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Abstract

Although many studies have shown that pol III transcription is strongly 

regulated in higher eukaryotes, it is poorly understood how this regulation is 

achieved. The basal pol III factors TFIIIB and TFIIIC have been implicated as 

common targets for regulation. I have developed reproducible purification protocols 

for yielding partially purified active human TFIIIB and human TFIIIC. The purity of 

hTFIIIB and hTFIIIC obtained are a significant improvement upon that of hTFIIIB 

and hTFIIIC typically used in our laboratory, allowing regulatory studies to be 

conducted with a much higher level of confidence than previously.

One established repressor of pol III transcription is the tumour suppressor 

RB. Recently, the related proteins p i07 and p i30 have also been shown to inhibit 

pol III transcription. Here, I show that endogenous p i07 and p i30 coffactionate and 

coimmunoprecipitate with endogenous TFIIIB, suggesting that, like RB, p i07 and 

p i30 stably associate with TFIIIB under physiological conditions. I have also 

investigated why the binding of RB to TFIIIB inhibits pol III transcription. For 

several genes transcribed by pol II, RB represses transcription through the 

recruitment of the histone deacetylase HDAC1, which is thought to deacetylate 

histones at the promoter resulting in the formation of a more compact chromatin 

structure less accessible to transcription factors. However, the repression of pol III 

transcription in vitro by RB is unaffected by the presence of the histone deacetylase 

inhibitor trichostatin A. Using an immunoisolated pol III complex that contains pol 

III, TFIIIC and TFIIIB, I show that recombinant RB can specifically disrupt the 

interaction between TFIIIB and TFIIIC.

The serine/threonine kinase CKII is identified as a novel activator of 

mammalian pol III transcription and is shown to stably interact with endogenous 

hTFIIIB. Significantly, CKII kinase activity appears to promote the binding of 

TFIIIB to TFIIIC. The receptor tyrosine kinase neu (erbB2) is also implicated in the 

regulation of pol III transcription. A rodent ovarian epithelial cell line transformed 

by an activated neu oncogene is found to display elevated pol III activity. TFIIIC2

B-block binding activity is specifically elevated. Using the purified TFIIIB and
< .* •  •

TFIIIC fractions, I show that TFIIIC^s,limiting. in the untransformed control cell 

line, indicating that upregulation oi? iTIIIC2 activity in response to neu 

transformation can at least partly account for the increase in pol III activity.
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Chapter 1.

Introduction

1.1 Eukaryotic RNA polymerases

In prokaryotes, a single RNA polymerase is responsible for the production of 

all cellular RNA. This contrasts with the situation in eukaryotes in which there are 

multiple DNA-dependent RNA polymerases (80, 476). There are three distinct 

nuclear RNA polymerases and mitochondria and chloroplasts each have their own 

unique RNA polymerase (80, 476). The mitochondrial and chloroplast RNA 

polymerases reflect the partial maintenance by these organelles of their own genetic 

system derived from their endosymbiotic origin. The three nuclear RNA 

polymerases are thought to have evolved from a common ancestor. An initial 

fortuitous gene duplication event is likely to have first given rise to two RNA 

polymerases prior to the evolution of the present day tripartite system found in all 

eukaryotes (80).

The three nuclear RNA polymerases (pols) are not redundant activities as 

they are unable to functionally compensate for one another, as demonstrated by the 

lethality of separate mutations in each one of the pols. There is a precise division of 

labour; each of the three RNA polymerases is responsible for the transcription of a 

different set of genes. Thus, RNA polymerase I (pol I) synthesises the 45S 

ribosomal RNA (rRNA), RNA polymerase II (pol II) synthesises all messenger RNA 

(mRNA) and most small nuclear RNA (snRNA), and RNA polymerase III (pol III) 

synthesises 5S rRNA, transfer RNA (tRNA), U6 snRNA and a variety of other small 

RNAs. The evolution of three distinct nuclear RNA polymerases functionally 

specialised for the dedicated expression of different sets of genes may have been 

necessary to achieve the increased, more complex regulatory control upon gene 

expression required in eukaryotes.

1.2 Pol III transcripts

RNA polymerase II, being entirely responsible for the transcription of genes 

that encode proteins, transcribes by far the largest variety of different genes. In
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contrast, pol I is only responsible for the production of a single transcript, 45 S rRNA. 

Nonetheless, pol I transcription constitutes -70% of total nuclear transcription in an 

actively growing cell (410). Each 45 S rRNA molecule is cleaved to generate one 

molecule each of 5.8S rRNA, 18S rRNA and 28S rRNA, essential RNA components 

of the ribosome, the site of cellular protein synthesis. The gene encoding the 45 S 

rRNA is highly re-iterated in the eukaryotic genome, which may be necessary to 

ensure sufficient levels of 5.8S rRNA, 18S rRNA and 28S rRNA are produced to 

make enough ribosomes to support the biosynthetic requirements of the cell (410). It 

has been estimated that -10 million copies of each of these rRNA molecules must be 

synthesised each cell generation in an actively growing higher eukaryotic cell.

Approximately 10% of nuclear transcription is carried out by pol III (569). 

The genes transcribed by pol III, so-called class III genes, encode a variety of small 

stable RNAs, many of which have critical roles in cellular metabolism (568). The 

most abundantly expressed class III genes are those encoding 5S rRNA and tRNA 

molecules, highly conserved pol III transcripts, both of which have essential 

functions in the complex process of translation (568). 5S rRNA, the smallest of the 

ribosomal RNAs and the only one transcribed by pol III, is -120 nt in length and is 

found in all eukaryotes as part of the large subunit of ribosomes. As for the 45 S 

rRNA gene, the 5S rRNA gene is found in multiple copy number; there are -300-400 

5S rRNA genes in the haploid human genome (495). tRNAs, which are -70-90 nt 

long, act as translational adaptors serving to convert the genetic information 

contained within the nucleotide sequence of a messenger RNA into a particular order 

of amino acid residues in a protein, as specified by the genetic code. The fidelity of 

this process is dependent on the appropriate amino acid having been attached to each 

tRNA molecule in accordance with the anticodon sequence of the tRNA molecule. 

Base-pairing of the anticodon of a tRNA molecule with the complementary codon in 

the mRNA ensures that the correct amino acids are covalently linked, as dictated by 

the nucleotide sequence of the mRNA. The recently published draft of the human 

genome sequence contains 497 tRNA genes; these are thought to encode 

approximately 60-90 different tRNA species (199).

Other important class III genes include those encoding U6 snRNA, HI RNA 

and MRP RNA, each of which is involved in post-transcriptional processing (568, 

583). U6 snRNA functions in pre-mRNA splicing as part of the spliceosome, a large 

ribonucleoprotein (RNP) complex that catalyses the removal of introns and accurate
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splicing of exons (353). U6 snRNA is the most highly conserved of the spliceosomal 

RNAs and has been shown to be essential in yeast (56, 258). HI RNA is part of 

RNaseP, an endoribonuclease involved in the processing of the 5'-termini of pre- 

tRNA (26). MRP RNA, which is closely related to HI RNA and can fold into a 

similar secondary structure, is part of MRP RNase, another endoribonuclease, which 

has an important role in the endonucleolytic cleavage of the 45 S precursor rRNA 

(383). The influence of pol III transcription on protein synthesis may therefore 

extend beyond the production of 5S rRNA and tRNAs, indirectly through its effects 

on post-transcriptional processing.

Another essential class III gene is that encoding 7SL RNA, which is involved 

in the correct targeting of proteins to their appropriate intracellular location. 7SL, a 

highly conserved 300 nt transcript, forms the scaffold of the signal recognition 

particle (SRP), which is required for the cotranslational insertion of nascent 

polypeptides into the endoplasmic reticulum (547).

The VAi and VAn genes of adenovirus and the EBER1 and EBER2 genes of 

Epstein-Barr virus are also transcribed by pol III. The adenoviral VA RNAs, 

expressed at high levels during late stages of viral infection, are involved in 

subverting the translational machinery of the host cell towards the more effective 

production of viral proteins (519). A similar role is likely for the EBER RNAs as 

multiple copies of these short RNAs can substitute for VAi during adenovirus 

infection (35).

Other class III genes encode transcripts that are hitherto of unknown function 

(568, 583). These include 7SK and the various gene families of short interspersed 

nuclear elements (SINEs). SINEs are quantitatively the most important class III 

genes in higher organisms (250). Rodent species contain several SINE families; 

these include the ID gene family and the B1 and B2 gene families. The B2 family, 

which is rodent-specific, is represented by -80,000 copies of the B2 gene in the 

haploid mouse genome, constituting -0.7% of the total genomic DNA (29). 

Approximately 1% of the genome of Xenopus laevis is comprised of a SINE DNA 

called satellite 1 (309). The major SINE in primates is the Alu gene, of which there 

are about 500,000 to one million copies in the haploid human genome (251). This 

constitutes -5%  of the total human genomic DNA. Clearly, a significant proportion 

of the genome of a variety of eukaryotes consists of SINE DNA.
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The extraordinarily high copy numbers of the various SINEs are thought to 

have arisen by retrotransposition (558). This involves the reverse transcription of the 

SINE transcripts and integration of the resulting DNA into novel genomic sites. For 

some genes amplified by retrotransposition, the transcription of a gene copy requires 

its fortuitous insertion in the DNA adjacent to an active promoter. This dependency 

on external promoter elements for transcription severely limits the rate of 

transposition. However, SINEs, like the majority of class III genes, contain internal 

promoter elements. Therefore, each gene copy produced contains the necessary 

information for its own transcription and is not reliant on its site of integration in the 

DNA for expression and the generation of further copies. This may explain the very 

high rate of transposition of SINEs.

The major SINE families appear to be derived from class III genes of known 

physiological significance. Genes from the B2 and ID families share significant 

homology with tRNA genes and their transcripts can form similar secondary 

structures (110). In contrast, the B1 and Alu families are thought to have evolved 

from the 7SL gene (531). Such SINEs may therefore simply represent particularly 

mobile pseudogenes and may be totally devoid of function. Alternatively, perhaps 

certain of these SINEs have acquired functions during the course of evolution. 

Although a variety of functions have been proposed for particular SINEs (227), a 

functional role for a SINE family has yet to be convincingly demonstrated. Even if 

the individual SINE families have no specific function, the mobility of these short 

repetitive elements and their integration into novel genomic locations will inevitably 

have had major effects on the structure and evolution of the genome. The 

transposition of SINEs creates novel genetic combinations within the DNA. Such a 

large number of small homologous sequences are also likely to cause an increase in 

the levels of recombination, a major source of genetic variability.

These genetic changes induced by SINEs make a significant contribution to 

the fluidity and adaptability of the genome. However, such genetic change can also 

be highly detrimental; for example, essential genes may be disrupted. Clearly, 

SINEs have the potential to be potent mutagens and inflict serious genetic damage, 

which may partly explain why SINEs are only found to be expressed at extremely 

low levels in cells. Although there may be as many as one million Alu genes in the 

haploid human genome, a growing HeLa cell only contains about 100-1000 Alu 

transcripts (335). In contrast, approximately one million 7SL transcripts were
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detected per HeLa cell, yet there are only four 7SL genes in the entire genome. Alu 

genes are derived from 7SL; however, they lack the upstream promoter sequences of 

7SL and the internal promoter elements may also have acquired changes further 

reducing Alu expression (531).

1.3 Promoter structure of class III genes

Class III genes show a marked diversity of promoter organisation, consistent 

with the broad range of different genes that are transcribed by pol III. There are 

three basic classes of promoter recognised by pol III, type I, type II and type III (157, 

411, 583). Genes with a type I or type II promoter, which together constitute the 

majority of class III genes, are unusual in that they require intragenic sequences, so- 

called internal control regions (ICRs), for their expression. In contrast, transcription 

of genes with type III promoters is entirely determined by sequences that lie 

upstream of the start site (299). Type III promoters resemble those of genes 

transcribed by pol I or pol II in that they are completely independent of intragenic 

sequence elements.

1.3.1 Type I promoters

The type I promoter is unique to 5S rRNA genes. Extensive mutagenesis of a 

somatic 5S rRNA gene from Xenopus laevis defined three essential sequence blocks 

for transcription, each located in the coding region of the gene: the A-block (+50 to 

+64), the intermediate element (+67 to +72) and the C-block (+80 to +97) (39, 416, 

417). The identities of the bases in between these individual sequence elements have 

no effect on transcription efficiency; however, changes in the spacing of the elements 

were poorly tolerated (417). Linker scanning mutagenesis of the sequence between 

the A-block and the transcriptional start site suggests that this sequence can have a 

major influence on 5S rRNA production under conditions that are suboptimal for 

transcription (150, 270, 596). The 5'- and 3'- flanking regions can also affect 

transcription levels under less favourable conditions. These effects are purely
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modulatory, however; under optimal conditions the region from +50 to +97, 

encompassing the A-block, the intermediate element and the C-block, suffices for 

efficient transcription.

A synthetic 5S gene consisting solely of the coding region of a human 5S 

rRNA gene is transcribed in a HeLa extract (584). Clearly, the expression of 5S 

rRNA genes is possible in the absence of extragenic sequence. The 5' flanking 

region of the human 5S rRNA gene was capable of stimulating transcription ~10 

fold, however (495). Although the flanking sequences can clearly influence 

transcription, they are poorly conserved and can generally tolerate mutations 

reasonably well. In contrast, the A- and C- blocks and the intermediate element are 

strongly conserved between species and mutations in these regions abolish 

transcription.

1.3.2 Type II promoters

Most class III genes, including the tRNA, VA, Alu, B l, and B2 genes, have a 

type II promoter (568, 583). Transcription of these genes, like 5S rRNA genes, is 

dependent upon discontinuous intragenic sequence elements. The internal control 

region of type II promoters consists of two essential sequence elements, an A-block 

and a B-block, each ~10bp, optimally separated by ~30-60nt of non-essential DNA, 

although larger distances of up to 365bp can be tolerated (18, 138). The A-blocks of 

type I and type II promoters are homologous and sometimes interchangeable (94). 

However, the A-block of type II promoters are much closer to the start site (at ~+10- 

to +20) than the corresponding region of type I promoters, which tend to be found 

~40bp further upstream (158). This difference may reflect the dominant role of the 

A-block of type II promoters in start site selection (94, 138).

The tRNA genes and adenoviral VAi gene have been extensively studied as 

model templates for genes with a type II promoter. The A- and B- blocks of tRNA 

genes are remarkably well conserved, both between genes encoding different tRNA 

isoacceptors and between tRNA genes from different species (158). Even certain 

bacterial and chloroplast tRNA genes contain similar sequences and can therefore be 

transcribed by pol III (149, 176). Chimeras constructed from the 5' half of a tRNALeu
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gene and the 3' half of a tRNAMet gene, or vice-versa, were active for transcription, 

demonstrating the functional compatibility of the A- and B- blocks from different 

genes (158). The A- and B- blocks of tRNA genes encode the D- and T- loops 

respectively of tRNA molecules, both of which are absolutely essential for tRNA 

function. The high level of sequence conservation of the A- and B- blocks of tRNA 

genes is therefore likely to reflect selection both for tRNA and promoter function. 

Nevertheless, point mutations in the A- and B- blocks can severely affect 

transcription efficiency. Consensus sequences of TGGCNNAGTGG for the A-block 

and GGTTCGANNCC for the B-block have been derived (158). Mutational analysis 

of the yeast SUP4 tRNATyr gene suggests that the consensus sequences closely 

coincide, although not perfectly, with the sequences that give optimal promoter 

activity (8). The A- and B- blocks together constitute the minimal promoter 

requirements for accurate tRNA transcription. A chemically synthesised 

oligonucleotide corresponding to these two sequence elements separated by a 51 bp 

spacer was able to direct efficient transcription in a HeLa cell extract (389). As for 

5S rRNA genes, flanking regions are able to modulate transcription efficiency but are 

generally poorly conserved. The 5' flanking regions of tRNA genes show little or no 

homology even between different genes that encode the same tRNA isoacceptor 

(568). There is evidence to suggest that this sequence variation is involved in the 

differential regulation of tRNA genes, which is necessary for the tRNA population to 

be adapted to differing codon and amino acid usage in different cell types (568).

All type II promoters contain sequences highly homologous to the A- and B- 

blocks of tRNA genes. The promoter requirements are very similar for different 

genes with type II promoters; indeed, B2 promoter sequences have been shown to 

cross-compete with those of tRNA or VAi genes (182, 577). As for tRNA genes, the 

A- and B- blocks of the adenoviral VAi gene have been shown to be sufficient for its 

transcription in vitro (430, 444, 553, 599). Linker scanning mutagenesis has 

identified both positive and negative modulatory sequences upstream of the start site 

of the VAi gene, although the overall effect of surrounding sequences is stimulatory 

(430). The VAi gene is transcribed more strongly than tRNA genes; however, the 

sequences responsible for this difference in transcription efficiency have yet to be 

elucidated. Flanking sequences that are able to influence transcription levels are not 

conserved between different genes with type II promoters and are poorly
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characterised. These differences, as well as how closely the sequences of the A- and 

B- blocks match those that are optimal for transcription, are likely to be responsible 

for the differential promoter strength of different class III genes with type II 

promoters.

1.3.3 Type III promoters

A minority of pol III templates, such as the vertebrate U6 and 7SK genes and 

mammalian MRP genes, have a type III promoter (112, 281, 390, 610). The 

distinguishing feature of this type of class III promoter is the notable absence of 

intragenic promoter elements. The type III promoter resides exclusively in 

extragenic sequence, specifically in the 5' flanking region of the gene (157, 568, 

583). The entire coding sequence of human and mouse U6 genes can be replaced 

without any effect on transcription, either in vitro or in vivo (112, 301). The same 

has also been shown to be true of the human 7SK and MRP genes (281, 390, 610).

Whereas the U6 snRNA gene is transcribed by pol III, the other U snRNAs, 

U l, U2, U4 and U5, are products of pol II transcription (300, 379, 432). 

Nevertheless, despite being transcribed by different RNA polymerases, the promoters 

of vertebrate U6 snRNA genes are remarkably alike those of the U snRNA genes 

transcribed by pol II (302). Upstream sequences required for efficient transcription 

of human U6 genes are a TATA box between -30 and -25, a proximal sequence 

element (PSE) between -66 and -47 and a distal sequence element (DSE) between - 

244 and -214 (19, 72, 112, 302, 338). The human U6 PSE and DSE show 

substantial homology with elements found at comparable positions in the promoters 

of the class II U snRNA genes (19, 72, 111, 302, 338). Indeed, the PSEs of the 

human U2 and U6 promoters are identical at 13 out of 17 positions and are 

functionally interchangeable (338, 406). The DSEs of the human U2 and U6 

promoters are also interchangeable (19, 72, 302). However, a TATA box, a very 

common feature of class II genes, is absent from the promoters of U snRNA genes 

transcribed by pol II. Paradoxically, the TATA element is a major determinant of 

polymerase specificity (338, 339, 362). Inactivation of the TATA box allows the U6 

snRNA gene to be transcribed by pol II (362). Conversely, the insertion of a TATA



box into the corresponding position of a U2 promoter can convert the U2 gene into a 

pol III template (338). However, the U6 TATA box alone is insufficient to confer 

recognition by pol III upon the U1 gene (329). To switch the polymerase specificity 

of the U1 gene also requires that the PSE be moved 4 bp further upstream so that the 

distance between it and the TATA box is the same as in the U6 promoter (329). Pol 

III transcription of the U6 snRNA gene is severely impaired by changes in the 

separation of the PSE and TATA box (167, 339). The exact sequence requirements 

for a class III TATA box also differ slightly from those of a class II TATA box, as 

revealed by the differential sensitivity of pol II and pol III transcription to particular 

mutations of the Xenopus U6 TATA box (486). Clearly, the choice of polymerase 

for transcription of the individual U snRNA genes can be influenced by a number of 

factors.

The promoter structure of the human 7SK gene is very similar to that of 

vertebrate U6 genes with TATA, PSE and DSE sequences all located upstream of the 

coding region in almost identical positions to their U6 counterparts (568). In contrast 

to this similarity, the promoters of vertebrate and yeast U6 genes are vastly different 

from one another. The U6 promoter of the yeast Saccharomyces cerevisiae is 

tripartite, with upstream, intragenic and downstream promoter elements (56, 57, 

137). An A-block at +21 to +31 is essential for transcription, both in vitro and in 

vivo (67, 137). Efficient transcription of yeast U6 genes in vivo is also dependent 

upon a functional B-block sequence, unusually located 120bp downstream of the 

termination site in S. cerevisiae (57, 137). This novel positioning of the B-block may 

reflect an incompatibility of the B-block sequence with the function of the highly 

conserved U6 transcript. The upstream sequence of the gene contains a consensus 

TATA box at -30 to -25 . Although this sequence can influence start site selection 

and stimulates expression in vitro, it has little effect on transcription in vivo (67, 79, 

137, 357). Additionally, a sequence around -55 shows partial homology to PSEs of 

vertebrate U6 promoters but has little or no effect on the level of transcription (67, 

137).

Whereas the vertebrate U6 promoter resides entirely upstream of the coding 

sequence, transcription of the yeast U6 genes is dependent upon downstream A- and 

B- blocks. The yeast U6 promoters are therefore similar to the type II promoters of 

tRNA and VA genes (583). The totally extragenic promoter organisation of the U6 

genes has therefore evolved relatively recently, since the divergence of the metazoan
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and yeast lineages. The most obvious advantage of acquiring an extragenic promoter 

is that the promoter sequences are no longer constrained by serving a dual function 

and having to be compatible with transcript function. The promoter can evolve 

independently of the coding sequence, which may allow the evolution of a more 

complex promoter capable of more intricate control and fine-tuning of transcriptional 

output.

In contrast to the diversity of promoter organisation of the U6 snRNA genes, 

the promoters of most class III genes are quite well conserved between yeast and 

vertebrates (568).

1.3.4 Mixed promoters

A few class III genes have promoters that cannot be easily categorised into 

any of the aforementioned promoter types; these include the human 7SL and Epstein- 

Barr virus EBER2 genes (411). These genes rely on both internal and upstream 

sequences for their efficient expression. For example, the human 7SL gene has 

intragenic A- and B- blocks that are required for expression. However, these are 

fairly degenerate compared to the A- and B- blocks that are typical of type II 

promoters (8). Sequences upstream o f +1 are therefore also necessary for significant 

levels of transcription of the human 7SL gene (51, 532). Indeed, 5' deletion to -37 

reduces transcription more than 20-fold in transfected HeLa cells (51). A binding 

site for activating-transcription-factor (ATF) occurs at -51 to -44 (51). Point 

mutation of this binding site mimics the effect of 5' deletion to -37 (51). Moreover, 

extracts from cells pretreated with forskolin so as to induce the cAMP signal 

transduction pathway known to stimulate ATF activity support substantially 

enhanced levels of transcription of the human 7SL gene (51). In contrast, expression 

of the human 7SK gene, which has no ATF binding site, was unaffected by forskolin 

treatment demonstrating the specificity of this effect (51). Sequences downstream of 

-37 are also required for efficient transcription, which may include a putative TATA 

box at -28 to -24 (51).

The EBV EBER2 gene similarly requires a combination of internal and 

external promoter elements for its efficient expression (228). The EBER2 promoter
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has intragenic A- and B- blocks that are essential for transcription; these are less 

degenerate than are those of the human 7SL gene (228). Nevertheless, deletion of 

sequences upstream of -46 reduces EBER2 expression in transfected cells to -7%  of 

the wild-type level (228). This is thought to be due to the loss of upstream binding 

sites for ATF and Spl (228). In addition, a TATA box at -28 to -23 can stimulate 

transcription ~5-fold (228).

The EBV EBER2 and human 7SL promoters are examples of promoters with 

diverse combinations of sequence elements that can cooperate to direct efficient pol 

III transcription (583). Thus, A- and B- blocks, homologous to those of type II 

promoters, can be effectively combined with sequence elements such as ATF- and 

Spl- binding sites, which were originally defined as cis-acting regulatory elements of 

class II promoters (51, 228). The A- and B- blocks can also be combined with 

sequence elements from type III promoters, as the 5' flanking sequence of the human 

7SL gene can be efficiently substituted by that of the 7SK gene (282). The structure 

of these genes is analogous to the modality of class II promoters. It is also 

noteworthy that a few cis-acting elements are common to both class II and class III 

genes, including the TATA box, ATF- and Spl- binding sites, and octamer motifs 

found in DSEs.

1.4 RNA polymerase III

The existence of multiple forms of nuclear RNA polymerase was originally 

demonstrated by DEAE Sephadex chromatography of solubilised nuclei preparations 

(443). The polymerase activity of extracts from embryonic sea urchin nuclei could 

be resolved into three distinct peaks by gradient chromatography on DEAE Sephadex 

(443). Moreover, the chromatographic properties of the individual peaks of activity 

were maintained during their separate rechromatography, suggesting the resolved 

polymerase activities are not interconvertible but represent distinct entities (443). 

The three nuclear RNA polymerases, named according to their order of elution from 

DEAE Sephadex, have subsequently been shown to display differential 

chromatographic behaviour on a variety of columns (80, 440, 441, 467). They can 

also be distinguished by their sensitivity to the toxin a-amanitin, produced by the
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poisonous Amanita mushrooms (268). a-amanitin inhibits transcription elongation 

by interfering with polymerase translocation (116). In mammals, whereas pol I 

activity is highly resistant to a-amanitin toxicity, pol II is extremely susceptible with 

50% inhibition at 25ng/ml a-amanitin and pol III is moderately sensitive with 50% 

inhibition at 20pg/ml a-amanitin (467). These differential sensitivities to a-amanitin 

were used to determine which polymerase is responsible for transcribing particular 

genes.

The eukaryotic nuclear RNA polymerases are large multisubunit protein 

complexes made up of twelve or more different polypeptides. RNA polymerase III, 

the largest of the three nuclear pols, has been purified from a variety of organisms 

including human (247, 553, 554), mouse (490), frog (440, 441), silkworm (489), 

fruitfly (181), wheat (252, 516) and yeast (83, 184, 535). The polypeptide 

composition is quite well conserved between the different species. Saccharomyces 

cerevisiae pol III, which is the most extensively characterised, both biochemically 

and genetically, consists of seventeen subunits, ranging in size from 10 to 160 kD 

(83). The genes for sixteen of the seventeen subunits have now been cloned; all of 

them were found to be unique and essential for yeast cell viability (83). In contrast, 

several pol II subunits are dispensable for growth (598, 609).

The largest and second largest polypeptides of yeast pol III, C l60 and C l28, 

are structurally and immunologically related to the largest and second largest 

polypeptides of pols I and II (9, 49, 63, 368). Moreover, they display substantial 

homology to P' and P respectively of Escherichia coli RNA polymerase (9, 249, 368, 

506). The p' and p subunits together harbour the active site of the polymerase and 

are involved in basic pol functions, such as interactions with the DNA template and 

nascent RNA and the binding of nucleoside triphosphate substrates. The largest two 

subunits of pols I, II and III are thought to be functionally equivalent to p' and p 

(122, 368, 526). C l60 and C l28 of yeast pol III both have zinc finger motifs 

suggesting they may participate in DNA binding and the C l28 subunit is labelled by 

nucleotide analogues (438, 526). The phenotypic effects of mutations in C l60 and 

C l28 suggest that they are involved in similar core pol functions to the prokaryotic p 

and P' subunits (122, 436, 478). Two other subunits of yeast pol III, AC40 and 

AC 19, which are shared with pol I, show some sequence homology to the 

prokaryotic a  subunit, which functions in the assembly of the pol (120).
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Furthermore, a temperature-sensitive mutation in AC40 causes a defect in the in vivo 

assembly of pols I and III, suggesting functional equivalency with E.coli a  subunits 

(354). Together, C160, C128, AC40 and AC19 constitute the enzymatic core of 

yeast pol III.

Of the remaining thirteen subunits, five of these are also found in pols I and II 

(ABC 10a, ABC 1 Op, ABC14.5, ABC23, ABC27) (83). Although highly conserved, 

with 40-75% amino acid identity between the yeast and human homologues, the 

absence of homologous subunits in prokaryotic RNA polymerases suggests that they 

are probably not directly involved in the catalytic steps of transcription (483). At 

least one of the subunits, ABC23, is thought to be required for the structural and 

functional integrity of the pols (311). The other shared subunits may perform similar 

structural roles. They may also provide the opportunity for co-ordinate regulation of 

transcription by pols I, II and III. Yeast pol III also contains eight unique subunits 

(83). These pol Ill-specific subunits are required for specific transcription by pol III. 

Indeed, mutations in several of these subunits or antibodies raised against particular 

subunits, have been shown to have no effect on the efficiency of pol III transcription 

of non-specific templates, but the accurate transcription of pol III templates is 

substantially reduced (236, 244, 522). However, these pol Ill-specific subunits are 

insufficient for the accurate and specific recruitment of pol III to class III genes. 

This is also true of pols I and II. The purified nuclear pols have no sequence- 

specificity for DNA and thus are unable to specifically recognise the promoter 

elements of genes that together define the pol specificity of the gene and specify the 

site of transcription initiation. The assistance of additional proteins, so-called 

transcription factors, is required that serve to recruit the pol to the appropriate start 

sites of the appropriate sets of genes, thus ensuring accurate and specific initiation of 

transcription (405). Each of the nuclear pols utilises a different set of transcription 

factors (411, 613).

1.5 Transcription factors utilised by pol III

The transcription factor requirements for basal pol III transcription are not the 

same for every pol III template; this depends on the promoter structure of the gene
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(411, 568). Thus, genes with a type I promoter have different transcription factor 

requirements to genes with type II or type III promoters. For example, 5S rRNA 

genes are the only genes that require transcription factor IIIA (TFIIIA) (134, 473). 

TFIIIA is therefore a gene-specific transcription factor. However, although the exact 

requirements differ between genes of the different promoter types, there is also 

considerable overlap. Transcription factor IIIB (TFIIIB) and transcription factor IIIC 

(TFIIIC) are required for the transcription of all class III genes and may therefore be 

regarded as general pol III transcription factors (473, 568).

1.5.1 TATA-binding protein

The TATA-binding protein (TBP) is an essential component of TFIIIB. It 

was originally thought that its involvement in transcription was confined to TATA 

box-containing class II genes. The surprising discovery that a minority of class III 

genes, typified by the vertebrate U6 snRNA gene, also contain a TATA box as an 

essential component of their promoters raised the possibility that TBP may also be 

required for the transcription of a restricted set of pol III templates. It was first 

assumed that a TATA-binding factor distinct from TBP was involved, because the 

TATA box of class III genes has similar but distinct sequence requirements to the 

TATA boxes associated with class II genes (362, 391, 486). Moreover, the class III 

TATA box is a major determinant of the pol III specificity of these genes (338, 362). 

Subsequently, it was shown that TBP and the TATA-binding factor required for the 

transcription of TATA box-containing class III genes copurify and that cloned TBP 

can efficiently substitute for this factor in supporting U6 transcription (339, 356, 

485). It is now clear that the class III TATA-binding factor and TBP are the same.

Rather unexpectedly, it was found that the transcription of TATA-less class 

III genes also requires TBP (573, 575). This was first suggested by the observation 

by White et al. that transcription of TATA-less pol III templates is dramatically 

inhibited by the preincubation of cell extracts with short oligonucleotides containing 

TATA box sequences from class II promoters (575). This was shown for six 

different TATA-less pol III templates in all, 5S, tRNA, VA, Alu, B1 and B2, as well 

as the TATA-containing U6 and EBER2 genes (575). In contrast, oligonucleotides 

with mutated TATA boxes unable to bind TBP failed to inhibit transcription (575).
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The addition of pure recombinant TBP restored pol III transcription to extracts 

preincubated with TATA box oligonucleotide competitor, suggesting that the 

sequestered TATA-binding factor required for transcription is TBP (575). The 

specific inactivation of TBP by mild heat treatment or its removal from extracts by 

fractionation also abolished transcription of TATA-less pol III templates (237, 575). 

Addition of recombinant TBP to replace that depleted was able to restore 

transcription, providing further evidence of a role for TBP in the transcription of all 

class III genes (237, 575). Similar biochemical experiments suggested that TBP is 

also required for transcription of pol I templates and some TATA-less, as well as 

TATA-containing, pol II templates (213, 434, 479, 574). In recent years it has 

become clear that TBP is not required by all class II genes however.

In vivo evidence for the involvement of TBP in transcription by all three 

nuclear RNA polymerases was provided by genetic analyses in yeast (105). 

Expression of both TATA-less and TATA-containing class III genes was rapidly 

inhibited in yeast strains with a temperature-sensitive mutation in TBP upon 

incubation at the non-permissive temperature (105). The inhibitory effect on pol III 

transcription of an inactivating mutation in the largest subunit of pol II has much 

slower kinetics, suggesting that this inhibition due to loss of TBP function was not an 

indirect consequence of pol II transcription also being inhibited. Pol I transcription 

was also dramatically reduced, suggesting an in vivo role for TBP in transcription by 

all three nuclear pols (105). Extracts prepared from mutant TBP strains following 

incubation at the non-permissive temperature were unable to support pol I, II or III 

transcription (464). The addition of recombinant TBP restored transcription by each 

pol, demonstrating that the devastating effect of the TBP mutation on in vivo 

transcription by each of the pols is a direct one and independent of its effects on 

transcription by the other two nuclear pols (420, 464).

TBP is the only classless transcription factor identified to date and as such 

may be regarded as the most general. It also constitutes an obvious target for the co­

ordinated regulation of transcription by pols I, II and III. A general role for TBP in 

nuclear transcription has been shown both in yeast and human suggesting this is 

likely to be the case in many, if not all, eukaryotes. In support of this, TBP has been 

highly conserved through evolution (213). The N-terminal region of TBP is variable 

both in size and sequence, but the C-terminal region is extremely well conserved. 

The C-terminal 180 residues of TBP are 100% identical in human, mice and frogs
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and at least 80% identical between human and yeast (146, 198, 509). Moreover, in 

yeast the conserved C-terminal region is sufficient for cell viability and mutations in 

TBP that affect basal transcription by pols I, II and III all map to this region (105, 

420, 464). However, recent work from the Tjian laboratory suggests that TBP may 

not be required for pol III transcription or restricted cell-type specific pol II 

transcription in Drosophila (193, 508).

The Drosophila genome contains a single TBP gene but also has two distinct 

genes that encode proteins homologous to TBP (109, 429). One of these, TBP- 

related factor 1 (TRF1) binds specifically to TATA sequences and shows 

considerable sequence similarity to TBP, with -60% overall identity in the 

conserved C-terminal domain of TBP (109). The immunodepletion of TRF1 from 

Drosophila extracts was found to specifically inhibit pol III transcription of tRNA, 

5S and U6 genes (508). In contrast, depletion of TBP was observed to have no effect 

on the level of pol III transcription, suggesting that TRF1 and not TBP may be 

required for pol III transcription in Drosophila, at least in vitro (508). These results 

came as a surprise, as it had previously been shown that the overexpression of TBP 

in Drosophila tissue culture cells by transient transfection stimulates pol III 

transcription, both of TATA-less and TATA-containing class III genes, suggesting 

TBP is limiting for pol III transcription in these cells (527). One plausible 

explanation is that overexpressed TBP may be able to substitute for TRF1. However, 

it has yet to be demonstrated that in the context of a living cell, TRF1 has a role in 

pol III transcription in Drosophila. In support of this possibility, antibody staining of 

polytene chromosomes revealed that TRF1 colocalises at a number of sites that 

contain one or more tRNA genes (193). A subsequent immunolocalisation study 

using a different TRF1 antibody showed that TRF1 colocalises at the majority of 

sites at which the TFIIIB component BRF was detected (508). However, this TRF1 

antibody appeared to have lower specificity than that used in the previous study and 

TRF1 staining was very extensive, raising the possibility that the observed 

colocalisation was due to non-specific TRF1 antibody staining or was coincidental 

(508). There does not appear to be a mammalian homologue of Drosophila TRF1, 

however, several orthologs of a TBP-like protein have recently been identified in 

humans, which conceivably might perform analogous functions (32, 380, 429).

TBP fractionates extremely heterogenously during column chromatography 

of cell extracts, suggesting that it may be part of several different protein complexes,
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each with distinct chromatographic behaviour (33, 55, 91, 371, 421, 456, 507, 524). 

Indeed, gel filtration analysis of HeLa extract suggests that there is very little or no 

free TBP in the cell (524). TBP participates in transcription by the nuclear pols as 

part of three different pol-specific TBP-containing multisubunit protein complexes, 

SL1 (103, 133, 616), TFIID (130, 175, 425, 426, 524) and TFIIIB (237, 264, 340, 

484, 507, 573), that are required for transcription by pol I, pol II and pol III 

respectively. The polypeptides that interact with TBP in each of these complexes, 

so-called TBP-associated factors (TAFs) appear to be different, suggesting it is the 

TAFs that confer the class specificity upon the different complexes (91, 103, 507). 

The extent to which TBP is shared between pols I, II and III therefore seems to be 

dictated by the distinct sets of TAFs with which it associates. In HeLa cells there 

does not seem to be much, if any, free TBP in the cell suggesting that there may be 

competition between the different class-specific TAFs for binding to TBP (434, 524). 

Nevertheless, in most mammalian cells investigated, TBP is not normally limiting for 

pol III transcription. In yeast, there are significant amounts of free TBP in the cell.

1.5.2 TFIIIB

The accurate initiation of transcription requires the formation of a functional 

preinitiation complex at the promoter of the gene, a precisely ordered complex of 

transcription factors assembled on the DNA that accurately recruits and positions the 

pol over the start site for initiation (40, 405). For TATA-containing pol II templates, 

TFIID nucleates preinitiation complex formation, the TBP contained within this 

complex enabling it to specifically recognise and bind to the TATA sequence located 

upstream of the start site (442). Similarly, the TBP contained within TFIIIB is 

thought to enable TFIIIB, in co-operation with a PSE-binding factor 

(PBP/SNAPc/PTF) that binds sequence-specifically to the PSE, to nucleate complex 

formation at class III genes such as the vertebrate U6 and 7SK genes that also have a 

TATA box (376). However, for TATA-less class III genes, TFIIIB is recruited to the 

promoter by protein-protein interaction with other transcription factors such as 

TFIIIA and/or TFIIIC that are able to specifically bind to the promoters of these 

genes (36, 318, 472). In yeast, once TFIIIB has been recruited to the promoter and is 

stably bound, TFIIIC and TFIIIA can be stripped away by high salt or heparin and
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TFIIIB alone is able to support multiple rounds of accurate transcription by pol III

(263). Thus, clearly TFIIIB is the central class III initiation factor. The essential 

role of this factor in pol III transcription is reflected by the considerable effort that 

has been devoted to its purification and elucidation of its composition, both in yeast 

and in mammals (568).

An early attempt by Klekamp and Weil to purify TFIIIB from yeast by ion- 

exchange chromatography yielded weakly active fractions highly enriched in a 

60kDa polypeptide that constituted ~30% of the total protein in the most highly 

purified fraction (283). To investigate whether this abundant 60kDa polypeptide 

corresponds to TFIIIB, it was gel-purified and polyclonal antibodies were raised 

against it (283). The resulting antiserum inhibited tRNA and 5S transcription 

reconstituted either with yeast or human extracts, whereas the preimmune serum did 

not (283). Furthermore, preincubation of the antiserum with purified 60kDa protein 

used to raise it blocked its inhibitory effect on transcription. The authors thus 

concluded that this 60kDa polypeptide likely constitutes yeast TFIIIB (yTFIIIB) 

(283). However, whereas the partially purified TFIIIB fractions were capable of 

reconstituting tRNA transcription in the presence of partially purified TFIIIC and pol 

III, the gel-purified 60kDa polypeptide was unable to do so despite multiple attempts 

at renaturation (283), raising the possibility that additional proteins may be required 

for TFIIIB activity. In support of this, quantitative analyses of transcription 

reconstituted using the partially purified fractions estimated that 100-150 molecules 

of 60kDa polypeptide were required per template molecule (283). Although such a 

stoichiometry could simply reflect the inactivation of the 60kDa protein during 

purification, an equally plausible explanation is that other proteins are also required 

for TFIIIB activity that are present in much smaller quantities, the bulk of these 

having been removed during fractionation.

Kassavetis et al. later partially purified yeast TFIIIB by a fractionation 

scheme based on that of Klekamp and Weil but slightly modified (267). Their most 

highly purified TFIIIB fraction still contained at least 25 electrophoretically 

separable polypeptides after five chromatographic steps, but nevertheless had -60- 

fold higher specific activity than that of Klekamp and Weil (267). Notably, a 60kDa 

species was not a major constituent of this fraction (267).

Bartholomew et al. used this partially purified fraction and an ingenious 

photocrosslinking approach (23) to probe the polypeptide composition of yTFIIIB.

18



DNase I footprinting analysis with crude extract had earlier shown that the assembly 

of active pol III transcription complexes on yeast 5S rRNA and tRNATyr genes 

caused protection of the entire transcription unit and -45 bp of 5' flanking sequence 

immediately upstream of the transcriptional start site (48). To dissect the interactions 

of the individual class III transcription factors with the DNA and their contributions 

to this extensive footprint, DNase I protection analyses with partially purified 

TFIIIA, TFIIIB and TFIIIC had then been performed (48). The activity providing 

protection of the upstream region of the tRNATyr gene was found to consistently 

copurify with TFIIIB activity (267). Furthermore, protection of this region was 

dependent on the prior interaction of TFIIIC with the B-block and was resistant to 

heparin, both properties of TFIIIB and its interactions with tRNA gene promoters 

(267). Together, these observations suggest that this upstream DNA-binding activity 

and TFIIIB are the same. Bartholomew et al. exploited this apparent ability of 

yTFIIIB to bind to the 5' flanking sequence of these genes to search for putative 

components of the factor using a novel photocrosslinking method (24). In this 

method, a photoactive nucleotide, 5-[N-(p-azidobenzoyl)-3-aminoallyl]-deoxyuridine 

(N3RdU), is incorporated into specific sites in the DNA, adjacent to radiolabelled 

nucleotides (23). The modified DNA is incubated with appropriate protein fractions 

for a short time to allow the assembly of proteins on the DNA probe and is then 

irradiated with ultraviolet light. Irradiation generates a reactive nitrene group from 

N3RdU that is able to rapidly form covalent bonds with polypeptides in very close 

proximity to the photoactive nucleotide, thus “tagging” them with radiolabelled 

DNA. The probe is then incubated with DNase I and micrococcal nuclease so that 

those regions of the DNA not bound by protein are destroyed. The size of the 

"tagged” proteins can then be determined by SDS-PAGE.

The structure of N3RdU places the reactive nitrene on a 0.9 to lnm tether, 

thus ensuring only proteins in the space just outside the DNA helix, within a distinct 

spatial region, will be detected (23). This approach, using photoactive nucleotides 

incorporated into the 45bp upstream region protected from DNase I digestion in a 

crude extract, detected two polypeptides, of 70 and 90kDa in size, within the 

partially purified TFIIIB fraction (24). The specificity of their crosslinking to this 

region of DNA was demonstrated by its dependence both upon a functional promoter 

and the presence of TFIIIC (24). The crosslinked 70 and 90kDa polypeptides are
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distinct and separate components of TFIIIB. In support of this, the two polypeptides 

were found to be preferentially crosslinked by photoactive nucleotides located on 

opposite sides of the DNA helix suggesting they have distinct spatial distributions 

within this upstream region (24). They also produce different V8 protease digestion 

patterns (24).

The 70 and 90kDa polypeptides are only minor components of the partially 

purified TFIIIB fraction of Kassavetis et al. used in these crosslinking experiments 

(267). Upon further purification of this fraction on Mono S, a cation exchanger, 

TFIIIB was split into two essential components, B' that eluted at ~275mM NaCl in a 

100mM-400mM NaCl gradient and B" that eluted in the subsequent 1M NaCl step 

(261). Together, the B' and B" fractions were able to reconstitute both the 

transcriptional and photocrosslinking properties of TFIIIB (261). Photocrosslinking 

associated the B' fraction with the 70kDa polypeptide of TFIIIB and the B" fraction 

with the 90kDa polypeptide of TFIIIB (261). Indeed, the B' fraction was found to be 

highly enriched in a 70kDa polypeptide that represented ~5% of the total protein, 

which was distributed among -10 polypeptides (261).

Three different groups independently cloned the BRF1 gene (TDS4/PSF4) 

that encodes the 70kDa polypeptide component of yeast TFIIIB (64, 101, 342). 

Database searches revealed that the N-terminal half of this protein shares extensive 

sequence homology with the pol II general transcription factor TFIIB, which is much 

smaller (64, 101, 342). The protein was therefore named yBRF, short for yeast 

TFIIB-related-factor (101). The sequence similarity between TFIIB and yBRF1 

suggested that yBRF may function in pol II transcription. However, despite this 

homology, in contrast to the rapid decline in tRNA synthesis observed, a reduction in 

the levels of yBRF was found to have no effect on the in vivo expression of either 

class II or class I genes (64, 342). Similarly, in vitro transcription of tRNA and 5S 

rRNA genes was found to be substantially diminished in extracts lacking functional 

yBRF, whereas transcription by pols I and II was as efficient as in wild type extracts 

(101). Recombinant yBRF was able to rescue transcription of tRNA and 5S rRNA 

genes in these BRF-deficient extracts and could also stimulate their expression in 

wild type extracts, but had no effect on transcription by pols I and II (101). These 

results demonstrate that yBRF is a pol Ill-specific factor and suggest that it is usually 

limiting for pol III transcription. Indeed, yeast strains with a dominant mutation in
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the BRF1 gene that specifically increases the in vivo expression levels of yBRF were 

found to have higher pol III transcriptional activity than wild-type strains (342).

The bulk of the homology between yBRF and the various TFIIB proteins that 

have been cloned is within three distinct regions, a putative zinc finger at the extreme 

N-terminus and two imperfect direct repeats (64, 101, 342). The direct repeat region 

of TFIIB has been shown to interact directly both with TBP and pol II, consistent 

with the proposed function of TFIIB as a bridging factor between promoter-bound 

TBP and pol II during preinitiation complex formation (183). Since this region is 

well conserved in yBRF it suggested that yBRF might also interact with TBP and, 

perhaps, pol III since several subunits are shared between pols II and III. In support 

of this, two of the groups that cloned the BRF1 gene isolated the gene as an allele 

specific multi-copy suppressor of TBP mutations (64, 101). The allelic specificity of 

the suppression is suggestive of a direct interaction between TBP and yBRF. A 

combination of in vitro and in vivo experiments showed TBP to be essential for yeast 

pol III transcription (105, 464). However, the crosslinking experiments of 

Bartholomew et al. that detected the 70 and 90kDa subunits of TFIIIB did not 

identify a polypeptide of ~27kDa corresponding to the size of yeast TBP (24). 

Nonetheless, TBP was detected in the partially purified TFIIIB fraction used for 

crosslinking and a significant amount was found in the B' fraction that is enriched in 

yBRF (264). In contrast, no TBP was detected by western blot analysis in highly 

purified fractions of TFIIIC and pol III (264). In addition, antibodies against TBP 

were found to specifically supershift a heparin-stripped TFIIIB-tDNA complex in an 

EMSA, demonstrating that TBP is part of this TFIIIB complex (264). Subsequently, 

it was shown that recombinant TBP and recombinant BRF directly interact (235, 

271). GST-BRF pulldown assays were used to map the regions of BRF to which 

TBP binds (271). As expected, the conserved direct repeat region of BRF was able 

to specifically bind TBP. Rather surprisingly, however, the C-terminal region alone 

was also shown to bind TBP with even higher affinity (271). Moreover, three 

separate point mutations in TBP that specifically inhibit pol III transcription in vivo 

were found to prevent TBP from interacting with the C-terminal half of BRF yet had 

no effect on its interaction with the direct repeats (271). This strongly suggests that 

the interaction between TBP and the C-terminal half of BRF is of physiological 

significance. The N-terminal direct repeat region was also found to interact with a
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subunit of pol III, consistent with the homologous region of TFIIB binding pol II 

(271). However, within this region the two pols interact with different repeats, 

moreover, the pol III subunit, C34, that directly binds to this region of BRF is unique 

to pol III (183, 271). In addition, the N-terminal half of BRF, but not the C-terminal 

half, was found to interact with the largest subunit of yeast TFIIIC (82). Thus, the N- 

terminal half of yBRF may perform an analogous function in pol III transcription to 

the highly homologous TFIIB since it participates in interactions both with the 

activity that recognises class III promoters (TFIIIC or TBP depending on promoter 

type) and the polymerase itself. Although there is significant conservation between 

TFIIB and the N-terminal half of BRF, these regions clearly actively participate in 

determining the differential pol specificity of TFIIB and BRF.

In contrast to the N-terminal region, the C-terminal half of yBRF has no 

obvious sequence similarity with any other known yeast protein. It is characterised 

by being highly charged, with 21% acidic residues (D or E), 17% basic residues (K 

or R) and 14% Ser and Thr residues (271). The high charge density of the C- 

terminal region of BRF has been well maintained through evolution (271). Sequence 

comparisons of yBRF cloned from three evolutionarily distant yeast species 

Saccharomyces cerevisiae, Kluveromyces lactis and Candida albicans, showed the 

N-terminal half of the protein to be highly conserved, especially the direct repeat 

region. The C-terminal half was found to be much less well conserved but it does 

contain three discreet areas of strong conservation that are likely to be essential for 

BRF function, yeast homology regions I, II and III (HI, HII and HIII) (271). In 

support of this, the deletion of the last 165 amino acid residues of yBRF, which 

includes the HII and HIII domain, prevented the binding of TBP (271). The HII 

domain is thought to mediate the interaction of TBP with the C-terminal half of BRF 

(11, 102, 262, 265, 271). The exact function of the other two homology domains 

have yet to be fully elucidated, but their high level of conservation suggests that they 

may mediate other important interactions of BRF.

The TFC5 gene encoding the 90kDa polypeptide of yTFIIIB has also been 

cloned (266, 439, 452). It actually encodes a 594 amino acid protein with a predicted 

molecular mass of ~68kDa that migrates anomalously as a ~90kDa protein on SDS 

PAGE (266, 439, 452). The protein, which has been called B", has little or no 

sequence similarity with other known proteins except for a putative SANT domain
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also found in N-CoR, SWI3 and ADA2 (1). This motif, which shares weak 

homology with the DNA-binding domain of the oncoprotein Myb, is implicated in 

protein-protein and protein-nucleic acid interactions (1).

TBP, BRF and B" are all essential for yeast cell viability and, specifically, 

pol III transcription. Despite its indispensability, however, B" is remarkably 

resistant to truncation (266, 297). Although B" is essential for U6 transcription, 

extensive deletion analysis has failed to identify a single amino acid that is absolutely 

required for transcription with only four isolated amino acids yet to be tested (297). 

A core B" protein of only 176 amino acids (out of 594) has been found to be 

sufficient for U6 transcription, although a larger domain is required for tRNA 

transcription (297). This is likely to reflect the TFIIIC dependency of tRNA 

synthesis. Two distinct domains (I and II), the first of which includes the SANT 

domain, that both seem to be necessary for tRNA transcription can function on an 

either-or basis for U6 snRNA synthesis (297). B" makes multiple contacts within 

the preinitiation complex (24, 253, 261, 264, 266, 439, 452), which may explain why 

it is so tolerant of deletion mutagenesis, the loss of any individual contact being 

compensated by other interactions made by the protein (266).

The recombinant B" protein is able to replace the Mono S B "  fraction in 

DNA binding and transcription of yeast tRNA and U6 genes, indicating that it is the 

sole essential component of the B" fraction (266). Similarly, recombinant TBP and 

recombinant BRF together are sufficient to reconstitute all the properties of B' 

TFIIIB activity (264). Indeed, it has been possible to reconstitute yTFIIIB from 

entirely recombinant components (266, 439, 452). However, although TFIIIB 

reconstituted from recombinant TBP, BRF and B" displayed identical DNA binding 

properties to native yTFIIIB, the factor was found to be less active for transcription 

(266, 452). This may be because the recombinant polypeptides are not folded 

correctly or lack important post-translational modifications. Alternatively, some 

component(s) may be missing from the transcriptional system reconstituted with 

recombinant TFIIIB components. Perhaps there are additional subunits of yTFIIIB 

that have yet to be identified that are nonessential but stimulatory, analogous to the 

TFIID TAFs that are dispensable for basal transcription of TATA-containing class II 

promoters but are required for activated transcription. It is also plausible that the 

component is an essential part of TFIIIB but present in residual amounts as a
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contaminant in the purified complementary fractions used to reconstitute 

transcription. Alternatively, the putative missing component may be distinct from 

TFIIIB. A prime candidate for such a component is TFIIIE, which has been detected 

in both native B' and B" fractions (121, 122). Ruth et al. found that transcription 

reconstituted with recombinant TBP, BRF, and B" is stimulated by TFIIIE (452). 

Thus, yeast TFIIIB consists minimally of BRF, TBP and B", but there may be 

additional, perhaps regulatory, subunits. However, the identification of any such 

subunits is made more difficult by its apparent lability (235, 261). Indeed, yTFIIIB 

has yet to be purified to anywhere near homogeneity without its resolution into at 

least two separate components. B" is easily dissociated from TFIIIB by a variety of 

mild chromatographic procedures (235, 261). It has been suggested that yTFIIIB is 

not a stable molecular entity, except when in a DNA-bound state (83, 235).

The composition of mammalian TFIIIB is much less well characterised than 

that of yeast. The mammalian factor was first identified as a single polypeptide of 

60kDa in size, as was originally reported for yeast TFIIIB by Klekamp and Weil 

(545). This followed chromatography of HeLa cell extracts on a series of ion- 

exchange columns in a fractionation scheme essentially the same as used by 

Klekamp and Weil. A 60kDa polypeptide was found to constitute -90% of the 

protein in the most highly purified fraction which was capable of supporting 

transcription of tRNA, 5S and VA genes in the presence of partially purified 

complementing fractions providing a source of TFIIIA, TFIIIC and pol III (545). 

Additional support for TFIIIB being a 60 kDa protein was provided by the 

sedimentation of TFIIIB activity at ~60kDa following glycerol gradient 

centrifugation of either crude or partially purified fractions (545). However, it was 

subsequently demonstrated that TBP is an essential component of human TFIIIB, as 

in yeast (340, 371, 484, 507, 573). Thus, antibodies raised against TBP were found 

to specifically immunoprecipitate TFIIIB activity (91, 340, 371, 507, 573). 

Furthermore, a subpopulation of TBP molecules were found to consistently 

cofractionate with TFIIIB during a variety of chromatographic procedures (340, 371, 

484, 507, 514, 573). The 60kDa protein reported by Seifart’s group is therefore 

likely at best to be only one component of a larger TFIIIB complex.

Gradient chromatography on Mono Q, a strong anionic exchanger, splits 

human TFIIIB (hTFIIIB) into two components raising the possibility that hTFIIIB,
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like yeast TFIIIB, might be labile (91, 340, 371). Lobo et al. found that these 

components eluted at 380mM and 480mM KC1 and named them 0.38M-TFIIIB and 

0.48M-TFIIIB, respectively (340). TBP was only found in the 0.38M-TFIIIB 

fraction (340). The active component of this fraction could be specifically 

immunodepleted using anti-TBP antibodies. Moreover, whereas recombinant TBP 

was unable to reconstitute transcription of 5S and VAi genes in a TBP- 

immunodepleted extract, the 0.38M-TFIIIB fraction was able to do so (340). This 

suggests that one or more TAF's exist in a complex with TBP in the 0.38M-TFIIIB 

fraction and that these are required for VAi and 5S transcription.

Using anti-TBP antibodies, a polypeptide of 88-90kDa was found to 

specifically coimmunoprecipitate with TBP and TFIIIB activity from 0.38M-TFIIIB 

fractions and other TFIIIB-containing fractions, suggesting that it might be a subunit 

of TFIIIB (374, 552). The cDNA for this protein was isolated and found to encode a 

677 amino acid protein (374, 552). The N-terminal 280 residues are 41% identical to 

S.cerevisiae BRF and 24% identical to human TFIIB (374). The protein is therefore 

referred to as human TFIIB-related factor (hBRF) (374). Regions of extensive 

homology shared by all three proteins include a zinc finger motif and two imperfect 

direct repeats (374). This is also true of BRF homologues cloned from 

Caenorhabditis elegans (CeBRF) and Drosophila melanogaster (DmBRF) (316, 508). 

The C-terminal half of hBRF is highly divergent with little homology to the yBRFs 

except for yeast homology regions II and III, which are conserved (374). The 

conservation of yeast HII and HIII domains between metazoan and lower eukaryotic 

BRF species suggests that these two domains are likely to be required for core BRF 

function. The C-terminal half of hBRF also has a region of low homology to chicken 

HMG2, including an acidic C-terminal tail typical of HMG2 proteins (552). 

However, CeBRF lacks an HMG2-like motif, suggesting such a motif is not essential 

for metazoan BRF function (316). Like the yeast BRFs, hBRF has two TBP-binding 

sites, a weak one in the N-terminal half and a strong one in the C-terminal half (552).

Immunodepletion of hBRF from HeLa nuclear extracts was found to severely 

inhibit transcription of VA and tRNA genes, demonstrating its essential role in 

human pol III transcription (374, 552). Transcription could be restored by the 

addition of recombinant BRF and TBP but not by rBRF alone, consistent with the 

stable association of TBP and BRF within hTFIIIB (374, 552). That rTBP and rBRF 

were sufficient to reconstitute transcription suggests that any other components of
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hTFIIIB are either loosely associated, displaced by the antibodies, or not required for 

basal expression. Gel filtration of 0.38M-TFIIIB suggests that the complex has a 

molecular weight of 300kDa, so it is unlikely that TBP and BRF are its sole 

constituents (340).

In addition to hBRF, a variety of other polypeptides were also found to 

coprecipitate with TBP following the immunoprecipitation of partially purified 

TFIIIB fractions with anti-TBP antibodies (91, 340, 374, 507). Taggart et al. 

identified a tightly-associated polypeptide of 172kDa (TAFT 72) and another more 

loosely-associated polypeptide of unreported size (TAF-L) (507). Lobo et al. 

detected polypeptides of 54, 83 and 150kDa (340), Chiang et al. detected 

polypeptides of 60, 87, 96 and 190kDa (91), and Mital et al. detected polypeptides 

of 27, 45, 67 and 70 kDa, as well as a 90kDa polypeptide that corresponds to hBRF 

(374). At present, however, hBRF is the only polypeptide identified by this approach 

to be confirmed as a subunit of hTFIIIB. Some of the polypeptides detected 

appeared substoichiometric to TBP and BRF, suggesting they may only be loosely 

associated or may bind TBP indirectly. This may partly explain some of the 

differences in the polypeptides detected by the different groups, the relationships 

between which are presently unclear (434). Although it remains to be seen which, if 

any, of these polypeptides are actually subunits of hTFIIIB, the coprecipitation of so 

many polypeptides suggests that the polypeptide composition of hTFIIIB might be 

complex.

Although the exact composition of hTFIIIB remains uncertain, significant 

progress has recently been made with the cloning of a human homologue of yeast B" 

(463). Human B" (hB") is substantially larger than its yeast counterpart, with a 

predicted molecular mass of 156kDa (463). There are three major regions of 

sequence similarity, a putative SANT domain ( a a  415-472) that is 43% identical 

with that of yeast B", a 131-amino acid region immediately upstream of this domain 

of 21% identity and a 115-amino acid region immediately downstream of the SANT 

domain of 17% identity (463). In addition to human and Saccharomyces cerevisiae 

B", sequences coding for putative B" homologues have also been detected in mouse, 

Drosophila melanogaster, Caenorhabditis elegans, Schizosaccharomyces pombe and 

Arabidopsis thaliana genomes (463). In all of these organisms, the B" SANT 

domain is extremely well conserved, suggesting that it may be essential for B"
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function (463). The most notable feature of the large C-terminal extension of hB" 

that is missing from yB" is a stretch of 19 short repeats of 26-28 amino acids. These 

repeats are similar to sequences that form coiled-coil structures from proteins 

belonging to the myosin and intermediate filament families, but a similar structure is 

not predicted for this region of hB" (463). An essential role for hB" in human pol III 

transcription is suggested by its immunodepletion from cell extracts which was found 

to severely compromise class III gene expression but had no effect on pol II 

transcription from the adenovirus major late promoter or the human U1 snRNA 

promoter (463). Furthermore, the addition of bacterially expressed recombinant hB" 

to depleted extracts was able to restore pol III transcription (463). TFIIIB therefore 

seems to be strongly conserved between yeast and humans, all three core yeast 

subunits, TBP, BRF and B", having structural and functional homologues in human 

TFIIIB.

However, whereas in yeast there is a single form of TFIIIB that is necessary 

and sufficient for the transcription of all class III genes, in humans there appear to be 

multiple forms of TFIIIB that function at different class III promoters. There is now 

substantial evidence that the TFIIIB requirements for type III promoters are different 

to those of types I and II (340, 365, 374, 463, 514, 515, 552). There are several 

examples of the physical separation of these requirements by column 

chromatography (340, 514). Teichmann and Seifart separated two forms of hTFIIIB 

on EMD-DEAE-Fractogel (EDF) (514). One form, hTFIIIB-a, which eluted in 

200mM KC1, was active for U6 but not VAi transcription. Conversely, the other 

form, hTFIIIB-P, which eluted with TBP and BRF in 300mM KC1, was capable of 

supporting VAi but not U6 transcription (514). hTFIIIB-a and hTFIIIB-P were also 

found to behave differently on Cibacron blue and on a Sephacryl-S300 HR gel 

filtration column (514). It is well established that hBRF is necessary for the 

transcription of type I and type II genes, but its requirement for transcription of type 

III genes has been controversial (374, 552). Whereas Wang and Roeder observed 

inhibition of U6 and 7SK gene expression following immunodepletion of extracts 

with anti-BRF antibodies (552), Mital et al. found that immunodepletion of hBRF 

inhibited VAi but had no effect on U6 transcription (374). A possible explanation of 

this discrepancy is suggested by the recent cloning by two different groups of a novel 

gene that encodes a protein, BRFU (463) (or hTFIIIB50) (515), that is highly related
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to hBRF and hTFIIB. This protein is specifically required for transcription of human 

U6 and 7SK genes but not the adenoviral VAi gene (463, 515). It might be the anti- 

BRF antibodies of Wang and Roeder recognised both hBRF and BRFU, but those of 

Mital et al. only depleted extract of hBRF (374, 552). In addition to BRFU, several 

splice variants of hBRF (hBRFs 2, 3 and 4) have also recently been discovered (365). 

It is reported that the different splice variants function at different class III genes 

(365). Thus, hBRF, hereon referred to as hBRFl, is the most active variant in 

transcription of type I and II promoters whereas a different variant, hBRF2, a 139 

amino acid protein that completely lacks the first N-terminal direct repeat of hBRFl, 

is implicated in U6 gene expression. The form of TFIIIB required for U6 

transcription may therefore contain two distinct BRF species, BRFU and hBRF2. In 

contrast, BRF1 is required for the expression of genes with type I or type II 

promoters. The recently identified hB" is an essential component of TFIIIB for the 

transcription of both VAi and U6 genes, suggesting that, like TBP, it is a common 

factor of the different forms of TFIIIB utilised by different class III genes (463). At 

present it is unclear whether the identity of the BRF species within the TFIIIB 

complex represents the only difference in the composition of TFIIIB utilised by type 

III promoters versus types I and II, or whether there are additional protein 

components that may be involved in conferring promoter specificity. Possible 

candidates include proteins of 54, 48, 42 and 40kDa that were found to stably 

associate with BRFU (TFIIIB50) during its immunopurification (515). That these 

proteins might constitute active components of TFIIIB is suggested by the ability of 

this immunopurified complex to restore U6 transcription to extracts depleted of 

BRFU (TFIIIB50), whereas recombinant BRFU alone was unable to do so (515). 

The resistance of this immunopurified complex to stringent washing with 500mM 

KC1 provides support that these BRFU-associated proteins may be of physiological 

significance (515). A protein of similar size to BRF2 (365) was also observed in 

some preparations of the BRFU (TFIIIB50) complex (515).

1.5.3 TFIIIC

TFIIIB alone has little or no sequence-specific affinity for DNA. Its 

recruitment to class III genes with type I or type II promoters requires TFIIIC (318).
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TFIIIC specifically recognises and binds to the A- and B- block intragenic promoter 

elements of type II promoters. This sequence-specific DNA-binding activity of 

TFIIIC has greatly facilitated its purification (71, 118, 156, 267, 291, 331, 408, 505, 

608). The factor was first purified from yeast where it is also referred to as x factor. 

Yeast TFIIIC comprises of six polypeptides of 138 (325), 131 (355, 431), 95 (407, 

505), 91 (14), 60 (119) and 55 kDa (351) (referred to as xl38, xl31, x95, x91, x60 

and t55 respectively). These polypeptides were found to tightly associate and 

copurify as a single entity during ion-exchange chromatography and affinity 

chromatography on specific tDNA or B-block columns (71, 156, 267, 408, 505). 

Limited protease treatment of TFIIIC generated a smaller form of the factor that 

retained its DNA-binding affinity but was only able to bind the B-block (360). This 

suggested that the A-block and B-block binding domains of TFIIIC are separate. In 

support of this, visualisation of yeast TFIIIC-tDNA complexes by electron 

microscopy revealed TFIIIC to consist of two linked globular domains, each of -300 

kDa and -10 nm in diameter (465). The linker connecting the two DNA-binding 

domains appears flexible and able to stretch (67, 465), accounting for the remarkable 

feat of TFIIIC to bind to A- and B- blocks separated by a wide variety of distances 

(18, 138). All six polypeptides of TFIIIC have been cloned and have been shown to 

be essential for yeast cell viability (14, 119, 325, 351, 355, 407, 431, 505). Although 

several of the polypeptides contain sequences that closely resemble known DNA- 

binding motifs (326, 355, 505), none of the polypeptides seem to be able to bind 

specifically to DNA on their own, suggesting the A-block and B-block binding 

domains may be composite, involving more than one polypeptide. Photocrosslinking 

experiments showed xl31, x95 and x55 to be positioned in close vicinity to the A- 

block, suggesting that they may be involved in TFIIIC binding to the A-block (23, 

24). Only xl38 is accessible to photocrosslinking from the B-block, suggesting it is 

likely to be directly involved in B-block DNA binding (23). TFIIIC fractions 

consisting primarily of just xl38 and x95 retain a substantial proportion of TFIIIC 

DNA binding activity, suggesting that these polypeptides are the major quantitative 

determinants of tDNA recognition (155).

Human TFIIIC is less stable than the yeast factor (118, 607). It is resolved 

into two components, TFIIIC 1 and TFIIIC2, during ion exchange chromatography on 

Mono Q (607). Both of these components are required for transcription of tRNA, 5S
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and VA genes (118, 331, 553, 607) but only TFIIIC1 is required for U6 and 7SK 

transcription (307, 397, 604). The subunit composition of TFIIIC 1 has yet to be 

determined. Sedimentation analysis suggested a mass of up to 200kDa for TFIIIC 1, 

assuming that it is globular, however little further progress has been made towards its 

characterisation (607). TFIIIC2 has been highly purified and found to comprise of 5 

polypeptides of 220, 110, 102, 90 and 63 kDa (a, p, y, 5, 8, respectively) (291, 331, 

608). TFIIIC2 binds specifically and with high affinity to the B-block region of VAi 

and tRNA genes (44, 553, 607). TFIIIC 1 enhances the B-block footprint generated 

by TFIIIC2 and extends it both 3' and 5' to include the A-block (553, 607). 

However, it remains to be determined whether TFIIIC 1 binds directly to the A-block 

or induces rearrangements in TFIIIC2 allowing the latter to do so. All five subunits 

of TFIIIC2 have been cloned (230, 231, 307, 331, 488). In contrast to TFIIIB and 

pol III, TFIIIC seems to be very poorly conserved between yeast and humans. 

Human TFIIICa and TFIIICp, which together appear to be responsible for the 

specific B-block binding activity of TFIIIC2 (43, 44, 291, 481, 608), show no 

significant homology to any of the subunits of yeast TFIIIC. This is very surprising 

because the A- and B-block sequences are highly conserved between yeast and 

mammals. hTFIIICb also lacks significant sequence similarity with any of the yeast 

TFIIIC subunits (230). However, the remaining two components of TFIIIC2 display 

weak homology to particular subunits of yeast TFIIIC; hTFIIICe shares 22% identity 

with x95 and hTFIIICy is 31% identical to x l3 1, both of which contain 11 copies of a 

tetratricopeptide repeat (TPR) (231).

