
Computing Science
Ph.D. Thesis

UNIVERSITY
of

GLASGOW

On th e Formal Specification and Derivation

o f Relational D atabase Applications

Roberto Souto Maior de Barros

Subm itted for the degree of

D octor of Philosophy

@ 1994, R oberto S. M. de Barros

ProQuest Number: 11007889

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007889

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

4kh>

lOOl^
0^1
GLASGOW^
UNIVERSITY
LIBRARY

On th e Form al Sp ecification and D erivation
o f R ela tion a l D atab ase A p p lications

by
Roberto Souto Maior de Barros

Submitted to the Department of Computing Science
on 25th November, 1994

for the degree of
Doctor of Philosophy

Abstract

The development of database applications is usually carried out informally. The
derivation of database programs directly from formal specifications is a well known and
unsolved problem. Most of the previous work in the area either tried to solve the problem
too generally or was restricted to some trivial aspects, for example deriving the database
structure and/or simple operations.

This thesis describes an extension to the traditional database design process aimed at
formalizing the development of (relational) database applications. Specifically, it gives
a complete description of a general method for the specification of relational database
applications using Z, as well as a comprehensive description of a set of rules on how to
derive database programs from specifications which result from using the method.

The method prescribes how to specify all the im portant aspects of relational database
applications, which includes the definition of relations, the specification of constraints,
and querying and updating of relations, including error handling. It also addresses more
advanced features such as transactions, sorting of results, aggregate functions, etc.

However difficult in general, deriving relational database applications directly from
Z specifications written according to the method is not arduous. W ith appropriate
tool support, writing formal specifications according to the method and deriving the
corresponding relational database programs can be straightforward. Moreover, it should
produce code which is standardized and thus easier to understand and maintain.

An intrinsic part of the thesis is a prototype which was built to support the method.
It provides a syntactic editor for the method and partially implements the mapping for a
specific Relational Database Management System (RDBMS), namely the DBPL system.

Thesis Supervisor: Ray C. Welland
Title: Senior Lecturer in Computing Science

To

My wife Roberta,

my son Robertinho,

and my parents

Gelson and Carminha.

Acknowledgm ents

It is a pleasure to acknowledge the contributions of all the people who somehow helped
me to complete this Ph.D.

Firstly, I would like to thank my supervisor, Ray Welland, for his support to my
research and for his encouragement during the difficult times. In addition, I am specially
indebted for his taking over the task of supervising my work when David Harper left
the department for a new job in Aberdeen. Also, I appreciate his effort in convincing
the examiners to keep the changes to a minimum. Finally, I thank him for being such a
friendly and informal person.

I would also like to thank David Harper for accepting me as a research student here
in Glasgow and for supervising me during the first two years. In particular, I am grateful
for his warm welcome when I first arrived in Glasgow and for taking me as a friend.

I am also in debt to Kieran Clenaghan for bringing the Synthesizer Generator to my
attention, as it turned out to be a great tool which tremendously enhanced the horizon
of the practical results of my research.

Alex Gray, Kieran Clenaghan, and David W att, as members of the examination
committee, provided many interesting corrections and suggestions to improve this thesis.

My office mates Campbell Fraser and Alex Bunkenburg provided a most friendly and
relaxed atmosphere in G161, making the last two years much more enjoyable than the
previous two.

A special thanks to my Brazilian friend Hermano Moura for taking me as a guest in
his home and for helping me with all sorts of things when I first came to Glasgow.

I also acknowledge the financial support tha t allowed me to carry out the research
described in this thesis. This was provided by CAPES (Brazilian Federal Agency for
Postgraduate Education) and by UFPE (Federal University of Pernambuco). In addition,
I could not forget tha t both Ray Welland and David Harper provided funds which allowed
me to attend several conferences and workshops throughout these four years.

Finally, my gratitude and love to my wife Roberta for giving up her job to come to
Scotland with me and for all her support, patience, and love.

Roberto S. M. de Barros

Contents

1 Introduction 1
1.1 Motivation ... 1
1.2 Scope ... 2
1.3 C on tribu tions .. 3
1.4 Organization .. 5

2 Overview 7
2.1 Database design ... 7

2.1.1 Traditional database d e s ig n .. 8
2.1.2 Enhancing the database design process...11

2.2 Motivation for using relational d a tabases ... 14
2.3 Formal methods and.... Z ... 14

2.3.1 W hat are formal methods? .. 14
2.3.2 Classifying formal m e th o d s .. 15
2.3.3 Motivation for using Z .. 16

2.4 The method and specific database a s p e c ts .. 17
2.4.1 Transactions (recovery and concurrency)... 17
2.4.2 S e c u r ity .. 17
2.4.3 In teg rity .. 18
2.4.4 N orm alization.. 18
2.4.5 Performance .. 18
2.4.6 D istribu tion ... 18

2.5 Motivation for using D B P L .. 18
2.6 Conclusion .. 19

3 Literature Survey 20
3.1 The specification of applications using Z ... 20
3.2 The derivation of app lications...21
3.3 The formal specification of database ap p lica tio n s ...22
3.4 The derivation of database t r a n s a c t io n s ... 24

3.4.1 The work of Pastor and O liv e ...24
3.4.2 The work of Sheard and S te m p le .. 25
3.4.3 The work of Steinberg, Faley, and C h in n ...25
3.4.4 The work of Xiaolei Q i a n ... 26
3.4.5 The Hamburg work ...27

3.5 Conclusion ..29

v

Contents vi

4 T h e specification m e th o d 30
4.1 The database structure and constraints ... 30
4.2 The database Operations ... 34
4.3 The advanced fe a tu re s ..42
4.4 The extended operations for error h a n d l in g ...48
4.5 Guidelines on how to use the m e th o d ..50

4.5.1 Guidelines for the first specification .. 50
4.5.2 Guidelines for extending the sp ec if ica tio n .. 51

4.6 Conclusion ..52

5 T h e o p e ra to rs 53
5.1 Primary and candidate key o p e r a to r ..53
5.2 The F O R E IG N -K E Y o p e ra to r ..54
5.3 Null value o p e r a to r s ... 54
5.4 Update and delete o pera to rs .. 56
5.5 The sorting o p e ra to r ... 57
5.6 Aggregate function o p e r a to r s ...58
5.7 Composite attribute opera to rs...61
5.8 Foreign key transitive c lo s u re ...62
5.9 Conclusion ..63

6 T h e co m pany d a ta b a se ex am p le 64
6.1 The chosen tra n s a c tio n s ...65
6.2 The database s tru c tu re ..65
6.3 The database constraints ... 66
6.4 The relational database s tru c tu re .. 67
6.5 Common basic o p e ra tio n s ... 70
6.6 The transactions and their basic o p e ra t io n s ...73

6.6.1 Transaction S a la ry -d ep t...73
6.6.2 Transaction M ovesm pls-pro j ..76
6.6.3 Transaction S e tsm p ls —dept—p r o j .. 79
6.6.4 Transaction Empl supervised s o r te d s a l a r y ...83
6.6.5 Transaction Weighted s a l a r y - p r o j ... 85
6.6.6 Transaction Fire s e le c te d -e m p ls .. 87

6.7 Conclusion ... 88

7 T h e m ap p in g 89
7.1 Mapping the database structures and c o n s tra in ts ...89
7.2 Mapping the database o p e ra tio n s ..95
7.3 Mapping the advanced f e a tu r e s ... 103
7.4 The extended operations for error h a n d l in g ...107
7.5 Conclusion ..108

8 T h e p ro to ty p e 109
8.1 Design and implementation s t r a t e g y ..109

8.1.1 Design decisions ..110
8.1.2 Customizing the mapping process.. 110
8.1.3 Tool s u p p o r t ...I l l

Contents vii

8.2 Implementation p ro b le m s ... 112
8.2.1 Relation inclusion ..112
8.2.2 Extended project operations.. 112
8.2.3 Sorting of r e s u l ts ..114
8.2.4 Type of the primary key a t t r ib u te s ... 115

8.3 Current status of the im plem entation... 116
8.4 Prototyping with the synthesizer generator .. 120

8.4.1 The abstract s y n t a x ... 120
8.4.2 Unparsing ru le s ... 121
8.4.3 Template transfo rm atio n s ..121
8.4.4 The use of a t tr ib u te s ... 122
8.4.5 The concrete syntax for text e d i t i n g ..123
8.4.6 Using views to generate c o d e ...124
8.4.7 Other features ... 125

8.5 Conclusion ..125

9 C onclusion 126
9.1 The m e th o d ..126
9.2 The m a p p in g .. 127
9.3 The p ro to type.. 128
9.4 The specification of database transactions in Z ..128
9.5 Further w o r k .. 129
9.6 Final r e m a r k .. 130

A S im plifica tion o f a p reco n d itio n 131

B S elec ted SSL code 135
B .l Abstract sy n ta x ...135
B.2 A ttribute d e f in itio n s ...137
B.3 Unparsing rules .. 140
B.4 Concrete input syntax for text e d i t in g .. 143
B.5 Template transformation ru les ...145
B.6 Lexical syntax declarations ..145
B.7 View definitions...146

B ib lio g rap h y 149

Index 159

List o f Figures

2.1 Traditional Database Design P ro c e s s .. 9
2.2 Proposed Database Design P ro c e s s ... 12

6.1 Entity-Relationship d iag ram ...66

8.1 The prototype - specification window - part 1 117
8.2 The prototype - specification window - part 2 118
8.3 The prototype - DBPL database structure w in d o w .. 119

viii

Chapter 1

Introduction

This thesis is about the utilization of formal techniques for the development of relational
database applications. In particular, this thesis argues tha t the formal specification
and derivation of relational database programs can be made reasonably simple by the
provision of appropriate methods and tool support.

1.1 M otivation

Having worked in the formal specification area for a number of years, my attention was
mainly devoted to the application of formal methods in the development of real life
software. In particular, my M.Sc. thesis [1] involved the formal specification of a large
system, namely U FPE’s Student Records Control System.

In addition, it is unlikely tha t a generic comprehensive solution to the problem of
deriving real applications will be proposed in the near future. Hence, it was advisable to
restrict the scope of the research to some well understood domain. The database area,
and especially the relational database model, seemed to be the perfect target for the
utilization of formal methods in this context.

Also, traditional database design processes [2] have typically put much more emphasis
on the design of database structures than on the applications tha t will run against these
structures. Because the design of database structures has received much more attention,
it is now well understood and established. For instance, the application of formal and/or
semi-formal techniques as well as tools during these phases is now common.

In this thesis, the specification of the database structure is done in Z [3, 4] and
envisages the use of tool support.

However, the design of database transactions has hardly received any attention in
the traditional database design process and is almost always very informal. Usually, it
progresses from a very high level specification of transaction requirements directly to
code. Thus, the effectiveness of this approach is very dependent on the programmers’
experience and on the amount of testing done.

As a result, the requirements of transactions are frequently underspecified and the
specifications are often inconsistent with the users requirements, mainly due to lack of
precision. The implementations are, therefore, likely to be subject to error. A formal
approach demands precision. Hence, it can force designers to consider details which

1

Introduction 2

might otherwise be overlooked. This should increase confidence in the correctness of the
implementation.

Since formal methods have already been successfully applied to a number of areas,
including the design of programming languages, hardware, etc., and in particular to the
design of the structure of the database, it should be possible to apply formal methods
to the design of database transactions with the same benefits.

So, the more general objective of this thesis is to formalize the design of database
transactions (applications), especially for the relational model [5, 6], in a way tha t it can
be used by practitioners in the development of real world applications. More specifically,
this thesis proposes a new structure for the database design process, which extends
the traditional approach with a number of phases specifically aimed at formalizing the
development of (relational) database transactions.

1.2 Scope

A common problem regarding the application of formal methods to real problems is
th a t beginners usually find writing formal specifications difficult. They need support in
the form of primitives, methods, etc. to guide them. A critical first part of this work
addressed this problem and involved the development of a method aimed at formalizing
the design of relational database transactions.

In particular, the method provides a number of rules which prescribe how to specify
all the im portant aspects of relational database applications using Z. These include
the definition of relations, the specification of constraints, and querying and updating of
relations, including error handling. More advanced features such as transactions, sorting
of results, aggregate functions, etc. are also addressed.

Pre-defined operators1 are used in most parts of the specification in order to make
it simpler to write and understand. These operators capture specific aspects of the rela
tional model, e.g. keys, nulls, etc., and some aspects of operations like delete and update.

In the main, the version of Z used in this thesis is the accepted standard [3]. Some
extensions are introduced when necessary but they are avoided as much as possible.

It is worth emphasizing tha t the method is for the specification of relational database
applications. So, the aim is not to specify either the Relational Model or the operators
of the Relational Algebra (or Calculus). In addition, because it is intended to make the
use of formal methods more available to practitioners, all aspects of the method need to
be as simple as possible.

The other major problem investigated by this work is the derivation of database
programs directly from formal specifications. Although some work has already been
published, the utilization of formal or semi-formal techniques for the generation of real
life database applications has not been seriously attem pted yet.

A common drawback in some of the previous attem pts has been to try to solve the
problem too generally by not restricting it to applications based on a specific database
model, or rather trying to refine a wide variety of application programs.

1The term ‘operators’ is used to refer to Z generic definitions throughout the thesis.

Introduction 3

Another frequent mistake has been to overlook the vital need to specify constraints
and to verify they are satisfied at all times, so that the consistency of the database is
guaranteed at all times. This is normally done by only addressing the correct behaviour
of simple atomic operations and usually leaves the false impression tha t deriving database
applications is fairly straightforward.

On the other hand, experts on the database area tend to think the automatic deriva
tion of real database applications is too difficult, especially because the programs must
guarantee the constraints are satisfied.

The approach described in this thesis is restricted to the specification and reification
of relational database applications. Furthermore, it also considers all relevant kinds of
constraints as well as more complicated transactions.

Specifically, the thesis partially describes a generic mapping aimed at generating
relational database programs directly from formal specifications written according to
the method. The mapping addresses the problems involved in such a translation and is
independent of any particular database system and/or language.

This thesis also involved a substantial piece of implementation work. Specifically,
a prototype tool was developed. It aims to support the method and instantiate the
mapping for a particular Relational Database Management System (RDBMS), namely
the DBPL [7, 8, 9] system which was developed at the University of Hamburg.

The prototype is composed of a syntactic editor for the method and a built-in tool
which translates the specifications to database commands. Since it is only a prototype,
it does not cover the complete method. For instance, the syntactic editor accepts a large
subset of all possible specifications which are correct according to the method, even
though many of the incorrect ones are not rejected.

In addition, the implementation of the mapping for the generation of relational
database applications to be run in the DBPL system is also partial. Nevertheless, the
prototype produces appropriate pieces of code from a reasonably large subset of the
operations, advanced features, and error handling schemas described in the method.

The prototype was developed using the Synthesizer Generator [10, 11], which is a
powerful tool for implementing language-based editors and allows for the generation of
syntactic editors fairly quickly. The implementation of the mapping was carried out
using the view facility of the Synthesizer Generator.

1.3 Contributions

This thesis comprises three major pieces of work. In the first part, a general method for
the specification of relational database applications using Z is provided. The primary
contributions of the method are:

• It allows for an abstract specification of the applications to be developed, focusing
on the im portant aspects of the relational model and applications, without regard
to the fact tha t some features may not be supported by specific RDBMSs and
query languages. It provides the formal basis in terms of which applications can
be specified, verified (using formal reasoning), and implemented (reified).

Introduction 4

• Using the method ought to help database designers and programmers in finding
ambiguities and deficiencies in the requirements specification. Therefore, it should
help practitioners in the development of real world applications. Furthermore,
it should improve the system documentation and the quality of the application
programs which should contain fewer errors. Notice tha t database designers and
programmers constitute the users of the method.

• When implementing database systems without having previously specified them,
programmers tend to concentrate only on the correct behaviour of the operations
and overlook possible errors. The method also deals with the specification of the
behaviour of the system when errors occur and prescribes how to get all possible
errors. A summary of all possible errors for the more common operations might
be added to the method in the future. In addition, the user may be discharged
from proving a number of theorems about relational database applications because
general theorems, with their proofs, ought to be added to the method in the future.

• Given tha t one of the difficulties of specifying a system formally is the choice of
an appropriate level of abstraction, the use of a method should also lead the users
to choose a suitable level of abstraction.

• The method allows for the standardization of the specifications. Thus, it provides
a formal starting point for the investigation of the generation of relational database
programs directly from formal specifications.

• Adopting the method also enables the utilization of modularization, reasoning,
and refinement techniques. These might also be added to the method in the future
and should contribute for improvements in the quality of the programs since it
could lead to many errors being detected before the implementation (reification).
Furthermore, these could reduce the costs of testing and maintenance.

• Ultimately, the method could be seen as the missing bridge to make the use of
formal specification techniques more accessible to developers of real world software
and, in particular, relational database applications.

The second part of the research described in this thesis investigates the derivation
of relational database programs directly from formal specifications written according to
the method and presents a simple mapping. The main contributions of the mapping are:

• It discusses the problems involved in the derivation of relational database programs
directly from formal specifications without binding the investigation to any specific
database system or language. In other words, the mapping is general and should
be applicable to many RDBMSs.

• The investigation is restricted to applications based on the relational model, which
means it does not try to refine too wide a variety of applications.

• The mapping is not restricted to the correct behaviour of simple atomic operations.
On the contrary, it considers all the relevant kinds of constraints as well as more
complicated transactions.

Introduction 5

• In general, there is more than one way of writing correct database commands to
implement particular operations. The utilization of the mapping allows for the
standardization of the database operations contained in the application programs,
which ought to lead to programs being easier to understand. As a consequence,
the costs of testing and maintenance might be reduced.

Finally, the third part of this work concerns the prototype tool built to support the
method and implement the mapping. The main reasons for building such a prototype
were:

• To show th a t the specification of relational database applications using the method
and the construction of the corresponding database programs can be reasonably
straightforward if appropriate tool support is provided.

• To provide evidence tha t the syntax and semantics of the method are sound and
th a t it is possible to build a full scale syntactic editor to support the method.

• To demonstrate tha t the mapping can be adapted to specific RDBMSs, th a t it is
possible to derive database programs automatically, at least for a large number of
applications, and th a t building a tool to implement the mapping for a particular
RDBMS is not too difficult.

1.4 Organization

This thesis is divided into four parts. The first part, which comprises this and the
following two chapters, introduces the work and puts it in context. The principal part
of this work is then described in the next five chapters, i.e. Chapters 4 to 8. Next is
Chapter 9, which closes the main body of the thesis. Finally, two appendices complement
the presentation. The contents of the remaining chapters are summarized below.

Chapter 2 reviews the traditional database design process and proposes an extension
aimed a t formalizing the design of (relational) database transactions. In addition, it
justifies the several decisions made in the directions of the research, explaining why the
investigation was restricted to relational database applications, why Z was chosen for
the specifications, why DBPL was chosen for the implementation of the prototype, etc.

In Chapter 3 the existing use of formal methods techniques for the specification
and derivation of applications is surveyed. The scope of the survey is restricted to the
formal specification of real, large scale applications using Z, and to the specification and
derivation of database applications. The emphasis is specifically put on the derivation
of relational database transactions from formal specifications. Some of the approaches
are described in somewhat more detail and their strengths and weaknesses discussed.

Chapter 4 presents the latest description of the method. It starts by presenting
rules for the specification of the database structure, i.e. domains, relations and their
attributes, candidate and foreign keys, as well as other constraints to be guaranteed.
The specification of basic operations over the database are covered next, which includes
operations such as select, project, join, insert, delete, and update. These are followed
by the specification of more advanced features, which includes transactions, sorting of

Introduction 6

results, aggregate functions, composite attributes, and views. Then, it addresses the
extension of the applications (transactions) to capture error handling, using two different
approaches. The chapter is concluded with the presentation of a number of guidelines
on how to use the method realistically.

Chapter 5 presents the formal definition (specification) of the operators used in the
specifications written according to the method. These pre-defined operators, informally
introduced within the description of the method, capture specific aspects of the relational
model, such as nulls and candidate and foreign keys, as well as some specific aspects
of update and delete operations. Other operators are provided to simplify the use of
some advanced features such as sorting of results, aggregate functions, and composite
attributes.

In Chapter 6, a complete example is specified using the method. It starts with an
informal description of the chosen transactions. The database structure affected by the
transactions is then captured by an Entity-Relationship (ER) diagram. Next, natural
language descriptions of the database constraints th a t must be guaranteed are presented.
After tha t, the relational database structure is formally specified. The specification of
common basic operations follow. Finally, the chosen transactions are specified and this
includes the calculation of the preconditions and error handling.

Chapter 7 describes the mapping aimed at the derivation of database programs from
specifications written according to the method. The exposition of the mapping follows
basically the same order used in the presentation of the method in order to make its
understanding easier. Thus, it starts with the rules for the mapping of the database
structures and constraints, which are followed by the mapping of the database operations,
the advanced features, and the extensions to capture error handling, respectively.

Chapter 8 describes the prototype system which was built to support the method
and implement the mapping. It provides some details about the problems of adapting
the mapping for a particular RDBMS. It also discusses the strategy used to build the
prototype as well as a number of design decisions th a t have been made regarding the
functionality and implementation of the prototype. In addition, the chapter presents a
quick introduction to the Synthesizer Generator, the tool used to build the prototype.

In Chapter 9 the overall conclusions reached by the research are presented. It starts
with a summary of the work done and devotes special attention to the benefits of the
method, the mapping, and the prototype. The chapter is closed with suggestions for
future extensions and further work.

Finally, the appendices are presented. The first one exhibits the simplification of the
precondition of a transaction involving many subtransactions and potentially affecting
many of the specified constraints. The second appendix presents selected parts of the
Synthesizer Specification Language (SSL) code written to build the prototype.

Chapter 2

Overview

This chapter provides an overview of the work and its context.
It starts with a review of the traditional database design process and proposes an

extension aimed at formalizing the design of (relational) database transactions.
In addition, this chapter justifies the several decisions made in the directions of the

research, explaining why the investigation was restricted to relational database appli
cations, why Z was chosen for the specifications, and why DBPL was chosen for the
implementation of the prototype. This chapter also provides a concise introduction to
formal methods and formal specifications as well as a classification of formal methods.

2.1 Database design

Traditional database design processes [2] have typically put much more emphasis on the
design of database structures than on the design of the transactions th a t will run against
these structures. In fact, the design of the structure of the database is usually seen as a
prerequisite for the development of the applications th a t will run against it.

In addition, database structures are much more static than the applications and,
in many cases, much more difficult to modify. Specifically, changing the structure of a
non-relational database invariably means tha t a number of applications must be changed
too. However, this need not be true in the case of relational databases.

For instance, adding a new attribute to one of the relations in a relational database
application does not mean tha t all application programs reading the changed relation
need to be changed. On the contrary, in most existing relational systems only the
programs th a t manipulate the new attribute need to be changed. On non-relational
platforms, all programs tha t access the changed relation usually have to be changed.
Even though the actual changes are frequently limited to updating the record structure
associated with the changed entity (file), it usually involves changing and recompiling a
considerable number of programs.

Because of these, database designers usually make their best effort to achieve a
consistent database structure before the development of the applications is begun. For
instance, formal (or semi-formal) techniques as well as tools are usually applied to the
design of database structures, as opposed to the development of database applications
which is almost always very informal.

7

Overview 8

A legitimate question tha t might be asked is then: “Why does only the database
structure receive the appropriate attention?” . Also, “Why do database applications not
receive the same attention?” . Apart from the fact tha t the applications are much more
dynamic than the structures and, therefore, need to be changed more frequently, a couple
of other reasons contribute to this state of affairs.

To s ta rt with, many database designers and programmers underestimate the cost
and difficulty of maintaining the applications and regard this activity as a simple one
because modifying the structures is more difficult. In fact, maintaining programs directly
on the code without updating the corresponding documentation (specifications) is a quite
common practice among professional programmers. These are usually sceptical about
the importance of the systems documentation.

Also, users of computer systems (either database or non-database systems) are used
to low standards in software development and, generally, are likely to accept errors as
normal or even inevitable. Fixing errors quickly is usually enough to keep end users
satisfied.

In this section the traditional database design process is reviewed and an extension
aimed at formalizing the design of (relational) database transactions is proposed.

Because the design of database structures has received much more attention, it is
now well understood and established. For instance, the use of formal (or semi-formal)
techniques as well as tools during these phases are now very common. Therefore, there
is no intention to propose any major changes or contribution in these phases of the
database design process.

2.1 .1 T rad itional database design

Figure 2.1 summarizes the traditional database design process. Because the design of
database transactions has hardly received any attention, almost all phases in the process
refer to the design of database structures. For completeness, a brief description of each
phase is added.

Requirem ents

This phase refers to the specification of requirements th a t all potential users of the
database may have. Users must be repeatedly interviewed because, in general, there is
no guarantee th a t the specifications will meet the user requirements.

The inputs are informal statem ents written in natural language, produced from the
interviews with the users.

The outputs are usually separated into two groups: data requirements and processing
requirements. The first of them, data requirements, refer to which data is needed in the
database.

Processing requirements refer to how data is to be processed. These usually include
the specification of the inputs and outputs, functionality, frequency of execution, and
desired performance of transactions tha t are to be run against the database. Even
though a number of transactions is not normally known at this time, i.e., before the
implementation, the more im portant ones are usually known in advance.

Overview 9

Physical
DB Design

Implementation
DB Design

Conceptual
DB Design

Logical
DB Design

Requirements
Specification

Figure 2.1: Traditional Database Design Process

The outputs of this phase are frequently written using a requirements specification
language, e.g. SSADM [12], SADT [13, 14], SAMM [15], HIPO [16], DFDs [17], etc.
Restricted versions of natural language are sometimes used as well, especially for the
specification of processing requirements.

Although (semi-)formal techniques are usually applied, it is worth repeating tha t
users need to be interviewed repeatedly because, in general, there is no guarantee that
the specifications will meet the users requirements. For this reason, this phase is really
very im portant and can be quite time consuming. Even though processing requirements
are also collected during this phase, the emphasis is usually much more devoted to the
da ta requirements.

Conceptual DB design

In this phase, a data model independent database schema (the conceptual schema) is
specified using a very high level data model, e.g. ER [18], EER [19], R M /T [20], etc.
It usually involves the specification and integration (merging) of the users’ views of
the database.

The inputs for this phase are the data requirements of the previous phase. The
output is the database conceptual schema.

Overview 10

Logical DB design

During this phase the conceptual schema and external views are translated to the generic
da ta model of the target DBMS. In the specific case of the relational model, the logical
database design also includes the normalization of relations [5, pp. 525-560]. In addition,
any limitations the target DBMS may impose on the data model are usually not taken
into account.

The inputs are the conceptual schema (last phase) and the structure and limitations
imposed by the chosen data model. The output is the database logical schema. In the
case of the relational model, the result is typically the database structure written in an
SQL-like [21] language.

Formal generic mappings from the conceptual schema based on the ER model to
the relational, hierarchic, and network models are already established [22, pp. 309-409].
Similar mappings from conceptual design specifications written in a formal specifica
tion language to corresponding data model dependent formal specifications should be
straightforward. Moreover, it should be possible to refine the high level specification of
transactions into corresponding data model dependent (but still abstract) specifications.

Finally, it seems reasonable to believe tha t mapping a well designed ER schema to
the relational model should result in relations already normalized. However, this is only
possible if all types of dependencies, i.e. functional, multivalued, and join dependencies,
are represented in the ER diagram. Anyway, automated tools for normalizing relations
are already available [23, 24].

Im plem entation DB design

After an specific DBMS is chosen to be used in the actual implementation, the structure
of the database is implemented using its Data Description Language (DDL). Sometimes,
because a number of DBMSs include physical parameters in their DDLs, this phase is
carried out in parallel with the physical database design (next phase). This is usually
not the case of relational DBMSs though.

The input to this phase is the logical database schema. Accordingly, the output is
the implemented database structure.

Physical DB design

Finally, appropriate storage structures and access paths for each of the elements of the
database are defined in order to achieve good performance. The application programs
are usually run to monitor the required performance of the more im portant transactions
thus helping in this phase.

The inputs are the implemented database structure and the constraints, frequencies
of execution, and desired performances of transactions. The outputs are the storage
structures and access paths.

Overview 11

O p tio n a l phases

In the specific case of very large databases, extra phases are sometimes considered in
such a process. This usually includes:

D is tr ib u tio n : If the database is not to be managed centrally, than it is necessary to
decide which data is to be stored at what location, which is usually based on the
results of the transaction design. It may also be the case th a t different DBMSs are
to be used in different sites.

B en ch M ark in g : This refers to the generation of test data and prototype applications
in order to aid in measuring the performance of the database before the real data
is loaded. Also, the applications used in these tests may be a subset of the appli
cations and/or partial implementations of some of the operations (transactions).

2 .1 .2 E nhancing th e database design process

It has already been mentioned tha t transactions have hardly received any attention in
the traditional database design process. As a result, the design of database transactions
is almost always very informal and usually progresses from a very high level specification
of transaction requirements directly to code. Thus, the effectiveness of this approach is
very dependent on the programmers’ experience and on the amount of testing done.

It is believed there is no good reason for this state of affairs. So, the design of database
transactions should also be formalized. Moreover, it should be possible to formalize it
in much the same levels of abstraction in which the structures were formalized.

This thesis proposes a new structure for the database design process which extends
the traditional approach with a number of phases specifically aimed at formalizing the
development of (relational) database transactions. Figure 2.2 summarizes the proposed
structure. Thicker boxes and lines refer to the proposed (or modified) phases and their
corresponding inputs and outputs respectively. A brief description of each proposed or
modified phase is again provided.

C o n c e p tu a l specification o f tra n sa c tio n s

This refers to the formal specification of database transactions at a very high level of
abstraction. The specifications should be DBMS independent and possibly da ta model
independent as well. There is no specific method (or language) established yet. Even
though there is a need for such a method, identifying what this might be is not the
subject of this research.

In spite of that, it is reckoned tha t for each transaction such a method would have
to specify at least (1) W hat the inputs and outputs are, (2) what the entities and
relationships changed are, (3) for each changed entity or relationship, which attributes
are changed, and (4) for each changed attribute, what the changes are.

The inputs are the processing requirements whereas the outputs are the conceptual
specifications of the transactions.

Overview 12

Database ApplicationsDatabase Structures

Logical
Specification of

transactions
Modularization
Reasoning
Refinement

Physical
DB Design

Implementation
DB Design

Conceptual
Specification of
Transactions

Conceptual
DB Design

Application
Programs

Reification

Logical
DB Design

Data
Requirements

Processing
Requirements

Figure 2.2: Proposed Database Design Process

L ogical D B design

As already mentioned, there is no intention to do any contribution to the design of
database structures. The main interest here is to be able to specify the transactions
th a t are to be run against the database. Even so, a small change in this phase is
proposed. It is aimed a t making the logical specification of transactions (next phase)
slightly easier.

Basically, instead of using an SQL-like language, the logical database schema is
expected to be generated in Z [3, 4], the formal specification language used to specify
the transactions at the logical level.

Modifying available tools for logical database design to generate a Z version of the
logical database schema should not be too difficult. While such modified tools are not

Overview 13

yet available, it might be th a t generating the Z version of the logical database schema
based on a simple translation from the traditional SQL-like specifications would be the
best approach.

A number of reasons have been taken into account in the decision of having a Z
version of the database structure. Firstly, in a mixed mode, SQL-like specifications of
the database structure would not mix well with the Z specifications of transactions.
Actually, the Z specifications would be incomplete if the declaration parts were omitted.
Secondly, it would be more difficult to reason about such specifications. Finally, this
would not be appropriate if the database were not to be implemented in an SQL system.

To tackle the first two problems, the syntax and semantics of what would be a new
specification language would have to be provided. In my opinion, this is not necessary
because restricting an appropriate existing language by means of a method seems more
adequate and simpler.

Logical specification o f transactions

During this phase, a d a ta model dependent, but DBMS independent, formal specification
of database transactions would be written using a formal specification language. More
specifically, a general method for the specification of relational database transactions
has been developed. It prescribes how to specify all the im portant aspects of such
transactions using Z.

The use of modularization and reasoning techniques during this phase might make
the understanding of the specifications and the proof of desired properties easier.

In addition, these should make more effective the process of identifying errors and
ambiguities in the specifications, as well as inconsistencies between the requirements and
the specifications, before the implementation (reification) is carried out.

As a consequence, revisions in the previous phases should follow and, therefore, the
design (requirements) of database transactions ought to receive at least as much attention
as the design of the database structure. As a result, the quality of the programs should
be improved and the costs of testing and maintenance reduced.

The inputs are the logical database schema (Z version) and the conceptual specifica
tion of transactions. The outputs are the logical specifications of transactions.

Reification o f transactions

Application programs th a t implement the specification of database transactions could be
semi-automatically generated in this phase. The approach is to investigate all problems
th a t might arise in such a process, using a specific RDBMS and query/host language
(or 4GL) as example. This process should also lead to changes (improvements) in the
method used for the logical specification of transactions.

The inputs are the logical specification of transactions from the previous phase,
information about which features of the relational model are supported by the chosen
RDBMS, and which query/host language or 4GL is to be used. The outputs are the
application programs.

Overview 14

2.2 M otivation for using relational databases

The research described in this thesis was restricted to the relational model. This model
seemed particularly useful for my purposes for the following reasons:

• The specification method developed is reasonably simple and does not enforce any
constraints on either the real implementation of relations or the choice of a specific
database system and language.

• The proof of properties about such specifications, though not investigated in detail,
seems to be fairly easy, involving only first order logic and set theory.

• The very high-level nature of its query languages means it seems likely tha t the
refinement step is not necessary in this case. Moreover, the reification process did
not seem to be arduous.

Basically, what distinguishes relational database applications from other applications
is tha t the former are designed in terms of a much higher-level data model. In the
relational model, all files are relations (in the mathematical sense) which limits the
possible operations tha t may be executed against the database and allow them to refer
to sets of tuples (records) instead of a single record at a time.

Another very im portant aspect concerning the relational model is th a t it permits
what is called data independence, i.e., application programs th a t use the database are
not dependent on the physical structure of data. So, regardless of how the chosen DBMS
implements relations and what structures may be used to improve the performance of the
applications, the programs are not changed because they directly manipulate “logical”
relations.

In addition, database applications (not only relational) are developed on top of a
DBMS which controls the database. The DBMS makes database application programs
simpler by doing many controls that, in non-database environments, have to be done by
the programs.

Finally, it is im portant to notice tha t the formal specification of database applications
does not need to be much different from those of other applications. On the contrary,
specifications written according to the method can possibly be used to specify non-DB
applications, perhaps with slight modifications.

2.3 Formal m ethods and Z

This section presents a concise introduction to formal methods and formal specifications,
as well as a classification of formal methods. More extensive introductions have been
published [25, 26]. In addition, this section summarizes the reasons why Z was chosen
to be the formal specification language adopted in this work.

2.3.1 W h at are form al m eth ods?

The term Formal Methods has been used to mean a number of different activities in the
development of software systems. These include the formal specification of the intended

Overview 15

functionality of the systems; the use of formal reasoning to prove properties of the
systems, possibly before the implementation is developed; the derivation of a correct
implementation in the sense tha t it is guaranteed to preserve all the properties of the
specifications; etc.

However, all these interpretations share a common aspect this being they all imply the
use of mathematical (formal) notations. Frequently, these notations are (or should be)
complemented with techniques and/or guidelines aimed at permitting a more systematic
application of the mathematical notations and/or making their use simpler.

Usually, the use of formal methods includes at least the formal specification of the
intended software. Formal specifications are specifications written in formal specification
languages, i.e. languages which have well defined and precise syntax and semantics. The
need for a formal semantics implies tha t the meaning of specifications expressed in the
language are not ambiguous.

It is generally accepted tha t the utilization of formal techniques in the development
of real application systems provides some useful benefits, as it helps to avoid ambiguity
or vagueness and, thus, to provide a better interface for precise communication of ideas
between the designer (specifier) and the programmer, as well as between the designer
and the end users. Also, it ought to help to reduce maintenance costs, since more of
the errors in a system should be discovered before it is implemented, and to detect and
correct errors and anomalies in the documentation of such systems.

Hall [27] has pointed out tha t “From an economic point o f view, the most important
part of a formal development is the system specification”, and also tha t formal methods
“work largely by making you think very hard about the system you propose to build”. In
a sense, by simply writing formal specifications the users are forcing themselves to be
more rigorous.

2 .3 .2 C lassify ing form al m eth o d s

Formal methods are usually classified according to the semantic foundation of the spec
ification languages they use. The two main approaches are known as the model-oriented
approach and the property-oriented approach. Duce and Fielding [28] provide a detailed
comparison of the two.

In the model-oriented approach, the specification and the design are explicit abstract
models of the system to be developed. The specification language provides well defined
primitives which permit the construction of a mathematical model in terms of abstract
d a ta structures such as sets, relations, functions, etc.

The more established model-oriented formal specification methods are Z [3, 4] and
VDM [29, 30]. Others include RAISE [31], HOL [32], CSP [33], and CCS [34].

On the other hand, in the property-oriented approach the specifications describe the
behaviour of the system in terms of the constraints tha t must be satisfied, without the
design of any specific models. The specifications are axioms which define the relations
among the operations, and the properties are the result of the logic manipulation of the
axioms. Examples of property-oriented formal methods include OBJ [35], Larch [36],
Clear [37], and ANNA [38].

Overview 16

2.3 .3 M otivation for using Z

Most of the work published on the formal specification of databases uses algebraic [39]
(property-oriented) specification languages [40]. Even so, it seems tha t model-oriented
specification languages are more appropriate to specify database transactions, especially
because of the convenient notion of state. Moreover, it is possible to write property-like
specifications using a model-oriented language like Z, if desired.

After deciding for model-oriented languages, it is necessary to decide which of the
two more established ones (Z and VDM) is more appropriate.

In general, Z and VDM are languages based on first order logic and set theory,
and allow for very abstract specifications. Modularization techniques for improving the
understanding of large specifications were also proposed for both [41, 42]. In particular,
the Document/Chapters extension to modularize Z specifications [41] also allows the
specification of abstract data types using the same style adopted in property-oriented
languages.

On the one hand, the schema calculus of Z allows for the incremental presentation
of specifications by including other schemas and/or linking schemas with propositional
connectives. Also, its notation seems slightly better to write and understand than tha t of
VDM for it uses the standard mathematical symbols as much as possible and encourages
the use of informal prose merged with the formal text.

On the other hand, VDM has a better structure for the transformation of the
specifications into implementations because it is necessary to write the preconditions
and postconditions of the specifications explicitly. Also, its proof obligations together
with explicit preconditions and postconditions make reasoning about specifications more
straightforward than in Z.

Even though they have many points in common, Hoare [43] has suggested tha t Z
and VDM should be used for different purposes. According to him, Z would be more
suitable when the aim is the specification of the systems only. On the other hand, VDM
would be more suitable when the aim is the implementation.

The author is not convinced about such a suggestion and believes both can be used
interchangeably without much problem. Also, I notice tha t, in many cases, the choice for
one or the other is merely a m atter of convenience, e.g. the existence of people already
trained in one of the formalisms but not in the other.

The main differences between Z and VDM are discussed by Hayes, Jones, and
Nicholls [44].

The formal specification language chosen to be used in the research described in this
thesis is Z, for the following reasons:

• It is model-oriented. As already mentioned, model-oriented specification languages
seem to be more appropriate to specify database transactions, especially because
of the convenient notion of state. Moreover, it has been claimed tha t, in general,
human beings tend to find model-oriented methods easier to understand than their
property-oriented counterparts [45, 46, 47].

• It is an established language which has been under development for over a decade
and is currently being standardized. An extensive literature is also available and

Overview 17

includes a user manual [3], a number of introductory textbooks [4, 48, 49], a book
on its semantics [50], a collection of case studies [51], and a book aimed at helping
people who understand the basics of Z to become Z users [52]. In addition, Z is
probably the most widely used formal specification language and has been adopted
in many projects both in academia an in industry [27].

• Regarding the level of abstraction of the specifications, Z is a very flexible language
and permits the adoption of different levels of abstraction, even within the same
specification document. This gives the specifier the necessary freedom to adopt
the most appropriate level of abstraction for each part of the specification.

