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Abstract.
In the present study I have explored the feasibility of using retroviral 

mediated gene transfer to study the role of given genes during chemically induced 
carcinogenesis of the mouse skin.

Retroviral vectors expressing parts of the murine c-Ha-ras gene as antisense 
RNA were compared to their sense counterparts for their ability to revert the 
transformed phenotype of cells containing a mutant Ha-ras gene. I have shown that 
one of the antisense retroviral constructs (pZN(X)RAS-l, containing exons 1 and 2 
and 1.3 kb of the 5' untranslated region of murine c-Ha-ras) was effective in altering 
the transformed phenotype of NIH3T3 cells transformed by a Ha-ras gene containing 
a mutation at codon 61. Expression of this antisense Ha-ros retroviral construct 
altered the ratio of morphologically transformed to untransformed colonies compared 
to vector alone controls. Furthermore the ability to form colonies in soft agar of the 
Ha-ras transformed NIH3T3 cells was reduced by 68% after infection with 
pZN(X)RAS-l compared to vector alone infectants. Infection of cells with the sense 
counterpart of pZN(X)RAS-l did not reduce the ability of these cells to grow in soft 
agar. No significant reduction in soft agar cloning efficiency was observed with the 
other antisense or sense retroviral constructs.

Metalloproteinases have been implied to play a role in progression of 
tumours to an invasive and metastatic phenotype. The rat transin cDNA was 
introduced into murine epithelial cells. However no evidence was observed of transin 
expression influencing progression towards invasion or metastasis as assayed by a 
spontaneous metastasis assay following subcutaneous injection of cells in athymic 
nude mice.

The feasibility of histochemically tagging mouse keratinocytes through 
constitutive expression of a bacterial lacZ gene expressed within a retroviral vector 
was examined. Results suggested successful infection and expression of the lacZ gene 
in keratinocytes in vitro and in vivo. However a retroviral vector containing both the 
v-Ha-ros and lacZ genes failed to induce tumours in mouse skin. This appeared to be 
due to lack of efficient expression of the v-Ha-ros gene in murine epithelial cells.

The results presented in this study show the potential and limitations of 
retroviral vectors to study an in vivo tumour model system such as mouse skin 
carcinogenesis. The successful reversion of the transformed phenotype of cells in 
vitro using antisense Ha-ras expression may suggest this approach could be used to 
reverse or inhibit transformation in such tumour model systems.

xvi



Chapter 1

Cancer: A Multistep Process.



1. Cancer: A Multistep Process.

1.1. Genetic Events Involved in Neoplasia.

The hypothesis that genetic events are a major component of neoplasia 

is based on evidence accumulated over recent years involving studies on 

hereditary predisposition to cancer (HANSEN and CAVENEE, 1987; 

PONDER, 1990; HABER and HOUSMAN, 1991), studies on association of 

clonal karyotypic changes in cancers (HEIM et al., 1988) and the 

demonstration of the mutagenic capacity of most carcinogens. Direct evidence 

for causal genetic changes in cancer emerged with the identification and 

cloning of genes involved in neoplasia either in a dominant or 

recessive/dominant negative manner: oncogenes or tumour suppressor genes, 

respectively.

Oncogenes were first identified as part of oncogenic retroviruses 

(ELLERMANN and BAN, 1908; ROUS, 1911; GROSS, 1970), but are 

derived from normal cellular proto-oncogenes by mutations which activate the 

transforming activities of these genes. There are extensive examples of 

activation of proto-oncogenes by means other than retroviral transduction. 

Activation of proto-oncogenes involves either qualitative (by point mutations 

or larger scale events such as truncation and gene fusions as a result of 

chromosomal tanslocations) or quantitative changes (by elevated expression 

caused by a number of mechanisms including gene amplification, 

chromosome translocation, insertional mutagenesis and/or epigenetic events) 

(BISHOP, 1987; VARMUS, 1989). Most of the oncogenes isolated to date 

have been identified either by cellular transformation of mouse NIH 3T3 cells 

induced by DNA transfection (SHIH et al., 1979 and 1981; COOPER et al., 

1980; KRONTTRIS and COOPER, 1981), by isolating new oncogenes located 

within amplified sequences present in tumour DNA (KINZLER et al. 1987) or 

adjacent to breakpoints of chromosomal translocations found in tumours 

(TSUJIMOTO et al., 1984 a and 1984b; TSUJIMOTO and CROCE, 1986; 

BISHOP, 1991). It has become clear in recent years, that the products of the 

very highly conserved proto-oncogenes are elements of a cellular signaling 

network whose functions range from external ligands and growth factors, 

through cytoplasmic protein kinases and GTP-binding proteins, to nuclear
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transcription factors, (reviews for oncogenic function: EISENMAN, 1989; 

HUNTER, 1989 and 1991; McCORMICK, 1989; VARMUS, 1989; 

FORREST and CURRAN, 1992; PAWSON, 1992).

The existence of tumour suppressor genes has been postulated for a 

long time based on chromosomal deletions found in vivo in several inherited 

predispositions to cancer (KNUDSON, 1971), and on chromosome transfer 

and cell fusion experiments between normal and tumour cells in vitro where 

normal-tumour cell hybrids predominantly display a non-malignant phenotype 

(HARRIS, 1988; STANBRIDGE and CAVANEE, 1989). However, such 

genes have only recently been localized and cloned by using polymorphic 

DNA markers to search tumour cell genomes for repeated instances of loss of 

heterogenicity (LOH) and by gene mapping using linkage studies in families 

and chromosomal-rearrangement mutations in patients (SAGER, 1989; 

STANBRIDGE and CAVANEE, 1989; MARSHALL, 1991; MASSAGUE 

and WEINBERG, 1992; WHITE, 1992). Tumour suppressor genes have been 

hypothesized to act "recessively" at the cellular level (HERSKOWITZ, 1987), 

so that both copies of the allele must be inactivated or lost in order for the 

growth-suppressive function to be eliminated (KNUDSON, 1985).

1.2. The Multistep Nature of Carcinogenesis.

There is now compelling evidence that cancer is a multistep process as 

proposed by FOULDS (1954 and 1958) and KLEIN and KLEIN (1985). 

Evidence collected in vitro is based primarily on transformation of primary 

rodent fibroblasts. It has been demonstrated that there is a requirement for co­

operation, in the classical sense, of two or more independent oncogenes 

(LAND et al., 1983a and 1983b) or, in a broader sense, the activation of one or 

more proto-oncogene(s) has to occur in conjunction with the loss of tumour 

suppressor genes. Evidence of co-operation is also found in vivo (HUNTER, 

1991; BISHOP, 1991). So far relatively few tumours have been identified that 

contain two different activated oncogenes, whereas there are numerous 

examples of alterations of two or more tumour suppressor genes within one 

tumour (MARSHALL, 1991; FEARON and VOGELSTEIN, 1990).

Epidemiological studies also support the concept that cancer is a 

multistep process. Cancer development in humans shows a clear exponential
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relationship of cancer incidence and age. Statistical analysis of age-incidence 

curves has suggested that 4-7 rate limiting steps are required for the 

development of carcinomas and 3-4 in leukaemias (KNUDSON, 1973; PETO 

et al., 1975; FARBER and CAMERON, 1980; DIX, 1989). Rate limiting steps 

are considered to reflect the minimum of events required, as non-rate limiting 

events will also contribute to the development of cancer.

Discrete morphological and histological stages have been identified in 

many cancers, again suggesting a stepwise progression towards malignancy. 

Molecular and karyotypic analysis of human cancers show multiple genetic 

events such as chromosomal translocations, gene amplification and point 

mutations in a single cancer of clonal origin which is accompanied by the 

successive emergence of more aneuploid subclones during tumour 

development (HEIM et al., 1988).

Animal model systems are invaluable resources for studies aimed at 

understanding the molecular mechanisms underlying carcinogenesis. Indeed, 

animal model systems helped to establish the now accepted concept of 

multistage tumorigenesis; comprising tumour initiation, promotion and 

progression (HECKER et al., 1982). The value of such animal model systems 

lies in the controllable and reproducible induction of specific tumour types by 

particular chemical and physical carcinogens; in contrast to the situation in 

most human tumours, for which the causative agents have only started to be 

identified (CAIRNS, 1981; MILLER, 1970; AMES, 1983; WILBOURN et al., 

1986; AMES and SWIRSKY GOLD, 1990 and references therein). 

Carcinogen-induced animal tumour models therefore provide an ideal 

opportunity to investigate the molecular events associated with defined stages 

of carcinogenesis. Chemically-induced animal tumours like hepatocarcinomas 

in rats or mice (DRINKWATER, 1990), mammary tumours in rats 

(SUKUMAR, 1989 and 1990) and mouse skin carcinomas (BALMAIN and 

BROWN, 1988) are examples of the most studied experimental multistage 

carcinogenesis model systems. The activation of oncogenes in the various 

animal models of carcinogenesis has been summarized by GUERRERO and 

PELLICER (1987), BALMAIN and BROWN (1988) and SUKUMAR (1989, 

1990).
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1.3. Mouse Skin Carcinogenesis.

The two stage or initiation - promotion model of mouse skin 

carcinogenesis involves the single application of a subthreshold dose (i.e. one 

which will not induce tumour formation by itself) of a complete carcinogen or 

initiator followed by frequently repeated applications of a tumour promoter 

(SLAGA, 1983). The promotion stage can be subdivided into two further 

stages: conversion and propagation (BOUTWELL, 1964;

FUERSTENBERGER et al., 1981; SLAGA et al., 1980). The mouse skin 

carcinogenesis model is of particular importance in the elucidation of genetic 

and/or epigenetic events associated with carcinogenesis involving epithelial 

tissues, keeping in mind that most human cancers are of epithelial origin 

(Cancer Statistics, Ca 1989). Molecular and cellular characterisation of the 

two stage model has now shown multiple events associated with 

tumorigenesis.

The initiation-promotion model of mouse skin carcinogenesis results in 

the appearance of benign papillomas within 6 to 20 weeks after the start of 

promotion by repeated treatments with a tumour promoter such as 12-0- 

tetradecanoylphorbol 13-acetate (TPA). Papillomas have a cauliflower-like 

structure consisting of several folds joined by one or a few stalks, linking them 

to the underlying skin. Each fold consists of epithelial projections covering 

vascular connective stalks. The basic stratified structure of the epidermal 

component is retained although tends to be thicker than normal. 

Approximately 5 to 10% of these papillomas will progress to malignant 

carcinomas. Macroscopically, carcinomas are firm expanding nodules which 

often ulcerate. They are characterized by a disorderly proliferation of 

epithelial cells and can be classified as grade 1 to 3, with grade 3 showing 

least differentiation, highest mitotic index and marked nuclear and cellular 

pleomorphism. The most differentiated tumours (Gl) show extensive areas of 

keratinization and groups of terminally differentiated cells making up the so 

called "homy pearls" (KRUSZEWSKI et al., 1987).
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1.3.1 Requirements for Chemical Carcinogenesis in Mouse Skin.

The requirements for tumour formation in mouse skin are summarized 

in Figure 1.1. Two basic protocols can be applied to induce mouse skin 

carcinogenesis:

a) complete carcinogenesis, which entails the application of either a 

single large dose or fractionated doses of a known carcinogen (protocols 1 and 

2);

b) two-stage or initiation - promotion carcinogenesis using optimal 

doses of a carcinogen and tumour promoter (protocols 5, 6 and 11) (BURNS 

et al., 1984; SLAGA, 1984). The two protocols differ in the kinetics of 

appearance of benign papillomas and malignant carcinomas. The two-stage 

protocol has a relatively low conversion rate from benign papillomas to 

malignant carcinomas (only between 5 - 10% of the papillomas progress to 

carcinomas) (protocol 5). In contrast, complete carcinogenesis induces fewer 

papillomas (with a longer latency period) but has an increased efficiency to 

induce malignant carcinomas both in terms of incidence and shorted latency 

period compared to the two-stage protocol (HENNINGS et al., 1983).

Initiation requires only a single application of an initiating carcinogen 

and is irreversible, a delay between the initiating and promoting stage of up to 

40 weeks does not alter the tumour incidence (protocol 6) (LOEHRKE et al., 

1983; VAN DUUREN et al., 1975). Initiation by itself or promotion alone, 

however, does not result in the formation of tumours (protocol 3 and 4). 

Similarly, promotion prior to initiation (protocol 7), or promotion given only 

for a short period after initiation (protocol 8) or at increased intervals between 

individual promoter treatments (protocol 9) produce very few if any tumours. 