1.5.4 TFIIIA

TFIIIB, TFIIIC and pol III are sufficient for basal transcription of class III 

genes with type II promoters, however, 5S transcription requires an additional factor 

called TFIIIA (134, 473). Like TFIIIC, TFIIIA is poorly conserved between species, 

for example frog and yeast TFIIIA share only 20% overall sequence identity (13). 

Despite the sequence divergence of TFIIIAs from different species, in every species 

the factor is characterised by its possession of nine tandemly arranged, zinc- 

dependent DNA binding domains, commonly referred to as zinc fingers (13, 373,
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381). The TFIIIA zinc fingers have a single zinc ion coordinated by two cysteine 

and two histidine residues. The loop-like structure or “finger” created is thought to 

consist of an antiparallel P-sheet packed against an a-helix (31). The a-helix of such 

fingers typically make sequence-specific contacts in the major groove of DNA. 

TFIIIA is highly modular, with clusters of zinc fingers binding specifically to distinct 

regions of the 5S gene ICR. The N-terminal three fingers (fingers 1-3) bind the C- 

block, finger 5 binds the intermediate element, fingers 7-9 bind the A-block, whereas 

fingers 4 and 6 span these promoter regions, functioning primarily as spacer elements 

(98, 139, 200, 201). TFIIIA also specifically contacts TFIIIC, thus serving as a 

molecular adaptor between TFIIIC and the 5S gene promoter and allowing TFIIIC to 

recruit TFIIIB to 5S genes (318, 472).

1.5.5 PTF/SNAPc

Class III genes with a type III promoter such as 7SK and vertebrate U6 genes 

have distinct transcription factor requirements from genes with type I or II promoters 

(307, 365, 374, 432, 463, 514, 515, 546, 604). The lack of an internal control region 

(ICR) obviates the need for TFIIIA or TFIIIC2, however the poorly characterised 

TFIIIC 1 is required for transcription (307, 604). Since type III promoters contain a 

TATA box, TFIIIB can bind to such promoters independently of other factors. 

However, recruitment of TFIIIB to the TATA box is greatly enhanced by a factor 

called SNAPc/PTF that binds the PSE of these promoters (604). This factor is 

essential for transcription of 7SK and vertebrate U6 genes (604). It has five subunits, 

all of which have been cloned (17, 208-210, 455, 592, 605). The largest subunit, 

SNAP190 (PTFa), contains a Myb DNA-binding domain and can be crosslinked to 

the PSE (592). The U6 and U2 PSEs are functionally interchangeable suggesting 

that the same PSE-binding factor may be employed by class II and class III snRNA 

genes (334, 338). Indeed, immunodepletion of extracts of SNAPc/PTF was found to 

inhibit not only U6 and 7SK transcription but also pol II transcription of U1 and U2 

genes (17, 208, 210, 455, 605). Moreover, purified SNAPc/PTF was able to restore 

transcription of these genes; thus it seems that there is a single PSE-binding protein 

shared by pols II and III.
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The very strict PSE-TATA box spacing requirement of type III promoters 

suggests that TFIIIB and SNAPc/PTF interact (167, 329, 339, 543). Indeed, subunits 

of SNAPc/PTF have been shown to bind directly to TBP (17, 208, 210, 455, 605). 

This may explain how SNAPc/PTF stimulates TFIIIB recruitment to the U6 

promoter. Conversely, TBP enhances SNAPc/PTF binding to the PSE (376). It 

seems that SNAPc/PTF and TFIIIB cooperatively interact facilitating the recruitment 

of each other to the promoter. Despite this, their binding to the PSE and the TATA 

box respectively is relatively slow. SNAP 190 contains a C-terminal extension that 

inhibits it from interacting with the PSE, perhaps by masking its DNA-binding 

domain (377). However, interaction with a pol II- and pol III- transcriptional 

activator called Octl, which binds octamer motifs found in the DSE of these 

promoters and those of pol II-transcribed U snRNA genes, overcomes this 

autoinhibition (375). Thus, whereas the association of SNAPc with the PSE of the 

human U6 gene takes over one hour in the absence of Octl it is complete in 15-30 

minutes in its presence (375).

1.6 Preinitiation complex formation on class III genes and interactions 

between class III transcription factors and with pol III

The formation of active transcription complexes on the different class III 

genes was initially investigated by means of the template exclusion assay. This 

approach monitors the ability of a gene that is preincubated with limiting amounts of 

factor(s) to exclude transcription of a second gene added subsequently; preferential 

transcription of the first gene indicates the stable interaction of a limiting component 

during the preincubation, thereby precluding its association with the second gene. 

Using this assay, ordered stepwise assembly pathways for the formation of 

preinitiation complexes on type I and type II promoters have been defined (Fig. 1.1). 

Thus, TFIIIB was found only able to bind to VA and tRNA genes after TFIIIC had 

bound (318). In the case of a 5S gene, TFIIIC was found to bind after TFIIIA and 

before TFIIIB (318). Using separated TFIIIC 1 and TFIIIC2 it was found that 

TFIIIC2 is the first factor to bind to VAi or tRNA genes, consistent with its B-block 

binding activity (117). TFIIIC 1 and TFIIIB can then interact in either order to form 

a functional preinitiation complex (117).
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Figure 1.1

Stepwise assembly of class III preinitiation complexes in vitro

A)

Flow chart indicating the order of interaction of transcription factors and polymerase 

with a typical type II promoter such as that of a tRNA gene.

B)

Flow chart indicating the order of interaction of transcription factors and polymerase 

with the promoter of a 5S rRNA gene.
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Such assembly pathways defined in vitro with separated components clearly 

may differ from how functional preinitiation complexes are formed in vivo. Indeed, 

Wang et al. (551) recently reported the discovery of a human pol III holoenzyme, 

that is, a complex of the pol III machinery that is fully functional for accurate and 

specific pol III transcription that exists independently of DNA, suggesting that 

preinitiation complexes may be preassembled off the DNA. Nevertheless, these 

sequential assembly pathways are an indication of how transcription complex 

formation might occur in vivo and provide some information of interactions that 

likely occur between the transcription factors and with pol III that may be 

functionally important.

The current knowledge of the network of interactions between individual 

components of the pol III transcriptional machinery is most advanced in yeast where 

the majority of the components required for basal transcription have been cloned 

(83). Protein-DNA photocrosslinking has been used to map the positions of the 

various components of the pol III transcriptional machinery on a yeast tRNA 

promoter (23, 24). Thus, yBRF and B" can be specifically crosslinked to sequences 

located ~40bp upstream of the transcriptional start site in a TFIIIC-dependent 

manner (24). xl31 is the only subunit of TFIIIC accessible for crosslinking with 

photoactive nucleotides located upstream of the start site (24, 25). This subunit is 

therefore an excellent candidate for interacting with TFIIIB and correctly positioning 

it on the DNA. Moreover, x l3 1 contains 11 tetratricopeptide repeats (TPRs) which 

are known to mediate protein-protein interactions (355). Two-hybrid analysis 

showed that t131 interacts both with yBRF (82) and yB" (452). In addition, 

recombinant yBRF has been shown to bind directly to x 131 (271). Significantly, 

x l31 is one of the two subunits of yTFIIIC that has sequence similarity with a 

subunit of human TFIIIC suggesting that these interactions may be conserved. 

Indeed, the human homologue of x131, hTFIIICy, directly binds hBRF (231). It has 

also been shown to directly associate with TBP (231). In yeast, x60 interacts with 

TBP (119). In the vertebrate system interactions have also been described for 

hTFIIICe with hBRF and hTBP (231).

The assembly of TFIIIB on a yeast tRNA promoter can be reconstituted in 

vitro using isolated recombinant yeast TFIIIB subunits (266, 452). A precisely 

ordered series of interactions are required. yBRF is the first factor to associate with
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the TFIIIC/tDNA complex, followed by TBP and then B" (264). In the absence of 

BRF, TBP cannot be recruited, whereas recruitment of B" requires both TBP and 

BRF (264, 266, 452). Each step in the sequential assembly of TFIIIB on DNA is 

accompanied by changes in the photocrosslinking efficiency of xl31 and yBRF

(264). Such changes are suggestive of conformational rearrangements. This may 

explain the paradoxical ability of yeast TFIIIB, which alone has little or no affinity 

for DNA, to bind so tightly to DNA once fully assembled on the DNA by TFIIIC. It 

seems that yeast BRF contains a cryptic DNA-binding domain in its C-terminal half 

that becomes unmasked by the conformational changes that occur in the factor 

during the assembly of TFIIIB on the promoter (234). By hiding the DNA-binding 

domain, which is sequence independent, this prevents BRF from being randomly 

dispersed on irrelevant DNA sites through the genome.

In yeast, TFIIIA and TFIIIC are dispensable for transcription once they have 

recruited TFIIIB to the promoter (263). TFIIIB in turn is responsible for the 

recruitment of pol III to the promoter and correctly positioning it over the start site 

for transcription initiation. All three subunits of yeast TFIIIB are required for the 

stable recruitment of pol III however so far only yBRF has been shown to directly 

interact with the polymerase (22, 145, 271, 564). Prior to initiation, the C160, C128 

and C34 subunits of pol III are all accessible to crosslinking upstream of the start site 

and may therefore be in the close vicinity of promoter-bound TFIIIB (21, 22, 415). 

As such, these three pol III subunits constitute excellent candidates for interacting 

with TFIIIB. One of these, C34, has been shown to directly bind yBRF (271). The 

human homologue of C34, C39, interacts directly with both hBRF and TBP (554). 

The functional conservation of an interaction between TFIIIB and this subunit of pol 

III through evolution suggests that their interaction may be essential (554). In 

support of this, C34/C39 appear to play a crucial role in the recruitment of pol III to 

class III genes, which is also dependent upon interaction with TFIIIB (236, 554). 

Thus, antibodies against C34 were found to potently inhibit tRNA synthesis in vitro 

but had little effect upon nonspecific transcription of poly(dA.dT) by pol III (236). 

Furthermore, mutations in C34 that impair its interaction with yBRF also inhibited 

pol III recruitment (61). A similar role for C39 is suggested by its selective 

dissociation from human pol III by sucrose sedimentation in 0.5M KC1 or partially 

denaturing conditions as part of a stable subcomplex that also includes C62 and C32
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(554). Human pol III that has been depleted of this subcomplex is fully competent 

for transcription elongation and termination but has lost the ability to support 

promoter-directed initiation (554). Accurate initiation can be restored to the depleted 

polymerase by adding back recombinant or natural subcomplex (554). The 

homologous yeast proteins C34, C82 and C31 also form a subcomplex, which 

dissociates from yeast pol III during native gel electrophoresis (535, 565). 

Interactions between the human and yeast pol III subcomplexes and TFIIIB have 

only been detected for C34/C39 (554, 564). Recently, however, a direct interaction 

has been described between the newly identified yeast pol III subunit C17 and yBRF 

(145). C17 also interacts with C31 (145). Thus, at least two subunits of yeast pol III, 

C34 and C l7, may contribute to the specific recognition of TFIIIB by the enzyme. 

Both subunits are essential, suggesting that their roles in recruiting pol III to class III 

genes are not redundant.

The interaction site on yBRF for C34 has been mapped to the direct repeat 

region in the TFIIB-related N-terminal half of the protein (271). This region is 

highly conserved between BRF and TFIIB, raising the remote possibility that C34 

might also bind TFIIB. However, GST-pulldown assays have failed to detect an 

interaction between TFIIB and C34 (271). TFIIB performs an analogous role in pol 

II transcription to BRF in the pol III system since it is involved in the specific 

recruitment of pol II to class II promoters. Moreover, it is the direct repeat region of 

TFIIB that binds pol II (183). Importantly, C34 and C17 are both unique to pol III 

and have no similarity to any pol I or pol II subunit (145, 437, 499). This, and the 

selectivity of the interaction between BRF and C34 and that between BRF and C l7 

may be essential in defining the pol specificity of class III gene preinitiation 

complexes, although other interactions involving pol III may also be important.

Direct interactions have recently been detected between pol III and TFIIIC 

(129, 148, 230, 231). In yeast, two-hybrid screening detected an interaction between 

x l31 and the ABC 10a polymerase subunit that is found in all three nuclear pols 

(129). This has been confirmed in vitro using recombinant proteins (129). 

Additionally, a temperature sensitive mutation in ABC 10a has been shown to be 

specifically suppressed by the overexpression of a mutant form of xl31 (129). 

Furthermore, the mutation in ABC 10a was found to weaken the interaction with 

x l31 and the suppressive mutation in x l31 increased the interaction between the two
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proteins (129). Thus, the interaction between ABC 10a and xl31 appears to be 

functionally important. This is rather surprising because yeast TFIIIC is dispensable 

for transcription in vitro once TFIIIB has been recruited (263). Promoter-bound 

yTFIIIB is able to recruit pol III for multiple rounds of accurately initiated 

transcription with the same efficiency as a fully assembled transcription complex 

containing TFIIIC and, for 5S genes, TFIIIA (263). However, in a physiological 

context TFIIIB may not be sufficient and interactions between TFIIIC and pol III 

may be required. These may contribute to the recruitment of pol III or may be 

necessary for a post-recruitment function. Alternatively, in vivo, pol III may be 

recruited preassembled with TFIIIB and TFIIIC as part of a holoenzyme. The 

ABC10a-xl31 interaction may be involved in the formation and/or stability of such a 

complex. In support of the possible existence of a yeast pol III holoenzyme, Seifarf s 

group has immunopurified yeast pol III enzyme that contains immunologically 

detectable amounts of TBP, BRF and TFIIIC (83). Interestingly, this potential 

holoenzyme form contained functional amounts of TFIIIC but had to be 

supplemented with TFIIIB components for transcriptional activity (83). An 

interaction has also been detected by two-hybrid analysis between the yeast pol III 

subunit C53 and a fragment of xl31 (148), however this interaction could not be 

detected using the entire x 131 protein (129). In humans, interactions of TFIIIC8 with 

C39 and C62, and TFIIICe (homologous to x95) with C62 (homologous to yeast 

C82), have been reported (231).

The assembly of a functional preinitiation complex on class III genes is a 

slow process. Once formed however the complex is extremely stable with its 

constituent components all remaining associated after transcription initiation (40, 

154, 317, 318, 405). With pol III being the only factor that is recycled, once a 

preinitiation complex has formed on a class III gene the gene tends to be committed 

to multiple rounds of transcription (40, 154, 318). A very different situation exists 

for pol II, where most of the components of the transcription complex dissociate 

following initiation; only TFIID remains at the promoter, and the other factors must 

reassemble for each cycle (612). Clearly, the need of the class II factors to 

reassociate makes reinitiation slow and inefficient however it also provides 

considerable scope for regulating each round of transcription that is not available to 

pol III (123). The scope for regulation of transcription elongation and termination is
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also less for pol III. Whereas pol III appears to be able to carry out these two 

processes accurately and efficiently on its own, pol I and pol II both require the 

assistance of dedicated elongation and termination factors (411). After the formation 

of a stable preinitiation complex, the transcription of class III genes can proceed 

extremely rapidly. Even the recycling of pol III has been optimised such that after 

the initial round of transcription, cycles are 5- to 10- fold more rapid than the first 

(123). The polymerase is recycled without actually being released from the template; 

consequently the slow initial step of polymerase recruitment is avoided (123).

Pol III transcription is therefore notably more efficient than that of pol II and 

the level of basal pol III transcription is relatively high (568). Such transcriptional 

efficiency may be necessary to ensure that sufficiently large quantities of 5S rRNA 

and tRNA are produced to sustain adequate levels of cellular protein synthesis. 

Clearly, however, the translational requirements of a cell can vary considerably. For 

example, a cell that is actively proliferating will require substantially higher levels of 

protein synthesis than a cell that has withdrawn from the cycle and is in a state of 

quiescence. Although absolutely essential, the levels of 5S rRNA and tRNA needed 

by the cell can therefore also alter drastically. Rather than synthesise a vast excess of 

5S rRNA and tRNA to cater for variations in the amounts required of these two 

transcripts, it appears that their transcription by pol III is tightly regulated, thereby 

allowing their production to be tailored to the metabolic demands of the cell (568). 

This will reduce the energy load on the cell but also provides a potential point of 

control of the biosynthetic capacity of the cell. Pol III transcription of the other class 

III genes is also subject to regulation (568).

1.7 Regulation of RNA polymerase III transcription

A variety of proteins have been found to be able to modulate the rate of pol 

III transcription, either in a positive or a negative fashion (568). As such, these 

modulatory proteins are, potentially, regulators of pol III transcription. In support of 

this, pol III transcription has been shown to be regulated in response to changes in a 

number of different physiological conditions (569). The mechanisms which cells 

employ to regulate expression of class III genes under particular cellular and 

environmental conditions are slowly being elucidated. Many of the proteins shown
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to modulate the level of pol III transcription have been implicated. Changes in the 

chromatin structure of class III genes can also influence the level of transcription and 

may have a role in the physiological regulation of pol III transcription (569).

1.7.1 Activities that reduce pol III transcription 

Drl

Drl, a 19kDa nuclear phosphoprotein, was originally isolated from HeLa 

cells because of its ability to repress pol II transcription (242) but it has subsequently 

been shown to inhibit pol III transcription as well (576). The factor has been highly 

conserved through evolution, with 37% sequence identity between the human and 

yeast proteins, and is essential for yeast cell viability (276). Drl functions as a 

transcriptional repressor by directly binding TBP and blocking essential interactions 

made by the protein that are required for transcription (242, 276, 576, 602). For 

example, Drl inhibits pol II transcription by preventing promoter-bound TBP from 

interacting with the pol II-recruiting factor TFIIB (242). The exclusion of TFIIB 

binding to TBP is thought to result from conformational changes in the structure of 

TBP induced by the binding of Drl (370). Drl does not bind TFIIB (602) and 

contacts a surface of TBP that is spatially removed from the TFIIB-docking site 

(277). Using recombinant proteins, Drl has also been shown to interfere with the 

binding of TBP to the pol Ill-specific factor BRF (576). Thus, Drl appears to inhibit 

transcription by pols II and III by very similar mechanisms, in each case it prevents 

TBP from binding to a class-specific factor that is required for polymerase 

recruitment; TFIIB in the case of pol II and its homologue BRF in the case of pol III 

(242, 576). Unlike TFIIB though, two distinct regions of BRF contact TBP (82, 271, 

552). By analogy to its effects on TFIIB, Drl may disrupt binding to the N-terminal 

direct repeats of BRF through conformational changes in TBP. However, whereas 

TFIIB and this region of BRF interact with TBP at a site distinct from that bound by 

D rl, the C-terminal domain of BRF appears to make a pol Ill-specific high-affinity 

interaction with the basic repeat region of TBP, the very same region to which Drl 

binds (271). Point mutagenesis indicates that the binding sites of Drl and BRF in the
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basic repeat region of TBP extensively overlap (64, 271, 277). Thus, BRF and Drl 

are in direct competition for binding this region of TBP.

By targeting TBP and being able to repress both pol II- and pol III- 

transcription Drl has the potential to coordinately regulate the transcriptional 

activities of these two polymerases (576). TBP is also required for pol I transcription 

as part of the basal factor SL1 (103). However, whereas the addition of highly 

purified recombinant or native Drl to human extracts was found to potently repress 

the expression of a variety of different class III genes including tRNA, VA and U6, 

pol I transcription of rRNA under the same conditions was unaffected (576). 

Similarly, the overexpression of Drl in yeast was found to inhibit tRNA synthesis 

but had no discernible effect on pol I transcription (276). In contrast to pols II and 

III, pol I transcription is seemingly immune to the repressive effects of Drl. By 

selectively inhibiting pols II and III, Drl may be able to shift the balance of nuclear 

transcription in favour of pol I, which could be of considerable value when rRNA 

levels are limiting.

RB

The retinoblastoma protein, RB, a 105kDa nuclear phosphoprotein (324), was 

the first tumour suppressor to be identified, over a decade ago (153). The 

retinoblastoma susceptibility gene that encodes RB was initially cloned because of its 

association with an inherited predisposition to retinoblastoma, a rare paediatric 

tumour of the retina (153). Individuals who inherit a non-functional allele of the Rb 

gene have a roughly 90% chance of developing retinoblastoma at an early age (580). 

For retinoblastoma to actually arise, however, this requires the inactivation of the 

remaining allele of the Rb gene, since inactivating mutations in Rb are recessive 

(580). Loss of RB function appears to be a universal feature of both the familial and 

sporadic forms of this tumour and is likely to be the rate-limiting step in its initiation 

(226). Inactivating mutations in both alleles of the Rb gene have also been identified 

in a variety of other human cancers including many sarcomas, bladder and small cell 

lung carcinomas (226, 557, 580). In many other human malignancies a wild-type Rb 

allele is retained, but RB function is still disrupted, for example because of the
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association of RB with viral oncoproteins or the hyperactivity of cyclin-dependent 

kinases that switch off RB (557).

The ability of RB to function as a tumour suppressor can be explained by its 

normal roles in the cell. Thus, RB suppresses both the proliferation (increase in 

number) and the growth (increase in mass) of cells and is involved in ensuring that 

the cell does not divide and grow when conditions are unfavourable (557). When RB 

function is missing, the ability of cells to arrest proliferation and growth is severely 

compromised and the cell is less sensitive to normal regulatory signals; these 

changes constitute a major step towards carcinogenesis (482, 557, 580). RB is also 

implicated in promoting cell differentiation, which may also contribute to its tumour 

suppressor functions (95, 214, 245, 322). All of these functions of RB appear to be 

at least partly attributable to the effects of RB on gene expression (173, 214, 290). 

For example, RB is able to cooperate with certain transcription factors such as C- 

EBP family members and MyoD to activate the transcription of a number of pol II- 

transcribed genes involved in differentiation (179, 475).

RB is a highly abundant protein and can bind and regulate a variety of 

transcription factors (214, 290). One of the key targets of RB is the factor E2F (3, 

131, 305, 310, 556). E2F activates the expression of a range of pol II-transcribed 

genes that are important for cell cycle progression (3, 131). These include several 

genes that are required for DNA replication, such as those encoding DNA 

polymerase a  and the replication origin-binding protein HsOrcl, as well as genes 

that drive the cell cycle such as cdc2 and various cyclins. RB can bind to E2F, 

inactivating it, and can form a repressive complex that actively inhibits the 

transcription of these E2F-responsive genes that are required for passage through the 

cell cycle, thereby providing a possible explanation as to how RB is able to constrain 

cell proliferation (3, 131). The effects of RB on gene expression are not restricted to 

pol II-transcribed genes, however. RB can directly inhibit transcription by all three 

nuclear RNA polymerases (Fig. 1.2) (313, 566, 567). Whereas only a very restricted 

number of genes transcribed by pol II are inhibited by RB, it appears to be a general 

repressor of pol III transcription (314, 579). In a growing cell, pols I and III are 

responsible for -80% of total RNA synthesis (411). The bulk of this is devoted to 

the production of rRNA and tRNA, which are essential components of the 

translational machinery. By limiting the production of these, RB may be able to
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Figure 1.2

Suppression of cell growth and proliferation by RB

The pol II transcription factor E2F promotes the expression of a variety of genes 

required for cell cycle progression. These include the genes that encode for DNA 

polymerase a  (DNA pol a), dihydrofolate reductase (DHFR), thymidine kinase 

(TK), cdc2 and various cyclins. RB, by inhibiting E2F, can suppress transcription of 

these E2F-responsive genes thereby providing a brake on cellular proliferation. In 

addition, RB also represses the pol I factor UBF and the pol III factor TFIIIB thereby 

reducing the synthesis of rRNA and tRNA, important determinants of the 

biosynthetic capacity of the cell. By restraining protein synthesis, this may provide a 

mechanism for RB to suppress cell growth.
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suppress the level of protein synthesis, which could provide a brake on cellular 

growth (313, 567). Careful measurements in animal cells have demonstrated that the 

rate of growth is directly proportional to the rate of protein accumulation, the main 

determinant of which is protein synthesis, although turnover also makes a 

contribution (27).

The ability of RB to repress pol III transcription was initially demonstrated in 

vivo by transient transfection experiments (579). The overexpression of RB was 

found to reduce transcription of the adenoviral VAi gene whereas transcription of a 

cotransfected CAT gene under the control of the pol II-transcribed human 

immunodeficiency virus promoter was unaffected (579). Clearly, however, this 

inhibitory effect of RB on pol III transcription observed in vivo could be very 

indirect, perhaps resulting from cell cycle changes. It was therefore tested whether 

RB could repress pol III transcription when reconstituted in vitro using partially 

purified fractions (579). This was indeed shown to be the case, suggesting that one 

or more components of the pol III transcriptional apparatus may be a direct target for 

regulation by RB.

These results showed for the first time that high levels of RB can inhibit pol 

III transcription. However, the possibility existed that the repression observed in 

vitro and in vivo is simply an artefact of overexpression. It was therefore very 

important to determine whether RB can influence pol III transcription when present 

at physiological concentrations within a cell. To address this, the pol III activity of 

two human osteosarcoma cell lines was compared; U20S, which contain functional 

wild-type RB, and SAOS2, which only express a truncated non-functional form of 

RB (579). SAOS2 cells were found to express a transfected VAi gene ~5-fold more 

actively than U20S (579). The higher pol III activity of the RB-deficient SAOS2 

cells was confirmed in vitro using cell extracts (579). In addition, primary 

fibroblasts from knockout mice in which the Rb gene had been inactivated by site- 

directed mutagenesis were shown by nuclear run-on assays to synthesise tRNA and 

5S rRNA at ~5-fold higher rates than equivalent cells from wild-type mice (579). In 

contrast, the overall level of pol II transcription was unchanged. Extracts prepared 

from the Rb-negative cells also displayed higher levels of pol III activity, providing 

independent confirmation that the pol III transcriptional apparatus is more active in 

the absence of RB (579). Since the only genetic difference between the Rb+/+ and 

Rb"/_ fibroblasts is the presence or absence of the Rb gene, it can be concluded from
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these results that endogenous RB plays a major role in suppressing pol III 

transcription in vivo. What is less clear is to what extent this may contribute to 

growth control by RB. However, multiple components of the translational apparatus 

are frequently deregulated in cancer cells, suggesting that regulation of protein 

synthesis is an important aspect of growth control (445, 494). There is also a 

correlation between the ability of RB to function as a tumour suppressor and its 

ability to affect pol III transcription (579). Thus, the minimal region of RB that is 

necessary to regulate cell growth and proliferation is also sufficient to repress pol III 

transcription (579). Moreover, four naturally occurring and highly localised 

mutations that inactivate RB in human cancers were each found to prevent RB from 

regulating pol III transcription (59, 579). However, it has yet to be demonstrated that 

tRNA and rRNA levels are ever limiting for protein synthesis in mammalian cells 

under normal physiological conditions. Nevertheless, the production of tRNA and 

rRNA does increase following mitogenic stimulation and decreases when cells 

quiesce, suggesting that their levels are closely regulated in accordance with the 

biosynthetic requirements of the cell (96, 255, 363, 445). In the yeast 

Saccharomyces cerevisiae, tRNA levels clearly can be limiting; a two-fold reduction 

in the level of initiator tRNA was found to result in a three-fold increase in cell 

doubling time (152). If similar is true of a mammalian cell, the 5-fold decrease in 

tRNA levels imposed by endogenous RB (579) could be a major constraint on 

cellular growth.

Apart from tRNA, 5S rRNA and VAi genes, RB has also been shown to 

inhibit transcription of B2, U6, EBER2, 7SK, and Alu genes (93, 215, 314, 503, 

579). In fact, every pol III template tested has been found to be inhibited by RB. 

Clearly, RB is effective in repressing transcription from all categories of pol III 

promoter, suggesting that it may target one of the general pol III transcription factors, 

or pol III itself, in order to achieve repression (314).

To try and determine which component(s) of the pol III transcriptional 

apparatus are targeted by RB, add-back experiments were performed to see if any of 

these could restore pol III transcription reconstituted in vitro in the presence of RB 

(314). Indeed, the addition of increasing amounts of a partially purified TFIIIB 

fraction was found to relieve inhibition of VAi transcription by recombinant RB in a 

dose-dependent manner (314). In contrast, the addition of partially purified pol III or 

TFIIIC, the latter of which is limiting in the absence of RB, had no effect (314).
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These results suggested that RB specifically targets TFIIIB for repression. In support 

of this, in pull-down assays GST-RB was shown to bind TBP and BRF (314). 

Furthermore, immunoprecipitation and cofractionation experiments have shown that 

endogenous RB and TFIIIB interact stably (314). This association is diminished or 

abolished in SAOS2 cells, which contain only a nonfunctional mutant form of RB 

(314). In addition, complementation assays have found that TFIIIB activity is 

significantly elevated in primary fibroblasts from Rb7' mice (314). In contrast, little 

or no difference is detected in TFIIIC2 B-block-binding activity between the Rb- 

positive and Rb-negative cells (314). Thus, endogenous RB also specifically inhibits 

TFIIIB. Since TFIIIB is required for the transcription of all class III genes, this 

provides a possible explanation as to how RB may act as a general repressor of pol 

III transcription, although the mechanism by which RB inactivates TFIIIB has yet to 

be determined (314). However, whereas the majority of class III genes utilise the 

same form of TFIIIB as VAi, recent data indicates that those templates with a type III 

promoter, such as the vertebrate U6 snRNA gene, utilise a different form of TFIIIB 

(365, 463, 515). At present it is unclear whether RB inhibits this form of TFIIIB as 

well. Alternatively, RB might repress transcription of these genes by targeting a 

different factor(s).

Hirsch et al. recently reported that RB and SNAPc physically interact (215). 

Moreover, they showed that TBP, or more effectively, a combination of TBP and 

SNAPc, is able to restore pol III transcription of the human U6 snRNA gene to RB- 

treated extracts (215). These results suggest that RB represses transcription of class 

III genes with external promoters, such as U6, by targeting TBP and/or SNAPc 

(215). However, the possibility remains that RB may also inhibit the form of TFIIIB 

utilised by type III promoters and that this also contributes to RB repression of these 

genes. Nevertheless, the fact that RB can inhibit SNAPc function, which is not 

required for transcription of pol III templates with type I or type II promoters, 

suggests that one or more class III genes with a type III promoter may be an 

important target for RB function. This is very unlikely to be true for all the different 

class III genes repressed by RB. Instead, this blanket repression of pol III 

transcription may simply be the indirect consequence of RB targeting a general 

component of the pol III transcriptional apparatus in order to repress functionally 

important targets such as 5S rRNA and tRNA genes.
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Recently, it has also been demonstrated that p i07 and p i30, which are 

structurally and functionally related to RB, also inhibit pol III transcription when 

overexpressed, both in vitro and in vivo (504). In addition, primary fibroblasts 

derived from p i07 p i30 double knockout mice were found to display elevated pol III 

transcriptional activity (504).

p53

Another important tumour suppressor, p53, which is unrelated to RB, also represses 

pol III transcription (70, 90). The gene that encodes p53 is highly conserved 

amongst vertebrate species; it also holds distinction as the most frequently mutated 

gene in human cancers (284). In fact, p53 is lost or mutated in over half of all human 

malignancies (222, 223). Like RB, wild-type p53 can arrest cell growth and 

proliferation (108, 358, 369, 372). However, whereas RB function is required every 

cell cycle as part of the normal proliferative and growth control, p53 function is more 

that of an emergency checkpoint control against aberrant growth and neoplastic 

transformation that is only occasionally needed (284). That p53 is not an essential 

cell cycle regulator is demonstrated by the viability and normal development of p53'A 

mice (127). However, these mice have a propensity to cancer, such that 74% 

develop tumours by the age of six months (127). Clearly, the inactivation of p53 can 

play a crucial role in carcinogenesis. Li-Fraumeni individuals, who carry a germ-line 

mutation in p53, are highly cancer-prone (284).

Under normal conditions, very little p53 protein is found in most of the cells 

of the body and much of it is in a latent form (332). However, on exposure of cells 

to certain stress stimuli such as DNA damage, cellular or viral oncogene activity, or 

hypoxia, active p53 protein rapidly accumulates and will either induce a growth 

arrest or apoptosis (284, 332). p53 is activated in response to such stimuli because 

cells that are exposed to these stresses commonly contain potentially carcinogenic 

mutations and exhibit abnormal cell behaviour, and are more likely to become 

cancerous. The ability of p53 to arrest cell growth or trigger apoptosis, by analogy to 

RB tumour suppressor functions, appears to be mediated, to a large extent, by 

changes in gene expression (284, 332).
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p53 is a transcription factor and can regulate the expression of a variety of 

genes (284, 332). It can bind DNA both in a sequence-specific manner and non- 

specifically, and is capable of both activating and repressing transcription depending 

on the gene (284, 332). Genes activated by p53 contain p53-binding sites in their 

promoters. These include pol II-transcribed genes encoding proteins that are 

involved in inhibiting cell cycle progression such as the cyclin-dependent kinase 

inhibitor p21/WAF1, which can block both the Gi/S and the G2/M cell cycle 

transitions, and pro-apoptotic genes such as Bax (284, 332). In addition, p53 can 

specifically repress a number of pol II-transcribed genes devoid of p53 recognition 

sequences, including those that encode c-fos, PCNA, and cyclin A, all of which are 

involved in promoting cell cycle progression (284). Both the transcriptional 

activation and transcriptional repression activities of p53 are therefore likely to 

contribute to the ability of p53 to function as a tumour suppressor. The vast majority 

of p53 mutations found in human cancers map to the sequence-specific DNA binding 

domain of p53 (284). The ability of these mutants to activate transcription is 

severely impaired (284). However, several tumour-derived mutants have also been 

found that can still stimulate transcription but are incapable of transcriptional 

repression (453). Furthermore, two oncoproteins have been shown to block p53- 

mediated transcriptional repression but have no effect on transcriptional activation by 

p53 (108). These results suggest that both transcriptional activities of p53 are 

targeted in carcinogenesis.

Transcriptional repression by p53 is not restricted to a few select genes 

transcribed by pol II however; p53 can also inhibit genes transcribed by pols I and III 

(62, 70, 90). The overexpression of p53 has been shown to repress transcription of a 

variety of class III genes both in vitro and in transfected cells (70, 90). Using gene 

knockout technology to disrupt the p53 gene, a physiological role for p53 in 

suppressing pol III transcription has also been demonstrated (70). Thus, a 

comparison of the rates of transcription in intact nuclei from p53+/+ and p53'/_ mouse 

embryonic fibroblasts revealed that the rate of synthesis of tRNA and 5S rRNA is 4- 

and 6- fold higher, respectively, in the p5 3-negative cells (70). Endogenous p53 has 

also been shown to inhibit transcription of various other pol III templates and appears 

to be a general repressor of pol III transcription (70). However, the class III genes 

display differential sensitivity to the repressive effects of p53 (70, 90). This has been 

observed both in vitro using recombinant p53 and when extracts from p53+/+ and
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p53"A cells are compared (70). There appears to be an inverse correlation between 

sensitivity to p53 and promoter strength. In vivo, this may enable p53 to 

differentially regulate pol III transcription, with genes such as Alu and U6 that have 

particularly weak promoters becoming inhibited at a lower p53 threshold than other 

genes.

Like RB, p53 appears to repress pol III transcription by binding and 

inactivating TFIIIB (70, 90). Thus, TFIIIB activity is specifically elevated in 

fibroblasts derived from p53 knockout mice (70). Moreover, add-back experiments 

revealed that TFIIIB is limiting in extracts from the equivalent wild-type cells so the 

rise in TFIIIB activity in response to disruption of the p53 gene should stimulate 

transcription (70). In addition, the inhibition of pol III transcription in vitro by 

recombinant p53 has been shown to be specifically relieved by the addition of excess 

TFIIIB (70). However, it remains possible that other components of the pol III 

transcriptional apparatus are additionally targeted and contribute to the repressive 

effects of p53. Endogenous TFIIIB and p53 have also been shown to stably 

associate, providing further support for regarding TFIIIB as a bona fide target of p53 

(70). Pull-down assays using GST-p53 fusion proteins have shown that the N- 

terminal 73 amino acids of p53 are sufficient to bind TFIIIB (90). This N-terminal 

region of p53 contains a TBP binding domain, suggesting that p53 directly binds 

TBP within TFIIIB (337, 528). In support of this, point mutations within this N- 

terminal region that abolish the binding of free TBP also abolish TFIIIB binding 

(90). Significantly, these same mutations also abrogate the ability of p53 to repress 

pol III transcription (90).

The inhibition of pol III transcription, by reducing the levels of tRNA and 5S 

rRNA, may contribute to growth suppression by p53 (70). However, although p53 is 

frequently mutated in human cancers, it remains to be determined whether or not the 

regulation of pol III transcription by p53 is compromised by these mutations and 

therefore the extent to which this control may contribute to the tumour suppressor 

function of p53. In addition, it is presently unknown how the regulation of pol III 

transcription by p53 is affected by the various stress stimuli that are known to 

influence p53 activity.
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p34cdc2/cyclin B 1

The cyclin-dependent kinase p34cdc2/cyclin B1 has been immuno- and 

affinity- purified from mitotic Xenopus extracts (169, 587). Both purified sources of 

p34cdc2 have been shown to potently inhibit 5S rRNA transcription (169, 587); in 

contrast, immunopurified MAP kinase had no discernible effect on transcription 

(587). In addition, the affinity-purified p34cdc2 has been shown to specifically 

inactivate TFIIIB when incubated with fractionated Xenopus pol III factors (169). 

This is dependent upon phosphorylation, since repression could be blocked by the 

general kinase inhibitor DMAP and reversed by alkaline phosphatase (169).

1.7.2 Activities that stimulate pol III transcription 

Staf

Staf, like Octl, can activate both pol II- and pol III transcription (375, 392, 

393, 458, 466). It contains seven tandemly repeated zinc fingers; these enable Staf to 

bind specifically to DNA (466). Staf recognition sites are found in the DSEs of 

vertebrate U snRNA and 7SK genes, commonly located close to an octamer motif, 

which binds Octl (458). It has been suggested that Staf may function co-operatively 

with Octl because their respective binding sites can activate transcription 

synergistically when appropriately spaced (458).

In addition to Staf and Octl, several other pol II factors that bind DNA in a 

sequence-specific manner have been implicated as potential regulators of pol III 

transcription on the basis of sequence motifs found in the promoters of class III 

genes. For example, GC boxes that resemble Spl binding sites are found in the 

promoters of the EBER2, mammalian 5S and Xenopus U6 genes (228, 330, 495). 

Spl is one member of a family of related factors that share similar DNA-binding 

specificities. It remains to be determined which, if any, of these factors can influence 

the expression of these genes with Spl-like binding sites. Nevertheless, two tandem 

copies of a Spl activation domain have been shown to activate U6 transcription 

when fused to a heterologous DNA-binding domain (113). In the pol II system, the
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response to upstream activators is commonly mediated by specific TAFs in the 

TFIID complex that are otherwise dispensable for transcription. For example, 

activation by VP 16 requires direct contact with TAFn40 (166); similarly, Spl 

activation is dependent upon a direct interaction with TAFullO (220). Perhaps 

TFIIIB contains a functional homologue of TAFullO; alternatively, the activation 

domain of Spl may contact different component(s) of the pol III transcriptional 

apparatus (568).

Another example of pol II factors that may be involved in pol III transcription 

are members of the ATF and CREB family that bind ATF sites (54). The promoters 

of EBER2 and 7SL genes contain several ATF sites, which are important for high 

levels of expression of these genes (51, 228). In support of this possibility, extracts 

from cells treated with forskolin, which can activate a subset of these factors through 

activation of the cAMP signal transduction pathway, were found to support increased 

levels of 7SL transcription, but to have no effect on 7SK, whose promoter is devoid 

of ATF sites (51).

Protein phosphatase 2A

The substrate specificity of protein phosphatase 2A (PP2A) is thought to be 

defined by its regulatory subunits (100). The TPD3 gene encodes the regulatory 

subunit A of PP2A (537). Strains of Saccharomyces cerevisiae that lack the TPD3 

gene are severely compromised for growth (537). A temperature sensitive tpd3 

strain (tpd3ts) was found to stop synthesising tRNA, an important determinant of the 

biosynthetic capacity of the cell, at the nonpermissive temperature; similarly, extracts 

prepared from these cells were also unable to transcribe tRNA (537). Extracts from 

tpd3ts cells grown at the permissive temperature were 2- to 4- fold less active for 

tRNA synthesis than wild-type cells. Transcription could be fully restored to wild- 

type levels in these extracts by the addition of partially purified TFIIIB, whereas pol 

III was partially stimulatory and TFIIIC had no effect (537). Mixing experiments 

indicate that the defect in tpd3ts cells is due to an inhibitory activity rather than the 

loss of a transcription component (537). These results suggest that PP2A positively 

regulates pol III transcription in yeast and that it does so by stimulating TFIIIB 

activity and, to a lesser extent, pol III (537). The inhibitory activity in the ts extracts
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is probably a kinase that phosphorylates and inactivates TFIIIB and perhaps pol III, 

whose repressive influence is normally antagonised by PP2A.

CKII

The highly conserved Ser/Thr protein kinase CKII has also been shown to 

stimulate pol III transcription in the yeast Saccharomyces cerevisiae (163, 164, 216). 

CKII functions primarily as a tetramer, consisting of two isozymic catalytic subunits 

(a  and/or a ')  and two regulatory subunits (P) (7, 419). The regulatory subunits of 

CKII are required for optimal kinase activity and also regulate substrate specificity. 

As for PP2A, a positive role for CKII in yeast pol III transcription was initially 

suggested by the phenotype of a yeast strain with a temperature sensitive lesion in 

one of the subunits of the protein (216). Thus, when a yeast mutant with a ts defect 

in the catalytic a ' subunit of CKII (cka2ts) was shifted to the nonpermissive 

temperature, tRNA synthesis and growth both declined, whereas production of large 

rRNA was unaffected (216). Similarly, extracts prepared from cka2ts cells were 

found to be severely compromised for transcription of tRNA and 5S rRNA genes, 

whereas pol I and basal pol II transcription was as efficient as in extracts from wild- 

type cells (216). Moreover, the addition of increasing amounts of purified wild-type 

CKII to cka2ts extracts stimulated tRNA and 5S rRNA transcription, providing direct 

evidence of a positive role for CKII in pol III transcription (216). Add-back 

experiments using purified pol III factors from wild-type cells showed that 

transcription could also be restored to cka2ts extracts by the addition of TFIIIB (163, 

164). However, pretreatment of TFIIIB with phosphatase abolished its ability to 

rescue transcription (164). These results suggest that CKII stimulates pol III 

transcription by phosphorylating TFIIIB. In vitro phosphorylation of a partially 

purified TFIIIB fraction with recombinant CKII suggested that the TBP subunit of 

TFIIIB is the preferred substrate of CKII (163, 164). CKII was also found to 

efficiently phosphorylate recombinant TBP (163, 164). Moreover, limiting amounts 

of CKII and recombinant TBP were found to synergistically increase pol III 

transcriptional activity in cka2ts extracts, suggesting that the stimulatory effect of 

CKII on yeast pol III transcription is mediated, at least in part, by the
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phosphorylation of the TBP subunit of TFIIIB (163, 164). However, the 

phosphorylation of other components of TFIIIB, or indeed other components of the 

pol III transcriptional apparatus, may also contribute to the stimulation of pol III 

transcription by CKII (163, 164).

1.7.3 Repression by chromatin

A human diploid cell contains ~6.4 x 109 base pairs of DNA. In a molecule 

of DNA adjacent base pairs are separated by 3.4A, so if all 6.4 x 109 bp were part of 

the same DNA molecule it would stretch a staggering 2.2 metres in length. Since the 

nucleus is only ~10pm in diameter, clearly the DNA must be highly compacted so as 

to actually physically fit it inside the nucleus! In order to stably bend the DNA, 

however, the negatively charged phosphates of the DNA phosphodiester backbone 

must be neutralised so as to overcome charge repulsion when different regions of the 

polyanionic DNA are brought close together. In the eukaryotic cell this is achieved 

by the association of the DNA with highly conserved, small basic proteins called 

histones. Histones are unique to eukaryotes and are amongst the most invariant 

proteins known. They bind DNA essentially without sequence specificity enabling 

the packaging of the entire genome into a highly condensed structure called 

chromatin.

The non-specific binding of histones to DNA is not random, as revealed by 

the ‘beads on a string’ chromatin structure observed by electron microscopy when 

chromatin is released from nuclei at low ionic strength (520). This is the first level 

of packing of DNA (~6-7 fold), the lOnm filament. The ‘beads’, which are regularly 

spaced, represent nucleosomes. The nucleosome is the basic unit of structure in 

chromatin (288). It consists of a wedge-shaped histone octamer around which two 

turns of DNA are organised. The crystal structure of the nucleosome has recently 

been determined at a resolution of 2.8A, revealing details of the histone-histone and 

histone-DNA interactions (345). The histone octamer consists of two molecules 

each of the four core histones, H2A, H2B, H3 and H4. A central (H3/H4)2 tetramer 

is flanked on either side by a H2A/H2B dimer (288, 520). Each of these histones has 

a very similar C-terminal domain structure, the “histone fold”, consisting of a long
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central a  helix that forms the dimerisation interface flanked by shorter helices and 

loops (345). Histone dimerisation creates the DNA-binding surfaces. The N- 

terminal “tails” protrude outside the nucleosome and interact with both nucleosomal 

and linker DNA, and adjacent nucleosomes (345). In addition, there is a fifth type of 

histone molecule associated with the nucleosome, the so-called linker histone, which 

is the least conserved of the histones (520). The majority of cells contain the histone 

HI. However, there are a number of HI variants which tend to be cell- or 

developmental stage-specific; these include H I0 found only in differentiating 

mammalian cells, sea urchin sperm-specific HI, and H5 which is unique to avian 

erythrocytes (520). All the variants share the same basic structure, consisting of a 

central globular domain flanked on either side by a highly basic tail. The central 

globular domain is thought to seal the two turns of DNA around the nucleosome, 

accounting for the protection of DNA at the dyad axis of the nucleosome from 

digestion by DNase I (520). Recently two DNA binding sites on the globular 

domain of H5 have been identified (172), this explains the preference of this linker 

histone for four-way junction DNA (520). The highly basic tails of the linker histone 

are thought to interact with the linker DNA between nucleosomes, thereby allowing 

the linker DNA to be easily bent.

The majority of interphase chromatin exists not as the lOnm filament but in a 

more condensed state, the so-called 30nm filament or solenoid (DNA packing ratio 

-40 fold) (520). There has been some controversy over the exact structure, but most 

of the evidence supports the coiling of the lOnm filament into a helix with -  6 

nucleosomes per turn (520). It has been demonstrated that HI or one of its variants 

is essential for the formation of the 30nm filament. Chemical cross-linking and 

neutron diffraction studies suggested formation of a HI ‘polymer’ within the 

solenoid (520). There is also evidence for several further levels of chromatin 

organisation above that of the 30nm filament, finally culminating in the structure of 

the metaphase chromosome, the most condensed state of chromatin (520).

The packaging of DNA into chromatin is a major obstacle to transcription, 

severely restricting the access of the transcriptional machinery to the DNA (568, 

588). Thus, class III genes assembled into solenoid-like structures in vitro are 

incapable of supporting significant levels of transcription. In vivo, both transcription 

and DNA replication are thought to require the decondensation of chromatin to the
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lOnm filament (520). At this level of chromatin organisation, the susceptibility of 

different genes to nucleosomal repression can vary considerably. To a large extent 

this depends on the positioning of nucleosomes over the gene (203, 588). Thus, a 

gene whose promoter is located within the centre of a nucleosome is more likely to 

be repressed than one whose promoter is located at the edge of a nucleosome or is 

nucleosome-free. Although histones bind DNA non-specifically and nucleosomes 

are regularly spaced along the DNA, there is considerable evidence for sequence- 

directed positioning of nucleosomes on DNA. This is related to the intrinsic 

bendability of the DNA sequence, that is the energy of bending DNA, which can 

vary substantially between different sequences (203). In addition, the locations of 

nucleosomes are sometimes constrained by “boundary” effects such as the binding of 

sequence-specific factors on the DNA that can compete effectively with histones 

(203). The extent to which the transcription factors of a gene can compete with 

histones is also a major determinant of susceptibility to chromatin repression.

5S rRNA genes

Transcription complex formation on a 5S rRNA gene is nucleated by the 

sequence-specific binding of TFIIIA (568). The surface of interaction between 

TFIIIA and the 5S rRNA gene is extensive. TFIIIA protects ~1 turn of DNA at each 

end of the 5S ICR, wrapping around all faces of the helix at the A- and C- block with 

the intervening 20 bp protected only on one face (203, 568). Clearly, this wrapping 

of TFIIIA around the DNA is incompatible with the simultaneous wrapping of the 

same region of DNA around a histone octamer. Significantly, however, the 

sequences of Xenopus 5S genes direct the positioning of nucleosomes on or near the 

ICR (202, 321). Thus, TFIIIA and histone octamers may directly compete for 

binding the ICR. The outcome of this competition will have a major effect on the 

potential transcriptional activity of these genes.

Once an active transcription complex or repressive chromatin structure has 

been established on a class III gene, either can be extremely stable. However, the 

passage of a replication fork displaces all bound factors (590). Therefore, at each 

cell cycle there is the opportunity to either reestablish or alter the set of genes that are 

actively expressed. Although the core histones have been shown to be sufficient to
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establish a repressed transcriptional state of 5S rRNA genes refractory to the 

subsequent addition of transcription factors in vitro, under certain circumstances 

stable repression may also require the linker histone (460). The linker histone 

inhibits nucleosome sliding, which can allow transcription factors to gain access to 

promoters (533). It can also repress transcription by directly occluding regions of 

DNA and promoting nucleosome compaction (591). For human 5S rRNA genes, 

binding of TFIIIA has been shown to be sufficient to prevent incorporation into a 

repressive chromatin state (501).

tRNA genes

The assembly of nucleosomes on tRNA genes in vitro has been shown to 

potently repress transcription (298). However, in vivo tRNA genes are highly 

resistant to repression by histones (45, 189, 384). For example, manipulating the 

level of histone HI in Xenopus embryos has no effect on tRNA expression (45). 

Similarly, a nucleosome deficiency in yeast that activates several class II genes does 

not affect tRNA synthesis (189). Moreover, a wild type yeast tRNA gene fused to 

nucleosome positioning signals capable of suppressing pol II transcription and the 

initiation of DNA replication was found to remain transcriptionally active in yeast 

cells (384). However, the ability of the gene to override these signals was lost on 

mutation of the B-block (384). This is highly significant in light of recent in vitro 

data from the human pol III system. Thus, Roeder and colleagues have shown that 

elevated amounts of highly purified hTFIIIC, the major B-block binding activity, can 

effectively overcome nucleosome-mediated repression of a human tRNAMet gene in 

vitro (298). Moreover, they also report that three subunits of hTFIIIC possess weak 

histone acetyltransferase (HAT) activity (231, 298). Histone acetyltransferases 

catalyse the acetylation of specific lysine residues in the N-terminal tails of the core 

histones (177). This reduces the positive charge of these highly basic tails and has 

been shown to weaken histone-DNA interactions and also interactions between 

nucleosomes (591). The acetylation of core histones assembled onto 5S rRNA genes 

in vitro overcomes the ability of these histones to exclude the binding of TFIIIA, 

thereby allowing transcription to proceed (321, 534). Thus, histone acetylation can 

facilitate the binding of transcription factors to their promoter elements in chromatin
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(321). However, it has yet to be demonstrated that the reported HAT activity of 

hTFIIIC contributes to its ability to relieve the chromatin-mediated repression of a 

human tRNAMet gene in vitro or has any role in vivo.

Yeast U6 genes

The Saccharomyces cerevisiae U6 gene is also highly resistant to the 

repressive effects of chromatin (357). Thus, the deletion of the histone H4 gene has 

no effect upon the level of U6 snRNA expression (357). However, mutant U6 genes 

with weakened promoters are susceptible to repression (357). The promoter of yeast 

U6 gene is highly unusual, with a TATA box at -30 and a B-block downstream of 

the transcription termination site (57). Significantly, a functional B-block and 

TFIIIC are only required for U6 transcription in the presence of histones, suggesting 

a dominant role of this interaction in protecting the U6 gene from chromatin- 

mediated repression (66). The assembly of nucleosomes on the yeast U6 gene in 

vitro by a Xenopus egg extract represses transcription (66). However, TFIIIC can 

compete effectively with histones even after the incorporation of the gene into 

chromatin and transcription is restored by the subsequent addition of affinity-purified 

TFIIIC (66). Thus, both human and yeast TFIIIC have major roles in relieving 

chromatin-mediated repression (66, 298). Preliminary investigations by Sentenac’s 

group have failed to detect any histone acetyltransferase activity associated with 

yeast TFIIIC (83). It may be that yeast TFIIIC and human TFIIIC counteract 

chromatin repression by different mechanisms. Alternatively, the reported HAT 

activity of hTFIIIC may not be involved in alleviating the repressive effects of 

chromatin.

5S rRNA genes also utilise TFIIIC; however, these genes are much more 

susceptible to nucleosomal repression than tRNA or yeast U6 genes. The addition of 

TFIIIA and TFIIIC makes no difference once a 5S rRNA gene has been incorporated 

into a chromatin structure (568). However, these genes lack a B-block and TFIIIC 

does not bind DNA directly, but depends on the prior binding of TFIIIA.
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SINEs

In chromatin isolated from interphase HeLa cells, the majority of tRNA and 

5S rRNA genes are accessible to transcription factors, whereas -99% of Alu genes 

with functional promoters are silenced and inaccessible to exogenous factors (451). 

The majority of potentially active copies of SINEs are thought to be constitutively 

masked by chromatin. This may be of considerable importance to the cell. The 

genomes of higher eukaryotes contain a vast number of SINEs. For example, there 

are -500,000 Alu elements in the haploid human genome, 5% of the total genetic 

material of the cell (251). Such a huge number of templates are potentially an 

enormous sink for transcription factors. Competition between the SINEs and 

essential class III genes for a limiting number of transcription factors might therefore 

be highly detrimental to the cell; hence the packaging of SINEs into repressive 

chromatin structures inaccessible to transcription factors. SINEs are extremely 

susceptible to nucleosomal repression. Silencing of Alu elements by histone 

octamers is so efficient that the depletion of HI from chromatin of HeLa cells raises 

Alu expression by only 2-fold (451). The Alu sequence directly positions a histone 

octamer over the start site and A-block, potently repressing transcription (135, 136).

DNA methylation may also be involved in chromatin-mediated repression of 

SINEs. Transcriptional repression by CpG methylation is closely correlated with 

alterations in chromatin structure (367, 510). Alu sequences contain an unusually 

high CpG density, and account for -  one-third of all potential methylation sites in 

human DNA (136). The methylation of Alu genes has been shown to repress their 

transcription in vitro (285). Most Alu genes are highly methylated in vivo (285, 

461). Moreover, a reduction in the methylation of Alu genes in HeLa cells, 

stimulated by the treatment of cells with 5-azacytidine which cannot be methylated, 

was accompanied by a 5- to 8- fold increase in the abundance of Alu transcripts 

(335). The mechanism by which methylation of Alu genes inhibits their transcription 

is poorly understood. However, repression in vitro can be relieved by the presence 

of methylated competitor DNA, suggesting that the inhibition is due to proteins that 

specifically bind to methylated DNA, such as MeCPl or MeCP2 (37, 336, 367, 510). 

It also involves changes in chromatin structure, causing a 20-fold increase in the 

efficiency with which a histone tetramer can block transcription factor access to an 

Alu promoter and repress transcription (136).
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Clearly, the chromatin structure of a gene can be a major determinant of its 

transcriptional activity and is therefore an obvious target for regulation. Although 

chromatin exerts a general repressive effect upon pol III transcription, the class III 

genes display differential sensitivity to these effects providing the opportunity for the 

differential regulation of class III genes by subtle changes in chromatin structure. 

The structure of chromatin in the cell is dynamic; moreover, it can be modified 

locally. A variety of chromatin remodelling factors have been identified. One major 

group is the ATP-dependent remodelling factors that include NURF, SWI-SNF, ACF 

and CHRAC (591). These are thought to facilitate transcription factor access by 

destabilising the nucleosome or altering its position. The other major group is the 

histone acetyltransferases (HATs) and their enzymatic antagonists the histone 

deacetylases (177, 500, 591). In recent years, a growing number of coactivators 

involved in pol II transcription have been found to possess HAT activity. Moreover, 

the HAT activity of two of these factors has been shown to be an essential part of 

their coactivator function (303, 357). Conversely, several transcriptional 

corepressors have been found to exist in complexes with histone deacetylases (5, 52, 

53, 144, 308, 349, 388). These findings suggest that the chromatin remodelling 

machinery can be targeted to particular genes and that alteration of chromatin 

structure has a major role in regulating pol II transcription. Interestingly, TFIIIC has 

recently been reported as a novel HAT, suggesting that similar chromatin 

remodelling activities may play an important part in the regulation of pol III 

transcription (230, 298).

1.8 Physiological regulation of pol III transcription

In higher eukaryotes, pol III transcription has been shown to be strongly 

regulated in response to a variety of important physiological stimuli such as growth 

and differentiation, the cell cycle, viral infection and transformation (568, 569). For 

some of the stimuli, in particular systems, the mechanisms responsible for regulating 

pol III transcription have been partially elucidated. However, invariably it has yet to 

be determined whether the mechanistic bases for regulation are peculiar to the 

system(s) in which it was examined or a general phenomenon for the particular 

physiological stimulus. In other cases it can be inferred that particular proteins
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previously shown to modulate pol III transcription might be involved based upon 

what is known regarding their physiological regulation.

1.8.1 Developmental regulation during Xenopus embryogenesis

There are two families of 5S genes in Xenopus laevis, the somatic 5S genes, 

of which there are ~ 400 copies per haploid genome, and the oocyte 5S genes, of 

which there are ~ 20,000 copies (568). During oogenesis, both somatic and oocyte 

5S genes are strongly expressed. However, transcription of both types of genes, and 

indeed transcription in general, is potently inhibited following meiosis. This 

repression continues post-fertilisation and through the first twelve cleavage divisions 

up until the mid-blastula transition (MBT). This blanket repression of transcription 

appears to be caused by the inaccessibility of genes to the transcriptional machinery 

resulting from the accumulation of a huge excess of core histones by the oocyte that 

gain access to the DNA when the nucleus breaks down during oocyte maturation 

(395, 595). At the MBT transcription resumes; equal amounts of somatic and oocyte 

5S RNA are produced indicating a 50-fold transcriptional preference for the somatic 

5S genes (544, 597). Several cell divisions later transcription ceases completely 

from the oocyte 5S genes, establishing the state found in all adult somatic cells in 

which 5S transcription proceeds solely from the less abundant somatic 5S genes 

(544, 597).

A variety of mechanisms appear to contribute to this developmental 

regulation of 5S transcription in Xenopus, which shall now be discussed. In the 

oocyte nucleus there are -70,000 molecules of TFIIIA per 5S gene, allowing high 

levels of transcription from both somatic and oocyte 5S genes (480). However, as 

development continues TFIIIA levels rapidly decline and become limiting; in adult 

somatic cells there are five 5S genes per molecule of TFIIIA (480). A difference in 

affinity for TFIIIA, or the stability of its association, between the somatic and oocyte 

5S genes might therefore contribute to the transcriptional bias towards the somatic 

5S genes after the MBT. In support of this, the injection of purified TFIIIA protein 

into Xenopus embryos resulted in a dramatic increase in 5S rRNA at the blastula 

stage and this was mostly due to transcription from oocyte 5S genes (58). However, 

this elevation in the expression of oocyte 5S genes relative to somatic 5S genes in
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response to artificially raised levels of TFIIIA is transient (12). By neurulation, the 

effect of increased levels of TFIIIA upon 5S transcription from the oocyte 5S genes 

is lost and replaced by the situation found in adult somatic cells in which these genes 

are transcriptionally inactive (12). This may be due to changes in chromatin 

structure that make oocyte 5S genes inaccessible or perhaps a different factor 

becomes limiting.

Footprinting and template challenge experiments have shown that 

transcription complexes formed on oocyte 5S genes are less stable than those 

assembled on somatic 5S genes (589). Significantly, transcription directed by 

unstable transcription complexes is more susceptible to changes in the concentration 

of limiting factors because factors in such complexes are in equilibrium with free 

factors (589). A difference of 3 nucleotides in the upstream part of the ICR results in 

TFIIIC having a 5-fold higher affinity for the TFIIIA/somatic 5S complex than for 

the TFIIIA/oocyte 5S complex (269). Moreover, the instability of the transcription 

complex formed on oocyte 5S genes provides more opportunity for the formation of 

a repressive chromatin structure that can exclude transcription factor binding. 

Indeed, clear differences are detected in the chromatin structure of somatic and 

oocyte 5S genes in adult somatic cells and oocyte 5S genes are found to be much less 

accessible to exogenous factors than somatic 5S genes (92). The removal of the 

linker histone HI by high salt or ion exchange chromatography restores accessibility 

to the oocyte 5S genes (92, 460). The readdition of HI represses transcription of 

oocyte 5S genes but has no effect on somatic 5S genes (460). HI has a preference 

for oocyte 5S genes; this is related to the spacer sequence, which has a higher A/T 

content than that of somatic 5S genes (287). A/T richness has been shown to 

strongly promote HI binding (433). Significantly, linker histone synthesis has also 

been shown to be developmentally regulated with the accumulation of HI correlating 

temporally with the decreased accessibility and transcription of oocyte 5S genes 

(125). In early stages of development HI is replaced by an embryonic variant, B4, 

which binds 6-fold less tightly to nucleosomes.

The developmental regulation of 5S transcription thus appears to be achieved 

by a multiplicity of effects. Factors contributing to the ~50-fold transcriptional 

preference towards somatic 5S genes that occurs shortly after the MBT likely include 

the lower stability of transcription complexes that form on oocyte 5S genes, 

decreased amounts of transcription factor(s) and increasing amounts of HI, which
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binds preferentially to oocyte 5S genes. In adult somatic cells, the somatic 5S genes 

are replicated earlier than the oocyte 5S genes and therefore have a competitive 

advantage in binding limiting amounts of transcription factors and forming an active 

transcription complex rather than a repressive chromatin structure (165, 180). This, 

and further reductions in the levels of TFIIIA, likely plays an important role in the 

complete repression of pol III transcription from the oocyte 5S genes (568).

1.8.2 Regulation in response to differentiation

RNA pol III transcription is also strongly regulated during early mouse 

development (538). In situ hybridisation has been used to follow changes in pol III 

transcript levels and reveal a dramatic decrease when cells differentiate into 

endoderm (538). High expression is maintained in ectoderm and mesoderm at this 

stage of development (7.5 days post coitum) (538). The decrease in pol III 

transcription during differentiation into endoderm can be accurately reproduced in 

culture using embryonal carcinoma (EC) cells (10, 577). The F9 EC cell line can be 

induced to differentiate into parietal endoderm (PE) by exposure to retinoic acid and 

cAMP, mimicking events in the early embryo (577). The rate of pol III transcription 

decreases ~9-fold when F9 cells differentiate (577). This was found to be 

accompanied by a specific decrease in TFIIIB activity (10). The abundance of BRF 

is substantially reduced in PE cells; furthermore, add-back experiments indicate that 

TFIIIB TAF activity is limiting in PE cells, suggesting that the decline in BRF levels 

may be sufficient to account for the decrease in pol III activity upon differentiation 

( 10).

1.8.3 Mitotic regulation

In higher eukaryotes all nuclear transcription is repressed during mitosis. 

RNA pol III transcription is inhibited by the phosphorylation and inactivation of 

TFIIIB (169, 327, 572). Thus, TFIIIB isolated from metaphase-arrested Xenopus 

eggs is unable to support transcription unless first treated with phosphatase (169). 

The predominant kinase at mitosis, cyclin B/cdc2, can inactivate affinity purified
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Xenopus TFIIIB (169). However, mitotic extracts depleted of cyclin B/cdc2 still 

repress pol III transcription (196). This inhibition is sensitive to the kinase inhibitor 

DMAP, suggesting there may be one or more additional kinases that can also inhibit 

pol III activity in metaphase-arrested frog eggs (196).

TFIIIB is also found to be specifically inhibited in mitotic extracts from HeLa 

cells (572). The TBP subunit of TFIIIB becomes hyperphosphorylated at mitosis, 

both in Xenopus and HeLa cells (327, 572). However, the consequences of this 

phosphorylation are unclear. Add-back experiments demonstrate that recombinant 

TBP is unable to restore expression to mitotic extracts (572). However, affinity- 

purified TFIIIB TAF fractions are able to reconstitute transcription (572). Thus, it 

appears that TFIIIB TAF activity is limiting in mitotic extracts. It may be the BRF 

subunit of TFIIIB is specifically inactivated since it is also found to be 

hyperphosphorylated in mitotic HeLa extracts (366).

Xenopus egg extracts can be shifted to the mitotic state by the addition of 

cyclin B (196). Preincubation of extracts with non-specific DNA to titrate out 

histones or a topoisomerase II inhibitor to block mitotic chromosome condensation 

made no difference to the extent of repression of pol III transcription (196). These 

results indicate that nucleosome formation or chromatin condensation is not required 

for the inhibition of pol III transcription by mitotic extracts, at least in Xenopus. 

However, in vivo the repression of TFIIIB by phosphorylation may not be sufficient 

to account for the complete silencing of pol III transcription that occurs during 

mitosis (572). The highly condensed state of the chromosomes that characterise 

mitosis are also likely to contribute to the inhibition of pol III transcription (572).

1.8.4 Regulation during interphase

On exit from mitosis, TFIIIB is rapidly dephosphorylated and pol III 

transcription resumes albeit at low levels (571). Transcription increases gradually as 

cells progress through G l, with a sharp rise in late G1 around the Gl/S transition, 

resulting in high levels of expression in S and G2 (571). Thus, the rate of pol III 

transcription is 2- to 3- fold higher in S and G2 than it is in early Gl (571). Extracts 

from cells synchronised in G l, S or G2 phase were analysed for changes in the 

activity of the different components of the general pol III transcriptional machinery.
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Whereas TFIIIC- and pol III- activity remain relatively constant, TFIIIB activity was 

found to be severely compromised in Gl phase extracts (571). Complementation 

assays revealed that the TAF component of TFIIIB is 6- to 8- fold less active in early 

Gl phase than it is in S or G2 (571). The addition of affinity-purified TFIIIB TAF 

fractions to early Gl phase extracts restored transcription to levels found in S and G2 

phase extracts, suggesting that the deficiency in TFIIIB TAF activity may be 

sufficient to account for the low pol III transcriptional activity in early Gl phase 

(571). In contrast, these TAFs have little or no effect when added to S or G2 phase 

extracts, indicating that TFIIIB TAF activity is no longer limiting in these phases of 

the cell cycle. Indeed, TFIIIB activity increases to such an extent in late Gl that by S 

phase it is in relative excess and TFIIIC is limiting for transcription in S and G2 

(571).

Detailed time courses have shown that the dramatic rise in pol III 

transcription and TFIIIB activity in late Gl phase closely corresponds to the time 

when RB is switched off by its hyperphosphorylation by the cyclin D- and cyclin E- 

dependent kinases around the restriction point (255, 363). Since RB is a potent 

repressor of pol III transcription and, moreover, is known to specifically inactivate 

TFIIIB, this suggests that the inactivation of RB by the cyclin-dependent kinases 

may be at least partly responsible for the increase in pol III transcription in late Gl 

phase (93, 314, 571, 579). In support of this, the hyperphosphorylation of RB 

appears to prevent it from binding to TFIIIB (471). Moreover, 

coimmunoprecipitation experiments show that RB dissociates from TFIIIB shortly 

before S phase entry (471). In addition, the overexpression of cyclin D/cdk4 and 

cyclin E/cdk2 in vivo by transient transfection is found to specifically stimulate pol 

III transcription (471). Together these data strongly suggest that the 

hyperphosphorylation of RB by the cyclin D- and cyclin E- dependent kinases 

prevents RB from inactivating TFIIIB and contributes to the rise in pol III 

transcription in late Gl phase. In early Gl phase RB is underphosphorylated and can 

bind and inactivate TFIIIB and is likely to be involved in maintaining a low level of 

pol III transcription during this part of the cell cycle (Fig. 1.3) (471). Thus, RB 

appears to have a major role in the cell cycle regulation of pol III transcription. 

However it is extremely likely that additional control mechanisms are also involved. 