• My previous experience of using Z and a Z-like language [1, 53] meant I had a
great deal of confidence tha t Z could be used to specify database applications and,
in particular, relational applications with good results. Moreover, choosing Z also
meant there would be no need to spend time on learning another language.

• The existence of a large users group which promotes annual workshop meetings.

2.4 The m ethod and specific database aspects

Real database applications involve many specific aspects which are usually not considered
in the development of more traditional file-based applications. This section lists some
of these aspects and explains how they relate to the research described in this thesis.
More specifically, it explains how specifications written according to the method deal
with such aspects.

2.4.1 T ransactions (recovery and concurrency)

The method provides for the specification of transactions, i.e. a group of operations that
are to be executed as a unit.

Should any of the components of a transaction fail, the transaction must fail and
the database must remain unchanged (recover). Specifications written according to the
method capture this behaviour. Most RDBMSs allow for the definition of transactions,
but the way they are implemented depends on the RDBMS chosen.

Regarding aspects of concurrency, in general these should not be specified as part of
the application programs. This is also a DBMS task and depends on other applications
as well. Thus, the method does not address such aspects.

Usually, only one application is allowed to write in a specific relation (or tuple) at
a time, although many can read it. In most systems, the DBMS automatically controls
this in order to guarantee the integrity of the database, although in some systems the
Database Adm inistrator (DBA) has to specify what relations should be locked by some
applications.

2 .4 .2 S ecu rity

Security may be described as the protection of data against unauthorized users. One
method of restricting access to parts of the database is to use views. The method

Overview 18

provides for the specification of views, i.e. horizontal/vertical subsets of relations, join
subsets of data, and update restrictions on attributes.

Identifying individual users/groups and relating specific users to views are beyond
the scope of the method. This is normally not specified as part of the applications either.

The method does not address the updatability of views either as this is, in its own
right, a whole area of research [54]. In general, it is not even possible to decide whether
some views are updatable or not [55]. Moreover, it is not always clear what the semantics
of updates of specific views should be.

2 .4 .3 In tegrity

This refers to the accuracy/validity of data. Integrity constraints are usually expressed
as conditions tha t should be true at the start and end of a transaction and, possibly,
compensating actions for when the constraints are violated. These are both covered by
the specification method.

Since no system currently provides adequate integrity support [5, pp. 429], a number
of implementation alternatives for each type of constraint are discussed in Chapter 7,
the mapping of applications from specifications written according to the method.

2 .4 .4 N orm aliza tion

The method proposed in this thesis only requires the relations to be in first normal form
(IN F), though they are generally expected to be in Boyce/Codd Normal Form (BCNF).

2 .4 .5 Perform ance

In relational database systems, the physical design of the database structure is usually
totally independent of the applications. The utilization of structures/techniques such
as indexes, clustering, hashing, etc. to guarantee good performance for one or more
applications does not mean the applications have to be changed.

Although physical design is a very im portant task, it is worth emphasizing tha t, in
relational database systems, the application programs are independent of the physical
structure. For this reason, the method does not address such aspects either.

2 .4 .6 D istr ib u tio n

This refers to databases not managed centrally. The method does not consider this
aspect because application programs should be independent of distribution strategies.
A database could even be distributed after its implementation and, even so, application
programs should not need to be changed.

2.5 M otivation for using DBPL

As already mentioned, the relational database system chosen to be the target system in
the construction of the prototype tool is the DBPL system, which is an academic tool
developed at the University of Hamburg, Germany.

Overview 19

The DBPL system extends the programming language Modula-2 [56, 57] with a new
persistent data type called relation and high-level relational expressions based on the
predicate calculus.

The main reasons for adopting DBPL were:

• The new type relation and the corresponding access expressions are well integrated
with the Modula-2 language to form the database programming language DBPL.
As a consequence, it avoids the impedance mismatch which is common in the case
of query languages such as SQL [21] being embedded in programming languages
such as C or COBOL.

• The DBPL system implements a bigger subset of the theoretical relational model
than most systems currently available. For this reason, in my assessment, from
the systems available in the University of Glasgow it was the most well-suited to
my purposes.

• Finally, because DBPL is an academic tool, it would be much easier to contact the
developers and ask questions, which increased the chances of using the full capa
bilities of the system without spending too much time reading extensive manuals.

2.6 Conclusion

This chapter provided an overview of the research described in this thesis and put it in
context. In addition, the chapter provided justifications for the several design decisions
th a t have been necessary throughout the Ph.D. work.

The following chapter then surveys the existing literature on the utilization of formal
methods techniques for the specification and derivation of applications and, in particular,
relational database transactions.

Chapter 3

Literature Survey

This chapter presents a literature survey of the existing use of formal methods techniques
for the specification and derivation of applications.

The scope of this survey is restricted to the formal specification of real, large-scale
applications using Z, and to the specification and derivation of database applications.
The emphasis is specifically put on the derivation of relational database transactions
from formal specifications. Some of the approaches are described in somewhat more
detail and their strengths and weaknesses are discussed.

3.1 The specification of applications using Z

This section covers the use of Z for the formal specification phase in the development
of real applications. Unfortunately, the application of formal methods techniques in
industry is still rather limited. Pointers to papers which discuss why this is so are also
provided at the end of the section.

The most well-known and, probably, the largest and longest running industrial
project to use Z is a joint project between IBM (UK) Laboratories a t Hursley and
the Programming Research Group at Oxford University Computing Laboratory which
started in 1981 and is referred to as the CICS project.

The CICS project included the specification of several parts of IBM’s transaction
processing system CICS. Summaries of how Z was used in the restructure of IBM CICS
are presented in [58, 59, 60]. Some of the CICS subsystems already specified in the
project are: the CICS Application Programming Interface [61, 62], The CICS exception
handling [63], the CICS temporary storage [64], and the CICS message system [65].

Other reported real projects using Z include:

• The development of a new computer control system for a real medical device,
namely a cyclotron based clinical neutron therapy system, which is used for cancer
treatm ents at the University of Washington, Seattle. The functionality of the
system has been specified using a framework for the formal specification of safety-
critical control systems in Z. The framework and an example specification are
described in a paper by Jacky [66].

20

Literature Survey 21

• The development of a formal security policy model for the NATO Air Command
and Control System (ACCS). The project included the use of Z for the formal
specification of the system together with informal validation of an appropriate
subset of the specifications based on more traditional methods. An industrial
report by Boswell [67] summarizes the results.

• The specification of British Rail’s signalling rules as part of a requirements speci
fication document for a railway interlocking system. The specification was written
in Z by a small team from Praxis Systems for British Rail’s Network SouthEast
(now Railtrack) and their experience is reported by King [68],

• The development of a transaction processing mechanism for a relational DBMS
called SWORD [69]. The mechanism is for controlling multi-transactions access
to the database without any explicit locking of data. The project is reported by
Smith and Keighley [70] and included the Z specification of the mechanism.

Craigen et al. [71] summarize an extensive survey and analysis of the use of formal
methods in the development of twelve industrial applications [72]. In addition, the
authors discuss the methods and styles of industrial usage in these applications and
provide a number of recommendations aimed at making formal methods more palatable
to people from industry. Some of those applications have used Z.

Another extensive survey is presented by Austin and Parkin [73]. It comprises a
literature survey and the analysis of questionnaires returned by 126 organizations, mainly
in the UK.

A very good paper by Hall [27] presents a comprehensive overview of the so-called
myths which help to prevent a wider acceptance of formal methods in industry, and
disputes them all one by one, refuting most of them. One of these myths refers to formal
methods not being used on real large-scale software, which the author refutes by listing
a few references. A recent paper by Bowen and Hinchey [74] revisited the subject and
discussed another set of those myths.

The problem of marketing formal methods in order to achieve a wider acceptance in
industry is discussed by Weber-Wulff [75]. The author discusses a number of problems
affecting formal methods, “from the point of view of the industrial programmer”, and
presents simple suggestions aimed at helping to convince people from industry to invest
time and money in learning and applying formal methods.

3.2 The derivation of applications

This section briefly examines the problem of deriving implementation programs from
formal specifications without restricting the scope to the database field.

The formal derivation of programs from specifications written in a formal language
is usually called refinement. This process is often seen as comprising two distinct phases
called data refinement and operation refinement respectively. In short, d a ta refinement
refers to the refinement of the data structures whereas operation refinement refers to the
refinement of the operations tha t manipulate the structures.

Literature Survey 22

In the most common approaches, refinement is defined as the application of formal
techniques to map (refine) a given formal specification into another specification which
satisfies the former but is more concrete in the sense th a t it is closer to the target
programming language. This process is then successively applied and stops when all the
features of the specification language are substituted by equivalent constructions of the
implementation programming language.

In each of these steps, a number of proof obligations must be discharged. These are
essentially the proof tha t the more concrete specifications indeed satisfy all the properties
of the more abstract ones.

There are several similar approaches to this general idea of refinement. Some of the
most well known were proposed by Morris [76], by Morgan [77, 78], and by Back [79].
These are all based on extensions to Dijkstra’s guarded command language [80].

This theory of refinement has very much been the subject of continuing research
for several years. There are whole books written or being written about refinement as
well as many research papers published in conference proceedings and research journals.
There is even an annual workshop totally dedicated to refinement, with the proceedings
being published by Springer-Verlag in the Workshops in Computing series.

Nevertheless, many of the central ideas have been around for a long time and, as far
as I can see, there is still a long way to go before real, large-scale, generic software can
be automatically generated by refinement. Furthermore, I am not convinced th a t the
refinement of programs based on an unlimited platform will ever be feasible.

On the other hand, it is possible that, in the future, the programming languages will
efficiently support all the abstract data structures provided by the formal specification
languages and will provide much more expressive means of manipulating these structures.

Until this time comes, the derivation of generic programs will probably be limited to
the generation of prototypes to be run in systems supporting more advanced features,
albeit not being implemented efficiently.

An example of this approach is an experiment described by O ’Neill [81, 82]. Specifi
cally, he used the view facility of the synthesizer generator to extend an existing syntactic
editor for VDM-SL with a translator which automatically generates Standard ML [83]
code from the VDM specifications.

3.3 The formal specification of database applications

This sections surveys the utilization of formal notations in the specification of database
systems, languages, and applications. In my opinion, most of the work done in the area
can be described as specification exercises rather than work aimed at making contribution
to the database field. These are the approaches examined in this section.

More specifically, several people have specified database models (e.g. the relational
model), specific database systems, and database operations (e.g. the operators of the
relational algebra [84]). Others have addressed the specification of the correct behaviour
of database transactions. However, only a few have covered at least an extensive subset
of all features needed in the specification of real database applications so far. In these
approaches, the resulting specifications are usually used as input for the derivation of

Literature Survey 23

database programs tha t implement the transactions using a specific DBMS. Hence, the
material on these approaches is postponed to Section 3.4.

Samson and Wakelin [40] present a comprehensive survey about the use of algebraic
methods to specify databases. They compare quite a number of approaches according
to the features covered and enumerate some not normally covered by such methods.
According to them, the relational model per se and the relational algebra are not normally
formally specified, although “few ideas can be more familiar to the database community
than the operators of the relational algebra” . However, if the aim is the specification of
applications, it is not absolutely necessary to formally specify either the relational model
or the relational algebra. They also claim domains and reification, are not adequately
addressed and, in most cases, not addressed at all. They also criticize the solutions for
the specification of state, but this is applicable to algebraic specifications only.

In [85] Wong and Samsom present the specification of a relational database called
PRECI, which is based in abstract data types. According to them, one of the strengths
of their work is the fact tha t their specifications may serve as a prototype, for they
present a partial implementation written in HOPE [86]. They also claim “the HOPE
implementation provides an ideal vehicle for the investigation of new attribute types
(domains)” , but they address neither how this investigation works nor why it is ideal.

Another rather different experiment using a specific DBMS is presented by Fitzgerald
and Jones [87]. They use the VDM specification language, referred to as M eta IV in
the paper, to modularize the specification of a specific database system called NDB [88].
However, their emphasis is on the modularization techniques used to separate the VDM
specifications into modules. The description of the DBMS is merely the chosen example
of a realistic specification task.

The approach adopted by Turner and Lowden [89] is to use formal semantics as a
means of specifying relational query languages. The authors describe a formal semantic
framework for specifying database query languages and use it to specify the semantics
of older versions of SQL and QUEL [90] and of a variant of the relational calculus [91].
Again, their aim is not to specify database applications but database query languages.

An interesting though unpublished exercise is described by Sufrin and Hughes [92].
They use an old version of Z to give specifications of the operators of the relational
algebra. However, there are some problems. Firstly, the definition of relations depends
on a set of all possible names of attributes of relations, because they define relations as
a collection of functions from the relation to the attributes. Secondly, they do not cover
im portant aspects of the relational model, such as primary and foreign keys. Finally,
joins are not specified conveniently, being based on all attributes with common names.
To specify more general joins, it is necessary to define a number of extra functions to
rename attributes.

One reasonably common characteristic in several approaches to the specification of
databases is th a t the author(s) usually do not worry about whether the specifications
are “easy” to write and understand and, consequently, whether they are going to be used
in the development of real databases or not. Samsom and Wakelin [40] even (using their
own words) “dare to say” some authors choose the database application area to display
their “mathematical virtuosity” and, in most cases, “the results are not of interest to

Literature Survey 24

the database community” . Some of the work published th a t fits in this category is
commented below.

• Khosla, Maibaum, and Sadler [93] use modal logic to specify database operations.
They strongly criticize the use of abstract data types and of the algebraic approach
to such specifications, particularly because of the absence of the notion of state.
Nevertheless, they only specify a couple of operations and their specifications seem
even more unnatural than some of the algebraic approaches. However, there is
one of their ideas tha t seems useful, at least in some cases: they defend the spec
ification of some constraints by default, i.e., providing operations th a t never put
the database in an inconsistent state. For example, provide an “increase salary”
operation instead of “change salary” , if salary cannot be decreased.

• Fiadeiro and Sernadas [94] develop a rather different approach using temporal logic.
They claim their approach covers im portant aspects such as the specification of
operations, transactions, and errors, and also deals with proofs. However, their
approach would be more appropriate to an abstract transaction design during the
conceptual design rather than to the applications design, because they intentionally
do not concentrate on any specific data model. Also, they specify only a couple of
operations and their specifications are quite hard to understand.

• Abiteboul and Vianu [95] propose an operational approach to the specification of
relational databases. They use transactions to describe valid database states and
present a number of proofs about decidability. However, their aim seems to be
to provide a framework to decide whether transactions are applicable rather than
the development of applications. Also, the specifications and proofs presented are
quite hard to follow, even though the theory seems sound.

A number of other approaches can be found in the proceedings of the International
Workshop on Specifications of Database Systems [96].

3.4 The derivation of database transactions

This section surveys the derivation of database transactions in general and of relational
database transactions in particular.

The approaches most related to the work described in this thesis are the work of
Xiaolei Qian and, especially, the work done by the database group at the University of
Hamburg, Germany, which is referred to as the Hamburg work. These two approaches
are discussed in more details than the others in Subsections 3.4.4 and 3.4.5.

3.4 .1 T he work o f P astor and O live

A recent conference paper by Pastor and Olive [97] proposes a method for the genera
tion of transaction specifications concerned with updating views and guaranteeing the
integrity of the database. The context of their work is deductive databases [98, 99] and
their method augments the deductive database schema with a set of transition rules and

Literature Survey 25

internal event rules. A transition rule is a predicate defined in terms of the current state
and the integrity constraints of the database, whereas an event rule is a predicate that
specifies which operations (usually insertions and deletions) can happen as a result of a
database update operation.

In addition, the authors describe a prototype tool which is implemented in Prolog.
The tool is capable of producing pseudo-code written in English and in Catalan, as well
as Prolog implementation code written according to their method.

A previous paper by Pastor [100] described a similar method based on an extended
version of the relational model which was augmented with the notions of transition rules
and internal event rules.

3 .4 .2 T he work o f Sheard and S tem p le

Sheard and Stemple [101] present a thorough and theoretically sound treatm ent for the
verification of database transactions safety. They describe a theorem prover th a t can be
used to prove that database transactions are safe in the sense tha t they do not violate
the set of specified database constraints.

The formal theory used by the tool is based on the Boyer and Moore [102] style but is
extended with higher order functions and theorems. The specification language is called
the A bstract Database Type Programming Language (ADABTPL).

The authors claim tha t both the theory used to build the tool and the ADABTPL
specification language are not restricted to the relational model. However, the spec
ification language does include a number of features which are specifically based on
the relational model and the example presented in the paper is an extensive relational
database example.

On the other hand, the ADABTPL language does not cover the specification of
dynamic constraints (called transition constraints by the authors), only covers the two
simplest aggregate functions (count and sum), and does not provide an explicit structure
to capture the foreign key constraints, even though these can still be specified.

3 .4 .3 T h e work o f S tein berg , Faley, and C hinn

In a recent paper, Steinberg, Faley, and Chinn [103] describe a more practical approach.
The main problem they propose to address is the fact th a t software developers often do
not meet the needs of end users in a timely fashion.

The authors claim tha t one of the approaches to solve the problem is to encourage
end users to get more involved in the design and development of the software they use.
They also claim tha t one of the difficulties to achieve this goal is the fact tha t traditional
Computer Aided Software Engineering (CASE) tools were developed primarily for the
trained professional rather than the end user. The proposed solution is to use their tool,
which is called The Analyst.

In addition, they assert the tool can be used by novice end users to design and
implement customized relational database prototypes. Moreover, th a t this is achieved
by writing English sentences.

Literature Survey 26

Allegedly, the user would provide the entities, attributes, and possible queries, in
addition to the attributes which should be listed in the results, using some restricted
form of English sentences (e.g. pronouns are not accepted). The system then performs
some validations and, when the prototype is acceptable to the user, the system generates
the corresponding implementation code for either dBASE or Paradox.

According to the authors, the time taken to develop the applications is reduced,
because the process depends less on the availability of human developers. Furthermore,
they claim this shorter development time, together with standardization and automatic
generation, diminishes the possibility of misunderstandings in the systems requirements
and reduces the cost of software maintenance.

Finally, they state tha t the results of an experiment using graduate business students
with no previous experience in systems analysis or programming demonstrated tha t users
could match almost exactly the model task solution to the problem they were given in
little more than an hour.

It is very difficult to assess the merits and limitations of this work without actually
seeing the tool or the problems used in the described experiment. Nevertheless, it is
clear tha t all these claims seem too good to be true. I suspect the class of problems
th a t can be solved using the tool is very limited. Moreover, the treatm ent of database
constraints must be very rudimentary if at all existent.

3 .4 .4 T he work o f X iaolei Qian

This subsection discusses the work of Qian [104, 105], which is called the Deductive
Synthesis of Database Transactions.

The general approach adopted involves the use of refinement techniques (called trans
action synthesis by the author) to transform the initial declarative specifications into
procedural implementations.

In other words, the transaction synthesis is the process of finding a transaction
th a t satisfies the specification. This synthesis is formalized as the process of finding
constructive proofs of specification theorems and extracting appropriate transactions
from these proofs.

Proofs are represented as tables called deductive tableaux which consist of three lists
of formulas: an assertion list, a goal list, and a transaction entry list. The synthesis
system consists of deduction rules tha t manipulate the tableaux preserving its validity.

The proof system used to carry out the transaction synthesis is an extended version
of the deductive-tableau proof system for first-order logic developed by M anna and
Waldinger [106].

There are a number of aspects of this work which are similar to the research described
in this thesis. These are:

• The work is driven by the belief tha t the automatic generation of database transac
tions is both desirable and feasible. The author claims the automatic generation of
programs in a restricted but well understood and im portant domain is desirable, to
take advantage of the well defined semantics of the database transactions and avoid

Literature Survey 27

the violation of the integrity constraints; and feasible, because such transactions
are usually dominated by data manipulations rather than complex computations.

• The database state is explicitly characterized as a finite set of relations. The author
claims it is “relatively simple” to define it this way and that, often, “it is possible
to specify precisely the effect of every language construct on database states” .

• The work assumes tha t “transactions are always executed in valid databases where
integrity constraints are satisfied” , i.e., the database is assumed to be in a valid
state before any transactions are executed.

However, there are a number of im portant aspects which are different in the two
approaches. The main differences are:

• This approach is much more formal than the one adopted in the research described
in this thesis, with a lot of emphasis being put on reasoning about state transitions
and proving th a t the resulting transactions satisfy the specifications.

• There is no explicit method and/or guidelines to help the users to write the formal
specifications and to carry out the proofs from which the transactions are extracted.
In other words, this approach requires a much higher knowledge of mathematics
and is unlikely to be usable by developers of real database applications.

• The resulting transactions are not explicitly built to any existing RDBMS, only to
a hypothetical system supporting the transaction language described in the paper.

3 .4 .5 T h e H am burg work

Now, the approach adopted by the database group at the University of Hamburg is
discussed in detail. A considerable part of this work was part of the DAIDA project!

Their approach to the derivation of database application defends the utilization of a
formal method together with a conceptual design language as well as an implementation
language in an integrated framework [107].

The main approach

In their main approach, they suggest tha t conceptual designs should be written using an
expressive semantic da ta and transaction model, namely the TDL2 language [108], which
is derived from TAXIS [109]. In particular, TAXIS has been enriched with constructs
for a predicative specification style. The extensions include multi-valued attributes,
a set-oriented expression language, and the predicative techniques for specifying the
dynamic parts of the system, i.e. transactions (atomic state changes), functions, and
derived classes and attributes.

1 DAIDA stands for Development of Advanced Interactive Data-intensive Applications. It was an
ESPRIT project funded by EEC under research contract number 892.

2 TDL stands for Taxis Design Language

Literature Survey 28

Also, the database structures and constraints, initially written in TDL, should then
be formally transformed into equivalent abstract machines, as defined by Abrial [110],
using the B-Method [111]. The transactions are modelled by operations in the abstract
machines. The proof obligations for guaranteeing consistency are semi-automatically
verified using the B-Tool [112].

In the following step, these abstract machines should be refined into other abstract
machines tha t are equivalent to programs written in the strongly typed programming
language DBPL. In other words, they provide specific B specifications tha t are sufficiently
refined to be directly translated to DBPL. According to the authors, it was the explicit
specification of state and invariants and the possibility of stepwise refinement within
the same language tha t made the abstract machine approach a natural choice for the
specification of database applications.

Finally, these final B specifications should be translated to DBPL syntax.
The automatic transformation of TDL designs into abstract machines was described

in a paper by Schewe, Schmidt, and Wetzel [107]. This paper has also provided a small set
of refinement rules which formalize the transformation of these initial abstract machines
into other machines which are equivalent to DBPL programs. It also describes which
properties must be verified to guarantee transaction consistency and correct refinement,
and indicate how to use a mechanical theorem proving assistant to guide the proofs.

A more recent paper by Gunther, Schewe, and Wetzel [113] characterized the final
B specifications tha t are equivalent to DBPL programs. In addition, it describes an
automatic transformation of final B specifications into DBPL syntax. In the first part,
the authors show tha t DBPL programs are indeed equivalent to certain B specifications.
In the second part, they use the algebraic specification language and term rewriting
system OBJ [35] to implement the mapping to DBPL syntax.

An alternative approach

An alternative approach based on a slight variation of the aforementioned scenario was
also considered by Schewe, Schmidt, and Wetzel [114]. However, I believe it was never
investigated in detail. Basically, they proposed a new database specification language
called SAMT (Structured Abstract Module Types) tha t would add strong types to the
abstract machine formalism and would support the idea of modules with import and
export constructs, similar to modula-2 modules.

The main aim was to design a language tha t could be used to construct modular
strongly-typed specifications already in the conceptual level, and also to refine these
specifications into executable database programs. Hence, SAMT would substitute both
TDL and the abstract machines in their original approach and, thus, it would eliminate
some of the complexity issues of the multi-language approach.

The motivation to design SAMT was their will to overcome two problems in the
original approach. These are:

• All objects tha t are part of the state are necessarily persistent. The reason this
was considered a problem is the fact th a t they do not consider their approach to
be restricted to the relational model.

Literature Survey 29

• Their inability to automatically derive appropriate DBPL final data structures.
The main problem is tha t they found it difficult to generate appropriate types for
the structures since their specifications are untyped (B does not support types).

Comparison to my approach

There are some similarities between the Hamburg approach and the approach adopted
in this thesis. Firstly, it is, in both cases, possible to prove, already at the specification
level, tha t the transactions maintain the consistency of the database. This possibility
was not pursued as part of this Ph.D. thesis though.

Secondly, the relational model has, in both approaches, been used as the main target
for the generation of database applications. However, they do not provide any method
or facilities to support specific features of the relational model, mainly because they do
not consider their approach to be restricted to the relational model.

Finally, the implementation language used in both works is DBPL. Nevertheless,
their approach to the mapping is specific to DBPL and is not easily adaptable to be
used with another implementation language. In this thesis, DBPL is just the chosen
example of a target database language which is used to instantiate the generic mapping.
For this reason, their approach is less likely to be considered for the development of real
relational database applications.

In spite of these similarities, the means used to achieve the main objective are rather
different in the two approaches. Their emphasis was on the derivation of efficient DBPL
programs and on proving, formally, tha t these programs do not violate the database
constraints. My emphasis was on a specific method aimed at helping practitioners with
the formal specification of relational applications and on a generic mapping tha t can be
adapted to generate implementations to be run in any RDBMS.

Regarding the two problems which are present in their approach and were already
mentioned, they are not problems in the work described in this thesis. Firstly, the fact
tha t all the state is persistent is not a problem in my approach, because only the relations
are part of the state and these must be persistent.

Although Z is not strongly typed, the strategy adopted for the method was to have
strongly typed domains based on their names. This avoided the problem in the mapping
of the structures, which was their second problem. However, some DBPL commands
also use the types of the relations as part of the syntax, while the method does not. In
these cases, it was possible to derive the types from the declaration of the structure part
of the database.

3.5 Conclusion

This chapter surveyed the existing literature on the utilization of formal methods for the
specification and derivation of applications and, in particular, the derivation of relational
database transactions, which closes the first part of the thesis.

The next part, which starts with a detailed description of the developed method in
Chapter 4 and includes another four chapters, constitutes the principal part of the thesis.

Chapter 4

The specification m ethod

In this chapter a complete description of the method proposed in this thesis is presented.
It is basically the description given in [115], with minor corrections, and represents its
current status. The method is for the specification of relation database applications and
was implemented in Z. Also, the word schema is generally used to refer to Z schemas.

This chapter is split into five sections: the first describes the specification of the
database structure, i.e. domains, relations and their attributes, and the constraints to be
guaranteed. The second describes the specification of basic operations over the database.
The third describes the specification of more advanced features such as transactions,
sorting of results, aggregate functions, composite attributes, and views. The fourth
deals with the extension of the applications (transactions) to capture error handling,
using two different approaches. Finally, Section 4.5 introduces a number of guidelines
on how to use the method realistically.

The rules of the method will be named using labels of the type X n , where X can be
D, standing for database rules, B for basic operation rules, A for advanced feature rules,
or E for extended application rules to capture error handling, and n will be a sequential
number within each kind of rule, with subitems when necessary.

The reader may find it useful to refer to the specification of the simple example
(Chapter 6) and even to the formal specification of the operators (Chapter 5) while
reading the description of the method.

4.1 The database structure and constraints

Relations are specified as sets of tuples and this respects the original relational model
defined by Codd [6]. In this model, relations, operations, etc. are expressed simply and
this simplicity carries over to the proposed specification method. Also, the method does
not enforce any constraints on the way relations and operations may be implemented.

D 1 - D om ain s

Basically, domains are sets of values from which one or more attributes draw their values.
The idea is to prevent comparisons of attributes th a t are not based on the same domain
by strongly type-checking domains based on their names.

30

The specification method 31

Domains are specified by abbreviation definitions based on other domains, possibly
adding extra constraints, by enumerating the elements in free type definitions, or by given
sets. Basic built-in types (Z,N, etc.) are considered basic domains. In the convention
adopted for the method, domain names do not include lower-case letters.

DOM 1 = = N

DOM2 = = { n : N | n < 18 }

DOMS ::= Eleml \ Elem2 | ... | ElemN

[DOM4]

D 2 - R e la tio n s (In ten tion)

For each base relation there is a corresponding Z tuple type (record) which represents
the intention of the relation. Its attributes (“variables” of the tuple type) must be of
a valid domain. In the convention adopted for the method, the names of types do not
include lower-case letters and the names of attributes begin with an upper-case letter.

Basically, a tuple type is a schema without its predicate part. According to this
extension of Z [116], “only types can be used to define the domain of a variable in a
schema definition” , schemas cannot be used for this purpose.

REL = [Attl : D O M l ; Att2 : DOM2 ; ...]

D 3 - R e la tio n s (E x ten sio n)

For each tuple type defined according to D2, there will be a corresponding schema tha t
declares a variable of type SET (P) of the type defined earlier. These schemas will be
referred to as the RE schemas elsewhere in the method. Their variables represent the
extension of the relations. By convention, the names of schemas begin with an upper-case
letter and the names of variables do not include upper-case letters.

 Relat__
rel : P REL

Static constraints depending on a single relation are specified in the predicates of
each of these RE schemas.

D 3 .1 - R e q u i r e d a t t r i b u t e s

The constraints which state tha t specific attributes of the relations are required are
specified using the operator REQUIRED. This operator takes two parameters: the
relation and the attribute.

REQUIRED rel A t t l

The specification method 32

In fact, REQUIRED is only a syntactic sugaring for a more general operator called
N O T -N U L L , which takes one parameter more: the null value corresponding to the
domain of the attribute.

N O T -N U L L <null> rel A t t l

As already mentioned, the formal specification of the operators, together with a more
detailed explanation, are presented in Chapter 5.

D 3.2 - C and id ate K eys

Candidate keys, i.e., attributes or groups of attributes tha t uniquely identify the tuples
of the relations, are specified using the operator K E Y —OF. This operator takes two
parameters: the relation and the attribute tha t is a candidate key.

K E Y -O F rel A t t l

The specification of composite attribute keys is presented as part of the advanced
features in Section 4.3, rule A4.

D 3.3 - S ta tic A ttr ib u te constraints

The predicates of the RE schemas may also include any other static intra-relation
constraints, e.g. specific integrity rules over the attributes of the relations.

The universal quantifier (V) is used to state th a t it must be true for all tuples of the
relation being defined, as follows, where <condition> is a boolean expression involving
one or more attributes of t.

V t : rel • <condition>

D 4 - T he “D a ta b a se” schem a

A schema, e.g. D B , th a t will represent the Database as a whole, groups all database
definitions by including the RE schemas tha t define the relations.

D B __
Relatl
Relat2

Relatn

Static constraints depending on more than one relation are specified in the predicate
of the database schema (DB).

The specification method 33

D 4.1 - Foreign K eys

All foreign keys are specified in the predicate of the database schema (DB), using the
F O R -K E Y operator.

A foreign key attribute Fk 1, in relation re/2, referring to relation re/1, involving its
primary key Pk 1, is specified below. It means that, for all tuples of re/2, attribute Fk 1
must either be null or match the primary key Pk 1 of some tuple of relation re/1.

F O R -K E Y re/2 F kl re/1 P k l

In fact, F O R -K E Y is, once again, a syntactic sugaring for a more general operator
called F O R E IG N -K E Y , which takes one parameter more: the null value corresponding
to the domain of the attribute.

F O R E IG N -K E Y <null> re/2 F kl re/1 P kl

The specification of composite attribute foreign keys is also presented as part of the
advanced features in Section 4.3, rule A4.

D 4.2 - O th er sta tic constra in ts

The predicate of the database schema may also include the specification of other inter
relations static constraints over the database using the universal quantifier (V) to state
th a t it must be true for all tuples of one or more relations. In particular, this includes
the definition of inter-relation derived attributes.

V t : re/1 • <condition>

where <condition> is a boolean expression involving attribute(s) of relation rel and at
least another relation.

D 5 - T h e A D B schem a

A schema th a t includes the database before and after the operations will be defined to
be used in the update operations, in order to make possible the distinction between the
relations before the operations and the relations after the operations. Its name will, by
convention, be the name of the database schema with the prefix A!

A D B __
DB
D B '

1In fact, this convention is part of Standard Z [3]. In general, such a schema does not include any
predicates and is not explicitly specified, unless it is extended with predicates.

The specification method 34

Dynamic constraints are specified in the predicate of the A DB schema according to
rule D5.1.

D 5.1 - D yn am ic con stra in ts

Dynamic constraints, i.e. constraints th a t also depend on the previous values of updated
attributes, are specified using the universal quantifier (V) similarly to the specification of
static attribute constraints (D3.3), except for the fact th a t now the boolean expression
<condition> includes variables from the state schemas before and after the operations
{DB and DB').

Vf : re/1; t' : relV • <condition>

where < condition > is a boolean expression involving one or more attributes of tuples t
and t ', i.e. relation re/1 before and after the operations.

D 6 - T h e ED B sch em a

The A DB schema will be extended by the definition of a new schema tha t will be used
in the specification of the read-only operations. It adds an invariant stating th a t all its
variables will be unchanged after the operations. Its name will, once again by convention,
be the prefix E added to the name of the original schema.

E DB = [A DB | ODB = 6DB']

where ODB gives the binding of the DB schema. A binding is a tuple representing an
instance of the values of the variables of a schema.

D 7 - T h e In itia l S ta te Schem a

A schema, e.g. In it_D B , defines the initial state of the database by including the relations
after the operations, i.e. schema D B ' , and stating tha t all relations are empty.

 Init—DB
D B '

rell
re/2'

rein'

4.2 The database Operations

Now, the rules of the method concerned with the specification of the operations are
described. For organizational purposes, the operations are divided into two groups:
read-only operations, which do not modify the database, and update operations, which
modify the database by inserting, updating, or deleting tuples of relations.

The specification method 35

B1 - R ead -on ly operations

Read-only operations are specified by schemas such that: (1) they include the corre
sponding EDB schema, (2) they declare the input (if any) and output variables of the
operations, (3) their output variables are usually relations, i.e., their types are PA , where
A is a tuple type tha t defines the intention (type of the tuples) of some relation, and
(4) their predicates describe the result of the operations according to at least one of the
three following rules (B2, B3, and B4).

B 2 - S elect

In the select operation, the set comprehension is used to describe the result as a set of
tuples of a given relation (the variable which represents its extension) based on a select
condition using its attributes.

res! = { t : rel | <condition> }

where < condition > is a boolean expression involving a t least one of the attributes of t.

B 3 - T h eta-Jo in

Theta-joins, the most general form of joins, are described similarly but more than one
relation is used and a join condition is specified, based on attribute(s) of all relations.

res! = { t l : re/1; t2 : re/2 ... | t l .A t t l <cop> t2.Att2 ... }

where <cop> is a comparison operator, and A t t l and Att2 are attributes of relations
re/1 and re/2 respectively.

B 4 - P ro ject

The (extended) project operation is similar to the select operation. The difference is the
inclusion of the result, based on computations of some attributes of the qualifying tuples.

res! = { t : rel • <result> }

where <result> is an expression tha t applied to t gives a tuple of type A, such tha t
all its attributes are based on computations of attributes of rel. The type of the result
variable (res!) is PA.

B 5 - U p d a te operations

Update operations are specified by schemas th a t (1) include the A DB schema, (2) declare
the input (if any) variables of the operations - normally there are no output variables,
(3) specify what relations are changed by the operations using a schema expression based
on the 3D B schema, and (4) describe, in their predicates, the updates in one or more
relations of the database according to one of the five following rules (B6 to BIO) and/or
the rules in the next section.

The specification m ethod 36

The main parts of such a schema are presented below, where <vars> refers to the
declaration of all variables of the schema, \ is the schema hiding operator, and the first
occurrence of stands for the relation(s) tha t are modified by the operation. Notice
tha t the SD B expression used in the predicate part of these schemas is an artifice to
achieve a clearer way of saying what variables of the state are changed by the operations.

 Op-rel__
A DB

< vars >

EDB \ ...

B 6 - Insert

A schema th a t describes inserting tuples in a given relation has one input variable - the
set of tuples to be inserted - and its predicate states tha t the updated relation is the set
union of the original relation and the input variable. A typical specification of such an
operation is presented below.

 Insert-rel___
A DB

sr? :F REL

EDB \ rel

rel' = rel U sr?

In general, both relation variables (rel and rel') should have been hidden in the above
specification, i.e. it should have been written "EDB \ (rel, reV). However, in this specific
case (the 3 D B schema expressions), it does not make any difference and avoiding the
repetition should make it simpler for the user.

B 7 - D e le te by prim ary key

Schemas th a t specify deletions based on the primary keys of relations have one input
variable - the primary keys of tuples to be deleted - and their predicates use the D ELETE
operator to describe the operation.

For each relation, there will be two schemas: one without the expression ED B \. . . ,
to be used in schema inclusions, and the other with tha t expression, to be used as a
sub-transaction. The schema without the expression is needed because there are other
rules of the method (e.g. B8) tha t will use the delete schemas in schema inclusions and
the schema expression of the included schema could clash with the one in the schema
being defined. The convention for naming these extra schemas is to add the suffix “__Pk”
to the usual names.

The specification method 37

The pair of schemas th a t specify the deletion from relation rel 1 of the tuples with
keys in the set ski? based on the primary key P k l are presented below.

 D ele te-re ll-P k__
AJDB

ski? : FDOM 1

rell' = D ELETE re/1 P kl ski?

Delete-rell = Delete_rell-Pk A 3D B \ ...

When the primary key of the relation is the target of one or more foreign keys,
either in other relations or in the same relation, the predicate of such schemas must also
specify what happens to all references for deleted tuples, in order to avoid violations of
the Referential Integrity Rule [5, pp. 284-285].

In general, there are at least three possibilities [5, pp. 285-288], Restricted, Cascades,
and Nullifies tha t, for each foreign key, are specified according to the rules B7.1, B7.2,
and B7.3, respectively.

For this purpose, assume th a t attribute F kl of relation rel2 is a foreign key targeted
at attribute P k l of relation 7e/l, re/2 not necessarily different from re/1, and tha t sfcl?
is the set of values of P k l to be deleted.

B 7.1 - D e le te s restr ic ted

When Restricted is chosen, deletes are performed only if there is no foreign key reference
to any of the tuples selected (ski?). This is already guaranteed by the specification of
the foreign key constraint in the predicate of the corresponding DB schema.

To specify it explicitly and thus highlight this choice, the predicate of the schema
th a t specifies deletes in relation re/1 should include the following equation:

V t2 : re/2' • t2 .Fkl ^ ski?

B 7.2 - D e le te s cascade

When Cascades is specified, every tuple where there is a foreign key reference to a deleted
tuple is also deleted. The way this constraint is specified depends on whether the foreign
key is part of a cycle of foreign keys tha t cascade for deletes or not.

(A) If the foreign key F kl is not part of such a cycle - and usually this is the case, the
schema th a t specifies deletes in relation re/1 must include the expression

let sdr2 = = { t2 : re/2 | t2.Fkl 6 ski? • t2.Pk2 } •
Delete-Rel2_Pk [sdr2 / sk2?]

where Delete^Rel2-Pk is, essentially, the schema Delete-Rel2, i.e. the schema tha t spec
ifies deletes for relation re/2 based on its primary key Pk2\ sk2? is the input variable

The specification method 38

of tha t schema; the let expression introduces a local variable; and the notation [b / a]
refers to the substitution of variables a by 6 in the referred schema.

In practice, the equation above means “use Delete-Rel2 (or Delete-Rel2-Pk) to
delete the tuples of relation re/2 tha t reference any of the deleted tuples of re/1” .

(B) When the foreign key is part of such a cycle, the effect of Cascades cannot be
specified in the same way, because there can be no cycles in the use of schemas as
predicates. Notice however tha t the existence of such a cycle should be avoided whenever
possible, because it can potentially destroy the database.

If the cycle is really needed, the predicates of schemas which specify deletes based
on the primary keys of all relations involved state tha t, after the deletion of the set of
keys selected, all relations after the operation are the maximal subsets of the original
relations to satisfy the database constraints.

Suppose th a t (1) there is a foreign key in relation re/1 targeted at the primary key
Pk2 of relation re/2, (2) there is a foreign key in relation re/2 targeted at the primary
key P kl of relation re/1, and (3) Cascades is chosen for deletes in both. The predicate
of the schema which specifies the deletion of tuples of relation re/1 based on its primary
key is presented below.

