to FranTk, and those related
to formal verification.

1.5.1. Contributions to Declarative GUI languages

The most significant contribution of this thesis is the presentation of FranTk, a new functional GUI
language, embedded in Haskell[158]. FranTk was designed to be used by programmers who are



familiar with functional programming'. It improves on previous functional GUI languages by
supporting a style of programming that is closer to the goal of being both “Declarative in the Large and
in the Small”. By doing this, it attempts to provide a more compositional style of programming than has
previously been possible in such languages.

This thesis presents a more efficient implementation of the core Functional Reactive Programming
combinators. This is significant because there are a growing number of other application areas to which
the FRP approach has been applied. These currently include robotics[155], multimedia[200] and
animation[44]. Current work at Yale University is investigating its application to Vision systems. The
search for more efficient FRP implementations is therefore important to all of these application areas.

It is important to note here that this thesis does not attempt to evaluate the usability of FranTk itself.
This would be a very significant task in its own right. Performing such evaluations has proved difficult
[92]. The usability of any language is heavily dependent on the skills of the programmer, and their
experience with similar languages. Performing such an evaluation would be fraught with difficulty and
is therefore well beyond the scope of this thesis.

Instead this thesis evaluates FranTk in terms of a set of significant case studies. This is important
because only through such case studies can we determine how well a language scales to real-world
problems. These case studies therefore demonstrate only how well the designer of the language was
able to use it. FranTk does, however, have a number of other users. Chapter 6 will briefly discuss some
of their comments about using the system.

Through the design and implementation of FranTk, this thesis makes the following contributions.

1.5.1.1. FranTk Design

e FranTk lifts Fran’s behaviors and events to widgets. This is the key to the declarative style of
programming. The appearance of a widget can be defined in one function, for all time, in terms of
FranTk combinators. An interface can therefore be defined as a function of some application state.

e FranTk provides good support for dynamic in addition to static interfaces. The construction of
systems with dynamically changing number of components can be difficult in many GUI systems,
and frequently requires a very imperative and sometimes cumbersome style of programming. The
use of behavioral values and dynamic collections allows a single abstract model of an application
to be produced. We can then have multiple views of this model, providing good
application/interface separation.

e FranTk extends Fran with support for hierarchical interactive displays, allowing access to input
from individual components rather from one monolithic window. This is vital to allow a truly
compositional style of programming.

o FranTk separates visual composition from semantic wiring. These two concepts are fundamental to
GUI programming. The first involves geometric composition. For instance, placing one widget
above another. The second involves connecting user input from a widget to the application code.
This separation is made possible by the introduction of listeners, consumers that respond to user
input. FranTk provides an algebra to compose these listeners in a functional style. This separation
allows a more compositional style of programming.

e This thesis presents two visual tools, an architecture tool and a static widget construction tool,
which demonstrate how the advantages of visual programming could be incorporated into FranTk.

1.5.1.2. FranTk Implementation

e This thesis presents three novel, clever implementations of the core Functional Reactive
Programming combinators. Each implementation is significantly more efficient than the simple

! Readers without the necessary background may wish to refer to [94] or [199] or [15], all of which
provide a good introduction.



streams implementation provided in the original versions of Fran[46]. Each implementation relies
for efficiency on two key features.

e Data Driven Behaviors and Events. The streams implementation of events and behaviors
requires that behaviors and events are sampled every time interval. This would be prohibitively
expensive in a large user interface, as every aspect of the interface would need to be
redisplayed every time any input was received. Instead FranTk, uses a data driven model.
Events and behaviors have invalidation actions associated with them. After any user input only
those components that rely on behaviors or events that have been invalidated need to be
redrawn.

e Weak Listeners and Finalisers. A simplistic implementation of the FRP combinators can easily
result in serious time and space leaks. Behaviors are updated by listeners as a result of user
input. This is useful only so long as the behavior is actually being used. However, often
behaviors will only be used for a fraction of the lifetime of a program. For instance, if a
component were later removed from the screen and the behavior it relied upon was no longer
used it would be useful to remove the listeners which update it. For this purpose, FranTk uses
weak references and finalisers. These allow listeners to be deleted when they are no longer
needed, avoiding the potential time and space leaks.

¢  FranTk makes one further implementation contribution. It provides an efficient implementation of
incremental dynamic collections. Fran provides behavioral values. These could be used to
represent behavior collections of objects. For instance, we could display a dynamic list of objects.
However if we were to render such a behavior collection, each time an element were to be added
the entire collection would have to be redrawn. This would be prohibitively expensive if we
needed to continually recreate complex compound collections. FranTk’s incremental behavioral
collections overcome this problem. They can be both viewed as a behavior and efficiently and
incrementally rendered.

1.5.2. Contributions to Formal Verification

The secondary set of contributions relate to the generation of formal models of interactive systems. This
thesis does not attempt to use formal models to understand the usability of a system. This has been
attempted by a number of others including Campos[23], Rushby[168], Leveson[119]. Instead it
concentrates on the use of formal methods to verify critical, application specific requirements. In
particular, this thesis takes one restricted view of formal methods. It assumes that they should be used to
find problems in a system, not to prove it correct. This thesis concentrates on providing an approach
which supports formal verification, of complex, domain specific properties by formal methods experts.

In the field of formal modelling of interactive systems, this thesis makes one contribution:

e It presents a transformation mechanism that supports the creation of a formal, LOTOS,
specification, which given certain parameters can be derived automatically from a structured
FranTk prototype. This allows the generation of a formal model at relatively low cost. The model
can be analyzed to verify important safety properties about the system design. To make the
verification practical we focus on partial verification, focusing on critical areas of the design. This
avoids the state-space explosion problems faced when trying to perform exhaustive proofs about a
whole system.

This approach has been evaluated using the Air Traffic Control case study. The need for significant

case studies was very important. Only through the use of a significant, safety critical case study, such as
the Air Traffic Control system, can the utility of such an approach be demonstrated.

1.6. The Structure of this Thesis

This thesis is structured into 5 distinct parts. Part I contains this introduction. It also contains Chapter 2,
which introduces the three case studies used in this thesis.



Part II of this thesis presents the design of FranTk, a functional graphical user interface library. Chapter
3 discusses previous approaches to the declarative development of interactive systems. This chapter
also presents a set of requirements for the development of FranTk. Chapter 4 discusses the design of
FranTk, demonstrating its important features through the use of a range of small examples. Chapter 5
presents two visual tools that were developed to help with the construction of interactive systems in
FranTk. Chapter 6 evaluates FranTk in the context of the three case studies, showing how it supports
the requirements in Chapter 3.

Part III of this thesis discusses the implementation of FranTk. Chapter 7 discusses the important issues
that arose when implementing the core Functional Reactive Programming combinators. It also discusses
the implementation of dynamic collections. Chapter 8 discusses the FranTk GUI library highlighting
how it achieves a toolkit independent implementation.

Part IV discusses formal verification work. Chapter 9 discusses previous approaches to formal
modelling of interactive systems. Chapter 10 presents the transformation mechanism that can be used to
convert elements of a FranTk program into LOTOS. Chapter 11 discusses formal verification
techniques in LOTOS, and evaluates the use of this approach with respect to the case studies.

Part IV contains Chapter 11, which presents conclusions and areas of further work.

Finally, this thesis contains three appendices. Appendix A introduces the basic concepts and functions
provided by Functional Reactive Programming. These are the combinators for Behaviors and Events.
Appendix B contains a brief discussion about usability evaluation in the design of interactive systems. It
discusses a small evaluation that was carried out when developing the QOC case study. Appendix C
discusses an earlier attempt to link formal specifications with functional GUI languages.

While this thesis may be read simply from start to end, there are several other possible routes through it.
Readers only interested in using FranTk should concentrate on Part II: in particular Chapter 4, which
discusses the FranTk design. Readers without an understanding of Functional Reactive Programming
may also which to refer to Appendix A to gain an understanding of the basic FRP combinators. Readers
interested in FranTk may also wish to read Chapter 5 which discusses the visual tools. They should then
read Chapters 2 and 6 which discuss the case studies and the use of FranTk within them. Such readers
may also wish to read Chapter 3 to understand how FranTk fits into the broader family of Graphical
User Interface languages. Readers interested in the new Functional Reactive Programming
implementation need to read only Chapter 7. Readers only interested in the widget implementation,
such as those wishing to port FranTk to a new toolkit, should read Chapter 8. Readers only interested in
the formal verification work should read Part IV of this thesis and Chapter 2 to understand the case
studies.



Chapter 2 - The Case Studies

2.1. Introduction

In order to develop and evaluate the approach discussed in this thesis, I used a series of case studies.
Declarative programming languages and formal verification techniques are frequently only applied to
very small-scale examples. One of the most significant factors about the work in this thesis is that I have
applied the approaches developed to three case studies, each increasingly complex. Demonstrating the
scalability of the approaches was of prime importance.

2.2. The Space Game

The first case study ([ 169],[ 170]) involved the development of a highly interactive, real-time user
interface. It is a space ship game, as shown in Figure 1. The user inputs commands via the keyboard. A
number of enemy ships fly in waves across the screen. These destroy the player’s ship if they collide
with it. The player must avoid hitting the hills at the bottom, and the enemy ships. The aim is for the
player to destroy the enemy base when it is finally reached, while shooting as many enemy ships as
possible. There are buttons to allow the user to pause the game, restart it, or quit from it. The current
score will be displayed on the screen. Though the graphics are only simple, the game requires real-time
animation. This example therefore provides a highly reactive system, with a number of different
interacting components. The example does not, however, have any significant notion of
application/interface separation. There is only one view of any of the data and so there is no real need to
be able to provide an abstract model of the game’s progress.

Enemy
base

Figure 1- The Interactive Game

2.3. The QOC Editor
2.3.1. Introduction

The second case study ([171]) involved the design of a multiple user, design rationale editor. This
provided for a fairly complex case study, where significant design decisions were needed and where
concurrency was required. This concurrency added an extra level of complexity that began to make
formal specification and proof helpful. For instance, in ensuring that locking properties are satisfied for

multiple users of a shared workspace
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2.3.2. Design Rationale

Design rationale has received a lot of attention [133]. A number of semi-formal notations have been
developed that attempt to document clearly why design decisions were made. The Questions, Options
and Criteria (QOC) notation is one such notation developed at Rank Xerox [183]. It is a graphical
notation that highlights key questions in a design, and links them with possible options and criteria that
support those options. Several studies (e.g. [183]) have highlighted the need for tool support for this
notation. A variety of tools have been developed, frequently based on hypertext systems. However,
current tool support is frequently inadequate for designers' needs [185]. In particular, tools often
provide little support for multi-user activities. Buckingham Shum argues that design rationale itself is
still in its infancy. This makes it difficult to be sure exactly how designers will wish to use these tools.
Iterative development is therefore required to explore different ways of satisfying the needs of
designers.

2.3.3. Collaborative Software

This case study was appropriate because the development of collaborative software of this form is still
in its infancy. It is frequently difficult to determine exactly how a group of users may wish to
collaborate using a piece of software. It is very easy to produce software that does not properly consider
how a group of users may share a design, and so seriously hinder the use of such a tool [13]. A design
therefore needs to be well thought out, and will frequently go through several iterations before it can be
useful. It can also be difficult to produce software for several users because of the concurrency
involved. Complex locking mechanisms may be required that need serious thought [38]. A design
therefore needs to be well structured.
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Figure 2 - The QOC Editor

2.3.4. The Prototype System

Figure 2 shows the interface for the prototype system we produced. It allows several users to build a
QOC rationale. Each user has a separate view of the QOC collection. Each QOC is maintained in a
window. Different users can have windows open in different areas of the screen. Within each window,

however, users' views are strictly WYSIWIS (What-You-See-Is-What-I-See). Users can also note their
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actions, and any extra textual information using a shared log. They can filter their own view, using the
view menu. They can filter their view of nodes to show only Questions and Decisions; Questions,
Decisions and Criteria; Questions and all Options; Questions, all Options and Criteria.

The level of sharing is important. In their current window, users can see changes made by anyone as
they happen. In contrast, they will only see the results of changes in each of the other visible windows.
They can also see where the other users’ cursors appear in their own window. Users have a colour
associated with them, used for their cursor. A different colour scheme is used to represent changing
objects. Objects being edited by a user appear in green; objects being edited by another user appear in
red. Locking is at node level, so that two users can both act in the same window, but cannot both act on
the same node in the window simultaneously.

This example introduced some new requirements that were unnecessary in the “Space Fighter Game”.
In particular, it has a real need for separation between application and interface code. We require one
explicit underlying model of the application, so that we can provide multiple views of the same data and
so that we can save and load the contents of the QOC to and from files.

The prototype system was evaluated through a multi-user usability trial (discussed in Appendix B). This
study was designed to formatively evaluate the case study. After each trial, incremental changes were
made to the interface to fix problems experienced that were discovered. This allowed me to test the
support for redesign that existed within the prototyping environment, and demonstrate whether the
interface developed in such a declarative system would be efficient enough to really use.

2.4. The ATC System

The third and most significant case study ([172], [173]) involved the development of a prototype data-
link Air Traffic Control System. This system was developed in association with a human factors
specialist, at the UK’s National Air Traffic Services, who provided the necessary domain knowledge
and requirements. This section provides a detailed introduction to Air Traffic Control, discussing the
processes used, and the difficulties involved in developing such systems. This discussion demonstrates
why new prototyping tools are important. It then goes on to present the prototype system developed,
summarising its functionality. This demonstrates that the ATC system formed a significant case study.
Readers who are interested only in the interface developed with FranTk may wish simply to skip to
Section 2.4.4 and skim through that section.

2.4.1. Introduction to Air Traffic Control

Current ATC systems have a good safety record, but they are reaching their limits. Since 1987 the
demand for air transport has been expanding at roughly 6% per year. EUROCONTROL - the European
Organisation for the Safety of Air navigation - forecast that before 2015 air traffic levels will have
doubled compared with those experienced in 1997 [49].

“Current concepts have inherent limitations and cannot meet either the forecast traffic increase

or the users’ changing business needs. Particular shortfalls are:

e Rigid airspace divisions and route structures;

e  Limited real-time information exchange;

e Reliance on increasingly congested radio communications;

e A lack of integrated planning between Air Traffic Management, airports and airspace
users;

* Aninability to exploit aircraft avionics capabilities.

Traditional methods of increasing capacity by further sub-dividing airspace sectors have

reached their viable limit in some airspace areas.”

EUROCONTROL, the European Air Traffic Control Agency, aim to handle the problem with
improvements in planning and organisation, and an increased level of automation. As one potential
solution, it is envisaged that more air-ground communications will take place via digital data-links,
allowing efficient communications between airborne and ground systems, and between adjacent sectors.
Controllers would be far more reliant on technology with such a solution. This has important
consequences for the design of human-system interaction.
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2.4.2. Developing Air Traffic Control Systems

Air Traffic Controllers work in a complex collaborative environment. En-Route Air Traffic Control
involves flights travelling at high altitude across a number of different airspace sectors. Controllers
work in teams within each sector and must also negotiate with controllers from adjoining sectors. New
systems must therefore properly support this collaborative activity. Systems that reduce situational
awareness could have serious safety implications [122]. A human-centred approach to the development
of new ATC systems is therefore vital. Early user involvement is also needed to guarantee that new
designs really support and improve the efficiency of controllers’ work. Air Traffic controllers operate on
tight time scales. Systems that interfere with existing work practices, by slowing down controllers,
could be dangerous, and will be unacceptable. Numerous research projects have ultimately been
rejected by controllers as unusable [122].

To ensure safety and maintain controller confidence ATC systems must be reliable. However, a number
of problems with new systems have shown that this can be difficult. For instance, in 1992, while in
actual use, a new system in Canada faced significant problems. "The system crashed in tests and actual
use, freezing radar screens, displaying false information and even showing jets flying backwards". [202]

Organisations such as the UK’s National Air Traffic Services (NATS) use a number of approaches
when developing new ATC systems. These include formal approaches such as task analysis, human
factors guidelines and error analysis; and user oriented approaches involving distributed multi-user
simulations which take several months to develop. Full simulations must be used to gain an
understanding of how controllers react to new ATC systems. However, these are slow to develop and
demand too many resources to perform several design iterations. Smaller scale, more rapid approaches
to user interface prototyping are therefore also important.