Indeed, the gradual increase in pol III transcriptional activity through Gl prior to the
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Figure 1.3

Cell cycle regulation of pol III transcription

Schematic diagram illustrating some mechanisms that are thought to contribute to the 

cell cycle regulation of the mammalian pol III transcriptional apparatus. In Gl phase 

RB is in an active underphosphorylated form and can bind to and repress TFIIIB, 

resulting in only low levels of basal pol III transcription. However, in late Gl phase 

RB becomes inactivated due to its hyperphosphorylation by the cyclin D- and E- 

dependent kinases and TFIIIB is released enabling it to interact with TFIIIC at the 

class III promoter and recruit pol III into an active preinitiation complex. This is 

thought to account for the rapid rise in pol III transcription at the Gl/S transition. 

RB remains in a hyperphosphorylated state until the end of M phase when it is 

dephosphorylated by protein phosphatase 1, which may explain the high levels of pol 

III transcription observed during the S and G2 phases of the cell cycle. During 

mitosis, pol III transcription ceases completely. This results from the direct 

phosphorylation and inactivation of TFIIIB. The packaging of the DNA into a more 

condensed chromatin structure might also contribute to the mitotic silencing of pol 

III activity.
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abrupt rise at the R point cannot be readily explained by the cell cycle regulation of 

RB; however, it is presently unclear what may be responsible for this effect.

1.8.5 Regulation in response to quiescence

The principle determinant of proliferation rate in mammalian cells is the 

decision whether to quiesce; that is, to exit the cell cycle and growth arrest, or 

continue to cycle. The synthesis of tRNA and 5S rRNA is significantly reduced 

during quiescence (74, 96, 217, 255, 363, 471, 477, 525). This likely reflects the 

substantially diminished requirements for protein production in quiescent cells. Cells 

grown in culture can be induced to quiesce by serum withdrawal. The 

downregulation of pol III transcription in untransformed mouse fibroblasts in 

response to serum starvation has been studied in detail. Add-back and 

complementation experiments show that this is due to a specific reduction in TFIIIB 

activity (471). Analysis of the abundance of TBP and BRF by western blotting 

reveal little or no change in response to serum deprivation, suggesting that a decrease 

in the amount of TFIIIB is not responsible for the reduction in TFIIIB activity in 

these growth-arrested cells (471). However, the possibility cannot be excluded that 

unidentified components of TFIIIB become less abundant and contribute to the low 

TFIIIB activity of these cells. Significantly, quiescent cells express very little cyclin 

D or E, and RB is present in these cells in its active underphosphorylated form, 

raising the possibility that RB may contribute to the repression of TFIIIB during 

quiescence (173, 471). Indeed, fibroblasts derived from RB knockout mice are 

compromised in their ability to down-regulate pol III transcription in response to 

serum withdrawal relative to equivalent cells from wild type mice (471). Thus, 

Northern blot analysis revealed a 2.4-fold decrease in tRNA levels when RB+/+ cells 

were made quiescent, whereas RB'/_ cells show only a 1.3-fold decrease (471). In 

contrast, the levels of the pol II transcript ARPP PO did not change. Similar results 

were obtained when rates of pol III transcription were assayed directly by nuclear 

run-ons (471). Some decrease, albeit less substantial, was still observed in the RB'7' 

cells in response to quiescence, however, indicating that there are additional 

mechanisms that contribute to the downregulation of pol III transcription following 

exit from the cell cycle (471). The RB-related pocket proteins p i07 and p i30 have
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both recently been shown to repress pol III transcription both in vitro and in vivo 

(504). Moreover, p i07 p i30 double knockout fibroblasts showed much less of a 

decrease in pol III transcript levels in response to serum starvation than the 

corresponding wild-type cells, indicating that p i07 and/or p i30 are also part of the 

regulatory control by which pol III transcription is repressed during quiescence 

(504). Serum-starved mouse fibroblasts contain very little pl07, but pl30 is 

relatively abundant and in an active form (173).

1.8.6 Regulation in response to adenovirus infection

A variety of viruses have been shown to infect mammalian cells and stimulate 

pol III transcription; these include adenovirus, simian virus 40 (SV40), human T-cell 

leukaemia virus type 1 (HTLV-1), hepatitis B virus (HBV) and polyomavirus (143, 

569). Following infection, the viruses subvert the host cell’s translational and 

replication machinery towards mass production of viral proteins and the viral 

genome (569). The stimulation of pol III transcriptional activity therefore likely 

reflects a requirement for increased biosynthetic capacity. In addition, several viral 

genomes are found to contain class III genes, which are required for viral replication 

(568). Indeed, the adenovirus genome encodes two pol III products, VAi and VAn 

(492, 559); these small RNAs (~160nt) are synthesised at very high levels late in 

infection and are involved in the corruption of the host cell’s translational apparatus 

to ensure the synthesis of viral proteins (519).

The activation of pol III transcription in response to adenovirus infection 

appears to be achieved, to a large extent, by the activities of the El A oncoprotein of 

adenovirus (16, 341, 488, 569). Thus, a transfected E1A gene alone is sufficient to 

activate transcription of the VAi gene in human cells (16, 341). Furthermore, the 

addition of purified recombinant El A protein to HeLa cell extracts can stimulate VAi 

transcription up to 50-fold (114, 409). HeLa cells infected with wild-type adenovirus 

have elevated TFIIIC activity (217, 218, 488, 606). This appears to result from the 

conversion of a transcriptionally inactive form of TFIIIC2 (TFIIICb) that lacks the 

TFIIICp subunit into an active form (TFIIICa) that has the P subunit (114, 217, 488). 

El A induces an increase in TFIIICp mRNA and infected cells display a selective rise
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in the levels of TFIIICp protein (488). However, El A can also stimulate pol III 

transcription in vitro, suggesting that there are additional mechanisms by which 

adenovirus can activate pol III transcription that do not require de novo protein 

synthesis (114, 409). Indeed, E1A can bind and inactivate RB and has been shown 

to relieve repression of pol III transcription by RB, both in vitro and in transfected 

cells (579). In addition, E1A can disrupt the interaction of Drl with TBP, thereby 

releasing TFIIIB from Drl-mediated repression (293). Another transforming protein 

of adenovirus, E1B, can bind and inactivate p53, suggesting that adenovirus infection 

may also overcome the suppressive effects of p53 on pol III transcription (284). In 

support of this, full induction of Alu gene expression by adenovirus requires E1B 

(403). This also involves changes in the chromatin structure of Alu genes with an 

increase in the proportion of these templates that are accessible to transcription 

factors (451). Thus, multiple mechanisms may contribute to the activation of pol III 

transcription in response to adenovirus infection (Fig. 1.4).

1.8.7 Regulation in response to transformation by the DNA tumour virus SV40

Rodent fibroblasts that have been transformed by the DNA tumour virus 

SV40 display abnormally elevated levels of pol III transcription (75, 315, 469, 487, 

578). Like adenovirus, SV40 appears to activate pol III transcription by multiple 

mechanisms, since the activity of both TFIIIB and TFIIIC2 is significantly higher in 

extracts from SV40-transformed cell lines than in extracts from the untransformed 

parental cell line (315). The TFIIICa and TFIIICp subunits of TFIIIC2 are much 

more abundant in extracts from SV40-transformed cells, suggesting that the rise in 

TFIIIC2 activity may result from the overexpression of TFIIIC2 (315). However, 

there is also evidence for an increase in the proportion of cellular TFIIIC2 that is in a 

transcriptionally active form, as was observed in response to adenovirus infection 

(578). In contrast to the a  and P subunits of TFIIIC2, there is little or no change in 

the protein levels of TBP or BRF in response to SV40 transformation (315). Instead, 

the increase in TFIIIB activity appears to be due to the release of TFIIIB from 

repression by RB (315). This is dependent on the large T antigen of SV40 which, 

like El A, can bind and inactivate RB (315). The large T antigen also interacts with
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Figure 1.4

Subversion of normal regulatory controls of pol III transcriptional activity by 

adenovirus

Schematic diagram illustrating some of the mechanisms that may contribute to the 

activation of pol III transcription following adenovirus infection. Adenovirus 

stimulates the conversion of TFIIIC2 from the inactive TFIIIC2b form to the active 

TFIIIC2a form. This is thought to result from a selective increase in the levels of 

TFIIIC(3 mRNA and protein induced by the El A oncoprotein of adenovirus. El A 

can also overcome the repressive effects of RB and Drl on TFIIIB.
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and inhibits p53 (284). However, the effect of this interaction on the ability of p53 to 

repress pol III transcription has not yet been tested.

Adenovirus and SV40 appear to upregulate pol III transcription by very 

similar mechanisms (569). However, other viruses may stimulate pol III 

transcription differently. HBV and HTLV-1 both appear to be more restrictive in 

their effects, specifically targeting only one component of the basal pol III 

transcriptional machinery (168, 549). HBV induces a specific increase in TFIIIB 

activity; this is achieved via activation of Ras signalling (548, 549).

1.8.8 Regulation in response to other transforming agents and tumorigenesis

A broad range of transforming agents have been found to induce the 

overexpression of pol III products (168, 469, 487, 548, 568, 578). In addition to 

DNA tumour viruses such as SV40 (469, 487, 578) and RNA tumour viruses such as 

HTLV-1 (168), a variety of chemical carcinogens have also been shown to stimulate 

pol III transcription (161, 162, 469). An increase in the abundance of pol III 

transcripts is a very common feature of transformed cell lines (568). However, in 

most cases the mechanistic basis of this effect has not been studied. It has also 

recently been shown that pol III products are abnormally elevated in actual tumours 

(87, 88, 586). A possible explanation for the frequent overexpression of pol III 

transcripts in transformed and tumour cells is suggested by the very high incidence 

that RB and p53 become inactivated during neoplastic transformation. In 

untransformed cells these two key tumour suppressors play a major role in repressing 

pol III transcription (70, 579).

Although only a limited study, four different point mutations in RB that have 

been detected in human tumours have each been tested and found to prevent the 

tumour suppressor from repressing pol III transcription (59, 579). This provides 

direct evidence that the inactivation of RB in tumours can contribute to the elevation 

of pol III activity consistently observed in transformed and tumour cells. In normal 

cells the activity of RB is regulated by phosphorylation by the cyclin D- and cyclin 

E- dependent protein kinases (173). In many human cancers in which RB is wild- 

type, the cyclin D-dependent kinases are hyperactive providing an alternative 

mechanism by which RB function is lost. Indeed, cyclin D1 is overexpressed in 30-
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40% of primary breast tumours. In many oesophageal, bladder, lung and pancreatic 

carcinomas the gene for p i6, a specific inhibitor of the cyclin D-dependent kinases, 

is deleted. The overexpression of cyclin D- and E- dependent kinases in an 

untransformed mouse fibroblast cell line has been shown to stimulate pol III 

transcription (471). Moreover, the transcriptional response is significantly impaired 

in an SV40-transformed derivative of this cell line, consistent with the possibility 

that the stimulatory effect of the CDKs is achieved through the release of TFIIIB 

from repression by RB (471). Similar results were also obtained using a p i6 

ribozyme to lower the concentration of p i 6 in the cell and release endogenous cyclin 

D-CDK4/6 from repression. Moreover, hyperphosphorylated RB and TFIIIB are 

unable to interact (471). Thus, the inactivation of RB by hyperphosphorylation by 

the CDKs also appears to relieve pol III from its suppressive effects, providing 

another mechanism as to how pol III activity may become elevated in response to 

transformation. A third mechanism by which RB function can be lost is by its 

association with viral oncoproteins such as adenovirus El A or SV40 large T antigen 

(541). The E7 oncoprotein of human papillomavirus (HPV) has also been shown to 

bind and inactivate RB (132). HPVs have an etiological role in most cervical 

neoplasias (541). Significantly, the E7 proteins from the more malignant HPV 

strains, such as HPV-16 and -18, bind RB with higher affinity (206). Like El A and 

large T antigen, HPV E7 has also been shown to activate pol III transcription (504). 

Furthermore, analysis of several E7 mutants showed that this is dependent on the 

integrity of the LXCXE motif, which is the RB-binding site within E7 (504).

Since all three mechanisms by which RB is inactivated in cancers can also 

release pol III transcription from repression by the tumour suppressor, it is highly 

probable that the loss of RB function contributes to the elevated pol III activity found 

in a large variety of tumours and transformed cell types. However, it remains to be 

determined how the frequent missense mutations in p53 found in approximately half 

of all the major forms of human cancer affect its ability to inhibit pol III. In addition, 

constitutively active Ras has recently been shown to stimulate pol III transcription in 

vivo (471, 548). Activating mutations in Ras are also very frequently found in 

human malignancies, raising the possibility that Ras may also contribute to the 

overexpression of pol III transcripts in transformed cells and tumours (344).
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1.9 Objectives

The overall purpose of this project was to gain a better molecular 

understanding of how the mammalian pol III transcriptional apparatus is normally 

regulated and how it might become deregulated in cancer. For each of the instances 

of regulation where it has been investigated which component(s) of the basal pol III 

transcriptional apparatus are targeted, a change in the activity of TFIIIB or TFIIIC is 

implicated; in no case has the polymerase itself been found to be directly controlled. 

However, rather crude sources of TFIIIB and TFIIIC have often been used. A major 

objective was therefore to obtain more purified sources of active TFIIIB and TFIIIC 

to allow regulatory studies to be conducted with more confidence. Another aim of 

this approach was to help identify the transcriptional target of novel regulators 

through their consistent copurification with one of these two basal factors. The most 

highly purified fractions were used to investigate the deregulation of pol III 

transcription in ovarian cancer. This was of particular importance because although 

pol III transcript levels are frequently found to be abnormally elevated in 

transformed and tumour cells, in most cases the mechanistic basis for this has not 

been elucidated.

In a healthy cell the level of pol III transcription is restrained by two key 

tumour suppressors, RB and p53. The loss of these constraints on pol III activity 

may also contribute to the overexpression of pol III products consistently observed in 

transformed cells. Another aim of this research was to further investigate the 

regulation of pol III activity by the pocket proteins, especially why the binding of RB 

to TFIIIB inhibits pol III transcription.

A common mechanism of cellular regulation whose study has been largely 

neglected in the case of pol III transcription is that of phosphorylation. Moreover, 

several subunits of pol III components have previously been shown to be 

phosphorylated in vivo. The final aspect of this research investigated the candidacy 

of the protein kinases CKII and GSK-3 as novel kinase regulators of mammalian pol 

III transcription. CKII had previously been shown to stimulate pol III transcription 

in yeast and was also of particular interest because it is a putative cellular oncogene 

and has uncharacterised roles in stimulating growth and proliferation. GSK-3 

phosphorylates and inhibits the translation elongation factor eIF2B. The possibility 

existed therefore that it might also inhibit tRNA and 5S rRNA transcription, which
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would enable it to coordinately regulate various components of the translational 

machinery.
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Chapter 2.

Materials and Methods

2.1 Cell culture

All cell culture was performed in a class II hood using aseptic technique and 

sterile equipment and reagents.

Balb/c 3T3 (A31), NIH 3T3 and HeLa cells, and the rat ovarian epithelial cell 

lines ROSE 199-/3gal and ROSE 199-neu (115), were all grown in DMEM 

supplemented with 10% fetal calf serum, 2mM glutamine, lOOU/ml penicillin and 

lOOpg/ml streptomycin at 37°C in a 5% CO2 atmosphere. ROSE 199-/3gal and 

ROSE 199-neu, kindly provided by Bruce A. J. Ponder, were generated from the 

untransformed parental cell line ROSE 199 by transduction with retrovirus vector 

expressing the p~galactosidase gene or vector expressing the neu oncogene with an 

activating point mutation (V664E), respectively (115). The culture media of these 

two stably transfected cell lines additionally contained 0.6mg/ml of the antibiotic 

G418 to maintain selection.

All cells were appropriately passaged every 3 days (3T3s 1:5, HeLa and B- 

gal 1:10, neu 1:15) to maintain in log phase growth. To harvest a monolayer, cells 

were washed briefly with buffered trypsin-EDTA solution to remove serum that 

inactivates the trypsin and fresh solution was applied. Flasks were then incubated for

1-2 minutes at 37°C to allow trypsinisation to occur. To facilitate detachment of 

cells, flasks can be firmly tapped on the side. Once adherent cells have dissociated to 

a single cell suspension, DMEM that contains serum was immediately added to 

neutralise the trypsin.

2.2 Preparation of whole cell extracts

Cultured cells were harvested for extract preparation when subconfluent. 

This procedure was performed on ice and as quickly as possible so as to minimise
n

loss of activity during extract preparation. Approximately 0.5-3 x 10 cells were
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required for preparing extracts by the freeze-thaw method described below. First 

each 10cm petri dish of adherent cells was washed twice with 5ml of ice cold 

phosphate buffered saline (PBS) and then the cells were harvested into 10ml of ice 

cold PBS by scraping with a plastic spatula. The suspended cells were then decanted 

to a pre-cooled 50ml Falcon tube and gently pelleted by centrifugation at 1200 rpm 

for 8 min at 4°C. The cells were gently resuspended in 1ml of fresh ice cold PBS, 

transferred to an eppendorf tube and pelleted again by pulse centrifugation. The 

volume of the cell pellet was determined by comparison with measured volumes of 

water and should be between 50-150pl. The volume of the cell pellet is critical to 

this technique and larger pellets were subdivided. The pellet was resuspended in an 

equal volume of freshly made pre-cooled extraction buffer (20mM Hepes pH 7.8, 

450mM NaCl, 50mM NaF, 25% glycerol, 0.2mM EDTA, ImM DTT, 0.5mM PMSF, 

0.5pg/ml leupeptin, 0.7pg/ml pepstatin, lpg/ml trypsin inhibitor, 0.5pg/ml aprotinin, 

40pg/ml ubenimex [Bestatin]). This was snap-frozen on dry ice and then placed at 

30°C until thawed and then immediately snap-frozen again. This sequential freeze- 

thaw cycle was repeated twice more to ensure efficient lysis of cells. After the third 

thaw, the suspension was microcentrifuged for 7 min at 4°C to pellet the cell debris. 

The supernatant was carefully removed to a fresh tube, aliquoted into pre-cooled 

eppendorf tubes and snap frozen. The frozen extracts were stored at -70°C.

2.3 Isolation of RNA from cultured cells

Appropriate precautions were taken to avoid problems of contamination by 

RNase. Solutions were treated with diethylpyrocarbonate (DEPC) to inactivate 

ribonuclease (0.1% DEPC, shaken vigorously to get the DEPC in solution, left 

overnight at room temperature, then autoclaved to inactivate remaining DEPC).

Total cellular RNA was extracted using TRI reagent (Sigma), according to 

the manufacturer’s instructions. First, medium was aspirated from sub-confluent 

cultures in 10cm petri dishes and cells were gently washed twice with 5ml PBS to 

remove residual serum in case the same samples were also to be used for isolation of 

cellular protein. 1ml of TRI reagent was added to each 10cm petri dish of cells and 

dishes were rigorously scraped to detach and help lyse cells. This mixture was
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pipetted up-and-down several times to ensure formation of a homogenous lysate and 

transferred to a sterile eppendorf tube. The TRI reagent, a mono-phase solution of 

guanidine thiocyanate and phenol, effectively dissolves DNA, RNA and protein 

released on cell lysis. Samples were left to stand for 5 min at room temperature to 

allow complete dissociation of nucleoprotein complexes. 0.2ml of chloroform was 

then added to each tube and the samples were vortexed vigorously for 15 seconds. 

After allowing to stand at room temperature for 15 min, the samples were then 

centrifuged at 13,000g for 15 min at 4°C. This separates the mixture into three 

layers: an upper aqueous phase containing the RNA, which should be colourless and 

clear, a middle interphase that contains precipitated DNA and is whitish in colour, 

and a lower organic phase containing protein, which is the colour of the TRI reagent. 

The upper aqueous phases were removed to fresh eppendorf tubes taking particular 

care to avoid taking up any of the next layer. 0.5ml of isopropanol was added to 

each tube of aqueous RNA and mixed by inverting several times. The samples were 

left at room temperature for 5-10 min to ensure maximal precipitation of RNA before 

centrifugation at 13,000g for 10 min at 4°C to pellet the RNA. The supernatant was 

removed and the RNA pellet was washed with 1ml of 75% ethanol (made up with 

DEPC-H2O). Following a brief re-centrifugation (7500g, 5 min at 4°C), the 

supernatant was aspirated, pulse spun and a P20 pipette was used to remove residual 

amounts of ethanol. The pellet was redissolved in an appropriate volume of DEPC- 

H2O (10-30pl). To facilitate this, samples were heated at 60-65°C for 10-15 min and 

occasionally pipetted up-and-down. RNA samples were stored at -70°C. The 

concentration of RNA was quantified by UV spectrophotometry (absorbance at 

260nm x 40 x dilution factor = RNA concentration (pg/ml). The ratio of absorbance 

at 260nm to that at 280nm should be >1.8 and <2 for a sample relatively free of DNA 

or protein).

2.4 Northern blot analysis of total cellular RNA

For each sample analysed lOpg of RNA was used, made up to a volume of 

lOpl with DEPC-H20 and mixed with an equal volume of 2 x RNA sample buffer (1 

x MOPS (20mM MOPS pH 7.0, 8mM sodium acetate, ImM EDTA pH 8.0}, 4.4M
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formaldehyde, 54% formamide). The samples were heated at 65°C for 15 min to 

denature the secondary structure of RNA and then rapidly cooled on ice to prevent 

any renaturation. 2pl of 10 x RNA loading buffer (50% glycerol, ImM EDTA, 

0.25% bromophenol blue, 0.25% xylene cyanol FF) and 2pl of 1 mg/ml ethidium 

bromide was added to the chilled samples. The different species of RNA in each 

sample were separated according to size by electrophoresis through a denaturing 

formaldehyde 1% agarose gel (1% agarose, 2.2M formaldehyde, 1 x MOPS). After 

pre-running the gel in 1 x MOPS for 20 min at 40V, the samples were loaded and the 

gel was run for a further ~5 hours at 40V. The fractionated RNA was visualised 

under a UV transilluminator and photographed before soaking the gel in several 

changes of DEPC-H2O to leach out the formaldehyde. The gel was then immersed in 

20 x SCC (3M NaCl, 0.3M sodium citrate pH 7.0) for 20 min. This was the buffer 

used for capillary transfer of RNA to Hybond N nylon filters (Amersham).

The gel was set up for capillary transfer as described by Maniatis et al. (352) 

and this was allowed to proceed overnight. Thus, the 20 x SCC-soaked gel was 

placed inverted on a wick of Whatmann 3MM chromatography paper fed from a 

reservoir of 20 x SCC onto which pre-wetted nylon membrane cut to the size of the 

gel was placed ensuring that there were no air bubbles between the layers. Two 

pieces of pre-soaked Whatmann paper cut to size were placed on top of the 

membrane followed by a stack of paper towels to provide the capillary action. This 

was weighed down with a 500g ballast ensuring a tight connection between layers. 

Pieces of autoradiography film were placed at the edges of the gel to block the towels 

from directly contacting the wick which would provide a short-circuit and would 

inevitably result in poor RNA transfer.

Following overnight transfer, the RNA was fixed to the nylon membrane by 

UV-crosslinking (1200pjoules), washed with DEPC-H2O and stored in Saran wrap. 

To locate the RNA of interest, hybridisation was performed with a high specific 

activity radiolabelled DNA probe complementary in sequence to that particular 

RNA. The B2 gene probe was a 240 bp EcoRl-Pstl fragment from pTB14 (577). 

The ARPP P0 probe was a lkb EcoRI-HincRlI fragment from the mouse cDNA 

(240). The probes were labelled using the random oligonucleotide priming method 

of Feinberg and Vogelstein (142) and the Megaprime Random Priming Kit 

(Amersham). Thus, purified DNA template (25ng) was denatured by heating at 95°C
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for 5 min in the presence of random hexamer oligonucleotide sequences that can 

anneal to the DNA on the slow cooling of the mixture to room temperature. The 

annealed hexamer primes DNA synthesis. To initiate labelling, Klenow fragment of 

E. coli DNA polymerase I (1U), dATP, dGTP, dTTP (50pM each) and 40pCi of 

a 32P-dCTP (lOmCi/ml, 3000 Ci/mmol) were added and the reaction was allowed to 

proceed for lh at 37°C. The labelled DNA was denatured by heating at 95°C and 

was then chilled on ice until ready for use. First, the nylon filter with bound RNA 

was prehybridised by rotation in a hybridisation oven for 30 min at 45°C in 

hybridisation buffer (0.2M sodium phosphate buffer pH 7.2, ImM EDTA, 1% (w/v) 

BSA, 7% (w/v) SDS, 45% (w/v) formamide in DEPC-H2O). The radiolabelled probe 

was then added to fresh hybridisation buffer and incubated with rotation at 45°C 

overnight. To remove nonspecific radioactivity, the filter was rotated for 2 min at 

room temperature and then twice for 10-15 min at 68°C in wash solution (40mM 

sodium phosphate buffer pH 7.2, ImM EDTA and 1% w/v SDS). The filter was then 

exposed to autoradiography film overnight at -70°C. To strip the filter for reprobing, 

it was soaked in boiling water for 5-10 min.

2.5 Transient transfection

Cells were transiently transfected using the calcium phosphate precipitation 

method. Expression vectors coding for wild-type GSK-3 p (pJ3M-GSK-3p) and 

kinase-inactive GSK-3 p (pJ3M-GSK-3pkd) were kindly provided by Charles J. 

Sherr. To construct “empty” pJ3M expression vector, the insert in pJ3M-GSK-3p 

was excised by carrying out a double restriction enzyme digest with BamHl and 

Bglll. The linearised vector was then separated from the insert by electophoresis 

through a 1% low melting point agarose gel and gel-purified using the QIAquick gel 

extraction kit (Qiagen). Re-ligation of vector was carried out overnight at 15°C 

using T4 DNA ligase. Ligation product was used to transform E. coli competent 

cells. Mini-preparations of plasmid DNA were performed from 2ml overnight 

cultures (in LB broth containing 50pg/ml ampicillin) of a number of isolated 

colonies and used to verify that the cells contain the correct vector and that it lacks 

the insert before carrying out a large scale plasmid preparation. All the plasmid
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DNA used for transfection or transcription assays was purified using the QIAGEN 

Plasmid Maxi Protocol and was verified to be of very high quality and purity by UV 

spectrophotometry and electrophoretic analysis. Supercoiled plasmid DNA to be 

used for transfection was additionally ethanol-precipitated twice and then 

resuspended in a small volume of sterile water.

24 h prior to transfection, cells were split and seeded at -  4-6 x 105 cells per 

10cm dish (depending on cell type) resulting in a confluency of -55-70% at the time 

of transfection. To improve transfection efficiency, 4 h before transfection the cells 

were refed with fresh growth medium. 45 min before transfection, for each dish the 

total plasmid DNA to be transfected was diluted to a volume of 450jll1 in filter- 

sterilised 0.1 x TE buffer, pH 8.0 (ImM Tris pH 8.0, O.lmM EDTA pH 8.0) and 

50pl of 2.5M CaCb was added. To form calcium phosphate-DNA precipitates, the 

DNA-CaCh mixture was added dropwise to 500pl of 2 x HEPES-buffered saline 

solution, pH 7.1 (280mM NaCl, 1.5mM Na2H P04.2H20 , 50mM HEPES, pH 7.1 

with NaOH), with continuous swirling to mix. This was then vortexed for 15 

seconds and left to stand for 30 min at room temperature before adding to cells and 

swirling to mix evenly. DNA precipitates were left on the plates overnight before 

removing and washing the cells twice with warm PBS. Fresh medium was then 

added and the cells were incubated at 37°C for a further 48 h to allow expression of 

transfected DNA. Cells were harvested and total RNA extracted for analysis by 

primer extension.

2.6 Primer extension

Primer extension was used to analyse the expression levels of transfected pol 

III template VAi and also a cotransfected CAT gene used as an internal control for 

transfection efficiency. For each primer extension reaction, lpg of total RNA in 

1 OjLxl of DEPC-H2O was mixed with lOpl of 5 x First Strand Buffer (Life 

Technologies) and lpl (2.5ng) of y-32P end-labelled VAi (5'-CACGCGGGCGGTAA 

CCGCATG-3') or CAT (5'-CGATGCCATTGGGATATATCA-3') oligonucleotide 

as primer. This mixture was incubated at 80°C for 10 min followed by 2h at 50°C. 

30pl of RT mix (23pl DEPC-H20 , 0.5pl 1M DTT, 5pl 5mM dNTP mix, 0.5pl
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4mg/ml actinomycin D, 0.5pl RNasin, 0.5pl (100U) Superscript II Reverse 

Transcriptase (Life Technologies)) was then added to the samples to initiate reverse 

transcription which was allowed to proceed for 1 h at 42°C. Reaction products were 

ethanol precipitated overnight and washed with 70% ethanol before electrophoresis 

through a 7M urea 7% polyacrylamide gel.

2.7 RNA pol III in vitro transcription assay

The in vitro transcription of class III genes was reconstituted using either 

crude extracts or fractionated factors as a source of the basal pol III transcription 

components and 250ng of plasmid DNA containing a particular pol III template. 

Transcription reactions were performed in a volume of 25 pi in a final concentration 

of 12mM HEPES pH 7.9, 60mM KC1, 7.2mM MgCl2, 0.14mM EDTA, 1.2mM DTT, 

10% (v/v) glycerol, ImM creatine phosphate, 0.5mM each of rATP, rGTP and rCTP 

and lOpCi [a-32P] UTP (400 mCi/mmol) (Amersham). Components for 

transcription were assembled on ice. For transcription reactions reconstituted with 

fractionated factors, these were preincubated for 15 min at 30°C with the pol III 

template before the addition of nucleotides required to initiate transcription. After 1 

h incubation at 30°C, transcription was stopped by the addition of 250pl of 1M 

ammonium acetate/0.1% SDS containing 20pg of yeast tRNA that stabilises the 

synthesised RNA. The samples were then phenol-chloroform extracted to remove 

protein and DNA. The aqueous layer (250pl) was carefully transferred to a fresh 

eppendorf tube and 750pl of 96% ethanol was added to precipitate the RNA. The 

samples were mixed by inversion and left overnight at -20°C. The precipitated RNA 

was pelleted by centrifugation at 13,000g for 20 min. After washing with 70% 

ethanol (750pl), as much supernatant as possible was removed, taking care not to 

dislodge the pellet. The samples were then placed at 47°C for 5-10 min to dry. The 

RNA was redissolved in 4pl of formamide loading buffer (80% formamide, 0.1% 

xylene cyanol, 0.1% bromophenol blue) by vortexing for 20 min. Transcription 

products were resolved by electrophoresis through a 7% polyacrylamide sequencing 

gel containing 7M urea and 1 x TBE (44.5mM Tris base, 44.5mM boric acid, ImM 

EDTA pH 8.0). The gel was pre-run in 1 x TBE for 30 min at 40W and the samples

79



were boiled for 2 min at 95°C and quenched on ice. 2pl of each sample was loaded 

and the gel was run for a further 1 hour at 40W. The gel was then vacuum-dried for 

1 h at 80°C and radiolabelled transcripts were detected by autoradiography.

Plasmid templates used for in vitro transcription assays were as follows. 

pVAi is a 221 bp SaR-BaW fragment of adenovirus 2 DNA containing the VAi gene 

subcloned into pUC18 (117). pLeu is a 240 bp EcoRl-Hindlll fragment of genomic 

DNA containing a human tRNALeu gene subcloned into pAT153 (577). pArg 

contains a human tRNAArg gene. pHu5S3.1 is a 638-bp BamUl-Sacl fragment of 

human genomic DNA containing a 5S gene subcloned into pBluescript SK+. 

pU6/Hae/RA2 contains the promoter of the human U6 gene followed by a 137 bp 

fragment of the rabbit p-globin gene (338).

2.8 Electrophoretic mobility shift assay (EMSA)

To assay for TFIIIC2 DNA-binding activity, EMSAs were performed using y- 

32P labelled oligonucleotide containing a B-block consensus (5'- 

AGAGGTCCTGAGTTCAAATCCCAG-3' (RJW1) annealed to the complementary 

3' to 5' strand (RJW2)). Spl binding was assayed using an oligonucleotide that 

contains a consensus Spl binding site (5'-ACTTGATTAACTGGGCGGAGTTAT 

GATTGA-3' (Ml) annealed to the complementary 3' to 5' strand (M2)). 

Oligonucleotides were 5' end-labelled using T4 polynucleotide kinase (PNK). Thus, 

40ng of RJW1 or Ml was incubated for 1 h at 37°C with 10 units of PNK and 20pCi 

of [y-32P]-rATP (lOmCi/ml, 3000Ci/mmol) in 1 x PNK buffer (Promega). The 

labelling reaction was stopped by heating at 65°C for 10 min. PNK enzyme was 

phenol-chloroform extracted and oligonucleotide was ethanol precipitated. 

Unincorporated label was removed by multiple washes of precipitated 

oligonucleotide with 70% ethanol, before resuspending in TE buffer, pH 8.0 (lOmM 

Tris pH 8.0, ImM EDTA). Unlabelled complementary oligonucleotide was then 

added in 2.5 fold excess and the mixture was heated in a hot block at 90°C for 2 min. 

The hot block was then turned off and the samples were left to cool slowly overnight. 

The annealed oligonucleotide was stored at 4°C until ready to use.
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The binding reactions were performed in a final volume of lOpl and an 

optimal salt concentration of 60mM KC1, as for in vitro transcription assays. Each 

reaction contained lpg of polydldC (2pi), lOOng of non-specific or specific 

competitor oligonucleotide (2pl), 0.25-0.5ng of labelled probe (2pl) and typically 1- 

4pi of protein extract or fractionated factors. Extract or protein factors were 

preincubated with unlabelled competitor DNA for 15 min at 30°C before the addition 

of labelled probe and a further 15 min incubation at 30°C. The formation of protein- 

DNA complexes was analysed by electrophoresis of samples on a prerun 4% 

nondenaturing polyacrylamide gel in 1 x TAE buffer (40mM Tris acetate, ImM 

EDTA pH 8.0) for Wi-2 h at 4°C. The gel was quickly dried to avoid dissociation of 

complexes formed and exposed to X-ray film overnight at -70°C.

2.9 In vitro transcription and translation of BRF

To transcribe BRF, lpg of pCITE vector (Novagen) containing the BRF 

sequence subcloned downstream of the T7 promoter was incubated at 37°C for 90 

min with 80 units of T7 phage RNA polymerase. RNA synthesis was carried out in 

T7 transcription buffer (40mM Tris pH 8.0, 25mM NaCl, 8mM MgCh, 2mM 

spermidine) supplemented with 5mM DTT, ImM of each rNTP and 20 units of 

RNase inhibitor (RNasin). Following phenol-chloroform extraction and ethanol 

precipitation, the synthesised BRF RNA was then washed with 70% ethanol and 

resuspended in 50pl DEPC-H2O.

Translation of the RNA was carried out using rabbit reticulocyte lysate 

(Promega), according to the manufacturer’s specifications. Translation reactions 

were performed at 30°C for 90 min in a final volume of 50pl. Reaction mixtures 

typically contained 25 pi of reticulocyte lysate, lpl of amino acid mixture that lacks 

methionine and cysteine (Promega), 2pl of synthesised RNA, lp l of RNasin (20 

units), 7pi of DEPC-H2O and 4pl of a mixture of [35S]-methionine and [35S]-leucine 

(14.3mCi/ml, lOOOCi/mM) (Amersham). To check translation products, a small 

aliquot was resolved on a SDS 7.8% polyacrylamide gel and visualised by 

autoradiography.
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2.10 Immunoprecipitation

Antibodies were coupled to protein A-Sepharose by incubating LDB-washed 

beads with crude antiserum or purified antibody on an orbital shaker for 1 h at 4°C in 

the presence of a cocktail of protease inhibitors (0.9pg/ml leupeptin, 1.2pg/ml 

pepstatin, 1.75pg/ml trypsin inhibitor, 0.9pg/ml aprotinin, 70pg/ml ubenimex 

[Bestatin]). The beads were then washed twice with LDB buffer (lOOmM KC1, 

20mM Hepes.Cl pH 7.9, 12mM MgCl2, O.lmM EDTA, 17% glycerol, 2mM DTT) to 

remove unbound antibody and other factors such as proteases present in the sera.

Immunoprecipitation reactions were typically carried out using 150pg of 

HeLa nuclear extract (20pl) incubated for 3 h at 4°C on an orbital shaker with 20 j l x 1 

of protein A-Sepharose beads carrying equivalent amounts of prebound 

immunoglobulin (IgG) for the different reactions. The beads were then gently 

pelleted by pulse centrifugation, supernatants were carefully removed and the beads 

were washed five times with 500pl of LDB. The bound material was released by 

adding an equal volume of 2 x protein sample buffer (12.5mM Tris pH 6.8, 1% SDS, 

10% p-mercaptoethanol, 20% glycerol, 0.25% bromophenol blue) and was analysed 

by Western blotting. For other immunoprecipitations, PC-B, PC-C or 35S-labelled in 

vitro translated proteins was used instead of nuclear extract. In the latter case, 

precipitated material and supernatant was analysed by autoradiography.

2.11 Separation of proteins by gel electrophoresis

Proteins were resolved by electrophoresis on denaturing (SDS) 

polyacrylamide gels. The gel recipes were based on the SDS discontinuous buffer 

system of Laemmli (306). Typically, proteins were electrophoresed on 7.8% 

polyacrylamide resolving minigels (containing 375mM Tris pH 8.8, 0.1% SDS). A 

4% polyacrylamide gel containing 125mM Tris pH 6.8 and 0.1% SDS was routinely 

cast as the stack. Before loading samples on the gel, they were boiled for 5 min in 1 

x protein sample buffer (6.25mM Tris pH 6.8, 0.5% SDS, 5% p-mercaptoethanol, 

10% glycerol, 0.125% bromophenol blue). Electrophoresis was carried out in 1 x 

protein running buffer (0.1% SDS, 76.8mM glycine, lOmM Tris, pH 8.3) at 70V
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initially until the bromophenol dye front had entered the resolving gel and then at 

140 V for ~ 1V2 h until the dye had reached the bottom of the gel.

2.12 Western blotting

Following resolution by SDS-PAGE, proteins were transferred to a 

nitrocellulose filter by electroblotting in 20mM sodium phosphate (pH 6.7) at 37V 

for 30 min using the BioRad Mini Trans-Blot Electrophoretic Transfer Cell. The 

filter was then washed for 10 min in 1 x TBS (25mM Tris pH 7.6, 150mM NaCl) and 

blocked for 1 h at room temperature in milk buffer (1 x TBS, 0.5% Tween-20, 4% 

skimmed milk powder (Marvel)). The blot was incubated with diluted primary 

antibody (typically a 1:1000 or 1:2000 dilution) overnight at 4°C. To remove excess 

primary antibody, the blot was washed for 2 min with milk buffer three times before 

incubating for 1 h at room temperature with the appropriate horseradish peroxidase- 

conjugated secondary antibody. The blot was then washed extensively to remove 

excess secondary antibody (3 x 2  min and 2 x 1 5  min with milk buffer followed by a 

5 min wash with TBS). The blot was developed by the enhanced chemiluminescence 

method (ECL, Amersham), according to the manufacturer’s instructions.

2.13 Transformation

For plasmid storage and propagation, E. coli XL-1 Blue supercompetent cells 

(Stratagene) were transformed. For the expression of recombinant proteins in 

bacteria, E.coli BL21 (DE3) pLys competent cells were used as host. For both E.coli 

strains, competent cells were thawed on ice. 50pl of XL 1-Blue cells or 20pl of BL21 

(DE3) pLys cells were used per transformation reaction. For each transformation, 

10-20ng (lp l) of plasmid DNA was added to the chilled aliquot of thawed cells and 

the contents of the tube were gently mixed by stirring with a pipette tip. After 

incubating on ice for 30 min, cells were heat shocked at 42°C for 45 seconds and 

then placed on ice for a further 2 min. 450pl of SOC medium (2% bacto-tryptone, 

0.5% yeast extract, 20mM glucose, lOmM NaCl, lOmM MgSCL, lOmM MgCL) was
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then added and the cells were incubated at 37°C for 1 h on an orbital shaker 

(~200rpm). A variety of small volumes (200pl or less) of the transformation mixture 

were then plated on LB agar plates containing 50pg/ml ampicillin (Amp). Plates 

were incubated overnight at 37°C to allow transformed cells to grow and form 

colonies.

2.14 Plasmid DNA preparation

For large scale plasmid DNA preparation, a single isolated bacterial colony 

was first picked from a freshly streaked plate and used to inoculate 10ml of LB 

medium (10g/l bactotryptone, 5g/l yeast extract, 10g/l NaCl) containing appropriate 

selective antibiotic (50pg/ml ampicillin). After 6 h shaking at 37°C, 3ml of this 

mini-culture was used to inoculate 250ml of LB medium containing ampicillin. This 

larger bacterial culture was grown overnight at 37°C on an orbital shaker. Cells were 

then harvested by centrifugation at 6000g for 15 min at 4°C and plasmid DNA was 

prepared using the QIAGEN Plasmid Maxi Kit.

Following resuspension in 10ml of Buffer PI (50mM Tris pH 8.0, lOmM 

EDTA, lOOpg/ml RNase A), cells were subjected to alkaline lysis by incubating with 

10ml of Buffer P2 (200mM NaOH, 1% SDS) for 5 min at room temperature. The 

lysate was then quickly neutralised by adding 10ml of chilled Buffer P3 (3M 

potassium acetate, pH 5.5) and mixing immediately causing a precipitate of 

potassium dodecyl sulphate to form. The SDS-denatured proteins and chromosomal 

DNA were co-precipitated with detergent whereas plasmid DNA, which lacks any 

close protein associations, remained in solution. After 20 min incubation on ice, the 

precipitate was pelleted by centrifuging at 20,000g for 30 min at 4°C and the 

supernatant was removed and applied to a QIAGEN tip 500 pre-equilibrated with 

QBT buffer (750mM NaCl, 50mM MOPS pH 7.0, 15% isopropanol, 0.15% Triton 

X-100). This is an anion-exchange resin to which plasmid DNA was able to tightly 

bind. The resin was then washed twice with 20ml of Buffer QC (1M NaCl, 50mM 

MOPS pH 7.0, 15% isopropanol) before elution of purified plasmid DNA in QF 

buffer (1.25M NaCl, 50mM Tris pH 8.5, 15% isopropanol) and its precipitation 

using 0.7 volumes of isopropanol. After centrifugation at 15000g for 30 min and a
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70% ethanol wash, plasmid DNA was resuspended in a small quantity of sterile 

water or TE buffer pH 8.0.

2.15 Expression and purification of glutathione S transferase (GST)-fusion

proteins

A glycerol stock of BL21 (DE3) pLys bacteria transformed with the 

appropriate GST-fusion protein expression vector was thawed on ice. A loopful of 

cells was used to inoculate 20ml of LB medium containing appropriate selective 

antibiotics (GST-RB(379-928) expression vector: 50pg/ml ampicillin, lOpg/ml 

chloramphenicol; GST expression vector: 50pg/ml ampicillin) and grown overnight 

at 37°C. This culture was then used to inoculate 200ml of LB medium which was 

grown for -  1 h at 37°C to mid-logarithmic phase (optical density ~0.6). The culture 

was then transferred to an orbital shaker at room temperature and incubated with 

shaking (200rpm) for 30 min. lOOpM isopropyl-p-D-thiogalactopyranoside (IPTG) 

was then added to induce the expression of recombinant protein and cultures were 

incubated for a further 16 h at room temperature. Bacteria were harvested by 

centrifugation and resuspended in 9ml of ice-cold PBS containing 1% Triton X-100 

and 1% PMSF. Cells were lysed by sonicating briefly on ice (2 x 20 secs on 60- 

SOW). The cell debris was pelleted by centrifugation (12,000 rpm for 10 min at 4°C 

in a Sorvall High Speed Centrifuge). The supernatant, which should be clear but 

coloured, was carefully decanted to a fresh tube containing 200pl of glutathione- 

agarose beads and mixed by constant rotation for 30 min at 4°C. The beads were 

then washed extensively to remove unbound proteins (2 x 50ml ice cold PBS/1 % 

Triton X-100, 2 x 50ml ice cold PBS with no Triton X-100). To elute bound GST- 

fusion protein from the glutathione agarose beads, the beads were mixed by rotation 

with an equal volume of elution buffer (50mM Tris, 25mM glutathione, pH 8.0) for 

10 min at room temperature. This was repeated three times to ensure efficient 

elution. Samples were then dialysed in LDB for 5-6 h at 4°C, aliquoted and stored at 

-70°C.
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2.16 Expression and purification of 6 x Histidine (His)-tagged RB

A single colony of BL21 (DE3) pLys cells freshly transformed with His6Rb 

(379-928) construct was used to inoculate 50ml of LB medium. This culture was 

grown overnight at 37°C and used to inoculate 500ml LB. After 1-1% h further 

growth at 37°C (optical density of 0.6-0.8), the 500ml culture was placed in an 

orbital shaker at room temperature and immediately induced (150pM IPTG). Cells 

were incubated for a further 16-24 h to allow expression of His-tagged protein. 

Bacterial pellets were resuspended in TBS/1% Triton/1% PMSF. Sonication and the 

clearing of the lysate were performed as for GST-fusion protein preparations. 

Supernatant was incubated with 300pl of nickel-agarose beads (QIAGEN) in a final 

concentration of lOmM imidazole for 30 min at 4°C. The agarose beads were 

washed 5 x with 15ml of TBS containing lOmM imidazole followed by a further five 

washes with 15ml of TBS containing 40mM imidazole. His-tagged protein was 

batch eluted from the Ni-NTA (nitrilo-triacetic acid) resin by three sequential 10 min 

incubations at room temperature with 1 bead volume of TBS containing 150mM 

imidazole. Eluates were dialysed extensively in LDB as for purified GST-fusion 

proteins and stored in small aliquots at -70°C.

2.17 Coomassie Blue staining of protein gels

The purity and yield of bacterially expressed recombinant proteins was 

analysed by running small volumes (<5jnl) of purified protein on a SDS 

polyacylamide gel that was then stained with Coomassie Blue R250. First, the gel 

was fixed for 15 min in a 5:1:5 mixture of methanol, glacial acetic acid and water. 

To stain the gel, it was incubated in fixative containing 0.1% (w/v) Coomassie Blue 

R250 for ~30 min. Excess dye was removed by destaining in an aqueous solution of 

5% methanol and 7.5% acetic acid. The concentrations of purified recombinant 

proteins were estimated by comparison of the intensity of staining with that of known 

amounts of bovine serum albumin that were run on the same gel.
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2.18 Column chromatography

All chromatographic procedures were performed in a cold room at 4°C using 

the Biorad Econo System except for DNA- and immuno- affinity purification that 

was carried out by hand in Biorad Polyprep® disposable columns. Buffers were all 

prepared using ultrapure deionised water obtained from a Millipore M illiQ piUs system 

and were autoclaved or filter-sterilised before use and pre-chilled at 4°C. The 

starting material for fractionation, nuclear extract from exponentially growing HeLa 

cells, was purchased from the Computer Cell Culture Centre (Mons, Belgium).

2.18.1 Fractionation of HeLa nuclear extract on phosphocellulose

Phosphocellulose chromatography was carried out by the method of Segall et 

al. (473). The day before fractionation, the phosphocellulose resin was prepared. 

The phosphocellulose (PI 1, Whatman), which is purchased as an anhydrous powder, 

was activated for use as a cation exchanger by washing first with base and then acid. 

A suitable amount of phosphocellulose was weighed out and stirred into 25 volumes 

of 0.5M NaOH. The phosphocellulose was left to settle for 5 min before decanting 

off the supernatant. It was then washed extensively with deionised water in a 

Buchner funnel until the filtrate pH was 11.0 or below. The phosphocellulose was 

then mixed with 25 volumes of 0.5M HC1 and left for 5 min. To avoid excessive 

hydrolysis and swelling, it was important that the phosphocellulose was not exposed 

to 0.5M NaOH or 0.5M HC1 for any longer than 5 min. After the acid wash, the 

phosphocellulose was washed with deionised water as previously until the filtrate pH 

was within several pH units of that of the starting buffer, i.e. pH 7.9. The 

phosphocellulose was then mixed with several changes of 1M Hepes.Cl pH 7.9 until 

the pH was within 0.5 units of the desired pH. The phosphocellulose was then left to 

equilibrate overnight in starting buffer, PC-A (0.1) (20mM Hepes.Cl pH 7.9, 20% 

glycerol, 0.2mM EDTA, lOOmM KC1, 0.5mM DTT).

The following morning the pH was checked and an empty column of suitable 

volume was packed with equilibrated phosphocellulose resin. The column was then 

attached to the Biorad Econo System and the gradient monitor was calibrated by 

washing with several volumes of low salt buffer (PC-A (0.1)) followed by several
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volumes of high salt buffer (PC-A (1.2)). The column was then reequilibrated in low 

salt buffer (PC-A(O.l)) ready for the application of extract.

The maximum protein binding capacity of phosphocellulose is ~10mg per ml. 

To avoid overloading the column, 5mg of nuclear extract (7.5mg/ml) was loaded per 

ml of resin. To allow the equilibration of applied protein with the column and 

adsorption to occur, extract was loaded slowly at a flow rate of 1 column volume per 

hour. PC-A (0.1) was applied at the same flow rate until protein was detected in the 

flow-through at which point the flow rate was increased to 2.5 column volumes per 

hour. A UV monitor measured absorbance at 280nm enabling the elution of protein 

from the column to be closely monitored. The Econo system was programmed to 

collect 1ml fractions. Individual fractions were directly tested for protein content 

using a colourimetric method based on the differential colour change of Bradford’s 

reagent, an acidic solution of Coomassie Brilliant Blue G-250, in response to various 

concentrations of protein. lOpl of fractions were mixed with lOOpl of a 1:10 dilution 

of Bradford’s reagent (Biorad) in a 96-well plate. The binding of protein to dye 

resulted in an immediate colour change. The column was washed with PC-A (0.1) 

until the flow-through peak had returned to near zero and little or no protein was 

detectable in eluted fractions. These flow-through fractions (PC-A) contain TFIIIA. 

Bound protein was then step-eluted by sequential washing with PC-A buffer (20mM 

Hepes.Cl pH 7.9, 20% glycerol, 0.2mM EDTA, 0.5mM DTT) containing 350mM 

KC1 (PC-A (0.35)), 600mM KC1 (PC-A (0.6)) and 1.2M KC1 (PC-A (1.2)). 

Fractions eluted by the 0.1 to 0.35M KC1 step constitute PC-B and contain both 

TFIIIB and pol III. PC-C constitutes fractions eluted by the 0.35 to 0.6M KC1 step 

and contains TFIIIC, pol III and SNAPc. PC-D is the 0.6 to 1.2M KC1 step fraction 

and contains the pol II factor TFIID and the pol I factor SL1.

Before aliquoting and snap freezing, PC-B and PC-C fractions were 

extensively dialysed to lower the salt concentration. Dialysis was carried out at 4°C 

using the Gibco BRL Microdialysis System in accordance with the manufacturer’s 

specifications. The dialysis membrane, stored in 20% ethanol, was prepared for 

dialysis by washing carefully with 4-5 changes of deionised water. The sheets of 

dialysis membrane have an exclusion limit of 12 to 14 kDa ensuring retention of the 

pol III factors but allowing exchange of ions. Fractions were dialysed against LDBO 

(20mM Hepes.Cl pH 7.9, 12mM MgCl2, O.lmM EDTA, 17% glycerol, 2mM DTT)



to a final salt concentration of ~100mM. The progress of dialysis was monitored by 

measuring the salt conductivity of fractions. Typically, PC-B fractions were dialysed 

for ~4-6 h and PC-C fractions were dialysed for —8-10 h.

To reduce the likelihood of protein degradation, freshly prepared PMSF 

(O.lmM final concentration) was added to chromatographic and dialysis buffers. 

O.lmM PMSF was also added to the starting material along with a cocktail of other 

protease inhibitors (0.9pg/ml leupeptin, 1.2pg/ml pepstatin, 1.75|ng/ml trypsin 

inhibitor, 0.9pg/ml aprotinin, 70pg/ml ubenimex [Bestatin]) which together can 

inhibit the major classes of cellular proteases. Fractions obtained by chromatography 

were stored at -70°C.

2.18.2 Heparin- and SP- Sepharose chromatography

Gradient chromatography on heparin-Sepharose was carried out using pre­

packed 1ml Hi-Trap Heparin columns obtained from Pharmacia Biotech. The 

column was equilibrated by washing with 5 column volumes of Hep buffer (20mM 

Hepes.Cl pH 7.9, 20% glycerol, 0.2mM EDTA, 5mM MgCl2, O.lmM DTT, 0.1 mM 

PMSF, O.lmM sodium metabisulphate) containing lOOmM KC1 (Hep 100). 

Typically, 15mg of HeLa nuclear extract (2ml) or ~4mg PC-B (~4mls) were 

fractionated. Samples were loaded onto the column at a flow rate of 0.05ml/min (3 

cvs/h). After extensive washing with Hep 100, bound protein was gradient eluted. 

The Econo System pump has two separate buffer inlets with buffer uptake from 

either inlet controlled by a proportioning valve enabling the formation of a gradient 

by the appropriate mixing of two different buffers. The system was programmed to 

form a linear lOOmM to 1M KC1 gradient in 1 h. The gradient was typically run in 3 

or 6 column volumes at a flow rate of O.lml/min. Eluted fractions (200pl) were 

dialysed against LDBO to a final KC1 concentration of lOOmM, as previously.

Gradient chromatography on SP-Sepharose was also carried out using a 

prepacked 1ml HiTrap column (Pharmacia Biotech). Chromatographic conditions 

and buffers were identical to those used for fractionation on heparin.
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2.18.3 Fractionation of PC-B on Cibacron Blue

A 1ml prepacked HiTrap Sepharose column (HiTrap Blue, Pharmacia 

Biotech) was also used for chromatography of fractions on Cibacron blue 3GA. The 

column was equilibrated by washing with 5 cvs of CB buffer (20mM Tris.HCl pH

7.9, 5mM MgCh, 10% glycerol, 3mM DTT, O.lmM PMSF) containing lOOmM 

NaCl (CB100). lmg of PC-B was then loaded at a flow rate of 0.05ml/min (3cvs/h). 

To remove unbound protein, the column was washed at O.lml/min (6cvs/h) with ~10 

column volumes of CB100. Several column volumes of CB buffer containing 1M 

NaCl were then applied until little or no more protein was being eluted (CB1000). 

CB buffer containing 2M NaCl and 5M urea (CB2000U) was then applied to elute 

even more tightly bound protein. 0.2ml fractions were collected, as programmed by 

the Econo System. Protein-containing fractions were dialysed against LDBO for ~ 

6-7 h until of approximately the same salt conductivity as LDB. The fractions were 

then dialysed for a further 3 h against LDB to ensure removal of any residual urea 

still present in the samples.

2.18.4 Fractionation of PC-B on hydroxyapatite

PC-B (lmg) was fractionated on hydroxyapatite using a prepacked 1ml 

Econo-Pac CHT-II column obtained from Biorad. The column was equilibrated by 

washing with 5 cvs of HAP buffer (10% glycerol, 60mM KC1, 5mM MgCL, 1.5mM 

DTT, O.lmM PMSF) containing lOmM potassium phosphate pH 7.0 (HAP10). PC- 

B, diluted 2-fold in HAP 10 buffer, was applied to the resin at a flow rate of 

0.02ml/min. The flow rate was then increased to 0.04ml/min. After washing 

extensively with HAP 10 buffer, bound protein was eluted with a 6ml linear gradient 

from lOmM to 500mM potassium phosphate pH 7.0 in HAP buffer. Fractions were 

dialysed into LDB as previously.
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2.18.5 Carboxymethyl chromatography

Fractionation on carboxymethyl was carried out using a prepacked 1ml 

carboxymethyl column obtained from Biorad. Typically, less than lmg of protein 

was applied to this column because of its low protein binding capacity. The column 

was equilibrated by washing with PC-A (0.1). Protein was applied at a flow rate of 

O.lml/min (6cvs/h). The column was washed at the same flow rate with PC-A (0.1). 

It had previously been shown that TFIIIB does not bind to this weak cation 

exchanger under these conditions, thereby avoiding the need for dialysis. 0.2ml 

flowthrough fractions were collected, aliquoted and snap-frozen immediately. These 

fractions were subsequently assayed for TFIIIB activity. TFIIIC and pol III were 

step-eluted with PC-A (1.2) and dialysed into LDB before aliquoting and snap 

freezing.

2.18.6 Purification of antisera for use in immunoaffinity chromatography

Antisera were purified on protein A-Sepharose beads (Pharmacia Biotech) by 

the low salt method of Harlow and Lane (195). 2mls of protein-A Sepharose beads 

were transferred to a disposable polypropylene column (Polyprep®, Biorad) and 

washed with several volumes of lOOmM Tris pH 8.0. To ensure the tight binding of 

immunoglobulins to the protein A, one-tenth volume of 1M Tris pH 8.0 was added to 

the thawed sample of antiserum. The antiserum (4ml) was slowly recirculated 

through the column of protein A-Sepharose for ~ lh  (four passes). The protein A- 

Sepharose column was then washed with 10 column volumes of lOOmM Tris pH 8.0 

(20mls, 1 h) followed by a further 10 column volumes of lOmM Tris pH 8.0. 

Purified immunoglobulin was eluted by lowering the pH by applying lOOmM glycine 

pH 3.0. To preserve the structure and activity of immunoglobulins, samples were 

immediately neutralised on elution by collecting in 0.5ml fractions in eppendorf 

tubes that already contained 50pl of 1M Tris pH 8.0 and mixing gently. Protein- 

containing fractions were pooled (4mls) and dialysed into LDB.
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2.18.7 Immunoafflnity purification of TFIIIB or TFIIIC

TFIIIC was immunopurified using the polyclonal antiserum 4286, which was 

raised by immunising rabbits with synthetic peptide RPGFSPTSHRLLPTP (human 

TFIIICp residues 897-911) coupled to keyhole limpet haemocyanin. The 

corresponding preimmune serum was used in control immunopurifications that were 

carried out in parallel. Prior to use, the sera were purified on protein A-Sepharose 

beads. Eluted antibodies were dialysed into LDB. 2 mis of PC-C fraction 

(~0.7mg/ml) was incubated with 300pl of purified antibody (~10mg/ml) on ice for 1 

h. This mixture was recirculated slowly through 350jul of protein A-Sepharose at 

4°C for ~2 h. The column was washed with 25 column volumes of CB buffer 

containing lOOmM NaCl (CB100). Immunoaffinity-purified TFIIIC was then eluted 

using CB buffer containing 2M NaCl and 2M urea. Fractions were dialysed into 

LDB buffer.

TFIIIB was immunopurified using either the 128 or 330 antiserum, which 

were raised against residues 533-547 and 664-677 of human BRF, respectively. The 

immunopurification procedure was identical to that for TFIIIC except that PC-B 

(2ml) or TFIIIB-containing heparin fractions (2ml) were used as starting material.

2.18.8 DNA-affinity purification of TFIIIC

TFIIIC was DNA-affinity purified using a B-block oligonucleotide resin 

carrying the B-block promoter sequence from the adenovirus VAi gene. The starting 

material for DNA-affinity chromatography, PC-C or immunoaffinity-purified TFIIIC 

in LDB, was diluted into BL70 buffer (70mM KC1, 0.1% IGEPAL CA-630 (Sigma), 

20mM Hepes.KOH pH 7.9, 12mM MgCl2, O.lmM EDTA, 17% glycerol, 9mM DTT, 

O.lmM PMSF, 0.5pg/ml leupeptin, 0.7pg/ml pepstatin, lpg/ml trypsin inhibitor, 

0.5pg/ml aprotinin, 40pg/ml ubenimex [Bestatin]). Prior to loading onto the column, 

the diluted starting material was incubated on ice for 10 min with 30pg poly(dl.dC) 

per mg of protein. This protein-DNA mixture (lm g of protein) was slowly 

recirculated through 350pl of affinity resin for ~75 min at 4°C. The column was 

washed with 20 column volumes of LDB. 5 column volumes of PC-A(0.35) were
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then sequentially applied, collecting 1 column volume fractions. 1 column volume 

of PC-A buffer (minus the EDTA) containing 2M KC1, 0.1% IGEPAL CA-630, and 

0.2mg/ml insulin was then applied and left for 10 min. The fraction was then 

collected and this was repeated with a further 5 column volumes of this high salt PC- 

A buffer. Fractions were dialysed into LDB, as previously. Dialysed fractions were 

then extensively aliquoted to avoid the need for multiple freeze-thaw cycles and 

immediately snap frozen on dry ice.

2.19 Measuring protein concentration

The protein concentration of samples were accurately estimated by 

quantitating the colour change in Bradford’s reagent (Biorad) on mixing 1ml of 

diluted reagent (1:10 in distilled water) with a small volume of the sample being 

assayed. The absorbance of this mixture at 595nm was measured in a UV 

spectrophotometer. For a narrow range of protein amounts (~l-12pg), the change in 

absorbance at 595nm in response to increasing amounts of protein is approximately 

linear. A standard curve was constructed by measuring absorbance at 595nm for 

known amounts of bovine serum albumin (BSA). For absorbances in the linear 

range of the standard curve, the protein concentration of samples was estimated by 

reading from the plotted graph the amount of protein that this absorbance equates to 

when using BSA as a standard. This was repeated using several different volumes or 

dilutions of the sample to obtain an average and a more accurate measurement of 

protein concentration. For absorbances outside the linear range of the standard 

curve, samples were appropriately diluted to try and obtain a reading within the 

linear range, which should give a more accurate estimation of protein concentration.

2.20 Silver staining

For very dilute protein samples, the use of Bradford’s reagent for estimating 

protein concentration was unsuitable. Instead, the protein concentration of samples 

was estimated by running small volumes of sample on a SDS-polyacrylamide gel,
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silver staining to visualise protein, and comparing the intensity of staining with that 

of known amounts of BSA run alongside the samples on the gel. This method of 

estimating protein concentration was identical to that used for bacterially-expressed 

recombinant proteins except that the polyacrylamide gel was stained with silver 

rather than Coomassie Blue. Silver staining is about 10-20 times more sensitive than 

using Coomassie Blue and enabled the detection of nanogram amounts of protein 

(detection limit ~2-5 ng per protein band).

To silver stain, first the gel was fixed by soaking in 250ml 50% methanol 

twice for 15 min. This was followed by a 15 min incubation in 5% methanol. The 

gel was then incubated in 250ml of deionised water containing 8pl of 1M DTT for 

15 min. After washing briefly with deionised water twice, the gel was then gently 

agitated for 15 min in a freshly prepared 0.1% solution of silver nitrate. To remove 

excess silver nitrate solution, the gel was washed twice briefly with deionised water 

followed by two quick washes with a small amount of freshly made developing 

solution (3% (w/v) sodium carbonate, 0.5ml 37% formaldehyde per litre, in distilled, 

deionised water). The remainder of the developing solution (~200ml) was then 

added and incubated with the gel until the silver stained protein bands were of the 

desired intensity. Staining was stopped by pouring off most of the developing 

solution and sprinkling solid citric acid into the remaining solution containing the gel 

with swirling. Citric acid was slowly added until the fizzing ceased, a little water 

was added and the gel was gently agitated in this solution for 15 min. The silver 

stained gel was then washed three times for 15 min in water. The gel was soaked in 

5% glycerol before drying.

2.21 Kinase assays

Protein fractions were assayed for the presence of particular kinases by 

incubating with micromolar amounts of specific peptide substrates and radiolabelled
99phosphate donor (2pCi y- P ATP, 3000mCi/mmol) thereby enabling the detection of 

phosphorylated peptide. Phosphorylation reactions were allowed to proceed for 20
n 9min at 30 C and were stopped by pipetting samples onto 2cm phosphocellulose 

paper discs (P81, Whatman). The discs were then immersed in ~200ml 75mM
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phosphoric acid and incubated on a shaking platform for 5 min. This washing step in 

75mM phosphoric acid, to remove unincorporated label, was repeated a further four 

times, followed by a 5 min wash with 70% ethanol. The discs were then left to air- 

dry and liquid scintillation counting was used to quantitate bound radioactivity.

2.22 Polymerase assays

Assays of RNA polymerisation activity were adapted from the method of 

Roeder (440). Reactions were carried out in a volume of 50pl in a final 

concentration of 6mM HEPES pH 7.9, 30mM KC1, 3.6mM MgC^, 6mM Tris pH

7.9, 200pM EDTA, 7.5mM ammonium sulphate, 800pM manganese chloride, 

600pM of rATP, rCTP and rGTP, 50pM UTP, 0.6mM DTT and 5% glycerol. Each 

reaction also contained 5pg of poly(dA.dT) (2pl) as non-specific template, 20pg 

BSA, lOpCi [a-32P] UTP (400Ci/mmol), and up to 15pl of protein fraction. After 20 

min incubation at 30°C, reactions were stopped by pipetting samples onto 2cm2 discs 

of Whatman DE51 paper. Discs were washed 6 x 5  min in 0.5M Na2HPC>4, twice in 

distilled water, twice in 96% ethanol and finally once in ether. As for kinase assays, 

levels of incorporated radioactivity were measured in a scintillation counter.

2.23 HAT assays

HAT reactions were carried out in 1 x HAT buffer (50mM Tris pH 8.0, 5% 

glycerol, O.lmM EDTA, 50mM KC1, ImM DTT, ImM PMSF) in a final reaction 

volume of 30pl containing lpg of purified chicken core histones (lmg/ml) and 

0.25 pCi of 14C acetyl CoA. Reactions were initiated by the addition of protein 

sample and were incubated at 30°C for 30 min. lOpl of 4 x protein sample buffer 

(25mM Tris pH 6.8, 2% SDS, 20% p-mercaptoethanol, 40% glycerol, 0.5% 

bromophenol blue) was added to stop the reactions. To resolve the core histones, 

samples were run on a 12% polyacylamide-SDS gel. The gel was fixed for 30 min 

and then impregnated with fluor by soaking in Amplify™ (Amersham) for 15-30
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min. The gel was then dried and exposed to BIOMAX X-ray film (Kodak) at -80°C 

for 2-4 days.
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Chapter 3.

Partial purification of the mammalian 
RNA polymerase III general 
transcription factors TFIIIB and 
TFIIIC

3.1 Introduction

RNA polymerase III, with an aggregate molecular weight of 600-700 kDa 

and 16-17 different subunits, is the largest and most complex of the three nuclear 

RNA polymerases (83, 523, 554). Despite its complexity, in the absence of other 

proteins, the polymerase initiates transcription randomly (106, 188, 247, 555). 

Accurate and specific initiation of transcription requires the assistance of 

transcription factors that recruit the polymerase to the appropriate start sites of the 

appropriate sets of genes (405).

The transcription factors participate in highly specific protein-protein and 

protein-DNA interactions that are essential for the accurate recruitment of 

polymerase to the appropriate genes. For most genes, interaction is required between 

a transcription factor that specifically recognises the promoter elements and another 

transcription factor that specifically interacts with the appropriate polymerase. 

Although it is not inconceivable that the specificity of the three nuclear RNA 

polymerases for particular sets of genes could be achieved by utilising mutually 

exclusive, pol-specific domains of the same set of transcription factors, the utilisation 

of different transcription factors seems a much more attractive and simpler situation.

In 1980, Segall and co-workers demonstrated that the transcription factor 

requirements for specific pol II and pol III transcription are different (361, 473). 

Human cell-free extracts were fractionated on a phosphocellulose column and the 

ability of the various fractions, step-eluted with increasing concentrations of KC1, to 

reconstitute specific transcription of pol II and pol III templates was tested. No 

single fraction alone was able to reconstitute transcription of any pol II or pol III 

template tested. The PC-B fraction (0.1-0.35M KC1) in combination with the PC-C
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fraction (0.35-0.6M KC1) effectively reconstituted transcription of tRNA and VAi 

genes (473). Reconstitution of pol II transcription required three of the four step- 

eluted fractions, the PC-A fraction (0.1M KC1), the PC-C fraction (0.35-0.6M KC1) 

and the PC-D fraction (0.6-1.0M KC1) (361).

The activities in the PC-B and PC-C fractions required to reconstitute specific 

transcription of tRNA and VA genes were designated TFIIIB and TFIIIC, 

respectively (473). The expression of many other class III templates is also 

supported by these two fractions, suggesting that the basal factor requirements are 

similar for many class III genes (75, 272, 487). TFIIIB and TFIIIC are thus regarded 

as general pol III transcription factors, unlike TFIIIA which elutes in the PC-A 

fraction and is specifically required for 5S gene transcription (134,473).