(let rel Id = = DELETE rell P k l s k i? •
re/1' C relld A re/2' C re/2 A
-i (3 r l : FREL1; r2 : FREL2 \ r l C relld A r2 C re/2 •

((re/1' C r l V re/2' C r2) A
A DB [r l / re/1', r2 / re/2'])))

Notice that, in this case, the predicate above is the full predicate of such a schema
and therefore it does not follow the general rule (B7) tha t prescribes the use of the
D ELETE operator. Also, the specification of such schemas for cycles of three or more
foreign keys are not going to be presented, but they are similar to the one above.

(C) In the particular case of delete Cascades where relations re/1 and re/2 are identical,
i.e. foreign key F kl refers to the same relation, F k l represents a particular case of cycle
(loop). Consequently, delete Cascades in relation re/1 may still be specified according
to the above rule as follows:

(let relld == D ELETE rell P k l s k i? •
re/1' C relld A
-i (3 r l : P REL1 \ r l C relld •

(re/1' C r l A A DB [r l / re/1'])))

However, because this particular case is comparatively more common, an operator
called C A SC -D E L E T E is provided to be applied in this situation. It takes four parame
ters: the foreign key F kl and the three parameters of DELETE. The resulting predicate
of the schema is:

re/1' = C A SC -D E L E T E F kl rell P k l ski?

The specification method 39

B 7.3 - D e le te s nullify

Finally, Nullifies changes all foreign references for deleted tuples to contain the null value
and this constraint is specified using the operator UPDATE.

The UPDATE operator takes four parameters: the relation to be updated and one
of its attributes, a set of values of this attribute, and a new value for this attribute. Its
effect is to update the attribute to the new value, in all tuples where its old value is a
member of the set of values given.

re/2' = UPDATE rel2 F kl s k i? <null>

where <null> is the null value for the domain of F kl (and P k l as well).

When re/1 and re/2 are the same relation, a let expression and a local variable must
be used to join the equation above with the one th a t specifies the deletions (B7) because,
in this case, the result of one operation must be the input to the other. The order of the
equations does not make any difference and the case in which the references are nullified
before the tuples are deleted was chosen.

let r = = UPDATE rell F kl s k i? <null> •
re/1' = D ELETE r P k l s k i?

B 7 .4 - S p ecia l case (recursive cascade d e le tes)

When a given relation re/1 is subject to recursive cascade deletes, because it is part of
a cycle of foreign keys tha t cascade for deletes - B7.2 (B), the rules B7.1, B7.2 (A), and
B7.3 need to be slightly changed.

Basically, the effect of deletes to foreign keys of relations which are not part of the
cycle must be specified in terms of the set of tuples effectively deleted, instead of the set
of tuples originally selected for deletion (ski?).

The set of keys effectively deleted is, in all cases, the set difference between re/1 and
re/1' projected over its primary key Pk 1, which is exactly ski? in most cases.

{ t l : (re/1 \ re/1') • t l .P k l }

In those cases, i.e., when a relation is subject to recursive cascade deletes, the equa
tion above should be written in all places where ski? appears, in the description of rules
B7.1, B7.2 (A), and B7.3.

B 8 - O th er d e le tes

Any other deletes are specified in terms of the ones defined by the schemas of rule B7,
i.e., the deletes based on the primary key of the relations. This is achieved by using
a substitution of variables, a let expression, and a selection of tuples of the relation,
projected over its primary key as follows:

let sdrl = = { t : rell | <condition> • t .P k l } •
Delete-Rell^Pk [sdrl / s&l?]

The specification method 40

where <condition> is once again a boolean expression based on one or more attributes
of relation re/1.

B 9 - U p d a te

A schema th a t describes updating of tuples in a given relation is specified in terms of
(1) a select condition, th a t determines the set of tuples to be updated, and (2) an update
rule, th a t gives the updated tuple for each tuple selected. Its predicate, presented below,
states th a t the relation after the operation is the set of updated tuples together with the
set of tuples which were not selected.

rel' = { t : rel • if <condition> th e n <result> else t }

where <condition> is a boolean expression based on attributes of relation rel and
<result> is an expression that, applied to t, gives the corresponding updated tuple.

Even though < result> may be any expression of type REL, it usually is an expression
like the one presented below, such tha t A tt l , Att2, etc. are the modified attributes and
v l , v2, etc. are expressions which give the updated values for these attributes.

t \ (A t t l = v l ,A t t2 = v2, ...)

The But operator (\) is an extension tha t makes possible the modification of one or
more attributes of variables of a tuple type, preserving the values of the other attributes
of the tuple. This is a particularly useful extension because those specifications need not
be changed if new attributes are included in the corresponding relations.

B IO - U p d a te o f keys

In the relational model, the update of the primary keys of one or more tuples of a relation
is specified similarly to the update of any other attribute of the relation. Thus, it may
still be specified according to the general rule for updates (B9).

However, because in this specific case updates are usually based on the old values of
the primary keys and change only one tuple at a time, the operator UPDATE is to be
used in such specifications. A schema tha t changes the primary key P k l of relation re/1
from old? to new? is presented below.

 Update—key-.rell___
A DB

old?, new? : DOM1

EDB \ ...

re/1' = UPDATE rell P k l {old?} new?

When the primary key of the relation is the target of one or more foreign keys, either
in other relations or in the same relation, the predicate of such a schema must also

The specification method 41

specify what happens to all references for the updated tuple, in order to avoid violations
of the Referential Integrity Rule [5, pp. 284-285], similarly to the case of deletes based
on the primary keys.

In general, there are a t least the same three possibilities [5, pp. 285-288], Restricted,
Cascades, and Nullifies tha t, for each foreign key, are specified according to the rules
B10.1, BIO.2, and BIO.3, respectively.

For the following subsections, assume tha t attribute Fk 1 of relation re/2 is a for
eign key targeted a t the primary key attribute P k l of relation re/1, where re/2 is not
necessarily different from re/1.

B 10.1 - U p d a tes restr icted

When Restricted is chosen, updates are performed only if there is no foreign reference
to the selected key (old?). This is already guaranteed by the specification of the foreign
key constraint in the predicate of the corresponding DB schema.

To specify this explicitly, the predicate of the schema th a t specifies updates in the
primary key of relation re/1 should include the equation below, which is very similar to
the one described in rule B7.1.

V t2 : re/2' • t2 .Fkl ^ old?

B IO .2 - U p d a tes cascade

When Cascades is specified, every tuple where there is a foreign reference to an updated
tuple is also updated and this constraint is specified using the operator UPDATE.

re/2' = UPDATE re/2 F kl {old?} new?

When re/1 and re/2 are the same relation, a le t expression and a local variable must
be used to join the equation above with the one th a t specifies the update of the primary
key (BIO) because, in this case, the result of one operation must be the input to the
other, similarly to the Nullifies option in the specification of deletes (B7.3). Again, the
order of the equations does not make any difference and the case in which the foreign
references are updated before the original tuple is updated was chosen.

le t r = = UPDATE re/1 F kl {old?} new? •
rell' = UPDATE r P k l {old?} new?

B IO .3 - U p d a tes nu llify

Finally, Nullifies changes all foreign references for updated tuples to contain the null
value. This constraint is specified very similarly to the way Cascades was specified, the
difference being th a t the updated value of the foreign references is the null value.

re/2' = UPDATE re/2 F kl {old?} <null>

where <null> is the null value for the domain of F kl and hence the domain of P kl.

The specification method 42

Again, when re/1 and re/2 are the same relation, a le t expression and a local variable
must be used and the updates must be specified as follows:

le t r = = UPDATE re/1 F kl {old?} <null> •
re/1' = UPDATE r P k l {old?} new?

4.3 The advanced features

In this section the rules of the method regarding the specification of more advanced
features such as transactions, sorting of results, composite attributes, etc. are presented.

A 1 - T ransactions

Transactions are specified using the schema piping (> >) of operations written according
to other rules of the method.

Notice th a t the version of the piping operator (> >) used here allows for the output
and primed state variables (all results) of the first schema to be matched against the
input and unprimed state variables of the second schema, respectively. It is not part of
standard Z but there are no technical problems involved in such an extension.

In addition, renaming variables of the component schemas is usually necessary to
make variables of different operations be the same variable, avoid name clashes, and/or
keep the ? and ! naming conventions for input and output variables valid in the trans
action. Extra parentheses are sometimes needed to enforce an order in the association
of the schemas and, in this case, the sequential composition (i) may also be used.

The convention for naming the schemas th a t specify the correct behaviour of trans
actions is to add the suffix “_Ok” . A typical transaction definition is presented below.

TransacljOk = (Oper_l [61 / a l ,...] > > »
Oper^n [62 / a 2 , ...] | <condition>)

where Oper__ 1,..., Oper-n are the components of the transaction and <condition> is an
optional predicate used to make the values of variables of different component schemas
refer to other variables. This will be necessary, for example, to specify constraints
depending on the inputs of more than one subtransaction and to make the value of a
variable refer to the value of an attribute of a tuple variable.

A 2 - S ortin g o f R esu lts

The specification of sorting of results, i.e. the presentation of the results (values of output
variables) of read-only operations in a specified order, uses the operator SO RT.

The SO R T operator takes three parameters: a relation, an attribu te of the relation,
and a comparison operator to compare values of the type of the A ttribute. Its result
is a sequence formed by the tuples of the relation sorted by the values of the attribute
according to the comparison operator.

seq = SO R T rel A t t l <cop>

The specification method 43

where <cop> is a comparison operator compatible with the type of the attribute. In
general, the comparison operator < is used for sorting in ascending order and > for
sorting in descending order respectively.

The specification of sorting results based on two or more attributes are presented as
part of the composite attributes rule (A4).

Usually, the specification of sorting is done in a separate schema which (1) includes
the ZDB schema, (2) declares the relation to be sorted as input and a sequence of tuples
of the appropriate type (the sorted relation) as output, and (3) uses the SO R T operator
as illustrated above in its predicate. A typical sorting schema is presented below.

 Rel s o r te d —A t t l ___
~DB

srell : F REL
lrel\ : seq REL

Irell = SO R T srell A t t l <

A 3 - A ggregate F unctions

A facility commonly provided by many RDBMSs is the use of a number of aggregate
functions which make describing the functionality of some applications easier.

Aggregate functions are usually applied to the definition of read-only applications,
but are not restricted to these. The aggregate functions provided by the method are
presented below.

The first one, # , gives the number of tuples of a relation. Note th a t the standard Z
operation for number of elements of sets is used in this case.

The others, C O U N T , M A X , M IN , S U M , and AVER are operators defined to be
used with the method. They all take two parameters, a relation and an attribute of the
relation, and give a number as result. Except for C O U NT , the range of the attribute
must be th a t of one of the numeric types, i.e. Z, N, and REAL.

The COUNT operator returns the number of tuples such tha t the given attribute is
not null. Operators M A X , M IN , and SUM return the maximum, the minimum, and
the sum of the values of the given attribute, respectively. Finally, AVER returns the
average value of the attribute. Note tha t none of them takes into account tuples where
the value of the attribu te is null. An example is presented below.

COUNT rel Att

Once again, these operators are only syntactic sugaring for more general operators
th a t take extra param eter(s). For example, COUNT is only syntactic sugaring for the
general operator C O U N TS , which takes one more argument as its first parameter: the
null value corresponding to the domain of the attribute.

COUNTS <null> rel Att

The specification method 44

More information on the operators involved in the specification of aggregate functions
are given in Section 5.6 together with the specification of the operators.

A 4 - C om p osite A ttr ib u tes

Composite attributes are needed to make possible the specification of composite candi
date and foreign keys, as well as sorting of results based on more than one attribute.

For the specification of composite attribute candidate and foreign keys, the method
prescribes the application of partial parametrizations of the operators CA2, CAS, etc.,
which are used as higher-order functions.

For example, CA2 is an operator tha t takes three arguments: the two attributes tha t
will form the key and a tuple of the relation. Its result is the tuple formed by the values
of the two attributes in the given tuple. For instance, the specification of a tw o-attribute
candidate key is presented below, where Att 1 and Att2 are attributes of relation re/1.

K E Y -O F re/1 (CA2 A t t l Att2)

The expression inside parenthesis returns a function with the first two parameters
of CA2 instantiated. Technical details about this are given in Chapter 5, together with
the specification of the operators.

Similarly, a two-attribute foreign key targeted a t the primary key of the relation re/1
defined above is presented below, where AttS and Att4 are attributes of relation re/2.

F O R -K E Y re/2 (CA2 AttS Att4) re/1 (CA2 A t t l Att2)

Sorting results based on two or more attributes are also specified using the operators
CA2, CAS, etc. to represent the composite attributes. Operators called COP2, COPS ,
etc. are also used as higher-order functions together with partial parametrization to
represent the composite comparison operators.

For example, C0P2 takes 4 parameters: the two comparison operators for the types
of each of the attributes, and the two pairs of values to be compared. Its result is a
boolean, true if the pairs satisfy the comparison operator and false otherwise.

An example of sorting based on two attributes is presented below.

seq\ = SO R T re/1 (CA2 A t t l Att2) (C 0P2 < cop l> <cop2>)

where < cop l> and <cop2> are comparison operators compatible with the types of
attributes A t t l and Att2 respectively.

A 5 - V iew s

Views are used to restrict the data visible to or updatable by a specific user or group
of users. They may be composed of a number of base relations and virtual relations
derived from base relations. The use of modularization structures together with the
method should provide the means for hiding base relations and, thus, prevent the users
from accessing the relations they are not authorized to use.

The specification method 45

The updatability of views is not addressed since this is in its own right a whole area
of research [54]. In general, it is not even possible to decide whether some views are
updatable or not [55]. Moreover, it is not always clear what the semantics of updates of
specific views should be.

Views are specified according to rules A5.1 to A5.9 presented below.

A 5.1 - V iew In tention

For each view relation defined to be a projection or join of other relations, there is a
tuple type definition which corresponds to the view relation intention. These tuple types
are defined similarly to the intentions of base relations as described in rule D2.

VREL = [A t t l : DOM 1; Att2 : D0M2\ ...]

A 5.2 - V iew sta te schem a

For each view, there must be a view state schema which (1) includes the DB schema,
(2) declares the variables tha t represent the extensions of all derived view relations,
similarly to the declaration of the extensions of base relations - rule D3, (3) specifies
the contents of these variables in term s of other variables (in general base relations)
according to rules A5.3, A5.4, A5.5, and/or A5.6, and (4) may add extra constraints
about these variables.

 View__
DB

vrell : P VREL1

vrell = ... A

A 5 .3 - S e lects , jo in s, and p rojects

Views based on selects, joins, and projects, presented below, specify the contents of the
view variables (relations) as set comprehensions, similar to the ones prescribed for the
select, join, and project operations in rules B2, B3, and B4 respectively.

vrell = { t l ' . r e l l | <condition> }

vrel2 = { t l : re/1; t2 : re/2 ... | t l .A t t l <cop> t2.Att2 ... }

vrelS = { <3 : re/3 • <result> }

where <condition> is a boolean expression involving at least one of the attributes of
re/1, <cop> is a comparison operator, A t t l and Att2 are attributes of re/1 and re/2
respectively, and <result> is an expression th a t applied to Z3 gives a tuple of type
VREL3 such th a t all its attributes are based on computations of attributes of re/3.

The specification method 46

A 5 .4 - U p d a te s o f A t t r i b u te s

Views which involve changing the values of attributes specify the contents of the view
variables (relations) using a select condition for the updates and an update rule which
defines the corresponding updated tuple for each of the selected tuples, similarly to the
updates of base relations, rule B9 of the method.

vrel = { t : rel • if <condition> then <result> else t }

As in rule B9, <result> may be any expression of type VREL though it usually is
an expression like the one presented below, such th a t Att 1, A tt2 , etc. are the modified
attributes, u l, v2, etc. are expressions which give the updated values for these attributes,
and \ is the But operator as defined in rule B9.

t \ (A t t l = u l, Att2 = v2, ...)

A 5 .5 - I n s e r t s

Even though they are not common, view relations which involve the insertion of new
tuples may be specified similarly to the insertion operation for base relations (rule B6).
However, the variables containing the new tuples must be local variables introduced by
a le t expression.

le t sr = = { ... } • vrel = rel U sr

A 5 .6 - D e le te s

There is no need for specifying view relations based on deletes since exactly the same
result would be achieved using selects.

A 5 .7 - T h e A View s c h e m a s

For each View schema defined according to rule A5.2, there must be a A View schema
which includes the View schemas before and after the operations and is similar to the
A DB schema described in rule D5 of the method.

 AView__
A DB
View
View'

Note however th a t the schema above also includes the A DB schema and th a t its
predicate may include the specification of extra constraints. In particular, the predicate
of AView should specify possible update restrictions on one or more relations of the view
according to one of the cases described below.

The specification method 47

(A) For each base or view relation re/1 tha t cannot be updated at all by users of mewl,
there must be an equation in the predicate of AViewl stating tha t the relations
before and after the operations are equal.

re/1' = re/1

(B) Whenever all tuples of relation re/1 can be neither deleted nor have their attributes
updated by users of the view, i.e. insertion is the only update operation allowed,
the following equation should be specified in the predicate of AViewl.

V t : re/1 • t 6 re/1'

(C) Similarly, provided tha t no tuples of re/1 can have their attributes updated and
new tuples cannot be inserted, i.e. deletion is the only update operation allowed,
the following equation should be specified.

V t : relV • t E re/1

(D) On the assumption tha t tuples of relation re/1 cannot be deleted but insertions
and updates of attributes are allowed, the following equation should be specified.

V t : re/1 • (3 /1 : re/1' • t .P k l = t l .P k l)

(E) Likewise, if new tuples cannot be inserted in re/1 but deletions and updates of
attributes are both allowed, the equation below should be specified instead.

V t : re/1' • (3 t l : re/1 • t .P k l = t l .P k l)

Finally, there are other cases which are possible but were not included in the method
because, in these cases, the forbidden operations can be achieved with one or more of
the allowed operations. Additionally, it is worth emphasizing th a t whenever all update
operations are allowed no extra equations are needed.

A 5 .8 - T h e EView schem as

Similarly, for each View schema defined according to rule A5.2, there is a EView schema,
similar to the E\DB schema described in rule D6 of the method. Again for completeness,
the EView schemas must be explicitly specified.

EView = [AView \ dView = GView']

A 5 .9 - S p ec ifica tion o f operations

Finally, the specification of all the basic operations are basically the same as those
described for the base relations (rules B1-B10), except tha t they use the view state
schemas (AView and EView) instead of the database state schemas (A DB and EDB).

The specification method 48

Nevertheless, it is worth repeating tha t the updatability of views is not addressed
by the method. Therefore, update operations on view relations may lead to problems
which are not investigated in this work.

4.4 The extended operations for error handling

Basically, the method provides two different ways for the specification of the extended
operations (transactions) which capture error handling.

In the first one, suitable for specifications targeted at an implementation, the speci
fications explicitly state what the possible errors2 are and give a specific error message
for each of them. This possibility is described by rules E l, E2, and E3 below.

E l - T h e sch em a Ok

The Schema Ok , th a t is used in both possibilities for error handling, is specified below.
In fact, Ok may be provided together with the pre-defined operators and, so, there is no
need to specify it again.

O k__
result! : ST R IN G

resultl = “Success”

E2 - T he error schem as

For each transaction using the database, there will be a corresponding error schema,
which describes the possible errors tha t may occur. Basically, each of these schemas
(1) include the EDB schema, because no change is done in the relations when errors
occur, (2) introduce the variable resultl to keep the error message, (3) declare all input
variables (if any) declared by the corresponding schema th a t deals with the correct
behaviour of the transaction, because they will be involved in some of the possible
errors, and (4) describe, in its predicate, what the possible errors are and which messages
correspond to each of them. A sketch of such an error schema is presented below.

 Insert_rel 1—Error__
EDB

resultl : STR IN G

<input_vars>

(< erro r_ l> A resultl = “message 1”) V

(<error_n> A resultl = “message n”)

2 In order to identify all possible error conditions, the negation of the preconditions of the correspond
ing schema that describes the correct behaviour of the transaction must be simplified.

The specification method 49

where <input_vars> is the declaration of all input variables of the corresponding schema
th a t deals with the correct behaviour of the transaction, < error_ l> , <error_n>
are the possible errors, and “message 1” , ..., “message n” are the corresponding error
messages.

Whenever the number of possible errors of a transaction is considered too big, the
corresponding error schema may be split into a number of smaller schemas. A possible
policy to manage the split is to write one error schema for errors regarding each of the
relations involved in the transaction.

Notice tha t all input variables of the transaction must be declared in all error
schemas, although some of them may not be used in all error schemas. The reason
for declaring them all is to avoid having to find out which variables are needed in each
schema which is unnecessary since it would not change the final transaction.

E 3 - T h e e x te n d e d o p e r a t io n s I

Now, the extended transactions, e.g. Transac 1, are specified by extending their original
specifications, i.e. Transacl-Ok , to describe what happens if any error occurs. Basically,
if the preconditions are satisfied the result is “success” (Ok), otherwise no change is done
in the database and a specific message is put in resultl (Transacl—Error) .

Transac 1 = (Transac1-Ok A Ok) V Transacl-Error

where Transacl—Ok is the schema th a t describes the correct behaviour of the transaction
and TransaclJError is the corresponding error schema (E2).

Should the user decide to split the error schema, all error schemas must be connected
by logical disjunctions as follows:

Transacl = (Transacl-Ok A Ok) V
TransaclJError_1 V ... V TransaclJError_n

Alternatively, the users may adopt the second possibility which is very simple and
is suitable for more abstract specifications. In this case, a general error schema is used
to specify tha t the database is not modified if an error occurs, and its variable resultl
simply says whether the operation was successful or not. The two following rules, E4
and E5, describe this second approach to error handling.

E 4 - T h e s c h e m a Error

The schema Error states tha t there will be no change in the relations of the database
and tha t resultl is not “Success”.

Error = E.DB A -> Ok

This schema is general in the sense tha t it is used to extend all applications, but specific
for each database being specified.

The specification method 50

E5 - T he ex ten d ed operations II

Again, the schemas tha t describe the extended transactions, e.g. Transac 1, are then
specified similarly to the ones prescribed by rule E3. The difference is tha t, now, the
general schema Error is used in substitution to the specific error schemas. Schemas
Transacl_0fc and Ok were described in rule E3, whereas Error was described in rule E4.

Transacl = (Transacl_Ok A Ok) V
(Error \ resultl = “Error in Transaction 1”)

4.5 Guidelines on how to use the m ethod

Now, a number of guidelines on how to write relational database specifications in Z using
the method are described. They are virtually identical to the ones given in [115] and
represent the last version of the guidelines on how to the use the method sensibly.

The user may find it helpful to look at the example (Chapter 6) while reading these
guidelines.

Basically, it is postulated tha t the users should not write the complete specification
a t once but rather split the task into a number of steps. They should write a first
specification containing only a small subset of the details. The information left out of
this first specification would then be gradually added in several steps.

4.5 .1 G uidelines for th e first sp ecification

Initially, some guidelines on which details should be present in the first specification are
presented. Essentially, the aim is to specify the most im portant transactions, e.g. the
ones to be run by many users or perhaps the ones with strict performance requirements.

In fact, the specifications would only include a minimal subset of the database struc
ture, namely tha t affected by the chosen transactions, i.e., some domains, relations, and
attributes, and virtually no constraints but the primary keys.

The proposed steps for writing the first version of the specifications are:

G l Choose a number of transactions which are to be specified in the first version and
write a brief yet precise description of each of them. Preferably, these transactions
should be the most im portant ones. It was decided th a t no target number of
transactions would be given and, consequently, it is up to the user to decide what
the ideal number would be.

G 2 Identify which subset of the database structure is affected by the chosen subset
of transactions and draw the restricted ER diagram showing only the structures
involved in these transactions. This will only include some entities, relationships,
and attributes, as well as the cardinality constraints.

It is assumed tha t proper tool support for drawing ER diagrams is available and,
so, restricted versions of the complete ER diagram can be easily generated using a
tool. The idea is to include the restricted ER diagram in the specification document
to highlight its im portant aspects and thus make it easier to understand.

The specification method 51

G 3 Specify, using Z, the relational database schema equivalent to the resulting ER
diagram following the basic steps prescribed by the method. This will only include
a limited number of domains (defined as given sets unless they are simple and
already known), tuples, and relation schemas, in addition to the database state
schemas D B , A D B , EDB, and In it-D B (the initial state schema).

Do not specify any constraints except for the null and primary key constraints.
Other constraints, e.g. the foreign key constraints, could also be specified at this
stage if for some reason this is considered relevant.

G 4 Specify the common basic operations which are always (or at least usually) needed,
no m atter what system is being specified. Since these may be used several times,
they are specified before operations needed in specific transactions. Insertion and
deletion based on the primary keys of all relations are the ones identified so far.

G 5 Specify the basic operations needed in the specification of the chosen transactions,
except for the ones already specified. This includes the read-only operations (se
lects, projects, and joins), update operations (inserts, deletes, and updates), as
well as some of the advanced features (sort, aggregate functions, etc.). Constraints
which are specific to some subtransactions as well as constraints which will be
automatically satisfied by other operations should also be explicitly specified.

G 6 Finally, specify the correct behaviour of the database transactions based on the
basic operations using the method. The derivation of the preconditions as well as
the specification of the extended operations including error handling should be left
for later. It appears to be more appropriate to add these as one or more extra
steps apart from the specifications, since this is a more or less distinct activity.
Further discussion on this m atter is presented later.

4 .5 .2 G u id e l in e s fo r e x te n d in g th e s p e c if ic a t io n

Now, some guidelines on how to change the specifications resulting from each step, and
in particular the first specification, to add more details are given. Basically, the details
which should be added in the next steps are enumerated.

Also, no specific order in which these details are to be added is enforced. It might
indeed be more convenient to mix different kinds of detail in a given step. Moreover, no
sketch of the preferred order for adding the new details are given, since it ought to be
up to each user to choose what the best order is. An example of using the method is
given in [117, 118, 119] which shows a specification of the company database example.
Chapter 6 contains the final version of this specification.

The kinds of detail tha t can be added in each step are:

C o n s tra in ts : The users can add specific kinds of constraints and change the affected
specifications accordingly. These kinds of constraints include the static attribute
constraints, candidate keys (other than the primary keys), foreign key constraints,
other static constraints depending on more than one relation (e.g. inter-relation
derived attributes), and dynamic constraints.

The specification method 52

Even though this could be done in a single step, it is suggested it should be split into
some steps based on the kinds of constraints added. Even so, similar constraints
should always be added in the same step. Different kinds of constraints can be
added in a single step though.

Error Handling: Users would add the specification of the extended transactions which
allow for error handling. This includes the derivation of the preconditions of each
transaction. It can either be split into a number of steps or done at once for all
transactions as a final step. Although this could also be done as part of every step
th a t adds the specification of new transactions, it should be clearer to do it using
separate steps.

Other Transactions: Users can also choose a number of other transactions tha t are to
be specified and this will lead to more details being added to the specification of
the database structure. In theory, it should not lead to changes in the transactions
already specified. Again, the users do not have to specify all remaining transactions
in a single step and indeed they should not do so.

There are two ways in which the above extensions can be added to the specifications.
The first one is to use the facilities of schema inclusion provided by the schema calculus
of Z to add the new details and generate a new set of specifications. This allows the user
to record the order in which details were added.

Its disadvantage is the fact tha t the specifications need to be completely rewritten
in each step, even the bits tha t are not affected by the new details. This is so because
the schema inclusion of Z is merely a textual inclusion. It seems however tha t a version
control facility for Z schemas would help to overcome this problem.

The other possibility is to change the specifications in much the same way application
programs are usually changed. Essentially, this means tha t new details are added directly
in the previous version of the specifications. In this case, only the bits affected by the
new details are changed. Its disadvantage would be the fact that, even if copies of the
previous phases are made (and this is recommended), the order in which details were
added may not be clearly recorded.

If a version control facility is not available, using the second approach might be more
suitable because, most of the time, a clear view of the resulting specifications is what
the users need. Recording exactly which details are added in each step does not seem
particularly relevant. Moreover, a brief description of what details are added in each
step can be recorded in the textual parts of the specification.

Nevertheless, both alternatives can be used without problems. It might be th a t they
could even be used together in different parts of the specifications.

4.6 Conclusion

In this chapter a complete description of the method for the specification of relation
database applications was presented.

The following chapter then provides the formal specifications of all the operators
informally defined in the present chapter.

Chapter 5

The operators

In this chapter, the formal definition of the operators applied in the specification of
relational databases and applications, informally introduced last chapter, is presented.
Again, these descriptions are basically the same as those introduced in [115], with minor
corrections, and represent the final version of the operators.

Before the specification of the operators, two given sets and an enumeration type
are introduced. These are used in the specifications written according to the method to
represent strings, reals, and booleans respectively.

[STRING, REAL]

BOOL ::= true \ false

5.1 Prim ary and candidate key operator

The K E Y -O F operator is used to specify tha t a specific attribu te of a relation is a
candidate key and, in particular, this includes the primary key. It is defined below and
takes two parameters: a relation (rel - its type is PA) and an attribute of the relation
(A tt - its type is (A —> B), a function from the tuple to the value of the attribute), where
A and B are generic types.

r [A , B] - ,

K E Y - O F : V A -¥ (A -¥ B) -¥ BOOL

V rel : PA; Att : (A —> B) •
K E Y - O F rel Att

(V £1, t2 : rel • Att t l = A tt t2 & t l = t2)

The predicate of K E Y - O F states that, for every pair of tuples of the relation having
the same value for the attribute, the tuples are identical, i.e., they are in fact the same
tuple. This means th a t every tuple of the relation must have a different value for the
chosen attribute.

53

The operators 54

5.2 The FO R EIG N _KE Y operator

The operator FOREIGN—K E Y , used to define Foreign Keys, is presented below. This
operator takes five arguments: a value of type C, tha t represents the null value for this
type; the relation where the foreign key is; the foreign key attribute; and the relation
and its primary key referred to by the foreign key.

r [A, B , C l
FOREIGN - K E Y : C -> PA -> (A -¥ C) -►

P B (B -> C) -> BOOL

V n u l l : C\ rel2 : PA ; F k l : (A -> C); re/1 :P F ; Pifcl : (F -► C) •
F O R E IG N -K E Y null re/2 F H re/1 P H ^

(K E Y -O F re/1 P H A
V t2 : re/2 • F H t2 = null V

3 t l : re/1 • P H t l = F k l t2)

The above predicate states th a t attribute F k l of relation re/2 is a foreign key targeted
at attribu te P k l of relation re/1. This means tha t P H is a key (in fact the primary key)
of re/1, and tha t the value of F H in all tuples of re/2 is null or matches the value of P kl
for some tuple of re/1, re/1 being not necessarily different from re/2.

5.3 N ull value operators

There is no universally accepted approach to null (missing attribute) values. Also, giving
a different treatm ent for each possibility is not intended here. On the contrary, the aim
is simply to show a basic approach and leave the possibility of others being specified by
different users of the method. In addition, the treatm ent for null values is in general
dependent on the specific DBMS and the method is intended to be independent of specific
DBMSs. For these reasons, the treatm ent of nulls presented here is quite concise.

Regardless of the approach chosen for nulls, an operator called N O T —NULL will be
used to specify th a t a specific attribute of a relation is mandatory, i.e., it cannot be null.
It seems this operator will be useful for many treatm ents of nulls, but it is by no means
universal. Thus, it may need to be changed depending on the approach chosen for nulls.

O perator NO T-N U LL, specified below, takes three arguments: a value of type B ,
th a t represents the null value for this type, a relation, and an attribute of the relation.

r [A,B] ---------------- ■■ ■■
N O T -N U L L : B P A (A -4 B) -> BOOL

V null : F ; r e l : PA; Att : [A —>• B) •
N O T-N U L L null rel Att ^ (V t : rel • A tt t ^ null)

In this work, D ate’s proposal called the default values approach [120] is adopted. It
was chosen because it is very simple, and is presented below.

The operators 55

(A) N u ll values

There is a constant definition for each basic type (Z, N, REAL, and S T R IN G), which
represents the null value of these types. Their values are assumed to be zero, for Z ,N
and R E A L , and the empty string for STRING , but these may be changed by the users.

N U L L IN T : Z
N U L L N A T : N
N U L L R E A L : REAL
N U L L S T R : STRIN G

N U LLIN T = 0 A
N U LLN AT = 0 A
NULLREAL = 0 A
NU LLSTR =

According to this approach, different domains based on the same basic type may
have different null values. However, for the sake of simplicity, this case is not considered.
Anyway, there is nothing to prevent users from specifying one null constant for each
domain if this is needed.

(B) T he R E Q U IR E D operators

In order to simplify the specification of constraints which state th a t specific attributes
cannot be missing, the operator REQUIRED is introduced below. In fact there are four
definitions of REQUIRED (overloaded) tha t, for each of the basic types, instantiate the
operator N O T-N U L L by giving the corresponding constant as the first parameter.

REQUIRED [A] = N O T -N U LL [A, Z] N U LLIN T

REQUIRED [A] = N O T -N U LL [A, N] N U LLN A T

REQUIRED [A] = N O T -N U LL [A, REAL] NULLREAL

REQUIRED [A] = N O T-N U LL [A, STRING] NULLSTR

Note tha t the expressions above return other operators (functions) with the first
param eter of N O T-N U L L instantiated and exemplify the use of the operators as higher-
order functions.

One of the REQUIRED operators resulting from these definitions is presented below
to facilitate its understanding and must be seen as a comment only. It corresponds to
the instantiation of the first parameter of N O T -N U L L using N U L L IN T .

r M
REQUIRED : F A —► {A ->• Z) -* BOOL

Vre/ : P A; Att : (A -+ Z) •
REQUIRED rel Att & (V/ : rel • Att t / NU LLINT)

The operators 56

Obviously, the REQUIRED operators are only syntactic sugar. However, using them
allows the specification of this type of constraints to be done uniformly and independently
of the types of the attributes [121, pp. 169-206].

(C) T he FO R —K E Y operators

Similarly, overloaded operators called FOR—K E Y are defined by partial parametrizations
of F O R E IG N -K E Y , already defined in Section 5.2, on its first parameter.

F O R -K E Y [A, B] = F O R E IG N -K E Y [A, B ,Z] N U LLIN T

F O R -K E Y [A, B] = F O R E IG N -K E Y [A, B , N] N U LLN A T

F O R -K E Y [A, B] = F O R E IG N -K E Y [A, B, REAL] NULLREAL

F O R -K E Y [A, B] = F O R E IG N -K E Y [A, B, STRING] N U LLSTR

In this approach, nulls are in fact valid values which are used for this specific purpose.
Consequently, the users must be aware tha t comparison operators trea t these null values
identically to all other values. So, these values must be explicitly excluded from the
context of the comparisons, when necessary.

In particular, joins based on attributes such th a t both of them allow nulls, as well as
joins not based on the equality, usually require the explicit exclusion of nulls. However,
because most joins are equi-joins based on a primary-key, and primary-keys do not accept
nulls, this will rarely be necessary.

5.4 U pdate and delete operators

Now, auxiliary operators used to simplify the specification of operations such as update
and delete are introduced.

The first of them, UPDATE , simplifies the specification of updates for a specific
attribute A tt of a given relation rel. It is used in the specification of the Nullifies
compensating action of deletes based on the primary key which might violate the foreign
key constraints - rule B7.3, and in the update of primary keys - rule BIO.

The effect of UPDATE , presented below, is to change the value of attribu te Att to
new for those tuples in rel where the value of Att is a member of old. O perator \ is the
But operator as described in rule B9 of Chapter 4.

B) ------- :............ ■■
UPDATE: P A -► (A -> B) -*• P B -*■ B -► P A

V rel : F A ; Att : (A —>■ B); old : P B\ new : B •
UPDATE rel A tt old new =

{ t : rel • if Att t 6 old
then t \ (A tt = new)
else t }

The operators 57

The next one, D E LE T E , is used to specify deletes in a given relation rel based on a
given set of values sv of a specific attribute Att, usually the primary key of the relation.
The result is the relation after the operation.

r [A, B]--------------------- ---
D E L E T E : P A (A - t B) -¥ P B -¥ P 4

V rel : PA; Att : (A B); sv : F B •
D ELETE rel A tt sv = { t : rel | Att t ^ sv }

The effect of D ELETE is to remove all tuples of relation rel where the value of
attribute Att is a member of the set sv.

The operator CASC—DELETE, specified below, is recursive and represents recursive
cascade deletes over a relation, i.e., when there is a foreign key for the relation where it
is defined and Cascades is specified for deletes.

Basically, CASC -D E LE TE represents recursive applications of D ELETE such tha t
the set of foreign key references for deleted tuples in each step (sb 1) will be the set of
primary keys of tuples to be deleted in the following step. The recursion stops when
there is no foreign reference to be deleted, i.e., when sbl is the empty set.

r [A,B]
C A SC -D E L E TE : (A -> B) -» PA (A - + B) P B -* F A

V rel : FA; Fk, Pk : (A -¥ B)\ s b ' .F B •
CASC -D E LE TE Fk rel Pk sb =

(let s61 = = { t : rel \ Fk t E sb • Pk t } •
if sbl = { }
then D ELETE rel Pk sb
else (let r = = D ELETE rel Pk sb •

C A SC -D E LE TE Fk r Pk sbl))

This operator offers a simpler alternative for specifying the deletes cascade loop over
a relation, rule B7.2 (B) of the method. However, it cannot be applied if there is another
foreign key with such property in the same relation, in which case the general rule should
be applied.

5.5 The sorting operator

Now, the SO R T operator is specified. It is used to present the results (output variables)
of read-only operations in a specific order, as described in rule A2 of the method.

The SO R T operator takes three parameters: a relation, an attribute, and a compar
ison operator (its type is (B —>■ B —>■ BOOL)) to compare elements of the type of the
A ttribute. Its result is a sequence formed by the elements of the relation sorted by the
values of the attribute according to the comparison operator.

The operators 58

According to the predicate of the SO R T operator, presented below, the resulting
sequence (seq) contains exactly the same elements (tuples) as the input relation (rel)
in such an order th a t the cop comparison operator applied to the values of the given
attribu te (Att) of two consecutive tuples is always true.

r [A B)
SO R T : P A -y (A - y B) -y (B -*• B - y BOOL) -y seq A

V rel : P A; Att : (A -+ B); cop : (B -» B —¥ BOOL)-, seq : seq A •
SO R T rel A tt cop = seq •<=>

(rel = ran seq A #re l = #seq A
V i : 1 .. (#seq — 1) •

cop (Att (seq i)) (Att (seq (i + 1))))

5.6 Aggregate function operators

Now, the specification of the operators COUNT, M A X , M IN , SUM, and AVER are
presented. These are used in the specification of the aggregate functions as described in
rule A3 of the method.

Once again, these operators are in fact syntactic sugar defined in terms of more
general operators called COUNTS, M A X M IN , SUMS, and A V ERAG E respectively,
which are presented below.

The first one, C O U N TS, gives the number of tuples of a relation such th a t the value
of the given attribute is not null. It takes three parameters: a value of type B, th a t
represents the null value of this type, a relation, and an attribute of the relation.

r l A B] ------ -------- — = = = = = =
CO U NTS: B ^y P A -y (A - y B) - y N

V null : B-, r e l : PA; Att : (A —>■ B) •
COUNTS null rel Att = # { t : rel \ A tt t / null }

In order to simplify the use of COUNTS, the operator COUNT is introduced below.
Once again, there are in fact four definitions of COUNT (overloaded) that, for each of
the basic types, instantiate the operator COUNTS by giving the corresponding constant
as the first parameter.

COUNT [A] = COUNTS [A, Z] N U LLIN T

COUNT [A] = COUNTS [A, N] NU LLN A T

CO UNT [A] = COUNTS [A, REAL] NULLREAL

CO UNT [A] = COUNTS [A, STRING] NU LLSTR

The other operators can only be applied if the type of (the range of) the attribute is
numeric, i.e., it is one of the following types: Z, N, or REAL.