Tumour promotion can be subdivided into two stages: first stage or conversion 

and second stage or propagation (BOUTWELL, 1964; SLAGA et al., 1980; 

FUERSTENBERGER et al., 1981). Although all tumour promoters induce 

hyperplasia, not all hyperplastic agents can function as tumour promoters. 

However, the latter may complete promotion if the initiated mouse skin has 

been exposed to as little as one application of a tumour promoter (protocols 10 

and 11). These observations led to the classification of stage 1 promoters (also 

named full or conversion promoters) and stage 2 promoters (propagation 

promoters). Wounding and TPA belong to the stage-1 promoters, whereas
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Figure 1.1. Requirements for chemical carcinogenesis in 

mouse skin.
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mezerein or 12-retinoylphorbol 13-acetate (RPA) function as stage-2 

promoters (HENNINGS and BOUTWELL, 1970; ARGYRIS, 1989; MARKS 

et al., 1982).

For many years it has been accepted that around 90% of carcinomas 

arise directly from "identical site" promoter-independent papillomas (BURNS 

et al., 1978), which in turn were thought to arise from pre-existing promoter- 

dependent papillomas in a sequential manner (ALDAZ et al., 1988) This 

assumption has recently been questioned. REDDY et al. (1987), using a 

combination of photography, tumour mapping, and analysis of the X-linked 

polymorphic enzyme PGK, showed that 5 out of 18 carcinomas exhibited 

PGK phenotypes different from those detected at an earlier biopsy of a 

papilloma at the same site. The incidence of PGK phenotype change could be 

twice as high, as there is a 50% chance that a new tumour will have the same 

phenotype as the pre-existing lesion. Interestingly, the majority of carcinomas 

induced in this way do not appear to arise from visible papillomas (REDDY 

and FIALKOW, 1989). The simplest explanation for this is that while 

initiators efficiently induce mutations which can aid progression, these events 

are rarely induced or must occur spontaneously in initiated cells expanded by 

tumour promoter treatment (DRINKWATER, 1990). POTTER (1981) has 

suggested that the role of promotion is to increase the size of target cell 

population available for a second mutational event. The frequency of this 

event can be increased by applying mutagens to papillomas induced by an 

initiation-promotion protocol (HENNINGS et al., 1983). The mutations 

involved in this process have not been identified, but are likely to differ from 

those involved in initiation, since chemicals which are good initiators are not 

necessarily effective progression agents and vice versa (POTTER, 1981).

1.3.2. Molecular Events at Initiation.

The mutagenic capability of carcinogens (reviewed by SINGER and 

KUSMIEREK, 1982) together with the irreversibility of the generally 

phenotypically silent initiation event (LOEHRKE et al., 1983; VAN 

DUUREN et al., 1975; BOUTWELL et al., 1982) suggests that initiation 

involves a genetic event. Some of the target genes for initiation have been 

identified. Tumours induced in the skin, mammary gland liver and other
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tissues in experimental animal model systems frequently contain activated ras 

oncogenes, capable of transforming NIH 3T3 cells after tumour DNA 

transfection (reviewed by BALMAIN and BROWN, 1988). Mutations in 

members of the ras gene family are also frequently found in human tumours 

(BOS, 1989; LEMOINE, 1990). Tumour suppressor genes have also been 

suggested as targets for chemical and physical carcinogens, especially in 

human cancers (HARRIS, 1991).

The two most commonly used mutagens in initiation of mouse skin 

carcinogenesis are 7,12-dimethyl benz(a)anthracene (DMBA) and N-methyl- 

N'-nitro-N-nitroso guanidine (MNNG). They belong to two distinct classes of 

chemical carcinogens: polycyclic aromatic hydrocarbons (PAH) and N-nitroso 

compounds, respectively.

PAHs do not interact with DNA directly but are metabolized and 

activated by P-450s (or monoamine oxidases) and an epoxide hydrolase to the 

ultimate carcinogen, the 'bay region' dihydrodiol epoxide (or diol epoxide). 

The chemical activation of PAHs has been elucidated mainly from studies on 

benz[a]pyrene (B[a]P) and its metabolites (reviewed by CONNEY, 1982). The 

metabolic activation of DMBA to its diol epoxide is shown in figure 1.2a. 

Both the syn and anti forms of the DMBA 'bay region' diol epoxide bind DNA 

(SAWICKI et al., 1983), but the carcinogenic properties of the chemical are 

largely due to the syn form. The syn form binds almost exclusively to 

deoxyadenosine (dA) residues in DNA, resulting in large dA adducts 

(CHENG et al., 1988). This predominant dA adduct formation is characteristic 

of DMBA and its metabolites, as other PAHs (including B[a]P and 

methylcholanthrene (MCA)) form major adducts with deoxyguanosine (dG) 

residues (JEFFREY, 1985). DMBA is about 30 fold more effective as an 

initiator than B[a]P (DIPPLE et al., 1983b).

Initiation with DMBA and promotion with phorbol esters induce 

papillomas and carcinomas with 90% showing activation by an A:T -> T:A 

transversion at the second base of codon 61 of the Ha-ras gene, generating a 

new Xbal restriction site (QUINTANILLA et al., 1986). The A->T mutation is 

consistent with the metabolism and DNA-binding characteristics of this 

carcinogen. PAHs, other than DMBA, induce a more heterogeneous pattern of 

mutations. B[a]P preferentially induces G:C -> T:A transversions
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Figure 1.2. Mechanism of activation of DMBA and MNNG.
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(WEINSTEIN et al., 1976), additional Ha-ras mutations have been reported 

(BALMAIN and BROWN, 1988). Only about 20% of MCA-induced mouse 

skin papillomas have the A:T -> T:A transversion at codon 61 of the Ha -ras 

gene, a further 20% contain G:C -> T:A transversion at codon 13. The codon 

13 mutation is found in the majority of MCA-carcinomas (BROWN et al.,

1990).

The N-nitroso compounds, including MNNG, are alkylating agents 

(SINGER and KUSMIEREK, 1982). The breakdown of these compounds to 

ultimate carcinogens occurs in the presence of a nucleophilic reagent (e.g. 

alkali or thiols in the cells) and does not require enzymatic catalysis. The 

breakdown of MNNG is illustrated in figure 1.2b. Although alkylation has 

been observed at all O and N positions in the deoxyribonucleotides (except the 

nitrogen attached to the sugar), the primary mutagenic lesion produced is the 

06-methyl guanine adduct, resulting in G:C -> A:T transitions by mispairing 

with thymidine during DNA replication (TOORCHEN and TOPAL, 1983). 

Consistent with the mutational mechanism for MNNG, only G-> A lesions (at 

the middle base of codon 12) have been detected in the Ha-ras gene in mouse 

skin tumours initiated with MNNG (BROWN et al., 1990; BREMNER and 

BALMAIN, 1990). The simple methylating agent, MNU, induces G ->A 

mutations in mouse skin papillomas (BROWN et al., 1990) and in rat 

mammary carcinomas (ZARBL et al., 1985; SUKUMAR, 1989 and 1990). 

Interestingly, MNU-induced thymic lymphomas show a spectrum of N-ras 

gene alterations (C -> A or A -> T), in addition to the G -> A mutation, that 

are not always readily explicable with a simple mutational mechanism of 

methylating agents (see BALMAIN and BROWN, 1988).

1.3.3. Activation of ras Oncogenes; An Early or Late Event?

The discovery that the Ha-ras gene was activated not only in DMBA- 

induced carcinomas (BALMAIN and PRAGNELL, 1983) but also in benign 

papillomas (BALMAIN et al., 1984), suggested that the mutation of the gene 

is involved in the early stages of mouse skin carcinogenesis. QUINTANILLA 

et al. (1986) showed that the nature of the activating mutation in the Ha -ras 

gene reflected the chemical specificity of the initiating carcinogen. They 

found that over 90% of DMBA- initiated papillomas and carcinomas



contained an A:T -> T:A transversion in codon 61 of the Ha-ras gene, as 

predicted by the known metabolism and DNA-binding characteristics of the 

carcinogen both in vitro (CHENG et al., 1988) and in vivo (DIPPLE et al., 

1983a). In MNU-induced rat mammary carcinogenesis, SUKUMAR et al. 

(1983) and ZARBL et al., (1985) also found a correlation between the type of 

Ha -ras gene mutation introduced and the carcinogen used. Further evidence 

that ras gene activation can occur at the initiation stage came from chemically 

induced hepatomas in B6C3F1 mice (WISEMAN et al., 1986). Cells from 

both liver tumours and hepatic foci, the precursors to hepatic neoplasms 

(PERAINO et al., 1983; SUKUMAR, 1989 and 1990), contain transforming, 

mutant c-Ha-ras genes following MNU treatment (BUCHMANN et al., 1989). 

It was demonstrated by using animal model systems, that the nature of the 

activating mutation in the ras gene accurately reflects the chemical specificity 

of the initiating carcinogen, but is independent from the tumour promoters 

used (QUINTANILLA et al., 1986; FUJIKI et al., 1989). Other examples are 

known, however, in which it is more difficult to correlate the mutagenic 

activity of the initiating carcinogen with the mutations detected in the 

resulting tumour (GUERRERO et al., 1985; GUERRERO and PELLICER, 

1987; BALMAIN and BROWN, 1988).

The causal nature of mutations in the ras genes in initiating mouse skin 

carcinogenesis was demonstrated by BROWN et al. (1986). They found that 

chemical initiation with DMBA could be replaced by the application of either 

Harvey or BALB murine sarcoma virus (Ha-MSV, BALB-MSV), retroviruses 

containing the activated viral Ha -ras gene, to the mouse skin. As with 

chemical initiation, the presence of cells initiated by the stable integration of 

either retrovirus, was necessary but not sufficient for tumour formation to 

occur. Treatment with a phorbol ester was also required. Subsequently, ROOP 

et al. (1986) demonstrated, that keratinocytes expressing the viral Ha -ras gene 

(after infection by Ha-MSV) produce papillomas when grafted (combined 

with freshly isolated dermal fibroblasts) onto athymic nude mouse recipients. 

These experiments firmly established the correlation between initiation and 

Ha -ras gene activation in mouse skin carcinogenesis.

However, oncogene activation has also been shown to occur as a late 

event in experimental animal carcinogenesis systems, e.g. Ha -ras activation in
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DMBA mediated progression of mammary hyperplastic outgrowths to 

mammary carcinomas in mice (KUMAR et al., 1990a). Activation of the N- 

ras gene in MNU-induced thymic lymphomas in mice (GUERRERO et 1., 

1985; GUERRERO and PELLICER, 1987) and the neu gene in schwannomas 

in rats exposed in uteri to MNU (SUKUMAR, 1989) have not yet been 

correlated to a particular stage in carcinogenesis.

1.3.4. Tumour Promotion.

Tumour promotion is an essential component of carcinogenesis in 

many in vivo systems (HECKER et al., 1982). Cells initiated by carcinogen 

treatment or virus application, do not develop into tumours in the absence of 

tumour promoting stimuli (VAN DUUREN, 1975; LOEHRKE et al., 1983; 

BROWN et al., 1986). A large variety of chemicals have tumour promoting 

activities. Phorbol esters are the strongest among these substances (SLAGA, 

1983), whereas others have moderate (tobacco smoke condensate and 

benzoylperoxide) or weak tumour promoting activities (some long chain 

hydrocarbons). Several agents including asbestos, cigarette smoke, steroid 

hormones alcohol and dietary fat, have been identified as tumour promoters in 

human carcinogenesis based on epidemiological studies or animal model 

systems (PITOT, 1983; KODAMA and KODAMA, 1987; COHEN and 

ELLWEIN, 1990; WOODWARD and McMICHAEL, 1991).

Induced cell proliferation is a critical aspect of tumour promotion. 

Appropriate tumour promoters have mitogenic activity, inducing a 

hyperplastic response in epithelial tissues, such as skin, by increasing the 

mitotic activity in the basal cell layers and the number of suprabasal cell 

layers (RAICK et al., 1972). The induction of hyperplasia does not require a 

preceding initiation event, but appears to reflect the response of the normal 

cell population to tumour promotion. Similarly, initiated or preneoplastic cells 

are assumed to respond to tumour promotion by increasing their rate of cell 

proliferation (DRINKWATER, 1990 and references therein).

