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ABSTRACT 

Glioblastoma (GBM) is a highly aggressive and fatal brain cancer that is 

associated with a number of diagnostic, therapeutic, and treatment monitoring 

challenges. At the time of writing, inhibition of a protein called poly (ADP-

ribose) polymerase-1 (PARP-1) in combination with chemotherapy was being 

investigated as a novel approach for the treatment of these tumours. However, 

human studies have encountered toxicity problems due to sub-optimal PARP-1 

inhibitor and chemotherapeutic dosing regiments. Nuclear imaging of PARP-1 

could help to address these issues and provide additional insight into potential 

PARP-1 inhibitor resistance mechanisms. Furthermore, nuclear imaging of the 

translocator protein (TSPO) could be used to improve GBM diagnosis, pre-surgical 

planning, and treatment monitoring as TSPO is overexpressed by GBM lesions in 

good contrast to surrounding brain tissue. To date, relatively few nuclear 

imaging radiotracers have been discovered for PARP-1. On the other hand, 

numerous tracers exist for TSPO many of which have been investigated in 

humans. However, these TSPO radiotracers suffer from either poor 

pharmacokinetic properties or high sensitivity to human TSPO polymorphism that 

can affect their binding to TSPO. Bearing in mind the above and the high 

attrition rates associated with advancement of radiotracers to the clinic, there 

is a need for novel radiotracers that can be used to image PARP-1 and TSPO. This 

thesis reports the pre-clinical discovery programme that led to the identification 

of two potent PARP-1 inhibitors, 4 and 17, that were successfully radiolabelled 

to generate the potential SPECT and PET imaging agents [123I]-4 and [18F]-17 

respectively. Evaluation of these radiotracers in mice bearing subcutaneous 

human GBM xenografts using ex vivo biodistribution techniques revealed that the 

agents were retained in tumour tissue due to specific PARP-1 binding. This thesis 

also describes the pre-clinical in vivo evaluation of [18F]-AB5186, which is a novel 

radiotracer discovered previously within the research group with potential for 

PET imaging of TSPO. Using ex vivo autoradiography and PET imaging the agent 

was revealed to accumulate in intracranial human GBM tumour xenografts in 

good contrast to surrounding brain tissue, which was due to specific binding to 

TSPO. The in vivo data for all three radiolabelled compounds warrants further 

pre-clinical investigations with potential for clinical advancement in mind.  
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1 INTRODUCTION. 

1.1 Glioblastoma. 

1.1.1 Epidemiology, aetiology, and pathophysiology.  

Gliomas are brain tumours that are thought to originate from glial cells. They 

can be classified into astrocytomas, oligodendromas, ependymomas, and mixed 

gliomas depending on the glial cell component of the tumour (Louis and Gusella, 

1995). Glioblastoma (GBM) is a highly aggressive type of astrocytoma and it is 

the most common glioma in adults (Louis and Gusella, 1995; Ostrom et al., 

2014). Ostrom et al. (2014) reported the age-adjusted incidence of GBM to be 

between 0.59 and 3.59 per 100 000 people depending on the geographical 

location (data were acquired from Australia, England, Greece, Korea, and the 

United States between 1999 and 2010). To put this into perspective, the authors 

also reported the age-adjusted incidence rate of all gliomas to be between 4.67 

and 5.73 per 100 000 people (data were acquired from Finland and Greece 

between 2000 and 2007). Since histological evaluation of tumour tissue is a core 

component of the diagnostic process, geographical variation in incidence can 

partly be explained by differences in histological data collection techniques used 

across different laboratories (Ostrom et al., 2014). Schwartzbaum et al. (2006) 

identified a slight but a statistically significant average annual increase in glioma 

incidence of 0.9% between 1985 and 1994 (data were acquired from the Central 

Brain Tumour Registry of the United States). However, the authors attributed 

this increase to improvements in diagnostic imaging and access to medical care 

and suggested that glioma incidence has remained consistent during this time. 

The aetiology of GBM is still poorly understood. There is evidence to suggest that 

exogenous environmental factors, such as exposure to high-dose radiation or 

high-dose chemotherapy for treatment of cancers, can contribute to the 

development of GBM. Genetics also play a part in the aetiology of GBM as links 

with certain rare inherited conditions, associated with specific genetic 

aberrations, have been established. Some examples include mutations of the 
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neurofibromin 1 (NF1) and 2 (NF2), retinoblastoma 1 (RB1), and Tumour Protein 

53 (TP53) genes that have been found to be responsible for neurofibromatosis 1 

and 2, retinoblastoma, and Li-Fraumeni syndrome respectively. A familial history 

of GBM has also been reported as a risk factor, where the likelihood of 

developing the condition can be two-fold higher (Schwartzbaum et al., 2006). 

Based on data from animal studies, it has been recognised that certain 

exogenous and endogenous chemical entities such as N-nitroso compounds, 

reactive oxygen species, and polycyclic aromatic hydrocarbons possess 

neurocarciogenic properties. However, human epidemiological studies 

investigating correlations between GBM and chemical occupational exposures 

have so far been inconclusive. Additionally, no significant relationship has been 

established between glioma incidence and the use of mobile phone devices. 

Interestingly, atopic conditions such as asthma, hay fever, eczema, and food 

allergies inversely correlate with glioma incidence (Schwartzbaum et al., 2006; 

Omuro and DeAngelis, 2013; Ostrom et al., 2014).  

The World Health Organisation (WHO) Classification of Tumours of the Central 

Nervous System is an international histological standard for the definition, 

diagnosis, and grading of brain tumours. GBM falls under the WHO grade IV 

classification due to being highly malignant, mitotically active, rapidly evolving, 

and associated with histological features of micro-vascular proliferation, nuclear 

atypia, necrosis, and pseudo-palisading regions characterised by heaping up of 

tumour cells around necrotic lesions (Louis et al., 2007). Clinically, the lesions 

are usually poorly defined due to the presence of highly invasive cells that can 

migrate up to several centimetres from the main tumour mass (Pilkington, 

1994).  

GBM can be further subcategorised into primary (de novo) and secondary 

tumours depending on the pathway that led to the origin of the corresponding 

lesion. Specifically, secondary glioblastomas originate from lower grade gliomas 

(e.g. astrocytoma WHO grade II or III) and affect individuals with a mean age of 

40 years, while primary glioblastomas develop rapidly in individuals of a mean 

age of 55 years with no clinical, histological, or radiographic evidence of lower 

grade lesions (Louis and Gusella, 1995; Kleihues et al., 1999). Historically, the 
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pathways leading to primary and secondary glioblastomas were believed to be 

associated with specific genetic traits, where epidermal growth factor receptor 

(EGFR) amplification and TP53 mutation were thought to be exclusive to primary 

and secondary glioblastomas respectively (Louis and Gusella, 1995; Deimling, 

Louis and Wiestler, 1995). However, more recent studies have disputed this 

genetic exclusivity. Okada et al. (2003) revealed that EGFR amplification 

occurred in 57% of GBM tumour samples with TP53 mutations (n = 7), and a 

comprehensive genomic GBM characterisation study conducted by The Cancer 

Genome Atlas (TCGA) Research Network (2008) showed that 42% of primary GBM 

samples (n = 91) had TP53 mutations. It is therefore evident that the genetic 

makeup of GBM is more complex than previously believed. By utilising TCGA 

(2008) GBM data, Verhaak et al. (2010) were able to subclassify GBM into four 

distinct subtypes (i.e. classical, mesenchymal, proneural, and neural) based on 

genetic abnormalities in numerous genes including the alpha type platelet 

derived growth factor (PDGFA), isocitrate dehydrogenase 1 (IDH1), EGFR, and 

NF1 genes. It was proposed that genetic subclassification of GBM could 

potentially be used to deliver patient tailored therapies leading to improved 

quality of life and prolonged survival (Taylor, 2010). However, such a tailored 

therapeutic approach may have limited clinical benefit as it has been revealed 

that a single GBM tumour can comprise of a mixture of genetic subtypes (Mayer 

et al., 2015; Patel et al., 2014).  

1.1.2 Diagnosis.  

The diagnosis of GBM is driven by the clinical presentation of patients, followed 

by neurological examination, structural imaging of the brain using either 

magnetic resonance imaging (MRI) or computed tomography (CT) (Omuro and 

DeAngelis, 2013; Taylor, 2010; National Institute for Health and Clinical 

Excellence, 2007), and finally histological assessment of lesion biopsy samples 

obtained at the time of surgical resection or by a single-event biopsy where 

surgery was not possible (National Institute for Health and Clinical Excellence, 

2007). It is important to make a distinction between structural and functional 

imaging, where the former provides anatomical information and the latter can 
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reveal physiological activities of tissues. The use of functional nuclear imaging in 

GBM is discussed in greater detail in section 1.2.3. 

Structural CT and MRI possess a number of advantages and disadvantages. CT is 

markedly cheaper than MRI, has shorter scan times, and provides good bone 

contrast (Keunen et al., 2014). However, neuroimaging using CT is limited as the 

modality is less sensitive than MRI and exhibits poor soft tissue contrast, which 

makes it difficult to distinguish anatomical details of the brain (Landy et al., 

2000). Furthermore, CT requires exposure of the imaging subject to ionising 

radiation in the form of X-rays. Contrary to this, MRI allows for improved soft 

tissue contrast, it does not rely on the use of ionising radiation (Khalil et al., 

2011; Keunen et al., 2014), and it is currently viewed as the ‘gold standard’ 

modality for GBM neuroimaging. 

The signs and symptoms associated with gliomas are dependent on tumour size 

and location, and can include: i) new onset headache with a non-specific pain 

pattern, progressive severity and/or unilateral localisation; ii) cognitive 

difficulties; iii) behavioural changes; iv) sensory loss; v) visual field disturbances; 

vi) language difficulties; vii) seizures; viii) gait imbalance; and ix) incontinence. 

On presentation of one or more of these symptoms, a neurological examination 

may be conducted and, where indicated, structural MRI will be performed in the 

presence of a gadolinium contrast agent that enhances glioma lesions (Omuro 

and DeAngelis, 2013). Under normal circumstances, brain tissue is protected by a 

unique barrier called the blood brain barrier (BBB), which prevents brain uptake 

of the gadolinium contrast agent. However, gliomas are associated with BBB 

disruptions that allow the contrast agent to enter the tumour tissue, which 

subsequently enhances on the acquired MRI scans (see section 4.1.2.2 for 

details). Where the use of gadolinium is contraindicated (i.e. previous or pre-

existing nephrogenic systemic fibrosis; renal impairment; hepatorenal syndrome; 

pregnancy; breast feeding; previous anaphylactic or anaphylactoid reaction), MRI 

may be performed in the absence of a contrast agent. On the MRI scans, glioma 

lesions often appear as diffuse, unifocal and more rarely multifocal, necrotic, 

and characteristically surrounded by white matter oedema (Omuro and 

DeAngelis, 2013). However, this imaging modality can fail to detect secondary 
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GBM lesions at early stages of the disease, which is likely a consequence of an 

intact BBB and poor contrast uptake. For example, Kracht et al. (2004) reported 

cases of histologically confirmed grade II and III astroytomas that failed to 

enhance on gadolinium contrast MRI. Furthermore, Landy et al. (2000) described 

patients with radiographically visible high-grade gliomas that had normal or 

minimally abnormal structural MRI scans upon initial presentation with new 

onset seizures just a few months earlier. The specificity of structural MRI for 

glioma tissue has been reported as only 50% (Götz et al., 2012), meaning that 

diagnostic ambiguity can be a common occurrence. Further problems arise for 

patients who are unable to undergo an MRI scan due to a contraindication (e.g. 

the presence of a pacemaker or implantable cardioverter defibrillator, 

claustrophobia, etc.). In such cases a structural CT scan may be performed 

(Omuro and DeAngelis., 2013), which can often fail to detect intracerebral 

lesions due to a lower sensitivity when compared to structural MRI (Landy et al., 

2000).  

It is important to appreciate that structural CT and MRI are not definitive 

diagnostic methods. This is because metastatic brain cancers and a number of 

non-cancerous syndromes can mimic the appearance of gliomas upon imaging 

with these techniques. Non-cancerous glioma mimics include: i) stroke; ii) brain 

abscess; iii) demyelinating disease; and iv) sarcoidosis (Floeth et al., 2006; 

Taylor, 2010; Omuro and DeAngelis, 2013). An accurate patient history is vital in 

aiding the differential diagnosis process of these radiographic glioma mimics 

(Taylor, 2010).  

1.1.3 Treatment and prognosis. 

Following neuroimaging, patients with suspected glioma will undergo either 

maximum safe surgical resection or partial resection aimed at relieving mass 

effect. The resected tissue will undergo histopathological evaluation for 

confirmatory diagnosis and tumour typing and grading. In some cases, surgical 

resection of the GBM lesion may be impossible or highly limited due to the 

localisation of the tumour. Where the lesion is deemed to be inoperable, 

stereotactic biopsy may be performed (National Institute for Health and Clinical 
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Excellence, 2007; Omuro and DeAngelis., 2013). In cases where the tumour is 

accessible, surgical resection can often be incomplete because of the diffuse 

nature of GBM and the inability to accurately delineate tumour from non-tumour 

tissue when performing MRI-guided volumetric resection (Pirotte et al., 2009). In 

order to try and improve outcomes, excess brain tissue is usually removed as 

defined by 1–4 cm margin that is added to the MR contrast enhancing region. 

However, this approach is inaccurate and it can still lead to tumour volume 

underestimation as well as overestimation (Pirzkall et al., 2001). As a 

consequence of incomplete surgical resection, the tumour is likely to reoccur 

(Kern and Shibata, 2007) as glioblastomas are known to contain a mixture of 

differentiated (Kelly et al., 2007) and stem (Galli et al., 2004; Singh et al., 

2004; Yuan et al., 2004) tumour initiator cells that can drive the formation of 

new tumours. These cancer stem cells (CSCs) usually account for approximately 

2–5% of GBM tumour mass, however they have been reported to constitute as 

much as 28% (Singh et al., 2004).  

GBM treatment is usually commenced following histopathological confirmation of 

the condition, and radiotherapy or a combination of radio- and chemotherapy 

are considered for all patients (National Institute for Health and Clinical 

Excellence, 2007). The current ‘gold standard’ chemotherapeutic agent for 

newly diagnosed GBM is temozolomide (TMZ) (National Institute for Health and 

Clinical Excellence, 2007; Omuro and DeAngelis., 2013). A study by Stupp et al. 

(2009) showed that combination treatment of TMZ and radiotherapy in newly 

diagnosed GBM patients, who underwent either biopsy or surgical resection 

(partial or complete), improved the overall survival five years after diagnosis by 

approximately five fold when compared to patients who received stand alone 

radiotherapy. However, it is important to bear in mind that GBM remains a fatal 

disease with a reported two and five year survival of 27.2% (95% confidence 

interval = 22.2–32.5) and 9.8% (95% confidence interval = 6.4–14.0) respectively 

following surgical intervention, and combination TMZ with radiotherapy (Stupp 

et al., 2009).  

The treatment of GBM is challenged by the fact that CSCs can exhibit resistance 

to both radio- and chemotherapy (Visvader and Lindeman, 2008). Radiotherapy 
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utilises ionising radiation to generate free radicals on DNA bases that then react 

with oxygen to form cytotoxic oxygen-DNA adducts (Leopold and Sebolt-Leopold, 

1992). On the other hand, TMZ works by forming cytotoxic O6-alkylguanine DNA 

lesions. In all cases, cells need to be actively dividing for radio- and 

chemotherapeutic cytotoxic effects to take place (Rang et al., 2007). The fact 

that CSCs have the ability to enter a quiescent state where cell division is halted 

may provide some explanation for their radiochemotherapeutic resistance 

(Dean, Fojo and Bates, 2005; Visvader and Lindeman, 2008). Moreover, the 

cytotoxic DNA-adducts formed by alkylating agents can be repaired by O6-

methylguanine-DNA-methyltransferase (MGMT) that has been shown to be 

overexpressed or highly-active in a number of GBM CSC lines (Tentori et al., 

2014). Another contributory factor to CSC chemoresistance is the ability of these 

cells to overexpress drug transporter proteins that can actively pump out 

cytotoxic agents into extracellular spaces (Dean, Fojo and Bates, 2005; Visvader 

and Lindeman, 2008). Interestingly, it has been shown that glioma CSC 

populations can be enriched by ionising radiation in a dose dependant manner 

and can repair radiotherapy induced DNA damage much more effectively that 

tumour cells lacking the stem cell phenotype (Bao et al., 2006).  

CSCs are not the only driving force behind GBM treatment resistance. Brain 

tumours generally possess a degree of radioresistance due to the hypoxic nature 

of the brain (Leopold and Sebolt-Leopold, 1992) and local hypoxic regions caused 

by tumour mass induced vasooclusion and vasocollapse (Brat et al., 2004). This 

reduced oxygen concentration impedes the formation of oxygen-DNA adducts 

and reduces the effectiveness of radiotherapy (Leopold and Sebolt-Leopold, 

1992).  

It is also important to appreciate the challenges associated with monitoring the 

response to therapy, which is currently achieved using gadolinium contrast 

enhanced structural MRI. This technique may be misleading as surgery and 

radiotherapy can alter BBB permeability and subsequently contrast agent 

uptake, that can result in MRI enhancement irrespective of tumour recovery or 

progression (Hygino da Cruz et al., 2011).  
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Based on the above information, it is clear that there is a need for further 

advances in the diagnostic capabilities of GBM, the subsequent surgical and 

radiochemotherapeutic approaches used to treat the disease, and techniques 

used to monitor treatment efficacy and disease progression.  

1.2 Nuclear imaging. 

1.2.1 Technology (SPECT and PET). 

SPECT and PET are functional nuclear imaging modalities that can detect trace 

amounts of radiolabelled probes in vivo in a non-invasive manner. These probes, 

or radiotracers, are administered to the subject being imaged (usually via an 

intravenous injection) and are designed to bind to specific biomarkers of interest 

or to accumulate in desired tissues, thereby allowing for imaging of pathological 

and biological processes on a molecular level. 

SPECT imaging requires the use of radionuclides that emit gamma-rays following 

their decay. Some of the commonly used radionuclides for SPECT imaging 

include 99mTc (half-life = 6.0 hours), 67Ga (half-life = 78.3 hours), and 123I (half-

life = 13.2 hours), where only the latter can be attached directly to small 

organic molecular probes (Pimlott and Sutherland, 2011). The 123I radionuclide is 

synthesised in a cyclotron via the 124Xe(p,pn)123I nuclear reaction (Scheme 1.1). 

The process involves bombarding a 124Xe atom with a proton, which can then 

have one of two outcomes. The first results in the loss of a neutron and a proton 

leading to the formation of 123Xe, while the second results in the loss of two 

neutrons and the formation unstable 123Cs. In order to become more stable, an 

electron from the inner-shell of 123Cs is drawn into the nucleus and combines 

with a proton to form a neutron and a neutrino; this process is called electron 

capture and leads to the formation of 123Xe. In a similar manner, 123Xe also 

undergoes electron capture generating 123I, which again is unstable and decays 

with a half-life of 13.2 hours via the same electron capture pathway to form 

123Te. The 123Te atom created via this route possesses a slight excess of energy 



35 
 

 

and is able to enter a stable ground state by releasing a gamma-ray photon 

(International Atomic Energy Agency, 2008) (Scheme 1.1). 

 

Scheme 1.1. Nuclear reactions used to generate the 123I radionuclide and its 

subsequent decay.  

 

A SPECT scanner possesses between two to three gamma cameras attached to a 

rotatable gantry that detect the gamma-rays emitted directly by radionuclides. 

In order to obtain directional information, each gamma camera has in front of it 

a physical collimator, which comprises of either a pinhole or a set of parallel 

holes that only allow gamma-rays traveling in a single direction (i.e. at a single 

angle of incidence) to reach the detector (Figure 1.1). Using this directional 

information the scanner is able to generate a three dimensional tomographic 

image of the gamma-ray source. In practice, the gamma-ray source will 

correspond to the tracer compound labelled with the gamma-emitting 

radioisotope that has been injected into the subject being imaged (Pimlott and 

Sutherland, 2011; Ritt, Sanders, and Kuwert, 2014). 

 

Figure 1.1. Cross-sectional diagram of a SPECT scanner. 
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In a similar manner to SPECT, PET scanners are able to detect tracers that have 

been radiolabelled with an appropriate radioisotope. In the case of PET, 

radioisotopes that can be used include 15O, 13N, 11C and 18F, which all decay via 

the β+ pathway (Miller et al., 2008). However, the use of the former three 

radioisotopes is associated with a number of challenges due to their short decay 

half-life's (i.e. 15O = 2.04 minutes; 13N = 9.97 minutes; 11C = 20.3 minutes) 

(Pimlott and Sutherland, 2011). Firstly, radiotracers labelled with these isotopes 

can only be utilised for short imaging times. Secondly, imaging multiple subjects 

in a single day may require multiple radiotracer production runs. Thirdly, 

radiolabelling and subsequent PET imaging is generally restricted to facilities 

that have an on-site cyclotron capable of producing 15O, 13N, and 11C. The 

slightly longer half-life of 11C radiopharmaceuticals allows their transport across 

different sites, although their transport will be restricted to short distances. 

The 18F radionuclide is generated using a cyclotron and the 18O(p,n)18F nuclear 

reaction, which involves proton bombardment of 18O in gaseous form or water 

(i.e. H2
18O). The oxygen atom accepts a proton and, in order to conserve mass, 

liberates a neutron resulting in the formation of 18F. The unstable 18F 

radionuclide then decays with a half-life of 109.8 minutes and emits a β+ particle 

and a neutrino, and reforms the 18O atom (Scheme 1.2). The 11C radionuclide is 

made through a similar process, which involves introducing a proton into the 14N 

atom, that then emits an α-particle (i.e. a 4He atom) resulting in the formation 

of 11C. The 11C radionuclide decays to 11B via the β+ pathway with a half-life of 

20.3 minutes (International Atomic Energy Agency, 2008) (Scheme 1.2). 

 

Scheme 1.2. Nuclear reactions used to generate the 18F and 11C radionuclides 

and their subsequent decay. 
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Following radiotracer administration to the imaging subject and radioisotope 

decay, the emitted β+ particles travel a short distance in tissue (approximately 

0.5–2.5 cm) before colliding with an electron (i.e. a β particle) from 

surrounding matter. This collision results in an annihilation event that is 

associated with the release of energy in the form of two coincident gamma-ray 

photons of a specific energy (i.e. 511 KeV) travelling at approximately 180 to 

one another. The PET scanner contains a ring of sensors that detect these 

coincident photons and uses this information to generate a three dimensional 

tomographic image that provides an approximate location of the radioisotope 

source (Figure 1.2). Unlike SPECT, the PET scanner does not require physical 

collimators as the coincidence of the gamma-ray photons provides sufficient 

directional information for image generation; this is termed internal collimation 

(Miller et al., 2008; Pimlott and Sutherland, 2011). 

 

Figure 1.2. Cross-sectional diagram of a PET scanner. 

It is important to note that annihilation of β+ and β particles can only occur once 

the β+ particle loses sufficient energy and is practically at rest. As the β+ particle 

travels through tissue it will interact with matter via elastic and inelastic 

collisions losing energy each time. The energy of the β+ particle emitted from 

the radioisotope will dictate how far the particle travels before losing sufficient 

energy to undergo annihilation, which will in turn influence the accuracy at 

which the location of the radioisotope source can be predicted. Consequently, 
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radioisotopes that generate high energy β+ particles, which travel further before 

annihilation, will lead to reduced resolution of the PET image when compared to 

radioisotopes that emit lower energy β+ particles (Bailey, Karp, and Surti, 2004). 

The below table summarises how the mode energies of emitted β+ particles from 

different radionuclides affect their distance travelled in water (Table 1.1). 

Table 1.1. A table summarising the mode energies and the distance travelled in 

water of + particles emitted from different radionuclides (Bailey, Karp, and 

Surti, 2004). 

 

1.2.2 Strengths and weaknesses. 

SPECT and PET technologies possess a unique set of advantages and 

disadvantages. Pre-clinical SPECT scanners are capable of achieving superior 

spatial resolution when compared to pre-clinical PET, while in a clinical setting 

better spatial resolution is generally achieved with PET imaging (Khalil et al., 

2011) (Table 1.2). It is noteworthy that over the last few years new SPECT 

technologies have emerged that have exhibited substantial improvements in 

spatial resolution when compared to conventional SPECT. Specifically, these 

include xSPECT (Siemens) and G-SPECT (MILabs), which can achieve spatial 

resolutions in the region of 2–4 mm. However, at the time of writing, the former 

has so far only been utilised for bone scans while the latter was yet to be 

approved for clinical use (Ma and Vija, 2014; MILabs, 2015).  
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Table 1.2. Spatial resolution limits of pre-clinical and clinical nuclear imaging 

scanners (Khalil et al., 2011).  

 

 

In addition to better spatial resolution, clinical PET is also associated with 

greater accuracy and sensitivity when compared to SPECT. The reasons for this 

are two-fold. Firstly, directional information in PET is achieved through internal 

collimation, while SPECT requires physical collimation that restricts the number 

of gamma-ray photons that can reach the detector. Secondly, attenuation 

correction is more easily achieved in PET imaging than in SPECT (Rahmim et al., 

2008). Attenuation correction is necessary as gamma-ray photons, released 

either directly from the radionuclide or via a secondary annihilation event, can 

undergo photoelectric or scatter interactions. In the case of the former, the 

photon is completely absorbed by surrounding matter before reaching the 

detector, which in the absence of correction can reduce detector sensitivity. 

Similarly, if scatter interactions are not appropriately corrected for, the altered 

incident trajectories and energies of gamma-photons can have a negative effect 

on imaging accuracy (Zaidi and Hasegawa, 2006). 

Despite a number of shortcomings over PET, SPECT imaging has a number of 

advantages. Firstly, the longer half-life of SPECT radionuclides allows for longer 

scan times, cheaper radiotracer production costs, and the ability to transport 

the radiopharmaceuticals across larger geographical distances (Keunen et al., 

2014). Secondly, SPECT can be utilised to perform simultaneous dual-tracer 

imaging, which is made possible as different radionuclides can emit gamma-ray 

photons of different energies (for example 99mTc = 140 KeV and 123I = 159 KeV) 

that can be detected simultaneously using the SPECT scanner. In contrast to 

this, a conventional PET scanner is designed to detect gamma-ray photons of a 

single energy (i.e. 511 KeV). Performing dual-tracer imaging could be utilised to 



40 
 

 

visualise two different biomarkers simultaneously, which could in turn reduce 

acquisition times and patient discomfort. Furthermore, interpretation of data is 

simplified as simultaneous acquisition removes potential image registration 

artefacts that could be introduced when performing two separate imaging 

sessions (Rahmim et al., 2008). Thirdly, SPECT could be utilised to ascertain in 

vivo pharmacokinetic properties of novel 131I-labelled radionuclide therapy 

agents, which decay to release a β particles and gamma-ray photons. The β 

particle is highly ionising and induces DNA damage, which can be exploited 

therapeutically for the treatment of cancer, while the gamma-ray photons can 

be detected using a SPECT scanner. Non-invasive pharmacokinetic information 

ascertained in this manner could provide valuable data for calculating tissue 

dosimetry, and predicting therapeutic effectiveness and radiation toxicity to off 

target organs. 

A key advantage shared by both SPECT and PET is that they can be combined 

with structural imaging, which brings together the strengths of the individual 

modalities into a single imaging system. Specifically, PET and SPECT scanners 

are capable of detecting pathological processes on a molecular and functional 

level with a greater degree of specificity than structural imaging, while 

structural imaging techniques generally allow for better spatial resolution than 

nuclear imaging (Khalil et al., 2011; Keunen et al., 2014). Spatial resolution can 

be defined as the limiting distance in distinguishing between two point sources 

close to one another (Bailey, 2004). 

Multimodality SPECT/CT and PET/CT scanners are now common place and they 

allow for precise registration of functional information to anatomical regions 

visible in the CT image. However, such systems are disadvantaged by the poor 

soft tissue contrast of CT and increased exposure to ionising radiation when 

compared to SPECT or PET alone. In order to address these shortcomings, recent 

scientific endeavours have focused on the refinement of hybrid PET/MRI and 

SPECT/MRI systems. Importantly, certain hybrid nuclear/MRI imaging systems are 

capable of acquiring functional and structural data simultaneously, unlike hybrid 

nuclear imaging/CT scanners that acquire the two data sets sequentially. 

Sequential acquisition not only increases scan times but also image processing 
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times as the two sequential data sets require post-imaging software driven 

integration (Cherry, 2009). In the context of clinical imaging, reducing scan and 

processing times are important in maximising patient comfort and the number of 

patients that can be imaged on a single day, which can in turn reduce costs 

associated with radiopharmaceutical production. 

1.2.3 Nuclear imaging of glioblastoma 

Due to the complementary strengths of nuclear and structural imaging, the 

combined use of the two modalities has the potential to address the previously 

described issues associated with GBM structural neuroimaging (see sections 1.1.2 

and 1.1.3 for details). 

The most clinically researched tracers for nuclear imaging of brain tumours 

include the PET agents [18F]-fluorodexoyglucose ([18F]-FDG), methyl-[11C]-

methionine ([11C]-MET), and [18F]-fluoroethyl-L-tyrosine ([18F]-FET), and the 

SPECT agent [123I]-iodo-alpha-methyl-L-tyrosine ([123I]-IMT). The former is a 

glucose analogue and shows proportional tissue uptake to its parent molecule. 

Tumour cells express higher amounts of glucose transporters when compared to 

non-tumorous cells and are subsequently associated with higher glucose uptake 

(Juhász et al., 2014). The other listed probes are amino acid analogues that are 

actively taken up into tumour tissue by amino acid transporters, which are 

overexpressed by glioma cells (Waerzeggers et al., 2011; Götz et al., 2012). The 

disadvantage of [18F]-FDG is that healthy grey matter is also associated with high 

uptake of glucose (Juhász et al., 2014), which results in a low tumour to 

background signal ratio. This low contrast between tumour and non-tumour 

tissue can make tumour detection and delineation difficult, particularly during 

early stages of the disease where the lesions are small (Cook, Maisey, and 

Fogelman, 1999; Götz et al., 2012; Juhász et al., 2014). Poor imaging contrast 

with [18F]-FDG PET has also been reported in a number of high grade gliomas 

(including GBM), where uptake of the tracer in glioma lesions was similar to the 

cortex tissue (Schifter et al., 1993).  
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Amino acid based radiotracers have shown more promise as GBM nuclear imaging 

agents, due to their low uptake in normal brain tissue. Götz et al. (2012) 

reviewed past literature and reported the specificity of [11C]-MET PET and [123I]-

IMT SPECT for glioma tumours to be between 80–100%, compared to only 50% for 

structural MRI. Similarly, a study by Pauleit et al. (2005) revealed that the 

combined use of [18F]-FET PET and MRI improved the glioma specificity from 53% 

(using MRI alone) to 94%. Moreover, amino acid based radiotracers have been 

shown to be effective at identifying low grade astrocytomas, which can be 

difficult to detect using structural MRI (Kracht et al., 2004). These data support 

the potential for improved diagnostic accuracy offered by nuclear and 

multimodality imaging using amino acid based radiotracers. However, it is 

important to appreciate that conditions that can mimic gliomas on structural 

neuroimaging (see section 1.1.2 for details) may also be difficult to distinguish 

using nuclear imaging and amino acid based radiotracers due to non-neoplastic 

uptake of the probes (Floeth et al., 2006; Salber et al., 2007).  

Kracht et al. (2004) were able to show that [11C]-MET PET was capable of 

detecting not only solid tumours but also invasive tumour cells in patients with 

grade 2 to 4 astrocytomas with high sensitivity and specificity, which was not 

achievable using structural MRI. The authors highlighted that the approach could 

improve diagnosis and surgical management of patients with glioma compared to 

structural neuroimaging (Kracht et al., 2004). In line with these proposals, 

Pirotte et al. (2005) reported that combining [11C]-MET PET and MR imaging 

improved total resection of low grade gliomas in children when compared to MRI 

guided resection alone. Similarly, the combined use of these modalities was 

found to improve low grade glioma and glioblastoma tumour volume definition 

for resective surgery in 52 out of 59 (88%) and 18 out of 23 (78%) cases 

respectively when compared to MRI (Pirotte et al., 2006).  

As highlighted previously, measuring GBM therapeutic response using MRI can be 

misleading due to therapeutically induced alterations in BBB permeability (see 

section 1.1.3 for details). Nuclear imaging using amino acid based radiotracers 

could provide an alternative means of therapeutic monitoring of these tumours. 

This is justified by the good correlations that were observed between GBM [18F]-
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FET uptake and therapeutic responses to convection-enhanced delivery of 

paclitaxel and locally administered radioimmunotherapy, which can both affect 

BBB permeability (Pöpperl et al., 2005; Pöpperl et al., 2006). However, it is 

important to note that BBB disruptions secondary to glioma or acute radiation 

injury have been reported to increase unspecific uptake of [11C]-MET (Roelcke et 

al., 1995) and [18F]-FET (Spaeth et al., 2004) respectively.  Therefore, further 

studies are required in order to evaluate the utility of amino acid based 

radiotracers as a means of GBM treatment monitoring.  

The above described findings outline that amino acid based radiotracers have 

the potential for improving diagnosis and management of patients with gliomas, 

including nuclear imaging guided resective surgery and possibly treatment 

monitoring. However, it is important to bear in mind that the use of the 

aforementioned radiotracers for neurooncological applications is still under on-

going investigation, and their exact place in the clinic is yet to be determined. 

1.3 Poly(ADP-ribose) polymerase (PARP).  

1.3.1 What is PARP and what does it do? 

The mammalian poly(ADP-ribose) polymerase (PARP) family comprises of 17 

different proteins. Six of these family members, namely PARP-1 to 4, and 

tankyrases 1 and 2, have the ability to perform a type of protein post-

translational modification called poly(ADP-ribosyl)ation. This process involves 

the transfer of adenosine diphosphate (ADP) ribose molecules from nicotinamide 

adenine dinucleotide (NAD+) (Figure 1.3) onto target proteins to form linear or 

branched ADP-ribose chains (Hottiger et al., 2010; Bürke, 2005).  



44 
 

 

 

Figure 1.3. Structure of nicotinamide adenine dinucleotide (NAD+). 

The mechanism of PARP mediated poly(ADP-ribosyl)ation is outlined in figure 

1.4. The process begins with the binding of the ribose functionality of an NAD+ 

molecule to an acceptor site in the PARP enzyme or in histones, while the 

nicotinamide moiety binds to the PARP catalytic fragment. Binding to the 

catalytic fragment is driven by hydrogen bonding between the amide 

functionality of nicotinamide and Gly863 and Ser904 amino acid residues. Planar π-

stacking interactions between the aromatic rings of nicotinamide and the Tyr907 

amino acid residues also contribute to the binding. Together, these interactions 

facilitate the dissociation of nicotinamide leading to the formation of an ADP-

ribose oxonium ion intermediate. A Glu988 amino acid residue forms a hydrogen 

bond with the 2’-hydroxyl of the adenine ribose moiety of a second NAD+ 

molecule, which then facilitates the formation of a glyosidic bond between the 

PARP-acceptor bound ADP-ribose oxonium ion and the secondary NAD+ molecule. 

Repetitions of this process at the positions highlighted in figure 1.4 lead to PAR 

chain elongation and PAR chain branching (Ferraris, 2010).  
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Figure 1.4. Diagram outlining the mechanisms of PARP catalysed poly(ADP-

ribosyl)ation. 

PARP mediated poly(ADP-ribosyl)ation has been implicated in numerous cellular 

processes including transcription, mitosis, apoptosis and DNA damage repair 

(reviewed by Amé, Spenlehauer, and de Murcia (2004), and Bürke, (2005)). 

However, the majority of these fall outside of the scope of this thesis and only 

the role of PARP in DNA damage response mechanisms will be described. The 

precise enzymatic roles of the other 11 members of the mammalian PARP family 

are still being elucidated. However, all 17 PARP proteins share gene sequence 

homology to the catalytic region of the bacterial diphtheria toxin which 

possesses mono(ADP-ribosyl)ation activity (Hottiger et al., 2010).  

The cellular DNA damage response system is complex and comprises of multiple 

different pathways that are responsible for the repair of different types of DNA 

damage. The integrity of DNA can become compromised in a number of different 

ways (Figure 1.5.). Firstly, DNA can undergo spontaneous hydrolysis resulting in 

the formation of a gap, or apurinic/apyrimidinic (AP) site, in the DNA chain. 
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Secondly, endogenous reactive oxygen species (ROS), alkylating agents and 

various metabolites produced by the body can lead to the formation of foreign 

adducts on DNA bases. Finally, there are exogenous sources of DNA damage such 

as chemical agents and ionising radiation that can also result in the formation of 

DNA adducts (Hoeijmakers, 2009). Certain DNA adduct lesions can disintegrate 

spontaneously resulting in the direct formation of single strand DNA breaks 

(SSBs). In other cases, cleavage of the adduct-bearing base by a DNA glycosylase 

protein leaves an AP site that is then cleaved by an AP endonuclease, AP lyase or 

a dual function glycosylase, resulting in the indirect formation of a SSB 

(Caldecott, 2008; Hoeijmakers, 2001) (Figure 1.5).  

 

Figure 1.5. Schematic outline of the pathways of DNA damage. AP = 

apurinic/apyrimidic; ROS = reactive oxygen species; SSB = single strand break. 

SSBs are repaired via the base excision repair (BER) pathway and the efficiency 

of this repair mechanism allows for a degree of cellular SSB tolerance. However, 

SSBs that are not repaired prior to DNA replication can lead to the blockage or 

collapse of DNA replication forks and subsequently double strand DNA breaks 

(DSBs) (Caldecott, 2001; Caldecott, 2008). DSBs can also be induced directly by 

ionising radiation at a ratio of 1 : 25 of DSBs to SSBs (Lieber, et al., 2010; 

Chalmers et al., 2010). Non-homologous end-joining (NHEJ) and homologous 
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recombination (HR) are processes that are responsible for the repair of these 

DSBs. The former of these two processes is inaccurate and prone to mutagenesis 

(Hoeijmakers, 2001), while error-free HR can become saturated by large 

amounts of DSBs leading to cytotoxicity (Caldecott, 2008) (Figure 1.6). 

 

Figure 1.6. Schematic outline of the DNA repair pathways. SSB = single strand 

break; BER = base excision repair; DSB = double strand break; HR = homologous 

recombination; NHEJ = non-homologous end joining.  

It has been shown that in the presence of DNA damage poly(ADP-ribosyl)ation 

increases dramatically (Juarez-Salinas, Sims and Jackobson, 1979), while under 

basal conditions this activity is low (Bürke, 2005). PARP-1 was the first member 

of the PARP family to be discovered (Chambon, Weill, and Mandel, 1963) and it 

accounts for approximately 90% of poly(ADP-ribose) (PAR) formation under 

genotoxic stress (Shieh et al., 1998). PARP-2, which was discovered much more 

recently, is the only other member of the PARP family that is activated by DNA 

damage and it accounts for approximately 5–10% of PAR formation under 

genotoxic stress (Amé et al., 1999). These proteins can exist as heterodimers 

(Schreiber et al., 2002), although the exact function of PARP-2 in DNA damage 

repair remains elusive.  
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The BER pathway is subdivided into short-patch and long-patch nucleotide DNA 

repair. The first of these is the predominant processes and it is initiated by the 

indirect formation of a SSB by AP endonucleases, AP lyases or glycosylases in the 

presence of a single damaged DNA base as described earlier. On the other hand, 

the long-patch nucleotide DNA repair process is responsible for the repair of SSBs 

where approximately 2–10 DNA bases have been damaged (Amé, Spenlehauer 

and de Murcia, 2004; Hoeijmakers, 2001). It was originally proposed that specific 

zinc motifs on PARP-1 recognise and bind to SSBs, resulting in the activation of 

PARP-1 and subsequent synthesis of negatively charged PAR chains that are 

transferred either to itself or other key proteins including histones H1 and H2B. 

Accumulation of these negatively charged chains leads to dissociation of PARP-1 

from DNA and to the relaxation of chromosomes through repulsive forces. It was 

thought that this facilitates the access and recruitment of DNA repair proteins to 

the site of DNA damage. In the case of short-patch nucleotide DNA repair, DNA 

polymerase-β (polβ) and the X-ray cross-complimenting protein (XRCC) 1 ligase 

III complex are recruited, where the former performs a one-nucleotide gap 

filling reaction and the remaining nick in the DNA is sealed by the ligase. The 

less common long-patch nucleotide DNA repair pathway makes use of DNA polβ, 

polymerase-δ, polymerase-ε and proliferating cell nuclear antigen (PCNA), which 

displace the damaged DNA sequence of bases and replaces them with 

complementary bases. Then flap endonuclease 1 (FEN1) then removes this 

displaced flap of bases, and finally DNA ligase I seals the DNA strands (Amé, 

Spenlehauer and de Murcia, 2004; Caldecott, 2008; Hoeijmakers, 2001). 

Dissociated poly(ADP-ribosyl)ated PARP-1 remains inactive until the PAR chains 

are degraded by poly(ADP-ribose) glycohydrolase (PARG), thereby restoring its 

activity (Caldecott, 2008) (Figure 1.7).  
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Figure 1.7. Schematic outline of the proposed model of short-patch and long-

patch nucleotide DNA repair involving PARP. SSB = single strand break; PAR = 

poly(ADP-ribose); PARG = poly(ADP-ribose) glycohydrolase; pol = polymerase; lig. 

= ligase; XRCC1 = X-ray cross-complimenting protein; PCNA = proliferating cell 

nuclear antigen; FEN1 = flap endonuclease 1. 

However, recent findings revealed that BER was able to occur efficiently in 

PARP-1 negative cells, and the presence of PARP-1 actually reduced the rate of 

BER (Storm et al., 2011). These observations suggested that PARP-1 was not 

directly involved in BER. The authors were also able to show that inhibition of 

PARP-1 prevented SSB ligation due to trapping of the protein on DNA (Storm et 

al., 2011). Based on these results, Helleday (2011) proposed an alternative 

mechanism for BER, which shares many similarities with the previously 

postulated mechanism. In this newly proposed model, DNA repair proteins are 

recruited to the SSB independently of PARP-1, where short-patch nucleotide DNA 

repair is initially attempted. If short-patch repair fails due to ligation difficulties 

then long-patch nucleotide DNA repair will take place (Figure 1.8). Despite 
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PARP-1 not being involved in the process, Helleday (2011) proposed that the 

protein can transiently bind to the SSB and become trapped when inhibited 

pharmacologically.  

 

Figure 1.8. Schematic outline of the proposed model of PARP independent 

short-patch and long-patch nucleotide DNA repair. SSB = single strand break; pol 

= polymerase; lig. = ligase; XRCC1 = X-ray cross-complimenting protein 1; PCNA = 

proliferating cell nuclear antigen; FEN1 = flap endonuclease 1. 

As mentioned earlier, NHEJ is one of the DNA damage response mechanisms 

responsible for the repair of DSBs. It is a complex process as variable sub-

pathways can exist depending on the extent of DNA damage that is being 

repaired (Davis and Chen, 2013). The two pathways of NHEJ include the classical 

NHEJ (C-NHEJ or D-NHEJ) and backup NHEJ (B-NHEJ) (Wang et al., 2012). Both 

of these can take place at any stage of the cell cycle, but they predominate in 

cells that lack identical copies of DNA (sister chromatids) at the time of repair 

(Takada et al., 1998).  

C-NHEJ begins with the recruitment of a Ku protein heterodimer comprising of 

Ku70 and Ku80 to the DSB (Figure 1.9). This complex is thought to stabilise the 

DSB termini and protect them from non-specific processing that otherwise could 

lead to chromosomal aberrations. The Ku complex is also thought to facilitate 
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the recruitment of the remaining proteins involved in C-NHEJ, which include the 

catalytic subunit of DNA-dependant protein kinase (DNA-PKcs), XRCC4, DNA-

ligase IV, XRCC4-like factor (XLF) and, where necessary, various DNA end 

processing enzymes. It is believed that the function of DNA-PKcs is to tether the 

two broken ends of the DNA molecule together. Moreover, XRCC4 and XLF form a 

filament complex that may also be involved in bridging the DSB gap. If the 

nature of the DNA break is such that the terminal ends cannot be ligated, then 

the next step involves DNA end processing where the bases at the end of DNA 

termini are cleaved. This is performed by either artemis or aprataxin- and 

polynucleotide kinase-like factor (APLF) that both exhibit exo- and endonuclease 

activity. However, in the case of artemis, endonuclease activity has to first be 

activated by DNA-PKcs mediated phosphorylation. Following cleavage of bases 

any newly formed gaps are filled in by DNA polymerase-μ or polymerase-λ. The 

final step involves ligation of the two ends of the broken DNA molecule by the 

XRCC4-ligase IV complex (Davis and Chen, 2013) (Figure 1.9). 

 

Figure 1.9. Schematic outline of the classical non-homologous end-joining (C-

NHEJ) model. DSB = double strand break; DNA-PKcs = DNA-dependant protein 

kinase; XRCC4 = X-ray cross-complimenting protein 4; XLF = XRCC4-like factor; 

lig. = ligase; APLF = artemis or aprataxin-andpolynucleotide kinase-like factor; 

pol = polymerase.  
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B-NHEJ is less understood, but PARP-1 has been implicated in its mechanism 

(Figure 1.10). It is thought that PAPR-1 is recruited to DSB where it becomes 

activated and performs poly(ADP-ribosy)ation on itself as well as histones. This 

then facilitates the recruitment of the Mre11-Rad50-Nbs1 (MRN) and the XRCC1-

ligase III complexes to the DSB. MRN exhibits exonuclease activity and it 

processes the termini of the broken DNA strands, which then allows for ligase III 

to perform the final ligation step (Wang et al., 2012) (Figure 1.10).  

 

Figure 1.10. Schematic outline of the back-up non-homologous end-joining (B-

NHEJ) model. DSB = double strand break; PAR = poly(ADP-ribose); PARG = 

poly(ADP-ribose) glycohydrolase; MRN = Mre11-Rad50-Nbs1; lig. = ligase; XRCC1 = 

X-ray cross-complimenting protein 1. 

In contrast to NHEJ, HR requires a sister chromatid (Takada et al., 1998) and is 

an error-free repair mechanism. The repair process begins with the recruitment 

of the MRN complex and replication protein A (RPA) to the DSB (Figure 1.11). 

RPA protect the 5’ ends of the broken DNA strands while the MRN complex 
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performs limited resection at the 3’ ends. RPA also facilitates the assembly of 

Rad51 (Hoeijmakers, 2001) that is recruited to the 5’-ends of the DSB by the 

breast cancer 2 early onset (BRCA-2) protein (Yuan et al., 1999; Davies et al., 

2001), which in turn results in the displacement of RPA. BRCA-2 is recruited to 

DSBs by the Fanconi anaemia pathway (reviewed by Wang and D’Andrea (2004)). 

At the same time, Rad54 identifies the sister chromatid (Hoeijmakers, 2001) 

and, once the DNA sequences are aligned, Rad51 exchanges a single strand of 

the damaged DNA with the same sequence from a non-damaged double-stranded 

DNA molecule in a process called strand invasion (Baumann, Benson, and West, 

1996). Finally, DNA polymerases use the homologous DNA sequences for DNA 

synthesis and the process is complete by ligation of the DNA strands 

(Hoeijmakers, 2001) (Figure 1.11). 

 

Figure 1.11. Schematic outline of the homologous recombination (HR) model. 

DBS = double strand break; MRN = Mre11-Rad50-Nbs1; RPA = replication protein 

A; BRCA2 = breast cancer 2 early onset; pol = polymerase. 
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1.3.2 PARP-1 in glioblastoma and other cancers. 

Expression levels of PARP-1 in healthy brain are generally low and fairly 

homogenous relative to other body tissues (Galia et al., 2012; The Human 

Protein Atlas, 2015). However, high levels of PARP-1 have been revealed to be 

present in human glioma lesions when compared to surrounding grey matter 

using immunohistochemical staining techniques (The Human Protein Atlas, 2015; 

Wharton et al., 2000; Galia et al., 2012). Prominent PARP-1 

immunohistochemical staining was also observed in tumour spheroids prepared 

from four different human malignant astrocytoma cell lines (Wharton et al., 

2000). The latter findings would suggest that glioma PARP-1 overexpression in 

vivo was localised to neoplastic cells. However, glioma lesions are known to 

exhibit prominent infiltration by microglia, which are resident immune cells of 

the CNS (Olah et al., 2011; Wu et al., 2013) and can also express high levels of 

PARP-1 (Kim et al., 2014). Therefore, it is possible that these immune cells 

could contribute to the high PARP-1 expression levels found in glioma tumours in 

vivo. To the best of the author’s knowledge, there are no published studies that 

attempted to delineate between neoplastic and immune PARP-1 expression 

within glioma lesions.  

In addition to gliomas, PARP-1 overexpression was also found to be present in a 

number of primary tumours. Specifically, microarray analysis of PARP-1 gene 

expression in surgical samples from more than 8000 primary malignant and 

human tissues revealed elevated PARP-1 mRNA expression in cancers of the 

breast, endometrium, ovary, lung, skin, and non-Hodgkin’s lymphoma. This trait 

was not characteristic of all types of cancers as samples from adrenal, bone, 

colon, and prostate tumours did not exhibit PARP-1 overexpression relative to 

corresponding non-cancerous tissues. Interestingly, analysis of PARP-2 expression 

in cancerous and healthy tissues did not reveal any significant differences 

(Ossovskaya et al., 2010).  
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1.3.2.1 PARP-1 inhibitors. 

The role of PARP-1 in DNA damage repair and the fact that the protein has been 

shown to be overexpressed in a number of cancers have made it an attractive 

target for anti-cancer therapy. Interest from the pharmaceutical industry in this 

target led to the development of number clinical PARP-1 inhibitor candidates 

that, at the time of writing, were being investigated as synthetically lethal (see 

section 1.3.2.2) and chemoradiosensitising (see section 1.3.2.3) agents. In the 

context of GBM, pursuing alternative therapeutic approaches is of value as 

current chemo- and radiotherapeutic regiments are associated with poor patient 

outcomes (see section 1.1.3 for details).   

PARP-1 inhibitors work by blocking the binding of NAD+ to the PARP-1 active site 

in a competitive manner (reviewed by Ferraris (2010)). The discovery of these 

inhibitors can be traced back to Clark, Ferris, and Pinder (1977) who showed 

that nicotinamide, a by-product of PAR chain formation (see section 1.3.1 for 

details), had weak PARP-1 inhibitory properties and an inhibition constant (Ki) 

value, which denotes the affinity of a ligand for its receptor, of 20 μM. Soon 

after it was established that the structurally related compounds benzamide and 

pyrazinamide (Figure 1.12) were also capable of inhibiting PARP-1 (Shall, 1975). 

However, the presence of ring nitrogens made the pyrazinamide liable to 

metabolism, while benzamide exhibited poor solubility properties (Purnell and 

Wish, 1980). Therefore, Purnell and Wish (1980) investigated a number of 

benzamide analogues with improved solubility properties as potential inhibitor 

candidates. The authors found 3-aminobenzamide and 3-methoxybenzamide 

(Figure 1.12) to be the most potent inhibitors with Ki values of 1.8 and 1.5 μM 

respectively. These analogues became known as first generation PARP inhibitors.  
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Figure 1.12. Structures of first generation PARP-1 inhibitors. 

Substantial effort was made by a number of pharmaceutical companies to 

discover and develop second generation PARP-1 inhibitors that exhibited 

improved potency, cellular residence time, and in vivo activity. The first of 

these clinical candidates was rucaparib (Figure 1.13), which was discovered by 

Newcastle University and Pfizer. The drug discovery programme for this 

compound involved screening 42 agents based around a number of core scaffolds 

including quinazolinones, benzimidazoles, and tricyclic indoles.  As a result of 

this process, AG14447 was identified as the most potent with a Ki value of 1.4 nM 

and with favourable in vivo chemosensitisation activity against colorectal tumour 

xenografts. In this case, chemosensitisation refers to the increase in cancer cell 

sensitivity to chemotherapeutic agents as a consequence of PARP-1 inhibition. 

The phosphate salt of this compound (rucaparib) exhibited improved solubility 

properties and was advanced to clinical studies (Thomas et al., 2007). At the 

time of writing this thesis, rucaparib was undergoing a number of phase II 

studies investigating its use as monotherapy for BRCA deficient pancreatic, 

ovarian, and breast cancers (ClinicalTrials.gov). 
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Figure 1.13. Discovery of the PARP-1 inhibitor rucaparib. 

Rucaparib was shortly followed by the discovery of the potent PARP-1 inhibitor 

olaparib (Figure 1.14) by KuDOS Pharmaceuticals Ltd., Maybridge, and Astra 

Zeneca. The former two companies filed a number of patents for 2-substituted 

quinazolinones, 3- and 4-substituted isoquinolines, and 4-substituted 

phthalazinones in the early 2000s, and identified the phthalazinone scaffold as 

suitable for further optimisation (reviewed by Ferraris (2010)). The discovery of 

the phthalazinone KU0051529 (Figure 1.14) was a key milestone as the 

compound exhibited good activity against PARP-1 in vitro with a half maximal 

inhibitory concentration (IC50) of 770 nM (see section 4.1.1 for details concerning 

the IC50 parameter). Moreover, structural activity relationship studies utilising 

chicken PARP-1 crystallography data revealed that the meta position on the 

benzl ring was a beneficial site for structural elaboration. Initial efforts found 

that meta benzyl aniline analogues of KU0051529 exhibited good activity against 

PARP-1 but suffered from poor metabolic stability. Constraining the aniline into 

a 5-membered lactam resulted in a slight drop off in potency but markedly 

improved metabolic stability. PARP-1 inhibitory activity was rescued by addition 

of a fluorine atom ortho to the imine ring, thereby resulting in the metabolically 

stable and potent PARP-1 inhibitor (IC50 = 5 nM) KU0058684 (Loh et al., 2005) 

(Figure 1.14). Despite the compound showing a reasonable level of oral 

bioavailability (Loh et al., 2005), KuDOS Pharmaceuticals Ltd. re-directed their 

medicinal chemistry efforts to further improve on the bioavailability parameter 

for clinical use. The result of these efforts was olaparib, which maintained 

excellent PARP-1 inhibitory potency (IC50 = 5 nM), and exhibited approximately 

two-fold greater chemosensitisation activity and improved oral bioavailability 

when compared to KU0058684. Key structural alterations included the addition 
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of a piperazine moiety that was found to improve aqueous solubility, and 

functionalisation of the distal nitrogen atom of the piperazine with a 

cyclopropane that reduced the pKa and subsequently improved oral 

bioavailability. Importantly, it was also found that PARP-1 inhibitory potency of 

this compound class was tolerant to structural modifications in the cyclopropane 

bearing region (Menear et al., 2008). The synthetic development of olaparib was 

shortly followed by the acquisition of KuDOS Pharmaceuticals Ltd. by Astra 

Zeneca (reviewed by Ferraris (2010)), who implemented an aggressive clinical 

development programme that resulted in the accelerated marketing 

authorisation of olaparib in the EU and US as a monotherapeutic anticancer 

agent (see section 1.3.2.2 for details). At the time of writing, olaparib was also 

undergoing multiple phase I, II, and III studies looking at its use as either 

monotherapy or adjuvant therapy for the treatment of pancreatic, ovarian, 

breast, prostate, soft tissue, oesophageal, head and neck, gastric, colorectal, 

skin, small cell and non-small cell lung cancers, and glioblastoma 

(ClinicalTrials.gov). 

 

Figure 1.14. Discovery of the PARP-1 inhibitor olaparib. 

Another important contender in the PARP-1 inhibitor arena is Abbot with their 

clinical candidate veliparib (Figure 1.15). Discovery of this compound can be 

traced back to the BASF group who accumulated PARP-1 inhibitor intellectual 

property based around a number of core structures including indole 

carboxamides, phthalazinones and benzimidazole carboxamides. In 2001, Abbot 

acquired the BASF pharmaceutical division and initiated a medicinal chemistry 

programme focusing on the benzimidazole carboxamide scaffold (reviewed by 

Ferraris (2010)). This led to the development of the lead candidate A-620223 
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(Figure 1.15), which was a potent PARP-1 inhibitor (Ki = 8 nM, and EC50 = 3 nM) 

with good aqueous solubility, oral bioavailability, and in vivo tumour 

chemosensitisation activity. The tertiary amine moiety was key in improving 

solubility and activity against PARP-1 (Penning et al., 2008). Further 

optimisation of this compound focused on the introduction of a tertiary centre 

adjacent to the benzimidazole ring, which was previously found to be beneficial 

in improving PARP-1 inhibitory potency of the benzimidazole carboxamide 

scaffold. These efforts led to the synthesis of the clinical candidate veliparib, 

which exhibited improved PARP-1 and cellular activity (Ki = 5 nM, and EC50 = 2 

nM). Interestingly, it was found that the stereochemistry of this tertiary centre 

did not affect cellular activity, but was crucial in maximising oral bioavailability 

(Penning et al., 2009). The clinical development programme for veliparib has 

resulted in numerous phase I, II and III trials where, at the time of writing, the 

PARP inhibitor was being assessed as monotherapy or adjuvant therapy for 

ovarian, cervical, breast, pancreatic, rectal, gastric, bladder, liver, 

oesophageal, skin, head and neck, lung, and brain cancer as well as lymphomas, 

and leukaemias (ClinicalTrials.gov).  

 

Figure 1.15. Discovery of the PARP-1 inhibitor veliparib.  

Other PARP-1 inhibitors that, at the time of writing, were at less advanced 

stages of clinical development include the indazole carboxamide niraparib, the 

pyrrolocarbazole lactam pro-drug CEP9722, and E7016 developed by Merck, 

Cephalon, and MGI Pharma respectively. It is noteworthy that the exact 

structure of E7016 has not been disclosed, but it is thought to be structurally 

related to GPI15427 (Figure 1.16). For further information regarding the 
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discovery and development of these agents please refer to the reviews by 

Ferraris (2010) and Anwar M, Aslam, and Anwar S (2015). 

 

Figure 1.16. Structures of other, less clinically advanced, PARP-1 inhibitors. 

1.3.2.2 PARP-1 inhibition and synthetic lethality. 

Synthetic lethality may be defined as the situation where disruption of two 

related parallel cellular pathways leads to cell death, where disruption of either 

one of the pathways individually has no effect on cell viability (Guarente, 1993; 

Kaelin, 2005). This concept of synthetic lethality has been shown to be an 

effective way of targeting cancers in vitro and in vivo. Specifically, cancer cells 

with an impaired ability to repair DNA DSBs via the HR pathway, due to a 

mutation of the BRCA gene, were found to be highly sensitive to PARP inhibitors 

(Bryant et al., 2005; Farmer et al., 2005). Moreover, PARP inhibition was 

revealed to completely inhibit BRCA-2 negative tumour xenograft formation 

following transplantation into nude mice, while BRCA-2 positive wild-type 

tumour formation was not affected (Farmer et al., 2005). PARP inhibitor 

treatment was also shown to reduce BRCA-1 or BRCA-2 negative tumour 

xenograft size when compared to corresponding wild-type tumours that showed 

no response (Bryant et al., 2005; Rottenberg et al., 2008). 

Mechanistically, it was originally proposed that PARP inhibition leads to 

impairment of the BER pathway and subsequently an accumulation of DNA SSBs. 

This was then thought to causes a collapse of replication forks into toxic DSBs 

that are normally repaired by HR, and finally cell death (Bryant et al., 2005; 

Farmer et al., 2005) (Figure 1.17 A). However, recent findings by Gottipati et al. 
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(2010) and Storm et al. (2011) suggested that this is not the case.  It was shown 

that the addition of hydrogen peroxide (a DNA damaging agent) and a PARP 

inhibitor to BRCA-2 defective and wild-type cells did not affect the steady state 

levels of DNA SSBs (Gottipati et al., 2010). Furthermore, PARP inhibition and 

siRNA knockdown in undamaged cells did not result in the accumulation of SSBs 

(Storm et al., 2011). In light of these findings, Helleday (2011) proposed that 

PARP inhibition leads to the trapping of PARP-1 on the DNA SSB. This then acts as 

an obstacle to BER proteins and DNA replication, which subsequently requires 

bypassing by HR (Figure 1.17 B). The mechanism of PARP-BRCA synthetic 

lethality was further refined by Patel, Sarkaria, and Kaufmann (2011) who 

showed that in HR deficient cells, PARP acts to supress DNA-PK activity, which is 

a key player in the error prone NHEJ pathway (see section 1.3.1 for details). 

Counterintuitively, the authors also observed that disabling NHEJ diminished 

genomic instability and lethality of PARP inhibition. Therefore, it was proposed 

that in the presence of impaired HR, PARP inhibition leads to activation of NHEJ 

and subsequent genomic instability followed by cell death (Figure 1.17 B). 

 

Figure 1.17. Initially proposed (A) and refined (B) mechanistic models of PARP-1 

inhibitor mediated synthetic lethality of cells with BRCA gene mutations. 