Given the collaborative nature of Air Traffic Control, the effectiveness of a new interface depends not
only on the functionality of the system, but on the way it alters existing work practices. Simulations
must be as realistic as possible. Support for experimentation with several users is therefore important.
Prototyping tools should therefore support distributed, real-time, concurrent interaction. Despite the
need for realism, less authentic studies can still be useful as problems with a system will scale up and
out. If a controller finds a feature of an interface clumsy in a small-scale test, we can be reasonably sure
the same will be true in real use. This means that rapid approaches to multi-user interface development
can be very useful.

The development environment presented in this paper, fits in well here. It allows rapid prototyping and
formal verification, thereby supporting usability and safety analysis. The next section presents the
prototype Air Traffic Control system that was produced.

2.4.3. Air Traffic Control Background

The prototype system that was developed is for En-Route Air Traffic Control. An aircraft will be
controlled by a number of different Air Traffic Service Units (ATSU) during the course of its flight,
and is sequentially under the control of several controllers within a single ATSU.

The work in each sector is split into two major roles: a planning and tactical control. The planning
controller is responsible for co-ordinating aircraft entering the sector and handing off aircraft from the
sector. The tactical controller is responsible for communicating with aircrew and maintaining aircraft
separation. Controllers must therefore be aware of what their partner is doing. In the UK, sectors are
paired together. This means that the controllers covering the paired sectors sit side by side, with tactical
controllers immediately beside each other. This allows them to handle emergency situations that occur
at sector boundaries.

Controllers rely on flight plans, pilot requests, requests from other sectors, current weather and traffic
conditions to manage air traffic. To gain a 2-D representation of traffic positions, controllers use a radar
track data block, displaying aircraft and accompanying details showing the callsign and altitude.
Controllers use a number of different interfaces in different centres, but these usually include a mouse,
which can be used to calculate ranges between different aircraft and points.
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Controllers use paper flight strips to keep a record of flight information and instructions. These also
provide a legal record of controller behaviour for use in accident investigations. Flight strips consists of
a band of paper printed with flight information containing the airline, flight number and type of aircraft
along with the authorised flight plan (speed, level, route). Controllers use flight strips both as a memory
aid and a means of communication [122]. Strips are laid out on a strip board. They can be arranged in a
number of ways, for instance, by time and way point. Controllers slide strips from left to right to
highlight different conditions such as two planes in conflict. Controllers can work simultaneously on the
same strip board, and refer to particular strips on the shared board.

Controllers and aircrew communicate using radiotelephony (R/T) for all explicit communications. This
provides a rapid and natural means of communication, which is particularly important when passing
urgent communications. All pilots on a given frequency can hear every transmission. This is known as
the “party line”. It allows pilots to build up a picture of traffic based on what they hear of other
transmissions. However, the quality of radio communications can be poor. Though controllers may be
sure a pilot has heard a clearance, they cannot be sure that the pilot has not misunderstood, especially
when communicating in an unfamiliar language. The effect of the party line can also be confusing with
pilots responding to messages meant for other aircraft. Radio communications are also extremely
congested. Radio bandwidth is the limiting factor on further growth in many sectors [49]. This
congestion could be reduced. For instance, valuable bandwidth is being spent on passing routine sector
co-ordination and frequency transfer messages.

In the future, it is envisaged that more air-ground communications will take place via digital data-link.
It is hoped this will allow efficient communications between both airborne and ground systems, and
adjacent sectors.

A number of data link based services are being considered. Our prototype concentrates on providing a
subset of these services:

¢ ATC Communication Management (ACM).
e (Clearance and Information Communications (CIC).

The ATC Communication Management service provides automated assistance to controllers and
aircrew when transferring between airspace sectors. This, in particular, supports the role of the planning
controller.

The Clearance and Information Communications service provides support for clearance, request and
information dialogues between aircrew and controllers. Clearance dialogues allow the tactical controller
to send orders to pilots; request dialogues allow pilots to negotiate flight parameters, most often
heading or flight level, to minimise the cost of the flight or to avoid bad weather. Information dialogues
allow the controller and pilot to share other information. Flight parameters can, for instance, be
automatically downlinked to avoid the need for controllers to use valuable bandwidth asking for them.
The CIC service therefore supports, in particular, the role of the tactical controller.

2.4.4. The ATC Prototype

The ATC Prototype that we produced allows several controllers to work together. It supports up to two
controllers, planning and tactical, in two adjacent sectors. This provides a reasonable simulation of the
paired sector setup discussed in the previous section. The prototype is heavily based upon designs
produced as part of the EUROCONTROL EATCHIP Phase IT HMI Catalogue[48]. The prototype does
not consider the aircrew’s view. All aircraft are simulated by the system.

An individual controller's view can be seen in Figure 3. It shows how a controller would send a flight
clearance message to an aircraft, telling it to climb to flight level 240.

The interface provides a radar map of the sector with aircraft positions shown as blips. These show the
current location of an aircraft and its last three positions, giving a good idea of aircraft acceleration.
Associated with each blip is a label known as a datablock showing the Aircraft Callsign, next sector (or
last sector if the aircraft hasn't entered this sector yet) and current flight level. Datablocks can appear in
different colours depending on the status of an aircraft. For instance, an aircraft under the control of a
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sector appears in black, an aircraft co-ordinating entry to a sector appears in blue. These labels will also
show data-link error messages, and will highlight values undergoing data-link co-ordination. For
instance, aircraft BAW33 has been sent a clearance to change its flight level.
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Figure 3 - A Controller’s View in the ATC Prototype

By moving the mouse over a datablock, the controller can cause a selectedflight label to appear. This
shows more flight details, including downlinked flight parameters, and allows the controller to send
flight clearance and co-ordination instructions. This direct provision of flight information reduces the
need for radio communications between controllers and pilots. This allows controllers to keep their
attention on the radar rather than being forced to move to the edge of the screen.

A more detailed flight data plan window is also available. It allows controllers to interact with the
selected aircraft in a similar manner. It also shows more details, including downlinked controller
preferences and the flight route. The plan shows information on the currently /hooked (currently
selected) aircraft, which will also be highlighted on the radar screen and on the Aircraft Display
window.

Controllers can send data-link messages in a number of ways. They can send individual clearance
messages. These can be immediate or conditional. For instance, Figure 3 shows the creation of a
clearance to reach Flight level 240. This is done using the tactical data entry widget, which allows the
rapid creation of composite messages, specifying heading, speed, and flight level. Controllers can send
flight route updates with the graphical route editor shown in Figure 4. They can alter the heading and
select and delete way points, seeing clearly the result of the change.

Co-ordination messages can be sent to the upstream sector (if accepting an aircraft), or to the
downstream sector (if transferring an aircraft). Figure 5 shows a controller accepting a flight into their
sector. They can either request the flight on a given frequency, or skip the flight telling it to pass to the
next sector. The default frequency is shown, and can be set using a menu. Transfer of flights between
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sectors can therefore be carried out at the press of a button. The appearance and behaviour of this co-
ordination widget is modal and depends on the current status of the flight.
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Figure 4 - Graphical Route Editor
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Figure 5 - Sending a Co-ordination Message

Transfer parameters, such as the Transfer flight level, can also be negotiated, using a similar widget to
that used to send a flight level clearance, by selecting the appropriate parameter on the selected flight
label.

With any of these message creation approaches a data-link message can be sent or the ground system
can be updated, by selecting the PHONE button. This can occur if a controller has been in radar contact
with a pilot, or has spoken to a controller in an adjacent sector. This is important because some
communication, particularly non-routine or urgent clearances will still be handled by radiotelephony.
Data-link cannot provide the same tone of urgency as voice communication, and will be too slow for
such messages.

Data-link communication messages appear in the Message In and Message Out windows. These allow
controllers to keep track of incoming and outgoing messages. Both controllers within a sector can see
the same message lists providing a shared view of data-link communication. Controllers can use the
labels that appear in these windows to respond to messages. For instance, in Figure 3, an error message
and a Bight level message are both shown in the Messages Out window. Controllers can either reply
that they are unable to co-operate with the request, or tell the pilot to standby, by pressing the UNBL
and STDBY buttons respectively.

The Aircraft Display window can also be seen in Figure 3. It shows electronic flight strips for each
aircraft. These can be highlighted by the controller, moving them from left to right for the controller,
using the selection tags that appear on the sides of the strips. The Aircraft Display window can be
ordered by flight level, entry time, exit time or organised by entry or exit point. In Figure 3, the Aircraft
Display is organised by entry point. In this case the strips are organised into columns by entry point.
Within each column they are arranged by time. This display is also shared between the planning and
tactical controller, providing another means of maintaining a shared awareness.
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The initial interface underwent a process of interactive redesign, at the NATS headquarters, where 1
worked with a human factors specialist to change it to suit his needs. This process allowed us to test
how well FranTk supported arbitrary modification of an existing application; whether it was powerful
enough to support any change requested by the NATS specialist; and whether it was possible to develop
a prototype of sufficient quality for the needs of an end user.

2.5. Summary

We therefore have three case studies of increasing complexity that were used to evaluate the scalability
and applicability of the prototyping language, and the formal verification approach. The important
contributions of each case study are summarised in the table below.

Game QOC Editor ATC System
Scale ~300 lines of code | > 1500 lines > 5000 lines
Real-time properties Yes No Yes
Dynamic Displays Yes Yes Yes
Need for Application/Interface | No Yes Yes
separation
Multi-user No Yes Yes
Scope for verification No Little Yes
User testing and redesign No Yes Yes

Table 1 - Summary of Case Study Contributions
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Part ll. Declarative Rapid Prototyping

Part II of this thesis presents FranTk, a new declarative language for developing interactive systems. It
compares it with previous languages and demonstrates its benefits through the three case studies
described in Chapter 2. This part is therefore aimed at readers interested in the design of FranTk and
those readers interested in actually using it.
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Chapter 3 — Declarative Development of Interactive Systems

A variety of languages exist to support the implementation of interactive systems. Some are based on
specific architectures to allow a structured design approach. Others allow developers more freedom in
how they structure a system. Some languages are visual and support development by direct
manipulation; others are purely textual. All languages should support the development of three areas.
They must support the development of the presentation or appearance of the interface; the dialogue
level that describes how user interactions are to be interpreted, and the link between the interface and
the underlying application.

In this chapter, I will review a number of these languages. When doing this I will consider a set of
general requirements that are important to the development of the case studies discussed in the previous
chapter. In particular, these languages must provide good support in the following areas.

1. The development of systems with both static interfaces, and dynamically changing interfaces.

2. The separation of application and interface code, so that one abstract model of the application can
be maintained. To make this easier, some high-level mechanism should be available to ensure
consistency between the application model and interface views.

3. The provision of temporal operators to support real-time interfaces. This includes the development
of animations where the value of some parameter may change with time; and the specification of
temporal predicates, such as time-outs, that are required by the Air Traffic Control case study.

I will first introduce a number of conceptual architectures, which attempt to support
application/interface separation. I will then introduce the general areas of constraint based
programming, model based programming and visual programming. I will then discuss in more detail a
set of languages for the development of interactive systems. These include one object oriented
language, Java, and a number of existing functional Graphical User Interface languages. Each of these
languages will be illustrated by at least one example, the development of a “counter”, with an increment
and decrement button, and a label showing its current state. Finally, based on the general requirements
outlined above, and on issues raised in the discussion, I will present a set of high level requirements for
declarative implementations of interactive systems.

3.1. Conceptual Architectures

A number of conceptual architectures exist to help consider how the presentation, dialogue and
application should be connected. The earliest of these, the Seeheim model[161] simply defined these
three layers. It suggested that each layer should be considered as a separate component, and that
communication could then take place between them, as shown below.

screen

update feedbac calls
Presentation [ Dialogue < Application < | Application
layer — layer — interface —»
tokens tokens calls/
callbacks

Figure 6 - Seeheim Model

It therefore provides separation between the application and interface. However, as each layer is
monolithic, systems cannot be considered in terms of components. A number of approaches that allow
design in terms of components, while still preserving application/interface separation, have been
developed more recently.

3.1.1. The MVC Model

The Model-View-Controller (MVC) methodology has proved very influential. It was first associated
with SmallTalk, as part of an object-oriented approach to design[70]. In MVC, a system is built using
components. Each component is made up of three parts. The model handles application data. A model
will contain an abstract representation of the data in a system. The model connects to a view that
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maintains the appearance of the component, and the controller, which handles user input. These
components can be combined into a hierarchy, as views can have subviews, which are themselves part
of a component. >

model view

&

controller

Figure 7 - MVC Model

3.1.2. The PAC Model

The Presentation-Abstraction-Control approach[32] below is similar to the MVC model. PAC programs
are organised into hierarchies of components. The abstraction is similar to the MVC model. The
presentation implements both the appearance of the component, and its interactive behaviour. The
control maintains consistency between the abstraction and presentation. The tree hierarchy allows
complex structures to be built up. Communication between different PAC components can take place
through the control components.

Abstraction Presentation

Presentation

Abstraction Presentation Abstraction )\

Figure 8 - PAC Model

Both the PAC and MVC models therefore allow systems to be thought of in terms of components. In
MVC it is less clear how communication should take place between different components. The PAC
tree makes it clear that this is handled through the control elements. Any MVC implementation must
answer this question.

3.1.3. The ALV Model

Another similar model is the Abstraction-Link-View (ALV) model[90] below show in Figure 9. ALV
programs are divided into two structures, the abstraction and the view. The abstraction covers the
application model; the view covers the interface appearance and updates. Each of these parts forms a
hierarchy. To maintain consistency between these two trees, constraints can be used. For instance, we
could specify that the text of a label showed some value from an abstraction component. These ALV

constraints are known as links and may be connected in any way between components in each tree. The
ALYV model has been used as the basis of the RendezVous language[91].

Figure 9 - ALV Model
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The use of constraints here, can be very powerful. Rather than having to explicitly worry about sending
updates between the abstraction and view, we can simply define a relation. This allows us to specify the
relationship between the two in a declarative way. However, given a complex enough system, a miriad
of constraints, going up and down the tree, could be difficult to understand and debug.

The application interface separation, provided by the models above, supports modularity in a design.
This separation could perhaps allow designers to produce several interfaces to the same underlying
application.

3.2. Constraints & User interface languages

Constraints can be used as a way of configuring interactive systems. They are fundamentally a
declarative formalism, in that the programmer thinks about what conditions need to exist, rather than
how they should be implemented.

They can also be used as a way of specifying the presentation of an interface. Geometric constraints can
be used to define layout rules between objects on a screen. We could, for instance, produce a box and
some text, and define the box to always surround the text. A variety of different interface languages use
constraints. The RendezVous language, discussed in the previous section, is one example.

Probably the best known system that uses constraints is Garnet[136]. It uses an approach based on the
MVC model to consider how systems should be structured. Constraints are used to maintain consistency
between MVC components. Garnet allows the use of one-way constraints. These operate in only one
direction. In the box and text example described above, though the size of the box is guaranteed to
increase if the amount of text increases, if the user were able to increase the size of the box manually,
then the size of the text would not increase. Garnet’s successor, Amulet, supports Multi-way constraints.
In our example, these would guarantee that the size of the text would increase with that of the box. They
can, however, quickly become very complex to implement and use[136]. Garnet allows constraints to
be used to maintain consistency between any data in a system, not just to prescribe the appearance of
the interface. This provides for a very powerful system.

Gamet and RendezVous support indirection in constraints. This means that, rather than having to
explicitly define a constraint between two components, we can instead attach a constraint to a pointer
variable. The constraint can then be set to point to different objects at run time. This supports the
definition of reusable modular components. It also adds expressiveness. We could, for instance,
constrain a value to be based on a dynamically selected object[91].

However, the constraints available in Gamnet can have serious problems[71]. Gamet permits two sorts
of behaviour which can result in systems that are difficult to debug: side-effects and constraint loops.

Side-effects allow other actions to be performed when a value is updated via a constraint. For instance,
Garnet uses constraint side-effects to dynamically create and destroy objects. This use of side-effects,
means that programmers must know the order in which constraints will be evaluated.

Garnet also allows constraint loops. This means that two objects can have constraints that link back to
each other. For instance, we could have two text boxes where the text in one box was constrained to be
the same as the text in the other. We would therefore have an infinite loop. When combined with side-
effecting this can be particularly dangerous. We could imagine an object that as a side-effect creates an
instance of itself. This would result in infinite constraint loop, where instances of that object were
continually created. This form of looping cannot be detected by a compiler. Sometimes it may even be
undetectable at runtime[71]. These features can therefore make constraints very difficult to use.