The phosphocellulose fractions, resulting from the first step fractionation of 

cell-free extracts, are inevitably crude and it is clearly possible that the PC-B and PC- 

C fractions contain multiple factors that are required for pol III transcription. It is 

also worth noting that the activities in the PC-B and PC-C fractions that are required 

for one class III gene may be different for another class III gene. Reconstitution of 

pol II and pol III transcription both required the PC-C fraction, raising the possibility 

of a common factor (473). Further chromatography of this fraction on DEAE- 

cellulose separated the activities required for pol II and pol III transcription, lending 

support to the idea that there may be multiple transcription components in each of the 

PC fractions (473).

In the last twenty years there has been a considerable effort by a number of 

laboratories to purify TFIIIB and TFIIIC and determine their molecular composition. 

In the simple eukaryote Saccharomyces cerevisiae, a combined biochemical and 

genetic approach has enabled the identification of the polypeptide composition of 

both TFIIIB and TFIIIC. TFIIIB consists of three essential components, the TATA- 

binding protein (TBP) (264), the TFIIB-related factor (BRF) and a 90kD 

polypeptide, B" (24, 261). The genes for TBP (77, 146, 185, 221, 225, 462), BRF 

(64, 101, 342) and B" have all been cloned and TFIIIB activity has now been 

reconstituted using entirely recombinant subunits (266, 439, 452). Yeast TFIIIC 

consists of six subunits (23, 47, 156, 408, 505), which have also been cloned (325, 

355, 407, 505).
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The composition of TFIIIB and TFIIIC in higher eukaryotes is much less well 

defined. Two components of human TFIIIB have been unequivocally established; 

human homologues of yeast TBP and BRF (340, 371, 374, 484, 507, 552, 573). 

Very recently, a human homologue of yeast B" has also been cloned (463). 

Furthermore, it has been shown to be required for pol III transcription in vitro and 

chromatin immunoprecipitations indicate that it associates with the U6 promoter in 

vivo (463). These results, and the fact that it is a homologue to an essential 

component of yeast TFIIIB, suggest that human B" is a bona fide component of 

human TFIIIB. However, it is likely that human TFIIIB has additional subunits that 

have yet to be identified, these may be essential or may perform non-essential 

stimulatory functions. This may also be true for yeast TFIIIB, as that reconstituted 

from recombinant TBP, BRF and B" is significantly less active than native yTFIIIB, 

suggesting there may be other unidentified subunits that are missing, or perhaps 

important post-translational modifications are lacking (266, 452).

hBRF was first identified as a potential component of hTFIIIB following its 

specific immunoprecipitation from partially purified TFIIIB fractions using anti-TBP 

antibodies (374, 552). Using this approach, a variety of other candidate TBP- 

associated factors (TAFs) were identified that may be part of TFIIIB (91, 340, 374, 

507, 514). However, the functional significance of these TAFs is unclear. 

Moreover, a PC-B fraction contains at least two distinct TBP-containing complexes, 

TFIIIB and B-TFIID (524). The partially purified TFIIIB fractions used in these 

immunoprecipitations may have contained some B-TFIID. It has been established 

that the 172kD TAF described by Taggart et al. (507) as an essential component of 

TFIIIB is in fact the 170kD TAF that forms part of B-TFIID (371, 552). In addition, 

some of the TAFs appeared substoichiometric to TBP and hBRF. This may indicate 

that they are loosely associated or that they interact with TBP indirectly. The 

uncertainty as to the composition of hTFIIIB (434) is compounded by other evidence 

suggesting that it is a labile protein and also that the requirements may differ for 

different class III templates (91, 340, 365, 371, 463, 513-515).

In contrast to TFIIIB, which shows substantial conservation between yeast 

and humans (213, 316, 374, 552), hTFIIIC seems to have diverged significantly from 

its yeast counterpart (230, 231, 307, 331, 488). Fractionation of hTFIIIC on a variety 

of different columns splits it into two components, TFIIIC 1 and TFIIIC2 (118, 607).
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TFIIIC2 consists of five subunits, all of which have been cloned and partially 

characterised (230, 231, 291, 331, 488, 608). The composition of TFIIIC 1 is 

unknown.

In yeast, where the pol III transcriptional apparatus is best characterised, there 

has been very little work carried out on the regulation of pol III transcription. The 

bulk of the regulatory studies have been in the mammalian system. Unfortunately, a 

lot of this work has, necessarily, utilised rather impure and ill-defined fractions as 

sources of the major pol III components.

In this chapter, I describe the partial purification of hTFIIIB and hTFIIIC for 

use in dissecting the role of these two essential transcription factors in the regulation 

of RNA pol III transcription. hTFIIIB and hTFIIIC were partially purified using a 

combination of conventional and affinity chromatography. I also describe the use of 

my partially purified TFIIIC fractions to investigate further recent reports suggesting 

that several components of TFIIIC2 possess intrinsic histone acetyltransferase (HAT) 

activity (230, 298).
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3.2 Results

3.2.1 Screening of cation exchangers for effective separation of hTFIIIB and 

hTFIIIC

Since the early fractionations of Segall and co-workers (361, 473), 

chromatography on phosphocellulose has traditionally been used as the first 

fractionation step in any purification scheme of mammalian pol II or pol III 

transcription factors. To my knowledge, at least as far as the pol III transcription 

factors are concerned, the suitability of other columns as possible alternatives to 

phosphocellulose has not been investigated.

Although phosphocellulose is very effective at separating hTFIIIB and 

hTFIIIC, there are several disadvantages of using this particular resin compared to 

others. In addition to being time consuming, the need to activate the 

phosphocellulose the day prior to use, and to hand-pack the column, are two potential 

sources of considerable variation in the reproducibility of this chromatographic step. 

Indeed, inconsistency has been reported in the composition of the PC-B and PC-C 

fractions. TFIIIC1 elutes from phosphocellulose between 280 and 390 mM KC1 

(553). It can therefore be found both in the PC-B and PC-C fractions. The extent to 

which TFIIIC 1 is localised in each of these fractions seems prone to variability.

Phosphocellulose is a strong cation exchanger. The stronger binding of 

TFIIIC than TFIIIB to phosphocellulose may reflect the high affinity of TFIIIC for 

A- and B-block DNA, whereas TFIIIB has little or no affinity for DNA. I decided to 

test the ability of some other cation exchangers for their effectiveness at separating 

TFIIIB and TFIIIC.

Figure 3.1 shows the results of fractionation of HeLa nuclear extract on a 

heparin-Sepharose gradient. Gradient chromatography was performed as the elution 

properties of TFIIIB and TFIIIC were unknown. Heparin belongs to a family of 

negatively charged polysaccharides called glycoaminoglycans. The disaccharide 

repeating unit of heparin has four negatively charged functional groups, one 

carboxylate and three sulphate groups. Like phosphocellulose, heparin functions as a 

strong cation exchanger. In addition, heparin has pseudo-affinity properties, as it 

mimics nucleic acids (468). Given that TFIIIC has DNA-binding properties whereas 

TFIIIB does not, this latter property of heparin potentially offered improved
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resolution of TFIIIB and TFIIIC, compared with a cation exchanger separating solely 

by the criterion of charge.

Assaying of eluted fractions for TFIIIB activity and TFIIIC activity revealed 

that the recovery of active TFIIIB and TFIIIC is relatively good. However, there is a 

considerable overlap of the two activities (Fig 3.1, compare A & B). Indeed, all of 

the fractions containing TFIIIC activity, (fractions 48-58), also contained substantial 

TFIIIB activity (compare lanes 7-17 of Fig.3.1B with lanes 8-18 of Fig.3.1A). In 

addition, the peak of TFIIIB activity and the peak of TFIIIC activity closely 

cofractionated (fractions 50 & 51, compare lanes 10 & 11 of Fig.3.1A and lanes 9 & 

10 of Fig.3.1B). I concluded that heparin-Sepharose, at least using the elution 

conditions that I adopted here, is not suitable as a replacement for phosphocellulose 

in the initial fractionation of HeLa nuclear extract.

A similar fractionation was obtained using a sulphopropyl-Sepharose (SP-) 

cation exhanger. This is another strong cation exchanger, the functional group is a 

negatively charged sulphate group that is attached to the matrix through a propyl 

chain (468). As with the heparin column, all the fractions with TFIIIC activity also 

contained TFIIIB activity (Fig. 3.2 A & B). Although recovery of TFIIIB activity is 

reasonable, very poor recovery of TFIIIC activity was obtained. The poor recovery 

of TFIIIC activity may simply reflect inactivation during the chromatographic 

procedure. Another possibility is that the two components of TFIIIC, TFIIIC 1 and 

TFIIIC2, are separated by the gradient, as has previously been reported for a variety 

of different columns (118, 607). The few fractions that contained TFIIIC activity 

may represent the overlap between TFIIIC 1-containing and TFIIIC2-containing 

fractions. To test the possibility that TFIIIC 1 and TFIIIC2 fractionate differently, I 

tried combining fractions from different parts of the gradient to see if they would 

complement each other for TFIIIC activity. As shown in Figure 3.2 C, combining 

fractions from lower in the gradient than the fractions possessing TFIIIC activity, 

with fractions higher in the gradient, resulted in a synergistic increase in TFIIIC 

activity. This synergy suggests that TFIIIC is split into at least two essential 

components during gradient chromatography on SP-Sepharose.

I also considered using the weak cation exchanger carboxylmethyl (CM) for 

the initial fractionation of HeLa nuclear extract. However, the low binding capacity 

of this ion exchanger renders it much more suitable for a later stage in the 

purification scheme.
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Figure 3.1

Fractionation of TFIIIB activity and TFIIIC activity on a heparin gradient

15mg of HeLa nuclear extract was applied to a 1ml heparin-Sepharose column. 

After washing with 10 column volumes of Hep buffer containing lOOmM KC1 

(Hep 100), fractions were eluted with a lOOmM- 1M linear KC1 gradient, generated by 

appropriate mixing of Hep 100 and Hep buffer containing 1M KC1 (Hep 1000). 

Eluted fractions were tested for the presence of TFIIIB or TFIIIC by in vitro 

transcription assays.

A) TFIIIB activity of eluted fractions.

Fraction numbers are indicated. SM, starting material; FT, flowthrough. TFIIIB 

activity was assayed using 4jul of the indicated fraction, 2pi of PC-C and 250 ng of 

pVAi; after 15 min incubation at 30°C, nucleotides were added to initiate 

transcription.

B) TFIIIC activity of eluted fractions.

Transcription reactions were performed as described in (A),except 2pl of PC-B was 

substituted for PC-C as the complementing fraction.
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Figure 3.2

Fractionation of TFIIIB activity and TFIIIC activity on SP-Sepharose

15mg of HeLa nuclear extract was applied to a 1ml SP-Sepharose column. After 

washing with 10 column volumes of lOOmM KC1 buffer (Hep 100, as in Fig.3.1), 

fractions were eluted with 6 column volumes of a lOOmM- 1M linear KC1 gradient. 

Eluted fractions were tested for the presence of TFIIIB or TFIIIC by in vitro 

transcription assays.

A) TFIIIB activity of eluted fractions.

Fraction numbers are indicated. SM, starting material; FT, flowthrough. Lane 1 of 

A, B and C; and lane 9 of C contain LDB buffer instead of a fraction. TFIIIB 

activity was assayed using 4pl of the indicated fraction, 2pl of PC-C and 250 ng of 

pVAi; after 15 min incubation at 30°C, nucleotides were added to initiate 

transcription.

B) TFIIIC activity of eluted fractions.

Transcription reactions were performed as described in (A),except 2pl of PC-B was 

substituted for PC-C as the complementing fraction.

C) Synergism of fractions for TFIIIC activity.

Transcription reactions were performed essentially as described in (A). As in (B), a 

PC-B fraction was substituted for PC-C as the complementing fraction. In lanes 4 

and 7, 2pl each of the two indicated fractions was added; in all the other lanes 4pl of 

the indicated fraction was added.



Fraction: - SM FT42 4344 45 46 47 48 49 50 51 52 53 54 55 56

VA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fraction: -  SM FT42 43 44 45 46 47 48 49 50 51 52 53 54 5556

VA

1 2 3 4 5 6 7 8 9  1011 12 1314 15161718

c
Fraction:

48 4|8
-  SM 48 56 56 58 58 48



Figure 3.3 shows the results of step elution chromatography on 

phosphocellulose. Step elution could be performed as the elution properties of 

TFIIIB and TFIIIC had previously been determined. Compared to gradient elution, 

this potentially offers increased rapidity of purification and concentration of samples, 

but reduced resolution. The in vitro transcription assays revealed that there is very 

good recovery of TFIIIB activity and TFIIIC activity. In contrast to the heparin and 

SP columns, there is complete resolution of TFIIIB activity and TFIIIC activity 

(Fig.3.3, compare A & B). The recovery of activity and resolution of TFIIIB and 

TFIIIC was consistent between different chromatographic runs (data not shown). I 

therefore concluded that of the cation exchangers tested, for the initial fractionation 

of HeLa nuclear extract, phosphocellulose is the column of choice, both in terms of 

resolution and recovery of activity.

3.2.2 Further purification of TFIIIB from PC-B

At each step of a purification scheme there are inevitable cumulative losses, 

both in terms of the amount of the protein of interest that is recovered and its activity. 

This limits the number of chromatographic steps that can be employed and requires a 

compromise between resolution and the yield and activity of the protein. The 

optimisation of each chromatographic step is paramount to obtaining reasonable 

quantities of active, relatively pure protein.

Although knowledge of the pi and molecular size of the protein of interest 

can provide certain information as to the behaviour of the protein on a particular 

column, the effectiveness of particular columns for purification can be determined 

largely only by trial and error (468).

I tested a variety of different column types for their effectiveness for the 

purification of TFIIIB from PC-B for potential use in a final purification scheme, and 

for cofractionation studies. The choice of columns to test was based on the need to 

combine columns that fractionate by different criteria in order to obtain optimal 

purification in the minimal number of steps, and information from previously 

reported attempts at purification of human TFIIIB.

Figure 3.4 A shows the results of step elution chromatography of PC-B on 

Cibacron blue 3G-A-Sepharose. Cibacron blue 3G-A is a blue dye adsorbent with
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Figure 3.3

Fractionation of TFIIIB activity and TFIIIC activity on phosphocellulose

HeLa nuclear extract was applied to a column of activated phosphocellulose at a final 

concentration of 5mg/ml of resin. The column was extensively washed with PC-A 

buffer containing lOOmM KC1 (PC-A(O.l)), until absorbance at 280nm of eluting 

fractions returned to zero. TFIIIB-containing fractions were eluted with PC-A buffer 

containing 350mM KC1 (PC-A(0.35)). TFIIIC-containing fractions were step eluted 

using PC-A buffer containing 600mM KC1 (PC-A(0.6)). After dialysis of eluted 

fractions against LDBO buffer, until the salt concentration returned to 100 mM KC1, 

fractions were tested for the presence of TFIIIB or TFIIIC by in vitro transcription 

assays.

A) TFIIIB activity of eluted fractions.

Fraction numbers are indicated. SM, starting material; FT, flowthrough. TFIIIB 

activity was assayed using 4pl of the indicated fraction, 2pl of PC-C and 250 ng of 

pVAi; after 15 min incubation at 30°C, nucleotides were added to initiate 

transcription.

B )  TFIIIC activity of eluted fractions.

Transcription reactions were performed as described in (A),except 2pl of PC-B was 

substituted for PC-C as the complementing fraction.
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pseudo-affinity properties. The dye behaves as an analogue of ADP-ribose and has 

affinity for most proteins that bind a purine nucleotide. The specificity of Cibacron 

blue is not limited to nucleotide-binding proteins, however. The dye will bind a 

large number of non nucleotide-binding proteins; interferon and human serum 

albumin were both purified with the aid of Cibacron blue chromatography. The 

binding of proteins to Cibacron blue is poorly understood; however, from the 

structure of the dye, hydrophobic and electrostatic interactions, and hydrogen 

bonding, are all likely (468).

Eluted fractions from the Cibacron blue column were tested for TFIIIB 

activity by in vitro transcription assay. Two different templates were separately 

tested; VAi and the U6 promoter fused to the p-globin gene (Fig.3.4 A). The U6 

promoter is a much weaker class III promoter than VAi, hence the lower transcript 

levels obtained with starting material using the U6 promoter compared to VAi 

(compare lane 2 of upper and lower panel, Fig.3.4 A). TFIIIB activity capable of 

supporting U6 transcription eluted in the 2M salt/5M urea fractions, with peak 

activity approximately half that of the starting material (Fig.3.4 A, upper panel, 

compare lane 2 and lanes 16 &17). A very low level of activity is detectable in the 

flowthrough and the fractions eluted with 1M salt (upper panel, lanes 3-11).

In contrast to the results obtained with the U6 promoter, no TFIIIB activity 

capable of supporting VAi transcription was detectable in any of the eluted fractions 

(lower panel, lanes 3-18). This suggests that the TFIIIB requirements for VAi 

transcription differ from those for U6 transcription. This finding is in general 

agreement with a number of studies suggesting that the TFIIIB requirement of type 

III promoters is different from that of types I and II (340, 365, 374, 463, 513, 514, 

552, 604).

Teichmann et a l also found that the human TFIIIB requirements for U6 and 

VAi transcription can be physically separated on Cibacron blue (514). In contrast to 

my results, Teichmann et a l found that TFIIIB activity capable of supporting VAi 

transcription was detectable in the 2M salt/5M urea fractions. TFIIIB activity 

capable of supporting U6 transcription was detected in largest amounts in the 

600mM NaCl elution, but significant activity was also detected in the 60mM NaCl 

flowthrough and 2M NaCl/5M urea elution (514). The presence of TFIIIB activity 

supporting U6 transcription in all these fractions implies that the column was
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overloaded in Teichmann’s study. The lack of TFIIIB activity for VAi transcription 

in my 2M NaCl/5M urea fractions could be explained by partial disruption of this 

form of TFIIIB by the 1M NaCl elution I adopted compared with Teichmann’s 0.6M 

NaCl elution. Waldshmidt et a l were able to obtain TFIIIB activity capable of 

reconstituting tRNA transcription in their 2M salt/5M urea fractions after an elution 

with 1M NaCl, however (545).

Another significant difference between the results I obtained and those of 

Teichmann et a l and Waldshmidt et a l is in the fractionation of the bulk of the 

protein. Teichmann et a l and Waldshmidt et a l found that the bulk of the protein 

eluted in the flowthrough and 0.6M elutions, and the 1M elution, respectively (514, 

545). The stronger binding of TFIIIB to Cibacron blue than the bulk of the protein 

and the increase in purity that this offers was the main reason for my considering 

Cibacron blue chromatography. I found that the bulk of the protein was retained on 

the column after elution with 1M NaCl and eluted with 2M salt/5M urea (data not 

shown). This discrepancy may be explained by the source of the Cibacron blue 

column used. Teichmann et a l (Teichmann, M., personal communication) and 

Waldshmidt et a l both used Cibacron blue-agarose columns purchased from Sigma, 

whereas the Cibacron blue column I used was purchased from Pharmacia Biotech. 

The Cibacron blue dye used by manufacturers is sometimes not very pure and may 

contain a variety of minor components or isomers of the main component (191). 

Variations in purity can have quantitative and qualitative effects on protein binding 

(468). The degree of substitution of dye can also have a significant effect on protein 

binding.

Teichmann et a l suggest that the TFIIIB required for U6 transcription is a 

subcomplex of the TFIIIB required for VAi transcription. By Cibacron blue 

chromatography, they were able to generate TFIIIB capable of supporting U6 

transcription from a TFIIIB fraction previously shown to be capable of supporting 

VAi transcription but not that of U6 (514). Another possible explanation for the lack 

of TFIIIB activity for VAi transcription that I observed, is the disruption of the 

complex with the dissociation of the TFIIIB subcomplex sufficient for U6 

transcription and the retention on the column of one or more components required for 

VAi transcription.

Although I have not attempted harsher elution conditions to investigate 

further this possibility, I have tested the effect of eluting with 0.6M NaCl rather than
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1M NaCl. When I eluted with 0.6M NaCl, I was able to recover low levels of 

TFIIIB activity for VAi transcription in the 2M NaCl/5M urea fractions (data not 

shown). This suggests that washing with 1M NaCl rather than 0.6M NaCl causes 

some disruption of the TFIIIB complex required for VAi transcription.

The fractionation of HeLa nuclear extract on heparin-Sepharose yielded 

reasonable quantities of active TFIIIB. I therefore decided to test whether this was 

also true using PC-B as the starting material. The subsequent use of the partially 

purified TFIIIB in regulatory studies makes recovery of reasonably active protein at 

this stage of purification an important requirement. Following application of the 

sample and washing to remove unbound protein, bound protein was eluted with a 3 

column volume lOOmM- 1M salt gradient. The TFIIIB activity of eluted fractions is 

shown in Figure 3.4 B. As with the nuclear extract, reasonable TFIIIB activity was 

recovered. A steeper gradient was applied than previously to keep the samples 

concentrated and thus less prone to inactivation.

The weak cation exchanger carboxymethyl, which is based on charged 

carboxylate groups, was also tested. Previous work has shown that, under certain 

conditions, TFIIIB does not bind the column and can be collected in the flowthrough 

whereas pol III and any contaminating TFIIIC bind to the column (White, R.J., 

personal communication). I was consistently able only to recover fractions with 

extremely low TFIIIB activity, however (data not shown). This may reflect 

inactivation of the TFIIIB caused by its inevitable dilution resulting from its elution 

in the flowthrough.

One of the columns Waldshmidt et al. used in their purification of human 

TFIIIB was hydroxyapatite (545). Hydroxyapatite ((Ca5(P0 4 )3 0 H)2) is an inorganic 

adsorbent made of a crystalline form of calcium hydroxide phosphate. The 

mechanism of adsorption of proteins to hydroxyapatite is not properly understood. It 

has been postulated that dipole-dipole bonding may be involved; however, the 

adsorption of buffer ions to the hydroxyapatite complicates matters and interactions 

may more resemble those of ion exchangers (468).

Figure 3.4 C shows the results of gradient chromatography of PC-B on 

hydroxyapatite. A lOmM-lM potassium phosphate (pH 7.0) gradient was applied 

over six column volumes to elute bound protein. TFIIIB activity eluted relatively 

early in the gradient, between 50mM and 250mM potassium phosphate (pH 7.0), 

reducing time required for purification and dialysis, which meant samples were left
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Figure 3.4 - Screening of resins for the further purification of TFIIIB

A) Cibacron blue chromatography of a PC-B fraction

lmg of PC-B was applied to a 1ml Cibacron blue column. After extensively washing 

with CB buffer containing lOOmM NaCl (CB100), bound protein was step eluted 

with CB buffer containing 1M NaCl (CB1000), followed by a second step elution 

with CB buffer containing 2M NaCl and 5M urea (CB2000U). Eluted fractions were 

assayed for TFIIIB activity by in vitro transcription.

Upper panel - Fraction numbers are indicated. SM, starting material; FT, 

flowthrough. TFIIIB activity was assayed using 4pl of the indicated fraction, 2pi of 

PC-C and 500 ng of pU6/Hae/RA.2; after 15 min incubation at 30°C, nucleotides 

were added to initiate transcription.

Lower panel - Transcription reactions were performed as described for the upper 

panel except 250ng of pVAi replaced pU6/Hae/RA.2 as the pol III template added.

B) Heparin gradient chromatography of a PC-B fraction

4 mg of PC-B was applied to a 1ml heparin-Sepharose column. After extensive 

washing, fractions were eluted with a lOOmM- 1M linear KC1 gradient. Eluted 

fractions were tested for TFIIIB activity by in vitro transcription assay. 

Transcription was carried out as described in (A) using 250 ng of pVAi as template.

C) Hydroxyapatite chromatography of a PC-B fraction

lmg of PC-B was applied to a 1ml hydroxyapatite column. After extensive washing 

with HAP buffer containing lOmM potassium phosphate pH7.0 (HAP 10), a lOmM- 

500mM potassium phosphate pH 7.0 gradient was applied. Eluted fractions were 

tested for TFIIIB activity by in vitro transcription assay as described in (B).
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at 4°C susceptible to inactivation and degradation for less time. As the in vitro 

transcription of Figure 3.4 C shows, good recovery of TFIIIB activity was obtained, 

although Bradford’s assay of eluted protein revealed that a lot of protein was eluted 

in similar fractions to TFIIIB, reducing the extent of purification obtained.

3.2.3 Verification of antibodies for use in immunoaffinity chromatography

Immunoaffinity chromatography separates the protein of interest from 

contaminating proteins on the basis of a biospecific interaction between the protein 

of interest and an antibody that has been immunologically raised against a specific 

part of that protein. The biospecificity of this technique provides the opportunity to 

achieve fold purification in a single step that cannot be achieved with four or five 

steps of conventional chromatography. It is possible to achieve > 90% purity from 

crude extract in a single immunoaffinity step. The success (or failure) of 

immunoaffinity chromatography is critically dependent on the quality of the 

antibodies used. The antibody is the ultimate adsorbent provided that it is highly 

selective for the protein of interest and that it binds the protein tightly but reversibly. 

Before embarking on immunoaffinity chromatography, it is crucial to verify that the 

antibodies to be used do indeed recognise the proteins that they were raised against 

and that they do not react with a host of other proteins.

The recent identification and cloning of several components of human TFIIIB 

and human TFIIIC has provided the opportunity to carry out immunoaffinity 

chromatography as a means of purification, which was previously not possible due to 

a lack of knowledge as to the composition of these two proteins. It enables the 

raising of antibodies against specific components of hTFIIIB and hTFIIIC that can be 

used for the immunoaffinity purification of these two activities.

We have three different BRF antibodies, 128, 482 and 330, each raised 

against a different C-terminal region of the human protein. 128 was raised against 

residues 533-547 of human BRF. This sequence has been strongly conserved in 

evolution and corresponds to part of the yeast homology region III, one of three 

regions of strong conservation within a diverged C-terminus. Yeast homology 

region III was identified as a sequence of strong conservation following the sequence 

comparison of BRF from three distant yeast species (271). The subsequent cloning
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of BRF from C.elegans and humans revealed that this region is strongly conserved in 

these organisms also (316). 482 was raised against residues 452-466 of human BRF, 

which corresponds to part of yeast homology region II. 330 was raised against 

residues 664-677 of human BRF, which corresponds to the extreme C-terminus of 

the protein. This part of the protein is not conserved between humans and C.elegans 

and is absent in the yeast BRFs (316). We also have an antibody against the TFIIICp 

subunit (TFIIIC 110) of TFIIIC2. This antibody, 4286, was raised against residues 

897-911 of human TFIIICp.

All of the aforementioned antibodies are rabbit polyclonals. Antibodies are 

raised by injecting the antigen into the animal at regular intervals and waiting for an 

immune reponse before bleeding the animal. It is essential that the antigen injected 

is as pure as possible as trace amounts of other proteins may be much more 

antigenic. Furthermore, approximately 90% of the antibodies in a rabbit antiserum 

are not specific to the antigen injected but represent immunoglobins that happened to 

be present in the animal at the time. The verification of the antibodies is thus 

absolutely essential.

The 4286 antiserum specifically recognises a 110 kDa polypeptide, which 

corresponds to the size of TFIIICp, both in a crude nuclear extract and in a PC-C 

fraction, as revealed by Western blotting (Figure 3.5). The presence of a few weaker 

bands of slightly smaller size in the lane of nuclear extract (lane 1) may represent 

TFIIICp that has been partially degraded or modified in some way. Five times as 

much protein was loaded in lane 1 compared to lane 2, yet the difference in intensity 

of the 110 kDa band obtained is less than two-fold. The PC-C fraction is clearly 

enriched for the 110 kDa polypeptide specifically recognised by this antiserum, as 

would be expected for TFIIICp. This suggests that the 110 kDa band seen in the lane 

of nuclear extract is indeed TFIIICp and not another polypeptide of the same size 

that the antibody has cross-reacted with.

The TFIIICp antiserum is also able to specifically immunoprecipitate 

TFIIIC2 from HeLa nuclear extract, of which TFIIICp is one of five subunits. 

Immunoblotting of precipitated material with an antiserum against the TFIIIC220 

(TFIIICa) subunit of TFIIIC2, Ab4 (481), revealed that the 4286 antiserum 

specifically coimmunoprecipitated TFIIIC220, whereas the corresponding
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Figure 3.5

The 4286 antiserum specifically recognises TFIIICp

75 jag of HeLa nuclear extract (lanel) and 15pg of PC-C (lane 2) were resolved on a 

SDS-7.8% polyacrylamide gel and then analysed by Western immunoblotting using 

the 4286 antiserum.

113



TFIIIC110

NE PC-C

220 kD 

160 kD

- 105 kD

- 75 kD

- 50 kD

1 2



Figure 3.6

The 4286 antiserum specifically immunoprecipitates TFIIIC2 from crude 

extract

HeLa nuclear extract (150pg) was immunoprecipitated using the 4286 antiserum 

(lane 2) or the corresponding preimmune serum (lane 1). After washing five times 

with 500pl of LDB buffer, immunoprecipitated material was resolved on a SDS- 

7.8% polyacrylamide gel and then analysed by immunoblotting using the Ab4 

antiserum against the TFIIIC220 subunit of TFIIIC2.
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preimmune serum did not (Figure 3.6). This suggests that 4286 can 

immunoprecipitate the native TFIIIC2 complex.

The three BRF antisera specifically recognise a 90 kDa polypeptide 

corresponding in size to human BRF, both in crude nuclear extract and in PC-B 

fractions, as revealed by immunoblotting (data not shown). They also specifically 

immunoprecipitate 35S-labelled in vitro translated human BRF from rabbit 

reticulocyte lysate, whereas the corresponding pre-immune sera do not (Figure 3.7 

and data not shown).

Figure 3.7 also shows the results of peptide elution experiments for 128 and 

482, in which I tested whether synthetic peptide corresponding to the sequence of 

BRF that these two antibodies were raised against could be used for elution of BRF 

from the antibody. Antibodies generally bind very tightly to their antigen and elution 

of the protein of interest from the antibody without requiring harsh conditions that 

inactivate the protein or destroy the antibody can prove difficult. Peptide elution, 

which acts by displacement competition between the peptide and the protein of 

interest for the antigen-binding site on the antibody, offers the best solution to this 

problem, if it is possible. With peptide elution the protein of interest can be gently 

eluted in a buffer of one’s choice.

As Figure 3.7 shows, the peptide specific for 482 can achieve efficient elution 

of immunoprecipitated BRF after only 30 min of incubation with the 482- 

immunoprecipitated material. In contrast, BRF immunoprecipitated with 128 could 

not be eluted with the synthetic peptide the antibody was raised against, even after 5 

hours of incubation together.

The BRF antisera were also tested for their ability to immunoprecipitate 

endogenous BRF by immunodepletion experiments using HeLa nuclear extract. 

Immunodepleted extracts were tested for their ability to support in vitro transcription 

of the VAi template in the absence of any other added proteins. Given that BRF is 

essential for VAi transcription, effective immunodepletion by the antisera should 

cause a sharp reduction in transcript levels. Extracts immunodepleted using 128 and 

330 were able to support only very low levels of VAi transcription compared to their 

corresponding pre-immune sera (Figure 3.8, lanes 11-14). In contrast, extract 

immunodepleted with 482 supported levels of transcription comparable to that of 

extract immunodepleted with the preimmune sera (Figure 3.8, lanes 9 & 10). This 

suggested that the 482 antiserum is unable to immunoprecipitate endogenous BRF,
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although it clearly is able to immunoprecipitate exogenous in vitro translated BRF 

(Figure 3.7). It may be that the epitope on BRF that 482 specifically recognises is 

involved in an endogenous interaction of BRF with other proteins and thus in a cell 

extract it is buried. In rabbit reticulocyte lysate, however, the in vitro translated 

human BRF should be relatively free of interactions with other proteins. The 

compatibility of human BRF and rabbit TFIIIB components is not known; however, 

regardless of this, the human BRF is likely to be in vast excess of proteins that 

potentially could interact. The BRF epitope in this environment should be exposed 

and thus can be specifically recognised by the 482 antiserum.

The possibility that 482 specifically recognises an epitope on BRF that is 

involved in protein-protein interaction is supported by the strong conservation of the 

sequence that the antibody was raised against between five disparate species (316). 

Conservation of sequence is suggestive of its involvement in protein-protein 

interactions. The sequence that 482 was raised against corresponds to part of the 

yeast homology domain II. This domain is implicated by a number of studies to be 

involved in the binding of TBP (11, 102, 265, 271).

As a positive control for the immunodepletion experiments, MTBP6 was used 

(Fig 3.8, lanes 1-3). This is a mouse monoclonal antibody that specifically 

recognises a sequence in the non-conserved N-terminal region of TBP. The presence 

of TBP in pol I- and pol II- specific complexes as well as TFIIIB restricts its 

usefulness in the immunopurification of TFIIIB compared with a TFIIIB-specific 

component such as BRF. As Figure 3.8 shows, MTBP6 is very effective at 

immunodepleting extracts of TFIIIB activity. Transcription can be restored by the 

addition of PC-B but not PC-C. MTBP6 also specifically coimmunodepletes BRF 

with the TBP, as revealed by Western blotting of immunodepleted extracts (data not 

shown).

3.2.4 Immunoaffinity purification of human TFIIIB

Having discarded 482 on the basis of its inability to immunoprecipitate 

endogenous BRF, the next stage was the application of the determined 

immunospecificity of 128 and 330 to column chromatography. Initially I kept
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Figure 3.7

128 and 482 antisera specifically immunoprecipitate BRF

A) Time course of peptide elution of in vitro translated BRF specifically 

immunoprecipitated with 482 antiserum

Reticulocyte lysate (20pl) containing in vitro translated BRF was 

immunoprecipitated using equal amounts of the anti-BRF antibody 482 (lanes 2-5) or 

the corresponding preimmune serum (lane 1) prebound to protein A-Sepharose. 

After washing with LDB buffer to remove unbound protein and unincorporated label, 

20pl of 2.5mg/ml BRF-2 peptide (corresponding to the peptide sequence 482 

antiserum was raised against) was added. Immunoprecipitated material and BRF-2 

peptide were incubated on an orbital shaker for 0 h (lanel), 0.5 h (lanes 2 & 3) or lh 

(lanes 4 & 5) at 4°C. Supernatants were removed and the protein A-Sepharose beads 

were further washed five times with LDB buffer. Protein eluted into the supernatant 

and immunoprecipitated material retained on the protein A-Sepharose was resolved 

on a 7.8% SDS-polyacrylamide gel and then visualised by autoradiography.

B) Time course of peptide elution of in vitro translated BRF specifically 

immunoprecipitated with 128 antiserum

Immunoprecipitation was carried out essentially as described in (A) except 128 

antiserum (lanes 3-8 & lanes 10-15) and its corresponding preimmune serum (lanes 2 

& 9) were used. Precipitated material was agitated on an orbital shaker with 20pl of 

2.5mg/ml BRF-1 peptide (which correponds to the peptide sequence 128 antiserum 

was raised against) for 0 h (lanes 2 & 9), 1 h (lanes 3 & 4), 2 h (lanes 5 & 6), 3 h 

(lanes 7,8,10 &11), 4 h (lanes 12 & 13) or 5 h (lanes 14 &15). Supernatant was 

immediately removed at the specified time point and the protein A-Sepharose beads 

were further washed five times with LDB buffer. Protein eluted into the supernatant 

and immunoprecipitated material retained on the protein A-Sepharose was resolved 

on a 7.8% SDS-polyacrylamide gel and then visualised by autoradiography. Lane 1 

shows 30% of the input reticulocyte lysate containing in vitro translated BRF.
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Figure 3.8

Immunodepletion of RNA polymerase III transcriptional activity from 

HeLa nuclear extract using the anti-BRF antisera 128 and 330 but not with the 

482 antiserum

Identical amounts of the indicated antisera or preimmune sera prebound to 20pl of 

protein A-Sepharose beads were incubated with 150pg of HeLa nuclear extract on 

ice for 3 h. To keep the beads in suspension, the samples were gently mixed by 

tapping every 10 minutes. After 3 h the beads were pelleted and the supernatants 

were removed for analysis by in vitro transcription.

RNA polymerase III transcription was assayed using 2pi of the immunodepleted 

extracts and 250 ng of pVAi; after 15 min incubation at 30°C, nucleotides were 

added to initiate transcription. In lanes 2 and 3, 2pl of PC-B or PC-C, respectively, 

was added. Lanes 5 and 6 represent the activities from a duplicate immunodepletion 

using the same antiserum. MTBP6 (lanes 1-3) is a mouse monoclonal antiserum 

raised against the N-terminal region of TBP and is used as a positive control. The 

activity of extract immunodepleted with the anti-BRF antisera 482,128 or 330 is 

shown in lanes 9, 11 and 13, respectively. The activity of extract immunodepleted 

with the corresponding preimmune serum is shown in lanes 10, 12 and 14, 

respectively.
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conditions as similar as possible to those used for the immunodepletions, as these 

had worked exceptionally well.

As for the immunodepletions, antibody was prebound to protein A- 

Sepharose by agitation at 4°C for 3 h of a 1:1 mixture of antiserum and protein A- 

Sepharose. The protein A-Sepharose beads were then extensively washed with LDB 

buffer to remove unwanted material and transferred to a disposable Polyprep® 

column (Biorad). HeLa nuclear extract was then slowly recirculated through the 

column for ~ 2 h at 4°C. Recirculation was carried out by hand, as opposed to 

utilising a chromatographic machine, to minimise dilution and possible inactivation 

of the sample. Gravity flow through the column was slowed by means of an 

attachable valve. After ~2 h the recirculated material was collected for assaying how 

effectively the column had depleted the extract of TFIIIB activity and the column 

was washed with 12 column volumes of CB buffer containing lOOmM NaCl, to 

remove unbound protein. Bound protein was then eluted with CB buffer containing 

2M NaCl and 2M urea. Fractions containing protein were then dialysed for 6-10 

hours against LDBO buffer to remove the urea and renature the proteins, and to 

lower the salt.

A major difference between the immunopurification of TFIIIB and the 

immunodepletions is the need to recover TFIIIB activity. The tightness of antibody 

-antigen interactions poses the risk of disrupting intramolecular interactions within 

the TFIIIB complex when attempting to elute. Although peptide elution overcomes 

this problem, this was not a viable option for 128, as shown in Figure 3.7. The 

interaction between antigen and antibody is likely to be composed of electrostatic 

and hydrophobic interactions and H-bonding. This is why elution buffers for 

conventional chromatography generally work badly; they are targeting only a single 

type of interaction; for example, a high ionic strength buffer will weaken electrostatic 

forces, but it also strengthens hydrophobic interactions.

It has been reported that TFIIIB is quite a labile protein (235). This limits 

how harsh elution conditions can be used to disrupt the antibody-antigen interaction 

without irreversibly disrupting the protein. Chromatography on Cibacron blue 

revealed surprisingly that hTFIIIB activity is recoverable from fractions exposed to 

2M salt/5 M urea, however (see Figure 3.4 A). Elution was therefore attempted with 

2M salt/2M urea; the concentration of urea was reduced to cut the time needed for 

sufficient dialysis.
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It was possible that without the covalent coupling of antibody to protein A- 

Sepharose by chemical crosslinking, such a harsh elution buffer may also remove 

antibody. Such eluted antibody may be inhibitory in an in vitro transcription assay 

and would prevent reuse of the column. I therefore tested whether covalent coupling 

was necessary by screening a range of salt and/or urea concentrations for their ability 

to remove antibody prebound to protein A-Sepharose. The levels of antibody 

removed by the buffer and the levels remaining bound to protein A was analysed by 

Western blotting, probing directly with an anti-rabbit secondary antibody. The 

majority of antibody appeared to remain bound to the protein A-Sepharose under 

harsh elution conditions. Although some antibody could be detected in the 2M 

salt/2M urea supernatants, this amount was not more than two fold greater than that 

detected with other buffers, including LDB.

Some TFIIIB activity was recovered in the 2M salt/2M urea fractions. The 

immunodepletion of TFIIIB activity from the starting material was very poor, 

however. This was surprising, considering that such good immunodepletion was 

obtained by immunoprecipitation. Although I only recirculated the nuclear extract 

for ~ 2 h compared with 3 h agitation in an immunoprecipitation, a previous time 

course of binding of BRF by 128 revealed little difference between 2 and 3 h, with 

low levels bound after only 30 min. However, the length of time needed for 

interaction is not necessarily transferable between the batch-like adsorption of an 

immunoprecipitation and column adsorption. It is also noteworthy that in an 

immunoprecipitation all of the starting material is in contact with protein A- 

Sepharose for the entire incubation length, which is clearly not possible with a 

recirculated starting material.

The tight binding of an antibody to its antigen is thought to involve more than 

one step and is slow compared with most interactions of enzymes with their 

substrates (468). For immunoaffinity chromatography, there are two interactions that 

concern us; the interaction of antibody with protein A and the interaction of antibody 

with its specific antigen. Of these two interactions, the interaction of antibody and 

antigen is thought to be significantly slower kinetically. To try and improve 

immunodepletion, I decided to preincubate the antibody and antigen before applying 

to the column. In addition to allowing more time for this interaction to occur, this 

method enables all of the antigen to be exposed to the antibody for the entire time. 

Preincubation is also advantageous because where antibody is bound to protein A-

120



Sepharose first, a proportion (estimated to be nine-tenths) of the antibody is 

effectively lost as the antibody has bound to the Sepharose beads in such an 

orientation that it is unable to bind antigen.

Preincubation of HeLa nuclear extract with the antiserum for 1 h on ice prior 

to recirculating the mixture slowly for ~ 2 h did improve immunodepletion and 

recovery of activity, but only to a small extent (data not shown). This is despite 

reducing the ratio of antibody to extract 6.7 fold in order to try and conserve 

antiserum and reduce the effect of any proteases that may be present in the 

antiserum. However, the amount of antibody did not seem to be the limiting factor 

for immunodepletion, as increasing the amount of antibody relative to the amount of 

extract three-fold had no significant effect.

It seems plausible that the poor immunodepletion may be due in part to the 

vast quantity of other proteins in the nuclear extract that may lead to steric hindrance, 

perhaps weakly interacting non-specifically with the antigen-binding site of the 

antibody or with the antigen itself. Furthermore, in a nuclear extract the endogenous 

interactions of the protein of interest are likely to be intact; one or more of these 

specific interactions may be mediated by the antigenic site or be very close to it, 

rendering it poorly accessible. The TFIIIB activity that is immunodepleted may 

reflect TFIIIB in which the endogenous interactions have temporarily been disrupted. 

In an immunoprecipitation the frequent agitation of the sample is more likely to 

mechanically disturb any weak non-specific or specific interactions that prevent the 

antigen and antibody interacting. The epitope that 128 was raised against is highly 

conserved, so it is quite probable that it is involved in a specific interaction with 

another component of the transcriptional machinery.

I therefore decided to repeat the chromatographic procedure but using a more 

purifed source of TFIIIB as starting material, a PC-B fraction rather than crude 

nuclear extract. PC-B lacks TFIIIC activity, so at least one TFIIIB-interacting 

protein that could obscure the epitope has probably been displaced. Pol III activity is 

found in PC-B fractions, so one or more specific interactions involving pol III 

subunits and BRF or other TFIIIB components could still be intact. I decided to keep 

the amount of antiserum constant, which meant an increase in the proportion of 

antibody relative to total protein, although PC-B is clearly enriched for TFIIIB.

Analysis of fractions revealed a complete lack of transcriptional activity in 

the recirculated starting material, suggesting very effective immunodepletion;
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however, recovery of activity was not improved from previous attempts. Another 

possible explanation for this remarkable transformation in transcriptional activity of 

the recirculated starting material was that it was getting inactivated in some way, 

such as by protein degradation by proteases in the serum.

To investigate this possibility further, I carried out an in vitro transcription 

assay for TFIIIB activity using PC-B preincubated in the presence or absence of 128 

or 330 antiserum or the corresponding preimmune sera. The reactions in which PC- 

B was preincubated with 128 or 330 produced no transcript. This could be a specific 

inhibitory effect caused by the antibodies; however, the reactions preincubated with 

preimmune sera also lacked transcriptional activity, implying protein degradation or 

something potently inhibitory common to all the sera. Although a cocktail of 

protease inhibitors was added to the PC-B fraction prior to adding the antiserum, it is 

possible that insufficient was added. To test this, I titrated increasing amounts of the 

cocktail of inhibitors into in vitro transcription reactions containing PC-B and 

antiserum. This had no discemable effect on the level of transcript. Although the 

cocktail contained inhibitors of the major types of proteases, it is likely that some 

proteases present would have remained active. I therefore decided to purify the 

antisera on protein A-Sepharose by the low salt method of Harlow and Lane (195), 

prior to preincubation with PC-B, in order to remove any contaminating proteases or 

inhibitory activities present.

Purifying the antisera appeared to solve this problem. Preincubation of 

purified antiserum with PC-B in an in vitro transcription assay did not adversely 

affect transcript levels. It also revealed that using PC-B as starting material did 

improve immunodepletion, but the bulk of activity remained in the starting material. 

Recovery of activity concurrently improved and this was improved further by a 

reduction of the size of the column relative to the amount of purified antibody and 

PC-B. This was to try to concentrate samples on elution, in order to preserve their 

activity.

To increase the purity of eluted fractions I attempted washing the column 

more stringently before elution. This proved unsuccessful; increasing the 

concentration of salt in the wash buffer from lOOmM to 200mM resulted in a 

complete loss of recoverable activity. There are two obvious possible interpretations 

of this result; one is that one or more essential components of TFIIIB are very 

loosely associated with the complex and are dissociated when the salt concentration
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is increased. This association may also have been weakened by the interaction of the 

antibody with TFIIIB. It has been reported previously that TFIIIB is not a stable 

molecular entity (235), lending support to this interpretation. The other 

interpretation is that the specific interaction formed between the antibody and TFIIIB 

is very weak and disrupted by the increase in salt concentration. The elution of 

activity in the flowthrough could easily escape detection due to excessive dilution. 

The first interpretation seems more likely; as discussed earlier, antibodies generally 

interact very tightly with their specific antigen. The formation of a tight antigen- 

antibody complex is a slow process, however, and it is possible that insufficient time 

was allowed for this to form; perhaps only weak interactions easily disrupted by salt 

existed between the antigen and the antibody.

In light of the improved immunodepletion and recovery of activity obtained 

using PC-B rather than nuclear extract as my starting material, I carried out an 

immunopurification using a PC-B fraction that had been purified further on another 

column. A fraction enriched for TFIIIB from a heparin gradient of a PC-B fraction 

was used (BHep). The in vitro transcription assay for TFIIIB activity of eluted 

fractions is shown in Figure 3.9 (lanes 10-18). Another column using PC-B as the 

starting material was run in parallel; the activity of eluted fractions from this column 

were assayed at the same time and are also shown in Figure 3.9 (lanes 1-9). For both 

columns, the first fraction eluted with 2M salt/2M urea contained the bulk of the 

eluted TFIIIB activity. A low level of TFIIIB activity was also detectable in the peak 

FT fraction from each column; this may represent weakly bound TFIIIB that 

interacted non-specifically with the columns.

Immunodepletion of TFIIIB activity was improved drastically using BHep as 

starting material rather than PC-B. Using PC-B, immunodepletion is -30% 

(compare lanes 1 & 2), whereas with BHep it is over 90% efficient (compare lanes 

10 & 11). This is probably a reflection of the epitope recognised by the BRF 

antibody being more exposed in the more purified fraction. It is also noteworthy that 

the purified antiserum preincubated with the BHep fraction inhibits transcription 

(lane 18), although it does not when incubated with PC-B (data not shown). This 

suggests that the antiserum may specifically inhibit TFIIIB, but this requires further 

investigation. The effect of purified preimmune serum on BHep has not been tested, 

so it is plausible that the effect is non-specific. Assuming that it is a specific effect,
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Figure 3.9

Immunoaffinity purification of human TFIIIB

Human TFIIIB was immunopurified in parallel from two different sources of TFIIIB, 

PC-B (lanes 1-9) and the more purified BHep (lanes 10-18). Following 

preincubation of the starting material with purified 330 antiserum on ice for 1 h, this 

mixture was slowly recirculated through a column of protein A-Sepharose for ~ 2 h. 

The column was then washed with 20 column volumes of CB buffer containing 

lOOmM NaCl (CB100). Protein was eluted with CB buffer containing 2M salt/5M 

urea (CB2000U). After dialysis to remove the urea and lower the salt concentration 

to lOOmM KC1, fractions were assayed for TFIIIB activity by in vitro transcription.

Fraction numbers are indicated. SM, starting material; R, recirculated starting 

material; FT, flowthrough; SM+Ab, preincubated starting material and antiserum 

mixture. Lane 3 contains LDB buffer. TFIIIB activity was assayed using 12pl of the 

indicated fraction, 2pl of PC-C and 250 ng of pVAi; after 15 min incubation at 30°C, 

nucleotides were added to initiate transcription.
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the lack of inhibition observed with PC-B may reflect the masking of the inhibitory 

effect due to an excess of TFIIIB that is not interacting with the antibody.

The immunoaffinity purified BHep fraction, whose TFIIIB activity is shown 

in Figure 3.9 (lane 13), represents my most purified TFIIIB fraction. Considering 

that it has been subjected to three different chromatographic steps, three extensive 

dialyses, exposure to the denaturant urea and at least three freeze-thaw cycles the 

activity of this fraction is remarkably good. Silver staining of the fraction revealed 

that it represents a complex set of polypeptides (data not shown). The TFIIIB is 

estimated to have been purified in the range of 100-400 fold from HeLa nuclear 

extract. This partially purified TFIIIB fraction represents a significant improvement 

in the purity of TFIIIB compared to most sources of TFIIIB that are commonly used 

in regulatory studies of the pol III transcriptional apparatus.

3.2.5 Immunoaffinity purification of human TFIIIC

In parallel to developing an immunoaffinity step for the purification of human 

TFIIIB, the same was done for human TFIIIC. The procedure that gave the best 

immunopuriflcation of hTFIIIC was essentially the same as that for hTFIIIB.

In contrast to the relatively poor immunodepletion observed using 330 or 128 

and PC-B, preincubation of PC-C with purified 4286 antiserum resulted in >90% 

depletion of TFIIIC activity. It may be that the epitope on TFIIICp specifically 

recognised by 4286 is much more accessible than the epitopes on BRF recognised by 

128 and 330, respectively. There are other possible explanations, however, such as 

the kinetics of the interaction. The TFIIIC contained in PC-C also represents a purer 

source of TFIIIC than PC-B is of TFIIIB.

Although excellent immunodepletion was consistently obtained using the 

4286 antiserum, recovery of TFIIIC activity was much more variable between 

different chromatographic runs. This seems to be a feature of this protein; it has also 

been found to be the case for TFIIIC eluted from phosphocellulose (312), suggesting 

it is relatively easily inactivated.

For an immunoaffinity step to achieve any degree of purification the antibody 

used must interact specifically with the protein of interest. The antibody specifically
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selects the protein of interest for adsorption and not other proteins, although 

inevitably there is some non-specific binding both to the antibody and the protein A- 

Sepharose. It is theoretically possible that the immunodepletion of hTFIIIC from 

PC-C observed using 4286 antiserum and the immunodepletion of hTFIIIB from PC- 

B observed using 128 or 330 is simply due to non-specific binding to protein A- 

Sepharose or the antibody. I have tested this possibility for all three antisera by 

carrying out mock immunopurifications using the appropriate preimmune serum, 

which is preincubated either with PC-B or, for the 4286 preimmune serum, PC-C. 

As a positive control, an immunopurification using the appropriate antiserum was 

carried out in parallel.

Figure 3.10 A shows the results obtained using the 4286 antiserum and the 

corresponding preimmune serum. No TFIIIC activity was eluted in any of the 

fractions from the mock immunopurification (Fig.3.10 A, lanes 12 to 17). For the 

4286 column run in parallel, some TFIIIC activity was eluted (see lane 5), although 

recovery of TFIIIC activity from this particular chromatographic run was very poor 

compared to that often obtained (see, for example, Figure 3.10 B). More indicative 

of the specificity of the immunoaffinity step is the extent of immunodepletion of 

TFIIIC activity using 4286 compared to the preimmune serum. With 4286, there was 

almost complete immunodepletion of TFIIIC activity from PC-C ( Fig.3.10 A, 

compare lanes 1 and 3), whereas using preimmune serum resulted in no or very little 

immunodepletion (compare lane 11 with lanes 1 & 3). Although the activity of the 

recirculated PC-C from the preimmune serum is slightly lower than that of the 

starting material, this is not entirely unexpected given that it was recirculated at 4°C 

for ~2h and exposed to purified preimmune serum which is slightly inhibitory 

(compare lanes 1, 10 and 11). The recirculated material is also likely to have been 

diluted slightly compared to the starting material. Immunopurification using the 

4286 antiserum thus appears to specifically immunodeplete PC-C of TFIIIC activity. 

A similar result was obtained for 330 and 128; they specifically immunodepleted PC- 

B of TFIIIB activity, whereas mock immunopurifications with the preimmune sera 

did not deplete PC-B of TFIIIB activity (data not shown).

Although there is a very slight inhibitory effect of the preimmune serum on 

the PC-C, this pales into insignificance when compared with the inhibitory effect of 

the purified 4286 antiserum (compare lanes 10 &2). Such a strong inhibitory effect 

of the antiserum compared to the preimmune serum suggests that this inhibition is a
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Figure 3.10

Immunoaffinity purification of human TFIIIC

TFIIIC was immunopurified from a PC-C fraction using anti-TFIIICp antibody 4286. 

2mls of PC-C was preincubated with 300pl of purified 4286 antiserum on ice for ~ 

lh. This solution was then recirculated through a 350pl column of protein A- 

Sepharose at 4°C for ~ 2h. Recirculated material was collected and the column was 

washed with 25 column volumes of CB buffer containing lOOmM NaCl (CB100). 

Immunopurified TFIIIC was eluted with CB buffer containing 2M salt, 2M urea 

(CB2000U). Eluted fractions were dialysed against LDBO buffer for 8-12 h until the 

salt concentration was ~ lOOmM, and then were further dialysed against LDB buffer 

for 2-4 h to ensure removal of any residual urea. Eluted fractions were then tested 

for TFIIIC activity by in vitro transcription assay.

Transcription was reconstituted using 12pl of the indicated fraction, 2pl of PC-B and 

250ng of pVAi. Fraction numbers are indicated. SM, starting material; R, 

recirculated starting material; FT, flowthrough; SM+Ab/PI, preincubated starting 

material and antiserum or preimmune serum mixture.

A) 4286 specifically immunopurifies hTFIIIC

Lanes 1-9 show the TFIIIC activity of fractions eluted from the 4286 immunoaffinity 

column. Lanes 10-18 show the TFIIIC activity of fractions from a mock 

immunopurification conducted at the same time using the corresponding preimmune 

serum.

B) Immunopurification of hTFIIIC with good recovery of activity

Transcription reactions were carried out as described above. Lanes 5-13 show the 

TFIIIC transcriptional activity of eluted fractions.
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specific effect. The reason for the inhibition requires further investigation; it may be 

that the region of TFIIICp that 4286 was raised against is involved in the interaction 

with another component of the transcriptional apparatus. A less interesting but 

equally plausible explanation is that antibody bound to TFIIICp may simply 

sterically restrict TFIIICP’s interactions, mediated through other sites of the protein, 

with other pol III components, thus preventing the formation of a functional pre­

initiation complex.

Figure 3.10 B shows the results of another immunopurification using 4286, 

for which there was very good recovery of TFIIIC activity. Two of the eluted 

fractions had activity almost comparable to that of the starting material. No TFIIIC 

activity was detected in the flowthrough. Estimation of the concentration of the 

eluted fractions by comparison with known amounts of protein on a silver stained gel 

suggests that the fractions are purified 10-20 fold compared to PC-C. This represents 

a 100-200 fold purification from HeLa nuclear extract. This is a significant 

improvement in the purity of TFIIIC compared to that often used in regulatory 

studies involving human TFIIIC.

Attempts to try and improve upon this level of purification by washing the 

immunoaffinity column more stringently before elution resulted in a complete loss of 

activity, as was found to be the case for the TFIIIB immunoaffinity columns.

3.2.6 DNA-affinity purification of TFIIIC

TFIIIC binds specifically and with high affinity to the B-block region of the 

split internal promoter of tRNA and VAi genes (44, 73, 107, 154, 553, 607). This 

unique property has previously been exploited for the partial purification of TFIIIC, 

both in yeast and in humans (71, 156, 408, 505). In contrast to TFIIIC, human 

TFIIIB and pol III alone are completely devoid of sequence-specific DNA-binding 

activity and are only able to interact with DNA non-specifically and with low 

affinity.

TFIIIC was purified using a B-block oligonucleotide, containing the B-block 

region of the adenoviral VAi gene, coupled to Sepharose beads (246). I purified
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TFIIIC essentially as described by Dean and Berk (118), but with a few 

modifications from their method (see 2.18.8 and below).

Figure 3.11 show the results of purification on this resin of a PC-C fraction. 

After washing the resin with 20 column volumes of LDB buffer, bound protein was 

eluted in two steps. As the in vitro transcription assay shows, TFIIIC activity was 

recovered both in the 0.35 M KC1 elution (Fig.3.11, lanes 5-10) and in the 2M 

KC1/0.1% IGEPAL elution (Fig.3.11, lanes 11-15).

This contrasted with the results of Dean and Berk, who were unable to detect 

any TFIIIC transcriptional activity either in their 0.25M KC1 elution or in their 2M 

KC1/0.1% NP40 elution (118). However, combining 0.25M KC1 eluate with that 

from the 2M KC1/0.1% NP40 elution was able to restore transcriptional activity, 

suggesting that TFIIIC was split into two components by fractionation on the B- 

block resin, as previously observed on Mono Q (118).

The presence of TFIIIC transcriptional activity in both the 0.35M KC1 elution 

and in the 2M KC1/0.1% IGEPAL elution that I found suggested that TFIIIC 

fractionates heterogeneously on this column but is not resolved into separate 

components. However, when I combined the peak TFIIIC fraction from the 0.35M 

KC1 elution with that of the 2M KC1/0.1% IGEPAL elution there was a synergistic 

increase in transcription levels (compare lanes 6 and 11 with lane 16). This suggests 

that the two fractions do represent different complementing TFIIIC species; that 

transcriptional activity could be obtained by the fractions alone may reflect cross­

contamination of the two activities. It is also possible that the complementing PC-B 

fraction is contaminated with one of the two activities; TFIIIC 1 elutes from 

phosphocellulose between 280 and 390 KC1 and thus may be found to some extent in 

the PC-B fraction.

In contrast to the PC-B fraction that I used, the PC-B fraction used by Dean 

and Berk had been rechromatographed on phosphocellulose and gradient eluted and 

subsequently tested by in vitro transcription assays reconstituted with Mono Q- 

purified TFIIIC 1 and TFIIIC2, for the presence of these two activities (118).

In order to try and obtain better synergy, I reconstituted the in vitro 

transcription reaction using a more purified source of TFIIIB from a heparin gradient 

that should lack TFIIIC 1 or TFIIIIC2. Unfortunately, however, little synergy was 

obtained; a reconstitution using PC-B done in parallel suggested that the aliquots of 

the high salt fractions used were not active. Dean and Berk reported that the activity
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Figure 3.11

DNA-affinity purification of human TFIIIC

Human TFIIIC was DNA-affinity purified from PC-C on a B-block oligonucleotide 

resin. After extensive washing with LDB buffer, bound protein was eluted in two 

steps of PC-A buffer containing 0.35M KC1 (PC-A(0.35)) and PC-A buffer 

containing 2M KC1 but lacking EDTA ((PC-A(-EDTA)(2.0)). Eluted fractions were 

assayed for TFIIIC activity by in vitro transcription.

Transcription was reconstituted using 12pl of the indicated fraction, except in lanes 

16-18 in which 6pl of both fractions was used. As the source of TFIIIB and pol III, 

2pl of PC-B was added to each reaction. pVAi (250ng) was used as the specific pol 

III template. Fractions were preincubated for 15 min at 30°C with PC-B and 

template before transcription was initiated by nucleotide addition.

SM, starting material; R, recirculated starting material; FT, flowthrough. Lanes 5-10 

show the TFIIIC activity of PC-A(0.35)-eluted fractions. Lanes 11-15 show the 

TFIIIC activity of PC-A(-EDTA)(2.0)-eluted fractions.
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of the high salt eluate was not stable to multiple rounds of freeze/thaw and that the 

inclusion of BSA (O.lmg/ml) in the elution buffer was critical for the recovery and 

stability of activity (118). Although I did not use BSA I did add insulin, which is 

sometimes used as an alternative to BSA, to a final concentration of 0.2mg/ml. To 

my knowledge BSA is not any better at stabilising dilute proteins than insulin. 

However, my fractions seemed extremely susceptible to inactivation.

It was important to distinguish whether the low salt eluate and the high salt 

eluate of mine contain overlapping TFIIIC activities and to what extent their ability 

to reconstitute transcription alone is the consequence of a contaminated PC-B 

fraction. To address this, I carried out band shift analyses of the fractions using a B- 

block oligonucleotide as my specific probe. Since TFIIIC 1 cannot bind to the B- 

block, the amount of probe bound should be a direct reflection of the level of 

TFIIIC2 activity of the fractions, although in the context of the whole promoter 

TFIIIC 1 levels affect stability of binding. The band shift assays suggested that there 

is considerable overlap of activities, at least in terms of TFIIIC2 DNA-binding 

activity. This result may reflect the higher concentration of salt that I used for the 

low salt elution compared to that used by Dean and Berk (0.35M KC1 versus 0.25M 

KC1) (118). The lOOmM increase in salt concentration may significantly destabilise 

the interaction of TFIIIC2 with the B-block, although this requires further 

investigation.

Silver staining of the fractions revealed that a large number of bands seem to 

be common to both the low salt and the high salt fractions. Although some of these 

bands may be contaminants, the silver stain is supportive of some overlap of two 

distinct TFIIIC activities in the low and high salt fractions, as suggested by band shift 

and in vitro transcription analyses. The silver stain also clearly showed strong 

enrichment of particular polypeptides in the high salt fraction compared to the low 

salt fraction and vice-versa, which is supportive of the existence and partial 

separation of two distinct TFIIIC activities.

TFIIIC (combination of the peak 0.35M KC1 fraction and the peak 2M KC1 

fraction) has been purified ~ 8-12 fold from PC-C. This represents an -80-120 fold 

purification of TFIIIC from HeLa nuclear extract.

Potentially, TFIIIC could be purified up to 10-20 fold more by 

immunoaffinity chromatography (as described in 3.2.5) of this sequence-specific 

DNA-affinity purified TFIIIC to give a final purification in the range of 800-2400
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fold. However, the extreme susceptibility of the DNA-affinity purified TFIIIC to 

inactivation makes it unlikely that activity would be recoverable following its 

application on another column. This was not necessarily the case for the 

immunoaffinity purified TFIIIC, however, which seemed more resistant to 

inactivation. The opportunity thus existed to combine two different affinity steps for 

the purification of human TFIIIC.

In order to have sufficient immunoaffinity-purified TFIIIC for further 

chromatography on the B-block oligonucleotide resin, I carried out several large 

scale immunopurifications of TFIIIC. In vitro transcription assays and silver staining 

revealed a similar level of purification and recovery of activity to that obtained on a 

small scale. The immunopurified TFIIIC was applied to the B-block column and 

DNA-affinity chromatography was carried out in an identical manner to that for PC- 

C. Unfortunately, however, neither TFIIIC transcriptional activity nor B-block 

binding activity could be recovered.

3.2.7 Investigation of the reported HAT activity of human TFIIIC

The packaging of DNA into chromatin has a general repressive effect on 

nuclear transcription. The structure of chromatin is dynamic, however, and the 

modification of local chromatin structure is an additional level by which the 

transcription of specific genes is controlled (588). There are two groups of factors 

that can affect the chromatin state; nucleosome remodelling factors and proteins that 

affect the acetylation state of histones. Histone acetyltransferases (HATs) acetylate 

histones at N-terminal lysine residues reducing the basicity of the histone (500). 

This has been correlated with a less compact chromatin state and the stimulation of 

transcription (534).

A number of in vitro and in vivo studies have demonstrated that pol III 

transcription is subject to chromatin-mediated repression, although different class III 

templates seem to vary widely in their susceptibility to repression (411). Kundu et 

al. have shown that human TFIIIC2 can partially relieve chromatin-mediated 

repression of a tRNA gene in vitro at a higher concentration than is required for 

transcription of the DNA template (298). Work from the same laboratory suggests 

that human TFIIIC possesses weak intrinsic histone acetyltransferase activity (230,
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298). Pretreatment of TFIIIC with /?-hydroxymercuribenzoic acid (PMA) resulted in 

a partial loss of both TFIIIC HAT activity and TFIIIC-dependent chromatin 

transcription, but with no effect on DNA transcription (298). This suggests that the 

relief of chromatin repression by TFIIIC may be mediated, at least in part, by its 

intrinsic HAT activity. For the yeast U6 gene, TFIIIC has a dominant role in 

relieving chromatin repression; disruption of chromatin structure only enhances 

transcription when TFIIIC interactions with the B-box are impaired (357, 384). It is 

interesting to note, however, that yeast TFIIIC lacks any detectable HAT activity.

Kundu et al. immunopurified hTFIIIC on M2 agarose from a cell line 

expressing a FLAG-tagged TFIIICp subunit (298). Suprisingly, an in-gel HAT assay 

using this purified TFIIIC revealed weak HAT activity associated with three 

polypeptides of ~220kDa, ~110kDa and ~90kDa, corresponding in size to the 

TFIIICa, TFIIICp and TFIIIC5 subunits of TFIIIC2 (298). This result has been 

confirmed using recombinant proteins for TFIIICp (298) and TFIIIC5 (230).

In light of the weakness of the HAT activity observed, I attempted to verify 

that hTFIIIC does indeed possess HAT activity using my partially purified TFIIIC 

fractions. Figure 3.12 A shows the results of a comparison of the HAT activity of 

my immunopurified TFIIIC with a partially purified TFIIIB fraction, using core 

histones as the specific substrate for acetylation. This clearly shows that the 

immunopurified TFIIIC fraction has significantly higher levels of HAT activity than 

the partially purified TFIIIB fraction assayed in parallel (compare lanes 2 & 3). 

Consistent with the results from Roeder’s laboratory, the HAT activity of the 

partially purified TFIIIC fraction was very low compared with that of p300 (compare 

lanes 1 & 2). As found by Roeder and coworkers, histones H3 and H4 were 

specifically acetylated, with the preferential acetylation of histone H4. There was no 

detectable autoacetylation of hTFIIIC.

In contrast to Kundu et al., no sodium butyrate was included in the HAT 

reaction mixture (298). Sodium butyrate is a deacetylase inhibitor but was omitted 

on the basis that it can have non-specific inhibitory effects and this could reflect the 

low HAT activity of the hTFIIIC observed by Kundu et al. (298). The HAT 

activities observed with the various fractions shown in Figure 3.12 A thus represent 

the level of acetylation relative to deacetylation. It is thus plausible that the 

difference in histone acetylation observed between the immunopurified TFIIIC and
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the partially purified TFIIIB fraction simply reflects higher levels of deacetylase 

activity in the TFIIIB fraction. TFIIIB specifically cofractionates and associates with 

the retinoblastoma protein, pRb (314). As discussed in Chapter 4, pRb has recently 

been shown to associate with the histone deacetylase HDAC1 (53, 349), lending 

support to this possibility.

It is important to realise that the TFIIIB and TFIIIC fractions assayed are 

partially purified fractions. Given the very weak HAT activity of the 

immunopurified TFIIIC fraction, this activity observed could easily be caused by a 

small level of contamination of the fraction with a potent HAT such as p300.

To investigate the reported HAT activity of hTFIIIC further, I decided to 

carry out HAT assays on immunoprecipitated TFIIIC, TFIIIB and mock 

immunoprecipitated material obtained using the appropriate preimmune sera. This 

revealed no significant differences in the HAT activities of immunoprecipitated 

TFIIIC and TFIIIB compared to the mock immunoprecipitations (data not shown). It 

may be that the amount of TFIIIC immunoprecipitated is too low for its weak HAT 

activity to be detectable above background levels, or its HAT activity may be 

partially inactivated by the vigorous agitation required during immunoprecipitation.

Figure 3.12 B (lanes 1-6) shows the HAT activity of TFIIIC-containing 

fractions from the DNA-affinity column of Fig. 3.11. This reveals a slight depletion 

of HAT activity from the PC-C used as starting material (compare lanes 1 & 2). A 

very low level of HAT activity is detectable in the FT fraction (lane 3). In contrast, 

there is a very significant enrichment of HAT activity in the peak fraction from the 

2M KC1 elution and the peak fraction from the 0.35M KC1 elution (lanes 5 & 6 

respectively), both of which are enriched in TFIIIC activity. This result is supportive 

of hTFIIIC possessing intrinsic HAT activity.