These early mechanistic discrepancies concerning PARP-BRCA synthetic lethality 

did not impede the clinical application of this approach. The major advantage of 
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PARP-BRCA synthetic lethality is that it is selective for neoplastic cells with the 

BRCA mutation, while cells with functional HR are not affected. This was 

confirmed in early clinical trials that showed good tolerability and few side 

effects following monotherapy with PARP inhibitors such as olaparib (Fong et al., 

2009; Yamamoto et al., 2012; Bundred et al., 2013), veliparib (Kummar et al., 

2009), niraparib (Sandhu et al., 2013), and CEP9722 (Plummer et al., 2014).   

Epithelial ovarian cancer is the second most common and most deadly 

gynaecological malignancy in the Western World. Approximately 10–15% of cases 

of the disease are associated with a mutation of the BRCA gene, while up to 60% 

could be associated with other deficiencies of the HR pathway (Marchetti et al., 

2012). It is therefore not surprising that epithelial ovarian cancer has received 

interest from the pharmaceutical industry as a target for PARP inhibitor 

mediated synthetic lethality.  

A phase II study investigating the maintenance treatment of women with 

relapsed ovarian cancer with olaparib (n = 136) showed a significant 

improvement in the progression-free survival relative to a placebo control group 

(n = 129) (median progression-free survival = 8.4 months in olaparib treated 

group versus 4.8 months in placebo treated group; hazard ratio = 0.35, 95% 

confidence interval = 0.25–0.49). However, interim analysis of data revealed 

that the improvement in progression-free survival did not appear to translate 

into an improvement in overall survival (median overall survival = 29.7 months in 

olaparib treated group versus 29.9 months in placebo treated group). The 

authors advised cautious interpretation of these data as at the time of writing 

the manuscript 21% and 3% of patients were still receiving olaparib and placebo 

respectively. Moreover, the BRCA mutation status of patients enrolled onto the 

study was not confirmed (Lederman et al., 2012). Retrospective genotyping of 

patients allowed for analysis of data according to BRCA mutation status. From 

the patients with confirmed BRCA status, 56% (74 out of 131) of individuals in 

the olaparib treated group and 50% (62 out of 123) of individuals from the 

placebo treated group had mutations in the BRCA genes. The median progression 

free survival was found to be 11.2 months in the olaparib treated BRCA mutated 

group versus 4.3 months in the placebo treated BRCA mutated group (hazard 
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ratio = 0.18, 95% confidence interval = 0.10–0.31). As before, the authors failed 

to show a statistically significant improvement in the overall survival rate 

(Lenderman et al., 2014).  

Despite ongoing phase III trials (Deeks, 2015), the marked improvement in the 

aforementioned progression-free survival led to the accelerated approval of 

olaparib as a monotherapy for advanced recurrent ovarian cancer in the EU and 

the US in late 2014 (AstraZeneca, 2014; Food and Drug Administration, 2014). 

Phase I and II studies have also shown that olaparib monotherapy is beneficial 

for the treatment of triple negative breast cancer (reviewed by Deeks (2015)), 

where the incidence of BRCA mutations is approximately 30% (Greenup et al., 

2013). Olaparib is currently undergoing phase III studies comparing its 

effectiveness as monotherapy for BRCA mutated breast cancer versus 

chemotherapy (Deeks, 2015). For further information concerning the use of less 

clinically advanced PARP inhibitors as synthetically lethal agents please see the 

reviews by Buege and Mahajan (2015), and Anwar M, Aslam, and Anwar S, 

(2015). 

1.3.2.3 PARP-1 inhibition and chemoradiosensitisation. 

Numerous in vitro and in vivo studies have shown that the effect of 

chemotherapeutic agents can be enhanced by pharmacological PARP-1 

inhibition; this phenomenon has been termed chemosensitisation. PARP-1 

inhibition was found to potentiate antitumour effects, such as cytotoxicity and 

tumour cell growth inhibition, of TMZ in vitro using glioma (Wedge et al., 1996; 

Tentori et al., 2002; Miknyoczki et al., 2003), leukaemia (Boulton et al., 1995), 

neuroblastoma (Miknyoczki et al., 2007), melanoma (Wedge et al., 1996; Tentori 

et al., 2003), lymphoma (Tentori et al., 2003), lung carcinoma (Skalitzky et al., 

2003), colon carcinoma (Wedge et al., 1996; Skalitzky et al., 2003; Curtin et al., 

2004; Calabrese et al., 2004; Thomas et al., 2007), ovarian carcinoma (White et 

al., 2000; Curtin et al., 2004), and breast carcinoma (Wedge et al., 1996) cell 

lines. Similar chemosensitisation effects were also seen when PARP-1 inhibition 

was combined with other cytotoxic agents such as irinotecan for the treatment 

of colon carcinoma cells (Miknyoczki et al., 2003), topotecan for the treatment 
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of ovarian (White et al., 2000), lung (Skalitzky et al., 2003) and colorectal 

(Calabrese et al., 2004; Thomas et al., 2007) cancer cells, and finally 

cyclophosphamide (Donawho et al., 2007) and doxorubicin (Mason et al., 2008) 

for the treatment of breast carcinoma cells.  

Crucially, the above mentioned in vitro findings were also translatable to small 

animal pre-clinical studies where combination treatment with TMZ and a PARP-1 

inhibitor resulted in improved outcomes in glioma (Miknyoczki et al., 2003; 

Tentori et al., 2003; Miknyoczki et al., 2007), lymphoma (Tentori, Leonetti et 

al., 2002), colon carcinoma (Calabrese et al., 2004; Thomas et al., 2007), and 

malignant melanoma (Zhu et al., 2008) models of cancer when compared to TMZ 

alone. The outcomes that were monitored included tumour xenograft growth 

inhibition, growth delay, reduction in volume, and increased animal survival. 

PARP-1 inhibition was also found to potentiate ionising radiation induced killing 

of glioma (Chalmers et al., 2004; Barazzuol et al., 2013), leukaemia (Griffin et 

al., 1998), non-small cell lung carcinoma (Senra et al., 2011), breast carcinoma 

(Efimova et al., 2010), colon carcinoma (Calabrese et al., 2004; Donawho et al., 

2007), and pancreatic carcinoma (Hirai et al., 2012) cells, and improved 

outcomes in pre-clinical studies of radiotherapy treated small animals bearing 

breast (Rojas et al., 1996; Efimova et al., 2010) and colon (Calabrese et al., 

2004; Donawho et al., 2007) cancers. These findings support the premise that 

PARP-1 inhibition can also have a radiosensitising effect.  

The proposed mechanisms of PARP-1 inhibitor mediated chemo- and 

radiosensitisation are outlined in Figure 1.18. Briefly, alkylating agents and cross 

linking agents result in the formation of DNA SSBs and DSBs respectively, while 

ionising radiation generates SSBs and DSBs in an approximate ratio of 25 : 1 

(Lieber, et al., 2010; Chalmers et al., 2010). PARP-1 inhibition leads to the 

trapping of the protein on SSBs lesions, which subsequently prevents BER ligation 

from taking place. This results in an accumulation of unrepaired DNA SSBs, which 

upon DNA replication cause the collapse of replication forks and subsequent 

generation of DNA DSBs (Chalmers et al., 2010; Storm et al., 2011; Helleday et 

al., 2011). The large amount of DNA DSBs eventually cause the HR repair 
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pathway to become overwhelmed, while NHEJ drives genomic instabilities. The 

end result of these events is cell death (Caldecott, 2008).  

 

Figure 1.18. Mechanistic models of PARP-1 inhibitor mediated chemo- and 

radiosensitisation. 

The use of PARP-1 as chemo- and radiosensitisers has also been investigated in 

multiple human trials. However, early human studies identified that PARP-1 

inhibitor mediated chemosensitisation lacked tumour selectivity and affected 

other body tissues, in particular the bone marrow. The addition of either 

rucaparib (Plummer et al., 2008) or veliparib (Isakoff et al., 2010) to TMZ, or 

olaparib to chemotherapeutic agents such as dacarbazine (Khan et al., 2011), 

cisplatin, and gemcitabine (Rajan et al., 2012), topotecan (Samol et al., 2012) 

or paclitaxel (Dent et al., 2013) resulted in increased incidence and severity of 

myelosuppression than expected for patients treated with these 

chemotherapeutic agents in the absence of PARP-1 inhibition. In one case, the 

high incidence of haematological adverse events resulted in the discontinuation 

of the trial (Samol et al., 2012). In an effort to combat this myelosupressive 

effect, Dent et al. (2013) recruited additional patients to their trial that were 

then treated prophylactically with granulocyte-colony stimulating factor (GCSF). 

However, this approach was not successful as two out of three patients 

developed high grade recurrent neutropenia, despite GCSF prophylaxis. 
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Rajan et al. (2012) highlighted the importance of further studies to assess novel 

schedules of administration with the aim of enhancing tolerance to PARP-1 

inhibitor and chemotherapeutic agent combinations. This could be achieved by 

identifying timepoints for chemotherapy dosing in relation to PARP-1 inhibitor 

dosing, such that the concentration of the PARP-1 inhibitor is minimal in 

peripheral tissues at the time of chemotherapy administration. This approach 

can be justified by the fact that the PARP-1 inhibitor olaparib has been shown to 

be retained in mouse tumour xenografts for up to 96 hours while clearance from 

peripheral tissues appeared to be more rapid (Chalmers et al., 2014).    

At the time of writing, the number of published human trials investigating the 

radiosensitising effect of PARP-1 inhibition was limited, although multiple 

studies are currently underway looking at exploiting this effect for the 

treatment of GBM and lymphoma, and head and neck, breast, ovarian, 

oesophageal, non-small cell lung, and pancreatic cancers (ClinicalTrials.gov). 

Studies that have been published utilised nicotinamide (Kaanders, Bussink, and 

van der Kogel, 2002; Janssens et al., 2012), which has weak PARP-1 inhibitory 

properties. However, early pre-clinical investigations suggested that PARP-1 

inhibition is not the only mechanism through which nicotinamide achieved 

radiosensitisation. It was thought that nicotinamide reduced tumour hypoxia by 

enhancing perfusion, which in turn facilitated generation of cytotoxic oxygen 

adducts on DNA base radicals formed by ionising radiation (Kaanders, Bussink, 

and van der Kogel, 2002).  

The potential advantage of PARP-1 mediated radiosensitisation over 

chemosensitisation is that the therapeutic beam of ionising radiation can be 

focused on tumours, such that exposure of healthy tissues is minimised. In 

practice, this approach has the potential to circumvent the issues of enhanced 

myelosuppression seen with PARP-1 inhibitor and chemotherapeutic agent 

combinations. However, in the case of GBM, accurate anatomical localisation 

and delineation of the tumour lesion is required in order to maximise 

therapeutic benefit and minimise adverse events to surrounding non-tumorous 

tissue. 
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1.3.3 Nuclear imaging of PARP-1.  

1.3.3.1 Applications in glioblastoma and other cancers. 

Nuclear imaging of PARP-1 has the potential to identify GBM lesions in good 

contrast compared to surrounding brain tissue, unlike [18F]-FDG PET, provided 

that the radiotracer is capable of crossing the BBB. This is justified by the high 

levels of PARP-1 expression in glioma lesions relative to non-cancerous brain 

tissue (see section 1.3.2 for details), which is a key criterion for a biological 

imaging biomarker (Prescott, 2013). However, this is already achievable with 

amino acid based radiotracers, which have been shown to provide a benefit over 

structural neuroimaging in the context of GBM diagnosis and surgical planning 

(see section 1.2.3 for details). Importantly, such applications are reliant on the 

ability of the radiolabelled probe to cross the BBB, and conclusive data regarding 

existing PARP-1 radiotracers and their BBB permeability is currently lacking. For 

these reasons, this section will focus on the clinical applications of PARP-1 

nuclear imaging that are outside of the realm of amino acid based radiotracer 

imaging.  

At the time of writing, olaparib was being investigated as a TMZ sensitising agent 

for the treatment of relapsed GBM in a phase I trial (Trial identifier: 

NCT01390571) (ClinicalTrials.gov). Despite not being able to cross the BBB, 

therapeutic levels of olaparib in recurrent GBM tissue samples obtained from 

patients treated with the drug were detected. It was proposed that BBB 

disruptions associated with the tumour allowed for occupancy of the tumour by 

the PARP-1 inhibitor (Chalmers et al., 2014). It is important to bear in mind that 

these data were based on a small population (n = 8) and tissue samples that 

corresponded to only a portion of the entire tumour mass. Gliomas can exhibit 

different degrees of BBB disruption (Roelcke et al., 1995; Kracht et al., 2004; 

Wolburg et al., 2012) and variable levels of perfusion (Vajkonczy and Menger, 

2000) that could affect the amount and extent of olaparib tumour penetration, 

and subsequently the clinical effectiveness of this therapeutic approach. Nuclear 

imaging of an appropriately radiolabelled version of olaparib could be used to 

directly establish the occupancy of the radioligand within the tumour tissue, and 
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using blockade protocols indirectly establish olaparib tumour occupancy. 

Clinically, this information could be used to identify patients that are unlikely to 

respond to therapy as a consequence of poor PARP-1 inhibitor tumour drug 

uptake and occupancy prior to commencing treatment.  

In the broader context of cancer therapy, such an imaging platform could also be 

used to confirm the presence of tumour resistance to PARP-1 inhibitor mediated 

synthetic lethality and chemo/radiosensitisation in a clinical setting, which to 

date has only been shown in in vitro and pre-clinical in vivo studies. Specifically, 

in vitro resistance to olaparib has been observed in PARP-1 deficient mouse 

embryonic stem cell mutants and PARP-1 siRNA knockout human breast and 

colorectal cancer cell lines (Pettitt et al., 2013). Furthermore, long-term 

treatment of mice bearing BRCA-1 deficient tumours with olaparib was found to 

increase efflux transporter (i.e. P-glycoprotein) expression and consequently 

reduce sensitivity to olaparib (Rottenberg et al., 2008). It is possible that human 

tumours could develop resistance through similar mechanisms following 

prolonged treatment. Nuclear imaging using a radiolabelled PARP-1 inhibitor 

could be used to confirm such resistance mechanisms in humans, and 

subsequently identify patients that are unlikely to benefit from continued PARP-

1 inhibitor therapy, thereby allowing for pursuit of alternative therapeutic 

approaches (Edmonds et al., 2016). 

As highlighted previously (see section 1.3.2.3 for details), PARP-1 mediated 

chemosensitisation has been associated with severe haematological 

complications due to the lack of tumour selectivity. Nuclear imaging of a 

radiolabelled PARP-1 probe could be used to non-invasively and indirectly study 

the biodistribution of the PARP-1 inhibitor in vivo, and subsequently establish 

the duration of PARP-1 inhibition in different tissues. In turn, this information 

could guide dosing decisions for PARP-1 inhibitors when used as 

chemosenisitising adjuvants, such that tumour cytotoxicity is maximised and 

bone marrow toxicity is minimised. 
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1.3.3.2 Existing tracers for PARP-1. 

The first reported nuclear imaging agent for PARP-1 was the 11C-labelled version 

of the phenathridinone PJ34 (Figure 1.19). The compound exhibited good PARP-1 

inhibitory properties (IC50 = 20 nM) and was shown to accumulate in tissue 

expressing high levels of PARP-1 (Tu et al., 2005). However, the radiotracer was 

disadvantaged by the short half-life of the 11C radioisotope (see section 1.2.1 for 

details). In order to address this limitation, a number of academic groups 

focused their efforts on utilising the longer lived 18F radionuclide (half-life = 

109.8 minutes) in their PARP-1 radiotracer development programmes. The first 

of these radiofluroide-bearing ligands was [18F]-FE-LS-75 (Figure 1.19), which 

was an analogue of the M1 muscarinic antagonist pirenzepine and exhibited only 

moderate affinity for PARP-1 (Ki = 200 nM) (Riss et al., 2009). This was then 

followed by the discovery of the olaparib analogue [18F]-BO by Reiner et al. 

(2012). Despite the addition of a bulky molecular entity to the piperazine 

functionality, the compound exhibited good PARP-1 inhibitory properties (IC50 = 

17.9 nM) and specificity for PARP-1 in vivo (Reiner et al., 2012). The same 

research group have also utilised the olaparib scaffold to develop the dual 

modality optical/PET imaging tracer [18F]-PARPi-FL (IC50 = 12.2 nM). The 

radiolabelling methodology for this radioligand relied on the 18F/19F 

transfluorination of a BODIPY fluorescent component (Carlucci et al., 2015). 

However, the inherent disadvantage of this kind of approach was the low 

specific activity of the final product, which could necessitate the use of higher 

radiotracer doses for nuclear imaging (see section 5.1 for details concerning 

radiotracer specific activity). Furthermore, it was found that the compound 

exhibited marked in vivo metabolic defluorination and subsequent bone 

accumulation of the free 18F radionuclide, which resulted in high PET 

background signal (Carlucci et al., 2015) (see chapters 4 and 6 for details 

concerning 18F-defluorination). 

The olaparib scaffold was also utilised by Carney et al. (2015) and Salinas et al. 

(2015) for the discovery of 18F- and 131I-labelled PET and SPECT PARP-1 nuclear 

imaging agents respectively. The synthesis of these agents by the 
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aforementioned authors is described in more detail in sections 5.2.2 and 5.2.1 

respectively, and their reported in vivo behaviour is discussed in section 6.2.2. 

[18F]-FluorThanatrace ([18F]-FTT) (Figure 1.19) was one of the most potent (IC50 = 

6.3 nM) and advanced PARP-1 PET imaging agent. It was developed by Zhou et 

al. (2014) and is based on the clinical PARP-1 inhibitor candidate rucaparib (see 

section 1.3.2.1). The radiotracer was shown to exhibit good metabolic stability 

and in vivo specificity for PARP-1 (Zhou et al., 2014; Edmonds et al., 2016). 

Interestingly, the binding of [18F]-FTT to PARP-1 in pre-clinical breast cancer 

models was also shown to correlate with PARP-1 activity (Edmonds et al., 2016). 

The utility of this tracer as a probe of PARP-1 activity in breast cancer is 

currently being investigated in a humans as part the phase 0 “PET Imaging of 

PARP Activity in Cancer (NCT02469129)” trial (ClinicalTrials.gov). 

 

Figure 1.19. Selected PARP-1 radiotracers that have been published to date. 

With the exception of one agent, the above mentioned PARP-1 radiotracers have 

all been developed with PET imaging in mind. As described earlier, the PET 

imaging modality possesses a number of advantages over SPECT. However, SPECT 

imaging is likely to remain a key tool in the nuclear medicine arsenal due to new 

technological developments and unique capabilities such as dual tracer imaging 

(see section 1.2.2 for more details). Furthermore, the challenges associated with 
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bridging the gap between pre-clinical development and clinical application are 

substantial and associated with high attrition rates (see section 1.5.2 for 

details). Therefore, there is a need for novel PARP-1 nuclear imaging tracers in 

order to address the limited number of probes for the SPECT imaging modality, 

and to maximise the prospect of clinical progression of PARP-1 PET imaging 

probes.  

1.4 The translocator protein (TSPO).  

1.4.1 What is TSPO and what does it do? 

The discovery of TSPO can be traced back to as early as 1977. Braestrup and 

Squires (1977) were the first to identify two different subclasses of 

benzodiazepine receptors, namely peripheral benzodiazepine receptors (PBRs) 

and central benzodiazepine receptors (CBRs), by examining the biodistribution 

and binding profiles of tritium (i.e. 3H) labelled diazepam (a centrally acting 

benzodiazepine). The authors showed that the binding of [3H]-diazepam to 

receptors in the brain differed significantly from the binding to receptors 

located in peripheral organs such as the kidney, liver, and lungs. Specifically, 

receptor binding in peripheral organs was shown to occur with 15-fold less 

affinity than to central receptors. Moreover, the pharmacologically inactive 

benzodiazepine Ro5-4864 (Figure 1.20) was shown to displace [3H]-diazepam 

from kidney receptors, while exhibiting only negligible displacement from brain 

tissue receptors.  

 

Figure 1.20. Structures of the benzodiazepine and isoquinoline carboxamide 

TSPO ligands Ro5-4864 and PK11195 respectively. 
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Over the following decades these newly discovered PBRs have received much 

scientific attention. On a subcellular level, they have been found to be mainly 

localised in the outer mitochondrial membrane, although the receptors have 

been reported to be present in liver nuclei and other organelle membranes 

(Papadopoulos et al., 2006). Functionally, they have been thought to possess 

two main biological roles, namely cholesterol transport for steroid synthesis and 

mitochondrial permeability transition (MPT). The latter refers to a sudden 

increase in inner mitochondrial membrane permeability, through the 

mitochondrial permeability transition pore (MPTP), which subsequently leads to 

rupture of the outer mitochondrial membrane and cellular apoptosis (Selvaraj 

and Stocco, 2015). Thus, in order to represent more accurately the localisation 

and putative functions of PBRs, Papadopoulos et al. (2006) proposed that name 

“PBR” is replaced with the term “translocator protein” (TSPO). This new 

nomenclature became widely accepted amongst the scientific community.  

A number of key observations justified the role of TSPO in steroid synthesis. 

Firstly, in the periphery TSPO is known to be primarily localised in steroid 

hormone producing tissues such as the adrenal glands, testes, and ovaries 

(Selvaraj and Stocco, 2015). Secondly, Mukhin et al. (1989) showed a strong 

positive correlation (R = 0.99) between the binding potency of nine TSPO ligands 

and the degree of steroid synthesis by Y-1 mouse adrenal tumour cells. The 

authors proposed that binding of exogenous ligand to TSPO resulted in 

facilitation of cholesterol transport from extramitochondiral stores to the inner 

mitochnodiral membrane, where metabolism of cholesterol to pregnenolone (the 

common intermediate for steroid biosynthesis) takes place. Thirdly, 

Papadopoulos et al. (1997) showed that knockout of TSPO gene in steroid 

producing R2C rat Leydig tumour cells resulted in a 95% reduction in 

pregnenolone synthesis when compared to the wild-type cell line. Moreover, 

steroid synthesising capabilities of TSPO negative cells were not rescued in the 

presence of exogenous cholesterol. However, addition of a hydrosoluble 

derivative of cholesterol that can freely pass the mitochondrial membrane 

resulted in recovery of steroidogenesis. Finally, experimental homology 

modelling of the protein revealed a channel like structure with an interior core 

lined with a cholesterol-recognition amino acid consensus motif (Selvaraj and 

Stocco, 2015).  
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Taken together, the above observations provide good evidence for the 

hypotheses that TSPO is involved in cholesterol transport and steroid synthesis. 

However, more recent findings refuted this premise. It has been shown that 

PK11195 (Figure 1.20), a compound with nanomolar affinity for TSPO, resulted in 

an equal increase in progesterone production in both TSPO knockout and wild-

type steroidogenic Leydig cells (Tu et al., 2015), suggesting that steroid 

synthesis was independent of TSPO. Moreover, Morohaku et al. (2014) revealed 

that targeted genetic knockout of TSPO in steroidogenic Leydig cells in male 

mice did not affect testosterone synthesis. Similarly, Tu et al. (2014) and Banati 

et al. (2014) showed that global knockout of TSPO in mice did not affect steroid 

hormone production and mouse fertility. Furthermore, data acquired using high-

resolution nuclear magnetic resonance (NMR) spectroscopy disputed the initial 

TSPO structural finings, as it has been shown that the cholesterol-recognition 

amino acid consensus motif was located on the outside of the structure as 

opposed to lining the internal channel (reviewed by Selvaraj and Stocco (2015)).  

The role of TSPO in MPT was first suspected following gel chromatography co-

purification of TSPO with other known key components of the MPTP (McEnery et 

al., 1992). Further evidence for this association was provided by Chelli et al. 

(2001) who showed that exposure of rat cardiac mitochondria to TSPO ligands 

Ro5-4864 and PK11195 resulted in dose-dependent MPT and mitochondrial 

swelling. The authors proposed that this was a potential consequence of MPTP 

opening. Similar observations were made by Azarashvili et al. (2014) who utilised 

rat brain mitochondria transmembrane potential measurements to show that 

TSPO ligand protoporphyrin IX stimulated MPTP opening. Additionally, this effect 

was shown to be potentiated by carbenoxolone, which is a substance known to 

induce MPTP opening. The authors followed on to show that protoporphyrin IX 

and carbenoxolone driven MPTP opening could be prevented by using an anti-

TSPO antibody. However, as in the case of TSPO and steroidogenesis, recent 

findings do not support the involvement of TSPO in MPT. Using a tissue specific 

TSPO knockout animal model, Šileikytė et al. (2014) revealed that the reduction 

in calcium retention capacity of rat liver mitochondrial (indicative of MPT) 

caused by TSPO ligands Ro5-4864 and PK11195 was identical in TSPO knockout 

wild type control rat liver mitochondria. These findings suggested that TSPO 

ligand induced MPTP opening was likely an off-target effect, which brought into 
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question the validity of the earlier mentioned studies that investigated the 

pharmacological link between TSPO and MPT. This off-target effect of TSPO 

ligands is further strengthened by the fact that PK11195 has been shown to 

interact with F0F1 ATP synthase (Cleary et al., 2007), which has recently been 

revealed to form part of the MPTP (Giorgio et al., 2013). 

Evidence also exists to suggest that TSPO may play a role in the activation of 

endoplasmic reticulum-associated protein degradation, inhibition of autophagy 

and increased pro-inflammatory cytokine production (reviewed by Selvaraj and 

Stocco (2015)). However, despite approximately three decades of research, the 

precise functions of TSPO remain elusive and require further investigation. 

1.4.2 TSPO in glioblastoma and other conditions. 

Relative to other body tissues, expression levels of TSPO (Doble et al., 1987) in 

healthy brain are generally low and homogenous within the cerebral cortex, the 

hippocampus, and the cerebellum (The Human Protein Atlas, 2015). However, 

higher levels of TSPO have been reported in the thylamic and hypothalamic 

nuclei, the substantia niagra, the caudate, the putamen, the dorsal raphe 

nucleus, and the hippocampal dentate gyrus (Doble et al., 1987). In the case of 

human glioma, high levels of TSPO have been observed in the tumour tissue 

relative to surrounding brain tissue using immunohistochemical staining 

techniques (The Human Protein Atlas, 2015; Miettinen et al., 1995). 

Overexpression of TSPO in glioma has also been observed in humans (Cornu et 

al., 1992) and rodents (Starosta-Rubenstein et al., 1987; Black et al., 1990) 

using a tritium-labelled version of TSPO ligand PK11195 (i.e. [3H]-PK11195) and 

ex vivo autoradiography, which allows for visualisation of the distribution of a 

radiolabelled compound bound to solid sections of biological tissue (see section 

7.1.2 for details concerning autoradiography). Interestingly, Mettinen et al. 

(1995) were able to correlate the levels of TSPO expression in gliomas to the 

tumour grade and patient survival. However, as with PARP-1, the overexpression 

of TSPO in glioma lesions was found to originate from a mixture of neoplastic 

and microglial cells (Banati et al., 2000; Brown et al., 2000; Winkeler et al., 

2012).  
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Over the past three decades, TSPO has received much interest as a biomarker of 

neurodegenerative and neuroinflammatory pathology (reviewed by Chen and 

Guilarte (2008)). The link between TSPO and such conditions can be traced back 

to the work performed by Schoemaker et al. (1982), who showed that chemical 

lesioning of rat striatum resulted in a ten-fold increase in binding of the tritium 

labelled TSPO ligand Ro5-4864 when compared to the striatum of healthy control 

animals. Importantly, the authors concluded that this increase was due to an 

increase in binding sites as opposed to an increase in binding affinity of the 

ligand. Benavides et al. (1987) performed a similar study looking at the 

relationships between chemical striatum lesion models and animal TSPO striatal 

density. It was revealed that administration of chemical neurotoxins resulted in 

a dose-dependent increase in levels of neuronal damage and TSPO expression 

(Benavides et al., 1987). These early findings paved the way for numerous 

animal studies, which showed similar relationships between neurodegeneration 

and neuroinflammation and TSPO expression (reviewed by Weissman and Raveh 

(2003), and Chen and Guilarte (2008)). Importantly, Banati et al. (2000) were 

able to show that a type of glial cells called microglia were the main cells 

expressing TSPO during active CNS pathology. They did this by examining post-

mortem brain tissue sections from rats and humans with neurodegenerative 

pathology using [3H]-PK11195 and immunohistochemistry. Microglial cells 

account for approximately 10–20% of the total glial population of the CNS and 

are the principal immune cells of the brain. During resting state conditions, the 

cells exhibit long ramified (i.e. branching) processes that are highly mobile and 

act as sensors that allow the microglia to express their housekeeping function, 

which involves removal of accumulated metabolic products and deteriorated 

tissue components (Raivich et al., 1999; Nimmerjahn, Kirchhoff and Helmchen, 

2005). In the presence of brain injury or an inflammatory response, microglial 

morphology changes and their processes become deramified; this allows the 

microglia to home onto and adhere to damaged neuros. Where neuronal damage 

is such that cellular death occurs, then the adhered microglia transform into 

phagocytes that remove cellular debris (Raivich et al., 1999; Nimmerjahn, 

Kirchhoff and Helmchen, 2005; Davaloes et al., 2005). However, in the absence 

of cellular death the microglia return to a non-activated phenotype (Raivich et 

al., 1999). Interestingly, using a mouse model of neuronal demyelination and 

remyelination, Chen and Guilarte (2006) showed that overexpression of TSPO 
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following brain injury also took place in another type of glial cells called 

astrocytes. In addition to this, the authors revealed that overexpression of TSPO 

was not only a direct response to brain injury, but also took place during the 

recovery stage (i.e. remyelination) of the model. This recovery response was 

more pronounced and sustained in astrocytic cells when compared to microglial 

cells. The precise functions of TSPO overexpression by glial cells in response to 

brain injury and recovery are unknown. It has been proposed that TSPO may be 

involved in microglial proliferation, migration and phagocytic capacity during the 

neuronal damage response, and in astrocytic neurosteroid synthesis during the 

recovery response (Chen and Guilarte, 2006). However, the latter is unlikely as 

recent findings regarding the function of TSPO disputed its role in steroid 

synthesis (see section 1.4.1 for details). 

1.4.3 Nuclear imaging of TSPO.  

1.4.3.1 Applications in glioblastoma and other conditions. 

Nuclear imaging of TSPO in the brain can have multiple clinical applications.  In 

the context of GBM, such imaging could be used to complement structural 

neuroimaging and improve GBM delineation and diagnostic accuracy. This can be 

rationalised by the high contrast in TSPO expression between GBM lesions and 

surrounding grey matter (see section 1.4.2 for details), and the fact that the 

majority of existing TSPO radiotracers are able to freely permeate the BBB. Pre-

clinical PET imaging of intracranial 9L glioma bearing rats revealed that TSPO 

radioligand [18F]-DPA-714 (see section 1.4.3.2 for details) was taken up by GBM 

lesions in good contrast to surrounding brain tissues. The size and anatomical 

locations of the hotspots were found to correlate with the PET signal obtained 

using the amino acid based radiotracer [11C]-MET and with histological data 

acquired post-mortem, thereby confirming the diagnostic potential of this 

imaging agent (Winkeler et al., 2012). Importantly, a clinical study evaluating 

the use of the first generation TSPO radiotracer [11C]-PK11195 showed high 

levels of uptake of the radioligand in high grade gliomas, which were not visible 

on contrast enhanced structural MRI (Su et al., 2015). Furthermore, Buck et al. 

(2015) reported that TSPO radiotracer [18F]-PBR06 was capable of detecting 
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infiltrative glioma cells in rat brains that were once again undetectable on MRI. 

These findings were suggestive of improved sensitivity of TSPO nuclear imaging 

for glioma when compared to conventional structural imaging techniques. In 

addition to this, Buck et al. (2015) proposed that improved delineation of glioma 

lesions from surrounding grey matter could allow for more accurate resective 

removal of tumour tissue (Buck et al., 2015), which could translate into 

improved patient outcomes.  

However, as with structural and nuclear imaging using amino acid based 

radiotracers, utilisation of TSPO as a glioma biomarker is disadvantaged by the 

potential for misdiagnosis as a consequence of TSPO overexpression associated 

with other neuropathological conditions such as stroke, brain abscess, and 

demyelinating diseases (Chen and Guilarte, 2008). Despite this, radiotracers 

targeting TSPO may have some advantages over the amino acid based probes for 

GBM imaging. Non-specific uptake of the amino acid based radiotracer [11C]-MET 

in gliomas has been found to be increased by the presence of BBB disruptions 

(Roelcke et al., 1995). In contrast to this, the uptake of TSPO SPECT radiotracer 

[123I]-CLINDE (see section 1.4.3.2 for details) was not influenced by surgically 

induced BBB alterations in humans (Feng et al., 2014). Therefore, imaging of 

TSPO has potential as an alternative means of GBM treatment monitoring, 

particularly following surgical interventions. Although, it is important to bear in 

mind that  this approach may not be suitable for monitoring the effectiveness of 

radiotherapy, which can cause neuroinflammation (Moravan et al., 2011). 

Furthermore, a direct comparison of [123I]-CLINDE SPECT and [18F]-FET PET 

imaging in patients with GBM revealed that the former was able to detect 

regions of tumour progression, which was confirmed by baseline and follow-up 

gadolinium enhanced MRI. Based on these findings, the authors proposed that 

TSPO may be a useful marker of tumour progression (Jensen et al., 2015). 

In addition to glioma imaging, nuclear imaging of TSPO has been heavily 

investigated in neuroinflammatory conditions such as: ischaemic stroke; multiple 

sclerosis; cerebral vasculitis; human immunodeficiency virus (HIV) encephalitis; 

Alzheimer’s disease; Parkinson’s disease; Huntington’s disease; and amyotropic 

lateral sclerosis (reviewed by Chen and Guilarte (2008)). Such functional imaging 
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can have multiple applications depending on the pathology in question. For the 

purpose of this thesis, the potential applications of nuclear imaging of TSPO will 

be discussed in the context of three common and highly debilitating 

neurodegenerative conditions, namely Parkinson’s disease, Alzheimer’s disease, 

and multiple sclerosis. 

Parkinson’s disease is condition that is characterised by a loss of dopaminergic 

neurons in a brain structure called the substantia niagra (Hirsch, Vyas, and 

Hunot, 2012). Diagnosis of the condition can be aided with structural 

neuroimaging using three-dimensional volumetric structural MRI acquisitions that 

can detect substantia niagra pathology. However, such imaging is limited to 

active disease. Since PET and SPECT are functional imaging modalities, they can 

be utilised to visualise a biological biomarker that can identify subclinical 

disease and individuals at risk of neurodegenerative disorders such as Parkinson’s 

(Brooks, 2004). Neuroinflammation, associated with TSPO overexpression, has 

the potential to acts as such a biological biomarker as it has been linked to 

Parkinson’s disease aetiology (Hirsch, Vyas, and Hunot, 2012). 

Neuroinflammation can also drive progression of the disease (Esposito et al., 

2007; Hirsch, Vyas, and Hunot, 2012), and a number of pre-clinical studies have 

investigated the use of anti-inflammatory agents as adjuvants to conventional 

therapies (Esposito et al., 2007). Nuclear imaging of TSPO could be utilised to 

monitor the effects of such adjuvants by directly measuring the anti-

inflammatory response. Similarly, this type of functional imaging could be used 

to objectively monitor disease progression in vivo, which can often be biased 

when using subjective clinical disability rating scales (Brooks, 2004). 

Alzheimer’s disease is another example of a neurodegenerative condition where 

structural MRI is used to facilitate diagnosis. This is achieved through the 

detection of brain atrophy characterised by onset and progression originating 

from the medial temporal lobe. However, despite characteristic patterns for 

most cases of Alzheimer’s disease, brain atrophy presentation is variable in 

atypical cases of the condition. Therefore, a definite diagnosis requires 

histopathological confirmation (Johnson et al., 2012). The ability to visualise 

neuroinflammation through in vivo nuclear imaging of TSPO could potentially aid 
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Alzheimer’s disease diagnosis and monitoring, as inflammation has been linked 

to the pathogenesis of the condition (Heneka et al., 2015). 

Multiple sclerosis is an autoimmune disease associated with neurodegeneration 

and neuroinflammation at all stages of the condition. As with Parkinson’s and 

Alzheimer’s disease, MRI is an invaluable tool for the diagnosis and monitoring of 

progression of multiple sclerosis. However, the technique lacks the ability to 

detect diffuse pathology, which is particularly prominent in progressive multiple 

sclerosis, and is known to be associated with microglial activation and 

neurodegeneration. Since TSPO is overexpressed by activated microglia, nuclear 

imaging of this protein could be used to identify patients at risk of entering the 

progressive stage of the disease. In turn, this could be used to tailor 

pharmacological treatment to the individual with the aim of slowing down 

disease progression. Moreover, pharmacological management involves using 

disease-modifying drugs that supress inflammation. Therefore, nuclear imaging 

of TSPO could also be utilised as a means of monitoring treatment efficacy 

(Airas, Rissanen, and Rinne, 2015). 

1.4.3.2 Existing tracers for TSPO. 

The earliest example of a nuclear imaging radiotracers for TSPO is the [11C]-

labelled version of the benzodiazepine Ro5-4864 (Figure 1.21). However, the 

good specificity of the compound for TSPO in rats was not translatable to human 

subjects in which little binding to TSPO in vivo was observed on PET scans (Junck 

et al., 1989). The contrary was true for the isoquinoline carboxamide PK11195, 

which was first radiolabelled with 11C in 1984 (Camsonne et al., 1984) and 123I in 

1996 (Gildersleeve et al., 1996) (Figure 1.21). [11C]-PK11195 in particular has 

been used extensively to study TSPO in vivo using PET imaging (reviewed by 

Chen and Guilarte (2008) and Luus et al. (2010)). However, as a consequence of 

its physiochemical properties, PK11195 suffers from poor brain uptake and high 

non-specific binding (Petit-Taboulé et al., 1991; Shah et al., 1994), which can 

lead to a low nuclear imaging signal to noise ratio in the brain. It is also 

important to note that the 11C-labelled version of PK11195 has the inherent 
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disadvantage of a short half-life making its use for nuclear imaging more 

challenging (see section 1.2.1 for details).  

 

Figure 1.21. First generation radiotracers for TSPO. 

In order to improve the quality of TSPO nuclear neuroimaging, numerous second 

and third generation radioligands have been developed (Figure 1.22). [123I]-

CLINDE was second generation SPECT candidate with improved affinity for TSPO 

and better brain tissue penetration properties when compared to the first 

generation agents (Mattner, Mardon, and Katsifis et al., 2008). The 11C-labelled 

pyrazolopyrimidine DPA-713 and the phenoxyphenyl acetamides DAA1106 and 

PBR28 appeared to be promising imaging candidates as the agents exhibited 

good brain uptake and specific binding properties in a number of pre-clinical 

pathology models. However, as with [11C]-PK11195, these radiotracers were 

disadvantaged by the short half-life of the radioisotope. Therefore, a number of 

tracers bearing the longer lived 18F radioisotope (half-life = 109.8 minutes) were 

developed based on the pyrazolopyrimidine and phenoxyphenyl acetamide 

classes (reviewed by Luus et al. (2010) and Vivash and O’Brien (2015)). 

Interestingly, it was found that the deuterated methyl-radiofluoride 

functionality (CD2
18F) of [18F]-d2FMDAA1106 reduced the rate of in vivo 

defluorination when compared to the corresponding methyl-radiofluoride 

(CH2
18F). Despite this improvement in metabolic stability, the generation of free 

18F metabolite was still prominent upon pre-clinical nuclear imaging with [18F]-

d2FMDAA1106, which interfered with the signal observed for TSPO in the brain 

(Zhang et al., 2005) (see chapters 4 and 6 for details concerning 18F-

defluorination). These issues of in vivo defluorination were subsequently 

addressed with the development of the metabolically stable [18F]-FEDAA1106. 

Similarly to the 11C-labelled agents, the 18F-bearing radiotracers exhibited 
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improved brain uptake and specific binding properties when compared to 

PK11195 (reviewed by Luus et al. (2010) and Vivash and O’Brien (2015)). 

Figure 1.22. Second and third generation radiotracers for TSPO. 

However, clinical advancement of these second and third generation 

radiotracers has been significantly hindered by the existence of human TSPO   

single-nucleotide polymorphism that is associated with the substitution of an 

alanine to a threonine amino acid in the protein. This small change has been 

shown to have a significant effect on the binding affinities of these TSPO ligands, 

resulting in populations of patients that can be classed as high-affinity, low-

affinity or mixed-affinity binders (Owen et al., 2011; Owen et al., 2012; Mizrahi 

et al., 2012; Kreisl et al., 2013). Importantly, the binding of the first generation 

TSPO ligand PK11195 is not influenced by this genetic polymorphism (Owen et 

al., 2011). This could be explained by the fact that TSPO possesses a number of 

different bindings sites, including separate binding sites for benzodiazepine and 

isoquinoline compounds (Luus et al., 2010).  

It has been reported that, amongst persons of European ancestry, the prevalence 

of people who fall into the high-affinity and low-affinity binder categories are 

approximately 49% and 9% respectively, while the remaining 42% are classified as 

mixed-affinity binders (Kreisl et al., 2013). From the perspective of nuclear 
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imaging, radiotracers that are affected by this type of polymorphism have 

limited clinical application as different binding affinities amongst patients can 

mislead diagnoses and prevent quantitative comparison of data (Mizrahi et al., 

2012; Kreisl et al., 2013). This issue could be addressed by genotyping patients 

before nuclear imaging in order to establish their TSPO polymorph (Mizrahi et 

al., 2012). Obtaining such information from patients before scanning would 

allow for exclusion of individuals that would likely exhibit poor specific signal 

(i.e. ‘low-affinity binders’) (Owen et al., 2011), and subsequent correction of 

data to account for ‘high-’ and ‘mixed-affinity binders’ (Mizrahi et al., 2012). 

However, such an approach would not only introduce scanning delays and an 

increased financial strain on the healthcare system, but also prevent a 

significant proportion of the population from accessing this nuclear imaging 

technology. Therefore, there is a need for novel TSPO radiotracers that exhibit 

low sensitivity to human TSPO polymorphism and improved in vivo 

characteristics when compared to the first generation agents.  

1.5 Radiotracer discovery and development. 

1.5.1 Discovery and development pipeline. 

Discovery and development of novel pharmaceuticals is a complex, multistage, 

and multidisciplinary process. It is important to make the distinction between 

discovery and development of therapeutic and imaging agents as the pipelines 

differ for the two types of agents. The involvement of academic and industrial 

sectors in the discovery and development of therapeutic and imaging agents is a 

key difference. Pharmaceutical companies are the main drivers behind 

therapeutic agent development, while only a small number of companies exist 

that commercialise imaging agents. Consequently, the main players involved in 

imaging agent development are academics, who can be credited for the majority 

of PET and SPECT radiotracers that are currently in existence (Agdeppa and 

Spilker, 2009). 
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Figure 1.23 outlines the typical discovery and development pathways taken for 

therapeutic drugs and imaging agents. In the case of the former, the overall 

process is usually linear and can be subdivided into pre-clinical discovery and 

clinical development stages. Similarly, the imaging agent discovery and 

development pipeline also consists of pre-clinical and clinical stages (Hoffman, 

Gambhir, and Kelloff, 2007; Agdeppa and Spilker, 2009). However, the pre-

clinical stage often follows a non-linear path, where the discovery of the 

imaging agent is an iterative process. The reasoning is that companies or 

academic institutions involved in generating imaging agents do not have access 

to large libraries of chemical compounds that can be screened. Moreover, it can 

frequently be the case that positive in vitro data for an imaging agent do not 

translate into adequate in vivo performance, for example due to poor in vivo 

stability of a radionuclide label. As a consequence, chemical synthesis, in vitro 

screening, and in vivo testing fall into an iterative discovery cycle, where in 

vitro and in vivo information is fed back to medicinal chemists who refine their 

approaches before repeating the screening process. In vitro screening usually 

involves assessment of the agent’s physiochemical properties, the target binding 

affinity, and the stability. In the case of radiotracers, part of this process also 

involves the development of labelling methodology that can efficiently introduce 

the desired radionuclide necessary for nuclear imaging (Agdeppa and Spilker, 

2009). The in vivo testing component of this cycle exhibits marked differences to 

what is usually performed for investigational therapeutic agents. Therapeutic 

drugs are designed to be administered via a specific route, for example orally as 

a tablet or capsule. In such cases, pre-clinical testing will involve assessment of 

oral bioavailability. However, the route of administration of radiotracers is 

usually parenteral and evaluation of oral bioavailability is not necessary. 

Furthermore, due to the technical capabilities of nuclear imaging equipment, 

pre-clinical radiotracer imaging studies are able to ascertain biodistribution and 

pharmacokinetic information for the investigational diagnostic agent before 

advancing to human trials. These imaging studies can also be planned to allow 

blood sampling for metabolic analysis. The imaging data will often be validated 

by correlating radiotracer uptake to autoradiographic or gamma-counting 

biodistribution and histologic data acquired from parallel studies. Another 

important component of pre-clinical radiotracer assessment is the establishment 

of the degree of specific binding of the agent for its target, which is usually 
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achieved by performing radioligand blockade or displacement studies using a 

non-radioactive compound with known specificity for the target. These data can 

then be used to establish organ dosimetry, and the dose-limiting organ for 

radiation exposure and toxicity (Agdeppa and Spilker, 2009; Sharma and 

Aboagye, 2011). Despite the fact that radiotracers are usually administered at 

doses that are below the level required to elicit a pharmacological response, 

toxicological evaluation forms a key part of the pre-clinical assessment stage 

(Sharma and Aboagye, 2011). The aim of this iterative discovery cycle is to 

identify a lead imaging agent candidate that then enters the clinical stage of 

development, which follows a similar general pathway to that outlined earlier 

for therapeutic agents (Agdeppa and Spilker, 2009). 

 

Figure 1.23. Typical discovery and development pathways taken for therapeutic 

drugs and imaging agents. 

It is important to note that the specific requirements for clinical development of 

both therapeutic and imaging agents will be dictated by the regulatory body 

responsible for its commercial approval. In the USA, the body responsible for this 

is the Food and Drug Administration (FDA), which has clearly defined 

requirements for phase I, II, and III and post-marketing studies; these 

requirements are very similar for therapeutic and imaging agents (reviewed by 
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Hoffman, Gambhir, and Kelloff (2007). The situation is more complex in Europe, 

where overarching legislation outlines the specific requirements for human 

studies using investigational medicinal products and radiopharmaceuticals, 

which can be subjected to change and variable timelines depending on the 

member state (reviewed by Salvadori, 2008).  

1.5.2 From the laboratory to the clinic. 

Commercialisation of imaging agents requires substantial monetary investment, 

with an estimated cost in the region of $100–$200 million. Based on figures from 

2003, the global sales of the top three nuclear imaging agents (i.e. Cardiolite®, 

Myoview®, and [18F]-FDG) were between $190 and $405 million. To put these 

figures into perspective, the development costs of therapeutic drugs have been 

estimated to be $800–$1700 million, where the top blockbuster drugs have been 

reported to have earned as much as $3400 million. Poor return on investment 

combined with long development time (between 8–10 years) led to reduced 

industrial interest in the area of imaging agent development (Nunn, 2006). It is 

therefore not surprising that between the period of 1995 and 2010 [13N]-

ammonia was the only PET radiopharmaceutical to receive FDA approval for 

human use (VanBroklin, 2010).  

It has been proposed that decreasing pre-clinical development cost could help to 

bridge the gap between discovery of new nuclear imaging agents and their 

subsequent clinical commercialisation. This could be achieved by reducing the 

toxicological assessment of novel radiotracers (Nunn, 2006), as the likelihood of 

a pharmacological response following radiotracer administration is minimal. 

Another solution could involve the formation of partnerships between nuclear 

imaging instrument companies and companies or academic institutions 

responsible for radiotracer development (Nunn, 2006). However, as it stands 

commercialisation of radiotracers remains an expensive process that is 

associated with high attrition rates. 
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1.6 Aims and objectives. 

This thesis aimed to discover novel SPECT and PET nuclear imaging tracers for 

PARP-1 and assess them pre-clinically, and to continue the pre-clinical discovery 

of a potential TSPO PET imaging agent synthesised and investigated previously 

by Dr Adele Blair as part of her PhD project within the research group. The pre-

clinical discovery of these radiotracer compounds was focused on potential GBM 

neuroimaging applications.  

With respect to the PARP-1 nuclear imaging agents the objectives were to: i) 

utilise the structure of the clinical PARP-1 inhibitor olaparib as a pharmacophore 

for the synthesis of novel compounds designed to represent potential PARP-1 

SPECT and PET imaging agents, from which lead candidates could be selected 

based on outcomes of in vitro screening procedures; ii) develop methodologies 

to allow access to the radiolabelled versions of the lead candidates with 

potential for PARP-1 SPECT and PET nuclear imaging; and iii) test the lead 

radiolabelled candidates as potential PARP-1 nuclear imaging agents in mice 

bearing human GBM xenograft models using ex vivo biodistribution methodology.  

With respect to the previously discovered potential TSPO PET imaging agent the 

objectives were to: i) utilise previously established methodology to access the 

radiolabelled compound; and ii) investigate the utility of this compound as a 

TSPO imaging agent in mice bearing intracranial human GBM tumours using ex 

vivo autoradiography and pre-clinical PET imaging.  
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2. THESIS OUTLINE. 

This thesis describes the pre-clinical discovery of radiotracers for PARP-1 and 

TSPO. With regard to the former, the thesis is structured according to the 

typical imaging agent pre-clinical discovery pipeline (as outlined in section 

1.5.1), with each experimental chapter addressing a key set of steps in this 

process. Since a large proportion of the pre-clinical discovery process of the 

candidate radiotracer for TSPO has already been achieved (i.e. chemical and 

radiochemical syntheses, as well as in vitro assessment), the final chapter of this 

thesis focuses on the latter stages of pre-clinical discovery pipeline for this 

tracer (i.e. pre-clinical in vivo assessment).  

The thesis comprises of five experimental sections and a concluding chapter, and 

a brief outline of each chapter is provided below. 

Chapter 3 is entitled “Synthesising PARP-1 ligands with potential for nuclear 

imaging” and it describes the identification and organic synthesis of non-

radioactive compounds, based on the clinical PARP-1 inhibitor olaparib, designed 

to represent potential SPECT and PET nuclear imaging agents. A total of 

eighteen olaparib analogues were made. Seven of these contained a stable 

iodine atom and were representative of [123I]-labelled SPECT agents, seven were 

fluorine bearing and representative of [18F]-labelled PET imaging agents, and 

four compounds comprised a methoxy functionality and were representative of 

[11C]-OMe labelled PET agents. 

Chapter 4, entitled “Identifying lead PARP-1 ligands with potential for nuclear 

imaging”, outlines key in vitro testing that was conducted on the earlier 

synthesised PARP-1 ligands (Chapter 3) with the aim of identifying lead 

candidates for advancement to the next stage of radiotracer discovery. 

Assessment of in vitro cell-free PARP-1 inhibitory potency and physiochemical 

parameters allowed for the ranking of these compounds, followed by subsequent 

elimination of candidates showing undesirable properties. These data, combined 

with further in vitro assessment of cellular PARP-1 inhibitory potency, allowed 
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for the identification of one lead SPECT and two lead PET PARP-1 imaging 

candidates. 

Chapter 5 is entitled “Developing radiosyntheses for PARP-1 nuclear imaging 

agents”. This section describes the steps that were taken towards establishing 

and optimising methodology for generating, purifying and formulating the [123I]-

iodide and [18F]-fluoride labelled versions of the lead candidates identified in 

Chapter 4. Suitable radiosynthetic methodology was developed for two of the 

three desired PARP-1 radiotracers, thereby leading to their advancement to the 

pre-clinical discovery process (Chapter 6). One of the potential PET candidates 

could only be radiolabelled in low yield, which was not sufficient for in vivo pre-

clinical evaluation. 

Chapter 6, entitled “In vitro stability and ex vivo evaluation of the PARP-1 

molecular imaging agents”, discusses the in vitro assessment of plasma and 

metabolic stability of the non-radioactive counterparts of the two PARP-1 

tracers that were successfully radiolabelled in Chapter 5. This chapter also 

describes the evaluation of the radiolabelled tracers in mice bearing human GBM 

xenograft tumours using ex vivo biodstirbution techniques. 

Chapter 7, entitled “In vivo evaluation of TSPO molecular imaging agent [18F]-

AB5186”, describes the radiosynthesis and ex vivo autoradiographic evaluation of 

the potential TSPO nuclear imaging agent [18F]-AB5186, which was synthesised 

and investigated previously by Dr Adele Blair as part of her PhD thesis, in mice 

bearing intracranial human GBM tumours. The chapter also discusses the in vivo 

evaluation of this tracer in the same tumour model using pre-clinical PET 

imaging.  

Chapter 8, entitled “Conclusions and future work”, summarises the progress that 

was made in the pre-clinical discovery of nuclear imaging radiotracers for PARP-

1 and TSPO and outlines the future work that can be conducted in this area.  
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3 SYNTHESISING PARP-1 LIGANDS WITH POTENTIAL FOR 

NUCLEAR IMAGING. 

3.1 Introduction. 

3.1.1 PARP inhibitor binding.  

The binding interactions between PARP inhibitors and the PARP-1 active site 

differ depending on the structure of the inhibitor in question. However, a 

number of similar interactions across a range of PARP inhibitors have been 

identified. In 1996, Ruf et al. reported the crystal structure of the catalytic 

fragment of chicken PARP-1 (PARP-CF), which is a close homologue to the human 

enzyme. The authors were able to elucidate key binding interactions between 

PARP-CF and the nitocinamide PARP inhibitor PD128763 by co-crystallising the 

two structures. These interactions included: i) nonpolar π-stacking between a 

Tyr-907 amino acid residue and the aromatic region of PD128763; ii) hydrogen 

bonding between a Ser-904 residue and the carbonyl of PD128763; and iii) 

hydrogen bonding between a Gly-863 residue and the lactam functionality of 

PD128763 (Ruf et al., 1996) (Figure 3.1).  

 

Figure 3.1. The key binding interactions between the PARP inhibitor PD128763 

and the PARP-CF. 

The binding of organic compounds to the PARP-CF was further evaluated by Ruf 

et al. (1998) who were able to co-crystallise the enzyme fragment with three 

other PARP inhibitors, namely the benzamide analogue 3-MBA, the 
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dihydroisoquinolinone analogue 4-ANI, and the quinazolinone derivative NU1025. 

All three inhibitors exhibited identical interactions with Gly-863, Ser-904 and 

Tyr-907 as those identified for PD128763 (Figure 3.2). 

 

Figure 3.2. Key binding interactions between the PARP inhibitors 4ANI, 3MBA, 

and NU1025 and the PARP-CF. 

Cockroft et al. (2006) utilised crystal data acquired for the PARP-CF to perform 

computerised (in silico) modelling of the binding interactions between the PARP-

CF and two PARP inhibitors (1 and 2) based on the phthalazinone scaffold (Figure 

3.3). As expected, the phthalazinone aromatic region of compounds 1 and 2 was 

shown to associate with a Tyr-907 residue, and the amido NH and carbonyl 

functionalities characteristic of phthalazinones exhibited hydrogen bonding with 

Gly-863 and Ser-904 residues. In addition to the above, the in silico approach 

revealed a further key interaction between the NH residue of Met-890 and the 

meta-benzyl positioned anilide and amide functionalities of compounds 1 and 2, 

respectively (Figure 3.3).  
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Figure 3.3. In silico predicted binding interactions between the PARP inhibitors 

1 and 2, based around the phthalazinone scaffold, and the PARP-CF. The circled 

regions highlight areas that are tolerant to structural modification with respect 

to PARP-1 inhibitory activity. 

The above described binding model of compounds 1 and 2 to the PARP-1 active 

site, predicted using in silico methodology, correlates with physical structural 

activity relationship (SAR) data obtained by Cockroft et al. (2006) and Menear et 

al. (2008). In both cases the authors reported that structural modification in 

regions distal to the meta-benzyl anilide and amide of compounds 1 and 2 

(Figure 3.3 circled regions) had little influence on PARP-1 inhibition. This 

phenomenon was instrumental in the development of the clinical PARP inhibitor 

olaparib as it allowed for the synthesis of a broad range of phthalazinone based 

compounds, which exhibited potent PARP-1 inhibitory properties. Taking all of 

the above findings under consideration, it is proposed that olaparib binds to the 

PARP-1 active site via the interactions depicted in figure 3.4.  
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Figure 3.4. Proposed binding interactions between the PARP inhibitor olaparib 

and the PARP-1 active site.The circled region highlights the area that is tolerant 

to structural modification with respect to PARP-1 inhibitory activity. 

It should be appreciated that existing inhibitors of PARP-1 also exhibit PARP-2 

inhibitory properties through interactions similar to those described above 

(Karlberg et al., 2010; Oliver et al., 2004). This can be attributed to the high 

degree of homology that exists between the catalytic domains of the two 

enzymes. For the purpose of the following section the term ‘PARP inhibitors’ was 

utilised as an umbrella term describing inhibitors of both PARP-1 and 2. 

From the perspective of developing a PARP-1 radiotracer, knowledge concerning 

binding to different PARP isoforms is less crucial when compared to PARP 

inhibitors utilised for therapeutic applications. This is because, as their name 

entails, radiotracers are administered in trace amounts that, in the case of 

PARP-1 and PARP-2, are below the levels required to elicit a clinically significant 

pharmacological response. Therefore, the clinical consequences associated with 

off-target radiotracer binding are regarded as negligible. 

3.1.2 Olaparib core as a pharmacophore. 

Olaparib is a potent inhibitor of PARP-1 (Menear et al., 2008) and it is the most 

clinically advanced compound in its class (see section 1.3.2.1 for details). These 

properties, coupled with the fact that it is open to structural modification in the 

cyclopropane bearing region (Figure 3.4), make the core of the compound an 

ideal pharmacophore for novel PARP-1 radiotracer discovery. 
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Direct radiolabelling of olaparib for PET or SPECT imaging, without performing 

structural modifications to the parent compound, would represent the ideal 

scenario. Reiner et al. (2012) attempted to exploit the aromatic fluorine already 

present in the structure of olaparib for direct 18F labelling, but were unable to 

do so due to steric hindrance imposed by the amide functionality positioned 

ortho to the labelling site. Moreover, radiolabelling of olaparib with the 11C 

radioisotope using established methylation methodology would not be feasible as 

attachement of a [11C]-methyl functionality to the amido NH group of the 

phthalazinone would likely impede binding of the compound to the PARP-1 

active site. In order to circumvent these issues, it was proposed that structural 

modifications can be performed in the cyclopropane bearing region of olaparib, 

without impeding PARP-1 binding properties, to include moieties that can easily 

be labelled with the desired radioisotope for SPECT or PET imaging (Figure 3.5). 

It is noteworthy that a similar approach was effectively utilised by Reiner et al. 

(2012) and Carlucci et al. (2015) for the development of the PARP-1 tracers 

[18F]-BO and [18F]-PARPi-FL respectively (see section 1.3.3.2 for details). 

 

Figure 3.5. Structures of olaparib and potential PARP-1 SPECT and PET nuclear 

imaging agents, where the ‘R’ group represents appropriately radiolabelled 

moieties. 
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3.1.3 Aims and hypotheses. 

The work described in this chapter aimed to identify and synthesise non-

radioactive iodinated, fluorinated, and methoxy containing analogues of olaparib 

that were designed to represent potential PARP-1 123I labelled SPECT, and 18F 

and [11C]-methoxy labelled PET imaging agents. It was hypothesised that 

previously published methodology for the synthesis of olaparib (Menear et al., 

2008) could be exploited as a means of rapidly accessing these novel iodinated, 

fluorinated, and methoxy containing compounds. 

3.2 Results and discussion. 

Due to the wealth of pre-clinical and clinical data available for the PARP 

inhibitor olaparib, and the unique opportunity for structural expansion in the 

terminal cyclopropane bearing region, the phthalazinone scaffold 3 of olaparib 

was chosen as the pharmacophore for PARP-1 radiotracer development (Figure 

3.6). 

 

Figure 3.6. The phtahalzinone scaffold of olaparib. 

A total of eighteen non-radioactive compounds, based around the 

phtahalazinone scaffold 3 of olaparib, were identified as potential PARP-1 SPECT 

and PET nuclear imaging agents (Figure 3.7).  
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Figure 3.7. Structures of olaparib and the non-radioactive analogues that were 

chosen as potential PARP-1 nuclear imaging agents. Compounds 4–10 

represented potential 123I-labelled SPECT tracers, while 11–17 and 18–21 

represented potential 18F and [11C]-OMe-labelled PET imaging agents, 

respectively.  

Specifically, compounds 4–10 were identified as representatives of aromatic 123I-

labelled tracers, 11–16 and compound 17 represented aromatic and aliphatic, 

respectively, 18F-labelled tracers, and 18–21 represented [11C]-OMe labelled 

radioligands. It was envisaged that previously established chemistry (Menear et 

al., 2008) could be utilised to access the penultimate compound 3 (Figure 3.6) 

that could in turn be exploited in coupling reactions with commercially available 
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iodinated, fluorinated, and methoxy bearing aromatic carboxylic acids, alkyl 

halides or sulfonyl halides. 