3.3. Model Based Approaches to Interface Development

Section 1.3.1 introduced the model based approach to design. Recall that such systems attempt to derive
the interface design from a selection of models. In addition to proof of concept prototypes, such as
Adept[103], there are a number of systems that allow real interfaces to be developed. One of these is
MOBI-D [162]. It allows more user control in the generation of an interface by allowing designers to
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set style preferences that describe the type of interface to be produced. It also allows designers to
override the system choices so as to provide direct control over the type of interface to be produced.

These approaches are, however, restrictive. Though they allow the generation of an interface from a
model, or set of models, they do not allow the reverse. If problems are found in the resulting interface,
changes must be made in the original high-level models. The mappings between these models can be
complex enough to make this task difficult. The Teallach approach to model based design [78] attempts
to avoid some of these problems by allowing transformation in any direction. It uses a mixture of
models including a task model, a domain model, which defines the relationship with the underlying
application, in this case a database system, and a presentation model (which defines the surface level
issues of the interface). The Teallach project aims to allow partial translation between any of these
models, so that a designer can start by considering the appearance of an interface before going back to a
task model.

The automatic generation of interfaces is restricted to specific well-understood areas, where innovative
design in an interface is not required. The Teallach approach, for instance, was used only to develop
fairly standard interfaces to databases. Automated tools will generate reasonable, but unoriginal
interfaces for a given system. If we wish to produce a new interface that attempts to better support a
user’s activities then we need to involve creative design. The creation of safety critical interactive
systems falls into this category. Here a range of interfaces need to be developed, with direct expert
involvement. The rationale for such designs must be clear, and responsibility for them must be explicit.
Automatic model based approaches to design will not be helpful here.

3.4. Visual Approaches to Interface Development

Visual approaches, that allow interfaces to be built by direct manipulation, represent another popular
declarative approach. Programmers can again define what an interface should look like, rather than
saying how it should be produced.

The MEAD system [13] provides support for the construction of multi-user interface prototypes. It was
developed to allow novel Air Traffic Control interfaces to be developed without the need for any
programming. Interfaces are defined using three distinct sets of tools. An “Object Browser” is used to
create simple data types with attributes and unique identifiers. Instances of these objects can also be
created with given attribute values. Different views of this data can be created using the “View
Definition Tool”. These views can then be used to create “User Displays”. The User Display definition
tools allow objects to be displayed based on selection criteria (simple predicates). Presentation criteria
are used to define which type of view should be used for any given object based on its attributes.
Finally composition criteria are used to arrange collections of objects on a display. MEAD allows the
development of fairly complex views. However, it does not allow these views to be defined as arbitrary
functions of the application state, such as the creation of a line with a height constrained as a function of
one or more object’s attributes. More significantly, MEAD provides only very simple support for user
interaction. Attributes can be edited textually via their views in user displays. The development of any
more complex user interaction, such as the use of buttons, sliders and popup-menus is therefore
impossible. Though MEAD proved useful for experimenting with possible ATC displays, it would be
no use for the creation of complex interactive interfaces such as those in the data-link ATC case study
used in this thesis.

Hypercard provides a good example of a visual approach for building interactive systems [9]. The
programmer builds an interface from a selection of predefined objects, such as buttons, text fields and
drawing tools. This allows designers to see what an interface should look like immediately. To define
more complex properties, the programmer can open up a property sheet. This is used by the
programmer to link the object to feedback, or to computation.

This direct manipulation style has problems. Certain things are difficult to define. For instance, while it
is easy to build a static interface, defining an interface that can undergo complex dynamic changes is
more difficult. Expressing complex layout rules, for example, to visualise graph structures can be
impossible [71].
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Environments that combine visual and textual programming have been developed in an attempt to
combine the advantages of both. One of the most popular commercial systems is Microsoft’s Visual
Basic [129]. Visual Basic allows interfaces to be drawn using a predefined toolkit of components. The
attributes of these components can be edited using a property editor. These components are defined as
objects. To make these objects interactive, event handlers can be associated with them. These event
handlers are defined textually. They update application code or update the display by changing objects’
attributes. The relative simplicity of Visual Basic makes it popular for novice programmers. However,
implementing complex programmes, particularly involving dynamically changing displays can be
difficult. Visual Basic provides poor support for understanding the structure of a large program, which
makes it difficult to incrementally modify such systems.

Some programming environments attempt to provide more structure, and allow the development of
more complex interactive systems by combining visual and constraint-based programming. Garnet, for
example, contains a tool called Lapidary [136]. This again allows designers to draw and define objects.
These objects can be linked to constraints. Lapidary allows programming by demonstration: the
designer can draw objects in different states, and Lapidary calculates the constraints to transform from
one to another. Eventually, however, the programmer must use textual programming approaches.

3.5. Java’s Swing — An Object Oriented Approach

There are a number of different object oriented languages that provide support for interactive system
development. One of the most recent and popular is Java’s Swing[194]. It supports both visual interface
programming and a model-view-controller programming style. In this section, I will briefly outline the
benefits and limitations of the support provided by Java.

JavaBeans [191] technology, of which Swing is a part, is designed to allow structured component based
programming to be used in combination with visual interface builders. JavaBean components are known
as Beans. Beans expose their features to builder tools by adhering to specific design patterns, and by
using the Java Reflection APIL. This API allows tools to ask a component what methods it supports at
run-time. Beans use events to communicate with other Beans. A Bean that wants to receive events (a
listener Bean) registers its interest with the Bean that fires the event (a source Bean). Builder tools can
examine a Bean and determine which events that Bean can fire (send) and which it can handle (receive).
Beans can be composed visually using a builder tool. They can be composed geometrically into more
complex displays; and they can be composed semantically by connecting listeners to events. However,
to provide any actual behavior Java code must be written.

As well as supporting simple properties and methods, Beans also support Bound properties. Simple
properties just support basic get and set methods. However, sometimes a component needs to be
notified when a component changes. Whenever a bound property changes, notification of the change is
sent to interested listeners. A Bean containing a bound property must maintain a list of property change
listeners, and alert those listeners when the bound property changes. This provides a simple but
powerful method of maintaining consistency between components that is an alternative to the use of
constraint based approaches. Java’s approach, however, has its limitations. Even using the
propertyChange support provided, it would still require a reasonable amount of code to define a new
bound property that was a function of several other bound properties.

Java’s Swing provides a separation between user interface components and models which provide an
abstract representation of some data. For instance, when implementing the “Counter” we could use a
BoundedRangeModel to represent the application state. This supports methods to set and gef an
integer value, and to add a listener to hear about changes. To implement the example, we would
therefore create the label and two buttons. We add a ChangeListener to the model that sets the
value of the counter. We also add an ActionListener to each of the buttons, which sets the model
to the appropriate value. The necessary code is shown below.

public class Counter extends JPanel
implements ChangeListener,ActionListener {

public Counter (BoundedRangeModel state) {
1bl = new JLabel ("Counter:0");
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inc = new JButton("inc"); dec = new JButton("dec");
this.state=state;

state.addChangeListener (this);
inc.addActionListener(this); dec.addActionListener(this);

// Layout components
setLayout (new GridLayout(2,1));

add(1bl);
JPanel tmp = new JPanel (new FlowLayout());
add(tmp) ; // place the two buttons in a panel of their own

tmp.add(inc); // to enable them to be side by side,
tmp.add(dec); // below the label
}

JButton inc,dec;
JLabel 1bl;
BoundedRangeModel state;

// Implement ActionListener,
// This action is performed on button clicks
public void actionPerformed(ActionEvent e) {
if (e.getSource()==inc) // If it is the inc button, add 1
state.setValue(state.getValue() +1);
else if (e.getSource()==dec) // with the dec button, subtract 1
state.setValue(state.getValue()-1);
}

// Implement ChangeListener,
// Set label when state of model changes
public void stateChanged(ChangeEvent e) {
1bl.setText ("Counter: "+state.getValue());
}
}

The layout combinators used are slightly clumsy. We need to create a subpanel in which to place the
two buttons. Layout would have been easier if we could provide a simple declarative definition of the
appearance of the interface: above(1lbl,beside(inc,dec)). While this use of layout
combinators can be avoided when building interfaces visually, it is still necessary when constructing
dynamic interfaces.

The use of abstract models is very important, as it satisfies the requirement of supporting
application/interface separation. There are a range of other models provided by Swing. For instance,
there is a ListModel which defines the methods which components such as listboxes use to access
lists. Though Java provides ListModels, they are less powerful than standard lists. For instance, it
would take a fair amount of code to define a ListModel that was always sorted. Life also becomes
more difficult when modelling new data types. In this case, programmers would have to define a new
model class.

As we have seen, user interface components and models communicate via listeners. Java distinguishes
listeners based on what they can be added to, rather than simply on the type of information that they
consume. This means that to consume values of new types we must define new Listener classes. It is
also sometimes difficult to add a listener in two places. For instance, Java distinguishes between
MouseListener’s which hear about mouse clicks, and ActionListener’s which hear about
action events (such as from buttons); yet both can be thought of simply as actions that are uninterested
in the data that they consume . Here we would need to duplicate code.

To support new data types it is necessary to define new kinds of events. However, doing so is tedious,
because the Java’s AWTEventMulticaster class (which manages listener lists) only supplies a
fixed set of overloadings for the listener add and remove methods. New kinds of events may easily
have signatures that do not match any of the given overloadings. In such a case, the programmer of the
new kind of event must also implement all of the list management needed to support multiple listeners.
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Conversion between listeners is also cumbersome. For instance, if we had an item listener (which hears
about selected objects), and wanted it to be fired every time a button was pressed, we would require to
write the code below. It creates a new ActionListener, which fires the ItemChange listener.

ActionListener 1 = new ActionListener () {
public void actionPerformed(ActionEvent e)
{i.itemStateChanged (new ItemEvent (e.getSource(),
ITtemEvent.ITEM_STATE_CHANGED,
obj, ItemEvent.SELECTED))

1}

In summary, Java’s Swing has a number of important features.

1. Through JavaBeans it supports visual construction of static interfaces

2. It supports application/interface separation via models.

3. It allows consistency to be maintained between models and views via listeners.

However, Java also has some limitations.

1. The way layout is handled is very imperative, making it less succinct than declarative alternatives.

2. Models and Listeners have been developed to handle very specific types of data. They have a range
of methods which make them useful for specific purposes, such as representing the state of a slider,
but not for representing values of any given type. The mechanisms necessary to create new types of
Model and Listener are relatively cumbersome. Converting between different types of listener is
also cumbersome.

3.6. Functional Approaches

The systems mentioned above though relying on declarative approaches, such as constraints, are all
based in imperative languages. They support potentially dangerous concepts such as side-effects, which
can make life difficult for programmers. An alternative approach is to use truly declarative languages to
implement systems. These can give designers greater faith in the correctness of their programs. They
are also potentially easier to relate back to design notations [3]. Functional programming provides one
such purely declarative framework. This sections discusses some functional approaches to interactive
systems development.

In particular, this section will concentrate on the use of Haskell [158]. Haskell is a purely functional
language that supports a number of useful features, including higher order functions, static polymorphic
typing, a lazy semantics, rich data types and a monadic /O system.

Haskell has been the focus of a lot of recent work on user interface toolkits. There have been four main
approaches used to structure user interface code in functional programming languages, and in Haskell
in particular.

¢ Callbacks — Systems such as TkGofer use a simple callback based approach to programming.

e  Stream processing — User interface components can be viewed as stream processors, that consume
streams of user input and produce streams of output commands. Fudgets and Gadgets are two
systems that take this approach.

¢ Imperative concurrency — User interface components can be structured as a set of processes that
execute concurrently and consume user input. Haggis is a good example of such a system.

¢  Constraint based approaches - We can introduce the notion of some form of reactive behavioral
value that can change value over time. We can then view an interface as function of some set of
values. Clock, Pidgets and Fran have all introduced such concepts.

I will first introduce the basic concept of performing I/O in Haskell, before going on to discuss these
four approaches to interactive system development.

3.7. Performing I/O in Haskell

Haskell uses monadic 10 to support sequencing of actions. Older approaches to sequencing used stream
based I/O, which produced confusing code. For instance, the following simple program, copies its
standard input to its standard output [70]:
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main ~(Str input: ~(Success : _)) =
[ ReadChan stdin,
AppendChan stdout input]

How input, is transferred between ReadChan and AppendChan is unclear. The resulting confusion
caused serious problems for programmers learning to exploit functional programming.

Newer approaches based around monadic I/O provide a more imperative programming style, familiar to
most programmers [156]. The same program, with monadic I/O, would be:

main = do
ch <- getChar
putChar ch
main

getChar :: IO Char
putChar :: Char -> IO ()

The last two lines are examples of Haskell type signatures. In Haskell the syntax ‘: :’ is used to denote
that a value has a given type; the argument types are then separated by ‘->’; in type declarations, non-
capitalised names, like a here, are type variables, indicating polymorphism, i.e., the ability to work with
all types; application of a function ‘£’ to arguments ‘x , y, ...’ is writtensimply ‘f x y ’
The first type signature, for instance, says that there is a function called ‘getChar’ who’s type is ‘IO
Char’. The second says that ‘putChar’ is a function which takes one argument of type ‘Char’ and
returns an a value of type ‘IO ().

The type IO a can be thought of as an I/O action that returns a value of type a; the type IO () is
therefore an action which when performed will do some computation and return no useful value. Here
we can think of () as the C or Java void type. Here getChar is therefore an IO action that returns
the character read, and putChar is a function that takes a character and performs an IO action that
prints the value and returns no result. The sequencing of actions is more explicit here; the input from
getChar — ch- is used by putChar.

The monadic expression above is special syntax for the standard monadic combinators.

class Monad m where

(>>=) :: ma -> (a->mb) ->mb
return :: a -> m a
(>>) :: ma ->mb->mb

a>b =a >= \_ ->b

instance Monad IO

Here Monad is a type class. This defines a general interface that may be implemented for a number of
different data types. This allows ad-hoc overloading in Haskell.

A monad is a family of types ‘m a’ based on a polymorphic type constructor ‘m’, with functions
return, (>>=) and (>>). Here the function (>>=) sequences two monadic actions, using the
result of the first in the second action. The function return simply returns its argument value without
any additional computation. Finally the function (>>) acts like (>>=) except that the value returned
by the first argument is discarded, rather than being passed to the second argument. The expression
“_ > b’ is a Lambda expression, which denotes a function. After a ‘\’ we list the arguments of the
function, then a ‘~->’ and then the result. We can therefore define the two expressions below in terms of
these monadic combinators.

do {x <- act;f x} == act >>= \x -> £ x
do {actl;act2} == actl >> act2

Readers who require further explanation are referred to {201] or [94].
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3.8. Functional Callback based approaches

User interfaces can be constructed in terms of callbacks. When creating a component, we associate an
action with it that will be performed when it hears some user input. For instance, we could define a
push-button using the following code:

button :: String -> IO () -> IO Button

Here button is an IO action that that takes two arguments, a String label to display and an action to
perform when clicked. When performed it produces a value of type Button that represents a handle
through which the object can be accessed. We can now imagine a number of operations on these button
handles to change their appearance, such as setting the colour or changing the label.

setLabel :: Button -> String -> IO ()
The button’s callback could therefore be set to perform one of these output actions.
3.8.1. TkGofer

The TkGofer toolkit [204] uses a callback based approach. TkGofer uses an interface to the popular
Tcl/Tk scripting language to provide a platform independent set of widgets. The layout and behavior of
components are described in Gofer (a variant of Haskell). TkGofer makes use of mutable variables to
allow interface components to have state. To create our example “Counter” with two buttons, up and
down, we would use the following code:

main :: IO ()
main = start updown

updown :: GUI ()

updown = do st <- newState 0
win <- mkWindow [title “up-down counter”]
1bl <- mkLabel win [text “0”]

let action :: (Int -> Int) -> IO ()
action £ = do
val <- readState v
let val’' = £ v
writeState v val’
cset 1bl [text (show wval’)]

incb <- mkButton [text “inc”,command (action inc)]
decb <- mkButton [text “dec”,command (action dec)]
pack (above 1bl (beside incb decb))

We create a mutable variable using newState, to store the state of the “counter”. We can then use and
update the value of that variable later. The GUI monad is built on top of the IO monad and enables Tcl-
Tk actions to be carried out.

newState :: a -> GUI (State a)
readState :: State a -> GUI a
writeState :: State a -> a -> GUI ()

We then create a window, and within it we create a label and two buttons.

mkWindow :: [Conf Window] -> GUI Window
mkLabel :: [Conf Label] -> GUI Label
mkButton :: [Conf Button] -> GUI Button

When creating widgets we pass in a list of configuration information. For instance, we pass the label
some text to display. Configuration information has a type associated with it, so only the correct options
can be passed to a given widget. The type, Conf Label, represents any configuration information
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that is valid for a label. TkGofer uses type classes to restrict which configuration information can be
passed to which component. For instance, there is a Has_Text class. It has one method, the text
method which takes a string and produces a configuration option. The text option can only be used
with instances of the Has_Text class. These include Buttons and Labels, both components that
can display textual labels. (The constraint Widget w, means that components that can take text
configuration options must all be instances of the Widget class.)

class Widget w => Has_Text w where
text :: String -> Conf w

instance Has_Text Button
instance Has_Text Label

We compose widgets geometrically using combinators such as above and beside. These take two
widgets and return a Frame widget. We then pack the created widget on to the screen.

above,beside :: (Widget wl,Widget w2) => wl -> w2 -> Frame
pack :: (Widget w) => w -> GUI ()

Finally, we define the behavior of the buttons. We do this using a command callback. Each button first
updates the state, by applying some function to the current value (either incrementing or decrementing).
It then resets the text on the label.

class Widget w => Has_Command w where
command :: GUI () -> Conf w

instance Has_Command Button
cset :: Widget w => w -> [Conf w] -> GUI ()
3.8.2. Discussion

The approach taken in TkGofer has a number of positive features.

e Typed configuration options — The use of configuration options makes it easy to create a
component which may also have a range of default values. The use of type classes allows us to
easily constrain which options can be given to which component.

e Functional layout combinators — Widgets can be geometrically composed with a range of
functional combinators, making it easy to generate complex displays.