The TFIIIC DNA-affinity fractions are purified on the basis of their specific 

B-block binding activity. Previously it has been shown that TFIIICp and an N- 

terminal 83 kDa fragment of TFIIICa are sufficient to reconstitute the B-block 

binding activity of hTFIIIC (481). The strong enrichment in HAT activity in the B- 

block affinity-purified TFIIIC fractions thus correlates well with the finding by 

Kundu et al. (298), that TFIIICa and TFIIICp contain their own intrinsic HAT 

activity, since the fractions should be particularly enriched in these two subunits of 

TFIIIC2.
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Lanes 7 & 8 of Fig. 3.12 B show the HAT activity of an immunopurified 

TFIIIC fraction and a mock-immunopurified TFIIIC fraction, respectively. There is 

very little difference in HAT activity of the two fractions, which is not supportive of 

hTFIIIC possessing intrinsic HAT activity. Analysis of the HAT activity of other 

TFIIIC immunopurified fractions revealed a similar result.

Together my results are unable to verify the finding by the Roeder laboratory 

that human TFIIIC possesses weak intrinsic HAT activity (230, 298) although some 

results in support of this were obtained.
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Figure 3.12

HAT activity of partially purified TFIIIC fractions

A) Comparison of HAT activity of an immunopurified TFIIIC fraction with a 

partially purified TFIIIB fraction and p300

Equal amounts of immunopurified TFIIIC (lane 2) and a partially purified TFIIIB 

fraction (BHep) (lane 3) were assayed for HAT activity. A small quantity of 

recombinant p300 (lane 1) was also assayed as a positive control. Lane 4 lacks any 

additional source of protein apart from the core histones added as the specific 

substrate for assaying acetylation. The fractions were incubated for 30 min at 30°C 

with 1 pg of chicken core histones and 0.25pCi of 14C acetyl CoA in a final reaction 

mixture of 50mM Tris pH 8.0, 5% glycerol, O.lmM EDTA, 50mM KC1, ImM DTT 

and ImM PMSF. Samples were resolved on a 12% polyacrylamide-SDS gel. After 

fixing the gel, it was incubated in Amplify™ (Amersham) for 15-30 min to reduce 

the exposure time of the gel required. Acetylated products were visualised by 

autoradiography, after exposure to BIOMAX X-ray film (Kodak) for 3 days at -  

80°C.

B) B-block affinity-purified TFIIIC fractions are enriched in HAT activity

Fractions were assayed for HAT activity as described in (A), lp l of p300 was 

assayed (lane 9) and 15pi of all other fractions (lanes 1-8). Lanes 1-6 represent peak 

fractions from the DNA-affinity column of Fig.3.11. SM, starting material; R, 

recirculated starting material, FT; flowthrough; 2M, peak fraction from 2M KC1 

elution; 0.35, peak fraction from the 0.35M elution. Although equal volumes of 

fractions were assayed, silver staining revealed that the 2M KC1 and the 0.35M KC1 

fractions assayed were approximately four times less concentrated than SM and R. 

Lanes 7 & 8 represent the first eluted fraction of the 4286 immunoaffinity column 

and the mock immunoaffinity column respectively of Fig.3.10A (lanes 5 & 13). 

Silver staining revealed that these two fractions are of comparable concentration.
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3.3 Discussion

3.3.1 Partial purification of mammalian TFIIIB

Despite considerable effort in the past fifteen years by a number of different 

laboratories, substantial purification of intact and active mammalian TFIIIB has 

remained rather elusive. A great many studies have implicated TFIIIB as a target for 

regulation, but these have tended to rely on rather impure sources of hTFIIIB 

obtained through conventional chromatography. The cloning and identification of 

TBP and hBRF as essential components of hTFIIIB provided the opportunity to use a 

novel approach, namely that of immunoaffinity chromatography, as a means of 

purification. It is now well documented that this technique can potentially achieve 

levels of purification in a single step that conventional chromatographers may 

struggle to even approach over a whole purification scheme. A significant 

proportion of my time and effort was therefore devoted to developing an effective 

immunoaffinity step for purifying TFIIIB, as well as screening a number of different 

conventional column types for potential use in a final fractionation scheme. 

Attempts have previously been made to immunopurify hTFIIIB in our laboratory 

using anti-TBP antibodies; however, this approach resulted only in the isolation of 

disrupted hTFIIIB complexes inactive for transcription (570). An immunoaffinity 

step was therefore developed using antibodies against BRF. There was the additional 

advantage of BRF being specific to TFIIIB, whereas TBP is part of pol II- and pol I- 

specific complexes as well as TFIIIB.

Three different BRF antibodies, each raised against a different region of the 

BRF protein, were tested for their potential use in the immunopurification of TFIIIB. 

However, only two of these, 128 and 330, were capable of immunodepleting 

endogenous BRF. There was very little to choose between the 128 and 330 antisera 

in terms of the yield of active TFIIIB typically obtained or the extent of purification. 

In the final purification scheme, nuclear extract was first purified on 

phosphocellulose and a heparin gradient prior to the immunoaffinity step, resulting in 

a 100-400 fold purification of active hTFIIIB from HeLa nuclear extract. This 

represents a significant improvement in the purity of TFIIIB compared to that 

normally used for regulatory studies in our laboratory.
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During gradient chromatography on Mono Q, hTFIIIB fractionates into two 

components, suggesting that one or more subunits may be loosely associated. In 

support of this, washing the immunoaffinity column with buffer containing 200mM 

NaCl rather than lOOmM NaCl prior to the high salt elution of bound hTFIIIB 

complex was consistently found to result in a complete loss of TFIIIB activity. 

Whatever the reason, the inability to wash the immunopurified complex very 

stringently without the loss of transcriptional activity meant that only a modest level 

of purification (-10 fold) was obtained by the immunoaffinity step.

The cause of this loss of activity is an important issue to be resolved as it may 

provide valuable information as to how the immunoaffinity step could be improved. 

It may be that the hTFIIIB complex is intrinsically unstable, as suggested by Huet et 

al. for the yeast TFIIIB complex. Alternatively, it may be that the particular BRF 

antibodies used weaken the association of one or more subunits of TFIIIB. If the 

latter possibility were to be true, other BRF antibodies raised against different 

regions of the BRF protein may offer the opportunity to wash more stringently 

without incurring a loss of activity. Another possible explanation is that washing 

with buffer containing 200mM NaCl disrupts the interaction between the antibody 

and TFIIIB. The establishment of a tight antigen-antibody complex is thought to 

occur in more than one step and is rather slow kinetically. Perhaps insufficient time 

was allowed for progression from the initial weak interaction of antigen with 

antibody to the formation of a stronger interaction that is relatively resistant to salt. 

This could easily be tested simply by preincubating the antigen and antibody for 

longer periods of time, for example overnight at 4°C, and seeing whether the column 

can be washed any more stringently without the loss of activity.

During the preparation of this manuscript, Schramm et al. reported the 

cloning of human B" (463). They also show that antibodies raised against hB" 

specifically deplete extracts of pol III transcriptional activity. Significantly, the 

addition of recombinant hB" alone to depleted extracts was able to rescue 

transcription, suggesting that hB" is not tightly associated with other TFIIIB 

components. Conversely, for extracts depleted of pol III transcriptional activity 

using anti-BRF or anti-TBP antibodies, a combination of recombinant TBP and BRF 

were found to be sufficient to restore transcription. Together, these results suggest 

that the TFIIIB I immunopurified using anti-BRF antibodies may be partially
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deficient in B". The sensitivity of the TFIIIB complex to washing with 200mM 

NaCl may reflect the complete loss of weakly associated hB". Thus, the addition of 

recombinant hB" to eluted fractions from the immunoaffinity column washed with 

200mM NaCl may be able to restore pol III transcriptional activity. It would also be 

of interest to see if recombinant B" can stimulate transcription synergistically when 

mixed with active immunopurified TFIIIB that was obtained.

The recent work of Schramm et al. suggests that hB", like its yeast 

counterpart, is only loosely associated with the TFIIIB complex. A better approach 

to achieving highly purified active TFIIIB may therefore be to separately 

immunopurify hB" and TBP-BRF and to reconstitute the active complex by mixing 

the separately purified components. The tendency of a protein complex to dissociate 

easily makes the substantial purification of intact complex extremely difficult to 

achieve.

3.3.2 Partial purification of mammalian TFIIIC

As with hTFIIIB, washing the immunopurified TFIIIC complex more 

stringently before eluting from the antibody column resulted in a significant 

reduction in the level of eluted TFIIIC activity. The cause of this loss of activity has 

not been investigated; however, hTFIIIC is relatively easily dissociated into two 

components, TFIIIC 1 and TFIIIC2 (118, 607). The TFIIIC 1 component remains 

almost completely undefined, possibly because it is not a very stable entity itself. 

The sensitivity to washing at increased salt concentrations might therefore be caused 

by the disruption of the interaction between TFIIIC 1 and TFIIIC2, or perhaps, weak 

interactions within the TFIIIC 1 subcomplex.

Immunopurified TFIIIC is estimated to have been purified -100-200 fold 

from HeLa nuclear extract while DNA-affinity purified TFIIIC is estimated to have 

been purified -80-120 fold. Unfortunately, the single attempt to combine the DNA- 

affinity and immunoaffinity purification steps failed to yield active TFIIIC. It might 

be an insufficient amount of immunoaffinity-purified TFIIIC was applied to the B- 

block oligonucleotide column. The attempt to combine the two purification steps 

certainly deserves repeating. Having obtained two different sources of partially
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purified TFIIIC that have been purified by different criteria, this enabled the 

significance of results obtained with one source of TFIIIC to be verified using the 

other source of purified protein.

For future work there is a lot of scope for improving upon the level of 

purification obtained, if required. All five subunits of TFIIIC2 have been cloned and 

each of these is a potential target in an immunoaffinity step depending on the extent 

of their surface exposure. The TFIIIC could also be purified further by conventional 

chromatography prior to an immunoaffinity step. The behaviour of TFIIIC on a 

variety of conventional column types was not investigated as part of this work. It 

would also be interesting to test the behaviour of TFIIIC on an oligonucleotide resin 

encompassing both the A- and B-block, to see if this stabilises TFIIIC 1 and the 

interaction between TFIIIC 1 and TFIIIC2, thereby enabling their co-elution as a 

single complex.

3.3.3 Human TFIIIC as a histone acetyltransferase

The DNA-affinity purified TFIIIC is significantly enriched in HAT activity 

compared with PC-C, supporting the findings of the Roeder laboratory that hTFIIIC 

has weak intrinsic HAT activity (230, 298). However, the immunoaffinity purified 

TFIIIC was not enriched in HAT activity compared with a mock immunopurified 

TFIIIC fraction of comparable concentration. Other proteins present in these 

partially purified fractions can account for both of these results. The enrichment in 

HAT activity in the DNA-affinity purified TFIIIC could easily result from the 

specific or non-specific co-fractionation of small amounts of a potent HAT, such as 

p300. Similarly, the lack of enrichment observed in the immunopurified TFIIIC 

could easily result from background levels of acetylation and deacetylation that have 

a masking effect on the HAT activity of the TFIIIC. These results suggest that if 

hTFIIIC does have intrinsic HAT activity, it is very weak. The enrichment in HAT 

activity in partially purified TFIIIC fractions can only be regarded as weak 

supporting evidence for the role of hTFIIIC as a HAT.

In the last five years a number of transcriptional coactivators for pol II 

transcription have been found to possess HAT activity; these include GCN5 (60), 

PCAF (601), p300 (398), CBP (398), TAFU250 (378) and the nuclear hormone
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receptor coactivators ACTR (85) and SRC1 (496). The intrinsic HAT activities of 

GCN5 and CBP have recently been demonstrated to be essential for their coactivator 

function (303, 359). It is now widely accepted that histone acetylation of 

chromatinised templates facilitates their transcription. Histone acetylation of a 

chromatinised 5S rRNA gene has been shown to facilitate binding of the 5S gene- 

specific factor TFIIIA and increase transcription of this gene (229, 321, 529, 534). 

Both in yeast and in humans, TFIIIC has been shown to be able to relieve chromatin- 

mediated repression of pol III transcription (66, 298). Thus, recent reports that 

hTFIIIC has intrinsic HAT activity are not too surprising. The treatment of hTFIIIC 

with the HAT inhibitor PMA results in a partial loss of HAT activity and inhibits 

TFIIIC-dependent chromatin transcription without affecting transcription of naked 

DNA (298). Although this is suggestive of a link between hTFIIIC relief of 

chromatin repression and its HAT activity, the inhibitory effect of PMA on TFIIIC- 

dependent chromatin transcription may be coincidental.

Human TFIIIC has diverged significantly from its yeast counterpart and none 

of the reported HAT-containing subunits of human TFIIIC have significant sequence 

homology to any of the yeast subunits. In accordance with the lack of homology, no 

HAT activity has been found to be associated with yeast TFIIIC (83). Thus, relief of 

chromatin-mediated repression by yeast TFIIIC seems to be by a HAT-independent 

mechanism and the same may be true for hTFIIIC.

In recent years it has become clear that some of the HATs efficiently 

acetylate non-histone proteins both in vitro and in vivo. Among the targets for 

acetylation of non-histone proteins are transcription factors. The acetylation of 

transcription factors can have both a stimulatory and an inhibitory effect on 

transcription, depending on the particular transcription factor and the site of 

acetylation. For example, acetylation of p53 at a site directly adjacent to its 

sequence-specific DNA-binding domain increases the sequence-specific DNA- 

binding activity of p53 and transcription of p53-activated genes (178). In contrast, 

the acetylation of HMGI(Y) within its DNA-binding domain disrupts its binding to 

DNA and reduces transcription of HMGI(Y)-responsive genes (386). The HAT 

activity of hTFIIIC is extremely weak compared to that of many other HATs, which 

raises the issue as to whether such a weak activity is physiologically significant. It is 

possible, however, that the activity is so weak because histones are a poor substrate 

for hTFIIIC and the in vivo target of hTFIIIC HAT activity is non-histone proteins
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that remain to be identified. To date this possibility has not been investigated, 

although it would appear that hTFIIIC does not possess autoacetylation activity.

Several lines of evidence suggest that the enzymatic activity of histone 

acetyltransferases may be regulated. The HAT activity of CBP increases sharply at 

the Gl-S transition of the cell cycle (4). This coincides with the 

hyperphosphorylation of CBP and a peak of cdk2/cyclin E activity, implicating the 

involvement of a phosphorylation event (4). The HAT activity of hGCN5 is also 

regulated by phosphorylation; phosphorylation by DNA-PK inhibits its HAT activity 

(20). There is also some evidence that suggests that the HAT activities of p300 and 

PCAF can be regulated by the viral oncoprotein El a (289). The weak HAT activity 

of hTFIIIC tested may be due to the lack of an activating post-translational 

modification, such as phosphorylation. All five subunits of TFIIIC2 are
' i ' j

metabolically labelled with Pi in vivo (481). It may be that one of these 

phosphorylation events stimulates the HAT activity of hTFIIIC. At present, 

however, the finding by the Roeder laboratory that hTFIIIC is indeed a HAT still 

awaits independent verification.
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Chapter 4.

Repression of TFIIIB by the pocket 
proteins

4.1 Introduction

The retinoblastoma protein, RB, is an important tumour suppressor that is 

frequently inactivated in a variety of different human malignancies (173, 214, 557, 

580). Indeed, it has been suggested that the regulatory pathway involving RB may 

be disrupted in all human cancers (557). RB is involved in constraining the growth 

and proliferation of the cell (173, 214, 557, 580). In the absence of RB function the 

cell is desensitised to environmental conditions and normal regulatory signals and is 

prone to uncontrolled growth and proliferation. Introduction of the wild-type Rb 

gene into a number of different human cancer cell lines that lack functional RB was 

found to suppress growth and proliferation, soft agar formation and tumorigenicity in 

nude mice (42, 233, 427). Definite proof for the essential role of RB as a tumour 

suppressor is provided by gene knockout experiments in mice. Homozygous 

inactivation of the Rb gene is lethal, mouse embryos die in midgestion with neuronal 

and haematopoietic defects implicating a role for RB in differentiation. However, 

heterozygotes survive and are strongly predisposed to cancer (232, 245, 322, 347, 

396,581).

A diverse array of cellular proteins have been found to associate with RB and 

novel targets are still being discovered (214, 512, 566). The relative contributions of 

the various targets to the physiological effects of RB is still the subject of intense 

study. Probably the best characterised target of RB is the E2F family of transcription 

factors (3, 132, 310, 556). E2F is a heterodimeric transcription factor composed of 

an E2F polypeptide, of which there are six types, and a DP polypeptide, of which 

there are three types (3). RB inhibits E2F by binding to and masking its 

transactivation domain, thus preventing E2F activating gene expression from 

promoters that contain E2F-binding sites (131, 560). E2F-RB complexes can bind to 

E2F-binding sites in promoters and repress basal transcription from these promoters
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(131, 560). Thus, RB converts E2F from a transcriptional activator to a 

transcriptional repressor (560). This dominant repressive effect on transcription is 

dependent, at least at some E2F-regulated promoters, on histone deacetylase activity 

(53, 346, 349). The histone deacetylase HDAC1 can associate with RB and is 

specifically recruited to E2F-regulated promoters via this association (53, 346, 349).

The E2F transcription factors regulate the expression of a battery of genes 

many of which encode proteins essential for DNA replication or which promote cell 

cycle progression (131, 566). Overexpression of E2F-1 can drive quiescent cells 

through G1 and into S phase of the cell cycle (428). On the basis of the identity of 

the genes that are regulated by E2F, one would predict that inhibition of E2F by RB 

would be a potent block upon cell proliferation (131, 566). Overexpression of RB in 

many cell types causes a G1 arrest; however, without inactivating all the genes 

encoding E2F and DP proteins one cannot be certain the arrest is solely due to 

inactivation of E2F (131).

The activity of RB is tightly regulated and depends on its phosphorylation 

status (239, 418, 482, 557). In a hypophosphorylated state RB is active, whereas in a 

hyperphosphorylated state RB is inactive. The phosphorylation of RB is controlled 

by cyclin-dependent kinases (CDKs) (239, 418, 482, 557). The CDKs integrate 

negative and positive growth signals from the environment. For example, the 

synthesis of the D-type cyclins is rapidly induced on mitogenic stimulation; on 

growth factor withdrawal, cyclin D synthesis ceases immediately (418). Cyclin D 

may act as a growth factor sensor (418). The activity of CDKs depends on the levels 

of the regulatory cyclin subunits (239, 418, 482). The CDKs enable RB to indirectly 

sense the environment and to coordinate gene expression required for cellular growth 

and proliferation with growth factor availability (214, 239, 418, 482).

One of the major checkpoints of the cell cycle is the restriction point, R, in 

late G1 (404). Passage through R constitutes a transition from a serum-dependent to 

a serum-independent state and cells are committed to a single round of DNA 

replication and cell division (404). RB is a major determinant of whether cells can 

pass through R (482, 557).

The restraining influence of RB on cell proliferation, that is, an increase in 

cell number, can be largely explained by its inhibitory effect on E2F (566). 

However, it is difficult to reconcile the ability of RB to suppress cell growth, that is, 

an increase in cell mass, with its ability to inhibit E2F (566). With the exception of
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c-myc, none of the known E2F targets provide any obvious links to the control of 

cell growth (566). One might imagine that controlling cell proliferation is sufficient 

to achieve indirect control of cell growth. However, inhibition of DNA replication 

has little immediate effect on the growth of a variety of different mammalian cell 

types (566). Although cell proliferation and growth are undoubtedly intimately 

linked, available evidence suggests that any dependency is the other way round. In 

bacteria and yeast it is necessary for the cell to reach a critical size threshold before 

DNA replication and cell division can proceed (394). This has also been found to be 

true for murine fibroblasts (273).

A significant imbalance between growth and proliferation will cause a cell to 

undergo apoptosis (428, 566). Although the overexpression of E2F drives quiescent 

cells into S phase, they then apoptose (428). This strongly suggests that the control 

of E2F is insufficient to account for the growth inhibitory effects of RB. RB is also 

in vast molar excess of E2F in the cell (214, 557).

Recently it has been shown that RB represses pol III transcription in vitro and 

in vivo (579). There is also some evidence suggesting that pol I transcription may be 

a physiological target of RB (78, 539). Repression of pols I and III provide a 

potential mechanism by which RB can achieve growth control (567, 568). The rate 

of growth of cells is directly proportional to the rate of protein accumulation, which 

is largely dependent on the rate of protein synthesis (27). rRNA and tRNA are 

important determinants of the biosynthetic capacity of the ce ll. The levels of rRNA 

and tRNA in the cell are unlikely to be in large excess for reasons of cell economy 

and it is possible that suppression of their synthesis by RB results in their becoming 

limiting for translation, thus restricting cellular growth.

Knockout mice provided definite proof that pol III transcription is a 

physiological target of RB. Primary embryonic fibroblasts from Rb'1' mice 

synthesised tRNA and 5S rRNA at a rate approximately 5-fold higher than 

equivalent cells from Rb+/+ mice (579). In contrast, the overall level of pol II 

transcription remained unchanged.

RB specifically represses TFIIIB (93, 314). In a reconstituted system 

repression of VAi transcription by recombinant RB can be overcome by addition of 

partially purified TFIIIB whereas addition of pol III or TFIIIC fractions had little or 

no effect (314). In this reconstituted system in the absence of added RB, TFIIIC was 

found to be the limiting factor whereas TFIIIB was in relative excess (314). This
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demonstrates the potency of the repressive effect of RB on TFIIIB; RB severely 

reduces the level of pol III transcription yet its target, TFIIIB, is not even initially 

limiting for transcription in this system. Furthermore, pull-down assays and 

immunoprecipitations revealed that RB and TFIIIB stably interact (314). This is 

supported by the cofractionation of a population of endogenous RB molecules with 

endogenous TFIIIB over a variety of different chromatographic columns (314). 

TFIIIB activity was also found to be specifically elevated in primary embryonic 

fibroblasts from Rb'1' mice (314). This large body of evidence clearly demonstrates 

that TFIIIB is a specific target for repression by RB. This is also consistent with 

previous data which showed that TFIIIB is the limiting factor for pol III transcription 

during the G1 phase of the cell cycle, a time when RB is active; and that it is no 

longer limiting in S phase, a time when RB is inactivated by hyperphosphorylation 

(571).

The retinoblastoma protein RB is structurally and functionally related to two 

other cellular proteins called p i07 and pl30 (173, 385, 580). Collectively, the three 

proteins are often referred to as the pocket proteins because they share most 

extensive sequence homology in a bipartite region called the pocket domain. The 

pocket domain of RB is both necessary and sufficient for its proliferation- and 

growth-suppressive functions (427). Like RB, the ectotopic expression of p i07 and 

pl30 in tumour cells can inhibit cellular growth and proliferation (97, 427, 593, 615). 

The pocket domains of the three pocket proteins bind a number of common target 

proteins such as E2F and the oncoproteins of several DNA tumour viruses, 

suggesting that there may be some redundancy between the pocket proteins (131, 

173, 214, 385). pl07 and pl30 are much more closely related to each other (~50% 

amino acid identity) than to RB (30-35% identity). Gene knockout experiments 

revealed that there is significant redundancy between p i07 and p i30. p i07- or pi 30- 

deficient mice develop normally, however, plO T1' p i30 '1' double knockout mice die 

shortly after birth (99). In contrast, mice lacking RB die in midgestion, suggesting 

that some distinct functions of RB cannot be performed by pl07 or pl30 (95, 245, 

322).

Recently, Sutcliffe et al. showed that p i07 and p i30 are also able to repress 

pol III transcription; thus, this is a property shared by all three pocket proteins (504). 

In this chapter evidence is presented which suggests that endogenous p i07 and p i30 

stably interact with a specific component of the pol III transcriptional apparatus.
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Although it has been established that RB specifically represses TFIIIB, the 

mechanism by which RB achieves this has, until recently, not been investigated. In 

this chapter I also describe some attempts to elucidate the mechanism by which RB 

specifically inhibits TFIIIB.
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4.2 Results

4.2.1 Repression of pol III transcription by recombinant RB

To investigate the mechanism(s) by which RB specifically represses TFIIIB, 

it was necessary to have a purified source of RB for use in assays and for this RB to 

be active in its ability to inhibit pol III transcription. Since the Rb gene has been 

cloned, the production of recombinant protein was an attractive alternative to 

purifying the protein from natural sources. Although RB is quite an abundant 

nuclear protein and it is ubiquitously expressed, it was judged that purification of 

sufficient quantities from natural sources would probably require vast amounts of 

nuclear extract. It was also predicted that sufficient purification of RB from its many 

targets and other cellular proteins could be very difficult and time consuming.

For quantitative reasons and ease of purification, it was thus decided to 

express RB heterologously using Escherichia coli as host. Suitable RB expression 

vectors were already available for the expression of RB as a glutathione-S- 

transferase (GST) fusion protein or as a His6 fusion protein. Both of these RB fusion 

proteins were expressed for use in assays enabling the verification of results obtained 

with one RB fusion protein by testing the effect of the other. Where results differ, 

this suggests the effects seen may not be due to RB but may be a consequence of the 

specific tag or contaminants that have co-purified. The “tagging” of RB enabled its 

rapid and efficient purification in a single step on an affinity column specific for the 

tag. Rather than express full-length protein, RB containing residues 379-928 

(RB(379-928)) was expressed, as this has been found to give higher levels of 

expression. White et al. previously demonstrated that this region of RB is sufficient 

to inhibit pol III transcription (579).

Having expressed and purified RB, it was essential to test that the protein is 

active in its ability to repress pol III transcription. When expressing eukaryotic 

proteins in a prokaryotic system obtaining biologically active protein can sometimes 

be a big problem (468). This may be caused by the lack of an essential post- 

translational modification or incorrect folding resulting from the environment in 

which it was expressed and the lack of appropriate molecular chaperones (468). The 

protein may also be inadvertently inactivated by the procedure used to extract and 

purify it. The procedures used for disrupting cells to obtain the protein of interest are
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often quite harsh and the balance between disrupting too gently and obtaining very 

poor yields and disrupting too harshly and inactivating the protein seems quite fine.

I have been able to purify both GST-RB(379-928) and His6-RB(379-928) that 

are of very high activity in their ability to repress in vitro pol III transcription, as 

shown in Figure 4.1 for GST-RB(379-928), for example. However, consistent with 

the findings of others, there seemed to be considerable variation in the activity of the 

purified RB between different preparations (314). Attempts to pinpoint the cause of 

the variation in activity of RB between different batches have been unsuccessful to 

date. It was thus essential that each preparation of GST-RB(379-928) or His6- 

RB(379-928) was individually tested for its ability to repress pol III transcription 

before use in an assay.

As shown in Figure 4.1, addition of nanogram amounts of GST-RB(379-928) 

to an in vitro pol III transcription assay can potently inhibit transcription of the 

specific pol III template. This is not a non-specific effect of the buffer composition 

of the recombinant RB, as an equivalent amount of the same buffer was added to the 

reaction shown in lane 1 which contains no recombinant protein (compare lanes 1 

and 3& 4). As an additional control, GST that was made and purified in parallel to 

the RB was added to one of the reactions. Addition of the same amount of GST as 

the largest amount of RB added clearly demonstrated that the inhibition of pol III 

transcription by the GST-RB(379-928) is specific (compare lane 2 with lanes 3 & 4). 

Addition of GST did not inhibit transcription at all; rather perhaps it very slightly 

stimulated transcription compared with no addition of recombinant protein (compare 

lanes 1 & 2). This may be a non-specific stabilising effect on the pol III transcription 

components caused by the addition of protein.

4.2.2 Recombinant RB potently represses pol III transcription in the presence 

of histone deacetylase inhibitor

Transcriptional repression by RB of E2F-regulated promoters involves at 

least two distinct mechanisms. RB binds to E2F within its transactivation domain, 

preventing it from interacting with the basal pol II transcription factor TFIID (448). 

However, the ability of RB to inhibit transactivation by E2F does not account for its 

ability to reduce transcription to below the basal levels observed when the E2F
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Figure 4.1

Repression of pol III transcription by recombinant RB

250 ng of pVAi was preincubated for 15 min at 30°C with HeLa-PC-B (2pl) and 

HeLa-PC-C (2pl) (all lanes) in a reaction volume of 15pl containing GST-RB elution 

buffer (lane 1), 250 ng of GST (lane 2) or with 250 ng or 125ng of GST-RB(379- 

928) (lanes 3 and 4, respectively). Transcription was initiated by the addition of a 

mixture of rATP, rCTP, rGTP and [a32P]-UTP and was allowed to proceed for 1 h. 

Ethanol-precipitated transcription products were separated on a 7M urea 7% 

polyacrylamide sequencing gel and were visualised by autoradiography.
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binding sites are unoccupied. Additionally, several RB mutants have been isolated 

that bind E2F but fail to significantly repress transcription of E2F-regulated 

promoters (52).

As discussed in the previous chapter, the acetylation of chromatin is an 

important mechanism by which transcription may be regulated. A number of 

transcriptional activators have been found to possess intrinsic histone 

acetyltransferase activity which for several coactivators has been shown to be 

essential for their activating function (303, 359, 500). Hence, the discovery that 

several transcriptional repressors, such as Mad and NCoR, associate with histone 

deacetylases and that this activity is essential for their repressive function (5, 308) 

came as little or no surprise. The possibility of an involvement of histone 

deacetylases in transcriptional repression by RB was loosely suggested by the finding 

that two RB binding proteins, RbAp46 and RbAp48, are part of the mammalian Sin3 

deacetylase complex (52).

Recently, three different groups have independently shown that RB 

specifically interacts with the histone deacetylase HDAC1 both in vitro and in vivo 

(53, 346, 349). Furthermore, E2F1, RB and HDAC1 can form a trimeric complex in 

vitro (53, 349). However, an E2F mutant that is unable to bind RB also failed to 

bind HDAC1 (53). This suggested that RB might act as a bridging factor between 

HDAC1 and E2F to enable the recruitment of deacetylase activity to E2F-regulated 

promoters. The significance of the association between RB and histone deacetylase 

was tested by Luo et al. using the chromatin immunoprecipitation method (346). 

They found that the acetylation status of histones at a chromatinised promoter 

changed upon binding of RB (346). The deacetylation of histones is predicted to 

result in a more compact chromatin structure that is less accessible to transcription 

factors and thus inhibitory to transcription (177). Treatment of cells with the potent 

histone deacetylase inhibitor trichostatin A (TSA) relieved RB-mediated repression 

of some of the E2F-regulated promoters tested. Although this demonstrated that 

deacetylase activity is required for the full repressive effect of RB at some E2F- 

regulated promoters, other promoters seemed insensitive to treatment with TSA, 

indicating that the involvement of associated deacetylase activity in RB-mediated 

repression is selective.

RNA polymerase III transcription is also likely to be affected by acetylation, 

as exemplified by recent reports suggesting that TFIIIC2 possesses histone
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acetyltransferase activity. It is plausible that the histone deacetylase activity 

associated with RB antagonises the HAT activity of TFIIIC2. To test whether the 

repression of pol III transcription by RB requires histone deacetylase activity, the 

effect of increasing amounts of TSA on transcription carried out in the presence or 

absence of exogenous RB was tested (503). Figure 4.2 shows the effects of TSA on 

in vitro transcription from the VAi template (503). The GST-RB (379-928) potently 

repressed transcription of the VAi gene (compare lanes 1 & 2). Repression was 

maintained in the presence of increasing amounts of TSA (even-numbered lanes). 

Transcription carried out in the presence of added GST was not affected by the 

presence of TSA (odd-numbered lanes), indicating that the lack of derepression in 

the presence of RB is not due to the TSA having a non-specific toxic effect on 

transcription.

It is plausible that RB utilises different mechanisms to repress transcription at 

different pol III templates. For example, some pol III templates may be more 

susceptible to acetylation than others. I therefore decided to test the effect of TSA on 

a tRNA gene, which has a weaker promoter than VAi, and thus perhaps is more 

susceptible to acetylation. As Figure 4.3 shows, similar results were obtained to 

those with the VAi gene (503). Transcription carried out with nuclear extract in the 

absence of recombinant protein was largely unaffected by the inclusion of TSA at a 

concentration of -500 nM in the transcription reaction mixture (lanes 1 & 2). 

Similarly, transcription carried out in the presence of 250 ng of GST and increasing 

amounts of TSA remained at a fairly constant level (lanes 3-6). Together, these 

results suggest that the TSA is not inhibitory to transcription and that in vitro 

tianscription with endogenous factors is not affected by acetylation/deacetylation. 

As with the VAi template, inclusion of increasing amounts of TSA did not relieve 

repression by RB (lanes 7-10). TSA is a specific and irreversible inhibitor of histone 

deacetylases and a concentration of 100 nM is sufficient to block HD AC function. 

Repression by RB of tRNA transcription was maintained in the presence of ~500nM 

TSA. Clearly, recombinant RB is able to repress pol III transcription in vitro by a 

mechanism that does not require histone deacetylase activity.
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Figure 4.2

Repression of VAi transcription by RB is maintained in the presence of the 

histone deacetylase inhibitor Trichostatin A

pVAi (250 ng) was transcribed using 10pg of HeLa nuclear extract that had been 

preincubated for 15 min at 30°C with 250 ng of GST (odd-numbered lanes) or GST- 

RB(379-928) (even-numbered lanes). Reactions 3 and 4 also contained 165 nM TSA 

and reactions 5 and 6 contained 330 nM TSA. Transcription was initiated by the 

addition of nucleotides and allowed to proceed for 1 h.
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Figure 4.3

Repression of tRNA synthesis by recombinant RB is unaffected by the presence 

of increasing concentrations of TSA

250 ng of pLeu was transcribed using lOpg of HeLa nuclear extract that had been 

preincubated for 15 min at 30°C without addition (lanes 1,2 and 11), with 250 ng of 

GST (lanes 3-6) or with 250 ng of GST-RB(379-928) (lanes 7-10). TSA was 

included at a concentration of 165nM (lanes 4 and 8), 331nM (lanes 5 and 9) or 

496nM (lanes 2, 6 and 10). Transcription was initiated by the addition of a mixture 

of rATP, rCTP, rGTP and [a32P]-UTP and was allowed to proceed for 1 h at 30°C. 

Ethanol-precipitated transcription products were separated on a 7M urea 7% 

polyacrylamide sequencing gel and were visualised by autoradiography.

154



CD LO r  CD ID 1— COTSA CONC (nM) : o c g o c o c o c n o c o c o c n o

Recombinant Protein

r- co i- co r̂
GST GST - RB

tRNA

1 2 3 4 5 6 7 8 9  10 11



4.2.3 Fractionation of HDAC1 and TFIIIB

It is surprising that TSA had no effect on pol III transcription in light of 

recent reports suggesting that TFIIIC, which is essential for transcription from both 

of the promoters investigated, has intrinsic HAT activity. However, the transcription 

assays were conducted using pol III templates carried in plasmid DNAs. It is very 

unlikely that the pol III templates would be assembled into their native chromatin 

conformation in this in vitro system, although the assembly of some histones onto the 

plasmid DNAs is plausible. The possibility therefore remained that acetylation or 

deacetylation does have an important role in the regulation of pol III templates in 

their natural chromatin environment. Furthermore, the possibility also existed that 

repression by RB of pol III transcription in its natural chromatin context involves 

histone deacetylase activity.

Although it has been demonstrated that endogenous RB and endogenous 

HDAC1 specifically interact with each other, it is not known what proportion of RB 

in vivo is associated with HDAC1 (53, 346, 349). This raises the question as to 

whether the endogenous RB that associates with TFIIIB is also associated with 

HDAC1.

HDAC1 preferentially binds to the active, hypophosphorylated form of RB, 

suggesting that its association is important for RB function (346). HDAC1 interacts 

with RB via an LXCXE-like motif (IACEE) (349); deletion of this motif severely 

compromises their coimmunoprecipitation (349). HDAC1 binds to the A/B pocket 

domain of RB (residues 379-792). This same domain of RB is required for its 

proliferation- and growth-suppressive functions and for its ability to inhibit pol III 

transcription (568). The viral oncoproteins of several DNA tumour viruses bind the 

same region of RB through an LXCXE motif. This disrupts the interaction between 

RB and HDAC1 and also the interaction between RB and E2F (53, 84). This 

suggests that the binding sites of HD AC 1 and E2F on RB may overlap. However, 

E2F, RB and HDAC1 can form a trimeric complex in vitro (53, 349). In vivo, RB 

and HDAC1 cooperate to repress certain E2F-regulated promoters; in a RB'7' 

background the same promoters are insensitive to TSA, presumably because HDAC1 

cannot be recruited (346).

It is well established that TFIIIB and RB specifically interact with each other 

in vitro and in vivo and at physiological ratios (314). Substitutions in the A/B pocket
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domain of RB that disrupt this interaction prevent RB from repressing pol III 

transcription (93). Repression of pol III transcription by RB can also be overcome 

by adenoviral El A and SV40 large T antigen (579). It is predicted that the binding 

of these viral oncoproteins to the pocket domain of RB disrupts the interaction 

between TFIIIB and RB (314). This suggests that TFIIIB and HDAC1 probably bind 

to the same region of RB, since the interaction of HD AC 1 with RB is disrupted by 

viral oncoproteins. However, it is not known whether the binding sites of TFIIIB 

and HDAC1 on RB overlap or are distinct, or whether the binding of one precludes 

the binding of the other. E2F, RB and HDAC1 can form a trimeric complex in vitro 

despite viral oncoproteins being able to disrupt the binding both of HD AC 1 and E2F 

to RB.

If the binding of HDAC1 and TFIIIB to RB is mutually exclusive it is 

unlikely, unless another deacetylase is involved, that the repression of pol III 

transcription by RB in vivo involves deacetylase activity. Immunoprecipitations 

were performed to see whether endogenous TFIIIB and HDAC1 specifically interact 

and, if they do, whether this occurs in a RB-dependent or a RB-independent manner. 

The HDAC1 polyclonal antiserum used was unable to coimmunoprecipitate BRF, an 

essential subunit of TFIIIB, from HeLa nuclear extracts (data not shown). The 

antiserum was also unable to coimmunoprecipitate RB from the same extracts (data 

not shown). However, this antiserum does immunoprecipitate and has previously 

been reported to coimmunoprecipitate RB from MCF7 extracts (388). This apparent 

discrepancy in the ability of the antiserum to coimmunoprecipitate RB is probably a 

reflection of the different extracts used. HeLa cells are HPV-transformed and 

contain high levels of the viral oncoprotein E7. HPV E7 protein has previously been 

shown to prevent RB from associating with deacetylase activity (53). Thus, the 

absence of RB in the immunoprecipitated material from HeLa nuclear extracts may 

be because none of the HDAC1 in these extracts is associated with RB. HeLa cells 

may also contain less HDAC1 than MCF7 cells which could result in less HDAC1 

being immunoprecipitated and the levels of coimmunoprecipitated proteins could be 

reduced to below the levels of detection. The lack of a positive control for the 

immunoprecipitation precludes any interpretation regarding the absence of BRF in 

the immunoprecipitated material. Unfortunately, the similarity in size of HDAC1 

and the heavy chain of immunoglobulins prevented a clear result from the converse
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experiment of immunoprecipitating with a BRF antiserum or a RB antiserum and 

seeing if HD AC 1 specifically coimmunoprecipitates (data not shown).

It was also tested whether endogenous HDAC1 and TFIIIB cofractionate 

during column chromatography. The consistent cofractionation of two proteins over 

a variety of different chromatographic columns is suggestive of a stable association. 

Western blotting of fractions from heparin gradient chromatography of a PC-B 

fraction revealed that HDAC1 cofractionates closely with TFIIIB activity through 

this column (data not shown). However, the bulk of the protein appears to have 

fractionated in similar fractions, suggesting that the cofractionation of TFIIIB and 

HDAC1 on this column may be fortuitous (data not shown).

Fractions from Mono Q gradient chromatography of a PC-B fraction were 

also tested. As Figure 4.4 shows, HDAC1 fractionates extremely heterogenously 

with some HDAC1 detectable in many of the fractions assayed and some adjacent 

fractions containing quite variable amounts of HD AC 1. The column is clearly not 

overloaded, which could contribute to the heterogeneity, as HDAC1 is notably absent 

from the flowthrough (lane 2) indicating its specific retention on the column.

Fractionation of TFIIIB on a Mono Q gradient splits TFIIIB into two 

essential components called 0.38M-TFIIIB and 0.48M-TFIIIB, respectively (91, 340, 

371). 0.38M-TFIIIB consists minimally of TBP and BRF. 0.48M-TFIIIB has not 

been characterised, but is thought to consist minimally of a human homologue of 

yeast B" (340). 0.38M-TFIIIB activity was found to peak in fractions 54, 55 and 56 

whereas 0.48M-TFIIIB activity peaked in fractions 57, 58 and 59 (White, R.J., 

unpublished observations). The 0.48M-TFIIIB peak fractions contain only very low 

levels of HD AC 1 and clearly show a depletion in the levels of HD AC 1 compared to 

the starting material, PC-B (compares lanes 10-12 with lane 1). It is likely that these 

fractions are significantly less concentrated than the starting material, however.

In contrast, two of the 0.38M-TFIIIB peak fractions contain very high levels 

of HD AC 1 compared to the other eluted fractions. Fraction 55 is clearly enriched in 

HDAC1 compared to the starting material, PC-B, and while fraction 56 contains a 

similar amount of HDAC1 to the starting material the fraction is probably 

significantly more dilute than the PC-B. Fractions 55 and 56 contain much more 

HDAC1 than any other eluted fraction assayed with the sole exception of fraction 51
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Figure 4.4

Fractionation of HDAC1 during gradient chromatography of PC-B on Mono Q

PC-B was applied to an FPLC Mono Q column. After washing extensively with 

buffer Q containing lOOmM KC1, fractions were eluted with a linear 100-500mM 

KC1 gradient. Fractions were then extensively dialysed into LDB, aliquoted, snap 

frozen and stored at -80°C. Equal volumes (15pl) of the various fractions* were 

resolved on a SDS-7.8% polyacrylamide gel and then analysed by Western blotting 

with an antiserum specific for HDAC1 (C l9, Santa Cruz).

* M ono Q fractions w ere kindly provided by R. J. W hite
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which contains approximately two-thirds as much HDAC1 as fraction 56 (compare 

lanes 8 & 9 with lanes 3-7 and 10-14). Although fractions 55 and 56 are peak 

0.38M-TFIIIB fractions, suggesting that HDAC1 and TFIIIB may associate, fraction 

54 also contains high levels of 0.38M-TFIIIB yet contains low levels of HDAC1 

comparable to other fractions with very little TFIIIB activity. The most 

straightforward interpretation of this is that the high levels of HD AC 1 in fractions 55 

and 56 are not due to a stable association with TFIIIB. However, without knowing 

how TFIIIB itself has fractionated interpretation is near impossible.

Although the TFIIIB activity of individual fractions is probably a good 

indication of the amounts of TFIIIB protein in the fractions, it is not a substitute and 

may not accurately reflect the distribution of the protein. For example, fractions 52 

and 53 have much lower 0.38M-TFIIIB activity than fractions 54-56 but it is 

plausible that they actually contain higher amounts of TFIIIB. These two fractions 

perhaps contain high levels of a specific repressor of TFIIIB that has cofractionated 

but which is not associated with the TFIIIB in fractions 54-56. Indeed RB, which 

has previously been demonstrated to specifically and stably interact with and repress 

TFIIIB, peaks in fractions 52 and 53 with much lower levels in fractions 54-56 (data 

not shown). Unfortunately, the BRF antisera cross-reacted badly with other proteins 

of a similar size to BRF in the fractions, which meant the BRF content of individual 

fractions was uncertain (data not shown). The amounts of 0.48M-TFIIIB protein 

present in individual fractions was prevented from being determined by a lack of 

knowledge as to its molecular composition and a lack of antibodies against any of its 

components.

The functional significance of any interaction between TFIIIB and HDAC1 is 

also important; for example, if HD AC 1 inactivates TFIIIB higher levels of HD AC 1 

may be expected in fractions of lower TFIIIB activity depending on the protein 

levels. Collectively, the available evidence on the fractionation of HDAC1 and 

TFIIIB on a Mono Q gradient is not supportive of a close cofractionation of the two 

proteins. However, the results are open to differential interpretation due to 

uncertainty as to how reliable an indicator TFIIIB activity is of the levels of TFIIIB 

protein in the fractions.

Recently, it has been shown that RB does not require histone deacetylase 

activity for repression of pol III transcription in vivo (503). This is consistent with 

the lack of requirement observed in vitro (see Figs 4.2 & 4.3). As well as using
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transiently transfected pol III templates, which as in the in vitro system may not be 

properly assembled into chromatin, the effects of inhibiting deacetylase on 

transcription of an endogenous gene in its natural chromatin environment was also 

tested (503). Untransfected Rb'f~ and Rb+/+ mouse embryonic fibroblasts were 

cultured in the presence or absence of TSA and total RNA was then extracted for 

analysis of the expression of the B2 gene by northern blotting (503). The B2 gene 

family was chosen for the northern analysis as previously it has been shown that 

these genes are highly susceptible to chromatin-mediated repression. Interestingly, 

TSA elicited an increase in B2 expression levels in both types of fibroblasts (503). 

This effect is specific, since the levels of a pol II transcript encoding acidic ribosomal 

phosphoprotein P0 (ARPP P0) remained relatively constant. This represents the first 

in vivo evidence that acetylation can influence pol III transcription. It may be that 

deacetylases function in antagonising the reported HAT activity of TFIIIC2. The 

relative increase in B2 RNA levels in response to TSA was no greater for the Rb+/+ 

cells than for the Rb'A cells and the higher levels of expression in the Rb'A cells was 

maintained (503). Thus, the effect of inhibiting histone deacetylases on pol III 

transcription in vivo is RB-independent. It may be that an endogenous histone 

deacetylase can interact directly with a component of the pol III transcriptional 

apparatus or is recruited via a protein other than RB. The western blots of the Mono 

Q fractions clearly showed that there is a lot of endogenous HDAC1 that is not 

associated with RB (data not shown). Alternatively, the effect of HD AC function on 

pol III transcription may be indirect.

TSA treatment strongly stimulated transcription of a chromosomally 

integrated class III gene but had no effect in vitro and only a very slight stimulatory 

effect on transcription of a transiently transfected template (503). This suggests that 

histone deacetylases and the reported HAT activity of TFIIIC2 probably influence 

pol III transcription through the acetylation or deacetylation of nucleosomal histone 

proteins and the modulation of local chromatin structure. Although it remains 

possible that the physiological target of histone deacetylases and TFIIIC2 HAT 

activity are non-histone proteins, it is less likely that the effect of acetylation or 

deacetylation of these proteins would be restricted to pol III transcription carried out 

in a chromatin environment. In contrast to the TSA effect on pol III transcription 

that appears to be restricted to pol III templates that are fully assembled into 

chromatin, TSA sensitivity of E2F-regulated promoters was also observed using
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transiently transfected templates (53, 349) which are only partially assembled into 

chromatin. This suggests that transcription of E2F-regulated promoters may be 

regulated by the acetylation or deacetylation of non-histone proteins or it may be that 

these genes are more susceptible to chromatin-mediated repression.

4.2.4 Immunopurification of a pol III holoenzyme

A variety of different mechanisms have been proposed for how RB 

specifically inactivates TFIIIB. One possibility is that RB disrupts the TFIIIB 

complex in some way, perhaps displacing one or more components. Another nuclear 

phosphoprotein called Drl utilises this mechanism to repress pol III transcription. 

Drl can specifically displace BRF from its interaction with TBP (576). Mutational 

analysis suggests that BRF and Drl compete directly for overlapping binding sites on 

TBP (576). The binding of BRF to TBP is maintained in the presence of RB, 

consistent with the ability of anti-RB antibodies to coimmunoprecipitate both of 

these proteins (314, 503). However, RB may displace an unidentified component of 

TFIIIB from the complex. Alternatively, intramolecular interactions within TFIIIB 

may be disrupted that inactivate the complex without any component actually being 

displaced from it.

RB contains regions of homology to both BRF and TBP, suggesting there 

may be some structural similarity (314). Larminie et al. proposed a model in which 

RB mimics TBP and BRF enabling it to disrupt interactions of these two proteins 

with other components of the complex (314). Subsequently, it has been found that 

the regions of homology of RB and TBP bear no structural resemblance. It remains 

to be determined whether the regions of homology of RB and BRF are structurally 

alike (275).

RB can inhibit pol I transcription by preventing UBF from binding to the 

rDNA promoter (539). Similarly, RB may inhibit TFIIIB by preventing contacts 

with promoter DNA. For most pol III templates, TFIIIB is recruited to the promoter 

through protein-protein interactions with TFIIIC. In yeast, once TFIIIB has been 

recruited TFIIIC can be stripped away and TFIIIB alone will remain bound to 

promoter DNA capable of supporting multiple rounds of transcription initiation 

(263). In contrast, in vertebrates any interactions between TFIIIB and DNA are very
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weak and studies to date have been unable to detect a TFIIIB footprint (568). There 

is circumstantial evidence, however, that DNA contacts are made and that their 

disruption will impair transcription (568).

RB may inhibit TFIIIB by disrupting any of its intermolecular interactions 

that are required for transcription. The interactions of TFIIIB with TFIIIC, pol III or 

promoter DNA are all potential targets for disruption. Below I describe the 

immunoisolation of a pol III complex containing TFIIIB, TFIIIC and RNA 

polymerase III. This provided the opportunity to test whether RB represses pol III 

transcription by specifically disrupting the interactions between TFIIIB and TFIIIC 

or TFIIIB and pol III.

Using isolated components, the formation of a functional preinitiation 

complex on pol III templates has been demonstrated to occur in a precisely ordered 

and stepwise fashion (318). However, alternative assembly pathways may exist in 

vivo. For RNA polymerase II transcription, a similar stepwise assembly pathway has 

been defined in vitro. However, in vivo several large complexes that contain pol II, 

some or all of the general initiation factors and various cofactors have been 

discovered (187, 286). These so-called holoenzymes can exist in the absence of 

DNA and suggest an alternative assembly pathway of the pol II preinitiation complex 

in vivo whereby many or all the essential initiation components are simultaneously 

recruited to the promoter as part of this preassembled complex (187, 286). In yeast, 

evidence from a combined biochemical and genetic approach by Young and co­

workers strongly suggests that the physiologically relevant form of pol II that is 

recruited to most pol II promoters in vivo is a pol II holoenzyme (38, 521).

Such holoenzymes are seemingly not restricted to the pol II system. 

Functional pol III complexes containing TFIIIB, TFIIIC and pol III, but which are 

not associated with DNA, have been isolated by gel filtration or density gradient 

centrifugation both from Drosophila and human cell extracts (65, 585). The stability 

of these complexes to 1M KC1 suggests that they are unlikely to result from the 

fortuitous aggregation of constituent components (585). Further support for the 

possible existence of a pol III holoenzyme is provided by the recent 

immunopurification from HeLa cell extracts of a complex that contains all the 

essential components for tRNA, 5S RNA and VAi transcription (551). Using 

immobilised anti-FLAG monoclonal antibody, this complex was purified from a 

HeLa cell line that constitutively expresses a FLAG epitope-tagged subunit of pol III.
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After washing with low salt so as not disturb any weak interactions, the complex was 

eluted with FLAG peptide. In addition to the various pol III subunits, western blot 

analysis revealed that low levels of BRF, TBP, TFIIICa and TFIIICP had co­

purified. Footprinting analyses revealed that TFIIIC1 was also present in the eluate. 

In contrast, none of these proteins were detectable in the eluate from a control 

immunopurification using nuclear extract from untransfected HeLa cells.

An RNA polymerase holoenzyme as originally defined in prokaryotes is an 

entity composed of RNA polymerase and other subunits that can initiate specific 

transcription autonomously. Many of the reported pol II “holoenzymes” required 

additional factors in order to carry out transcription and thus strictly do not really 

represent holoenzymes. In contrast, the immunopurified pol III complex described 

above was capable of pol III transcription of tRNA, 5S RNA and VAi genes alone 

and thus may be regarded as a true holoenzyme (551).

Unlike the pol III complexes isolated by gel filtration and density gradient 

centrifugation, this immunopurified complex was disrupted by a moderate increase in 

salt concentration; however, it was stable to dilution, suggesting that it was unlikely 

to have resulted from a concentration-dependent non-specific aggregation of 

components (551). Preincubation of the nuclear extract prior to immunopurification, 

with ethidium bromide or Chromomycin A3 which are reagents commonly used to 

distinguish between DNA-dependent and DNA-independent protein associations, 

had no effect on the levels of holoenzyme immunopurified (551). Therefore, DNA 

was unlikely to be responsible for the association of TFIIIB, TFIIIC and pol III in 

this complex.

The immunopurification of a complex containing TFIIIB, TFIIIC and pol III 

by Wang et al.(551) raised the possibility that the same may be achievable using one 

of the various antisera that we have against specific components of the basal pol III 

transcriptional apparatus. This was tested by carrying out immunopurifications, 

essentially by the same method as described in the previous chapter, with the 

different antisera and assaying for the coimmunopurification of TFIIB, TFIIIC and 

pol III. Unfractionated HeLa nuclear extract was used as the starting material as 

phosphocellulose chromatography disrupts the holoenzyme complex (551), which 

may partly explain why the existence of such complexes has largely eluded
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detection. The other advantage of using an unffactionated extract is that TFIIIB, 

TFIIIC and pol III will be present at physiological ratios.

After recirculating a mixture of preincubated antiserum and nuclear extract 

through a column of protein A-Sepharose for ~ lh  at 4°C, any unbound material was 

removed by washing with 20 cvs of a low salt buffer (CB100). Bound material was 

then eluted with a buffer containing 2M salt and 2M urea, as previously. Eluted 

material was tested for the presence of TFIIIB and TFIIIC by in vitro transcription 

assays. The presence of RNA polymerases in the eluted material was assayed by 

virtue of their ability to transcribe poly(dA.dT) in a transcription factor-independent 

manner.

The mouse monoclonal antibody MTBP6 (424), which specifically 

recognises an epitope in the N-terminal region of TBP, was found to consistently 

coimmunopurify low levels of TFIIIC and polymerase with TFIIIB immunopurified 

from HeLa nuclear extract (Figure 4.5 and data not shown). The level of 

immunodepletion of TFIIIB from the nuclear extract was rather poor (Fig. 4.5 A, 

compare lane 1 with lanes 2 & 11), as previously observed with the BRF antisera 128 

and 330, when using such crude extract. Despite this, reasonable amounts of TFIIIB 

activity were detected in the eluted fractions from the two MTBP6 columns (Fig 4.5 

A, lanes 4-10 & 13-18), whereas no activity was detected in the FT fractions (lanes 3 

& 12), which is consistent with the specific immunopurification of TFIIIB by 

MTBP6. A control immunopurification was carried out in parallel using a rabbbit 

polyclonal antibody called SI-1 raised against another N-terminal region of TBP. In 

contrast to MTBP6, the SI-1 antibody consistently failed to deplete TFIIIB activity 

from extracts when used in immunoprecipitations (data not shown). In support of the 

specificity of the immunopurification of TFIIIB by MTBP6, there was no TFIIIB 

activity either in the FT or any of the other eluates from the SI-1 column, nor did any 

appear to have been depleted from the starting material (data not shown).

As Figure 4.5 B shows, very low levels of TFIIIC were also immunodepleted 

from the starting material (compare lanes 1 and 2). As for TFIIIB, no TFIIIC was 

found in the flowthrough (Fig. 4.5 B, lane 3). The depleted TFIIIC activity eluted 

entirely in fractions containing TFIIIB activity. For both of the columns, the peak 

fraction of TFIIIC activity was also the peak fraction of TFIIIB activity (compare 

Fig.4.5 A & B, lanes 6 and lanes 14). Clearly, a very small amount of TFIIIC in the 

nuclear extract copurified with the TFIIIB specifically immunopurified by the
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MTBP6 antibody. Some polymerase was also retained on the column and was found 

to elute in the same peak TFIIIB fractions as TFIIIC (Fig. 4.5 C).

The retention of small amounts of TFIIIC and polymerase on the column with 

TFIIIB and their elution in the same fractions suggested that some TFIIIB, TFIIIC 

and pol might be specifically associated together in a complex. However, it was also 

possible that the copurification of small amounts of TFIIIC and polymerase with 

TFIIIB was entirely fortuitous due to non-specific interactions with the column or 

with each other and TFIIIB. The former possibility was tested by assaying the 

fractions from the control SI-1 column to see if any TFIIIC or polymerase binds 

independently of TFIIIB. No TFIIIC or polymerase was found to bind to the SI-1 

column, which suggests that their retention on the MTBP6 column was not due to 

adventitious association with protein A-Sepharose.

The BRF antisera 128 and 330 which were shown in the previous chapter to 

specifically immunopurify TFIIIB from nuclear extract, were also tested to see if any 

TFIIIC or polymerase is copurified. Significantly, the two antisera, which 

immunopurify similar amounts of TFIIIB, behaved very differently in their ability to 

copurify TFIIIC and polymerase. The 330 antiserum, like MTBP6, consistently 

copurified TFIIIC and polymerase with TFIIIB (data not shown). In contrast, the 

128 antiserum consistently failed to copurify TFIIIC or polymerase with TFIIIB 

(data not shown). The inability of 128 to copurify TFIIIC or pol and the consistency 

of these results renders it extremely unlikely that non-specific interactions are 

responsible for the coimmunopurification of TFIIIB, TFIIIC and pol observed using 

MTBP6 or 330. The epitope on BRF that 128 recognises may be involved in the 

specific interactions of BRF with TFIIIC and pol III or may be spatially close to 

these regions, thus preventing the antibody from precipitating any TFIIIB in the 

extracts that is specifically associated with TFIIIC and polymerase.

Although the results indicate that the coimmunopurification of TFIIIB, 

TFIIIC and pol III is caused by specific interactions between the components, the 

data provide no information as to how this is achieved. The most obvious 

mechanism is that the three components form a trimeric complex. However, TFIIIB 

can interact directly both with TFIIIC and pol III, raising the alternative possibility 

that partial complexes such as TFIIIB-TFIIIC and TFIIIB-pol III are responsible for 

the coimmunopurification of the three components.
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Figure 4.5 - Copurification of low levels of TFIIIC and polymerase activity with 

TFIIIB immunopurified from HeLa nuclear extract using a monoclonal 

antiserum specific for TBP

The results are shown from two separate immunoafflnity columns performed in 

parallel in which different volumes of the MTBP6 antibody contained in tissue 

culture supernatant was used. Lanes 2-10 represent fractions from the column in 

which 500pl of MTBP6 was preincubated with 1ml of nuclear extract prior to 

recirculation through protein A-Sepharose. Lanes 12-18 represent fractions from the 

column in which 1ml of MTBP6 was used. For both columns, numbered fractions 

(eg, 1,2,3...) correspond to fractions sequentially eluted with CB buffer containing 

2M KC1 and 2M urea, obtained after washing bound material with 20cvs of low salt 

buffer (CB100). R: recirculated starting material. FT: flowthrough. The starting 

material used (SM) was the same HeLa nuclear extract for both columns.

A) TFIIIB activity of eluted fractions

To assay for TFIIIB activity, in vitro pol III transcription was reconstituted using 2 pi 

of PC-C as a source of TFIIIC and pol III, 250 ng of pVAi as the specific pol III 

template and 12pl of the individual fraction as the sole source of any TFIIIB. Note 

only 2pl of SM and R were assayed rather than 12pl.

B) TFIIIC activity of eluted fractions

Fractions were assayed for TFIIIC by reconstituted pol III transcription also, 

essentially as described in (A), except a PC-B fraction was used rather than PC-C, 

the fractions themselves providing the sole source of any TFIIIC.

C) Polymerase activity of eluted fractions

Equal volumes of fractions were assayed for polymerase content by their ability to 

transcribe poly(dA.dT). Levels of polymerisation were determined by the amounts 

of [a  P]-UTP incorporated into transcripts. At the end of the reaction, samples were 

spotted onto phosphocellulose discs, to which transcripts can bind. These discs were 

washed extensively to remove any unincorporated label. The levels of 

polymerisation were then quantitated by scintillation counting of the discs. 

Reactions were performed in the presence of lpg/ml a-amanitin.
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The TFIIICP antiserum, 4286, was also found to consistently 

coimmunopurify TFIIIB, TFIIIC and pol III, providing further support for the 

specific association of these three components (data not shown). Although TFIIIC 

can interact directly with TFIIIB and there is recent evidence for a comparable 

interaction of TFIIIC with pol III (129), this latter interaction may be very weak 

since TFIIIB is essential for the recruitment of pol III to TFIIIC-bound promoters. 

One of the principal functions of TFIIIB within the transcription complex is thought 

to be for it to act as a bridging factor between TFIIIC and pol III (568). Thus, the 

coimmunopurification of TFIIIB, TFIIIC and pol by 4286 is more consistent with the 

purification of a trimeric complex than partial complexes.

Regardless of which antiserum was used, much lower levels of the two 

copurifying components were depleted than the component to which the antiserum 

was raised. This is consistent with the results of Wang et al. (551) and may reflect a 

low abundance of pol III “holoenzymes” in the cell relative to the abundance of the 

“free” forms of the different components. It is also quite probable that the epitopes 

recognised by the antisera are more accessible on the “free” forms, which will bias 

the immunoprecipitation in their favour.

The consistent copurification of TFIIIB, TFIIIC and polymerase using three 

different antisera against three different components of the pol III machinery is 

supportive of the existence of pol III complexes akin to the pol III holoenzyme of 

Wang et al.(551). However, stringent controls to eliminate the possible involvement 

of DNA have to date not been carried out. Furthermore, none of the fractions 

assayed were able to support in vitro pol III transcription in the absence of any other 

factors; thus these complexes do not represent true pol III holoenzymes that can 

autonomously initiate transcription (data not shown). It may be an unidentified 

essential component is missing. Alternatively, the copurification may have resulted 

from partial complexes, which are unable to assemble into a functional preinitiation 

complex. Another possibility is quenching of the holoenzyme activity; for example, 

excess “free” TFIIIC in the same fraction as the TFIIICP-immunopurified complex 

is likely to compete directly with the holoenzyme for binding pol III promoters, thus 

preventing transcription. Regardless, these complexes enabled the effect of RB on 

the intermolecular interactions of TFIIIB with pol III and TFIIIC to be tested.
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4.2.5 RB disrupts the interaction between TFIIIB and TFIIIC

To assay for any effects of RB, immunopurifications were carried out as 

described above, except that after washing the immobilised pol III “holoenzyme” 

with low salt buffer, the immunopurified complex was exposed to a solution of 

recombinant RB. This solution was then collected to assay for the presence of any 

component displaced by RB. The column was washed again briefly before elution of 

any protein that remained bound. This eluate was assayed for the specific 

disappearance of any component that is normally eluted here.

Since RB potently represses pol III transcription, any TFIIIB or TFIIIC eluted 

in the solution containing recombinant RB may not be detected by in vitro 

transcription assays. Instead, the presence of TFIIIC in any of the fractions was 

assayed on the basis of its specific DNA-binding activity, rather than its 

transcriptional activity. TFIIIC binds specifically to the B-block region of type II 

promoters. Figure 4.6 A shows the results of an electrophoretic mobility shift assay 

(EMSA) using a radiolabelled B-block oligonucleotide to assay specifically for 

TFIIIC DNA-binding activity in the various fractions from two MTBP6 

immunoaffinity columns. For one of the MTBP6 columns, the 

immunoimmmobilised pol III “holoenzyme” was exposed to a solution of GST- 

RB(379-928) (Fig. 4.6 A, lanes 8-16). For the sister MTBP6 column on which 

purification was performed in parallel, the immunoimmobilised pol III 

“holoenzyme” was exposed to a solution of recombinant GST (Fig. 4.6 A, lanes 1-7).

As expected, for the column exposed to GST, strong TFIIIC DNA-binding 

activity was detected in the high salt eluates (Fig. 4.6 A, lanes 4-7), whereas TFIIIC 

DNA-binding activity was absent from the solution containing GST, which was 

slowly recirculated through the column for ~ 0.5 h (Fig. 4.6 A, lanes 1-3). A 

strikingly different result was obtained for the column exposed to GST-RB(379-928). 

Although, some TFIIIC DNA-binding activity was detected in the high salt eluates, 

this was much reduced compared with that of the corresponding eluates from the 

GST-exposed column (Fig 4.6 A, compare lanes 13-16 with lanes 4-7), suggesting 

that RB might have displaced some of the TFIIIC specifically bound to TFIIIB. This 

was confirmed by the appearance of significant amounts of TFIIIC DNA-binding 

activity in the fractions of the recirculated solution of recombinant RB (Fig. 4.6 A, 

lanes 8-12).
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Figure 4.6

RB displaces TFIIIC from immunopurified complexes containing TFIIIB, 

TFIIIC and polymerase

A) EMSA using the B-block oligonucleotide as probe to assay for TFIIIC DNA- 

binding activity in the various fractions from two MTBP6 immunoaffinity columns 

to which an immunopurified complex of TFIIIB, TFIIIC and polymerase was bound. 

One of the columns was exposed to a solution of GST prior to elution with buffer 

containing 2M salt and 2M urea, whereas the other column was exposed to RB. The 

TFIIIC DNA-binding activity of fractions from the GST-exposed column are shown 

in lanes 1-7 and that of fractions from the RB-exposed column are shown in lanes 8- 

16. Reactions 1-3 contained fractions of the recirculated solution of GST and 

reactions 4-7 contained fractions eluted with high salt and urea from the same 

column. Reactions 8-12 contained sequentially collected fractions of the recirculated 

solution of GST-RB(379-928). Reactions 13-16 contained the 2M salt/2M urea 

fractions from the RB-exposed column.

4pl of each fraction was tested. To prevent non-specific binding to the probe the 

fractions were preincubated for 15 min at 30°C with lpg of polydldC and lOOng of
^9non-specific oligonucleotide prior to addition of 0.5ng of [y Pj-ATP labelled B- 

block oligonucleotide. Formation of DNA-protein complexes was analysed by 

electrophoresis on a native 4% polyacrylamide gel.

B) EMSA of fractions from two 330 immunoaffinity columns to which an 

immunopurified complex of TFIIIB, TFIIIC and polymerase was bound. Reactions 2 

and 3 contained a high salt fraction from a GST-exposed column. Reactions 4-9 

contained fractions from a RB-exposed column. Reactions 4-7 contained fractions 

from the recirculated solution of RB, whereas reactions 8 & 9 contained a high salt 

fraction. Lane 1 contained probe only. Reactions of odd-numbered lanes contained 

lOOng of unlabelled B-block oligonucleotide as a specific competitor. Even- 

numbered lanes contained non-specific competitor.

ns: non-specific competitor; s: specific competitor
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The various RB or GST eluates and high salt eluates were also assayed for 

the presence of TFIIIB and polymerase. In vitro transcription assays revealed that 

TFIIIB was retained on the column after exposure to RB and eluted in the high salt 

eluates, the same was true for polymerase (data not shown). Thus, the appearance of 

TFIIIC in the RB eluate does not result from the displacement of the whole 

“holoenzyme” or a TFIIIB-TFIIIC subcomplex in which the integrity of the 

interaction between TFIIIB and TFIIIC may be maintained. It is only TFIIIC that is 

displaced strongly, suggesting that RB disrupts the intermolecular interaction 

between TFIIIB and TFIIIC.

The lack of TFIIIC DNA-binding activity in the GST fractions of the control 

column clearly demonstrates that the displacement of TFIIIC is a specific effect of 

RB rather than a non-specific effect due to the addition of excess amounts of 

recombinant protein. However, the reduced mobility of the TFIIIC-B-block DNA 

complex in the RB eluates compared to the mobility of the complex in the high salt 

eluates is curious. This is not unusual for TFIIIC; TFIIIC-B-block DNA complexes 

of varying mobilities are often found when TFIIIC-containing fractions are assayed. 

Generally, more dilute fractions tend to result in complexes of higher mobility. The 

molecular composition of the different shifts commonly produced is unknown. 

TFIIIC 1, which is not required for the B-block binding activity of TFIIIC, may not 

be part of some of the complexes. The interaction of other proteins with TFIIIC is 

also likely to affect mobility. It is possible that the reduced mobility of the TFIIIC- 

B-block DNA complex in the RB eluates is caused by the binding of recombinant 

RB to TFIIIC. Indeed, an interaction between TFIIIC2 and overexpressed RB has 

been previously reported (93). However, the anti-RB antibodies tested were unable 

to supershift the complex and the addition of recombinant RB to the high salt eluates 

had no effect on mobility of the shift obtained with these fractions (data not shown).