The advantage of such an approach would be the potential to access olaparib 

analogues in a rapid manner. Therefore, with the exception of compound 17, 

one of the key drivers behind selection of 4–16 and 18–21 as target compounds 

was the commercial availability of the desired aromatic carboxylic acids, and 

alkyl and sulfonyl halides. This approach could not be applied to compound 17 as 

4-(fluoromethyl)benzoic acid was not obtainable commercially. However, this 

compound was pursued as a viable nuclear imaging candidate due to the 

potential for greater radiochemical accessibility of the aliphatic fluorine when 

compared to compounds 4–10 that all contain fluorine atoms attached directly 

to aromatic rings (see section 5.1.2.2 for further information concerning 

aliphatic and aromatic radiofluorination chemistry).  

The phthalazinone scaffold 3 was accessed using synthetic methodology 

described by Menear et al. (2008) with slight modifications. Optimisation of the 

synthetic route was performed by Dr Adele Blair and further details concerning 

these endeavours can be found in the author’s thesis (Blair, 2014). To briefly 

describe the synthesis, commercially available dimethylphosphite 23 and 2-

carboxybenzaldehyde 22 underwent a coupling reaction under basic conditions 

to give the phosphonate intermediate 24 in 96% yield (Scheme 3.1). Next, 

compound 24 was subjected to Horner-Wadsworth-Emmons coupling, a 

technique originally reported by Horner, Hoffmann and Wippel (1958) and 

further developed by Wadsworth and Emmons (1961), with 2-fluoro-5-

formylbenzonitrile 25, resulting in the formation of alkene 26 in a E- and Z-

isomer mixture and 98% yield (Scheme 3.1). The Horner-Wadsworth-Emmons 

reaction mechanism is well established and further information can be found in 

the review by Maryanoff and Reitz (1989). The ratio of E- and Z-isomers was not 

determined as the non-separated mixture was subjected to  a one-pot process 

that allowed for formation of a carboxylic acid via base hydrolysis of the nitrile, 

followed by formation of the characteristic phthalazinone core of 27 with 

concurrent removal of the alkene using hydrazine monohydrate. Compound 30, 

accessed by mono-Boc protection of piperazine 28 using di-tert-butyl 
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dicarbonate 29 as reported by Kovács and Szegezdi (2003), underwent an amide 

coupling reaction with intermediate 27 to afford 31 in 73% yield (Scheme 3.1).  

 

Scheme 3.1. Synthesis of the Boc-protected phthalazinone intermediate 31. 

The proposed mechanism for HBTU (33) mediated amide coupling of compounds 

27 and 28 is depicted in Scheme 3.2 (Valeur and Bradley, 2009). Addition of a 

base to compound 27 resulted in deprotonation of the terminal carboxylic acid 

and the formation of the corresponding carboxylate anion 32. This intermediate 

then underwent nucleophilic substitution with the uranium moiety of 33 to 

afford 34, which then reacted with the anionic oxygen of the benzotriazole 35 

via another nucleophilic substitution, resulting in the formation of the activated 

ester 37 and the water soluble urea by-product 36. Finally, the nitrogen lone 

pair of mono-Boc protected piperazine 30 performed nucleophilic attack at the 

carbonyl position of ester 37 resulting in the generation of amide 31 and the 1-

hydroxybenzotriazole 35 by-product. A key advantage of the HBTU coupling 

agent is the water solubility of the urea and hydroxybenzotriazole by-products, 

which can be removed via a straight forward aqueous phase extraction.  
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Scheme 3.2. Proposed mechanism for HBTU (33) mediated amide coupling of 

compounds 27 and 30. 

The final step in the synthesis of the penultimate compound 3 involved acid-

mediated Boc-deprotection of 31 resulting in the generation of the desired 

product in 71% yield (Scheme 3.3), and an overall 46% yield over the six steps. It 

is noteworthy that the above described synthesis did not necessitate the use of 

column chromatography for compound purification, thereby enabling rapid 

synthetic progression. 
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Scheme 3.3. Boc-deprotection of 31 to give access to the phthalazinone scaffold 

3. 

As envisaged, the generation of compound 3 allowed for the synthesis of 

olaparib, and 4–16 and 18–21 in a straight-forward manner by utilising the 

terminal secondary amine of the piperazine as a coupling point for the 

corresponding iodinated, fluorinated, and methoxy-bearing coupling partners 

(Table 3.1). The syntheses of compounds 11–16 and 18–21 were performed by 

Dr Adele Blair and further information, beyond what is included in Table 3.1, 

can be found in the author’s thesis (Blair, 2014). The choice of HBTU as an 

amide coupling agent for the synthesis of compounds 4–10 was driven by 

previous success with this agent in the synthesis of compound 31 (Scheme 3.1), 

and the difficulties reported by Blair (2014) in utilising an alternative 

carbodiimide coupling agent EDCI. It should be noted that the reported yields in 

Table 3.1 for compounds 4–5 and 7–10 were based on single un-optimised 

reactions. The exception was compound 6, where an initial attempt at its 

synthesis via amide coupling between 3 and 3-iodo-4-methylbenzoic acid at 

room temperature afforded the product in only 8% yield. However, an increase 

in temperature to 40 C allowed for a markedly improved yield of 48%. Higher 

temperatures were not investigated due to the potential explosive risks 

associated with the 1-hydroxybenzotriazole by-product of HBTU (Wehrstedt, 

Wandrey, and Heitkamp, 2005). 
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Table 3.1. Synthesis of compounds 4–16 and 18–21 from the penultimate 

compound 3. 

 

Reagents and conditions: (a) HBTU, Et3N, DMF, rt, 72 h; (b) HBTU, Et3N, DMF, rt, 

48 h; (c) HBTU, Et3N, DMF, 40 C, 22 h; (d) Et3N, CH2Cl2, rt, 6 h; (e) HBTU, 

DIPEA, DCM, rt, 24 h;(f) EDCI, DMAP, DCM, rt then reflux, 24 h; (g) HBTU, DIPEA, 

DMF, 50 C, 24 h;(h) DIPEA, DCM, rt, 12 h; (i) DIPEA, DCM, rt, 24 h. 
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As mentioned earlier, access to compound 17 was complicated by the lack of 

commercial availability of the 4-(fluoromethyl)benzoic acid coupling partner. As 

a consequence, retrosynthetic analyses were performed in order to establish an 

optimal synthetic route for 17 utilising commercially available 4-

(chloromethyl)benzoic acid (39). The initial proposed retrosynthetic route 

(Scheme 3.4) consisted of a disconnection of the terminal fluoride of 17, 

affording the chlorinated compound 38 that could be accessed by amide 

coupling of 39 and 3. However, it was thought that late-stage nucleophilic 

fluorination of 38 could prove challenging due to potential reactivity of the 

phthalazinone core.  

 

Scheme 3.4. Initial retrosynthetic analysis of the olaparib analogue 17 utilising 

a late-stage nucleophilic fluorination step. 

Consequently, an alternative retrosynthetic route utilising early-stage 

fluorination was established (Scheme 3.5). An initial disconnection of the amide 

linkage of 17 afforded the previously synthesised phthalazinone 27 and the 

functionalised piperazine 40, which could in turn be synthesised by Boc-

deprotection of the fluorinated intermediate 41. The fluorine atom could be 

introduced via a nucleophilic substitution reaction of the corresponding benzyl 

chloride 42. A final disconnection of the amide bond of 42 led to the mono-Boc 
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protected piperazine 30 and commercially available 4-(chloromethyl)benzoic 

acid 39. 

 

Scheme 3.5. Alternative retrosynthetic analysis of the fluorinated olaparib 

analogue 17 utilising an early-stage nucleophilic fluorination step. 

As per the above described retrosynthetic analysis, mono-Boc protected 

piperazine 30 was subjected to an amide coupling reaction with 4-

(chloromethyl)benzoic acid 39 generating intermediate 42 in 40% yield (Scheme 

3.6).  

 

Scheme 3.6. The synthetic approach used to access compound 42. 

Compound 42 was then subjected to a number of small scale reactions with the 

aim of establishing optimal conditions for the nucleophilic substitution of the 
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benzyl chloride functionality with a fluorine atom (Table 3.2). An initial attempt 

at nucleophilic fluorination involved using an excess of KF (2 eq.) in the presence 

of the phase transfer agent (PTA) 18-crown-6 (18-Cr-6) (see section 5.1.2.2 for 

further information concerning the use of PTAs). However, these conditions 

afforded poor conversion with a 1.0 : 25.0 ratio of desired product 41 to starting 

material 42 (Table 3.2, Entry 1). By using an excess of tetra-n-butylammonium 

fluoride (TBAF) (2 eq.) complete conversion was achieved within one hour (Entry 

2). This was also the case in the presence of 1 eq. of TBAF when using both 

acetonitrile and N,N’-dimethylformamide as reaction solvents (Entries 3 and 4). 

However, for practical reasons concerning compound purification acetonitrile 

was chosen as the preferred solvent.  

Table 3.2. Screen of reaction conditions for the non-radioactive nucleophilic 

substitution fluorination of 42. 

 
aThe ratio was calculated from the 1H NMR spectrum of the crude mixture 

following in vacuo acetonitrile removal or dichloromethane/aqueous extraction 

in order to remove N,N’-dimethylformamide. PTA = phase transfer agent; TBAF = 

tetra-n-butylammonium fluoride; MeCN = acetonitrile; DMF = N,N’-

dimethylformamide. 

The reaction conditions described in entry 3 (Table 3.2) were replicated on a 

larger scale affording compound 41 in 99% yield (Scheme 3.7). Following 

successful fluorination, the Boc protecting group of compound 41 was cleaved 



104 
 

 

using trifluoroacetic acid (TFA), and the corresponding deprotected amine (40) 

was then used in a HBTU mediated amide coupling with compound 27, resulting 

in the generation of the fluorinated phthalazinone 17. The final step afforded 

the desired compound in only 17%. However, this result was based on a single 

reaction and it is possible that with appropriate optimisation the product yield 

could be improved. 

 

Scheme 3.7. The synthetic approach used to access compound 17 from the 

benzyl chloride 42. 

3.3 Conclusion. 

Eighteen non-radioactive compounds, based around the olaparib phtahalazinone 

scaffold 3, were identified as potential PARP-1 SPECT and PET nuclear imaging 

agents and were subsequently synthesised. Synthesis of scaffold 3 was achieved 

in six linear steps using slightly modified methodology to that described by 

Menear et al. (2008). This compound was then utilised as a penultimate 

precursor for coupling with commercially available carboxylic acids, alkyl halides 

and sulfonyl halides giving access to seven iodinated (4–10), six fluorinated (11–

16) and four methoxy-bearing (18–21) analogues of olaparib. The benzyl-

fluoride 17 could not be synthesised using the same approach due to lack of 

commercial availability of the 4-(fluoromethyl)benzoic acid coupling partner. 

Instead, an alternative method was used, which relied on early-stage 
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nucleophilic fluorination of a functionalised 4-(chloromethyl)benzoic acid (42) 

that was coupled with 27 to afford the desired product 17. 

3.4 Experimental. 

3.4.1 General experimental. 

The general experimental and the synthesis of compounds 3–10, 24, 26–27, and 

30–31 has been reported previously by Zmuda et al. (2015). All reagents and 

starting materials were obtained from commercially reputable suppliers and 

were used as received. Compound purification via flash column chromatography 

was carried out using Fisher matrix silica 60, and thin layer chromatography was 

performed using Macherey-Nagel aluminium-backed plates pre-coated with silica 

gel 60 (UV254). Visualisation of compounds on thin layer chromatography plates 

was achieved by staining with KMnO4. 
1H NMR and 13C NMR spectra were 

recorded on a Bruker DPX 400 spectrometer with chemical shift values reported 

in ppm relative to TMS (δH 0.00 and δC 0.0), residual chloroform (δH 7.26 and δC 

77.2), residual methanol (δH 3.31 and δC 49.0) or residual dimethyl sulfoxide (δH 

2.50 and δC 39.5) as standard. Analyses of NMR data were performed using the 

iNMR 2.0.7 software. Where necessary, two-dimensional COSY, HSQC, and DEPT 

experiments were performed on a Bruker DPX 400 spectrometer in order to aid 

NMR assignments. Mass spectra were obtained using a JEOL JMS-700 

spectrometer. Infrared spectra were obtained neat using a Shimadzu IRPrestige-

21 spectrometer. All reactions were performed under an atmosphere of argon 

and using anhydrous solvent unless stated otherwise. 
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3.4.2 Experimental data for all synthesised 

compounds. 

3-Dimethoxyphosphoryl-3H-2-benzofuran-1-one (24) (Menear et al., 2008). 

 

Dimethylphosphite (23) (0.92 mL, 10.0 mmol) was added dropwise to a solution 

of sodium methoxide (0.583 g, 10.8 mmol) in methanol (15 mL) at 0 C. To the 

solution, 2‒carboxybenzaldehyde (22) (1.00 g, 6.66 mmol) was added 

portionwise while stirring. The mixture was gradually warmed to room 

temperature and stirred for 2 hours. Methanesulfonic acid (0.77 mL, 11.9 mmol) 

was added dropwise and the mixture was allowed to stir for a further 0.5 hours. 

The solution was concentrated in vacuo to produce a white solid, to which water 

was added (30 mL) and the crude product was extracted into dichloromethane (3 

× 30 mL). The organic layer was washed with water (2 × 30 mL), dried with 

magnesium sulfate and filtered. The filtrate was the concentrated in vacuo and 

washed with diethyl ether (3 × 20 mL) to give 3-dimethoxyphosphoryl-3H-2-

benzofuran-1-one (24) (1.54 g, 96%) as a white solid. Mp 90–91 C; δH (400 MHz, 

CD3OD) 3.72 (3H, d, J 10.8 Hz, OCH3), 3.91 (3H, d, J 10.8 Hz, OCH3), 6.10 (1H, d, 

J 10.8 Hz, 3-H), 7.68 (1H, t, J 7.5 Hz, 5-H), 7.75 (1H, d, J 7.5 Hz, 4-H), 7.83 (1H, 

t, J 7.5 Hz, 6-H), 7.94 (1H, d, J 7.5 Hz, 7-H); δc (101 MHz, CD3OD) 54.9 (CH3, d, 

JC-O-P 6.8 Hz), 55.3 (CH3, d, JC-O-P 7.4 Hz), 76.4 (CH, d, JC-P 167.0 Hz), 124.7 (CH, 

d, JC-C-C-P 3.0 Hz), 126.2 (C, d, JC-C-P 4.1 Hz), 126.8 (CH, d, JC-C-C-C-C-P 1.9 Hz), 

131.2 (CH, d, JC-C-C-C-P 2.9 Hz), 135.9 (CH, d, JC-C-C-C-P 2.8 Hz), 145.2 (C, d, JC-C-C-P 

4.0 Hz), 171.3 (C, d, JC-O-C-P 2.7 Hz); m/z (EI) 242 (M+, 37%), 213 (10), 199 (9), 

133 (100), 105 (13), 77 (17), 51 (5). 
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2-Fluoro-5-[(3’-oxo-2’-benzofuran-1’-ylidene)methyl]benzonitrile (26) 

(Menear et al., 2008). 

 

A solution of 3-dimethoxyphosphoryl-3H-2-benzofuran-1-one (24) (3.87 g, 16.0 

mmol) and 2-fluoro-5-formylbenzonitrile (25) (2.26 g, 15.2 mmol) in 

tetrahydrofuran (50 mL) was prepared at room temperature. The solution was 

then cooled to 0 C followed by the addition of triethylamine (2.15 mL, 16.0 

mmol). The reaction mixture was allowed to warm up to room temperature and 

was stirred for 48 hours, followed by concentration in vacuo to produce a white 

solid. The solid was suspended in water, collected by vacuum filtration and 

washed with hexane (2 × 20 mL), diethyl ether (2 × 20 mL), and methanol (2 × 20 

mL) to give 2-fluoro-5-[(3’-oxo-2’-benzofuran-1’-ylidene)methyl]benzonitrile 

(26) (3.77 g, 98%) as a white solid. NMR spectra showed a mixture of E and Z 

isomers. Only data for the major isomer were recorded. Mp 164–167 C; δH (400 

MHz, DMSO-d6) 6.98 (1H, s, 8’-H), 7.65 (1H, t, J 9.0 Hz, ArH), 7.67–7.75 (1H, m, 

ArH), 7.92 (1H, td, J 7.6, 1.0 Hz, ArH), 7.97–8.00 (1H, m, ArH), 8.08 (1H, dt, J 

8.0, 1.0 Hz, ArH), 8.12–8.21 (2H, m, ArH); δc (101 MHz, DMSO-d6) 100.8 (C, d, JC-

C-F 15.8 Hz), 103.4 (CH), 113.8 (C), 117.4 (CH, d, JC-C-F 20.0 Hz), 121.0 (CH), 

122.6 (C), 125.4 (CH), 130.9 (CH), 131.0 (C, d, JC-C-C-C-F 3.7 Hz), 134.2 (CH), 135.4 

(CH), 136.7 (CH, d, JC-C-C-F 9.0 Hz), 139.5 (C), 145.4 (C), 161.5 (C, d, JC-F 258.1 

Hz), 165.9 (C); m/z (EI) 265 (M+, 100%), 237 (12), 208 (64), 182 (10), 133 (13), 

104 (14), 63 (29), 45 (8). 

2-Fluoro-5-[(4’-oxo-3’H-phthalazin-1’-yl)methyl]benzoic acid (27) (Menear et 

al., 2008). 

 

2-Fluoro-5-[(3’-oxo-2’-benzofuran-1’-ylidene)methyl]benzonitrile (26) (1.77 g, 

7.00 mmol) was suspended in water (30 mL) and 13 M sodium hydroxide was 
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added (30 mL). The mixture was heated to 90 C and stirred for 24 hours, after 

which it was cooled to 70 C followed by the addition of hydrazine monohydrate 

(4.76 mL, 98.0 mmol) and a further 72 hours of stirring. The mixture was then 

cooled to room temperature and acidified with 8 M hydrochloric acid to an 

approximate pH of 4. The solid precipitate was collected by vacuum filtration 

and washed with water (3 × 25 mL) and diethyl ether (4 × 25 mL) to give 2-

fluoro-5-[(4’-oxo-3’H-phthalazin-1’-yl)methyl]benzoic acid (27) (2.00 g, 96%) as 

a red solid. Mp >300 C; δH (400 MHz, DMSO-d6) 4.36 (2H, s, 9’-H2), 7.24 (1H, dd, 

J 10.8, 8.5 Hz, 3-H), 7.54–7.62 (1H, m, 4-H), 7.79–7.87 (2H, m, 6-H and 6’-H), 

7.90 (1H, td, J 7.5, 1.3 Hz, 7’-H), 7.98 (1H, d, J 7.5 Hz, 8’-H), 8.26 (1H, dd, J 

7.8, 1.3 Hz, 5’-H), 12.60 (1H, s, NH), 13.24 (1H, br s, COOH); δc (101 MHz, 

DMSO-d6) 36.3 (CH2), 117.0 (CH, d, JC-C-F 22.8 Hz), 119.1 (C, d, JC-C-F 10.7 Hz), 

125.5 (CH), 126.1 (CH), 127.9 (C), 129.1 (C), 131.6 (CH), 131.9 (CH), 133.6 (CH), 

134.3 (C, d, J C-C-C-C-F 3.4 Hz), 134.9 (CH, d, JC-C-C-F 8.7 Hz), 144.9 (C), 159.4 (C), 

160.3 (C, d, JC-F 255.5 Hz), 165.0 (C, d, JC-C-C-F 2.8 Hz); m/z (ESI) 297.0671 ([M–

H]-. C16H10
19FN2O3 requires 297.0681). 

tert-Butyl piperazine-1-carboxylate (30). 

 

Di-tert-butyl dicarbonate (29) (4.04 g, 18.5 mmol) was dissolved in glacial acetic 

acid (20 mL) and this was added dropwise to a solution of piperazine (28) (1.60 

g, 18.5 mmol) in 50% v/v acetic acid (40 mL) at room temperature. The mixture 

was stirred for 2 hours, followed by addition of water (50 mL), and removal of 

the precipitate by filtration. The filtrate was basified to approximately pH 10 

using 6 M potassium hydroxide, and the product was extracted into 

dichloromethane (3 × 25 mL). The organic layer was dried with sodium sulfate 

and concentrated in vacuo to give tert-butyl piperazine-1-carboxylate (30) (1.58 

g, 46%) as a white solid. Mp 46‒48 C (lit.(Moussa et al., 2010) 46‒47 C); δH (400 

MHz, CD3OD) 1.46 (9H, s, OtBu), 2.75 (4H, t, J 5.0 Hz, 3-H2 and 5-H2), 3.38 (4H, 

t, J 5.0 Hz, 2-H2 and 6-H2); δc (101 MHz, CD3OD) 28.7 (3 × CH3), 44.8 (2 × CH2), 

46.3 (2 × CH2), 81.1 (C), 156.4 (C); m/z (CI) 187 (MH+, 78%), 175 (5), 131 (100), 

87 (20), 73 (10). 
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tert-Butyl 4-[2’-fluoro-5’-[(4’’-oxo-3’’H-phthalazin-1’’-

yl)methyl]benzoyl]piperazine-1-carboxylate (31) (Menear et al., 2008). 

 

To a solution of 2-fluoro-5-[(4’-oxo-3’H-phthalazin-1’-yl)methyl]benzoic acid 

(27) (2.75 g, 9.23 mmol) in N,N’-dimethylformamide (70 mL) was added 

triethylamine (2.00 mL, 14.8 mmol), followed by O-benzotriazole-N,N,N’,N’-

tetramethyluroniumhexafluorophosphate (33) (3.85 g, 10.2 mmol). The mixture 

was stirred at room temperature for 1 hour, after which it was warmed to 50 C 

and tert-butyl piperazine-1-carboxylate (30) (1.72 g, 9.23 mmol) was added with 

continued stirring for 72 h. Water (70 mL) was then added and the mixture was 

stirred at 50 C for a further 2 hours, followed by cooling to 0 C. The resulting 

precipitate was collected by vacuum filtration and washed with water (5 × 25 

mL), diethyl ether (2 × 25 mL), and isopropan-2-ol (50 mL) to give tert-butyl 4-

[2’-fluoro-5’-[(4’’-oxo-3’’H-phthalazin-1’’-yl)methyl]benzoyl]piperazine-1-

carboxylate (31) (3.04 g, 71%) as an orange solid. Mp 214–216 C; δH (400 MHz, 

CDCl3) 1.46 (9H, s, OtBu), 3.27 (2H, br s, NCH2), 3.38 (2H, t, J 5.1 Hz, NCH2), 

3.51 (2H, br s, NCH2), 3.75 (2H, br s, NCH2), 4.28 (2H, s, 9’’-H2), 7.03 (1H, t, J 

8.8 Hz, 3’-H), 7.27–7.36 (2H, m, 4’-H and 6’-H), 7.68–7.73 (1H, m, ArH), 7.74–

7.80 (2H, m, ArH), 8.44–8.50 (1H, m, 5’’-H), 10.52 (1H, s, NH); δc (101 MHz, 

CDCl3) 28.5 (3 × CH3), 37.9 (CH2), 42.1 (2 × CH2), 47.0 (2 × CH2), 80.5 (C), 116.3 

(CH, d, JC-C-F 22.2 Hz), 124.1 (C, d, JC-C-F 17.9 Hz), 125.2 (CH), 127.3 (CH), 128.5 

(C), 129.3 (CH, d, JC-C-C-F 3.7 Hz), 129.7 (C), 131.7 (CH, d, JC-C-C-F 8.1 Hz), 131.8 

(CH), 133.8 (CH), 134.5 (C, d, JC-C-C-C-F 3.0 Hz), 145.7 (C), 154.6 (C), 157.1 (C, d, 

JC-F 246.1 Hz), 160.6 (C), 165.2 (C); m/z (EI) 466. 
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4-[4’-Fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-1-one (3) 

(Menear et al., 2008). 

 

To a suspension of tert-butyl 4-[2’-fluoro-5’-[(4’’-oxo-‘’H-phthalazin-1’’-

yl)methyl]benzoyl]piperazine-1-carboxylate (31) (1.40 g, 3.00 mmol) in ethanol 

(30 mL) was added 6 M hydrochloric acid (60 mL) and the mixture was stirred 

overnight at room temperature. Ethanol was removed under reduced pressure 

and the aqueous layer was basified to approximately pH 10 using 4 M sodium 

hydroxide. The product was extracted into dichloromethane (3 × 30 mL) and the 

organic layer was washed with water (3 × 50 mL), dried with magnesium sulfate, 

and concentrated in vacuo. Purification by recrystallisation with 

dichloromethane (5 mL) and petroleum ether (25 mL) gave 4-[4’-fluoro-3’-

(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-1-one (3) (0.776 g, 71%) as a 

yellow foam. δH (400 MHz, CDCl3) 2.25–3.15 (4H, m, 2 × NCH2), 3.16–3.96 (4H, 

m, 2 × NCH2), 4.25 (2H, s, 7’-H2), 5.99 (1H, br s, 4’’-H), 6.97 (1H, t, J 8.8 Hz, 5’-

H), 7.24–7.35 (2H, m, 2’-H and 6’-H), 7.64–7.76 (3H, m, 5-H, 6-H and 7-H), 8.38‒

8.46 (1H, m, 8-H), 12.01 (1H, br s, 2-H); δc (101 MHz, CDCl3) 37.9 (CH2), 43.3 

(CH2), 45.9 (CH2), 46.4 (CH2), 48.4 (CH2), 116.1 (CH, d, JC-C-F 22.1 Hz), 124.4 (C, 

d, JC-C-F 18.4 Hz), 125.2 (CH), 127.3 (CH), 128.4 (C), 129.2 (CH, d, JC-C-C-F 3.8 Hz), 

129.7 (C), 131.3 (CH, d, JC-C-C-F 8.0 Hz), 131.7 (CH), 133.8 (CH), 134.3 (C, d, JC-C-

C-F 3.0 Hz), 145.7 (C), 157.2 (C, d, JC-F 247.7 Hz), 160.8 (C), 165.0 (C); m/z (ESI) 

367.1553 (MH+. C20H20FN4O2 requires 367.1565). 
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4-[3’-(4’’-Cyclopropanecarbonylpiperazine-1’’-carbonyl)-4’-fluorobenzyl]-2H-

phthalazin-1-one (olaparib) (Menear et al., 2008). 

 

To a solution of cyclopropanoic acid (11.0 μL, 0.137 mmol) in N,N’-

dimethylformamide (2 mL) was added triethylamine (29.0 μL, 0.218 mmol), 

followed by O-benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate 

(33) (57.0 mg, 0.150 mmol), and the mixture was stirred at room temperature 

for 1 hour. 4-[4’-Fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-1-one 

(3) (50.0 mg, 0.137 mmol) was then added and the mixture was stirred for a 

further 71 hours. The crude product was extracted into chloroform (3 × 10 mL) 

and the organic layer was washed with water (6 × 20 mL), dried with magnesium 

sulfate, filtered, and concentrated in vacuo to give a yellow solid. Purification 

by flash column chromatography (methanol/dichloromethane, 4:96) and then 

recrystallisation with dichloromethane and petroleum ether gave 4-[3’-(4’’-

cyclopropanecarbonylpiperazine-1’’-carbonyl)-4’-fluorobenzyl]-2H-phthalazin-1-

one (olaparib) (30 mg, 51%) as a white foam. 1H NMR spectra showed a 3:2 

mixture of rotamers. Only data for the major rotamer were recorded. δH (400 

MHz, CDCl3) 0.67–0.86 (2H, m, CH2), 0.97–1.03 (2H, m, CH2), 1.75 (1H, br s, 8’’-

H), 3.20–3.43 (2H, m, NCH2), 3.51–3.93 (6H, m, 3 × NCH2), 4.29 (2H, s, 7’-H2), 

7.04 (1H, t, J 8.9 Hz, 5’-H), 7.29–7.41 (2H, m, 2’-H and 6’-H), 7.67–7.82 (3H, m, 

5-H, 6-H and 7-H), 8.43–8.51 (1H, m, 8-H), 11.12 (1H, br s, NH); δc (101 MHz, 

CDCl3) 7.8 (2 × CH2), 11.2 (CH), 37.8 (CH2), 41.8 (CH2), 42.4 (CH2), 45.3 (CH2), 

47.0 (CH2), 116.3 (CH, d, JC-C-F 22.3 Hz), 123.9 (C, d, JC-C-F 18.3 Hz), 125.1 (CH), 

127.3 (CH), 128.5 (C), 129.4 (CH), 129.7 (C), 131.7 (CH), 131.8 (CH, d, JC-C-C-F 8.1 

Hz), 133.8 (CH), 134.5 (C, d, JC-C-C-C-F 3.4 Hz), 145.6 (C), 157.2 (C, d, JC-F 247.4 

Hz), 160.7 (C), 165.3 (C), 172.4 (C); m/z (ESI) 457.1636 (MNa+. C24H23FN4NaO3 

requires 457.1646). 
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4-[3’-[4’’-(4’’’-Iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (4). 

 

To a solution of 4-iodobenzoic acid (42.0 mg, 0.170 mmol) in N,N’-

dimethylformamide (7 mL) was added triethylamine (37.0 μL, 0.272 mmol), 

followed by O-benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate 

(33) (71.0 mg, 0.187 mmol) and the mixture was stirred at room temperature for 

2 hours. 4-[4’-Fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-1-one (3) 

(60.0 mg, 0.170 mmol) was added and the mixture was stirred for a further 48 

hours. Water (14 mL) was then added, followed by 1 hour of stirring after which 

the mixture was cooled to 0 C. The resulting precipitate was collected by 

vacuum filtration and washed with diethyl ether (4 × 10 mL) and hexane (4 × 10 

mL). Purification by flash column chromatography (methanol/dichloromethane, 

4:96) gave 4-[3’-[4’’-(4’’’-iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-

2H-phthalazin-1-one (4) (34.8 mg, 34%) as a white foam. Rƒ (4% v/v 

methanol/dichloromethane) 0.34; vmax/cm–1 (neat) 3198 (NH), 3003 (ArH), 2899 

(CH), 1628 (CO), 1587 (C=C), 1427, 1001, 747; δH (400 MHz, CDCl3) 3.14–4.02 

(8H, m, 4 × NCH2), 4.29 (2H, s, 7’-H2), 7.03 (1H, t, J 7.8 Hz, 5’-H), 7.14 (2H, d, J 

8.0 Hz, 3’’’-H and 5’’’-H), 7.29–7.37 (2H, m, 2’-H and 6’-H), 7.67–7.84 (5H, m, 

ArH), 8.42–8.51 (1H, m, 8-H), 10.96 (1H, s, NH); δc (101 MHz, CDCl3) 37.8 (CH2), 

42.2 (2 × CH2), 47.3 (2 × CH2), 96.6 (C), 116.3 (CH, d, JC-C-F 21.7 Hz), 123.6 (C, d, 

JC-C-F 17.7 Hz), 125.1 (CH), 127.3 (CH), 128.4 (C), 128.9 (2 × CH), 129.4 (CH, d, 

JC-C-C-F 3.6 Hz), 129.6 (C), 131.8 (CH), 131.9 (CH, d, JC-C-F 8.0 Hz), 133.8 (CH), 

134.5 (C), 134.6 (C, d, JC-C-C-C-F 3.7 Hz), 138.0 (2 × CH), 145.6 (C), 157.1 (C, d,  

JC-F 247.1 Hz), 160.7 (C), 165.3 (C), 169.8 (C); m/z (ESI) 619.0597 (MNa+. 

C27H22FIN4NaO3 requires 619.0613). 
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4-[3’-[4’’-(3’’’-Iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (5). 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (4) 

using a solution of 3-iodobenzoic acid (34.0 mg, 0.137 mmol) in N,N’-

dimethylformamide (3 mL), triethylamine (29.0 μL, 0.218 mmol), O-

benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (33) (57.0 mg, 

0.151 mmol) and 4-[4’-fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-

1-one (3) (50.0 mg, 0.137 mmol). Purification by flash column chromatography 

(methanol/dichloromethane, 4:96) gave 4-[3’-[4’’-(3’’’-iodobenzoyl)piperazine-

1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (5) (36.4 mg, 45%) as a white 

foam. Rƒ (4% v/v methanol/dichloromethane) 0.28; vmax/cm–1 (neat) 3190 (NH), 

3053 (ArH), 2862 (CH), 1628 (CO), 1559 (C=C), 1427, 1252, 1005, 791, 729; δH 

(400 MHz, CDCl3) 3.16‒4.01 (8H, m, 4 × NCH2), 4.29 (2H, s, 7’-H2), 7.03 (1H, br s, 

5’-H), 7.15 (1H, br s, 4’’’-H), 7.27–7.39 (3H, m, ArH), 7.67–7.82 (5H, m, ArH), 

8.42–8.49 (1H, m, 8-H), 10.70 (1H, s, NH); δc (101 MHz, CDCl3) 37.8 (CH2), 42.2 

(2 × CH2), 47.4 (2 × CH2), 94.5 (C), 116.3 (CH, d, JC-C-F 21.7 Hz), 123.6 (C, d, JC-C-

F 17.7 Hz), 125.1 (CH), 126.2 (CH), 127.3 (CH), 128.4 (C), 129.4 (CH, d, JC-C-C-F 

3.6 Hz), 129.6 (C), 130.4 (CH), 131.8 (CH), 131.9 (CH, d, JC-C-C-F 8.0 Hz), 133.8 

(CH), 134.6 (C, d, JC-C-C-C-F 3.9 Hz), 136.0 (CH), 137.1 (C), 139.2 (CH), 145.6 (C), 

157.1 (C, d, JC-F 247.1 Hz), 160.8 (C), 165.3 (C), 168.8 (C); m/z (ESI) 619.0605 

(MNa+. C27H22FIN4NaO3 requires 619.0613). 
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4-[3’-[4’’-(3’’’-Iodo-4’’’-methylbenzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (6). 

 

To a solution of 3-iodo-4-methylbenzoic acid (36.0 mg, 0.137 mmol) in N,N’-

dimethylformamide (3 mL) was added triethylamine (29.0 μL, 0.218 mmol), 

followed by O-benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate 

(33) (57.0 mg, 0.151 mmol), and the mixture was stirred at room temperature 

for 1 hour. 4-[4’-Fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-1-one 

(3) (50.0 mg, 0.137 mmol) was then added and the mixture was stirred for a 

further 22 hours at 40 C. The mixture was cooled to room temperature and 

water (6 mL) was added, followed by 1 hour of stirring after which the mixture 

was cooled to 0 C. The resulting precipitate was collected by vacuum filtration 

and dissolved in chloroform (10 mL). The organic layer was washed with water (3 

× 20 mL) and concentrated in vacuo. Purification by flash column 

chromatography (methanol/dichloromethane, 3:97) gave 4-[3’-[4’’-(3’’’-iodo-

4’’’-methylbenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-

one (6) (40.0 mg, 48%) as a white foam. Rƒ (3% v/v methanol/dichloromethane) 

0.26; vmax/cm–1 (neat) 3203 (NH), 3011 (ArH), 2893 (CH), 1629 (CO), 1425, 1252, 

1006, 746; δH (400 MHz, CDCl3) 2.44 (3H, s, 4’’’-CH3), 3.13–4.05 (8H, m, 4 × 

NCH2), 4.27 (2H, s, 7’-H2), 7.03 (1H, t, J 8.4 Hz, 5’-H), 7.23–7.37 (4H, m, ArH), 

7.67–7.80 (3H, m, ArH), 7.85 (1H, s, ArH), 8.43–8.49 (1H, m, 8-H), 10.85 (1H, s, 

NH); δc (101 MHz, CDCl3) 28.2 (CH3), 37.8 (CH2), 42.3 (2 × CH2), 47.1 (2 × CH2), 

101.1 (C), 116.3 (CH, d, JC-C-F 22.0 Hz), 123.7 (C, d, JC-C-F 17.6 Hz), 125.1 (CH), 

127.0 (CH), 127.3 (CH), 128.4 (C), 129.4 (CH, d, JC-C-C-F 3.2 Hz), 129.6 (C), 129.8 

(CH), 131.8 (CH), 131.9 (CH, d, JC-C-C-F 7.8 Hz), 133.8 (CH), 134.2 (C), 134.6 (C, 

d, JC-C-C-C-F 3.8 Hz), 137.6 (CH), 143.9 (C), 145.6 (C), 157.1 (C, d, JC-F 249.9 Hz), 

160.8 (C), 165.3 (C), 168.9 (C); m/z (ESI) 633.0759 (MNa+. C28H24FIN4NaO3 

requires 633.0769). 
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4-[3’-[4’’-(3’’’-Iodo-4’’’-methoxybenzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (7). 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (4) 

using a solution of 3-iodo-4-methoxybenzoic acid (76.0 mg, 0.273 mmol) in N,N’-

dimethylformamide (5 mL), triethylamine (59.0 μL, 0.437 mmol), O-

benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (33) (114 mg, 

0.300 mmol), and 4-[4’-fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-

1-one (3) (100 mg, 0.273 mmol). Purification by flash column chromatography 

(methanol/dichloromethane, 3:97) gave 4-[3’-[4’’-(3’’’-iodo-4’’’-

methoxybenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one 

(7) (44.5 mg, 26%) as a white foam. Rƒ (3% v/v methanol/dichloromethane) 0.29; 

vmax/cm–1 (neat) 3192 (NH), 3009 (ArH), 2897 (CH), 1628 (CO), 1593 (C=C), 1425, 

1256, 1005, 747; δH (400 MHz, CDCl3) 3.34 (2H, br s, NCH2), 3.45–3.85 (6H, m, 3 

× NCH2), 3.90 (3H, s, 4’’’-OCH3), 4.29 (2H, s, 7’-H2), 6.82 (1H, d, J 8.3 Hz, 5’’’-

H), 7.03 (1H, t, J 8.7 Hz, 5’-H), 7.29–7.36 (2H, m, 2’-H and 6’-H), 7.40 (1H, dd, 

J 8.3, 2.0 Hz, 6’’’-H), 7.68–7.81 (3H, m, 5-H, 6-H and 7-H), 7.85 (1H, d, J 2.0 

Hz, 2’’’-H), 8.43–8.50 (1H, m, 8-H), 10.82 (1H, s, NH); δc (101 MHz, CDCl3) 37.8 

(CH2), 42.3 (2 × CH2), 47.2 (2 × CH2), 56.7 (CH3), 86.0 (C), 110.6 (CH), 116.3 (CH, 

d, JC-C-F 21.7 Hz), 123.6 (C, d, JC-C-F 17.7 Hz), 125.1 (CH), 127.4 (CH), 128.5 (C), 

129.1 (C), 129.3 (CH), 129.4 (CH, d, JC-C-C-F 3.6 Hz), 129.7 (C), 131.8 (CH), 131.9  

(CH, d, JC-C-C-F 8.0 Hz), 133.8 (CH), 134.6 (C, d, JC-C-C-C-F 3.9 Hz), 138.8 (CH), 

145.6 (C), 157.1 (C, d, JC-F 247.1 Hz), 159.7 (C), 160.6 (C), 165.3 (C), 169.0 (C); 

m/z (ESI) 649.0713 (MNa+. C28H24FIN4NaO4 requires 649.0718). 
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4-[3’-[4’’-[2’’’-(3’’’’-Iodophenyl)acetyl]piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (8). 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (4) 

using a solution of 3-iodophenylacetic acid (72.0 mg, 0.273 mmol) in N,N’-

dimethylformamide (5 mL), triethylamine (59.0 μL, 0.437 mmol), O-

benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (33) (114 mg, 

0.300 mmol), and 4-[4’-fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-

1-one (3) (100 mg, 0.273 mmol). Purification by flash column chromatography 

(methanol/dichloromethane, 3:97) gave 4-[3’-[4’’-[2’’’-(3’’’’-

iodophenyl)acetyl]piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one 

(8) (67.0 mg, 40%) as a white foam. NMR spectra showed a 55:45 mixture of 

rotamers. Only data for the major rotamer were recorded. Rƒ (3% v/v 

methanol/dichloromethane) 0.23; vmax/cm–1 (neat) 3190 (NH), 3005 (ArH), 2899 

(CH), 1632 (CO), 1589 (C=C), 1433, 1223, 1013, 748; δH (400 MHz, CDCl3) 3.27 

(2H, br s, NCH2), 3.39 (2H, t, J 4.6 Hz, NCH2), 3.50–3.90 (6H, m, 2 × NCH2 and 

2’’’-H2), 4.28 (2H, s, 7’-H2), 6.97‒7.10 (2H, m, 5’-H and 5’’’’-H), 7.14–7.24 (1H, 

m, 4’’’’-H), 7.29–7.37 (2H, m, 2’-H and 6’-H), 7.53–7.63 (2H, m, 2’’’’-H and 

6’’’’-H), 7.67–7.73 (1H, m, 5-H), 7.74–7.81 (2H, m, 6-H, and 7-H), 8.43–8.50 

(1H, m, 8-H), 10.90 (1H, br s, NH); δc (101 MHz, CDCl3) 37.8 (CH2), 40.3 (CH2), 

41.6 (CH2), 42.1 (CH2) 45.8 (CH2), 46.8 (CH2), 94.8 (C), 116.3 (CH, d, JC-C-F 21.7 

Hz), 123.5 (C, d, JC-C-F 17.7 Hz), 125.0 (CH), 127.2 (CH), 128.1 (CH), 128.3 (C), 

129.3 (CH, d, JC-C-C-F 3.3 Hz), 129.6 (C), 130.6 (CH), 131.7 (CH), 131.9 (CH, d, JC-

C-C-F 7.9 Hz), 133.8 (CH), 134.6 (C, d, JC-C-C-C-F 3.2 Hz), 136.3 (CH), 136.9 (C), 

137.7 (CH), 145.6 (C), 157.0 (C, d, JC-F 247.8 Hz), 161.0 (C), 165.3 (C), 169.1 (C); 

m/z (ESI) 633.0750 (MNa+. C28H24FIN4NaO3 requires 633.0769). 
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4-[3’-[4’’-[2’’’-(4’’’’-Iodophenoxy)acetyl]piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (9). 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (4) 

using a solution of 4-iodophenoxyacetic acid (76.0 mg, 0.273 mmol) in N,N’-

dimethylformamide (5 mL), triethylamine (59.0 μL, 0.437 mmol), O-

benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (33) (114 mg, 

0.300 mmol), and 4-[4’-fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-

1-one (3) (100 mg, 0.273 mmol). Purification by flash column chromatography 

(methanol/dichloromethane, 4:96) gave 4-[3’-[4’’-[2’’’-(4’’’’-

iodophenoxy)acetyl]piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-

one (9) (55.0 mg, 32%) as a white foam. NMR spectra showed a 55:45 mixture of 

rotamers. Only data for the major rotamer were recorded. Rƒ (4% v/v 

methanol/dichloromethane) 0.28; vmax/cm–1 (neat) 3167 (NH), 3007 (ArH), 2901 

(CH), 1634 (CO), 1585 (C=C), 1485, 1431, 1217, 1009, 745; δH (400 MHz, CDCl3) 

3.22 (2H, br s, NCH2), 3.40–3.83 (6H, m, 3 × NCH2), 4.22 (2H, s, 7’-H2), 4.64 (2H, 

s, 2’’’-H2), 6.67 (2H, d, J 6.7 Hz, 2’’’'-H and 6’’’’-H), 6.96 (1H, t, J 8.6 Hz, 5’-

H), 7.23–7.31 (2H, m, 2’-H and 6’-H), 7.48 (2H, t, J 9.2 Hz, 3’’’’-H and 5’’’’-H), 

7.60–7.75 (3H, m, 5-H, 6-H and 7-H), 8.37–8.44 (1H, m, 8-H), 11.23 (1H, s, NH); 

δc (101 MHz, CDCl3) 37.7 (CH2), 42.4 (2 × CH2), 45.2 (CH2), 46.8 (CH2), 67.7 

(CH2), 84.4 (C), 116.3 (CH, d, JC-C-F 22.1 Hz), 117.0 (2 × CH), 123.5 (C, d, JC-C-F 

17.6 Hz), 125.1 (CH), 127.3 (CH), 128.4 (C), 129.3 (CH, d, JC-C-C-F 3.4 Hz), 129.6 

(C), 131.7 (CH), 131.9 (CH, d, JC-C-C-F 7.9 Hz), 133.8 (CH), 134.6 (C, d, JC-C-C-C-F 

3.6 Hz), 138.6 (2 × CH), 145.6 (C), 157.0 (C, d, JC-F 247.4 Hz), 157.6 (C), 160.9 

(C), 165.3 (C), 166.5 (C); m/z (ESI) 649.0714 (MNa+. C28H24FIN4NaO4 requires 

649.0718). 
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4-[3’-[4’’-[4’’’-Iodobenzenesulfonyl]piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (10). 

 

Triethylamine (28.0 μL, 0.205 mmol) and 4-iodobenzenesulfonyl chloride (50.0 

mg, 0.164 mmol) were added to a solution of 4-[4’-fluoro-3’-(piperazine-1’’-

carbonyl)benzyl]-2H-phthalazin-1-one (3) (50.0 mg, 0.137 mmol) in 

dichloromethane (3 mL). The mixture was stirred at room temperature for 6 h 

after which, water (3 mL) was added. The crude product was extracted into 

dichloromethane (3 × 10 mL), dried with sodium sulfate, filtered, and 

concentrated in vacuo. Purification by flash column chromatography 

(methanol/dichloromethane, 3:97) gave 4-[3’-[4’’-[4’’’-

iodobenzenesulfonyl]piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-

one (10) (45.0 mg, 52%) as a white foam. Rƒ (3% v/v methanol/dichloromethane) 

0.30; vmax/cm–1 (neat) 3185 (NH), 3006 (ArH), 2895 (CH), 1637 (CO), 1568 (C=C), 

1438, 1349, 1164, 1005, 742; δH (400 MHz, CDCl3) 2.97 (2H, t, J 4.8 Hz, NCH2), 

3.09 (2H, br s, NCH2), 3.39 (2H, br s, NCH2), 3.85 (2H, br s, NCH2), 4.27 (2H, s, 

7’-H2), 7.00 (1H, t, J 8.8 Hz, 5’-H), 7.24‒7.34 (2H, m, 2’-H and 6’-H), 7.40‒7.46 

(2H, m, 3’’’-H and 5’’’-H), 7.66‒7.72 (1H, m, 5-H), 7.73–7.80 (2H, m, 6-H and 7-

H), 7.88–7.93 (2H, m, 2’’’-H and 6’’’-H), 8.44–8.51 (1H, m, 8-H), 11.31 (1H, s, 

NH); δc (101 MHz, CDCl3) 37.8 (CH2), 41.5 (CH2), 45.8 (CH2), 46.2 (CH2), 46.6 

(CH2), 101.0 (C), 116.3 (CH, d, JC-C-F 21.8), 123.4 (C, d, JC-C-F 17.9 Hz), 125.1 

(CH), 127.3 (CH), 128.4 (C), 129.1 (2 × CH), 129.5 (CH, d, JC-C-C-F 3.5 Hz), 129.7 

(C), 131.8 (CH), 132.0 (CH, d, JC-C-C-F 8.1 Hz), 133.8 (CH), 134.6 (C, d, JC-C-C-C-F 

3.2 Hz), 135.4 (C), 138.7 (2 × CH), 145.6 (C), 156.9 (C, d, JC-F 247.7 Hz), 160.8 

(C), 165.0 (C); m/z (ESI) 655.0274 (MNa+. C26H22FIN4NaO4S requires 655.0283). 
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tert-Butyl piperazine-4-(((4’-chloromethyl)benzoyl)-1’carbonyl)-1-

carboxylate (42). 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

iodobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (4) 

using a solution of 4-(chloromethyl)benzoic acid (39) (183 mg, 1.07 mmol) in 

N,N’-dimethylformamide (5 mL), triethylamine (23.1 μL, 1.71 mmol), O-

benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (33) (446 mg, 

1.18 mmol). tert-Butyl piperazine-1-carboxylate (30) (200 mg, 1.07 mmol) was 

added and the mixture was stirred for a further 112 hours. After this water (10 

mL) was added and the crude product was extracted into dichloromethane (3 × 

10 mL). The organic layers were combined and washed with water (6 × 20 mL), 

dried with magnesium sulfate, filtered, and concentrated in vacuo to give a 

white solid. Purification by flash column chromatography (hexane/ethyl acetate, 

50:50) gave tert-butyl piperazine-4-(((4’-chloromethyl)benzoyl)-1’carbonyl)-1-

carboxylate (42) as a white solid (144 mg, 40%). Rƒ (50% v/v hexane/ethyl 

acetate) 0.40; Mp 140–142 C (lit.(An et al., 1998) 147–148 C); vmax/cm–1 (neat) 

3003 (ArH), 2881 (CH), 1681 and 1622 (CO), 1568, 1426, 1349, 1263, 1012, 724, 

668; δH (400 MHz, CDCl3) 1.47 (9H, s, OtBu), 3.28–3.84 (8H, m, 4 × N-CH2), 4.60 

(2H, s, 4’-CH2Cl), 7.43 (4H, q, J 11.9 Hz, 2’-H, 3’-H, 5’-H and 6’-H); δc (101 MHz, 

CDCl3) 28.5 (3 × CH3), 43.8 (2 × CH2), 45.6 (CH2), 47.7 (2 × CH2), 80.5 (C), 127.6 

(2 × CH), 128.8 (2 × CH), 135.6 (C), 139.4 (C), 154.6 (C), 170.1 (C); m/z (ESI) 

361.1273 (MNa+. C17H23
35Cl2N2NaO3 requires 361.1289). 

tert-Butyl piperazine-4-(((4’-fluoromethyl)benzoyl)-1’carbonyl)-1-

carboxylate (41). 

 

To a solution of tert-butyl piperazine-4-(((4’-chloromethyl)benzoyl)-1’carbonyl)-

1-carboxylate (42) (55.0 mg, 0.162 mmol) in acetonitrile (1.5 mL) was added 1 M 
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solution of tatra-n-butylammonium fluorinde (325 μL, 0.325 mmol) in 

tetrahydrofuran. The mixture was heated to 80 C and stirred for 1 hour 

followed by evaporation of solvent in vacuo. The crude product was extracted 

into dichloromethane (5 mL) and the organic layer was washed with water (10 

mL × 3), dried with magnesium sulfate, filtered, and concentrated in vacuo to 

give tert-butyl piperazine-4-(((4’-fluoromethyl)benzoyl)-1’carbonyl)-1-

carboxylate (41) (52.0 mg, 100%) as a white solid. Mp 96–98 C; vmax/cm–1 (neat) 

3013 (ArH), 2928 (CH), 1690 and 1630 (CO), 1420, 1250, 1009, 909, 756, 731; δH 

(400 MHz, CDCl3) 1.45 (9H, s, OtBu), 3.25–3.84 (8H, m, 4 × N-CH2), 5.40 (2H, d, J 

47.4 Hz, 4’-CH2F), 7.37–7.43 (4H, m, 2’-CH, 3’-CH, 5’-CH and 6’-CH); δc (101 

MHz, CDCl3) 28.5 (3 × CH3), 42.2 (CH2), 43.7 (2 × CH2), 47.6 (CH2), 80.5 (C), 83.9 

(CH2, d, JC-F 167.6 Hz), 127.4 (2 × CH, d, JC-C-C-F 6.2 Hz), 127.5 (2 × CH), 135.9 (C, 

d, JC-C-C-C-C-F 2.6 Hz), 138.1 (C, d, JC-C-F 17.4 Hz), 154.6 (C), 170.2 (C); m/z (ESI) 

345.1569 (MNa+. C17H23FN2NaO3 requires 345.1585). 

Piperazine-4-((4’-fluoromethyl)benzoyl)-1’carbonyl (40). 

 

To a solution of tert-butyl piperazine-4-(((4’-fluoromethyl)benzoyl)-1’carbonyl)-

1-carboxylate (42) (52.0 mg, 0.161 mmol) in dichloromethane (1 mL) was added 

trifluoroacetic acid (124 μL, 1.61 mmol) and the mixture was stirred at room 

temperature for 4 hours. The crude product was extracted into ethyl acetate (5 

mL) and the organic layer was washed using water saturated with potassium 

carbonate (10 mL × 3), dried with magnesium sulfate, filtered, and concentrated 

in vacuo to give piperazine-4-((4’-fluoromethyl)benzoyl)-1’carbonyl (40) (31.0 

mg, 87%) as an orange oil. vmax/cm–1 (neat) 3411 (NH), 3001 (ArH), 2957 (CH), 

1613 (CO), 1437, 1276, 1263, 1016, 748; δH (400 MHz, CDCl3) 2.80 (2H, br s, N-

CH2), 2.94 (2H, br s, N-CH2), 3.38 (2H, br s, N-CH2), 3.75 (2H, br s, N-CH2), 5.40 

(2H, d, J 47.5 Hz, 4’-CH2F), 7.38-7.45 (4H, m, 2’-CH, 3’-CH, 5’-CH and 6’-CH); δc 

(101 MHz, CDCl3) 43.3 (CH2), 46.0 (CH2), 46.5 (CH2), 49.0 (CH2), 84.0 (CH2, d, JC-F 

167.4 Hz), 127.3 (2 × CH, d, JC-C-C-F 6.4 Hz), 127.4 (2 × CH), 136.3 (C, d, JC-C-C-C-C-F 
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2.8 Hz), 137.7 (C, d, JC-C-F 17.4 Hz), 170.0 (C); m/z (ESI) 245.1064 (MNa+. 

C12H15FN2NaO requires 245.1061). 

4-[3’-[4’’-(4’’’-Fluoromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (17). 

 

To a solution of 2-fluoro-5-[(4’-oxo-3H’-phthalazin-1’-yl)methyl]benzoic acid 

(27) (38.0 mg, 0.126 mmol)  in N,N’-dimethylformamide (1 mL) was added 

triethylamine (26.0 μL, 0.189 mmol), followed by O-benzotriazole-N,N,N’,N’-

tetramethyluroniumhexafluorophosphate (33) (52.6 mg, 0.139 mmol) and the 

mixture was stirred at room temperature for 1 hour. Piperazine-4-((4’-

fluoromethyl)benzoyl)-1’carbonyl (40) (28.0 mg, 0.126 mmol) was added and the 

mixture was stirred for a further 72 hours. Water (4 mL) was then added, 

followed by 1 hour of stirring after which the mixture was cooled to 0 C . The 

resulting precipitate was collected by vacuum filtration and the crude orange 

solid was purified by flash column chromatography (methanol/ethyl acetate, 

5:95) gave 4-[3’-[4’’-(4’’’-fluoromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (17) (10.7 mg, 17%) as a yellow foam. Rƒ (5% 

v/v methanol/ethyl acetate) 0.50; vmax/cm–1 (neat) 3213 (NH), 3005 (ArH), 2926 

(CH), 1613 (CO), 1572 (C=C), 1429, 1256, 1225, 1003, 750; δH (400 MHz, CDCl3) 

3.13–4.02 (8H, m, 4 × N-CH2), 4.29 (2H, s, 7’-H2), 5.41 (2H, d, J 47.3 Hz, 4’’’-

CH2F), 7.04 (1H, br s, 5’-H), 7.34 (2H, d, J 6.15 Hz, 2’-H and 6’-H), 7.43 (4H, br 

s, 2’’’-H, 3’’’-H, 5’’’-H and 6’’’-H), 7.67‒7.72 (1H, m, 5-H), 7.73–7.80 (2H, m, 6-

H and 7-H), 8.44–8.49 (1H, m, 8-H), 10.70 (1H, br s, NH); δc (101 MHz, CDCl3) 

37.8 (CH2), 42.3 (2 × CH2), 47.2 (2 × CH2), 84.0 (CH2, d, JC-F 167.8 Hz), 116.3 (CH, 

d, JC-C-F 19.9 Hz), 123.8 (C, d, JC-C-F 18.2 Hz), 125.1 (CH), 127.4 (CH), 127.5 (2 × 

CH, d, JC-C-C-F 6.0 Hz), 127.6 (2 × CH), 128.5 (C), 129.4 (CH, d, JC-C-C-F 3.7 Hz), 



122 
 

 

129.7 (C), 131.8 (CH), 132.0 (CH, d, JC-C-C-F 8.2 Hz), 133.8 (CH), 134.6 (C, d, JC-C-

C-C-F 3.5 Hz), 135.5 (C, d, JC-C-C-C-C-F 2.8 Hz), 138.5 (C, d, JC-C-F 17.5 Hz), 145.6 (C), 

157.1 (C, d, JC-F 247.1 Hz), 160.5 (C), 165.3 (C), 170.3 (C); m/z (ESI) 525.1738 

(MNa+. C28H24F2N4NaO3 requires 525.1714). 
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4 IDENTIFYING LEAD PARP-1 LIGANDS WITH POTENTIAL FOR 

NUCLEAR IMAGING. 

4.1 Introduction. 

4.1.1 PARP-1 inhibitory potency. 

The affinity of a radiotracer for its target is a crucial property to consider when 

designing a novel nuclear imaging tracer. The higher the affinity for the target, 

the greater the contrast to noise ratio that can be achieved in the final PET or 

SPECT image (Jacobson and Chen, 2013). This becomes apparent when the in 

vivo behaviour of the tracer is represented using a typical pharmacokinetic 

model, as shown in figure 4.1. In this model, the radiotracer can exist in four 

different body compartments: i) the arterial tissue compartment (Ca); ii) the un-

bound tissue compartment (Cnb); iii) the non-specifically bound tissue 

compartment (Cnsb); and iv) the specifically bound tissue compartment (Ctb). 

When a radiotracer is injected it immediately enters the Ca and eventually 

distributes to body tissues (Cnb). The tracer can then bind to its target 

specifically (Ctb) or it can exhibit off-target binding, resulting in accumulation in 

Cnsb (Watabe et al., 2006). The lower the affinity of the radiotracer for its 

target, the greater the preference for Cnb and Cnsb over Ctb. The consequence of 

this, as mentioned before, is a low contrast to noise ratio and ultimately a poor 

quality PET or SPECT image.  

 

Figure 4.1. The four tissue compartment model where the flux of substance 

between compartments is described by the rate constants K1 and k2-k6. 
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In the case of an inhibitor, the affinity of the compound for its target can be 

measured indirectly by establishing its inhibitory potency. The half maximal 

inhibitory concentration (IC50) is an in vitro parameter that describes the 

concentration of a compound that is required to inhibit half of the activity of a 

target enzyme. Therefore, the lower the IC50, the more potent the inhibitor. The 

IC50 can be determined under cell-free conditions or in a cellular system. Since 

PARP-1 is a nuclear protein expressed intracellularly, compounds tested under 

cell-free conditions do not face the challenges associated with cellular 

penetration and retention. Consequently, the cell-free assay does not provide an 

accurate representation of in vivo PARP inhibitor behaviour. However, this is a 

high-throughput method that can allow multiple compounds to be screened and 

ranked relative to one another in a short period of time. On the other hand, 

cellular IC50 assays are low-throughput and labour intensive, but they provide a 

more accurate representation of PARP-1 inhibition in vivo. 

The cell-free PARP-1 IC50 can be ascertained using a commercially available 

TrevigenTM colorimetric kit (Figure 4.2), which is a modified version of the assay 

developed by Cheung and Zhang (2000). By introducing varying concentrations of 

a test PARP inhibitor into the assay, a dose response can be measured and used 

to calculate the IC50 of the compound.  
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Figure 4.2. Diagrammatic representation of the PARP-1 cell-free TrevigenTM 

colorimetric assay. Biotinylated-NAD+ is used by the PARP-1 enzyme to synthesise 

biotinylated-PAR chains onto histone proteins that are conjugated to the assay 

plate. In order to initiate PAR synthesis, damaged DNA is introduced into the 

assay, which activates the PARP-1 enzyme (A). The high binding affinity of 

Streptavidin for biotin is exploited to label the newly synthesised biotinylated-

PAR chains with a streptavidin-horseradish peroxidase (HPR) conjugate (B). The 

final part of the assay relies on a colorimetric reaction where a substrate that 

reacts with HPR is used to generate a colour (C). The amount of PAR chains 

synthesised by PARP-1 can then be indirectly quantified through colour intensity 

measurements.  

A similar approach to the one described in Figure 4.2 can be used to establish 

the cellular response to PARP inhibitors, except in this case living cells are 

incubated in different concentrations of inhibitor and PAR chains are visualised 

using a fluorescently labelled anti-PAR antibody. A key limitation of this assay is 

the ability of the anti-PAR antibody to detect the PAR chains. It has been 

reported that different antibodies exhibit variable affinity for PAR depending on 

whether the chains are linear or branched (Kawamitsu et al., 1984). These 

differences in affinity can result in the under estimation of the cellular IC50 as a 

proportion of the PAR chains may not be detected. In addition, prior to 

immunolabelling and immunofluorescence imaging, the cells must undergo a 
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process of fixation and permeabilisation using a mixture of chemicals and 

solvents. Fixation allows for the preservation of the cell and its internal 

components, while permeabilisation makes the cell membrane porous allowing 

for the antibody to reach its intracellular target. Both of these processes can 

lead to immunofluorescent imaging artefacts (Schnell et al., 2012) that may bias 

the overall IC50 calculation. 