The operators 59

The next one, M A X M IN , is used to calculate either the maximum or the minimum
value of the attribute in the tuples of the relation, without considering the tuples where
the value of the attribute is null. It takes four parameters: a value of type J9, which
represents the null value of this type, a comparison operator for values of this type, a
relation, and an attribute of the relation.

r [A, B]
M A X M IN : B (B -» B -> BOOL) -> F A (A -> B) -» B

V null :B ; OP : (B -> B BOOL);
re l : PA; A tt : (A B); res : B •

M A X M IN null OP rel A tt = res «=>
((3 t : re/ • Att t = res A

-i (3 t2 : re/ | >1// Z2 ^ null • OP (Att t2) res)) V
(V t : rel • A// t = null A res = nu//))

According to the predicate of M A X M IN , the result res is such tha t it is the value
of the attribute Att for at least one tuple of rel and, for no tuple of re/, the result of
comparing Att to res using OP evaluates to true.

Note th a t according to the specification, when the value of the attribute is null in all
tuples of rel (this includes the empty relation), the result of M A X M IN is null.

In order to simplify the use of M A X M IN , the operators M A X and M IN are intro
duced below. In fact, there are three definitions of each (overloaded) which instantiate
the first two parameters of M A X M IN with the constants corresponding to one of the
basic numeric types and the relevant comparison operator, respectively. For specifying
M A X , > is the appropriate comparison operator, whereas < is used to specify M IN .

M A X [A] = M A X M IN [A, Z] N U LLIN T >

M A X [A] = M AXM IN [A , N] N U LLN AT >

M A X [A] = M AXM IN [A, REAL] NULLREAL >

M IN [A] = M AXM IN [A, Z] N U LLIN T <

M IN [A] = M AXM IN [A, N] N U LLN A T <

M IN [A] = M AXM IN [A, REAL] NULLREAL <

The SUMS operator is presented next and returns the sum of the values of the
attribute in all tuples of the relation where it is not null. This operator takes four
parameters: a value of type 5 , tha t represents the null value of this type, the sum
operator for values of this type, a relation, and an attribute of the relation.

According to its predicate, the result is the sum (+ /) of the elements of the sequence
seq2 formed by (1) selecting the tuples of relation rel such tha t the value of attribute
Att is not null, (2) transforming the result into a sequence (sgl), and (3) projecting it
over attribu te Att.

The operators 60

| = [A, B) ----------------------- = = = = =

SUMS : B -> (B -> B - f B) -y P A -> (4 -»■ B) -> B

V null : P ; OP : (P —► P —> P); re/ : PA; A// : (A —>■ P) •
3 r : P A; sql : seq A; sq2 : seq P •

(r = {/ : rel \ Att t / null} A
r = van sql A # r = # s q l A
sq2 = {s : sql • (dom s K (4 //(ra n s)))} A
SUMS null OP rel A tt = + / OP sq2)

The formal definition of the auxiliary operator + / is presented below. As already
mentioned, it returns the sum of the elements of a sequence.

 —
+ / : (A -* A —>• A) —> seq A —> A

V OP : (A ^ A -> A) •
+ / O P () = 0 A
V v : A • + / OP (v) = v A
V s i , s2 : seq A •

+ / OP (s i ~ s2) = OP (+ / OP s i) (+ / OP s2)

Notice tha t (1) the predicate of + / guarantees that, when rel is the empty relation,
the result of SUMS is zero; and (2) the operator “+ ” is not used directly in the predicates
of SUMS and / + because of the generic type of its operands (instances of attribute Att).

Once again the use of SUMS is simplified by the specification of overloaded operators
called SUM which instantiate the first two parameters of SUMS as follows:

SUM [A] = SUMS [A, Z] N U LLIN T +

SUM [A] = SUMS [A , N] NU LLNAT +

SUM [A] = SUMS [A, REAL] NULLREAL +

The last one, A V E R A G E , gives the average value of attribute Att in the tuples of
relation rel. Basically, the value returned is the result of SUMS divided by the result
of COUNTS. However, if the attribute Att is null in all tuples of relation rel (and this
includes the case of an empty relation), AV ERAG E is explicitly defined to be zero.

F = *] — ■ -

A V ERAG E : P -» (P -> P P) -► PA (A -► P) P

V null : P ; OP : (P P -► P); rel: PA; Att : (A -> P) •
AV ERAG E null OP rel A tt =

if COUNTS null rel Att = 0
then 0
else (SUMS null OP rel A tt / COUNTS null rel A t t)

The operators 61

Alternatively, a different version of AVERAG E may be defined as the result of SUMS
divided by the number of tuples of the relation (#).

To conclude this section, the specification of the overloaded operators AVER are
presented. Yet again, these are syntactic sugar which instantiate the first two parameters
of AV ERAG E and simplify its use.

AVER [A] = AV ERAG E [A, Z] N U LLIN T +

AVER [A] = AV ERAG E [A, N] NU LLN A T +

AVER [A] = AV ERAG E [A, REAL] NULLREAL +

5.7 Com posite attribute operators

Now, operators called CA2, CA3, etc. are defined and this will make it possible to use
operators K E Y -O F and F O R -K E Y when the key of the relation is formed by two or
more attributes. They are also used together with operator SO R T for sorting results
based on more than one attribute.

Operator CA2 takes three arguments: the two attributes th a t will form the key and
a tuple of the relation. Its result is the tuple formed by the values of the two attributes
in the given tuple.

r [A, B , C]~ ■■■
CA2 : (A —► B) (A -» C) -> A -> (B x C)

V F : (A -> B); G : (A -> C); a : A •
CA2 F G a = (F a, G a)

The operator CA2 is used to specify two-attribute keys for relations like for example
in K E Y - O F re/1 (CA2 A t t l Att2).

The expression in parenthesis returns a function with the first two parameters of
CA2 instantiated and exemplifies the use of the operators as higher-order functions.

So, the result is a function tha t takes a parameter of type Rel 1 (A) and returns a
tuple of type D 0M 1 x D 0M 2 (B x C), where DOM 1 and DOM2 are the domains of
A t t l and Att2 in type Rel 1, respectively.

Operator CAS may be used for three-attribute keys. Its definition is presented below
and is similar to the definition of CA2.

r [A, B, C, D] ===^------------------ ------
CA3 : (A -> B) (A -► C) -> (A D) -> A —> (B x C x D)

V F : (A -» B)\ G : (A -> C); H : (A -> D); a : A •
CAS F G H a = (F a, G a, H a)

Others called CA4, CA5, etc. can also be defined in a similar way, the main difference
being the number of attributes in the arguments and, consequently, in the result.

The operators 62

The next one, COP2 , is used together with operators SO RT and CA2 to specify
sorting of results based on two attributes.

The COP2 operator takes 4 parameters: the two comparison operators for the types
of each of the attributes, and the two pairs of values to be compared. Its result is a
boolean, true if the pairs satisfy the comparison operator and false otherwise.

f=[A, B]
COP2 : (A ^ A B O O L) -► (B -» B BOOL) -►

{ A x B) -> (A x B) BOOL

V OP1 : (A - * A - + BOOL)] OP2 : (B -> B BOOL);
(a l, 61), (a2, 62) : A x B •

COP2 OP1 0P 2 (a l, 61) (a2, 62) o if a l ^ a2
th e n O Pl a l a2
else 0P 2 61 62

According to the above specification, the result of comparing two pairs is the same
of comparing their first components except when their first components are equal. In
this case, the result is th a t of the comparison of their second components.

Sorting relation rel based on attributes Att 1 and Att2 giving the sequence seql uses
a partial parametrization of operators CA2 and COP2 as follows:

seq\ = SO R T rel (CA2 A t t l A t t2) (COP2 O Pl OP2)

Similarly, operators COP3, COP4, etc. may also be written to be used together with
CAS , CA4, etc. in the specification of sorts based on more than two attributes.

5.8 Foreign key transitive closure

The operator F K T C , presented below, is recursive and returns the foreign key transitive
closure of a given set of keys, i.e., the set of primary keys of tuples which directly or
indirectly reference any of the keys in the set sv by means of the foreign key. It was not
mentioned in the description of the method but is potentially useful in the specification
of some applications and will be used in the company database example (Chapter 6).

r [A, B] -
F K T C : F A —► (A -> B) -* (A ->• B) -> P B -> F B

V rel: FA; P k ,F k : (A -¥ B); s v . F B •
let spk == { t : rel \ Fk t 6 sv • Pk t } •

F K T C rel Pk Fk sv =
if spk C sv
then sv
else F K T C rel Pk Fk (su U spk)

The operators 63

Basically, the operator F K T C represents recursive applications of the foreign key
(Fk) and primary key (Pk) attributes to a set of primary key values (sv). In each step,
the set (spk) of primary keys of tuples th a t reference keys of sv will be added to the set
of primary keys to be used in the following step. The recursion stops when there is no
new key to be added (spk C sv).

It is worth emphasizing th a t the foreign key attribute must refer to tuples of the
same relation and tha t the original set of keys will be included in the final result.

In addition, note tha t this operator is more general than it might seem at first sight.
In theory, it could be used together with any function Fk of the same type (A —> B)
of the primary key function P k , and the foreign key function is just one example. For
instance, this function could be the result of composing a number of other functions
possibly involving other relations as well.

5.9 Conclusion

This chapter provided the formal definitions of all the operators used in the specification
of relational databases and applications, and this completes the theoretical material
about the method.

The next chapter presents the specification of a simple database example written
according to the method introduced in Chapter 4.

Chapter 6

The company database exam ple

In this chapter, the method for the specification of relational database applications as
well as the guidelines on how to use it sensibly, presented in Chapter 4, are applied to
the specification of a simple Company Database and its applications.

In this example, employees are hired by departments to work on one or more projects
controlled by a given department for a certain number of hours. Departm ents must have
managers whereas employees may or may not have supervisors. This is an updated
version of the example presented in [115]. It adds a few constraints and modifies one of
the transactions in order to address a few cases which were left out of the previous version.

In order to make the understanding of the method easier, the formal specification
of the example is merged with informal comments which describe the specifications and
make references to the rules of the method used in each step.

Although it would probably be fruitful to specify a real life system from a suitable
company in order to evaluate the method more effectively, it was decided this would not
be feasible within the time scale of a Ph.D.

The chosen example, however artificial and incomplete, involves the specification
of typical database transactions and covers virtually all features of the method, which
includes all kinds of database constraints, all possible database operations, and a number
of advanced features. Therefore, it is complex enough to be used in the investigation of
the reification step, addressed in Chapter 7. This example is also the base for building
the prototype implementation of the mapping process described in Chapter 8.

The specification of the example is not split into a number of steps as suggested
in the general guidelines (Section 4.5). Even so, the guidelines on how to write the
first specification, given in Subsection 4.5.1, were followed. The previous version of the
company database example was specified in three separate steps [117, 118, 119], strictly
according to the guidelines.

This chapter is subdivided into six sections. The first one gives an informal descrip
tion of the chosen transactions. The second presents the database structure affected by
these transactions, which includes the corresponding ER diagram. The third describes
all database constraints tha t are to be satisfied. The fourth specifies the relational
database schema in Z according to the method. The fifth introduces the specification
of the common basic operations. Finally, the sixth specifies the transactions, which
includes the construction and simplification of the preconditions and error handling.

64

The company database example 65

6.1 The chosen transactions

Following the first guideline (G l), a number of transactions was chosen and their brief
descriptions are presented below. These were chosen because they are typical transac
tions of real life database systems and cover all the basic relational database operations.

Salary—dept: Calculate the total salary of department d , i.e., the sum of the salaries of
all employees hired by the department.

Move—empls—pro j: Move employees working on project p i to work on project p2 and
delete p i . If p2 does not exist, then it should be inserted first.

This transaction is to be used when a new project is initiated with employees from
two or more existing projects.

Set—empls—dept—pro j: Insert a set of employees sempl in departm ent d and assign them
to work on project p. If d does not exist, then it should be inserted first. If p does
not exist, then it should also be inserted.

This transaction is to be used when a department hires a number of employees to
work on a specific project.

EmpL.supervised—sorted—salary: List all employees supervised directly or indirectly by
employee e sorted by Salary in descending order.

Weighted—salary—pro j: Calculate the average salary of employees working on project p
weighted by the number of hours worked by each employee.

Fire—selected—empls: Fire all male employees whose salaries are greater than a certain
limit highsalary and remove them from the projects they work on. Managers of
departments satisfying these conditions cannot be fired but should be returned as
a separate output.

Notice tha t the number of chosen transactions is rather small. Nevertheless, these
transactions together with the chosen database constraints (section 6.3) are enough to
provide the opportunity to use all the im portant aspects of the method.

6.2 The database structure

Following the second guideline (G2), the subset of the database structure affected by
the chosen transactions and/or by the database constraints have been identified and the
corresponding ER diagram drawn.

The resulting ER diagram, presented in figure 6.1, includes attributes ENum, Sex,
and Salary of entity Employee; attributes DNum and NEmp of entity Department;
attribu te PNum of entity Project; and attribute Hours of relationship Works-on. It
also includes relationships 1sS u p e rv iso r -o f , Is—Manager-of, Hires, and Controls.

As usual, the primary keys of the entities and the cardinality constraints of the
relationships are explicitly represented in the ER diagram.

The company database example 66

Salary

Manager
(0 ,1)(1.1)

(1.N) (1.1)

Hires
(1.1)(0 ,1)

(0,N)

Supervisor Controls
(0,N)

Works__on (0.N)

(1.N)
Hours

Project

DepartmentEmployee

Figure 6.1: Entity-Relationship diagram

6.3 The database constraints

In this section a brief description of all database constraints is presented.
From the ER diagram, the primary keys of Employee, Department, and Project

are EN um , D Num , and PNum respectively. Moreover, relationship Works-on is to be
represented as relation works and its primary key is the tuple (ENum, PNum).

Also, all attributes of all relations are required, i.e., they cannot be null. The excep
tion is attribute SupENum of relation Employee, which will represent the relationship
Is Superv isor _ o f .

In addition to these, the following constraints are to be satisfied:

• All employees must work at least four hours on each project they work on, which
is an intra-relation static attribute constraint.

• All foreign key constraints, i.e., all foreign key attributes must reference the pri
mary keys of existing tuples. The foreign key attributes are SupENum and DNum
in employees, ManENum in departments, DNum in projects, and ENum and
PNum in relation works.

Also, for all foreign key attributes, the chosen compensating action for deletions
of referenced tuples is Restricted, i.e., referenced tuples cannot be deleted. The
exception is attribu te SupENum (supervisor of employees), which has Nullifies as
its compensating action.

The company database example 67

For simplicity, the Cascades option is not used since it would not add any com
plexity to the example, though its use is briefly illustrated. Moreover, transaction
Fireselected-empls explicitly specifies th a t deletions of employees cascade based
on the foreign key attribu te ENum of relation works.

• All employees must work on a t least one project, which is an inter-relations static
constraint.

• A ttribute NEmp of departments, which records the number of employees hired by
the department, is in fact a derived attribute.

• The salaries of all employees can never decrease, which is a dynamic attribute
constraint.

6.4 The relational database structure

Now, the relational database schema is specified in Z according to the method, which
includes the definition of domains, relations, with their attributes, and the specification
of the constraints.

At this level, seven domains are specified: one for the primary key of each entity,
one for the number of employees of departments, and another for the number of hours
of relationship Works-on , all represented as natural numbers; one for sex, defined by
enumeration; and the other for the salary of employees, which is represented as a real
number. Their formal definitions according to rule D1 of the method are:

ENUM = = N

DNUM == N

PNUM = = N

S E X ::= Male \ Female \ NULLSEX

S A L A R Y = = REAL

NEMP == N

HOURS = = N

The types of the tuples of each relation of the database being specified are defined
below according to rule D2 in the description of the method. Note th a t 1:1 and 1:N
relationships were represented as foreign key attributes.

EMPL = [ENum : ENUM ; Sex : S E X ; Salary : S A L A R Y ;
SupENum : ENUM ; DNum : DNUM]

D E P T = [DNum : DNUM ; ManENum : ENUM ; NEmp : NEM P]

PR O J = [PNum : PNUM ; DNum : DNUM]

W ORK = [ENum : ENUM ; PNum : PNUM ; Hours : HOURS]

The company database example 68

Each relation is then specified, using a separate schema, as a set of tuples of the
appropriate type (rule D3) and including the specification of invariants.

Before tha t, the REQUIRED family of operators must be extended with an extra
overloaded operator which will allow for its use together with domain S E X .

REQUIRED [A] = N O T-N U L L [A, SEX] NU LLSEX

The employees relation and constraints are specified in the schema Employee, using
the operators REQUIRED and K E Y - O F , according to rules D3.1 and D3.2 of the
method, respectively.

 Employee
empls : P EM PL

REQUIRED empls ENum A
REQUIRED empls Sex A
REQUIRED empls Salary A
REQUIRED empls DNum A

K E Y —OF empls ENum

Schema Depart, presented below, is similar. Notice however th a t although attribute
NEmp (the number of employees hired by the department) cannot be null, an explicit
REQUIRED equation is not needed because NEmp is in fact a derived attribute.

 Depart__
depts : P D EPT

REQUIRED depts DNum A
REQUIRED depts ManENum A

K E Y —OF depts DNum

Schema Project, also similar, is presented below without any further explanation.

 Project__
projs : P PROJ

REQUIRED projs PNum A
REQUIRED projs DNum A

K E Y —OF projs PNum

Finally, the schema Work is also defined in a similar way but uses the CA2 operator
to define a composite attribute key following rule A3 of the method. The last predicate
specifies th a t employees must work at least four hours on each project they work on,
which is a static attribute constraint.

The company database example 69

 Work________________________________
works : P WORK

REQUIRED works ENum A
REQUIRED works PNum A
REQUIRED works Hours A

K E Y -O F works (CA2 ENum PNum) A

V w : works • w.Hours > 4

Now, the database state schemas are specified. The first of them, D B , is specified
according to rule D4 of the method. It aggregates all the relation extension schemas and
specifies all the static constraints th a t involve more than one relation. This includes the
foreign key constraints, which are specified using the operator F O R -K E Y (rule D4.1),
as well as other inter-relations static constraints (rule D4.2).

D B ___
Employee
Depart
Project
Work

FOR—K E Y empls SupENum empls ENum A
F O R -K E Y depts ManENum empls ENum A
F O R -K E Y works ENum empls ENum A

DNum
DNum
PNum

F O R -K E Y empls
F O R -K E Y projs
F O R -K E Y works

depts DNum A
depts DNum A
projs PNum A

V e : empls • (3w : works • w.ENum = e.ENum) A

V d : depts • d.NEmp = # { e : empls | e.DNum = d.DNum }

Note tha t the last two equations of the predicate of the above schema specify tha t
all employees must work on at least one project, and th a t the number of employees of
departm ents (NEmp) is a derived attribute, respectively.

Schema A DB is then defined to be used in the specification of the update operations.
It includes the database states before and after the operations (D5) and introduces a
dynamic constraint (D5.1) which says tha t the salaries of employees cannot be decreased.

A D B __
DB
D B '

V e' : empls'; e : empls •
(e'.ENum = e.ENum) => (e'.Salary > e.Salary)

The company database example 70

For completeness, schema HDB, which will be used in the specification of the read
only operations, is specified according to rule D6.

EDB = [A DB | 6DB' = 6DB]

Finally, schema In it-D B defines the initial state of the database according to rule
D7 of the method.

 In i t -D B ___
D B'

empls' = {} A
depts' = {} A
projs' = {} A
works' = {}

6.5 Common basic operations

Now, the common basic operations are specified as suggested in the fourth guideline
for the first specification (G4, Subsection 4.5.1). These include insertion and deletion
based on the primary keys of all relations and are always (or a t least usually) needed,
no m atter what system is being specified. For this reason, they are specified before
operations needed in specific transactions.

The specification of insertions to relation empls based on its primary key is presented
below. It uses the set union (U) to add new tuples (input) to the relation, as prescribed
by rule B6 of the method.

 Insert—empls___
A DB

sempP : P EMPL

3D B \ empls

empls' = empls U sempll

The specification of insertions to relations depts, projs, and works are similar to the
insertion of employees and are presented below without any further explanation.

 Insert-depts___
A DB

sdepP : P D EPT

EDB \ depts

depts1 = depts U sdeptl

The company database example 71

 Insert—projs_________
A DB

sproj? : F PRO J

3D B \ projs

projs' = proj U sproj?

 Insert-works___________
A DB

swork? : P WORK

EDB \ works

works' = works U swork?

Now, schemas to delete a set of tuples of relations based on their primary keys are
specified according to rules B5 and B7. In fact there are two schemas for each relation:
one without the expression E DB \ rel, to be used in schema inclusions, and the other
with the expression, to be used as a sub-transaction. The first pair of schemas, presented
below, delete a set of tuples of empls based on its primary key ENum.

 Delete-empls-Pk___
A DB

se? : F ENUM

le t sempl = = UPDATE empls SupENum se? NU LLNAT •
empls1 = D ELETE sempl ENum se?

Delete-empls = Delete-empls-Pk A EDB \ empls

Notice th a t these delete schemas also specify what happens to tuples of other relations
where there is a foreign key reference to deleted tuples - rules B7.1, B7.2, and B7.3 of
the method. In the above schema, the Nullifies effect based on the foreign key SupENum
is specified according to rule B7.3 and uses a le t expression because this foreign key is
in the same relation (empls). However, because Restricted was the compensating action
chosen for violations of all the remaining foreign keys and is usually specified implicitly,
no other equations are required.

Now, the foreign key ManENum in relation depts is going to be used as an example
to illustrate the other options for the specification of the compensating actions. For
instance, to specify Restricted explicitly and thus highlight this choice, the equation
below could be included (redundantly) in the predicate of schema Delete—empls—P k.

V d : depts' • d.ManENum ^ se?

The company database example 72

If Cascades had been chosen, the equation below would have been added to the
predicate of schema Delete-empls-Pk. It is assumed th a t ManENum is not part of a
cycle of foreign keys th a t cascade for deletes - rule B7.2 (A).

let sdp = = { d : depts | d.ManENum £ se? • d.DNum } •
Delete-depts-Pk [sdp / sd?]

Finally, except when Restricted is chosen, the specification of schema Delete-empls
would have to reflect the fact tha t relation depts would also change as follows:

Delete-empls == Delete-empls-Pk A E\DB \ (empls, depts)

The pairs of Schemas Delete-depts-Pk (and Delete-depts) and Delete-projs-Pk (and
Delete—projs) specify deletions by the primary key in relations depts and projs respec
tively. These are similar to Delete—empls—Pk (and Delete-empls), though no explicit
compensating action is needed, and are presented without any further explanation.

 Delete-depts-Pk___
A DB

sd? : ¥ DNUM

depts' = D ELETE depts DNum sd?

Delete-depts = Delete-depts-Pk A E DB \ depts

 Delete-projs-Pk_____________________________
A DB

spl :P PNUM

projs' = D ELETE projs PNum sp?

Delete-projs = Delete-projs-Pk A E DB \ projs

The last of these pairs or schemas, Delete-works—Pk and Delete—works, delete a set
of tuples of relation works and is also similar. The only difference is the fact tha t relation
works has a composed attribute primary key.

 Delete—w orks-Pk___
A DB

sw? : P (ENUM x PNUM)

works' = D ELETE works (CA2 ENum PNum) sw?

Delete-works = Delete-works-Pk A 3D B \ works

The company database example 73

6.6 The transactions and their basic operations

In this section, the chosen transactions are described based on their basic operations
(sub-transactions) and then extended to capture error handling.

Basically, for each chosen transaction, (1) the identified basic operations are enumer
ated, (2) the ones th a t were not used before are formally specified, (3) the specification
of the correct behaviour of the transaction is written, (4) its precondition is specified and
simplified) (5) the corresponding error schema is written, and (6) the total transaction,
which captures the error handling, is specified.

A simple convention for naming variables, adopted throughout the specification, is
described below.

• Longer names (at least four letters) are used to refer to relations and tuple vari
ables, whereas shorter names (usually one or two letter names) frequently refer to
key variables and local variables.

• When necessary, numbers are used to make two or more variables distinct. For
example, dept, dept 1, etc. are used for departm ent tuples and d, d 1, etc. as well
as dp, dpi, etc. for departm ent keys or local variables.

• Additionally, a prefix s is used in the names of variables th a t represent sets while
I is used in the ones tha t represent sequences (lists).

• Finally, Z’s convention of adding the suffixes ? and ! to the names of input and
output variables is also respected.

6 .6 .1 T r a n s a c t io n Salary—dept

The first of the transactions to be specified is Salary—dept which gives the total salary
tot—sail of employees hired by department d?.

Its identified basic operations are (1) Em pls-of—dept, which returns all employees
sempll hired by department d?, and (2) Sum—Salary-empls, which returns the sum of
the salaries to t s a l l of a given set of employees sempl?.

The first of these operations, Empls-of-dept, is now presented. It is a simple select
operation specified according to rule B2. The first equation of its predicate states tha t
d? must refer to the primary key DNum of a valid departm ent.

 Em pls-of -d e p t___
EDB

d? : DNUM
sempll : P EM PL

3 dp : depts • dp.DNum = d? A

sempll = { e : empls \ e.DNum = d? }

A ctually, the simplification of the precondition of most transactions is omitted: only the results are
presented. A couple of simplifications are presented to illustrate the process though.

The company database example 74

The operation Sum—salary—empls, which returns the sum of the salaries tot—sail of
the set of employees sempl?, exemplifies the use of the SUM aggregate function operator
according to rule A3 of the method.

 S u m s alary-empls__
ZDB

sempll : P EMPL
tot s a i l : S A L A R Y

to t s a l l = SU M sempll Salary

The correct behaviour of the transaction is then described in term s of its basic
operations. Notice th a t, according to rule A1 of the method, the version of the piping
operator (> >) used here allows for the output and primed state variables (all results)
of the first schema to be matched against the input and unprimed state variables of the
second schema, respectively; whereas the standard Z piping operator does not match the
state variables of the two schemas.

Salary—dept—Ok = Empls—of—dept > > Sum—salary-empls

To give a better idea of what the schema Salary—dept-Ok means, the expanded
schema resulting from its definition is presented below. Note th a t the new schema
contains all declarations of the piped schemas (Empls-of—dept and Sum—salary—empls)
except for the matched components.

 Salary-dept-O k__
A DB

dl : DNUM
tot—sail : S A L A R Y

3 DB"\ sempll! : P EMPL •
(E m p ls s f -d e p t [DB" / D B ', sempll1 / sempll] A

Sum salary-em pls [DB" / DB, sempll1 / sempll])

Expanding the predicate of the above schema to replace the schema inclusions with
their corresponding components, and renaming the piped variable sempll1 to se gives us
the following predicate:

3D B"; se : P EMPL •
(ODB" = ODB A

3 dp : depts • dp.DNum = d! A
se = { e : empls \ e.DNum = d! } A
9DB' = ODB" A
tot—sail = SUM se Salary)

The company database example 75

Now, because 3 x • (x = y A -P(z)) 1S equivalent to P (y), DB" can be removed
from the existential quantifier. Also, the inner existential quantifier is independent of
the outer one and thus the former can be put outside the latter. These simplify the
predicate to:

ODB' = ODB A

3 dp : depts • dp.DNum = d? A

3 se : P EMPL •
(se = { e : empls \ e.DNum = d? } A

to t s a l l = SUM se Salary)

Finally, the first equation can be expressed in the declaration part of the schema.
Also, the last part of the above predicate can be more clearly expressed using a let
expression. The simplified schema Salary-dept-Ok is then presented below.

 Salary-dept_Ok__
EDB

dl : DNUM
to t s a l \ : S A L A R Y

3 dp : depts • dp.DNum = d l A

le t se = = { e : empls \ e.DNum = d? } •
tot_sal\ = SUM se Salary

In the above example the resulting schema is simple enough to be written without
being split into sub-transactions. Even though it is up to the user to decide how much
the transactions are to be split, splitting them will in general contribute to a greater
reuse and to a better understanding of the specifications.

The next step in the specification is then to write and simplify the precondition of
the above transaction. Basically, the predicate of pre Salary-dept-Ok is given by

3 D B 'm, to t sa l l : S A L A R Y • Salary-dept-Ok

which is equivalent to the following:

3 DB'; t o t s a l !: S A L A R Y •
ODB' = ODB A
3 dp : depts • dp.DNum = d? A
let se == { e : empls | e.DNum = d l } •

tot-.sal\ = SUM se Salary

Because 3 x • (x = y A P(x)) is equivalent to P(t/), and let expressions are in fact
syntactic sugared existential quantifiers, the variable se can be removed. In addition,

The company database example 76

the inner existential quantifier is independent of the outer one and thus the former can
be put outside the latter. These simplify the predicate to:

3 dp : depts • dp.DNum = d? A

3 D B1; t o t s a l l : S A L A R Y •
ODB' = ODB A
to tsa l l = SUM { e : empls | e.DNum = d? } Salary

Moreover, the second existential quantifier can be removed because 3 x • x = y is
always true, since it can be seen a s 3 x « (x = t / A true), which is equivalent to true.
Consequently, the simplified precondition of the above transaction is simply:

3 dp : depts • dp.DNum = d?

Now, the corresponding error schema Salary-dept—Error, presented below, is speci
fied according to rule E2 of the method.

 Salary-dept-Error___
EDB

resultl : STRING
d? : DNUM

(-> (3 dp : depts • dp.DNum = d?) A
resultl = “Invalid department number”)

Finally, the total transaction Salary-dept is specified in term s of Salary-dept-Ok,
Ok, and Salary-dept-Error, according to rule E3 of the method.

Salary-dept = {Salary-dept-Ok A Ok) V Salary-dept-Error

6 .6 .2 T ra n s a c t io n Move—empls—proj

The second transaction, Move-empls-proj, is described as follows: “Move employees
working on project pi? to project p2? and delete pi?; I f p2? does not exist, then it
should be inserted first”.

Its identified basic operations are: (1) Insert—projs, th a t inserts a set of new projects
sproj?’ (2) Insert-proj-opt, tha t uses Insert-projs to insert project proj? with primary
key p? if it does not exist (optional insert); (3) Works-on-proj, th a t gets from relation
works the set of tuples sworkl referring to a given project p?; (4) Change-works-proj,
th a t changes the project a set of employees work on, i.e., changes to p? the project
attribu te PNum of a set of tuples swork? of relation works’, and (5) Delete-projs, th a t
deletes projects based on a set of primary keys sp?.

A schema for the insertion of a set of new projects was already specified. The optional
insertion of projects is then specified in terms of the general insert schema.

The company database example 77

 Insert-proj-opt_____________________
A DB

p i : PNUM
projl : PROJ

if (3pj : projs • pj.PNum = pi)
th e n (projl.PNum = p i A

Insertsprojs [{projl} / sproj!])
else EDB

Schema Works—on-proj specifies a simple select operation tha t gets from relation
works the set of tuples sworkl referring to a given project p i . Its first predicate states
th a t p! must be the primary key of an existing project.

 Works-on-proj______________ _____________________________________
EDB

p! : PNUM
swork! : P WORK

3 pj : projs • pj.PNum = p ! A

sworkl = { w : works | w.PNum = p! }

Schema Change-works-proj, presented below, changes the project a set of employees
work on, i.e., changes to p! the project attribute PNum of a set of tuples swork1 of
relation works. It exemplifies the specification of updates of tuples, according to rules
B5 and B9 of the method.

 Change-works-proj__
A DB

p! : PNUM
swork1 : P WORK

EDB \ works

works' = { w : works • if w 6 swork1
th e n w \ (PNum = p!)
e lse w }

The last of its sub-transactions, Delete-projs , deletes a set of tuples of relation projs
based on its primary key PNum and has already been specified.

Schema Move-empls -pro j-O k , which describes the correct behaviour of transaction
Move-empls-proj, is now specified in terms of its basic operations.

The company database example 78

Move—empls—proj—Ok =
Insert-proj-opt [p2? / p?] > >

VForA;s_on_pr0; [pi? / p?] > >
Change-works-proj [p2? / P?] »

Delete-projs [{pi?} / sp?]

To give a better idea of what schema M ove-empls—proj—Ok means, the simplified
version of the corresponding expanded schema is presented below, before the presenta
tion of its precondition. The expansion of the above schema expression as well as the
simplification of the resulting schema are omitted here since the process has already
been illustrated.

 M ove-em pls-proj-O k__
A DB

p l? ,p 2 ? : PNUM
proj? : PRO J

"EDB \ (projs, works)

3 pj : projs • pj.PN um = p i? A

projs' = if -i (3 pj : projs • pj .PNum = p2?)
t h e n (proj?.PNum = p2? A

D ELETE (projs U proj?) PNum p i?)
e l s e D ELETE projs PNum p i? A

works' = { w : works • if w.PNum = p i?
t h e n w \ (PNum = p2?)
e l s e w }

Now, the precondition of the above schema is introduced. Although the simplification
process is similar to tha t of the previous transaction, it is much more extensive since
M ove-em pls-proj changes the contents of the database and this involves the validation
of all database constraints. For this reason, the simplification process, omitted here, is
introduced in Appendix A. The simplified precondition is presented below.

p2? ^ N U LLN A T A

3 pj : projs • pj.PN um = p i? A

-i (3 pj : projs • pj .PNum = p2?) =>
(proj?.PNum = p2? A

proj?.DNum ^ N U LLN A T A
3 dp : depts • dp.DNum = proj?.DNum) A

-i (3 iul, w2 : works • w l.EN um = w2.ENum A
w l.PN um = p i? A w2.PNum = p2?)

The company database example 79

The corresponding error schema M ove-empls-proj-.Error is then presented below
according to rule E2 of the method.

 M ove-em pls-proj-Error__
'EDB

resultl : STRIN G

p l? ,p2? : PNUM
proj? : PROJ

(p2? = N U LLN AT A
resultl = “Project number p2? cannot be null”) V

(-i (3pj : projs • pj.PNum = p i?) A
resultl = “Invalid project Number p i? ”) V

(-> (3pj : projs • pj.PNum = p2?) A

((proj?.PNum ^ p2? A
resultl = “Project number o f proj? must be p2?”) V

(proj?.DNum = N U LLNAT A
resultl = “Attribute DNum of proj? cannot be null”) V

(-i (3 dp : depts • dp.DNum = proj?.DNum) A
resultl = “Invalid department number in proj?”))) V

((3 w l, ty2 : works • twl. .EAum = w2.ENum A
w l.PN um = p i? A

w2.PNum = p2?) A
resultl = “Violation o f works' primary key”)

Again, the total transaction Move—empls—proj is specified according to rule E3.

Move—empls—proj =
(M ove-empls-proj-O k A 0&) V M ove-empls—proj—Error

6 .6 .3 T r a n s a c t io n S e t—empls—dept-.proj

The third transaction is Set-em pls-dept-proj. It is described as: “Insert a set of em
ployees sempl? in department d? and assign them to work on project p?; I f d? does not
exist it should be inserted first; I f p? does not exist it should also be inserted firs t”.

Its identified basic operations are: (1) Insert-deptsr th a t inserts a set of new depart
ments sdept?; (2) Insert-dept-opt, tha t uses Insert—depts to insert departm ent dept?
with primary key d? if it does not exist (optional insert); (3) Insert-projs, th a t inserts a
set of new projects sproj?; (4) Insert-proj-opt, tha t inserts a project if it does not exist;
(5) Insert-empls, tha t inserts a set of new employees sempl?; and (6) Insert-w orks , th a t
inserts a set of tuples swork? in relation works.

The company database example 80

Except for the optional insertion of a department, Insert-dept-opt, all the above
sub-transactions have already been specified. That is presented below and is similar to
the optional insertion of projects specified before.

 Insert-dep t-op t__
A DB

d? : DNUM
dept? : D EPT

if -i (3 dp : depts • dp.DNum = d?)
th e n (dept?.DNum = d? A

Insert-depts [{dept?} / sdeptl])
else EDB

The correct behaviour of transaction Set-em pls-dept-proj is then specified in terms
of its basic operations as usual, but it includes the specification of extra constraints
which involve variables of more than one subtransaction, as described in rule A1 of the
method.

S et-em pls-dept-proj-O k =
(Insert-dept-opt > >

Insert-proj-opt > >
Insert—empls »

Insert-works |
(V em : sempl? • em.DNum = d?) A
(V wk : swork? • wk.PNum = p i) A
{ em : sem pll • em.ENum } = { wk : sworkl • wk.ENum })

The simplified precondition of the above transaction is presented below. The details
of the simplification are omitted.

d ? ^ N U LLN AT A

-i (3 dp : depts • dp.DNum = d l) =£•
(dept?.DNum = d? A

dept?.ManENum ^ N U LLN AT A
3 em : (empls U sempl?) • em.ENum — Dept?.ManENum) A

p i / N U LLN AT A

-i (3 pj : projs • pj.PN um = p?) =>
(projl.PN um = p? A

pro jl .DNum ^ N U LLN AT A

(proj?.DNum = d? V
3 dp : depts • dp.DNum = proj?.DNum)) A

The company database example 81

(V em : sem pll • em.ENum ^ N U LLN AT A
em.Sex ± NU LLS E X A
em.Salary ^ NU LLREAL A
em.DNum = d l A
-i (3 em2 : empls • em2.ENum = em.ENum) A
(em.SupENum = N U LLN AT V

3 em2 : (empls U sempll) •
em2.ENum = em.SupENum)) A

(V twfc : sworkl • wk. Hours > 4 A wk.PNum = p i) A

{ em : sem pll • em.ENum } = { tyfc : sworkl • wk.ENum }

Notice that, because transaction Set-em pls-dept-proj has many preconditions to be
satisfied, the corresponding error schema is split into four smaller schemas, based on the
relations affected by each possible error (as suggested in rule E2), in order to make its
understanding easier. The first of these schemas, Set-em pls-dept-proj-E rror 1, covers
all errors regarding relation depts and is presented below.

 S et-em pls-dept-.proj-E rror!__
’EDB

resultl : STRIN G

d l : D NUM ;
deptl : D EPT

p i : PN U M ;
projl : PRO J

sem pll : P EMPL
sworkl : P W ORK

(d l = N U LLN AT A
resultl = “Department number cannot be null”) V

(-i (3 dp : depts • dp.DNum = dl) A

((deptl .DNum / d l A
resultl = “Department number of deptl must be d !”) V

(deptl .ManENum = N U LLN AT A
resultl = “Manager o f department cannot be nulln) V

(-i (3 em : (empls U sempll) •
em.ENum = deptl .ManENum) A

resultl = “Invalid manager number in deptl”)))

The next error schema, Set-em pls-dept-proj-Error2, covers all errors involving re
lation projs and is presented below.

The company database example 82

 S et-em pls-dept-proj—Error2_______________________________________
EDB

resultl : STRIN G

d l : DNUM ; deptl : D EPT
p i : PN U M ; projl : PRO J

sem pll : P EM PL ; sworkl : P VTOP/f

(p i = N U LLN AT A resultl = “Project number cannot be null”) V

(-i (3p j : projs • pj.PN um = p i) A
((projl.PN um ^ p i A

resultl — “Project number o f pro jl must be p?”) V
(projl .DNum = N U LLN AT A

resultl = “Attribute DNum of pro jl cannot be null”) V
(projl .DNum ^ d l A

-i (3 dp : depts • dp. DNum = projl .DNum) A
resultl = “Invalid department number in pro j!”)))

Similarly, schema Set—empls-dept-proj—ErrorS covers all errors regarding relation
empls and is presented below.

 Set—em pls-dept-proj-ErrorS__
EDB

resultl : STRIN G

d! : ZWt/M; dept! :
p? : P W M ; proj1 : P P O J

sempl1 : P EMPL\ swork1 : P WORK

((3 em : sempl1 • em.ENum = NU LLNAT) A
resultl = “Employee numbers cannot be null”) V

((3 em : sempl1 • em.Sex = NU LLSEX) A
resultl = “Sex of employees cannot be null”) V

((3 em : sempl1 • em.Salary = NU LLREAL A
resultl = “Salary o f employees cannot be null”) V

((3 em : sempl1 • em.DNum ^ d!) A
resultl = “Department of employees must be d !”) V

((3 em : sempl1 • 3 em2 : empls • em2.ENum = em.ENum) A
resultl = “Violation of employees primary key”) V

((3 em : sempl1 • em.SupENum ^ N U LLN AT A
-i (3 em2 : (empls U sempl!) • em2.ENum = em.SupENum)) A

resultl = “Violation of SupENum foreign key”)

The company database example 83

The last error schema, Set_empls-.dept_.proj-ErrorA, is presented below and covers
the remaining possible errors, which are the ones involving relation works.