Hyperplasia is necessary, but on its own is not sufficient as a 

mechanistic explanation for tumour promotion. Other events such as clonal 

selection of initiated cells during tumour promotion have also been suggested 

to be important (YUSPA et al., 1982; PARKINSON, 1985). The selection
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hypothesis has been based on the reported partial or complete resistance to 

TPA-induced terminal differentiation of initiated cells in vitro (YUSPA and 

MORGAN, 1981, YUSPA et al., 1983 and 1985). On the other hand TPA 

treatment induces terminal differentiation (and accelerates the rate of 

differentiation in committed cells) in the majority of epidermal basal cells in 

vivo (REINERS and SLAGA, 1983) and in normal keratinocytes in vitro 

(YUSPA et al., 1982; REINERS and SLAGA, 1983). The considerable loss of 

basal cells through accelerated differentiation of normal basal cells induced by 

the first TPA treatment might indirectly increase proliferation and lead to 

clonal expansion of initiated cells into the space left by suprabasally migrating 

normal keratinocytes (REINERS and SLAGA, 1983). Thus, enhanced 

proliferation and aberrant differentiation could operate synergistically during 

tumour promotion.

The target cells for initiation are unknown. The fact that initiation is 

irreversible suggests either epidermal stem cells or cells that have irreversibly 

dedifferentiated into stem cells as obvious target cell candidates. Furthermore, 

target cells for initiation have to be contained within a keratinocyte 

subpopulation which is resistant or at least less sensitive to the induction of 

terminal differentiation by TPA (YUSPA et al., 1981, 1982 and 1983b; 

REINERS and SLAGA, 1983; PARKINSON et al., 1983 and 1984). MORRIS 

et al. (1985) suggested that so called "label-retaining cells" (LRCs), located 

within a nuclear diameter of the central cell position of each of the numerous 

epidermal proliferative units (EPUs) of the mouse dorsal epidermis (for 

review see POTTEN, 1983) represents the epidermal stem cells. Groups of 

follicular LRC cells have been localized exclusively to the bulge area of the 

hair follicle (COTSARELIS et al., 1990). These LRC cells are relatively 

undifferentiated and extremely similar to the putative stem cells of the palm 

and sole epithelia (LAVKER and SUN, 1982 and 1983). The normally slow 

cycling LRC cells in the hair follicle bulge can be induced to proliferate in 

response to hyperproliferative stimuli such as TPA treatment. COTSARELIS 

et al. (1990) hypothesize that these follicular LRC cells not only represent the 

hair follicular stem cells but are also the pluripotent stem cells that can give 

rise to hair follicles, the sebaceous gland and the epidermis. A small 

percentage of the slow cycling population of mouse epidermal basal cells (2%)
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and of infundibulum and outer root sheath cells (4-5%) have been shown to 

retain carcinogen for a long period of time and have been proposed to 

represent the target cells for initiation (MORRIS et al., 1986). There was no 

evidence of carcinogen retention in the matrix cells of the hair follicle nor the 

presence of LRC cells within that region which was previously thought to 

harbour hair follicle stem cells. Work by WEINBERG et al. (1991) 

demonstrated that interfollicular epidermal cells and some cells of the hair 

follicle (probably outer root sheath cells) can be transformed/initiated by a v- 

Ha-ras gene in vitro and following skin grafting onto nude mice result in 

benign papillomas, indistinguishable from each other. Morphologically 

distinct, so called "Dark Staining cells" (DSC), which are present in large 

numbers in embryonic epidermis but decrease throughout adulthood, have also 

been suggested to be some sort of primitive stem cells and possible target cells 

for initiation (KLEIN-SZANTO et al., 1980). DSC keratinocytes are visible in 

TPA-treated skin and are abundant in papillomas and carcinomas.

1.3.5. Genetic Events During Promotion.

There is now significant evidence in support of the involvement of 

aneuploidy in the development of papillomas on mouse skin. It is not known, 

as yet, whether the progressive aneuploidy observed during progression of 

mouse skin carcinogenesis is induced by TPA and/or if it occurs as a 

consequence of the presence of the activated Ha -ras gene. Karyotyping of 

solid tumours established a correlation between increasing aneuploidy, 

papilloma age and degree of dysplasia (CONTI et al., 1986; ALDAZ et al., 

1987). Non-random sequential trisomy of chromosome 6 and 7 have been 

observed during the development of DMBA/TPA-papillomas (ALDAZ et al., 

1989). Analysis of loss of heterozygosity using FI hybrids of appropriate 

inbred mouse strains demonstrated a high incidence of imbalance between 

parental alleles on mouse chromosome 7 in carcinomas carrying activated Ha­

ras genes (BREMNER and BALMAIN, 1990). Thus, activation of the Ha-ras 

gene, besides being the initiation event, can also influence the molecular 

nature of additional genetic changes occurring later in carcinogenesis.

TPA had been shown to induce aneuploidy in yeast (PARRY et al., 

1981), mouse epidermal cells (DZARLIEVA and FUSENIG, 1982;
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DZARLIEVA-PETRUSEVSKA and FUSENIG, 1985; PETRUSEVSKA et 

al., 1988) and human lymphocytes (EMERIT and CERRUTI, 1982). TPA 

causes severe numerical and structural chromosomal aberrations in vitro, such 

as tri- and quadradial chromatid interchanges, ring chromosomes, induction of 

gaps and translocations. In contrast, neither the second-stage tumour promoter 

RPA, nor non-promoting phorbol esters, like 4-O-MeTPA or 4-alpha-PDD, 

caused any substantial chromosomal alterations. The convertogenic activity of 

TPA as a first stage promoter, seems to correlate with cytogenic effects seen 

in primary keratinocyte cultures derived from mouse skin treated in vivo with 

TPA (PETRUSEVSKA et al., 1988).

1.3.6. Tumour Progression and Metastasis.

Malignant conversion is a result of the stepwise acquisition of more 

aggressive growth characteristics and more malignant behaviour (FOULDS, 

1957). Clonal expansion of more malignant subclones within neoplasms is a 

major force in tumour progression (NICOLSON and ROSENBERG, 1987). 

The increased genetic instability of tumour cells compared to normal cells 

(NICOLSON, 1987) may be an important factor contributing to clonal 

evolution in neoplastic cell populations (NORWELL, 1976; 1986; 1989). 

Molecular events responsible for various malignant properties associated with 

tumour progression are discussed below.

Malignant conversion is phenotypically associated with invasion, 

metastasis and the progressive loss of tissue organization. Changes in the 

expression pattern of cytokeratins, differentiation markers in epithelial cells, 

are useful indicators of alterations in the hyperplastic and differentiation state 

of malignant tumours of the mouse skin (NELSON and SLAGA, 1982 and 

references therein). Corresponding to their state of differentiation, benign 

papillomas express cytokeratins specific to basal cells (K5 and K14), the 

differentiated suprabasal layer (K1 and K10) and hyperproliferative skin (K6 

and K16). Repression of the suprabasal keratins K1 and K10 and the induction 

of K13 have been observed during the progression of papillomas to 

carcinomas (ALDAZ et al., 1988; ROOP et al., 1988; LAURIJSEN et al.,

1989). In squamous cell carcinomas, there is a strong correlation between 

increasingly dedifferentiated phenotype and a dramatic reduction in
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expression of differentiation specific cytokeratin K1 and K10, whereas the 

other cytokeratins seem to be unaffected (TOFTGARD et al., 1985; ROOP et 

al., 1988). Progression of squamous cell to spindle cell carcinoma is 

associated with the aberrant expression of the simple typell cytokeratins K8 

and K18 (endoA and endoB in mouse, respectively). Especially the expression 

of K8 correlated strongly with the state of epithelial cell differentiation, the 

levels of mutant Ha-ras p21 protein and the tumorigenic capabilities of the 

carcinoma cells (DIAZ-GUERRA et al., 1992).

Metastasis is a multistep process requiring successful completion of a 

series of complicated tumour-host interactions (reviewed in KERBEL, 1990; 

FIDLER and HART, 1982; SCHIRRMACHER, 1985; HILL, 1987; HART et 

al., 1989). In addition to growth control, an imbalanced regulation of motility 

and proteolysis appears to be required for invasion and metastasis (LIOTTA et 

al., 1991). Reviews have been written discussing the role of altered expression 

of oncogenes (LIOTTA, 1988; MUSCHEL and LIOTTA, 1988; 

GREENBERG et al., 1989), of cell-surface glycoproteins and oligosaccarides 

(NICOLSON, 1988; RAZ and LOTAN, 1987; DENNIS and LAFERTE, 

1987), of specific adhesion molecules (TAYLOR-SHER et al., 1988) or of 

autocrine motility factors (LIOTTA and SCHIFFMANN, 1988) in metastatic 

processes. The contribution of basement membranes, extracellular matrix, and 

various proteolytic enzymes (LIOTTA et al., 1982; THORGEIRSSON et al., 

1985; LIOTTA, 1986), and of growth factors (HERLYN et. al., 1989) to 

metastasis has also been reviewed extensively.

For many years, circumstantial evidence has been accumulating, 

suggesting that cellular and secreted proteinases play a central role in 

processes involved with invasion and metastatic tendencies of tumours. It has 

been suggested that other behavioural traits of metastatic cancer cells, such as 

a strong growth preference over their non-metastatic counterparts within the 

primary tumour, are probably also necessary, though not sufficient by itself, 

for expression of metastatic ability (reviewed KERBEL, 1990). Proteinases 

have been implicated in processing of mediators of the transformed state, such 

as autocrine growth factors, growth factor receptors, and angiogenic factors 

(LAIHO and KESKI-OJA, 1989), in induction of angiogenesis (LIOTTA et 

al., 1991), in evasion of the host immune system, as has been shown in the
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case of the proteinase cathepsin L (McCOY et al., 1988; KANE and 

GOTTESMANN, 1990; GOTTESMANN, 1990) and in the degradation of 

basement membrane to allow invasion and metasatsis at later stages of tumour 

progression (LIOTTA and STETLER-STEVENSON, 1990 and references 

therein).

1.3.7. Molecular Events Associated with Malignant Progression in Mouse 

Skin Carcinogenesis.

Amplification of oncogenes appear to be a major mechanism for 

altered gene function, particular in the later stages of human tumour 

development (ALITALO and SCHWARB, 1986). A 2 to 20 fold 

amplification of the mutant Ha -ras has been observed in some mouse skin 

carcinomas (QUINTANILLA et al., 1986; BREMNER and BALMAIN, 1990; 

BUCHMANN et al., 1991). The reduction in the normahmutant Ha-ray gene 

dosage seems to be the most significant difference between squamous cell and 

spindle cell carcinomas. It is still unclear, however, if the loss of the normal 

Ha-ras allele, the increased absolute expression of the mutant allele, or a 

combination of both represents the crucial feature of this progression event 

(BUCHMANN et al., 1991; BALMAIN et al., 1990).

Mutant ras genes have been implicated in the induction of the 

metastatic phenotype. Thus, evidence is accumulating that the Ha -ras gene 

may be involved at both, early and late stages of tumour progression. Other 

oncogenes have been tested for co-operativity with ras in the malignant 

conversion of mouse skin tumours. So far, only the introduction of v-fos or c- 

fos  into murine papilloma cell lines resulted in the malignant conversion of 

these lines to squamous cell carcinomas. Fos activation, however, may not be 

commonly involved in the malignant progression of mouse skin tumours, as 

the resultant carcinomas lacked y-glutamyl-transpeptidase activity, which is 

present in 90% of all chemically induced mouse skin carcinomas (CHIBA et 

al., 1986) and there is so far no evidence for fos gene activation in chemically 

induced tumours in vivo.

Functional alterations or loss of tumour suppressor genes are a major 

feature of progression in many human malignancies and seem to be also 

involved in experimental animal carcinogenesis model systems. The
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progressive reduction in normakmutant ratio of Ha-ras gene during tumour 

progression, resulting in the complete loss of the normal Ha -ras allele in 

spindle cell carcinomas (BUCHMANN et al., 1991), could represent such a 

loss of suppressor gene function in mouse skin carcinogenesis. It has been 

suggested that the normal Ha-ras allele, or a closely linked loci, could be the 

proposed tumour suppressor gene on chromosome 7 whose function seems to 

be specifically directed against the function of a mutant Ha-ras gene. The 

presence of a tumour suppressor gene on chromosome 7 was proposed as a 

number of loci on mouse chromosome 7, including the Ha -ras locus, are 

syntenic with a group of genes on the short arm of human chromosome 11, 

which in turn contains at least two putative tumour suppressor genes 

(SEARLE et al., 1989; BREMNER and BALMAIN, 1990). Inactivation of the 

mutant Ha-ras specific tumour suppressor gene, by epigenetic as well as 

genetic mechanisms, could be a major event during tumour progression. The 

trisomy of chromosome 7 detected in many carcinomas would correspond to 

an actual under-representation of this chromosome in the near-tetrapoid 

background of the progressing tumours (BREMNER and BALMAIN, 1990: 

FUSENIG et al., 1985). Loss of heterozygosity (LOH) for the p53 tumour 

suppressor loci on mouse chromosome 11, syntenic to the human p53- 

containing chromosome 17, was detected in 7 out of 40 carcinomas analysed, 

with the remaining chromosome having inactivating mutations in the p53 

gene. LOH on chromosome 11 was not observed in 30 papillomas. 