4.1.2 Physiochemical properties and nuclear imaging. 

The physiochemical properties of a compound can have a significant influence on 

its in vivo pharmacokinetic behaviour, such as absorption, distribution, 

metabolism, and excretion (ADME). This section will focus on how two key 

physiochemical parameters, namely lipophilicity (log Poct) and percentage 

plasma protein binding (%PPB), can affect the pharmacokinetic behaviour of 

radiotracers and influence nuclear imaging. As described in the following 

section, the use of a single physiochemical parameter (e.g. log Poct) as a 

predictor of absolute in vivo compound behaviour is limited. However, 

combining datasets of multiple physiochemical parameters (e.g. log Poct and 

%PPB) for a series of related compounds can provide relative predictive 

information. This can in turn be used to either rank compounds according to 

optimal physiochemical parameters, or eliminate compounds that may not 

exhibit optimal in vivo behaviour.  

4.1.2.1 Log Poct and %PPB. 

Log Poct is the log value of the partition coefficient (P), which describes the net 

result of all interactions of a solute molecule (i.e. a chemical compound) and 

two immiscible phases between which it partitions, where one phase is 

hydrophilic (aqueous) and the other lipophilic (octanol) (Figure 4.3). In simpler 

words, log Poct acts as a descriptor of a compounds lipophilic character as it 

expresses the affinity of the compound for a lipophilic octanol phase relative to 

an aqueous water phase (Testa et al., 2000). 
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Figure 4.3. Diagrammatic representation of the intermolecular forces which 

affect the partitioning (i.e. partition coefficient, P) of solute molecules (grey 

spheres) between an octanol and water phase, where α and β represent 

hydrogen bond donor acidity and acceptor basicity respectively, π* represents a 

measure of the solutes polarisability and V represents the molecular volume of 

the solute.  

The effects of log Poct on in vivo pharmacokinetics of an organic compound are 

complex. Lipophilicity is a key determinant of the route of elimination of a 

compound, which can be renal or metabolic (see section 6.1.2 for details). The 

aqueous component of the blood, including solubilised compounds, undergoes 

filtration by the kidney glomerulus (Figure 4.4). Following filtration, compounds 

with a log Poct >0 are mostly reabsorbed by the kidney tubule and re-enter 

circulation, while compounds that are too hydrophilic for this reabsorption (log 

Poct <0) are excreted in the urine (van de Waterbeemd et al., 2001). From the 

perspective of nuclear imaging, radiotracers that undergo renal reabsorption 

have an extended blood circulation time allowing for greater opportunity to 

reach the imaging target. Compounds that are in circulation, including those 

that have been reabsorbed from the renal tubule, can also undergo metabolic 

clearance that is mainly driven by cytochrome P450 enzymes (CYP450) (see 

section 6.1.2 for details). A positive correlation exists between log Poct and liver 

metabolism due to the fact that the interaction between compounds and the 

CYP450 enzymes is lipophilic in nature (van de Waterbeemd et al., 2001). 

Therefore, radiotracers exhibiting a high log Poct are likely to undergo more 

rapid metabolic clearance than those with less lipophilic properties. The 

consequences of this are twofold; firstly this can reduce the amount of tracer 

available in vivo for nuclear imaging resulting in reduced signal intensity and 

secondly radiolabelled metabolites may be generated that could reduce the 

nuclear imaging signal to noise contrast (Jacobson and Chen, 2013). An example 

of the latter is metabolic defluorination of [18F]-labelled tracers, where the high 
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bone uptake of the free radiofluoride metabolite can lead to signal noise 

originating from the skull when performing a PET scan of the brain (Pike, 2009).  

 

Figure 4.4. Schematic representation of how the lipophilic (log Poct) and plasma 

protein binding (PPB) properties of a radiotracer can influence its in vivo 

clearance. An increase in the log Poct of a radiotracer is associated with its 

increased liver metabolism. Highly plasma protein bound radiotracers exhibit 

greater in vivo retention as they are unable to cross the glomerulus and are 

refractory to liver metabolism. Non-bound radiotracers are able to enter the 

renal tubules where they can be either reabsorbed (log Poct >0) or excreted in 

urine (log Poct <0). 

In addition to the influence of log Poct on clearance, the parameter can also 

dictate the ability of a compound to penetrate biological membranes. If the log 

Poct is not sufficiently high (log Poct<1.5) then compounds could suffer from poor 

diffusive membrane permeability (Jacobson and Chen, 2013). This is because the 

phospholipid bilayer structure of biological membranes comprises of a lipophilic 

centre through which hydrophilic molecules are unable to diffuse (van de 

Waterbeemd et al., 2001). In turn, poor membrane permeability can lead to the 

accumulation of tracer in the blood and un-bound tissue compartments (section 
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4.1.1, Figure 4.1), thereby reducing the nuclear imaging signal to noise ratio. 

Increasing the log Poct parameter of a given compound can also increase its 

%PPB. This positive correlation can be attributed to the fact that the binding of 

a compound to plasma proteins is driven by lipophilic interactions (Helmer, Kiehs 

and Hansch, 1968). In order to understand how %PPB can influence the in vivo 

behaviour of a radiotracer, the earlier depicted pharmacokinetic model requires 

refinement to include an additional arterial plasma protein bound tissue 

compartment (Capb) (Figure 4.5). Under normal circumstances compounds bound 

to plasma proteins are trapped in the blood vasculature as they are unable to 

diffuse out of the blood and are protected from clearance organs. Consequently, 

a high degree of plasma protein binding of a radiotracer can lead to nuclear 

imaging noise originating from the blood vasculature (Capb). 

 

Figure 4.5. A modified version of the four tissue compartment model, which 

includes the arterial plasma protein bound tissue compartment (Capb). The flux 

of substance between compartments is described by the rate constants K1 and 

k2-k8. 

It is important to note that the %PPB parameter does not influence the overall 

concentration of a compound at its target (e.g. PARP inhibitor concentration at 

PARP-1). Reducing the plasma protein binding properties of a compound will 

increase the non-bound fraction available for distribution to the target. 

However, any increase in the amount of a compound reaching its target will be 

counteracted by a simultaneous increase in delivery to elimination organs (Smith 

and Kerns, 2010; van de Waterbeemd et al., 2001). Consequently, the overall 
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concentration of the compound reaching its target will remain constant despite 

a drop in %PPB.  

In addition to the above, the log Poct parameter can also influence the degree of 

specific binding exhibited by a compound (depicted by the Ctb, Figure 4.5). As in 

the case of plasma proteins, interactions between an organic compound and 

other non-specific proteins/macromolecules are driven by non-polar lipophilic 

interactions. Therefore, from the perspective of a PARP-1 radiotracer, a log Poct 

above certain value, generally regarded as >3.0, can result in reduced specificity 

for the target (i.e. PARP-1) and increased off-target binding (Jacobson and Chen, 

2013). 

To summarise, physiochemical parameters such as log Poct and %PPB can have 

profound influences on the in vivo behaviour of radiotracers. Therefore, care has 

to be taken during the radiotracer design process to ensure that the compound 

exhibits an optimal log Poct value (>1.5 – <3.0), without excessively high %PPB 

(<95%). This should allow the radiotracer to effectively diffuse out of the 

vascular compartment and across biological membranes, reaching its imaging 

target with minimum off-target binding. 

4.1.2.2 Physiochemical parameters and nuclear imaging of the 

brain. 

Due to the additional pharmacokinetic complexity associated with the brain, this 

section will focus on the effects of physiochemical parameters on nuclear 

imaging of this organ. Unlike other body tissues, the brain is protected by the 

BBB that is composed of a number of cellular components. At the core of the 

BBB are endothelial cells that line cerebral microvessels and are connected with 

one another through adherens and tight junctions (Figure 4.6). Tight junctions 

impede molecular traffic via the paracellular route (i.e. between endothelial 

cells) and only small ions (e.g. Na+ or Cl) are able to utilise this pathway. 

Therefore, in order to reach the brain, larger chemical entities such as 

radiotracers must exit the microvascular compartment by the transcellular route 

(Sage and Wilson, 1994; Abbott, Rönnbäck, and Hansson, 2006). 
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Figure 4.6. Cellular and molecular diagram of the blood brain barrier (BBB). The 

two endothelial cells are structurally held together by vascular endothelial 

catherin (VE-cadherin) proteins that make up the adherens junctions. Tight 

junctions comprise of occludin and claudin proteins, which possess exctracellular 

loops and transmembrane domains linked to the scaffolding proteins zonula 

occludens (ZO) 1–3. Chemical entities are unable to cross the BBB via the 

paracellular route and are restricted to transcellular pathways that include 

passive diffusion, transporter mediated movement and endocytosis. 

Log Poct and %PPB are important parameters in dictating whether a compound is 

able to penetrate the BBB via passive diffusion. As discussed earlier, in order to 

passively penetrate biological membranes, compounds must possess sufficient 

lipophilic character. On the other hand, excessive lipophilicity may have a 

negative impact on BBB penetration due to the increase in macromolecular 

binding (e.g. %PPB). However, in cases where protein binding is rapidly 

reversible, this negative effect is minimised (Pike, 2009). The relationship 

between %PPB and BBB penetration has been shown to be guassian (r2 = 0.66) 

with an optimal %PPB range of 45–85%; although it is generally regarded that a 

%PPB value of <95% is sufficient for nuclear imaging of the brain (Tavares et al., 
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2012). The upper %PPB value in this optimal range can be explained by the 

inability of plasma protein bound compounds to penetrate the BBB, while the 

lower value is likely a consequence of the function that plasma proteins play in 

the aqueous solubilisation of compounds and their transport around the 

vasculature.  

Various lipophilicity parameter values have been reported in the literature as 

‘optimal’ for BBB penetration. Hansch et al. (1967) developed a mathematical 

model using a set of barbiturate (n = 102) and non-barbiturate (n = 74) based 

hypnotics that allowed them to calculate the ideal lipophilic character (log P0) 

required for the hypnotic effect. Since hypnosis by these compounds is induced 

in the central nervous system (CNS), the log P0 parameter describes in part the 

ability of the investigated compounds to penetrate the BBB. The authors 

reported the log P0 to be approximately 1.9 and 1.8 for the barbiturate and non-

barbiturate analogues respectively. However, it should be noted that in addition 

to biological membrane penetration, log P0 also defines the optimal lipophilic 

properties for receptor binding (Hansch et al., 1967). The work by Dischino et 

al. (1983) showed that the optimal log Poct range for BBB penetration was 

between 0.9 and 2.5. The authors came to this conclusion by investigating the 

relationship between the lipophilicity of a small library of [11C]-radiolabelled 

compounds (n = 15) and their uptake in the brain of healthy baboons following 

parenteral administration of the radiopharmaceuticals (Dischino et al., 1983).  

It is important to note that other molecular parameters, such as size and 

hydrogen donor capacity, can also influence the ability of compounds to 

permeate the BBB. By analysing the molecular weight (Mw) and the total number 

of potential hydrogen-bonds exhibited by ionised compounds (HTi) with and 

without CNS activity (n = 37), van de Waterbeemd et al. (1998) showed that the 

upper Mw and HTi limits for brain penetration were 450 and 7 respectively. 

Therefore, the isolated use of log Poct as a predictor of BBB penetration is 

limited. This was highlighted by Tavares et al. (2012) who showed only a weak 

correlation (r2 = 0.47) between log Poct of know nuclear imaging agents of the 

brain (n = 9) and the amount of these agents reaching brain tissue. Similarly, 

Young et al. (1988) reported little correlation between log Poct and rat brain 
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uptake (r2 = 0.16) of a small library of [14C]-labelled H2 (central) receptor 

antagonists. This correlation was substantially improved (r2 = 0.98) when the log 

Poct parameter was substituted for Δlog P, which is a descriptor of hydrogen-

bond donor capacity. Specifically, Δlog P is the difference between log Poct and 

the log cyclohexane/water partition coefficient (log Pcyl) (Young et al., 1988). 

Since the log P values in octanol/water and in cyclohexane/water do not express 

the same balance of polar forces, their difference (i.e. Δlog P) expresses mainly 

the hydrogen-bond donor capacity of solutes (Testa et al., 2000). Similarly, 

Cornford et al. (1982) showed a linear correlation (r = 0.72) between the 

hydrogen-bond donor capacity of a range of [14C]-labelled compounds (n = 41) 

and rat brain uptake. Taken collectively, the above findings suggest that, as a 

single parameter, hydrogen-bond donor capacity is a more accurate predictor of 

BBB permeability than log Poct. One explanation for this is that binding of 

compounds to biomembranes is the rate limiting step in passive membrane 

permeability. This binding occurs through donation of hydrogen-bonds to the 

hydrophilic outer-layer of the membrane that is rich in hydrogen-bonding 

acceptors (Testa et al., 2000). Interestingly, Cornford et al. (1982) were able to 

attain a good linear relationship (r = 0.86) between the log Poct of a broad range 

of [14C]-labelled compounds (n = 48) and their brain uptake in healthy adult rats 

by correcting for the molecular weights of these compounds. They achieved this 

by multiplying the log Brain Uptake Index (BUI) by the square root of molecular 

weight (√Mw), where the latter parameter is a good approximation of diffusion 

coefficient variability (Cornford et al., 1982). 

It is clear that nuclear imaging of the brain is a challenging task that requires 

careful radiotracer design to ensure that physiochemical parameters such as log 

Poct, %PPB, Mw, and HTi are within an optimal range for BBB penetration. 

However, the situation is simplified in cases where the BBB is compromised and 

its permeability is increased. GBM is one example of a pathological state where 

this may occur. Morphological changes of the BBB in brain tumours include 

fragmentation of the blood capillary basement membranes, defects of tight 

junctions, and blood vessel fenestration (Sage and Wilson, 1994; Vajkoczy and 

Menger et al., 2000; Wolburg et al., 2012). The overall consequence of these 

changes is increased ‘leakiness’ of the BBB that can be visualised using MRI and 

the contrast enhancement medium gadolinium. This technique can also give an 
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indication of the degree of BBB disruption with lower grade brain tumours (e.g. 

WHO garde I) producing less MRI enhancement than higher grade tumours (e.g. 

WHO grade IV; GBM) (Wolburg et al., 2012). Furthermore, Lepällä et al. (1995) 

exploited disruptions in the BBB to image glioma lesions in human patients using 

99mTc-labelled human plasma proteins (human serum albumin, HSA), which are 

normally too large to cross the BBB. Similarly, Kremer et al. (2009) used HSA 

labelled with a fluorophore to perform fluorescent imaging of glioma lesions as a 

means of guiding surgical tumour resection. However, it is important to bear in 

mind that imaging GBM using radiotracers that are unable to freely penetrate 

the BBB is associated with a number of limitations such as the inability to detect 

low grade lesions and invasive cells and effectively monitor treatment (see 

section 1.2.3 for details). 

4.1.2.3 Ascertaining the log Poct and %PPB parameters using HPLC. 

The ‘shake-flask’ method remains the gold standard for the measurement of log 

Poct. This technique involves introducing a compound (or solute) into two 

immiscible phases (i.e. water and octanol), followed by vigorous shaking, which 

allows the solute to partition between the two phases (Eadsforth and Moser, 

1983). Measurement of the concentration of the solute in each phase allows for 

the calculation of log Poct. Despite high accuracy, this methodology is limited to 

compounds that exhibit good solubility properties in either the octanol or 

aqueous phases. Furthermore, the results acquired using this technique can 

often be affected by the presence of impurities (Eadsforth and Moser, 1983). 

The ‘shake-flask’ method also suffers from a lack of automation, making it 

labour intensive and low throughput (Arnott and Planey, 2012). An alternative 

technique that addresses some of these issues relies on the principle of reverse-

phase thin layer chromatography (RP-TLC) (Figure 4.7). RP-TLC involves the 

application of a small amount of solution of the compound under investigation to 

a plate supporting a reverse-phase stationary material, such as lipophilic long 

chain hydrocarbons (e.g. C18). The compound bearing plate is then exposed to a 

polar solvent or solvent mixture (i.e. a mobile phase) that travels in a single 

direction along the surface of the C18 material (the stationary phase). As this 

happens, the compound moves over the surface of the plate in the direction of 
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the solvent front. The distance moved by the compound, in a set time period, 

will be dependent on its affinity for the stationary phase and proportional to its 

lipophilic properties. Therefore, the log Poct of a compound can be calculated by 

fitting the travel distance parameter to a regression model derived from a set of 

calibration compounds of known log Poct values. The advantages of this 

technique include its low cost, speed, and greater tolerance to impurities that 

are often separated on the RP-TLC plate. However, the method still lacks 

automation, requires calibration, and is generally less accurate than the ‘shake-

flask’ method (Eadsforth and Moser, 1983).  

 

Figure 4.7. Diagram showing the relationship between the lipophilic character 

of organic compounds and their distance travelled on a RP-TLC plate. In a given 

time period, compounds with low lipophilicity (↓log P) will have lower affinity 

for the C18 stationary phase and will travel further than compounds with high 

lipophilic character (↑log P). 

Greater accuracy in log Poct prediction and automation can be achieved with the 

analogous technique called reverse-phase high performance liquid 

chromatography (RP-HPLC) (Eadsforth and Moser, 1983; Valkó, 2004) (Figure 

4.8). In this case, the mobile phase (usually a mixture of organic and aqueous 

liquids) passes through a column that is packed with stationary C18-material. The 

compound under investigation is injected as a solution onto one end of the 

column and elutes on the other side. The elution time, or retention time, will be 

influenced by the compounds affinity for the stationary and mobile phases, and 

can be used to calculate the log Poct parameter.  
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Figure 4.8. Diagram showing the relationship between the lipophilic character 

of organic compounds and their retention time on a RP-HPLC column. 

Compounds with low lipophilicity (↓log P) will elute more rapidly and have a 

lower retention time (↓tR) than compounds with high lipophilic character (↑log 

P). 

Two different types of HPLC methodology exist for predicting log Poct, these are 

the isocratic HPLC method and the gradient HPLC method. The former uses a 

mobile phase that remains constant; i.e. the concentration of the organic 

solvent in the mobile phase does not change during the elution process. By 

performing multiple retention time measurements using mobile phases 

containing different concentrations of organic solvent, a relationship between 

organic solvent concentration (φ) and the logarithm of the retention factor k 

(calculated from the retention time; see equation 4.1) can be established 

(Equation 4.2) (Valkó, Bevan and Reynolds, 1997; Valkó, 2004).      

k = (tR – t0)/t0         (Equation 4.1) 

where k is the retention factor, tR is the retention time and t0 is the column 

dead time that is equal to the packed column volume divided by the mobile 

phase flow rate. 

Log k = Sφ + log kW         (Equation 4.2) 

where S is the slope of the graph, φ is the organic solvent concentration and kw 

is the intercept.  

The quotient of the slope and intercept of Equation 4.2 (log kW/S) is equal to 

the isocratic chromatographic hydrophobicity index (φ0) which can be used to 
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estimate the log Poct parameter using Equation 4.3 (Valkó, Bevan and Reynolds, 

1997; Valkó, 2004) 

Log Poct = Aφ0 + B         (Equation 4.3) 

where φ0 is the isocratic chromatographic hydrophobicity index, and A and B are 

regression coefficients obtained from a set of calibration compounds of known 

φ0 and log Poct values. 

Good correlation has been shown to exist between log Poct and φ0 using a large 

set of known structurally diverse compounds (Valkó, Bevan and Reynolds, 1997). 

Therefore, the isocratic HPLC methodology can be used to provide an accurate 

prediction of the log Poct parameter. This technique shares the advantages of RP-

TLC with the added benefit of automation. However, this methodology remains 

relatively low throughput because of the need to establish retention times using 

multiple mobile phase compositions (Eadsforth and Moser, 1983; Valkó, Bevan 

and Reynolds, 1997).  

The gradient HPLC method for predicting log Poct is a fully automated and high-

throughput variant of the isocratic technique. This method utilises a linear 

gradient increase in the concentration of mobile phase organic solvent during 

the elution process; this eliminates the need to perform separate 

chromatographic runs using fixed mobile phase compositions. Valkó, Bevan and 

Reynolds (1997) have shown that the retention time values obtained using a 

mobile phase gradient exhibit a linear correlation with the φ0 values for a set of 

76 compounds (r = 0.992). The authors also showed that a high degree of 

correlation (r = 0.992) is retained when just 10 of these compounds, with a 

range of lipophilic properties, were selected (Equation 4.4).   

  φ0 = 14.00 (0.64)tR – 55.88 (5.3)      (Equation 4.4)   

The above coefficients were used by Valkó, Bevan and Reynolds (1997) to 

calculate the gradient chromatographic hydrophobicity index (CHI) parameter 

for each of the 10 compounds that were used to establish this regression model. 
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To eliminate inter-laboratory variability in predicting log Poct, these 10 

compounds of known CHI values are used as calibration compounds. Specifically, 

the retention time values of these molecules are established using a mobile 

phase gradient and are then plotted against their literature CHI values. Fitting a 

regression model to this calibration plot allows for the calculation of CHI values 

for unknown compounds by simply establishing their retention times under the 

same gradient conditions (Valkó, Bevan and Reynolds, 1997). The CHI values can 

then be converted to log Poct values using the below regression model (Equation 

4.5), which describes the linear correlation between these parameters for 

diverse set of 86 compounds (r = 0.943) (Valkó, 2004). 

Log Poct = 0.047CHIN + 0.36HBC – 1.10     (Equation 4.5) 

where CHIN is the gradient chromatographic hydrophobicity index of the non-

ionised compound and HBC is the hydrogen bond count of that compound.  

The gradient HPLC method of ascertaining log Poct is reliant on multiple 

regression models. Therefore, despite good literature correlation values, 

emphasis should be placed on the fact that this technique only provides a 

prediction of log Poct as opposed to an absolute value; this is also true for the 

RP-TLC and isocratic HPLC methods.  

HPLC technology is highly versatile as numerous columns packed with different 

stationary phases are commercially available. One such stationary phase 

comprises plasma proteins (e.g. HSA) that have been immobilised on a silica 

support material. This system can be exploited for the determination of organic 

compound %PPB using isocratic and gradient methods, which are similar to those 

described above for log Poct evaluation. Both techniques are based on the 

assumption that the silica bonded proteins retain binding specificity and 

conformational mobility of native proteins (Valkó et al., 2003). Furthermore, the 

HPLC assays are limited by the fact that the stationary phase comprises of only 

one type of protein. Even though HSA is the most abundant plasma protein, over 

60 different proteins exist in human serum with a range of binding affinities and 

capacities. Therefore, in vitro HPLC assessment of the %PPB of an organic 
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compound provides only an estimate of its potential in vivo protein binding 

behaviour (Banker and Clark, 2008). Despite these shortcomings, HPLC 

methodology possesses a number of advantages over the traditional gold 

standard methods of %PPB determination, such as equilibrium dialysis and 

ultrafiltration. These are: i) low cost; ii) good reproducibility and accuracy at 

high %PPB values; iii) automation; and iv) high-throughput capability (Valkó et 

al., 2003). Equilibrium dialysis is precise and utilises whole serum plasma 

samples, but is expensive, low throughout, and requires large volumes of serum 

plasma. Ultrafiltration is a slightly more rapid technique, but is prone to 

variability due to non-specific binding of the compounds to apparatus 

components (Banker and Clark, 2008). 

The isocratic HPLC method for estimating %PPB is based on establishing the 

retention factor (k), which describes the ratio of the number of moles of organic 

compound in the stationary and mobile phases. Therefore, the log k can be 

related to %PPB using Equation 4.6 shown below (Valkó et al., 2003). 

%PPB = 100 (k/k+1)         (Equation 4.6) 

where k is the retention factor. 

It should be noted that in this case the isocratic HPLC method provides an 

absolute value of percentage protein binding. In practice, this can be 

disadvantageous as the absolute retention times of compounds can decrease as 

the HPLC column containing the protein stationary phase ages. Therefore, the 

potential for %PPB underestimation increases with column age. The isocratic 

method is also limited by the fact that the choice of mobile phase composition 

may be difficult as the retention properties of a compound on the immobilised 

protein column will be unknown. Both issues can be overcome with the gradient 

HPLC method where a set of calibration compounds of known %PPB are utilised, 

and where the concentration of organic solvent increases steadily during the 

chromatographic run. The use of calibration compounds means that the 

calculated %PPB will be relative and not influenced by column age, while the 

linear gradient of organic solvent concentration dismisses the need to predict 
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the retention properties of the compound under investigation (Valkó et al., 

2003). 

When predicting %PPB using the gradient HPLC method, the literature %PPB 

values of the calibration compounds must first be converted to the logarithm of 

the apparent affinity constants (log K), which are linearised values of %PPB, 

using Equation 4.7 (Valkó et al., 2003). 

Log K = log (%PPB / (101 %PPB))      (Equation 4.7)  

where K is the apparent affinity constant.  

A linear plot of the retention times against the literature log K values of the 

calibration compounds is then used to generate a regression model. This model 

is used to convert retention time values of unknown compounds into the 

corresponding log K values, and ultimately into the %PPB parameter using 

Equation 4.8 (Valkó et al., 2003).    

%PPB = (101 × 10logK) / (1 + 10log K)      oi(Equation 

4.8) 

To summarise, HPLC methodology can be utilised to perform in vitro estimation 

of log Poct and %PPB parameters in a rapid and reproducible manner, which is 

ideally suited for lead compound selection during early stages of radiotracer 

discovery. Gold standard techniques, such as the ‘shake-flask’ method for 

absolute log Poct determination and equilibrium dialysis for establishing absolute 

%PPB, have a place in lead advancement further down the discovery and 

developmental pathways. 

4.1.3 Aims and hypotheses. 

The aims of the research presented in this chapter were to acquire and use cell-

free and cellular IC50, log Poct, and %PPB in vitro data for olaparib and 
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compounds 4–21, together with knowledge of radiochemical accessibility, to 

identify lead candidate compounds suitable for radiolabelling chemistry 

development. 

The following hypotheses were set for this work: 

i) Olaparib analogues 4–21 will exhibit potent PARP-1 inhibitory properties (i.e. 

cell-free and cellular IC50 <100 nM). The reasoning for this hypothesis is based on 

previous literature that showed potent PARP-1 inhibitory activity of numerous 

analogues based around the phthalazinone scaffold 3 (see section 3.1 for 

details). 

ii) Olaparib analogues 4–21 will exhibit an increase in both log Poct and %PPB 

values when compared to the parent compound. This hypothesis is justified by 

the fact that compounds 4–21 comprise additional structural moieties with 

added lipophilic character. Additionally, as per literature, the increase in 

lipophilicy is predicted to facilitate plasma protein binding (see section 4.1.2.1 

for details).  

iii) Iodinated compounds (4–10) will exhibit greater average log Poct and %PPB 

values than the fluorinated (11–17) and methoxy bearing (18–21) compounds. 

This is justified by the fact the iodine atom is known to possess greater lipophilic 

character than the fluorine atom and the methoxy functionality. 

4.2 Results and discussion. 

Olaparib and the non-radioactive analogues synthesised in chapter 3, that were 

representatives of potential PARP-1 SPECT (4–10) and PET (11–21) imaging 

agents (section 3.2, Figure 3.7), were evaluated for their cell-free PARP-1 

inhibitory (IC50), log Poct and %PPB properties; the results of this in vitro screen 

are summarised in Table 4.1.  
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Table 4.1. The cell-free IC50, log Poct and %PPB values for olaparib and 

compounds 4–21. 

 
aCell-free IC50 values were obtained using the commercially available TrevigenTM 

assay and were based on three experiments; corresponding dose-response curves 

can be found in Appendix 9.1. Each cell-free IC50 value was reported with its 95% 

confidence interval (95% CI). bLipophilicity (log Poct) was determined using a C18 

HPLC column; representative assay calibration data for the column can be found 

in Appendix 9.2. cPercentage plasma protein binding (%PPB) was determined 

using a human serum albumin coated HPLC column; representative assay 

calibration data for the column can be found in Appendix 9.3. dThe exact log Poct 

could not be calculated as the value exceeded the assay limit.  
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Overall, all eighteen analogues of olaparib appeared to be potent inhibitors of 

PARP-1 with cell-free IC50 values <100 nM. Compound 10 was the weakest PARP 

inhibitor in the series with a cell-free IC50 1.9 fold greater than that obtained for 

olaparib (i.e. cell-free IC50 = 22.6 vs. 11.9 nM), while compound 18 was the most 

potent inhibitor with a cell-free IC50 10.8 fold lower when compared to olaparib 

(i.e. cell-free IC50 = 1.1 vs. 11.9 nM). Despite the variability in cell-free PARP-1 

inhibitory potency of a select few compounds, the majority of olaparib 

analogues exhibited low nanomolar IC50 values, suggesting high potency against 

PARP-1. These observations agree with  previous literature findings which 

showed that structural modifications in the cyclopropane bearing region of 

olaparib were tolerated by the PARP-1 binding site (Cockroft et al., 2006; 

Meaner et al., 2008) (see section 3.1.1 for details).  

Due to the widespread interest in developing PARP-1 nuclear imaging agents, it 

is not surprising that other research groups have pursued compounds that exhibit 

similarities, or are identical, to those described in this chapter. As part of their 

PARP-1radiotracer discovery programme, Carney et al. (2015) synthesised 

compound 11 and Salinas et al. (2015) synthesised compounds 4, 5, and 8. In 

both cases the authors performed in vitro cell-free IC50 evaluation of these 

compounds using the TrevigenTM colorimetric assay, and reported cell-free IC50 

values of 2.83 (Carney et al., 2015), 9.0, 11.0 and 34.0 nM (Salinas et al., 2015) 

for 11, 4, 5, and 8 respectively. Comparison of these literature values to those 

listed in Table 4.1 is difficult due to the influence of inter-laboratory and inter-

personal variability. Despite this, the cell-free IC50 data reported by Carney et 

al. (2015) and Salinas et al. (2015), with the exception of compound 8, correlate 

with data shown in table 4.1 in the sense that the compounds exhibited low 

nanomolar IC50 values. This trait is important from a nuclear imaging standpoint, 

as high potency of a radioligand for its target allows for greater specific binding 

(depicted by the Ctb compartament, section 4.1.1, Figure 4.1) and higher target 

to noise contrast (Jacobson and Chen, 2013). 

The SAR information that can be extracted from compounds 4–21 is limited due 

to the small size of the compound library. However, it appears likely that a 

carbonyl functionality positioned adjacent to the piperazine and reduced steric 
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bulk at the aromatic meta and para positions are favourable for PARP-1 

inhibition. The evidence for the former observation can be drawn from the 

sulfonamide (10) and N-alkyl linked (16 and 21) analogues which exhibited 

markedly higher cell-free IC50 values than analogues possessing a carbonyl-

bearing linker. Furthermore, Meaner et al. (2008) reported a 2.2 fold 

improvement in PARP-1 inhibitory potency between a piperazine N-methyl and a 

piperazine N-methylamide analogue of olaparib (cell-free IC50 = 13.0 vs. 6.0 nM). 

With regard to the statement concerning the negative effect of steric bulk, it 

can be seen that compounds 6 and 7, bearing para methyl and methoxy 

functionalities respectively, were approximately 4.3 and 4.5 fold less potent 

PARP-1 inhibitors than compound 5. 

HPLC methodology was chosen as a means of establishing the physiochemical 

parameters of olaparib and analogues 4–21 due to the accuracy, reproducibility, 

and high-throughput capabilities of the technique. For the purpose of this 

chapter, HPLC predicted log Poct and %PPB values were compared against 

absolute physiochemical parameter values. This is justified by the strong 

correlations that exist between HPLC derived and absolute log Poct and %PPB 

values (Valkó et al., 2003; Valkó, 2004). 

As hypothesised, analogues 4–21 exhibited higher log Poct and %PPB values than 

olaparib (Table 4.1). The increase in both parameters can be attributed to the 

addition of the aromatic, iodine, and methyl moieties which all have the 

potential to increase lipophilic character. The increase in lipophilicity can in 

turn result in an increase in %PPB due to fact that plasma protein binding is 

driven by hydrophobic interactions (Helmer, Kiehs and Hansch, 1968) (see 

section 4.1.2.1 for details). The positive correlation between log Poct and %PPB 

for this compound series can be clearly seen in figure 4.9. 
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Figure 4.9. A graph showing the positive linear correlation between HPLC 

calculated %PPB and log Poct values for olaparib and compounds 4–9 and 11–21. 

Compound 10 was omitted from the analysis due to the log Poct value exceeding 

the assay limit. The plot was generated using the GraphPad Prism 6.0 software. 

The average log Poct of the iodinated (4–9), fluorinated (11–17), and methoxy 

bearing (18–21) compounds was 1.13, 0.73 and 0.69 units greater than that of 

olaparib, respectively. Compound 10 was excluded from this comparison as the 

log Poct value exceeded the assay limit. A similar increase in lipophilic character 

between the fluorinated compound 11 (Carney et al., 2015) and the iodinated 

compounds 4, 5 and 8 (Salinas et al., 2015) has been reported in the literature. 

Taken in isolation, the increase in lipophilicity of analogues 4–21 compared to 

olaparib could correspond to an increase in vivo metabolism (van de 

Waterbeemd et al., 2001). However, it is likely that the potential increase in 

metabolism driven by an increase in lipophilicity will be rendered negligible in 

vivo by the corresponding increase in %PPB (Smith and Kerns, 2010; van de 

Waterbeemd et al., 2001) (see section 4.1.2.1 for details). The markedly greater 

lipophilicity of compounds 4–10, when compared to the other analogues in the 

series, can be explained by the presence of the large lipophilic iodine atoms. 

Due to the positive relationship that exists between log Poct and non-specific 

macromolecular (off-target) binding (Jacobson and Chen, 2013), it may be 

predicted that compounds 4–10 will exhibit greater in vivo non-specific binding 

characteristics than compounds 11–21. Furthermore, 6, 8, 10, and 16 exhibited 

log Poct values that fall outside of the optimal range for passive diffusion across 

biological membranes (i.e. log Poct 1.5–3.0) (Jacobson and Chen, 2013). As a 
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consequence, these four analogues may potentially exhibit greater in vivo 

retention in the vascular compartment (Ca, section 4.1.1, Figure 4.1), and may 

be less likely to reach the intracellular imaging target PARP-1. It should also be 

noted that 4–10 exhibited %PPB values that are in excess of 95%, which is an 

additional contributing factor to potential vascular retention. Based on the 

above observations, it can be predicted that the agents representing potential 

SPECT tracers (4–10) will exhibit less favourable in vivo pharmacokinetic 

behaviour, resulting in lower target to noise imaging contrast, when compared 

to the potential PET imaging agents (11–21).  

An important potential application of radiotracers targeting PARP-1 is nuclear 

imaging of the protein in GBM. With that in mind, it is important to consider how 

the log Poct and %PPB parameters obtained for compounds 11–21 can influence 

their usefulness as brain imaging agents. A distinction should be made between 

imaging healthy brain tissue, or brain pathology where the BBB is intact, and 

GBM tissue where the BBB is known to exhibit increased permeability (Wolburg 

et al., 2012). In the case of the former, it is unlikely that analogues 11–21 

would be able to passively cross the BBB in vivo as they exhibit high %PPB values 

(particularly compounds 4–10, %PPB = >95%) and exceed the upper Mw limits for 

crossing this biological barrier (Mw = 450) (van de Waterbeemd et al., 1998). 

This prediction is further strengthened by the observations made by Chalmers et 

al. (2014) who reported that after a single dose of 14C-labelled olaparib, there 

was no detectable radioactivity in the central nervous system of subcutaneous 

colorectal xenograft bearing rats. As highlighted earlier (section 4.1.2.2), the 

isolated use of the log Poct parameter as a predictor of BBB penetration is 

controversial (Young et al., 1988; Tavares et al., 2012), although a log Poct range 

of 0.9–2.5 has been reported as optimal (Dischino et al., 1983). All of the 

analogues under investigation, with the exception of compound 12, fall outside 

of this ‘optimal’ range, providing further evidence that compounds 4–21 are 

likely to exhibit poor BBB permeability properties. However, it is envisaged that 

the BBB disruptions associated with GBM will allow for the in vivo uptake of 

these agents into the tumour lesions. There are a number of studies that provide 

evidence for this. Firstly, Chalmers et al. (2014) showed therapeutic levels of 

olaparib in resected GBM specimens from patients who received oral doses of 
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the drug. Secondly, Carney et al. (2015) were able to successfully generate a 

radiofluorinated version of compound 11 (see section 5.2.2 for details), which 

was shown by the authors to accumulate in intracranial tumour tissue following 

intravenous administration. Finally, work done by Kremer et al. (2009) and 

Leppäla et al. (1995) showed that it is possible to passively target gliomas with 

fluorescent- and radiolabelled human plasma protein conjugates, which under 

normal circumstances are unable to enter brain tissue, for fluorescent and 

SPECT imaging of these lesions respectively.  

Based on all of the above findings, one potential SPECT (4) and four potential 

PET (11, 13, 17, and 18) PARP-1 imaging candidates were chosen for further in 

vitro assessment (Figure 4.10). The selected PET compounds exhibited only a 

moderate increase in log Poct and %PPB when compared to olaparib, with a range 

of 0.56–0.61 and 10.2–14.4% respectively, while the SPECT candidate 4 appeared 

to possess less favourable physiochemical properties. However, compound 4 

ranked as having the second lowest %PPB value and third lowest log Poct value 

relative to the remaining iodinated analogues (5–10) (Table 4.1).  
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Figure 4.10. Structures of olaparib and selected non-radioactive lead candidate 

compounds. Compound 4 represented a potential 123I-labelled SPECT PARP-1 

imaging agent, compounds 11, 13, and 17 represented potential 18F-labelled 

PET PARP-1 imaging agents, and compound 18 represented a potential [11C]-

OMe-labelled PET PARP-1 imaging agent.  

Importantly, all five selected compounds were potent inhibitors of PARP-1, with 

cell-free IC50 values ranging from 1.1–5.9 nM. However, the cell-free parameter 

provides limited information as it does not account for the ability of these 

compounds to enter living cells and reach PARP-1 within the cell nucleus. To 

address these unknowns, immunofluorescence imaging of PAR chains was 

employed as a means of assessing in vitro PARP activity of the test inhibitors in 

primary G7 and established T98G human GBM cell lines. Figure 4.11 shows a 

representative set of immunofluorescent images generated as part of the assay. 

The calculated cellular IC50 values for olaparib and compounds 4, 11, 13, 17 and 

18 can be found in table 4.2. 
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Figure 4.11. Representative images obtained using the PARP cellular 

immunofluorescent IC50 assay. Primary G7 and established T98G human GBM cell 

lines were incubated in increasing concentrations of PARP inhibitor under 

investigation (in this case olaparib) for 1 h followed by induction of DNA damage 

using hydrogen peroxide (H2O2). Cellular nuclei were stained using an anti-

poly(ADP-ribose) (anti-PAR) (10H) antibody and counterstained using DAPI. Green 

staining represents PAR, the product of PARP, and blue staining represents 

cellular nuclei. Cellular nuclei were counted and PARP activity was expressed as 

a ratio of PAR producing to total number of nuclei per image. 
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Table 4.2. Cellular PARP inhibitory properties of olaparib and compounds 4, 11, 

13, 17, and 18. 

 
aCellular IC50 values were obtained using primary G7 and established T98G human 

GBM cell lines and were based on two experiments; corresponding dose-response 

curves can be found in Appendix 9.4. Each cellular IC50 value was reported with 

its 95% confidence interval (95% CI).  

From these data it is clear that all five lead candidates were potent PARP 

inhibitors in living cells, exhibiting little variability in IC50 values between the 

two cell lines. Olaparib exhibited lower cellular IC50 values when compared to 

the cell-free parameter (G7 and T98G cellular IC50 = 1.6 nM vs. cell-free IC50 = 

11.9 nM), which could be explained by the potential for the cellular assay to 

underestimate PARP-1 IC50 values (see section 4.1.1 for details). In contrast to 

this, a slight reduction in cellular compared with cell-free PARP-1 inhibitory 

potency was observed for compound 4 (G7 and T98G cellular IC50 = 7.0 and 7.4 

nM respectively vs. cell-free IC50 = 3.3 nM). It is possible that the higher 

lipophilic character of this compound (log Poct = 3.0), when compared to the 

other analogues, resulted in a slight reduction in cellular permeability, and 

subsequently in the ability of 4 to reach the nuclear target PARP-1.       

Prior to developing radiolabelling methodology, the selected lead candidates (4, 

11, 13, 17, and 18) were further scrutinised for their potential radiochemical 

accessibility. Compound 13 was not shortlisted for further radiotracer 

development as it was envisaged that the additional steric bulk imposed by the 

methyl functionality meta to the radiolabelling position would have a negative 

inference on potential radiochemical yields. Similarly, compound 18 which 
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represents a potential [11C]-OMe-labelled tracer was not advanced due to the 

logistical difficulties of working with the short-lived 11C isotope (11C half-life = 

20.3 minutes) and the current lack of 11C radiolabelling facilities. 

4.3 Conclusion. 

Lead PARP-1 ligands, with potential for SPECT and PET nuclear imaging, have 

been identified by acquiring and analysing in vitro cell-free IC50, cellular IC50, 

and physiochemical (log Poct and %PPB) data from a library of non-radioactive 

olaparib analogues. Considerations were also made for the potential 

radiochemical accessibility of the chosen compounds. The acquired in vitro data 

were in line with the earlier proposed hypotheses (section 4.1.3). 

The identified lead candidates are depicted in figure 4.12 and include one 

potential SPECT (4) and two potential PET (11 and 17) imaging agents. All three 

compounds exhibited low nanomolar cell-free and cellular IC50 values. The PET 

candidates exhibited favourable physiochemical properties (log Poct >1.5 and 

<3.0; %PPB <95%) when compared to the SPECT analogue. Consequently, 

compounds 11 and 17 are likely to exhibit less off-target binding (i.e. greater 

specific binding), better membrane permeability properties, less vascular 

retention, and ultimately a better imaging target to noise ratio.  

 

Figure 4.12. Structures of non-radioactive lead candidate compounds selected 

for radiolabelling methodology development. Compound 4 represents a potential 

123I-labelled SPECT PARP-1 imaging agent, while compounds 11 and 17 represent 

potential 18F-labelled PET PARP-1 imaging agents. 
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4.4 Experimental. 

4.4.1 General experimental. 

With the exception of the compounds under investigation (4–21) that were 

synthesised in-house (see chapter 3 for details), all chemicals, reagents, and 

cells were obtained from commercially reputable suppliers and were used as 

received. G7 and T98G human GBM cell lines were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 10% w/v fetal calf serum, 2 

mM L-glutamine, and 1 mM sodium pyruvate and Minimum Essential Media (MEM) 

supplemented with 10% w/v fetal calf serum and 2 mM L-glutamine respectively. 

All cellular incubations were performed at 37 °C and 5% v/v CO2 unless stated 

otherwise. Physicochemical HPLC analyses were performed using a Dionex 

Ultimate 3000 series, and data acquisition and processing performed using the 

Chromeleon 6.8 Chromatography software. The HPLC system was set to 25 °C, 

and UV detection was achieved using a UltiMate diode array detector (190–800 

nm).  

4.4.2 Cell-free PARP-1 IC50. 

The below described work was conduced at the Strathclyde Institute of 

Pharmacy and Biomedical Sciences, University of Strathclyde. A commercially 

available TrevigenTM colorimetric assay comprising of 96-histone coated well 

plates was used to determine the PARP-1 cell-free IC50 values of olaparib and 

compounds 4–21. The assay was performed as per the manufacturer protocol 

and as reported by Zmuda et al. (2015). Briefly, the compounds were dissolved 

in ethanol followed by serial dilution with the supplied PARP buffer in order to 

attain the desired assay concentrations. The final concentration of ethanol in 

each case was <1% v/v. To the histone-coated wells containing 10 μL of inhibitor 

was added 15 μL (0.5 units) of the supplied PARP enzyme diluted with PARP 

buffer. A positive control, containing PARP enzyme in the absence of test 

compound, and a negative control, lacking PARP enzyme, were also prepared. 

Following a 10 minute incubation at room temperature, 25 μL of a 1.0 : 1.0 : 8.0 



153 
 

 

solution of PARP cocktail (containing biotinylated NAD+), activated (damaged) 

DNA, and PARP buffer was introduced into each well using a multichannel 

pipette. Note that the final volume in each well was 50 μL. The mixtures were 

incubated for 60 minutes at room temperature followed by four washes using 

0.1% v/v Triton X-100 in PBS. Next, the Strep-HRP conjugate was diluted 500-

fold using the supplied diluent and 50 μL of this solution was added to each well. 

Following a further 60 minute incubation at room temperature the wells were 

once again washed four times with 0.1% v/v Triton X-100 in PBS. Finally, TACS-

SapphireTM was introduced into each well and the colorimetric reaction was 

allowed to develop over 15 minutes at room temperature in the dark; the 

reaction was terminated by adding 50 μL of 0.2 M hydrochloric acid. Absorbance 

measurements were performed at 450 nm using a Tecan Infinite M200 Pro 

microplate reader and were normalised to the positive and negative control 

values. The mean absorbance measurements were plotted against the 

corresponding log concentrations of each compound under investigation, and a 

four-parameter logistic model was fitted to the resulting curves using the 

GraphPad Prism 6.0 software allowing for calculation of the IC50. The reported 

IC50 values for each compound were based on three experiments. 

4.4.3 Log Poct using HPLC. 

The experiments were conducted as reported by Zmuda et al. (2015) using 

slightly modified methodology from that described by Valkó, Bevan, and 

Reynolds (1997) and Valkó (2004). Solutions of olaparib and compounds 4–21 

were prepared in a 1.0 : 1.0 mixture of acetonitrile and 0.01 mM PBS; the 

resulting concentrations ranged from 0.5–1.5 mg/mL. The mean retention time 

of each compound was measured three times using a reverse phase Phenomenex 

Luna 5 μm C18 100Å (50 × 30 mm) column under the following mobile phase 

conditions: 0.0–10.5 min = 100:0 A:B to 10:90 A:B; 10.5–11.5 minutes = 10:90 

A:B; 11.5–12.5 minutes = 10:90 A:B to 100:0 A:B; 12.5–15.0 minutes = 100:0 A:B 

where A = PBS and B = acetonitrile. The mobile phase flow rate was 1.0 mL/min. 

Three separate experiments were performed using PBS pH 4.0, pH 7.4, and pH 

10.0; the necessary pH was achieved by addition of either hydrochloric acid 0.1% 

v/v or 0.05 M ammonium hydroxide. The mean retention times (n = 3) were 
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plotted against the known gradient chromatographic hydrophobicity indices 

(CHIs) of the following standard compounds to generate a calibration regression 

model: theophylline (CHI = 15.76), phenyltetrazole (CHI = 20.18), benzimidazole 

(CHI = 30.71), colchicine (CHI = 41.37), acetophenone (CHI = 64.90), indole (CHI 

= 69.15), and butyrophenone (CHI = 88.49) (Valkó, Bevan and Reynolds, 1997). 

The CHI values of unknown compounds in their non-ionised state (CHIN) were 

obtained by fitting their mean retention times obtained using the above 

described chromatographic conditions to the calibration regression model. The 

CHIN values were then converted to log Poct values using the below equation 

(Valkó, 2004): 

Log Poct = 0.047CHIN + 0.36HBC – 1.10 

where CHIN is the gradient chromatographic hydrophobicity index of the non-

ionized compound and HBC is hydrogen-bond donor count. The Microsoft Excel 

2010 software was utilised for calculations and plot generation. 

4.4.4 %PPB using HPLC. 

The experiments were conducted as reported by Zmuda et al. (2015) using 

slightly modified methodology from that described by Valkó et al. (2003).  

Solutions of olaparib and compounds 4–21 were prepared in a 1.0 : 3.0 : 3.0 

mixture of acetonitirle, 0.01 mM PBS and isopropyl alcohol; the resulting 

concentrations ranged from 0.5–1.5 mg/mL. The mean retention time of each 

compound was measured three times using a ChromTech HSA 5 μm (50 × 30 mm) 

column under the following mobile phase conditions: 0.0–3.0 minutes = 100:0 

A:B to 70:30 A:B; 3.0–10.5 minutes = 70:30 A:B; 10.5–11.0 minutes = 70:30 A:B 

to 100:00 A:B; 11.0–15.0 minutes = 100:0 A:B where A = PBS (pH 7.4) and B = 

isopropyl alcohol. The mobile phase flow rate was 1.8 mL/min. The 

chromatographic system was calibrated using the following standard compounds 

of known %PPB: nizatidine (%PPB = 35.0), bromazepam (%PPB = 60.0), 

carbamazepine (%PPB = 75.0), budesonide (%PPB = 88.0), nicardipine (%PPB = 

95.0), warfarin (%PPB = 98.0), ketoprofen (%PPB = 98.7%), indometacin (%PPB = 
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99.0), and diclofenac (%PPB = 99.8%) (Valkó, 2004). The %PPB values of the 

standard compounds were converted to the linear log K values using the below 

equation (Valkó et al., 2003): 

Log K = log (%PPB / (101 %PPB))  

where K is the apparent affinity constant. 

The mean retention times (n = 3) of the standard compounds were plotted 

against their corresponding log K values to generate a calibration regression 

model. The log K values of unknown compounds were then obtained by fitting 

their mean retention times, obtained using the above described chromatographic 

conditions, to the calibration regression model. The log K values were then 

converted to the %PPB using the below equation (Valkó et al., 2003): 

%PPB = (101 × 10logK) / (1 + 10logK)  

The Microsoft Excel 2010 software was utilised for calculations and plot 

generation. 

4.4.5 Cellular PARP-1 IC50. 

The experiments were conducted as reported by Zmuda et al. (2015) using 

slightly modified methodology from that described by Ye et al. (2013).  Cells 

were seeded onto 19 mm diameter glass coverslips in 12-well plates, at 

concentrations of 8 × 104 (G7) or 5 × 104 (T98G) cells per well, and were 

incubated for 48 hours. The cells were then incubated for 60 minutes in 1 mL of 

cell media containing increasing concentrations of compound under investigation 

(olaparib or compounds 4, 11, 13, 17, and 18). The desired compounds were 

dissolved in dimethyl sulfoxide, followed by serial dilution using PBS to obtain 

the necessary stock solutions. These stock solutions were further diluted using 

cell media to attain the desired assay concentrations, such that the final 

concentration of dimethyl sulfoxide was ≤1.0% v/v. Following aspiration of media 



156 
 

 

solutions, DNA damage was induced by incubating the coverslips under in 20 mM 

hydrogen peroxide in PBS (prepared immediately prior to use) in the dark, at 

room temperature for 10 minutes. A negative control, containing media alone 

minus hydrogen peroxide treatment, and a positive control, containing media 

alone plus hydrogen peroxide treatment, were also used. The cells were washed 

with PBS and fixed with ice cold 4.0% v/v formaldehyd PBS and incubated at 4–8 

°C for 15 minutes. Following fixation the cells were washed with PBS, 

permeabilised with 0.3% v/v Triton X-100 in PBS for 10 minutes at room 

temperature, and then washed three more times with PBS. The fixed cells were 

then incubated in 2% w/v bovine serum albumin in PBS for 30 minutes at room 

temperature. Primary antibody staining was performed using 1:200 anti-PADPR 

antibody (mouse antibody; ab14459; 10H; Abcam) in KB buffer (10 mM Tris pH 

7.5, 150 mM sodium chloride, 0.1% w/v bovine serum albumin) by incubating the 

coverslips on parafilm at room temperature for 60 minutes. The coverslips were 

washed once with PBS and twice with KB buffer and secondary staining was 

performed using 1:500 anti-mouse antibody (goat anti-mouse antibody; Alexa 

Fluor 488; A11029; Life Technologies) in KB buffer; the cells were incubated 

with the secondary antibodies at room temperature in the dark for 60 minutes. 

Next, the coverslips were washed three times with KB buffer and mounted onto 

glass slides using VectaShield® mounting medium. Immunofluorescence imaging 

was performed within 48 hours of staining using a Zeiss LSM 710 confocal 

microscope. The following imaging parameters were used: i) 40 × magnification 

(oil); ii) resolution = 512 × 512; iii) tiling = 3 × 3; iv) Z-stacking = 3–4 sections; 

and v) image depth = 12 bit. PARP activity was expressed as a ratio of PAR 

positive nuclei to the total number of nuclei; nuclei counted per well ≥120. Mean 

PARP activity was normalised to the positive and negative control values, and 

plotted against the corresponding log concentrations of each compound under 

investigation. A four-parameter logistic model was fitted to the resulting curves 

using the GraphPad Prism 6.0 software allowing for calculation of the IC50 

parameter. Where necessary (i.e. an incomplete sigmoidal curve) constraints 

defining 0% and 100% PARP activity were introduced into the curve fitting model. 

The reported IC50 values for each compound were based on two experiments. 
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5 DEVELOPING RADIOSYNTHESES FOR PARP-1 NUCLEAR 

IMAGING AGENTS. 

5.1 Introduction. 

Radiosynthesis is a process that is used to generate a radionuclide labelled agent 

that can then be used for nuclear imaging or therapeutic purposes. This process 

can be broken down into three key steps: i) radiolabelling; ii) purification; and 

iii) formulation. The first of these steps is generally regarded as the most 

challenging and it is the main focus of this chapter. 

Many different types of radiolabelling techniques exist. The choice of 

methodology can be influenced by the radioisotope that is being utilised for 

nuclear imaging (e.g. 123I or 99mTc for SPECT), the type of compound that is being 

labelled (e.g. small molecule or biologic), and the chemical functionality that is 

being labelled (e.g. aromatic or aliphatic). In this chapter, radiolabelling 

methodology will be described in the context of small molecules, and iodine (123I 

and 125I) and fluorine (18F) radionuclides only. Labelling with 11C for PET imaging 

was not pursued as part of this project due to the current lack of facilities and 

infrastructure required for such radiochemistry. An outline of 11C radiolabelling 

methodology can be found in the reviews by Miller et al. (2008) and Antoni 

(2015).  

The methods that are used to incorporate radioactive isotopes of iodine or 

fluorine into target molecules can be subdivided into electrophilic and 

nucleophilic techniques.  

Electrophilic radiolabelling is restricted to electron rich systems such as aryls 

and alkenes, and it requires the use of electrophilic radioisotope species. Since 

the radioisotopes of iodine and fluorine are available in their nucleophilic form 

(e.g. 18F and 123I), the necessary electrophiles must first be generated to allow 

for successful radiolabelling. In the case of iodine this is usually achieved in situ 
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using an appropriate oxidising agent, while electrophilic radiofluorination relies 

on the use of electrophilic 18F-species such as [18F]-F2. This is discussed in more 

detail in the following sections. Electrophilic radiolabelling can be further 

subdivided into either direct electrophilic or electrophilic exchange approaches. 

In the case of the former, the electrophilic radioisotope is attacked by an 

electron rich target and this leads to the subsequent loss of a hydrogen atom. 

The actual labelling position is often directed by the presence of appropriate 

activating functionalities on the aromatic ring (Scheme 5.1). Electron-donating 

groups (e.g. hydroxyls, ethers, amines, alkyls, and aryls) act to facilitate 

electrophilic aromatic substitution (EAS) (i.e. they are activating functionalities) 

and are ortho and para directing. In contrast to this, electron-withdrawing 

groups (e.g. carbonyls, nitros, nitriles, trialkylammonium salts, sulfonates, and 

esters) are meta directing and deactivating functionalities. Halides are an 

exception as they possess ortho and para directing properties but are 

deactivating. 
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Scheme 5.1. Electrophilic aromatic substitution of aniline analogue 43 where 

the electrophile is represented as ‘E+’. The amino functionality acts as an 

activating, and ortho and para directing, group (A and B) as it is able to donate 

electron density into the pi system, thereby enhancing the stability of the 

cationic intermediate. Electrophilic substitution at the meta position (C) is not 

favoured as the amino group can no longer contribute to stabilising the cationic 

intermediate.  
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Despite this, direct electrophilic radiolabelling often leads to the formation of 

multiple radiolabelled products due to lack of regioselectivity. Furthermore, 

direct electrophilic radiolabelling using the [18F]-F2 or [*I]-I2 species is often 

associated with low specific activity as both the radioactive and non-radioactive 

halogen atoms can act as attacking electrophiles (Miller et al., 2008; Wager, and 

Jones, 2010; Pimlott and Sutherland, 2011). Specific activity is defined as the 

activity of a radioactive isotope of an atom (i.e. a radionuclide) divided by the 

molar amount of the sum of all isotopes (radioactive and stable) of that atom 

(de Goeij and Bonardi, 2005). As an example, an 18F-labelled radiotracer with a 

low specific activity will have a lower amount of radiofluoride per mole than an 

equivalent tracer of high specific activity. Therefore, in order to obtain an 

equivalent nuclear imaging signal, a higher molar amount of the low specific 

activity tracer will need to be injected when compared to the high specific 

activity tracer. Consequently, tracers of low specific activity are more likely to 

elicit an in vivo pharmacological response and potentially result in toxicity 

issues. 

In contrast to the above, electrophilic exchange allows for regioselectivity and 

higher specific activity. This technique relies on the use of an appropriate 

organometal leaving group on the target molecule that can be replaced by the 

radioisotope (Scheme 5.2) (Miller et al., 2008; Wager and Jones, 2010; Pimlott 

and Sutherland, 2011). However, organometal radiotracer precursors are often 

unstable and may require frequent re-syntheses, which are complicated by the 

high toxicity of organometal starting materials (see section 5.1.1.1 for details). 

 

Scheme 5.2. Organometal mediated aromatic electrophilic exchange reaction. 

E+ = electrophile; SnBu3 = tributyl tin; SiBu3 = tributyl silyl. 

Nucleophilic radiolabelling can be performed on aryls and, unlike electrophilic 

methods, alkanes. However, radioiodination at aliphatic positions is usually 

avoided due to the instability of the alkyl-iodine bond. In a similar manner to 

electrophilic exchange, the nucleophilic approach relies on the presence of a 
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leaving group that can be substituted by the radioisotope. The advantages of this 

technique are good regioselectivity, generally high specific activity, and greater 

stability of radiolabelling precursors that can be synthesised without the need 

for highly toxic organometals (Miller et al., 2008; Wager and Jones, 2010; 

Pimlott and Sutherland, 2011). 

It is often the case that the choice of the above mentioned radiolabelling 

technique will be guided by the compound that is to be labelled and by the 

labelling position on that molecule. Purification and formulation are also key 

steps in the radiosynthetic process. The ultimate goal is to develop a 

radiosynthetic protocol that allows for high radionuclide incorporation and end 

of synthesis yield, as well as high specific activity and purity of the formulated 

radiotracer. This is important as it allows maximising the amount of radiotracer 

that is produced from the radioisotope, which is associated with high production 

costs. It is also desirable that the radiosynthetic protocol is rapid and allows for 

radionuclide incorporation at the latest possible stage of the entire synthesis to 

minimise the influence of radionuclide decay on the end of synthesis yield 

(Pimlott and Sutherland, 2011). This is particularly important for short lived 

radioisotopes such as 11C and 18F. 

5.1.1 SPECT radioiodination chemistry. 

5.1.1.1 Electrophilic techniques. 

As mentioned above, this technique relies on the presence of an electrophilic 

iodine radionuclide. For the purpose of this explanation 123I, 124I, 125I and 131I 

radionuclides will be depicted collectively as ‘*I’. The simplest approach of 

electrophilic radioiodination involves using a commercially available 

electrophilic species such as [*I]-I2 which can form the electrophilic radioiodide 

cation (*I+) during the labelling reaction. However, the stable iodine atom can 

also act as the electrophile, which can lead to the generation of a non-

radioactive iodinated (127I) compound. Therefore, the use of [*I]-I2 is usually 

associated with the formation of an inseparable mixture of *I and 127I labelled 

compounds that can ultimately reduce the overall specific activity of the 
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radiolabelled product. This issue can be overcome by using the radioiodine 

monochloride ([*I]-ICl) species, which can be generated by treating non-

radioactive ICl with commercially available sodium radioiodide ([*I]-NaI) (Seevers 

and Counsell, 1982). It is thought that [*I]-ICl forms [*I]-HOI in situ, which acts as 

the electrophilic species during labelling (Helmkamp, Contreras, and Bale, 

1967). This species was a step in the right direction, but its utility relies on the 

complete conversion of ICl to [*I]-ICl, which may not always be the case. 

Alternitavely, the radioiodine atom can be oxidised using an oxidising agent such 

as peracetic acid 47, chloramine T and Iodogen (Figure 5.1) (Seevers and 

Counsell, 1982).  

 

Figure 5.1. Examples of oxidising agents used in radioidoination chemistry. 