 Set-em pls-dept—proj-Error A__
EDB

resultl : STR IN G

d l : D NU M ;
deptl : D EPT

p i : PN U M ;
pro jl : PRO J

sem pll : P EMPL
sworkl : P W ORK

((3 wk : sworkl • wk.Hours < 4) A
resultl = “Employees must work at least A hours”) V

((3 wk : sworkl • wk.PNum / p ?) A
resultl = “New employees must work on project p !”) V

({ em : sem pll • em.ENum } ^ { wk : sworkl • wk.ENum } A
resultl = “sem pll and sworkl must refer to same employees”)

Notice that, as suggested in rule E2, all input variables of the transaction were
declared in all four error schemas, even though some of the variables were not used in
all error schemas. The reason for declaring them all is to avoid having to find out which
variables are needed in each schema.

Finally, the total transaction Set-em pls-dept-proj is specified according to rule E3
of the method in the usual way except for the fact tha t there are four error schemas.

Set-em pls-dept-proj =
(Set-em pls-dept-proj-O k A Ok) V

Set-em pls-dept-proj-E rror! V
Set-em pls-dept-proj-Error2 V
Set—empls—dept—proj—ErrorZ V
S et-em pls-dept-proj-Error A

6 .6 .4 T ra n s a c t io n Em pl_supervised-.sorted-jsalary

The next transaction to be specified is E m p lsu p erv ised so r ted sa la ry , which returns
the list lempll of all employees supervised directly or indirectly by employee el, sorted
by attribute Salary in descending order.

Its identified sub-transactions are: (1) Empls—supervised, th a t returns all employees
sempll supervised directly or indirectly by any employee whose primary key is in the
set of keys se?; and (2) Empls so r te d s a la r y , th a t orders a set of employees sem pll by
salary in descending order and returns the list lempll.

The company database example 84

The first of these sub-transactions is specified below. It uses the operator F K T C ,
presented in Section 5.8, to get what was called the foreign key transitive closure of
the set of employees se? based on the foreign key SupENum. Excluding se? from the
transitive closure gives the primary keys of the supervised employees. A simple select
operation then retrieves the employees tuples and builds the result (sempll).

 Empls superv ised__
EDB

se? : P ENUM
sempll : P EMPL

V e : se? • (3 em : empls • em.ENum = e) A

let sel = = (F K T C empls ENum SupENum se?) \ se? •
sempll = { em : empls \ em .ENum 6 se l }

The other operation, Empls so r te d s a la r y , exemplifies the use of the SO R T operator
according to rule A2 of the method and is presented below.

 Empls so r te d s a la r y ___
EDB

sem pll : P EMPL
lempll : seq EMPL

s e m p l l ^ } A

lempll = SO R T sem pll Salary >

Observe tha t the first equation in the predicate of the above schema defines a pre
condition which states tha t the set of employees to be sorted (sem pll) cannot be empty.
In the context of transaction Empl—supervised-sorted—salary it means tha t employee el
must be the supervisor of at least one employee.

The correct behaviour of the transaction (Empl supervised s o r te d sa la ry -O k) is
then described in terms of the two operations in the usual way.

Empl supervised s o r te d sa la ry -O k =
Empls supervised [{el} / sel] » Empls so r te d s a la ry

The simplified precondition of the above transaction is given by:

3 em : empls • em.ENum — el A

3 em : empls • em.SupENum = el

The error schema Empl supervised s o r te d sa la ry-E rro r is then presented below.

The company database example 85

 Empl supervised so r te d sa la ry -E rro r_______________________
E DB

resultl : STR IN G
e l : ENUM

(-i (3 em : empls • em.ENum = e?) A
resultl = “Invalid employee number”) V

(-I (3 em : empls • em.SupENum = e?) A
resultl = “Employee does not supervise anybody”)

Finally, the to tal transaction Empl—supervised so r te d sa la ry is specified as usual.

Empl supervised so r te d sa la ry =
{Empl—supervised s o r te d —salary—Ok A Ofc) V

Empl supervised s o r te d sa la ry-E rro r

6 .6 .5 T ransaction W eig h ted sa la ry sp ro j

The next transaction is Weighted sa la ry -p ro j. It calculates the average salary of em
ployees working on project p i weighted by the number of hours worked by each employee.

It has two sub-transactions. The first, Empls sa la ry -h o u rs , selects the tuples of
relation works th a t refer to project p i and joins them with relation empls by the employee
number ENum. The result is then projected to build an intermediate relation containing
the employee number, the salary, and the number of hours worked by each employee.

The other, Weighted s a la r y , uses the intermediate relation, built by the previous
operation, to calculate the weighted salary. It adds the product of the salaries by the
numbers of hours worked and divides the result by the total number of hours worked.

Before these are specified, an auxiliary relation intention (E M P L-W O R K) is defined
as usual (rule D2) to represent the intermediate relation.

E M PL-W O RK = [ENum : ENUM ; Salary : S A L A R Y ; Hours : HOURS]

Now, the specification of the first subtransaction is presented. It shows how simple
select, join, and project operations (rules B1 to B4) can be applied in the same schema.

 Empls sa la ry -h o u rs__
E D B

p i : PN U M ;
sempl-workl : P EM PL-W O RK

3 pj : projs • pj.PN um = p i A

sempl-workl = { e : empls; w : works \
w.PNum = p i A e.ENum = w.ENum

• (e.EN um , e.Salary, w.Hours) }

The company database example 86

Operation Weighted—salary uses the intermediate relation sempl—work? to calculate
the weighted salary. The salary and number of hours worked by each employee are
multiplied and the results are added to be divided by the total number of hours worked.
Notice th a t relation sempl-work? cannot be empty, i.e. it must have at least one tuple,
and tha t * and / refer to the multiplication and division of numbers, respectively.

 Weighted s a la r y ___
EDB

sempl—work? : P EM P—WORK
weighted s a i l : SA L A R Y

sempl-work? ^ { } A

let su m sa lary = = SUM sempl—work? [Salary * Hours)',
sum-hours —— SUM sempl-work? Hours •

weightedsall = su m sa la ry / sum-hours

Again, the correct behaviour of the transaction is simply specified as the result of
piping its two sub-transactions and is presented below.

Weighted sa la ry -p ro j-O k = Empls sa lary-hours » Weighted s a la ry

The simplified precondition of the above transaction is given by:

3 pj : projs • pj.PN um = p? A

3 w : works • w.PNum = p?

The corresponding error schema Weighted sa la ry-pro j-E rror is presented below.

 Weighted sa la ry -p ro j—Error__
EDB

resultl : STRIN G
p? : PNUM

(-i (3 pj : projs • pj .PNum = p?) A
resultl = “Invalid project number”) V

(- t (3 w : works • w.PNum = p?) A
resultl = “No employees working on project p”)

Once again, the total transaction Weighted sa la ry -p ro j is specified in terms of
Weighted sa la ry -p ro j-O k and Weighted—salary-proj-Error in the usual way.

Weighted sa la ry-p ro j =
(Weighted—salary-proj-O k A Ok) V Weighted—salary—proj—Error

The company database example 87

6 .6 .6 T ransaction F ir e s e le c te d —empls

Finally, transaction Fire selected-em pls is going to be specified. It will be used to fire
all male employees whose salaries are greater than a certain limit (h ighsalary?) and
remove them from the projects they work on. Managers of departments satisfying these
conditions cannot be fired but should be returned as a separate output.

Its proposed sub-transactions are: (1) E m plssex-sa la ry , th a t selects from rela
tion empls tuples where attribute Sex is Male and Salary is greater than the limit
h ighsa lary? and returns the ones which refer to managers of departm ents (smanl) as
well as the primary keys of the ones which do not (se!); (2) Delete-empls - P k , th a t delete
employees based on a set of primary keys se?; and (3) Delete—works-empls, th a t deletes
tuples of relation works based on a set of employees’ primary keys se?.

The first of these operations, Empls s e x s a la r y , is presented below.

 Empls—sex s a la r y __
E D B

h ighsa lary? : S A L A R Y
se! : FENU M
smanl : F EMPL

highsa lary? ^ NU LLREAL A

let sempl == { em : empls \ em.Sex = Male A
em.Salary > h ighsa lary? } •

(smanl = { em : sempl \
(3 dp : depts • dp.ManENum = em .ENum) } A

sel = { em : sempl \
-i (3 dp : depts • dp.ManENum = em .ENum)

• em.ENum })

Schema Delete-empls specifies deletions of employees based on its primary key ENum
and has already been specified.

The last sub-transaction, D ele te—w o r k s -e m p ls , deletes all tuples of relation works

which refer to employees whose primary keys are in the set se?. Following rule B8 of
the method, this is specified in terms of the schema tha t specifies deletions based on the
primary key, i.e., schema D e le te -W o r k s -P k .

 Delete—works-empls__
A DB

sel : FEN U M

EDB \ works

l e t sdw = = { w : works | w.ENum £ sel • (w .EN um , w.PNum) }
• D e le te -W o rk s -P k [sdw / sw?]

The company database example 88

It is im portant to emphasize tha t the application of the above schema represents
exactly the same effect of the delete Cascades option for the foreign key ENum of relation
works. The difference is that, here, it is used in a particular transaction instead of being
applied after all deletions of employees.

Now, the correct behaviour of Fireselected—empls is described in terms of its three
basic operations in the usual way. Notice however th a t the order of the combination is
im portant since the output of the first of the operations is to be used as input for the
other two operations. In addition, the piping operator (> >) could have been used where
the sequential composition (5) was used, but the order of application would still have to
be the same.

Fire—selected—empls—Ok =
Empls s e x sa la ry » (D eletesm pls | D elete-w orkssm pls)

The simplified precondition of the above transaction is simply:

highsa lary? ^ NULLREAL

The corresponding error schema (Fire se lec ted s m p ls —Error) is presented below.

 Fire—selected—empls—Error__
ZDB

resultl : STRIN G
highsa lary? : SA L A R Y

highsa lary? = NU LLREAL A
resultl = “Lim it highsalary cannot be null”

Finally, the total transaction F irese lec tedsm p ls is specified in the usual way.

Fireselected s m p ls =
(F irese lec tedsm p ls-O k A Ok) V Fire se lec ted sm p ls-E rro r

6.7 Conclusion

In this chapter, the method for the specification of relational database applications,
described in Chapter 4, was applied to the specification of a simple Company Database
and its applications.

Chapter 7 now proceeds with the description of the theoretical mapping of formal
specifications written according to the method to a generic relational database system.

Chapter 7

The mapping

In this chapter, the mapping process for the derivation of relational database programs
directly from formal specifications written according to the method is presented. It is
basically the description introduced in [122], with minor corrections.

The chapter is split into four sections: the first describes the mapping of the database
structures, i.e. domains, relations and their attributes, and the constraints to be guar
anteed. The second describes the mapping of basic operations over the database. The
third covers more advanced features, such as transactions, sorting of results, and views.
Finally, the fourth deals with the extension of the applications to capture error handling.

The topics of the mapping are named similarly to the rules of the method, i.e. using
labels of the type X n , where X can be D, standing for database structure, B for basic
operations, A for advanced features, or E for extended applications to capture error
handling, and n is a sequential number within each topic, with subitems when necessary.

The efficiency of the generated code, though taken into account, is not a primary
concern. In fact, it is sometimes disregarded in order to make the mapping as smooth as
possible. However, this does not mean the generated programs are terribly slow because
a number of these operations are optimized by the compiler.

There is no intention to bind the mapping process to specific DBMSs and query/host
languages (or 4GLs). Even so, the DBPL [9] system is extensively used together with
parts of the company database example (presented in Chapter 6) to illustrate the process.
Occasionally, SQL [21] and dBASE-IV [123] are also mentioned in the discussion.

Finally, although an effort is made to keep the generated programs as close to the
specifications as possible so tha t the mapping is simple, it is not always possible to achieve
this simplicity. In some cases, in addition to the relevant data from the corresponding
section of the specification, the implementation includes data from other parts of the
specification method. It is also sometimes necessary to incorporate design decisions into
the mapping so tha t the generated programs are syntactically correct.

7.1 Mapping the database structures and constraints

In this section, a general discussion on the mapping of the structure part of database
specifications written according to the method is presented. It includes the specification
of domains, relations and their attributes, and the constraints to be guaranteed.

89

The mapping 90

In the specific case of relational systems which do not support constraints directly,
the necessary constraints will have to be enforced explicitly in the implementation of the
transactions tha t can possibly violate the integrity of the database (it is assumed the
database is in a valid state before the operations).

The most direct way of generating the necessary conditional expressions in the appli
cation programs is from the preconditions of the transactions, more specifically, from the
error schema(s) associated with the transaction. In fact, even when the constraints are
supported, it is usually necessary to test the DBMS return codes so th a t specific error
messages can be reported to the user. Therefore, part of the discussion about mapping
the constraints is postponed to Section 7.4.

D l - D om ain s

If the DBMS/query language does not support domains (or user type definitions), then
all domains should be enforced by means of explicit constraints. Note that, in this case,
avoiding operations between attributes and/or variables of different domains which are
implemented by the same basic data type is not going to be possible.

All domains in the specification (attributes and variables as well) will, ultimately, be
implemented by one of the basic data types offered by the DBMS and/or query language.
Sometimes, these data types include a parameter giving the size they will occupy and,
so, the mapping will have to incorporate some specific value as default.

If necessary, explicit constraints are to be enforced on the values th a t attributes and
variables (drawn from the domains) can take. This depends on which kind of domain
definition is used in the specification, which is briefly discussed below.

In theory, there should be no domain defined as a given set in the final version of the
specification. If the correct implementation for a specific domain is not known at this
stage, the basic type STRING should be used.

D l . l - D om ain s defined as basic ty p es

These refer to the simplest domain definitions possible, e.g. ENUM = = N. If domains
or type definitions are supported, the translation of syntax is trivial. For example, in
DBP L it would be implemented by the type definition ENUM = CARDINAL;.

If these are not supported, then all attributes and variables drawn from domain
ENUM are to be mapped as if they were of type N in the specification, and no other
constraint is needed. In this case all attributes and variables specified, for example
A tt : EN U M , would have the type natural numbers (CARDINAL) in the implementation.

Some DBMSs and query languages ask for the size occupied by the attribute. So, a
default value may be needed. For example, in dBASE IV such attributes must be written
as Att NUMERIC n, where n is the number of bytes used to represent the attribute.

D 1.2 - D om ain s defined as a sub set o f a basic ty p e

An example of this kind of domain is given by the range definition AG E —— 0..18. If
this kind of syntax is supported, a straightforward translation is done. For example, it
would be implemented as the type AGE = 0. .18; in DBPL.

The mapping 91

If this kind of definition is not supported then the domain should be implemented
as if the specification were AG E == {n : N | n < 18}, which is discussed below.

This more general form of subsets, e.g. DNUM = = {n : N | n > 100}, is unlikely
to be supported by any current DBMS and, hence, it should be implemented as if the
specification were DNUM = = N (case D l.l) and a specific constraint (i.e. var > 100)
had been written for all variables var drawn from domain D NU M .

D 1 .3 - D om ain s defined as an enum eration o f values

An example of this kind of domain is given by SE X ::= Male | Female \ N U LLSE X .
If enumeration types are supported, the translation is again trivial. For example, the
corresponding DBPL implementation is the type SEX = (M ale, Fem ale, NULLSEX) ;.

If this specific kind of domains/types are not supported, it should be simulated by a
convention using the natural numbers 0 ..N-1, where N is the number of different values
of the domain representing its values. Therefore, it is reduced to case D1.2.

D 2 - R ela tion s

It is assumed tha t all RDBMSs provide a way of introducing relations. In some systems,
the intention of relations (D2) and their corresponding extensions (D3) are created by
separate definitions, just like in the specification method. Other systems provide a single
definition. In both cases mapping the relations should involve a simple translation, and
the types of the attributes would be either the domains implemented (if supported) or
the basic types chosen to implement them, as described in rule D l. An example of
relation specification equations is presented below:

PRO J = [PNum : PNUM ; DNum : DNUM]

projs : P PRO J

In DBPL, the equations above can be defined in a single step or in two separate
steps. The one using two separate equations is preferred because (1) it is closer to the
specifications and (2) it provides a name for the record type (the tuple) which will make
it easier to map other parts of the specification.

The intention of the relation above would then be written as:

TYPE P ro j = RECORD PNum: PNUM; DNum: DNUM; END;

In dBASE IV, the relation intention and extension are defined in a single step. In
this case, the above specifications would be implemented as a file called P ro j .d b f , which
would contain the information about the structure of the relation (attribute definitions)
and would also store the actual data.

D 3 - R ela tion s (ex ten sion)

In the case of DBMSs which support the definition of the relations in two steps, mapping
the specification of the extension of relations (e.g. projs : P P R O J) should also be simple.

The mapping 92

In DBPL the relation extension would be implemented as follows:

TYPE REL.PROJ = RELATION OF PROJ;

D 3.1 - R equired a ttr ib u tes

When the DBMS supports nulls, this should again involve a simple translation to the
appropriate syntax. In SQL systems, for example, it is usually done by writing the
keywords NOT NULL after each attribute definition.

If nulls are not supported, they should be simulated in a style similar to the default
values approach [120] by enforcing an extra constraint on the attributes th a t cannot be
null saying tha t each of them cannot assume the chosen null value for its domain.

Neither DBPL nor dBASE IV support null constraints and, thus, they have to be
simulated. Basically, for each basic type provided by the DBMS, a null constant must be
chosen, though appropriate default values for the usual basic types are already provided
by the method. The conditional expressions needed to enforce the constraint would then
be generated from the error schema associated with the transactions and are discussed
later (Section 7.4).

D 3.2 - C andidate keys

For the sake of the implementation, it is assumed tha t the first use of the K E Y -O F
operator in each relation schema refers to the primary key whereas the others (if any)
are secondary keys.

In theory, all DBMSs should provide a way of saying which attribute(s) form the
primary keys and, so, a simple translation should be enough. Some systems do not
enforce the primary key constraints though.

In DBPL, the complete definition of the relation extensions include the primary key
attributes. So, the full definition of relation Proj is given by:

TYPE REL.PROJ = RELATION PNum OF PROJ;

However, in order to be able to inform the user of any violations of the primary key
constraints detected by the DBMS, it is necessary to test the relevant DBMS return
code (RESTRICTED() , in DBPL) after all insert operations as well as any updates of the
primary key attribute(s)!

Thus, as far as real database applications are concerned, the fact th a t primary key
constraints (and more generally any kind of constraints) are supported by the DBMS
does not necessarily mean the mapping to an implementation is going to be simpler.

Secondary keys should be defined similarly when supported.
If any of these is not supported, the uniqueness constraint ought to be enforced

explicitly. Unique indexes are usually supported and should be used in these cases.
In some DBMSs, e.g. DB2 [124], the use of indexes is compulsory. Otherwise, key
constraints should be enforced from the error schemas associated with the transactions,
similarly to the null constraints.

1 In fact, updates of the primary key attribute(s) are not allowed in DBPL.

The mapping 93

D 3.3 - S ta tic a ttr ib u te constraints

If the DBMS supports the specification of such constraints, the appropriate syntax should
be used. Otherwise, they should be enforced from the error schemas associated with the
transactions, as any other constraints.

Even though constraints of the form V t : rel • <condition> can be expressed
in DBPL as ALL t IN r e l (<condition>), where < condition> must be of type
BOOLEAN and might use OR, AND, NOT, ALL (V), and SOME (3), the DBPL system does
not provide a way of enforcing them. Thus, the appropriate tests th a t guarantee the
consistency of the database should still be generated from the error schemas.

D 4 - T h e database schem a

Usually, there is nothing extra to be done in this case. In DBPL the relation extensions
must be declared inside a database module.

DATABASE MODULE DB;
... relation extensions ...

END DB.

D 4.1 - Foreign key constraints

Strictly speaking, these are a special case of static attribute constraints. Thus, if not
supported they should be treated as any other constraints otherwise the translation
should be simple. Most DBMSs currently available, including DBPL and dBASE IV, do
not support foreign key constraints.

D 4.2 - O ther s ta tic constrain ts

Strictly speaking, these are a special case of static attribute constraints (D3.3) where
more than one relation is involved. Thus, the same comments as above apply.

In the special case of derived attributes, the DBMS might support a way of specifying
them and, in this case, a simple translation would be used. If it does not, there are
basically two possibilities to implement derived attributes: as queries tha t are called to
calculate their values every time they are needed, and as explicit attributes tha t cannot
be updated by the users. These are presented below.

(A) If derived attributes are implemented as queries tha t are called to calculate their
values every time they are needed, the specifications should, in principle, map more or
less easily to the implementation, at least in DBPL. However, this might not be a good
idea if the derived attribute is used frequently.

In DBPL, the main part of such a procedure for calculating the number of employees
of department d (d.NEmp = # { e : empls \ e.DNum = d.DNum }, specified in the
company database example) would be written as below, where CARD returns the number
of tuples of a relation and REL_EMPL is the type of the tuples of the relation.

d.NEmp := CARD (REL.EMPL { EACH e IN empls :
e.DNum = d.DNum });

The mapping 94

(B) The other possibility is to implement derived attribu tes as explicit attributes which
cannot be updated by the users. In this case, the attribu te will be set to a consistent
value (usually zero for numeric attributes) every time a new tuple is created. Each insert,
delete or update operation in relations affecting the value of the derived attribute will
then cause it to be updated if necessary.

This approach is not as simple as the previous one but should be more efficient,
especially if there are few updates to the derived attribute.

Again, in the case of the number of employees of departm ent d , the following steps
would be performed: (1) for each new departm ent d inserted, d.NEm p would be set
to zero; (2) for each new employee e inserted, the number of employees of the relevant
department (e.DNum) would be updated; (3) for each employee e deleted, the number
of employees of the relevant department would also be updated; and (4) updates of
employees do not affect the derived attribute and, so, no extra update is needed.

(B l) A possible way of implementing these updates is to call a subtransaction tha t sets
the value of the derived attribute similarly to the one presented in case (A).

The advantage of this approach is its simplicity since the subtransaction is the same
for all operations being executed against the employees relation and the mapping from
the specifications is simple. Its disadvantage is its efficiency because it involves a number
of I/O operations tha t can be avoided.

(B 2) An alternative solution to the example is to add one to the number of employees of
the relevant department after each insert, and subtract one after each delete in relation
employees.

To implement this in DBPL, the following piece of code would be included in the
Insertsempls subtransaction, where sempl is the set of new employees tuples inserted.

FOR EACH t IN sempl : TRUE DO
depts [t.DNum].NEmp := deptsft.DNum].NEmp + 1;

END;

The Delete-empls subtransaction would then include the code below, where sekey
is the set of primary keys of deleted employees.

FOR EACH t IN empls : t.ENum IN sekey DO
depts[t.DNum].NEmp := depts[t.DNum].NEmp - 1;

END;

Obviously, this last option is the best for this kind of derived attributes, but it does
not cover all cases. When it is not possible to use this simpler approach, it should always
be possible to use one of the other two approaches presented before.

However, this approach covers many cases with slight changes. For example, if the
derived attribute is based on a sum (or product) of other attributes, it may be easily
implemented similarly, by adding and subtracting (or multiplying and dividing by) the
value(s) of the attribute(s) it is derived from. It would also be necessary to update its
value after every update in the attribute(s) it is derived from.

The mapping 95

D 5 - T he A D B schem a

Usually, there is nothing extra to be done in this case.

D 5.1 - D yn am ic constrain ts

Dynamic constraints also depend on the previous values of the updated attributes, but
are essentially similar to other constraints. Thus, in the unlikely case they are supported,
the appropriate syntax should be used, otherwise the appropriate tests to enforce them
are generated from the error schemas associated with the transactions.

D 6 - T he E D B schem a

Again, there is nothing extra to be done in this case.

D 7 - In itia lization

Most DBMSs create empty relations. Otherwise, the user must ensure th a t all relations
are created empty. In DBPL the user must provide an initialization transaction for each
database module. As in other parts of the translation, the need to explicitly write the
types of the tuples of each relation is the only difficulty.

TRANSACTION Init.DB;
BEGIN

empls := REL.EMPL { >;
... other relations initialization ...

END Init.DB;

7.2 Mapping the database operations

Now, the discussion moves on to the translation of the operations specified according to
the method. For organizational purposes, the operations are divided into two groups:
read-only operations, which do not modify the database, and update operations, which
modify the database by inserting, updating, or deleting tuples of relations.

The input and output variables declared in the specifications are to be translated to
variable declarations and input and output commands of the implementation language
respectively. Notice tha t only simple input/output commands are to be generated. In
languages which support transactions as special procedures (e.g. DBPL), these variables
may alternatively be passed as value and variable parameters respectively. Again, these
should only involve straightforward translation (details are omitted).

B1 - R ead -on ly operations

If the DBMS/query language supports set a t a time operations, the translation should
be reasonably simple. Mapping set at a time to record at a time operations should not
be too difficult but it is not going to be investigated at this point, even though it is
needed for the case of query languages embedded in imperative programming languages.
From now on, it is assumed tha t set at a time operations are supported.

The mapping 96

B 2 - Select
Mapping the set comprehension used in the specification of selects to the supported
implementation syntax should be reasonably straightforward.

The selection resl = { t : rel | <condition> } should be translated to DBPL as

res := REL_RES { EACH t IN rel : <condition> >;
where REL.RES is the type of the tuple of relation variable res and <condition> is a
boolean expression involving a t least one of the attributes of t, i.e., relation rel.

B 3 - Theta-join
Mapping the set comprehension used in the specification of theta-joins should also be
simple. The expression resl = { <1 : re/1; t2 : re/2 ... | t l .A t t l <cop> t2.A tt2 ... }
should be translated to DBPL as

res := REL.RES { {a, b , . . .} OF
EACH tl IN rell, EACH t2 IN rel2, ... :

(tl.Attl <cop> t2.Att2 ...) >;
where REL.RES is the type of the tuple of relation extension variable res, -fa, b , . . .}
is the list of all attributes of all relations joined, <cop> is a comparison operator, and
Attl and Att2 are attributes of rell and rel2 respectively.

Obviously, the need to list all attributes -fa, b , . . .}■ of all relations joined is a
drawback of DBPL, but this should not add any difficulty to the mapping. In addition,
in practice most joins are used together with projects and, so, this drawback should not
be particularly relevant.

B 4 - Project
The mapping of the project operations should also be straightforward. The equation
resl = { t : rel • <result> } should be translated to the following DBPL code

res := REL.RES { { <result> > OF EACH t IN rel : TRUE };
where REL.RES is the type of the tuple of relation extension variable res, and <result>
is the list of attributes of rel on which the project operation is based.

B 5 - Update operations
In general, the A DB and EDB expressions are not going to be translated a t all because,
in the implementation, (1) the relations before and after the operations are usually
denoted by the same name and (2) relations not used remain unchanged.

The details of the mapping of specific operations are described in the five following
rules (B6 to BIO) and in the following section.

B 6 - Insert
The translation of the insert operations should also be straightforward for most DBMSs,
even if set at a time insertion is not supported.

The mapping 97

In DBPL, the equation empls' = empls U sempl? is to be translated to the one
below, where sempl is the set of new employees to be inserted.

empls :+ sempl;

BT - D e le te by prim ary key

In general, current DBMSs and query languages do not support the definition of higher
order functions with generic types. If these were supported, the approach would be to
write a generic higher order function to implement the operator D E LETE used in the
specifications, and this would make the mapping very simple.

Assuming these are not supported, the solution is then to translate all occurrences
of D ELETE to the appropriate delete command of the DBMS/query language chosen.
Some problems might arise if, for instance, set at a time deletions are not supported or
if the delete command takes complete tuples to delete instead of their primary keys only
(like in the specifications), but the translation should still be reasonably simple.

In DBPL, the deletion empls' = D ELETE empls ENum sekey? should be translated
to the following delete command,

empls REL_EMPL { EACH t IN empls : t.ENum IN sekey
where REL_EMPL is the type of the tuple of relation empls, and sekey is the set of primary
keys of employees to be deleted.

When the primary key of the relation is the target of one or more foreign keys, either
in other relations or in the same relation, the foreign key compensating actions should
also be written as part of the delete by primary key operations, similarly to the way it
is done in the specification level. Although the mappings of these compensating actions
were not fully investigated, a partial discussion on these mappings is presented in rules
B7.1, B7.2 and B7.3.

B 7.1 - D e le te s restr icted

The specification of Restricted is normally done by default and, so, no implementation
is needed. Explicit redundant specification of Restricted should thus be ignored in the
translation.

B 7.2 - D e le te s cascade

In the case of Cascades, the specification depends on whether the foreign key is part of
a cycle of foreign keys tha t cascade for deletes or not, and so does the translation.

(A) If the foreign key Fk 1 in relation re/2 is not part of such a cycle, and usually this
is the case, the schema tha t specifies deletes based on the primary key of relation re/1
includes the expression below,

le t sdr2 == { t2 : re/2 | t2 .F kl E ski? • t2.Pk2 } •
D elete-Rel2-Pk [sdr2 / sk2?]

The mapping 98

which says tha t the primary keys of tuples of relation re/2 referring to deleted tuples of
relation re/1 by the foreign key Fk 1 are collected and passed to the schema th a t specifies
deletes by the primary key in relation re/2, i.e., Delete^Rel2JPk .

If relation re/2 has a composed attribute primary key, the specification still follows the
same rule. For example, suppose the foreign key attribu te ENum in relation works of the
company database example had Cascades chosen for deletions on relation empls. Then,
schema Delete_empls_Pk which deletes employees by the primary key would include the
following expression:

le t swkey = = { w : works | w.ENum € sekey? • (w .EN um , w.PNum) } •
D e le te -W o r k s -P k [swkey / sw?]

The general idea is to implement these specifications as combined select and project
operations which return a set of primary keys of the relevant relations according to rules
B2 and B4 already presented. These keys should then be passed to the operations th a t
implement deletes based on the primary keys of the corresponding relations.

In DBPL, the translation is carried out quite naturally and uses an auxiliary variable
(mapped from the let expression) and a parameterized procedure call to the relevant
delete procedure (Delete_works). The implementation code derived from the above
specification is given below:

swkey := REL.WORK.K { {w.ENum, w.PNum} OF
EACH w IN works : w.ENum IN sekey };

Delete_works (swkey);
where swkey is an auxiliary variable of type REL_WORK_K, which is the relation type of the
se t o f p r im a ry keys of relation works, and sekey is the set of primary keys of employees
to be deleted.

(B) When the foreign key is part of a cycle of foreign keys th a t cascade for deletes,
the effect of Cascades is not specified in the same way, because there can be no cycles
in the use of schemas as predicates. In the general case, the specifications merely state
that, after the deletion of the set of keys selected, all relations after the operation are
the maximal subsets of the original relations to satisfy the database constraints.

The mapping of this case in general is likely to be very difficult and is not going
to be investigated. The problem is tha t the information on the relevant foreign keys is
not available in this part of the specification. It is probably still possible to work out
what are the foreign keys which need to be considered, but it would involve checking the
foreign key constraints and, maybe, even the specification of the other delete schemas.

However, if the DBMS and/or the query/host language supports recursion, the only
difficulty would be identifying the relevant foreign keys, since the target implementation
ought to be basically the same as presented in case (A), except th a t an explicit stop
condition for the recursion must be provided within the procedure tha t implements
deletes by the primary keys in one of the relations involved. Even so, it is im portant to
point out tha t the existence of such a cycle of Cascades is not common and should be
avoided whenever possible, because it can potentially destroy the database.

The mapping 99

(C) In the particular case of delete Cascades where the foreign key is targeted at the
same relation (loop), the operator CASC—DELETE is used in the specification and the
relevant foreign key is explicitly mentioned.

Hence, if recursion is supported, the implementation code is similar to tha t presented
in case (A), the difference being the delete procedure call, which is recursive and is only
activated if there are foreign key references to deleted tuples. So, the mapping is again
relatively simple.

Given tha t a foreign key specified as F O R -K E Y depts SupENum empls ENum
(supervisor of employees) is to cascade for deletes, the predicate of the corresponding
delete schema should be: empls' = CASC -D E L E T E SupENum empls ENum sekey?.

In DBPL, the body of the corresponding implementation procedure D elete .em pls,
introduced below, should include the standard delete command, as presented in the
general case (rule B7), followed by the code which implements the cascade deletes option
using recursion. Notice tha t the name of the auxiliary variable, sekey .aux , as well as its
type, REL.EMPL.K, are mapped from variable sekey, the set of primary keys of employees
to be deleted, which is a parameter of C ASC -D ELETE.

empls REL.EMPL { . . . sekey . . . };

sekey .aux := REL.EMPL.K { e.ENum OF
EACH e IN empls :

e.SupENum IN sekey };

IF sekey .aux <> REL.EMPL.K { > THEN
D elete .em pls (sekey .aux) ;

END;

In addition, it is worth mentioning tha t, although the target code is basically the
same as tha t of case (A), the mapping is completely different and a lot simpler than tha t
of case (A) because most of the generated code is embedded in the mapping and pasted
into the implementation whenever the C A SC -D E LE TE operator is used.

However, when recursion is not supported, it is easy to simulate it with an explicit
iteration of deletions and, thus, the mapping is still simple. Basically, the implementation
code would use an intermediate variable, initialized with the set of keys to be deleted,
and a WHILE loop containing the appropriate delete command which would iterate while
there are foreign key references to deleted tuples.

In DBPL, the implementation code without using recursion is presented below, where
the name and type of the auxiliary variable sekey .aux are mapped as before, and “ . . . ”
stands for omitted details which are unchanged from the previous case.

sekey .aux := sekey;

WHILE sekey .aux <> REL.EMPL.K { > DO
empls REL.EMPL { . . . sekey .aux . . . >;
sekey .aux := REL.EMPL.K { . . . sekey .aux . . . >;

END;

The mapping 100

B 7 .3 - D e le te s nullify

In the case of Nullifies, as in the general delete (rule B7), the ideal implementation would
be to write a generic higher order function to implement the operator UPDATE used in
the specifications, and this would make the mapping very simple.

Assuming these are not supported, the solution is then to embed the knowledge of
UPDATE in the mapping and use the appropriate command or sequence of commands
of the chosen DBMS/query language to implement it? Therefore, the aim here is to
generate the code tha t changes to null all foreign key references to deleted tuples.

As far as the implementation is concerned, there is in general no need to explicitly
say th a t some tuples are not going to be changed. Basically, the tuples tha t will be
changed are to be selected, and the change to be made and then effected, i.e. written to
the database. Changing to null the value of the relevant attribute in the selected tuples
should map easily to an assignment in the implementation language.

For example, if the foreign key attribute ManENum (manager of departments) were
to be nullified whenever managers were deleted, the predicate of the delete schema would
include the equation: depts1 = UPDATE depts ManENum sekey? N U L LN A T .

The corresponding DBPL implementation code is given below, where NULLNAT is the
appropriate null value.

FOR EACH t IN depts : t.ManENum IN sekey DO
t.ManENum := NULLNAT;

END;

In the specifications, when Nullifies is chosen and the foreign key refers to the same
relation, a le t expression and a local variable are used to join the equation above with
the one tha t specifies the deletions (B7) because the result of one operation must be the
input to the other. Still, this distinction is not needed in the implementation level.

For instance, if the Nullifies option were chosen for the supervisor of employees foreign
key attribute SupENum , this effect would be specified using a le t expression. Even so,
the corresponding implementation in DBPL should be:

FOR EACH t IN empls : t.SupENum IN sekey DO
t.SupENum := NULLNAT;

END;

Observe tha t this mapping strategy should also be the base for the translation of the
operator UPDATE used in other contexts, with the possible exception of the updates
of primary keys, discussed in rule BIO. Moreover, the implementation code embedded
in the mapping of UPDATE should be very similar to the code to be generated for the
updates of attributes (rule B9).

2 In fact, this strategy is to be used whenever an operator is used in the specification, unless explicitly
stated otherwise. From now on this is not going to be mentioned anymore.

The mapping 101

B 7.4 - Sp ecia l case (recursive cascade d e le tes)

Regarding the special case of the specification method which prescribes the use of the
expression { t l : (re/1 \ re/1') • t l .P k l } in all places where ski? appears in rules
B7.1, B7.2 (A) and B7.3, if relation re/1 is part of a cycle of foreign keys tha t cascade
for deletes, there is in general no need to do the same at the implementation level.

In theory, the implementation should still use sk i in those places where the expression
above was used, but the code corresponding to foreign key compensating actions of
relations outside the cycle of Cascades should be placed within the recursion or iteration
which simulates it.

The mapping for this case has not been investigated in detail though. So, there
might be overlooked details which could cause difficulties in its implementation but its
investigation is not going to be pursued further.

B 8 - O ther d e letes

At the specification level, any other deletes are written in terms of combined select and
project operations, which return the set of primary keys of the relevant relations, and
the schemas tha t specify deletes based on the primary keys of the relations.

This is exactly how the general delete Cascades option is specified - rule B7.2 (A) of
the method. Therefore, the corresponding implementation code, omitted here, should
be mapped similarly.

Notice that, essentially, this kind of delete adds nothing to the expressivity and
complexity of the specification method since the same results can be achieved by writing
an extra subtransaction tha t selects the primary keys of the tuples to be deleted and
passes the result to the appropriate delete subtransaction. Additionally, the generated
code is in both cases inefficient since the relation will in general be read twice.

B 9 - U p d ates

In theory, the implementation code for the updates of attributes should be similar to the
code generated in the mapping of the operator UPDATE, described in rule B7.3. The
mapping however is rather different because the specifications of updates are written in
terms of a select condition and an update rule, instead of using UPDATE.

The general rule for the specification of updates is given below, where <condition>
is a boolean expression based on attributes of relation rel and < result> is an expression
tha t, applied to any tuple t, returns the corresponding updated tuple.

rel' = { t : rel • if <condition> then <result> else t }

Even though <result> may be any expression of type R E L , it usually is an expression
which uses the But (\) operator to define the value of the the modified attributes, and
this is the only case th a t is going to be investigated in detail.

As mentioned in rule B7.3, there is, in general, no need to explicitly say tha t some
tuples are not going to be changed. Moreover, changing the value of attributes should
map easily to assignments in the implementation language and, indeed, this is the case
of But (\) expressions of the form t \ (A tt 1 = u l, Att2 = v2, ...) .

The mapping 102

Therefore, mapping the above specification to the appropriate implementation code
should be fairly straightforward. In DBPL, updates using But (\) expressions should be
implemented by the following code:

FOR EACH t IN rel : <condition> DO
t.Attl := vl; t.Att2 := v2;

END;

Another possibility is to specify <result> as a tuple of type REL such that, for each
of its attributes, there is a corresponding expression which delivers the new value of the
attribute in the relation tuples, usually in terms of its previous values. In other words,
the attributes of < result> are expressions which usually involve computations using
the previous values of the attributes in the relation tuples (t .A tt l , t .A tt2 , etc.), even
though constants can also be used and some attributes might be unchanged. Although
mapping this case to an appropriate implementation should still be simple, it is not
discussed further.

BIO - U p d a te o f keys

In the relational model, the update of the primary keys of one or more tuples of a relation
is usually identical to the update of any other attribute of the relation.

Therefore, the corresponding implementation should be strictly similar to the one
described for the case of general updates (rule B9) and also in the Nullifies option of
deletes based on the primary keys (rule B7.3).

Depending on how these updates are specified, i.e. whether the UPDATE operator
is used or not, the mapping is the same as tha t of one of the two aforementioned rules
and is not going to be repeated.

Nevertheless, some DBMSs (e.g. DBPL) do not permit changes to the primary keys
of the tuples and these can only be achieved by a combination of deletes and inserts.
Although this case is not going to be investigated completely, the specific case where the
operator UPDATE is used to specify the update of the primary key of a single tuple is
going to be explored.

The general approach is to use an auxiliary variable to save the old tuple, delete
it from the relation, change the primary key attribute of the tuple variable, and then
reinsert the tuple. Therefore, the mapping of UPDATE in this context will be different
from the general mapping presented in rule B7.3.