Furthermore, carcinomas without LOH on chromosome 11 had mutations in 

both alleles of the p53 gene (BURNS et al., 1991; P.A. BURNS, personal 

communication). These results strongly suggest that complete loss of normal 

p53 function is associated with the malignant phenotype in mouse skin 

carcinogenesis. However, loss of normal p53 function does not appear to be 

directly responsible for further progression to undifferentiated spindle cell 

carcinoma, as loss of normal p53 function is found in well-differentiated 

squamous cell carcinomas (BURNS et al., 1991). Under-representation of 

mouse chromosome 4 in carcinomas has also been reported (C.J. KEMP, 

personal communication). Mouse chromosome 4 corresponds to the human 

chromosome 9 containing a putative tumour suppressor gene for epithelial 

tumours in man (GAILANI et al., 1992).
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1.3.8. Transin/Stromelysin Expression and Tumour Progression.

The family of extracellular matrix-degrading metalloproteinases 

consists of three sub-groups characterized by the substrate preference of the 

various proteinases:

i. Interstitial collagenases, specifically degrade type I, II and in 
collagen found in the dermis and other connective tissues (TEMPELTON et 

al., 1990).

ii. Type IV collagenases or gelatinases with substrate specificity for 

basement membrane collagen (type IV collagen and gelatins) (FESSLER et 

al., 1984). The type IV collagenase, or 72kDA gelatinase, is also able to 

degrade type V and VII collagen. A positive correlation between type IV 

collagenase activity and tumour cell invasion has been demonstrated both in 

vivo and in vitro. The evidence for type IV collagenase playing a role in 

tumour invasion and metastasis has been extensively reviewed (LIOTTA et 

al., 1991; LIOTTA and STETLER-STEVENSON, 1990 and references 

therein).

iii. Stromelysins (WILHELM et al., 1987; MATRISIAN, 1992). The 

subclass stromelysin consists of three related gene products, stromelysin, 

stromelysin-2, and matrilysin, also called PUMP-1 (small putative 

metalloproteinase) or MMP7 (CHIN et al., 1985; WHITHAM et al., 1986; 

MULLER et al., 1988; WOESSNER and TAPLIN, 1988). Stromelysin 

proteinases degrade a wide variety of extracellular matrix components 

including proteoglycans and non-collagenous glycoproteins (e.g. laminin, 

fibronectin and gelatin), the non-collagenous domains of type IV collagen, as 

well as type III and V collagens (reviewed in McDONNELL and 

MATRISIAN, 1990 and references therein).

Transin mRNA was originally characterized as a mRNA whose levels 

are greatly increased following oncogenic transformation of rat embryo 

fibroblast cell lines (MATRISIAN et al., 1985). Additional transin-like genes 

have since been isolated: transin-2 (BREATHNACH et al., 1987) and matrix 

metalloproteinase 7 (MMP 7) (WOESSNER and TAPIN, 1988) or transin-3, 

also called matrilysin (QUANTIN et al., 1989; MATRISIAN, 1992). 

Subsequent studies and primary sequence comparisons have since revealed,
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that the transin gene is the rat homolog of the extracellular matrix-degrading 

metalloproteinase (MMP) gene stromelysin described by CHIN et al., (1985) 

(WHITHAM et al., 1986; MULLER et al., 1988). Transin-2 and transin-3 

genes code for the rat homologues of stromelysin-2 gene and PUMP-1 gene 

(putative metalloproteinase-1) (MULLER et al., 1988), respectively. The 

transin-like metalloproteinases have been grouped into the stromelysin 

subclass of MMPs according to their broad substrate specificity (reviewed in 

McDONNELL and MATRISIAN, 1990). The nomenclature for members of 

the stromelysin subclass is not consistent, since many of these enzymes have 

been given different names by different groups (Table 1.1 reproduced from 

MATRISIAN, 1992; reviewed in McDONNELL and MATRISIAN, 1990; 

MATRISIAN and BOWDEN, 1990; MATRISIAN, 1992). The regulation of 

expression of the transin/stromelysin genes, as well as the structure and 

proteolytic activation of metalloproteinases have been reviewed extensively 

(LIOTTA and STETLER-STEVENSON, 1990; MATRISIAN and BOWDEN, 

1990; McDONNELL and MATRISIAN, 1990; MATRISIAN, 1992).

1.3.9. Transin/Stromelysin Expression During Chemical Carcinogenesis 

in Mouse Skin.

Analysis of tumours generated in vivo by the classical protocol of 

chemically induced mouse skin carcinogenesis (SLAGA, 1983), a single 

treatment of normal mouse skin with the initiating carcinogen DMBA 

followed by repeated treatments with the tumour promoter TPA, demonstrated 

a correlation between transin/stromelysin gene expression and malignant state 

of the tumours analysed. Only 6% of benign papillomas, arising after 15 

weeks TPA treatment, had low levels of transin/stromelysin mRNA detectable 

(MATRISIAN and BOWDEN, 1990). However, squamous cell carcinomas 

(SCC), developing at around week 25 to 30 in 5-7% of DMBA/TPA treated 

animals, had an elevated incidence (73%) of high transin/stromelysin 

expression (MATRISIAN et al., 1986; MATRISIAN and BOWDEN, 1990). 

Similar observations were made in analysis of benign papillomas and SCC, 

induced by N-methyl-N-nitroso-N-nitroguanidine (MNNG)-initiation/TPA- 

promotion protocol. Transin/stromelysin expression was detected with much 

higher incidence in SCCs (80%) than in papillomas (25%) (MATRISIAN et
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Tha stromelysin family of matrix degrading matolloprotainaaaa (HMPs) .

1 I
|Group|

. |
Name | Members ,M ------Source Substrate |

|1 | Stromelysin | Stromelysin

Transin

Rabbit synovial 
fibroblasts

Transformed rat 
fibroblasts

Proleoglycans | 

Laminin | 

Fibronecton |

Proteoglycanose

Collagenase
activator

Rabbit bone

Rabbit synovial 
fibroblasts

III, IV, V, | 
collagen |

Gelatins |

MMP-3 Human rheumatoid 
synovial cells

|2 | Stromelysin-2 | Stromelysin-2 Human tumour 
cells

III, IV, V | 
collagen |

Transin-2

MMP-10

Transformed rat 
fibroblasts

Fibronecton | 

Gelatins |

13 | Matrilysin j Matrilysin 
(or transin-3)

Gelatins |

Pump-1 Human tumour 
cells

Fibronectons j

Small metallo 
proteinase of 
the uterus

Rat uterus

MMP-7

Table 1.1.

The stromelysin family of matrix-degrading metalloproteinases (MMPs).

The stromelysin family of MMPs is subdivided into three groups: 
group 1 is represented by stromelysin, group 2 by stromelysin-2 and group 3 
by matrilysin. The names given to purified enzymes or cloned cDNAs, their 
source, substrate specificity and classification within the family are indicated 
in this table. References are given in the text.



al., 1990). The correlation between transin/stromelysin expression and 

malignancy was even more striking in SCCs developing after repeated 

treatments with MNNG; 100% of these malignant tumours (5/5 SCC) showed 

very high levels of transin/stromelysin mRNA (OSTROWSKI et al., 1988; 

MATRISIAN and BOWDEN, 1990). These results correlated well with the 

observation that repeated MNNG treatment of mouse skin produces malignant 

tumours with a high probability of invading and metastasizing (PATSKAN et 

al., 1987). In none of the chemically induced SCCs, expressing 

transin/stromelysin at high levels, was any evidence found of amplification or 

rearrangement of the transin/stromelysin gene (MATRISIAN and BOWDEN,

1990). The induction of transin/stromelysin gene expression occurred solely at 

the transcriptional level. A very high percentage of mouse skin tumours 

initiated by ionizing radiation (JAFFE and BOWDEN., 1987), express 

transin/stromelysin (MATRISIAN and BOWDEN, 1990). The high 

percentage of transin/stromelysin expression found in benign tumours (near 

100%) might be an indicator, that these tumours could be premalignant, as 

evidence suggested a high rate of conversion of radiation initiated papillomas 

to SCCs (JAFFE and BOWDEN. 1987). The fact that radiation initiated basal 

cell carcinomas (BCC) did not express transin/stromelysin, was consistent 

with the observation, that BCCs show little evidence of invasive behaviour 

(MATRISIAN and BOWDEN, 1990).

OSTROWSKI et al. (1988) found an apparent decrease in the level of 

transin/stromelysin transcripts in metastatic lesions (1 lung metastasis and 2 

lymph node metastases) when compared to the transcript levels found in the 

primary tumour, induced by repeated Benzo[a]pyrene (B[a]P) or MNNG 

treatment over a period of over 40 weeks, from the same animal. In one case 

(lung metastasis), no transin/stromelysin transcripts were detectable. They 

speculated that the level of transin/stromelysin expression could be 

downregulated in metastatic tumour cells, as its proteolytic activity might not 

be required for the process of establishing and maintenance of the metastatic 

colony at its new location (OSTROWSKI et al., 1988). Transin/stromelysin 

levels also correlated with the metastatic potential of a series of oncogene 

transformed rat embryo cells in vitro (POZZATTI et al., 1986). After 

transfection of the T24/EJ c-Ha-ras oncogene (PARADA et al., 1982), normal
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rat embryo fibroblasts, as early as passage 3 to 4, exhibited great propensity to 

form metastatic lesions after intravenous injection into nude mice. Rat embryo 

fibroblasts transfected with cloned c-Ha-ras and adenovirus 2 E la  gene, 

however, gave rise to tumours, but no, or very few metastatic, lung nodules 

(POZZATTI et al., 1986). Unpublished results by POZZATTT (MATRISIAN 

and BOWDEN 1990), showed that 5/5 c-Ha -ras transformed cell lines had 

elevated levels of transin/stromelysin mRNA, whereas only 1/5 c-Ha-ras/Ela 

transformed cell lines expressed transin/stromelysin mRNA. These results 

were explained when VAN DAM et al. (1990) and OFFRINGA et al. (1990) 

showed that El A protein suppresses the transcription of the collagenase gene 

by abolishing the transactivating function of AP-1 (Jun/Fos) which binds to 

the TRE element of the collagenase gene (AUBLE et al., 1991).

In summary, the induction of transin/stromelysin expression seemed to 

be a relatively late event in the process of tumour progression as demonstrated 

for ionizing radiation and chemically induced mouse skin carcinogenesis in 

vivo (MATRISIAN et al.,1986; MATRISIAN and BOWDEN, 1990) and for 

v-ra.s/v-/<9ls-expressing keratinocytes upon grafting onto the backs of nude 

mice (GREENHALGH and YUSPA, 1989). There was a strong correlation 

between its expression and the invasive and metastatic potential of chemically 

induced mouse skin tumours, papilloma cell lines in vitro and human T24/EJ 

c-Ha-ras oncogene transformed, tumorigenic rat embryo fibroblasts 

(POZZATTI et al., 1986; KRIEG et al., 1988; GREENHALGH and YUSPA, 

1989; MATRISIAN and BOWDEN, 1990). The observation that tumours with 

the greatest probability of becoming invasive and metastatic have the highest 

levels of transin/stromelysin (OSTROWSKI et. al., 1988; MATRISIAN and 

BOWDEN, 1990) leads to the speculation that the metalloproteinase 

transin/stromelysin might play a causal role in promoting invasion through the 

basement membrane.