Peracids are generated in situ by reacting hydrogen peroxide with an organic 

acid (e.g. acetic acid). This class of oxidising agent allows for radiolabelling 

under mild conditions but it has been associated with lower radiochemical yields 

when compared to other oxidants (Wager and Jones, 2010). Chloramine T is an 

oxidising agent that decomposes under aqueous conditions to form HOCl, which 

in the presence of [*I]-NaI is thought to generate the electrophile H2O
+*I. The 

disadvantage of chloramine T is its high oxidising potential that can result in 

various undesirable side reactions including oxidation of thiol and thioether 

groups, cleavage of certain peptide bonds, and chlorinations. These harsh 

oxidising conditions can be circumvented by using an analogue of chloramine T 

called iodogen that operates via the same mechanism. Since iodogen is water 

insoluble, it must be coated onto the radiochemical reaction vessel wall as a 

thin film. This minimises the contact of the labelling precursor with the oxidant, 

thus reducing the risk of side reactivity (Seevers and Counsell, 1982; Pimlott and 

Sutherland, 2011). 
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As mentioned previously, electrophilic radiolabelling can either be direct or it 

can rely on the exchange of an organometal functionality. The former approach 

generally allows for high radiochemical yields but requires the labelling 

precursor to be sufficiently activated. The type and the position of the 

activating moiety will to an extent determine the regioselectivity of the 

radioiodination, but a single reaction will often lead to the formation of multiple 

radiolabelled products. An organometal leaving group can be utilised in order to 

gain control over the radioiodination regioselectivity whilst maintaining good 

radiolabelling yields (Wager and Jones, 2010) (Scheme 5.2). The two most 

commonly used organometals are tributyl tin and tributyl silyl. The advantage of 

organosilyl precursors are their greater stability when compared to organotin 

compounds, but they suffer from lower reactivity. Furthermore, the high toxicity 

of both organometals imposes complications with regard to precursor synthesis, 

precursor handling and radiopharmaceutical purification (Pimlott and 

Sutherland, 2011). For example, tributyl tin precursors are synthesised using 

hexabutylditin starting material, which is a highly lypophilic and potent 

neurotoxin. The lipophilicity of this material allows it to rapidly permeate the 

skin and enter brain tissue where it accumulates and destroys astrocytes. This 

damage is irreversible and progressive, eventually leading to death (Chang, 

1990). Therefore, great care must be taken during the synthesis of the precursor 

and during the radiochemical synthesis. Moreover, utmost diligence is necessary 

to ensure that the final radiopharmaceutical is completely free of any 

organometal residues. 

5.1.1.2 Nucleophilic techniques. 

Nucleophilic radioiodination involves the substitution of a leaving group for an 

iodo radionuclide (*I); iodine radioisotopes are generally available commercially 

in their nucleophilic form as sodium iodide ([*I]-NaI) in 0.05–0.10 M sodium 

hydroxide. The three types of nucleophilic radioiodination techniques that exist 

are: i) isotopic halogen exchange; ii) interhalogen exchange; and iii) radioiodo-

dediazonisation. The first and simplest of these approaches relies on the 

exchange of an iodine radionuclide for a stable iodine atom already present in 

the precursor molecule (Scheme 5.3). In addition to the precursor and the 
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radioactive iodine, a copper catalyst may be added to improve the overall 

radionuclide incorporation. The simplicity of this technique is often 

overshadowed by the necessity for high reaction temperatures (>100 ºC) and the 

low specific activities of the labelled product (Seevers and Counsell, 1982).  

 

Scheme 5.3. Isotopic halogen exchange radioiodination. 

Interhalogen exchange utilises bromine or chlorine leaving groups that can allow 

for much greater specific activities following radioiodination (Scheme 5.4). 

However, purification of the radiopharmaceutical can be time consuming as the 

separation of the radioiodinated compound from its brominated or chlorinated 

precursor may require slower chromatographic runs. Another advantage of both 

halogen exchange techniques is that they can be performed in the absence of 

solvent under solid state conditions, which is beneficial when a precursor 

exhibits unfavourable organic solubility (Seevers and Counsell, 1982).  

 

Scheme 5.4. Interhalogen exchange radioiodination. 

Classical iodo-dediazonisation relies on the use of diazonium salt leaving groups 

(Scheme 5.5) that are known to be highly unstable and explosive. Despite this, 

the use of these salts for radiodination reactions is well established (reviewed by 

Seevers and Counsell (1982)). Furthermore, the discovery of stable and non-

explosive diazonium tosylate salts (-N2
+OTs) by Filimonov et al. (2008) has the 

potential to further enhance the utility of this radioiodination chemistry.  

 

Scheme 5.5. Radioiodo-dediazonisation. 
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5.1.2 PET radiofluorination chemistry. 

5.1.2.1 Electrophilic techniques. 

Electrophilic radiofluorination can be subdivided into direct and exchange 

labelling techniques that share the same disadvantages as those described 

earlier for electrophilic radioiodinations. Additionally, these types of reactions 

rely on the use of an electrophilic radiofluoride (i.e. 18F+) species. The simplest 

of these is [18F]-F2, which is a gas that is highly reactive and often leads to poor 

electrophilic regioselectivity and low specific activity of the final radiolabelled 

product (Miller et al., 2008). Furthermore, the gaseous form of [18F]-F2 

introduces radiosynthetic and waste management challenges. In order to address 

this issue of ‘high reactivity’, the softer (less reactive) acetyl hyporadiofluorite 

(CH3COOF) electrophilic species has been developed (Rozen and Lerman, 1981), 

which has been shown to be superior in the synthesis of the PET tracer [18F]-FDG 

when compared to the [18F]-F2 species (Ehrenkaufer, Potocki, and Jewett, 1984). 

Some of the other commonly used electrophilic radiofluorination reagents are 

depicted in figure 5.2. 

 

Figure 5.2. Examples of commonly used electrophilic radiofluorination species. 

5.1.2.2 Nucleophilic techniques. 

Nucleophilic substitution is the preferred approach for radiofluorination as it 

provides control over regioselectivity, allows for greater specific activities of 

labelled product compared to electrophilic radiofluorination, and eliminates the 

need for toxic organometal precursors. As described previously (see section 
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1.2.1), 18F is produced from heavy-oxygen water ([18O]H2O) in a cyclotron via 

proton bombardment. The resulting radioisotope is usually collected as a 

mixture of 18F in [18O]H2O and due to the high degree of solvation the 

nucleophilicity of 18F is extinguished (Figure 5.3 A) (Miller et al., 2008). 

Therefore, removal of the aqueous component is an important step in the 

nucleophilic radiofluorination process. This is usually achieved by heating the 

solvated radioisotope in the presence of acetonitrile that facilitates azeotropic 

drying. However, such drying can lead to large losses of 18F due to the 

formation of the highly volatile and weakly nucleophilic [18F]-hydrogen fluoride 

(Cai, Lu and Pike, 2008). Therefore, prior to the drying process, a mildly basic 

phase transfer agent is added which has two functions; firstly it traps the 

radiofluoride and prevents the formation of acidic [18F]-hydrogen fluoride, and 

secondly it allows for solubilisation of the hydrophilic radiofluoride in organic 

solvent (Figure 5.3 B). The overall benefits are increased nucleophilicity of the 

radiofluoride and improved radiochemical yields (Miller et al., 2008).  

 

Figure 5.3. Diagrammatic representation of a solvated 18F radionuclide with 

weak nucleophilic properties (A) and a 18F radionuclide trapped by a phase 

transfer agent with improved nucleophilic properties (B). 

It is important to note that the degree of dryness that is required for successful 

radiofluorination is dependent on the compound that is being radiolabelled. For 

example, forming the challenging aromatic-radiofluoride bond requires a high 

degree of dryness while less challenging aliphatic radiofluorinations are more 

tolerant to water (Cai, Lu, and Pike, 2008). 

The two most commonly used phase transfer agents in nucleophilic 

radiofluorination chemistry are Kryptofix® (K222) in combination with potassium 

carbonate and tetra-n-butylammonium hydrogen carbonate (TBAHCO3) (52) 

(Figure 5.4).  
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Figure 5.4. Structures of the phase transfer agents Kryptofix® and tetra-n-

butylammonium hydrogen carbonate (52). 

In the case of the former, the potassium cation (K+) made available from 

potassium carbonate is trapped in the core of the K222 structure. This in turn 

attracts the radiofluoride anion (18F) leaving it exposed and highly nucleophilic. 

The entire complex is then solubilised in a non-protic organic solvent (e.g. 

acetonitrile, N,N’-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran or 

dichloromethane), which prevents further radiofluoride solvation from taking 

place. Additionally, the basic potassium carbonate prevents formation of the 

acidic, volatile and weakly nucleophilic [18F]-hydrogen fluoride by forming 

carbonic acid instead (Scheme 5.6) (Cai, Lu, and Pike, 2008; Miller et al., 2008).  

 

Scheme 5.6. Drying of solvated 18F using Kryptofix® as a phase transfer agent. 

TBAHCO3 has the same function of enhancing radiofluoride nucleophilicity and 

organic solubility as K222, which it achieves by forming [18F]-tetra-n-

butylammonium fluoride ([18F]-TBAF) (53) in situ (Scheme 5.7) (Cai, Lu, and 

Pike, 2008; Miller et al., 2008). The large cesium cation (Cs+) can also be used to 

enhance nucleophilicity of the radiofluoride anion, but it is used less commonly 

due to poor organic solubility. 
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Scheme 5.7. Drying of solvated 18F using TBAHCO3 as a phase transfer agent 

resulting in the in situ formation of [18F]-TBAF (53). 

Nucleophilic radiofluorinations can be subdivided into direct aliphatic and 

aromatic labelling reactions. For aliphatic radiofluorination to proceed 

efficiently, the precursor must possess a good leaving group on the aliphatic 

chain (Scheme 5.8). Such leaving groups usually include sulfonate analogues such 

as triflate (OTf), tosylate (OTs), mesylate (OMs) and nosylate (ONs) moieties, or 

halogens such as bromine, chlorine and iodine. The weaker the basicity of the 

leaving group the better its leaving ability and the greater the radiofluorination 

yield. Consequently, the sulfonate analogues exhibit similar leaving ability 

properties, followed by iodine, bromine, and finally chlorine (Mason and Mathis, 

2004). Furthermore, radiofluorination proceeds more readily and higher yields 

are generally achievable when the leaving group is attached to a primary carbon 

when compared to a secondary carbon (Cai, Lu, and Pike, 2008). 

 

Scheme 5.8. An example of an aliphatic nucleophilic radiofluorination reaction. 

Interestingly, the addition of a sterically-hindered protic alcohol such as tert-

butyl alcohol to an aliphatic radiofluorination reaction can have a beneficial 

effect on the radiofluride incorporation (Lee et al., 2007; Kim et al., 2008). It 

has been proposed that these protic alcohols facilitate aliphatic nucleophilic 

substitution by enhancing the leaving group ability through hydrogen bonding 

and by solvating the radiofluoride while maintaining its nucleophilicity (Figure 

5.5) (Kim et al., 2008). Moisture contamination due to the hygroscopic 
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properties of these bulky protic alcohols has been reported to have no effect on 

the consistency of radiofluorination yields (Lee et al., 2007). 

 

Figure 5.5. Proposed mechanism by which tert-butyl alcohol facilitates aliphatic 

nucleophilic radiofluorination. Hydrogen bonding between the bulky protic 

alcohol and the leaving group (L) enhances its leaving ability. Solvation of the 

18F anion weakens its interaction with the phase transfer agent (PTA) and 

enhances its nucleophilicity. 

Aromatic nucelophilic radiofluorination is more complex as in addition to a 

leaving group, the aromatic ring undergoing labelling must be sufficiently 

activated. Such activation is usually achieved by the presence of an electron 

withdrawing group next to (ortho) or directly opposite (para) the leaving group 

(Cai, Lu, and Pike, 2008). The first and rate determining step of an aromatic 

nucleophilic substitution (SNAr) is the attack of the nucleophile, in this case 18F, 

on the carbon ipso to the leaving group (Scheme 5.9). The stronger the electron-

withdrawing ability of the activating moiety the lower the electron density of 

the carbon undergoing attack, and the greater the ease of nucleophilic 

substitution (Hashizume et al., 1997). Therefore, it is not surprising that a 

positive correlation exists between radiochemical yield and the electron-

withdrawing potential of the activating functionality. Commonly used electron-

withdrawing moieties in approximate order of increasing ability are: meta-nitrite 

(meta-NO2) < para-acetyl (para-Ac) < para-aldehyde (para-CHO) < para-nitrile 

(para-CN) = para-trifluoromethane (para-CF3) < para-NO2. Established leaving 

groups utilised for SNAr radiofluorination reactions, in order of leaving ability, 

are: I < Br < Cl < F < NO2 = trimethyl ammonium (N+Me3) (Cai, Lu and Pike, 2008).  
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Scheme 5.9. Examples of aromatic nucleophilic substitution radiofluorination 

reactions. 

The main disadvantage of the SNAr approach is that it is limited to aromatic 

systems that are sufficiently activated for nucleophilic substitution. Where such 

activation is lacking (i.e. aryl rings with electron rich substituents) an 

unsymmetrical diaryliodonium salt may be utilised instead. The use of such salts 

to facilitate aromatic substitutions is well established (Beringer et al., 1952) and 

their usefulness in radiofluorination chemistry has been proven (Pike and 

Aigbirhio, 1995; Gail, Hocke and Coenen 1997; Ross et al. 2007; Moon et al., 

2011; Xu et al., 2013). A general outline of radiofluorination of an 

unsymmetrical diaryliodonium salt is presented in scheme 5.10 (Cai, Lu and Pike, 

2008).  

 

Scheme 5.10. An example of radiofluorination of a non-activated (electron rich) 

arene ring using an unsymmetrical diaryliodonium salt. 

Such salts can be utilised in a chemoselective manner where the 

radiofluorination is directed to the desired arene ring. This directing effect can 

occur as a consequence of two mechanisms. The first of these is the “ortho-

effect” where an ortho substituent on one of the aromatic rings will direct the 

substitution to that ring; this can be explained by the proposed “turnstile” 

mechanism (Scheme 5.11) (Cai, Lu and Pike, 2008; Malmgren et al., 2013).  
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Scheme 5.11. The proposed ‘turnstile’ mechanism for the reaction between a 

nucleophile (18F) and an unsymmetrical diaryliodonium salt. Nucleophilic attack 

upon the positive iodine atom forms a tricovalent intermediate where the bulky 

ortho-substituted arene (ArR) prefers to occupy the equatorial position in order 

to reduce steric strain. The reaction proceeds by ligand coupling between the 

nucleophile and the equatorial aryl functionality through the process of 

reductive elimination.  

In the absence of the ortho-effect, the substitution is directed by the electronics 

of the diaryliodonium salt where nucleophilic attack will occur preferentially at 

the more electron-deficient ring. Therefore, diaryliodonium salts are often 

designed to either possess a heteroaromatic moiety or an aromatic moiety 

bearing electron-donating substituents, which are more electron rich than the 

other arene system. These electron-rich arenes will direct radiofluoride 

incorporation to the desired less-electron rich arene (Scheme 5.12) (Ross et al., 

2007).  

 

Scheme 5.12. Examples of diaryliodinium radiofluorination reactions where, in 

the absence of the ortho-effect, chemoselectivity is achieved through the use of 

an electron-donating substituent (OCH3) (A) and an electron-rich heteroaromatic 

moiety (B). 
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The main problem with the use of diaryliodonium salts is their lack of stability, 

particularly at high temperatures and under basic conditions (Moon et al., 2011); 

although they are generally regarded as air- and moisture-stable (Merritt and 

Olfson, 2009). Scheme 5.13 outlines the two major decomposition pathways of 

these salts (Moon et al., 2011). The synthesis of diaryliodonium salts falls outside 

of the scope of this thesis and further information concerning the subject can be 

found in the review by Merritt and Olfson (2009).  

 

Scheme 5.13. Decomposition pathways of diaryliodonium salts. 

5.1.2.3 Other techniques. 

More recently, Lee, Hooker, and Ritter (2012) developed nickel-mediated 

methodology that allowed for rapid (<1 minute) oxidative radiofluorination of 

arenes in the presence of aqueous 18F under mild conditions (Scheme 5.14). The 

ability to use the radioisotope in its solvated form eliminates the necessity for 

radiofluoride drying which allows for a shorter overall reaction time. 

Furthermore, this technique has a broad substrate scope and it can be utilised to 

perform [18F]-labelling of compounds that lack the necessary activation required 

for SNAr.  

 

Scheme 5.14. Nickel-mediated aromatic radiofluorination using aqueous 18F in 

the presence of the hypervalent iodine oxidant 54. 
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The above described methodology relies on the use of the nickel organometallic 

precursor 58, which can be accessed in two synthetic steps as shown in scheme 

5.15. This synthesis involves the oxidative addition of an aryl bromide 55 and 

tetramethylethylenediamine (TMEDA) to commercially available 

bis(cyclooctadiene)nickel(0) (Ni(COD)2) resulting in the generation of 

intermediate 56, followed by the introduction of silver salt 57 affording 

precursor 58. Importantly, these organometallic complexes have been shown to 

be stable and can be stored under ambient conditions (Lee, Hooker, and Ritter, 

2012).  

 

Scheme 5.15. Synthesis of the nickel organometallic precursor 58 (Lee, Hooker, 

and Ritter, 2012). 

However, the group identified two significant limitations of this technique. 

Firstly, the aqueous radiofluoride that is incorporated into the reaction must be 

highly concentrated as amounts of water greater than 1% of the reaction volume 

resulted in complete degradation of both the nickel complex and the oxidant 

species. Secondly, concentration of the aqueous radiofluoride using conventional 

drying techniques resulted in solutions that were too basic for efficient 

radiofluorination. As a consequence, these limitations severely restricted the 

amount of radiotracer that could be isolated (Ren et al., 2014). In a follow-up 

study, Hooker and co-workers were able to improve the scale-up potential of 

this methodology by utilising a pH buffering system that sufficiently 

counteracted the increase in basicity during the drying process (Ren et al., 
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2014). However, this radiofluorination methodology still suffered from the need 

to concentrate the aqueous 18F to <1% of the reaction volume through drying. 

5.1.3 Radiotracer purification and formulation. 

During radiotracer discovery, great effort, time and resources are dedicated to 

ensure that the nuclear imaging agent exhibits high selectivity and/or specificity 

for its target. This is imperative in maximising the signal to noise ratio of the 

nuclear images that are acquired using the radiotracer (see chapter 4 for more 

information). Another factor that is important in maintaining a high signal to 

noise ratio is the radiochemical purity of the formulated tracer. Radiolabelling 

reactions can often lead to the formation of multiple labelled compounds due to 

the lack of regioselectivity of the chosen technique, the presence of multiple 

reactive functionalities on the precursor molecule, or degradation of the 

precursor/target molecule as a consequence of harsh reaction conditions. 

Contamination of the final radiotracer formulation by these side products can 

increase the background signal of the output image. Moreover, radiolabelling is 

rarely a quantitative process, meaning that at the end of the reaction free 

radionuclide atoms often remain. Removal of these prior to radiotracer 

formulation is important as they can also enhance background signal. For 

example, free 18F is known to accumulate is bone tissue (Chitneni et al., 2007) 

and free *I radioisotopes accumulate in the thyroid (Kaul and Roedler, 1980).  

The main methods of radiotracer purification include solid phase extraction 

(SPE), preparative HPLC separation, or a mixture of the two. SPE involves the 

partitioning of solutes between a liquid phase (i.e. a solvent or mixture of 

solvents) and a solid (sorbent) phase, of which there are many different types 

(Żwir-Ferenc and Biziuk, 2006). The principle of purification using SPE relies on 

choosing the appropriate sorbent phase that will bind the desired radiolabelled 

product such that the impurities (i.e. the side product(s) and/or the free 

unbound radioisotope) can be washed away. The radiolabelled product can then 

be eluted from the sorbent by using an appropriate liquid phase (Figure 5.6).  
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Figure 5.6. Diagrammatic representation of radiotracer purification using solid 

phase extraction (SPE). Crude radiotracer product is loaded onto a SPE cartridge 

in a suitable solvent mobile phase (A). The mixture is passed through a solid 

sorbent phase where the radiolabelled product is retained and impurities are 

removed (B). The mobile phase is changed and the pure radiotracer is eluted 

from the sorbent phase (C and D). 

SPE is generally a rapid purification technique that is easy to automate making it 

a popular choice for tracers labelled with short-lived radioisotopes (Zheng and 

Mock, 2005). However, SPE is significantly limited by the fact that it can only 

separate compounds exhibiting large physiochemical differences (e.g. polarity). 

This issue can be overcome by utilising the slower HPLC technique, which has 

the ability to separate multiple radiolabelled products from the unlabelled 

precursor compound with only slight differences in physiochemical properties 

(Zheng and Mock, 2005) (Figure 5.7). The main disadvantages of this technique 

include the complexity associated with automation and increased purification 

times when compared to SPE (Pimlott and Sutherland, 2011). 
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Figure 5.7. Diagrammatic representation of radiotracer purification using HPLC. 

Crude radiotracer product solubilised in a suitable solvent mobile phase is 

injected into a column packed with a solid stationary phase. Separation of the 

radiolabelled product from impurities is made possible by differences in affinity 

for the solid stationary phase. 

It is also possible to perform a pre-purification using SPE to remove the free 

radionuclide, followed by HPLC purification to remove other undesirable 

components of the reaction mixture. However, this approach is not only time-

consuming, but it also requires sample dilution prior to SPE and analyte elution. 

As a consequence, large volumes of the sample mixture may need to be injected 

onto the HPLC column which can result in poor separation (Chitneni et al., 

2007). 

Following successful purification of the radiotracer, the final step of the 

radiosynthetic process is the formulation. For the purpose of this thesis 

formulation of radiotracers will be described in a pre-clinical context only with a 

focus on dosing mice. When developing a radiotracer formulation, a compromise 

must be reached between maximising the amount of radiolabelled compound 

that enters the solution and minimising the amount of additives (e.g. co-solvents 

or complexing agents) that are required to achieve this. Other considerations 

that can influence the final formulation include the stability of the radioligand, 

the maximum dose volume that can be administered to the animal, the viscosity 

of the solution, and the route of administration.  

Intravenous injection is the most commonly used route for the administration of 

nuclear imaging agents (Kim et al. 2011). For that reason physiological saline 

(0.9% w/v sodium chloride) is the vehicle of choice for radiotracer compounds 

that exhibit high aqueous solubility. In a radiotracer suffers from poor aqueous 
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solubility, some form of solubility enhancement may be necessary. The most 

commonly used technique is co-solvency, which is both simple and inexpensive. 

It involves the addition of a water-miscible solvent (i.e. a co-solvent) in which 

the radiotracer is known to be soluble, such as ethanol, polyethylene glycol, 

propylene glycol, or dimethyl sulfoxide, (Vemula, Lagishetty and Lingala, 2010). 

The co-solvent reduces the interfacial tension between the aqueous solution and 

the solute molecule, thereby enhancing its aqueous solubility.  

Another technique of solubility enhancement involves the addition of 

cyclodextrin excipients, which are cyclic oligosaccharide ring systems that 

contain a hydrophobic core and a hydrophilic exterior (Figure 5.8). Compounds 

exhibiting poor aqueous solubility complex with the lipophilic core of the 

cyclodextrin via hydrophobic interactions, and are subsequently taken into 

solution through hydrophilic interactions between the aqueous phase and the 

exterior surface of the cyclodextrin. Dissociation of compounds from 

cyclodextrins is generally a rapid, quantitative and predictable process (Vemula, 

Lagishetty and Lingala, 2010). 

 

Figure 5.8. Diagrammatic representation of solubility enhancement using a 

cyclodextrin excipient. 

There are two main disadvantage of using additives such as co-solvents and 

cyclodextrins as solubility enhancing agents. Firstly, a risk exists that the 

solubilised compound may precipitate upon dilution in the bloodstream following 

intravenous injection. Secondly, co-solvents and cyclodextrins are associated 

with toxicity issues. When administered orally, cyclodextrins are generally not 
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toxic as they do not enter systemic circulation due to lack of gastrointestinal 

absorption. However, it has been reported that most cyclodextrins are not 

suitable for intravenous administration due to toxicity, and only the γ-

cyclodextrin variant together with some derivatives of β-cyclodextrins are 

appropriate for parenteral use (del Valle, 2004). Similarly, co-solvents also 

exhibit systemic toxicity and care has to be taken not to exceed established 

limits of tolerance (Thackaberry et al., 2014). Moreover, the addition of solvents 

can have an effect on compound pharmacokinetics, meaning that the 

distribution and elimination properties of the formulated radiotracer may be 

altered (reviewed by Buggins, Dickinson and Taylor (2007)). Despite these issues, 

co-solvency remains the most widely accepted form of radiotracer solubility 

enhancement.  

5.1.4 Aims and hypotheses. 

The aim of the research presented in this chapter was to develop radioiodination 

and radiofluorination protocols that allow access to target radioligands with 

potential for SPECT and PET imaging of PARP-1 (Figure 5.9) in sufficient 

quantities, specific activities, purities, and formulations for pre-clinical in vivo 

studies in mice.  

 

Figure 5.9. Target radioligands with potential for PARP-1 SPECT ([123I]-4) and 

PET ([18F]-11 and [18F]-17) imaging. 
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The following hypotheses were set for this work: 

i) Radiolabelling methodology will be developed that will allow for generation of 

target radioligands in sufficient quantities for in vivo pre-clinical studies; i.e. a 

radiochemical end of synthesis yield ≥5%. Practical aspects of pre-clinical work 

together with the designated limits of radioisotope quantities that can be 

handled manually (i.e. ≤500 MBq) were used to establish the required minimum 

end of synthesis yield. 

ii) Purification methodologies will be developed that will allow for isolation of 

radiolabelled products with radiochemical purities of >95%. This level of purity is 

generally regarded as sufficient for pre-clinical radiotracer use. 

iii) Co-solvency techniques will allow for the formulation of the radiotracers into 

doses that can be injected intravenously into mice and the amount of solvent in 

each dose will not exceed established limits of tolerance (see publication by 

Thackaberry et al. (2014) for further information). 

5.2 Results and discussion. 

5.2.1 Radioiodination, purification, and formulation of 

target SPECT tracer [
123

I]-4. 

Electrophilic radioiodination using an organotin leaving group was initially 

investigated as a means of generating the target SPECT compound [123I]-4. 

Despite high toxicity of the organotin materials, this methodology was chosen as 

it is generally associated with high radiochemical yields and good regioselectivity 

(see section 5.1.1.1 for details). Based on past experience within the research 

group and published literature methodologies (Tavares et al., 2011; Rudebusch, 

Zakharov, and Liu, 2013), it was proposed that the organotin precursor (61) 

could be accessed from the corresponding aryl-bromide 60 using 

hexamethylditin (SnMe3)2 and a tetrakis(triphenylphosphine)palladium(0) 

(Pd(PPh3)4) catalyst (scheme 5.16). However, following a number of attempts, 
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no stannylated precursor was observed, which was thought to be due to 

competing dehalogenation of the bromine-bearing aromatic ring. 

 

Scheme 5.16. Proposed electrophilic destannylation technique to access the 

potential SPECT PARP-1 radiotracer [123I]-4. Reagents and conditions: (a) 

(SnMe3)2, Pd(PPh3)4, 1,4-dioxane, 85 C, 24 h; (b) (SnMe3)2, Pd(PPh3)4, 1,4-

dioxane, 85 C, 48 h; (c) (SnMe3)2, Pd(PPh3)4, 1,4-dioxane, 100 C for 24 h.  

Therfore, focus was shifted to nucleophilic techniques of radioiodination. Iodo-

dediazonisation was investigated as a potential means of accessing [123I]-4 due to 

the established nature of this chemistry (reviewed by Seevers and Counsell 

(1982) and the reported stability of diazonium tosylate salts (-N2
+OTs) 

(Filimonov et al., 2008).  The diazonium tosylate salt precursor 65 was accessed 

in 49% yield over three linear steps from compound 3 (Scheme 5.17).  HBTU 

amide coupling of 3 and commercially available 4-nitobenzoic acid (62) afforded 

63, followed by tin(II) chloride reduction of the para-nitro group to generate the 

corresponding amine 64. Aryldiazonium salt formation was then performed in 

the presence of resin-bound nitrite and tosic acid to generate precursor 65. The 
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use of resin bound-nitrite was advantageous as it allowed for rapid purification 

of the aryldiazonium salt 65 via filtration.  

 

Scheme 5.17. Synthetic approach used to access the diazonium tosylate salt 

precursor 65. 

Despite previous literature reports confirming stability of diazonium tosylate 

salts (Filimonov et al., 2008), salt 65 underwent complete degradation within 24 

hours under ambient storage conditions. It was proposed that the degradation of 

salt 65 occurred through the hydroxylation of the diazonium moiety resulting in 

the corresponding phenol by-product. In order to establish the utility of salt 65 

as a precursor of 4, iodo-dediazonisation reaction conditions were screened 

using non-radioactive sodium iodide and 65 immediately post-isolation (Table 

5.1). In an attempt to minimise the risk of hydroxylation, anhydrous N,N’-

dimethylformamide was investigated as a potential solvent for this reaction 

(Entries 1 and 2). In both cases the major reaction product was thought to be 

phenol 66; although it should be noted that increasing temperature to 75 C 
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resulted in a moderate improvement in the ratio of iodinated (4) to 

hydroxylated (66) products (Entries 1 and 2). Changing the solvent to acetic acid 

and further increasing the reaction temperature resulted in a marked 

improvement in the ratio of desired to undesired products (Entry 3).  

Table 5.1. Screen of conditions for non-radioactive iodo-dediazonisation of 65 

for the synthesis of 4. 

 
aThe ratio was calculated from the 1H NMR spectrum (acquired using deuterated 

chloroform as the solvent) of the solid precipitate formed after trituration with 

diethyl ether using the iNMR 2.0.7 software. DMF = N,N’-dimethylformamide; 

AcOH = acetic acid.  

A radioiodination trial was attempted using the long-lived 125I isotope (half-life = 

60.1 days), the isolated diazonium tosylate salt 65, and reaction conditions 

similar to those described in table 5.1 entry 3 (Scheme 5.18). This approach 

allowed for a radioiodine incorporation yield of 39% (n = 1). It is clear from the 

radio-HPLC chromatogram that the reaction resulted in the generation of 

multiple radiolabelled products (Figure 5.10), possibly due to side reactivity 

and/or degradation of [125I]-4.  
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Scheme 5.18. Generation of [125I]-4 using radioiodo-dediazonisation 

methodology. aCalculated from the radio-HPLC chromatogram of the crude 

reaction mixture (Figure 5.10). 

 

Figure 5.10. An analytical radio-HPLC chromatogram of the crude reaction 

mixture outlined in scheme 5.18 showing multiple side and degradation 

products, as well as 125I-labelled 4. The identity of [125I]-4 was confirmed by 

comparing the retention time of the radiolabelled (i.e. 125I-bearing) product 

against the retention time of unlabelled (i.e. 127I-bearing) 4 (Appendix 9.5). 

Due to the lack of stability of precursor 65, it was proposed that in situ 

diazonium salt formation would improve radioiodine incorporation yields. This 
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approach was initially investigated for non-radioactive iodination as outlined in 

Scheme 5.19. Analysing the crude reaction mixture by UV-HPLC (267 nm) (Figure 

5.11) revealed that the desired iodinated product (4) was formed.  

 

Scheme 5.19. Non-radioactive iodination of an in situ generated diazonium salt 

65 giving access to 4. 

 

Figure 5.11. An analytical UV-HPLC (267 nm) chromatogram of the crude 

reaction mixture outlined in scheme 5.19. The identity of 4 in the reaction 

mixture was confirmed by comparing the retention time to that of 4 in a 

previously established UV-HPLC chromatogram using the same mobile phase 

conditions (Appendix 9.5). 
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However, under radiochemical conditions only 2% 125I incorporation yield was 

observed (Scheme 5.20 and Figure 5.12). Stoichiometric differences between the 

radioactive and non-radioactive reactions could account for the low 

radioiodination yield. In the non-radioactive reaction (Scheme 5.19) the source 

of stable iodine was available in excess (i.e. two equivalents of NaI relative to 

64), while the [125I]-NaI in the radioactive reaction (Scheme 5.20) was available 

in amounts 105 fold less than the starting material 64 (i.e. 9.45 × 105 

equivalents; calculated from the amount of [125I]-NaI used [3.62 MBq] and its 

specific activity [629 GBq/mg]).  

 

Scheme 5.20. Radioiodination of an in situ generated diazonium salt 65 giving 

access to [125I]-4. aCalculated from the radio-HPLC chromatogram of the crude 

reaction mixture (Figure 5.12). 
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Figure 5.12. An analytical radio-HPLC chromatogram of the reaction mixture 

outlined in Scheme 5.20 following removal of resin-bound nitrite via filtration. 

The identity of [125I]-4 was confirmed by comparing the retention time of the 

radiolabelled (i.e. 125I-bearing) product against the retention time of unlabelled 

(i.e. 127I-bearing) 4 (Appendix 9.5). 

The radioiodo-dediazonisation methodology was not pursued further due to the 

instability of salt 65 and the underwhelming radioiodine incorporation yield 

obtained using the in situ synthesised salt. Overcoming the poor stability of salt 

65 by its synthesis and purification immediately prior to radiolabelling would 

extend the duration of the overall radiosynthetic protocol, thereby introducing 

delays for in vivo applications.  

Therefore, efforts were focused on investigating the interhalogen exchange 

approach (see section 5.1.1.2 for details) as a means of accessing the target 

SPECT tracer [123I]-4. Halogen exchange of aromatic chlorine, bromine, and 

iodine functionalities have been reported in the literature as ways of generating 

radioiodinated versions of TSPO ligand PK11195 (Table 5.2) (Gildersleeve et al., 

1989; Gildersleeve et al., 1996; Pimlott et al., 2008).  
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Table 5.2. Summary of published halogen exchange radioiodination reactions for 

the labelling of TSPO ligand PK11195. 

 
aGildersleeve et al., 1989; bGildersleeve et al., 1996; cPimlott et al., 2008. 

It is clear from table 5.2 that the brominated precursor allowed access to the 

radioiodinated compound in the highest specific activity and in good end of 

synthesis radiochemical yield (Entry 3). Based on these data, the previously 

synthesised brominated analogue of olaparib 60 (Scheme 5.16) was chosen as a 

candidate for solid state interhalogen exchange with the long lived 125I 

radioisotope (Table 5.3). The initial set of reaction conditions that were 

investigated were based on those described by Gildersleeve et al. (1996) and 

allowed for an 125I incorporation yield of 38% (n = 1) (Table 5.3, Entry 1). 

Incremental increases in reaction temperature and time resulted in improved 

yields of 78% (n = 1) (Entry 2) and 90% (n = 1) (Entry 3) respectively, while 

removal of air from the reaction led to a marked reduction in percentage 

radionuclide incorporation (Entry 4). The latter observation can be explained by 

the fact that a mildly oxidising environment is necessary for efficient solid state 

aromatic halogen exchange to take place (Mangner, Wu, and Wieland, 1982). In 

addition to an excellent radioiodide incorporation yield, the interhalogen 

exchange methodology proceeded efficiently without the formation of side or 

degradation products (Figure 5.13). 
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Table 5.3. Investigation and optimisation of solid state interhalogen exchange 

radioiodination methodology for the synthesis of [125I]-4 using the brominated 

precursor 60. 

 
aCalculated from analytical radio-HPLC chromatograms obtained from crude 

reaction mixtures. 
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Figure 5.13. An analytical UV (254 nm)/radio-HPLC chromatogram of the crude 

reaction mixture outlined in table 5.3 entry 3 showing unreacted [125I]-NaI and 

precursor compound 60, as well as 125I-labelled 4. The identity of [125I]-4 was 

confirmed by comparing the retention time of the radiolabelled (i.e. 125I-

bearing) product against the retention time of unlabelled (i.e. 127I-bearing) 4 

(Appendix 9.5). 

The conditions described in entry 3 (Table 5.3) were identified as optimal and 

were used for 123I-radiolabelling to generate the potential PARP-1 SPECT imaging 

agent [123I]-4 (Scheme 5.21). The methodology exhibited good reproducibility 

with a radioiodide incorporation yield of 90  4% (n = 4) (measured using a 

preparatory-HPLC system).  
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Scheme 5.21. Optimised solid state interhalogen exchange radioiodination 

methodology for the synthesis of the potential PARP-1 SPECT imaging agent 

[123I]-4 using the brominated precursor 60. 

As mentioned earlier (section 5.1.1.2), one of the disadvantages of interhalogen 

exchange radiolabelling is the potential difficulty associated with separating the 

radiolabelled product from the precursor compound. With this in mind, HPLC 

equipment was chosen for the purpose of radiotracer purification as the 

technique has the ability to separate compounds with small differences in 

polarities (see section 5.1.3 for details). Initial HPLC purification methodology 

development involved utilising a preparatory reverse-phase C18 column and 

screening a number of HPLC mobile phase gradient conditions (comprising of 

acetonitrile and distilled water) for their ability to separate a mixture of 

unlabelled (127I-bearing) 4 and 60. Mobile phase gradient conditions outlined in 

Figure 5.14 were identified as optimal as they allowed for adequate separation 

between the two compounds with a resolution of 2.14 (calculated from the 

corresponding UV-HPLC chromatogram), where a resolution of >1.5 is indicative 

of complete baseline peak separation (Appendix 9.6).  
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Figure 5.14. Optimal mobile phase preparatory HPLC gradient conditions used 

for purification of [123I]-4 synthesised using aromatic solid state interhalogen 

exchange methodology. MeCN = acetonitrile; dH2O = distilled water. 

Application of the above described HPLC purification methodology to the 123I 

interhalogen exchange radiolabelling protocol allowed for the isolation of [123I]-4 

in excellent radiochemical purity (>99%; n = 6) (Figure 5.15), which is in 

accordance with the earlier set hypothesis. It is generally accepted that 

radiochemical purity of >95% is sufficient for pre-clinical nuclear imaging 

purposes. This stems from the fact that a high degree of radiochemical purity is 

important in minimising off-target binding and maximising the target signal to 

noise ratio (see section 5.1.3 for details).  

As hypothesised, [123I]-4 was generated in high specific activity (>19.0  10.3 

Ci/μmol; n = 4), which is important in minimising the molar amount of compound 

that needs to be administered for in vivo applications (see section 5.1 for 

details). The specific activity was calculated from the UV-HPLC chromatogram 

obtained during the radiotracer purification step and with the aid of a UV 

calibration plot acquired using non-labelled (127I-bearing) 4 (Appendix 9.7). Since 

the amount of [123I]-4 that was produced fell below the sensitivity threshold of 

the UV detector for this particular compound (<1.68 × 104 μmol), an absolute 

value for the specific activity could not be calculated. 
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Figure 5.15. An analytical quality control UV (254 nm)/radio-HPLC 

chromatogram of [123I]-4 showing >99% radiochemical purity of the radiotracer 

formulated in 10.0% v/v ethanol in 0.9% w/v saline. The identity of [123I]-4 was 

confirmed by comparing the retention time of the radiolabelled (i.e. 123I-

bearing) product against the retention time of unlabelled (i.e. 127I-bearing) 4 

(Appendix 9.5). 

The final step of the radiosynthesis process was radioligand formulation. As 

described earlier, the aim of this research was to develop radioligands for pre-

clinical in vivo evaluation in mice. With this in mind, physiological saline (0.9% 

sodium chloride) was chosen as the formulation vehicle for [123I]-4. However, 

due to poor aqueous solubility of 4, ethanol co-solvency was utilised as a 

solubility enhancement technique. Based on the recommended dose limits of 

solvents administered intravenously to CD1 nude mice (Thackaberry et al., 

2014), it was decided that the final concentration of ethanol in the formulation 

would equate 10%. This concentration has been reported to cause only minor 

hyperactivity in mice compared to mild ataxia observed with higher amounts of 

ethanol (Thackaberry et al., 2014). Formulation of [123I]-4 in a solution of 10.0% 

ethanol in 0.9% saline allowed for an end of synthesis yield of 37  7% (n = 6). 
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It is important to note that, since commencing this work, Salinas et al. (2015) 

developed a [131I]-labelled version of compound 4 via the methodology depicted 

in Scheme 5.22. The authors utilised an early-stage labelling synthesis where an 

N-succinimidyl-4-(tributylstannyl) benzoate (67) precursor was initially 

radioiodinated in the presence of the oxidant chloramine T, followed by amide 

coupling of the labelled intermediate 68 with the phthalazinone 3 to afford 

[131I]-4. The radiochemical yield of this synthesis was approximately 48% over 

the two reaction steps; the authors did not report an end of synthesis yield. The 

two key disadvantages of this radiosynthesis were the use of the highly toxic 

stannylated precursor 67 and the early-stage radioiodination, which increases 

the overall radiosynthesis time. 

 

Scheme 5.22. Radioiodination approach used by Salinas et al. (2015) for the 

synthesis of [131I]-4. 
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5.2.2 Radiofluorination of the target PET tracer [
18

F]-

11. 

As described previously (section 5.1.2.1), direct electrophilic radiofluorination 

can be associated with poor regioselectivity and low specific activity of the 

labelled tracer. These issues can be overcome with electrophilic exchange 

methodology, which requires the use of organometal precursors that are 

synthesised using highly toxic organometal starting materials (see section 5.1.1.1 

for details). However, since the stannylated compound 61 (Scheme 5.16) was 

not accessible, efforts were focused on SNAr methodology as a means of 

synthesising [18F]-11. Nucleophilic substitution offers the same advantages of 

high regioselectivity and good specific activity as electrophilic exchange 

radiofluorination, with the addition of reduced toxicity issues. It was envisaged 

that the para positioned nitro group of compound 63 would act as a sufficient 

leaving group to allow for radiofluoride nucleophilic attack at the ipso positon 

(Scheme 5.23). Despite only weak electron withdrawing properties of the amide 

functionality positioned para to the leaving group in compound 63, the approach 

was justified by the fact that Yamasaki et al. (2011) were able to utilise an aryl-

nitro leaving group with a para-positioned amide for 18F-labelling of the 

metabotropic glutamate receptor 1 ligand FITM. The authors did not report an 

end of synthesis yield but state that they were able to produce and formulate 

between 429–936 MBq of the tracer from 6.7–13.0 GBq of 18F (n = 8) (Yamasaki 

et al., 2011).     

 

Scheme 5.23. Proposed aromatic nucleophilic substitution radiofluorination 

approach for the synthesis of [18F]-11 using the nitro bearing precursor 63. 
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The small difference in hydrophobicity constants between the nitrite 

functionality and the fluorine atom (Hashizume et al., 1997) could make 

separation of precursor 63 from the radiolabelled product ([18F]-11) difficult 

during the tracer purification process. To investigate this, the retention times of 

the nitro compound 63 and non-radioactive 11 were measured on an analytical 

reverse-phase C18 HPLC column using a six minute gradient of increasing 

acetonitrile concentration relative to water (Figure 5.16). The difference 

between the retention times of these two compounds was just 0.05 minutes, 

suggesting poor separation under these chromatographic conditions.   

 

Figure 5.16. The chromatographic gradient used to measure the retention times 

(Rt) of compounds 11 and 63 on an analytical reverse-phase C18 column (A) and 

the corresponding UV-HPLC (254 nm) chromatograms (B). MeCN = acetonitrile; 

dH2O = distilled water. 

In an effort to improve the chromatographic resolution between 11 and 63, 

mobile phase conditions were screened using the same analytical HPLC system 

and a mixture of 11 and 63 as the analyte (Figure 5.17). It is clear from figure 

5.17 that slowing down the mobile phase gradient of acetonitrile concentration 
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was associated with an increase in resolution. By implementing a slow twenty 

minute mobile phase gradient a resolution of 1.54 was achieved between the UV 

peaks of the two compounds (Figure 5.17 C), where a resolution of >1.50 is 

indicative of complete baseline peak resolution.  

 

Figure 5.17. Chromatographic gradients used to separate a mixture of 

compounds 11 and 63 on an analytical reverse-phase C18 column and the 

corresponding UV-HPLC (254 nm) chromatograms. MeCN = acetonitrile; dH2O = 

distilled water; Rs = resolution. 

With the principle of chromatographic separation between 11 and 63 confirmed, 

focus was directed at developing SNAr radiofluorination methodology for the 

synthesis of [18F]-11. Screening of radiofluorination conditions is a complex 

process due the large amount of variables that require investigation (i.e. type of 

solvent or solvent mixtures; type and amount of phase transfer agent; type and 
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amount of base; reaction temperature; and reaction time). Initial attempts 

involved using N,N’-dimethylformamide, K222,
 and potassium carbonate as the 

solvent, phase transfer agent, and base respectively (Table 5.4, Entries 1 and 2). 

An increase in temperature from 150 C to 180 C improved the radionuclide 

incorporation yields from 4% to 6% and 5% to 10% at 15 and 30 minute reaction 

timepoints, respectively. Replacing the solvent with dimethyl sulfoxide resulted 

in accelerated precursor degradation (data not shown) and only 1% radiofluoride 

incorporation into the desired product (Entry 3). However, utilising N-methyl-2-

pyrrolidone allowed for a radiofluoride incorporation of 7% after just 15 minutes 

at 150 C (Entry 4a). Increasing the reaction temperature to 180 C and time to 

30 minutes resulted in a marked improvement in radiolabelling with 19% 18F 

incorporation (Table 5.4, Entry 5b; Figure 5.18). A further 20 C rise in 

temperature improved the radioincorporation yield at 10 minutes from 14% 

(Entry 5a) to 17% (Entry 6a). However, this temperature increase was also 

associated with accelerated thermal degradation of both the precursor and 

radiolabelled compound (data not shown) resulting in a slight reduction in 

radionuclide incorporation into the desired product after 30 minutes (Entry 6b), 

when compared to the reaction performed at 180 C (Entry 5b). Interestingly, 

utilising a 1.0 : 1.0 mixture of N-methyl-2-pyrrolidone and acetonitrile resulted 

in a 12.2% radiofluoride incroportation yield after a 15 minute reaction 150 C 

(Entry 7a), compared to only 7% when N-methyl-2-pyrrolidone was used alone 

(Entry 4a). Since the boiling point of acetonitrile is approximately 82 C, it was 

thought that the build-up of back-pressure in the sealed reaction vial due to 

gaseous acetonitrile had a facilitatory effect on the radiofluorination yield. 

Replacing K222 with either TBAHCO3 or caesium carbonate resulted in low 18F 

incorporation yields of 3% and 5% after 15 minute reactions at 150 C (Entries 8 

and 9). The poor yield achieved with TBAHCO3 was due to accelerated 

degradation of precursor and radiolabelled compounds. 
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Table 5.4. Investigation and optimisation of aromatic nucleophilic substitution 

radiofluorination methodology for the synthesis of [18F]-11 using the nitro 

bearing precursor 63. 

 
aCalculated from analytical radio-HPLC chromatograms obtained from crude 

reaction mixtures. DMF = N,N’-dimethylformamide; DMSO = dimethyl sulfoxide; 

NMP = N-methyl-2-pyrrolidone; MeCN = acetonitrile; PTA = phase transfer agent; 

K222 = Kryptofix®; TBAHCO3 = tetra-n-butylammonium hydrogen carbonate. 

It was thought that this degradation was driven by the increased amount of base 

(hydrogen carbonate) in the reaction where the phase transfer agent (TBA+) to 
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base ratio was 1.0 : 1.0, versus a phase transfer agent (K222) to base ratio 

(potassium carbonate) of 1.0 : 0.1 in previous entries. Further justification for 

this is provided by the fact that increasing the K222 to potassium carbonate ratio 

from 1.0 : 0.1 to 1.0 : 0.4 was also associated with increased precursor and 

product degradation, and subsequently reduced 18F incorporation yields (data 

not shown). Moreover, a similar observation was made by Yamasaki et al. (2011) 

who reported that lowering the concentration of potassium carbonate reduced 

precursor degradation in their radiosynthesis. Low radionuclide incorporation 

observed with caesium carbonate can be explained by the weak phase transfer 

properties of caesium due to poor solubility in the reaction solvent. 

 

Figure 5.18. An analytical UV (254 nm)/radio-HPLC chromatogram of the crude 

reaction mixture outlined in table 5.4, entry 5b showing unreacted 18F and 

precursor compound 63, as well as 18F-labelled 11. The identity of [18F]-11 was 

confirmed by comparing the retention time of the radiolabelled (i.e. 18F-bearing) 

product against the retention time of unlabelled (i.e. 19F-bearing) 11 (Figure 

5.17 C). 

Despite a thorough screen of reaction conditions, the SNAr approach utilising the 

nitro precursor 63 afforded the radiolabelled compound ([18F]-11) in low yields 
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with a maximum 19% radiofluoride incorporation (Table 5.4, Entry 5b), which 

was not sufficient for pre-clinical imaging applications. This is because manual 

synthesis of [18F]-11 was restricted to 500 MBq of starting radioactivity (18F) in 

order to minimise operator dosimetry. Consequently, sufficient amounts of [18F]-

11 for in vivo investigations would not be attainable. Furthermore, when 

considering potential future clinical applications, the radiosynthetic protocol 

should be optimised such that it will allow the maximum output of radiotracer 

from a single production batch of 18F radionuclide. This is important in 

minimising cost and maximising the number of patients that could be scanned 

using the radiotracer in a single day. It is likely the poor radiofluoride 

incorporation yields were a consequence of the lack of activation of the system 

for SNAr due to weak electron withdrawing properties of the amide functionality 

para to the nitro leaving group. In light of the above limitations, an alternative 

approach to produce sufficient quantities of [18F]-11 was sought. 

The diazonium functionality is known to be an excellent leaving group, 

exhibiting better leaving potential than nitro and trialkyl ammonium groups. 

Therefore, it was proposed that a diazonium bearing precursor (65) (Scheme 

5.24) would allow for better 18F SNAr incorporation yields when compared to the 

above described methodology using precursor 63.   

 

Scheme 5.24. Proposed aromatic nucleophilic substitution radiofluorination 

approach for the synthesis of [18F]-11 using the aromatic diazonium salt 

precursor 65. 

Initial efforts utilising this approach as a means of fluorination involved 

generating the diazonium salt 65 in situ, followed by non-radioactive 

fluorination in the presence or absence of a phase transfer agent (Scheme 5.25).  
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In the previous section, this approach was successfully utilised for non-

radioactive aromatic iodination (Scheme 5.19). However, the desired product 11 

was not detectable on UV-HPLC (254 nm) analysis of the crude reaction mixtures 

(data not shown). HPLC based analysis was chosen as interpretation of 1H NMR 

spectra proved challenging due to difficulties associated with isolation of 

products using conventional methods of purification. 

 

Scheme 5.25. Attempted non-radioactive fluoro-dediazonisation of the in situ 

generated diazonium salt 65 for the synthesis of 11. Reagents and conditions: 

(a) 2 eq. KF, 100 C, AcOH, 2.5 h; (b) 2 eq. KF, 100 C, 18-Cr-6, AcOH, 2.0 h.  

In an attempt to probe this reaction further, the diazonium salt 65 was isolated 

and exposed to a range of non-radioactive and radioactive fluorination 

conditions (Scheme 5.26). The non-radioactive reaction was performed using 

conditions that were established earlier to be effective for the aromatic 

iodination of salt 65 (Table 5.1, Entry 3). However, the desired products (11 or 

[18F]-11) were not detectable on UV (254 nm)/radio-HPLC chromatograms 

obtained for the crude reaction mixtures (data not shown). In the case of both 

non-radioactive and radioactive fluoro-dediazonisation reactions the formation 

of other products could be visualised on the UV-HPLC chromatograms (254 nm). 

It is possible that side reactivity and the poor stability of salt 65 impeded the 

fluorination chemistry. 
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Scheme 5.26. Attempted non-radioactive and radioactive fluoro-dediazonisation 

of the diazonium salt 65 for the synthesis of 11 and [18F]-11. Reagents and 

conditions: (a) 2 eq. KF, 18-Cr-6, 100 C, NMP, 1 h; (b) 18F, K222, K2CO3, DMF, 80 

C, 0.5 h; (c) 18F, K222, K2CO3, DMF, 155 C, 0.5 h; (d) 18F, TBAHCO3, DMF, 120 

C, 0.5 h. 

Alternative methods for accessing [18F]-11 could include using unsymmetrical 

diaryliodonium salt or a nickel organometallic precursors (see chapter 8 for 

details), as these methodologies have been designed for radiofluorinations of 

systems that are weakly activated for SNAr. Since commencing this work, Carney 

et al. (2015) were successful in developing a radiochemical protocol that 

allowed access to [18F]-11 with an end of synthesis yield of 10.0% (Scheme 5.27). 

The authors opted for an early stage fluorination approach as a way of 

circumventing the issue of weak SNAr activation of precursor 60. 

Radiofluorination of ethyl 4-nitrobenzoate was achieved in 15 minutes at 150 C 

in the presence of K222 with a decay corrected 18F incorporation of 35%. 

Subsequent base mediated hydrolysis afforded the terminal carboxylic acid 

moiety that was then used in a rapid (1 minute) amide coupling reaction with 

compound 3 to give [18F]-11. The rapid kinetics of this amide coupling were 

surprising as experience from this project (Section 3.2), albeit from non-

radioactive (stoichiometric) reactions,  was that a reaction time exceeding 24 

hours was generally required. Moreover, Menear et al. (2008) reported similar 

non-radioactive amide coupling reactions with compound 3 conducted over a 16 

hour period. 
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Scheme 5.27. Radiofluorination approach used by Carney et al. (2015) to access 

[18F]-11. 

 

5.2.3 Radiofluorination, purification, and formulation 

of target PET tracer [
18

F]-17. 

Since the formation of an alkyl-F bond is generally regarded as less challenging 

than an aromatic-F bond, it was proposed that nucleophilic substitution of the 

benzyl chloride precursor 38 with radiofluoride would allow for efficient 

synthesis of [18F]-17 (Scheme 5.28). The chlorinated precursor was generated by 

performing an amide coupling reaction between compound 3 and commercially 

available 4-(chloromethyl)benzoic acid (39) in the presence of HBTU (Scheme 

5.28). The key driving force behind the choice of an alkyl-chlorine bearing 

precursor was the simplicity in its synthetic accessibility. However, future work 

could investigate the use of a sulfonate based leaving group (e.g. OTs), which 

would likely exhibit better leaving ability and potentially result in improved 

radiofluoride incorporation yields (see chapter 8 for details).  
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Scheme 5.28. Proposed aliphatic nucleophilic substitution radiofluorination 

approach for the synthesis of [18F]-17 using the aliphatic chlorinated precursor 

38. 

It was shown previously (Section 3.2, Scheme 3.7) that TBAF can be used to 

effectively fluorinate compound 42 via nucleophilic substitution of a methyl-

chloride functionality. However, utilising the same reaction conditions for the 

non-radioactive fluorination of compound 38 did not afford any of the desired 

product 17 (Scheme 5.29). It was observed that a solid white precipitate formed 

during the reaction. 1H NMR spectroscopic analysis of the crude reaction mixture 

revealed a disappearance of the phthalazinone-NH peak and a shift in the -CH2Cl 

signal from 4.58 ppm to 5.40 ppm (Figure 5.19). Even though the change in 1H 

NMR chemical shift corresponded to that expected for –CH2F, the lack of signal 

splitting associated with fluorine was indicative of the formation of a different 

product. Based on these observations, it was believed that compound 38 

underwent self-oligomerisation through nucleophilic substitution between the 

phthalazinone core of one molecule and the chlorine-bearing carbon of a 

secondary molecule, thereby preventing fluorination from taking place. 



205 
 

 

 

Scheme 5.29. Attempted aliphatic nucleophilic substitution fluorination for the 

synthesis of 17. 

Figure 5.19. 1H NMR spectra of compound 38 and the crude reaction mixture 

outlined in Scheme 5.29. NMR data were acquired using deuterated chloroform 

as the solvent and analysed using the iNMR 2.0.7 software. 

In order to overcome the issue of self-oligemirisation, the phthalazinone-NH 

functionality of compound 38 was Boc protected using di-tert-butyl dicarbonate 

(29) and a catalytic amount of DMAP to generate 72 (Scheme 5.30). Utilising 

precursor 72 as a way of accessing compound [18F]-17 has the disadvantage of 

necessitating a multi-step radiochemical approach comprising of a 

radiofluorination step followed by a successive Boc-deprotection step. Such 

prolongation of radiosynthesis can have a negative effect on the radiotracer end 
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of synthesis yield due to decay of the short lived fluoride radioisotope (18F half-

life = 109.8 minutes).  

 

 

Scheme 5.30. Proposed aliphatic nucleophilic substitution radiofluorination 

approach for the synthesis of [18F]-17 using the Boc-protected aliphatic 

chlorinated precursor 72. 

Prior to developing the radiochemistry for accessing [18F]-17, non-radioactive 

fluorination conditions were investigated using precursor 72 (Table 5.5). Earlier 

described fluorination conditions, utilising TBAF as a nucleophilic source of 

fluorine and acetonitrile as a non-protic solvent, resulted in a poor conversion 

with a 10.0 : 1.0 ratio of starting material (72) to desired product (73) (Entry 1). 

In an attempt to enhance the degree of conversion, a higher boiling point 

solvent was used and the temperature was increased from 80 C to 120 C (Entry 

2). However, the 5.0 : 1.0 ratio of 72 : 73 was only a marginal improvement. As 

described earlier (Section 5.1.2.2), bulky protic alcohols can facilitate aliphatic 

nucleophilic substitution reactions by enhancing the leaving group ability and by 

solvating the fluoride while maintaining its nucleophilicity (Kim et al., 2008). 

Therefore, a 1.0 : 2.0 mixture of acetonitrile and tert-butyl alcohol was used as 
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a reaction solvent, resulting in a marked improvement in the ratio of 72 : 73 

(i.e. 1.0 : 4.0) (Entry 3). 

Table 5.5. Screen of reaction conditions for the non-radioactive nucleophilic 

substitution fluorination of precursor 72. 

 
aThe ratio was calculated from the 1H NMR spectrum (acquired using deuterated 

chloroform as the solvent) of the crude mixture following in vacuo reaction 

solvent removal (Entries 1 and 3) or dichloromethane/aqueous extraction (Entry 

2) using the iNMR 2.0.7 software. MeCN = acetonitrile; DMF = N,N’-

dimethylformamide; t-BuOH = tert-butanol. 

With non-radioactive fluorination conditions established, focus was directed at 

optimising the Boc-deprotection chemistry to allow for rapid and efficient 

synthesis of 17 from 73; the results of this reaction screen can be found in table 

5.6. Utilising acid as a means of Boc-cleavage at room temperature resulted in a 

low degree of Boc-deprotection over a 10 minute reaction period (Entry 1). By 

increasing the temperature to 110 C complete cleavage of the protecting group 

was achieved in just 5 minutes (Entry 2).  However, the generation of multiple 

side products was observed with a 2.9 : 1.0 ratio of desired product 17 to side 

products. It is possible that side product generation was a consequence of 

compound degradation, as well as acid hydrolysis of the alkyl-Cl and alkyl-F 

functionalities of 17 and 73 respectively. Reducing the temperature to 80 C 
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resulted in a decrease in side product formation, while maintaining Boc-

deprotection efficacy (Entry 3). Thermal conditions in the presence of N,N’-

dimethylformamide were less successful at cleaving the Boc protecting group, 

resulting in a 1.1 : 1.0 and 4.2 : 1.0  ratio of 73 : 17 for reactions conducted at 

120 C and 140 C, respectively, over a period of 10 minutes (Entries 4 and 5). In 

an attempt to minimise the possibility of degradation and hydrolysis, mild 

reactions conditions developed by Wang, Liang, and Qu (2009) utilising water as 

an acid-base catalyst were applied (Entry 6). Despite poor aqueous solubility of 

73, complete cleavage of the Boc protecting group was achieved in 5 minutes 

without the formation of any side products. Therefore, the deprotection 

conditions described in entry 6 (Table 5.6) were identified as optimal. 

Table 5.6. Screen of reaction conditions for the Boc-deprotection of compound 

73 to access compound 17. 

 
aThe ratio was calculated from the total ion current (TIC) chromatogram of the 

LC-MS spectrum of the crude reaction mixture. bThe term ‘side products’ entails 

all other reaction products excluding compound 17. rt = room temperature;  

DMF = N,N’-dimethylformamide. 
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The final step before translation of non-radioactive chemistry to 

radiofluorination chemistry involved establishing chromatographic conditions for 

the purposes of radiotracer purification and quality control.  Measurement of the 

retention times of compounds 17 and 72 on an analytical reverse-phase C18 HPLC 

column, using the mobile phase gradient conditions depicted in Figure 5.20 A, 

revealed good separation between the fluorinated target compound 17 and the 

Boc-protected chlorinated precursor 72 (Figure 5.20). 

 

Figure 5.20. The chromatographic gradient used to measure the retention times 

(Rt) of compounds 17 and 72 on an analytical reverse-phase C18 column (A) and 

the corresponding UV-HPLC (254 nm) chromatograms (B). MeCN = acetonitrile; 

dH2O = distilled water; Rs = resolution. 