The effect of GST and GST-RB(379-928) on a pol III “holoenzyme” purified 

using the BRF antiserum 330 was also tested. As for the “holoenzyme” purified 

using the anti-TBP antibody MTBP6, RB specifically displaced TFIIIC from the 

complex. As Figure 4.6 B shows, the RB eluates from this column also produced a 

different TFIIIC shift to the high salt eluates. It was essential to be sure that the 

different shifts obtained were all caused by the specific binding of TFIIIC to the B- 

block oligonucleotide, as opposed to the non-specific binding of some other protein 

in the fractions. To test this the fractions were incubated with excess unlabelled
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competitor DNA prior to addition of labelled B-block oligonucleotide. Two types of 

competitor DNA were used; non-specific competitor which differs in sequence to the 

B-block oligonucleotide and specific competitor which is identical to the B-block 

oligonucleotide probe but unlabelled. Thus, the intensity of a shift caused by the 

non-specific binding of protein will be significantly reduced by addition of either 

competitor DNA, as both will be able to compete for binding of the protein. In 

contrast, the intensity of a shift caused by specific binding to the labelled probe will 

be unaffected by non-specific competitor DNA, but greatly reduced by specific 

competitor DNA. As shown in Figure 4.6 B, the preincubation of the fractions with 

specific competitor DNA dramatically reduced the intensity of the shifts compared to 

the observed effects when the same fractions were preincubated with non-specific 

competitor DNA. Despite the difference in the mobility of the shift produced by the 

RB eluates and the high salt eluates, it is clear that both shifts are caused by 

sequence-specific binding to the B-block oligonucleotide.

His6-RB was also found to displace TFIIIC from the immunoimmobilised pol 

III “holoenzymes”, thus verifying the results obtained with GST-RB(379-928) (data 

not shown). These results strongly indicate that RB specifically disrupts the 

interaction between TFIIIB and TFIIIC. Subsequently, extensive 

immunoprecipitations have confirmed these preliminary findings that RB may 

disrupt the specific interaction between TFIIIB and TFIIIC (503).

Together, these experiments and the immunoprecipitations by Sutcliffe et al.

(503) clearly demonstrate that RB disrupts the interaction between TFIIIB and 

TFIIIC2. However, it is unclear if TFIIIC 1 is also displaced as the B-block 

oligonucleotide binding activity of TFIIIC is a property of TFIIIC2 and TFIIIC 1 is 

not required for this function (481). Pol III templates with type III promoters such as 

7SK and vertebrate U6 snRNA genes are TFIIIC2-independent but they do require 

TFIIIIC1 for accurate transcription (397, 604). RB has been found to repress the 

transcription of every pol III template tested including vertebrate U6 genes (579). 

Therefore, if RB does not displace TFIIIC 1 there must be additional mechanisms by 

which RB represses transcription. It may be RB represses transcription by different 

mechanisms at different pol III promoters and by more than one mechanism at some 

promoters. 7SK and U6 transcription requires a specialised complex called PTF or 

SNAPc, which is thought to interact with TFIIIB assisting its recruitment to the 

promoter (568, 604). Recent evidence suggests that RB disrupts this interaction
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(215). Although there may be multiple other mechanisms by which RB specifically 

inhibits TFIIIB, disruption of the interaction between TFIIIB and TFIIIC2 will 

inhibit the transcription of most class III genes.

4.2.6 pl07 and pl30 stably interact with TFIIIB

Although the three pocket proteins share extensive sequence homology and 

there is some redundancy between the proteins, gene knockout experiments revealed 

that some functions of RB cannot be performed by pl07 or p i30 (95, 245, 322). 

Some of these unique functions of RB may be essential for its function as a potent 

tumour suppressor. Overexpression of p i07 or p i30 can induce a G1 arrest in some 

cell lines; however, the genes encoding p i07 and p i30 do not seem to be targeted for 

inactivation in cancers. It is thus unclear whether p i07 and p i30 are bona fide 

tumour suppressors. It was therefore interesting to determine whether p i07 and p i30 

can also repress pol III transcription or whether this is a unique property of RB 

among the pocket proteins. Primary embryonic fibroblasts from RB'7' mice, which 

are wild type for p i07 and p i30, display substantially elevated levels of pol III 

transcription suggesting that the repression of pol III transcription by RB cannot be 

compensated for by pl07 or p i30 (579). This does not exclude the possibility that 

p i07 and p i 30 also repress pol III transcription, but suggests that p i07 and p i30 

may target a different component of the pol III transcriptional apparatus to RB or 

they may function at different times of the cell cycle.

Recently, it has been shown that p i07 and p i30 can also repress pol III 

transcription, both in vitro and in vivo (504). Thus, this is a function shared by all 

three pocket proteins. Pull-down assays and immunoprecipitation assays using 

recombinant components have demonstrated that the BRF subunit of TFIIIB can 

interact with p i07 and p i30 (504). This suggested that p i07 and p i30, like RB, 

might specifically target TFIIIB. However, it was important to determine whether 

p i07 and p i30 interact with BRF in a physiological context. Immunoprecipitations 

were therefore carried out using endogenous extracts to which no exogenous factors 

had been added (504). Using antisera raised against the different pocket proteins, 

endogenous RB, p i07 and p i30 have been immunoprecipitated from HeLa nuclear 

extract. The precipitated material was then washed extensively, resolved on SDS-
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PAGE and probed for the presence of BRF by Western blotting (504). Figure 4.7 

shows the results of such an immunoprecipitation. As expected, the antiserum 

against RB, which was used as a positive control, coprecipitated BRF (lane 1). The 

p i07 antiserum also coprecipitated BRF, at similar levels to the RB antiserum 

(compare lanes 1 & 2). In contrast, an antiserum against the TAFi48 subunit of SL1 

was unable to immunoprecipitate BRF (lane 3), demonstrating the specificity of the 

coimmunoprecipitation of BRF observed with the RB and p i07 antisera. The 

presence of BRF in the material that coprecipitated with RB and pi 07 was confirmed 

by using a second antiserum raised against a different region of BRF (data not 

shown). BRF is also coprecipitated by an antiserum against pl30 (504). These 

results have been confirmed by the converse immunoprecipitation, using a BRF 

antiserum or the corresponding preimmune serum, in which the coprecipitation of 

p i07 and 130 was specifically probed for (504).

Since endogenous p i07 and p i30 were found to specifically interact with 

endogenous BRF, it was postulated that a population of endogenous pl07 and p i30 

might copurify with TFIIIB depending on the stability of the interaction. The 

immunopurified TFIIIB and TFIIIC, and DNA-affinity purified TFIIIC generated as 

described in the previous chapter, were probed by Western blotting for p i07 and 

p i30 to see if these two proteins have specifically copurified with TFIIIB. 

Unfortunately, however, no p i07 or p i30 was detected in any of these purified 

fractions (data not shown). It may be the fractions are too dilute to detect the 

presence of p i07 or p i30 with the available antisera (data not shown). Some other 

partially purifed fractions have been tested, however, p i07 and p i30 were found to 

copurify with TFIIIB, but not with pol III or TFIIIC2 (504).

As a further test for a stable interaction between TFIIIB and p i07 or p i30, it 

was examined whether endogenous p i07 and p i30 would cofractionate with TFIIIB 

during gradient chromatography of a PC-B fraction on heparin-Sepharose. Bound 

protein was eluted with a linear salt gradient and the individual fractions were then 

probed for the presence of TFIIIB and pl07 or pl30 (504). As Figure 4.8 shows, 

TFIIIB (upper panel) and p i30 (lower panel) cofractionated very closely on the 

heparin-Sepharose salt gradient. The same was found to be true of p i07 (data not 

shown). Both pocket proteins and TFIIIB were found to peak in fractions 20 to 22 

and then tail off sharply (Figure 4.8 & data not shown). This close cofractionation of 

p i07 and p i30 with TFIIIB was confirmed using alternative antisera against both
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pocket proteins (data not shown). The fractionation of cyclin A on the gradient was 

also assayed and was found to fractionate differently (data not shown). Thus, like 

RB, it appears that p i07 and p i30 also specifically target TFIIIB and that the 

association of p!07 and p i30 with TFIIIB is relatively stable.
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Figure 4.7

Endogenous BRF coimmunoprecipitates with endogenous pocket proteins

HeLa nuclear extract (150jLxg) was immunoprecipitated using anti-RB antibody C-15 

(lane 1), anti-pl07 antibody C-18 (lane 2), and anti-TAFi48 antibody M-19 (lane 3). 

Precipitated material was resolved on a SDS-7.8% polyacrylamide gel and then 

analysed by Western blotting with anti-BRF antiserum 128.
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Figure 4.8

pl30 cofractionates with TFIIIB during gradient chromatography of PC-B on 

heparin-Sepharose

The upper panel shows the TFIIIB activity of individual fractions, and the lower 

panel shows the p i30 content of the same fractions. Fraction numbers are indicated. 

SM, starting material. FT, flowthrough. TFIIIB activity was assayed by 

reconstituted pol III transcription reactions using 4 pi of the individual fractions, 2pi 

of PC-C and 250 ng of pVAi. The p i30 content of fractions was determined by 

resolution of equal volumes (15pl) of the individual fractions by SDS- 7.8% PAGE 

followed by immunoblotting with the anti-pl30 antiserum Rb2.
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Discussion

4.3.1 Mechanisms of repression of TFIIIB by RB

Paradoxically, E2F has been described both as an oncoprotein and as a 

tumour suppressor (556). Ectopic expression of E2F-1 can drive quiescent cells all 

the way through G1 into S phase. Furthermore, when E2F-1 is overexpressed with 

other known oncogenes it leads to cellular transformation, thereby conforming to a 

widely accepted operational definition of an oncogene. It therefore came as 

something of a surprise when E2F-l‘/_ mice started to exhibit hyperplasia of certain 

tissues and even neoplasia as they aged (556). There has been considerable 

speculation as to how E2F can act both as an oncoprotein and as a tumour 

suppressor. One of a variety of speculations is that it is related to the ability of RB to 

convert E2F from a transcriptional activator to a transcriptional repressor (556). E2F 

activates the expression of a variety of genes required for cellular proliferation. 

However, when associated with RB, E2F may actively repress these very same 

genes. Loss of E2F in a RB-positive background may therefore actually cause 

increased expression of these proliferation-promoting genes.

The active repression of some E2F-regulated genes by RB is dependent on 

histone deacetylase activity (346). HDAC1 has been found to associate with RB and 

it is thought to be recruited by RB to E2F-regulated promoters where it may then 

deacetylate nucleosomal histones resulting in a more compact chromatin structure 

that is repressive to transcription (52, 53, 346, 349). Since RB stably interacts with 

TFIIIB, which forms part of the pol III preinitiation complex, it seemed plausible that 

RB may also recruit deacetylase activity to class III genes, and that this may be 

required for the ability of RB to repress pol III transcription.

Support for a role of histone deacetylation in the regulation of pol III 

transcription was provided by recent reports that human TFIIIC2 has intrinsic HAT 

activity (230, 298). Furthermore, human TFIIIC was shown to relieve chromatin- 

mediated repression of a tRNA gene in vitro (298). Additionally, histone acetylation 

has previously been shown to facilitate the transcription of a 5S gene assembled into 

chromatin in vitro (321, 529, 534). Nonetheless, the presence of the potent and 

irreversible histone deacetylase inhibitor TSA had no effect on the repression of pol 

III transcription by RB either in vitro, as described here, or in vivo (503). It is
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unclear though whether or not the RB molecules that interact with TFIIIB are also 

associated with histone deacetylase. TSA has been found to stimulate transcription 

of chromosomal B2 genes in vivo in an RB-independent manner, suggesting that 

histone acetylation and deacetylation does have an important physiological role in 

regulating pol III transcription (503). However, since RB disrupts the interaction 

between TFIIIB and TFIIIC2, for the majority of class III genes it is unlikely that any 

TFIIIB recruited to the promoter will remain associated. Thus, any deacetylase 

activity recruited to TFIIIB indirectly through association with RB is also unlikely to 

stay associated with a class III promoter and may therefore not affect the chromatin 

structure of these genes.

All three of the pocket proteins can repress pol III transcription and they each 

specifically target the same factor, TFIIIB, for repression (314, 504, 579). This 

implies redundancy between the proteins; however, p i07 and p i30 are unable to 

compensate for the loss of RB on pol III transcription (579). pl07 and p i30 may 

utilise a different, and possibly less potent, mechanism to repress TFIIIB. Indeed, 

p i07 and p i30 have also been found associated with histone deacetylase activity 

(144). Unlike RB, it may be that pl07 and pl30 interact with TFIIIB but do not 

displace it from the promoter, which may enable the stable recruitment of 

deacetylase activity to class III promoters. The tumour suppressor p53, which also 

interacts with TFIIIB and represses pol III transcription, has also been found to 

associate with deacetylase activity, which is essential for its ability to repress certain 

pol II-transcribed genes (388).

In the pol II system, RB blocks E2F recruiting TFIID to promoters (448). 

This is analogous to the disruption of the interaction between TFIIIB and TFIIIC2 by 

RB, which is likely to prevent the recruitment of TFIIIB to class III promoters. 

Although the “holoenzyme” studies and the subsequent immunoprecipitations that 

were performed provide compelling evidence that RB disrupts the interaction 

between TFIIIB and TFIIIC2, a few class III genes that have previously been shown 

to be repressed by RB are TFIIIC2-independent. Thus, the disruption of this 

interaction cannot be the sole mechanism by which RB is able to repress 

transcription. Indeed, some other immunoprecipitations performed suggested that 

RB also disrupts the interaction between TFIIIB and pol III (503). This provides a 

potential mechanism by which RB represses TFIIIC2-independent genes. However, 

there was little discernible effect of RB on the interaction of TFIIIB and pol III in the
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“holoenzyme” studies. The reason for this discrepancy is unknown. It may be that 

RB can more easily disrupt the interaction between TFIIIB and TFIIIC2 than that 

between TFIIIB and pol III. Perhaps insufficient RB was recirculated through the 

column and the interaction with TFIIIC2 was preferentially disrupted. In contrast to 

the immunoprecipitation, a small amount of TFIIIC2 remained associated with the 

immunoaffinity column after exposure to RB, suggesting that disruption was 

generally less effective in this system.

There may be other mechanisms by which RB can repress pol III 

transcription in addition to these. Recent work by Hirsch et al. suggests that RB 

might disrupt the interaction between TFIIIB and SNAPc (215). The intramolecular 

interaction between BRF and TBP within TFIIIB seems to be unaffected by RB (314, 

503). Unfortunately, a lack of knowledge as to the composition of TFIIIB largely 

prevents any effect of RB on any other intramolecular interactions within TFIIIB 

from being studied. Human TFIIIB is thought to contain a human homologue of 

yeast B", which has recently been cloned; however, as yet we have no molecular 

reagents against this component, so any effects RB may have on it cannot be 

properly tested (463).

An interesting question is the relative contribution of the different 

mechanisms by which RB can repress pol III transcription, in a physiological 

context. This may differ for different genes. TFIIIC2-dependent genes are predicted 

to be completely repressed either by the disruption of the interaction between TFIIIB 

and TFIIIC2 or that between TFIIIB and pol III. In vivo, RB may utilise both of 

these mechanisms or one may predominate. If both mechanisms are used the 

question arises as to whether this is necessary or whether there is redundancy, such 

that if only one of the mechanisms is lost this would not have any effect on the 

ability of RB to repress the gene. The utilisation of more than one mechanism by RB 

in vivo may act as a kind of a fail-safe; it may also allow some local control to be 

exerted on the global repression of pol III transcription by RB if different class III 

genes utilise distinct mechanisms to different extents. However, it is presently 

unclear to what extent this is the case or whether the different mechanisms can be 

individually regulated. Clearly, a lot of unanswered questions remain regarding the 

mechanisms by which RB represses pol III transcription.
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4.3.2 Implications of a pol III holoenzyme

The immunoaffinity purification of a complex containing TFIIIB, TFIIIC and 

pol III, as described in this chapter, enabled the effect of RB on the intermolecular 

interactions of TFIIIB to be tested. It also provides support for a growing body of 

evidence suggesting that a pol III holoenzyme may exist in vivo, or at the very least, 

associations between components of the pol III preinitiation complex off the DNA, 

which may represent PIC assembly intermediates. This has important implications 

for the regulation of pol III transcription. Much of the regulation of pol III 

transcription is thought to occur at the initiation stage. Once a preinitiation complex 

has been formed it is extremely stable and can support multiple rounds of 

transcription (73). In yeast there is a facilitated recycling pathway in which 

polymerase is recycled without being released from the template, allowing very rapid 

multiple round transcription (123). Thus, clearly the regulation of the formation of 

the preinitiation complex is extremely important.

The ordered and stepwise assembly pathway defined in vitro provides 

multiple opportunities at which preinitiation complex formation at a specific class III 

gene may be regulated, namely each stage that a component is recruited. In contrast, 

if the components of the preinitiation complex are preassembled into a functional 

holoenzyme prior to recruitment, the regulation of the assembly of a preinitiation 

complex at a specific gene is limited to a single step. However, controlling the 

formation of the pol III holoenzyme off the DNA will allow the global regulation of 

pol III transcription. Although the concomitant recruitment of all the essential 

components that constitute the preinitiation complex will result in control of 

assembly at a specific gene being restricted to a single step, this does not necessarily 

constitute less control being exerted.

Regulation of preinitiation complex formation at a specific class III gene 

achieved through the recruitment of a holoenzyme is likely to occur less through 

modulation of protein-protein interactions, as for a stepwise assembly pathway, and 

more through modulation of protein-DNA interactions. The holoenzyme is likely to 

be hampered in mobility and its ability to find a gene to which it can bind. Control 

of local chromatin structure is likely to play a very significant role in the regulation 

of recruitment of a holoenzyme. The recruitment of a holoenzyme will probably
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require multiple interactions between components in the complex and a large 

segment of DNA. This may be necessary for the high degree of sequence specificity 

to enable the appropriate target genes to be found in the vast excess of non-specific 

sites in the eukaryotic genome. The multiple protein-DNA interactions are all 

potential targets for regulating the recruitment of the holoenzyme.

It may be that preinitiation complex formation can occur both by a stepwise 

pathway and through recruitment of a preassembled “holoenzyme” in vivo. Since 

the transcription factor requirements are not the same at all class III genes, it may be 

that there are several types of pol III holoenzymes or some genes may utilise a 

holoenzyme, whereas others do not. When pol III transcription is reconstituted in 

vitro using fractionated factors, a time lag occurs prior to the attainment of a linear 

transcription rate (174, 568). This is because of the time it takes for assembly of the 

preinitiation complex. However, when the pol III “holoenzymes” isolated by density 

gradient centrifugation or an unfractionated extract is tested, no lag is obtained; this 

is consistent with the presence of preassembled complexes fully active for 

transcription (174, 248, 585). This is strongly supportive of the existence of a 

physiologically relevant pol III holoenzyme in vivo that can start transcription as 

soon as it has been recruited to an appropriate gene. Nonetheless, any pol III 

holoenzymes that do exist in vivo seem to be of quite low abundance; Wang et al. 

estimated that approximately 10% of the total pol III in their extract was in a 

holoenzyme form (551). Consistent with this, my immunopurifications resulted in a 

very poor yield of the “holoenzyme” relative to the yield of the component to which 

the antibody was raised, although this may also reflect disruption of some 

“holoenzyme” by the antibody and poor epitope accessibility.

4.3.3 pl07 and pl30 also target TFIIIB

Since the three pocket proteins share their most extensive homology in the 

pocket domain and it is this same domain which is essential for the ability of RB to 

repress pol III transcription, the finding that p i07 and p i30 also repress pol III 

transcription was not unexpected (504). Furthermore, they seem to target the same 

transcription factor, TFIIIB, with which they can stably associate at physiological 

concentrations, as described in this chapter (504). Since TFIIIB is required for the

181



expression of all pol III templates, by specifically targeting this factor, like RB, p i07 

and p i30 may be able to repress the transcription of every class III gene.

The discovery that endogenous RB, p i07 and p i30 all bind to endogenous 

TFIIIB raises questions as to whether there is competition between the pocket 

proteins for binding to TFIIIB. The proportion of TFIIIB that is bound by each of 

the pocket proteins in vivo is likely to affect the relative contributions of RB, p i07 

and pi 30 to the repression of pol III transcription, as well as their relative affinities.

The contributions of the pocket proteins to transcriptional repression have 

been analysed by transfecting cycling NIH 3T3 cells either with wild type HPV16 E7 

oncoprotein, which potently binds to all three pocket proteins, or with an E7 GLY26 

mutant, which can only bind p i07 and p i30 (504). Binding of E7 prevents the 

pocket proteins from interacting with some of their cellular targets. Transfection 

with the wild type E7 protein resulted in a substantial increase in pol III transcription, 

suggesting that the interactions between the pocket proteins and TFIIIB were 

disrupted. The GLY26 mutant also stimulated transcription, but the activation 

obtained was only 27% of that observed with wild type E7 protein (504). Thus, 

although p i07 and p i30 contributed to repression, RB seemed to have the much 

more dominant role in these cycling NIH 3T3 cells.

The binding of the three pocket proteins to the same transcription factor 

suggests that they repress pol III transcription in a very similar, if not an identical 

manner, which in turn implies that there may be some redundancy between the 

proteins. The phenotypes of knockout mice suggest otherwise; synthesis of tRNA 

and 5S rRNA is five fold more active in primary fibroblasts from Rb'A mice, with 

functional pl07 and pl30, than the corresponding cells from Rb+/+ mice (579). The 

inability of p i07 and p i30 to compensate for loss of RB suggests that the pocket 

proteins are functionally distinct. The mechanism(s) by which p i07 and p i30 

repress pol III transcription have yet to be investigated. Indeed, although p i07 and 

p i30 have been shown to stably bind TFIIIB, it has not yet been demonstrated that 

TFIIIB is actually inhibited by these two pocket proteins. It may be that p i07 and 

p i30 repress transcription by a different mechanism to RB and perhaps less potently. 

Although loss of RB may enable more p i07 and p i30 to bind more of their 

molecular target, TFIIIB, because of a lack of competition from RB, this clearly is 

not sufficient to enable p i07 and p i30 to fully compensate. However, this may
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simply be a reflection of the relative amounts of the pocket proteins, since there is 

considerably more RB than p i07 or p i30 in a normal cell.

Although the protein levels of RB stay relatively constant through the cell 

cycle, levels of pl07 and pl30 change dramatically (173). pl30 is highly abundant 

in quiescent cells, but is rapidly downregulated when cells re-enter the cell cycle. In 

contrast, p i07 is present at very low levels in GO, and is present in highest amounts 

in S, G2 and M phase. In addition to varying protein levels, the activity of p i07 and 

pl30, like RB, is regulated by phosphorylation (173). After the Gl/S transition, all 

three pocket proteins are hyperphosphorylated and remain inactive until the next G1 

phase. The cell cycle-dependent changes in the relative abundance of the different 

pocket proteins means that the relative contributions of the individual pocket proteins 

to repression are likely to differ temporally. Support for this is provided by the 

regulation of E2F by the pocket proteins (131, 173). pl07 and pl30 can also bind 

E2F. However, the temporal association of each pocket protein with E2F during the 

cell cycle is quite different. The pl30-E2F complex predominates in quiescent 

fibroblasts, whereas a RB-E2F complex occurs mainly in G1 phase. The pl07-E2F 

complex occurs predominantly in S phase. A similar situation probably exists for the 

regulation of pol III transcription by the pocket proteins. Each pocket protein may 

have its own characteristic temporal profile of interaction with TFIIIB. In support of 

this, targeted disruption of the genes encoding p i07 and p i30 made little difference 

to pol III transcript levels in cycling mouse embryonic fibroblasts (504). However, 

when these cells were made quiescent by serum withdrawal a significant increase in 

pol III transcript levels was observed in the p l0 T A p l30 'A cells compared to pol III 

transcript levels of the corresponding cells expressing wild-type p i07 and p i30

(504). Thus, during the GO phase p i07 or p i30 exert a repressive effect on pol III 

transcription that cannot be compensated for by RB. Recently, Scott et al. reported 

that in GO phase cells, -70% of TFIIIB is bound by RB and -30% is bound by pl30 

(471). Although the three pocket proteins all repress pol III transcription and they 

target the same factor, TFIIIB, their relative contributions to the repression of TFIIIB 

appear to differ at different times of the cell cycle. Thus, whereas RB can exert an 

inhibitory influence on TFIIIB both in GO and G l, the repressive effects of p i30 

upon pol III activity are largely limited to GO. The levels of p i30 are substantially 

reduced following exit from GO phase and thus the protein likely makes little or no

183



contribution to the repression of pol III transcription by the pocket proteins when 

cells are cycling.

Recently, fibroblasts from Rb~A p i0 T Ap  130~A triple knockout mice have been 

analysed for pol III activity. The activation of pol III transcription in these triple 

knockout cells was found to be greater than that in fibroblasts from mice lacking 

either one, or any two, of the pocket proteins (470). Thus, regardless of the 

mechanism, it is clear that all three pocket proteins have a physiological role in the 

repression of pol III transcription.
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Chapter 5.

Deregulation of pol III transcription in 
ovarian cancer

5.1 Introduction

Transfer RNA (tRNA) and 5S ribosomal RNA (5S rRNA) have essential 

enzymatic and/or structural roles in translation. These pol III transcripts perform a 

housekeeping function and it was thus expected that any genes encoding such 

products be constitutively active. However, it is now clear that the transcription of 

tRNAs and 5S rRNA, and most other pol III templates, is strongly regulated (568, 

569). This enables the production of such transcripts to be adjusted to meet the 

metabolic demands of the cell.

The retinoblastoma protein and the unrelated tumour suppressor p53 both 

repress pol III transcription (70, 579). Missense mutations in p53 occur in 

approximately half of all human tumours (222, 223). The effects of such mutations 

on pol III transcription have yet to be reported, but it seems plausible that many will 

impair the ability of p53 to repress pol III transcription. It has been suggested that 

RB function may be compromised in all human malignancies (557). Although 

clearly a limited survey, several subtle mutations that have arisen in RB in small cell 

lung carcinomas have been shown to prevent it from repressing pol III transcription 

(59, 579). This demonstrates that mutations that arise in RB in tumours can 

compromise its ability to regulate pol III transcription.

The constraint imposed upon pol III transcription by these two key tumour 

suppressors and their frequent loss of function in human cancers suggests that 

elevated pol III transcription may be a common feature of human malignancies. 

Indeed, it has been suggested that elevated pol III transcription may constitute an 

important step in tumour development (313, 569). tRNAs and 5S rRNA are 

important determinants of the biosynthetic capacity of the cell (394, 567). Following 

mitogenic stimulation of resting cells, rRNA and tRNA synthesis increases, 

ribosomes assemble into polysomes, translation factors are activated and a net
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increase in protein synthesis is observed (445). The elevated synthesis of tRNAs and 

rRNA in response to mitogens suggests that these RNA species are not normally in 

excess and that their synthesis is tightly controlled according to the biosynthetic 

needs of the cell. The unrestrained proliferation of tumour cells requires sustained 

growth, which in turn is dependent upon active protein synthesis (566). It may be 

that the levels of tRNA and 5S rRNA in a normal proliferating cell are insufficient to 

support the increased or sustained protein synthesis required by tumour cells in order 

to maintain cell size during rapid proliferation. It has yet to be proven that tRNA and 

5S rRNA levels are limiting, but this provides a plausible explanation for the 

targeting of pol III transcription for repression by RB and p53. It would also explain 

the targeting of pol III transcription for activation by a number of viral oncoproteins 

(569).

The growth-suppressive function of RB may be mediated, at least in part, by 

its repressive effect on the synthesis of tRNA and 5S rRNA. Cells are unable to 

enter S phase and replicate their DNA until they have accumulated an adequate level 

of protein (273, 517). Therefore, by restraining growth the cell is prevented from 

proliferating uncontrollably. Loss of growth control is thus essential for tumour 

development. The contention that the control of protein synthesis is an important 

aspect of growth regulation is supported by a multitude of evidence demonstrating 

the deregulation of protein synthesis in transformed cells (445, 494). Indeed, 

abnormal activation of translation factors is sufficient to cause neoplastic 

transformation. Overexpression of the translation initiation factor eIF4E in primary 

fibroblasts induces morphological transformation; moreover, these cells can induce 

tumours in nude mice (319, 320). Mutational activation of another translation factor, 

eIF2a can also cause malignant transformation (128). Activation of the oncoprotein 

c-myc causes an increase in the abundance of both of these factors; this is also 

accompanied by an increase in the rate of protein synthesis and cellular growth (446, 

447). The protein synthesis apparatus is also deregulated in real tumours. The 

expression profile of some 45,000 genes in gastrointestinal tumours has been studied 

using the recently developed methodology of serial analysis of gene expression 

(SAGE) (614). Only 108 pol II transcripts were found to be expressed at increased 

levels in the tumours relative to normal colonic epithelium. 48 of these transcripts 

encode ribosomal proteins and 5 encode translation factors (614). Together, the
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available evidence strongly suggests that the deregulation of protein synthesis is 

intimately linked to carcinogenesis. The deregulation of pol III transcription may 

represent another manifestation of a selection for changes in the protein synthetic 

machinery during tumour development.

If pol III transcription truly does have an important role in tumour 

development, it is predicted that it will be abnormally elevated in a range of 

transformed and tumour cells. Indeed, pol III products are found to be overexpressed 

in many types of transformed cell line (16, 168, 292, 350, 469, 487, 548, 549, 578). 

Fibroblasts transformed with a temperature-sensitive mutant of the SV40 large T 

antigen downregulate pol III transcription at the non-permissive temperature whilst 

reverting to a normal phenotype and morphology, suggesting a tight link between 

transformation and pol III activation (469). Moreover, when different SV40- 

transformed cell lines are compared, those which most efficiently induce tumours in 

nude mice display the highest levels of pol III products, whereas in the less 

tumorigenic cell lines there are lower levels of pol III transcripts (469, 578). Pol III 

transcription is activated by a broad range of transforming agents, including DNA 

tumour viruses, RNA tumour viruses and chemical carcinogens (569). Hepatitis B 

virus (HBV), a DNA virus, and a RNA virus called human T-cell leukaemia virus 

type 1 (HTLV-1) are both important causative agents in human cancers and both 

stimulate an increase in pol III transcript levels following transformation (569). The 

activation of pol III transcription in transformed cells is very general but it is not 

universal. There are a few reported cases in which pol III transcriptional activity is 

not abnormally elevated in transformed cells, such as in the Rb+/+p53+/+ 

osteosarcoma cell line U20S (579).

A recent SAGE study has shown that only 21% of genes overexpressed in 

colorectal cancer cell lines are also overexpressed in primary colorectal carcinomas 

(614). Clearly, substantial differences in behaviour can exist between transformed 

cells in culture and tumours in vivo. Transformed cells in culture provide a useful 

model for real tumours; however, it is of paramount importance to determine how 

closely the behaviour of the transformed cells studied mimics that of the tumours in 

vivo. Recently, it has been shown that pol III transcripts are elevated in rodent and 

human tumours in vivo, verifying the physiological significance to real tumours of 

the abnormally elevated levels of pol III transcription consistently observed in many 

transformed cell lines (87, 88). In one study, samples from eighty human tumours,
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representing nineteen different types of cancer, were tested (87). BC200, a pol III 

product of unknown function, was found to be overexpressed in many, but not all, of 

the primary human tumours. The levels of 7SL RNA, an essential pol III product 

that forms part of the signal recognition particle, were elevated in every tumour 

examined relative to the corresponding normal tissue (87).

Recently, we have been investigating pol III transcription in ovarian cancer, 

the leading cause of death from gynaecological malignancies in the United States 

(159). Ovarian tumour samples and corresponding normal healthy tissue from the 

same patients were examined by RT-PCR for the levels of 5S rRNA, 7SL RNA and 

two different types of tRNA (586). For each of the four patients whose tissue 

samples were tested, a substantial increase in the levels of each of these pol III 

transcripts was observed in the tumour samples (586). In contrast, no change was 

detected in the levels of the mRNA encoding acidic ribosomal phosphoprotein 

(ARPP PO) or glyceraldehyde phosphate dehydrogenase (GAPDH), demonstrating 

the specificity of the overexpression of pol III products. The genes encoding tRNA, 

5S rRNA and 7SL RNA have distinct promoter structures and transcription factor 

requirements. Despite these differences, each of these transcripts was found to be 

abnormally elevated in these tumour samples, suggesting that there may be a general 

elevation of pol III transcript levels in ovarian cancer. The use of intron-specific 

primers for determining the levels of tRNA ensured that they provided an accurate 

indication of the rate of ongoing transcription, as the introns are rapidly processed 

from primary transcripts and degraded (586). Thus, the substantial elevation of pol 

III transcript levels seems to be caused by an activation of pol III transcription rather 

than an increase in the stability of transcripts (586). Consistent with our findings of 

increased levels of pol III transcripts in ovarian cancer, Chen et al. reported an 

increase in BC200 RNA levels in the one ovarian carcinoma sample that they tested 

(87).

Although abnormally elevated levels of pol III transcripts have been observed 

in a broad range of transformed cell lines, in most cases the mechanistic basis of this 

effect has not been elucidated. Similarly, in the studies of tumours in vivo by Chen 

et al. the mechanism(s) responsible for the substantial increase in the levels of pol III 

transcripts was not investigated. Loss of function of RB and p53 and the release of 

TFIIIB from repression by these two pocket proteins may account for pol III 

activation in many tumours. However, TFIIIB activity has been shown to be in
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relative excess in several types of mammalian cell, so the deregulation of TFIIIB in 

these cells may have little or no effect on pol III transcriptional output (74, 151,218, 

571, 577, 578). In such cells, pol III or TFIIIC may be targeted for activation. In 

support of this, higher levels of pol III have been found in mouse myeloma cells 

relative to healthy tissue; in contrast, the levels of pol II were unchanged (467). The 

DNA-tumour viruses SV40 and adenovirus seem to utilise multiple mechanisms to 

ensure high levels of pol III transcription (569). The adenoviral El a oncoprotein and 

the SV40 large T antigen both bind to RB relieving repression of TFIIIB. 

Additionally, both viruses increase the TFIIIC activity of infected cells. SV40- 

transformed fibroblasts overexpress TFIIIC2, which is the rate-limiting factor for pol 

III transcription in these cells (315, 578). The adenoviral infection of HeLa cells has 

been reported to result in an increase in the concentration of TFIIIC2 (606). 

Independently, it has been reported to result in a specific increase in the proportion of 

TFIIIC2 that exists in the transcriptionally active TFIIIC2a form (488).

The targeting of TFIIIC for activation is seemingly not restricted to 

transformed cells. We have recently been investigating the mechanistic basis for the 

observed activation of pol III transcription in human ovarian carcinomas. In nine out 

of nine ovarian tumours examined, substantially elevated TFIIIC2 activity was 

observed relative to that of normal healthy tissue from the same women (586). Thus, 

the activation of pol III transcription in ovarian cancer may be caused by abnormally 

high levels of TFIIIC2 activity (586). This will depend, however, on whether or not 

TFIIIC2 activity is limiting in normal ovarian cells; if it is in vast excess, increasing 

it further is unlikely to have much effect on transcriptional output. The investigation 

of the physiological significance of elevated TFIIIC2 activity on pol III transcription 

in ovarian cancer is described in this chapter.

189



5.2 Results

5.2.1 TFIIIB is limiting for pol III transcription in nuclear extract from a

human ovarian tumour cell line

TFIIIC2 must be a limiting factor in normal ovarian epithelial cells for the 

abnormally high levels of TFIIIC2 in the ovarian tumours analysed to be at least 

partly responsible for the activation of pol III transcriptional output consistently 

observed in these tumour samples. Figure 5.1 is a schematic diagram explaining the 

concept of a limiting factor. A limiting factor may be defined as a factor that 

stimulates the process when its concentration or activity is increased whilst that of 

any other factors remains constant. In the upper diagram of Figure 5.1 there is a 

relative deficiency of TFIIIC compared to TFIIIB and pol III. Addition of more 

TFIIIC stimulates transcription; therefore, TFIIIC can be regarded as a limiting 

factor. In contrast, in the lower diagram TFIIIC is in relative excess and although 

addition of more TFIIIC increases promoter occupancy, because of a deficiency in 

TFIIIB it does not increase transcriptional output. Therefore, in this situation TFIIIC 

is not a limiting factor.

Unfortunately, there were insufficient amounts of extract from the human 

ovarian tumour samples and healthy ovarian epithelial tissue from the same patients 

to investigate which factors are limiting in these extracts. Nuclear extract from a 

human ovarian tumour cell line, A27-80, was tested to see if TFIIIB or TFIIIC is 

limiting. To determine which factor or factors of the basal pol III transcriptional 

machinery are limiting in a particular cell type, add-back experiments are performed. 

This involves carrying out in vitro transcription reactions using a constant amount of 

cell extract in each reaction and separately titrating in increasing amounts of purified 

sources of each factor to see if they stimulate transcription. Figure 5.2 shows the 

results of such add-back experiments using nuclear extract from the human ovarian 

tumour cell line A27-80. As highly purified sources of TFIIIB and TFIIIC, 

immunoaffinity-purified TFIIIB and TFIIIC were used. A conventionally purified 

source of pol III was used. As Figure 5.2 A shows, the addition of partially purified 

TFIIIB strongly stimulated transcription. Although the immunopurified TFIIIC also 

stimulated transcription, this effect was much less than with the TFIIIB. The purified 

source of pol III had no stimulatory effect; in fact at the higher doses there seemed to
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Figure 5.1

Schematic diagram explaining the concept of a limiting factor

Key:-

Class III gene

Gene transcribed

Gene not transcribed

TFIIIC

| | n | B

For simplicity pol III is assumed to be in vast excess and associated with any TFIIIB 

that associates with TFIIIC.

191



TFIIIC 
LIM

ITIN
G



Figure 5.2

Raising the level of TFIIIB stimulates pol III transcription reconstituted with 

extract from a human ovarian tumour cell line

A) Transcription reactions were reconstituted using lOpg of A27-80 nuclear extract 

and 250 ng of pVAi. Reactions 2, 3 and 4 were supplemented with 2, 4 and 8pi, 

respectively, of TFIIIB that had been immunopurified from PC-BHep using the 

antiserum 330 against BRF. Reactions 6, 7 and 8 were supplemented with 2, 4 and 

8pi, respectively, of TFIIIC that had been immunopurified from PC-C using the 

antiserum 4286 against TFIIICp. Reactions 9, 10 and 11 were supplemented with 2, 

4 and 8 pi, respectively, of an A25(1.0) fraction which is highly enriched in RNA 

polymerase III, generated by DEAE Sephadex chromatography of a PC-B fraction.

B) As for (A) except each reaction contained 250ng of pLeu template instead of 

pVAi.
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be a slight inhibitory effect. This may be due to quenching, the pol III may sequester 

active TFIIIB or TFIIIC which may otherwise have been able to participate in 

transcription. These results obtained using the VAi gene were confirmed using a 

tRNA gene as template (Figure 5.2 B). Thus, for both promoters tested TFIIIB was 

the major limiting factor for pol III transcription. This is consistent with the elevated 

levels of TFIIIC2 observed in ovarian tumour samples. It may be that TFIIIC is the 

limiting factor in normal ovarian cells, but the increase in the levels of TFIIIC2 in 

human ovarian tumour cells result in TFIIIB becoming more limiting in place of 

TFIIIC. However, it is equally plausible that TFIIIC is not limiting in normal non- 

tumorigenic ovarian epithelial cells.

5.2.2 Extracts from new-transformed rat ovarian epithelial cells have higher 

pol III transcriptional activity than extracts from untransformed control 

cells

Since normal healthy ovarian epithelial tissue was unavailable for analysis, an 

ovarian epithelial cell line, ROSE 199-flgal, was used. Two different cell lines were 

examined, ROSE 199-pgal and ROSE 199-neu. The parental cell line, ROSE 199, is 

an established cell line of rat ovarian surface epithelium derived from normal, non- 

tumorigenic rat ovarian epithelium (2). ROSE 199-neu was generated by retroviral 

transfection of the parental cell line with mutationally activated neu oncogene (115). 

The cellular neu gene encodes a 185 kD protein related to, but distinct from, the 

epidermal growth factor receptor (EGFR) (459). Neu is a member of the erbB family 

of receptor tyrosine kinases (241). It is amplified and/or overexpressed in 

approximately one-third of human ovarian epithelial cancers and is associated with a 

poor prognosis (30, 491). ROSE 199-neu cells exhibit transformed phenotypes in 

vitro and the tumorigenic phenotype in vivo and are regarded as a useful model of 

human ovarian cancer (115). ROSE 199-pgal was generated by transduction of 

ROSE 199 with the j3-galactosidase gene (115). In contrast to the potent 

oncogenicity of neu, the Jd-galactosidase gene does not induce transformed 

phenotypes nor tumorigenicity and ROSE 199-figal cells have been used as a model 

of normal ovarian epithelial cells (115).
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If ROSE 199-Pgal and ROSE 199-neu truly are good models of normal 

ovarian epithelial cells and cancerous ovarian epithelial cells, respectively, and pol 

III activation does have an essential role in ovarian cancer, one may expect ROSE 

199-neu cells to support higher levels of pol III transcription than ROSE 199-Pgal 

cells. This was investigated by carrying out in vitro transcription assays using equal 

amounts of extract of actively cycling ROSE 199-J3gal cells and ROSE 199-neu cells 

that were prepared in parallel. As Figure 5.3 shows, the neu extract supported a 

significantly higher level of pol III transcription than the Pgal extract at all the 

amounts of extract tested, both using the VAi gene and a tRNAleu gene. This 

behaviour mimics the elevated levels of pol III transcription observed in the human 

ovarian tumour samples relative to healthy tissue. The same result has consistently 

been obtained using four different preparations of Pgal and neu extracts (data not 

shown).

5.2.3 TVew-transformed ROSE 199 cells mimic human ovarian epithelial

tumours by displaying elevated TFIIIC2 activity

Although the ROSE 199-neu cells have higher levels of pol III transcriptional 

activity than the ROSE 199-Pgal cells, the mechanistic basis for this may be very 

different to that for the elevated levels of pol III transcripts observed in the human 

ovarian tumour samples. It was therefore tested whether the ROSE 199-neu cells 

also display elevated TFIIIC2 activity. As Figure 5.4 A shows, extracts from ROSE 

199-neu cells have higher TFIIIC2 activity than an equal amount of pgal extract, as 

assayed by its specific B-block oligonucleotide DNA-binding activity. This result 

has been confirmed using four different preparations of pgal and neu extracts (data 

not shown). As a control, extracts were also analysed by electrophoretic mobility 

shift assay using an oligonucleotide carrying a Spl binding site as probe. Spl, Sp2 

and Sp3 all specifically bind to this oligonucleotide and produce protein-DNA shifts 

of different mobilities, as shown in Figure 5.4 B. The Spl oligonucleotide DNA- 

binding activities of the same two pairs of Pgal and neu extracts shown in Figure 5.4 

A, were tested and are shown in Figure 5.4 B. For both pairs of extracts, Spl 

oligonucleotide binding is slightly higher for the pgal extracts, despite these extracts
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Figure 5.3

Neu-transformed ROSE 199 cell extracts have higher RNA polymerase III 

transcriptional activity than untransformed Pgal-transfected ROSE 199 cell 

extracts

A) In vitro transcription assay using ROSE 199-neu cell extract (odd-numbered 

lanes) and ROSE 199-/3gal cell extract (even-numbered lanes). Lanes 1 and 2 

contained 5pg of protein extract, lanes 3 and 4 contained 10pg of protein extract, 

lanes 5 and 6 contained 15pg of protein extract and lanes 7 and 8 contained 20pg of 

protein extract. All reactions contained 250 ng of pVAi template. Transcription was 

initiated by the addition of nucleotides and allowed to proceed for 1 h at 30°C.

B) As for (A), except that 250 ng of pLeu was used as the specific pol III template 

rather than pVAi.
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Figure 5.4

Extracts from /lew-transformed ROSE 199 cells display elevated TFIIIC2 

activity

A) EMSA using 0.5 ng of B-block oligonucleotide probe, lpg of poly(dl.dC) 

competitor and no protein (lane 1), or 10pg of protein extracts from ROSE 199-Pgal 

cells (lanes 2, 3 and 6), or ROSE 199-neu cells (lanes 4, 5 and 7). Reactions 2-5 

were carried out using one set of pgal and neu extracts that were prepared in parallel 

(#1) and reactions 6 and 7 were performed using a different set of Pgal and neu 

extracts (#2). Reactions 2, 4, 6 and 7 also contained lOOng of unlabelled non­

specific oligonucleotide. Reactions 3 and 5 also contained lOOng of unlabelled B- 

block oligonucleotide as specific competitor.

B) EMSA using 0.35ng of Spl oligonucleotide probe, lpg of poly(dl.dC) 

competitor and no protein (lane 1), or lOpg of protein extracts from HeLa cells 

(lanes 2 & 3), ROSE 199-Pgal cells (lanes 4, 6 and 7), or ROSE 199-neu cells (lanes 

5, 8 and 9). Reactions 4 and 5 were carried out using the set of Pgal and neu extracts 

used in reactions 2-5 of (A) (#1) and reactions 6-9 were performed using the set of 

Pgal and neu extracts used in reactions 6 and 7 of (A) (#2). Reactions 2, 4, 5, 6 and 

8 also contained lOOng of unlabelled non-specific oligonucleotide. Reactions 3, 7 

and 9 also contained lOOng of unlabelled Spl oligonucleotide as specific competitor.
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displaying lower TFIIIC2 DNA-binding activity than the corresponding neu extracts. 

The other extracts were also tested and in every case protein binding to the Spl 

oligonucleotide was about the same for the Pgal and neu extracts or slightly lower 

for the neu extracts (data not shown). This clearly demonstrates that the increase in 

TFIIIC2 DNA-binding activity consistently observed in the neu extracts is a specific 

phenomenon and is not caused by a general loss of DNA-binding proteins during 

preparation of J3gal extracts or a general increase in DNA-binding proteins following 

transformation of ROSE 199 cells by neu.

5.2.4 TFIIIC is a limiting factor for pol III transcription in extracts of the

untransformed ovarian epithelial cell line ROSE 199-pgal

ROSE 199-Pgal and ROSE 199-neu seem to mimic the behaviour of normal 

human ovarian epithelium and human ovarian tumours respectively, at least in terms 

of some aspects of pol III transcription. It was therefore of interest to see if TFIIIC is 

limiting in extracts of the ROSE 199-Pgal cells, as this would provide an indication 

as to whether the increase in TFIIIC2 activity in ovarian tumours may be responsible 

for the increase in pol III transcriptional output.

In the initial add-back experiments, the phosphocellulose fractions PC-B and 

PC-C, which are enriched in TFIIIB and TFIIIC respectively, were used (Figure 5.5). 

The PC-C fraction strongly stimulated transcription in a dose-dependent manner. 

The highest dose of PC-C added stimulated transcription ~ 10-fold compared to that 

obtained with the same amount of Pgal extract without addition of any PC fraction 

(Figure 5.5, compare lanes 1 & 5 with lanes 6-8). Addition of PC-B also stimulated 

transcription (Figure 5.5, compare lanes 1 & 5 with lanes 2-4), but to a much lesser 

extent than with comparable amounts of PC-C; the highest dose of PC-B titrated in 

increased transcription only 2.6 fold. Although this result suggests that TFIIIC is 

limiting, PC-B and PC-C are relatively crude fractions and contain a lot of other 

proteins; one or more of these proteins that have cofractionated with TFIIIC may be 

responsible for the stimulatory effect of PC-C, instead of TFIIIC itself. To test this 

possibility, add-back experiments were carried out using PC-C and heat-treated PC-C 

(HT PC-C). TFIIIC 1 and TFIIIC2 are both unusually sensitive to mild heat

197



treatment and are inactivated by warming at 47°C for 15 min (291, 485, 575). Prior 

to use in the add-back, the inactivation of the TFIIIC in the HT PC-C fraction was 

verified by its inability to reconstitute in vitro transcription in the presence of an 

active PC-B fraction (data not shown). As Figure 5.6 shows, the inactivation of 

TFIIIC in the HT PC-C fraction completely abolished its ability to stimulate 

transcription when added to the pgal extract. Thus, the stimulatory effect of PC-C 

on transcription reconstituted with Pgal extracts does seem to be due to TFIIIC rather 

than some other protein(s) which also fractionated on phosphocellulose in the PC-C 

fraction.

Immunoaffinity-purified TFIIIC, generated as described in Chapter 3, was 

also tested, as shown in Figure 5.7. This highly purified source of TFIIIC stimulated 

transcription in a dose-dependent manner when titrated into pgal extracts (compare 

lane 1 with lanes 2-4). In contrast, mock immunopurified TFIIIC made in parallel as 

described in Chapter 3 using the 4286 preimmune serum, had little or no effect on 

transcription (Figure 5.7, lanes 5-7). This provides further support that TFIIIC is 

limiting in Pgal extracts.

The same 4286 antiserum used to immunopurify TFIIIC from PC-C was also 

capable of purifying a pol III “holoenzyme” from nuclear extract, as described in 

Chapter 4. It was therefore important to verify that the immunopurified TFIIIC was 

not contaminated with any TFIIIB or pol III. As Figure 5.8 shows, the 

immunoaffinity-purified TFIIIC can reconstitute transcription when combined with a 

PC-B fraction that provides a source of TFIIIB and pol III (lanes 2 & 3). However, it 

is unable to reconstitute transcription when combined with a PC-C fraction, which 

provides a source of TFIIIC and pol III (lanes 6 & 7). Thus, the immunopurified 

TFIIIC does not seem to be contaminated with TFIIIB. RNA polymerisation assays 

revealed that the immunopurified TFIIIC is also free of pol III (data not shown). 

This result is unsurprising, as any interaction between TFIIIC and pol III is thought 

to be mediated by TFIIIB and phosphocellulose chromatography effectively 

separates TFIIIB and TFIIIC (473, 568).

The ability of DNA-affinity purified TFIIIC (see Chapter 3) to stimulate 

transcription when added to Pgal extracts was also tested (Figure 5.9). This source 

of TFIIIC, purified on the basis of the specific B-block DNA-binding activity of 

TFIIIC2, strongly stimulated transcription up to ~5-fold of that obtained in the
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Figure 5.5

TFIIIC is a limiting factor in ovarian epithelial cell extracts

In vitro transcription assay using lOpg of ROSE 199-figal cell extract and 250ng of 

pVAi template. Reactions 2, 3 and 4 were supplemented with 2, 4 and 8pl of PC-B, 

respectively. Reactions 6, 7 and 8 were supplemented with 2, 4 and 8pl of PC-C, 

respectively. Reactions 1 and 5 contained no additional protein. Transcription was 

initiated by addition of nucleotides following a 15 min preincubation at 30°C.
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Figure 5.6

Heat inactivation of TFIIIC prevents PC-C from stimulating pol III 

transcription in ROSE 199-/feal cell extracts

Transcription reactions were reconstituted using lOpg of ROSE 199-flgal cell extract 

and 250ng of pVAi template. Reactions 2, 3 and 4 were supplemented with 2pl, 4pl 

and 6pl of PC-C, respectively. Reactions 5, 6 and 7 were supplemented with 2pl, 

4pl and 6pl, respectively, of the same PC-C fraction as in reactions 2-4, except that it 

was warmed at 47°C for 15 min prior to use.
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Figure 5.7

Raising the level of TFIIIC stimulates pol III transcription in ovarian epithelial 

cell extracts

In vitro transcription assay using lOpg of ROSE \99-/3gal cell extract and 250ng of 

pVAi template. Reactions 2, 3 and 4 were supplemented with 3, 6 and 9pl, 

respectively, of TFIIIC that had been immunopurified from PC-C using antiserum 

4286 against TFIIICp. Reactions 5, 6 and 7 were supplemented with 3, 6 and 9pl of 

the material that had been mock immunopurifed from PC-C using the 4286 

preimmune serum.
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Figure 5.8

Immunopurified TFIIIC contains no trace of TFIIIB

In vitro transcription assay using 250 ng of pVAi template, lp l of PC-B (all lanes 

except 5-7) and lp l of PC-C (lanes 4-8). TFIIIC that had been immunopurifed using 

antiserum 4286 against TFIIICp was added to reactions 2 & 6 (6pl), and also, 3 & 7 

(12pl).
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Figure 5.9

tRNA synthesis is stimulated by raising the level of TFIIIC in ovarian epithelial 

cell extracts

Transcription reactions were reconstituted using lOpg of ROSE 199-flgal cell extract 

and 250ng of pLeu template. Reactions 2 and 3 were supplemented with 3 pi and 

6pl, respectively, of TFIIIC that had been affinity-purified using a B-block 

oligonucleotide column.
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absence of added TFIIIC (Figure 5.9, compare lane 1 with lanes 2 & 3). This 

transcription assay was carried out using a tRNAIeu gene as the specific template. 

The different sources of TFIIIC (PC-C, immmunopurifled TFIIIC and DNA-afflnity 

purified TFIIIC) have all been tested and found to stimulate transcription 

reconstituted with pgal extracts both using the VAi gene and the tRNAleu gene as the 

specific pol III template. Together, these results strongly suggest that TFIIIC is a 

limiting factor for pol III transcription in the untransformed rat ovarian epithelial cell 

line, ROSE 199-Pgal. Thus, the elevated TFIIIC2 activity of ROSE 199-neu cells is 

likely to contribute to the elevated pol III transcriptional output of these cells. That 

TFIIIC is limiting in ROSE 199-Pgal cells clearly does not mean that the same is true 

in human ovarian epithelium. However, it does raise this possibility and suggests 

that the elevation of TFIIIC2 activity in human ovarian cancers may be of functional 

significance to the increase in pol III transcript levels.

The promoters of class III genes are quite diverse in structure and can be 

loosely categorised into one of three types, each of which has distinct transcription 

factor requirements (568). Only types I and II promoters are TFIIIC2-dependent. 

Within each of these three types there is still considerable variation in promoter 

structure and also the strength of the promoter. The consequence of this variability is 

that the limiting factor(s) for pol III transcription in a given cell extract may be 

different for different class III genes, even if they are of the same promoter type. 

The results obtained suggest that TFIIIC is limiting in ROSE 199-Pgal cell extracts 

at least for the transcription of some class III genes. The VAi gene and a tRNAleu 

gene were primarily tested; these genes both have a type II promoter but the 

promoter of the tRNA gene is much weaker. Affinity-purified TFIIIC also 

stimulated transcription reconstituted using Pgal extract when using the 7SL gene as 

the specific pol III template (data not shown).

The evidence suggesting that TFIIIC can stimulate tRNA synthesis in 

untransformed ovarian epithelial cells is of particular physiological significance 

because of the fundamental role of tRNA in translation and the fact that elevated 

levels of TFIIIC2 were found in nine out of nine human ovarian tumours analysed. 

The deregulation of TFIIIC2 has never previously been reported in human 

malignancies. It has not as yet been demonstrated that tRNA and 5S rRNA synthesis 

has an essential role in tumorigenesis. If this is found to be the case, it may be that
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the deregulation of TFIIIC2 is a widespread phenomenon in ovarian cancer and 

perhaps other cancers in which TFIIIC2 is a major limiting factor in the normal 

nontumorigenic cell type.

5.2.5 TFIIIB and TFIIIC are both limiting for pol III transcription in cell

extracts of the transformed cell line ROSE 199-neu

In the extract from a human ovarian tumour cell line that was tested TFIIIB 

was found to be the major limiting factor for pol III transcription (Figure 5.2). It was 

of interest to determine if this was also the case in the transformed cell line ROSE 

199-neu, or whether TFIIIC was still limiting as in the /^/-transfected cells, despite 

the significant increase in TFIIIC2 activity in the new-transformed cells. As Figure

5.10 A shows, PC-B (lanes 2-4) and PC-C (lanes 9-11) both stimulated transcription 

when separately titrated into extracts of ROSE 199-neu cells (compare with lanes 1 

& 8). However, PC-C stimulated transcription to a greater extent than equal volumes 

of PC-B. The PC-B and PC-C fractions were of comparable TFIIIB and TFIIIC 

activity, respectively. As previously, the effect of HT PC-C was also tested and was 

found unable to stimulate transcription (lanes 12-14), suggesting that TFIIIC rather 

than some contaminant present in the PC-C was responsible for the ability of PC-C 

to stimulate transcription.

In support of this, immunopurified TFIIIC was able to stimulate transcription 

reconstituted with unfractionated neu extracts (Figure 5.10 B, compare lanes 2 & 3 

with lane 1) whereas mock-immunopurified TFIIIC was not (Fig. 5.10 B, lanes 4 & 

5). Immunopurified TFIIIB also stimulated transcription (lanes 6 & 7) but mock 

immunopurified TFIIIB was unable to (lanes 8 & 9). As for the immunopurified 

TFIIIC, the immunopurified TFIIIB used was tested for contamination with pol III 

and, in this case, TFIIIC. None of the different preparations of purified TFIIIB 

contained pol III, as assayed by the ability of the fractions to support transcription of 

poly(dA.dT) (data not shown). Immunopurified TFIIIB also lacked TFIIIC as Figure

5.11 shows for a variety of different preparations of TFIIIB of varying activity. The 

immunopurified TFIIIB preparations reconstituted transcription when combined with 

PC-C but were consistently unable to do so when combined with PC-B. The PC-B
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fraction was able to reconstitute some transcription when combined with a weakly 

active immunopurified TFIIIC fraction, however. Thus, TFIIIB and TFIIIC both 

seem to be limiting in extracts of ROSE 199-neu. This result has been confirmed 

with several independent preparations of neu extract (data not shown).

Heat treatment of PC-B, as done for PC-C, selectively inactivates TBP (575). 

The ability of HT PC-B to stimulate transcription reconstituted with neu cell extracts 

was tested to see if TBP, an essential component of TFIIIB, was required for the 

ability of PC-B to stimulate transcription. As Figure 5.10 A shows, HT PC-B 

actually stimulated transcription more strongly than equal amounts of the same PC-B 

fraction that was not heat treated. This suggests that TBP is not required for the 

stimulatory effect of PC-B. Indeed, the result suggests that TBP may have a slight 

inhibitory effect; this is probably caused by the TBP being in excess and sequestering 

components that are limiting into inactive complexes. That PC-B and 

immunopurified TFIIIB have a stimulatory effect on transcription reconstituted with 

neu extracts is therefore likely to be caused by a relative deficiency in one or more of 

the TAFs of TFIIIB, such as BRF, in the neu extracts.

The inactivation of TBP in the HT PC-B was verified by testing the ability of 

the fraction to reconstitute transcription when combined with a PC-C fraction, as 

shown in Figure 5.12 A. Only a trace amount of specific pol III transcript was 

produced compared to that obtained using untreated PC-B. In support of the 

stimulation observed with HT PC-B (Fig. 5.10 A & Fig. 5.12 B) suggesting that TBP 

may not be limiting, the titration of increasing amounts of recombinant TBP into neu 

extracts actually reduced the level of transcription to below that obtained with neu 

extract alone (Figure 5.12 B). This dose-dependent decrease in transcription in 

response to recombinant TBP suggests that TBP is in relative excess in the neu 

extracts and that titrating in more results in a quenching effect whereby essential 

components that are limiting are prevented from participating in transcription.
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Figure 5.10

TFIIIB and TFIIIC both stimulate pol III transcription when independently 

titrated into «e«-transformed ROSE 199 ovarian epithelial cell extracts

A) In vitro transcription assay using 250ng of pVAi template and lOpg of ROSE 

199-neu cell extract (all reactions). PC-B was added to reactions 2-7: reactions 2 and 

5, 2 pi; reactions 3 and 6, 4pl; reactions 4 and 7, 6pl. The PC-B that was added to 

reactions 5-7 is the same as that added to reactions 2-4 except that it was heated at 

47°C for 15 min prior to use (HT PC-B). PC-C was added to reactions 9-14: 

reactions 9 and 12, 2pl; reactions 10 and 13, 4pl; reactions 11 and 14, 6pl. The PC- 

C added to reactions 12-14 was heated at 47°C for 15 min prior to use.

B) In vitro transcription add-back experiment using immunopurified fractions. All 

the reactions contained 250ng of pVAi template and lOpg of ROSE 199-neu cell 

extract. TFIIIC that had been purified using the 4286 antiserum against TFIIIC p was 

added to reactions 2 (3pi) and 3 (6pl). Reactions 4 and 5 contained 3pi and 6pl 

respectively, of material that was mock immunopurified using the 4286 preimmune 

serum. TFIIIB that had been purified using the 330 antiserum against BRF was 

added to reactions 6 (3pi) and 7 (6pl). Reactions 8 and 9 contained 3pi and 6pl, 

respectively, of material that was mock immunopurified using the 330 preimmune 

serum.
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Figure 5.11

Immunopurified TFIIIB is free of TFIIIC

In vitro transcription assay using 250ng of pVAi template, lp l of PC-B fraction 

(lanes 2-4, 6 and 8) or PC-C fraction (lanes 1, 5, 7 and 9), and 12pl of TFIIIB that 

had been immunopurified using antiserum 330 against BRF (lanes 4-9). Lane 2 

contained 12pl of TFIIIC that had been immunopurified using antiserum 4286 

against TFIIICp. Three independent preparations of immunoaffinity TFIIIB of 

differing activity were assayed for contamination with TFIIIC: Preparation A, lanes 4 

and 5; Preparation B, lanes 6 and 7; Preparation C, lanes 8 and 9.
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Figure 5.12

TBP is not required for the stimulatory effect of TFIIIB on pol III transcription 

reconstituted with ROSE \99-neu cell extracts

A) In vitro transcription assay reconstituted with 250ng pVAi template, 2pl of PC-B 

(reactions 2-5) and 2pl of PC-C (all reactions). The PC-B added to reactions 3 and 5 

was heated at 47°C for 15 min prior to use.

B) Transcription of pVAi (250ng) using ROSE 199-neu cell extract (lOpg) 

preincubated (15 min at 30°C) with no addition (reactions 1 and 10) or with 1, 2, 3 or 

4pl of recombinant TBP (reactions 2, 3, 4 and 5, respectively) or with 1, 2, 3 or 4pl 

of HT PC-B (reactions 6, 7, 8 and 9, respectively).
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5.3 Discussion

5.3.1 Deregulation of TFIIIC2

The activation of pol III transcription in the transformed ovarian epithelial 

cell line ROSE 199-neu provides another example to add to a long and growing list 

of transformed cell types that display elevated pol III transcription. Furthermore, 

extracts of ROSE 199-neu cells showed a specific increase in TFIIIC2 activity. The 

significance of this is that this same molecular abnormality was observed in nine out 

of nine human ovarian tumours analysed, each of which also displayed elevated pol 

III transcription (586). This analysis of human ovarian tumours represents a limited 

survey. However, the finding that the transformed rat ovarian epithelial cell line 

ROSE 199-neu, which is considered a useful model of certain aspects of human 

ovarian cancer (115), also has substantially elevated TFIIIC2 activity suggests that 

this phenomenon may be widespread and, perhaps, fundamental to ovarian cancer. 

Clearly there is a need to analyse a larger number of ovarian tumour samples for 

changes in pol III transcript levels and also the mechanistic basis for any changes. 

Increased TFIIIC2 activity has previously been observed in SV40-transformed 

murine cell lines and also in adenoviral-infected HeLa cells (315, 488, 578, 606). 

Although elevated pol III transcript levels have recently been reported in a number of 

human cancers the molecular basis for this has not been studied (87). It remains to 

be determined whether changes in TFIIIC2 activity are also found in other human 

malignancies.

The mechanism by which TFIIIC2 activity is increased in ROSE 199-neu 

cells has not yet been investigated. It may be that TFIIIC2 is overexpressed as seems 

to be the case in the human ovarian tumours that were analysed (586). Alternatively, 

perhaps there is an increase in the proportion of TFIIIC2 that is in the active 

TFIIIC2a form. This may be caused by a specific increase in TFIIIC(3 concentration 

or by phosphorylation induced changes (217, 488). The stable transfection of ROSE 

199 cells with activated neu oncogene activates pol III transcription and elevates 

TFIIIC2 activity when compared to the same cell line stably transfected with a J3- 

galactosidase gene. This suggests that the neu oncogene and its normal cellular
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counterpart impinge directly or indirectly on pol III transcription somehow, and that 

at least one of the targets is TFIIIC2.

The neu/c-erbB2 gene encodes an EGFR-like receptor tyrosine kinase (RTK) 

(241, 399). erbB2 is a member of the erbB family of RTKs, which also includes 

EGFR (erbB), erbB3 and erbB4 (241, 399). Activation of the tyrosine kinase activity 

of the erbB family members occurs through receptor dimerisation induced by ligand 

binding. No direct ligand for erbB2 has yet been discovered despite extensive efforts 

(241, 399). However, the agonists for the other erbB family members are bivalent 

and erbB2 is the preferred heterodimerisation partner for all the other erbB family 

members (399). erbB2 kinase activity can also be activated by overexpression of 

erbB2, which is a frequent occurrence in human ovarian cancers, and causes 

spontaneous dimerisation (399). Activation of tyrosine kinase activity of the 

receptors triggers autophosphorylation of specific tyrosine residues within the 

cytoplasmic domain. These phosphotyrosines act as docking sites for specific 

downstream proteins (399). The erbB2 receptor seems to influence a diverse range 

of intracellular signalling pathways; this will also depend on its dimerisation partner 

(241, 399). Recently it has been shown that cyclin D1 is a critical downstream target 

of activated neu (323). The induction of cyclin D1 expression by neu is dependent 

on E2F (323). Furthermore, Ras, Rac, Rho, extracellular signal-regulated kinase, c- 

Jun N-terminal kinase and p38 are all involved (323). Perhaps, neu raises TFIIIC2 

activity indirectly via the phosphorylation of TFIIIC2 by an intracellular kinase that 

is part of one of the kinase signalling cascades induced by neu. Alternatively, as for 

the cyclin D1 promoter, perhaps the TFIIIC2 promoter contains E2F-binding sites 

and increased expression of TFIIIC2 mRNA induced by E2F is responsible for the 

increased TFIIIC2 activity of «ew-transformed ROSE 199 cells.

The identification of cyclin D1 as a critical downstream effector of neu- 

induced transformation suggests that TFIIIC2 may not be the only pol III 

transcription component that is targeted in the ROSE 199-neu cells. Cyclin D l, in 

combination with its kinase partner cdk4 or cdk6, has a critical role in the 

phosphorylation and inactivation of RB (482). Since RB represses TFIIIB, TFIIIB 

activity may also be elevated in the «e«-transformed cells. This has not yet been 

investigated.

Neu is amplified and/or overexpressed in approximately one-third of human 

ovarian cancers (30, 159, 491). However, the neu status of the nine human ovarian
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tumour samples that displayed elevated TFIIIC2 activity has not been determined. It 

may be that the deregulation of TFIIIC2 occurs independently of neu in some or 

perhaps all of these tumours. The molecular basis of human ovarian cancer is poorly 

understood, largely owing to the inaccessible position of the ovary and the fact that 

the tumours are often very advanced at the time of detection (159). However, in 

addition to the changes in neu, mutations in K-ras and p53 have also frequently been 

detected (159). Ras has previously been shown to increase TBP abundance and is 

also involved in neu signalling (323, 548, 549). Like RB, p53 can inhibit TFIIIB. 

TFIIIB activity may therefore be elevated in some ovarian cancers. Perhaps multiple 

components of the pol III transcriptional apparatus are deregulated in ovarian cancer, 

as has previously been reported for several transformed cell types (569). The 

increased TFIIIC2 activity of the nine ovarian tumour samples analysed seems to 

have resulted from the overexpression of its subunits (586). The molecular basis for 

this overexpression has yet to be elucidated, but potentially neu, K-ras or p53 may be 

involved.

5.3.2 TFIIIC is limiting in ROSE 199-figal cell extracts

PC-C, immunoaffinity purified TFIIIC and DNA-affinity purified TFIIIC were each 

found to consistently stimulate pol III transcription reconstituted with ROSE 199- 

Pgal cell extracts. In contrast, heat-treated PC-C and mock-immunopurifled TFIIIC 

did not stimulate transcription. This suggests that TFIIIC is limiting for transcription 

in this untransformed ovarian epithelial cell line. Therefore, the increase in TFIIIC2 

activity in the transformed cell line ROSE 199-neu is likely to contribute, at least to 

some extent, to the increased pol III transcriptional activity of these cells. Although 

TFIIIC has been found to be limiting in ROSE 199-Pgal cells, clearly one cannot 

make the assumption that this is also true in normal human ovarian epithelial cells. 