1.4. The Ras Gene Family.

1.4.1. Structure and Function of the ras Proto-Oncogenes.

Three functional ras genes have been isolated from several 

mammalian species: Ha -ras 1, Ki-ras 2 and N-ras, alongside two
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pseudogenes identified in rats and humans: Ha-ras 2 and Ki-ras 1 

(BARBACID, 1987). The genes encode closely related proteins of 21 

kDa, referred to as p21ras. By alternative splicing of its two fourth exon 

(IVA and IVB), the Ki-ras 2 gene can generate two forms of p21 (Ki-ras 

2A and Ki-ras 2B), proteins of 188 amino acids and 189 amino acids, 

respectively, that differ in their C-terminal residues (McGRATH et al., 

1983, CAPON et al., 1983). Whereas Ha-ras and Ki-ras have known 

retroviral homologues in the transforming genes of Harvey- and Kirsten 

murine sarcoma viruses (Ha-MSV and Ki-MSV), no such homologue has 

been identified for the N-ras gene (HALL et al., 1983; SHIMIZU et al., 

1983). The p21ras proteins encoded by the various members of the ras 

gene family, have been shown to bind magnesium complexes of guanine 

nucleotides (GDP or GTP) (SCOLNICK et al., 1979; SHIH et al., 1980, 

TAMANOI et al., 1984; TEMELES et al., 1985; WITTINGHOFER and 

PAI, 1991), possess GTPase activity (GIBBS et al., 1984; McGRATH et 

al., 1984; SWEET et al., 1984; MANNE et al., 1985; TEMELES et al., 

1985), and are associated with the plasma membrane (WILLINGHAM et 

al., 1980; WILLUMSEN et al., 1984). p21ras proteins show a significant 

sequence homology with G proteins, a group of signal-transducing 

proteins with intrinsic GTPase activity and an intracellular localisation on 

the inner surface of the plasma membrane similar to p21ras proteins 

(HURLEY et al., 1984; TANABE et al., 1985; LOCHRIE et al., 1985; 

ITOH et al., 1986). There is also a high degree of similarity, especially for 

the nucleotide binding site, between p21ras proteins and other GTP- 

binding proteins involved in polypeptide chain elongation, such as the 

bacterial EF-Tu factor (JURNAK, 1985; McCORMICK et al., 1985). The 

determination of the crystal structures of EF-Tu in its GDP-bound form 

(JURNAK et al., 1985; LA COUR et al., 1985) and the three dimensional 

structure of c-Ha-ras in both, its GDP-bound and GTP-bound forms (DE 

VOSS et al., 1988; PAI et al, 1989) confirmed the similarity at the 

nucleotide binding site of the two proteins. The three dimensional 

structure of p21ras proteins has been described in a number of reviews 

(WmiNGHOFER and PAI, 1991; SCHLICHTING et al., 1990; 

McCORMICK, 1989; BARBACID, 1987). These sequence and structure
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similarities, especially to G proteins, and the properties of p21ras proteins 

suggest that they may function as molecular switches in signaling events 

of cell growth and differentiation. When bound to GTP p21ras proteins 

are in their active state ("on" switch); their GDP complexes comprise the 

inactive form ("off’ switch) (BOURNE et al., 1991 and 1990; CHARDIN, 

1991; KAZIRO et a l, 1991).

The promoter regions of the cellular ras genes lack characteristic 

TATA boxes, but are highly GC rich (BARBACID, 1987), contain 

multiple potential GC-box SP1 protein binding sites (GGGCGG or its 

complement CCGCC) (YAMAMOTO and PERUCHO, 1988; ISHII et 

al., 1986; BROWN et al., 1988; NEADES et al., 1991; PLUMB et al.,

1991) and a putative CCAAT box (BROWN et al., 1988) with two further 

potential CTF-1 binding sites (NEADES et al., 1991; JONES et al., 1987). 

The untranslated 5'-non-coding exon (E-l), located immediately 

downstream from the promoter region, contains multiple transcription 

start sites (BROWN et al., 1988; PLUMB et al., 1991). In the Ha-ras 

gene, the exact position and regulation of these multiple start sites are still 

disputed.

The amino acid sequence of the p21ras proteins are very similar 

and can be divided into four domains. The first 85 amino acids at the 

amino-terminus are identical in each member of the family, and the 

adjacent 80 amino acids show only a slight divergence with 85% identity. 

The third region between amino acids 165 and 185 is highly heterologous, 

but the sequence homology is restored in the last four amino acids. This 

fourth domain of four amino acids comprises a characteristic motif of 

Cys(186)-A-A-X-COOH (A' representing any aliphatic amino acid; 'X' 

representing any amino acid) in all mammalian ras genes (BARBACID, 

1987). The CAAX motif has an important signalling function in post- 

translational modification(s) of the p21ras proteins, necessary for their 

maturation into the membrane-bound forms (DER and COX, 1991). 

Three closely coupled post-translational modifications are required for 

efficient membrane binding of p21ras (HANCOCK et al., 1991): First, the 

addition of a prenoid derivate or a famesly group to the cysteine of the 

CAAX sequence (HANCOCK et al., 1989; CASEY et al., 1989); second,
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the removal of the AAX amino acids by proteolysis (GUTIERREZ et al., 

1989) and third, the methyl-esterification of the now C-terminal cysteine 

residue (CLARKE et al., 1988; GUTIERREZ et al., 1989). The CAAX 

motif of p21 proteins must combine with a second "membrane 

association" signal, either a cysteine palmitoylation site (Ha-ras, N-ras 

and Ki-ras 4A) or a polybasic domain comprising six consecutive lysine 

residues (Ki-ras4B), contained within the hypervariable domain of the 

protein to target plasma membrane localization (HANCOCK et al., 1989; 

1990 and 1991b). Post-translational modification of the p21ras proteins 

are essential for membrane localization and oncogenic activity 

(HANCOCK et al., 1989; WILLUMSEN et al., 1984). Recently it has 

been shown that irreversible myristylation of normal p21 ras activates the 

transforming properties of this protein (BUSS et al., 1989). Post- 

translational processing is also required for the interaction of the p21ras 

proteins with GDP dissociation stimulators (GDS) (MIZUNO et al.,

1991).

Mammalian ras proteins have been implicated in a variety of 

biological events: p21ras proteins are capable of inducing proliferation 

and transformation in certain types of mammalian cells (fibroblasts, 

epithelial cells) (STACEY and KUNG, 1984; MULCAHY et al., 1985; 

YUSPA et al., 1985) and of inducing differentiation or growth arrest in 

others (rat pheochromocytoma (PC) 12 cells, Schwann cells) (NODA et 

al., 1985; BAR-SAGI and FERUMISCO, 1985). In contrast to normal 

p21ras, oncogenic p21ras proteins can induce terminal differentiation of 

PC12 cells. Microinjection of PC12 cells with antibodies against p21ras 

proteins inhibits neurite formation induced by NGF but not by cAMP 

(HAGAG et al., 1986). There is also evidence that in some cell types 

p21ras may promote transformation by inhibiting differentiation. The 

introduction of ras oncogenes into skeletal myoblasts (OLSEN et al., 

1987) or mouse keratinocytes (YUSPA et al., 1983 and 1985) blocks the 

normal differentiation programme of these cell types (OLSEN et al., 

1987). The high expression levels of p21ras in brain tissue (FURTH et al., 

1987; CHESA et al., 1987) further supports a role for this protein in 

neural differentiation and offers an explanation for the lack of association
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between ras gene activation and tumours of neuroectodermal origin 

(BOS, 1989). Detection of high levels of ras expression in both 

proliferating and terminally differentiated cell types (epithelial cells of the 

endocrine gland; neurons of the central nervous system) support the 

concept that ras genes can interact with diverse intracellular pathways 

involved in basic cellular proliferation and in certain specific functions of 

terminally differentiated cells.

1.4.2. Downstream Cellular Signalling Pathways Regulated by p21ras 

Proteins.

The elucidation of cellular signalling pathway(s) affected by 

normal or oncogenic activated p21ras proteins have made progress in 

recent years. One of the candidate intracellular pathways which 

mammalian p21ras proteins may influence is the phosphoinositide 

system, a system which regulates several processes including metabolism, 

secretion, neuronal activity and cell proliferation (BERRIDGE and 

IRVING, 1989). Evidence that p21ras may be the G protein involved in 

transducing a variety of signals from the cell surface to the enzyme 

phospholipase C (PLC) was inferred from the observation that p21ras- 

transformed cells contain elevated levels of inositol 1,4,5, triphosphate 

(IP3) (FLEISCHMAN et al., 1986; HANCOCK et al., 1988). The second 

messengers IP3 and diacylglycerol (DAG) are normally released 

following the PLC-catalysed hydrolysis of phosphatidyl inosito 4,5- 

biphosphate (PIP2). IP3 induces an increase in the level of intracellular 

Ca^+ (BERRIDGE and IRVINE, 1989), while DAG, in conjunction with 

Ca2+, activates Protein kinase C (PKC) (NISHIZUKA, 1986 and 1988). It 

has been suggested that different p21ras proteins couple different 

receptors to PLC: the bombesin receptor via p21N-ras (WAKELAM et 

al., 1986) and the PDGF receptor via p21Ha-ras (MARSHALL, 1987). 

However, mutant p21ras has been observed to induce an increase in DAG 

in the absence of, or well above, any increase in inositol phosphates 

(LACAL et al., 1987a and 1987b; WOLFMANN and MACARA, 1987; 

SEUWEN et al., 1988; MORRIS et al., 1989). It has therefore been 

suggested that p21ras may mediate the breakdown of other phospholipids,
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such as phosphatidylcholine (PC), phosphatidyl ethanolamine (LACAL et 

al., 1987a), or the substrates of phospholipase A2 (BAR-SAGI and 

FERAMISCO, 1986). However, downregulation of PKC by prior 

treatment with phorbol esters blocks ras-induced PC hydrolysis and 

elevation of DAG (PRICE et al., 1989), implying that DAG increase is 

downstream of PKC and that p21ras activates PKC by a novel 

mechanism.

More recently, activation of mitogen activated protein (MAP) 

kinases has been identified as an early consequence to p21ras 

deregulation following scrape loading quiescent cells with oncogenic 

p21ras (LEEVERS and MARSHALL, 1992). MAP kinases are 

constitutively activated in p21ras-transformed cell lines, suggesting that 

continued stimulation of these kinases is required for the transformed 

phenotype of the cells (LEEVERS and MARSHALL, 1992). Although 

initially described as the direct target for receptor linked tyrosine kinases 

(receptor for insulin, epidermal growth factor (EGF) and fibroblast 

growth factor (FGF)), the activation of the protein-serine MAP kinase is 

catalysed by a MAP kinase kinase which in turn is dependent on 

serine/threonine phosphorylation for its activity. There is evidence that 

the serine kinase product of the proto-oncogene c-raf is involved in 

activation of the MAP kinase kinase by directly phosphorylating the MAP 

kinase kinase (BRUDER et al., 1992; KYRIAKIS et al., 1992). Dominant 

negative Raf mutants inhibit p21ras-mediated signalling (BRUDER et al.,

1992) and dominant negative p21ras mutants inhibit activation of c-raf-1 

by mitogens (KYRIAKIS et al., 1992). It has been shown in vitro that 

MAP kinases specifically modify by phosphorylation two serine residues 

within the transactivation domain of c-Jun, a component of the AP-1 

transcription factor complex (PULVERER et al., 1991). Activation of c- 

Jun/AP-1 protein complex through phosphorylation seems to be necessary 

for deregulation of cell growth by p21ras proteins. However, the 

immediate downstream target for p21ras proteins is/are still elusive.
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1.4.3. Oncogenic Activation of ras Genes.

The structural alterations responsible for the activation of ras 

genes are well documented (BARBACID, 1987; McCORMICK, 1989). 

The activating mutation of the c-Ha-ras gene of the T24/EJ bladder 

carcinoma cell line was the first to be determined. A single nucleotide 

substitution (G to T) at codon 12 results in an altered p21ras gene product 

containing a Val rather than a Gly residue at position 12 (TABIN et al., 

1982; REDDY et al., 1982; TAPAROWSKY et al., 1982). Since then, 

codon 12, 13, and 61 mutations have been identified in activated ras 

oncogenes detected in naturally occurring tumours and in chemically 

induced tumours (GUERRERO and PELLICER, 1987, BARBACID, 

1987; BALMAIN and BROWN, 1988; BOS, 1989; McCORMICK, 1989; 

SUKUMAR, 1989 and 1990; LEMOINE, 1990). In addition, an activating 

codon 59 mutation has been detected in viral Kirsten and Harvey ras 

genes (DHAR et al., 1982; TSUCHIDA et al., 1982), but never in an 

activated cellular ras gene. In vitro mutagenesis studies extended the list 

of activating mutations to include codons 63 (FASANO et al., 1984), 116 

(WALTER et al., 1986), 117 (DER et al., 1988), 119 (SUAL et al., 

1986b) and 146 (SLOAN et al., 1990; ORITA et al., 1991). Except for 

codon 146 mutations identified in a range of naturally occurring human 

tumours including colon cancer, lung cancer and lymphoid malignancies 

(ORITA et al., 1991), these mutations have never been described in 

human tumours.

In general, ras gene activating mutations fall into two functional 

groups, those affecting codons 12, 13, 59, 61 and 63 residues have 

reduced intrinsic GTPase activity (GIBBS et al., 1984; McGRATH et al., 

1984; SWEET et al., 1984; MANNE et al., 1985; TEMELESS et al., 

1985) and are unable to respond to the stimulating effect of GTPase 

activating proteins (GAPs) (ADARI et al., 1988; CALES et al., 1988) 

while those at codons 116, 117, 119 and 146 have an increased GDP/GTP 

exchange rate (SIGAL et al., 1986a; WALTER et al., 1986).