However, TkGofer also suffers from two major constraints.

e Grouping components — While we can compose pairs of components, we can’t apply these
composition operators to collections of components. For instance, it might be useful to have a
combinator that places a list of components above each other. This is because different widgets
have different types, so we could not form a heterogeneous list consisting of buttons and labels.
Instead, we need to explicitly coerce each widget into a Frame and then compose them.

hbox :: [Frame] -> Frame
frame :: Widget w => w -> Frame
composite = hbox [frame lab, frame btn]

This approach is less than ideal.

e  Spaghetti of callbacks — Relying on callbacks can make TkGofer programs difficult to structure.
The user interface takes control from the application. In particular, components need to maintain
references to each other in order to perform their tasks. In our example, each button needs a
reference to the label and must update both the application state in the mutable variable and the
label’s display itself. When programming large systems these references turn the program into a
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‘spaghetti of callback’ [137], making the structure difficult to understand. More powerful
mechanisms can be built on top of TkGofer to help overcome this problem, such as introducing an
MVC style of programming {27). Here components update a model, and widgets register interest in
the model to display its value.

3.9. Stream processing - Fudgets

The stream processing approach to programming considers a user interface to be a stream processor
that consumes user input and produces output events. We will consider two variants of this approach,
Fudgets and Gadgets.

3.9.1. Fudgets

The Fudgets system [25] was the originator of the stream processing approach. An interface is
described in terms of a series of components or Fudgets. Each Fudget receives data on input streams
and sends it out on output streams. Fudgets can be combined to form composite Fudgets using a set of
combinators.

Fudgets can be connected together. For instance, we can connect the output stream from one fudget to
the input stream of a second using (>==<). To allow a Fudget to listen to two other Fudgets, we must
compose them together (using >+<). This forms a new Fudget that produces messages of a sum type.
Values will either be Left a, if they come from the left hand fudget, or Right a, if they come from
the right hand fudget. This tagging can become awkward when forming large Fudgets. To overcome it
we can sometimes generate Fudgets that send streams of the same type. For instance, in our example
“Counter”, we could create button Fudgets that send integer modifying functions. These can then be
composeid without the need for tagging. The example “Counter” can be implemented in Fudgets as
follows:

import Fudgets
main = fudlogue (shellF “Up/Down Counter” updown)
updown = intHolderF >==< buttonsF
buttonsF = buttonUpF >*< buttonDownF
where buttonUpF = buttonMsgF increment “up”

buttonDownF = buttonMsgF decrement “down”

intHolderF :: F (Int -> Int) a
intHolderF = intDispF >=""< stateHolderSP 0

stateHolderSP :: a -> SP (a -> a) a
stateHolderSP s = mapstateSP hold s
where

hold s £ = let s’ = £ s in (s’,[s’])

buttonMsgF :: m -> String -> F Click m
buttonMsgF m s = tomsg >"=< buttonF s
where tomsg Click = m

We create two button Fudgets that transform their clicks into update functions, using the message
mapping combinator >*=<. We then compose the two Fudgets with >*< to produce a composite
untagged fudget. Next we connect this composite fudget to a state holder that maintains the current
value of the fudget. Finally, we connect this state holder to an integer display fudget that displays
labels.

The Fudgets programming model combines the notions of semantic and geometric composition. We
compose Fudgets with respect to their input and output streams. They are then given a default layout. If

2 This example is taken from [144]
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we need a display that is separate from the semantic composition, we must explicitly name Fudgets in
order to apply alternative layout combinators.

The basic model, demands that each fudget can read from only one, and write to only one other fudget.
This makes it difficult for a component to inform several other components of a state change. There is
no high level support for maintaining consistency between several Fudgets. Sharing data between
Fudgets is also impossible. All consistency conditions and data communication must be individually
programmed [71].

To summarise Fudgets allows applications to be composed in a functional style. However, it suffers

from a number of problems as a result:

e Need for explicit tagging when composing Fudgets. The use of one output stream makes it hard to
see where a fudget is sending its output values [62].

¢ Combination of semantic and geometric composition, makes it more difficult to produce complex
displays where the two concepts are not related.

e Parameterising a Fudget over the type of elements transmitted makes it difficult to provide
combinators to combine collections of components.

¢ Because of the static structure, it is also difficult to program systems with dynamically created and
deleted objects [144].

3.9.2. Gadgets

The Gadgets system developed by Rob Noble [144] attempts to overcome the problems visible in
Fudgets by introducing explicit channels. A user interface is considered to be a set of components, or
Gadgets, that communicate on wires, channels with an input end and output end. We therefore define a
button as a Gadget, which displays a label, and takes a value, which it emits on a given output port,
every time the user clicks the button.

button :: String -> a -> Out a -> Gadget

The Gadget system introduces the notion of a process to allow components to individually perform
calculations and communicate on wires. When a Gadget hears a value on a wire it must itself become
runnable and perform some communication. When one Gadget waits on some input from a user, it must
not block every other Gadget. We can create new processes using the spawn primitive:

spawn :: ComponentClass b => Process a -> Process b -> Process b

We can implement the example “Counter” as follows™:

counter :: Gadget
counter =
wire $ \wl ->
wire $ \w2 ->
let incbtn = button “Inc” (out wl) increment
decbtn = button “Dec” (out wl) decrement
lab = label “0” (in w2)
in
spawn (count 0 (in wl) (out w2)) (lab <|> (incbtn <-> decbtn))
-- lay the two buttons side by side, under the label

where
count :: Int -> In (Int -> Int) -> Out String -> Gadget
count n i o = rx [from i $ \f —>

let n* = £ n in
tx o {(show n’) $
count n’ i o]

We create two wires and four gadgets. The two buttons talk to the first wire, passing integer modifying
functions. A third gadget is spawned which maintains the state of the application. It reads values from

3 This example is taken from [62].
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the first wire (using rx), and applies them to its current value before transmitting them on the second

wire (using tx).

The use of wires in Gadgets is a powerful concept. We can create a component by passing in all the
arguments necessary to generate it. This allows us to define a generic component type and so define
composition functions that operate on collections of components. Each process can handle an element
of the application code. The semantic wiring is no longer associated with the geometric composition
making the structure of the program more modular.

However, Gadgets relies on the older continuation passing I/O style (see Section 3.7). The need for true
concurrency makes non-determinism an important issue. It is also still difficult to form complex

compositions of wires or to specify complex temporal constraints.

3.10. Imperative Concurrency - Haggis

The Haggis toolkit developed by Sigbjorn Finne [62] provides a good example of an imperative
concurrency approach. An interactive system is defined as a number of concurrent threads. These
communicate by message passing, and through shared data, implemented by a series of imperative
commands.

Haggis makes use of Concurrent Haskell [157], This language extension supports lightweight
processes, and makes use of monadic I/O. Programmers can create new child processes with the
forklO function. Communication occurs asynchronously, through shared variables (M Vars) which

operate like semaphores.
Haggis has a number of key features, described below.

3.10.1. Virtual I/0

The use of concurrency provides for modular design. A common problem with many graphical user
interface systems is their reliance on an event loop, and callbacks. This style has well known problems
[137], Haggis, instead, treats the user interface as a virtual device, allowing the application to maintain
control. The concurrent features of Haggis allow several virtual I/O devices to operate at once. For
instance, one process could block waiting for a mouse click while others go on with necessary work. It
is this feature that supports the imperative concurrent style of programming.

3.10.2. Declarative structured graphics

A further problem with the development of graphical interfaces is that conventional languages tend to
be highly imperative. This means that rather than considering how a picture should look, programmers
must describe the sequence of actions that must be used to render it. This added complexity makes
mistakes more likely. In contrast, in Haggis all static graphical output is specified declaratively through
a Picture type [59]. Haggis provides operations to transform and combine objects, along with an
extensive list of graphical primitives. For instance, we could specify the image shown in Figure 10 with
the associated code.

enemy = fillSolid $ withColour grey $
beside (ellipse (5,12))
(above thruster thruster)
where thruster = coverlay cross
(ellipse (15,6) )
-- centre one image over another
cross = withColour black $
beside (rectangle (12,2))
(rectangle (2,8))

Figure 10 - A Haggis Picture

Haggis takes care of converting pictures into calls to the window system, with the Glyph output
abstraction. The glyph function takes a picture and produces an interaction object that displays it.
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picture

glyph
|

render
Figure 11 - A Haggis Glyph Component

This declarative approach makes it easy to build, and manipulate complex images. However, Haggis
provides a separation between static pictures and interactive widgets such as glyphs. This makes it more
difficult to describe complex interfaces where individual components may evolve dynamically.

3.10.3. User interface, application separation

Geometric and semantic composition are separated in Haggis. User interface components are
represented by an object, from which we can extract a handle for visual composition. For instance, the
glyph output abstraction returns a Glyph handle, which the application can use, for instance, to update
the image. From this we can extract a Display Handle, which is a reference to the interactive graphical

surface.
glyph :: Picture -> Component Glyph
getDH :: Glyph -> DisplayHandle

This separation allows programmers to build more modular systems. We can define the appearance of a
system and its behaviour separately.

3.10.4. Compositional structure

Haggis provides layout combinators and other functions to combine the Display Handies mentioned
above. For instance, we could make an interactive widget by combining an input event controller with
the Glyph described above.

widget picture dc = do
gl <- glyph picture dc
catchMouseEv gl
This produces a widget as shown in Figure 12.

glyph Event
handler

Figure 12 - A Haggis Interactive Widget

We can then compose these interactive objects to produce an interface as shown in Figure 13.

main = do
dc <- mkDC []
objl <- widget (text "press 1") dc
obj2 <- widget (text "press 2") dc
realiseDH dc (above objl obj2)

Figure 13 - A Simple Interface in Haggis
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3.10.5. An Example
We can define the example “Counter” in Haggis as follows:

main = do
dc <- mkDC []
1bl <- label (show “0")
btnl <- button (text “inc”) increment
bnt2 <- button (text “dec”) decrement
btns <- hCombine {[btnl,btn2]
forkIO (interact 1bl btns 0)
return (vbox [getDH 1bl,hbox [getDH btnl,getDH btn2]])
where
interact :: Label -> Button -> Int -> IO ()
interact 1lbl btns n = do
f <- hGet btns
let n* = £ n
hSet 1bl (show n’)
interact 1lbl btns n

We create two buttons, an increment and decrement button. We compose the input from these two
buttons to form a composite button. The view consists of a label above both buttons. We then start off a
concurrent process that maintains the value of the label. When it hears an update-function message
resulting from a button click, it applies the function to its current value and displays it. The Haggis
approach therefore works well for simple examples like this, providing good semantic separation
between the view and the application.

3.10.6. Discussion

Dealing with dynamic interfaces, with varying collections of widgets on screen, is difficult in Haggis.
Haggis differentiates between widgets and pictures. The graphical combinators available for widgets
are much less powerful and less declarative. In particular, to handle collections of widgets we require to
use the Composite Container component which has an imperative interface. Providing an abstract
model of a collection of objects causes further problems. An application would be modelled as some
mutable state. A process would then be required which updated the display every time this state was
changed. To allow multiple views of this data we could have one application process which received
inputs on a channel and sent out updates on a channel. However, as this solution would be non-
deterministic there would be no guarantee that the set of interfaces components would all be up to date.
Alternatively, each interface component could register update callbacks with the application. Doing this
we would have to be careful not to cause a deadlock. Either mechanism is somewhat clumsy and error
prone.

Concurrent communication in Haggis is based around shared semaphore variables. These provide a
very primitive interface for shared communication. It is, however, possible to build more powerful
communication mechanisms on top of these. Concurrent Haskell, for instance, also provides
asynchronous channels for message passing. The range of temporal operators is still somewhat limited.
For instance, to make one process suspend and resume another requires some fairly sophisticated
programming. One possibility is to introduce a set of richer, synchronous communication primitives.
Inspired by work modelling interactive systems as LOTOS processes [152], I developed a set of
LOTOS like primitives for use with Concurrent Haskell and Haggis [170]. Using this new
communication library I developed the Space Fighter Game, introduced in Chapter 2. The combination
is discussed in Appendix C.

3.10.7. Summary

Haggis therefore provides a good powerful basic model to consider the design of interactive systems.

However, it has a number of problems.

1. The approach exposes programmers to the perils of concurrent programming, such as non-
determinism and synchronisation.

2. Processes can share data and so provide some form of data dependency between objects. However,
defining constraints between different processes is impossible.
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3. Pictures are static datatypes. Interactive components must be composed together through their
Display Handles. The composition operators for Display Handles are less expressive. To build an
interface with a number of dynamic components we must either use Display Handles, and suffer
the lack of expressiveness in terms of image composition, or have a single process that accepts all
events and then uses these to manipulate individual picture components.

4. While it provides separation between application handles and display handles, it does not
explicitly support component based, application interface separation. This means it is up to the
programmer to attempt to build systems in a modular way. In particular, it is difficult to provide
multiple views of a dynamic interface.

3.11. Functional Constraint based approaches

There have been a number of attempts to develop functional languages based on constraint ideas. Three
examples of this approach are Clock [71], Pidgets [178] and Functional Reactive Animation [44].

3.12. Clock

Clock has been designed as a constraint based functional language [71]. It has a graphical architecture
language that can be used to describe how systems fit together and a textual language to describe the
behaviour of each component. It is based on the MVC model.

Programmers first structure a system by decomposing the interface from a root view into a tree of
views. This decomposition is based on a hierarchical display model of an interface. Such Clock
architectures are produced interactively using a visual tool called ClockWorks [134]. This allows
programmers to design and modify their architectures easily. It provides easy access to a library of
components. Fast iterative design is therefore possible.

Each component in a Clock architecture tree contains an event handler, which takes user inputs and
sends updates. This event handler (EH) is similar to the controller part of the MVC model.
Components may also contain request handlers (RH) which represent the MVC model and can receive
inputs and accept requests. Finally, a component has a view, which is defined as a relation of the model.
This is therefore similar to the ALV models mentioned earlier. The behavior of each of these
components is described textually.

We will consider three examples in this section, our “Counter” application, and the Space Fighter and
QOC editor applications from Chapter 2.

3.12.1. The Counter

The architecture for the “Counter” is shown in Figure 14.

Ecmmt,
setCount m § ;::
incrementCount Concurrent
decrmmt(:mmt, Counter
root | eCount
E ﬁg incrementCoumn
buttonClick,| CommterView |decrementCount,

button ‘inactivecolour,
E] ﬁg activeColour
ishctivate

mouseButtan, | ButtonView jbuttonClick,

Figure 14 - The Clock Architecture for the “Counter”
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The Counter component is a Request Handler. Counter has three methods, which we will use:
incrementCount, decrementCount and count. The first two methods update the value of Count by
incrementing and decrementing it, respectively. The last method requests the value of Count. The root
component is of class CounterView and contains both the view and the controller of the component.
The component accepts press events from its child buttons. It can use the count, incrementCount and
decrementCount methods.