As a spontaneously immortalised cell line, ROSE 199-Pgal cells will have undergone 

some changes relative to normal ovarian epithelial cells in vivo. Furthermore, 

although pol III transcription is well conserved between mammalian species, there 

are inevitably differences and the limiting factor(s) for pol III transcription in rodent 

and human ovarian epithelial cells may be very different. In the extract from the
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human ovarian tumour cell line A27-80, TFIIIB was found to be the major limiting 

factor for pol III transcription. In contrast, both TFIIIB and TFIIIC were found to 

significantly stimulate transcription when titrated into extracts of ROSE 199-neu 

cells. This difference in the limiting factor(s) suggests that the same may also be true 

for normal human ovarian epithelial cells when compared with ROSE 199-Pgal cells.

For most class III genes, TFIIIC transcriptional activity is dependent not only 

on TFIIIC2 but also TFIIIC 1. Although ROSE 199-neu cells display an increase in 

TFIIIC2 activity, a concomitant increase in TFIIIC 1 activity has not been tested for. 

Conversely, the finding that TFIIIC is limiting in ROSE 199-f3gal cell extracts has 

not been dissected any further. Thus, it is at present unclear whether TFIIIC2, 

TFIIIC 1 or both these components are limiting in ROSE 199-figal cell extracts. It is 

therefore plausible that the increase in TFIIIC2 activity in ROSE 199-neu cells does 

not contribute to the activation of pol III transcription in these cells because it is 

TFIIIC 1 and not TFIIIC2 that is limiting in the untransformed ROSE 199-Pgal cells. 

Although this possibility is considered unlikely, it deserves further investigation.

5.3.3 More than one limiting factor

The finding that both TFIIIB and TFIIIC can significantly stimulate 

transcription when independently titrated into extracts of ROSE 199-neu cells 

indicates that both of these factors are limiting in these extracts. Such a situation 

may arise where one of the two limiting factors is only slightly in excess of the other 

limiting factor. For example, suppose TFIIIB is in slight excess of TFIIIC. Despite 

this, it is unlikely that every single TFIIIC molecule that is promoter-bound at any 

given time will be associated with TFIIIB. By raising the concentration of TFIIIB 

the probability of a collision between “free” TFIIIB in solution and promoter-bound 

TFIIIC may be increased resulting in an increase in the number of active preinitiation 

complexes. If, however, TFIIIB is in vast excess raising its concentration further is 

unlikely to significantly alter the probability of these collisions. Indeed, it may 

actually inhibit transcription, for example by sequestering some pol III from 

participating in active complex formation.
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The limiting factor(s) for pol III transcription in a given cell type can also 

vary depending on cell cycle position. For example, using extracts of synchronised 

proliferating HeLa cells it has been shown that in G1 phase extracts TFIIIB is 

limiting and the addition of partially purified TFIIIC had no effect (571). In contrast, 

in G2 phase extracts TFIIIC is limiting and the addition of the same partially purified 

TFIIIC fraction strongly stimulated transcription (571). In this particular study all 

the extracts have been prepared from asynchronously proliferating cells. It is likely 

that TFIIIC is only limiting in ROSE 199-j3gal cells in a restricted window of the cell 

cycle. Similarly, elevated levels of TFIIIC2 activity observed in asynchronous 

extracts of ROSE 199-neu cells may be restricted to a particular part of the cell cycle. 

The fact that there can be more than one limiting factor in a given cell type and that 

the identity of the limiting factor(s) can change with time, for example depending on 

cell cycle position, may explain why several DNA-tumour viruses target multiple 

components of the pol III transcriptional apparatus. Thus, the deregulation of 

TFIIIC2 may only be one of several changes in the pol III transcriptional apparatus 

of ROSE 199-neu cells and human ovarian tumours.
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Chapter 6.

Modulation of pol III transcription by 
phosphorylation

6.1 Introduction

Protein phosphorylation is arguably the most ubiquitous control mechanism 

of protein function and certainly the most studied. Primary stimulation or repression 

of transcription in eukaryotes is largely independent of de novo protein synthesis, 

suggesting the involvement of posttranslational modifications such as 

phosphorylation or acetylation (238). The cellular response to extracellular stimuli 

commonly involves changes in gene expression. This is dependent upon a complex 

network of intracellular signal transduction pathways of protein kinases that integrate 

these extracellular signals and transmit them to the nucleus. Thus, protein 

phosphorylation has a critical role in regulating transcription, whether directly by the 

phosphorylation of the transcription factors themselves or indirectly, for example by 

the phosphorylation of upstream activators or repressors.

Little is known as to which kinase signalling pathways impinge on pol III 

transcription; however, several kinases have been reported to have an effect. The 

pocket proteins RB, pl07 and pl30 all repress pol III transcription (93, 314, 503, 

504, 579). The activity of the pocket proteins depends on their phosphorylation 

status; in a hyperphosphorylated state the pocket proteins are inactive (173, 239, 418, 

482, 557). The cyclin-dependent kinases that regulate the phosphorylation of the 

pocket proteins may therefore indirectly exert a regulatory effect on pol III 

transcription. Another cyclin-dependent kinase, p34cdc2/cyclin B l, is implicated in 

the mitotic repression of pol III transcription. Mitotic repression of pol III 

transcription can be reproduced in vitro and is achieved through the phosphorylation 

and inactivation of TFIIIB (169, 327, 572). p34cdc2/cyclin Bl is the major mitotic 

kinase and can specifically phosphorylate and inactivate affinity-purified Xenopus 

TFIIIB (169, 587). Therefore, the downregulation of pol III transcription during
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mitosis may be achieved, at least in part, by the phosphorylation of TFIIIB by 

p34cdc2/cyclin Bl.

The hepatitis B virus X protein, which can induce liver cancer in transgenic 

mice (274), has been shown to substantially elevate pol III transcription in a variety 

of cell lines (16, 256, 304, 548, 549). This is dependent on Ras signalling (548, 549). 

Dominant negative Ras or a Ras famesylation inhibitor both block X-induced 

activation of pol III transcription (548). Constitutively active Raf, a Ras effector, can 

overcome this block (548). Moreover, constitutively activated Ras can increase 

tRNA transcription in cells not infected with X protein (548). Since activating 

mutations in Ras are a very frequent occurrence in human cancers (344), this may be 

another mechanism by which pol III transcription is deregulated in transformed and 

human tumour cells. X protein induces an increase in the abundance of TBP, which 

may be sufficient to account for the increase in pol III transcription in some cell lines 

(527, 548, 549). The X protein enhances the transcription of the TBP gene (256). 

This involves three distinct Ras-activated pathways (256), suggesting that the Ras- 

Raf-MEK-MAP kinase pathway may not be the only Ras pathway that can affect pol 

III transcription.

The highly conserved TOR (target of rapamycin) pathway is also implicated 

in the regulation of pol III transcription. Treatment of budding yeast cells with the 

antibiotic rapamycin induces the Go program of molecular events, including the 

repression of pol III transcription (611). This is TOR-dependent, as extracts from 

rapamycin-treated yeast strains that lack the rapamycin ligand FKBP12 have 

comparable pol III transcriptional activity to extracts from untreated cells (611). 

Direct evidence that TOR signalling can influence pol III transcription is provided by 

the phenotype of a yeast strain, tor2ts, harbouring a temperature sensitive mutation in 

the highly conserved TOR kinase, Tor2. Extracts from the tor2ts strain harvested at 

the permissive temperature have similar pol III transcriptional activity to extracts 

from cells that are wild-type for Tor2 (611). In contrast, extracts from tor2ts cells 

harvested at the restrictive temperature have much lower pol III transcriptional 

activity than wild-type cells (611).

In yeast, protein kinase CKII (formerly known as casein kinase II) is required 

for high levels of basal pol III transcription (216). A yeast strain, cka2ts, bearing a 

temperature-sensitive lesion in the catalytic a ' subunit of CKII, has significantly
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reduced CKII activity compared to wild-type cells, both at the permissive and non- 

permissive temperature (163, 216). Accordingly, cka2ts cells and extracts prepared 

from this mutant strain display substantially diminished levels of tRNA and 5S 

rRNA synthesis (163, 216). When cka2ts cells are shifted to the restrictive 

temperature, concomitant with a further decrease in CKII activity, pol III 

transcription is reduced (216). In contrast, basal pol I- and pol II- transcription were 

found to be unaffected by the severely reduced CKII activity of the cka2ts strain 

(216). Titration of increasing amounts of purified wild-type CKII into extracts of 

cka2ts cells stimulated pol III transcription in a dose-dependent manner, consistent 

with a positive role for CKII in yeast pol III transcription (216). Further evidence 

was provided by the inhibition of tRNA synthesis in wild-type extracts by the 

commonly used CKII inhibitor, 2,3-diphosphoglycerate (216). The deficiency in pol 

III transcriptional activity of cka2ts cell extracts could also be specifically rescued by 

TFIIIB purified from wild-type cells, implicating TFIIIB as the CKII-responsive pol 

III factor (163, 164). Addition of TFIIIC or pol III had no effect (163, 164). TFIIIB 

is strongly phosphorylated by CKII in vitro; moreover, the dephosphorylation of 

TFIIIB eliminated its ability to rescue pol III transcription in CKII-deficient extracts 

(163, 164). Specifically, it is the TBP subunit of TFIIIB that is efficiently 

phosphorylated by CKII. Furthermore, CKII enhances the ability of recombinant 

TBP to stimulate pol III transcription in cka2ts cell extracts (163, 164). Although this 

suggests that TBP is at least one of the physiological targets of CKII among the pol 

III transcription components, it remains to be determined how the phosphorylation of 

TBP by CKII might stimulate pol III transcription. Nevertheless, the evidence is 

very convincing for an essential role for CKII in pol III transcription in yeast. In this 

chapter the role of CKII in mammalian pol III transcription is investigated.

CKII is a highly conserved Ser/Thr kinase (7). It is ubiquitously expressed in 

eukaryotes and is found both in the cytoplasm and the nucleus (7). Although the 

exact physiological role of CKII is not known, many lines of evidence suggest that 

CKII has essential roles in cell proliferation and growth (7). There is elevated CKII 

activity in rapidly dividing cells, both normal and transformed (243, 387). Indeed, a 

comparison with the proliferation marker Ki67 suggested that CKII would be a 

reliable marker protein for proliferation (387). Hence, CKII is elevated in tumour 

cells but also in normal cells with high mitotic activity, for example colorectal 

mucosa or embryonic cells during highly proliferative stages (387). Certain
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mitogens can stimulate CKII activity, for example insulin, insulin-like growth factor- 

I or EGF (76, 279, 414, 493). Indeed, CKII is required for cell cycle progression 

(192, 413). Microinjection of antibodies against the positive-acting regulatory p 

subunit of CKII into human primary fibroblasts at various times of the cell cycle 

revealed that CKII is required for transition of Go/Gj, early Gi, and Gi/S phases of 

the cell cycle (413). Disruption of the CKA1 and CKA2 genes that encode the a  and 

a ' catalytic subunits respectively of CKII in yeast is lethal, demonstrating that the 

functions of CKII in the cell are essential (402). Further evidence in support of a role 

for CKII in growth and proliferation is provided by the identity of many of the 

proteins that can be phosphorylated by CKII. Many of the protein substrates are 

involved in gene expression and protein synthesis, for example RNA polymerases I 

and II, DNA topoisomerases, nucleolin, HMG and ribosomal proteins and a number 

of translation initiation and elongation factors (7, 419). Additionally, CKII 

phosphorylates many signal transduction proteins and also transcription factors 

including nuclear oncoproteins such as myc, myb, fos and jun (7, 419). All of these 

substrates are consistent with a proliferative or growth promoting function for CKII.

Like many proteins with a positive role in cell proliferation and cell growth, 

CKII has oncogenic properties. The first hint of this came from the discovery that 

CKII activity is markedly and specifically elevated in the leukaemia-like cattle 

disease theileriosis, caused by the parasitic protozoan Theileria parva (400, 401). 

Furthermore, there is no evidence that tyrosine kinases or other signaling pathways 

are deregulated, suggesting that the upregulation of CKII in theileriosis is highly 

significant to the development of this disease (400, 401). CKII has since been found 

to be abnormally active in a variety of human cancers, including leukaemias and 

solid tumours (141, 160, 387). Direct evidence of the oncogenicity of CKII was 

provided by transgenic mice overexpressing the catalytic a  subunit, that develop 

lymphomas from six months of age with an incidence of 15-20% per year (474). The 

latency of onset and monoclonality of the lymphomas indicates that other mutations 

are required for transformation. However, coexpression of a c-myc transgene with a 

CKIIa transgene resulted in polyclonal neonatal leukaemia (474, 600). Thus, c-myc 

and CKIIa can cooperate to transform lymphocytes in a two-step pathway. 

Deregulation of the lymphoid oncogene tal-1 or loss of the tumour suppressor p53, in
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combination with CKIIa overexpression is also sufficient to transform lymphocytes 

(600).

Since tRNA and 5S rRNA are important determinants of the biosynthetic 

capacity of the cell, the positive role of CKII in pol III transcription in yeast 

correlates well with its apparent proliferative and growth-promoting roles. Indeed, 

the stimulation of basal pol III transcription by CKII may be a critical aspect of its 

growth-promoting function. In support of this, it has been reported that CKII can 

phosphorylate the pol I transcription factor UBF in mice, resulting in the stimulation 

of pol I transcription (540). Thus, CKII may coordinately upregulate pol I- and pol 

III- transcription ensuring the levels of tRNA and ribosomal RNAs are sufficient to 

meet the growth demands of the cell.

RNA pol III transcription has been found elevated in a number of human 

tumours and many transformed cells and is activated by several oncoproteins and 

repressed by two key tumour suppressors. Since CKII is a putative oncogene it was 

therefore of particular interest to determine whether CKII has a stimulatory role in 

mammalian pol III transcription. CKII is remarkably well conserved between yeast 

and mammals. Furthermore, the pol III factor target of CKII in yeast, TFIIIB, is also 

required for mammalian pol III transcription and two of its subunits, TBP and BRF, 

are quite well conserved. However, it has previously been reported that CKII can 

phosphorylate the human La antigen, which inhibits the reported in vitro ability of La 

to stimulate recycling of the human pol III transcription complex (140). It remains to 

be determined though whether inhibition of this activity by CKII is ever responsible 

for limiting the rate of pol III transcription under physiological conditions. A La 

homologue has also been found in yeast, but is not required for viability (603).

Preliminary experiments carried out to investigate whether glycogen synthase 

kinase-3 p (GSK-3p) can affect pol III transcription are also described in this chapter. 

GSK-3p is one of two isoenzymes, a  and p, of mammalian GSK-3, each of which is 

encoded by a separate gene (594). These two isoenzymes are highly related and are 

thought to perform similar functions; however, the majority of studies on mammalian 

GSK-3 have been with the p isoform or have not discriminated between the two 

forms.

GSK-3 p is a highly conserved Ser/Thr kinase and is thought to have an 

important role in translation control (423, 561). GSK-3p phosphorylates the
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translation initiation factor eIF2B, which inhibits its guanine nucleotide exchange 

activity, thus preventing the regeneration of active eIF2 that is required for each new 

round of translation initiation (423, 562). Following mitogenic stimulation, the 

phosphatidylinositol 3-kinase (PI3K) pathway switches off GSK-3p, thereby 

allowing activation of translation (561, 562). The inhibition of translation by GSK- 

3p may be accounted for solely by its effect on eIF2B; however, it is possible that 

GSK-3 p also targets other essential components of the translational apparatus. Thus, 

it may be that GSK-3 p inhibits pol III transcription. Even if the levels of tRNA and 

5S rRNA are not rate-limiting under these circumstances, their reduction may 

provide a kind of fail-safe mechanism, for example if eIF2 were to become 

independent of eIF2B regulation. Furthermore, the coordinate downregulation of 

tRNA and 5S rRNA synthesis with the inhibition of translation is better for the 

economy of the cell, as the production of these transcripts is energetically costly. In 

support of a role for GSK-3 p in regulating pol III transcription, treatment of serum- 

stimulated fibroblasts with the PI3K inhibitor wortmannin has been found to inhibit 

pol III transcription (470). However, PI3K has several other downstream effectors in 

addition to GSK-3 p, and any of these may be responsible for the inhibitory effect of 

wortmannin on pol III transcription. For example, the p70 S6 kinase lies 

downstream of PI3K (422); it is required for the serum induction of ribosomal 

protein synthesis and thus is another strong candidate for a role in regulating pol III 

transcription.

Another substrate of GSK-3p is cyclin D1 (124). GSK-3P phosphorylates 

cyclin D l, targeting it for proteolytic degradation by the 26S proteasome (124). The 

primary function of the D-type cyclins, in combination with their catalytic cdk 

partner, is the phosphorylation and inactivation of the retinoblastoma protein (214). 

Therefore, GSK-3P, by negatively regulating cyclin Dl stability, may have a 

physiological role in ensuring that RB is not inappropriately inactivated. Thus, 

GSK-3 p may negatively regulate pol III transcription indirectly via its effect on the 

activity of RB.

In addition to its inhibitory effects on cyclin Dl levels and eIF2B, GSK-3p, 

which is remarkably well conserved between distantly related eukaryotic species, is 

also involved in essential developmental processes including axis formation in 

Xenopus, cell fate determination in Dictyostelium and segment polarity in
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Drosophila (563). The role of GSK-3 p in development is mediated through its 

involvement in Wnt signalling (69, 412). GSK-3p, facilitated by a multiprotein 

complex that includes the adenomatous polyposis coli (APC) tumour suppressor, 

phosphorylates p-catenin targeting it for degradation by the proteasome, as is the 

case for cyclin Dl (69, 412). Wnt signalling inactivates GSK-3p, enabling the 

accumulation of p-catenin and its translocation to the nucleus where it can interact 

with members of the LEF/TCF family of HMG-box containing transcription factors 

and activate transcription of genes containing LEF/TCF binding sites (69, 412).

Although the primary role of Wnt signalling is in development, in adult 

tissues it also has a role in regulating cell proliferation (412). Inappropriate 

activation of Wnt signalling is implicated in a variety of different human cancers 

(382, 412). The APC tumour suppressor is frequently mutated in colon cancer and 

the GSK-3 P phosphorylation sites of P-catenin are also found to be mutated in 

human tumours, both of these effects resulting in increased levels of p-catenin and 

increased transcription of LEF/TCF-responsive genes (382). Many of these genes 

are involved in development and provide no obvious links to tumorigenesis. 

Recently, however, a few pro-proliferative targets of Wnt signalling have been 

identified, such as the c-myc and cyclin Dl genes, both of which are transcriptional 

targets of the p-catenin/TCF transcription complex (204, 382, 518). In addition to 

positively regulating cyclin Dl gene expression (518), Wnt signalling also reduces 

cyclin Dl proteolysis, both of which effects correlate with the inhibition of GSK-3p 

(435).

Thus, GSK-3 p is negatively regulated by at least two distinct signalling 

pathways, namely the PI-3K pathway and Wnt signalling. These two pathways 

inhibit GSK-3 p through different mechanisms and lead to distinct downstream 

events (126). However, signalling through both pathways affects cyclin Dl 

proteolysis (124, 435). The negative regulation of GSK-3 p by mitogens and many of 

its functions are consistent with an anti-proliferative, growth restraining role for 

GSK-3 p. Consistent with this, GSK-3 p has also been shown to phosphorylate and 

inhibit c-jun and can phosphorylate other transcription factors involved in cell 

proliferation, such as myc, myb and CREB (563). Thus, the inhibition of pol III 

transcription may be one aspect of a general physiological role of GSK-3P in 

inhibiting growth and proliferation under certain circumstances.
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GSK-3P is also implicated in Alzheimer’s disease (254). A key event in the 

pathogenesis of this disease is the hyperphosphorylation of the microtubule- 

associated protein tau (254). Normal, underphosphorylated tau has essential 

functions in microtubule nucleation, organisation and stability (254). 

Hyperphosphorylation of tau impairs these functions and promotes the formation of 

paired helical filaments, the building blocks of the neurofibrillary lesions of 

Alzheimer’s disease (254). GSK-3P phosphorylates tau; moreover, GSK-3p has 

been shown to reduce microtubule abundance and disrupt microtubule organisation 

when overexpressed with tau, suggesting that the phosphorylation of tau by GSK-3P 

may be physiologically relevant to the tau phenotype in Alzheimer’s disease (254, 

328, 343, 542).

As its name suggests, GSK-3p also functions in glycogen metabolism. The 

phosphorylation of glycogen synthase by GSK-3p inactivates it, thus inhibiting 

glycogen synthesis (502). Recently, a positive role in cell survival has also been 

reported for GSK-3P (219). Mice deficient in GSK-3P have been generated and 

found to die in mid-gestation due to excessive hepatocyte apoptosis (219). This 

phenotype is consistent with hypersensitivity to TNFa toxicity, as displayed by mice 

that lack NFkB function (219). Indeed, GSK-3p_/' cells displayed significantly 

reduced N FkB function implying that GSK-3P has a role in N F kB activation (219). 

Clearly, GSK-3p performs a variety of functions within the cell. Unlike CKII, a role 

for GSK-3p in pol III transcription has never previously been reported in any 

eukaryotic species.
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6.2 Results

6.2.1 The CKII inhibitors 2,3-diphosphogIycerate and quercetin potently 

inhibit mammalian pol III transcription in vitro

In yeast, CKII is required for high levels of basal pol III transcription (163, 

164, 216). To investigate whether CKII has a similar role in pol III transcription in 

mammals, the effect on transcription of the two well-known CKII inhibitors 2,3- 

diphosphoglycerate (DPG) and quercetin was tested. As Figure 6.1 shows, specific 

pol III transcription reconstituted in vitro with HeLa PC-B and PC-C fractions and a 

human tRNAleu gene was severely repressed both by 2,3-diphosphoglycerate and 

quercetin. The decrease in transcription was dose-dependent, with little or no tRNA 

synthesis detectable at the higher dose. The low concentrations of DPG and 

quercetin used in this experiment have previously been shown to potently and 

specifically inhibit CKII phosphorylation of established natural substrates, including 

yeast TFIIIB (216, 364, 530). Similar repression of pol III transcription in the 

presence of DPG or quercetin was observed when transcription was reconstituted 

with unfractionated HeLa nuclear extract or the VAj gene as template (data not 

shown). Another commonly used CKII inhibitor, the ATP analogue 5,6-dichloro-l-P 

-D-ribofuranosylbenzimidazole (DRB), was also found to reduce the levels of pol III 

transcription in a HeLa nuclear extract (257). The fact that three unrelated 

compounds that function as specific inhibitors of CKII kinase activity have the same 

effect on pol III transcription suggests that the repression observed is a specific 

response to a decrease in CKII activity. The effect of quercetin and DRB on pol III 

transcription in vivo has also been tested. Both CKII inhibitors caused a reduction in 

the levels of pol III transcripts (470), suggesting that the reduction in mammalian pol 

III transcription observed in vitro with these CKII inhibitors is of physiological 

significance.

6.2.2 CKII activates mammalian pol III transcription in vitro

DPG, DRB and quercetin are all potent inhibitors of CKII, and at the 

concentrations that were used in these experiments have been shown to have no
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Figure 6.1

Pol III transcription decreases in the presence of the CKII inhibitors DPG and 

quercetin

Each transcription reaction contained 2pl of HeLa PC-B, 2 j l x 1 of HeLa PC-C and 

250ng of pLeu encoding a tRNAleu gene (all lanes). In addition, lanes 2 and 3 

contained 2,3-diphosphoglycerate, 6mM and 12mM respectively. Lane 6 contained 

50pM of quercetin and lane 7 contained lOOpM of quercetin. Lanes 1, 4, 5 and 8 

contained appropriate amounts of control buffer for the two inhibitors. Following a 

15 min preincubation at 30°C, nucleotides were added to initiate transcription, which 

was allowed to proceed for 1 h.
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effect on a range of other kinases. However, although these chemical CKII inhibitors 

are highly specific, none of them can be regarded as totally specific for CKII, 

especially at higher concentrations. Therefore, it was necessary to verify that CKII 

does indeed have a positive influence on mammalian pol III transcription in vitro, as 

suggested by the inhibitory effect of the CKII inhibitors. To test this, in vitro 

transcription reactions were carried out in the presence of increasing amounts of a 

peptide substrate containing a consensus CKII phosphorylation site. This CKII 

peptide was specifically designed based on the sequence preferences of CKII (295, 

296). The minimal sequence requirements for a CKII phosphorylation site is 

Ser/Thr-x-x-Asp/Glu (419). CKII is unusual in that it has a strong preference for 

acidic residues whereas the specificity determinants of most Ser/Thr kinases are 

basic (419). A multitude of different peptides containing a CKII phosphoacceptor 

site have been analysed for their kinetic properties and their specificity as a CKII 

substrate (419). The CKII peptide substrate used in these experiments is highly 

specific for CKII and has favourable kinetic properties (295, 296). The presence of 

CKII peptide in a cell extract provides an alternative substrate for phosphorylation by 

CKII from the endogenous CKII substrates. Thus, the CKII peptide should compete 

with endogenous substrates for phosphorylation by CKII. Therefore, the peptide is 

effectively a competitive inhibitor of the kinase. By being a better substrate or 

present in much larger amounts, such peptides can divert the kinase for which they 

contain a phosphoacceptor site from the phosphorylation of its endogenous substrates 

(540).

Titrating in increasing amounts of CKII peptide into a crude HeLa nuclear 

extract caused a dose-dependent decrease in pol III transcription of the VAi gene 

(Figure 6.2). Transcription was inhibited approximately 90-fold in the presence of 

40pg of the CKII peptide (Fig. 6.2, compare lanes 1 and 4). In contrast, the addition 

of identical amounts of a peptide containing a consensus phosphoacceptor site for 

protein kinase A (PKA) had no effect on the level of transcription (compare lanes 5, 

6 and 7 with lanes 1 and 8). The highly specific inhibitory effect of the CKII peptide 

is probably caused by the ability of this peptide to reduce the phosphorylation of 

endogenous substrates by CKII, whereas the PKA peptide is unable to do this. To 

support this interpretation, the ability of recombinant CKII to phosphorylate the PKA 

and CKII peptides was tested in an in vitro kinase assay. CKII phosphorylated the 

CKII peptide approximately 40-fold more efficiently than the PKA peptide or
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Figure 6.2

Competitive inhibition of CKII with a peptide containing a consensus CKII 

phosphoacceptor site specifically represses pol III transcription

All reactions contained 2pl of HeLa nuclear extract and 250ng of pVAi (all lanes). 

In addition, lanes 2-4 contained increasing amounts of a peptide containing a CKII 

phosphoacceptor site (20pg, 30pg and 40pg, respectively). Lanes 5-7 contained 

increasing amounts of a peptide containing a PKA phosphoacceptor site (20pg, 30pg 

and 40pg, respectively). No peptide was added to lanes 1 and 8. Reaction mixtures 

were preincubated with added peptide for 15 min at 30°C prior to the addition of 

nucleotides to initiate transcription. Transcription was allowed to proceed for 1 h at 

30°C.
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Figure 6.3

The competitor peptide containing a CKII phosphoacceptor site is specifically 

and potently phosphorylated by CKII

In vitro kinase assays were performed using three different peptide substrates, 

peptide containing a CKII phosphoacceptor site, peptide containing a GSK-3 

phosphoacceptor site (CREB) and peptide containing a PKA phosphoacceptor site. 

Each of these peptide substrates was individually incubated with 0.5 pi of 

recombinant CKII or GSK-3. 10|rCi [y-32P] ATP was included in each reaction 

mixture as a source of radiolabelled phosphate donor. In vitro phosphorylation 

reactions were allowed to proceed for 20 min at 30°C. Reactions were then stopped 

by pipetting samples onto 2cm phosphocellulose discs (Whatman P81) that the 

peptides are designed to bind and unincorporated label was removed by extensive 

washing with 75mM phosphoric acid. The level of phosphorylation of the peptide 

substrates was then estimated by liquid scintillation counting of the individual discs.
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another peptide containing a phosphoacceptor site for GSK-3 (Figure 6.3), 

confirming that the CKII peptide is likely to be able to strongly compete with 

endogenous substrates for phosphorylation by CKII, whereas the PKA peptide 

cannot. Recombinant GSK-3 and p42 MAPK were also tested for their ability to 

phosphorylate the CKII peptide. Consistent with previous data demonstrating the 

specificity of the CKII peptide for CKII, the level of phosphorylation of the CKII 

peptide by these two kinases was negligible (Figure 6.3 and data not shown).

Production of detectable amounts of the appropriately sized transcript in an in 

vitro transcription assay requires correct initiation, elongation, termination and re­

initiation of transcription. The inhibitory effect of the CKII peptide could be caused 

by a defect in any of these steps. To try and determine at which of these steps the 

CKII peptide has its inhibitory effect, primer extension analysis of the transcripts 

produced in the presence or absence of CKII peptide in an in vitro pol III 

transcription assay, was performed. Whereas all the transcripts produced in a 

standard pol III run-off assay are detected and can be distinguished only on the basis 

of size, primer extension analysis will only detect a subset of the transcripts; cDNAs 

will only be produced from RNA species that contain a specific sequence that can 

hybridize to the radiolabelled primer added. Therefore, most of the non-specific 

transcripts produced will not be detected. In addition to primer extension analysis 

reducing background noise, the size of the cDNAs can be used to map the 5' 

terminus of the RNAs and thus determine if transcription initiated at the correct site.

Figure 6.4 shows the results of primer extension analysis of RNA from in 

vitro pol III transcription of the VAi gene in HeLa nuclear extract in the presence or 

absence of CKII peptide. No cDNA of any size could be detected following primer 

extension of RNA from a transcription reaction that contained CKII peptide (Fig. 6.4, 

compare lane 3 with lanes 1, 2, 4 and 5), suggesting that the inhibitory effect of the 

CKII peptide may occur at the level of transcription initiation. The presence of PKA 

peptide resulted in a cDNA of the same size as in the absence of any added peptide, 

demonstrating the specificity of the effect of the CKII peptide.

The effect of the CKII peptide was also tested in a more purified transcription 

system using fractionated factors rather than a crude extract and a tRNA gene as the 

pol III template, rather than VAi (Figure 6.5). As for VAi transcription, tRNA 

synthesis was inhibited in a dose-dependent manner and was almost completely
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abolished by the higher doses of CKII peptide. In contrast, neither the PKA peptide 

nor a third peptide containing a consensus phosphoacceptor site for p34cdc2 had any 

effect on the level of tRNA synthesis demonstrating the sequence-specificity of the 

effect of the CKII peptide on transcription.

The consistent reduction in pol III transcription when CKII activity is 

specifically inhibited, whether by a chemical CKII inhibitor or by peptide containing 

a CKII phosphorylation site, suggests that CKII has a positive influence on pol III 

transcription. Indeed, transcription is almost completely abolished by doses of 

inhibitor commonly used to specifically inhibit CKII kinase activity, suggesting that 

CKII may be essential for high levels of mammalian pol III transcription, at least in 

vitro.

The influence of CKII on mammalian pol III transcription in vivo has also 

been tested further. An antisense approach was adopted, as has previously 

successfully been used to deplete cells of endogenous CKII activity (414, 474). 

Primary human fibroblasts (IMR-90) were exposed to oligodeoxynucleotides 

complementary to the start region of mRNAs coding for the positively-acting 

regulatory p subunit of CKII. This provoked a significant reduction in the 

abundance of endogenous CKIip protein, severely impairing the CKII activity of the 

cells (257). RNA was harvested from these cells and analysed by RT-PCR using 

intron-specific primers against two different tRNA species, thus providing an 

indication of the rate of ongoing pol III transcription (104, 105). Exposure of cells to 

antisense CKIIp oligonucleotides substantially reduced the levels of tRNA synthesis 

in vivo relative to that of untreated cells or cells treated with sense CKIip 

oligonucleotides (257). In contrast, there was no change in the abundance of mRNA 

encoding glyceraldehyde phosphate dehydrogenase (257), demonstrating the 

specificity of the effect of the antisense CKIip oligonucleotides on tRNA synthesis.

The inhibitory effect of depleting cells of CKIip protein on mammalian pol 

III transcription in vivo could be very indirect. Although the exact functions of CKII 

in cell growth and proliferation have yet to be elucidated, there is considerable 

evidence that it has essential roles in these two processes. Indeed, decreasing 

endogenous CKII activity using antibodies against CKIip can inhibit progression 

through particular stages of the cell cycle (413). Depletion of CKII activity with 

antisense CKIip oligonucleotides from IMR-90 fibroblasts has previously been
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Figure 6.4

Primer extension analysis of transcripts produced by in vitro transcription of 

the VAi gene in the presence of CKII peptide or PKA peptide

In vitro transcription reactions were reconstituted with 2pi of HeLa nuclear extract 

(all lanes), 250ng of pVAi (all lanes) and 40pg of peptide containing a consensus 

phosphoacceptor site for CKII (lane 3) or PKA (lane 5). After a 15 min 

preincubation at 30°C, transcription was initiated by the addition of equimolar 

concentrations of rATP, rCTP, rGTP and rUTP, none of which were radiolabelled. 

DNA was removed from transcription reaction products by treating samples with
99RNase-free DNase. 2.5ng of [y- P]-labelled oligonucleotide primer specific for a 

coding region of the VAi gene was added to each RNA sample for primer extension 

analysis. After heating the samples at 80°C for 10 min to denature the RNA, the 

samples were incubated for ~2h at 50°C to allow the slow annealing of the primer to 

the complementary sequence present in RNA species. Reverse transcription was 

then allowed to proceed for lh at 42°C. cDNA products were analysed on a 7M urea 

7% polyacrylamide sequencing gel.

230



Peptide “ CK2 " PKA

■
,
* % i ", ' < . :
V ' \ ' / . •;/

• . ; .  : *
£ &  « : #  r  /: U  -  V "  '* ; ■ & &  . ^ S ?  : 

■ : ■ ’ V  ■

V ■.;■■■ ■‘T -' -v :

  »*.’  i »  A   i

1 2 3 4 5



Figure 6.5

tRNA synthesis is inhibited specifically by a competitor peptide with a 

consensus CKII phosphoacceptor site

Pol III transcription was reconstituted in vitro with HeLa PC-B (2pl) and PC-C (2pi) 

and a tRNAleu gene as the specific pol III template (250ng of pLeu) (all lanes). 

Additionally, lanes 2-5 contained increasing amounts of a peptide containing a CKII 

phosphoacceptor site (lOpg, 20pg, 30pg and 40pg, respectively). Lanes 7-10 

contained increasing amounts of a peptide containing a PKA phosphoacceptor site 

(lOpg, 20 jug, 30pg and 40pg, respectively). A peptide containing a p34cdc2 

phosphoacceptor site was added to lanes 12-15 (lOpg, 20pg, 30pg and 40pg, 

respectively). No peptide was added to reactions 1, 6 and 11. Reaction mixtures 

were preincubated with added peptide for 15 min at 30°C prior to the addition of 

nucleotides to initiate transcription. Transcription was allowed to proceed for 1 h at 

30°C.
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shown to transiently inhibit cell growth stimulation by EGF (414). Since pol III 

transcription is also subject to cell cycle and growth control (96, 255, 363, 525, 569, 

571), it may be that the decrease in tRNA synthesis is an indirect response to a 

change in the growth or proliferative rate of the cell caused by the reduction in the 

abundance of CKII(3 protein. Alternatively, perhaps CKII regulates the activity of a 

transcription factor that can modulate the transcription of genes encoding 

components of the pol III transcription apparatus. Such indirect mechanisms might 

be responsible for the pol III transcriptional response to CKII in vivo. However, the 

potent inhibitory effect of reducing endogenous CKII activity on pol III transcription 

in vitro demonstrates that CKII can directly influence pol III transcription 

independently of changes in gene expression of pol III components or the 

proliferation status of the cell.

The sensitivity of mammalian pol III transcription in vivo to a decrease in 

CKII activity is very important as it demonstrates that CKII can influence 

mammalian pol III transcription in a physiological context as well as in vitro. The in 

vivo pol III response mimics that in vitro, suggesting an activating function for CKII 

in mammalian pol III transcription. The evidence for this is derived from the effect 

on transcription of reducing the endogenous CKII activity. The converse 

experiments were also performed in which the abundance of CKII is artificially 

raised above endogenous levels. The overexpression of CKII in human 

osteosarcoma cells had no effect on pol III transcription (257). Similarly, titrating in 

increasing amounts of recombinant CKII into in vitro transcription reactions 

reconstituted with HeLa nuclear extract or HeLa PC-B and PC-C fractions failed to 

stimulate transcription (data not shown). The lack of a stimulatory effect of 

exogenous CKII can be reconciled with the decrease in pol III transcription when 

endogenous CKII levels are reduced if endogenous CKII is normally in relative 

excess. In support of this possibility, endogenous CKII is saturating for pol III 

transcription in wild type yeast cell extracts (216).

In HeLa extracts containing the highly specific CKII peptide, endogenous 

CKII is competitively inhibited from phosphorylating its natural substrates and is 

thought to become limiting for its stimulatory effect on mammalian pol III 

transcription, hence the decrease in pol III transcription observed. If the inhibitory 

effect on pol III transcription of the CKII peptide truly is caused by a reduction in the 

CKII phosphorylation of endogenous substrates, then the impaired pol III
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transcription of extracts or fractionated factors containing CKII peptide should be 

rescued by the addition of recombinant CKII. As Figure 6 . 6  shows, the addition of 

recombinant CKII to a HeLa extract containing CKII peptide strongly stimulated 

transcription. This provides direct evidence that CKII has an activating function in 

mammalian pol III transcription in vitro. The recombinant CKII substantially 

rescued transcription that was almost completely abolished by the presence of CKII 

peptide in these extracts (Figure 6 .6 , compare lanes 4 and 5). In contrast, addition of 

the same amount of recombinant CKII had no stimulatory effect in HeLa extracts 

containing PKA peptide rather than CKII peptide (Fig. 6 .6 , compare lanes 7 and 8 ). 

Addition of CKII to extracts lacking peptide had little stimulatory effect on 

transcription, as previously observed (Fig 6 .6 , compare lane 2 with lanes 1 & 3). 

Similarly, transcription of a tRNAIeu gene using HeLa PC-B and PC-C, repressed by 

the addition of CKII peptide, could also be rescued by recombinant CKII (data not 

shown). These results demonstrate that CKII contributes significantly to the level of 

mammalian pol III transcription in vitro but also that it is in excess for pol III 

transcription in unfractionated HeLa extracts and HeLa PC-B or PC-C fractions.

6.2.3 CKII and TFIIIB interact stably

The responsiveness of pol III transcription reconstituted with PC-B and PC-C 

to CKII peptide or chemical CKII inhibitors and the inability of CKII to stimulate 

such transcription except in the presence of peptide or inhibitor, suggests that some 

endogenous CKII has copurified with the pol III transcription components in PC-B 

or PC-C. This copurification on phosphocellulose might be because CKII physically 

interacts with a component of the pol III transcription apparatus or it may be entirely 

fortuitous. These phosphocellulose fractions are relatively crude and contain many 

proteins. The possibility that CKII may stably associate with a component of the pol 

III transcription apparatus was further investigated by seeing if CKII is present in 

highly purified fractions of the different pol III transcription components.

As a sensitive means of assaying for the amount of CKII activity in these 

fractions, in vitro kinase assays were performed using peptide containing a CKII 

phosphoacceptor site as substrate. Immunoaffinity-purified TFIIIB fractions were 

found to contain between 2- and 4- fold as much CKII activity as mock-
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Figure 6.6

Recombinant CKII rescues pol III transcription reconstituted in the presence of 

peptide containing a consensus phosphoacceptor site for CKII

All reactions contained 2pl of HeLa nuclear extract and 250ng of pVAi (all lanes). 

In addition, reactions 4 and 5 contained 30pg of peptide containing a 

phosphoacceptor site for CKII. Reactions 7 and 8 contained 30pg of PKA peptide, 

lp l of recombinant CKII was also added to reactions 2, 5 and 8 . Following a 15 min 

preincubation at 30°C, nucleotides were added to initiate transcription, which was 

allowed to proceed for 1 h at 30°C.
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imrnunopurified TFIIIB fractions generated using columns carrying preimmune 

serum (data not shown). In contrast, immunoaffinity-purified TFIIIC fractions 

contained only low levels of CKII activity similar to the levels found in mock- 

immunopurified TFIIIC fractions (data not shown). An immunoaffinity-purified 

TFIIIB fraction and a mock-immunopurified TFIIIB fraction were also assayed for 

PKA activity. This was found to be similar in the two fractions, demonstrating the 

specificity of the higher levels of CKII activity found in the immunoaffinity-purified 

TFIIIB fraction (data not shown).

These results suggest that CKII and TFIIIB may stably interact. It was 

therefore investigated whether they cofractionate during gradient chromatography. 

As Figure 6.7 shows, the TFIIIB activity and CKII activity of eluted fractions were 

found to closely coincide following gradient chromatography of a PC-B fraction on 

hydroxy apatite. PKA activity was also assayed and found to fractionate differently 

(data not shown). Similar cofractionation of TFIIIB and CKII was observed 

following gradient chromatography of a PC-B fraction on heparin-Sepharose (data 

not shown). Eluted fractions from Mono Q gradient chromatography of a PC-B 

fraction were also analysed. A Mono Q gradient resolves TFIIIB into two essential 

components, B' and B", that elute at 0.38M KC1 and 0.48M KC1, respectively (374). 

B' consists minimally of TBP and BRF, whereas the composition of B" is uncertain 

but is thought to contain a human homologue of yeast B" (374). Two significant 

peaks of CKII activity were found to elute from Mono Q. Comparison with the 

elution profile of TFIIIB revealed that the CKII peak that eluted slightly later in the 

gradient coincides with the peak of B' activity (Figure 6 .8 ). In contrast, peak B" 

fractions contained hardly any CKII activity. The specificity of this cofractionation 

of a sizeable proportion of the CKII in a PC-B fraction with B' was further 

demonstrated by the fractionation of DNA-dependent protein kinase (DNA-PK) and 

GSK-3. DNA-PK eluted early in the gradient, well before B' or B", whereas the 

bulk of GSK-3 activity eluted in the flowthrough (data not shown).

The criteria by which heparin, hydroxyapatite and Mono Q separate proteins 

are distinct. The cofractionation of TFIIIB and CKII during gradient 

chromatography on each of these three distinct adsorbent types suggests that TFIIIB 

and CKII stably interact. The specific cofractionation of CKII with B' and not B" on
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Figure 6.7

TFIIIB and CKII cofractionate during gradient chromatography of PC-B on 

hydroxyapatite

Gradient-eluted fractions were assayed for TFIIIB by in vitro transcription 

reconstituted with 2pl of PC-C, 250 ng of pVAi and 4pl of eluted fraction. CKII 

activity of individual fractions was assayed by in vitro phosphorylation reaction 

using peptide containing a consensus CKII phosphoacceptor site as the substrate. 

Fraction numbers are indicated. FT, flowthrough.
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Figure 6.8

A subpopulation of CKII molecules closely cofractionates with TFIIIB B'

activity during gradient chromatography of PC-B on Mono Q

The TFIIIB B' activity of individual fractions was assayed by in vitro transcription 

reaction reconstituted with the VAi gene as the specific pol III template (250ng), 

TBP-immunodepleted nuclear extract (4pl) and the individual Mono Q fraction 

(2pl). The levels of VAi transcript produced were quantitated by phosphoimager 

analysis*.

To assay for B" activity, transcription reactions were reconstituted with 250ng of

pVAi, 2pl of PC-C, 2pl of the Mono Q fraction of peak B' activity (fraction number

55) and 2pl of the individual Mono Q fraction. As for B' activity, the levels of VAi
★

transcript produced were quantitated by phosphoimager analysis .

CKII activity of individual fractions was assayed by in vitro phosphorylation reaction 

using peptide containing a consensus CKII phosphoacceptor site as the substrate. 

Fraction numbers are indicated. FT, flowthrough.

’Determ ination o f  B' and B" activity o f  M ono Q fractions by in vitro transcription assay and 
phosphoim ager quantitation o f  transcript levels w ere performed by Robert J. W hite.
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Mono Q suggests that CKII may directly interact with either the TBP or BRF 

component of TFIIIB.

As an independent test of a physical association of endogenous TFIIIB and 

CKII, immunoprecipitation experiments were performed. Antiserum against the 

BRF subunit of TFIIIB was consistently found to coimmunoprecipitate CKII activity 

from HeLa nuclear extract or HeLa PC-B (Figure 6.9 and data not shown). A low 

level of CKII activity was also detected in immunoprecipitates of the pre-immune 

serum, presumably due to non-specific interactions; however, this was always 

significantly less than the amount of CKII activity immunoprecipitated with the BRF 

antiserum. On average, approximately three times as much CKII activity is detected 

in immunoprecipitates obtained using the BRF antiserum as in those obtained with 

the appropriate pre-immune serum (Fig. 6.9 and data not shown). The converse 

experiment was also performed, in which CKII was specifically immunoprecipitated 

from HeLa nuclear extract using an antiserum raised against the catalytic a  subunit 

of CKII and the presence of TFIIIB in the precipitated material was assayed for by 

Western blotting using an antiserum raised against BRF. The typical results of such 

an immunoprecipitation are shown in Figure 6.10. As positive controls, antisera 

against BRF itself and RB, which has previously been shown to bind to TFIIIB (93, 

314, 315, 503, 504), were used and as expected precipitated significant amounts of 

BRF (Fig. 6.10, lanes 1 and 2). The CKIIa antiserum was also found to 

immunoprecipitate BRF; indeed, comparable levels of BRF coprecipitated with CKII 

as found in immunoprecipitates obtained using the RB antiserum (Fig. 6.10, compare 

lanes 2 and 3). In contrast, an antiserum against the TAFi48 subunit of the pol I- 

specific transcription factor SL1 was unable to immunoprecipitate BRF (lane 4), 

demonstrating the specificity of the presence of BRF in immunoprecipitates obtained 

with the CKIIa antiserum. This specific coimmunoprecipitation of BRF with an 

antiserum raised against the catalytic a  subunit of CKII was confirmed using a 

second antiserum raised against a different region of BRF (data not shown). This 

coimmunoprecipitation data, along with the consistent cofractionation of CKII and 

TFIIIB through a variety of different column types, suggests that a subpopulation of 

endogenous CKII molecules stably and specifically associate with endogenous 

TFIIIB.
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Figure 6.9

Coimmunoprecipitation of CKII activity with endogenous TFIIIB

Immunoprecipitation reactions were carried out using equivalent amounts of 330 

antiserum raised against BRF or the corresponding pre-immune serum, prebound to 

protein A-Sepharose, and 20pl of PC-B. Following 3h incubation at 4°C on an 

orbital shaker, samples were pelleted, supernatants were removed and the 

immunoprecipitated material was washed five times with 250pl of LDB. 

Immunoprecipitates were then assayed for CKII activity by in vitro phosphorylation 

using peptide containing a consensus phosphoacceptor site for CKII as substrate, [y- 

32P] -ATP (lOpCi) was included in each reaction mixture as a source of radiolabelled 

phosphate donor, enabling the levels of phosphorylation of CKII peptide substrate to 

be estimated by liquid scintillation counting. Results shown are the averages and 

standard errors from four independent immunoprecipitations for both of the two sera.
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Figure 6.10

Endogenous CKII interacts with TFIIIB

HeLa nuclear extract (150ju-g) was immunoprecipitated using anti-BRF antiserum 

128 (lane 1), anti-RB antibody C-15 (lane 2), anti-CKIIa antibody H-286 (lane 3) or 

anti-TAFi48 antibody M-19 (lane 4). Precipitated material was resolved on a SDS- 

7.8% polyacrylamide gel and then analysed by western blotting with anti-BRF 

antiserum 330.
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TFIIIB is sufficient to restore pol III transcription to wild-type levels in cell 

extracts of the yeast cka2ts strain (163, 164). Transcriptional rescue by TFIIIB is 

abolished if TFIIIB is pretreated with phosphatase (164). These observations suggest 

that TFIIIB is the CKII-responsive component of the pol III transcription apparatus 

in yeast. TBP, an essential component of TFIIIB both in yeast and mammals, is the 

preferred substrate of yeast TFIIIB for phosphorylation by CKII (163, 164). 

Phosphorylation by CKII enhances the ability of recombinant TBP to stimulate pol 

III transcription in cka2ts extracts (163, 164). These data suggest that 

phosphorylation of TBP by CKII may mediate the stimulation of pol III transcription 

in yeast by CKII. Since TBP is likely to be the physiological target of CKII in yeast 

it was therefore of considerable interest as to whether an interaction between human 

TFIIIB and CKII is dependent on TBP. This was investigated by heat inactivating 

TBP in a PC-B fraction and assaying whether TFIIIB and CKII still 

coimmunoprecipitate. As Figure 6.11 shows, the heat inactivation of TBP had little 

or no detectable effect on the ability of an antiserum raised against the catalytic a  

subunit of CKII to specifically immunoprecipitate BRF (compare lanes 2 and 5). An 

in vitro transcription assay confirmed that the TBP in the heat treated PC-B used in 

this immunoprecipitation experiment had been inactivated, at least in its ability to 

support transcription (data not shown). As a positive control an antiserum against 

RB was used. Surprisingly, the coimmunoprecipitation of BRF with RB was 

diminished when heat treated PC-B was used, suggesting that TBP might facilitate 

the interaction between RB and BRF. This possibility warrants further investigation, 

although the effect of heat inactivating TBP on the levels of BRF in RB 

immunoprecipitates was much less in other immunoprecipitation experiments 

conducted (data not shown). These experiments also suggested that heat inactivated 

TBP can still interact with BRF (data not shown), causing questions to be raised as to 

the exact nature by which TBP is heat inactivated and the molecular basis for the loss 

of its ability to support pol III transcription. Therefore, although the heat inactivation 

of TBP was consistently observed to have no effect on the level of BRF that 

coimmunoprecipitated with CKII, it can not be concluded from this that an 

interaction between CKII and TFIIIB is independent of TBP.

In Figure 6.11, several bands of slightly different mobility about the size of 

BRF are detected with the BRF antiserum used. Confirmation that these bands 

correspond to BRF and are not non-specific proteins recognised by the antiserum has
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Figure 6.11

Heat inactivation of TBP has no effect on the endogenous association of BRF 

and CKII

20pl of untreated PC-B (lanes 1-3) or HT PC-B (lanes 4-6) was immunoprecipitated 

using anti-Rb antibody C-15 (lanes 1 and 4), anti-CKIIa antibody H-286 (lanes 2 and 

5) or anti-TAFi48 antibody M-19 (lanes 3 and 6 ). After extensive washing with LDB 

buffer, precipitated material was resolved on a SDS-7.8% polyacrylamide gel and 

analysed by western blotting with anti-BRF antiserum 330.
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been obtained using a second antiserum that was raised against a different region of 

BRF (data not shown). This phenomenon of multiple BRF bands has previously 

been observed using these BRF antisera (315, 504). These different forms of BRF 

may represent splice variants of BRF, of which several have recently been identified 

and cloned (365). Alternatively, the different bands may correspond to differentially 

phosphorylated forms of a single BRF species.

Many protein kinases can stably interact with their substrates. Therefore, the 

identification of proteins that associate with a particular kinase can sometimes help 

identify putative substrates. The consistent cofractionation and 

coimmunoprecipitation of endogenous human TFIIIB and CKII, suggestive of their 

physical association, raises the possibility that TFIIIB may be a physiological 

substrate for phosphorylation by CKII. The amino acid sequence of human TBP, 

hBRF and hB" were searched for potential CKII phosphoacceptor sites based on the 

minimal sequence requirements for this kinase. The sequence of hTBP has two 

potential CKII phosphoacceptor sites, the sequence of hBRF has a total of twelve 

potential CKII phosphoacceptor sites and the recently cloned hB" contains a 

remarkable 46 potential CKII phosphorylation sites (data not shown). Thus, hTBP, 

hBRF and hB" could all be phosphorylated by CKII, depending on the surface 

accessibility of these potential CKII phosphoacceptor sites. Preliminary data suggest 

that human BRF and hB" are phosphorylated by CKII in vitro (257).

6.2.4 CKII kinase activity promotes the interaction between TFIIIB and

TFIIIC2

Assuming that CKII phosphorylates TFIIIB in vivo and that this 

phosphorylation is responsible for the stimulatory effect of CKII on mammalian pol 

III transcription, the question then arises as to how this phosphorylation stimulates 

transcription. The primary function of TFIIIB in pol III transcription at most class III 

genes is to act as a bridging factor between promoter-bound TFIIIC and RNA 

polymerase III, thus allowing the recruitment of pol III to the appropriate promoters. 

It was therefore investigated whether CKII kinase activity can influence the essential 

interactions of TFIIIB with either TFIIIC or pol III. At present there is no evidence
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to suggest that CKII has any influence on the interaction between TFIIIB and pol III, 

however, coimmunoprecipitation experiments suggest that CKII activity does affect 

the interaction of TFIIIB with TFIIIC.

The monoclonal antibody MTBP6 , which specifically recognises a sequence 

in the N-terminus of TBP, efficiently immunoprecipitates the TBP-containing pol III 

factor TFIIIB from HeLa extracts. Furthermore, TFIIIC2 is specifically

coimmunoprecipitated with TFIIIB (data not shown). This antibody therefore

enabled the effect of CKII kinase activity on the interaction between TFIIIB and 

TFIIIC2 to be investigated. The effect of the CKII inhibitor quercetin on the ability 

of the MTBP6  antibody to coprecipitate TFIIIC2 was tested. As Figure 6.12 A 

shows, the inclusion of quercetin in immunoprecipitation reactions, to specifically 

inhibit CKII kinase activity, reduced the levels of TFIIIC2 that coprecipitated. The 

amount of TFIIIB that was immunoprecipitated did not change (Fig 6.21 A, lower 

panel and data not shown), however, suggesting that the inhibition of CKII kinase 

activity impairs the interaction between TFIIIB and TFIIIC; hence the reduced levels 

of TFIIIC2 in the immunoprecipitates. The levels of TBP in the precipitated material 

were unaffected by the inclusion of quercetin in the reactions (Figure 6.12 A, lower 

panel). Similarly, the levels of BRF1 in the immunoprecipitates remained the same 

(data not shown); demonstrating the specificity of the decrease in the levels of 

coprecipitated TFIIIC2 in response to inhibiting CKII activity with quercetin. 

Additionally, similar doses of quercetin have been shown to have no effect on the 

coprecipitation of BRF with CKII (257).

A similar reduction in the levels of TFIIIC2 that are coprecipitated with 

TFIIIB was observed in the presence of the unrelated CKII inhibitor, DRB (Figure 

6.12 B, lanes 6  and 7). Immunoprecipitation experiments have also been carried out 

with HeLa nuclear extract supplemented with radiolabelled in vitro translated BRF 

and the 4286 antiserum that is specific for the TFIIICp subunit of TFIIIC2. The 

4286 antiserum is able to coprecipitate BRF with TFIIIC2 (503). However, the 

presence of quercetin or DRB was found to abolish the coprecipitation of BRF (257), 

providing supporting evidence for the observed inhibitory effect of reducing CKII 

activity on the interaction of endogenous TFIIIB and TFIIIC2. Together, these 

results suggest that CKII kinase activity can promote the interaction of TFIIIB and 

TFIIIC2. A model is proposed in which the phosphorylation of TFIIIB by CKII 

promotes the interaction between TFIIIB and TFIIIC (Figure 6.13). It remains
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Figure 6.12

The CKII inhibitors quercetin and DRB compromise the interaction of

endogenous TFIIIB and TFIIIC

A) HeLa nuclear extract (150pg) was immunoprecipitated using no antibody (lane 1) 

or anti-TBP monoclonal antibody MTBP6  (lanes 2-6). Lanes 3 and 4 contained 

lOOpM or 500pM quercetin, respectively. Lanes 1, 2, 5 and 6  contained appropriate 

amounts of control buffer. After extensive washing with LDB buffer, precipitated 

material was resolved on a SDS-7.8% polyacrylamide gel and analysed by western 

blotting with anti-TFIIICp antiserum 4286 (upper panel), or with anti-TBP antibody 

SL30 (lower panel).

B) HeLa nuclear extract (150pg) (lane 1 and lanes 3-7) was immunoprecipitated 

using no antibody (lane 1) or anti-TBP monoclonal antibody MTBP6  (lanes 2-7). 

Lanes 4 and 5 contained 150pM or 500pM quercetin, respectively. Lanes 1-3 

contained appropriate amounts of control buffer. Lane 7 contained 120pM DRB and 

lane 6  contained 1.2 % ethanol as a buffer control for the DRB. After extensive 

washing with LDB buffer, precipitated material was resolved on a SDS-7.8% 

polyacrylamide gel and analysed by western blotting with anti-TFIIICp antiserum 

4286.
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Figure 6.13

Model proposing that CKII may promote the interaction between TFIIIB and 

TFIIIC by the direct phosphorylation of TFIIIB

The specific inhibition of CKII kinase activity by quercetin or DRB causes a 

reduction in the levels of TFIIIB and TFIIIC that are associated. Since CKII stably 

interacts with TFIIIB and the TFIIIB component BRF can be phosphorylated by 

CKII in vitro this suggested that CKII might facilitate the interaction between TFIIIB 

and TFIIIC by the phosphorylation of TFIIIB.
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uncertain as to whether the stimulatory effect of CKII on the interaction between 

TFIIIB and TFIIIC is sufficient to account for the activating function of CKII on 

mammalian pol III transcription or whether CKII may influence pol III transcription 

by additional mechanisms. The interaction of TFIIIB and TFIIIC is essential for 

transcription initiation of most class III genes, which makes it an excellent candidate 

for transcriptional control. Whereas CKII stimulates the interaction of TFIIIB and 

TFIIIC2 and in doing so may positively regulate pol III transcription, the tumour 

suppressor RB disrupts the interaction between TFIIIB and TFIIIC2 (see Chapter 4 

and (503)). The targeting of the interaction of TFIIIB and TFIIIC by both a tumour 

suppressor and a putative oncogene product suggests that this interaction can be rate- 

limiting for pol III transcription and is tightly regulated. It remains to be determined 

whether the antagonistic effects of CKII and RB on this interaction are related or 

whether they occur by distinct mechanisms.

6.2.5 Recombinant GSK-30 inhibits pol III transcription in vitro

To begin to investigate whether GSK-3P has a role in regulating pol III 

transcription, the effect was tested of adding bacterially expressed recombinant GSK- 

3p to pol III transcription reactions reconstituted in vitro. As Figure 6.14 shows, 

titrating in increasing amounts of recombinant GSK-3P caused a dose-dependent 

decrease in the levels of pol III transcription. The specificity of this decrease in the 

levels of correctly sized tRNA transcript with increasing doses of GSK-3P is 

demonstrated by the levels of two very large transcripts of unknown identity that are 

produced in the reactions. Whereas these large transcripts were undetectable in 

reactions that lacked GSK-3p, the reactions with the higher doses of GSK-3P and 

reduced levels of tRNA synthesis generally displayed higher levels of these two 

transcripts. This may be caused by increased availability of polymerase for non­

specific transcription or perhaps GSK-3p inhibits transcription termination and these 

transcripts are derived from read-through transcription of the tRNA gene.

This clear inhibition of pol III transcription in vitro in response to increasing 

amounts of recombinant GSK-3p suggests that GSK-3P may negatively regulate pol 

III transcription, consistent with its inhibitory effect on eIF2B and a role for GSK-3p
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Figure 6.14

Glycogen synthase kinase-3 p represses pol III transcription

pLeu template (250 ng) was transcribed using 2pl of PC-B and 2pl of PC-C in the 

presence of 0.5pl, lpl or 4pl of recombinant GSK-3P (New England Biolabs) (lanes 

2, 3, and 4, respectively). Lanes 1, 5 and 6  contained appropriate amounts of control 

buffer. Prior to the addition of nucleotides to initiate transcription, reaction mixtures 

were preincubated for 10 min at 30°C. Transcription was allowed to proceed for 1 h. 

Ethanol-precipitated transcription products were separated on a 7M urea 7% 

polyacrylamide sequencing gel and were visualised by autoradiography.
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in restraining cellular growth (423, 561, 562). The extent of the inhibition is 

relatively small, however, compared to that observed in the presence of recombinant 

RB or when CKII activity was inhibited, for example. It may be that the 

recombinant GSK-3p is of low activity compared to that of recombinant RB, maybe 

lacking an activating post-translational modification or perhaps GSK-3 p is only a 

weak repressor of pol III transcription. The relatively mild inhibitory effect of GSK- 

3p may also reflect the fact that, for many substrates, the minimal sequence 

requirements for phosphorylation by GSK-3p are a phosphorylated serine residue in 

the + 4 position (563). Therefore, for GSK-3P to phosphorylate its endogenous 

substrates this commonly requires a priming phosphorylation event by another kinase 

(563). A limiting amount of priming kinase will restrict any effect of increased 

levels of GSK-3p.

6.2.6 Lithium, a potent and specific inhibitor of GSK-3, stimulates pol III

transcription in vitro

Since the addition of recombinant GSK-3 p caused a decrease in the levels of 

pol III transcription, it was predicted that inhibiting endogenous GSK-3p activity 

should increase the levels of pol III transcription. To test this, CREB 

phosphopeptide, a synthetic peptide that contains a consensus phosphoacceptor site 

for GSK-3 (147, 550), was titrated into transcription reactions. This peptide was 

predicted to compete with endogenous substrates for phosphorylation by GSK-3, in 

an analogous manner to the earlier described use of a peptide containing a CKII 

phosphoacceptor site as a competitive inhibitor of CKII. Unexpectedly and in 

apparent contradiction to the transcriptional inhibition observed using recombinant 

GSK-3 (3, the CREB phosphopeptide also caused a dose-dependent decrease in the 

levels of pol III transcription, although the decreases were only small relative to 

those observed using CKII peptide when it was assayed in parallel (data not shown). 

Perhaps GSK-3a and GSK-3 p, both of which can phosphorylate the CREB 

phosphopeptide (147), have opposing effects on pol III transcription and the 

inhibitory effect predominates. Although possible, this is deemed unlikely as the 

available evidence suggests there is substantial functional redundancy between the
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two GSK-3 isoforms (219). An alternative plausible explanation is that the CREB 

phosphopeptide is not totally specific for GSK-3.

The CREB phosphopeptide is derived from the GSK-3 phosphoacceptor site
1 ? Qat Ser of the cAMP response element binding protein (CREB) and is commonly 

used as the substrate for assaying GSK-3 activity in crude and fractionated extracts 

(147). It is phosphorylated ~ 40 fold more efficiently by recombinant GSK-3 (3 than 

by recombinant CKII in an in vitro kinase assay (Figure 6.3). However, in the 

relatively crude fractions that are used to reconstitute pol III transcription in vitro 

there are likely to be a whole host of different kinases, one of which may be able to 

phosphorylate the CREB peptide reasonably efficiently. Indeed, problems of high 

levels of background phosphorylation of GSK-3 peptide substrates in crude cell 

extracts have previously been reported (454). Thus, the inhibitory effect of the 

CREB peptide on pol III transcription may result from the competitive inhibition of a 

kinase other than GSK-3 that has an activating role in pol III transcription. The 

likelihood of the non-specific phosphorylation of the CREB peptide is increased by 

the presence of two serine residues in this short peptide (147). Although this peptide 

has been synthetically phosphorylated on the + 4 Ser, it may become 

dephosphorylated by endogenous phosphatases in crude extracts. This would create 

an additional potential phosphorylation site and would prevent the phosphorylation 

of this peptide by GSK-3 without prior phosphorylation at the + 4 position by 

another kinase.

To distinguish between GSK-3-specific phosphorylation of the CREB peptide 

in crude cell extracts and non-specific background phosphorylation of this peptide, 

lithium ions (Li+) have been used (454). Lithium ions are a potent and specific 

inhibitor of GSK-3, both in vitro and in vivo (207, 280, 454, 498). Doses of lithium 

ions that were found to almost completely abolish GSK-3 activity in vitro had 

negligible effect on a range of other protein kinases tested that included CKII, PKA, 

JNK and MAPK, demonstrating the specificity of the kinase inhibitory effect of 

lithium ions for GSK-3 (280, 498). To date no other lithium-sensitive kinases have 

been identified, suggesting that the sensitivity of GSK-3 to lithium may be a unique 

feature of this kinase (454). The inhibitory effect of lithium is also highly conserved, 

forms of GSK-3 from invertebrates such as Dictyostelium and Drosophila as well as 

those from vertebrates such as Xenopus and mammals all displaying sensitivity to 

lithium (207, 280, 454, 498). GSK-3 is not the sole target of lithium action,
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however. Lithium is also a potent inhibitor of inositol monophosphatase (IMPase) 

and inositol polyphosphate 1-phosphatase (IPPase), key enzymes required for the 

synthesis and recycling of inositol (34, 186).

The physiological effects of lithium are diverse. Lithium has profound 

effects on development in numerous organisms (260, 280, 348, 497, 536) and is one 

of the most effective drugs used for the treatment of bipolar disorder (582). Several 

hypotheses have been proposed as to how lithium might exert these effects (34, 280, 

582). The inositol depletion hypothesis is based on the inhibitory effect of lithium on 

the inositol phosphatases, IMPase and IPPase (34). Repression of these enzymes by 

lithium is proposed to reduce the free pool of inositol which ultimately will lower the 

intracellular concentration of the second messenger inositol (l,4,5)-triphosphate (IP3) 

(34). This in turn will have severe consequences for phosphoinositide signalling, 

providing a potential molecular mechanism by which at least some of the 

physiological effects of lithium may be achieved (34). Lithium-induced blockage of 

cell cycle transitions in sea urchin embryos is prevented by the microinjection of 

myo-inositol, suggesting that the inhibition of IMPase or IPPase may be involved in 

mediating this effect of lithium (28). Similarly, in Xenopus, duplication of the dorsal 

axis induced by lithium treatment was prevented by exogenous myo-inositol, 

implicating the involvement of IMPase or IPPase (6 8 ). Recently, a class of 

compounds that are ~ 1000 fold more potent than lithium in inhibiting IMPase have 

become available, providing a powerful tool for dissecting which physiological 

effects of lithium are mediated through the inhibition of IMPase (15). These novel 

inhibitors of IMPase were found to have no discernible effect on the morphogenesis 

of Xenopus embryos in contrast to the dorsalisation induced by lithium, so clearly 

the inhibition of IMPase is not sufficient to account for this effect of lithium (280).

The discovery that GSK-3 is also potently repressed by lithium identified a 

highly appealing alternative target to IMPase or IPPase by which the physiological 

effects of lithium may be mediated, the role of GSK-3 in cell fate determination in 

many eukaryotic species (563) correlating well with the effects of lithium on 

development. In support of the candidacy of GSK-3 as the dominant endogenous 

target of lithium action and the use of lithium as an inhibitor of GSK-3 in vivo, 

lithium treatment actually phenocopies loss of GSK-3 function (207, 219, 280, 502). 

For example, insulin signalling inactivates GSK-3, stimulating glycogen synthesis; 

lithium also stimulates glycogen synthesis (89, 502). Expression of a dominant
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negative mutant of GSK3P dorsalises Xenopus embryos (205); lithium also causes 

dorsalisation (259, 260, 280). In Dictyostelium, the disruption of GSK-3 alters cell 

fate (197); lithium mimics this effect (348, 536). There is also considerable evidence 

of lithium antagonising GSK-3 function in vivo. Thus, lithium treatment induces p- 

catenin accumulation in Drosophila and mammalian cells, mimicking the effects of 

wnt signalling (498). GSK-3, which is inactivated by wnt signalling, phosphorylates 

p-catenin, targeting it for degradation (69, 382, 412, 450). In addition to the effects 

of lithium on body axis formation in Xenopus embryos, Li+ has also been shown to 

result in the activation of an AP-1 luciferase reporter (207), consistent with previous 

observations that GSK-3 P inhibits c-jun activity (46). The overexpression of GSK-3 

in cultured human neurons induces an Alzheimer’s disease-like phosphorylation of 

the microtubule-associated protein tau (190). Lithium reduces tau phosphorylation 

by GSK-3 (498) and can counteract the inhibitory effect of GSK-3 on tau-induced 

processes outgrowth (224, 328). Normal hypophosphorylated tau promotes 

microtubule assembly and nucleation (224, 254, 328). The inhibition of these 

functions of tau by GSK-3-dependent phosphorylation (328, 343, 542) suggests that 

the efficacy of lithium in treating depression and other disorders of the nervous 

system is likely to be mediated at least in part through the inhibition of GSK-3. 