With non-radioactive fluorination, Boc-deprotection, and chromatographic 

methodology in place, focus was shifted toward the development of 

radiofluorination chemistry. An initial attempt at 18F radiolabelling of precursor 

72, utilising TBAHCO3 as a phase transfer agent and acetonitrile as a solvent, 

allowed for a radioisotope incorporation of 30% following a 30 minute reaction 

(Table 5.7, Entry 1).  
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Table 5.7. Investigation and optimisation of aliphatic nucleophilic substitution 

radiofluorination methodology for the synthesis of [18F]-73 using the Boc-

protected chlorinated precursor 72. 

 
aCalculated from analytical radio-HPLC chromatograms obtained from crude 

reaction mixtures. MeCN = acetonitrile; t-BuOH = tert-butyl alcohol; PTA = phase 

transfer agent; K222 = Kryptofix; TBAHCO3 = tetra-n-butylammonium hydrogen 

carbonate. 

Replacing the phase transfer agent with K222 in the presence of basic potassium 

carbonate (in a phase transfer agent to base ratio of 1.0 : 0.4) resulted in a 

marked drop in the radioincorporation yield to only 4% (Entry 2). Introduction of 

tert-butyl alcohol resulted in 22% and 48% radiofluoride incorporation yields 

following a 10 and 30 minute reactions respectively (Table 5.5, Entry 3). 

Radiolabelling yield was further improved by increasing the reaction 

temperature from 100 C to 110 C (Entry 5). Interestingly, doubling the reaction 

volume was associated with a 14% drop in 18F incorporation (Entry 6), suggesting 
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that the concentration of reagents in the reaction is an important variable. 

Solvent volumes below 0.3 mL were not investigated due to the potential lack of 

surface contact between precursor 72 and the 18F-phase transfer agent complex 

adhered to reaction vessel walls. Based on the above data, radiofluorination 

conditions outlined in entry 5 were identified as optimal. 

Next, hydrochloric acid and water mediated Boc-deprotection conditions, as 

investigated previously on non-radioactive 73 (Table 5.6), were applied to [18F]-

73 (Scheme 5.31).  

 

Scheme 5.31. Aliphatic nucleophilic substitution radiofluorination of precursor 

72 followed by Boc-deprotection giving access to [18F]-17. Reagents and 

conditions: (a) 1 M HCl, 100 C, 5 min; (b) H2O, 120 C, 5 min. 

By scrutinising the radio-HPLC chromatograms of the crude reaction mixtures 

before and after Boc-deprotection (Figure 5.21), it could be seen that ratio of 

free (unbound) 18F to labelled product increased by 0.80 in the presence of 

hydrochloric acid, compared to a ratio increase of just 0.20 when water was 

used as the deprotecting agent. These data are indicative of hydrolytic benzyl-
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18F cleavage from [18F]-17, thus leading to an increase in free 18F. It is 

noteworthy that the hydrolytic loss of labelled radiofluoride was markedly lower 

in the presence of water than hydrochloric acid. With this in mind, Boc-cleavage 

utilising water and a temperature of 120 C was identified as optimal for 

accessing [18F]-17 from [18F]-73. 

 

Figure 5.21. Analytical radio-HPLC chromatograms of the crude reaction 

mixtures as outlined in Scheme 5.31 following radiofluorination (A and C), and 

hydrochloric acid (B) and water (D) catalysed Boc-deprotection.The identity of 

[18F]-17 was confirmed by comparing the retention time of the radiolabelled 

product (i.e. 18F-bearing) against the retention time of unlabelled 17 (i.e. 19F-

bearing) (Figure 5.20). 

The optimised two-stage radiofluorination protocol, consisting of a 

radiofluorination and a subsequent Boc-deprotection step, was used for the 

synthesis of [18F]-17 (Scheme 5.32), allowing for a radiofluoride incorporation of 

49  10% (n = 8) (measured using a preparatory HPLC system after the de-

protection step). It was envisaged that this level of incorporation will be 
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sufficient to achieve an overall radiochemical end of synthesis yield that will be 

in line with the earlier stipulated hypothesis (see section 5.1.4 for details).  

 

Scheme 5.32. Optimised aliphatic nucleophilic substitution radiofluorination 

methodology for the synthesis of the potential PARP-1 PET imaging agent [18F]-

17 using the Boc-protected chlorinated precursor 72. 

Since 72 was used in a large excess relative to 18F, the unreacted precursor was 

expected to form the chlorinated analogue 38 when subjected to the Boc-

deprotection step. To ensure adequate separation of 38 from [18F]-17 during 

radiotracer purification, the analytical chromatographic conditions as described 

earlier in figure 5.20 were slightly modified for the preparatory HPLC system. 

The modification consisted of slowing down the mobile phase gradient of 

acetonitrile as shown in figure 5.22. HPLC methodology was chosen for 

purification due to the chemical similarities between the chlorine and fluorine 

bearing compounds, which could be difficult to separate using SPE. Future work 

could involve utilisation of an alternative precursor, such as a compound bearing 

an OTs leaving group, which could potentially simplify the purification process 

and allow for radiosynthetic automation using SPE (see chapter 8 for details). 

However, it should be noted an OTs bearing precursor may exhibit reduced 

stability properties when compared to compound 72, potentially resulting in the 

need for frequent re-synthesis.  
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Figure 5.22. Optimal mobile phase preparatory HPLC gradient conditions used 

for purification of [18F]-17 synthesised using aliphatic nucleophilic substitution 

radiofluorination methodology. 

It was found that these preparatory chromatographic conditions allowed for 

adequate separation between [18F]-17 and the various UV active chemical 

entities generated as part of the reaction. This allowed for effective purification 

of the radiotracer and >99% radiochemical purity (n = 4) (Figure 5.23). 

 

Figure 5.23. An analytical quality control UV (254 nm)/radio-HPLC 

chromatogram of [18F]-17 showing >99% radiochemical purity of the radiotracer 

formulated in 5.0% v/v dimethyl sulfoxide in 0.9% w/v saline. The identity of 

[18F]-17 was confirmed by comparing the retention time of the radiolabelled 

product (i.e. 18F-bearing) against the retention time of unlabelled 17 (i.e. 19F-

bearing) (Figure 5.20). 
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As described earlier for [123I]-4 (section 5.2.1), the specific activity for [18F]-17 

was calculated from the UV-HPLC chromatogram obtained during the radiotracer 

purification step and with the aid of a UV calibration plot acquired using non-

labelled (19F-bearing) 17 (Appendix 9.8). The specific activity of [18F]-17 was 

calculated to be >4.32  1.46 Ci/μmol) (n = 3). Since the amount of [18F]-17 that 

was produced fell below the sensitivity threshold of the UV detector for this 

particular compound (<1.68 × 104 μmol), an absolute value for the specific 

activity could not be calculated. 

As for [123I]-4 (Section 5.2.1), physiological saline (0.9% w/v sodium chloride) 

combined with a co-solvent was chosen as the formulation vehicle for [18F]-17. 

Due to poor solubility of 17 in ethanol, dimethyl sulfoxide was utilised for co-

solvency. Dimethyl sulfoxide is generally associated with low systemic toxicity 

and it has been shown that as much as 30.0% of the solvent by volume can be 

administered parenterally to CD1 nude mice without any observable adverse 

reactions (Thackaberry et al., 2014). However, due to the effects of dimethyl 

sulfoxide on compound pharmacokinetics (reviewed by Buggins, Dickinson, and 

Taylor (2007)), a low concentration of 5.0% by volume was utilised in the final 

radiotracer formulation. Formulation of [18F]-17 in a solution of 5.0% v/v 

dimethyl sulfoxide in 0.9% w/v saline allowed for an end of synthesis yield of 9  

2% (n = 7). 

5.3 Conclusion. 

The research presented in this chapter was successful in developing 

radiosynthetic methodologies for the generation of the potential PARP-1 SPECT 

tracer [123I]-4. The radiotracer was accessed in a manner that is in line with the 

earlier stipulated hypotheses (section 5.1.4), and in quantities sufficient for pre-

clinical evaluation. [123I]-4 was generated in a high specific activity of >19.0  

10.3 Ci/μmol (n = 4), a radiochemical end of synthesis yield of 37  7.% (n = 6), 

and a radiochemical purity of >99% (n = 6). However, adequate radiolabelling 

methodology for the manual synthesis of the potential PET imaging agent [18F]-

11 was not established. Work involving the optimisation of aromatic nucleophilic 
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substitution radiofluorination chemistry, utilising the para nitro precursor 63, 

afforded a maximum radiofluoride incorporation yield of just 19%, which was not 

sufficient for further radiochemical protocol development. Efforts to improve 

the amount of radioisotope incorporation via the use of a diazonium tosylate salt 

leaving group were not successful due to unprecedented side reactivity taking 

place. These issues were circumvented by pursuing [18F]-17 as alternative target 

radiotracer with potential for PARP-1 PET imaging. The synthesis of [18F]-17 was 

achieved in a specific activity of >4.32  1.46 Ci/μmol (n = 3), an end of 

synthesis yield of 9  2% (n = 7) and a radiochemical purity of >99% (n = 4). The 

markedly lower end of synthesis yield of the radiofluorinated tracer [18F]-17 

when compared to [123I]-4 can be explained by the lower radioincorporation 

yields associated with the former (49  10%; n = 8 versus 90  4%; n = 4) and the 

shorter half-life of the radioisotope (18F half-life = 109.8 minutes versus 123I half-

life = 13.2 hours). It is noteworthy that since commencing this work, Carney et 

al. (2015) were able to generate [18F]-11 in quantities sufficient for pre-clinical 

evaluation by utilising early-stage radiofluorination chemistry. 

5.4 Experimental. 

5.4.1 General experimental. 

Please see chapter 3 for details concerning the general chemistry experimental 

and experimental information for compounds 3, 4, 11 and 17. The synthesis of 

compound 60 has been reported previously by Zmuda et al. (2015). Resin-bound 

nitrite was prepared by making a solution of sodium nitrite (2.07 g, 30.0 mmol) 

in water (30 mL), to which AmberlystTM A26 resin (3.50 g) was added. This was 

allowed to stir at room temperature for 10 minutes. The resin beads were then 

collected by filtration and washed with water to yield resin-bound nitrite at a 

literature predicted nitrite loading of 3.5 mmol per gram (Filimonov et al., 

2008).  

 

For radiofluorination chemistry, [18F]-fluoride was produced by staff employed at 

the PET Radiopharmaceutical Production Unit at NHS Greater Glasgow Clyde in a 
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cyclotron (GE PETtrace 6 cyclotron) via the [18O(p, n)18F] nuclear reaction by 

irradiation of [18O]-water. Irradiation of the target water was performed with a 

16.5 MeV proton beam (40 A). HPLC analysis and purification was performed 

using analytical and preparatory systems, respectively, that belonged to the 

Dionex UltiMate 3000 series. Phenomenex Synergi 4 μm Hydro-RP 80Å 150  4.60 

mm and 150  10 mm columns were used in the analytical and preparatory 

systems respectively, with column temperatures set to 25 C. Mobile phase flow 

rates were 1 mL/min and 3 mL/min for the analytical and preparatory systems 

respectively. Analytical UV detection was performed using a UltiMate diode 

array detector (190–800 nm) and radiodetection was achieved using a Berthold 

Technologies Flow Star LB513 detector. Preparatory UV detection was performed 

using a using a Knauer Advanced Scientific Instruments Smartline UV Detector 

2500 and radiodetection was achieved with either a pin-diode (for 18F) or a 

photomultiplier tube (for 123I) connected to a Lab Logic Flow-Count 

radiodetector. HPLC data acquisition and analyses were carried out using the 

Chromeleon 6.8 Chromatography software. 

A stock solution of K222/potassium carbonate was prepared by dissolving 100.0 

mg of K222 (0.266 mmol) in 2 mL of acetonitrile and adding 12.0 mg of K2CO3 

(0.087 mmol) in 0.5 mL of distilled water. A stock solution of 0.750 M TBAHCO3 

was prepared by diluting 2.5 mL of 1.5 M TBAOH with 2.5 mL of distilled water. 

Carbon dioxide was bubbled through the solution for 2 hours until a pH 7.7 was 

reached, and then excess carbon dioxide was removed by bubbling argon through 

the mixture until pH 9.0 was reached. A stock solution of caesium carbonate was 

prepared by dissolving 6.8 mg of caesium carbonate (0.021 mmol) in 1 mL of 

distilled water.  
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5.4.2 Chemistry experimental. 

5.4.2.1 Experimental data for all synthesised compounds. 

4-[3’-[4’’-(4’’’-Bromobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (60) 

 

To a solution of 4-bromobenzoic acid (59) (165.0 mg, 0.820 mmol) in N,N’-

dimethylformamide (10 mL) was added triethylamine (177.0 μL, 1.31 mmol), 

followed by O-benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate 

(33) (341.0 mg, 0.900 mmol) and the mixture was stirred at room temperature 

for 2 hours. 4-[4’-Fluoro-3’-(piperazine-1’’-carbonyl)benzyl]-2H-phthalazin-1-one 

(3) (300 mg, 0.820 mmol) was added and the mixture was stirred for a further 72 

hours. Water (14 mL) was then added, followed by 1 hour of stirring after which 

the mixture was cooled to 0 C. The resulting precipitate was collected by 

vacuum filtration, washed with water (4 × 30 mL) and dried in vacuo to yield 4-

[3’-[4’’-(4’’’-bromobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (60) (424 mg, 94%) as a yellow foam. vmax/cm1 (neat) 3233 

(NH), 2934 (CH), 1668 (CO), 1593 (C=C), 1460, 1433, 1269, 1221, 1003, 772; δH 

(500 MHz, CDCl3) 3.20–4.00 (8H, m, 4 × NCH2), 4.31 (2H, s, 7’-H2), 7.06 (1H, br s, 

5’-H), 7.27–7.39 (4H, m, 2’-H, 6’-H, 3’’’-H and 5’’’-H), 7.52‒7.63 (2H, m, 2’’’-H 

and 6’’’-H), 7.70–7.75 (1H, m, 5-H), 7.75–7.78 (2H, m, 6-H and 7-H), 8.46–8.53 

(1H, m, 8-H), 10.99 (1H, s, NH); δc (126 MHz, CDCl3) 37.7 (CH2), 42.2 (2 × CH2), 

47.0 (2 × CH2), 116.2 (CH, d, JC-C-F 23.1 Hz), 123.5 (C, d, JC-C-F 17.6 Hz), 124.6 

(C), 125.0 (CH), 127.2 (CH), 128.3 (C), 128.8 (2 × CH), 129.3 (CH, d, JC-C-C-F 3.5 

Hz), 129.5 (C), 131.6 (CH), 131.8 (CH, d, JC-C-C-F 8.0 Hz), 132.0 (2 × CH), 133.7 

(CH), 133.8 (C), 134.5 (C, d, JC-C-C-C-F 3.5 Hz), 145.5 (C), 156.9 (C, d, JC-F 248.3 
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Hz), 160.5 (C), 165.2 (C), 169.6 (C); m/z (ESI) 571.0732 (MNa+. C27H22
79BrFN4NaO3 

requires 571.0752). 

4-[3’-[4’’-(4’’’-Nitrobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (63) 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

bromobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one 

(60) using a solution of 4-nitrobenzoic acid (62) (92.0 mg, 0.550 mmol) in N,N’-

dimethylformamide (6 mL), triethylamine (119 μL, 0.880 mmol), O-

benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (33) (231 mg, 

0.610 mmol). Following the addition of 4-[4’-fluoro-3’-(piperazine-1’’-

carbonyl)benzyl]-2H-phthalazin-1-one (3) (200 mg, 0.550 mmol) the mixture was 

stirred at room temperature for a further 48 hours. Water (12 mL) was then 

added, followed by 1 hour of stirring, after which the mixture was cooled to 0 

C. The resulting precipitate was collected by vacuum filtration, washed with 

water (4 × 20 mL) and dried in vacuo to yield 4-[3’-[4’’-(4’’’-

nitrobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (63) 

(239.0 mg, 84%) as an orange foam. NMR spectra showed a 60:40 mixture of 

rotamers. Only data for the major rotamer were recorded. vmax/cm1 (neat) 3167 

(NH), 3012 (ArH), 2904 (CH), 1638 (CO), 1616 (C=C),1599 (NO2), 1346 (NO2),1433, 

1265, 1004, 735; δH (400 MHz, d6-DMSO) 3.23 (2H, s, N-CH2), 3.38 (2H, s, N-CH2), 

3.57–3.86 (4H, m, NCH2), 4.39 (2H, d, J 18.6 Hz, 7’-HH and 7’-HH), 7.21–7.34 

(1H, m, 5’-H), 7.35–7.53 (2H, m, 2’-H and 6’-H), 7.69–7.79 (2H, m, 2’’’-H and 

6’’’-H), 7.79–8.05 (3H, m, 5-H, 6-H, and 7-H), 8.25–8.38 (3H, m, 8-H, 3’’’-H, and 

5’’’-H), 12.65 (1H, s, NH); δc (101 MHz, d6-DMSO) 37.0 (CH2), 41.9 (2 × CH2), 46.9 

(2 × CH2), 116.3 (CH, d, JC-C-F 18.2 Hz), 123.8 (C, d, JC-C-F 18.0 Hz), 124.0 (2 × 

CH), 125.9 (CH), 126.5 (CH), 128.3 (C), 128.8 (2 × CH), 129.4 (CH), 129.5 (C), 

132.0 (CH), 132.2 (CH, d, JC-C-C-F 8.8 Hz), 133.9 (CH), 135.3 (C, d, JC-C-C-C-F 3.4 
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Hz), 142.3 (C), 145.2 (C), 148.4 (C), 156.8 (C d, JC-F 245.7 Hz), 159.8 (C), 164.5 

(C), 167.8 (C); m/z (ESI) 538.1488 (MNa+. C27H22FN5NaO5 requires 538.1497). 

4-[3’-[4’’-(4’’’-Aminobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (64) 

 

4-[3’-[4’’-(4’’’-Nitrobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (63) (55.0 mg, 0.107 mmol) was suspended in a 1:1 mixture of 

ethanol and ethyl acetate (6 mL), and tin(II) chloride dihydrate was added (120 

mg, 0.533 mmol). The suspension was stirred under reflux for 24 hours after 

which the mixture was cooled to ambient temperature and a saturated solution 

of sodium hydrogen carbonate (12 mL) was added. The product was extracted 

into ethyl acetate (3 × 10 mL), dried with magnesium sulfate, filtered and 

concentrated in vacuo to give 4-[3’-[4’’-(4’’’-aminobenzoyl)piperazine-1’’-

carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (64) (45.0 mg, 87%) as an orange 

foam. vmax/cm1 (neat) 3347 and 3221 (NH), 3007 (ArH), 2924 and 2863 (CH), 

1605 (CO), 1424, 1256, 1177, 1003, 748, 729; δH (400 MHz, CDCl3) 3.30 (2H, br s, 

N-CH2), 3.49–4.16 (8H, m, 3 × N-CH2, and 4’’’-NH2), 4.27 (2H, s, 7’-H2), 6.61 (2H, 

d, J 8.37 Hz, 3’’’-H and 5’’’-H), 7.01 (1H, t, J 8.7 Hz, 5’-H), 7.22 (2H, d, J 8.4 

Hz, 2’’’-H and 6’’’-H), 7.28–7.36 (2H, m, 2’-H and 6’-H, 7.66–7.77 (3H, m, 5-H, 

6-H and 7-H), 8.42–8.48 (1H, m, 8-H), 11.61 (1H, s, NH); δc (101 MHz, CDCl3) 

37.6 (CH2), 42.1 (2 × CH2), 47.0 (2 × CH2), 114.1 (2 × CH), 116.0 (CH, d, JC-C-F 

22.0 Hz), 123.6 (C, d, JC-C-F 17.9 Hz), 123.9 (C), 124.9 (CH), 127.0 (CH), 128.2 

(C), 129.1 (CH, d, JC-C-C-F 3.6 Hz), 129.3 (2 × CH), 129.4 (C), 131.5 (CH), 131.6 

(CH, d, JC-C-C-F 8.1 Hz), 133.5 (CH), 134.3 (C, d, JC-C-C-C-F 3.5 Hz), 145.4 (C), 148.6 

(C), 156.8 (C, d, JC-F 247.6 Hz), 160.7 (C), 165.1 (C), 171.1 (C); m/z (ESI) 

508.1912 (MNa+. C27H24FN5NaO3 requires 508.1902). 
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4-[3’-[4’’-[4’’’-Diazonium-(4’’’’-

methylbenzenesulfonate)benzoyl]piperazine-1’’-carbonyl]-4’-fluorobenzyl]-

2H-phthalazin-1-one (65) 

 

4-[3’-[4’’-(4’’’-aminobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (64) (30.0 mg, 0.035 mmol) was added to a solution of p-

toluenesulfonic acid (20.0 mg, 0.12 mmol) in glacial acetic acid (1 mL). The 

mixture was cooled to 10 C using a water bath and resin-bound nitrite was 

added (30.0 mg, equivalent to 0.11 mmol of nitrite; see general experimental 

section), and stirred for 1 hour. Diethyl ether (5 mL) was added and the resulting 

yellow precipitate was collected by filtration, washed with diethyl ether (3 × 10 

mL) and dried in vacuo to yield 4-[3’-[4’’-[4’’’-diazonium-(4’’’’-

methylbenzenesulfonate)benzoyl]piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (65) (15.0 mg, 62%) as a yellow foam. Due to the instability of 

the salt complete characterisation was not attainable. δH (400 MHz, CD3OD) 2.35 

(3H, s, 4’’’’-CH3), 3.22–3.33 (2H, m, NCH2), 3.40–3.48 (2H, m, N-CH2), 3.67–3.77 

(2H, m, NCH2), 3.86 (2H, br s, NCH2), 4.37 (2H, d, J 19.7 Hz, 7’-HH and 7’-HH), 

7.10‒7.19 (1H, m, 5’-H), 7.20 (2H, d, J 7.9 Hz, 3’’’’-H and 5’’’’-H), 7.33–7.40 

(1H, m, 2’-H), 7.45–7.54 (1H, m, 6’-H), 7.67 (2H, d, J 8.2 Hz, 2’’’’-H and 6’’’’-

H), 7.76–8.05 (5H, m, 5-H, 6-H, 7-H, 2’’’-H, and 6’’’-H), 8.35 (1H, m, 8-H), 8.70 

(2H, t, J 9.9 Hz, 3’’’-H and 5’’’-H). 
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4-[3’-[4’’-(4’’’-Chloromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (38) 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

bromobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one 

(60) using a solution of 4-(chloromethyl)benzoic acid (39) (18.7 mg, 0.110 mmol) 

in N,N’-dimethylformamide (1 mL), triethylamine (24.0 μL, 0.180 mmol), O-

benzotriazole-N,N,N’,N’-tetramethyluroniumhexafluorophosphate (33) (45.6 mg, 

0.120 mmol). Following the addition of 4-[4’-fluoro-3’-(piperazine-1’’-

carbonyl)benzyl]-2H-phthalazin-1-one (3) (40.0 mg, 0.110 mmol) the mixture 

was stirred at room temperature for a further 72 hours. Water (6 mL) was then 

added, followed by 0.5 hours of stirring, after which the mixture was cooled to 0 

C. The resulting precipitate was collected by vacuum filtration and washed with 

water (4 × 20 mL). Purification by flash column chromatography (methanol/ethyl 

acetate, 5:95) gave 4-[3’-[4’’-(4’’’-chloromethyl)benzoyl)piperazine-1’’-

carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (38) (19.0 mg, 34%) as a white 

foam. Rƒ (methanol/ethyl acetate, 5:95) 0.40; vmax/cm1 (neat) 3200 (NH), 2924 

(CH), 1630 (CO), 1429, 1256, 1005, 750, 731; δH (400 MHz, CDCl3) 3.21–3.99 (8H, 

m, 4 × N-CH2), 4.27 (2H, s, 7’-H2), 4.59 (2H, s, 4’’’-CH2Cl), 7.03 (1H, br s, 5’-H), 

7.30–7.36 (2H, m, 3’’’-H and 5’’’-H), 7.37–7.49 (4H, m, 2’-H, 6’-H, 2’’’-H, and 

6’’’-H), 7.67–7.72 (1H, m, 5-H), 7.73–7.80 (2H, m, 6-H and 7-H), 8.44–8.49 (1H, 

m, 8-H), 10.84 (1H, br s, NH); δc (101 MHz, CDCl3) 37.8 (CH2), 42.3 (2 × CH2), 

45.6 (CH2), 47.1 (2 × CH2), 116.3 (CH, d, JC-C-F 19.9 Hz), 123.8 (C, d, JC-C-F 17.7 

Hz), 125.1 (CH), 127.4 (CH), 127.7 (2 × CH), 128.5 (C), 129.0 (2 × CH), 129.4 

(CH, d, JC-C-C-F 3.6 Hz), 129.7 (C), 131.8 (CH), 132.0 (CH, d, JC-C-C-F 8.2 Hz), 132.1 

(2 × CH), 133.8 (CH), 134.6 (C, d, JC-C-C-C-F 3.5 Hz), 135.2 (C), 139.7 (C), 145.6 

(C), 157.2 (C, d, JC-F 248.1 Hz), 160.5 (C), 165.3 (C), 170.2 (C); m/z (ESI) 

541.1413 (MNa+. C28H24
35ClFN4NaO3 requires 541.1413). 
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4-[3’-[4’’-(4’’’-Chloromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2-tert-butyloxycarbonylphthalazin-1-one (72) 

 

To a solution of 4-[3’-[4’’-(4’’’-chloromethyl)benzoyl)piperazine-1’’-carbonyl]-

4’-fluorobenzyl]-2H-phthalazin-1-one (38) (170 mg, 0.328 mmol) in acetonitrile 

(1.5 mL) was added di-tert-butyl dicarbonate (29) (86.0 mg, 0.393 mmol) and 4-

dimethylaminopyridine (4.00 mg, 0.0328 mmol). The mixture was stirred at room 

temperature for 4 hours followed by evaporation of solvent in vacuo. The crude 

product was extracted into ethyl acetate (5 mL) and the organic layer was 

washed with water (3 × 10 mL), dried with magnesium sulfate, filtered and 

concentrated in vacuo to give 4-[3’-[4’’-(4’’’-chloromethyl)benzoyl)piperazine-

1’’-carbonyl]-4’-fluorobenzyl]-2-tert-butyloxycarbonylphthalazin-1-one (72) as a 

white foam (148 mg, 72%). vmax/cm1 (neat) 2982 (CH), 1634 (CO), 1427, 1248, 

1003, 750; δH (400 MHz, CDCl3) 1.66 (9H, s, OtBu), 3.15–3.99 (8H, m, 4 × N-CH2), 

4.30 (2H, s, 7’-H2), 4.59 (2H, s, 4’’’-CH2Cl), 7.03 (1H, br s, 5’-H), 7.30–7.36 (2H, 

m, 3’’’-H and 5’’’-H), 7.37–7.49 (4H, m, 2’’’-H, 6’’’-H, 2’-H and 6’-H), 7.59–7.67 

(1H, m, 5-H), 7.69–7.78 (2H, m, 6-H and 7-H), 8.42–8.49 (1H, m, 8-H); δc (101 

MHz, CDCl3) 27.8 (3 × CH3), 38.1 (CH2), 42.2 (2 × CH2), 45.4 (CH2), 47.1 (2 × CH2), 

85.9 (C), 116.2 (CH, d, JC-C-F 20.4 Hz), 123.7 (C, d, JC-C-F 18.2 Hz), 125.1 (CH), 

127.6 (2 × CH), 128.1 (CH), 128.7 (C), 128.8 (2 × CH), 129.1 (C), 129.2 (CH, d, JC-

C-C-F 3.4 Hz), 131.8 (CH, d, JC-C-C-F 7.6 Hz), 132.0 (CH), 134.0 (CH), 134.1 (C, d, 

JC-C-C-C-F 3.7 Hz), 135.1 (C), 139.5 (C), 145.3 (C), 151.1 (C), 157.0 (C, d, JC-F 247.7 

Hz), 158.2 (C), 165.1 (C), 170.0 (C); m/z (ESI) 641.1915 (MNa+. C33H32
35ClFN4NaO5 

requires 641.1937). 
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4-[3’-[4’’-(4’’’-Fluoromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2-tert-butyloxycarbonylphthalazin-1-one (73) 

 

The reaction was carried out as described for 4-[3’-[4’’-(4’’’-

chloromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2-tert-

butyloxycarbonylphthalazin-1-one (72) using a solution of 4-[3’-[4’’-(4’’’-

fluoromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-

one (17)  (3.30 mg, 0.00656 mmol), di-tert-butyl dicarbonate (29) (1.70 mg, 

0.00790 mmol) and 4-dimethylaminopyridine (0.08 mg, 0.000656 mmol) in 

acetonitrile (0.4 mL). The mixture was stirred at room temperature for 1.25 

hours followed by evaporation of solvent in vacuo. The crude product was 

extracted into ethyl acetate (2 mL) and the organic layer was washed with water 

(3 × 4 mL), dried with magnesium sulfate, filtered and concentrated in vacuo to 

give 4-[3’-[4’’-(4’’’-fluoromethyl)benzoyl)piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2-tert-butyloxycarbonylphthalazin-1-one (73) (3.50 mg, 81%) as a 

yellow-white foam. vmax/cm1 (neat) 2930 (CH), 1635 (CO), 1216, 1005, 754; δH 

(400 MHz, CDCl3) 1.67 (9H, s, OtBu), 3.14–4.00 (8H, m, 4 × N-CH2), 4.31 (2H, s, 

7’-H2), 5.41 (2H, d, J 47.4 Hz, 4’’’-CH2F), 7.05 (1H, br s, 5’-H), 7.34 (2H, d, J 6.3 

Hz, 2’-H and 6’-H), 7.44 (4H, br s, 2’’’-H, 3’’’-H, 5’’’-H and 6’’’-H), 7.61–7.66 

(1H, m, 5-H), 7.71–7.77 (2H, m, 6-H and 7-H), 8.44–8.49 (1H, m, 8-H); δc (101 

MHz, CDCl3) 28.0 (3 × CH3), 38.2 (CH2), 42.1 (2 × CH2), 47.7 (2 × CH2), 84.0 (CH2, 

d, JC-F 167.8 Hz), 86.0 (C), 116.3 (CH, d, JC-C-F 21.7 Hz), 123.8 (C, d, JC-C-F 17.6 

Hz), 125.4 (CH), 127.5 (2 × CH, d, JC-C-C-F 6.1 Hz), 127.6 (2 × CH), 128.3 (CH), 

128.9 (C), 129.2 (C), 129.3 (CH, d, JC-C-C-F 3.4 Hz), 131.9 (CH, d, JC-C-C-F 8.6 Hz), 

132.1 (CH), 134.2 (CH), 134.5 (C, d, JC-C-C-C-F 3.6 Hz), 135.5 (C), 138.4 (C, d, JC-C-F 

17.6 Hz), 145.5 (C), 151.2 (C), 157.1 (C, d, JC-F 245.4 Hz), 158.4 (C), 165.3 (C), 

170.2 (C); m/z (ESI) 625.2221 (MNa+. C33H32F2N4NaO5 requires 625.2233). 
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5.4.2.2 Non-radioactive dediazonisation chemistry. 

5.4.2.2.1  Iodo-dediazonisation of isolated diazonium tosylate salt 65. 

A general procedure involved addition of sodium iodide (1.6 mg, 0.0108 mmol) 

to a solution of 4-[3’-[4’’-[4’’’-diazonium-(4’’’’-

methylbenzenesulfonate)benzoyl]piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (65) (3.7 mg, 0.0054 mmol) in either N,N’-dimethylformamide 

or glacial acetic acid (0.3 mL). The reaction was stirred for 1 or 2 hours either at 

room temperature, 75 C or 100 C. Following this, and once cooled to room 

temperature, the crude mixture was extracted into dichloromethane (2 mL) and 

the organic layer was washed with water (3 × 4 mL), dried with magnesium 

sulfate, filtered and concentrated in vacuo. The resulting solid material was 

then dissolved in dichloromethane and filtered through a pad of silica using 6% 

v/v methanol/dichloromethane. The filtrate was concentrated in vacuo, 

dissolved in deuterated chloroform and analysed using 1H NMR spectroscopy.  

5.4.2.2.2  Iodo-dediazonisation of in situ generated diazonium tosylate salt 65. 

 

To solution of tosic acid (8.2 mg, 0.043 mmol) and 4-[3’-[4’’-(4’’’-

aminobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one 

(64) (7.0 mg, 0.014 mmol) in glacial acetic acid (1.0 mL) was added resin-bound 

nitrite (12.3 mg, equivalent to 0.043 mmol nitrite). The mixture was cooled to 

10 C using a water bath and stirred for 1 hour, after which sodium iodide (4.3 

mg, 0.029 mmol) was added. The reaction was heated to 100 C and stirred for a 

further 2 hours. The crude reaction mixture was then cooled to room 

temperature and the resin-bound nitrite was removed by filtration. A sample of 

the filtrate was removed and ran on the analytical HPLC system using the 

following mobile phase conditions: 0.0–20.0 minutes = 30:70 A:B to 55:45 A:B, 

20.020.5 minutes = 55:45 A:B to 5:95 A:B, 20.5–25.0 minutes = 5:95 A:B where 

A = acetonitrile and B = distilled water.  
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5.4.2.2.3  Fluoro-dediazonisation of in situ generated diazonium tosylate salt 65. 

 

A general procedure involved addition of resin-bound nitrite (8.6 mg, 0.030 

mmol) to a solution of tosic acid (6.0 mg, 0.030 mmol) and 4-[3’-[4’’-(4’’’-

aminobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one 

(64) (5.0 mg, 0.010 mmol) in glacial acetic acid (5.0 mL). The mixture was 

cooled to 10 C using a water bath and stirred for one hour, after which 

potassium fluoride (1.2 mg, 0.020 mol) was added with or without 18-crown-6 

(5.3 mg, 0.020 mmol). The reaction was heated to 100 °C and stirred for a 

further 2 or 2.5 hours. The crude reaction mixture was then cooled to room 

temperature, and the resin-bound nitrite was removed by filtration. A sample of 

the filtrate was removed and run on the analytical HPLC system using mobile 

phase conditions as described for the non-radioactive iodo-dediazonisation of in 

situ generated diazonium tosylate salt 65 (section 5.4.2.2.2). 

5.4.2.2.4 . Fluoro-dediazonisation of isolated diazonium tosylate salt 65. 

 

To a solution of 4-[3’-[4’’-[4’’’-diazonium-(4’’’’-

methylbenzenesulfonate)benzoyl]piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (65) (6.0 mg, 0.0088 mmol) in N-methyl-2-pyrrolidone (0.30 

mL) was added potassium fluoride (1.0 mg, 0.0176 mmol) and 18-crown-6 (7.0 

mg, 0.0176 mmol). The reaction was stirred at 100 C for 1.0 hour. Following 

this, the reaction was cooled to room temperature, and a sample was run on the 

analytical HPLC system using mobile phase conditions as described for the non-

radioactive iodo-dediazonization of in situ generated diazonium tosylate salt 65 

(section 5.4.2.2.2). 

5.4.2.3 General experimental for screening of reaction conditions 

for Boc-deprotection of 73. 

To 1 M hydrochloric acid or N,N’-dimethylformamide (0.30 mL), or distilled 

water (0.50 mL), was added a 0.0166 M solution of 73 in acetonitrile (20 μL). 

The reaction vial was sealed and the mixture was stirred for 5 to 10 minutes at 

either room temperature, 80 C, 110 C, 120 C or 140 C. Following this, the 
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reaction was cooled to room temperature, where necessary, and diluted with 

either 0.20 mL of acetontirile (for reactions conducted in N,N’-

dimethylformamide or water) or 0.30 mL of 1 M sodium hydroxide (for reactions 

conducted in 1 M hydrochloric acid). The diluted crude mixtures were passed 

through a 0.22 μm filter and analysed using LC-MS. 

LC-MS analysis was performed using Shimadzu LC-2010AHT and LCMS-2010EV 

systems. Liquid chromatography was performed on 10 μL sample injections using 

a Kinetex 5 μm XB-C18 100Å (50  4.60 mm) column and the following mobile 

phase conditions: 0.010.0 minutes = 30:70 to 60:40 A:B; 10.012.0 minutes = 

60:40 to 30:70 A:B; 12.014.0 minutes =  30:70 A:B where A = acetonitrile and B 

= 0.1% v/v formic acid in distilled water; flow rate 1.2 mL/min. Compound 

detection was performed using MS and the following detector settings: positive 

ionisation; 1.50 kV; total ion current. Data were recorded and analysed using the 

LabSolutions LCMS software. The identity of compound 73 in the reaction 

mixture was confirmed by establishing the chromatographic retention time of 73 

(Appendix 9.9) and through detection of the MH+ (m/z = 603) or MNa+ (m/z = 

625) ions from the MS chromatogram. The identity of compound 17 in the 

reaction mixture was established by detection of the MH+ (m/z = 503) or MNa+ 

(m/z = 525) ions from the MS chromatogram. 

5.4.3 Radiochemistry experimental. 

5.4.3.1 Manual radiosynthesis of [125I]-4 via radioiodo-

dediazonisation of isolated diazonium tosylate salt 65.  

To a 2 mL v-vial was added 1.80 MBq of [125I]-NaI in 50.0 mM of sodium hydroxide 

(30 μL). Water was removed by passing a constant stream of argon over the 

solution at 100 C for approximately 15 minutes; aliquots of anhydrous 

acetonitrile (3  0.5 mL) were added to facilitate azeotropic drying. A solution 

of 4-[3’-[4’’-[4’’’-diazonium-(4’’’’-methylbenzenesulfonate)benzoyl]piperazine-

1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one (65) (1.5 mg, 0.0022 mmol) 

in glacial acetic acid (0.20 mL) was then added to the v-vial and the reaction 
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was allowed to proceed at 100 C for 30 minutes. The mixture was then cooled 

to room temperature and a sample was removed and run on the analytical HPLC 

system using the mobile phase conditions as described for the non-radioactive 

iodo-dediazonization of in situ generated diazonium tosylate salt 65 (section 

5.4.2.2.2). To confirm the identity of the radiolabelled product, the retention 

time of [125I]-4 was compared to the retention time obtained for non-radioactive 

4 using the same chromatographic conditions. 

5.4.3.2 Manual radiosynthesis of [125I]-4 via radioiodo-

dediazonisation of in situ generated diazonium tosylate salt 

65.  

To a 2 mL v-vial was added a solution of tosic acid (2.4 mg, 0.012 mmol) and 4-

[3’-[4’’-(4’’’-aminobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (64) (2.0 mg, 0.004 mmol) in glacial acetic acid (0.40 mL), 

followed by resin-bound nitrite (3.5 mg, equivalent to 0.012 mmol nitrite). The 

mixture was cooled to 10 °C using a water bath and stirred for 60 minutes, after 

which 3.62 MBq of [125I]-NaI in 50.0 mM of sodium hydroxide (30 μL) was added. 

The reaction vessel was heated to 100 C and stirred for a further 30 minutes. 

The crude reaction was then cooled to room temperature and a sample was 

removed and ran on the analytical HPLC system using the mobile phase 

conditions as described for the non-radioactive iodo-dediazonisation of in situ 

generated diazonium tosylate salt 65 (section 5.4.2.2.2).  

5.4.3.3 Manual radiosynthesis (via radioiodo-debromination of the 

brominated precursor 60), specific activity measurements, 

purification and formulation of [123I]-4.  

The synthesis was performed as reported by Zmuda et al. (2015). To a 2 mL v-

vial, half-filled with 3 mm borsilicate glass beads, was added a 0.492 M solution 

of (NH4)2SO4 in distilled water (0.1 mL), followed by a solution of 4-[3’-[4’’-(4’’’-

bromobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-phthalazin-1-one 

(60) (5.0 mg, 0.0091 mmol) in glacial acetic acid (0.1 mL). The mixture was 



229 
 

 

vortexed and then 35.5–175.0 MBq of [123I]-NaI in 50.0 mM sodium hydroxide was 

added; the edges of the v-vial were rinsed with a 1.0 : 2.0 solution of ethanol 

and distilled water (0.15 mL). Solvents and water were removed by passing a 

constant stream of argon over the solution at 150 C for approximately 30 

minutes; aliquots of anhydrous acetonitrile (3  0.5 mL) were added to facilitate 

azeotropic drying. The argon supply was removed and the sealed v-vial was 

heated to 210 C. Once at the correct temperature, air was injected (8 mL) and 

the reaction was heated for a further 30 minutes. The contents of the v-vial 

were allowed to cool to room temperature and the organic components were 

dissolved in acetonitrile (0.3 mL), followed by the addition of a 3.0 : 7.0 solution 

of acetonitrile and distilled water (0.15 mL). The crude reaction mixture was 

purified using the preparatory HPLC system using the following mobile phase 

conditions: 0.0–30.0 minutes = 30:70 A:B to 55:45 A:B where A = acetonitrile and 

B = distilled water. The radiolabelled product was collected at approximately 

27.0 minutes and concentrated in vacuo in an evaporator flask. The flask was 

rinsed with acetonitrile (3 × 0.3 mL) to extract the radiolabelled compound and 

the solution was transferred to a 2.0 mL v-vial; the solvent was removed by 

passing a constant stream of argon over the solution at 100 C for approximately 

15 minutes. The radiotracer was then dissolved in ethanol followed by dilution 

using 0.9% w/v saline solution such that the final volume was up to 0.9 mL and 

the final concentration of ethanol was 10.0% v/v; the mixture was vortexed for 

up to 0.5 minutes to maximise solubilisation of [123I]-4. The total radiosynthesis 

time was 160  32 minutes (n = 6). 

A sample of the formulated radiotracer was run on the analytical HPLC system 

using the same mobile phase conditions as described above for the purification 

step. To confirm the identity of the radiolabelled product, the retention time of 

[123I]-4 was compared to the retention time obtained for non-radioactive 4 using 

the same chromatographic conditions.  

To measure the specific activity of the synthesised radiotracer, a calibration 

graph of UV peak area (254 nm) against molar quantity of non-radioactive 4 was 

produced (Appendix 9.7). The calibration graph was then used to establish the 

amount in micromoles of radiolabelled product that was produced. However, 
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since the amount of [123I]-4 that was produced fell below the sensitivity 

threshold of the UV detector (<1.68 × 104 µmol), specific activity (Ci/μmol) was 

calculated using the lowest detectable amount of non-labelled 4 established 

from the calibration plot.  

5.4.3.4 Manual radiosynthesis of [18F]-11 via aromatic 

nucleophilic substitution of the nitro precursor 63. 

To a 2 mL v-vial containing between 20–100 MBq of 18F/H2
18O was added either 

K222/potassium carbonate (0.25 mL), TBACO3
 (10 μL), or caesium carbonate (0.1 

mL) stock solution (see general experimental section). The mixture was vortexed 

and the [18F]-fluoride was dried by passing a constant stream of argon over the 

solution at 100 °C for approximately 20 minutes; aliquots of anhydrous 

acetonitrile (3  0.50 mL) were added to facilitate azeotropic drying. A solution 

of 4-[3’-[4’’-(4’’’-nitrobenzoyl)piperazine-1’’-carbonyl]-4’-fluorobenzyl]-2H-

phthalazin-1-one (63) (1.0–5.0 mg, 0.0019–0.0095 mmol) in anhydrous solvent 

(0.3–0.6 mL) was then added to the v-vial and the reaction was allowed to 

proceed for between 10–30 minutes at either 150 C, 180 C or 200 C. Next, the 

crude reaction mixture was cooled to room temperature and a sample was ran 

on the analytical HPLC system using the mobile phase conditions as described for 

the non-radioactive iodo-dediazonisation of in situ generated diazonium tosylate 

salt 65 (section 5.4.2.2.2). To confirm the identity of the radiolabelled product, 

the retention time of [18F]-11 was compared to the retention time obtained for 

non-radioactive 11 using the same chromatographic conditions. 

5.4.3.5 Manual radiosynthesis of [18F]-11 via radiofluoro-

dediazonisation of isolated diazonium tosylate 65. 

 

To a 2 mL v-vial containing between 41.0–66.1 MBq of 18F/H2
18O was added 

either K222/potassium carbonate (0.25 mL) or TBACO3
 (10 μL) stock solution (see 

general experimental section). The mixture was vortexed and the [18F]-fluoride 

was dried by passing a constant stream of argon over the solution at 100 C for 

approximately 20 minutes; aliquots of anhydrous acetonitrile (3  0.5 mL) were 
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added to facilitate azeotropic drying. A solution of isolated 4-[3’-[4’’-[4’’’-

diazonium-(4’’’’-methylbenzenesulfonate)benzoyl]piperazine-1’’-carbonyl]-4’-

fluorobenzyl]-2H-phthalazin-1-one (65) (2.0–2.67 mg, 0.0030-0.0040 mmol) in N-

methyl-2-pyrrolidone (0.3 mL) was then added to the v-vial and the reaction was 

allowed to proceed 30 minutes at either 80, 120 or 155 C. Next, the crude 

reaction mixture was cooled to room temperature and a sample was run on the 

analytical HPLC system using the mobile phase conditions as described for the 

non-radioactive iodo-dediazonisation of in situ generated diazonium tosylate salt 

65 (section 5.4.2.2.2). To confirm the identity of the radiolabelled product, the 

retention time of [18F]-11 was compared to the retention time obtained for non-

radioactive 11 using the same chromatographic conditions. 

5.4.3.6 Manual radiosynthesis (via aliphatic nucleophilic 

substitution of the chlorinated precursor 72), specific activity 

measurements, purification, and formulation of [18F]-17. 

To a 2 mL v-vial containing 469–572 MBq of 18F/H2
18O (0.16 mL) was added 0.750 

M TBAHCO3
 (10 μL) (see general experimental section). The mixture was 

vortexed and the [18F]-fluoride was dried by passing a constant stream of argon 

over the solution at 100 C for approximately 20 minutes; aliquots of anhydrous 

acetonitrile (3  0.5 mL) were added to facilitate azeotropic drying. A solution 

of the chloride precursor 72 (4.9 mg, 0.0079 mmol) in acetonitrile (0.1 mL) and 

tert-butanol (0.2 mL) was then added to the v-vial and the reaction was allowed 

to proceed for 30 minutes at 110 C. After this, distilled water was added (0.45 

mL) and the reaction was heated at 120 C for a further 5 minutes. Next, the 

crude reaction mixture was cooled to room temperature and was purified using 

the preparatory HPLC system using the following mobile phase conditions: 0.0–

3.0 minutes = 30:70 A:B; 3.0–30.0 minutes 30:70 to 75:25 A:B; 30.0–30.1 minutes 

= 75:25 to 95:5 A:B; 30.1–35.0 minutes = 95:5 A:B where A = acetonitrile and B = 

distilled water. The radiolabelled product was collected at approximately 13.5 

minutes and concentrated in vacuo in an evaporator flask. The flask was rinsed 

with acetonitrile (3 × 0.3 mL) to extract the radiolabelled compound and the 

solution was transferred to a 2 mL v-vial; the solvent was removed by passing a 
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constant stream of argon over the solution at 100 C for approximately 15 

minutes. The radiotracer was then dissolved in dimethyl sulfoxide followed by 

dilution using 0.9% w/v saline solution such that the final volume was up to 0.65 

mL and the final concentration of dimethyl sulfoxide was 5.0% v/v; the mixture 

was vortexed for up to 0.5 minutes to maximise solubilisation of [18F]-17. The 

total radiosynthetic time was 138  16 minutes (n = 6). 

A sample of the formulated radiotracer was run on the analytical HPLC system 

using the following mobile phase conditions: 0.0–15.0 minutes = 30:70 A:B to 

90:10; 15.0–20.0 minutes = 90:10 A:B; 20.0–20.5 minutes = 90:10 to 30:70 A:B; 

20.5–25.0 minutes = 30:70 A:B where A = acetonitrile and B = distilled water. To 

confirm the identity of the radiolabelled product, the retention time of [18F]-17 

was compared to the retention time obtained for non-radioactive 17 using the 

same chromatographic conditions.  

To measure the specific activity of the synthesised radiotracer, a calibration 

graph of UV peak area (254 nm) against molar quantity of non-radioactive 17 

was produced (Appendix 9.8). The calibration graph was then used to establish 

the amount in micromoles of radiolabelled product that was produced. However, 

since the amount of [18F]-17 that was produced fell below the sensitivity 

threshold of the UV detector (<1.68 × 104 μmol), specific activity (Ci/μmol) was 

calculated using the lowest detectable amount of non-labelled 17 established 

from the calibration plot.   
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6 IN VITRO STABILITY AND EX VIVO EVALUATION OF THE 

PARP-1 NUCLEAR IMAGING AGENTS [123I]-4 AND [18F]-17. 

6.1 Introduction. 

6.1.1 Blood plasma stability. 

In addition to the effects of plasma proteins on the pharmacokinetics of 

radiotracers (see section 4.1.2.1), further considerations have to be made during 

the tracer discovery process for the stability of these agents in blood plasma.  

Blood plasma is a complex medium that comprises not only plasma proteins 

(albumin) but also coagulation factors, immunoglobulins, carbohydrates, amino 

acids, vitamins, hormones, inorganic constituents, and enzymes (Krebs, 1950). 

The majority of plasma enzymes exhibit hydrolytic functions (Krebs, 1950), 

which means that certain organic compounds may be labile to blood plasma 

hydrolysis (Hartman, 2003). Interestingly, albumin itself also possesses hydrolytic 

properties due to its esterase-like catalytic site which has been shown to be 

involved in the cleavage of various esterified drugs (Salvi et al., 1997). It is 

important to note that the hydrolytic properties of albumin and plasma 

enzymes, as well as the expression of these enzymes, can vary depending on the 

species. As a consequence, the substrates that can undergo plasma hydrolysis 

and the rate of these biotransformations can also vary between species. For 

example, rodents have been shown to express higher levels of plasma 

carboxylesterases than humans, resulting in substantially more rapid hydrolysis 

of propranolol analogues (Bahar et al., 2012). 

Ascertaining the plasma stability of a compound is usually performed in vitro by 

incubating the article in question in an isolated sample of blood plasma from a 

chosen species, followed by determination of the amount of unchanged parent 

compound remaining (Nomeir et al., 1998; Di et al., 2005; Uchôa et al., 2008; 

Liu et al., 2014). The latter step is usually achieved with the aid of HPLC 
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coupled with an appropriate detection method that allows for the visualisation 

of the parent compound and potential metabolites. When assessing the plasma 

stability of a radiotracer, either the radionuclide labelled tracer or the 

equivalent non-radioactive analogue can be used; the choice of compound will 

ultimately determine the type of detection technique that is utilised.  

In the case of a radiolabelled compound, detection is performed using a 

radiodetector, which is a highly sensitive piece of equipment that can detect 

trace amount of radiolabelled compound. However, the use of radiolabelled 

compounds for plasma stability analysis is an expensive and labour intensive 

process, particularly when the compound under investigation is labelled with a 

short lived radioisotope (e.g. 11C or 18F) as multiple radiosyntheses will be 

necessary. The two most commonly used methods for non-radioactive compound 

and metabolite analysis rely on ultraviolet (UV) absorbance and mass detection 

(Siddiqui, AlOthman and Rahman, 2013). Simple detectors allow for the 

measurement of UV absorbance of a pre-set wavelength; these are called fixed-

wavelength UV-detectors. Despite their cheap cost they are disadvantaged by 

the fact that the absorbance properties of the compound under analysis must be 

known. This issue can be circumvented with a diode array detector (DAD), which 

works on the same principle except it possesses an array of photodiodes located 

at the detector plane that can sense a range of wavelengths simultaneously 

(Siddiqui, AlOthman and Rahman, 2013). The main advantage of UV detection is 

the simplicity of the technique and the low level of chemical and electrical 

background of the output signal (Barbarin, Henion, and Wu, 2002). UV detectors 

exhibit good sensitivity with a noise equivalent concentration, CN (the solute 

concentration that produces a signal equal to the detector noise level) of 

approximately 1 ng/mL (Hani, 1999).  

Mass detection is achieved using a mass spectrometer that works by ionising and 

fragmenting the organic compound under investigation. The ion fragments are 

separated according to their mass-to-charge ratio (m/z) and, upon detection, 

are recorded as the abundance of each ion fragment relative to the overall 

amount of detected ions. Mass spectrometry (MS) is a more sensitive detection 

technique when compared to UV-absorbance measurement with an approximate 
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CN of 10 pg/mL (Hani, 1999). Furthermore, MS provides useful structural 

information such as molecular masses and fragmentation patterns that can be 

used in the identification of unknown compounds and/or metabolites. In a 

similar way to the DAD, a mass spectrometer can simultaneously detect multiple 

different unknown chemical entities if in full-scan mode. However, such a scan 

is often associated with a high background signal due to chemical noise that can 

interfere with the detection of small concentrations of analyte (Barbarin, Henion 

and Wu, 2002). This issue can be overcome by performing a selected ion 

monitoring (SIM) scan where only ions of a pre-selected mass are detected. 

Consequently, the SIM approach is limited to the analysis of compounds and/or 

metabolites of known mass. 

To summarise, the in vitro assessment of compound stability in blood plasma is 

an important step in the radiotracer development process, where considerations 

have to be made with regard to the choice of species from which the blood 

plasma originates and the detection method used for data acquisition. 

6.1.2 Metabolic stability. 

Organic compounds, including radiotracers, which enter the body are ultimately 

eliminated through the two key pharmacokinetic processes of metabolism and 

excretion. Metabolism involves enzymatic conversion of one chemical entity into 

another, while excretion refers to the process of removal of an unchanged 

chemical entity or an enzymatically-modified chemical entity (i.e. a metabolite) 

from the body. The three body systems involved in excretion include the 

kidneys, the hepatobiliary system, and the lungs. The elimination properties of a 

radiotracer can have a significant influence on its utility as a nuclear imaging 

agent. For example, tracers excreted predominately by the kidneys will exhibit 

little usefulness as renal imaging agents, while tracers that are rapidly 

eliminated may result in low intensity imaging signal in the desired tissue. 

Furthermore, as mentioned previously, metabolism of radiotracers may lead to 

the generation of radiolabelled metabolites that can ultimately reduce the 

molecular imaging signal to noise contrast due to altered distribution of 
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metabolites (Jacobson and Chen, 2013). The processes underpinning compound 

elimination have been depicted in Figure 6.1. 

 

Figure 6.1. Schematic outlining the processes of organic compound elimination 

from the body. 

Compounds that are excreted by the lungs include volatile substances such as 

anaesthetic gases; this excretory pathway falls outside of the scope of this thesis 

and will not be discussed further (Rang et al., 2007). The kidneys play a crucial 

role in the excretion of hydrophilic compounds or metabolites that are dissolved 

in blood plasma. Approximately 20% of plasma that reaches the kidneys is 

filtered by the glomerular capillaries that prevent large macromolecules (Mw 

>20000) from diffusing into the glomerular filtrate; this includes plasma protein 

bound compounds. Smaller non-bound chemical entities enter renal tubules and 

are either excreted in the urine or reabsorbed into circulation (see section 

4.1.2.1 for details). The remaining 80% of renal plasma is delivered to the 

peritubular capillaries of the kidney proximal tubules where two active transport 

systems, or phase III transporters, secrete acidic and basic chemical entities into 

the kidney tubules resulting in their subsequent urinary excretion (Rang et al., 

2007).  
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The hepatobiliary system is more complex as is possesses both metabolic and 

excretory potential (Rang et al., 2007). In addition to the elimination of 

chemical entities, metabolism can also result in the bioactivation of previously 

non-active compounds (Xu, Li, and Kong, 2005). For the purpose of this chapter 

emphasis will be placed on the elimination pathway; further information 

concerning compound bioactivation can be found in the review paper by Tang 

and Lu (2010). Key players involved in the metabolism of chemical entities are 

drug metabolising enzymes (DME), which can be described according to the 

‘Williams Classification’ introduced in 1959. This system classifies DME according 

to two main types of biotransformation termed ‘phase I’ and ‘phase II’. Broadly 

speaking, phase I reactions can be regarded as functionalisations where a new 

functional group is introduced into the organic compound that then allows for 

conjugation with a highly-polar moiety introduced by a phase II conjugative-

reaction. The purpose of the conjugation step is to make the organic compound 

more hydrophilic and allow for its excretion (Figure 6.2) (Josephy, Guengerich, 

and Miners, 2008). 

 

Figure 6.2. Diagrammatic representation of phase I and II metabolism. 

Phase I DME consist primarily of the cytochrome P450 (CYP450) superfamily of 

microsomal enzymes located in large quantities in the liver, gastrointestinal 

tract, lungs, and kidneys (Xu, Li and Kong, 2005). It should be noted that the 

numbers of CYP450 enzymes present in different species can vary dramatically; 

for example in humans 57 distinct CYP450 genes have been identified compared 

to the 102 genes found in mice. Mice not only possess four subfamilies of CYP450 
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genes that have been lost in humans, but they also exhibit expansions in a 

number of other CYP450 subfamily clusters including the CYP2D cluster, which is 

known to be a key player in phase I metabolism (Nelson et al., 2004). In humans, 

approximately 15 out of the 57 CYP450 enzymes are responsible for metabolism 

of exogenous organic compounds that are not normally present in the body, 

where 90% of these biotransformations are performed by only 5 enzymes (i.e. 

CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) (Guengerich, 2006). These 

CYP450 enzymes act as potent oxidants and are responsible for the hydroxylation 

of saturated-hydrogen bonds, the epoxidation of double bonds, the oxidation of 

heteroatoms and aromatics, as well as dealkylation and deamination reactions. 

The mechanism of these oxidation reactions involves the transfer of a single 

oxygen atom from molecular oxygen to the substrate organic molecule; the 

remaining oxygen atom is reduced to water by a reductase enzyme using two 

electrons provided by NADPH (Scheme 6.1) (Meunier, Visser, and Shaik, 2004; 

Rang et al., 2007). The role of this type of functionalisation can be twofold. 

Firstly structural changes can reduce or abolish biological activity of a 

compound, and secondly the introduction of a hydroxyl moiety provides a 

conjugative site for phase II metabolism (Josephy, Guengerich, and Miners, 

2008). 
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Scheme 6.1. The cytochrome P450 (CYP) catalytic cycle. Fe3+ at the core of the 

CYP enzyme combines with a substrate molecule (SH) to generate a CYP-Fe3+-SH 

complex. The Fe3+ is reduced to Fe2+ by an electron (e) made available from 

NADPH, and subsequently the CYP-Fe2+-SH combines with molecular oxygen to 

form the corresponding CYP-Fe2+-O2-SH complex. Addition of a further e, made 

available from another molecule of NADPH, and a proton (H+) forms the peroxide 

complex CYP-Fe2+-OOH-SH, which in the presence of another proton yields water 

and the ferric oxene CYP-(FeO)3+-SH complex. Finally, the (FeO)3+ extracts a 

hydrogen atom from the substrate resulting in radical formation and subsequent 

hydroxylation of the substrate (SOH). 

Phase II DME utilise suitable ‘handles’ found on organic compounds (e.g. 

hydroxyl, thiol or amino moieties), which are already present or have been 

introduced as a consequence of phase I metabolism, to introduce large water-

soluble moieties through conjugation (Rang et al., 2007). The main phase II DME 

include aryl sulfotransferase, uridine diphosphate (UDP)-glucuronyl transferase, 

and glutathione S-transferase (Meunier, Visser, and Shaik, 2004) that are 

responsible for introducing sulfate, glucuronic acid, and glutathione conjugates 

respectively. The purpose of such conjugation is to inactivate biologically active 

compounds and to enhance their water-solubility thereby facilitating clearance 

in urine or bile (Xu, Li, and Kong, 2005; Rang et al., 2007; Josephy, Guengerich, 
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and Miners, 2008). It should be noted that in some cases phase II metabolism can 

result in the bioactivation of compounds thereby enhancing their toxicity (Xu, Li, 

and Kong, 2005). 

Since its conception, the ‘Williams Classification’ has been expanded to include 

phase III transporter enzymes. These include membrane transporters such as P-

glycoprotein (P-gp), multidrug resistance-associated protein (MRP), and organic 

anion transporting polypeptide (OATP) that can be found in the liver, kidney, 

intestines, and brain. These proteins are responsible for the active transport of a 

wide variety of substrate molecules across cell membranes, and they play an 

important role in both the metabolism and excretion of organic molecules (Xu, 

Li, and Kong, 2005). The presence of these phase III transporters in liver cells 

(hepatocytes) accounts for the excretory component of the hepatobiliary 

system. Some chemical entities, either unchanged compounds or more 

commonly phase II metabolites (e.g. glucuronides), can be actively secreted by 

hepatocyte MRPs into bile, which subsequently works its way down the 

gastrointestinal tract and is excreted in faecal matter (Shitara, Horie, and 

Sugiyama, 2005; Rang et al., 2007). It is noteworthy that some chemical entities 

must first be actively taken up into hepatocytes by transporter proteins (e.g. 

MRP and OATP) before they can undergo phase I metabolism. This active 

hepatocyte uptake can be the rate limiting step in organic compound elimination 

(Shitara, Horie, and Sugiyama, 2005).  