The controller part of the component performs increment and decrement actions depending on which
button has been pressed.

buttonClick "inc® = incrementCount
buttonClick "dec" = decrementCount

The view part of the component is defined as follows:

view = above (numText count)
(beside (button "inc") (button "dec"))

This view uses a constraint from the model. It uses two instances of the button subview. Subviews are
identified by String names. These names are persistent. For instance, whenever a button subview with
the name "inc" is referred to for the remainder of the program, it means the same instance. Any local
state within the component will therefore persist. To create a new instance of a subview with new state,
we would therefore need to define one with a different name. The view function simply specifies a
relation between the model and the user interface appearance.

This use of String names to distinguish components is clumsy and error prone. For instance, spelling
errors in component names will not be caught until runtime. It also makes it difficult to garbage collect
a component as there is no way to tell if it will be used again later in the program.

The complete code for the Count RH is:

type Count = Num

setCount n = save n
decrementCount = save (this - 1)
incrementCount save (this + 1)
count = this

initially = save 0

The predefined function save, sets the new state of the RH. The predefined function this returns the
current state of the RH. Therefore the count method simply returns the current value held in the RH,
and the incrementCount method sets the new value of the RH. The initially function says what to do
when an RH is created. Though some of this may not look safe, the semantics of Clock are defined to
guarantee referential transparency.

There is a strict set of rules defined to explain how these updates can be used. Updates can only travel
up the architecture tree. They are guaranteed to terminate at or before the root. Infinite constraint loops
are therefore impossible. Requests can also only travel up the tree, so a component can only use
constraints based on values in its parent components’ RHs. A component can use 0 or more instances of
each of its subcomponents. These are created through the subview relationship.

The Clock architecture language provides good support for iterative design [71]. Requests and updates
from a component are routed automatically by Clock. Programmers do not explicitly say how
components are to be connected. The only explicitly defined relationship is the subview. Requests and
updates are simply routed up the tree to the first component that can deal with that type of action. This
means that it is easy to move objects around in the tree, as no explicit connections will be broken. For
instance, if we wished an RH that had been used by one component to be shared by several, we could
just move it up the tree. This would not cause any problems. However, this use of untargeted method
calls can be unhelpful. For instance, it makes it impossible to have two instances of the same request
handler in scope at the same time.
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Clock also supports groupware applications {140]. View functions are provided to allow windows to be
opened up on different users screens. A distributed version has also been developed. Programmers can
define some parts of the tree to exist on the user’s side while others exist on the client’s side. This aids
the development of groupware applications.

3.12.2. The Space Fighter Game

The first stage in producing an implementation in Clock is to produce the architecture. The architecture
for the Space Fighter game is shown in Figure 15. The system is made up of the ToolBar and the
Screen. The screen decomposes into ShipViews, LaserViews and EnemyViews.

We next add the RHs necessary to implement the system. We use a Paused RH, which defines whether
the game is paused or not. We have a GameState RH which maintains the state of the lasers, enemies
and ship. The RHs are then placed in the tree at the lowest level possible, so that they are visible to all
components that use them.

The graphical architecture makes it easy to see how the system is composed together. The separation

into RHs and control components affords good application/interface separation. In this example,
however, there is little need for any great separation because there is only one view of the game.

3.12.2.1. The Game State Component

The GameState RH is associated root component. It consists of a list of lasers, enemies and ship data.
There is also a Boolean which is True if the game is over, and a current score.

type GameState = ([Laser], [Enemy], Ship, Score, Bool)

It has four update methods: ship move updates, timer updates; restart updates and quir updates, which
manually set the state to ‘game over’.

@msed, [ g @
pause, Paused
‘enmnl.es, E ? R:
shi)
lscore,
‘gameuvgr,
quit,, |
restart, |
move, |
update, | GameState

Concurrent

root

;| B

Game

EnemyView LaserView ShipView

Figure 15 - The Clock Architecture for Space Fighter Game

On each timer update the component moves the enemies and lasers along the screen. This can only
happen when the game is not paused or over. Once the lasers and ships have been moved, we calculate
any overlaps, deleting any enemies and lasers that overlap, and ending the game if the ship overlaps
with an enemy.
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timer = save (collide (map (moveObj Right) lasers,
map (moveObj Left) enemies,
ship))

When it receives move updates, it moves the ship in the required direction. It then calculates if the ship
overlaps any of the enemies and ends the game if it does.

move direction = save (collideShip (moveObj direction ship))

It also accepts a restart update, which sets the game state back to that of an initial game, and a quit
update which sets the GameOver Boolean value to True.

quit = save (lasers,enemies, ship, score, True)
restart = save initgame

We are able to decouple move updates, from time based changes here, something that is impossible in
Haggis.

3.12.2.2. The Screen Component

The Screen component creates the whole screen appearance. It is significant here that though the
GameState RH is more closely associated with the Screen component it must reside in the root of tree.
This occurs because components can only request values from parents in the tree. It is therefore a
feature of Clock that RHs may appear at initially confusing positions in the tree hierarchy.

The Screen component accepts keypress inputs and tick updates. The former moves the shape in a given
direction; the latter sends a timer update. These only happen when the game is not halted.

gamehalted = paused || gameover
keypress k = if gamehalted then
noUpdate
else if k == ‘g’ then
move Left
else

tick = if gamehalted then noUpdate else timer

For its view it uses an instance of the ShipView subview, and one EnemyView and LaserView for each
currently active object. Dynamic creation of objects is therefore done implicitly, by defining a mapping
of the current view.

view = if gameover then Views [largeText "GameOver",bgame]
else game

game = Views (shipView "ship":
(map enemyView enemies ++ map laserView lasers))

3.12.2.3. Discussion

The Clock approach allows for a fairly declarative implementation. Components each have views and
these can be easily composed, using a set of declarative combinators.

Clock lacks any explicit temporal operators except for the simple timer update. Within any one
component, as each event is evaluated, all values in the tree are constant. Sequencing occurs, to some
extent, by passing updates up the tree, firing constraints back down the tree. It is significant that the
pause behavior had to be programmed directly into the shape component. This means that the
architecture is not entirely modifiable. Support for a disable operator, to disable a subtree would have
been useful here.
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3.12.3. QOC Editor and file manager

The third Clock example is the QOC editor. The Clock architecture for this example is shown in Figure
16. Again the architecture structure is based on the visual appearance of the system. Each user has an
editor view (Editor) which consists of the workspace and the tool bar (which has the save, create and
view buttons.) The workspace consists of QOC windows. These each consists of a set of nodes
(Questions, Options and Criteria) along with connecting edges and possibly a rubber band line (if two
nodes are being connected.) A node has a label, a local editor (4dnnotations) for the user and a view of
the shared log for that object (SavedAnnotation). An edge will also have a log, a view and possibly a
label. The system is built from a set of relations. Some data is local to individual users, some is global
to all users. For instance, at the root level are RHs that hold information about all the nodes, edges,
positions and the shared log. The list of visible QOCs can be filtered. At the QOC window level the list
of nodes will be filtered, to consist of those that are visible because of the current view.

We partition the state into RHs. All information about the current QOC set is held in the QOCData RH.
This has operations to add and delete QOCs, and to add and delete nodes and edges from a given QOC.
This single RH is very monolithic. Unfortunately, we cannot define RHs that contain other RHs. If we
could we might prefer to consider the QOCData RH to consist of a lists of QOCInfo RHs, that
maintained the state of each individual QOC.

The list of visible QOCs and nodes and edges will be filtered. As an example, we show how to display
the list of visible QOC windows.

110t
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Figure 16 - The Clock Architecture for the QOC Editor

We define an RH to contain the list of invisible window names. This has updates to add and delete a
QOC name. It also provides a request that defines whether a given QOC is visible. We then define the
workspace view as follows.

view = Views (map windowView (filter isVisible allgocs)
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The use of constraints here is very powerful. The dynamic creation and deletion of objects is handled
automatically based on the current state of the underlying application.

When a QOC is deleted by a user, we can remove it from the invisible list. However, if it were to be
deleted by another user there would be no mechanism to remove it from this list. Fortunately this does
not make the program incorrect, as subviews and therefore QOCs must have persistent unique String
names. Unfortunately, it does make the visible list redundantly long which makes it less efficient. This
problems results from the fact that we cannot receive events from higher in the tree, nor can we make a
RH’s data dependent on that of another RH.

We can define the behavior of a moveable component as follows. It receives mouse-button and motion
input. It can be moved and when moving is highlighted.

mousebutton Down = startmoving myid
mousebutton Up = stopmoving myid
motion (x,y) = setposition myid (x,y)

view = if ismoving myid then
draw highlight icon
else
draw unhighlighted icon

The ability to use constraints here to describe the view is powerful. It makes it easy to see the
relationship between the state and view.

3.12.4. Discussion

The ability to use constraints to define an interface view is a very powerful feature of Clock. It also
provides good support for application, interface separation.

Clock does however have some problems. The first set of these, result simply from its implementation
as a research prototype.

1. The graphics that can be produced by Clock are fairly limited.

There is no way to access code written in other languages from Clock. All application code must
therefore be developed in Clock. This severely limits its applicability to other systems.

3. The underlying functional language does not include type checking, and is in general fairly poor.
This means that defining application objects can be cumbersome and may be slow. The
optimisation work has instead gone into the network support and interactive graphical support.

4. Clock has no module structure, making it difficult to define modular code that can be reused in
different request and event handlers.

The design of Clock also has some more fundamental problems.

1. Clock does not support behavioural values that change as functions of time, except through the tick
update mechanism. This reduces the expressiveness of the language. We are also unable to define
mutually recursive behaviors. This makes it difficult to define a mutually recursive behavior
modelling the trajectory of a moving object, where the speed, location and acceleration might be
mutually dependent.

2. Clock relies on constraints and updates to implement all necessary temporal operators. This may
make it difficult to understand complex temporal relationships. This makes it more difficult to
define real-time functions. For instance, in our Air Traffic Control case study (introduced in
Chapter 2), we need to be able-to define time out predicates that result when a message has not
been received by an aircraft

3. The inability to define composite Request Handlers, which consist of other Request Handlers,
makes structuring complex application behavior difficult. In particular, where there is a complex
application that is used by all components, we end up with one very large, monolithic request
handler.

4. The use of untargeted updates and requests, can be useful. However, sometimes this can also be
very cumbersome. For instance, it makes it impossible to have two instances of a request handler in
scope at the same time.
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5. The use of unique String names to distinguish instances of components is fairly clumsy, and makes
mistakes more probable. It also makes it difficult to finally garbage collect a component, as there is
no clear way to tell if its name (and it) will ever be used again. This makes the implementation
inefficient.

6. A Request Handler can neither hear update events from higher in a Clock tree, nor can it depend on
a Request Handler defined higher in a tree. This makes the definition of components, such as the
view filter component, quite awkward.

7. 1In general, the Clock tree structure, though useful can be overly cumbersome. In particular, it
would make it impossible to define a recursive, fractal view, where a component class could
contain instances, of its own class. For instance, we might want windows that could contain
windows. This would require a more general graph structure rather than a simple tree structure.

8. All events in Clock travel up the tree. It is therefore impossible for parent components to filter
input, or disable children. For instance, to produce a window that disabled all its child components
on the press of a button would require the redesign of all child components to include a disable
operator. The possibility of instead taking a snapshot of the child’s view and using this until the
window were re-enabled might solve this problem.

3.13. Functional Reactive Programming

Fran (Functional Reactive Animation) [44] is a language for constructing interactive animations. It uses
a high-level modelling approach that allows programmers to describe what an animation should look
like, not how it should be implemented. Fran introduced the Functional Reactive Programming (FRP)
approach. The key notions that FRP introduces are behaviors and events. Behaviors are time-varying,
reactive values, while events are streams of values that occur over time. The FRP approach has also
been applied to a number of other application areas including robotics programming [155]. Courtney
has begun to apply the FRP approach to Java, to simplify the creation of Java Beans based interactive
systems [33]. His intention is to provide a tool to visually connect behaviors and events and link them
to interactive components. This work, though very interesting, is still in its infancy. The range of
combinators is very limited and is restricted to systems with static numbers of components.

3.13.1. Fran benefits
There are five key aspects that makes it a good candidate for forming the basis of a User Interface
development language.

1. Behavioral Modelling. Fran uses first-class behavior values to model changing values in an
animation. A behavior value is a value that changes over time. It can be thought of as

type Behavior a = Time -> a

As an example we can make a circle that follows the wave path shown in Figure 17. Its position is a
function of time; it moves along the screen as time passes, and up and down as the sin of time.

moveXY time (sin time) circle
moveXY :: Behavior Double
-> Behavior Double

-> ImageB -> ImageB

time :: Behavior Double

Figure 17 - A Ball Following a Wave Motion

2. Event Modelling. Events, like behaviors, are first-class values. An event is a stream of values that
occurs at discrete points in time. It can be thought of as

type Event a = [(Time,a)]
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We can use events to model happening in the real world, such as button presses; and predicates
based on behavior values, such as collisions between objects. For instance, a left button press is
simply 1bp u, where u is a User argument. An event that occurs once, when the time is greater
than 5, is onceE (predicate (time >* 5) u). They can be combined as 1bp u .|.
onceE (predicate (time >* 5) u). The type signatures for the functions we have used
are shown below.

lbp ::User -> Event ()

predicate :: Behavior Bool -> User -> Event ()

onceE :: Event a -> Event a

(.].) :: Event a -> Event a -> Event a

(>*) :: Ord a => Behavior a -> Behavior a -> Behavior Bool

3. Declarative Reactivity. Much of the power of Fran comes from the interaction of behaviors and
events. We can define “reactive behaviors”, that change as events occur. We can therefore give a
declarative rather than an imperative semantics to state. For instance, we can describe a colour-
valued behavior that starts out white, and then changes to red when the left button is pressed, and
changes to green when the right button is pressed.

white ‘stepper' (lbp u -=> red .|. rbp u -=> green)

stepper :: a -> Event a -> Behavior a

4. Declarative Composition. Animations can be constructed compositionally. We can create two
balls following wave motions, one that moves as the sin and one as the cos of time.

moveXY time (sin time) circle
‘over'
moveXY time (cos time) circle

Note that these two animations evolve concurrently, and yet are described in a simple, deterministic
manner.

5. Models and Views. We can define a behavior to represent the state of an animation and then
define a function that transforms this state into an image. For instance, we can describe a moving
object abstractly in terms of a data type with behaviors®. It has a colour and a location.

data Object = Object (Behavior Point2) (Behavior Color)
We can then define a function that turns this colour and location into an image.
view (Object pos col) = move pos (withColor col circle)

move :: Behavior Point2 -> ImageB -> ImageB
withColor :: Behavior Color -> ImageB -> ImageB

The features discussed above provide a powerful approach to building interactive systems. We could
describe the state of an interactive system as a behavior, reacting to user input events. These
components could be easily composed in a declarative manner. We could also support a Model-View
style of programming where the state of the application is described abstractly and the appearance
described as a function of that state.

3.13.2. A Case study with Fran

Fran is an animation environment, rather than a more general user interface toolkit. This makes it
difficult to define the QOC editor in Fran. We can, however, implement the space fighter game in Fran.
I will now discuss the most important aspects of this implementation.

* In Haskell new algebraic data types are defined using the keyword data. A datatype has a name and
one or more constructors. Each constructor may have one or more values associated with it. For
instance, the definition data Alt = AltA String | AltB Int, defines a data type named
Alt, with two possible constructors A1tA and A1tB, each with a single value associated with them.
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We define the Game data type to represent the state of the game. This consists of a ship, an event
generating new lasers, an event generating new sets of enemies and an event generating an occurrence
when the game ends.

data Game = Game Ship (Event Laser) (Event [Enemy]) (Event ())
We can therefore have one simple abstract model of the state of the application.

We use the Renderable class to define how the Game state is displayed. We display the ship, above the
lasers, above the enemies. This display continues until the game ends, after which we show the text
"Game over".

instance Renderable Game where

render (Game s ls es end) =
render s ‘over' render es ‘over' render ls
‘untilB' end -=>
(stretch 5 $ withColor white $ showIm "Game Over")

Note that when applied to an Event, render applies the render function to every new occurrence of an
object and overlays it above all the previous instances. We therefore have one set of functions that
define the view in terms of the application.