For instance, changing the value of the primary key ENum of relation empls of the
company database example from o ld to new, which according to the method is specified
as empls' = UPDATE empls ENum {old?} new?, should be mapped to the following
implementation (in DBPL):

empls_aux := em p ls[o ld];

empls REL.EMPL { empls_aux };

empl.aux.ENum := new;

empls :+ REL_EMPL { empls_aux };

The mapping 103

When the primary key of the relation is the target of one or more foreign keys, either
in other relations or in the same relation, the foreign key compensating actions should
also be written as part of the updates of the primary key operations, similarly to the
case of deletes based on the primary keys (B7). These are presented in rules B10.1,
BIO.2 and BIO.3 below.

B 10.1 - U p d a tes restr ic ted

As in the case of deletes (B7.1), the specification of Restricted is normally done by
default and, so, no implementation is needed. Thus, explicit redundant specification of
Restricted should also be ignored in the translation.

B IO .2 - U p d ates cascade

In this context, the specification of Cascades uses the operator UPDATE and is basically
equivalent to the case of delete Nullifies, presented in rule B7.3, including the case where
the foreign key is in the same relation. Hence, apart from using different values, the
mapping is strictly the same and is not going to be presented again.

BIO .3 - U p d ates nullify

The specification and mapping of the Nullifies option of primary key updates are also
strictly the same as the Nullifies option of deletes by the primary keys (rule B7.3) and
are not presented again.

7.3 Mapping the advanced features

This section refers to the mapping of the more advanced features, which include trans
actions (only the correct behaviour), sorting of results, aggregate functions, composite
attributes, and views. The extended transactions including error handling are presented
in the next section.

A1 - T ransactions

Transactions are more complicated operations, potentially involving a number of simpler
operations, which must execute as a whole or fail completely. Most RDBMSs support
the definition of transactions and the appropriate syntax should be the target code.

The most common way of supporting transactions is by delimiting their scope with
two special commands provided to the user: one to start a transaction and the other to
end it successfully. Some DBMSs implicitly insert these delimiters in the beginning and
at the end of application programs so that, by default, each program is a transaction.
In others, these delimiters are written as a special kind of procedure.

A third command usually allows the user to abort the transaction at any time and
will normally undo all the database updates already done. The component operations
are simply written within the transaction scope using the normal syntax.

The mapping 104

Regardless of these implementation details, the mapping should be simple for most
DBMSs. If procedures are supported by the query/host language, they should be used
to separate the correct behaviour of the transactions from the error handling code.

In DBPL, a transaction is just a special kind of procedure, the difference being
it starts with the keyword TRANSACTION. Also, there is no automatic undo facility for
unsuccessful transactions.

The approach to the mapping of the correct behaviour of the transactions to DBPL
is to write them and their subtransactions (basic operations) as procedures, named after
the corresponding specifications. Input and output variables are to be passed as value
and variable param eters, respectively. Parameters of the subtransactions which are not
parameters of the transaction should be mapped to local variables.

For example, transaction Salary_dept of the company database example returns the
sum of the salaries of all employees hired by department d?. It was specified using two
subtransactions: E m pls-o f-dep t, th a t returns all employees sempl\ hired by department
d?, and Sum_Salary_empls, th a t receives a set of employees sempP and returns the sum
of their salaries to tsa l l . The corresponding DBPL implementation code, excluding error
handling, is presented below.

TRANSACTION Salary.dept (d: DNUM; VAR tot.sal: SALARY;
VAR result: STRING);

PROCEDURE Salary_dept_Ok; (** Correct Behaviour **)
VAR sempl: REL.EMPL;
BEGIN

Empls.of_dept (d, sempl);
Sum.salary.empls (sempl, tot.sal);

END Salary.dept.Ok;

BEGIN
... error handling code . . .
Salary.dept.Ok;
result := "Success";

END Salary.dept;

A2 - Sortin g o f resu lts

Most RDBMSs support sorting of results. In most cases, an external sort procedure
is provided by the system and can be accessed from the query and/or host language.
The specific syntax varies from one system to another but is usually straightforward and
should be the target code for the translation.

In SQL systems, the command SELECT accepts an extra clause, ORDER BY, which
takes the attribute(s) used to sort the results. In the case of descending order, each
relevant attribute is followed by the keyword DESC.

The mapping 105

A 3 - A ggregate fu nctions

If the DBMS supports aggregate functions, this should again involve a simple translation
to the appropriate syntax. The details are omitted once again.

If aggregate functions are not supported, they should be simulated based on the
specification of the relevant operators. The mapping should also be fairly simple.

In the specific case of DBPL, only the number of tuples of a relation (#) is directly
supported (as the function CARD).

The next one, C O U N T , which returns the number of tuples of a relation such tha t
a given attribute is not null, is implemented using the function CARD and a selection.
For example, the number of employees such tha t attribute Age is not null, specified as
CO UNT sempl? Age, should be translated to:

CARD (Rel.Empl { EACH t IN sempl : t.Age <> NULLNAT >);

The functions M A X and M IN return the maximum and minimum value of a given
attribute of a relation, respectively. For example, the maximum salary of an employee
is specified as: max = M A X sempl? Salary.

The corresponding implementation code is presented below. Notice th a t tuples where
the value of attribute Salary is null (NULLREAL) are ignored.

max := ... Minimum value of the domain...
FOR EACH t IN sempl : t.Salary <> NULLREAL DO

IF t .Salary > max THEN
max := t.Salary;

END;
END;

The implementation code for function M IN is omitted because it is very similar.
Similarly, the specification equation tot_sal\ = SUM sempl? Salary returns the

sum of the salaries of all employees and should be translated to the following code:

tot_sal := 0.0;
FOR EACH t IN sempl : t.Salary <> NULLREAL DO

tot_sal := tot.sal + t.Salary;
END;

Finally, function AVER returns the average value of the attribute in the relation.
Basically, it returns the result of SUM divided by the result of C O U N T , but its result
is explicitly defined to be zero if COUNT returns zero, i.e., when the attribute is null
in all tuples of the relation - this includes the case of an empty relation. A summary of
the implementation code for the average salary is presented below.

aver := ...the number of employees with salary...
IF aver <> 0 THEN

sum := ...the sum of the salaries...
aver := sum / aver;

END;

The mapping 106

A 4 - C om p osite a ttr ib u tes

In the specification level, composite attributes are needed to make possible the speci
fication of composite candidate and foreign keys, as well as sorting of results based on
more than one attribute.

In most RDBMSs, composite primary keys and sorting of results based on more than
one attribute are defined in exactly the same way as their single attribute equivalents,
except th a t all the attributes are listed. Sometimes they are separated by a specific
delimiter, for example commas. In most cases the mapping is trivial.

In the specific case of DBPL, the equation (CA2 A tt 1 A tt2) in the specification of
primary keys should be mapped to: Attl, Att2.

If foreign key constraints are supported, the composite foreign keys ought to be
written in a similar style, i.e., by simply listing all the relevant attributes. The mapping
should, therefore, be similar.

However, since foreign key constraints are usually not supported, they have to be
enforced in the error handling code. In this case, composite foreign keys are not going
to present any difficulty because occurrences of the operators CA2, CAS} etc. disappear
in the simplification of the precondition of the transactions.

A 5 - V iew s

Views are used to restrict the data visible to or updatable by a specific user or group
of users. They may be composed of a number of base relations and virtual relations
derived from base relations. Database systems which support views should provide the
means for hiding base relations and, thus, prevent the users from accessing the relations
they are not authorized to use.

As mentioned in Chapter 4, the updatability of views is not addressed in this work
since this is, in its own right, a whole area of research [54]. In general, it is not even
possible to decide whether some views are updatable or not [55]. Moreover, it is not
always clear what the semantics of updates of specific views should be.

The mapping of views was not investigated in detail. Even so, it is argued briefly
below tha t, in general, the mapping ought to be simple and comparable to those of other
parts of the specifications.

Firstly, for most RDBMSs, the definition of view relations (intention and extension)
is comparable to the definition of base relations. Thus, the mapping should be very
similar to ones presented in rules D2 and D3.

Secondly, just like in the specifications, view relations based on operations are very
similar to the basic operations on base relations (rules B1-B7). Hence, it is possible the
corresponding mapping is also similar.

In addition, the mapping of the constraints associated with the view schemas View
and AView should be exactly the same as the mapping of static and dynamic attribute
constraints, respectively, since the specifications of the former are particular cases of the
latter.

The mapping 107

Finally, the operations involving view relations are specified very similarly to any
other operations. Also, the implementation syntax for any given RDBMS should be
exactly the same as the ones using only base relations. Therefore, the mappings should
also be very similar (if not the same) to the ones presented in rules B1-B10.

7.4 The extended operations for error handling

According to the specification method, the predicates of the error schemas associated
with the transactions are written as sequences of expressions of the form presented below,
connected to each other by logical disjunctions (V) .

(<condition> A resultl = “error message”)

In the expression above, <condition> stands for generic predicates representing the
logical conditions which violate the precondition of the transaction. In general, each
of them involves a combination of predicates connected by logical conjunctions (A),

disjunctions (V), and/or negations (->), as well e l s existential quantifiers (3)? Sometimes,
it also includes set comprehensions.

The approach here is to map each of these generic predicates to the appropriate piece
of implementation code tha t evaluates it and verifies, using a conditional statement,
whether the precondition is violated. Whenever one of these predicates is true, the
transaction must fail. This means tha t all changes which might have already been made
must be undone, so tha t the consistency of the database is guaranteed. If an undo facility
is supported it should be used whenever appropriate. Otherwise, no change should be
made to the database before all such predicates are checked.

For most DBMSs, it should be simple to generate conditional statements of the
implementation language from the aforementioned predicates, except for the existential
quantifiers. When the DBMS supports existential quantifiers, the appropriate syntax
should be used and the translation ought to be simple. Otherwise, the result of the
evaluation of the existential quantifiers should be assigned to auxiliary boolean variables.
These variables should then be used in the conditional statem ent.

These existential quantifiers are always based on relations and attributes, since they
are derived from the precondition of the transactions. Therefore, the evaluation of these
expressions can be implemented by checking whether the relevant read-only operations
(i.e. select, join, and/or project) implicitly specified by their predicates actually return
any data. If they do, the result is true, else the result is false.

For example, suppose Salary-dept is a transaction tha t returns the total salary of
employees working for a given department d?. The predicate of the corresponding error
schema Salary-dept-Error is given by:

(* (3 dp : depts • dp.DNum = d?) A

resultl = “Invalid department number”)

3 Expressions involving the universal quantifier (V) can be rewritten using the existential quantifier,
because V x : T • p is equivalent to -> (3 x : T • -i p) for any predicate p.

The mapping 108

In DBPL, the universal and existential quantifiers can be mapped directly to the
FORALL and SOME commands, which simplifies the problem. Thus, the corresponding
DBPL error handling implementation code should be:

IF NOT (SOME dp IN depts (dp.DNum = d)) THEN
result :* "Invalid Department Number";
RETURN;

END;

If DBPL did not support the existential quantifier, it would be simulated by testing
whether the select operation {dp : depts \ dp.DNum = d? } returns any tuples, and
the result would be assigned to an auxiliary boolean variable as follows:

IF REL.DEPT { EACH dp IN depts : dp.DNum = d >
<> REL.DEPT { > THEN

exist.aux := TRUE;
ELSE

exist.aux := FALSE;
END;

The error handling implementation code presented before would then follow, but the
auxiliary variable exist.aux would substitute the existential quantifier (SOME . . .) in
the conditional statement. The resulting code is presented below.

IF NOT exist.aux THEN.
result := "Invalid Department Number";
RETURN;

END;

7.5 Conclusion

This chapter described the generic mapping of specifications written according to the
method to a generic relational database system, even though the DBPL system was
extensively used in the examples.

It is well known tha t the application of translation techniques between different query
languages is a tractable problem [125].

The following chapter then proceeds with a detailed report on the experiment tha t
was carried out and involved the construction of a prototype tool to partially implement
the mapping for a specific RDBMS, namely the DBPL system.

Chapter 8

The prototype

This chapter describes the prototype tha t supports the method, which was presented in
Chapter 4. It also partially implements the mapping presented in Chapter 7.

The prototype was implemented for a number of reasons: to show th a t the method
is usable in the context of relational applications generation, specially in the presence of
tool support; to show tha t it is possible to automate the mapping process for at least one
target RDBMS; and to provide some evidence tha t the whole process is not particularly
arduous and is, therefore, likely to be applicable to other target database systems.

Specifically, the prototype is meant to automatically generate relational database
applications to be run on the DBPL [9] system. Nevertheless, it is worth emphasizing
tha t DBPL is just the chosen example of a target database system/language.

In particular, this chapter summarizes the functionality and implementation details
of the prototype tool th a t was built to support the method. In addition, it discusses
the specific DBPL implementation problems tha t occurred during the development of
the prototype, presenting the corresponding solutions; discusses the current status of the
implementation; and provides a quick introduction to the Synthesizer Generator [10, 11],
the tool used to build the prototype.

8.1 Design and im plem entation strategy

This section summarizes the strategy used in the design and implementation of the
prototype tool. Since the developed tool is only a prototype, it was necessary to decide
what should be included in its functionality.

Basically, the prototype provides a syntactic editor for the method and a partial
implementation of the mapping described in Chapter 7. Its outputs are specifications
written in Z (using the syntax provided by the z e d .s ty [126] style option for DTgX)
and relational database applications written in DBPL, respectively.

Regarding the implementation of the mapping, the general objective was to produce
syntactically correct DBPL code from at least a subset of the operations, advanced
features, and error handling schemas written according to the method, in addition to
the complete structure of DBPL databases. Even so, the aforementioned subsets should
be large enough to permit the automatic generation of syntactically correct programs,
at least for some transactions.

109

The prototype 110

8.1 .1 D esign decisions

In addition to the general objective, i.e. generating syntactically correct programs for at
least some transactions, there were a number of other design decisions which are more
implementation oriented.

Firstly, it was decided the syntactic editor should accept a large subset of all possible
specifications which are correct according to the method, even though checking all the
syntax details to enforce the method and reject ill-formed specifications would have to
be given a low priority.

The main justification for this decision is the fact tha t these specifications are the
inputs for the prototype implementation of the mapping process and, thus, restricting the
correct specifications accepted by the editor would also mean restricting the automatic
generation of the database programs.

As already mentioned, enforcing the correct syntax of the method was given a low
priority in the implementation of the tool. Nevertheless, it is im portant to make it clear
th a t this activity is not inherently complicated and tha t several different kinds of syntax
checks were implemented as examples, mainly in the structure part of the specifications.

Another design decision was to try to generate the specifications automatically as
much as possible, so th a t the actual typing done by the user would be restricted to
a minimum. To achieve this, it was necessary to embed part of the semantics of the
specification method in the syntactic editor.

More specifically, the idea was to automatically generate those parts of the syntax of
the specifications th a t are unchanged among different instantiations of the same feature
of the method, as well as all those parts th a t can be derived from other parts of the
specification. Those repetitions of identifier names tha t are imposed by the method
should also be automatically generated.

For instance, most of the syntax of one insert operation is exactly the same as tha t
of any other insert operation and, so, these parts are automatically generated whenever
the user says he will specify an insertion. In addition, the type of the auxiliary variable
representing the tuples being inserted in a relation is always the same as th a t of the
relation itself and, so, the former is derived as well. As a result, the user only needs to
inform those parts which are missing, namely the name of the relation and the name of
the auxiliary variable. Moreover, these are only informed once.

The last design decision made was not to use formal methods techniques in the
implementation of the tool, mainly because it is not a production tool, only a prototype.
However, since the prototype tool was built using the synthesizer generator and the
inputs to this system are formal specifications, it is still correct to assert tha t the tool
was formally specified.

8 .1 .2 C u stom izin g th e m apping process

After choosing a target database system to be used in an implementation of the mapping,
regardless of whether it is a prototype or a production tool, it is necessary to adapt
the generic mapping to the particular restrictions imposed by the chosen system and
corresponding query/host language.

The prototype 111

In the implementation of the prototype tool for generating DBPL programs, there
was a single design strategy which proved to be very successful and, thus, it should
be used in future implementations. This refers to writing by hand, in advance, the
so-called ideal implementation programs corresponding to a reasonably large example
specification, e.g. the company database example presented in Chapter 6.

The main benefit of writing the target implementation code beforehand is tha t it
provides a concrete output for the mapping process. The existence of a concrete output
proved to be very im portant because it helped to identify all the pieces of information
which were relevant for the mapping and, consequently, to provide a better understanding
of the mapping.

Another benefit provided by the hand-written code was to uncover a number of errors,
omissions, and ambiguities in the previous descriptions of the mapping. Although the
mapping is believed to be free from major errors, the feedback provided by using it to
generate implementations targeted at other relational database systems and languages
would certainly help to improve it further.

In addition, it is im portant to compile these hand-written programs and run the
transactions using some test data to make sure they are syntactically and semantically
correct, before trying to carry out the mapping. In the specific case of DBPL, a number
of implementation problems were uncovered. These are discussed in Section 8.2

Finally, it is also possible tha t the ideal implementation code proves to be too difficult
to derive (this has not occurred in the implementation of the mapping for DBPL though).
In these cases, an alternative solution to the problem should be provided, i.e., the target
programs should be changed so tha t the mapping can be as smooth as possible.

8.1 .3 Tool support

The tool used to build the prototype is the Synthesizer Generator, which is a system for
automating the implementation of language-based syntactic editors. Basically, the user
provides a specification written in the Synthesizer Specification Language (SSL) and the
system creates a syntactic editor for the language.

More specifically, the synthesizer generator supports the definition of views for the
display of different information, possibly using different levels of abstraction, which are
automatically updated by the system. If used together with the X Windows system,
different views can be presented at the same time in separate windows.

In particular, this facility was exploited to automatically generate DBPL programs
as a result of using the prototype syntactic editor th a t supports the method and the
results were very encouraging indeed. As a m atter of fact, exploiting the view facility
to generate code written in a different language happens to be very easy, as long as the
mapping is well defined.

A more detailed explanation on how to use the view facility is presented in Section 8.4
together with a quick introduction to the synthesizer Generator system.

To conclude, it is im portant to point out tha t the choice of which tool(s) to employ in
the construction of an implementation can influence the results tremendously. Moreover,
the synthesizer generator proved to be a very fitting tool for the kind of implementation
carried out in this research.

The prototype 112

8.2 Im plem entation problems

This section discusses the specific DBPL implementation problems th a t occurred during
the development of the prototype tool and presents the corresponding solutions. Some
of these problems regard limitations of the DBPL system whereas others regard features
of the theoretical DBPL language which were not implemented.

8.2 .1 R ela tion inclusion

The first problem th a t arose regards the DBPL operator for relation inclusion (IN)
which is not currently implemented as an independent command of the language but
only as part of the EACH, SOME, and ALL commands. For this reason, expressions such as
tu p le IN r e la t io n , which should be valid, are not accepted by the DBPL compiler.

Notice tha t the IN operator was extensively used in the examples presented in the
general mapping (Chapter 7) and would be part of the derived code corresponding to
several parts of the specifications written according to the method. In particular, these
include the implementation of derived attributes, deletes based on the primary key,
deletes cascade, and deletes nullify.

The adopted solution to this problem is then to use an existential quantifier to
express the set inclusion. This means tha t such expressions (tu p le IN r e la t io n) must
be written as follows:

SOME t IN r e la t io n (tu p le = t)

According to the group who implemented DBPL in the University of Hamburg, this
operator was not implemented simply because there is an equivalent solution to represent
it using an existential quantifier and, so, they decided to introduce this implementation
restriction for simplicity.

However, personally, I think this was not a good implementation decision. Although
the equation using an existential quantifier is only slightly more extensive, the original
equation using the IN operator is much more intuitive and, thus, easier to understand.
Also, in theory, it should be fairly simple to generate the same object code for both
cases, probably just as simple as (or even simpler than) rejecting one of them.

8 .2 .2 E xten d ed project operations

In general, the mapping of the project operations to DBPL is simple. The specification
equations resl = { t : rel • < result> } are translated to the code presented below,
where REL.RES is the type of the tuple of relation extension variable re s , and < re su lt>
is the list of attributes of r e l on which the project operation is based.

re s := REL.RES { { < re su lt> > OF EACH t IN r e l : TRUE >;

In theory, this mapping should cover all possible cases and these include the more
general (extended) project operation which permits the use of any computations based
on attributes of the relation in the projection list.

The prototype 113

It is im portant to point out that, according to the DBPL user and system manual [9],
these computations should be valid in DBPL. Even so, they have not been implemented
and, therefore, are not accepted by the compiler.

Notice however th a t it is still possible to write such projections in DBPL but the
mapping is a bit more complicated. The code to implement them involves an explicit
FOR EACH loop over the relation, and the insertion of a tuple at a time through an
auxiliary tuple variable. In addition, these operations do not merge with selects and
theta-joins as easily as before.

For instance, consider the transaction Weighted sa la ry-p ro j of the company database
example, presented in Subsection 6.6.5. Its first subtransaction, Empls—salary—hours,
selects the tuples of relation works tha t refer to project p i and joins them with relation
empls based on the employee number ENum. The result is then projected to build an
intermediate relation containing the employee number, the salary, and the number of
hours worked by each employee.

Since the salary and the number of hours of each tuple of the intermediate relation
will be multiplied later by subtransaction Weighted sa la ry , an equally valid alternative
design would be to perform this multiplication in subtransaction Empls sa la ry -h o u rs .
The result would then be included in the intermediate relation (sempl—work\), instead
of the salary of the employees. To conclude, subtransaction Weighted s a la r y would then
merely divide the sum of this “multiplication attribute” by the to tal number of hours
worked.

The main equation of the predicate of subtransaction Empls sa lary-hours would
then be specified as:

sempl-workl = { e : empls; w : works \
w.PNum — p i A e.ENum — w.ENum

• (e.EN um , e.Salary * w.Hours, w.Hours) }

According to the general mapping, the specification above would be translated to
the following DBPL code:

sempl_work :=
REL.EWORK { {e.ENum, (e.Salary * FLOAT (w.Hours)), w.Hours} OF

EACH e IN empls, EACH w IN works :
(w.PNum = p) AND (e.ENum = w.ENum) };

However, the DBPL compiler rejects computations (in this case the multiplication)
in the projection list of relation expressions.

As already mentioned, the solution involves the declaration of an auxiliary tuple
variable such as the one presented below. Notice tha t the name and type of this variable
are mapped from the name and type of the corresponding relation, respectively.

VAR empl.work : EMPL.WORK; (*** Auxiliary tuple variable ***)

The prototype 114

The rest of the DBPL implementation code corresponding to the aforementioned
specification is presented below.

sempl.work := REL.EWORK { };

FOR EACH e IN empls : TRUE DO
FOR EACH w IN works (w.PNum = p) AND

(e.ENum = w.ENum) DO
empl.work.ENum := e.ENum;
empl_work. S a la ry := e .S a la ry * FLOAT (w .H ours);
empl_work. Hours := w.H ours;
sempl.work :+ REL_EWORK { empl_work >;

END;
END;

Finally, notice tha t even though the mapping is obviously more complicated than
tha t of the general case, it is still possible to generate the above code automatically.

8 .2 .3 Sorting o f resu lts

The DBPL system does not specifically support sorting of results. However, I have
developed a strategy to allow results to be sorted by an external call to the unix sort
command.

The general approach used is to (1) copy the relation tuples to a temporary unix file;
(2) call the unix sort with the appropriate parameters, which creates a second temporary
file; and (3) list the sorted file.

The implementation code is written using low-level commands and, thus, it is not
very short. However, the mapping per se is not too complicated because most of the
target code is simply pasted into the translation.

Before discussing the mapping of the SO R T operator to the appropriate DBPL
implementation code, a summary of the modifications which were needed in the setup
of the DBPL system is presented below.

• The standard modula-2 module InOut, which implements the low-level input and
output procedures, was modified to accept a filename as a param eter in procedures
Openlnput and OpenOutput, in addition to receiving it from a prompt to the
user. This was done to make the automatic generation and manipulation of the
temporary unix files used to sort relations transparent to the user running the
transactions. In addition, the modified module was called My InOut to make it
clear tha t it is not the standard module.

• A module called Aux.Procs was written to make a number of auxiliary tasks more
straightforward. One of its procedures, UnixCommand, simplifies the pipe to execute
a unix command from within a DBPL program, which is reduced to a procedure
call with the unix command being passed as a parameter of type STRING. The other
procedure, L is tU n ix F ile , receives a file name parameter and lists the contents of
the corresponding unix file.

The prototype 115

• The DBPL makefile dbpl .mk of the DBPL library was modified to include the new
modules MylnOut and Aux_Procs in the list of modules which are automatically
included in the linking stage of DBPL modules, so tha t these new modules can also
be used without an explicit import declaration, just like the standard modula-2
modules.

Now, the relevant implementation code for sorting relations is discussed. Since the
code is extensive and written in low-level language, only the main parts of the mapping
and corresponding code are presented.

The first part of the mapping involve copying, to a temporary unix file, the tuples of
the relation tha t must be sorted. The main issues involved in its mapping are discussed
below.

• The first information needed is a file name for this intermediate file. The adopted
convention is to name it /usr/temp/rel. i, where rel is the original name of the
relation to be sorted.

• The second key issue is the actual writing of each tuple. In DBPL, it is not possible
to write the complete tuple at once. Thus, it was necessary to write each of the
attributes separatedly and to explicitly write the newline character at the end of
the tuple. Also, the actual output commands require the length of the attribute
being written. So, it was necessary to embed an appropriate number as default for
each possible type of attribute. For example, the command used to print attribute
ENum of type CARDINAL using 5 digits is: My InOut. WriteCard (t.ENum, 5) ;.

After the intermediate unix file is written, it is necessary to call the unix sort with
the appropriate parameters, which sorts the first file and creates a second temporary
file. The name of this second file is, by convention, /usr/temp/rel, i.e. the name of the
first file without the extension “ . i”.

Since an auxiliary procedure (UnixCommand) was written to simplify the execution
of unix commands from within DBPL, the only issue is to generate the appropriate
parameters for the unix sort command. In particular, the only difficulty here refers to
the mapping of the sort key parameter. Basically, each key attribute must be mapped
to the string “+i.O -j .0”, where j is the relative position of the attribute within the
tuple (1 for first, 2 for second, etc.) and i is j minus one. In addition, the suffix “ -r”
is added to the above string for each attribute th a t must be sorted in descending order.

Finally, the sorted file must be printed, which is done by a simple call to the auxiliary
procedure L is tU n ix F ile . In addition, the two temporary unix files created are deleted
by another call to procedure UnixCommand passing the appropriate unix remove command
as a parameter.

8.2 .4 T yp e o f th e prim ary key a ttr ib u tes

Another problem tha t occurred regards the type of the attributes in the primary key of
relations. In the actual implementation of the DBPL system, attributes of type REAL
cannot be (part of) the primary key of relations.

The prototype 116

The proposed solution to this problem is to adopt an artificial surrogate primary key
for the relation, already in the specification level.

Another possible solution would be to store the values of the attribu te as integers.
These would then be converted to the corresponding real numbers by an appropriate
division operation, every time their values were needed for use in computations.

For instance, suppose an attribute Salary of type REAL (with two decimal digits)
were part of the primary key of a relation. Then, it would have to be stored as an integer.
Whenever its value in a given tuple t were needed for a computation, the expression
FLOAT (t. Salary) / 100 would be written instead of the usual t. Salary.

8.3 Current status of the im plem entation

This section describes the current status of the implementation of the prototype tool. It
summarizes what has already been implemented and what remains to be done in order
to generate the DBPL code corresponding to the complete example specification. It also
addresses the effort tha t would be required to generate code for another database system
and language, and presents a number of snapshots of the windows of the prototype.

Regarding the status of the prototype tool, the syntactic editor currently accepts all
the correct specifications referring to the structure part of the database and to most of the
simple operations. In particular, the foreign key compensating actions for deletes have
also been implemented. In addition, the tool enforces the correct syntax of the method
at selected parts of the specifications. The definitions of the views for generating the
DBPL code corresponding to all these features have also been written. Nevertheless, the
specification of more complicated transactions and the error handling schemas have not
been written yet.

In respect of a possible implementation of the mapping to generate programs to be
run in another database system, the effort required would depend on a number of points.
If the aim were to implement another prototype, the effort should be reasonably small
because the syntactic editor is already built. Hence, the only difficulty would be to adapt
the mapping to consider the limitations imposed by the chosen system, since writing the
SSL code for the views is fairy simple.

On the other hand, to construct a production tool for DBPL, or even for some other
system, would require a bigger effort because the syntactic editor would have to go
through a major revision to be able to enforce all the features of the method.

Now, to give a better idea of what the prototype tool looks like, snapshots of a
number of screens are provided. For instance, Figures 8.1 and 8.2 present consecutive
snapshots of the specification window. These include the intention and extension of the
relations as well as part of the database state schema of the company database example
introduced in Chapter 6.

The generated DBPL implementation code corresponding to these specifications is
presented in Figure 8.3, which is a snapshot of the TYPES_D view. This view allows for
the generation of the definition module tha t contains all the global types. The snapshot
shows the types of the intentions and extensions of all the relations, and this includes
the primary keys of the relations.

The prototype 117

P
m ------------------------------- Pi-ot.str
File Edit VieM Options Structure Tent
Read /tnp_nnt/local/shape/dbpl/dbpltape/Prot/Prot*str
Intention of relations

\Jbegin{zed}
EMPL * \defs ~ [ENum: ENUM; Sex: SEX; Salary: SALARY;

SupENum: ENUM; DNum: DNUM]
\also
\also
DEPT - \defs - [DNum: DNUM; ManENum: ENUM; NEmp: NEMP]
\also
\also
PROJ " \defs ~ [PNum: PNUM; DNum: DNUM]
\also
\also
WORK - \defs - [ENum: ENUM; PNum: PNUM; Hours: HOURS]
\end{zed}

Extension of relations

\Jb e gin {s chema} {Emp loye e}
empls: \power EMPL
\where
REQUIRED " empls ~ ENum * \land \\
REQUIRED ~ empls « Sex ~ \land \\
REQUIRED ~ empls « Salary - \land \\
REQUIRED ~ empls « DNum \land \\
\also
KEY_0F « empls « ENum
\end{schema}

\begin{schema}{Depart}
depts: \power DEPT
\where
REQUIRED ~ depts « DNum ~ \land \\
REQUIRED * depts « ManENum " \land \\
\also
KEY_0F ~ depts « DNum

Content; ident declList

Da.

Figure 8.1: The prototype - specification window - part 1

The prototype 118

]vj Prot.stf
File Edit View Options Structure Text
Read /tnp.nnt/local/shape/dbpl/dbpltape/Prot/Prot« str
\also
KEY_0F « depts ~ DNum
\end{schema}

\begin{schema}{Project)
projs: \power PROJ
\where

projs « PNum
projs « DNum

REQUIRED
REQUIRED
\also
KEY_0F
\end{ schema}

~ \land
« \land

\ \
\ \

projs « PNum

\begin{schema){Work}
works: \power WORK
\where
REQUIRED
REQUIRED
REQUIRED
\aIso
KEY\ OF

~ works
~ works
~ works

« ENum
« PNum
~ Hours

*• \land
~ \land
~ \land

\ \
\ \w

~ works ~ (CA2 ~ ENum * PNum)
\er\d{ schema)

The database state schema

\begin{schema}{DB}
Employee
Depart
Project
Work
\where
F0R_KEY -v empls * SupENum
F0R_KEY ~ depts « ManENum
F0R_KEY ~ works ~ ENum
F0R_KEY -v empls « DNum

empls
empls
empls
depts

~ ENum
* ENum
~ ENum
« DNum

" \land \\
« \land \\
~ \land \\
« \land \\

Context: ident declList

Da.

Figure 8.2: The prototype - specification window - part 2

The prototype 119

Fnr Pro t.st r[T Y P ES _ D]
■ ■ ■ ■ E S S

1 _ 1
(********* Relation intentions - record types

TYPE

EMPL * RECORD
ENum:
Sex:
Salary:
SupENum:
DNum:

END;

ENUM;
SEX;
SALARY;
ENUM;
DNUM;

DEPT = RECORD
DNum:
ManENum:
NEmp:

END;

DNUM;
ENUM;
NEMP;

PROJ = RECORD
PNum:
DNum:

END;

PNUM;
DNUM;

i WORK = RECORD
11 ENum:
g *PNum:
II Hours:
1 END;

ENUM;
PNUM;
HOURS;

(******** Auxiliar types - relation extensions + + + +

TYPE

REL_EMPL = RELATION
REL_DEPT = RELATION
REL_PR0J = RELATION
REL_W0RK = RELATION

ENum OF
DNum OF
PNum OF
ENum, PNum OF

EMPL;
DEPT;
PROJ;
WORK;

ConteKt: ident rellntList

Figure 8.3: The prototype - DBPL database structure window

The prototype 120

8.4 Prototyping with the synthesizer generator

This section provides a quick introduction to the Synthesizer Generator. Emphasis is
given on the basic features needed to generate syntactic editors and on the capabilities
of the system.

Some detail on the syntax of the Synthesizer Specification Language (SSL) is also
provided. For specific details on the syntax of SSL it is better to look at the selected
SSL code presented in Appendix B.

Basically, the user provides a specification written in SSL describing a language and
the system creates a syntactic editor for the language.

In a sense, SSL is in fact a set of specification languages integrated in a single
language. These sublanguages provide constructs to define the abstract syntax, context-
sensitive relationships, and the input and output display syntax of the target language
in a single specification language.

8.4 .1 T he abstract syn tax

The abstract syntax is the most im portant part of a specification to generate a syntactic
editor using the synthesizer generator. Even though it is not the most extensive part,
it is probably the one th a t requires most attention (design) because most other parts of
the specification depend on the abstract syntax.

The abstract syntax specification is essentially a context free specification of the
target language (or method) underlying structure which will be used by the synthesizer
generator to implement a syntactic editor.

The abstract syntax specification is formed by a root declaration, which gives the
phylum name of the root of the tree (ro o t phylum;), and a number of productions
(equations) following the pattern

phylum : p ro d u c tio n (sub-phy la) ;

where phylum is a node in the tree, p ro d u c tio n is the name of a possible production of
the language syntax and sub-phy la is a list of phylum names separated by spaces. For
each non-terminal phylum in the right hand side of a production there must be at least
one equation describing it further.

Also, several productions of a given phylum can be written together, as shown below,
which should improve the readability of the specifications.

phylum : p ro d u c tio n (sub-phy la) ,
I p ro d u c tio n (sub-phy la) ,
I . . .

I p ro d u c tio n (sub-phy la) ;

Finally, there are three special declarations which declare phyla as being optional
(o p tio n a l phylum;), list (l i s t phylum;) and optional list (o p tio n a l l i s t phylum;)
respectively and should precede their equations. For more details on these please refer
to the selected SSL code given in Appendix B.

The prototype 121

8.4 .2 U nparsing rules

The unparsing rules are the part of the specification used to define how “programs”
written using the syntactic editor are to be displayed on the screen.

For each production of the abstract syntax the user specifies the display format
by adding constants and tabulations (indentation and newlines) to the values of its
sub-phyla, in addition to whether the phyla can be text edited or not, and also which
sub-phyla can be selected and which cannot.

The specification of an unparsing rule follows the pattern below, where s e l e c t - f l a g
specifies whether the phylum can be selected (Q) or not (~), t e x t - e d i t - f la g specifies
whether the phylum can be text edited (: :-) or not (:) , and d is p la y defines how the
phylum is displayed.

phylum : p ro d u c tio n [s e l e c t - f l a g t e x t - e d i t - f l a g d isp la y] ;

The d isp la y part of the unparsing rules combines constants, the tabulation charac
ters for newline ('/,n) and indentation (*/,t and */,b), and the value of attributes together
with a s e le c t - f l a g for each sub-phylum. Starting from the left, each s e le c t - f l a g is
associated with a phylum and defines where it will be displayed.

Finally, since there is usually one unparsing rule for each production of the abstract
syntax, they can be written together as follows:

phylum : p ro d u c tio n (sub -phy la)
[s e l e c t - f l a g t e x t - e d i t - f l a g d isp la y] ;

8 .4 .3 T em plate transform ation s

A template transformation is a facility for creating commands th a t change the structure
of documents and allow navigation downwards in the syntactic tree. In other words,
these commands transform a given node in the tree into one of its syntactic subtrees.

When used together with the X Windows system, the synthesizer Generator will
create a button for each template transformation. This facility enables the activation of
these transformations to be done by clicking the buttons with the mouse.

The syntax for defining a template transformation is usually given by:

tran sfo rm phylum on "temp-name" p a t te r n : p ro d u c tio n ;

where phylum is the name of the node to be transformed, temp-name is the string naming
the corresponding button, p a t te r n is usually <phylum>, and p ro d u c tio n is the name of
a production of the phylum followed, when appropriate, by its parameters (sub-phyla)
within parentheses. The parameters are usually listed like patterns i.e., they are written
as <sub-phylum>.

Optionally, the template transformations can also include a w hen-clause with a
boolean condition to restrict the application of certain transformations. In these cases,
the p a t te r n is usually a pattern variable which is used within the w hen-clause to access
the phylum attributes.

The prototype 122

8 .4 .4 T he use of a ttr ib u tes

Attributes are variables used to pass information to other nodes of the tree. The use of
attributes allows for the implementation of context-sensitive checks, i.e., checks which
depend on more than one node.

More generally, attributes may contain arbitrary auxiliary information and the col
lection of all attributes constitutes a database tha t can be used to present information
on the screen and to control the editing process.

The values given to the attributes are defined by attribute equations which are usually
written for each production of the phyla. Before an attribute is used it is often necessary
to declare it. An attribute declaration is written as:

k ind phylum name;

where kind is the kind of attribute being defined, phylum is the “type” of information
it stores, and name is its name.

The synthesizer generator supports four kinds of attributes: synthesized (syn),
inherited (inh), local (lo c a l) , and non-terminal attributes. Their main characteristics
are presented below.

S yn th esized a ttr ib u tes

• They are used to pass information to nodes up in the syntactic tree, i.e., they pass
information from the node to the parent node.

• Their values are specified in the productions of the node where they are defined
and are accessible in the parent nodes, i.e., the nodes one level up in the tree.

• Equations defining values for synthesized attributes always refer to the phylum
(node) in the left hand side of the production.

• References to a synthesized attribute a of a phylum p are written as p .a . The
phylum on the left hand side of the production can also be referred to by $$. If
there are two or more occurrences of a given phylum p in the production, then
p$ l, p$2, etc. are used to refer to them and are taken from left to right.

Inherited a ttrib u tes

• They are used to pass information to nodes down in the syntactic tree, i.e., they
pass information from the parent node to the node.

• Their values are specified in the productions of the parent node (one level up) and
are accessible in the nodes where they are defined.

• Equations defining values for inherited attributes always refer to one of the phyla
(nodes) in the right hand side of the production.

• References to inherited attributes are similar to the case of synthesized attributes.

The prototype 123

Local a ttr ib u tes

• Their definitions and values are local to one the productions of the phylum only,
rather than the phylum. Their names are, therefore, enough to refer to them inside
the production.

• Local attributes are the best choice to implement error messages since these tend
to be different from one production to another.

• A useful way of implementing global checks is to define a local attribute at the
root production of the tree and use a facility called upward remote attribute set to
access it from all nodes of the tree. Such an attribute is accessed by the expression
{p .a} , where p is the production name1 and a is the attribute name.

N on -term in a l a ttr ib u tes

• Every non-terminal in a production may be seen as an attribute and, thus, it may
be used in attribute equations. No explicit declaration is needed.

• References to non-terminal attributes are similar to the cases of synthesized and
inherited attributes except for no attribute name is given.

• If an equation is written giving a value to a non-terminal phylum attribute, i.e.,
its value is derived from the values of other attributes, the effect is to make the
node read only.

8.4 .5 T he concrete syn tax for te x t ed itin g

The synthesizer generator also supports a text editing facility, in addition to the structure
editing. The main reason is tha t structure editing can be too slow sometimes, but this
facility is also useful to read and syntax-check existing documents using the editor.

In order to allow the text editing and re-editing of certain nodes (phyla) the user
needs to follow a number of extra steps.