Ras genes can also gain transforming properties by quantitative 

mechanisms. Overexpression of ras-proto-oncogenes as a result of 

linkage of normal ras genes to powerful enhancer elements such as
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retroviral LTRs (CHANG et al., 1982) or obtained after integration of 

multiple copies of a normal human Ha-rasl DNA clone (PULCIANI et 

al., 1985) result in the malignant transformation of NIH 3T3 cells. 

Amplification of ras has also been seen in a variety of human tumours, 

although the overall incidence of ras gene amplification in human 

neoplasia is estimated to be around 1% (PULCIANI et al., 1985; for 

reviews: BARBACID, 1987; BOS, 1989, 1990).

1.4.4. Ras Gene Activation in Human Tumorigenesis.

Oncogenic activation of members of the ras gene family plays an 

important role not only in mouse skin carcinogenesis and other animal 

model systems but is also implicated in human tumorigenesis, although 

the incidence of ras gene activation differs greatly in human tumours 

(LEMOINE, 1990; BOS, 1989). The highest incidences are found in 

adenocarcinomas of the exocrine pancreas, colorectal carcinomas, benign 

and malignant tumours of the thyroid gland and Acute Myeloid Leukemia 

(AML). Although lung carcinomas have a relatively low incidence of 

activating ras gene mutations, one histological type of lung carcinoma, 

adenocarcinomas have a high incidence of Ki-ras gene activation, there is 

also evidence that the mutational event could be a direct result of the 

presence and action of carcinogenic ingredient(s) of tobacco smoke 

(RODENHUIS et al., 1988). However, in several other types of tumours 

the incidence of ras gene activation is very low (less than 5%), these 

include carcinomas of the breast, cervix, ovaries and esophagus as well as 

glioblastoma, neuroblastoma, large cell lung cancer and chronic 

lymphocytic leukemia (LEMOINE, 1990; BOS, 1989; McCORMICK, 

1989). The reason for the high incidence of ras mutations in certain 

tumours and their absence in others may relate to the tissue distribution of 

carcinogens and/or the sensitivity of individual tissues to ras-induced 

transformation. Studies using transgenic mice have demonstrated that the 

pancreas is particularly sensitive to ras-induced neoplasia whereas 

tumours arising in mammary (SINN et al., 1987) or lung tissue (SUDA et 

al., 1987) occur only after a long latency period.
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A specificity regarding the activation of a particular member of 

the ras family is observed in certain tumours: the strong association 

between Ki-ras mutation and tumours of the colon, lung and pancreas 

(BOS, 1989; LEMOINE, 1990); highly significant incidence of activated 

N-ray genes in myeloid neoplasia and melanomas (BOS, 1989; 

LEMOINE, 1990; VAN'T VEER et al., 1989; ALBINO et al., 1989); Ha­

ras gene mutations in rodent skin and mammary tumours and 

predominantly in mouse liver tumours (BALMAIN and BROWN, 1988; 

BALMAIN, 1990). This specificity is still not completely understood.

The suggestion that ras genes have separate function may explain the 

specificity of activation of certain ras gene family members in certain 

tumours. However, the putative effector domains are identical in all three 

p21ras proteins (SIGAL et al., 1986a; WITTINGHOFER and PAI, 1991 

and references therein) which speaks against the "separate function" 

theory and suggests the induction of the same effect in all cells upon 

activation of any one of the ras genes. However, the direct downstream 

effector for any of the ras genes has not yet been identified. On the other 

hand, the tissue specificity could reflect differential expression of the ras 

genes in different tissues. However, expression of all three ras genes is 

detected in most tissues, although at dissimilar levels (MULLER et al., 

1983; LEON et al., 1987). Thymus and skin have high expression of N- 

and Ha-ras, respectively, consistent with the preferential activation of 

these genes in tumours derived from these tissues (GUERRERO and 

PELLICER, 1987; BALMAIN and BROWN, 1988).

1.5. Analysis of Carcinogenesis in the Mouse Skin Model.

1.5.1. Inhibition of Cell Transformation by Antisense ras RNA.

The Use of Artificial Antisense RNA in Regulation of Eukaryotic Gene 

Expression.

The identification of antisense RNA as a fine tuner of complex 

regulatory processes in prokaryotic systems (GREEN et al., 1986b; INOUYE 

1988; TAKAYAMA and INOUYE, 1990; EGUCHI et al., 1991) lead to the
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idea of developing methods where artificial antisense RNA genes could be 

used as specific inhibitors of gene expression in eukaryotes. The use of 

antisense RNA would make it possible to determine the function of genes by 

examining the consequences of the lack of expression of these genes and thus 

simulating dominant-negative "mutant" phenotypes.

Artificial antisense RNA genes are constructed by cloning the coding 

sequences of a gene in opposite orientation relative to the promoter and 

polyadenylation signal provided by the expression vector. The antisense RNA 

can be transcribed in vitro and microinjected into the cytoplasm of cells 

(ROSENBERG et al., 1985; CABERERA et al., 1987). Alternatively, the 

plasmid carrying the antisense gene can be transfected into cells and the 

antisense RNA is transcribed in the cell nucleus (IZANT and WEINTRAUB, 

1985; TREVOR etal., 1987).

Experiments by IZANT and WEINTRAUB (1984) showed for the first 

time that the level of transient expression of an exogenous Herpes Simplex 

thymidine kinase (tk) gene could be significantly lowered when a mixture of 

plasmids containing cloned sense and antisense HSV-tk genes at a ratio of 

1:100 (senserantisense plasmids) was microinjected into mouse LTK" cells. 

They could also show, that the inhibition of antisense RNA is sequence 

specific, as antisense HSW-tk RNA could not repress the expression of the 

chicken tk gene and vice versa (IZANT and WEINTRAUB, 1985). An 

antisense YLSV-tk RNA complementary to a sequence of 52 nucleotides from 

the 5' untranslated region of the target RNA showed the most effective 

inhibition; more effective than a long antisense RNA complementary to most 

of the tk coding region including the initiation codon (IZANT and 

WEINTRAUB, 1985). Transfection of LTK' cells with plasmids containing 

sense or antisense tk genes (at a ratio of 1:100) gave the same results as the 

microinjection experiments. Expressing the antisense HSV-tk gene from a 

glucocorticoid-inducible LTR from mouse mammary tumour virus (MMTV- 

LTR) showed a dose-dependent decrease in TK enzyme activity of up to 90% 

(IZANT and WEINTRAUB, 1985). KIM and WOLD (1985) achieved 80% to 

90% inhibition of expression of the tk gene when expressing antisense tk RNA 

as part of a chimeric dihydrofolate reductase (DHFR) transcript. The increased 

levels of intracellular antisense tk RNA was a result of over-production of
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DHFR message caused by selection of cells resistant to progressively higher 

levels of methotrexate. Transient inhibition of SV40 large T-antigen gene 

expression by an antisense RNA transcribed by RNA polymerase III was 

demonstrated in COS1 cells by JENNINGS and MOLLOY (1987). A 5 to 20 

fold reduction in chloramphenicol acetyltransferase (CAT) activity was 

achieved by transient antisense inhibition of the bacterial CAT gene 

introduced into LTK' cells (IZANT and WEINTRAUB, 1985).

Antisense RNAs were also used successfully to interfere with 

expression of a series of exogenous and endogenous genes including mouse 

hprt (STOUT et al., 1987), p-actin (IZANT and WEINTRAUB, 1985), globin 

(MELTON, 1985), tk gene (HARLAND and WEINTRAUB, 1985), and the 

murine Tissue Inhibitor of Metalloproteinases (TIMP) gene (KHOKHA et al., 

1989).

Very elegant work has been done in Dictyostelium discoidiewn, a 

eukaryotic cellular slime mold. Transfection of an antisense construct of the 

discoidin gene into Dictyostelium results in the repressed expression of three 

endogenous discoidin genes and leads to a >90% reduction in accumulated 

discoidin mRNA and protein. More importantly, however, the antisense 

transformants show a non-streaming phenotype similar to that of naturally 

occurring discoidin-minus mutants. Based on the detection of only low levels 

of endogenous discoidin mRNA by Northern analysis and the absence of 

detectable steady-state levels of antisense transcripts, sense and antisense 

RNA hybrids are believed to form in the nucleus and to be rapidly degraded 

(CROWLEY etal., 1985).

Transcription of a transfected antisense myosin heavy chain A (mhcA) 

gene leads to reduced accumulation of MHC A protein and subsequently to 

developmental abnormalities in Dictyostelium (slow growing, abnormally 

large and multinucleate phenotype). Phenotypic reversion can be achieved by 

increasing the amount of endogenous mhc A mRNA relative to the expression 

of the antisense RNA, as with accumulation of MHC A protein, Dictyostelium 

remains mononucleate and proceeds through development normally 

(KNECHT and LOOMIS, 1987).

Drosophila proved to be another valuable system where genes 

regulating development could be studied using antisense RNA. Wild-type
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Drosophila injected at the syncytial blastoderm state with in vitro transcribed 

antisense Kruppel (Kr) RNA, complementary to a 2.3kb Kr cDNA fragment, 

developed into phenocopies of Kr mutants. A high frequency of lethal Kr 

phenocopies was observed. Phenocopy production is dose dependent and 

reflects the naturally found spectrum of Kr mutants. However, extreme Kr 

phenocopies indicative of complete Kr(+) inhibition are not produced. The 

ratio of 1000:1 (antisense to sense RNA) yielded about 50% of phenocopies, 

even the weakest response (4% phenocopies) required a greater than 50 fold 

excess of antisense RNA over endogenous Kr message (ROSENBERG et al., 

1985).

Minimal to global wingless embryo phenocopy mutants are caused by 

injection into wild-type eggs of an antisense RNA complementary to a 3.0kb 

fragment of the wingless cDNA of Drosophila. The wingless gene seems to be 

required for cooperation within discrete groups of cells during development. 

The wingless gene is the Drosophila homolog of the mouse int-l proto- 

oncogene (CABRERA et al., 1987).

The first successful whole-animal mouse model of antisense inhibition 

was demonstrated by KATSUKI et al. (1988) who generated transgenic mice 

carrying a 1.2 kb antisense myelin basic protein (MBP) cDNA sequence under 

its homologous promoter. Although the transgenic founder mice appeared 

phenotypically normal, 10 out of 21 transgenic offsprings from a cross 

between one of the founder males with a wild-type female mouse, converted 

to a mutant "shiverer" phenotype. The shiverer phenotype correlated with an 

observed reduction in MBP mRNA production, amount of MBP protein 

synthesized and degree of myelination. The mutant "shiverer" mouse harbours 

an autosomal recessive mutation in the MBP gene that results in its MBP 

deficiency and hypomyelination in the central nervous system (KATSUKI et 

al., 1988 and references therein). The production of an antisense RNA, 

complementary to exons 3-7 of the MBP gene, is presumed to be responsible 

for the reduced production of MBP protein in the mouse mutant "myelin- 

deficient" (mid. shimid). It was found that the mid mouse mutant had the MBP 

gene duplicated tandemly and that a large portion of the duplication is inverted 

upstream of the intact copy. The antisense RNA detected in mid mice 

corresponds to the inverted MBP segment (MIKOSHIBA et al., 1991).
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A more detailed review of artificial antisense genes in eukaryotic 

systems has been written by TAKAYAMA and INOUYE (1990).

Application of Antisense RNA Inhibition in Studying Proto-Oncogene 

Function.

Antisense RNA targeted inhibition of gene expression has been used in 

the study of proto-oncogene function, as an alternative method to the limited 

use of specific antibodies directed against proto-oncogenes.

The protein kinase pp60c_src is thought to play an important function 

in polyoma virus (Py)-mediated transformation by interacting with the Py- 

encoded middle tumour antigen (MTAg). A 80-90% decrease in pp60c_src 

synthesis and protein kinase activity was observed in FR3T3 rat fibroblasts 

following the expression of antisense c-src RNA transcribed from a 

transfected plasmid containing the entire coding region of c-src in antisense 

orientation under the transcriptional control of the heavy-metal inducible 

mouse metallothioneine I promoter (AMINI et al., 1986). The expression of 

antisense c-src RNA did not result in phenotype revision of Py-transformed 

FR3T3 cells. However, an observed reduction in anchorage-independent 

growth, focus-formation and rate of tumour growth upon injection of antisense 

c-src RNA-expressing Py-transformed FR3T3 cells into syngenic rats was 

indicative of a less transformed cell type (AMINI et al., 1986).