We define the game itself as follows. It takes the user input, an event generating move occurrences, and
an event generating fire occurrences. We create a ship. The game ends when the ship crashes. When a
fire event occurs, we snapshot the ship location and current time, and generate a new laser. Every
enemyTime seconds, we generate a new set of enemies. Lasers and the ships die when they collide
with enemies; enemies die when they collide with ships. We handle this by generating an abstract
collision set, or ColliderB.

game :: User -> Event (S.Point2 -> S.Point2) -> Event () -> Game
game u moveE fireE = Game shipD mkLaser mkEnemy (crashE shipD)
where
shipD :: Ship
shipD = ship u moveE hitEnemies

mkLaser :: Event Laser
mkLaser = afterE (withTimeE_ fireE ‘snapshot' (loc shipD))} u
==> \((t,p),u) -> laser u t hitEnemies p

mkEnemy :: Event [Enemy]
mkEnemy = afterE (withTimeE_ (alarmE u (startTime u) enemyTime)) u
==> \(t,u) -> map (enemy u t hitLasers ) enemyBatch

hitEnemies :: ColliderB
hitEnemies = eventCB (mkEnemy ==> mergeCBs . map hitObj)

hitLasers :: ColliderB
hitLasers = eventCB (mkLaser ==> hitObj)

The ability to generate events that go off at a particular time interval, and the ability to make objects
depend on time is important. It allows us to specify the behavior of the game at a very high level of
abstraction. The ability to define a collision behavior as an abstract value with a simple set of
combinators is also useful. It makes the collision definition more compositional than would be possible
with an imperative definition.

We define lasers, enemies and the ship in terms of a more general Object type. These have a location,
bounding box, a Boolean behavior defining whether they are dead, and an event that generates an
occurrence when they crash. Again we therefore have a simple abstract model of an object.

data Object = Object {locO :: Point2B,bbox0O :: RectB,
deadO :: BoolB,crashOE :: Event ()}
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We create an object as follows. It has a bounding box, based on the current location and size. It is dead
once a crash event has occurred. It crashes when its bounding box collides with the relevant collision
set. Again this gives us a very simple definition of the behavior of an object within the system.

mkObject :: User -> Point2B -> SizeB -> ColliderB -> BoolB -> Object
mkObject u loc size collide die = Object loc bbox dead crashE
where

bbox = rect2B loc size
dead = falseB ‘untilB' crashE -=> trueB
crash = (testCB collide $* bbox)

crashE = onceE (predicate u crash)

All objects are members of the Obj class. We can display any member of this Obj class in the same
way. We display its image, at its current location, until it crashes, after which we display an empty
image.

instance Obj a => Renderable a where
render a = moveTo (loc a) (image a) ‘untilB' crashE a -=> emptyImage

This implementation is declarative and very modular, consisting as it does of a collection of dynamic
components. It also has separation between the application Game state, and the view, which is defined,
using render, as a function of this state.

3.13.3. Fran problems

Fran as it exists in its basic form has two serious conceptual restrictions that must be overcome to
extend it to interactive systems design.

1. Hierarchical input. The most significant problem with Fran is that it does not provide any support
for constructing hierarchical interactive displays. All user input is accessed through the User
argument passed to the animation. This represents input at the level of the entire graphics window.
There is no way to access interaction from only a single component, such as an individual button
on the screen. The only conceivable mechanism would be to use global mouse coordinates and
calculate whether they were within the bounding box of a given object. This approach does not
lend itself at all to building hierarchical collections of components, each with their own coordinate
systems. This is not usually a major problem in animations, however, the notion of individual
interaction objects is critical to the development of standard user interfaces.

2. Dynamic collections. Fran provides Behaviors, that is values that change over time. We could
therefore imagine having behavior collections of objects. For instance, we could display a dynamic
list of objects. However if we were to render such a behavior collection, each time an element were
to be added the entire collection would have to be redrawn.. This would be prohibitively expensive
if we needed to continually recreate complex compound collections. In our space fighter game, we
defined the lasers and enemies as Events rather than Behaviors, to make them useably efficient.
This prevents us from being able to snapshot the current state of the lasers or enemies. Fran
requires some notion of an incremental behavioral collection that could be both viewed as a
behavior and efficiently and incrementally rendered.

3.14. Pidgets

Pidgets [178] is a system that has been designed along similar lines to FRAN. It uses an approach called
a “monad of imperative streams” to provide a temporal language. It supports the creation of a group of
dynamically evolving, concurrent objects. The basic concept in Pidgets is a Stream. A Stream produces
values, like a Fran event, and has a current value, like a Fran behavior. The current value of a stream is
the last one it produced. Unlike Fran behaviors, a stream will therefore not have a current value, until it
has produced its first value. Streams may also perform IO actions, and so carry out some imperative
command. A program is evaluated at a series of steps, in a synchronous manner. At each step a stream
may produce a value, an stream therefore produces a list of values over time. Components do not
compete for users events. Instead each event is passed to every object. For instance, every time the
mouse position changes, each object is informed of its new position.
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We can implement the colour valued behaviour, from the Fran example (Section 3.13.1), as follows:

colourStep :: St Colour
colourStep = until (next mouseButton)
red
(until (next mouseButton)
green
colourStep)

A value of type St a, is a program that creates a Stream, that produces values of type a. The until
operator is similar to Fran’s. The next function guarantees that we must wait for the next step when the
mouseButton is pressed. We can also have Boolean valued predicates, for instance, we could restrict
colourStep to only produce values until 10 seconds had passed:

restrictedColour :: St Colour
restrictedColour = until (1liftl (> 10) time) colourStep nil

Here we say that until the current time is greater than 10 seconds, produce values from
colourStep. After that we produce nil, an empty stream.

A stream can be considered in terms of its status, that is its current value. Alternatively, a stream can be
considered in terms of events: we can also check to see when an object produces a new value. For
instance, we could write a function that writes to a file every time the colour (from
restrictedColour) changed.

fileWriter :: String -> St ()
fileWriter file = do
¢ <- restrictedColour
writeFileIO file (show c)

In this case, the syntax ¢ <- colourStep means for every value produced by
restrictedColour perform the following action. When restrictedColour produces the
valuenil, fileWriter will cease.

Imagine that we wished to define instead a stream that on every keypress, sampled and displayed the
value of colourStep. We might try to define this as follows.

keyColour :: St Colour
keyColour = do
k <- keyboard
current colourStep

current :: St a -> St a

Every time a key is pressed, we sample the colourStep stream using current. Unfortunately,
every time a key is pressed, the colourStep stream is restarted, so keyColour will only ever
produce the value red. To correct this we must use start.

keyColour :: St Colour
keyColour = do

¢ <- start colourStep
k <- keyboard

current c¢

start :: St a -> St (St a)

It decouples the steps in which a stream is started and accessed. It spawns a substream running
concurrently, and returns a program that may be used to create sink streams for the started stream.
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Pidgets includes a Widget library. We can define our example “Counter” as follows.

counter :: St ()
counter = do
w <- newvar
runWidget "counter" $
let 1lbl = textSt (liftl show (var v))
btnl = pushButton (updNext v increment) (text "inc")
btn2 = pushButton (updNext v decrement) (text "dec")
in above (1lbl (beside btnl btn2))

We create a stream variable that stores the state of the counter. This has an action to update it, and a
function, var, that accesses its values. Instead of accessing its single value, we access a stream of
values, representing its state for all time.

newVar :: St (Var a)
updNext :: Var a -> (a -> a) -> St ()
var :: Var a -> St a

We define our interface in terms of the Widget type. We run a Widget in a window, with a given title,
using runWidget. We create a text label using textSt and text. We create a button using
pushButton. This takes an action to perform on every click and an appearance widget, and produces
a button widget. By passing in the input action, we are able to define a generic Widget value, and so
easily compose them. As with Gadgets, this allows for good separation between “semantic wiring” and
geometric composition.

runWidget :: String -> Widget -> St ()
pushButton :: St () -> Widget -> Widget
textSt :: St String -> Widget

text :: String -> Widget

above,beside :: Widget -> Widget -> Widget

The Pidgets approach therefore has a number of positive features. It provides many of the same
advantages as FRAN support for: constraints, powerful temporal operators, composition of dynamically
evolving images, and status and event considerations. The Widget library provides some useful
concepts, such as a generic untyped Widget value.

However, it has a number of significant problems. Pidgets unifies three very separate concepts,
producing a value, having a value, and performing an action. This makes the type signatures appear
initially very confusing on many of the above functions. We cannot tell from the type signature whether
a value of type St () is a single action, or whether it produces a stream of () values. We cannot use
the type system to check that we are treating these different concepts correctly. There is also no
difference in type between an unstarted and a running stream. The start and next functions can be
conceptually very confusing. In particular, when a stream also performs an IO action, we must be
careful with any use of start. By combining these concepts the choice of operator name can be
confusing. If we're treating a stream as having a value, then the name current, makes good sense. It
returns the current value of the stream. However, if we're treating a stream as producing values, then we
use current to get only the first produced value from a stream. This separation is also obviously
altered depending on whether the stream has been started earlier. If the stream has been started earlier it
will almost certainly have already produced a value, and current will return that value. If it is instead
started at the point of use, then it may not produce a value for several steps. In this case current, will not
return a value immediately.

Pidgets also provides no support for dynamic displays with changing numbers of components. The
Widget library only really provides support for creating new windows, by performing successive
runWidget actions. This seriously restricts its potential.
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3.15. Requirements for Declarative GUI Languages

Based on my analyses, presented in previous sections, there are a number of important requirements for
user interface programming languages. These do not represent a completely comprehensive set of
requirements and in particular do not concentrate on high level notions about the usability of the
language. Instead they represent a set of design goals derived from carrying out numerous small
examples and the large case studies with Haggis, Clock and Fran.

3.15.1. High level and Declarative

In order to implement high level specifications, and allow designers to perform high level prototyping,
languages must themselves be very high level. High level functional concepts should be supported such
as higher order functions, and polymorphism. Languages should also support the concept of
behavioural values that may change over time, with predicates on these values. This enables both status
and event phenomena to be dealt with. Finally, languages should support the dynamic creation and
deletion of objects in a safe, referentially transparent way. In particular, throughout the language the
programmer should be able to use a declarative style, specifying what an interactive system should be
like not how this should be achieved.

3.15.2. Declarative Concurrency

Languages need to support concurrency, but at a high level of abstraction. Approaches where
programmers must explicitly perform message passing between components, and handle the intricacies
of concurrent programming have problems. Instead, languages should support dynamically evolving
objects, where communication can happen via constraints. Concurrent support for multi-user systems is
necessary. However, there should be as little reliance on explicit concurrency as possible. This should
allow errors to be visible at compile time.

3.15.3. Compositional

Systems should support a compositional style of programming. In particular, it should be possible to
form complex interactive components out of primitive ones and use them in an equivalent way. To aid
this, languages should support easy composition of objects, each with local state.

Graphics need to be specified in a declarative way. There should be support for a wide variety of
possible appearances. Composition of dynamically evolving pictures should be possible, as is permitted
by Pidgets, Fran and Clock.

3.15.4. Component based application/interface separation

Languages should support the structuring of a system into components. If a conceptual architecture is
used as the basis then we can guarantee application/interface separation. This sort of support is
provided by Clock, with its basis in the MVC model. To allow this there should be good support for
separation between “semantic wiring” and geometric composition.

3.15.5. Visual Languages & Tool support

Where helpful, languages should aid development, in a visual way. Designers should be able to
consider architectures graphically. This should be possible through direct manipulation. They should
also, if possible, be able to design interfaces visually. This allows designers to easily design attractive
interfaces.

3.15.6. Scalability

The language should scale to easily handle large examples. UI languages often appear very
compositional, until they are used to structure very significant systems. In particular, it should not be
necessary to radically abandon the general programming paradigm, to handle big examples.

3.15.7. Efficiency

While languages should be easy to use, they also have to produce efficient systems. Otherwise, while
systems may be easy to develop, they will be of little use. This relates to the scalability issue. It should
be possible to run large programs without waiting noticeable periods of time for screen updates to
occur.
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3.15.8. Platform Independence

A prototyping language should support the development of platform independent implementations. This
can be aided by building on a platform independent underlying toolkit, such as Tcl-Tk instead of
building from the ground up as has been done with most previous functional GUI systems.
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Chapter 4 - FranTk: A New Approach

4.1. Introduction

The programming language, FranTk, presented here represents a new approach to User Interface
programming. The core FranTk library is the most important element of the prototyping environment
discussed in this thesis. There are two additional elements that make up the approach shown in Figure
18.

System Architecture
(built with visual tool)

O

Constraint based Interaction Objects
Component Definitions (derived from Visual
(described textually) Interface Builder)

Figure 18 - Elements of the Thesis Prototyping System

The prototyping environment supports a visual interface builder, and system architecture manager. The
static components of an interface can be constructed visually with an interface construction tool. A
structured architecture may also be developed. This architecture can be built visually. This supports the
designer’s understanding of the system structure. This architecture breaks the application down into a
tree of interaction components, and is based on that used in Clock. Components are described textually
in terms of FranTk combinators. Code can be automatically generated for each static widget that has
been built with the visuval interface builder, to allow the widgets to be linked in with FranTk code.

FranTk makes use of a binding to the popular Tcl-Tk language [147], to provide a widget library. Tcl-
Tk provides a powerful set of platform independent widgets. Prototypes can therefore run on UNIX or
the Windows family (95/98/NT/2000). To enable multi-user interaction, it makes use of (and needs) the
X Windows client-server architecture to allow several client interfaces to be run on different machines
from one UNIX server.

The core FranTk language has been released as a publicly available software library. It is therefore
intended for use by other people. However, the visual tools were only developed as proof-of-concept
prototypes and are not in a state to be used by others.

The remainder of this Chapter introduces the core FranTk language. This chapter uses a number of
small examples®. These examples serve a different purpose from the larger case studies discussed in
Chapter 2. They introduce important features of FranTk. Chapter 6 will discuss how FranTk handled
the Thesis case studies themselves.

4.2. FranTk contributions
The major new contributions in FranTk are as follows:
e FranTk lifts Fran’s behaviors and events to widgets. This is the key to the declarative style of

programming. The appearance of a dynamic widget can be defined once “for all time” in terms of
FranTk combinators.

* This chapter assumes some familiarity with Haskell. Some elements of the basic syntax were
introduced in Section 3.7. Some attempt has also been made to introduce further syntax used in this
Chapter. Readers requiring further assistance are again directed to [199] or [94].

This chapter also makes use of a number of standard Functional Reactive Programming combinators. A
full summary of these combinators is given in Appedix A.
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*  FranTk extends Fran with support for hierarchical interactive displays, allowing access to input
from individual components rather from one monolithic window.

. FranTk separates visual composition from “semantic wiring”. These two concepts are fundamental
to GUI programming. The first involves geometric composition. For instance, placing one widget
above another. The second involves connecting user input from a widget to the application code.
This separation is made possible by the introduction of /listeners, consumers that respond to user
input. FranTk provides an algebra to compose these listeners in a functional style.

*  FranTk provides good support for dynamic and static interfaces. This contrasts with many of the
systems discussed in the previous Chapter where it can be difficult to construct systems with a
dynamically changing number of components as they frequently require a very imperative and

sometimes cumbersome style of programming.

4.3. The Basic Concepts

We begin with a simple example to introduce some basic concepts. Figure 19 shows two labels,
composed above each other. The top label shows the text “Hello World”, the bottom label shows the
time in seconds since the program was started. The concepts necessary to produce this interface will be
presented in this section.

mJI1ll.InlIx1
Hello World

1.00
Figure 19 - A Simple Example in FranTk

4.3.1. Introducing Components

The basic conceptual notion in FranTk for handling interaction objects is the Component. For instance,
in our example we have two label components displayed one above the other. They appear in a window
component.

A Component is an action thatproduces a WidgetB.

type Component = GUI WidgetB

This definition uses the GUI monad, which is an extension of the standard 10 monad. Values of type
GUI a represent actions that may have some side effect on the user interface, such as creating a label,
and return a value of type a.

A WidgetB is an abstract data type representing primitive Tel toolkit widgets. A WidgetB may in
fact be made up of several primitive tel widgets, and may be dynamic, changing its appearance over
time. A WidgetB is therefore conceptually a widget behavior. However, as with Fran’s ImageB type
(image behaviors), WidgetB is an abstract data type to allow an efficient implementation.