Firstly, for each phylum where text editing will be allowed there must be a corre
sponding phylum declaration for its concrete syntax. This phylum must have at least
one attribute, usually synthesized, which is used to specify how the concrete syntax is
translated to the abstract syntax. Their definitions are presented below:

concrete-phylum {syn abstract-phylum name;

Then, for each concrete phylum created, an explicit entry declaration is written. This
declaration allows for the association of the attribute with the corresponding phylum of
the abstract syntax and is given by:

abstract-phylum ~ concrete-phylum.name;

1 In fact synthesized and inherited attributes can also be accessed by an upward remote attribute set
and in this case p is the phylum name.

The prototype 124

Finally, for each different pattern of text editing allowed in each concrete phylum
there must be an attribute equation giving the value of the attribute, i.e., the actual
translation to terms of the abstract syntax, as given below.

concrete-phylum ::= (p a t te rn) { $$.name = a b s tr a c t- e q u a t io n ; >;

Notice that, in the above equation, p a t te r n can be any combination of concrete
phyla, lexicals, and/or single characters (e.g. ’ c ’); $$ is a short-hand for the left-hand
side phylum in attribute equations (i.e. concrete-phylum); and a b s tr a c t- e q u a t io n is
any equation of the abstract syntax such tha t it has the a b s trac t-p h y lu m type.

As in other parts of the specification, more than one pattern for text editing of the
same phylum can be written together as follows:

concrete-phylum ::= (p a tte rn) { $$.name = a b s tr a c t- e q u a t io n ;
I (p a tte rn) { $$.name = a b s tr a c t- e q u a t io n ;
I . . .

I (p a tte rn) ■($$.name = a b s tr a c t- e q u a t io n ; };

8 .4 .6 U sin g v iew s to generate code

One of the most distinct features of the synthesizer generator is to support the definition
of different views for the display of different information. When used together with the
X Windows system, different views can be presented at the same time using separate
windows.

One of the advantages of this facility is to allow the users to create views which
displays the information using different levels of abstraction. For example, in addition
to the main view, users might have a view tha t omit the comments, another tha t omit
the errors, and so on.

However, the main advantage of the view facility is to permit the generation of
alternative display schemes which are automatically updated by the system. These make
it very easy to generate code written in a different language as long as the mapping is
well defined.

Basically, the user gives a different name to each different view by means of a view
declaration (view name;) and defines a new set of unparsing rules for each view, where
the name of the view is written before the s e l e c t - f l a g as follows:

phylum : p ro d u c tio n [view s e le c t - f l a g t e x t - e d i t - f l a g d isp la y] ;

Naturally, it is still necessary to design the mapping between the languages and,
thus, a number of different types of information will usually be needed in order to make
the translation possible, i.e., a number of extra attributes are required.

The most obvious application of this facility is to generate the equivalent object
code from source code written in a high level programming language. It is obviously
also possible to generate source code in another high-level language.

As already mentioned, the view facility of the Synthesizer Generator was exploited
to automatically generate relational database programs written in DBPL.

The prototype 125

8 .4 .7 O ther featu res

The Synthesizer Generator also provides a number of other features which are not going
to be described here. These include conditional, let, and binding expressions; comparison
and logical operators; conversion of terms from and to strings; glyphs; etc. Others like
for example Lexical declarations and functions are briefly described below.

L exical declarations

The synthesizer generator system also allows the user to define patterns for the name of
identifiers by means of regular expressions called lexical declarations. In fact, there must
be one lexical declaration for each keyword or multi-character token of the language.

Lexical declarations must be declared before they can be used. Thus, they are usually
the first part of every SSL specification. Also, the order of the declarations is im portant
since names will be matched by the first lexical declaration to be satisfied.

Finally, lexical declarations can also be used to give names to text editing commands.
This contributes to improving the readability of the patterns in the specification of the
concrete input syntax.

Functions

The system also allows the user to define functions similarly to the way it is done in
high level programming languages like for example Pascal.

Just like in the programming world, the main reasons to use this facility are (1) to
reuse parts of the specifications which are basically the same, and (2) to structure the
specifications and make them easier to read.

8.5 Conclusion

This Chapter provided an outline of the experiment tha t was carried out and involved the
implementation of a prototype tool to support the method (Chapter 4) and instantiate
the mapping (Chapter 7) for the DBPL system. This concludes the principal part of
this thesis.

Next is Chapter 9, which closes the main body of the thesis and presents the overall
conclusions reached by the research.

Chapter 9

Conclusion

In this thesis, an extension aimed at enhancing the traditional database design process
was proposed. It adds a number of phases to the traditional process and aims to formalize
the development of (relational) database applications (transactions).

In the perfect world, applications should be formally specified and modularization
techniques used, when necessary, to make the specifications easier to understand. Also,
reasoning and/or refinement techniques could be applied before the implementation is
actually developed.

This work has addressed the problems of specifying relational database applications
and of deriving relational database programs directly from the specifications. However,
the use of modularization and formal reasoning techniques have only been investigated
superficially and are not included in the thesis. Furthermore, the use of refinement
techniques has not been addressed at all.

Specifically, most of the thesis was devoted to the presentation of the following:

• A well defined set of rules for the formal specification of relational databases and
their applications using Z. Throughout the thesis, this set of rules is referred to as
“the method” .

• A partial set of rules for the generation of database applications directly from
formal specifications written in Z according to the method. These rules are called
the mapping.

• The description of a prototype syntactic tool which aims to support and enforce
a reasonably large subset of the method. In addition, the prototype instantiates
and partially implements the mapping for a particular RDBMS.

9.1 The m ethod

An im portant first part of this research was the development of a method for the formal
specification of relational database applications. The method provided a formal starting
point for the investigation of all other aspects of the work. Therefore, it was vital to
improve it as much as possible before proceeding to investigate the other parts because
a weak method would probably make the whole work fail.

126

Conclusion 127

The complete description of the method (last version) was introduced in Chapter 4,
whereas Chapter 5 dealt with the formal definition of the generic operators used in
the specifications prescribed by the method. A lengthy example specification using the
method was presented in Chapter 6.

The method is aimed at formalizing the design of real relational database transactions
and, so, it should help practitioners in the development of real world applications. In
addition, the method is generic and may be the first step in the direction of the formal
development of database applications and of specification standardization in this context.
Moreover, it should improve the system documentation and the quality of the application
programs which should contain fewer errors.

It is believed the method achieves the proposed objectives. Firstly, it provides a sim
ple way of specifying relational database applications formally. Secondly, it is generic
and may be the first step in the direction of the formal development of database applica
tions and of specification standardization in this context. Thirdly, it deals not only with
the correct behaviour of the operations, but also with the specification of errors. Finally,
because of its ease-of-use, it may be applied to the specification and documentation of
relational database systems.

Also, the method is specifically intended to be used in the formal specification of rela
tional database applications. Thus, it should lead to specifications which are amenable
to implementation using RDBMSs. Even so, specifications written according to the
method do not address issues of system performance or difficulty of implementation for
any particular RDBMS. On the contrary, it could possibly be used to specify systems
which are to be implemented using either DBMSs based on other approaches, e.g. the
inverted list approach [5, pp. 737-751], or even a file-based approach.

Note tha t the choice of Z in this work does not preclude using other model-oriented
languages. This means tha t the method is generic and th a t different users may use
different specification languages to specify their applications. In particular, a previous
paper on this method [127] was written in Zc [128, 129], a strongly-typed Z-like language,
with minor modifications only.

9.2 The mapping

The (semi-) automatic generation of relational database applications through a simple
translation process directly from formal specifications tha t result from using the method
(reification) was also subject of investigation.

More specifically, this thesis addressed the problems involved in the derivation of
appropriate relational database programs directly from specifications written according
to the method.

The mapping introduced in Chapter 7 described, for a comprehensive subset of the
method, what the target implementation code should look like, without binding it to
any particular database system or language. However, most examples were written in
DBPL [7, 8, 9], a RDBMS built in the University of Hamburg, because this was the
target system used to build the prototype.

Conclusion 128

It was claimed most previous approaches to the derivation of databases programs had
not properly addressed the problem, because the problem was either kept too general,
without being restricted to any particular database model, or greatly simplified, by
not addressing the specification of the database constraints and/or more complicated
transactions. The work described here is restricted to the relational database model and
addresses all possible constraints as well as generic transactions.

9.3 The prototype

An intrinsic part of this thesis is a prototype tool which was built to support the method
and implement the mapping. Its components are a syntactic editor for the method and
a built-in tool which translates the specifications to database commands.

Since the tool is only a prototype, it does not support the full method. Nevertheless,
a comprehensive subset of all correct specifications is accepted by the syntactic editor.
The implementation of the mapping, which generates relational database applications
to be run in the DBPL system, is also partial.

The prototype was developed using the Synthesizer Generator [10, 11], which is a
powerful tool for implementing language-based editors. It allows for the generation of
syntactic editors fairly quickly, as long as the syntax and semantics of the target language
are well defined.

The effort to learn the basic features of the system was also fairly small. It took about
two weeks to get the first specification running and another two weeks to experiment
with most of the features of the system.

The Synthesizer Generator helped to create appropriate support to using the method
for the specification of relational database applications as well as to deriving relational
database programs from the specifications.

In particular, the view facility of the Synthesizer Generator was used to automatically
generate parts of relational database programs written for a given RDBMS and 4GL (or
query/host language), namely the DBPL system. The syntactic editor th a t supports
and enforces the method is a bonus. Eventually, the process could be instantiated for a
RDBMS offering SQL [21] as its data-sublanguage, e.g. DB2 [124],

As far as I can see, the main challenge was to come up with a good design for
instantiating the general mapping to the particular RDBMS chosen (DBPL) within the
time available. Writing the SSL specification for the syntactic editor and using the view
facility to generate database programs per se were reasonably straightforward.

9.4 The specification o f database transactions in Z

One of the conclusions of this thesis is tha t the choice of Z as the formal language for
the specification of relational database transactions was an appropriate decision.

In the main, the specification method uses only standard Z [3]. Still, most aspects
of the method are clear and simple and are defined using a suitable level of abstraction.

The extensions to Z used or suggested in this thesis were kept to a minimum. These
are presented below.

Conclusion 129

T h e tu p le ty p e : This extension was proposed by van Diepen and van Hee [116] and is
aimed at preventing the users from specifying predicates as part of a type definition.
The method uses it for defining the intention of relations (rule D2).

T h e ex p re ss io n using "EDB: This refers to an artifice aimed at achieving a more clear
way of saying what variables of the state schema are going to be changed by update
operations. In standard Z, these expressions are syntactically correct but they
are only accepted in the predicate part of the schemas. The method uses such
expressions in the specification of all update operations (rules B5-B10).

T h e But o p e ra to r : This extension makes possible the modification of one or more a t
tributes of variables of a tuple type, preserving the values of the other attributes
of the tuple. This extension was first needed in the specification of update opera
tions (rule B9) and it is particularly useful because the resulting update operations
need not be changed if new attributes are added to the corresponding relations.
However, the method also uses this operator for defining views based on updates
(rule A5.4) and in the formal specification of the UPDATE operator (Section 5.4).

T h e sch em a p ip ing (> >) : The version of the schema piping used in this thesis allows
for the output and primed state variables (all results) of the first schema to be
matched against the input and unprimed state variables of the second schema,
respectively. In standard Z, the schema piping does not match the state variables.
The method used the schema piping for the specification of the correct behaviour
of transactions (rule A l).

9.5 Further work

One natural extension to the method refers to the modularization of the specifications
tha t result from the application of the method. This can be achieved by using the
modularization structures Document and Chapter of Zc, also proposed for incorporation
in Z [41]. These structures have been used to modularize the specification of real life
systems, such as a Student Records Control System [1] and the Interface of a Hypertext
System [130], with good results.

The idea is to split the specification of systems (documents) into several modules
(chapters) based on the connections between objects. Specifically, the specification of
complex relational databases should be split into several Chapters based on the connec
tions between the relations, i.e. the foreign keys. This would result in a specification
which is modular and, therefore, easier to understand. The problems th a t may arise from
such a separation and a detailed explanation of what is needed to avoid these problems
are planned to be investigated in the near future.

The full treatm ent for error handling could also be subject of future work. The
main objective would be to try to identify, for each of the operations prescribed by
the method, all the possible kinds of constraints tha t might be violated. Moreover, it
might even be possible to identify specific equations in the simplified precondition of
the transactions tha t correspond to certain operation and constraint pairs. The results

Conclusion 130

of such investigation could then lead to a more straight-forward way of developing the
precondition of database transactions written according to the method. The automatic
generation of parts of the predicate of the error schemas associated with the transactions
might also be feasible.

The application of reasoning techniques to specifications written according to the
method could also be investigated. The approach would be to try and come up with
standard theorems about common properties of such specifications and prove them so
th a t the users would be discharged from proving them again. The main benefit would
be to formally prove th a t the method is sound and th a t transactions specified according
to method do indeed maintain the consistency of the database.

One possible approach to prove the theorems about relational specifications written
according to the method could be to generate, using another view in the prototype tool,
a version of the specifications written in the formal specification language adopted by
some other system supporting theorem proving, e.g. ADABTPL [101]. The theorems
could then be checked by the theorem prover, either by translating the theorems written
in Z or by writing them already in the appropriate language.

Another possibility is to adapt the generic mapping to generate code for another
relational database system, possibly a system providing SQL as the query language.
In particular, it would be really interesting if such a project could be developed in
partnership with an existing company and were targeted at a DBMS th a t is actually
used in the development of real, large-scale relational database applications.

There are a number of other directions in which this research could advance. One of
them would be to work on guidelines aimed at maximizing the reuse of specifications of
sub-transactions. Even if a complete investigation of this problem in not carried out, it
should be possible to write a number of guidelines based on the experience gained with
the specification of the company database example.

Another way to proceed would be to use a controlled experiment to compare the
specification of simple relational database applications written using the method against
others written without the method. To be meaningful, such an experiment would have
to be carried out using several groups of people with different backgrounds. The results
of the experiment would probably enable an easier identification of the strengths and
weaknesses of the method and, thus, help to improve it.

Finally, it is possible tha t the method can be adapted for developing object-oriented
database [131] applications and this could also be subject to investigation.

9.6 Final remark

To conclude, it is believed the mapping process described in this thesis, as well as its
actual prototype implementation for DBPL (and indeed for most RDBMSs), are neither
too easy nor too difficult. Moreover, it is claimed this work provides evidence tha t the
application of formal techniques in the development of real life software is feasible. Even
though there is no formal proof tha t the mapping retains all the properties of the method,
the well-defined semantics of the relational model together with extensive testing of the
prototype suggests this is indeed the case.

A ppendix A

Sim plification of a precondition

In this appendix, the precondition of transaction M ove-empls—proj-O k is to be written
and simplified, since only the simplified precondition was introduced in the specification
of the example (Chapter 6, Subsection 6.6.2, page 78).

Before this, the simplified specification of the transaction is presented again in order
to make the simplification process easier to follow.

 M ove-empls-proj -O k __
A DB

pl? ,p2? : PNUM
prop. : PROJ

3D B \ (projs, works)

prop. .PNum = p2? A

3 p j : projs • pj.PN um = p 1? A

projs' = if -i (3 pj -.projs • pj.PN um = p2?)
then D ELETE (projs U proj?) PNum p i?
else D ELETE projs PNum p i? A

works' = { w : works • if w.PNum = p i?
then w \ (PNum = p2?)
else w }

As usual, the predicate of schema pre Move—empls -pro j-O k is given by:

3 DB' • M ove-em pls-proj-O k

Expanding the above schema expression will result in:

3D B ' •
A DB A

E.DB \ (projs, works) A

131

Simplification o f a precondition 132

proj?.PNum = p2? A

3 p j : projs • pj.PN um = p i? A

projs' = i f -i (3pj : projs • pj.PN um = p2?)
th e n D ELETE (projs U proj?) PNum pi?
e lse D ELETE projs PNum pi? A

works' = { w : works • i f w.PNum = p i?
th e n w \ (PNum — p2?)
else w }

Notice tha t the third and fourth equations are independent of DB' and, thus, can be
moved outside the existential quantifier. Although schema A DB includes all database
constraints, only the ones involving the changed relations (projs' and works') are to be
considered, because the database is always in a valid state before any operation. Also,
the unchanged relations empls' and depts' are taken out of the outer existential quantifier
and references to these are changed to empls and depts, respectively.

After rearranging the predicate to group equations by relation, in order to simplify
its understanding, the above precondition expands to:

proj?.PNum = p2? A

3 p j : projs • pj.PN um = p i? A

3 projs' : P P R O J ; works' : P WORK •
REQUIRED projs' PNum A
REQUIRED projs' DNum A

K E Y -O F projs' PNum A

FOR—K E Y projs' DNum depts DNum A

projs' = i f -i (3pj : projs • pj.PN um = p2?)
th e n D ELETE (projs U proj?) PNum pi?
e lse D ELETE projs PNum pi? A

REQUIRED works' ENum A
REQUIRED works' PNum A
REQUIRED works' Hours A

K E Y -O F works' (CA2 ENum PNum) A

FOR—K E Y works' ENum empls ENum A
F O R -K E Y works' PNum projs' PNum A

V w : works' • w.Hours > 4 A

Ve : empls • (3ty : works' • w.ENum = e.ENum) A

works' = { w : works • i f w.PNum = pi?
th e n w \ (PNum — p2?)
else w }

Simplification o f a precondition 133

Regarding the constraints involving relation projs', required attribute constraints,
primary key constraints, and foreign key constraints are affected only by insertions and
updates. Therefore, these can only be affected if project p 2? doesn’t exist. For this
reason, an appropriate implication is added, even though it is not strictly needed at this
point, since it will make the next step easier. However, because p 2? is guaranteed to be
the primary key PNum of the inserted tuple proj?, the primary key constraint cannot
be violated and is omitted.

Regarding the constraints involving relation works', the following assertions are true:
no tuple is inserted or deleted, and attributes ENum and Hours are not changed. So,
the corresponding required attribute constraints cannot be violated and are omitted.
For the same reason, the first of the foreign key constraints and the other two attribute
constraints (universal quantifiers) cannot be violated either and are omitted as well.

All these changes simplify the precondition to the following:

proj?.PNum = p2? A

3 p j : projs • pj.PN um = pi? A

3 projs' : P PROJ] works' : P WORK •
-i (3 pj : projs • pj.PN um = p2?) =>

(REQUIRED projs' PNum A
REQUIRED projs' DNum A
F O R -K E Y projs' DNum depts DNum) A

projs' = i f -i (3pj : projs • pj.PN um = p2?)
t h e n D ELETE (projs U proj?) PNum pi?
e l s e D ELETE projs PNum pi? A

REQUIRED works' PNum A
K E Y -O F works' (CA2 ENum PNum) A
FOR—K E Y works' PNum projs' PNum A

works' = { w : works • i f w.PNum = pi?
t h e n w \ (PNum = p2?)
e l s e w }

Now, since 3 x • (x = y A P (x)) is equivalent to P(y), projs' and all related equa
tions can be removed from the existential quantifier. Notice th a t the first conditional
statem ent (i f - t h e n - e l s e) is regarded as an equation of the form projs' = y. This is
possible because the constraints th a t can only be affected if project p2? doesn’t exist
have already been enforced by an explicit implication in the previous step.

In addition, because the database is always in a valid state before any operation,
the required and foreign key constraints can be simplified to check only the inserted
or changed tuples. Also, the primary key operator is substituted for its corresponding
predicates. The precondition resulting from these changes is presented below.

proj?.PNum = p2? A

3 pj : projs • pj.PN um = p 1? A

Simplification o f a precondition 134

-i (3 pj : projs • pj.PN um = p2?) =>
(proj?.PNum ± N U LLN AT A

proj?.DNum ± NU LLN AT A
3 dp : depts • dp.DNum = proj?.DNum) A

3 works' : P W ORK •
p2? ± N U LLN AT A

-i (3 w l, w2 : works' • w l.E N um = w2.ENum A
w l.PN um = w2.PNum) A

works' = { w : works • if w.PNum = p i?
t h e n w \ (PNum = p2?)
e l s e w }

Again, because 3 x • (x = y A P(x)) is equivalent to P (y), the quantifier over
projs' can be removed. Also, the predicate proj?.PNum ^ N U LLN A T is equivalent to
p2? 7̂ N U LLN A T , because proj?.PNum = p2?. Since the former must hold if project
p2? does not exist and the latter must hold at all times, the former can be omitted.

p2? ± N U LLN AT A

proj?.PNum = p2? A

3 pj : projs • pj.PN um = pi? A

-i (3 pj : projs • pj .PNum = p2?) =>■
(proj?.DNum ^ N U LLN AT A

3 dp : depts • dp.DNum = proj?.DNum) A

-i (3 w l, w2 : { w : works • if w.PNum = pi?
t h e n w \ (PNum = p2?)
e l s e w } • w l.EN um = w2.ENum A

w2.PNum = w2.PNum)

Finally, because the database is always in a valid state before any operation, there is
only one way the last constraint can be violated, which is when one of the changed tuples
and one of the unchanged tuples have the same primary key. Assuming w l stands for the
changed tuple, the above predicate is equivalent to the one given below, which is exactly
the simplified precondition of transaction M ove-em pls-proj_0k presented in page 78.

p2? ^ N U LLN AT A

proj?.PNum = p2? A

3 pj : projs • pj.PN um = pi? A

* (3 pj : projs • pj .PNum = p2?) =*►
(proj?.DNum ^ NU LLNAT A

3 dp : depts • dp.DNum — proj?.DNum) A

-i (3 w l, w2 : works • w l.EN um = w2.ENum A
w l.PN um -- p i? A w2.PNum = p2?)

A ppendix B

Selected SSL code

This appendix presents selected parts of the SSL code written to generate the prototype
(discussed in Chapter 8). The aim here is to give a concrete idea of the structure of SSL
specifications by introducing an example which contains all the syntax details.

Each of the following sections includes specifications th a t use a different feature of
SSL. Most of the included specifications refer to the domains and the relations of the
specification method in order to make it easier to understand the relationships among
distinct parts of the SSL code.

Finally, no extra explanation is provided in this appendix. Thus, the reader may find
it helpful to refer to the introduction to the synthesizer generator (Section 8.4) while
reading the rest of this appendix.

B .l Abstract syntax

root specification;

specification : Spec (domDefList rellntList relExtList
state basicOperList transList);

list domDefList; /* List of domain definitions */
domDefList : DomDefListNil ()

I DomDefListPair (domDef domDefList);

domDef : DomDef (ident domExp); /* Domain definition */

domExp : EmptyDom () /* Domain expression */
I IntDom, NatDom, RealDom, BoolDom, StrDom ()
I EnumDomExp (identList);

list rellntList; /* List of relation intentions */
rellntList : RellntListNil ()

I RellntListPair (relint rellntList);

relint : Relint (ident declList); /* Relation intention */

135

Selected SSL code 136

list relExtList; /* List of relation extensions */
relExtList : RelExtListNil ()

I RelExtListPair (relExt relExtList);

/* Relation extension */
relExt : RelExt (ident ident ident identList ident3 optConstr);

/* The state schemas: DB, DeltaDB, XiDB, and InitDB */
state : State (ident identList forKeyList

optConstr optConstr identList);

list forKeyList; /* List of foreign key constraints */
forKeyList : ForKeyListNil ()

I ForKeyListPair (forKey forKeyList);

forKey : ForKey (ident ident3 ident); /* Foreign key constraint */

list declList; /* List of declarations */
declList : DeclListNil ()

I DeclListPair (decl declList);

decl : Decl (ident declExp); /* Declaration */

declExp : EmptyDecl () /* Declaration expression */
IntDecl, NatDecl, RealDecl, BoolDecl, StrDecl ()
IdentDeclExp (ident)
PowerDeclExp (declExp)
SeqDeclExp (declExp)
CartProdExp (declExp declExp)
SetUnionExp (declExp declExp);

list identList; /* List of identifiers */
identList : IdentListNil ()

I IdentListPair (ident identList);

ident : IdentNull () /* Normal identifiers */
I Ident (IDENT);

ident3 : Ident3 (ident) /* Identifiers allowing composition */
I CA2 (ident ident);

Selected SSL code 137

B.2 A ttribute definitions

domDefList { syn identList domNames; }; /* All domain names */

domDef { syn ident name; }; /* Name of the domain */

domExp { syn STR equal; >; /* Equality sign for domains defs. */

I* Schema names of all relation intentions */
rellntList { syn identList intNames;)•;

relint { syn ident name; }; /* Schema name of relation intention */

/* Attributes of relExt aggregating all relation extensions */
relExtList { syn identList schNames;

syn identList relNames;
syn STR relPKeys; };

relExt { syn ident schName; /* Schema name of relation extension */
syn ident relName;
syn STR relPKey; };

state { syn ident name; };

identList { inh STR listSep; };

specification : Spec
{ local identList domNames;
domNames - domDefList.domNames;

local rellntList rellnts;
rellnts - rellntList;

local identList intNames;
intNames = rellntList.intNames;

local relExtList relExts;
relExts = relExtList;

local identList REschNames;
REschNames = relExtList.schNames;

local identList relNames;
relNames = relExtList.relNames;

/* Relat. extension variable name */
/* Relation of Primary key type */
/* formatted for TYPES-I view. */

/* Name of the state schema */

/* identifiers list separator */

Selected SSL code 138

local ident DBname;
DBname = state.name; };

domDefList : DomDefListNil
{ $$.domNames - IdentListNil; >;

domDefList : DomDefListPair
{ $$.domNames = (domDef.name :: domDefList$2.domNames); };

domDef : DomDef
{ local STR domError;

domError * (ident$l == IdentNull I I
NumDecl (ident$l, {Spec. domNames}-) < 2) ?

mi . n *** Duplicate domain name ***";
$$.name = ident$l; };

domExp EmptyDom { $$.equal = " == "; }
domExp IntDom { $$.equal
domExp NatDom { $$.equal
domExp RealDom { $$. equal = " ' * = = ■ „ ; }
domExp BoolDom { $$.equal
domExp StrDom { $$.equal

domExp : EnumDomExp
{ $$.equal

identList.listSep = " “ I" >;

rellntList : RellntListNil
{ $$.intNames = IdentListNil; };

rellntList : RellntListPair
{ $$.intNames = (rellnt.name :: relIntList$2.intNames); };

relint : Relint
{ local STR intError;

intError = (ident$1 == IdentNull I I
NumDecl (ident$l, {Spec.intNames}) < 2) ?
mi . n ++1)t Duplicate relation intention name ***";

$$.name = ident$l; };

relExtList : RelExtListNil
{ $$.schNames = IdentListNil;

$$.relNcimes = IdentListNil;
$$.relPKeys = };

Selected SSL code 139

relExtList : RelExtListPair
{ $$.schNames = (relExt.schName :: relExtList$2.schNames);

$$.relNames = (relExt.relName :: relExtList$2.relNames);
$$.relPKeys - (relExt.relPKey # relExtList$2.relPKeys); };

relExt : RelExt
{ local STR schError;

schError = (ident$l =- IdentNull I I
NumDecl (ident$l, {Spec.REschNames}) < 2) ?
"" : " *** Duplicate relation extension schema ***";

local STR relError;
relError = (ident$2 =- IdentNull I I

NumDecl (ident$2, {Spec.relNames}) < 2) ?
"" : " *** Duplicate relation variable name ***";

local STR intError;
intError = (ident$3 == IdentNull I I

IsDecl (ident$3, {Spec.intNames})) ?
. !• *** Relation intention not declared ***";

local STR constrSep;
constrSep = optConstr.notNull ? "Walso \n" :

$$.schName = ident$l;
$$.relName = ident$2;
$$.relPKey = RelOfPKey (ident$2, {Spec.rellnts}, {Spec.relExts});

identList.listSep = " ~ \\land \\\\" # "\n"
"REQUIRED ~ "
unparse (ident$2)
" " } ;

state : State
{ local STR constrSepl;

constrSepl = optConstr$l .notNull ? "Walso \n" :

local STR constrSep2;
constrSep2 = optConstr$2.notNull ? "Wwhere \n" :

identList$l = {Spec.REschNames};
identList$l.listSep = "\n";

identList$2 = {Spec.relNames};
identList$2.listSep = "* = \\{ \\} ' \\land \\\\ \n";

$$.name = ident$l; };

Selected SSL code 140

forKey : ForKey
{ local ident3 PKeyAtt;
PKeyAtt = PKeyOf (ident$2, {Spec.relExts}); };

xiExp : XiExp
{ local ident DBname;
DBname = {Spec.DBname};
identList.listSep = ", "; };

identList : IdentListPair { identList$2.listSep = $$.listSep; };

B.3 Unparsing rules

specification : Spec [~ : "This is a new specification" "‘/.n'/.n'/.n’/.n"
"Domains" "’/.n’/.n"

"\\begin{zed}" "'/,n"

"\\end{zed}" " '/,n'/,n'/,n'/,n'1
"Intention of relations" "*/,n'/,n"

"\\begin{zed}" "'/,n"

"\\end{zed}" " '/,n*/,n'/,n*/,n''
"Extension of relations" '"/,n'/,n"

~ "'/,n*/,n'/,n'/,n"
"The database state schema" '"/,n'/,n"

“ "'/.n'/.n’/.n'/.n"
"The basic operations" '"/,n'/,n"

 ̂ '"/.n'/.n'/.n'/.n"
"The transactions" '"/,n'/,n"

“ "XnXnXn"
"End of the specification"] ;

domDefList : DomDefListNil [~ :] /* List of domain definitions */
I DomDefListPair [© : ~ ["Walso" "'/,n"] Q] ;

/* Domain definition */
domDef : DomDef [: := © domError domExp.equal ~ "'/,n"];

domExp : EmptyDom [C = "<domain>"] /* Domain expression
IntDom [C = "Wnum"]
NatDom [C = "\\nat"]
RealDom [C = "REAL"]
BoolDom [C = "BOOL"]
StrDom [® = "STRING"]
EnumDomExp [“ ©];

Selected SSL code 141

rellntList : RellntListNil [~ :] /* List of relation intentions */
I RellntListPair [Q : ~ ["\\also" "7,n"

"\\also" "'/,n"] ©];

/* Relation intention */
relint : Relint [~ ::= <9 intError " “ Wdefs “ [" © "]" M'/,n"];

relExtList : RelExtListNil [~ :] /* List of relation extensions */
I RelExtListPair [fi : ~ [My,ny,ny,n"] ©] ;

/* Relation extension */
relExt : RelExt [“ : "Wbegin{schema!K" © schError M'/,n"

Q relError ": Wpower " © intError "*/,n"
"Wwhere */tn"
"REQUIRED ~ " ident$2

» • " ©

- W land \ \ \ \ " "’/.n"
"W also" '7.n"
"KEYW.OF “ " ident$2

"•/.M(21)" » © "'/.n"
constrSep ©
"Wend'Cschema}"] ;

/* The state schemas */
state : State [~ ::= "\\begin{schema}{" © '"/,n" /* DB */

~ "y.n"
"Wwhere" "'/,n"

constrSep1
©

" \ \ end{ s ch ema} " " '/.n'/.n'/.n "

"The DeltaDB schema" "y,n'/,n" /* DeltaDB */
"\\begin{schema>{\\Delta " ident$l

">" '"/.n"
ident$l '"/,n"
ident$l ",M '"/.n"
constrSep2
©

" \ \ end{s chema} " " '/.n’/n'/.n"

"The XiDB schema" "‘/.n'/.n" /* XiDB */
"\\begin{zed> '/,n"
"\\Xi " ident$l " Wdefs [WDelta "

ident$l " I Wtheta " ident$l
" = Wtheta " ident$l "’]" "Xn"

"Wend-Czed}" "'/.nXn'/.n"

Selected SSL code 142

"The initialization schema" ,"/,n'/,n" /* InitDB */
"\\begin{schema}{\\Init_" ident$l

">" "’/.n"
ident$l "’/.n"
"Wwhere" '"/.n"
- - \\{ \\>" "Xn"
"\\end{schema>"];

/* List of foreign key constraints */
forKeyList : ForKeyListNil [~ :]

I ForKeyListPair [fi : “ 0];

forKey : ForKey [
/* Basic operation */

'FORW.KEY ~ " fi "*/,M(21)" " fi
M'/,M(33)" " Q
"7,M(44)M " PKeyAtt
M'/,M(56)" "** Wland \\\\" M,/.n"];

declList : DeclListNil [
I DeclListPair [

:] /* List of Declarations */
: “ ["; " '"/.t'/.o'/.b"] Q];

decl : Decl [];

declExp :

/* Declaration */

/* Declaration Expression */
EmptyDecl
IntDecl
NatDecl
RealDecl
BoolDecl
StrDecl
IdentDeclExp
PowerDeclExp
SeqDeclExp
CartProdExp
SetUnionExp

I IdentListPair [

"<domain>"]
"Wnum"]
"Wnat"]
"REAL"]
"BOOL"]
"STRING"]
“]
"Wpower " ®]
"\\seq " Q]
fi " Wcross " Q]
fi " Wcup " Q];

] /* List

ident : IdentNull [
I Ident [

"<ident>"]
:= “] ;

[$$.listSep] 0];

/* Normal identifiers */

/* Identifiers allowing composition */
ident3 : Ident3 [

I CA2 [
]

(CA2 ~ " II ~ II

Selected SSL code 143

B .4 Concrete input syntax for text editing

domDefList_C { syn domDefList t
domDef_C { syn domDef t
domExp_C ■c syn domExp t
rellntList.C syn rellntList t
rellnt.C { syn relint t
declList.C syn declList t
decl_C { syn decl t
declExp_C f syn declExp t
identList.C i syn identList t
ident3_C i syn ident3 t
ident_C syn ident t

domDefList
domDef
domExp
rellntList
relint
declList
decl
declExp
identList
ident3
ident

domDefList.C.t;
domDef_C.t;
domExp_C.t;
rellntList.C.t;
rellnt.C.t;
declList.C.t ;
decl.C.t ;
declExp.C.t;
identList.C.t ;
ident3_C.t ;
ident.C.t ;

domDefList.C ::= (domDef.C) { $$.t = (domDef_C.t :: DomDefListNil); >
I (domDef.C domDefList_C)

{ $$.t = (domDef.C.t :: domDefList_C$2.t) ; }■;

domDef.C ::= (ident_C)
I (ident_C domExp.C)

domExp_C
I
I
I

$$.t * DomDef (ident_C.t, EmptyDom); >
$$.t = DomDef (ident_C.t, domExp_C.t); };

:= (NUM) ’ $$.t = IntDom; }
(NAT) $$.t = NatDom; }
(REALN) ! $$.t = RealDom; }

(BOOLEAN) ! $$.t = BoolDom; }
(STRING) $$.t = StrDom; }

(identList_C) ! $$.t = EnumDomExp

C : (rellnt.C) { $$.t s (rellnt.C.t

rellnt.C ::= (ident.C)
{ $$.t = Relint (ident_C.t,

DeclListPair (Decl (IdentNull, EmptyDecl),
DeclListNil)); >

Selected SSL code 144

I (ident.C declList.C)
{ $$.t = Relint (ident.C.t, declList.C.t); };

declList.C ::= (decl.C) •C $$.t = (decl.C.t :: DeclListNil); >
1 (decl.C declList.C) ■($$. t = (decl.C.t :: declList_C$2.t); >;

decl.C ::= (ident.C) { $$.t = Decl (ident.C.t, EmptyDecl); >
1 (ident.C declExp.C) { $$.t = Decl (ident.C.t, declExp.C.t); };

declExp.C ::= (NUM) { $$.t = IntDecl; }
1 (NAT) ■($$.t = NatDecl; }•
I (REALN) ■($$.t — RealDecl; }
I (BOOLEAN) ■{ $$.t = BoolDecl; }
I (STRING) ■($$.t = StrDecl; }
1 (ident.C) { $$.t = IdentDeclExp (ident.C.t); }
1 (POWER) ■£ $$.t = PowerDeclExp (EmptyDecl); >
I (POWER declExp.C) ■{ $$.t = PowerDeclExp (declExp.C$2.t); }
1 (SEQ) { $$.t = SeqDeclExp (EmptyDecl) ; >
I (SEQ declExp.C) { $$.t = SeqDeclExp (declExp_C$2.t); >
I (CARTP) { $$.t = CartProdExp (EmptyDecl,

EmptyDecl); }
I (declExp.C CARTP) { $$.t = CartProdExp (declExp_C$2.t ,

EmptyDecl); }
I (declExp.C CARTP declExp.C)

{ $$.t = CartProdExp (declExp_C$2.t ,
declExp_C$3.t); }

I (UNION) ■($$.t = SetUnionExp (EmptyDecl,
EmptyDecl); }

1 (declExp.C UNION) ■($$.t = SetUnionExp (declExp_C$2.t,
EmptyDecl); }

1 (declExp.C UNION declExp.C)
{ $$.t = SetUnionExp (declExp_C$2.t,

declExp_C$3.t); };

identList.C (ident.C) { $$.t = (ident.C.t
I (ident.C identList.C) ■($$.t = (ident.C.t

IdentListNil); }
identList_C$2.t); };

ident.C ::= (IDENT) .t = Ident (IDENT); >;

ident3_C : (IDENT) {$$.t
I (CATT) { $$.t
I (CATT IDENT) { $$.t
I (CATT IDENT IDENT) { $$.t

Ident3 (Ident (IDENT)); }
CA2 (IdentNull, IdentNull); >
CA2 (Ident (IDENT), IdentNull); >
CA2 (Ident (IDENT$1),

Ident (IDENT$2)); };

Selected SSL code 145

B.5 Template transformation rules

transform domExp /* Domain Expression
on "Int - .1" <domExp> : IntDom,
on "Nat - .N" <domExp> : NatDom,
on "Real - .R" <domExp> : RealDom,
on "Bool - .B" <domExp> : BoolDom,
on "String - .S" <domExp> : StrDom,
on "Enumeration" <domExp> : EnumDomExp (<identList>);

transform declExp /* Declaration Expression
on "Int - .1" <declExp> IntDecl,
on "Nat - .N" <declExp> NatDecl,
on "Real - .R" <declExp> RealDecl,
on "Bool - .B" <declExp> BoolDecl,
on "String - .S" <declExp> StrDecl,
on "PowerSet - .P" <declExp> PowerDeclExp (<declExp>),
on "Sequence" <declExp> SeqDeclExp (<declExp>),
on "CartProd" <declExp>

CartProdExp (<declExp>, <declExp>),
on "Set Union" <declExp>

SetUnionExp (<declExp>, <declExp>);

transform ident3 /* Composite Attribute
on "CA2" <ident3> : CA2 (<ident>, <ident>);

B.6 Lexical syntax declarations

WHITESPACE : < [\ \t\n] >;

NUM < "."[IZ] r\\num" >; /* Integer domain */
NAT < ".N"I"\\nat" >; /* Natural domain */
REALN < ".R"|"REAL" >; /* Real domain */
BOOLEAN < ".B'T'BOOL" >; /* Boolean domain */
STRING < ".S"|"STRING" >; /* String domain */
POWER < " .P" 1 "Wpower" >; /* Power domain */
SEQ < "\\seq" >; /* Sequence domain */
CARTP < " . CP" I "Wcross" >; /* Cartesian product */
UNION < ".U"I"\\cup" >; /* Set Union */

TRUE < "T"I"true" >; /* Boolean true */
FALSE < "F"I"false" >; /* Boolean false */

CATT < "CA2" >; /* Composite Attribute */

IDENT < [a-zA-Z]("_"?[a-zA-ZO-9]+)*[’?!]? >; /* Identifiers */

Selected SSL code 146

B.7 V iew definitions

view TYPES_D; /* View Declaration of TYPES.D */

specification : Spec
[TYPES.D “ : "DEFINITION MODULE " DBname ".Types;"

"*/,M(32)" "(*** Database types "
"and constants ***)" "'/.n'/,n'/,n'/,n"

"(♦******♦ The STRING type - not "
"basic In DBPL *********)" "’/,n’/.n"

"TYPE" "'/,n'/,n"
'"/,M(4)" "STRING = ARRAY [0..100] OF CHAR;"

"’/,n'/,n'/,n'/,n"

"(*************** Domains - simple "
"types ***************)" "*/,n'/,n"

"TYPE" "*/,n*/.n"
“ "'/.n’/.n’/.n"

•• Relation intentions "
"- record types ♦*******♦)" "*/tn,/,n"

"TYPE" "’/.n'/.n"
' "*/,n'/,n'/,n"

"(***+*+** Auxiliary types - "
"relation extensions ******♦)" "*/,n*/,n"

"TYPE" "’/.n’/.n"
- "’/.n'/.n'/.n"

"(******♦ Auxiliary types - sets of "
"primary keys ******♦)" '"/,n'/,n"

"TYPE" "*/.n’/.n"
relExtList. relPKeys "’/.n'/.n'/.n"

"(***************** Null value "
"constants *****************)" "/Cn/iin"

"VAR" "’/.n’/.n"
"*/,M(4)" "NULLNAT
"'/,M(4)" "NULLINT
"'/,M(4)" "NULLREAL
"*/,M(4)" "NULLSTR

CARDINAL;" "*/,n"
CARDINAL;" "’/.n"
REAL;" "*/,n"
STRING;" "*/,n"

......... "*/.n"
'END" DBname ".Types." "’/.n"] ;

Selected SSL code 147

/* List of domain definitions */
domDefList : DomDefListNil [TYPES.D ~ :]

I DomDefListPair [TYPES.D <8 : “ (8] ;

domDef :

domExp

DomDef [TYPES.D “ : '7,M(4)" (8
"'/,M(14)" "= " II . II 1

/* Domain
EmptyDom [TYPES.D Q : "<domain>"]
IntDom [TYPES.D <8 : "INTEGER"]
NatDom [TYPES.D <8 : "CARDINAL"]
RealDom [TYPES.D (8 : "REAL"]
BoolDom [TYPES.D <8 : "BOOLEAN"]
StrDom [TYPES.D <8 : "STRING"]
EnumDomExp [TYPES.D “ : " (" Q ")"];

/* List of relation

/* Domain definition */

*/.n"] ;

rellntList : RellntListNil [TYPES.D ~ :]
I RellntListPair [TYPES.D <9 : “ ['"/.n"] <8] ;

relint : Relint [TYPES.D
/* Relation intention */

"'/,M(4)" <8
"'/,M(14)" "= RECORD" "*/,n"

/* List of relation extensions */
relExtList : RelExtListNil [TYPES.D ~ :]

I RelExtListPair [TYPES.D Q : ~ <8] ;

/* Relation extension */
relExt : RelExt [TYPES.D

"'/,M(4)" "REL." <8 ..
"'/,M(18)" "= RELATION "
M'/,M(47)" "OF "
.. ident$3 "*/,n"] ;

declList : DeclListNil [TYPES.D :] /* List of Declarations */
I DeclListPair [Q : “ <8] ;

decl : Decl [TYPES.D : "'/,M(21)" <9 /* Declaration */
M'/,M(32)" “ '"/.n"] ;

Selected SSL code 148

declExp :: EmptyDecl [TYPES.D © "<domain>"]
1 IntDecl [TYPES.D © "INTEGER"]
1 NatDecl [TYPES.D © "CARDINAL"]
1 RealDecl [TYPES.D © "REAL"]
1 BoolDecl [TYPES.D © "BOOLEAN"]
1 StrDecl [TYPES.D © "STRING"]
1 IdentDeclExp [TYPES.D © “ 3
1 PowerDeclExp [TYPES.D © 3
1 SeqDeclExp [TYPES.D © 3
1 CartProdExp [TYPES.D • .. 3
1 SetUnionExp [TYPES.D © .. 3;

identList : IdentListNil [TYPES_D
I IdentListPair [TYPES.D

:] /* List of Identifiers */
: * C". "] © 3 ;

ident : IdentNull [TYPES.D
I Ident [TYPES.D

"<ident>"] /* Normal identifiers */
~ 3;

ident3 : Ident3
I CA2

/* Identifiers allowing composition */
[TYPES.D ~ : *]
[TYPES.D * : 0 ", " ©] ;

Bibliography

[1] Barros R. S. M. “Formal Specification of Very Large Software: a Real Example” .
M aster’s thesis, Federal University of Pernambuco (UFPE), Departamento de
Informatica, Recife, Brazil, October 1988. In Portuguese.