In the human promyelocytic leukemia cell line HL60, antisense RNA 

expression from a stably integrated human anti-myc gene resulted in a 70% 

reduction of the steady-state levels of Myc protein. The antisense RNA 

hybridized with its complementary target transcripts in the nucleus and 

inhibited myc expression both, at the translational and transcriptional level. An 

enhancer-like 920bp fragment of the myc leader sequence is thought to be the 

primary transcriptional target region of the antisense RNA. Proliferation of 

HL60 cells decreased and an increased commitment of HL60 cells to 

monocytic differentiation as opposed to granulocytic differentiation was 

observed as a result of antisense RNA-mediated suppression of endogenous 

myc gene expression (YOKOYAMA and IMAMOTO, 1987).

A ra/-expression dependent modulation in tumorigenicity and 

radiation-resistant phenotype of the human laryngeal squamous carcinoma
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cells SQ-20B was demonstrated by KASID et al. (1989), implying an indirect 

role of raf in radiation response of tumour cells. Expression of full-length c- 

raf- 1 antisense RNA following the transfection of SQ-20B cells with antisense 

raf sequences fused to the adenovirus 2 major late promoter, resulted in a 

greater than 10 fold reduction of the steady-state level of the endogenous c- 

raf-1 transcript. Anti-ra/transfected cells showed a decreased tumour growth 

rate (compared to parental control cells) when inoculated into nude mice and 

appeared to have enhanced radiation sensitivity. SQ-20B cells expressing 

transfected sense-raf sequences had a significantly increased malignant 

potential and maintained a radiation-resistant phenotype compared to 

antisense raf RNA expressing SQ-20B cells. Results by KOLCH et al. (1991) 

demonstrated a requirement for c-raf-\ expression for proliferation of NIH 

3T3 cells, normal and transformed by v-raf, v-Ki-ras and v-Ha-ras, as well as 

serum- or TPA-induced proliferation and DNA replication. Expression of 

antisense raf RNAs complementary to various portions of c-raf-l cDNAs 

from the pMNC retroviral vector after transfection into v-ra/-transformed 

NIH3T3 cells resulted in the partial or complete reversion of the transformed 

phenotype in approximately 50% of transfectants, the reversion correlated 

with loss of anchorage-independent growth. Morphological reversion of 

established v-Ras-transformed NIH3T3 cells was less efficient. However, 

transfection of a full-length antisense c-raf-1 construct at a four molar excess 

over a v-Ha-ras containing plasmid, could almost completely inhibit the 

initiation of p21ras transformation. Expression of dominant negative Raf-1 

proteins, such as the kinase-defective Raf-1 mutant protein RRAF 301, 

confirmed the antisense ra/-RNA results, but were at the same time more 

efficient in inhibiting serum- or TPA-induced NIH3T3-cell proliferation and 

v-Raf transformation (KOLCH et al., 1991). These results point to Raf-1 

kinase functioning as an essential signal transducer downstream from serum 

growth factors receptors and p21ras but upstream of API (KOLCH et al., 

1991; WOODGETT, 1992 and references therein).

Antisense inhibition experiments provided additional information 

concerning function and location within the signalling pathways of the proto- 

oncogene c-fos. Following the DNA transfer of a MMTV-antisense-/o5-g/<9^m 

hybrid construct into mouse 3T3 cells, steroid-induced production of antisense
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/<95-hybrid RNAs, complementary to the 5'-regions of the mouse or human c- 

fos gene, resulted in a significant reduction in colony formation and inhibited 

cell growth. In contrast, no such changes were observed following the 

induction of sense fos- hybrid RNA (HOLT et al., 1986). The use of the 

inducible MMTV promoter for antisense fos  RNA production enabled the 

examination of the proto-oncogene for which constitutive suppression may 

otherwise render it refractory to analysis. Dexamethasone induction of 3T3 

cells transformed with multicopies of MMTV-antisense-c-/95 DNA prevented 

the usual large increase in c-fos mRNA and protein after platelet-derived- 

growth-factor (PDGF) stimulation. DNA replication was also greatly 

diminished in these cells. Thus, a large increase in c-fos expression seems to 

be required for PDGF-induced re-entry of quiescent cells into cell cycle 

(NISIKURA and MURRAY, 1987). Antisense c-fos RNA production in EJ-c- 

Ha-ras transformed NIH 3T3 mouse fibroblasts caused a marked reduction in 

the amount of c-Fos protein expressed after serum stimulation. Although 

antisense-c-/(95 RNA expressing EJ cells continued to over-express the EJ-ras 

oncogene and remained capable of proliferating in vitro, a partial reversion of 

the transformed phenotype occurred in form of restoration of contact 

inhibition of cell growth, inhibition of anchorage independent growth, 

reduction of tumorigenicity in nude mice and reversion to a more flat 

morphology (LEDWITH et al., 1990). These data provide evidence for the 

participation of c-Fos in p21ras-regulated signal transduction pathways 

(WOODGETT, 1992).

Mechanisms Involved in Gene Regulation by Artificial Antisense RNA.

As has been demonstrated in prokaryotic systems, artificial antisense 

RNAs in eukaryotic systems are likely to mediate their inhibitory effects on 

gene expression by annealing to the complementary region within the target 

mRNA. In eukaryotic systems, antisense RNA:target RNA duplex formation 

could occur in different cellular compartments, in the cytoplasm and in the 

cell nucleus.

The formation of antisensersense globin RNA hybrids in the cytoplasm 

of Xenopus oocytes has been proven by MELTON (1985) after microinjection 

of in vitro synthesized RNAs into the oocyte cytoplasm. The duplexed RNA is
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thought to inhibit gene expression by preventing initiation of translation 

(MELTON, 1985). WALDER and WALDER (1988) found that hybrid 

arrested translation using antisense oligodeoxynucleotides in vitro was 

predominantly due to cleavage of the mRNA by RNaseH at the site of the 

RNA:DNA heteroduplex, especially when antisense oligonucleotides were 

used that hybridize within the coding region of the mRNA or over the 

initiation codon. Hybridization of the oligodeoxynucleotides to the very 5' end 

of p-globin mRNA, also inhibited protein synthesis directly, with cleavage of 

the mRNA by RNaseH as the predominant pathway of hybrid arrest 

(WALDER and WALDER, 1988). SHUTTLEWORTH and COLMAN (1988) 

confirmed in vivo that antisense oligodeoxynucleotides appear to act 

specifically by directing RNaseH cleavage and destabilization of their 

complementary mRNA. RNaseH is required for DNA replication and is 

mainly a nuclear protein, but it also appears to be present in the cytoplasm, 

especially in Xenopus oocytes (WALDER and WALDER, 1988).

The formation of RNA:RNA duplexes in the nucleus was reported by 

KIM and WOLD (1985). The formation of antisense:sense RNA hybrids in 

the nucleus is thought to interfere with processing of the pre-mRNA and/or the 

export of the RNA into the cytoplasm. MUNROE (1988) demonstrated that 

antisense RNA inhibits splicing of pre-mRNA in vitro. Antisense RNAs 

complementary to >80 nucleotides downstream of the globin 3' splice site 

inhibited splicing at least as efficiently as those extending across the splice 

sites. Inhibition is mediated by factors which affect the annealing of antisense 

and sense RNAs. MUNROE (1988) could further identify an activity in HeLa 

nuclear extracts which promotes the rapid annealing of the complementary 

RNAs in an ATP-independent manner. RNA:RNA duplexes themselves are 

rapidly degraded by double strand specific ribonucleases such as RNasein.

The mode of action and the degree of inhibition of gene expression by 

artificial antisense RNAs in eukaryotic systems are dependent on a number of 

different factors:
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i) Determination which part of the target mRNA is most susceptible to 

antisense RNA inhibition: It has been suggested that for effective inhibition of 

gene expression, antisense RNA should be complementary to the 5’- 

untranslated region of the target RNA, including the ribosomal binding site 

(LIEBHABER et al., 1984). Results by IZANT and WEINTRAUB (1985) 

confirmed the importance of the 5' untranslated region in antisense RNA- 

mediated inhibition of tk gene expression. However, KIM and WOLD (1985) 

using antisense constructs complementary to either the 3' or the 5' end of the 

HSW-tk gene, achieved the same degree of inhibition. Similarly, antisense 

transcripts complementary to only the 3'-terminal coding region of the 

Xenopus ribosomal protein LI mRNA were found to repress translation as 

effectively as antisense RNAs spanning the entire LI coding region 

(WORMINGTON, 1986). Antisense RNA complementary to large portions of 

the coding region of genes have also been described as efficient in inhibiting 

gene expression (COLEMAN et al., 1984; BEVILACQUA et al., 1988). The 

results listed above demonstrate, that the effectiveness of antisense inhibition 

is variable. There is also variability for preferred target regions in different 

genes for inhibition by antisense RNA. For any given gene the most effective 

sequence to be targeted needs to be determined empirically.

ii) Half-life of the target mRNA: The half-life of the target mRNA is a 

critical factor in antisense RNA mediated inhibition of gene expression. 

Antisense RNAs targeted against unstable mRNAs may not complete the 

duplex formation before the target mRNAs degrade. In prokaryotes, the 

expression of a gene producing an unstable mRNA can be targeted only at the 

transcriptional level, since protein synthesis can cease soon after the 

transcription of the gene is terminated. Antisense RNA class Ill-type 

regulation may also be possible in eukaryotic systems, if the mechanism for 

transcription termination in the eukaryotic cells are elucidated. Antisense 

RNAs complementary to relative stable mRNAs, on the other hand, can 

undoubtedly hybridize with the target RNAs. The expression of a gene 

producing a stable mRNA continues until the pool of the mRNA is degraded 

due to degradation of the RNA:RNA duplex by ribonucleases. The design of 

an antisense RNA with a 3' or 5' extra tail sequence containing a ribozyme 

activity has been suggested. Such a ribozyme may be able to specifically
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digest, and hence inactivate, the target mRNA (INOUYE, 1988; 

TAKAYAMA and INOUYE, 1990).

iii) Stability of antisense RNA: Data concerning stability of antisense 

RNA are sketchy. IZANT and WEINTRAUB (1984) found that antisense tk 

lines contain a lower steady state concentration of antisense tk RNA than 

sense tk RNA. Antisense tk and antisense CAT RNAs injected into frog 

oocytes, however, were as stable as their sense counterparts (WEINTRAUB et 

al., 1985). Results by BEVELACQUA et al. (1988) show that the stability of 

guanosin-5'-triphospho-5'-guanosine (GpppG) capped P-glucuronidase 

antisense RNA is greatly enhanced as compared to the uncapped antisense 

RNA in the early stages of pre-implantation mouse embryo development. As a 

result of the increased stability of the antisense RNA the inhibitory effect of 

the antisense RNA is also increased. The incorporation of structural features, 

like stem-and-loop structures, into the design of antisense RNAs has been 

suggested to enhance their stability and resistance to cellular nucleases 

(INOUYE, 1988). As shown during the inhibition of Xenopus membrane 

skeleton protein 4.1 expression, the insertion of the antisense sequences into 

the coding region of a second gene, like CAT, may also lead to increased 

stability of the antisense RNA. Furthermore, the antisense transcript is 

expected to appear in both the nuclear and cytoplasmic compartments as a 

normal messenger ribonucleoprotein, thus being able to interfere with the 

processing and transport of the target mRNA as well as with its translation 

(GIEBELHAUS et al., 1988).

iv) Structure of sense and antisense RNAs: The negative regulation of 

ColEI plasmid regulation by RNAI in E. coli is a good example for the 

importance of the secondary structure. Mutations that interfere with the three 

stem-loop-secondary structure of RNAI decrease the inhibitory effects of the 

regulatory RNA (GREEN et al., 1986b). A high degree of secondary structure 

within the targeted region of the sense RNA can also prevent the inhibitory 

effect of antisense RNA (expression of ompF in E. coli) (GREEN et al., 

1986b). In mouse pre-implantation embryos, the secondary structure of the p- 

glucuronidase antisense RNA does not seem to be important (BEVILACQUA 

et al., 1988). However, stable secondary structures within the complementary
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region may prevent formation of the hybrid with the target mRNA (INOUYE, 

1988).

v) Gene dosage effect of antisense RNA inhibition: Results by IZANT 

and WEINTRAUB (1985), KIM and WOLD (1985), ROSENBERG et al. 

(1985) and others clearly show that the degree of antisense RNA-specific 

inhibition is depending on the ratio of antisense:sense RNA. Generally, an 

excess of antisense over sense RNA is required for maximal inhibition; the 

ratio needed for inhibition of gene expression may vary from gene to gene. 