As well as basic Components such as labels and buttons, there are top-level window components that
contain basic components. We therefore have the concept of a WComponent; a Window component.

type WComponent = GUI WindowWidgetB

This is an action that produces a WindowWidgetB, which is an abstract representation of a window

behavior (that will contain widgets).
4.3.2. Configuring Components
In our example we have two labels with different appearances. One has a static appearance; one a

dynamic appearance. We create a label using the mkLabel function and configure it using the text
and textB functions.
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mkLabel :: [Conf Label] -> Component
text :: Has_text w => String -> Conf w

We use mkLabel to make a label. It takes a list of configuration information, in this case, some text to
display. As with TkGofer (Section 3.8.1) we use type classes to guarantee that only the correct
configuration information can be applied to any widget. The text function takes a String and returns
a configuration option that can be applied to any object that is a member of the Has_text class. This
class includes labels, as they are capable of displaying text.

We therefore define the static “Hello World” label as follows.

labell :: Component
labell = mkLabel [text “Hello World”]

In FranTk, we extend basic configuration with dynamic configuration options. Instead of taking a static
value, a widget can be given a dynamic behavior value. This approach is the key to the declarative
nature of FranTk. Rather than having to carry out imperative updates to change a component’s
appearance, we can define, using a behavior, what it will look like for all time.

We can therefore define the timer label as follows.

label2 :: Component

label2 = do

time <- timeTick 1

mkLabel [textB (liftl show time)]

textB :: Has_text w => Behavior String -> Conf w
timeTick :: Time -> GUI (Behavior Time)
liftl :: (a -> b) -> Behavior a -> Behavior b

The function timeTick creates a behavior that represents the time, and changes at a given frequency.
In our example, the time value changes every second. The function 1ift1 maps a function over a
behavior, to yield a new behavior. This shows the benefit of the GUI representation of a Component.
We can create some local state for a component while still thinking of it as a value.

4.3.3. Composing Components

We now have the definition of the two labels. We can compose them together to generate a new
component using above.

newlabel :: Component
newlabel = labell ‘above‘' label2

class Packable w where
above 11 w -> w -> w

instance Packable Component

Though components represent imperative actions that will each produce a widget, we can treat them as
an abstract value and so compose them declaratively. This satisfies our aim of supporting a
compositional style of programming in FranTk.

As with Pidgets (Section 3.14) and Gadgets (Section 3.9.2), the representation of widgets as untyped
components makes them easy to compose. In contrast, systems which use typed widgets are less easily
composable. For instance, in Haggis or TkGofer a button and label are of different types. This typing
was required to allow access to user input from the component, and to apply changes to the component,
such as resetting the label, later on. This approach makes it more difficult to geometrically compose a
list of widgets as they must be transformed to an untyped display object first. In FranTk, all the
information necessary to define a component is passed in as a set of parameters so this sort of extra
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transformation can be avoided. This design choice is very significant and is discussed further in Section
4.15.

We can place a component in a window using the mkWindow function.

win :: WComponent
win = mkWindow [title “Ex1“] newlabel

mkWindow :: [Conf Window] -> Component -> WComponent
title :: String -> Conf Window

Again this takes a list of configuration information and the component to display, and produces a
window for that component.

4.3.4. Configuring composite components

As well as applying configuration options to individual objects, we can apply them to composite
widgets. For instance, we might wish to make the background colour of our whole window blue. It
would clearly be unfortunate if we needed to set each individual object’s background colour, as this
would make our programming style significantly less compositional. We can change the background
colour of our example to blue as shown below.

win2 :: WComponent
win2 = withStyle [background blue] win

class HasStyle w where
withStyle :: [Conf Style] -> w -> w

This uses the withStyle function, which is a member of the HasStyle class. All FranTk
component types, including Component and WComponent, are members of this class. The
withStyle function takes a list of Style configuration options. These consist of all options that it
makes sense to apply to a composite widget, such as formatting options; but not individual options such
as the text configuration option. These style options include a disable option, which disables the entire
composite widget. They are applied to every widget in the composite component, which can handle that
sort of configuration option. For instance, we can set the font size for a composite widget. Clearly only
those objects that can display text will need to have this option applied to them. If options are defined at
several levels, then the one at the lowest level in the tree will be applied.

4.3.5. Rendering Components
Now we need to render this window component onto the screen. We do this using render.
render :: WComponent -> GUI ()

Finally, to run the GUI actions that we have produced we use start. This runs the action and then starts
up the Tcl-Tk event loop. This event loop will run until the graphical user interface quits, at which
point it will return.

start :: GUI () -> IO ()

As start and render are often used together there is a composite function display.

display :: WComponent -> IO ()
display = start . render

We can therefore define main as follows.

main :: IO ()
main = display win
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4.4. Interactive Components - Representing State

So far we’ve dealt with an interface with a changing appearance but with no interaction. This section

demonstrates how interaction is handled in FranTk.

Consider the interface shown in Figure 20. It shows the simple “Counter” with a label, an increment and
decrement button, and a slider (known as a scale widget). This widget has a current value shown by the
slider and the label. Pressing the increment or decrement button, or moving the slider will change this
value. We therefore have multiple views of the same data.

tk H@E3
27
inc 1 dec
27
inr
Figure 20 - An Interactive Example in FranTk

4.4.1. Representing State with BVars

To represent the state in the example we use a BVar. A value of type BVar a represents some abstract
mutable state of type a. It can be thought of as a Behavior Variable: that is a variable that contains a

behavior.

data BVar a

We can create a new BVar within the GUI or the 10 monad. Most commonly we usethem within the
GUI monad.

newBVar :: a -> 10 (BVar a)
mkBVar :: a -> GUI (BVar a)

It is possible to get a behavior from a BVar.

bvarBehavior :: BVar a -> Behavior a

The behavior therefore represents the value of the counter at any give point in time. It is possible to get
an event from a BVar

bvarEvent :: BVar a -> Event a

The event from a BVar generates an occurrence every time the value of the BVar is updated. In our
example we would therefore represent the state of the counter as a value of type BVar Int.

The use of BVars here is similar to the use of stream variables in Pidgets (Section 3.14). They are a
fundamental and important feature of FranTk. They provide us with a mechanism to represent state, but
to use it in a functional style.

4.4.2. Using State - With Behaviors

What can we do with a behavior? We can tell the label and slider to display the behavior values that we
get from the BVar.

1bl :: BVar Int -> Component
1bl m = mkLabel [textB (liftl show (bvarBehavior m) )]

As shown in section 4.3.2 we can tell a label to show a string behavior using textB, and we transform

the integer behavior into a string behavior using 1iftl.
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We can tell the slider to use the value of the BVar with scaleValB. This sets the value of the slider
to that of an integer behavior. (We will fill in the rest of the definition later.)

scale :: BVar Int -> Component
scale m = mkHScale [scaleValB (bvarBehavior m)] (..)

scalevalB :: Behavior Int -> Conf w
We can therefore easily provide multiple views of the state of an application.

4.4.3. Updating State- With Listeners

We can set the value of a BVar using its Listener.

bvarInput :: BVar a -> Listener a
bvarUpdInput :: BVar a -> Listener (a -> a)

A listener is an abstract type but it can be thought of as Listener a = a -> GUI (). A value
of type Listener a, is a function, that given a value of type a, performs a side-effecting GUI action
with it. Listeners are therefore consumers of values.

The listener accessed by bvarInput updates the Bvar with its given value. This will alter the value
of the BVar’ s behavior and generate an event occurrence. The listener accessed by bvarUpdInput
updates the BVar by applying the given function to its current value.

We can therefore complete the definition of the slider as follows.

scale m = mkHScale [..] (bvarInput m)

mkHScale :: [Conf Scale] -> Listener Int -> Component

The function mkHScale takes a listener argument, which is passed the current value every time the
slider updates the Bvar with its changed value. The slider simply updates the value of the BVar with
its changed value.

The introduction of listeners is a very important design choice. Initially this choice may seem strange.
The use of behaviors and events encourages a more functional style of programming. However, the use
of listeners introduces an imperative concept into this functional approach.

The introduction of listeners brings an important benefit. In a similar manner to Pidgets, we give
component-making functions a consumer (listener) argument which allows them just to yield their
visual aspect in the form of a Component. This approach makes geometric composition simpler. The
alternative would be to return a pair of visual and semantic handles, in the form of a Widget and an
Event providing access to all user input on that widget. This alternative makes component composition
more complex. To compose two components we would now require to compose their Widget and Event
parts. This style can become tiresome when composing complex collections of components, because
programmers are forced to continually compose and break down compound events. We will return to
this important design choice in Section 4.15.

At this point it is perhaps also useful to compare a FranTk BVar to a Java Beans Bound Property. A
Bound Property has a set method which updates its state; this role is fulfilled by the BVar’s Listener.
It is possible to get the value of a Bound Property; this is achieved through the BVar’s Behavior
which can be sampled at any given time. Finally, it is possible to add a
PropertyChangeListener to a Bound Property to hear about changes. This role is fulfilled by
the BVar’s Event. A FranTk Event is perhaps better understood as an Event Source. It is possible to add
Listeners to it to hear about changes. It is important to note that though BVars and JavaBean Bound
Properties have similarities, as we shall see, there is an algebra of combinators for Listeners, for
Behaviors and for Events which makes working with them much more succinct than with their Java
counterparts.



53

4.4.4. Composing Listeners

FranTk introduces combinators that allow listeners to be composed in a functional style. As an
example, consider the definition of the increment button in our example.

incb :: BVar Int -> Component
incb m = mkButton [text “inc”]
(telll inc (bvarUpdInput m))

inc :: Int -> Int
mkButton :: [Conf Button] -> Listener () -> Component

The function mkButton takes a list of configuration information for a button. This defines its
appearance. Note that Button is also an instance of the Has_text class and so takes a text
configuration option. It also takes a listener which is passed the void value ‘() * every time the button
is pressed.

We therefore need to make the button talk to the listener provided by the Bvar. We do this using
tellL.

telllL, :: a -> Listener a -> Listener b

Figure 21 shows how tellL works. It takes a listener expecting values of type a and a value of type a.
It produces a composite listener that, when it is fired, ignores its argument and always performs its
action with the given value.

Listener expects values

of type a
Value of |

tellL Listener type a Value of type b

Figure 21 - The tellL Listener

In the definition of incb we therefore produce a listener that ignores its argument and always updates
the BVar using the function inc.

4.4.5. The complete interface

We create the final interface in two more stages. Firstly, we create the composite component.

counterB :: BVar Int -> Component
counterB m = above (lbl m) (beside (incb m) (decb m))
composite :: BVar Int -> Component

composite m = above (counterB m) (scale m)

Finally, we create a BVar to represent the state, and then render the component in a window®.

main :: IO ()
main = display $ mkWindow [] compositeCounter

compositeCounter :: Component
compositeCounter = do {m <- mkBVar 0; composite m}

¢ The operator ‘$’ is a Haskell infix operator. It is defined as £ $ x = f x. In otherwords, it is
simply the “apply” operator. It is a way of avoiding parentheses. Without it the function above would
have to have been written as display (mkWindow [] compositeCounter).
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4.5. The Listener Algebra

FranTk provides an algebra of listener combinators. Though a listener is essentially an imperative
callback, this algebra allows us to treat and compose them in a declarative manner. This algebra is dual
to the event algebra provided in Fran. Each operation in the event algebra has a corresponding
operation in the listener algebra. The choice of operators is therefore based on the set that have proved
useful when handling events in FRP. We will first present the most significant operations in the listener
algebra, and then define formally how these relate to the event algebra.

4.5.1. The Listener Combinators

The null listener is neverL, which does nothing with any value it receives.

neverL :: Listener a

To merge two listeners we use mergeL. This makes a new listener which passes every value consumed
to its two argument listeners.

mergel :: Listener a -> Listener a -> Listener a
Listener 1
<«
Listener 2

Figure 22 - The mergeL Listener

We can therefore define, al1L, a combinator that merges a list of listeners.

alll, :: [Listener al] -> Listener a
allL xs = foldr mergeL neverL xs

There is a comap function on listeners. In contrast to the standard map function, this applies what

appears to be an inverse function to a listener. It produces a listener that consumes values, and applies
the given function to these values before passing them on to the given listener.

comapL :: (b -> a) -> Listener a -> Listener b
We can therefore trivially define tellL in terms of comapL.
telllLL a 1 = comapL (const a) 1

There is a filter function on listeners. This consumes values and passes them on to the given listener, if
they satisfy the given predicate.

filterL :: (a -> Bool) -> Listener a -> Listener a
We can create a one shot listener that consumes one value and then behaves as neverL using onceL.
onceL :: Listener a -> Listener a

For instance, we might require a button that could only ever be pressed once. We could define this
using oncelL.

mkOnceButton :: [ConfB Button] -> Listener a -> Component
mkOnceButton cs 1 = mkButton cs (oncel 1)

We can make a listener snapshot a behavior and consume its current value. For instance, we have
snapshotL.

snapshotL :: Behavior b -> Listener (a,b) -> Listener a
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As shown in Figure 23, every time the new listener consumes a value it samples the behavior and passes
the pair of values to its argument listener.

Listener |

snapshotL

Figure 23 - The snapshotL Listener

This is a very useful combinator. It is often necessary to sample the state of the application when some
user input occurs. For instance, we may need to check which mode the system is in to interpret the
input. As an example, consider a distance converter. It could be represented in terms of two states. The
current units and the distance value represented in some neutral, arbitrary units such as Miles. We
assume the existence of a function to convert a value and units pair into a distance in Miles.

type Units = BVar Unit
type Distance = BVar Double
convert :: (Double,Unit) -> Double

To update the distance we would therefore need a listener that sampled the current units and
transformed the given value into Miles.

inputDistance :: BVar Double -> BVar Unit
-> Listener Double
inputDistance distBV unitsBV =
snapshotl, (bvarBehavior unitsBV) $
comapL, convert $
bvarInput distBV

There is a listener equivalent of the scanl function.

scanlL :: (a -> b -> a) -> a -> Listener a -> Listener b
This works as shown in Figure 24. The listener’s current value starts with the initial value provided.
Every time the listener consumes a value b, it applies its update function f to its current value a and the

new value, b. It passes (£ a b) to the argument listener, and updates its current value as well. This
function is used in Section 4.10.2.

Listener expects
values of typea |fab

scanL Current
Listener \yalue (

Figure 24 — The scanlL Listener

We can define a “listener level switcher”. This creates a reactive listener that may itself change with
time.

switcherL :: Listener a -> Event (Listener a) -> Listener a

Consider the listener switcherL 1 e. When this composite listener consumes values, it starts by
passing them to the initial listener 1. Whenever the event e fires, it switches to a new listener and
passes all values consumed to it.

We can get access to the time that a listener consumes a value using withTimeL.
withTimeL. :: Listener (a,Time) -> Listener a

Here the type Time is a synonym for Double (semantically these time values must be non-negative),
and represents the number of seconds since the start of the program.
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We can make a listener that simply performs an IO action using mkL.

mkL :: (a -> IO ()) -> Listener a

We can also make a listener that performs a GUI action using mkGUIL.

mkGUIL :: (a -> GUI ()) -> Listener a

Composing listeners can be thought of as forming a pipeline through which data will pass. For instance,
consider comapL £ $ comapL g $ 1. Values consumed by this composite listener are first
processed by comapL f£; this generates a new value which is passed to comapL g; the final result is
then passed to 1.

Previous functional toolkits would require a programmer to write this sort of code in terms of an IO
action that sampled a mutable variable. With the listener algebra, programmers are able to manipulate
imperative actions and compose them in a declarative style.

4.5.2. Event-Listener Duality

The event and listener algebras in Fran are duals of each other’. We can therefore formally define a set
of relationships between them. The primitive combination operation for events and listeners is
addListener. This adds a listener to an event such that the listener is fired every time there is an
event occurrence. This function returns a remove action that can be called to unregister the listener’s
interest.

addListener :: Event a -> Listener a -> GUI (GUI ())

The relationship between events and listeners can be defined in terms of the addListener function.