Thus, GSK-3 seems to be a major physiological target of lithium action.

Lithium ions are widely and routinely used to investigate GSK-3 function 

(333, 449, 502). The effects of lithium seem to be considered a reliable indication of 

the possible involvement of GSK-3 in a particular process (333, 449). The striking 

correlation between the physiological effects of lithium in evolutionarily distant 

species and the consequences of disrupting GSK-3 function, suggests that there is 

some justification in regarding the effects of lithium on a particular process as a good 

indication of whether or not GSK-3 is involved.

The effect of lithium ions on pol III transcription reconstituted in vitro was 

therefore tested. As a source of lithium ions, lithium chloride was used. Chloride 

ions have previously been shown to have little effect on GSK-3 activity (280). To 

control for the addition of lithium chloride, the effect of adding an equal 

concentration of sodium chloride was assayed in parallel. As Figure 6.15 shows, 

millimolar concentrations of LiCl, commonly used to specifically inhibit GSK-3 

(333), stimulated tRNA synthesis relative to the levels obtained with an equal
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concentration of NaCL Little or no stimulation was observed in the presence of 

20mM LiCl (data not shown), possibly because at this concentration the inhibition of 

endogenous GSK-3 was too slight to have any effect on pol III transcription. At a 

concentration of lOOmM LiCl, or higher, transcription was less than with NaCl, 

probably because of non-specific inhibitory effects of lithium (data not shown). Pol 

III transcription reconstituted in vitro is very sensitive to changes in ionic strength, 

hence the variation in the levels of pol III transcription between the different doses of 

sodium chloride. Nonetheless, there is a clear stimulatory effect of lithium ions on 

the levels of tRNA synthesis. Stimulation of pol III transcription by lithium ions was 

also observed using the VAi gene as template, but to a much lesser extent (data not 

shown). This differential sensitivity to lithium may reflect the difference in promoter 

strength of the two genes. The VAi promoter is stronger than the promoters of tRNA 

genes and thus is likely to be less sensitive to changes in the levels or activity of 

repressors or activators.

6.2.7 Lithium ions increase the pol III transcriptional activity of cells

The stimulation of pol III transcription in vitro by doses of lithium ions that 

are sufficient to inhibit endogenous GSK-3 activity together with the inhibition of 

pol III transcription by recombinant GSK-3 p suggests that GSK-3 p may be a 

repressor of pol III transcription, at least in vitro. To investigate this possibility 

further, the effect on pol III transcription of inhibiting GSK-3 activity in vivo using 

lithium was tested. The concentrations of lithium chloride used to inhibit GSK-3 in 

vivo and the length of time cells are incubated in media to which LiCl has been 

added that are reported in the literature vary considerably. Therefore the effect on 

pol III transcription of a range of different concentrations of LiCl and incubation 

times were tested.

Asynchronous populations of actively proliferating Balb/c 3T3 (A31) murine 

fibroblasts were cultured for 12 h in media supplemented with a range of different 

concentrations of LiCl, or NaCl as a control. Cell extracts were then prepared, and 

transcriptional activity was assessed by in vitro transcription assay. Extracts from 

Li+-treated cells generally had elevated pol III transcriptional activity compared to
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Figure 6.15

Stimulation of pol III transcription by lithium ions

pLeu template (250 ng) was transcribed using 2pl of PC-B and 2pl of PC-C in the 

presence of 40mM, 60mM or 80mM NaCl (lanes 1, 3 and 5, respectively) or LiCl 

(lanes 2, 4 and 6, respectively). Following a 15 min preincubation at 30°C, 

nucleotides were added to initiate transcription which was allowed to proceed for 1 h 

at 30°C.
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control extracts, as shown in Figure 6.16, using a tRNAArg gene as template. 

Extracts from cells that were incubated in media containing 12.5 mM LiCl were of 

similar transcriptional activity to their NaCl-treated counterparts. However, extracts 

prepared from cells cultured in media containing 25 mM LiCl, 50 mM LiCl or 75mM 

LiCl all supported higher levels of tRNA synthesis than equal amounts of extracts 

from cells treated with the same concentrations of NaCl. Extracts prepared from 

A31 cells that were treated with lOOmM LiCl had lower levels of transcriptional 

activity than the corresponding extracts prepared in parallel from cells treated with 

lOOmM NaCl, suggesting that at this concentration lithium may have non-specific 

inhibitory effects.

A time course in which A31 cells were incubated in media containing 25 mM 

LiCl or 25 mM NaCl for different lengths of time before harvesting was also 

conducted. As Figure 6.17 shows, all the extracts prepared from Li+-treated cells had 

elevated pol III transcriptional activity compared to the corresponding extracts from 

Na+-treated cells, apart from the pair of extracts from the cells that were treated for 

the shortest period of time. The reproducibility of this specific increase in the 

transcriptional activity of extracts from cells treated with low concentrations of 

lithium ions was tested by independently preparing several extracts from different 

batches of A31 cells treated with 25 mM LiCl or 25mM NaCl for 12 h. Extracts 

prepared from Li+-treated cells consistently displayed substantially higher levels of 

pol III transcriptional activity than the corresponding extracts from Na+-treated cells 

(data not shown). The concentration of LiCl in the culture media that was required 

to specifically raise the pol III transcriptional activity of cell extracts was quite low. 

Furthermore, the intracellular concentration of lithium ions after 12 h incubation is 

likely to be lower than that in the media in which the cells were cultured. It has 

previously been reported that after a 4 h incubation of Xenopus embryos in LiCl the 

intracellular concentration of lithium ions did not exceed 5% of the extracellular 

concentration (50). The low concentration of lithium chloride required to increase 

pol III transcriptional activity increases the likelihood that this is a specific response 

to the inhibition of GSK-3 rather than some non-specific effect of lithium ions.

The consistently higher pol III transcriptional activity of extracts prepared 

from Li+-treated cells was observed by in vitro transcription assay using a tRNA 

gene as the specific pol III template. Since the earlier in vitro studies suggested that 

the sensitivity to lithium, and thus potentially to repression by GSK-3, may differ for
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Figure 6.16

Extracts from cells treated with lithium ion display increased pol III 

transcriptional activity

BALB/c3T3 A31 cells were grown in DMEM supplemented with 10% fetal calf 

serum, lOOU/ml penicillin, and lOOpg/ml streptomycin to a confluency of ~ 80 %. 

Cells were then incubated for 12 h in fresh media supplemented with varying 

concentrations of NaCl or LiCl. After 12 h, cells were harvested and whole cell 

extracts were prepared by the freeze-thaw method. The tRNAArg gene (250ng of 

pArg) was transcribed using lOpg of cell extract from cells treated with 12.5mM 

NaCl or LiCl (lanes 1 and 2, respectively), 25mM NaCl or LiCl (lanes 3 and 4, 

respectively), 50mM NaCl or LiCl (lanes 5 and 6, respectively), 75mM NaCl or LiCl 

(lanes 7 and 8, respectively), or lOOmM NaCl or LiCl (lanes 9 and 10, respectively).
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Figure 6.17

The pol III transcriptional activity of cells increases in response to Li+

Exponentially growing BALB/c3T3 A31 cells were incubated for varying lengths of 

time in DMEM supplemented with 10% fetal calf serum, lOOU/ml penicillin, 

lOOpg/ml streptomycin, and 25mM NaCl or LiCl. At the appropriate times, cells 

were harvested and whole cell extracts were prepared. pLeu (250ng) was transcribed 

using lOpg of cell extract from cells incubated in media supplemented with 25mM 

NaCl or LiCl for 2 h (lanes 1 and 2, respectively), 6 h (lane 3: NaCl, lane 4: LiCl), 

12 h (lane 5: NaCl, lane 6: LiCl), or 24 h (lane 7: NaCl, lane 8: LiCl). Transcription 

products were resolved on a 7M urea 7% polyacrylamide sequencing gel and were 

visualised by autoradiography.
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different class III genes this was tested using corresponding pairs of extracts from 

Na+- and Li+-treated cells. Figure 6.18 shows the results of pol III transcription 

reactions using the same pair of extracts with three different class III genes as 

template. As expected, the extract from the Li+-treated cells supported higher levels 

of transcription of a tRNAleu gene than the same amount of the corresponding extract 

from Na+-treated cells. 5S rRNA gene transcription reconstituted with the same pair 

of extracts was substantially elevated in the extract from the Li+-treated cells 

compared to that obtained with the extract from the Na+-treated cells, indeed to a 

significantly greater extent than observed using a tRNA gene as template. In 

contrast, when the same pair of extracts were assayed for their ability to support VAi 

transcription, the levels of VAi transcript produced were slightly higher in extract 

from the Na+-treated cells. This differential effect of treating cells with lithium ions 

on the pol III transcriptional activity of extracts when reconstituted with different 

class III genes is consistent with the effects of lithium on pol III transcription in vivo 

being specific.

6.2.8 Pol III transcripts are specifically elevated in Li+-treated cells

It is conceivable that the increased pol III transcriptional activity of extracts 

from Li+-treated cells relative to extracts from Na+-treated cells could result from the 

two treatments having differential effects on the recovery of pol III transcription 

components or their susceptibility to inactivation during extract preparation. 

Therefore, as an independent test of the stimulatory effect of lithium ions on pol III 

transcription in vivo, total RNA was isolated from Li+- and Na+-treated A31 cells and 

the levels of B2 RNA, a murine-specific pol III transcript, were compared by 

Northern blot analysis. B2 transcripts were found to be substantially more abundant 

in Li+-treated cells relative to Na+-treated cells (Figure 6.19, upper panel). This 

effect is specific, because Na+- and Li+-treated cells express similar levels of a pol II 

transcript encoding acidic ribosomal phosphoprotein PO (ARPP PO) (Figure 6.19, 

lower panel). This specific increase in the abundance of B2 transcripts in Li+-treated 

cells relative to Na+-treated cells is consistently observed in different RNA 

preparations from Na+- and Li+-treated cells (Fig 6.19 and data not shown). Thus, 

lithium ions can increase the levels of pol III transcription both in vitro and in vivo.
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Figure 6.18

Differential effect of lithium ions on pol III transcription of different class III 

genes

The same pair of extracts from Na+- and Li+- treated A31 cells were tested for their 

ability to support pol III transcription of three different class III genes, tRNALeu gene

(A), 5S rRNA gene (B), and VAi gene (C). Transcription was reconstituted with 

lOpg of extract (for (A), (B), and (C), lane 1: extract from Na+-treated cells, lane 2: 

extract from Li+-treated cells) and 250ng of pol III template. Nucleotides were 

added to initiate transcription, which was allowed to proceed for 1 h at 30°C. 

Transcription products were ethanol-precipitated and analysed on a 7M urea 7% 

polyacrylamide sequencing gel.
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Figure 6.19

B2 RNA levels are specifically increased in A31 cells that have been cultured in 

the presence of millimolar concentrations of lithium ions

Northern blot analysis of total RNA (lOpg) prepared from three independent sets of 

Na+- or Li+- treated A31 cells (odd-numbered lanes: Na+-treated; even-numbered 

lanes: Li+-treated). Cells were incubated in media supplemented with 12.5 mM NaCl 

or LiCl (lanes 3 and 4, respectively) or 25mM NaCl or LiCl (lanes 1 & 5, and lanes 2 

& 6, respectively) for 9 h (lanes 1 and 2) or 12 h (lanes 3-6) and then harvested. The 

upper panel shows the blot probed with a B2 gene and the lower panel shows the 

same blot that has been stripped and reprobed with the acidic ribosomal 

phosphoprotein PO (ARPP PO).
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The lack of a change in the levels of the pol II transcript ARPP PO in Li+-treated cells 

in contrast to the elevated expression of B2 transcripts demonstrates that the 

stimulation of pol III transcription in vivo by lithium ions is highly specific and not 

due to a general increase in nuclear transcription.

Although these results are supportive of a postulated function for GSK-3 in 

the repression of pol III transcription it is clearly possible that this specific increase 

in pol III transcription in vivo in response to lithium treatment is mediated by a 

different mechanism to the specific repression of GSK-3 by lithium ions. Therefore, 

as a more direct investigation of the possible involvement of GSK-3 p in regulating 

pol III transcription in vivo, attempts were made to overexpress GSK-3P in cells by 

carrying out transient transfections using an expression vector encoding GSK-3 p. 

Primer extension analysis was used to determine the levels of transcription of a 

cotransfected VAi gene that was used as a Pol III reporter. To enable the levels of 

VAi transcription to be normalised for variation in transfection efficiency, cells were 

also transfected with a control plasmid that contained the CAT gene under the 

control of the constitutively active cytomegalovirus (CMV) promoter.

Similar levels of VAi transcript were produced in cells transfected with 

“empty” expression vector as in cells transfected with the same amount of expression 

vector encoding GSK-3p (Fig 6.20, compare lanes 2 and 5). The expected dose- 

dependent decrease in the levels of VAi transcription in cells transfected with 

expression vector encoding GSK-3 p was not observed. The slightly reduced level of 

VAi transcription observed in cells transfected with the lower dose of GSK-3 p may 

result from slightly reduced transfection efficiency, although there were no 

quantifiable differences in the levels of CAT RNA for the different transfections 

(data not shown). In repeated transfections, the expression vector encoding GSK-3p 

reproducibly had little or no effect on the levels of VAi transcription relative to cells 

transfected with a kinase-inactive GSK-3 p form or “empty” expression vector (data 

not shown). These results suggest that GSK-3 P has little or no influence on pol III 

transcription in vivo, in contrast to the repression of pol III transcription observed in 

vitro with the addition of recombinant GSK-3 p.

Recently, it has been shown that GSK-3p regulates cyclin D l, targeting it for 

degradation by the 26S proteasome (124). This GSK-3P-induced reduction in cyclin 

Dl levels is predicted to cause a decrease in the activity of the cyclin Dl-dependent
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Figure 6.20

Primer extension analysis of VAi transcript levels following transient 

transfection of NIH 3T3 fibroblasts with expression vector encoding GSK-3p

NIH 3T3 fibroblasts (~6 x 105 cells) were transiently transfected with 4pg of pVAj, 

4pg of pCAT and lOpg or 20pg of pJ3M-GSK-3p, encoding wild-type GSK-3p 

(lanes 1 and 2, respectively), lOjug or 20pg of pJ3M-GSK-3pkd, encoding kinase 

inactive GSK-3P (lanes 3 and 4, respectively), or 20pg of “empty” pJ3M vector that 

lacks an insert (lane 5). Cells transfected with lOpg of pJ3M-GSK-3p or pJ3M- 

GSK-3pkd (lanes 1 and 3) were also transfected with lOpg of “empty” pJ3M vector, 

thereby ensuring that the amount of plasmid DNA transfected was the same for each 

reaction. VAi primer extension products are shown.
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kinases, cdk4 and cdk6, whose primary function is the phosphorylation and 

inactivation of RB. Therefore, GSK-3 p, through the regulation of cyclin D l, may be 

able to regulate the activity of RB; hence the lack of any effect of GSK-3p on VAj 

transcript levels in vivo was very surprising. Even if GSK-3 p does not influence pol 

III transcription directly, GSK-3 p was expected to have an indirect effect as a result 

of its ability to regulate cyclin Dl proteolysis, since RB is an established repressor of 

pol III transcription. Furthermore, it has previously been shown that cells transfected 

with an expression vector encoding cyclin Dl display elevated levels of pol III 

transcription, consistent with the inactivation of RB (C.A. Cairns, unpublished 

observations).

One possible explanation for the lack of any effect on pol III transcription of 

transfecting cells with an expression vector encoding GSK-3 P is that the GSK-3 p is 

poorly expressed. Therefore, duplicate transfections were performed in parallel to 

enable analysis of both RNA levels by primer extension and protein expression by 

western blotting. The transfected GSK-3P protein has an N-terminal myc-tag 

enabling its detection with the myc epitope-specific 9E10 monoclonal antibody and it 

to be distinguished from endogenous GSK-3p. Figure 6.21 A shows the level of 

expression of myc-tagged GSK-3 P protein for the duplicate transient transfection for 

which the primer extension analysis is shown in Figure 6.20. Expression of 

transfected GSK-3 p protein was very low. The kinase-inactive GSK-3 P form was 

expressed at much higher levels (Fig 6.21 A, compare lanes 2 and 3 with lanes 4 and 

5). Although transfecting cells with a larger amount of expression vector encoding 

GSK-3 p increased the levels of expression, this was still very poor relative to the 

levels of kinase-inactive GSK-3 p and had no detectable effect on the levels of VAi 

transcription of transfected cells. Since the levels of expression of transfected 

proteins can vary between cell types, transfections were also attempted in HeLa cells 

and NIH 3T3 fibroblasts, in case the poor level of expression of GSK-3 p was 

specific to Balb/c 3T3 A31 cells. Several different preparations of high quality DNA 

of the GSK-3 p expression vector were also tested, as the quality of the DNA is 

critical to the efficiency of transfection. However, none of these changes made any 

significant difference, the GSK-3 p protein was consistently expressed only at low 

levels (data not shown). Figure 6.21 B and C shows the results of Western blotting 

of protein extracts from transfected HeLa cells. Expression of GSK-3 p protein was
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Figure 6.21

GSK-3p is poorly expressed in transfected cells and has no effect on cyclin D 

protein levels

(A) Equal amounts of total protein (50pg) prepared from transiently transfected NIH 

3T3 fibroblasts (~6 x 105 cells) were resolved by SDS-7.8% PAGE and analysed by 

western blotting for the expression levels of myc-tagged GSK-3 p by probing with 

anti-myc antibody 9E10. Lanes 2 and 3: protein extract from cells transiently 

transfected with 10pg or 20pg of pJ3M-GSK-3p, respectively. Lanes 4 and 5: 

protein extract from cells transiently transfected with lOpg or 20pg of pJ3M-GSK- 

3pkd, respectively. Lane 1: protein extract from cells transiently transfected with 

20pg of “empty” pJ3M vector.

(B) Protein extracts (50pg) from transiently transfected HeLa cells were similarly 

resolved by SDS-7.8% PAGE and analysed by western blotting using the anti-myc 

antibody 9E10. Lane 1: 50pg extract from cells transfected with pJ3M (20pg). Lane 

2: 50pg extract from cells transfected with GSK-3p expression vector (20pg pJ3M- 

GSK-3P). Lane 3: 50pg extract from cells transfected with GSK-3pkd expression 

vector (20pg pJ3M-GSK-3pkd).

(C) 50pg of the same HeLa protein extracts analysed for myc-GSK-3p in (B) were 

independently analysed for endogenous cyclin Dl protein levels by western blotting 

with the anti-cyclin Dl antibody R-124.

264



1— 75 kDa

myc-GSK-3p — 50 kDa 

-35 kDa

B
O
>

CCL
mi

c' f l

O

C O .
mi
Ucn 
O

— 97 kDa

66 kDa

Uho
•4— »o
CD>

C O .
mi

m
a

co­
rn■
m
a
-o

50 kDa

— 35 kDa

Cyclin D — 30 kDa

3



very poor (Figure 6.21 B). The low levels of GSK-3 p protein that were expressed 

had no detectable effect on endogenous cyclin Dl levels (Figure 6.21 C). Thus, the 

lack of an effect on the levels of VAi transcript can be accounted for by the very poor 

expression of GSK-3 p. The use of the VAi gene as the Pol III reporter for these 

transient transfections compounded the problems of poor GSK-3 p expression, 

subsequent comparative experiments in vivo using lithium suggesting that VAi gene 

transcription in vivo may be much less sensitive to any repressive effect of GSK-3 p 

than tRNA genes or the 5S rRNA gene. The available evidence in support of a role 

for GSK-3P in regulating pol III transcription in vivo is therefore only conjectural, as 

it is derived from the stimulatory effect of lithium ions on pol III transcription in vivo 

and is based on the assumption that it is the specific inhibition of GSK-3 by Li+ that 

is responsible for the observed stimulation.

Any effect GSK-3 p might have on pol III transcription in vivo could be very 

indirect, such as through modulating cyclin Dl levels. However, the ability of 

recombinant GSK-3P to repress pol III transcription in vitro that was reconstituted 

with fractionated HeLa factors suggests that GSK-3 P can influence pol III 

transcription in a much more direct manner. Indeed, this result suggests that GSK-3 p 

may actually target one of the components of the basal pol III transcriptional 

apparatus. The primary amino acid sequence of cloned components of the pol III 

transcriptional apparatus were searched for the GSK-3 consensus phosphoacceptor 

site Ser-x-x-x-Ser(P) (where x represents any amino acid), to see if any of the pol III 

transcription components are potential substrates for GSK-3. TFIIICp has eleven 

Ser-x-x-x-Ser motifs; TFIIICa has nine such motifs, while TFIIIC5 and TFIIICy 

both have three. Additionally, there are four Ser-x-x-x-Ser motifs in the primary 

sequence of BRF and one in TBP. The surface accessibility of these

phosphoacceptor sites is not known, nor whether the serine residue in the + 4 

position is phosphorylated in a physiological environment, which is required to 

generate a phosphoacceptor site for GSK-3. However, the number of potential GSK- 

3 phosphoacceptor sites suggests that at least one component of the pol III 

transcriptional apparatus may be phosphorylated by GSK-3.

Some kinases stably interact with their substrates. It was therefore 

investigated whether GSK-3 stably interacts with TFIIIB or TFIIIC, which would be 

strongly supportive of a role for GSK-3 in the regulation of pol III transcription.
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Since the consistent cofractionation of two proteins is highly suggestive of a stable 

association, it was tested whether GSK-3 p is enriched in any of the immunopurified 

TFIIIB or TFIIIC fractions, or DNA affinity-purified TFIIIC fractions. However, 

GSK-3 p was not detectable by Western blotting in any of these fractions (data not 

shown). As a more sensitive assay, these fractions were tested for GSK-3 activity in 

an in vitro kinase assay using CREB phosphopeptide as substrate. Only very low 

levels of phosphorylation were detected, which were similar for the different 

fractions (data not shown). Western blot analysis of equal amounts of HeLa PC-B 

and PC-C for GSK-3 p protein indicated a significant enrichment of GSK-3 p protein 

in PC-B relative to PC-C or unfractionated HeLa nuclear extract (data not shown). 

Since PC-B is enriched in TFIIIB and lacks TFIIIC, this suggested that GSK-3 P 

might associate with TFIIIB. However, PC-B and PC-C are extremely crude, 

increasing the likelihood of this cofractionation of GSK-3 p with TFIIIB being 

entirely fortuitous. In support of this possibility, GSK-3 did not cofractionate with 

TFIIIB during gradient chromatography of a PC-B fraction on Mono Q (data not 

shown). Immunoprecipitations were also carried out to see if endogenous GSK-3 

associates with endogenous TFIIIB or TFIIIC2. However, GSK-3 was not found to 

specifically coimmunoprecipitate with either of these factors (data not shown). 

Together, these immunoprecipitation experiments and analyses of fractionated 

factors provided little evidence in support of a stable association of GSK-3 with a 

component of the pol III transcriptional apparatus. However, this possibility cannot 

be excluded at present as an interaction with TFIIIC 1 or pol has yet to be tested.

It was also investigated whether recombinant GSK-3 p or CKII have any 

effect on TFIIIC B-block DNA-binding activity. Electrophoretic mobility shift 

assays were carried out using B-block oligonucleotide as the specific probe and 

unfractionated extract or PC-C in the presence of exogenous GSK-3 p or CKII and a 

suitable phosphate donor. However, neither kinase had any significant effect either 

on the intensity or the mobility of TFIIIC-specific shifts (data not shown). These 

results suggest that neither recombinant GSK-3 P nor CKII have any influence on 

TFIIIC B-block binding activity, nor can they bind or phosphorylate the B-block 

binding components of TFIIIC as this would be predicted to cause a change in the 

mobility of the shifts. The CKII inhibitor quercetin was also found to have no effect 

on TFIIIC B-block binding activity (data not shown), providing further evidence of
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the specificity of the inhibitory effect of quercetin on the interaction between TFIIIB

and TFIIIC.

267



6.3 Discussion

6.3.1 Protein kinase CKII activates mammalian pol III transcription and

specifically interacts with TFIIIB

A combined biochemical and genetic approach by Schultz and colleagues had 

earlier shown that the ubiquitous Ser/Thr kinase CKII activates basal pol III 

transcription in the yeast Saccharomyces cerevisiae by phosphorylating TFIIIB (163, 

164, 216). Since CKII and TFIIIB are both highly conserved between yeast and 

mammals, this suggested that CKII might have a similar stimulatory effect on pol III 

transcription in mammals as it does in yeast. The data presented here showing that 

CKII is required for efficient mammalian pol III transcription was therefore not 

entirely unexpected. Thus, three unrelated CKII inhibitors, 2,3-DPG, quercetin and 

DRB, each potently repressed pol III transcription reconstituted in vitro with HeLa 

cell extract or partially purified fractions. Peptide containing a consensus 

phosphoacceptor site for CKII also significantly reduced the levels of pol III 

transcription. This inhibition was substantially relieved by the addition of 

recombinant CKII demonstrating the specificity of the inhibitory effect of CKII 

peptide and the activating influence of CKII upon mammalian pol III transcription. 

As in yeast, recombinant CKII was unable to completely restore pol III transcription 

to the levels observed in the absence of added peptide, however. Perhaps some of 

the endogenous CKII is peptide-inhibited but still remains stably associated with its 

pol III substrate, thus preventing recombinant CKII from functionally substituting for 

endogenous enzyme effectively.

The addition of recombinant CKII to HeLa cell extracts in the absence of 

peptide or other CKII inhibitor had no effect on the levels of pol III transcription in 

vitro. Similarly, the overexpression of CKII in vivo by transfection caused no 

change in the levels of pol III transcription in actively proliferating human 

osteosarcoma cells (257). However, in support of the repression of pol III 

transcription in vitro in response to inhibiting endogenous CKII activity, the 

depletion of endogenous CKII activity in vivo using antisense oligonucleotides 

inhibited pol III transcription (257). Together, these results suggested that CKII has 

an activating function in mammalian pol III transcription but is in relative excess in 

actively proliferating HeLa and osteosarcoma cells. Since CKII is activated in
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response to serum and certain mitogens (76, 279, 493), it may be that in resting cells 

CKII is limiting for pol III transcription and exposure to exogenous CKII will 

stimulate pol III transcription.

The consistent cofractionation and coimmunoprecipitation of endogenous 

human CKII and TFIIIB suggests that they associate stably. Since many kinases 

interact with their substrates and yeast TFIIIB is phosphorylated by CKII, this 

suggested that CKII might phosphorylate mammalian TFIIIB. Indeed, very recent 

preliminary data indicates that purified recombinant human BRF and the recently 

cloned human B" factor are both phosphorylated by CKII in vitro (257). Human 

BRF has also very recently been shown to be phosphorylated in vivo, moreover, the 

CKII inhibitors quercetin and DRB have been found to reduce the phosphorylation of 

BRF (470). In contrast to the observed phosphorylation of recombinant human BRF 

and B", recombinant CKII specifically and efficiently phosphorylates the TBP 

subunit of yeast TFIIIB, but at present there is no evidence that yBRF or yB" are 

phosphorylated by CKII (163, 164). Perhaps the CKII phosphorylation sites of 

hBRF and hB" that can be phosphorylated by recombinant CKII in vitro are poorly 

conserved in the homologous yeast proteins. In yeast TBP there are four consensus 

CKII phosphorylation sites (S/TxxD/E). However, only one of these two sites, SI 83, 

is absolutely conserved in human TBP and molecular modelling of yeast TBP 

indicates that this serine is buried in the crystal structure of TBP and therefore highly 

unlikely to be accessible for phosphorylation by CKII (81). However, it remains 

possible that human TBP might be phosphorylated by CKII. The human factor 

contains another consensus CKII phosphorylation site that is absent from yeast TBP.

In support of BRF being a physiological target of CKII in mammals, the heat 

inactivation of TBP in a HeLa PC-B fraction had no effect on the levels of 

endogenous BRF that CKII was able to coimmunoprecipitate. This suggested the 

interaction between BRF and CKII may be direct or at least not mediated by TBP. 

Surprisingly, however, the heat-inactivated TBP, verified by its inability to support 

pol III transcription, was found to be able to still interact with BRF, so the possibility 

that TBP may be involved in mediating the interaction between BRF and CKII could 

not be excluded. GST-BRF has recently been successfully expressed and purified in 

our laboratory for the first time, providing the opportunity to test whether CKII and
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BRF can interact directly or whether this association is dependent upon TBP or some 

other factor.

Having ascertained which components of the pol III transcriptional apparatus 

are phosphorylated by CKII, the sites of phosphorylation within these components 

can then be mapped by phosphopeptide analysis. Many protein substrates that are 

phosphorylated in vitro by a particular kinase are not physiological substrates for this 

kinase. Therefore, it will be essential to determine whether these mapped sites are 

phosphorylated by CKII in vivo. This can be achieved by in vivo metabolic labelling 

with [ P]-orthophosphate carried out in the presence or absence of CKII peptide 

inhibitor or antisense oligonucleotide, followed by phosphopeptide mapping of 

immunoprecipitated, gel-purified pol III components. Having identified particular 

serine or threonine residues that CKII phosphorylates in a particular pol III 

component in vivo as well as in vitro, the functional significance of phosphorylation 

of these residues can then be investigated by site-directed mutagenesis. Thus, the 

effect on pol III transcription of substituting a Ser or Thr phosphorylated in vivo by 

CKII with an alanine residue can be tested by transiently transfecting cells with 

expression vector encoding the wild-type subunit or the non-phosphorylatable mutant 

and carrying out primer extension analysis of the RNA levels of a cotransfected VAi 

gene. Alternatively, the phosphorylatable residue can be substituted with an 

aspartate residue to see if this mimics the phosphorylated state and results in 

constitutive activation of pol III transcription.

6.3.2 CKII stimulates the interaction between TFIIIB and TFIIIC2

The activation of pol III transcription by CKII in yeast is thought to be 

achieved by the phosphorylation of TBP (163, 164). However, the molecular 

mechanism by which this may stimulate pol III transcription has yet to be elucidated. 

In contrast, in mammals it was found that the inhibition of CKII activity in cell 

extrac:s specifically reduced the levels of TFIIIC2 that coimmunoprecipitated with 

TFIIIB. This suggests that CKII activity may stimulate the interaction between 

TFIIIB and TFIIIC2, providing a potential mechanism by which CKII activates pol 

III transcription in mammals. However, the effect of inhibiting CKII activity on the 

levels of coimmunoprecipitating TFIIIC2 was quite small compared to the potent
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inhibitory effect of similar doses of CKII inhibitor on pol III transcription in vitro, 

suggesting that there may be additional mechanisms by which CKII exerts its 

stimulatory effect on mammalian pol III transcription. Nonetheless, the interaction 

between TFIIIB and TFIIIC2 is essential for pol III transcription of most class III 

genes, so the effect of CKII activity on this interaction may be sufficient to account 

for its stimulatory effect, depending on whether this interaction is usually limiting for 

pol III transcription. This is very likely since RB, an established physiological 

repressor of pol III transcription, also targets this interaction (503). The targeting of 

this interaction by both RB and CKII indicates the importance of the binding of 

TFIIIB to TFIIIC2 for pol III transcription and suggests that the regulation of this 

interaction may be crucial for the physiological control of pol III transcription.

6.3.3 CKII -  upregulation versus constitutive enhancement of pol III

transcription

Although the data indicate a stimulatory role for CKII in pol III transcription 

in mammals, as previously shown for Saccharomyces cerevisiae, it is less clear to 

what extent CKII is able to regulate pol III transcription, either in yeast or in 

mammals. This is largely because of uncertainty as to the extent to which CKII itself 

is regulated (7, 419). In the past, there was controversy as to whether the expression 

and activity of CKII is regulated or whether CKII is a constitutively active kinase 

that is permanently expressed at constant levels from so-called housekeeping genes 

(7). Today, all researchers in the field agree that CKII is subject to some sort of 

regulation, although its control remains poorly understood (7). CKII does not seem 

to be regulated by any known second messenger and no major signal transduction 

pathway has convincingly been demonstrated to regulate CKII (7). Nonetheless, the 

protein levels and specific activity of CKII have been found to be elevated in rapidly 

proliferating cells and a range of tumours and in response to certain mitogens (76, 

243, 279, 387, 493).

Several proteins have recently been identified that are able to modulate CKII 

activity and thus may represent upstream regulators of CKII. Thus, both p53 and 

p21WAF1 can bind to the regulatory p subunit of CKII, inhibiting CKII activity (170,
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171). Very recently, several stress stimuli have been shown to stimulate CKII 

activity; this could be blocked by the p38 MAP kinase inhibitor SB203580, implying 

that p38 MAP kinase may regulate CKII (457). Indeed, phosphorylation-activated 

p38a MAP kinase can directly bind the regulatory p subunit of CKII causing an 

increase in CKII kinase activity (457). Perhaps MAP kinase signalling is involved in 

the physiological regulation of CKII. CKII is also likely to be regulated at the level 

of gene expression. The promoter for the CKIIa gene contains many features 

characteristic of housekeeping genes, but it also contains binding sites for Etsland 

NF-kB (294). These two transcription factors can both bind to the CKIIa promoter 

and are major determinants of promoter activity (294). The stimulation of pol III 

transcription by CKII may also be regulated by the modulation of its intracellular 

location. Thus, in dividing cells CKII is found mainly in the nucleus, whereas in 

quiescent cells it is located mainly in the cytosol (6, 511). CKII may also be 

regulated by the promiscuous interactions of the catalytic (a  and a ')  and regulatory 

subunits (p) with other proteins that prevents their binding to each other and the 

formation of the CKII holoenzyme (6). Thus, the protein kinases Mos, RafA and 

p90Rsk can each specifically bind to CKIIp (6, 41, 86). However, this binding 

prevents CKIip from interacting with and thus activating CKIIa (6). Similarly, 

CKIIa can interact with the catalytic subunit of protein phosphatase 2A (PP2A) but 

cannot simultaneously bind CKIip (212). The binding of several kinases to CKIip 

suggests that CKII may be regulated by phosphorylation. This has not been shown to 

be the case for Mos, RafA or p90Rsk, but the tyrosine kinase c-Abl has been reported 

to phosphorylate CKIIa in vitro and inhibit its activity (211). CKII may also be 

regulated by autophosphorylation (419). Clearly, there are a lot of potential 

mechanisms by which CKII may be regulated; however, the physiological relevance 

of these and their relative contributions to the overall regulation of CKII have yet to 

be fully elucidated. Nevertheless, the accumulating evidence is strongly supportive 

of CKII being regulated but suggest that its control may be complicated.

Another reason for uncertainty as to whether CKII can regulate pol III 

transcription is that CKII was found to be saturating for pol III transcription in 

actively proliferating human osteosarcoma cells and asynchronous HeLa extracts. 

Although there is evidence that CKII activity and levels of expression vary, for 

example between quiescent and actively proliferating cells, the variation is not
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dramatic. It may be that the range within which CKII activity is altered under 

different physiological conditions is insufficient for it to become limiting for pol III 

transcription. Hence, although CKII seems to have a stimulatory role in pol III 

transcription, both in yeast and in mammals, it is possible that it exerts no regulatory 

influence. However, it should be noted that we have only overexpressed CKII in two 

tumour cell lines; osteosarcoma cells in vivo and in extracts from HeLa cells in vitro. 

Since CKII activity is known to be higher in many tumour cells, it is very possible 

that if we overexpressed CKII in untransformed cells pol III transcription would be 

stimulated.

Regardless, the demonstration that CKII has an activating influence on pol III 

transcription in mammals is highly significant since only a handful of kinases have 

so far been shown to modulate the levels of pol III transcription (568). This is 

surprising since pol III transcription is tightly regulated and protein phosphorylation 

is a major control mechanism of protein function. However, although it is well 

established that pol III transcription is strongly regulated, the molecular mechanisms 

involved largely have still to be fully elucidated. Pol III transcription is regulated in 

response to a variety of extracellular stimuli (568), which suggests several protein 

kinase signalling cascades may impinge on the pol III transcription apparatus. It is 

likely that protein phosphorylation has a fundamental role in the control of pol III 

transcription. In support of this, the pocket proteins RB, p i07 and p i30, which are 

strongly implicated in the regulation of pol III transcription in response to growth 

conditions and the cell cycle, are negatively regulated by phosphorylation by the 

cyclin-dependent kinases. In addition to the regulation of pol III transcription by the 

phosphorylation of upstream regulators, transcription is also regulated by the direct 

phosphorylation of the pol III transcriptional apparatus (163, 164, 169, 217, 572). 

Metabolic labelling with P-orthophosphate has previously shown that TFIIIC and 

pol III are phosphorylated in vivo (481, 568), providing further support for the 

contention that direct phosphorylation of pol III factors has an important role in the 

physiological regulation of pol III activity. Recently, the BRF subunit of hTFIIIB 

has also been shown to be phosphorylated in vivo (470). Significantly, the CKII 

inhibitors quercetin and DRB were found to reduce the in vivo phosphorylation of 

BRF (470), consistent with in vitro evidence suggesting that CKII can phosphorylate 

BRF and the contention that TFIIIB is the CKII-responsive target. However, clearly 

there are multiple kinases in addition to CKII that may be responsible for the in vivo
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phosphorylation of TFIIIB. It also remains to be demonstrated that the 

phosphorylation of TFIIIB by CKII stimulates TFIIIB transcriptional activity.

6.3.4 CKII, pol III transcription and cancer

Recent data show that pol III products are overexpressed in a variety of 

human and rodent tumours (87, 88, 586), consistent with the negative regulation of 

pol III transcription by two key tumour suppressors, p53 and RB, that are frequently 

dysregulated in mammalian tumours (70, 579). Additionally, Ras, which is 

frequently mutationally activated in human tumours (344), has been shown to 

increase TFIIIB activity in Drosophila (548). Furthermore, several viral 

oncoproteins have been shown to activate pol III transcription and pol III 

transcription is elevated in a broad range of transformed cell types (569). The 

demonstration that CKII, a putative oncogene (600), can activate mammalian pol III 

transcription suggests a novel mechanism by which pol III transcription may be 

dysregulated in cancers.

6.3.5 GSK-3p may negatively regulate pol III transcription

The titration of increasing amounts of recombinant GSK-3 p into pol III 

transcription reactions reconstituted in vitro caused a dose-dependent decrease in the 

levels of pol III transcript produced, suggesting that pol III transcription may be 

negatively regulated by GSK-3 p. To investigate this further the effect of inhibiting 

endogenous GSK-3 p on pol III transcription was tested. As a specific and potent 

inhibitor of GSK-3, low doses of lithium ions were used. In support of an inhibitory 

role for GSK-3 p in pol III transcription, lithium ions were found to specifically 

stimulate pol III transcription both in vitro and in vivo. However, although GSK-3 

seems to be the dominant physiological target of lithium ions, similar doses of 

lithium ions to those that were used have previously also been shown to potently 

inhibit the inositol phosphatases IMPase and IPPase (34). It is also plausible that 

there may be other unidentified targets of lithium ions that could be responsible for
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the observed stimulatory effect of lithium ions on pol III transcription. Thus, the 

data demonstrate that low doses of lithium ions can specifically activate pol III 

transcription both in vitro and in vivo. The mechanism responsible clearly warrants 

investigation. The demonstration that the stimulation is due to the inhibition of 

GSK-3 would strongly indicate a physiological inhibitory role for GSK-3 in pol III 

transcription; as it is, the stimulatory effect of lithium ions can only be regarded as 

weakly suggestive of an in vivo role for GSK-3 in pol III transcription. On the other 

hand, the discovery that a GSK-3 independent mechanism is responsible for the 

stimulation may actually help identify a novel regulator of pol III transcription.

As a more direct investigation as to whether GSK-3 can influence pol III 

transcription in vivo, attempts were made to overexpress GSK-3 p by transiently 

transfecting cells with an expression vector encoding GSK-3 p. However, expression 

from the transfected gene was very poor and no effect on pol III transcription was 

observed. Therefore, at present the only in vivo evidence in support of a role for 

GSK-3 in modulating the levels of pol III transcription is circumstantial, being based 

on the stimulatory effect of lithium ions. As an alternative approach to investigating 

whether GSK-3 P has any influence on pol III transcription in vivo, the effect of 

depleting endogenous GSK-3 p using antisense oligonucleotides could be 

investigated with more time available. The levels of pol III transcription in GSK-3 p' 

A murine fibroblasts and corresponding wild-type cells could also be compared; 

GSK-3p-knockout cells have recently successfully been generated by Hoeflich et al. 

and used to demonstrate a novel function for GSK-3p in cell survival (219). Since 

the only genetic difference between GSK-3 P+/+ and GSK-3 p'A fibroblasts is the 

presence of the GSK-3 P gene, the levels of pol III transcription in these cells should 

provide a definitive answer as to whether endogenous GSK-3 p truly does have a role 

in the repression of pol III transcription. However, it is possible that the effect of the 

loss of GSK-3 p may be functionally compensated for by GSK-3 a , which may 

explain the lack of any notable effect of loss of GSK-3 p on Wnt signalling, cyclin 

D l levels or P-catenin accumulation observed by Hoefflich et al. (219). Thus, the 

generation of GSK-3 a  and GSK-3 P double knockouts may be necessary to 

investigate the physiological role of GSK-3 P in pol III transcription by this approach. 

The GSK-3 p'A fibroblasts would also enable it to be directly tested whether the 

stimulatory effect of low doses of lithium ions on pol III transcription in vivo is
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dependent on GSK-3 p. Both the knockout and antisense approaches reduce

endogenous levels of GSK-3 p and thus represent more physiological tests of the in 

vivo role of GSK-3 P than overexpression by transient transfection, since the 

overexpression of proteins can sometimes induce artefactual interactions. One 

disadvantage of these approaches is that they provide no information as to whether 

the endogenous protein is usually saturating, as seems to be the case for CKII, at 

least in some cells. However, the inhibitory effect on pol III transcription in vitro of 

artifically raising the levels of GSK-3p in cell extracts using recombinant GSK-3P 

suggests that endogenous GSK-3P is not usually in excess, consistent with its 

inactivation by mitogenic signalling.

Although the evidence for a physiological role for GSK-3p is currently weak, 

it is expected that GSK-3P can inhibit pol III transcription in vivo, since it negatively 

regulates cyclin D1 protein levels (124, 435). However, the demonstration that 

recombinant GSK-3p inhibits pol III transcription reconstituted in vitro with 

fractionated factors suggests a more direct influence of GSK-3p upon pol III 

transcription. GSK-3P does not seem to stably associate either with TFIIIB or 

TFIIIC2; however, it has yet to be tested whether it can interact with pol III or 

TFIIIC1. Potential GSK-3 phosphoacceptor sites have been identified in numerous 

components of the pol III transcriptional apparatus including four of the five subunits 

of TFIIIC2, BRF and TBP. It is possible that GSK-3 p transiently associates with and 

phosphorylates one or more of these components. Alternatively, perhaps GSK-3 P 

phosphorylates an upstream regulator of pol III transcription, altering its ability to 

transrepress or transactivate pol III transcription. The inhibitory effect of 

recombinant GSK-3 p on pol III transcription in vitro is supported by the stimulatory 

effect of inhibiting endogenous GSK-3p using low doses of lithium ions. 

Confirmation that reducing the levels of endogenous GSK-3 p increases pol III 

transcription in vitro awaits the development of novel GSK-3 p inhibitors or a 

competitor peptide that is substantially more specific for GSK-3 than the CREB 

phosphopeptide.
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Chapter 7.

Summary and perspective

Mammalian pol III transcription is subject to considerable physiological 

regulation. The two basal factors TFIIIB and TFIIIC have both been shown to be 

limiting for pol III transcription at different stages of the cell cycle (571) and are thus 

obvious targets for exerting regulatory control upon the transcriptional process. 

Despite this and the essential roles of TFIIIB and TFIIIC in mammalian pol III 

transcription, the composition of both factors have yet to be fully elucidated. 

Nevertheless, several components of both factors have been cloned. This provided 

me with the opportunity to develop effective immunoaffinity steps for the separate 

purification of TFIIIB and TFIIIC. In our laboratory, we have tended to rely on 

TFIIIB and TFIIIC purified by conventional chromatography. However, affinity 

chromatography offers the potential to achieve a much higher level of purity in fewer 

steps (468). Unfortunately, this potential was not fully realised because of problems 

of loss of activity that were encountered when attempting to wash the 

immunoisolated complexes with salt concentrations above lOOmM NaCl. 

Nonetheless, the extent of purification of active TFIIIB and TFIIIC was still 

significantly greater than that of TFIIIB and TFIIIC commonly used in regulatory 

studies. There are a number of possible causes for the loss of activity that 

accompanied more stringent washing of the immunoisolated complexes and these 

require further investigation. The most likely explanation is that the TFIIIB and 

TFIIIC complexes are disrupted. The TFIIIC 1 and TFIIIC2 components of hTFIIIC 

are relatively easily dissociated (118, 607). Recent work from the laboratory of 

Hernandez suggests that mammalian TFIIIB resembles the yeast factor, with B" only 

very loosely associated with TBP and BRF (463).

Using this immunoaffinity approach, a complex containing TFIIIB, TFIIIC 

and pol III was isolated, lending support to the possible existence of a pol III 

holoenzyme in vivo. This complex was used to show that recombinant RB is capable 

of disrupting the interaction between TFIIIB and TFIIIC2, providing a possible 

explanation as to how RB represses transcription of TFIIIC2-dependent class III 

genes. Using an immunoprecipitation approach, recombinant RB has also been
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shown to reduce the association between pol III and TFIIIB, suggesting that multiple 

mechanisms may contribute to the repressive effects of RB (503). However, in both 

approaches RB was overexpressed. It is clearly important to determine whether RB 

can also impair these interactions when present at physiological concentrations. This 

could be tested by carrying out immunoprecipitations using extracts from Rb'1' and 

Rb+I+ fibroblasts and comparing the level of TFIIIB that can be 

coimmunoprecipitated with TFIIIC or pol III in the presence or absence of 

endogenous RB.

The pocket proteins p i07 and p i30, which share -30-35% identity with RB, 

also repress pol III transcription, both in vitro and in vivo (504). As previously 

shown for RB, I have found that a population of endogenous p i07 and p i30 

molecules consistently cofractionate and coimmunoprecipitate with endogenous 

TFIIIB, demonstrating that all three pocket proteins can associate stably with TFIIIB 

at physiological concentrations. Since the three pocket proteins are structurally so 

similar and they target the same pol III factor, TFIIIB, this suggests that the 

mechanism(s) of repression of pol III transcription by p i07 and p i30 may be the 

same as for RB. However, it remains to be tested whether p i07 and p i30 are able to 

diminish the interaction of TFIIIB with TFIIIC2 or pol III, as has been demonstrated 

for RB. Alternatively, pl07 and p i30 may inhibit pol III transcription by different 

mechanisms to RB. All three pocket proteins have previously been found to 

associate with histone deacetylase activity and this appears to be actively involved in 

the repression by the pocket proteins of some E2F-responsive genes transcribed by 

pol II (53, 144, 346, 349). The histone deacetylase inhibitor trichostatin A (TSA) 

was found to have no effect on RB-mediated repression of pol III transcription. 

However, TSA has been shown to cause an increase in the levels of B2 RNA in vivo 

in a RB-independent manner (503). Perhaps p i07- or p i30- mediated repression of 

pol III activity involves histone deacetylase activity.

The stimulatory effect of TSA upon B2 RNA levels provides the first in vivo 

evidence that histone acetylation or deacetylation can affect the expression levels of 

pol III products. This is consistent with recent reports from the Roeder laboratory 

that human TFIIIC has histone acetyltransferase activity (230, 298). However, I 

have been unable to verify that this is actually the case. Although the B-block 

affinity-purified TFIIIC was enriched in HAT activity, immunoafflnity-purifled 

TFIIIC showed no increase in HAT activity compared with mock immunoaffinity-
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purified protein. Since the reported HAT activity of human TFIIIC is so weak, either 

of these results can be readily explained by the effect of small quantities of 

contaminants, in the one case producing a false positive and in the other case 

obscuring a real but weak activity. With more time available, to begin to resolve 

this, in-gel HAT assays could be performed to see if the HAT activity detected 

corresponds with polypeptides of approximately the same size as known subunits of 

human TFIIIC. Further purification of TFIIIC might also be required, because silver 

staining reveals that immuno- and DNA- affinity purified TFIIIC fractions contain a 

complex mixture of polypeptides.

The acetylation of histones at promoters is associated with the formation of a 

less compact chromatin structure and increased gene activity and has been shown to 

facilitate transcription factor access to chromatinised promoter sequences (321). 

Consistent with the reported HAT activity of hTFIIIC, increased concentrations of 

the factor have been shown to relieve chromatin-mediated repression of a tRNA gene 

assembled into chromatin in vitro (298). Yeast TFIIIC has also been shown to play a 

dominant role in relieving the repressive effects of chromatin, both in vitro and in 

vivo (67). However, preliminary results from the laboratory of Sentenac suggest that 

yeast TFIIIC lacks HAT activity (83). TFIIIC is poorly conserved between yeast and 

humans and none of the three subunits of human TFIIIC reported to possess HAT 

activity share any significant sequence homology with any of the yeast x subunits.

For pol II-transcribed genes, chromatin remodelling is an important 

mechanism of regulating gene expression. In recent years, a variety of 

transcriptional coactivators have been found to possess HAT activity and for several 

of these proteins the intrinsic HAT activity has been shown to be essential for their 

ability to function as a coactivator (303, 359, 500). Conversely, a number of 

transcriptional corepressors have been found associated with histone deacetylases (5, 

308). In addition, several ATP-dependent nucleosome remodelling factors have been 

shown to closely associate with particular pol II transcriptional coactivators, thereby 

targeting their activity to certain genes. Changes in chromatin structure have also 

been implicated in various aspects of the physiological regulation of pol III 

transcription, for example in the developmental regulation of 5S gene expression in 

Xenopus (568). However, it has yet to be studied in detail to what extent changes in 

chromatin structure are involved in regulating pol III transcription or how chromatin
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remodelling is achieved. The stimulatory effect of TSA in vivo and the reported 

HAT activity of hTFIIIC suggest that histone acetylation and deacetylation may be 

important. Perhaps some of the histone acetyltransferases and histone deacetylases 

involved in pol II transcription can also influence expression of class III genes, akin 

to the repressive effects of the pocket proteins upon both pol II and pol III 

transcription. The recruitment of particular chromatin remodelling factors, such as 

p300 for example, to class III genes could easily be tested by carrying out chromatin 

immunoprecipitations with antibodies to these components.

One area of pol III research that has been largely unexplored is its regulation 

by phosphorylation. The regulation of pol III transcription in response to a variety of 

different environmental stimuli suggests that multiple kinase signalling pathways 

may target the pol III machinery. All five subunits of TFIIIC2 have been shown to 

be phosphorylated in vivo, as well as several pol III subunits (83, 481). This has also 

recently extended to include the BRF subunit of TFIIIB (470). However, so far only 

a few kinases have been shown to affect the levels of pol III transcription. The 

identification of kinases that can modulate pol III activity is made more difficult by 

the vast number of different kinases that there are in a cell.

In this particular study, I have investigated the possible involvement of two 

different kinases, CKII and GSK-3 p, that I considered particularly strong candidates 

for a role in regulating pol III transcription. One of these, the ubiquitously expressed 

serine/threonine kinase CKII, had previously been shown to function in yeast pol III 

transcription (163, 164, 216). Since CKII has growth-promoting and oncogenic 

properties it was of particular interest to see whether it is also involved in 

mammalian pol III transcription. The competitive inhibition of endogenous CKII 

kinase activity in mammalian cell extracts and protein fractions potently inhibited pol 

III transcription, suggesting a stimulatory role for CKII as previously demonstrated 

in yeast. This was confirmed by the addition of recombinant CKII, which was able 

to restore pol III transcription to depleted extracts. The reduction of endogenous 

CKII levels in human fibroblasts using antisense oligonucleotides also caused a 

significant decrease in pol III transcription, demonstrating that CKII is required for 

efficient transcription in a physiological context (257).

The inhibitory effect of CKII inhibitors upon mammalian pol III transcription 

reconstituted with fractionated factors suggested that CKII might directly associate
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with one of the components of the basal pol III transcriptional machinery. Further 

investigation revealed that endogenous CKII and TFIIIB stably interact, as shown by 

their consistent cofractionation and coimmunoprecipitation. Very recently, CKII has 

also been shown to phosphorylate recombinant human BRF and B" in vitro (257). 

Furthermore, in vivo phosphorylation of BRF is reduced by chemical CKII inhibitors 

(470). A mechanism by which the phosphorylation of human TFIIIB by CKII 

stimulates pol III transcription has also been proposed. Coimmunoprecipitation 

experiments showed that the level of TFIIIC2 that can be coimmunoprecipitated with 

TFIIIB is specifically reduced in the presence of chemical CKII inhibitors. It is 

therefore proposed that the phosphorylation of TFIIIB by CKII promotes its 

association with TFIIIC2. Significantly, the tumour suppressor RB disrupts this very 

same interaction. Perhaps the phosphorylation of TFIIIB by CKII inhibits RB from 

binding TFIIIB or disrupting the interaction between TFIIIB and TFIIIC2. 

Alternatively, the opposing effects of CKII and RB on this crucial interaction may be 

independent of each other. This could easily be tested by seeing if CKII kinase 

activity promotes the interaction between TFIIIB and TFIIIC2 in a RB-negative 

background. As for RB, there may be additional mechanisms yet to be discovered 

that also contribute to the stimulatory effect of CKII on pol III transcription.

The regulation of CKII remains something of an enigma, but CKII activity is 

found to be specifically elevated in a variety of transformed and tumour cells and 

rapidly proliferating cell types, suggesting that it may contribute to the increase in 

pol III transcript levels frequently observed in response to transformation (141, 160, 

387). In addition, CKII is a candidate for the cell cycle regulation of pol III 

transcription because CKII has been shown to be required for transition of particular 

stages of the cell cycle (413). CKII has yet to be shown to be limiting for pol III 

transcription except when its endogenous levels were artificially reduced. However, 

the lack of a stimulatory effect when overexpressed in HeLa extracts or human 

osteosarcoma cells is not so surprising since CKII is often abnormally elevated in 

tumour cells. Clearly, it is important to determine under what physiological 

conditions CKII can stimulate pol III transcription when overexpressed.

GSK-3 P negatively regulates protein synthesis by phosphorylating and 

inhibiting the translation initiation factor eIF2B (423, 562). Since tRNA and 5S 

rRNA are also required for protein synthesis, this raised the possibility that GSK-3 P
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may also inhibit pol III transcription as part of its repressive effects upon the 

translational machinery. Recently, GSK-3 p has also been shown to induce cyclin D1 

proteolysis (124). Cyclin D1 levels vary periodically and are the principal 

determinant as to the timing of RB inactivation each cell cycle. This suggested that 

GSK-3 P might repress pol III transcription indirectly through its effects on RB 

activity. Although some weak evidence was obtained to suggest that GSK-3 p might 

inhibit pol III transcription, most of this relied on the use of low doses of lithium ions 

as a specific inhibitor of GSK-3 activity. Although lithium is routinely used to 

investigate GSK-3p function and is considered a highly specific inhibitor of GSK-3, 

the possibility remains that the stimulation of pol III transcription by lithium that was 

consistently observed both in vitro and in vivo was not due to the inhibition of GSK- 

3p (280). The molecular basis for the stimulatory effects of lithium ions upon pol III 

transcription requires further investigation to see if the inhibition of GSK-3 is 

responsible. In support of this and a role for GSK-3p in regulating mammalian pol 

III transcription, the addition of recombinant GSK-3 P to in vitro transcription 

reactions caused a dose-dependent decrease in the levels of pol III transcript 

produced.

The bulk of a cell’s dry mass is protein, which is why the rate of protein 

synthesis is such a critical determinant of the rate of cellular growth. tRNA and 5S 

rRNA, as essential components of the translational apparatus, can therefore serve to 

restrain cellular growth when their levels are limiting. This might explain why pol 

III products are overexpressed in many transformed and tumour cell types; this may 

be necessary in order to sustain elevated levels of growth. The increase in pol III 

transcript levels in response to transformation has recently been extended to include 

actual tumours (87, 88, 586). Two key repressors of pol III transcription RB and p53 

are frequently inactivated in human tumours, suggesting two potential mechanisms 

by which pol III transcript levels may become abnormally elevated in cancers. 

Indeed, several naturally occurring mutations in RB found in tumours have been 

shown to prevent RB from repressing pol III transcription. Recent work from our 

laboratory has shown that pol III products are abnormally elevated in nine out of nine 

human ovarian tumour samples analysed, relative to normal healthy tissue from the 

same patients (586). Further analysis revealed that the specific DNA-binding 

activity of TFIIIC2 is specifically elevated in each of the tumour samples (586).
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Using purified factors, I show that TFIIIC can be limiting in normal ovarian cell 

extracts, suggesting that the increase in TFIIIC2 activity in ovarian tumours is at 

least partially responsible for the overexpression of pol III transcripts in these 

tumours.

The most common genetic alterations detected in human ovarian cancers are 

mutations in Ki-ras,p53 and erbB2/neu (159), suggesting that a change in the protein 

product of one of these genes may be responsible for the increase in TFIIIC2 activity 

in ovarian tumours. Roles for p53 (70, 90) and Ras (548) in pol III transcription 

have previously been reported. p53 specifically inhibits TFIIIB and Ras can cause 

an increase in the abundance of TBP. The erbB2/neu gene encodes a member of the 

epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTKs) 

and is activated in approximately one-third of human ovarian cancers (30, 159, 241, 

399, 491). The possibility that erbB2/neu might influence pol III transcription and be 

responsible for the increase in TFIIIC2 activity was investigated using a rodent 

ovarian epithelial cell line transformed by an activated neu oncogene (ROSE 199- 

neu) (115). ROSE 199-neu cells can induce tumorigenesis in vivo and are 

considered a good model of certain aspects of human ovarian cancer (115). 

Comparison with untransformed control cells, ROSE 199 cells retrovirally 

transduced with the p-galactosidase gene, revealed that extracts from ROSE 199-neu 

cells support higher levels of pol III transcription. This provides the first evidence 

that erbB2/neu has a role in pol III transcription. Electrophoretic mobility shift 

assays were also performed and showed that extracts from the ROSE 199-neu cells 

display increased B-block binding activity. This strongly suggests that erbB2/neu 

may be at least partially responsible for the increase in TFIIIC2 activity observed in 

human ovarian tumours. However, the neu status of these tumours was not examined 

and it is possible that the increase in TFIIIC2 activity was achieved by a different 

mechanism.

Neu (erbB2) is the first cell surface receptor for which a role in pol III 

transcription has been demonstrated. The mitogenic stimulation of pol III 

transcription is well established, but the identities of the mitogens that are capable of 

activating this response have not been deduced. Serum has invariably been used to 

induce the mitogenic response and contains a complex mix of mitogens, which can 

vary depending on the serum batch. The ability of activated neu to induce an
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increase in pol III transcription suggests that in a normal healthy cell, epidermal 

growth factor (EGF) and other ligands utilised by the EGFR family of RTKs can 

stimulate pol III transcription. Although a direct ligand for erbB2/neu has not been 

identified, it can dimerise with every other member of the EGFR family on their 

binding of ligand and can therefore be induced by a whole host of ligands (115, 399). 

Activated neu receptor has multiple downstream effectors and can influence a variety 

of intracellular signalling pathways (241, 323, 399). The mechanism by which the 

activation of neu tyrosine kinase activity at the cell surface results in an increase in 

TFIIIC2 B-block-binding activity has yet to be elucidated but likely involves a 

cascade of phosphorylation events that transmit the stimulatory signal from neu to 

TFIIIC2. Cell growth stimulation by EGF can be inhibited with CKII antisense 

oligonucleotides (414) suggesting that CKII might be a downstream effector of neu 

and might therefore be responsible for the increase in TFIIIC2 activity. Protein 

kinase B (PKB), which can phosphorylate and inactivate GSK-3 (3, is also implicated 

as a downstream target of erbB2/neu signalling (194). However, the preincubation 

of cell extracts with recombinant CKII or GSK-3 P in the presence of a suitable 

phosphate donor had no effect on TFIIIC2 B-block binding activity when assayed in 

an electrophoretic mobility shift assay. Perhaps a protein that has not yet been 

shown to have any role in the modulation of pol III activity is responsible for the 

stimulation of TFIIIC2 activity induced by neu. The direct cause of the increase in 

TFIIIC2 activity also remains to be determined and might provide valuable clues as 

to the identity of the factor(s) directly responsible. For example, the human ovarian 

tumour samples were found to express elevated levels of mRNAs encoding the five 

subunits of TFIIIC2, suggesting that the rise in TFIIIC2 B-block binding activity was 

caused by an increase in the expression of TFIIIC2 (586). Assuming that the rise in 

mRNA levels was due to increased transcription and not because of a change in the 

stability of mRNAs, this in turn suggests that a change in a transcription factor or a 

chromatin-remodelling factor might have been responsible for the increase in 

TFIIIC2 activity. Alternatively, a change in the phosphorylation pattern of TFIIIC2 

in response to activated neu would imply that a kinase or phosphatase directly targets 

TFIIIC2 and could be responsible for the change in activity.

Neu/erbB2 signalling may target multiple components of the basal pol III 

transcriptional apparatus. Cyclin D1 levels are also induced by neu signalling (323)

284



suggesting that TFIIIB activity may also be increased in ROSE 199-neu cells 

because of the inactivation of RB by cyclin Dl-cdk4/6. Moreover, TFIIIB was found 

to be weakly limiting for transcription in extracts from untransformed control cells 

(ROSE 199-pgal) suggesting that an increase in TFIIIB activity in response to neu 

would also contribute to the increase in pol III transcription, albeit probably to a 

lesser extent than TFIIIC2.

The molecular basis for the physiological regulation of mammalian pol III 

transcription is slowly being elucidated. The list of proteins that are capable of 

modulating the levels of pol III transcription and are therefore potential regulators of 

the transcriptional process is steadily being extended. Here, I have identified a novel 

role in mammalian pol III transcription for two cellular proteins, CKII and neu, both 

of which have been shown for the first time to be capable of stimulating mammalian 

pol III activity. The mechanisms by which proteins exert their modulatory effects 

upon pol III transcription are also gradually being determined. I have shown that 

recombinant RB can disrupt the interaction between TFIIIB and TFIIIC2 whereas 

CKII kinase activity can promote this interaction. Activated neu was shown to 

stimulate TFIIIC2 activity, and p i07 and p i30 were both found to stably interact 

with TFIIIB, however, the mechanistic bases of the effects of these three proteins 

upon pol III transcriptional activity have not been further examined at present. For 

many of the proteins for which a role in modulating pol III transcriptional activity 

has been demonstrated, it remains to be determined under what physiological 

conditions they actually contribute to the regulation of pol III transcription. In some 

cases, this can be inferred from knowledge of the other functions of the protein and 

their own physiological regulation. However, it is clearly important to establish 

whether or not these inferences are indeed correct and to determine the relative 

contributions of proteins to the regulation of pol III transcription under particular 

physiological conditions.

The level of pol III transcription is tightly linked to the rate of cellular 

growth. It has been suggested that under certain physiological conditions the level of 

pol III transcription, by restricting the production of 5S rRNA and tRNA, can restrain 

cell growth and that this may constitute an important preventive barrier to 

tumorigenesis (313, 567). In support of this contention, the unrelated tumour 

suppressors RB and p53 both repress pol III transcription (70, 90, 93, 579). The
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basal pol III transcriptional apparatus is also targeted for activation by several 

cellular and viral oncoproteins (569). Furthermore, pol III products are frequently 

overexpressed in many transformed and tumour cells. Together, these results suggest 

that elevated levels of pol III transcription may actually contribute towards tumour 

development. Direct evidence for this has recently been provided by two rarely 

studied pol III transcripts that are encoded by the genome of the Epstein-Barr virus 

(EBV). These two transcripts, EBER1 and EBER2, have been shown to induce 

tumorigenicity in EBV- negative Burkitt lymphoma cells (278). This provides the 

first direct evidence that a pol III transcript can be oncogenic. The functions of 

EBER1 and EBER2 have yet to be fully defined; however, they can activate 

interleukin (IL)-IO expression in Burkitt’s lymphoma (278). The IL-10 induced acts 

as an autocrine growth factor allowing the cells to grow in low serum conditions 

(278). However, transfection of EBV-negative Burkitt lymphoma cells with IL-10 

reveal that this is not sufficient to account for the oncogenicity of EBER1 and 

EBER2 (EBERs) (278). The EBERs may also be involved in the subversion of the 

host cell’s translational apparatus, as has been reported for the adenovirus VA RNAs 

(35). Other pol III transcripts may also be capable of inducing tumorigenicity. 

There are quite a large number of pol III transcripts of unknown function. Among 

these are BC1 and BC200 RNA that are highly induced in a range of rodent and 

human tumours respectively and therefore particularly good candidates for being 

oncogenic (87, 88).

It remains to be determined whether tRNA and 5S rRNA are actually ever 

limiting for protein synthesis in mammalian cells and thus whether their 

overexpression can contribute to tumorigenesis by releasing a constraint imposed 

upon cell growth. However, a further indication that this might be the case is 

provided by pol I transcription. The output of pol I transcription is devoted solely to 

the production of large rRNA, which is required for protein synthesis. Significantly, 

like pol III, pol I transcription is repressed by RB and a range of transformed cells 

display an enlarged nucleolus suggesting that pol I activity is elevated in these cells 

(78). These observations suggest that large rRNA can be limiting for protein 

synthesis. Furthermore, there appears to be some coordination of transcription by 

pols I and III, with the activities of both polymerases increasing in parallel following 

serum stimulation and fluctuating together during passage through the cell cycle. 

Thus, tRNA and 5S rRNA may also become limiting when large rRNA does.
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In this particular study, two cellular oncoproteins CKII and neu have been 

identified as novel modulatory, and potentially regulatory, proteins of mammalian 

pol III transcription. The frequent overexpression of pol III products in response to 

transformation and evidence that a pol III transcript can actually promote tumour 

development suggests that other oncoproteins and tumour suppressors may also 

target tie pol III transcriptional machinery. Regardless, in light of the extensive 

physiolcgical regulation of mammalian pol III transcription it is likely that additional 

proteins to those already identified also contribute to regulation of pol III activity.

The subunit compositions of mammalian TFIIIB and TFIIIC have still to be 

fully defined. A lack of knowledge as to the precise composition of components of 

the basal pol III machinery and a lack of molecular reagents against individual 

subunits of these components severely restricts the extent to which the regulation of 

pol III transcription can be dissected at the molecular level. This is further 

complicated by recent evidence suggesting that a different form of TFIIIB functions 

at TATA-less and TATA-containing promoters (365, 463, 515). The relationship 

between these different forms of TFIIIB, which appear extremely labile (463), and 

the possibility of interchange of common subunits between the different forms and 

coregulation is rather unclear at present. The majority of regulatory studies have 

examined only a single TFIIIB activity and in many cases it will be necessary to 

readdress whether the particular modulatory protein or stimulus studied affects one 

or both forms of TFIIIB, and if the latter is true, whether the mechanistic basis is the 

same. For this study, I focused entirely on the regulation of pol III transcription of 

class III genes with TATA-less promoters, since these constitute the majority of class 

III templates, including the essential 5S rRNA and tRNA genes, and more was 

already known about their regulation. TFIIIB and TFIIIC were both purified on the 

basis of their ability to support transcription of the adenovirus VAi gene or a tRNA 

gene, both of which lack TATA boxes in their promoters. In the case of TFIIIB, the 

factor was immunopurified using antibody 128 or 330, raised against residues 533- 

547 and 664-677 respectively of BRF 1. BRF1 appears to be specific to the form of 

TFIIIB utilised by TATA-less promoters; moreover, the regions of BRF 1 that 128 

and 330 recognise are both absent from the homologous BRF2 and BRFU proteins 

reportedly involved in transcription from TATA-containing promoters (365, 463, 

515). The immunopurified TFIIIB is therefore likely to be specific for transcription 

of TATA-less class III promoters. I also obtained some evidence in support of the
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existence of a pol III holoenzyme as previously reported by the Roeder laboratory 

(551). The assembly of components into a functional complex prior to recruitment to 

the promoter has severe implications for the regulation of pol III transcription at a 

molecular level and this is a possibility that deserves further investigation. Clearly, a 

lot of unanswered questions remain concerning the regulation of the mammalian pol 

III transcriptional machinery and this regulation may be considerably more complex 

than was originally thought.
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