The ‘Williams Classification’ of drug metabolism has recently come under 

scrutiny and a number of key issues have been highlighted. Firstly, the 

classification system does not account for the mechanisms behind phase I and II 

biotransformations. For example, the mechanism driving hydrolysis and 

glutathione conjugation is identical as both biotransformations involve 

nucleophilic attack onto an electrophilic organic compound. However, the 

‘Williams Classification’ separates these into distinct phase I (hydrolysis) and 

phase II (conjugation) reactions. Secondly, phase I and II reactions do not always 

occur sequentially, as suggested in this classification system, but are often 

competing pathways. Finally, the concept that phase I functionalisation allows 

for phase II conjugation is misleading as there are cases where oxidation of some 
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organic compounds can impede phase II conjugation (Guengerich, 2006; Josephy, 

Guengerich, and Miners, 2008). Attention should also be drawn to the misleading 

nature of the term ‘phase III transporters’ due to the fact that certain 

compounds rely on utilising these transporters to enter hepatocytes prior to 

phase I metabolism. Despite these limitations, the ‘Williams Classification’ will 

be utilised for discussion of data presented in this chapter as it is a well-

established system that remains in common use. 

The above information highlights the complexity of organic compound 

elimination and the various interconnected pathways that are involved in this 

process. From a radiotracer discovery perspective, the ultimate aim would be to 

ascertain information regarding a novel tracer when exposed to all of these 

pathways simultaneously; i.e. radiotracer elimination. This can be achieved in 

vivo through the process of blood sampling and radio-HPLC analysis at different 

time-points post tracer injection. Such an approach allows monitoring of how 

the amount of unchanged (parent) radiotracer decreases in blood plasma with 

time relative to radionuclide-containing metabolites. However, this technique is 

limited to larger animal species (e.g. rats, dogs, primates, etc.) where multiple 

blood samples can be withdrawn manually from a single subject in a single 

session. In the case of mice, which have an approximate total blood volume of 

only 1.0–2.0 mL (Sluiter et al., 1984), such sampling requires the use of 

specialist equipment that can accommodate automatic blood sampling in low 

microliter volumes (Convert et al., 2007). Where access to such equipment or 

larger animal species is not available, then the in vitro approach can be utilised 

as an alternative means of radiotracer elimination assessment. However, a 

complete picture of radiotracer elimination would necessitate multiple in vitro 

assays, as elimination involves multiple different process. Fortunately, it is often 

the case that hepatocyte driven metabolism precedes urinary or biliary 

excretion. For this reason, it is not uncommon for in vitro studies to focus on the 

metabolic component of the elimination pathway.  

Methodologically, in vitro metabolic assays are analogous to those described 

previously for assessment of compound plasma stability (section 6.1.1). Briefly, 

the radiolabelled tracer, or its stable non-labelled analogue, is incubated in 
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phase I or II DME from a chosen species, and either the amount of parent 

compound remaining or the appearance of specific metabolites are assessed over 

time (Iyer and Sinz, 1999; Diaz and Squires, 2003; Soars et al., 2003; Walsky, and 

Obach, 2004; Tipre et al., 2006) with the use of an appropriate detector. The 

obvious limitation of investigating the appearance of specific metabolites is that 

the metabolic pathway(s) of the compound under investigation must be known. 

Assessing the disappearance of parent compound over time is regarded as a 

simpler approach as no prior metabolic knowledge is necessary. A plot depicting 

the reduction of parent compound remaining versus DME incubation time allows 

for the calculation of the in vitro intrinsic clearance (Clint,in vitro) parameter, 

which is a predictor of the metabolic clearance component of the elimination 

pathway. The majority of the literature in this area has shown bias towards 

phase I (CYP450) DME, with phase II in vitro studies lagging behind (Rodrigues, 

1994; Iyer and Sinz, 1999). This can be explained by the fact that commercial 

availability of phase I DME preceded phase II enzymes by a number of years 

(Rodrigues, 1994). Furthermore, there is a current lack of knowledge concerning 

specific substrates for phase II iosenzymes. This can lead to the selection of a 

probe that is metabolised by multiple phase II isoenzymes, thereby preventing 

establishment of individual isoenzyme contribution to the overall phase II 

metabolic process (Iyer and Sinz, 1999).  

The key advantage of utilising the in vitro approach to assess metabolic 

properties of a new chemical entity is that data can easily be acquired using 

human DME early on in the drug or tracer developmental process. Comparable in 

vivo human data are usually acquired at a late stage, where significant 

investment into the lead compound has already been made (Rodrigues, 1994). 

However, it must be emphasised that the simplicity and predictive power of this 

in vitro approach is limited to the metabolic pathway only. Where a chemical 

entity has the ability to be excreted in its unchanged from, either in the urine or 

bile, then Clint,in vitro data will only account for a single component of the overall 

elimination process. 
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6.1.3 Ex vivo biodistribution. 

Ascertaining the biodistribution profile of a radiotracer in small animals is a key 

step in the pre-clinical radiotracer discovery process. Such data can be acquired 

ex vivo using a study design similar to that depicted in figure 6.3. This type of 

study involves administration of the radioligand under investigation to a small 

animal (e.g. a mouse), usually via intravenous injection. Once in vivo, the tracer 

will be subjected to pharmacokinetic processes such as distribution, metabolism, 

and excretion. The animal is then killed after a pre-determined time period, 

which leads to cessation of blood circulation and biological functions, meaning 

that any radioactivity (radiotracer and/or metabolites) deposited to various 

tissue and bodily materials (i.e. stomach, small bowel, and large bowel matter) 

will remain unchanged. Organs and bodily materials of interest are then 

removed and the amount of radioactivity in each biological sample is ascertained 

via gamma-counting, which is a highly accurate and sensitive detection method. 

 

Figure 6.3. Diagrammatic representation of a radiotracer ex vivo biodistribution 

study of in a subcutaneous tumour bearing mouse utilising a gamma-counter. 

Histological analysis of the tissue samples is often performed to support the ex 

vivo biodistribution findings. Haematoxylin and eosin (H&E) is a commonly used 

histochemical stain and, as the name suggests, it is a combination of two dyes 

where the haematoxylin component is present as the oxidation product 

(haematein) complexed with a metal ion. The haematein-metal complex is 

cationic and subsequently binds to basic (basophilic) cellular components, such 
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as nucleic acids in the nucleus, and stains blue. In contrast to this, eosin is an 

anionic dye that binds to acidic (eosinophilic) cellular components, which 

include amino groups in cytoplasm and proteins, and stains red-pink (Avwioro, 

2011). Such staining can provide valuable information, particularly when utilising 

small animal models of human pathology. For example, H&E staining can be used 

to visualise the degree of vasculature and necrosis in a tumour xenograft model, 

which can affect radiotracer uptake and occupancy. More specific histological 

information can be obtained by utilising antibodies, which could be used to 

ascertain the expression levels of the radioligand target in different tissue. 

Histological staining using antibodies is a two-step process, where the tissue 

sample is first incubated in the presence of a primary antibody that binds to the 

protein of interest. This is then followed by exposure of the tissue to a 

secondary antibody that is conjugated to a ‘reporter’ (i.e. a colorimetric enzyme 

or fluorescent moiety) and binds to the primary antibody. Detection of the 

‘reporter’ confirms the presence of the protein of interest. 

It is important to bear in mind that ex vivo biodistribution data are often 

associated with a large degree of variability and multiple animals are required 

for each investigated biodistribution timepoint. Animal experimentation in the 

United Kingdom is regulated by the Home Office and falls under the Animals 

(Scientific Procedures) Act (1986) and the Council Directive 2010/63/EU. The 

latter piece of legislation enforces the use of the principles of replacement, 

reduction and refinement (first described by Russell and Burch (1959)) by 

scientists as a means of minimising experimental animal use and improving 

animal welfare. Specifically, the term ‘replacement’ refers to the use of 

alternative methods that avoid the use of animals (e.g. in vitro assays), 

‘reduction’ denotes to use of methods that allow for acquisition of comparable 

levels of information using fewer animals, and finally ‘refinement’ refers to use 

of methods that minimise pain and distress caused to animals (Olsson et al., 

2012). 

With the above principle of ‘reduction’ in mind, alternative methods for 

ascertaining tracer biodistribution data would be dynamic PET and SPECT 

imaging. Such imaging techniques are capable of acquiring qualitative and 
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quantitative biodistribution data at multiple timepoints (e.g. every minute) after 

radiotracer injection from a single animal and a single scan. This is in contrast to 

the above described ex vivo technique that is restricted to quantitative data 

only, and the necessity for the use of different animals for each timepoint under 

investigation. An important limitation of pre-clinical nuclear imaging is the 

necessity to maintain the animal being imaged under anaesthesia, unlike ex vivo 

biodistribution techniques that can be performed in the absence of anaesthesia. 

Prolonged anaesthesia of animals is associated with a risk of mortality during the 

scanning procedure, which is greater when using animal models of human 

pathology. Furthermore, anaesthetic agents can alter radiotracer 

pharmacokinetics and uptake into desired tissues. Consequently, SPECT or PET 

findings acquired in anaesthetised animals may fail to correlate to human data 

that were acquired in awake patients (reviewed by Kristian, Alstrup, and Smith, 

(2013)). Bearing the above in mind, the  ex vivo biodistribution technique is 

often used to validate PET or SPECT data and remains and important tool in pre-

clinical radiotracer discovery (Zhang et al., 2005; Carney et al., 2015; Carlucci 

et al., 2015; Salinas et al., 2015). 

6.1.4  Aims and hypotheses. 

The work described in this chapter aimed to establish the in vitro stability 

properties of the potential PARP-1 SPECT and PET compounds 4 and 17 

respectively, in the presence of mouse plasma and human liver microsomal 

enzymes, and evaluate the biodistribution and PARP-1 specific binding profiles of 

the corresponding radiolabelled compounds ([123I]-4) and [18F]-17) in 

subcutaneous GBM bearing mice.  

The following hypotheses were set for this work: 

i) Compounds 4 and 17 will exhibit mouse plasma stability. The reasoning behind 

this hypothesis is based on the reported stability of olaparib in human plasma 

(Sparidans et al., 2011) and whole blood (Roth et al., 2014).  
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ii) Compounds 4 and 17 will exhibit more rapid in vitro liver enzyme metabolism 

when compared to olaparib. This hypothesis is justified by the fact that the 

metabolically stable cyclopropane functionality (Gagnon et al., 2007; Coleridge, 

Bello, and Leitner, 2009) of olaparib has been replaced with aromatic moieties 

liable to phase I hydroxylation reactions. Moreover, the terminal halogen atoms 

of 4 and 17 have potential for liver microsomal cleavage (Scott and Sinsheimer, 

1983; Kharasch and Thummel, 1993) (Figure 6.4). Another important factor to 

consider is the increased lipophilic character of 4 and 17 when compared to 

olaparib (see section 4.2 for details). As discussed previously, the interactions 

between organic compounds and CYP450 enzymes are lipophilic in nature 

meaning that an increase in lipophilicity is often associated with an increase in 

the rate of metabolism (Waterbeemd et al., 2001). 

Figure 6.4. Potential sites of phase I metabolism of compounds 4 and 17. 

 

iii) [123I]-4 and [18F]-17 will undergo hepatobiliary clearance in vivo. The 

reasoning behind this statement is supported by the fact that olaparib (European 

Medicines Agency, 2014) and the structurally related tracer [18F]-BO (Reiner et 

al., 2012) has been shown to be cleared via hepatobiliary means. 

iv) [123I]-4 and [18F]-17 will bind to PARP-1 with specificity in vivo. This 

hypothesis was drawn based on the earlier established low nanomolar in vitro 

potency of 4 and 17 for PARP-1 (see section 4.2 for details), and the in vivo 

PARP-1 specific binding reported by Reiner et al. (2012) and Carlucci et al. 

(2015) for the structurally related tracers [18F]-BO and [18F]-PARPi-FL 

respectively. 
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6.2 Results and discussion. 

6.2.1 In vitro plasma and metabolic stability of 4 and 

17. 

As described earlier (section 6.1.1), blood plasma possesses hydrolytic properties 

that can result in the degradation of certain organic compounds, including 

radiotracers. It was therefore imperative to ascertain the stability properties of 

the lead PARP-1 SPECT and PET imaging candidates 4 and 17, respectively, prior 

to pre-clinical in vivo evaluation. Due to the expense and labour associated with 

123I and 18F radiolabelling, non-radioactive 4 and 17 were incubated in mouse 

plasma for 0 and 20 hours, after which the amount of unchanged (parent) 

compounds remaining was quantified using LC-MS (Figure 6.5). Example MS 

graphs for compound 4 and 17 can be found in Appendix 9.10 and 9.11 

respectively. The amount of parent compounds remaining was expressed as a 

percentage that was normalised to negative controls lacking plasma. It is clear 

from figure 6.5 that both 4 and 17 did not exhibit significant change in the 

amount of parent compound remaining between the two timepoints, suggesting 

mouse plasma stability over the 20 hour incubation period. These observations 

are in line with the earlier stipulated hypothesis (section 6.1.4) and literature 

reports, which showed olaparib to be stable in human plasma at 4 C (Sparidans 

et al., 2011) and whole human blood at room temperature (Roth et al., 2014) for 

24 hours. However, it is important to bear in mind that these data were acquired 

using mouse plasma, which can exhibit different hydrolytic properties from 

human plasma (see section 6.1.1 for details). 
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Figure 6.5. Graphs showing the percentage amount of unchanged 4 and 17 

remaining after 0 and 20 hour incubations in mouse plasma. Error bars represent 

the mean + standard deviation (n = 3). Unpaired t test P values = >0.05. The 

plots were generated and statistical analyses were performed using the 

GraphPad Prism 6.0 software. 

Pharmacokinetic studies of [14C]-labelled olaparib in female human patients, as 

described in the Committee for Medicinal Products for Human Use assessment 

report (European Medicines Agency, 2014), revealed that approximately 44% of 

the administered dose was eliminated in urine, where the most abundant 

component was unchanged [14C]-olaparib (10–19% of the dose). In addition to 

this, 37 different drug related components were identified in the urine, of which 

18 were quantifiable. A monooxygenated analogue of [14C]-olaparib (i.e. a 

product of phase I metabolism) was found to be the most abundant metabolite in 

urine (4–8% of dose). In addition to the monooxygenated compound, other phase 

I metabolites of [14C]-olaparib were identified in blood plasma samples, such as 

dehydrogenated piperazine and ring opened hydroxyl-cyclopropyl analogues. It 

should also be noted that faecal samples contained approximately 42% of the 

administered dose of [14C]-labelled olaparib, confirming a hepatobiliary 

clearance pathway for the compound. Importantly, the main metabolite 

identified in faecal matter was the monooxygenated analogue (European 

Medicines Agency, 2014). Therefore, it is clear from the above described findings 

that phase I metabolism is a major contributor to the elimination of olaparib. 

Due to the possibility for increased phase I metabolism of 4 and 17 when 

compared to olaparib (see section 6.1.4 for details), attention was directed at 
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ascertaining the in vitro stability of these compounds in the presence of pooled 

human liver microsomes (phase I DME).  

An initial pilot study was conducted to calculate the Clint,in vitro parameter for the 

positive control compound diclofenac. The amount of parent compound 

(unchanged diclofenac) remaining after incubation in commercially available 

human liver DME was established at a number of different timepoints using LC-

MS. Example LC-MS chromatograms and graphs can be found in Appendix 9.12. 

These data were represented as the natural logarithm of the percentage of 

parent compound remaining over time plots (Figure 6.6), which were then used 

to calculate the Clint,in vitro parameter. 

 

Figure 6.6. Graphs showing the natural logarithm (ln) percentage amount of 

unchanged diclofenac remaining after 0, 5, 15, 30 and 45 minute incubations in 

human liver microsomes. The plots were generated using the GraphPad Prism 6.0 

software. 

The Clint,in vitro parameter calculated for diclofenac from the pilot study was 

similar to previously published values (Table 6.1). However, variability existed 

between the reported values, which can be explained by the fact that each of 

the authors used different sources of liver microsome enzymes originating from 

different population samples.  
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Table 6.1. Calculated and literature in vitro intrinsic clearance values for 

diclofenac. 

 
aCalculated in vitro intrinsic clearance (Clint,in vitro) values (replicates 1 and 2); 

bObach (1999),  standard deviation (n = 3); cSoars et al. (2003),  standard 

deviation (n = 3). 

 

To address the issue of inter-source liver enzyme variability, the Clint,in vitro 

parameter was used to compare the rate of phase I metabolism of compounds 4 

and 17 relative to olaparib using a single batch of pooled human liver 

microsomes. The Clint,in vitro values were calculated from the corresponding 

natural logarithm of the percentage of parent compound remaining over time 

plots, which can be found in Appendix 9.13. Compounds 4 and 17 exhibited 

more rapid intrinsic clearance when compared to olaparib (Table 6.2), with 

approximately three fold greater Clint,in vitro values. This outcome correlateed 

with the earlier mentioned hypothesis (section 6.1.4), and the fact that both 

compounds exhibited higher log Poct values when compared to olaparib (see 

section 4.2 for details). 

 

Table 6.2. Calculated in vitro intrinsic clearance values for olaparib, and 

compounds 4 and 17. 

 
aThe in vitro intrinsic clearance (Clint, in vitro). 
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Despite accelerated in vitro phase I metabolism relative to olaparib, it was 

proposed that retention of these agents in PARP-1 overexpressing tumour tissue 

will be sufficient to allow for nuclear imaging. This can be justified by the fact 

that [14C]-olaparib has been found to be present in subcutaneous human colon 

carcinoma xenografts excised from rats up to 96 hours after administration of 

the 14C-labelled compound (Chalmers et al., 2014). Furthermore, pre-clinical 

PET studies conducted by Reiner et al. (2012) using the PARP-1 radiotracer [18F]-

BO were successful at imaging PARP-1 in vivo, although it is important to bear in 

mind the structural differences between [18F]-BO and [123I]-4 and [18F]-17. 

Taking the above under account, the radiolabelled versions of compounds 4 and 

17 (i.e. [123I]-4 and [18F]-17) were advanced to pre-clinical in vivo studies. 

 

6.2.2 Ex vivo biodistribution and specificity of [
123

I]-4 

and [
18

F]-17. 

Ex vivo biodistribution methodology using a gamma-counter was chosen as a 

preliminary method of assessing the in vivo behaviour of the potential SPECT and 

PET tracers [123I]-4 and [18F]-17 respectively, which could be used to validate 

future nuclear imaging studies (see chapter 8 for details). 

Prior to in vivo experiments, the linearity and saturability of the gamma-counter 

for 123I and 18F had to be established. Therefore, calibration curves were 

generated by counting the number of gamma-rays emitted per minute by 

different amounts of radioisotopes (in the form of commercially available [123I]-

NaI or 18F/H2
18O) (Figure 6.7). The relationships between the counts per minute 

and the amounts of radioactivity were highly linear for both 123I and 18F, with R2 

values of 1.00 and 0.99 respectively. Importantly, the calibrations revealed that 

123I and 18F radioactivity levels of ≥500 KBq resulted in detector saturation. 
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Figure 6.7. Calibration graphs showing the liner relationship between the 

amount of radioactive 123I or 18F and the counts per minute (CPM) obtained using 

the Cobra II Auto-Gamma® counter. Error bars represent the mean + standard 

deviation (n = 3). The plot was generated using the GraphPad Prism 6.0 

software. 

 

Following calibration of the gamma-counter equipment, focus was shifted to 

evaluation of [123I]-4 and [18F]-17 in vivo. Due to the practical complexities 

associated with in vivo work, a pilot ex vivo biodistribution study was conducted 

using [123I]-4 in healthy female black-6 mice. For the purpose of this study, two 

timepoints (i.e. 5 and 30 minutes) post radiotracer injection were investigated; 

the results are summarised in figure 6.8. It is evident from these data that the 

liver exhibited the highest percentage of the injected radioligand dose per gram 

of tissue (%ID/g) at both timepoints. This observation is not surprising as olaparib 

is known to be extensively metabolised by the liver (see section 6.2.1 for 

details). The statistically significant decrease in the %ID/g of blood, spleen, 

large bowel, liver, kidney, heart, lung, muscle, and brain tissue between the 

two timepoints could be explained by rapid in vivo elimination of the 

radiotracer. The apparent increase in %ID/g of small bowel between the 5 and 

30 minute timepoints, although not statistically significant, could be a result of 

residual biological matter containing [123I]-4 and/or its metabolites (eliminated 

via hepatobiliary means) present in the small bowel tissue. It is noteworthy that 

only negligible amounts of [123I]-4 were present in brain tissue, which correlated 

with the observations made by Chalmers et al. (2014) using [14C]-olaparib. This 

can be explained by the fact that 4 (as well as 17) exhibited %PPB and Mw 
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properties that fall outside of the optimal range for BBB penetration (%PPB = 45–

85% (Tavares et al., 2012); Mw = ≤450 (Waterbeemd et al., 1998) (see section 

4.2 for details). Another factor that could have contributed to low uptake of 

[123I]-4 in brain is the fact healthy brains express only low levels of PARP-1 (see 

section 1.3.2 for details). However, as described in section 4.2, it is envisaged 

that BBB disruptions associated with GBM brain lesions, as well as PARP-1 

overexpression in these tumours, will allow for sufficient brain uptake of the 

radioligands for nuclear imaging of the pathology. 

 

Figure 6.8. A graph showing the biodistribution (expressed as the percentage of 

injected dose per gram of tissue [%ID/g]) of [123I]-4 in healthy female black-6 

mice 5 minutes (n = 4) and 30 minutes (n = 4) post tracer injection (≤1 ng). Error 

bars represent the mean + standard deviation. Unpaired t test values: * = ≤0.05; 

** = ≤0.01; *** = ≤0.001. The plot was generated and statistical analyses were 

performed using the GraphPad Prism 6.0 software. 

Importantly, the pilot study allowed for the identification of a number of key 

limitations in the ex vivo biodistribution dataset. Firstly, there were insufficient 

data to make robust observations regarding potential biliary clearance of [123I]-4. 

Secondly, it was found that collection of mouse bone marrow tissue of known 

mass was not possible, and therefore bone marrow uptake of the radioligand 

could not be quantified. Thirdly, harvest of thyroid tissue proved highly 
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challenging and could not be achieved successfully. Measurement of 

radioactivity in thyroid gland after the administration of [123I]-4 could provide 

useful information concerning [123I]-deiodination, as iodine atoms are actively 

taken up by the gland (Kaul and Roedler, 1980). Finally, conclusions concerning 

the renal elimination of the radiotracer could not be made due to the practical 

challenges associated with urinary collection following animal sacrifice. The 

former two limitations could be addressed by collecting and gamma-counting 

stomach, small and large bowel matter, solid faeces, and whole bone (e.g. the 

femur). However, addressing the latter two limitations would necessitate the 

use of larger animal species (e.g. rats) and nuclear imaging equipment.  

 

Since a potential key application of PARP-1 SPECT and PET agents would be GBM 

imaging, efforts were focused on establishing the ex vivo biodistribution of [123I]-

4 and [18F]-17 in mice bearing a subcutaneous human GBM (U87MG-Luc2) 

xenograft model. The subcutaneous U87MG-Luc2 model was chosen due to its 

established use within the research group, predictable and rapid growth, defined 

lesion shape (Figure 6.9), and most importantly PARP-1 overexpression within 

the lesion (Figure 6.10). Furthermore, success of subcutaneous engraftment and 

subsequent tumour growth can be established and monitored using simple visual 

inspection and calliper measurement techniques. This is in contrast to 

intracranial xenografts that require the use of bioluminescence imaging, which is 

associated with greater practical complexity and cost (see sections 7.1.3 and 

7.2.3 for details). It is also important to bear in mind, that evaluation of tracer 

uptake into tumour tissue using gamma-counting techniques requires precise 

resection of neoplastic tissue, which can be challenging in the case of 

intracranial tumour lesions. 
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Figure 6.9. Images of a subcutaneous U87MG-Luc2 GBM tumour xenograft grown 

in a female CD1 nude mouse for 28 days, pre- and post-excision. 

Figure 6.10 shows four different subcutaneous U87MG-Luc2 tumours (A-D) grown 

in mice, which have been sectioned and characterised by immunohistochemical 

staining using H&E, and antibodies against Ki67 (a marker of proliferation) and 

PARP-1. H&E staining of the tumour sections clearly revealed the cellular nuclei 

(dark blue staining), surrounding cytoplasmic components (pink staining), and 

tumour vasculature (un-stained regions) (Figure 6.10). Staining of the 

subcutaneous U87MG-Luc2 tumour sections with an antibody against Ki67 showed 

that the tissues comprised of large numbers of proliferative cells (brown 

staining), which was expected for these rapidly growing tumour xenografts. 

Similarly, by utilising a PARP-1 antibody, high levels of PARP-1 expression were 

revealed (brown staining) in all of the investigated tumour samples (Figure 

6.10), which was in line with previous reports of human GBM (see section 1.3.2 

for details). In order to confirm the specificity of the secondary antibody for the 

primary PARP-1 antibody, the tumour sections were stained with the secondary 

antibody only; these were PARP-1 negative controls. No brown staining was 

visible in these negative controls, thereby confirming the high specificity of the 

secondary stain. 
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Figure 6.10. Representative immunohistochemistry images of four subcutaneous 

U87MG-Luc2 GBM tumour xenografts (A to D) grown in female CD1 nude mice, 

fixed, sectioned and stained with haematoxylin and eosin (H&E), and antibodies 

against Ki67 (a marker of cellular proliferation) and PARP-1. The PARP-1 

negative control was stained with the secondary antibody only. Blue staining 

shows cellular nuclei and brown staining signifies presence of Ki67 or PARP-1. 

Following selection of an appropriate animal model, the ex vivo biodistribution 

of [123I]-4 and [18F]-17 in subcutaneous U87MG-Luc2 tumour bearing mice was 

evaluated at 30, 60 and 120 minutes post radiotracer administration (Figures 

6.11 and 6.12). Choice of the three timepoints was guided by the earlier 

described pilot data (Figure 6.8), which showed that [123I]-4 exhibited rapid 

kinetic properties with potentially rapid metabolism and clearance.  
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Figure 6.11. A graph showing the biodistribution (expressed as the percentage 

of injected dose per gram of tissue [%ID/g]) of [123I]-4 in subcutaneous U87Mg-

Luc2 GBM bearing female CD1 nude mice 30 minutes (n = 3), 60 minutes (n = 4), 

and 120 minutes (n = 4) post tracer injection (≤1 ng). Error bars represent the 

mean + standard deviation. The plot was generated using the GraphPad Prism 

6.0 software. Modified from Zmuda et al. (2015). 
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Figure 6.12. A graph showing the biodistribution (expressed as the percentage 

of injected dose per gram of tissue [%ID/g]) of [18F]-17 in subcutaneous U87Mg-

Luc2 GBM bearing female CD1 nude mice 30 minutes (n = 3), 60 minutes (n = 4), 

and 120 minutes (n = 4) post tracer injection (≤8 ng). Error bars represent the 

mean + standard deviation. The plot was generated using the GraphPad Prism 

6.0 software. 

It is clear from figures 6.11 and 6.12 that large proportions of radioactivity were 

detectable in the liver 30 minutes after [123I]-4 and [18F]-17 administration, 

which is in line with earlier described pilot data for [123I]-4 (Figure 6.8). By 

expanding the biodistribution dataset to include digestive matter and 

excrement, it was found that the majority of 123I radioactivity was present in 

small bowel matter and solid faeces at 30 and 120 minutes post radiotracer 

injection respectively (Figure 6.11). A similar biodistribution profile was also 

observed for the [18F]-17 radioligand (Figure 6.12). These results suggested rapid 

hepatobiliary clearance of [123I]-4 and [18F]-17, which correlated with the earlier 

stipulated hypothesis (section 6.1.4), in vitro intrinsic clearance data (section 

6.2.1), [14C]-olaparib pharmacokinetic findings (European Medicines Agency, 

2014), and reported biodistributions of [131I]-4 (Salinas et al., 2015), [18F]-11 

(Carney et al., 2015), [18F]-BO (Reiner et al., 2012), and [18F]-PARPi-FL (Carlucci 

et al., 2015). It is noteworthy that the biliary clearance of [18F]-17 appeared 
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more rapid than for [123I]-4, with mean %ID/g of caecum matter values of 4.8  

2.0% (n = 4) and 0.5 (n = 3) 30 minutes post tracer injection respectively. 

Interestingly, in vitro %PPB data for compounds 4 and 17 were suggestinve of 

greater vascular retention exhibited by the former compound (see section 4.2 

for more details). However, the ex vivo biodistribution study revealed greater 

amounts of radioactivity present in the blood 30 minutes after administration of 

[18F]-17 when compared to [123I]-4, which appeared to contradict the in vitro 

findings. This could be a consequence of more rapid metabolism of the potential 

PET tracer that could in turn result in radioactive metabolites circulating in the 

bloodstream. 

The peak uptake of [123I]-4 in tumour tissue occurred at 60 minutes post 

radioligand injection with a mean %ID/g of tumour of 0.6  0.2% (n = 4). This was 

in line with the biodistribution data reported by Salinas et al. (2015) who 

utilised the same xenograft tumour model and showed that the mean %ID/g of 

[131I]-4 at was 0.5  0.1 at 60 minutes. The potential PET tracer [18F]-17 

appeared to exhibit greater and more rapid tumour uptake with a peak mean 

%ID/g of tumour of 2.0  0.6% (n = 4) at 30 minutes. This difference in uptake 

kinetics could be explained by greater membrane permeability exhibited by 17 

when compared to 4 due to a smaller molecular weight, a lower degree of 

percentage plasma protein binding, and lower lipophilic character (see section 

4.2 for details). Interestingly, despite the apparent more rapid biliary clearance 

of [18F]-17, the mean [18F]-17 %ID/g of tumour at 120 minutes was higher when 

compared to [123I]-4 (0.4  0.1% (n = 4) vs. 0.1  0.1% (n = 4)). However, as 

described later, [18F]-17 actually exhibited weaker tumour retention properties 

than the radioiodinated SPECT candidate. This suggested that the higher mean 

[18F]-17 %ID/g of tumour observed at 120 minutes was likely a consequence of 

faster tissue uptake kinetics.  

Using a subcutaneous U251MG GBM xenograft model, Carney et al. (2015) 

reported a mean %ID/g of tumour of 1.8  0.2% (n = 6) 120 minutes post [18F]-11 

injection. These data suggested that [18F]-11 exhibited greater tumour retention 

when compared to [18F]-17, which had a mean %ID/g of tumour of 0.4  0.1% (n 

= 4) at the same timepoint. This could be explained by the fact that [18F]-17 
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seemed to undergo a substantial level of in vivo metabolic defluorination, as 

shown by the high mean %ID/g of femur (>8.5%) across all three timepoints, 

indicative of free [18F]-fluoride accumulation in bone tissue (Pike, 2009) (Figure 

6.12). In contrast to this, the reported mean %ID/g of bone for [18F]-11 was <2% 

(Carney et al., 2015), and the observed peak mean %ID/g of femur for [123I]-4 

was 0.4  0.1% at 30 minutes. It is also important to consider that potential 

differences in PARP-1 expression between the two GBM xenograft models (i.e. 

U87MG-Luc2 and U251MG tumours) could have contributed to the 

pharmacokinetic differences between the two tracers. 

 

Despite rapid hepatobiliary clearance of [123I]-4 and [18F]-17, and metabolic 

defluorination of [18F]-17, both radioligands exhibited a degree of retention in 

tumour tissue. The evidence for this comes in the form of an increase in the 

mean ratio of %ID/g of tumour to muscle from 2.15  0.47 (n = 3) to 5.6  2.0 (n 

= 4) for [123I]-4, and 1.9  0.5 (n = 4) to 3.6  0.5 (n = 4) for [18F]-17 between the 

30 and 120 minute timepoints. Since PARP-1 expression in muscle was not 

detectable (Figure 6.13), the tumour to muscle ratio allowed for normalisation 

of data such that inter-subject variability of uptake and washout kinetics was 

rendered negligible. It is also important to note that, based on data reported by 

Salinas et al. (2015), a ratio %ID/g of subcutaneous U87MG tumour to muscle of 

approximately 5.6 could be calculated for [131I]-4 six hours after injection. This 

provides further evidence of the retention of compound 4 in subcutaneous GBM 

tissue. 

 

In the case of [123I]-4, the mean ratio of %ID/g of tumour to femur increased 

from 1.2  0.2 (n = 3) to 2.0  0.9 (n = 4) between the 30 and 60 minute 

timepoints. This suggested that at the time of peak uptake of [123I]-4 in the 

tumour, the amount of radioligand present in the tumour tissue was 

approximately two fold greater than in whole bone. Interestingly, the mean ratio 

of %ID/g of tumour to femur dropped to 0.9  0.2 at 120 minutes, suggesting 

more rapid radioligand clearance from tumour tissue when compared to whole 

bone. It was proposed that radioactivity detection in bone following [123I]-4 

administration was due to bone marrow uptake of the radioligand. This can be 

justified by the earlier described clinical observations, which suggested that 
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olaparib entered bone marrow tissue (see section 1.3.2.3 for details), and 

reported biodistribution data that showed specific binding of [18F]-11 to PARP-1 

in whole bone (Carney et al., 2015), where bone marrow has been shown to 

express high levels of PARP-1 (The Human Protein Atlas, 2015). This is in 

contrast to the earlier observations made for [18F]-17 that were, in most part, a 

likely consequence of free [18F-]-fluoride binding to bone tissue.  

 

 

Figure 6.13. Representative immunohistochemistry images of muscle tissue 

originating from the left femur of a subcutaneous U87MG-Luc2 GBM bearing 

female CD1 nude mice. The tissue was stained with haematoxylin and eosin 

(H&E), and antibodies against Ki67 (a marker of cellular proliferation) and PARP-

1. The PARP-1 negative control was stained with the secondary antibody only. 

Blue staining shows cellular nuclei and brown staining signifies presence of Ki67 

or PARP-1. Modified from Zmuda et al. (2015). 

In order to establish whether the uptake of [123I]-4 and [18F]-17 in the various 

organs was due specific PARP-1 binding, pre-blockade ex vivo biodistribution 

studies were conducted. These involved treatment of subcutaneous U87MG-Luc2 

GBM bearing mice with an excess of non-radioactive olaparib, prior to 
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radiotracer administration, in order to occupy (and block) PARP-1 binding sites. 

To interpret the uptake data from the ‘blocked’ mice, control cohorts of 

subcutaneous U87MG-Luc2 GBM bearing mice pre-treated with vehicle were also 

employed. The results of these studies for [123I]-4 and [18F]-17 are depicted in 

figures 6.14 and 6.15 respectively.  

 

Figure 6.14. A graph showing the organ to muscle ratio of percentage injected 

dose per gram of tissue (%ID/g) of [123I]-4 (≤1 ng) 60 minutes after intravenous 

injection in subcutaneous U87Mg-Luc2 GBM bearing female CD1 nude mice that 

were pre-treated with either intraperitoneal vehicle (n = 3) or 50 mg/kg olaparib 

(n = 3). Error bars represent the mean + standard deviation. Unpaired t test P 

values: * = ≤0.05; ** = ≤0.01; *** = ≤0.001. The plot was generated and statistical 

analyses were performed using the GraphPad Prism 6.0 software. Modified from 

Zmuda et al. (2015).  
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Figure 6.15. A graph showing the organ to muscle ratio of percentage injected 

dose per gram of tissue (%ID/g) of [18F]-17 (≤6 ng) 60 minutes after intravenous 

injection in subcutaneous U87Mg-Luc2 GBM bearing female CD1 nude mice pre-

treated with either intraperitoneal vehicle (n = 3) or 50 mg/kg olaparib (n = 3). 

Error bars represent the mean + standard deviation. Unpaired t test P values: * = 

≤0.05; ** = ≤0.01. The plot was generated and statistical analyses were 

performed using the GraphPad Prism 6.0 software. 

It is evident that olaparib pre-treatment resulted in significant reductions in the 

mean ratios of [123I]-4 and [18F]-17 %ID/g of tumour to muscle when compared to 

the vehicle pre-treated cohorts. This blockade of radiotracer tumour uptake, in 

combination with earlier immunohistochemical data showing PARP-1 

overexpression in the tumours (Figure 6.10), confirmed the specificity of [123I]-4 

and [18F]-17 for PARP-1 in vivo. Similar specific binding properties were also 

exhibited by [123I]-4 in the spleen, pancreas, and large bowel tissues (Figure 

6.14), and by [18F]-17 in the spleen, pancreas, small bowel, and liver tissue 

(Figure 6.15). These data were not surprising as, in humans, all of these tissues 

are known to express moderate to high levels of PARP-1 (The Human Protein 
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Atlas, 2015). Furthermore, Carney et al. (2015) reported specific binding of 

[18F]-11 in mouse spleen, liver, and lymph nodes, which have also been shown by 

the authors to express high levels of PARP-1. Interestingly, despite better 

physiochemical properties (see section 4.2 for details), of [18F]-17 when 

compared to [123I]-4, both radiotracers appeared to exhibit a similar degree of 

blockade in the presence of olaparib, suggesting similar specific binding 

properites. 

 

The significant level of blockade of [123I]-4 uptake in the whole femur observed 

in the presence of olaparib provides further evidence that the tracer binds to 

PARP-1 in the bone marrow (Figure 6.14). In contrast to this, olaparib pre-

treatment did not result in a significant reduction of radioactivity uptake in the 

left femur following [18F]-17 administration (Figure 6.15). In addition to the left 

femur, the right femur was also gamma-counted with the exception that the 

bone marrow was flushed out. This was done in order to delineate between bone 

tissue and bone marrow uptake of the tracer. However, no statistically 

significant difference was observed between the mean ratio %ID/g of left femur 

to muscle and the mean ratio of %ID/g of right femur to muscle in either pre-

treatment cohort (olaparib pre-treated unpaired t test P = 0.43; vehicle pre-

treated unpaired t test P = 0.78). These data supported that the measured 

radioactivity in the bone following [18F]-17 administration was due to non-

specifically bound [18F]-fluoride, that was likely a consequence of metabolic 

defluorination. This limits the potential usefulness of [18F]-17 as a GBM PET 

imaging agent as the free [18F]-fluoride metabolite could lead to signal noise 

originating from the skull. 

6.3 Conclusion. 

As hypothesised, compounds 4 and 17 were shown to be stable in mouse plasma 

following a 20 hour in vitro incubation, and exhibited reduced in vitro metabolic 

stability when compared to olaparib, with approximately three fold greater 

Clint,in vitro values. Evaluation of the ex vivo biodistribution of the radiolabelled 

versions of these compounds (i.e. [123I]-4 and [18F]-17) in subcutaneous GBM 

bearing mice revealed that both tracers exhibited rapid hepatobiliary clearance, 

which correlated with in vitro intrinsic clearance. Interestingly, [18F]-17 showed 
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more rapid biliary clearance than the radioiodinated SPECT compound. This was 

likely a consequence of extensive metabolic defluorination of [18F]-17, with 

subsequent [18F]-fluoride accumulation in bone tissue. Despite rapid clearance, 

both tracers exhibited uptake in tumours in levels that have been shown to be 

sufficient for in vivo SPECT (Salinas et al., 2015) and PET (Reiner et al., 2012; 

Carney et al., 2015) imaging. Out of the two agents, [18F]-17 exhibited more 

rapid kinetics with a peak %ID/g of tumour occurring at 30 minutes compared to 

[123I]-4 that peaked at 60 minutes. Importantly, [123I]-4 showed retention in bone 

marrow tissue, and both [123I]-4 and [18F]-17 were retained in tumour tissue. 

Retention of the latter in bone marrow was difficult to ascertain due to masking 

of marrow signal by [18F]-fluoride bone uptake. Furthermore, both the SPECT 

and PET candidates were shown to bind to PARP-1 in vivo with specificity in the 

tumour tissue, as well as other tissues known to express high levels of PARP-1 

(e.g. the spleen). 

These results provide grounds for further in vivo assessment of the PARP-1 SPECT 

imaging candidate [123I]-4 using nuclear imaging techniques and in intracranial 

tumour models. It is envisaged that the substantial levels of defluorination 

observed with [18F]-17 would limit the usefulness of the tracer as a PET imaging 

agent due to potential signal noise radiating from the skull due to [18F]-fluoride 

uptake. However, this would require further investigation using PET imaging 

techniques (see chapter 8 for details). 

6.4 Experimental. 

6.4.1 General. 

Please see chapter 3 for the experimental information concerning the synthesis 

of olaparib, 4, 17 and 60, and chapter 5 for details concerning the 

radiosynthetic, purification and formulation experimental sections of [123I]-4 and 

[18F]-17. For the purpose of gamma-counter calibration, [123I]-NaI was obtained 

commercially (PerkinElmer) and [18F]-fluoride was produced by staff employed 

at the PET Radiopharmaceutical Production Unit at NHS Greater Glasgow Clyde 
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in a cyclotron (GE PETtrace 6 cyclotron) via the [18O(p, n)18F] nuclear reaction by 

irradiation of [18O]-water. All other chemicals, reagents and cell lines were 

obtained from commercially reputable suppliers and were used as received. Mice 

used for in vivo studies were obtained from Charles River Laboratories, and the 

animals were housed in individually ventilated cages and had access to sterilised 

food and water. All animal experiments were carried out in compliance with UK 

Home Office regulations. 

6.4.2 In vitro plasma stability of 4 and 17. 

The experiments were conducted as reported by Zmuda et al. (2015) using 

slightly modified methodology from that described by Uchôa et al. (2008). Blood 

(0.5–1.0 mL) was harvested from female black-6 mice and transferred to 1.5 mL 

Eppendorf vials containing 75 µL of 0.5 M ethylenediaminetetraacetic acid in 

distilled water. The blood was centrifuged at 5000 g for 5 minutes at room 

temperature and the plasma supernatant was isolated. The mouse plasma was 

stored at 20 C and was thawed at room temperature immediately prior to use. 

To 50 µL of mouse plasma supernatant was added 10 µL of 250 µM stock solution 

of 4 or 17 made in dimethyl sulfoxide and water, such that the final assay 

concentration of dimethyl sulfoxide was ≤1% v/v. Negative controls containing 50 

µL of distilled water and 10 µL of 250 µM 4 or 17 minus plasma proteins were 

also used. The mixtures were incubated at room temperature for either 0 or 20 

hours. Following this, 200 µL of ice cold methanol was added to precipitate the 

plasma proteins, which were then isolated through centrifugation at 2000 g for 5 

minutes at room temperature. The supernatant (100 µL) was diluted with 300 µL 

of a 50:50 mixture of acetonitrile and distilled water, and 10 µL of 250 μM 

internal standard (60) was added. The resulting solution was passed through a 

0.22 µm filter and was analysed using LC-MS (Shimadzu LC-2010AHT, LCMS-

2010EV). LC was performed on 20 μL sample injections using a Kinetex 5 μm XB-

C18 100Å (50  4.6 mm) column and the following mobile phase conditions: 0.0–

10.0 minutes = 30:70 to 60:40 A:B; 10.0–10.5 minutes = 60:40 to 90:10 A:B; 

10.5–12.0 minutes = 90:10 A:B; 12.0–12.5 minutes = 90:10 to 30:70 A:B; 12.5–

15.0 minutes 30:70 where A = acetonitrile and B = 0.1% v/v formic acid in 
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distilled water; flow rate 1.2 mL/min. Compounds were detected using MS under 

the following conditions: positive ionisation; detector 1.50 kV; SIM m/z 551 (MH+ 

internal standard 60), 571 (MNa+ internal standard 60), 597 (MH+ compound 4), 

503 (MH+ compound 17) and 525 (MNa+ compound 17). Quantification was 

performed using the LabSolutions LCMS (Shimadzu Corporation) software by 

calculating the ratio of the area under the peak of the test article to the 

internal standard. This ratio was then expressed as the percentage of parent 

compound remaining relative to the negative control. The experiment was 

performed in triplicate for each compound under investigation. Corresponding 

graphs were generated and statistical analyses (unpaired t tests) were 

performed using the GraphPad Prism 6.0 software. 

6.4.3 In vitro intrinsic clearance of diclofenac, 

olaparib, 4 and 17. 

The experiments were conducted as reported by Zmuda et al. (2015) using 

slightly modified methodology from that described by Walsky and Obach (2004). 

A 10 mg/mL stock solution of commercially available human liver microsomes 

pooled from 50 donors (GibcoTM catalogue number: HMMC-PL) was prepared by 

diluting 100 μL aliquots of the original 20 mg/mL solution with 100 mM 

monopotassium phosphate (pH 7.4) buffer. Next, 10 μL of the microsomal 

enzyme stock was added to 160 μL of 100 mM monopotassium phosphate (pH 7.4) 

buffer, followed by 10 μL of 60 μM diclofenac, olaparib, 4 or 17 solution in a 

mixture of dimethyl sulfoxide and 100 mM monopotassium phosphate (pH 7.4) 

buffer. The final assay concentration of dimethyl sulfoxide in each case was ≤1% 

v/v. The solutions were warmed to 37 C using an aluminium block and hotplate 

for 10 minutes. The incubations were then initiated by adding 20 μL of 13 mM 

NADPH stock in 100 mM monopotassium phosphate (pH 7.4) buffer. A negative 

control was used that contained 10 μL of the microsomal enzyme stock, 10 μL of 

60 μM test compound and 180 μL of 100 mM monopotassium phosphate (pH 7.4) 

buffer minus NADPH. Incubations were terminated at 0, 5, 15, 30 and 45 minutes 

by adding 200 μL of acetonitrile, which precipitated the microsomal enzymes, 

followed by centrifugation at 1000 g for 5 minutes at room temperature. The 
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supernatant (350 μL) was removed from each sample and diluted with 200 μL of 

acetonitrile, followed by the addition of 10 μL of 60 μM internal standard (either 

papaverine or 60). The resulting solutions were passed through a 0.22 µm filter 

and were analysed using LC-MS (Shimadzu LC-2010AHT, LCMS-2010EV). LC was 

performed on 40 μL sample injections using a Kinetex 5 μm XB-C18 100Å (50  

4.60 mm) column. The mobile phase conditions were dependant on the 

compound under investigation and these were: i) diclofenac: 0.0–15.0 minutes = 

30:70 to 70:30 A:B; 15.1–17.0 minutes = 70:30 A:B; 17.1–20.0 minutes = 70:30 to 

90:10 A:B; 20.1–22.0 minutes = 90:10 to 30:70 A:B; 22.1–25.0 minutes = 30:70 

A:B where A = acetonitrile and B = 0.1% v/v formic acid in distilled water; ii) 

olaparib: 0.0–10.0 minutes = 20:80 to 55:45 A:B; 10.0–12.0 minutes = 55:45 to 

20:80 A:B; 12.0–14.0 minutes = 20:80 A:B where A = acetonitrile and B = 0.1% 

v/v formic acid in distilled water; 4 and 17: 0.0–10.0 minutes = 30:70 to 60:40 

A:B; 10.0–12.0 minutes = 60:40 to 30:70 A:B; 12.0–14.0 minutes 30:70 A:B where 

A = acetonitrile and B = 0.1% v/v formic acid in distilled water. The mobile phase 

flow rate in each case was 1.2 mL/min. Parent compounds were detected using 

MS under the following conditions: positive ionisation; detector 1.50 kV; SIM m/z 

551 (MH+ internal standard 60), 571 (MNa+ internal standard 60), 340 (MH+ 

internal standard papaverine), 296 (M+ diclofenac), 435 (MH+ olaparib), 597 (MH+ 

compound 4), 503 (MH+ compound 17) and 525 (MNa+ compound 17). 

Quantification was performed using the LabSolutions LCMS (Shimadzu 

Corporation) software by calculating the ratio of the area under the peak of the 

test article to the internal standard. This ratio was then expressed as the natural 

logarithm of the percentage of unchanged parent compound remaining relative 

to the 0 minute incubation timepoint. The natural logarithm of the percentage 

of parent remaining over time plots were generated using the GraphPad Prism 6 

software and the regression models were used to calculate the in vitro intrinsic 

clearance (Clint,in vitro) values using the following equations: 

i) k = gradient 

ii) t1/2 (min) = ln(2)/k 

iii) Vd (µL/mg) = volume of incubation (µL)/protein in incubation (mg) 
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iv) Clint,in vitro (µL/min/mg of protein) = Vd × ln(2)/t1/2 

where k = elimination rate constant, t1/2 = half-life; Vd = volume of distribution, 

and Clint,in vitro = in vitro intrinsic clearance. 

Assays were performed in duplicate for each test compound.  

6.4.4 Gamma-counter calibration. 

[123I]-ioiodine (in the form of [123I]-NaI) and [18F]-fluoride (in the form of 

18F/H2
18O) were serially diluted with 0.05 M sodium hydroxide and distilled 

water respectively to a final volume of 1 mL, such that the activities (decay 

corrected for the start of gamma-counting) were 500, 100, 50, 10, 5, 1, 0.5 and 

0.1 KBq. In both cases negative controls containing distilled water only were also 

prepared. Gamma-counting was performed using a Cobra II Auto-Gamma® 

counter and the following counting parameters: i) count time = 1 minute; ii) KeV 

range = 136–215 for 123I and 311–711 for 18F; output = counts per minute (CPM). 

The counts per minute obtained for 123I and 18F were further decay corrected to 

account for the counting time between the first and last samples. The decay 

corrected count per minute values were then plotted against the corresponding 

amounts of radioactivity (KBq), and linear regression models were applied using 

the GraphPad Prism 6.0 software. 

6.4.5 U87MG-Luc2 cell culture and subcutaneous 

tumour implantation. 

Cell culture and implantation procedures were performed as reported by Zmuda 

et al. (2015). The U87MG-Luc2 GBM cell line was cultured in Minimum Essential 

Media supplemented with 10% w/v fetal calf serum and 2 mM L-glutamine. 

Cellular incubations were performed at 37 C and 5% v/v CO2. Unconscious 

female 6–8 week old CD1 nude mice had 5 × 106 U87MG-Luc2 cells injected 

subcutaneously into the right flank. Subcutaneous xenografts were measured and 

monitored visually every three days. The work described in this section was 



270 
 

 

performed Sandeep Chahal from the Chalmer’s research group. Tumour bearing 

animals were used for in vivo studies 28–30 days post tumour implantation. 

6.4.6 Immunohistochemistry. 

Immunohistochemistry was performed as reported by Zmuda et al. (2015). 

Subcutaneous tumour and muscle (from the left femur) tissues were removed 

and immersion fixed in 4% v/v formaldehyde PBS for 48–168 hours. The fixed 

tissue was embedded in paraffin blocks and 4 µm sections were cut by the 

Cancer Research UK Beatson Institute Histology Service. Paraffin was removed by 

washing the tissue sections in xylene (2 × 5 minutes), followed by rehydration by 

washing the sections in 100% v/v ethanol (1 minute and 5 minutes), 70% v/v 

ethanol (2 × 5 minutes) and water (5 minutes). Immunohistochemistry was 

performed using the Dako EnVisionTM kit. Briefly, heat induced antigen retrieval 

using Dako Cytomation Target Retrieval Solution (pH 6.0) was followed by an 

incubation in 3% v/v hydrogen peroxide in methanol (20 minutes), and then 5% 

w/v bovine serum albumin and 5% v/v goat serum in PBS (20 minutes) to block 

peroxidase activity and minimise non-specific binding respectively. Between 

each step the tissue sections were washed in 0.1% v/v Tween® 20 in TBS (2 × 5 

minutes). The tumour and muscle sections were incubated overnight at 4–8 C in 

1:100 anti-PARP-1 antibody (mouse anti-human and mouse antibody; sc-8007; 

Santa Cruz). Following this, the tissues were washed with 0.1% v/v Tween® 20 in 

TBS (2 × 5 minutes), and a secondary one hour incubation at room temperature 

was performed using Dako horseradish-peroxidase labelled anti-mouse polymer. 

The sections were once again washed using 0.1% v/v Tween® 20 in TBS (2 × 5 

minutes) and the presence of antibody was detected using a 3,3’-

diaminobenzidine chromagen solution diluted in Dako DAB+ substrate buffer. 

Haematoxylin and eosin, and Ki67 staining was performed by the Cancer 

Research UK Beatson Institute Histology Service using a Leica ST5020 

multistainer. Histology images were acquired using a Zeiss AX10 brightfield 

microscope at ×4 magnification and contrast was corrected manually using the 

ImageJ 1.47v software. 
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6.4.7 Ex vivo biodistribution. 

6.4.7.1 [123I]-4 pilot biodistribution study. 

Healthy female 6–7 week old black-6 mice were anaesthetised using inhaled 

isoflurane (in medical oxygen; induction 5.0% v/v; maintenance 2.0–3.0% v/v) 

and were administered bolus tail vein injections of 1.0–1.1 MBq [123I]-4 in 0.12–

0.20 mL 10% v/v ethanol in 0.9% w/v saline by Dr Gaurav Malviya from the 

Cancer Research UK Beatson Institute Nuclear Imaging department. Body 

temperature was maintained during anaesthesia using a heating pad. The 

animals were killed by CO2 asphyxiation either 5 minutes (n = 3) or 30 minutes (n 

= 3) following tracer injection. The following tissues were harvested and 

transferred to preweighed 1.5 mL Eppendorf vials containing 0.5 mL of fixative 

(4% formaldehyde PBS) immediately after sacrifice: i) blood; ii) spleen; iii) 

pancreas; iv) small bowela; v) large bowela; vi) stomacha; vii) liver (left lobe); 

viii) kidney (left); ix) heart; x) lung (left lobe); xi) muscle (from left femur); and 

xii) brain. Each vial was weighed and gamma-counted using a Cobra II Auto-

Gamma® counter and the counting parameters as described above for 123I 

(section 6.4.4). A positive control was used containing 0.5 mL of fixative and 10 

µL of the [123I]-4 stock solution used to dose the animal. Background counts were 

defined using a negative control containing 0.5 mL of fixative. The background 

signal was subtracted from the tissue CPM values, which were then normalised 

to the weight of each tissue sample. The CPM of each positive control were then 

used to calculate the theoretical maximum CPM of each injected tracer volume 

and this was in turn used to calculate the percentage injected dose per gram of 

tissue (%ID/g). Data analysis was performed using the Microsoft Excel 2010 and 

software. The corresponding graph was generated and statistical analyses 

(unpaired t tests) were performed using the GraphPad Prism 6.0 software. 

aBiological material found in these organs was removed prior to transferring the 

tissues to sample vials. 



272 
 

 

6.4.7.2  [123I]-4 biodistribution study. 

Experiments were performed as reported by Zmuda et al. (2015). Subcutaneous 

U87MG-Luc2 tumour bearing female CD1 nude mice were anaesthetised using 

inhaled isoflurane (in medical oxygen; induction 5.0% v/v; maintenance 2.0–3.0% 

v/v) and were administered bolus tail vein injections of 0.9–1.1 MBq [123I]-4 in 

0.15–0.20 mL 10% v/v ethanol in 0.9% w/v saline by Dr Gaurav Malviya from the 

Cancer Research UK Beatson Institute Nuclear Imaging department. The animals 

were killed by CO2 asphyxiation either 30 minutes (n = 3), 60 minutes (n = 4) or 

120 minutes (n = 4) following tracer injection. The remainder of the experiment 

was conducted as described above for the [123I]-4 ex vivo biodistribution pilot 

study (section 6.4.7.1), with the exception of the following tissues and biological 

materials being harvested: i) blood; ii) spleen; iii) stomach matter; iv) stomach 

tissuea; v) small bowel matter; vi) small bowel tissuea; vii) caecum matter; viii) 

large bowel tissuea;  ix) solid faeces; x) pancreas; xi) liver (left lobe); xii) kidney 

(left); xiii) heart; xiv) lung (left lobe); xv) muscle (from left femur); xvi) left 

femur; xvii) brain; and xviii) tumour. The corresponding graph was generated 

using the GraphPad Prism 6.0 software. 

aBiological material found in these organs was removed prior to transferring the 

tissues to sample vials.   

6.4.7.3 [18F]-17 biodistribution study. 

Subcutaneous U87MG-Luc2 tumour bearing female CD1 nude mice were 

anaesthetised using inhaled isoflurane (in medical oxygen; induction 5.0% v/v; 

maintenance 2.0–3.0% v/v) and were administered  bolus tail vein of 1.9–2.6 

MBq [18F]-17 in 0.11–0.21 mL 5% v/v dimethyl sulfoxide in 0.9% w/v saline by Dr 

Gaurav Malviya from the Cancer Research UK Beatson Institute Nuclear Imaging 

department. The remainder of the experiment was conducted as described 

above for the [123I]-4 biodistribution study (section 6.4.7.2). Due to the short 

half-life of 18F, the counts per minute were decay corrected to account for the 
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counting time between the first and last samples. The corresponding graph was 

generated using the GraphPad Prism 6.0 software. 

6.4.8 Ex vivo biodistribution with pre-blockade. 

6.4.8.1 [123I]-4.  

Experiments were performed as reported by Zmuda et al. (2015). Subcutaneous 

U87MG-Luc2 tumour bearing female CD1 nude mice received an intraperitoneal 

injection of either vehicle (13.5% v/v dimethyl sulfoxide and 10% w/v 2-hydroxy-

β-cyclodextrin in distilled water) (n = 3) or 50 mg/kg olaparib in vehiclea (n = 3) 

20 minutes prior (Zhou et al., 2014) to bolus tail vein injections of 0.8–1.1 MBq 

[123I]-4 in 0.15–0.25 mL 10% v/v ethanol in 0.9% w/v saline. All injections were 

performed on conscious mice by Dr Gaurav Malviya from the Cancer Research UK 

Beatson Institute Nuclear Imaging department. The animals were killed by CO2 

asphyxiation 60 minutes following tracer injection. The following tissues were 

harvested and transferred to preweighed 1.5 mL Eppendorf vials containing 0.5 

mL of fixative (4% v/v formaldehyde PBS) immediately after sacrifice: i) spleen; 

ii) stomachb; iii) small bowelb; iv) large bowelb; v) pancreas; vi) liver (left lobe); 

vii) kidney (left); vii) heart; ix) lung (left lobe); x) muscle (from left femur); xi) 

left femur; xii) brain; and xiii) tumour. Each vial was gamma-counted and the 

%ID/g values were calculated as described earlier (section 6.4.7.1). The %ID/g of 

tissue value obtained for each sample was then divided by the corresponding 

%ID/g of muscle value from the same animal to obtain the ratio %ID/g of target 

organ to muscle. Data analysis was performed using the Microsoft Excel 2010 

software. The corresponding graph was generated and statistical analyses 

(unpaired t tests) were performed using the GraphPad Prism 6.0 software. 

aInjections of olaparib were performed using a 4 mg/mL working solution. 

bBiological material found in these organs was removed prior to transferring the 

tissues to sample vials. 
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6.4.8.2 [18F]-17. 

The experiment was conducted as described above for the [123I]-4 pre-blockade 

study (section 6.4.8.1). Mice received bolus tail vein of 1.8–2.0 MBq [18F]-17 in 

0.16–0.20 mL 5% v/v dimethyl sulfoxide in 0.9% w/v saline. In addition to the 

previously listed organs and biological materials, the right femur was also 

harvested, from which marrow tissue was flushed out using distilled water prior 

to gamma-counting.  
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7 IN VIVO EVALUATION OF THE POTENTIAL TSPO NUCLEAR 

IMAGING AGENT [18F]-AB5186. 

7.1 Introduction. 

7.1.1 Discovery of [
18

F]-AB5186. 

As highlighted previously (section 1.4.3.2), the first generation isoquinoline 

carboxamide TSPO nuclear imaging agents [11C]-PK11195 and [123I]-PK11195 

suffered from poor brain uptake and high non-specific binding properties, which 

has limited their application as neuroimaging agents. Furthermore, [11C]-

PK11195 is inherently disadvantaged by the rapid decay of 11C, which has 

practical limitations (see section 1.2.1 for details).  

Second and third generation TSPO nuclear imaging agents such as [11C]-PBR28 

and [18F]-DPA-714 exhibited better brain uptake and specific binding properties, 

but were affected by single nucleotide polymorphism of the human protein (see 

section 1.4.3.2 for details). In an attempt to address these issues, Dr Adele Blair 

undertook a PhD project that involved utilising the PK11195 scaffold for the 

discovery of a novel 18F-labelled TSPO PET imaging agent (Blair, 2014). This work 

gave rise to the 3-fluoromethylquinoline-2-carboxamide AB5186 (Figure 7.1), 

which displayed similar TSPO binding affinity and plasma protein binding 

properties to PK11195. However, AB5186 exhibited lower membrane 

permeability (Pm) and membrane partition coefficient (Km) values (Table 7.1) 

(Blair, 2014).  

 

Figure 7.1. Structures of PK11195 and AB5186. 
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Table 7.1. Inhibition constant (Ki), percentage plasma protein binding (%PPB), 

membrane permeability (Pm), and the membrane partition coefficient (Km) 

parameter values for PK11195 and AB5186. 

 
aValues are the mean  the standard deviation of three independent 

experiments. bAcquired using HPLC methodologies as described by Blair (2014). 