Forany e :: Event a, 1 :: Listener a, b :: Behavior b, £ :: a -> b,
p :: a -> Bool, el :: Event b, n :: a, op :: a -> b -> a,
11 :: Listener b, 12 :: Listener (a,b)

addListener neverE 1 <==> addListener e neverL

neverE :: Event a
-- an event that never generates any occurrences

addListener (mapE f e) 11 <==> addListener e (comapL f 11)

mapE :: (a -> b) -> Event a -> Event b
-- map a function over each event occurrence

addListener (filterE p e) 1 <==> addListener e (filterL p 1)

filterE :: (a -> Bool) -> Event a -> Event a
-- filter out event occurrences that don’t match the predicate

addListener (onceE e) 1 <==> addListener e (oncelL 1)

onceE :: Event a -> Event a
-- yield an event with only one occurrence (the first produced)

addListener (snapshotE b e) 12 <==> addListener e (snapshotL b 12)

snapshotE :: Behavior a -> Event a -> Event (a,b)
-- snapshot a behavior on each event occurs

addListener (scanlE op n el) 1 <==> addListener el (scanlL op n 1)

scanlE :: (a -> b -> a) -> a -> Event b -> Event a
-- accumulate a value in a similar way to scanlL

7 The Event algebra operations are defined in Appendix A.



57

There are two combinators not included in the list above, mergeL and switcherL. These both have
duals in the event algebra.

(.].) , mergeE :: Event a -> Event a -> Event a
switcherE :: Event a -> Event (Event a) -> Event a

However, they cannot simply be defined in terms of each other because their types are too different.
The combinator mergeE takes two events rather than two listeners as arguments; the combinator
switcherkE, creates an event level switcher instead of an listener level switcher.

The event level switcher starts by generating occurrences from the first event. After every event-valued
occurrence, the switcher generates occurrences from the new event. Note that we can use the event-
level switcher to define a monadic instance for events. This begins by generating no occurrences (that is
it behaves like neverE) . After every occurrence of e, it applies £, to create a new event, and
generates occurrences from this new event®.

(>>) :: Event a -> (a -> Event b) -> Event b
e >>= f = neverE ‘switcherE: e ==> £

This allows us to define sequencing on events. For instance, the “onlyAfter” event below will only
generate occurrences from e2, after el has generated its first occurrence.

onlyAfter el e2 = onceE el >> e2

This definition is in fact very similar to the monad of imperative streams used in Pidgets (Section 3.14).
The expression (do {x <- el;f x}), means after every occurrence x, produced by el, generate
occurrences from the new event ‘£ x’. The major difference is that events do not support imperative
actions explicitly, we must instead add a listener to the new event to get such an effect.

If we imagine a wire connecting a listener to an event, the event and listener combinators can be
interpreted as mechanisms to transform user input code at either end of the wire (Figure 25).

Apply event
combinators

Apply
listener |
combinators !

Figure 25 - A FranTk Wire
4.6. Introducing Wires

The BVar is not a FranTk primitive. The communication primitive is, in fact, the wire shown in Figure
25. AWire is more limited than a BVar. In particular, it is stateless and has no behavior. It has only an
input listener and an event.

mkWire :: GUI (Wire a)

newWire :: IO (Wire a)

wireInput :: Wire a -> Listener a
wireEvent :: Wire a -> Event a

We can define a BVar in terms of a wire.

data BVar a = BVar {

bvarUpdInput :: Listener (a -> a),
bvarEvent :: Event a,

bvarBehavior :: Behavior a

}

® The use of quotation marks (eg “switcherE"') turns a standard Haskell function into an infix
function.
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newBVar :: a -> IO (BVar a)
newBVar a = do
(l,e) <- newWire
let e’ = a ‘accumE' e
let b = a ‘stepper' e’
return (BVar 1 e’ b)

The definition of a BVar relies on two Fran combinators. The BVar hears update function values on the
wire. These updates will modify its state.

It accumulates an event based value using accumE. This will therefore form an event that produces an
occurrence on every update, by applying the update function to the current BVar value’.

accumE :: a -> Event (a -> a) -> Event a

The function accumE is defined in terms of scanlE.

accumkE x0 change =
scanlE apply x0 change
where
apply :: a -> (a -> a) -> a
apply a £ = £ a

The BVar’s behavior is formed by stepping through, changing on every event occurrence.

stepper :: a -> Event a -> Behavior a

A stepper is in fact a version of a more general reactive behavior combinator, that switches between
behaviors on event occurrence.

switcherB :: Behavior a -> Event (Behavior a) -> Behavior a
stepper a e = 1ift0 a ‘switcher' (e ==> 1ift0)

We can use this approach to define other types of BVar, such as BVar collections discussed in Section
4.8.

It is sometimes also useful to be able to generate a BVar which listens to an input event as well its
actual listener. Again such a BVar can easily be defined. For instance, this function was useful in the
ATC case study, discussed in section 6.3.4

newBVarE :: a -> Event (a -> a) -> IO (BVar a)
newBVarE a inpE = do

(l,e) <- newWire

let e’ = a ‘accumE' (e .|. inpE)

let b = a ‘stepper® e’

return (BVar 1 e’ b)

4.7. Simple Dynamic Interfaces

The previous examples have shown how to implement simple interactive systems in FranTk. However,
they have involved only a static set of widgets on screen. That is, though the appearance of individual
labels has changed, the number of labels has not. The ability to handle dynamically changing
collections of components in FranTk is one of its major benefits.

There are two sorts of dynamic display we could have. The first is a simple conditional display. Here
we can display one of two components depending on some state. The second sort of dynamism is the
introduction of new components on to a screen. We will introduce a conditional display in this section,
and then a full dynamic display in Section 4.8.

® There are, in fact, some problems with the types of these functions (accumE, stepper) which will
be discussed in Section 7.2.5. This issue is also discussed in Appedix A.



59

tk  HESsIEI
P view
45
inc | dec
ltisi i 1 X 45
r view TEJ"

Figure 26 - A Conditional Display in FranTk

Consider the interface shown in Figure 26. It consists of two parts a checkbutton, and a composite
counter from Section 4.4. The checkbutton is used to control whether the counter component is visible
or not.

4.7.1. Defining a Checkbutton

We create a Boolean BVar that models the visibility of the counter component. The checkbutton then
talks to this BVar. We define this using mkCheckbutton.

vischeck :: BVar Bool -> Component

vischeck visBv =

mkCheckbutton [text "view", checkVal True] (bvarlnput visBv)

mkCheckbutton :: [Conf Checkbutton] -> Listener Bool -> Component
We set its initial state using checkVal.

checkVal :: Has checkVal w => Bool —-> Conf w

instance Has checkVal Checkbutton

4.7.2. Conditional displays

We can conditionally display a component using ifB .
condCounter :: Component
condCounter = do

visBv <- mkBVar True
above (vischeck visBv)
(ifB (bvarBehavior visBv) compositeCounter emptyComponent)

class GBehavior w where
ifB :: GBehavior w => Behavior Bool -> w -> w —-> w

instance GBehavior Component

When applied to components 1fB b wl w2 produces a component which behaves as wl when b is
True and w2 otherwise. (Other members of the GBehavior class include Behaviors and Events.)
In this example we display the compositeCounter when the BVar has the value True and an
empty component otherwise.

emptyComponent :: Component

This provides us with our first mechanism for dynamically altering the number of widgets on screen at

any given time.
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4.8. Displaying Dynamic Collections

In the previous section, we discussed interfaces with conditional displays. Now we will consider
interfaces with a truly variable number of widgets on screen at any given time. For instance, consider
the interface in Figure 27. It shows a collection of the conditional displays defined in Section 4.7. We
can add new components to the bottom of the window by pressing the Create button.

Create
r view
view

140

70

Figure 27 - A Dynamic Interface in FranTk

We need to define the collection of objects that are displayed on the screen. In most previous GUI
systems, we would do this by performing update actions that add and delete widgets from the screen. In
FranTk we define the appearance of an interface based on some state for all time. We therefore need to
be able to define the user’s view as a function of some abstract collection type. We do this using a
behavioral collection, in this case a list.

type ListB a
nabove :: ListB Component -> Component

In FranTk we represent a dynamic list of objects as a ListB. To geometrically compose dynamic
collections, we use combinators such as nabove, which places a dynamic collection of components
above each other. We can think of a ListB as a behavior list (Behavior [a]). However, when
rendered the ListB will incrementally update the screen only making necessary changes, rather than
redisplaying everything.

To make a list collection we use a special type of BVar, a ListB V ar. We give it an initial list of

values.

type ListBVar a
mkListBVar :: [a] -> cur (ListBVar a)
newListBVar :: [a] -> 10 (ListBVar a)

We extract the dynamic list from the variable using collection.
collection :: ListBVar a -> ListB a

We can append items toa ListBVar using appendListB.
appendListB :: ListBVar a -> Listener a

To implement our example, we would therefore have the following code.

dynamicExample :: Component
dynamicExample = do

lst <- mkListBVar []

let create = mkButton [text "Create"]

(telll, condCounter (appendListB 1))
above create (nabove (collection 1st))
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4.9. Dynamic Collections

As we saw in the previous section, behavioral collections allow us to model dynamic collections of
objects and treat them as behaviors. They can, however, also be incrementally rendered onto a display,
so that only changes to the collection are redrawn. Dynamic collections such as sets and lists are
defined in terms of a general behavioral collection type.

data CollB entry op c a

The type is parameterised over its collection type, c, element type, a, and update operations, op, and
internal structure, entry. It models a static collection of type ¢ a. It is altered by incremental updates
of type op a. It maintains internal data using the type entry a. For the purposes of this Chapter,
only the last two type parameters are important. The others will be explained when discussing the
implementation in Section 7.5.

4.9.1. List Collections

Using the generic CollB type, dynamic Lists are defined as shown below. They model a list of values,
and have a corresponding update and internal entry type.

type ListB a = CollB Entry ListUpd [] a

data Entry a
data ListUpd a

We can get a Behavior froma ListB.
listBehavior :: ListB a -> Behavior [a]

This allows us to treat ListB values as normal behaviors when convenient. For instance, we could lift
standard list functions and apply them to the list behavior, such as defining a lifted size function that
returns the length of the list for all time.

sizeB :: ListB a -> Behavior Int
sizeB 1 = 1liftl size (listBehavior 1)

We can therefore define lifted versions of all the standard list observer functions.

4.9.1.1. Creating list collections

We can create a ListB from an initial list and an update event. It begins by behaving as the initial list,
and then on every event occurrence, changes by applying the update function from the occurrence.

mkListB :: IList a -> Event (IList a -> IList a) -> ListB a
data IList a

This is therefore similar to the Fran behavior combinator, stepAccum, which creates a piecewise
constant behavior that is updated by event occurrences'®.

stepAccum :: a -> Event (a -> a) -> Event a

The IList type is a special incremental list type that maintains incremental updates. The Haskell
Edison library [145], defines a general interface for dealing with functional data structures such as
Sequences and Sets. The IList type implements the Sequence interface, allowing us to treat

19 The function stepAccum is based on stepper. There is therefore also a problem with the type of
this function (there is a similar problem with mkListB). See Section 7.2.5, Section 7.5.2 and
Appendix A for more on this.
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them in the same way as standard lists. This, therefore, provides a powerful, and familiar set of
operators for constructing dynamic lists.

instance Sequence IList

We can, therefore, generate ILists using the standard Sequence constructors.

empty :: IList a

single :: a -> IList a

fromList :: [a] -> IList a

cons :: a -> IList a -> IList a -- add an element to the front
snoc :: a -> IList a -> IList a -- add an element to the back
append :: IList a -> IList a -> IList a

We can also apply standard list functions such as size, map and fold to the list.

4.9.1.2. Using dynamic lists

The dynamic list type implements many of the standard list functions. For instance, we can construct a
constant list behavior from a static list. We can also append dynamic lists, remove duplicate elements
from them (using nub), reverse them, map functions along them, filter them, partition them and sort
them.

fromList :: [a] -> ListB a
append :: ListB a -> ListB a -> ListB a

nub :: Eq a => ListB a -> ListB a

reverse :: ListB a -> ListB a

map :: (a -> b) -> ListB a -> ListB b

filter :: (a -> Bool) -> ListB a -> ListB a

partition :: (a -> Bool) -> ListB a -> (ListB a,ListB a)
sort :: Ord a => ListB a -> ListB a

sortBy :: (a -> a -> Ordering) -> ListB a -> ListB a

It is also helpful to be able to apply behavior-based functions to them. For instance, we might wish to
take a changing number of elements from the front a list. We can do this using takeB, which takes an
Int behavior, instead of a simple static integer as its first argument. As an example of use, consider an
interface which should display only the first ‘n’ elements of some dynamic list where ‘n’ was controlled
by a user via a slider.

takeB :: Behavior Int -> ListB a -> ListB a

We might also wish to sort, partition or £ilter a list based on some behavior based function.

filterB :: (a -> Behavior b) -> Behavior (b -> Bool) -> ListB a
-> ListB a
partitionB :: (a -> Behavior b) -> Behavior (b -> Bool) -> ListB a

-> (ListB a,ListB a)

sortByB :: (a -> Behavior b) -> Behavior (b -> b -> Ordering)
-> ListB a -> ListB a

These combinators each take a function to extract a behavior from a list element, and a function valued
behavior to apply. We need this flexibility, because the elements of a dynamic list may themselves be
dynamic. For instance, imagine that we were maintaining a collection of counter components, each with
a name and a BVar representing the state of the counter.

data CounterElt = CounterElt {name :: String, value :: BVar Int}
type Counters = ListB CounterElt
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We might wish to display a list of sorted labels and values. The list could be sorted into either
ascending or descending order, based on some Boolean behavior and the current value of the counter.

view :: Behavior Bool -> ListB CounterElt -> Component
view sortrule lst =
nabove (fmap viewElt
(sortByB (bvarBehavior . value) (liftl sorter sortrule)

1st))
where
sorter True = (>)
sorter False = (<)
viewElt (nm val) = mklLabel [textB (liftl (nm ++ " " ++) val)]

We therefore have the ability to treat dynamic lists as simple Haskell values, and manipulate them in a
powerful, declarative manner. We can use the ListB type when placing windows or widgets, or to
make menus, listboxes and text areas displaying dynamic data.

4.9.2. Set Collections

A dynamic set can be defined in terms of the general collection type as follows. It models a set of
values, with corresponding update and internal entry data.

type SetB a = CollB Entry SetUpd Set a
data SetUpd a
data Entry a
Again we can extract a behavior from a dynamic Set, in order to observe its current state.
setBehavior :: SetB a -> Behavior (Set a)
We create a dynamic Set using an initial static set and an event generating update functions'".

mkSetB :: ISet a -> Event (ISet a -> ISet a) -> SetB a

Here the ISet type implements Edison’s Set interface [145]. We can therefore, for instance, create
sets, insert, delete, filter, partition, and construct the union, intersection and difference of ISets.

The SetB type implements many of the standard Edison Set operations [145]. For instance, we can
create constant dynamic sets from lists and filter and partition them. We can also form the union,
intersection and difference of two dynamic sets.

fromList :: [a] -> SetB a

filter :: (a -> Bool) -> SetB a -> SetB a

partition :: (a -> Bool) -> SetB a -> (SetB a,SetB a)

union, intersect, difference :: Eq a => SetB a -> SetB a -> SetB a

Finally, we can apply behavior valued filter and partition functions to a dynamic set, using a similar
interface to dynamic lists.

filterB :: (a -> Behavior b) -> Behavior (b -> Bool) -> SetB a
-> SetB a
partitionB :: (a -> Behavior b) -> Behavior (b -> Bool) -> SetB a
-> (SetB a ,SetB a)

4.9.3. Bag collections
We sometimes need to generate a collection with no initial notion of equality. We might, however, still

be able to define some predicate when inserting an item, that specifies when it should be deleted. For
this, we can use a dynamic bag collection.

'' As with mkListB there is again a problem with the type of this function.
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type BagB a = CollB BagEntry BagUpd Bag a
data IBag a

mkBagB :: IBag a -> Event (IBag a -> IBag a) -> BagB a'?

When adding an element we also pass in an event that will generate one occurrence when the item is to
be deleted.

insert :: a -> Event () -> IBag a -> IBag a
fromList :: [(a,Event ())] -> IBag a -> IBag a

This approach, though usually unnecessary, can sometimes be very useful. An example of its use is
shown in Section 4.12.2.

4.9.4. Collection variables

As with standard behaviors, it is useful to have behavior collection variables. We can define a generic
behavior variable, GenBVar. This maintains a value, and a listener that expects update functions. In
FranTk, as we generally create behaviors using Behavior variables, it<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>