[2] Elmasri R. and Navathe S. B. Fundamentals o f Database Systems, chapter 14,
pages 447-477. World Student Series. The Benjamin/Cummings Publishing
Company Inc., second edition, 1994.

[3] Spivey J. M. The Z Notation: A Reference Manual. Prentice Hall International
(UK) Ltd., Hemel Hempstead, UK, second edition, 1992.

[4] Potter B. F., Sinclair J. E., and Till D. An Introduction to Formal Specification
and Z. Prentice Hall International (UK) Ltd., Hemel Hempstead, UK, 1991.

[5] Date C. J. An Introduction to Database Systems, volume 1 . World Student Series.
Addison-Wesley Publishing Company Inc., Reading, Massachusetts, USA, fifth
edition, 1990.

[6] Codd E. F. “A Relational Model of D ata for Large Shared D ata Banks” . Com
munications of the ACM , 13(6):377-387, June 1970.

[7] Schmidt J. W. and M atthes F. “The DBPL Project: Advances in Modular
Database Programming” . Information Systems, 19(2):121-140, 1994.

[8] Schmidt J. W. and M atthes F. “The Database Programming Language DBPL: Ra
tionale and Report” . FIDE Technical Report FID E/92/46, Universitat Hamburg,
Germany, 1992.

[9] M atthes F., Rudloff A., Schmidt J. W., and Subieta K. “The Database Pro
gramming Language DBPL: User and System Manual” . FIDE Technical Report
FID E/92/47, Universitat Hamburg, Germany, 1992.

[10] Reps T. W. and Teitelbaum T. The Synthesizer Generator: a system for con
structing language-based editors. Texts and Monographs in Computer Science.
Springer-Verlag, New York, USA, 1989.

[11] Grammatech, Inc., Ithaca, NY, USA. The Synthesizer Generator Reference Man
ual, fourth edition, 1992.

[12] Ashworth C. and Goodland M. SSADM: a Practical Approach. McGraw-Hill,
London, 1990.

149

Bibliography 150

13] Dickover M., McGowan C., and Ross D. “Software Design using SADT” . In
Structured Analysis and Design, volume 2, pages 99-114. Infotech, Maidenhead,
England, 1978.

14] Ross D. and Schoman K. “Structured Analysis for Requirements Definition” . IEEE
Transactions on Software Engineering, SE-3(1):6-15, 1977.

15] Lamb S. “SAMM: A Modelling Tool for Requirements and Design Specification” .
In Second IEEE International Computer Software and Applications Conference
(Compsac’78), pages 48-53, Silver Spring, Maryland, USA, 1978.

16] Stay J. F. “HIPO and Integrated Program Design” . IBM Systems Journal,
15(2) :143—154, 1976.

17] Gane C. and Sarson T. Structured Systems Analyisis: Tools and Techniques.
Prentice Hall Inc., Englewood Cliffs, NJ, USA, 1979.

18] Chen P. P. S. “The Entity-Relationship Model - Toward a Unified View of D ata” .
AC M Transactions on Database Systems, 1(1):9—36, March 1976.

19] Elmasri R. and Navathe S. B. Fundamentals of Database Systems, chapter 21,
pages 611-661. World Student Series. The Benjamin/Cummings Publishing Com
pany Inc., second edition, 1994.

20] Codd E. F. “Extending the Database Relational Model to Capture More Meaning” .
AC M Transactions on Database Systems, 4(4):397-434, December 1979.

21] American National Standards Institute. “The Database Language SQL” . Docu
ment ANSI X3.135, 1986.

22] Batini C., Ceri S., and Navathe S. B. Conceptual Database Design: an Entity-
Relationship Approach. Benjamin/Cummings Series on Database Systems and
Applications. The Benjamin/Cummings Publishing Company Inc., Redwood City,
California, USA, 1992.

23] Bagchi T. and Chaudhri V. Interactive Relational Database Design, volume 402
of Lecture Notes in Computing Science. Springer-Verlag, 1989.

24] Ceri S. and Gottlob G. “Normalization of Relations and PROLOG” . Communi
cations of the ACM , 29(6):524-544, 1986.

25] Wing J. M. “A Specifier’s Introduction to Formal Methods” . IEEE Computer,
23(9):8-24, September 1990.

26] Ince D. C. An Introduction to Discrete Mathematics and Formal System Spec
ification. Oxford Applied Mathematics and Computing Science Series. Oxford
University Press, UK, 1988.

27] Hall A. “Seven Myths of Formal Methods” . IEEE Software, 7(5): 11-19, September
1990.

28] Duce D. A. and Fielding E. V. C. “Formal Specification - A Comparison of Two
Techniques” . The Computer Journal, 30(4):316—327, 1987.

Bibliography 151

[29] Jones C. B. Systematic Software Development Using VDM. Prentice Hall Inter
national (UK) Ltd., Hemel Hempstead, UK, second edition, 1990.

[30] Jones C. B. and Shaw R. C. F. (eds.). Case Studies in Systematic Software
Development. Prentice Hall International (UK) Ltd., Hemel Hempstead, UK, 1990.

[31] The RAISE Language Group. The R A ISE Specification Language. The BCS
Practitioners Series. Prentice Hall International (UK) Ltd., 1992.

[32] Gordon M. J. C. and Melham T. J. (eds.). Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, UK,
1993.

[33] Hoare C. A. R. Communicating Sequential Processes. Prentice Hall International
(UK) Ltd., Hemel Hempstead, UK, 1985.

[34] Milner R. Communication and Concurrency. Prentice Hall International (UK)
Ltd., Hemel Hempstead, UK, 1989.

[35] Goguen J. A. and Winkler T. “Introducing OBJ3” . Technical Report SRI-CSL-
88-9, SRL, Menlo Park, USA, 1988.

[36] G uttag J. V. and Horning J. J. (eds.). Larch: Languages and Tools for Formal
Specification. Texts and Monographs in Computer Science. Springer-Verlag, 1993.

[37] Burstall R. M. and Goguen J. A. The Semantics of Clear, a Specification Language,
volume 86 of Lecture Notes in Computing Science. Springer-Verlag, 1981.

[38] Luckham D. C. Programming with Specifications: An Introduction to ANNA - A
Specification Language for ADA. Springer-Verlag, 1990.

[39] Ehrig H. and Mahr B. Fundamentals of Algebraic Specification 1 - Equations and
Initial Semantics. Number 6 in EATCS Monographs on Theoretical Computing
Science. Springer-Verlag, 1985.

[40] Samson W. B. and Wakelin A. “Algebraic Specification of Databases: A Survey
from a Database Perspective” . In Harper D. J. and Norrie M. C. (eds.), Specifica
tion of Database Systems, Glasgow 1991, Workshops in Computing Series, pages
246-254. Springer-Verlag, 1992.

[41] Sampaio A. C. and Meira S. L. “Modular Extensions to Z” . In Bjprner D.,
Hoare C. A. R., and Langmaack H. (eds.), VDM and Z - Formal Methods in
Software Development, volume 428 of Lecture Notes in Computing Science, pages
211-232. Springer-Verlag, 1990.

[42] Fitzgerald J. Modularity in Model-Oriented Formal Specifications and its Interac
tion with Formal Reasoning. PhD thesis, University of Manchester, Department
of Computing Science, 1991.

[43] Hoare C. A. R. “Preface” . In Bjprner D., Hoare C. A. R., and Langmaack H. (eds.),
VD M ’90 - VDM and Z!, volume 428 of Lecture Notes in Computing Science, pages
vii-x. Springer-Verlag, 1990.

Bibliography 152

[44] Hayes I. J., Jones C. B., and Nicholls J. E. “Understanding the Differences between
VDM and Z” . Technical Report UMCS-93-8-1, Department of Computing Science,
University of Manchester, UK, August 1993.

[45] P lat N. Experiments with Formal Methods in Software Engineering. PhD thesis,
Delft University of Technology, Faculty of Technical M athematics and Informatics,
The Netherlands, 1993.

[46] McParland P. J. Software tools to Support Formal Methods. PhD thesis, The
Queen’s University of Belfast, Northern Ireland, October 1989.

[47] Bloomfield R. E. and Froome P. K. D. “The Application of Formal Methods
to the Assessment of High Integrity Software” . IEEE Transactions on Software
Engineering, 20(9):988-993, September 1986.

[48] Diller A. Z: An Introduction to Formal Methods. John Wiley & Sons Ltd., Chich
ester, UK, second edition, 1994.

[49] Wordsworth J. B. Software Development with Z. Addison-Wesley Publishing
Company Inc., Wokingham, England, 1992.

[50] Spivey J. M. Understanding Z: A Specification Language and its Formal Seman
tics, volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, UK, 1988.

[51] Hayes I. J. (ed.). Specification Case Studies. Prentice Hall International (UK)
Ltd., Hemel Hempstead, UK, second edition, 1993.

[52] Barden R., Stepney S., and Cooper D. Z in Practice. The BCS Practitioners
Series. Prentice Hall International (UK) Ltd., Hemel Hempstead, UK, 1994.

[53] Barros R. S. M. and Meira S. L. “A Method for the Specification of Relational
Databases using Zc” . In proceedings of X V I SEMISH, SBC Brazilian Congress,
Uberlandia, Brazil, July 1989. In Portuguese.

[54] Furtado A. L. and Casanova M. A. “Updating Relational Views” . In Kim W.,
Reiner D., and Batory D. (eds.), Query Processing in Database systems, pages
127-142. Springer-Verlag, 1985.

[55] Buff H. W. “Why Codd’s Rule No. 6 Must be Reformulated” . AC M SIGMOD
Record, 15(4), December 1988.

[56] W irth N. Programming in Modula-2. Texts and Monographs in Computer Science.
Springer-Verlag, Berlin, Germany, third edition, 1985.

[57] Welsh J. and Elder J. Introduction to Modula-2. Prentice Hall International (UK)
Ltd., Hemel Hempstead, UK, 1987.

[58] King S. “The Use of Z in the Restructure of IBM CICS” . In Hayes I. J. (ed.),
Specification Case Studies, chapter 14, pages 202-213. Prentice Hall International
(UK) Ltd., 1993.

Bibliography 153

[59] Houston I. and King S. “CICS Project Report: Experiences and Results from the
Use of Z in IBM” . In Prehn S. and Toetenel W. J. (eds.), VD M ’91: Formal Software
Development Methods, volume 551 of Lecture Notes in Computing Science, pages
588-596. Springer-Verlag, October 1991.

[60] Collins B. P., Nicholls J. E., and Sprensen I. H. “Introducing Formal Methods: The
CICS Experience with Z” . Technical Report TR12.277, IBM (UK) Laboratories,
Hursley, UK, December 1987.

[61] King S. “Specifying the IBM CICS Application Programming Interface” . In
Hayes I. J. (ed.), Specification Case Studies, chapter 15, pages 214-225. Prentice
Hall International (UK) Ltd., 1993.

[62] Wordsworth J. B. “The CICS Aplication Programming Interface Definition” . In
Nicholls J. E. (ed.), Z User Workshop, Oxford 1990, Workshops in Computing
Series, pages 285-294. Springer-Verlag, 1991.

[63] Hayes I. J. “Applying Formal Specification to the Development of Software in
Industry” . In Hayes I. J. (ed.), Specification Case Studies, chapter 13, pages
181-201. Prentice Hall International (UK) Ltd., 1993.

[64] Hayes I. J. “CICS Temporary Storage” . In Hayes I. J. (ed.), Specification Case
Studies, chapter 16, pages 226-237. Prentice Hall International (UK) Ltd., 1993.

[65] Hayes I. J. “CICS Message System” . In Hayes I. J. (ed.), Specification Case
Studies, chapter 17, pages 238-243. Prentice Hall International (UK) Ltd., 1993.

[66] Jacky J. “Specifying a Safety-Critical Control System in Z” . In Woodcock J. C. P.
and Larsen P. G. (eds.), F M E ’93: Industrial-Strength Formal Methods, volume
670 of Lecture Notes in Computing Science, pages 388-402. Springer-Verlag, April
1993.

[67] Boswell T. “Specification and Validation of a Security Policy Model” . In Wood
cock J. C. P. and Larsen P. G. (eds.), F M E ’93: Industrial-Strength Formal Meth
ods, volume 670 of Lecture Notes in Computing Science, pages 42-51. Springer-
Verlag, April 1993. Industrial Usage Report.

[68] King T. “Formalizing British Rail’s Signalling Rules” . In Naftalin M., Denvir
T., and Bertran M. (eds.), F M E ’94: Industrial Benefit o f Formal Methods, volume
873 of Lecture Notes in Computing Science, pages 45-54. Springer-Verlag, October
1994. Industrial Usage Report.

[69] Wood A. W. “The SWORD Model of Multilevel Secure Databases” . RSRE Report
90008, Defence Research Agency (DRA), Electronics Division, UK, June 1990.

[70] Smith P. and Keighley R. “The Formal Development of a Secure Transaction
Mechanism” . In Prehn S. and Toetenel W. J. (eds.), VD M ’91: Formal Software
Development Methods, volume 551 of Lecture Notes in Computing Science, pages
457-476. Springer-Verlag, October 1991.

Bibliography 154

[71] Craigen D., Gerhart S., and Ralston T. “Formal Methods Reality Check: Industrial
Usage” . In Woodcock J. C. P. and Larsen P. G. (eds.), F M E ’93: Industrial-Strength
Formal Methods, volume 670 of Lecture Notes in Computing Science, pages
250-267. Springer-Verlag, April 1993.

[72] Craigen D., Gerhart S., and Ralston T. “An International Survey of Industrial
Applications of Formal Methods” . Technical Report NIST GCR 93/626-V1 h 2,
Atomic Energy Control Board of Canada, US National Institute of Standards and
Technology, and US Naval Research Laboratories, 1993.

[73] Austin S. and Parkin G. I. “Formal Methods: A Survey” . Technical report,
Division of Information Technology and Computing, National Physical Laboratory,
Teddington, Middlesex, UK, March 1993.

[74] Bowen J. P. and Hinchey M. G. “Seven More M yths of Formal Methods: Dispelling
Industrial Prejudices” . In Naftalin M., Denvir T., and Bertran M. (eds.), FM E’94:
Industrial Benefit o f Formal Methods, volume 873 of Lecture Notes in Computing
Science, pages 105-117. Springer-Verlag, October 1994.

[75] Weber-Wulff D. “Selling Formal Methods to Industry” . In Woodcock J. C. P. and
Larsen P. G. (eds.), F M E ’93: Industrial-Strength Formal Methods, volume 670 of
Lecture Notes in Computing Science, pages 671-678. Springer-Verlag, April 1993.

[76] Morris J. M. “A Theoretical Basis for Stepwise Refinement and The Programming
Calculus” . Science of Computer Programming, 9(3):287-306, December 1987.

[77] Morgan C. C. “The Specification Statem ent” . AC M Transactions on Programming
Languages and Systems, 10(3):403-419, July 1988.

[78] Morgan C. Programming from Specifications. Prentice Hall International (UK)
Ltd., Hemel Hempstead, UK, second edition, 1994.

[79] Back R.-J. R. “A Calculus of Refinements for Program Derivations” . Acta Infor-
matica, 25(6):593-624, August 1988.

[80] Dijkstra E. W. A Discipline of Programming. Prentice Hall Inc., Englewood Cliffs,
NJ, USA, 1988.

[81] O’Neill G. “Automatic Translation of VDM Specifications into Standard ML
Programs” . The Computer Journal, 35(6):623-624, 1992. Short note.

[82] O’Neill G. “Automatic Translation of VDM Specifications into Standard ML
Programs” . NPL Report DITC 196/92, National Physical Laboratory, Teddington,
Middlesex, UK, February 1992.

[83] Milner R., Tofte M., and Harper R. The Definition o f Standard ML. The MIT
Press, Cambridge, Massachusetts, USA, 1990.

[84] Date C. J. An Introduction to Database Systems, volume 1, chapter 13, pages 295-
333. World Student Series. Addison-Wesley Publishing Company Inc., Reading,
Massachusetts, USA, fifth edition, 1990.

Bibliography 155

[85] Wong E. Y. and Samson W. B. “The Specification of a Relational Database
(PRECI) and its Realization in Hope” . The Computer Journal, 29(3):261-268,
1986.

[86] Burstall R. M., MacQueen D. B., and Sannela D. T. “Hope: an Experimental
Applicative Language” . Internal Report CSR-62-80, Departm ent of Computing
Science, University of Edinburgh, UK, 1980.

[87] Fitzgerald J. and Jones C. B. “Modularizing the Formal Description of a Database
System” . In Bj0rner D., Hoare C. A. R., and Langmaack H. (eds.), VDM ’90 -
VDM and Z /, volume 428 of Lecture Notes in Computing Science, pages 189-210.
Springer-Verlag, 1990.

[88] W interbottom N. and Sharman G. C. H. “NDB: Non-Programmer Database
Facility” . Technical Report TR.12.179, IBM (UK) Laboratories, Hursley, UK,
September 1979.

[89] Turner R. and Lowden B. G. T. “An Introduction to the Formal Specification of
Relational Query Languages” . The Computer Journal, 28(2):162—169, 1985.

[90] Relational Technology Inc., Alameda, California, USA. ING RES/Q U EL Reference
Manual, 1988.

[91] Date C. J. An Introduction to Database Systems, volume 1 , chapter 14, pages 335-
368. World Student Series. Addison-Wesley Publishing Company Inc., Reading,
Massachusetts, USA, fifth edition, 1990.

[92] Sufrin B. and Hughes J. “A Tutorial Introduction to Relational Algebra” . Pro
gramming Research Group, Oxford University Computing Laboratory, July 1985.
Unpublished draft.

[93] Khosla S., Maibaum T., and Sadler M. “Database Specification” . In Steel Jr. T. B.
and Meersman R. (eds.), Database Semantics (DS-1), pages 141-158. Elsevier
Science Publishers B. V. (North Holland), 1986.

[94] Fiadeiro J. and Sernadas A. “Specification and Verification of Database Dynam
ics” . Acta Informatica, 25(6):625-661, 1988.

[95] Abiteboul S. and Vianu V. “A Transaction-based Approach to Relational Database
Specification” . Journal of the ACM , 36(4):758-789, October 1989.

[96] Harper D. J. and Norrie M. C. (eds.). Specification of Database Systems, Glasgow
1991, Workshops in Computing Series. Springer-Verlag, 1992.

[97] Pastor J. A. and Olive A. “An Approach to the Synthesis of Update Transac
tions in Deductive Databases” . In Proceedings o f CISM OD’94 (Fifth International
Conference on Information Systems and Management o f Data), Madras, India,
October 1994.

[98] Minker J. Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann Series in D ata Management Systems. Morgan Kaufmann Publishers
Inc., San Francisco, California, USA, 1988.

Bibliography 156

[99] Gallaire H., Minker J., and Nicolas J.-M. “Logic and Databases: A Deductive
Approach” . AC M Computing Surveys, 16(2):153—185, June 1984.

[100] Pastor J. A. “Deriving Consistency-Preserving Transaction Specifications for View
Updates in Relational Databases” . In Proceedings o f I I I International Workshop
on the Deductive Approach to Information Systems and Databases, pages 275-300,
Roses, Catalonia, Spain, 1992.

101] Sheard T. and Stemple D. “Automatic Verification of Database Transaction
Safety” . A C M Transactions on Database Systems, 14(3):322-368, September 1989.

102] Boyer R. S. and Moore J. S. A Computational Logic. Academic Press, New York,
USA, 1979.

103] Steinberg G., Faley R., and Chinn S. “Automatic Database Generation by Novice
End-Users Using English Sentences” . Journal of Systems Management, 45(3):10-
15, March 1994.

104] Qian X. “The Deductive Synthesis of Database Transactions” . AC M Transactions
on Database Systems, 18(4):626-677, December 1993.

105] Qian X. The Deductive Synthesis o f Database Transactions. PhD dissertation,
Stanford University, Computer Science Department, USA, November 1989.

106] M anna Z. and Waldinger R. The Logical Basis for Computer Programming, volume
2. Addison-Wesley Publishing Company Inc., Reading, Massachusetts, USA, 1990.

107] Schewe K.-D., Schmidt J., and Wetzel I. “Specification and Refinement in an
Integrated Database Application Environment” . In Prehn S. and Toetenel W. J.
(eds.), VD M ’91: Formal Software Development Methods, volume 551 of Lecture
Notes in Computing Science, pages 496-510. Springer-Verlag, October 1991.

108] Borgida A., Mylopoulos J., and Schmidt J. W. “Final Version on TDL Design” .
DAIDA Deliverable DES1.2, ESPRIT Project 892, September 1987.

109] Mylopoulos J., Bernstein P. A., and Wong H. K. T. “A Language Facility for
Designing Interactive Database-Intensive Applications” . A C M Transactions on
Database Systems, 5(2): 185-207, June 1980.

110] Abrial J.-R. “Abstract Machines, Parts I, II, and III” . 26 Rue des Plantes, Paris
75014, France, 1990. Unpublished.

111] Abrial J.-R. et al. “The B Method” . In Prehn S. and Toetenel W. J. (eds.),
VD M ’91: Formal Software Development Methods, volume 552 of Lecture Notes in
Computing Science, pages 398-405. Springer-Verlag, October 1991. Tutorial.

112] Edinburgh Portable Compilers Ltd., UK. B-Tool Reference Manual, 1991.

113] Gunther T., Schewe K.-D., and Wetzel I. “On the Derivation of Executable
Database Programs from Formal Specifications” . In Woodcock J. C. P. and
Larsen P. G. (eds.), F M E ’93: Industrial-Strength Formal Methods, volume 670 of
Lecture Notes in Computing Science, pages 351-366. Springer-Verlag, April 1993.

Bibliography 157

[114] Schewe K.-D., Wetzel I., and Schmidt J. “Towards a Structured Specification
Language for Database Applications” . In Harper D. J. and Norrie M. C. (eds.),
Specification o f Database Systems, Glasgow 1991, Workshops in Computing Series,
pages 255-274. Springer-Verlag, 1992.

[115] Barros R. S. M. “Formal Specification of Relational Database Applications: A
Method and an Example” . Research Report GE-93-02, Departm ent of Computing
Science, The University of Glasgow, UK, September 1993.

[116] van Diepen M. J. and van Hee K. M. “A Formal Semantics for Z and the Link
between Z and the Relational Algebra” . In Bjprner D., Hoare C. A. R., and Lang
maack H. (eds.), VDM and Z - Formal Methods in Software Development, volume
428 of Lecture Notes in Computing Science, pages 526-551. Springer-Verlag, 1990.

[117] Barros R. S. M. “Company Database Example” . Department of Computing Sci
ence, The University of Glasgow, 1993. First step specification.

[118] Barros R. S. M. “Company Database Example” . Department of Computing Sci
ence, The University of Glasgow, 1993. Second step specification.

[119] Barros R. S. M. “Company Database Example” . Department of Computing Sci
ence, The University of Glasgow, 1993. Third step specification.

[120] Date C. J. “Null Values in Database Management” . In Relational Database:
Selected Writings, pages 313-334. Addison-Wesley Publishing Company Inc.,
Reading, Massachusetts, USA, 1986.

[121] Codd E. F. The Relational Model for Database Management - Version 2. Addison-
Wesley Publishing Company Inc., Reading, Massachusetts, USA, 1990.

[122] Barros R. S. M. “Deriving Relational Database Programs from Formal Specifi
cations” . In Naftalin M., Denvir T., and Bertran M. (eds.), F M E ’94: Industrial
Benefit o f Formal Methods, volume 873 of Lecture Notes in Computing Science,
pages 703-723. Springer-Verlag, October 1994.

[123] Senn J. A. The Student Edition of dBASE IV, version 1.1, User’s Manual.
Addison-Wesley Publishing Company Inc., Reading, Massachusetts, USA, 1991.

[124] Date C. J. and White C. J. A Guide to DB2. Addison-Wesley Publishing Company
Inc., Reading, Massachusetts, USA, third edition, 1989.

[125] Fiddian N. J., Gray W. A., and Howells D. I. “Query Language Inter-translation in
Heterogeneous Distributed Database Systems” . Database Technology, 2:3-8, 1990.

[126] Spivey J. M. “A Guide to the zed Style Option” . Oxford University Computing
Laboratory, Oxford, UK, December 1990. Unpublished.

[127] Barros R. S. M. and Harper D. J. “Formal Development of Relational Database
Applications” . In Harper D. J. and Norrie M. C. (eds.), Specification o f Database
Systems, Glasgow 1991, Workshops in Computing Series, pages 21-43. Springer-
Verlag, 1992.

Bibliography 158

[128] Sampaio A. C. and Meira S. L. “Zc: A Notation for Complex Systems Specifi
cation” . In proceedings o f X V SEM ISH , SBC Brazilian Congress, Rio de Janeiro,
Brazil, 1988. In Portuguese.

[129] Sampaio A. C. “Zc: A Notation for Complex Systems Specification” . M aster’s
thesis, Federal University of Pernambuco (UFPE), Departamento de Informatica,
Recife, Brazil, November 1988. In Portuguese.

[130] Vasconcelos A. M. “Specifying the Interface of a Hypertext System” . M aster’s
thesis, Federal University of Pernambuco (UFPE), Departamento de Informatica,
Recife, Brazil, August 1989. In Portuguese.

[131] Zdonik S. B. and Maier D. (eds.). Readings in Object-Oriented Database Systems.
Morgan Kaufmann Series in D ata Management Systems. Morgan Kaufmann Pub
lishers Inc., San Francisco, California, USA, 1990.

Index

Advanced features (Section 4.3) 42-48,
(Section 7.3) 103-107

Aggregate functions (A3) 43-44,105
Composite attributes (A4) 44, 106
Operators (Section 5.6) 58-61

AVER (Section 5.6) 61
AV ERAG E (Section 5.6) 60-61
CA2, CAS, etc. (Section 5.7) 61
COP2, COPS, etc. (Sect. 5.7) 62
COUNT (Section 5.6) 58
COUNTS (Section 5.6) 58
M A X (Section 5.6) 59
M A X M IN (Section 5.6) 59
M IN (Section 5.6) 59
SO R T (Section 5.5) 57-58
SUM (Section 5.6) 60
SUM S (Section 5.6) 59-60

Sorting of results (A2) 42-43, 104
Transactions (Al) 42, 103-104
Views (A5) 44-48, 106-107

Aggregate functions (A3) 43-44, 105
Average (Section 5.6) 60-61
Count (Section 5.6) 58
Maximum (Section 5.6) 59
Minimum (Section 5.6) 59
Operators (Section 5.6) 58-61

AVER (Section 5.6) 61
AVERAG E (Section 5.6) 60-61
COUNT (Section 5.6) 58
COUNTS (Section 5.6) 58
M A X (Section 5.6) 59
M A X M IN (Section 5.6) 59
M IN (Section 5.6) 59
SUM (Section 5.6) 60
SUM S (Section 5.6) 59-60

Sum (Section 5.6) 59-60

But (\): the new Z operator
(B9) 40, 101-102, (A5.4) 46,
(Section 5.4) 56,
(Section 9.4) 129

CA2, CAS , etc.: the operators
(Section 5.7) 61

C ASC -D ELETE: the operator
(Section 5.4) 57

COP2, COPS, etc.: the operators
(Section 5.7) 62

COUNT: the operators (Section 5.6) 58
COUNTS: the operator (Section 5.6) 58
Candidate keys (D3.2) 32, 92

K E Y -O F (Section 5.1) 53
Cascade

C ASC —DELETE: the operator
(Section 5.4) 57

Deletes (B7.2) 37-38, 97-99
Updates of keys (B10.2) 41, 103

Composite attributes (A4) 44, 106
Operators (Section 5.7) 61-62

CA2, CAS, etc. (Section 5.7) 61
CO P2, COPS, etc. (Sect. 5.7) 62

Constraints 3, 32, 33, 34, 93, 93-94, 95
Dynamic (D5.1) 34, 95
Static

A ttribute constraints (D3.3) 32, 93
Candidate keys (D3.2) 32, 92
Foreign keys (D4.1) 33, 93
Null constraints (D3.1) 31-32, 92
Other (D4.2) 33, 93-94
Primary keys (D3.2) 32, 92

DB: the schema (D4) 32-33, 93-94
DBPL 3, 18-19, 28, 29, 112-116
DELETE: the operator (Section 5.4) 57

159

Index 160

Database design 1, 7-13, 126
Proposed 11-13
Traditional 1, 7-11, 126

D atabase operations (Section 4.2) 34-42,
(Section 7.2) 95-99

D atabase state schema
(D4) 32-33, 93-94

Database structures and constraints
(Section 4.1) 30-34,
(Section 7.1) 89-95

Delete operations
By primary-key (B7) 36-39, 97-101

Cascade (B7.2) 37-38, 97-99
Nullify (B7.3) 100
Restricted (B7.1) 37, 97
Special case (B7.4) 101

DELETE: the operator
(Section 5.4) 57

Other (B8) 39-40, 101
Derivation of applications 1, 2, 3,

21-22, 24-29
Domains (D l) 30-31, 90-91
Dynamic constraints (D5.1) 34, 95

Error: the schema (E4) 49
Error handling (Section 4.4) 48-50,

(Section 7.4) 107-108
Error schemas (E2) 48-49
Error: the schema (E4) 49
Extended operations

(Section 4.4) 48-50,
(Section 7.4) 107-108

First case (E3) 49
Second case (E5) 50

OK: the schema (El) 48
Error schemas (E2) 48-49
Extension of relations (D3) 31-32, 91-93
Extensions to standard Z

But (\): the operator
(B9) 40, 101-102, (A5.4) 46,
(Section 5.4) 56,
(Section 9.4) 129

Piping (> >): the new schema oper
ator (Al) 42, (Section 9.4) 129

Tuple types (D2) 31, (A5.1) 45,
(Section 9.4) 129

3.DB expression 36, 40, 129

FKTC: the operator (Section 5.8) 62-63
F O R E IG N -K E Y : the operator

(Section 5.2) 54
FOR—K E Y : the operators

(Section 5.3 C) 56
Foreign keys (D4.1) 33, 93

F O R E IG N -K E Y : the operator
(Section 5.2) 54

F O R -K E Y : the operators
(Section 5.3 C) 56

Formal methods 14-17

Guidelines on how to use the method
(Section 4.5) 50-52

Guidelines for the first specification
(Subsection 4.5.1) 50-51

Guidelines for extending the specifi
cations (Subsection 4.5.2) 51-52

Init-D B: the schema (D7) 34, 95
Initial state schema (D7) 34, 95
Insert operations (B6) 36, 96-97
Intention of relations (D2) 31, 91
Intention of views (A5.1) 45

K E Y -O F : the operator (Section 5.1) 53

M AX: the operators (Section 5.6) 59
M AXM IN: the operator (Section 5.6) 59
MIN: the operators (Section 5.6) 59
Mapping 3, 4-5, 89-108, 127-128
Method 2, 3-4, 30-52, 126-127

NO T-NULL: the operator
(Section 5.3) 54

Null values (Section 5.3) 54-56
Operators

N O T-N U LL (Section 5.3) 54
REQUIRED (Sect. 5.3 B) 55-56

Nullify
Deletes (B7.3) 39, 100
Updates of keys (B10.3) 41-42, 103

Index 161

OK: the schema (El) 48

Operations
Deletes by primary-key

(B7) 36-39, 97-101
Cascade (B7.2) 37-38, 97-99
Nullify (B7.3) 39, 100
Restricted (B7.1) 37, 97
Special case (B7.4) 39, 101

Deletes — other (B8) 39-40, 101
Inserts (B6) 36, 96-97
Projects (B4) 35, 96
Read-only operations (Bl) 35, 95
Selects (B2) 35, 96
Theta-Joins (B3) 35, 96
Update operations (B5) 35-36, 96
Updates of attributes

(B9) 40, 101-102
Updates of keys

(B10) 40-42, 102-103
Cascade (B10.2) 41, 103
Nullify (B10.3) 41-42, 103
Restricted (B10.1) 41, 103

View operations (A5.9) 47-48

Operators 2, 53-63
Aggregate functions

(Section 5.6) 58-61
AVER (Section 5.6) 61
AVERAG E (Section 5.6) 60-61
CA2, CAS, etc. (Section 5.7) 61
C A SC -D E LE TE (Section 5.4) 57
COP2, COPS, etc. (Section 5.7) 62
COUNT (Section 5.6) 58
COUNTS (Section 5.6) 58
Candidade key (Section 5.1) 53
D ELETE (Section 5.4) 57
F K T C (Section 5.8) 62-63
F O R E IG N -K E Y (Section 5.2) 54
FOR—K E Y (Section 5.3 C) 56
K E Y -O F (Section 5.1) 53
M A X (Section 5.6) 59
M A X M IN (Section 5.6) 59
M IN (Section 5.6) 59
N O T-N U LL (Section 3.3) 54

Primary key (Section 5.1) 53
REQUIRED (Section 5.3 B) 55-56
SO R T (Section 5.5) 57-58
SUM (Section 5.6) 60
SUM S (Section 5.6) 59-60
UPDATE (Section 5.4) 56

Other static constraints (D4.2) 33, 93-94

Piping (> >): the new Z schema opera
tor (A l) 42, (Section 9.4) 129

Primary keys (D3.2) 32, 92
K E Y -O F : the operator

(Section 5.1) 53
Project operations (B4) 35, 96
Proposed database design 11-13
Prototype 3, 5, 109-125, 128

REQUIRED: the operators
(Section 5.3 B) 55-56

Read-only operations (Bl) 35, 95
Projects (B4) 35, 96
Selects (B2) 35, 96
Theta-Joins (B3) 35, 96

Relational databases 2, 3, 10, 14, 89, 126
Relations

Intentions (D2) 31, 91
Extensions (D3) 31-32, 91-93

Required attributes (D3.1) 31-32, 92
Restricted

Deletes (B7.1) 37, 97
Updates of keys (B10.1) 41, 103

SO R T : the operator (Section 5.5) 57-58
SUM: the operators (Section 5.6) 60
SUMS: the operator (Section 5.6) 59-60
Schema piping (> >): the new Z opera

tor (A l) 42, (Section 9.4) 129
Select operations (B2) 35, 96
Sorting of results (A2) 42-43, 104

S O R T : the operator
(Section 5.5) 57-58

SSL 120-125, 135-148
State schemas

DB (D4) 32-33, 93-94
View schemas (A5.2) 45

Index 162

A DB (D5) 33-34, 95
A View (A5.7) 46-47
EDB (D6) 34, 95
!EView (A5.8) 47

Static attribute constraints (D3.3) 32, 93
Synthesizer Generator 3, 120-125, 128

Theta-Join operation (B3) 35, 96
Traditional database design 1, 7-11, 126
Transactions 17
Transactions (Al) 42, 103-104
Transitive closure operator

F K T C (Section 5.8) 62-63
Tuple types (D2) 31, (A5.1) 45,

(Section 9.4) 129

UPDATE : the operator (Section 5.4) 56
Update operations (B5) 35-36, 96

UPDATE : the operator
(Section 5.4) 56

Updates of attributes
(B9) 40, 101-102

Updates of keys
(B10) 40-42, 102-103

Cascade (B10.2) 41, 103
Nullify (B10.3) 41-42, 103
Restricted (B10.1) 41, 103

View state schemas (A5.2) 45
A View (A5.7) 46-47
EView (A5.8) 47

Views (A5) 44-48, 106-107
Intentions (A5.1) 45
Operations (A5.9) 47-48
Relations based on

Deletes (A5.6) 46
Inserts (A5.5) 46
Projects (A5.3) 45
Selects (A5.3) 45
Theta-Joins (A5.3) 45
Updates of attributes (A5.4) 46

State schemas (A5.2) 45
A View (A5.7) 46-47
EView (A5.8) 47

Z extensions
But (\): the new operator

(B9) 40, 101-102, (A5.4) 46,
(Section 5.4) 56,
(Section 9.4) 129

Piping (> >): the new schema oper
ator (Al) 42, (Section 9.4) 129

Tuple types (D2) 31, (A5.1) 45,
(Section 9.4) 129

EDB expression 36, 40, 129

A DB: the schema (D5) 33-34, 95
AView: the schema (A5.7) 46-47
"EDB: the schema (D6) 34, 95
EDB expression 36, 40, 129
EView : the schema (A5.8) 47

Z: 1, 2, 16-17, 20, 128-129