The Pm parameter describes the ability of a compound to passively diffuse across 

biological membranes, and can act as a predictor of passive BBB membrane 

transport. The parameter has been shown to correlate with radiotracer brain 

uptake in an inverse manner, where lower Pm values were associated with 

greater quantities of radiolabelled compound entering brain tissue (Tavares et 

al., 2012). The Km is proportional to Pm, and represents the distribution of a 

solute molecule between the aqueous phase and the biological membrane. The 

coefficient has been shown to exhibit an inverse relationship with the ratio of 

specifically bound to non-specifically bound radiotracer, or binding potential 

(BPND), in brain tissue (Tavares et al., 2012). In simpler terms, a lower Km was 

found to be associated with a lower BPND, and subsequently a greater degree of 

specific versus non-specific binding. Therefore, the lower Pm and Km values 

observed for AB5186 when compared to PK11195 would suggest that the former 

compound may exhibit better BBB penetration and brain uptake, as well as 

specific binding properties. Another advantage of AB5186 is its potential to be 

radiolabelled with 18F, which is associated with a longer decay half-life than the 

11C radionuclide used to label PK11195 (half-life 11C = 20.3 minutes vs. 18F = 

109.8 minutes). Furthermore, it was proposed that the structural resemblance of 

AB5186 to PK11195 would minimise the sensitivity of the compound to human 

TSPO polymorphism. This was rationalised by the fact that Zanotti-Fregonara et 

al. (2014) reported the discovery of 11C-labelled PK11195 azaisosteres 74–76 

(Figure 7.2), which exhibited TSPO binding profiles that were not influenced by 
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single nucleotide polymorphism. In vivo evaluation of these radiotracers in 

healthy non-human primates using PET imaging revealed good brain uptake 

properties. However, similarly to [11C]-PK11195, 74–76 were disadvantaged by 

the short-lived nature of the 11C radionuclide. 

 

Figure 7.2. 11C-labelled azaisosteres of PK11195 that are not affected by single 

nucleotide polymorphism of TSPO (Zanotti-Fregonara et al., 2014). 

In addition to the discovery, synthesis, and physiochemical characterisation of 

AB5186, Dr Adele Blair also developed 18F radiolabelling methodology that gave 

access to [18F]-AB5186 (see section 7.2.1 for details), which she then used in an 

in vitro autoradiography study that aimed to evaluate the binding of the 

radiotracer to TSPO in a G7 intracranial mouse model of human GBM. This study 

revealed increased total binding of [18F]-AB5186 in the tumour compared to the 

contralateral side of the brain, which correlated to the binding of [3H]-PK11195 

and the anatomical location of the tumour as revealed by histological evaluation 

of the brain tissue. Importantly, the binding of [18F]-AB5186 was displaceable in 

the presence of excess non-radioactive PK11195, which confirmed the in vitro 

specificity of the novel agent for TSPO (Blair, 2014). Nearing the end of her PhD 

project, Dr Adele Blair had the opportunity to investigate the in vivo behaviour 

of [18F]-AB5186 by performing a single dynamic PET scan of a healthy baboon 

post radiotracer administration. Kinetic data extracted from this study showed 

that [18F]-AB5186 was able enter the primate brain, which supported the ability 

of the radiotracer to cross the intact BBB (Blair, et al., 2015). 

The advantages of [18F]-AB5186 over the 11C and 123I-labelled versions of 

PK11195, in combination with the potential for negligible sensitivity of [18F]-

AB5186 to TSPO polymorphism in humans, justifed further pre-clinical 

development of this radiotracer. 
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7.1.2 Ex vivo autoradiography. 

Autoradiography is a qualitative and quantitative technique that can be 

performed in vitro or ex vivo, and allows visualisation and measurement of 

radiolabelled compound bound to solid sections of biological tissue. In in the 

case of in vitro autoradiography, tissue sections of interest are incubated in the 

presence of radioactive ligand, while ex vivo autoradiography involves 

intravenous administration of radioligand to a living animal, followed by removal 

and sectioning of the desired tissues (Figure 7.3). In both cases, the radioligand 

will bind to target proteins (i.e. specific binding) or other cellular components 

(i.e. non-specific binding) present in the tissue. The final step of the 

autoradiography process involves exposure of the radioactive tissue sections to 

radiation-sensitive photographic film, which upon development reveals the 

distribution and density of radioactivity within the tissue section. The main 

advantage of ex vivo autoradiography over the in vitro methodology is that the 

technique provides radiotracer tissue binding information following exposure to 

in vivo conditions. This is important in the context of pre-clinical radiotracer 

discovery, as the findings can be used to directly inform and validate future 

nuclear imaging studies (Schmidt and Smith, 2005). 

 

Figure 7.3. Diagrammatic representation of a radiotracer ex vivo 

autoradiography study using an intracranial tumour bearing mouse. 

Similarly to the ex vivo biodistribution method, ex vivo autoradiography is a 

terminal experimental procedure and may require the use of larger numbers of 
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animals when compared to nuclear imaging studies (see section 6.1.3 for 

details). Other limitations of ex vivo autoradiography include the possibility of 

artefacts due to tissue sectioning, the two-dimensional nature of the resulting 

autoradiograms, and the fact that these data correspond to only a sample of the 

whole tissue (Schmidt and Smith, 2005). These issues can be overcome by 

nuclear imaging, which allows for the non-invasive acquisition of three-

dimensional (tomographic) information from entire organs within the field of 

view of the detector. However, it is important to bear in mind that 

autoradiography is capable of achieving superior spatial resolution, in the order 

of a few hundred microns, when compared to pre-clinical PET and SPECT 

imaging (Schmidt and Smith, 2005). Therefore, as with ex vivo biodistribution 

(see section 6.1.3 for details), ex vivo autoradiography is often utilised to 

validate nuclear imaging data (Zhang et al., 2005; Carney et al., 2015; Carlucci 

et al., 2015; Salinas et al., 2015). 

7.1.3 Small animal in vivo bioluminescence imaging of 

glioblastoma. 

The luciferase enzyme, present in a number of insects, lower order sea 

organisms, and bacteria, catalyses the conversion of luciferin to an energetically 

excited oxyluciferin (i.e. *oxyluciferin) in the presence of ATP and oxygen. The 

relaxation of *oxyluciferin to its ground state results in the emission of visible 

light, and the overall process is termed bioluminescence. Transfer of the gene 

encoding luciferase to cancer cell lines, such that the cells exhibit stable 

expression of the enzyme, has enabled in vivo bioluminescence imaging of 

neoplastic xenografts in animals. Such imaging involves the subcutaneous or 

intraperitoneal administration of luciferin to an animal bearing a tumour 

xenograft capable of expressing luciferase. The subsequent chemical conversion 

of luciferin to oxyluciferin generates visible light, which is then detected by a 

charge coupled device camera (Figure 7.4).  
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Figure 7.4. Diagrammatic representation of bioluminescence imaging of a mouse 

bearing an intracranial tumour expressing the luciferase enzyme. ATP = 

adenosine triphosphate; AMP = adenosine monophosphate.  

Bioluminescance imaging is a quantitative technique, as the amount of 

generated visible light is proportional to the number of luciferase expressing 

cells. However, it is important to bear in mind that a number of factors can 

affect the quantification process. Firstly, the emitted light is prone to scatter 

interactions as it traverses biological tissue, which has a negative effect on 

spatial resolution. Consequently, in vivo bioluminescence imaging is generally 

limited to smaller animals and superficial tumour xenografts, where scatter 

interference is minimised. Secondly, emitted light can be absorbed by biological 

substances such as haemoglobin and melanin, which reduces the amount of light 

reaching the camera and imaging sensitivity (Edinger et al., 2002). Finally, the 

technique is prone to experimental error as precise administration of luciferin is 

required in order to minimise inter-subject variability (Jung and Willard, 2014). 

Despite these limitations, in vivo bioluminescence imaging has been well 

established in pre-clinical cancer research, as it allows for monitoring of tumour 

models and their progression in a non-invasive manner that supersedes 
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previously used techniques such as gross tumour volume measurement using 

callipers, monitoring of weight changes, or behavioural monitoring (Edinger et 

al., 2002). 

7.1.4 Aims and hypotheses. 

The work described in this chapter aimed to utilise intracranial GBM bearing 

mice in combination with ex vivo autoradiography and in vivo PET imaging 

techniques to evaluate the ability of [18F]-AB5186 to bind to TSPO in vivo in a 

specific manner. 

The following hypotheses were set for this work: 

i) [18F]-AB5186 will enter brain tissue and subsequently bind TSPO overexpressed 

by GBM and associated immune cells. This hypotheses was drawn based on the 

earlier described observations (see section 7.1.1 for details), which revealed 

that the in vitro predictor of passive BBB transport (Pm) was favourable for 

AB5186 compared to PK11195, and that [18F]-AB5186 was able to enter healthy 

baboon brain in vivo. Furthermore, BBB disruptions associated with GBM lesions 

(see section 4.1.2.2 for details) are likely to facilitate passive brain uptake of 

[18F]-AB5186. 

ii) [18F]-AB5186 will bind to TSPO with specificity in vivo. This hypothesis is 

justified by the earlier described observations that showed specific binding of 

the radiotracer to TSPO in vitro (see section 7.1.1 for details). 

iii) Pre-clinical PET imaging of intracranial GBM bearing mice using [18F]-AB5186 

will allow for non-invasive visualisation of TSPO overexpressed in the tumour. 

The rationale for this hypothesis is based on previous reports of GBM nuclear 

imaging using radiotracers for TSPO (see section 1.4.3.1 for details). 
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7.2 Results and discussion. 

7.2.1 Radiofluorination, purification, and formulation 

of [
18

F]-AB5186.  

The radiosynthetic methodology used to access [18F]-AB5186 and subsequent 

purification and formulations steps were developed by Dr Adele Blair as part of 

her PhD project (Blair, 2014). These methodologies were replicated for the 

purpose of the work described in this chapter. Manual radiosynthesis involved 

performing an aliphatic nucleophilic substitution of a benzyl chloride with 

radiofluoride in the presence of the phase transfer agent K222, which allowed for 

61  22% (n = 7) incorporation yield (Scheme 7.1). The chlorinated precursor for 

this reaction was synthesised by Dr Adele Blair, and further information 

concerning the preparation of this compound can be found in the author’s thesis 

(Blair, 2014). Following the radiosynthetic reaction, [18F]-AB5186 was purified 

using a preparatory HPLC system and formulated into a solution of 10% v/v 

ethanol in 0.9% w/v saline. This enabled access to the radiotracer in an end of 

synthesis yield of 18  9% (Scheme 7.1) and 99  1% radiochemical purity (n = 7) 

(Figure 7.5). The specific activity of [18F]-AB5186 generated using the 

aforementioned methodology was established by Dr Adele Blair and revealed to 

be 0.6  0.2 Ci/μmol (n = 2) (Blair, 2014).  

 

Scheme 7.1. Optimised aliphatic nucleophilic substitution radiofluorination 

methodology for the synthesis of the potential TSPO PET imaging agent [18F]-

AB5186 using the chlorinated precursor 77. EOS = end of synthesis. 
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Figure 7.5. An analytical quality control UV (267 nm)/radio-HPLC chromatogram 

of [18F]-AB5186 showing >99% radiochemical purity of the radiotracer formulated 

in 10.0% v/v ethanol in 0.9% w/v saline. The identity of [18F]-AB5186 was 

confirmed by comparing the retention time of the radiolabelled product (i.e. 

18F-bearing) against the retention time of unlabelled AB5186 (i.e. 19F-bearing) 

(Appendix 9.14). 

It is important to bear in mind that the above described radiosynthesis of [18F]-

AB5186 has potential for further optimisation, which could include the use of 

TBAHCO3 as a phase transfer agent in combination with a bulky protic alcohol. 

This can be rationalised by the improved radiofluoride incorporation yields 

observed following the addition of tert-butyl alcohol when developing 

radiolabelling methodology for [18F]-17 (see section 5.2.3 for details). The 

ultimate aim would be to automate the radiosynthetic and purification 

methodologies to allow for rapid and reproducible access to [18F]-AB5186 (see 

chapter 8 for details). 
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7.2.2 Intracranial U87MG-Luc2 glioblastoma xenograft 

model. 

The intracranial U87MG-Luc2 GBM xenograft model was chosen to test the 

hypotheses outlined earlier (see section 7.1.4), as the wild-type variant of the 

cell line has been shown generate TSPO overexpressing tumours in rats (Starosta-

Rubinstein et al., 1987). Another important driving force for this choice was the 

ability of the cell line to express luciferase, which in turn allows for non-invasive 

in vivo bioluminescence imaging of viable tumour cells (see section 7.1.3 for 

details). Furthermore, past experience of the research group with this model 

revealed that the intracranially implanted U87MG-Luc2 tumours are localised 

and exhibit a non-invasive phenotype. A low degree of invasiveness can be 

beneficial for pre-clinical radiotracer evaluation as it permits the use of the 

contralateral brain region as a reference tissue for quantification purposes.  

In order to confirm that the luciferase variant of the U87MG cell line is still 

capable of generating tumours associated with high levels of TSPO expression, 

intracranial U87MG-Luc2 tumours grown in mice were characterised by 

immunohistochemistry. Tumour sections were stained with H&E, and antibodies 

against Ki67, TSPO, and Iba1 (a marker of microglia) (Figure 7.6). The latter 

antibody was used in an attempt to delineate between neoplastic and microglial 

TSPO expression. H&E staining revealed well defined and vascularised GBM 

lesions located unilaterally, which were found to comprise of a large number of 

proliferative cells as shown by Ki67 antibody staining. Importantly, high levels of 

TSPO were present in tumour tissue relative to contralateral brain regions, 

where expression was low. This observed contrast was in line with previous 

reports (see section 1.4.2 for details) and provides further evidence to support 

the use of TSPO as a GBM biomarker.  
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Figure 7.6. Representative immunohistochemistry images (×4 magnification) of 

a single intracranial U87MG-Luc2 GBM tumour and contralateral brain regions 

from a female CD1 nude mouse stained with haematoxylin and eosin (H&E), and 

antibodies against Ki67 (a marker of cellular proliferation), TSPO, and Iba1 (a 

microglia marker). TSPO and Iba1 negative control sections were stained with 

secondary antibody only. Staining was performed on paraffin embedded tissue. 

Blue staining shows cellular nuclei and brown staining signifies the presence of 

Ki67, TSPO or Iba1. Modified from Blair et al. (2015). 
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It is important to note that immunohistochemical evaluation of the mouse 

U87MG-Luc2 tumours using the Iba1 antibody revealed the presence of microglia 

cells within the main tumour mass. This observation correlated with previous 

literature reports that showed infiltration of microglial cells into glioma 

tumours, which can account for up to 30% of the tumour mass (reviewed by Olah 

et al. (2011)). The deramified morphology of these cells was suggestive of an 

activated microglial phenotype (Raivich et al., 1999; Olah et al. 2011). 

Therefore, it is possible that these activated immune cells contributed to TSPO 

expression within the U87MG-Luc2 tumours. However, the increased amount of 

staining observed with the anti-TSPO antibody when compared to the anti-Iba1 

antibody suggested that the majority of TSPO expression within the tumour was 

of neoplastic origin. These findings are in line with those reported by Winkeler 

et al. (2012) who performed immunohistochemical staining of brain tissue 

sections obtained from rats bearing 9L glioma xenografts. Furthermore, gliomas 

are known to secrete high levels of factors that can supress microglia activation 

and repress expression of co-stimulatory molecules (Olah et al., 2011). Although, 

it is important to note that Winkeler et al. (2012) confirmed the presence of 

activated microglia within rat 9L glioma lesions. In order to establish the 

presence of activated microglia in the U87MG-Luc2 GBM tumours, 

immunohistochemistry staining using a CD68 antibody (a marker of activated 

microglia) was attempted. However, optimisation of the staining protocol proved 

challenging due to high non-specific binding and consequently conclusive results 

could not be obtained (data not shown). The specificity of the secondary 

antibodies for the primary TSPO and Iba1 antibodies was confirmed by staining 

the tissues with secondary antibodies only (i.e. TSPO and Iba1 negative 

controls). No brown staining was observed, thereby confirming the specificity of 

the secondary stains (Figure 7.6). 
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7.2.3 Ex vivo autoradiography and PET imaging. 

Generation of intracranial U87MG-Luc2 tumours requires stereotactic injection 

of viable tumour cells into the brains of mice that are immunodeficient. CD1 

nude mice lack the thymus (i.e. athymic), which is the primary lymphoid organ 

responsible for producing T-cells. Since T-cells form part of the adaptive 

immune system and exhibit cytotoxic xenoreactivity, their absence is important 

in maximising successful tumour xenograft implantation. However, despite an 

athymic phenotype, nude mice can possess small numbers of T-cells originating 

from an extrathymic development pathway, which have been shown to 

negatively affect tumour xenograft transplantability (Zietman et al., 1988). 

Other factors that can contribute to xenograft implantation failure include 

procedural error, cancer cell line contamination, and loss of cellular viability 

during the implantation procedure. 

To confirm successful U87MG-Luc2 GBM xenograft implantation, bioluminescence 

imaging was performed 11 or 15 days after stereotactic cancer cell injection 

(Figure 7.7). Absence of bioluminescence signal was suggestive of failed tumour 

engraftment or complete tumour regression, and such animals were excluded 

from [18F]-AB5186 in vivo studies. 
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Figure 7.7. Representative bioluminescence image of intracranial U87MG-Luc2 

tumours 15 days after implantation acquired using the IVIS® Spectrum. The 

image was processed and generated using the Living Image 4.4 software.  

In order to establish whether [18F]-AB5186 was capable of entering GBM tissue 

and binding to TSPO with specificity in vivo, mice bearing intracranial U87MG-

Luc2 tumours were pre-treated with either vehicle or an excess of the non-

radioactive TSPO ligand PK11195, followed by intravenous administration of 

[18F]-AB5186. Tumour bearing brains of the mice were then removed, frozen, 

and sectioned. Ex vivo autoradiography of brain tissue sections obtained from 

vehicle pre-treated mice revealed distinct radioactive hotspots in the tumour 

bearing hemispheres (Figure 7.8 A) with a hotspot to contralateral brain tissue 

optical density ratio of 2.1  0.1 (n = 4). These hotspots correlated with the 

anatomical location of the tumours, which appeared as blue masses following 

H&E histochemical staining (Figure 7.8 B), and were shown to express high levels 

of TSPO (Figure 7.8 C). Importantly, ‘blockade’ of TSPO binding sites with non-

radioactive PK11195 resulted in significantly lower in vivo uptake of [18F]-AB5186 
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into tumour tissue when compared to vehicle pre-treated mice (Figure 7.8 A and 

Figure 7.9). These observations were in line with the earlier defined hypotheses 

(section 7.1.4.), as they confirm the ability of [18F]-AB5186 to enter mouse GBM 

tissue and bind to TSPO with specificity in vivo. 

 

Figure 7.8. Representative coronal brain autoradiograms (A), and 

immunohistochemistry images showing staining with haematoxylin and eosin 

(tiled image) (B) and the anti-TSPO antibody (C) (×4 magnification) obtained 

from intracranial U87MG-Luc2 GBM bearing female CD1 nude mice that were 

injected with either vehicle or 1 mg/kg PK11195 followed by [18F]-AB5186 (41 

ng) 10 minutes later. Animals were killed and brains were harvested for 

sectioning 20 minutes after radiotracer administration. Immunohistochemistry 

staining was performed on frozen tissue. Blue staining shows cellular nuclei and 

brown staining signifies the presence TSPO. Modified from Blair et al. (2015). 
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Figure 7.9. A graph showing the ratios of autoradiogram tumour to contralateral 

side optical densities from vehicle control (n = 4) and PK11195 (n = 4) treated 

intracranial U87MG-Luc2 GBM bearing mice. Error bars represent the mean + 

standard deviation. Unpaired t test value: *** = ≤0.001. The plot was generated 

and statistical analysis was performed using the GraphPad Prism 6.0 software. 

Modified from Blair et al. (2015).  

To investigate the potential of [18F]-AB5186 as a TSPO nuclear imaging agent, a 

120 minute dynamic PET scan was performed of a single mouse bearing an 

intracranial U87MG-Luc2 tumour immediately after radiotracer administration. 

Failure of the nuclear imaging equipment in the department prevented data 

acquisition from a larger population sample. PET image reconstruction and 

manual co-registration with a CT image acquired after the dynamic scan 

revealed a unilateral hotspot, which correlated with the tumour implantation 

site (Figure 7.10). High uptake of [18F]-AB5186 was also observed in areas outside 

of the CNS, including the eye and oral cavity regions.  
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Figure 7.10. Summed dynamic PET data (frames 1–10; 1 acquisition per minute; 

120 minute scan) fused with manually co-registered CT of an intracranial U87MG-

Luc2 GBM xenograft bearing mouse (29 days post implantation) acquired 

following [18F]-AB5186 (124 ng) administration. White arrows highlight cranial 

entrance used for tumour implantation. The image was processed and generated 

using the PMOD 3.504 software. SUV = standardised uptake value. 

In order to minimise interference from extracranial tissue and allow for greater 

clarity, the PET signal outside of the brain region (as defined by the skull) was 

masked (Figure 7.11 A to C). Postmortem histological evaluation of the brain 

collected after PET/CT imaging revealed a large unilateral GBM lesion (Figure 

7.11 D) that correlated with the anatomical location of the PET hotspot visible in 

summed images from the first and mid 40 minute portions of the scan (Figure 
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7.11 A and B). These observations were suggestive of [18F]-AB5186 uptake in 

tumour tissue. Summed images from the last 40 minutes of the scan (Figure 7.12 

C) revealed negligible difference between [18F]-AB5186 uptake in the tumour 

bearing and contralateral brain regions, which was indicative of tracer washout 

from the brain. 

 

Figure 7.11. Averaged summed dynamic PET images (A = 0–40 minutes; B = 41–

80 minutes; C = 81–120 minutes) of a U87MG-Luc2 GBM xenograft bearing mouse 

brain (29 days post implantation) acquired following [18F]-AB5186 (124 ng) 

administration, and a coronal histochemistry image (tiled) showing staining of 

the brain tissue with haematoxylin and eosin (D). Histochemical staining was 

performed on paraffin embedded tissue. PET images were processed and 

generated using the PMOD 3.504 software. SUV = standardised uptake value. 

Modified from Blair et al. (2015). 
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In order to probe the kinetics [18F]-AB5186 further, quantitative analysis of the 

PET data was performed. This allowed for the generation of [18F]-AB5186 time-

activity curves in tumour and contralateral brain regions (Figure 7.12). The 

amount of radioactivity was represented as a standardised uptake value (SUV), 

which is the ratio of concentration of tracer in a defined volume of interest to 

the hypothetical concentration of the tracer in the whole body. The curves 

revealed rapid uptake of [18F]-AB5186 into the brain and an approximate tumour 

to contralateral brain tissue SUV ratio of 1.4–1.6 between 20 and 80 minutes 

post radiotracer administration. It is important to bear in mind that explaining 

the current data against the published literature is rather challenging, as 

different study protocols (e.g. different models, animal species, PET imaging 

equipment, analysis methodologies, etc.) were employed and therefore a direct 

comparison is strictly impractical. Furthermore, the preliminary PET imaging 

findings for [18F]-AB5186 were acquired using a single mouse and may not be 

representative of a larger population. However, the current data can still be 

discussed within a broader context, bearing the above in mind.  

Buck et al. (2011) and Winkeler et al. (2012) performed PET imaging on 

intracranial glioma bearing rats using [18F]-PBR06 and [18F]-DPA714 respectively, 

and reported the corresponding time activity curves for tumour and 

contralateral brain regions. In both cases, the tumour levels of the radiotracer 

remained approximately constant throughout the duration of the PET scan, while 

levels in contralateral tissue steadily decreased. In the case of the current 

dataset for [18F]-AB5186, radiotracer levels from both tumour and contralateral 

brain tissue regions decreased with time, albeit at a slower rate from the 

tumour bearing region. It is possible that non-specific binding of [18F]-AB5186 to 

cellular components other than TSPO could have contributed to reduced tumour 

retention. Furthermore, due to spatial resolution limitations of the PET scanner 

(i.e. 1.55 mm (Sánchez et al., 2013)), precise delineation of the tumour from 

surrounding grey matter was not attainable, which could have affected the 

quantification process and therefore the aforementioned observations. 
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Figure 7.12. Time-activity curves of [18F]-AB5186 in the U87MG-Luc2 GBM 

tumour xenograft and contralateral brain regions (A) and tracer kinetics 

expressed as a ratio of tumour to contralateral brain tissue standardised uptake 

values (SUV) (B). Modified from Blair et al. (2015). 

7.3 Conclusion. 

Radiolabelling methodology developed by Dr Adele Blair was successfully 

replicated to access [18F]-AB5186 in 18  9% (n = 7) end of synthesis yield. Ex 

vivo autoradiography of mouse brains bearing GBM tumour xenografts revealed 

accumulation of the tracer in tumour lesions in good contrast to surrounding 

grey matter (tumour to contralateral brain tissue optical density ratio = 2.1  0.1 

(n = 4)). Furthermore, tumour uptake of [18F]-AB5186 was revealed to be due to 

specific binding of the radiotracer to TSPO overexpressed by cells within the 

lesion. These observations proved the first two hypotheses described earlier in 

section 7.1.4. The tracer was also used to successfully visualise TSPO in a mouse 

using non-invasive PET imaging, thereby proving the final hypothesis set for this 
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chapter of the thesis. However, further research is required in order to obtain 

more representative imaging data using larger population samples and [11C]-

PK11195 as a positive control. The use of the positive control could be used to 

establish whether the improved in vitro Pm and Km parameters of AB5186 (see 

section 7.1.1 for details) are translatable to improved BBB permeability and 

specific binding properties in vivo when compared to PK11195 (see chapter 8 for 

details). 

Overall, the preliminary in vivo data for [18F]-AB5186 highlight the potential of 

the agent to act as a TSPO nuclear imaging probe, which has the advantage of 

being labelled with a longer lived radioisotope compared to the current ‘gold-

standard’ PET TSPO imaging agent [11C]-PK11195. [18F]-AB5186 also has the 

potential to exhibit minimal sensitivity to human single nucleotide TSPO 

polymorphism, unlike second and third generation TSPO radiotracers (see section 

1.4.3.2 for details). At the time of writing, human tissue binding assays aimed at 

establishing the sensitivity of AB5186 to human TSPO polymorphism were 

underway. Despite the lack of a complete dataset, preliminary results from 

these assays showed negligible differences between the binding profiles of 

genetically ascertained low- (n = 2), mixed- (n = 2), and high-affinity (n = 2) 

binders. 

7.4 Experimental. 

7.4.1 General. 

Please see section 5.4.1 for details concerning the production of [18F]-fluoride, 

the preparatory and analytical HPLC systems, and UV/radio-HPLC detection.  
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7.4.2 Manual radiosynthesis (via aliphatic nucleophilic 

substitution of chlorinated precursor 77), 

purification, and formulation of [
18

F]-AB5186. 

Synthesis was performed as per the procedure reported by Blair et al. (2015). To 

a 2 mL v-vial containing 532–682 MBq of 18F/H2
18O (0.3 mL) was added 0.106 M 

Kryptofix (K222) and 0.0347 M potassium carbonate (0.25 mL). The mixture was 

vortexed and the [18F]-fluoride was dried by passing a constant stream of argon 

over the solution at 100 C for approximately 20 minutes; aliquots of anhydrous 

acetonitrile (3  0.5 mL) were added to facilitate azeotropic drying. A solution 

of the chloride precursor 77 (2.4 mg, 0.0068 mmol) in acetonitrile (0.5 mL) was 

then added to the v-vial and the reaction allowed to proceed for 15 min at 100 

C. Next, the mixture was cooled to room temperature, diluted with distilled 

water (0.21 mL), and purified using the preparatory HPLC system and the 

following mobile phase conditions: 0.0–15.0 min 70:30 A:B where A = 

acetonitrile and B = distilled water. The radiolabelled product was collected at 

approximately 8 minutes and concentrated in vacuo in an evaporator flask. The 

flask was rinsed with acetonitrile (3 × 0.3 mL) to extract the radiolabelled 

compound and the solution was transferred to a 2 mL v-vial; the solvent was 

removed by passing a constant stream of argon over the solution at 100 C for 

approximately 15 minutes. The radiotracer was then dissolved in ethanol 

followed by dilution using 0.9% w/v saline solution such that the final volume 

was up to 0.8 mL and the final concentration of ethanol was 10% v/v; the 

mixture was vortexed for up to 0.5 minutes to maximise solubilisation of [18F]-

AB5186. The total radiosynthesis time was 118  14 minutes (n = 7). 

A sample of the formulated radiotracer was run on the analytical HPLC system 

using the following mobile phase conditions: 0.0–15.0 min 70:30 A:B where A = 

acetonitrile and B = distilled water. To confirm the identity of the radiolabelled 

product, the retention time of [18F]-AB5186 was compared to the retention time 

obtained for non-radioactive AB5186 using the same chromatographic conditions. 
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7.4.3 U87MG-Luc2 cell culture, intracranial tumour 

implantation, and bioluminescence imaging. 

Procedures were performed as reported by Blair et al. (2015). The U87MG-Luc2 

GBM cell line was cultured as described in section 6.4.5. Unconscious female 6–8 

week old CD1 nude mice had 1 × 105 U87MG-Luc2 cells implanted intracranially 

into the caudate nucleus using standard stereotactic procedures. Successful 

implantation of tumours was confirmed by performing bioluminescence imaging 

either 11 or 15 days after the procedure using an IVIS® Spectrum system 

(PerkinElmer, USA) and the following imaging parameters: i) auto exposure; ii) 

binning = 8; iii) field of view = 22.8; and iv) f stop = 1. Mice were injected 

subcutaneously with 150 mg/kg D-luciferin 7 minutes before performing IVIS® 

imaging. Immediately prior to imaging the mice were anaesthetised using 

inhaled isoflurane (in medical oxygen; induction 5.0% v/v; maintenance 2.0–3.0% 

w/v). The above practical procedures were performed by Sandeep Chahal and Dr 

Lesley Gilmour from the Chalmer’s research group. Data were quantified using 

the Living Image 4.4 software. Regions of interest were defined manually around 

the cranial bioluminescence hotspots and around distal regions to define the 

background signal. The average background bioluminescence signal was 

subtracted from the cranial signal, and was expressed as average radiance 

(photons/sec/cm2/steradian). Tumour bearing animals were used for in vivo 

studies 21–30 days post tumour implantation. 

7.4.4 Immunohistochemistry. 

7.4.4.1 Paraffin embedded tissue. 

Immunohistochemistry was performed as reported by Blair et al. (2015). 

Intracranial U87MG-Luc2 tumour bearing mice were perfusion fixed using 4% v/v 

formaldehyde PBS. Following this, the brains were harvested and immersion 

fixed used the same fixative for a further 72 hours. The fixed tissue was 

embedded in paraffin blocks and 4 µm sections were cut by the Cancer Research 

UK Beatson Institute Histology Service. Tissues were prepared and stained using 
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the same procedures as described previously in section 6.4.6. Primary staining 

was performed using either 1:250 anti-TSPO antibody (rabbit anti-human, mouse 

and rat antibody; NBP1-95674; Novus Biologicals), 1:250 anti-Iba1 antibody 

(mouse anti-human, mouse and rat antibody; ab15690; Abcam), or a range of 

concentrations of anti-CD68 antibody (rat anti-human antibody; ab53444; 

Abcam) (i.e. 1:100, 1:250, or 1:500). Staining using the latter antibody was 

attempted following heat induced antigen retrieval at either pH 6.0 or pH 9.0. 

Secondary staining was performed using Dako horseradish-peroxidase labelled 

anti-mouse, anti-rabbit, or anti-rat polymer.  Haematoxylin and eosin, and Ki67 

staining was performed by the Cancer Research UK Beatson Institute Histology 

Service using a Leica ST5020 multistainer. Individual or tiled histology images 

were acquired using a Zeiss AX10 brightfield microscope at ×4 magnification and 

contrast was corrected manually using the ImageJ 1.47v software. 

7.4.4.2 Frozen tissue. 

Intracranial U87MG-Luc2 tumour bearing mice were killed using CO2 

asphyxiation, and the brains were removed and frozen using a cryospray 

(Cellpath). Tissues were stored at 80 C until ready for use. The frozen brain 

tissues were warmed to 20 C and 20 μm sections were cut using a 

cryomicrotome (Leica CM1950). The frozen sections were transferred to poly-L-

lysine coated glass slides (Snowcoat®) and were allowed to dry overnight at room 

temperature. The dried sections were then fixed by washing in pre-cooled (20 

C) acetone for 10 minutes, followed by two further washes in PBS (pH 7.4) for 5 

minutes. Brain sections were incubated in 3% v/v hydrogen peroxide in methanol 

(20 minutes), and then 5% w/v bovine serum albumin and 5% v/v goat serum in 

PBS (20 minutes) to block peroxidase activity and minimise non-specific binding 

respectively. Between each step the tissue sections were washed in 0.1% v/v 

Tween® 20 in TBS (2 × 5 minutes). The tissues were then stained using 1:250 

anti-TSPO antibody (rabbit anti-human, mouse and rat antibody; NBP1-95674; 

Novus Biologicals) and Dako horseradish-peroxidase anti-mouse or anti-rabbit 

polymer as described in section 6.4.6. Haematoxylin and eosin staining was 

performed by the Cancer Research UK Beatson Institute Histology Service using a 

Leica ST5020 multistainer. Individual or tiled histology images were acquired 
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using a Zeiss AX10 brightfield microscope at ×4 magnification and contrast was 

corrected manually using the ImageJ 1.47v software. 

7.4.5 Ex vivo autoradiography. 

The experiments were performed as reported by Blair et al. (2015). Intracranial 

U87Mg-Luc2 tumour bearing female CD1 nude mice were anaesthetised using 

inhaled isoflurane (in medical oxygen; induction 5.0% v/v; maintenance 2.0–3.0% 

v/v) and received bolus tail vein injections of either 0.10 mL of vehicle (20% v/v 

PEG 400 and 5% v/v ethanol in 0.9% w/v saline) (n = 4) or 1 mg/kg of PK11195 in 

0.10 mL of vehicle (n = 4). After 10 minutes the mice received a slow 

intravenous injection (0.4 mL/min) of 1.5–2.7 MBq [18F]-AB5186 in 0.20 mL of 

10% v/v ethanol in 0.9% w/v saline. Anaesthesia and injections were performed 

by Dr Gaurav Malviya from the Cancer Research UK Beatson Institute Nuclear 

Imaging department. After a further 20 minutes the mice were killed by CO2 

asphyxiation, and the brains were removed and frozen using a cryospray 

(Cellpath). Mice remained under anaesthesia until the time of cull. The frozen 

brains were cut at 40 μm using a cryomicrotome (Leica CM1950) at 20 C, 

transferred to uncoated glass slides (Snowcoat®) and applied to Kodak® BioMax® 

film. The film was developed following an overnight incubation at 20 C and 

scanned using a Bio-Rad GS-800 Calibrated Densitometer with the aid the 

Quantity One Basic (version 4.6.3) software. Quantification was performed using 

the ImageJ 1.47v software. A sliding paraboloid background subtraction 

algorithm was applied with a rolling ball radius of between 30–50 pixels 

depending on the size of the tumour hotspot. Optical density values were 

extracted from regions of interest which were drawn manually around the 

tumour hotspots and mirrored to define the contralateral side. The mean ratios 

of the tumour to contralateral optical densities were calculated for both the 

vehicle control and PK11195 blockade cohorts and an unpaired parametric t-test 

was performed using the GraphPad Prism 6 software. Error bars represent the 

mean + standard deviation.  
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7.4.6 PET/CT imaging. 

The imaging study was conducted as reported previously by Blair et al. (2015). A 

single intracranial U87MG-Luc2 tumour bearing female CD1 nude mouse was 

anaesthetised using inhaled isoflurane (in medical oxygen; induction 5.0% v/v; 

maintenance 2.0–3.0% v/v) and placed in the multimodal PET/SPECT/CT Albira 

imaging system (Bruker Corporation, USA). The mouse was placed in the scanner 

bed and a 120 minute dynamic scan (one acquisition per minute) was performed 

immediately following a bolus tail vein injection of 8.2 MBq [18F]-AB5186 in 0.20 

mL of 10% v/v ethanol in 0.9% w/v saline. CT was acquired after the dynamic 

PET scan in best-resolution mode (projections = 600; exposure time = 8 minutes) 

using high intensity (400 μA) and low voltage (35 kV) settings. The animal was 

monitored using a live video feed throughout the imaging session. The dynamic 

PET data were corrected for random coincidences, dead time, scatter, and 

decay, and subsequently reconstructed using the maximum likelihood 

expectation maximisation algorithm with 12 iterations. The above described 

practical procedures were performed by Dr Gaurav Malviya. The reconstructed 

PET and CT data were analysed using the PMOD 3.504 software. The PET image 

was manually co-registered with key anatomical structures of the CT (i.e. the 

spine, the front limbs, and the eye sockets). The skull of the animal was then 

used to define the brain and the PET signal outside of the brain region was 

masked. Frames from the first 10 min of the dynamic PET scan were averaged to 

allow for tumour hotspot identification. A volume of interest (VOI) was manually 

drawn around the tumour hotspot region and was used to generate a time-

activity curve. Standard uptake values (SUV) were determined as the 

concentration in the VOI divided by the injected dose divided by the animal 

weight. A secondary spherical VOI was used to define the contralateral kinetics 

and the tumour to contralateral SUV ratio was calculated as a function of time. 

These data were represented graphically using the GraphPad Prism 6 software. 
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8 CONCLUSIONS AND FUTURE WORK. 

The work described in this thesis was successful in identifying and synthesising 

compounds based on the clinical PARP-1 inhibitor olaparib with potential for 

PARP-1 SPECT and PET imaging. The lead SPECT and PET candidates, 4 and 17 

respectively, were found to be potent inhibitors of PARP-1 in both cell-free and 

cellular assays, with IC50 values in the low nanomolar range. Radiolabelling 

methodologies were developed that allowed access to [123I]-4 in one step and an 

end of synthesis yield of 37  7% (n = 6), and [18F]-17 in a two-step one-pot 

reaction and an end of synthesis yield of 9  2% (n = 7). Both radiotracers were 

isolated using HPLC purification methodology in high specific activity and 

radiochemical purity. Furthermore, compounds 4 and 17 were found to be stable 

in mouse plasma but exhibited approximately three fold more rapid in vitro 

metabolic clearance when compared to olaparib. Despite this, ex vivo 

biodistribution studies revealed that [123I]-4 and [18F]-17 accumulated in and 

were retained by subcutaneous human GBM xenografts in mice. Furthermore, 

uptake of the potential SPECT and PET tracers in the tumours was found to be 

due to specific binding of the radioligands to PARP-1. These data support the 

premise that [123I]-4 and [18F]-17 could be used to visualise PARP-1 in vivo in a 

non-invasive manner using nuclear imaging techniques. However, it is important 

to appreciate that [18F]-17 may have limited utility as a neuroimaging agent. 

This is rationalised by the marked in vivo [18F]-defluorination that was observed 

in mice, which was associated with characteristic accumulation of the 18F 

radioisotope in bone tissue. In the context of nuclear neuroimaging, this is 

disadvantageous as the PET signal from the radiotracer may be obscured by 

background signal from radiofluoride in the skull. Moreover, non-specific 

radiofluoride uptake in bone tissue could obscure the PET signal originating from 

specific PARP-1 binding of [18F]-17 in bone marrow. Subsequently, it is unlikely 

that this radiotracer could be used to assess PARP-1 inhibitor bone marrow 

occupancy, which is important in the context of addressing the haematological 

complications that have been reported in patients treated with PARP-1 inhibitors 

and chemotherapeutic agents (see section 1.3.3.1 for details).  
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Imaging of PARP-1 in the brain is complicated further by the presence of the 

BBB, which is usually disrupted in high grade gliomas (such as GBM), but may 

remain intact in low grade gliomas and in the vicinity of invasive glioma cells 

(Kracht et al., 2004). It is likely that intracranial tumour uptake of both [123I]-4 

and [18F]-17 will be reliant on disruptions of the BBB. This can be justified by the 

physiochemical properties of 4 and 17 that fall outside of those optimal for 

passive BBB penetration (see section 4.2 for details), negligible quantities of 

[123I]-4 and [18F]-17 found in mouse brain following intravenous administration 

(see section 6.2.2 for details), and the fact that the parent compound (i.e. 

olaparib) was reported to be unable to cross the BBB in rats (Chalmers et al., 

2014).  

Bearing in mind the clinical applications of PARP-1 nuclear imaging in GBM (see 

section 1.3.3.1 for details), it is important to ascertain whether: i) [123I]-4 and 

[18F]-17 are capable of entering GBM tissue in the brain; ii) a sufficient contrast 

in the signal can be achieved between the tumorous lesion and surrounding grey 

matter; and iii) in vivo defluorination of [18F]-17 will result in background 

interference from the skull and bones. This information could be acquired by 

performing [123II]-4 SPECT and [18F]-17 PET imaging of small animals bearing 

intracranial human GBM xenografts. Initially, dynamic SPECT and PET imaging 

may be performed to establish radiotracer kinetics, which could then be used to 

identify the time of maximum signal contrast between the tumour and 

surrounding brain tissue. This is particularly important for SPECT imaging where 

conventional scanners rely on rotatable detectors that can only acquire dynamic 

data in a single plane, unlike PET scanners that utilise a detector ring capable of 

acquiring dynamic data in three dimensions (see section 1.2.1 for details). In 

order to acquire three dimensional tomographic information, static SPECT 

images at a single timepoint post-radiotracer administration must be performed. 

Therefore, knowledge of [123I]-4 kinetics could be used to plan static SPECT 

imaging studies, such that acquisition is performed at a time where a high target 

to background signal ratio would be expected.  

In order to validate the findings from the aforementioned [123I]-4 and [18F]-17 

imaging studies, imaging data should be compared with the ex vivo 
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biodistribution data acquired as part of this PhD project (see section 6.2.2 for 

details) and post-mortem histological analysis of brain tissue sections should be 

performed using a H&E stain and an anti-PARP antibody. Further validation could 

also be performed by conducting ex vivo autoradiography studies using the same 

small animal intracranial human GBM xenograft model. The SPECT and PET 

imaging studies could be further expanded to evaluate the influence of the BBB 

on intracranial uptake of [123I]-4 and [18F]-17 by using small animal models of 

low grade astrocytomas, glioblastomas, and meningiomas that exhibit a 

morphologically intact BBB, a disrupted BBB or an absence of the BBB, 

respectively (Roelcke et al., 1995).  

It is important to bear in mind that progression of novel radiotracers from a pre-

clinical to a clinical setting is an expensive and time consuming endeavour, and 

is dependent on pre-clinical outcomes (see section 1.5 for details). If the above 

described pre-clinical imaging studies using [123I]-4 or [18F]-17 yield positive 

results and justify human studies then efforts should be focused on clinical 

advancement of one or both of these agents. However, prior to human 

investigations, a number of other key investigations and developments should be 

performed. Firstly, in vivo organ dosimetry following intravenous administration 

of the radiotracers should be established, which can in turn be used to identify 

the dose-limiting organ for radiation exposure. This can be achieved by using 

specialist software that can extract dosimetry information from [123I]-4 SPECT 

and [18F]-17 PET imaging data (Agdeppa and Spilker, 2009). Secondly, pre-

clinical toxicology data for compounds 4 and 17 should be acquired, which is 

usually achieved by administration of a single dose of the human radiotracer 

formulation to rodents, followed by toxicity monitoring over a 14 day period 

(Sharma and Aboagye, 2011). Thirdly, efforts should be focused on the 

automation of the radiosynthesis and purification methodologies of these 

tracers. Automation is of value in the context of clinical nuclear imaging as it 

allows for rapid access to radiotracers in a reproducible manner and with 

minimal radiation exposure of personnel (Krasikova, 2007). Single step or one-

pot radiosyntheses, such as those developed for [123I]-4 and [18F]-17, are 

generally easier to automate and can be done by modifying apparatus and 

programming that are already in place for the synthesis of an established 
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radiotracer such as [18F]-FDG. More complex multi-step radiosyntheses may 

require bespoke design and construction of automated modules, which can be a 

time consuming and expensive process (Krasikova, 2007). 

Prior to [18F]-17 radiosynthetic automation, work could be aimed at improving 

the nucleophilic substitution methodology used to access the radiotracer through 

the use of an alternative precursor (78) bearing a tosylate leaving group with 

improved leaving ability when compared to the chlorine atom of 72. A proposed 

retrosynthetic analysis of such a tosylated precursor can be found in scheme 8.1. 

 

Scheme 8.1. Proposed retrosynthetic analysis of [18F]-17 accessed using the 

tosylated precursor 78. 
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It is envisaged that the use of precursor 78 would allow for improved 

radiofluoride incorporation yields and better chromatographic separation of the 

precursor from the radiolabelled product when compared to the chlorinated 

precursor 72. The latter could translate into shorter chromatographic runs and 

the possibility to automate purification using SPE methodology.  

The work described in this thesis also identified compound 11 as a potential 

PARP-1 PET imaging candidate. However, attempts at generating the 

radiofluorinated version of the compound (i.e. [18F]-11) using conventional SNAr 

methodologies yielded little success. This was thought to be due to poor 

activation of the radiolabelling precursors for SNAr (see section 5.2.2 for details). 

Since commencing this work, Carney et al. (2015) were able to develop 

radiolabelling methodology for [18F]-11, which was reliant on an early stage SNAr 

radiofluorination of an ‘activated’ precursor that was then followed by two 

further reaction steps. The authors also showed that the radiotracer was able to 

image PARP-1 in mice bearing GBM tumours with good contrast of the tumour 

lesion to surrounding brain tissue and did not exhibit [18F]-defluorination, unlike 

[18F]-17. However, multi-step radiosynthetic approaches are generally 

disadvantaged by: i) radiolabelled product losses as a consequence of multiple 

purification steps; ii) an increase in the overall radiosynthesis time; and iii) 

possible challenges in automation of the methodology. These shortcomings, 

coupled with the improved in vivo stability of [18F]-11 over [18F]-17, warrant 

further studies aimed at identifying alternative late stage radiofluorination 

approaches for accessing [18F]-11. It is envisaged that radiofluorination of an 

unsymmetrical diaryliodonium salt or nickel organometallic precursor could 

circumvent the issue of a weakly activated system for SNAr (see section 5.1.2 for 

details). Scheme 8.2 outlines a proposed route for accessing [18F]-11 via the 

unsymmetrical diaryliodonium salts 87–89, which could be synthesised using 

methodology developed by Bielawski and Olofsson et al. (2007). This method 

utilises meta-chloroperoxybenzoic acid (mCPBA) as an oxidant of iodine that is 

activated by triflic acid (TfOH), which also delivers the triflate anion (OTf) to 

the resulting diaryliodonium salt (Bielawski and Oloffson et al., 2007). 
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Scheme 8.2. Proposed approach for access to [18F]-11 using unsymmetrical 

diaryliodonium salts 87–89. 

Alternatively, a nickel organometallic precursor 91 and the oxidative 

radiofluorination methodology developed by Lee, Hooker, and Ritter (2012) 

could be investigated as a means of accessing [18F]-11 (Scheme 8.3). 
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Scheme 8.3. Proposed approach for access to [18F]-11 using the nickel 

organometallic precursor 91. 

In addition to the discovery of radioligands with potential for PARP-1 SPECT and 

PET imaging, the work described in this thesis evaluated the utility of [18F]-

AB5186, discovered previously by Dr Adele Blair, as a TSPO PET imaging agent in 

mice bearing intracranial human GBM (U87MG-Luc2) xenografts. The in vivo 

findings acquired using ex vivo autoradiography and PET imaging techniques 

revealed that the radioligand accumulated in GBM lesions in good contrast to 

surrounding brain tissue, which was shown to be due to specific binding to TSPO. 

These observations highlighted the potential of [18F]-AB5186 to act as a nuclear 

imaging probe for TSPO in the brain. However, it is important to note that the 
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PET data consisted of a dynamic scan of a single animal. Therefore, further 

dynamic imaging studies of animals bearing the same intracranial xenograft 

tumour model are required in order obtain a more representative dataset. These 

studies could be extended to introduce two study arms investigating either [18F]-

AB5186 or the existing TSPO radiotracer [11C]-PK11195, each with a cohort of 

animals pre-treated with either vehicle or an excess of non-radioactive PK11195. 

Comparison of [18F]-AB5186 and [11C]-PK11195 kinetics in the tumour lesions and 

the surrounding brain tissue, in the presence or absence of non-radioactive 

PK11195 blockade, could be used to established whether [18F]-AB5186 exhibits 

improved brain uptake and specific binding properties in vivo when compared to 

[11C]-PK11195. It is important to appreciate that implementation of such imaging 

studies may be challenging due to the complexities associated with 11C 

production and radiolabelling.  

The potential for [18F]-AB5186 to exhibit low sensitivity to human TSPO 

polymorphism is a key advantage of the radiotracer when compared to existing 

second and third generation TSPO nuclear imaging agents (see section 7.1.1 for 

details). As discussed previously (section 7.2.3), studies using genotyped human 

brain tissue are underway, which were designed to establish whether binding of 

AB5186 to TSPO will be influenced by polymorphic variability. Preliminary data 

from these experiments suggested that AB5186 exhibited negligible sensitivity to 

human TSPO polymorphism, although further replicates are necessary in order to 

confirm these findings. If conclusive evidence is obtained to support these 

preliminary observations of low sensitivity to TSPO polymorphism and the above 

described PET imaging studies yield positive results, then efforts should be 

focused on acquisition of [18F]-AB5186 organ dosimetry and toxicology data and 

radiosynthetic automation, as described earlier for [123I]-4 and [18F]-17, with 

clinical advancement in mind. Human PET imaging studies could then be 

conducted that are designed to investigate the ability of the radiotracer to: i) 

delineate invasive glioma tumours when compared to structural imaging or 

amino acid based radiotracer imaging; ii) detect low grade glioma tumours that 

are not associated with BBB disruptions; iii) predict GBM tumour progression; 

and iv) monitor GBM treatment response. In addition to TSPO imaging in brains 

bearing glioma lesions, [18F]-AB5186 could also be investigated as a tracer for 

imaging neuroinflammatory pathology.  
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In summary, this research project was successful in meeting all of the aims and 

objectives outlined at the start of this thesis (see section 1.6 for details) and the 

two PARP-1 radiotracer compounds discovered in the course of this work, as well 

as TSPO radiotracer [18F]-AB5186, warrant further pre-clinical in vivo 

investigations. The recent acquisition of a nanoScan PET/MRI system (Mediso 

Medical Imaging Systems; Hungary) at the Cancer Research UK Beatson Institute 

opens up the possibility of pursuing the earlier proposed PET imaging studies 

locally. However, the proposed SPECT and [11C]-PK11195 PET imaging studies 

would require collaboration with other institutes that have access to pre-clinical 

SPECT scanning equipment and 11C production and radiolabelling facilities. 
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9 APPENDICES 

9.1 Cell-free IC50 curves for olaparib and compounds 

4–21. 
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Dose response curves showing the percentage activity of PARP-1 versus the 

concentration of olaparib and compounds 4–21. Error bars show the mean 

standard deviation of three experiments. Data were acquired using the 

TrevigenTM colorimetric assay and curves were fitted as described in section 

4.4.2. The plots were generated using the GraphPad Prism 6.0 software. 
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9.2 Log Poct HPLC calibration curve acquired on C18 

column. 

 

A graph of the literature chromatographic hydrophobicity index (CHI) values of 

theophylline, phenyltetrazole, benzimidazole, colchicine, acetophenone, indole, 

and butyrophenone versus their HPLC retention times acquired on a C18 column 

as described in section 4.4.3. Error bars show the mean  standard deviation of 

three measurements. The graph was generated using the GraphPad Prism 6.0 

software. 

9.3 %PPB HPLC calibration curve acquired using human 

serum albumin column. 

 

A graph of the literature log apparent affinity constant (log K) values of 

nizatidine, bromazepam, carbamazepine, budesonide, nicardipine, warfarin, 

ketoprofen, indomethacin, and diclofenac versus their HPLC retention times 

acquired on a human serum albumin column as described in section 4.4.4. Error 

bars show the mean  standard deviation of three measurements. The graph was 

generated using the GraphPad Prism 6.0 software. 
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9.4 G7 and T98G cellular IC50 curves for olaparib and 

complounds 4, 11, 13, 17, and 18. 
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Dose response curves showing the percentage activity of PARP-1 in G7 and T98G 

cell-lines versus the concentration of olaparib and compounds 4, 11, 13, 17, and 

18. Error bars show the mean  standard deviation of three experiments. Data 

were acquired as described in section 4.4.5. The plots were generated using the 

GraphPad Prism 6.0 software. 
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9.5 UV-HPLC chromatogram of compound 4. 

 

A UV-HPLC chromatogram (254 nm) of compound 4 acquired using an analytical 

Dionex Ultimate 3000 series HPLC system and a diode array detector (190–800 

nm). A Phenomenex Synergi 4 μm Hydro-RP 80Å (150 × 4.60 mm) column was 

used with the following mobile phase conditions: 0.0–20.0 minutes = 30:70 A:B 

to 55:45 A:B, 20.0-20.5 minutes = 55:45 A:B to 5:95 A:B, 20.5-25.0 minutes = 

5:95 A:B where A = acetonitrile and B = distilled water; flow rate 1.0 mL/min; 

column temperature = 25 C. The UV chromatogram was recorded and the 

retention time of 4 was calculated using the Chromoleon 6.8 Chromatography 

software. 
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9.6 UV-HPLC chromatogram of a mixture of compounds 

4 and 60. 

 

A UV-HPLC chromatogram (254 nm) of a mixture of compounds 4 and 60 

acquired using a preparatory Dionex Ultimate 3000 series HPLC system and a 

Knauer Advanced Scientific Instruments Smartline UV Detector 2500. A 

Phenomenex Synergi 4 μm Hydro-RP 80Å (150 × 10.00 mm) column was used with 

the following mobile phase conditions: 0.0–30.0 minutes = 30:70 A:B to 55:45 

A:B where A = acetonitrile and B = distilled water; flow rate 3.0 mL/min; column 

temperature = 25 C. The UV chromatogram was recorded, and retention times 

and resolution were calculated using the Chromoleon 6.8 Chromatography 

software. 
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9.7 Specific activity UV-HPLC calibration curve for 

compound 4. 

 

Seven different concentrations of 4 (ranging from 0.001–1.000 mg/mL) were 

injected onto a Phenomenex Synergi 4 μm Hydro-RP 80Å (150 × 10.00 mm) 

column and were exposed to the following mobile phase conditions: 0.0–30.0 

minutes = 30:70 A:B to 55:45 A:B where A = acetonitrile and B = distilled water; 

flow rate 3.0 mL/min; column temperature = 25 C. UV detection was achieved 

using a Knauer Advanced Scientific Instruments Smartline UV Detector 2500 (254 

nm). The UV chromatograms were recorded and peak area (mV*min) were 

obtained using the Chromoleon 6.8 Chromatography software. The micromol 

amounts of compound 4 were plotted against the corresponding UV peak areas 

and a linear regression model was applied using the GraphPad Prism 6.0 

software. R2 = 0.993.  
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9.8 Specific activity UV-HPLC calibration curve for 

compound 17.  

 

Seven different concentrations of 17 (ranging from 0.001–1.000 mg/mL) were 

injected onto a Phenomenex Synergi 4 μm Hydro-RP 80Å (150 × 10.00 mm) 

column and were exposed to the following mobile phase conditions: 0.0–3.0 

minutes = 30:70 A:B; 3.0–30.0 minutes 30:70 to 75:25 A:B; 30.0–30.1 minutes = 

75:25 to 95:5 A:B; 30.1–35.0 minutes = 95:5 A:B where A = acetonitrile and B = 

distilled water; flow rate 3.0 mL/min; column temperature = 25 C. UV 

detection was achieved using a Knauer Advanced Scientific Instruments 

Smartline UV Detector 2500 (254 nm). The UV chromatograms were recorded and 

peak area (mV*min) were obtained using the Chromoleon 6.8 Chromatography 

software. The micromol amounts of compound 17 were plotted against the 

corresponding UV peak areas and a linear regression model was applied using the 

GraphPad Prism 6.0 software. R2 = 0.998. 
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9.9 TIC, MS, and LC-UV (254 nm) chromatograms of 

compound 73.  

 

A TIC, MS, and LC-UV (254 nm) chromatograms of compound 73 acquired using a 

Shimadzu LC-2010AHT and LCMS-2010EV system and a Kinetex 5 μm XB-C18 100Å 

(50 × 4.60 mm) column. The following mobile phase conditions were used: 0.0–

10.0 minutes = 30:70 to 60:40 A:B; 10.0–12.0 minutes = 60:40 to 30:70 A:B; 

12.0–14.0 minutes =  30:70 A:B where A = acetonitrile and B = 0.1% v/v formic 

acid in distilled water; flow rate 1.2 mL/min. MS detection was performed under 

the following conditions: positive ionisation; detector 1.50 kV; full-scan mode. 

The chromatograms were recorded and the retention times were measured using 

the LabSolutions LCMS software. 
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9.10 MS chromatogram and graphs of compound 4 

and internal standard 60. 

 

TIC and SIM MS of compound 4 (MH+ SIM m/z = 597) and internal standard 60 

(MH+ SIM m/z = 551; MNa+ SIM m/z = 571) following 0 hours incubation in mouse 

plasma acquired using a Shimadzu LC-2010AHT and LCMS-2010EV system and a 

Kinetex 5 μm XB-C18 100Å (50 × 4.60 mm) column. The following mobile phase 

conditions were used: 0.0–10.0 minutes = 30:70 to 60:40 A:B; 10.0–10.5 minutes 

= 60:40 to 90:10 A:B; 10.5–12.0 minutes 90:10 A:B; 12.0–12.5 minutes 90:10 to 

30:70 A:B; 12.5–15.0 minutes 30:70 A:B where A = acetonitrile and B = 0.1% v/v 

formic acid in distilled water; flow rate 1.2 mL/min. MS detection was 

performed under the following conditions: positive ionisation; detector 1.50 kV; 

SIM m/z 551, 571 and 597. The chromatograms were recorded using the 

LabSolutions LCMS software. 
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9.11 MS chromatogram and graphs of compound 17 

and internal standard 60. 

 

TIC and SIM MS of compound 17 (MH+ SIM m/z = 503) and internal standard 60 

(MH+ SIM m/z = 551; MNa+ SIM m/z = 571) following 0 hours incubation in mouse 

plasma acquired using a Shimadzu LC-2010AHT and LCMS-2010EV system and a 

Kinetex 5 μm XB-C18 100Å (50 × 4.60 mm) column. The following mobile phase 

conditions were used: 0.0–10.0 minutes = 30:70 to 60:40 A:B; 10.0–10.5 minutes 

= 60:40 to 90:10 A:B; 10.5–12.0 minutes 90:10 A:B; 12.0–12.5 minutes 90:10 to 

30:70 A:B; 12.5–15.0 minutes 30:70 A:B where A = acetonitrile and B = 0.1% v/v 

formic acid in distilled water; flow rate 1.2 mL/min. MS detection was 

performed under the following conditions: positive ionisation; detector 1.50 kV; 

SIM m/z 503, 571 and 597. The chromatograms were recorded using the 

LabSolutions LCMS software. 
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9.12  MS and LC-UV (254 nm) chromatograms of 

diclofenac and internal standard 60.  

 

TIC and SIM MS and LC-UV (254 nm) chromatograms of diclofenac (M+ SIM m/z = 

296) and internal standard 60 (MH+ SIM m/z = 551; MNa+ SIM m/z = 571) following 

0 minutes incubation in human liver microsomes acquired using a Shimadzu LC-

2010AHT and LCMS-2010EV system and a Kinetex 5 μm XB-C18 100Å (50 × 4.60 

mm) column. The following mobile phase conditions were used: 0.0–15.0 

minutes = 30:70 to 70:30 A:B; 15.1–17.0 minutes = 70:30 A:B; 17.1–20.0 minutes 

= 70:30 to 90:10 A:B; 20.1–22.0 minutes = 90:10 to 30:70 A:B; 22.1–25.0 minutes 

= 30:70 A:B where A = acetonitrile and B = 0.1% v/v formic acid in distilled 

water; flow rate 1.2 mL/min. MS detection was performed under the following 

conditions: positive ionisation; detector 1.50 kV; SIM m/z 296, 551 and 571. The 

chromatograms were recorded using the LabSolutions LCMS software. 
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9.13 In vitro human liver microsome metabolism 

of olaparib, 4 and 17.  

 

Graphs showing the natural logarithm (ln) of the percentage amount of 

unchanged olaparib, and compounds 4 and 17 remaining after 0, 5, 15, 30 and 

45 minute incubations in human liver microsomes. The plots were generated 

using the GraphPad Prism 6.0 software. 
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9.14 UV-HPLC chromatogram of AB5186. 

 

A UV-HPLC chromatogram (267 nm) of AB5186 acquired by Dr Adele Blair using 

an analytical Dionex Ultimate 3000 series HPLC system and a diode array 

detector (190–800 nm). A Phenomenex Synergi 4 μm Hydro-RP 80Å (150 × 4.60 

mm) column was used with the following mobile phase conditions: 0.0–20.0 

minutes = 70:30 A:B where A = acetonitrile and B = distilled water; flow rate 1.0 

mL/min; column temperature = 25 C. The UV chromatogram was recorded and 

the retention time of AB5186 was calculated using the Chromoleon 6.8 

Chromatography software. 
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