High expression of antisense RNAs can be obtained through the use of strong 

promoters, such as the SV40 promoter, cytomegalo virus (CMV) promoter 

and retroviral LTRs, or inducible promoters for the conditional inhibition of 

target gene expression, such as mouse metallothioneine promoter or MMTV- 

LTR. High levels of antisense RNA transcripts are achieved in cells resistant 

to selection by progressively higher levels of methotrexate when antisense 

RNA sequences are transcriptionally fused to the DHFR protein coding 

region, generating chimeric DHFR-antisense RNA (KIM and WOLD, 1985).

It has to be pointed out that a 100% inhibition of gene expression by 

antisense RNA has never been observed (ROSENBERG et al., 1985), but 

rather a reduction in expression level of the target gene, which in turn has 

important consequences depending on the phenotype examined.

Delivery of Antisense RNA; Use of Retroviral Vectors.

Two methods have been predominantly used to introduce antisense 

RNA into cells in vitro:

i) microinjection of in vitro synthesized RNA into the cytoplasm of 

cultured cells (MELTON, 1985; ROSENBERG et al., 1985; CABERERA et 

al., 1987),

ii) stable transfection of a target cell with a plasmid carrying an 

antisense gene; the target cell then expresses the antisense RNA (IZANT and 

WEINTRAUB, 1985; TREVOR et al., 1987).

The latter of these two possible approaches is the more feasible foe 

analysing large number of cells expressing antisense RNA and for approaches 

to gene inhibition in vitro. The degree of inhibition of a target gene is largely 

dependent on maintaining an excess of antisense RNA over the target mRNA
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(IZANT and WEINTRAUB, 1985; ROSENBERG et al., 1985). The 

maintenance of an excess of antisense RNA can be achieved by microinjecting 

large amount of in vitro transcribed antisense RNA or by increasing the 

stability of micrionjected RNA. Increased antisense RNA in cells transfected 

by an antisense gene construct will depend on methods to optimize expression 

of the antisense gene. The stability of antisense RNA is increased when the 

antisense RNA is GpppG-capped at the 5'-end (BEVILACQUA et al., 1986), 

is transcribed as part of another gene into which coding regions the antisense 

sequences have been inserted (GIEBELHAUS et al., 1988) and by including 

stem loop structures into the design of antisense RNA sequences (INOUYE, 

1988). Excess of antisense RNA can also be ensured by achieving high 

expression of the antisense RNA through the use of strong promoters such as 

SV40 early promoter, CMV promoter or retroviral long terminal repeat 

elements (LTR).

The use of retroviral mediated gene transfer to introduce antisense 

RNA into cells not only presents one of the most efficient ways of 

introduction of exogenous genes/DNA sequences into a much broader range 

of host cells (BERNSTEIN et al., 1985; VARMUS and BROWN, 1989), it 

also ensures high expression of the antisense RNA through the strong LTR 

promoter (WEISS, et al., 1985) and as a capped and polyadenylated RNA 

species (VARMUS and BROWN, 1989, see chapter 1.6). Furthermore, 

retroviral mediated gene transfer is to date the only possible DNA transfer 

technique to apply antisense RNA inhibition of gene expression in cells in 

vivo.

1.5.2. Cell Lineage Study in Mouse Skin and Mouse Skin Carcinogenesis.

Techniques Used in Cell Lineage Analysis.

The examination of cell lineage is an important step towards 

understanding the developmental events that specify the various cell types in 

the organism. Cell lineage analysis provides information about the numbers of 

cells and range of cell types that can be produced by stem or precursor cells at 

each stage of development. Knowledge of the cell lineage and of the potential 

of the stem and precursor cell is essential in order to understand the control of
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cell proliferation and the selection of phenotypes. If the fate of individual 

cells, in situ, was known, the understanding of developmental mechanisms in 

higher eukaryotes, especially vertebrates, would be greatly enhanced. 

Similarly, considerable advances could be made in defining the role of 

activated oncogenes in tumorigenesis under conditions as they occur in vivo.

The determination of cell lineage requires a means to identify the 

descendants of single precursor cells. Single cell marking by microinjection of 

fluorescent lineage markers or enzyme tracers, such as fluorescently labelled 

dextran (GIMLICH and BRAUN, 1986) or horse radish peroxidase 

(WEISBLAT et al., 1978), respectively, have already been extensively applied 

to cell lineage analysis in a variety of vertebrate systems including analysis of 

embryonic development of Zebrafish (KIMMEL and WARGA, 1986; 

WARGA and KIMMEL, 1990), neural cell lineages in the frog retina 

(WETTS and FRASER, 1991 and references therein), and avian neural crest 

(BRONNER-FRASER and FRASER, 1991 and references therein). The 

microinjection approach is neither species nor tissue specific, allows the 

labelled cells to be identified in live animals, fixed whole-mounts or 

histological section, and permits the observation of cell movement in situ 

(KIMMEL and WARGA, 1986; WARGA and KIMMEL, 1990). However, 

the use of injectable tracers can be limited by possible inaccessibility of the 

target cell and dilution of the label by mitotic activity of the injected cell 

(PRICE, 1987; WETTS and FRASER, 1991).

In mammals, cell lineage and tumorigenesis studies have relied largely 

on the use of chimeric (reviewed in DAUARIN and McLAREN, 1984; 

PONDER et al., 1985; SCHMIDT et al., 1985) or transgenic animals (review: 

HANAHAN, 1986). Chimeras, constructed using multi-cellular grafts or 

mixed blastocysts, allow cell lineage studies in the earliest stages of 

embryonic development. They, however, do not allow definitive conclusions 

to be reached regarding the potential of individual cells (WINTON et al., 

1988).

Later aspects of mammalian cell lineage such as the determination of 

familial relationships among cells within individual tissues, have been more 

difficult to study in vivo. Even in combination with the development and 

extensive use of the transgenic animal technique (HANAHAN, 1986),
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limitations regarding their use in the analysis of multistage carcinogenesis 

persist. In transgenic mouse experiments, oncogene products are synthesized 

in all cells of a tissue to which expression of the gene has been targeted by the 

choice of a specific promoter (HANAHAN, 1986). The initiation of 

tumorigenesis in vivo, however, is very likely due to somatic mutations 

occurring in a single cell surrounded by normal tissue. In contrast, ubiquitous 

expression of oncogene products in transgenic tissues may not preserve cell­

cell interactions that could play a critical role in early neoplasia, especially as 

it has been demonstrated that normal cells can inhibit the outgrowth of 

transformed cells (LAND et al., 1986; METHA et al., 1986; PITTS et al., 

1987; YAMASAKI, 1990).

Cell lineage analysis in the small intestine of the mouse have been 

performed with FI hybrid offspring of mouse strains which express variant 

isoforms of X chromosome-linked marker enzymes (PONDER et al., 1985) or 

differ in the expression pattern of marker genes (WINTON et al., 1988). 

Insight into the clonal organization of adult intestinal epithelium and the stem­

cell organization in the mouse small intestine was gained by combining the FI 

hybrid model with either the analysis of X chromosome-linked 

phosphoglycerate kinase (pgk) polymorphisms in Pgk-la/Pgk-l& FI females, 

taking advantage of random X chromosome inactivation (PONDER et al.,

1985), or the induction of a cellular marker by sporadic or ethylnitrsourea 

(ENU)-induced somatic mutation at the Dlb-1 locus, which determines the 

tissue specific pattern of expression of the binding site for the lectin Dolichos 

biflorus agglutinin (DBA) (WINTON et al., 1988 and 1990).

Genetic Tagging of Cells with Retroviral Vectors Encoding Histochemical 

Markers.

For the study of lineage relationship of cells in vivo it is necessary to 

mark a cell such that its developmental capacity can be assayed. Marking cells 

with genetic markers has a number of advantages: the marker is heritable, 

need not damage a cell or interfere with normal development, and is always 

present and detectable. Cells can be marked using a variety of gene transfer 

techinques, such as DNA transfection for studies in vitro or microinjection of 

DNA into the mouse pronucleus to generate transgenic mice for
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developmental studies in vivo. The limitation of the use of transgenic animals 

in analysis of multistage carcinogenesis has been already briefly outlined. In 

Drosophila, the development of P-element-mediated transformation (RUBIN 

and SPRADLING, 1982) permitted the stable introduction of cloned 

Drosophila genes and of fusion genes with the bacterial histochemical lacZ 

marker gene as single copy genes into the germline (LIS et al., 1983; 

LAWRENCE and MARTINEZ-ARIAS, 1985; HIROMI et al., 1986 and 

references therein).

In recent years, retroviruses have been applied more and more to the 

study of cell lineages. Retroviruses and the development of retroviral vector 

systems and their applications have been described earlier. The application of 

retroviruses in the study of cell lineage has been reviewed by PRICE (1987), 

CEPKO (1988), and SANES (1989). The possible horizontal spread of the 

virus, due to the ability of the infected cell to produce new retrovirus particles, 

constitutes a potential disadvantage as it can obscure any clonal analysis. 

However, development of replication deficient retroviral vectors provides the 

means of generating helper-free virus stocks and thus preventing the spread of 

virus to other cells. Retrovirus vectors have been used extensively in the 

hematopoietic system of mice and humans (DICK et al., 1986) not so much to 

prove the existence of a pluripotential haematopoietic stem cell (WU et al., 

1986; ABRAMSON et al., 1979) but in demonstrating the relative ease with 

which it is possible to label such cells and follow their fate during 

development (DICK et al., 1986; PRICE, 1987 and references therein). 

Retroviruses have also been applied to the study of cell lineages in the 

preimplantation mouse embryo (reviewed in PRICE, 1987), although wild- 

type Mo-MuLV retrovirus does not express in cells of the preimplantation 

mouse embryo (JAENISCH et al., 1975) and infected clones are identified by 

Southern blot analysis. Retroviral sequences are introduced into a 

subpopulation of the embryonic cells by infecting early stage-embryos which 

are then introduced into pseudopregnant foster mothers (JAENISCH et al., 

1975; RUBENSTEIN et al., 1986; SORIANO and JAENISCH, 1986; 

STEWART et al., 1987). Alternatively, embryonic carcinoma cells 

(STEWART et al., 1982; NICOLAS et al., 1985) or embryo-derived stem cells

42



can be infected in culture (EVANS et al., 1985; ROBERTSON et al., 1986) 

and then used to form chimeras.

Progeny of cells infected by a retroviral vector can not only be 

identified by the integration site of a retroviral provirus but also by the 

expression of a genetic marker present in the retroviral vector used for the 

genetic tagging of the original cell. The use of marker genes whose gene 

products are easily detectable by histochemical staining procedures offer an 

alternative to other detection methods, like Southern analysis and i n  s i t u  

hybridization. Furthermore, histochemical markers allow the study of small 

clones and are useful in identifying precisely which cells within a structure are 

part of a clone (SANES et al., 1986; PRICE et al., 1987; TURNER and 

CEPKO, 1987; TURNER et al., 1990; AUSTIN and CEPKO, 1990).

A widely used and versatile histochemical marker system is the 

bacterial lacZ gene coding for the p-galactosidase enzyme. Cells expressing 

the lacZ gene product in its active form are identifiable in cultured cells, in 

tissue sections, or whole mounts by a sensitive histochemical staining method 

using 4-Cl-5-Br-3-indolyl-p-galactosidase (X-Gal) as a substrate (LIS et al., 

1983; HIROMI et al., 1986; SANES et al., 1986; DANNENBERG and SUGA, 

1981). The E.coli lacZ marker gene, expressed by different retroviral vectors, 

has been used successfully in a number of different systems:

i) Lineage studies in the nervous system during pre- and postnatal 

development in the retina and the cerebral cortex of rat and mouse (PRICE et 

al., 1987; TURNER and CEPKO, 1987; SNYDER and CEPKO, 1990; 

AUSTIN and CEPKO, 1990; SNYDER et al., 1992; reviewed in PRICE, 1987 

and 1991; CEPKO, 1988 and 1989). Histochemical identification of p- 

galactosidase expressing clones in the retina of adult rats which had been 

infected neonatally with the lacZ gene encoding retroviral vector BAG 

showed clearly that progenitor cells exist in the retina which can give rise to 

an array of cell types even very late in development (PRICE et al., 1987). 

Injection of the BAG virus into the cerebral vesicles of rat embryos in utero 

confirmed that in the mammalian central nervous system, however, separate 

neuronal, grey matter astrocyte and oligodendrocyte lineages are generated 

quite early in development. In utero infection with BAG virus also helped to 

identify early and more restricted, late precursor cells of these lineages in the
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cerebral cortex (reviewed in PRICE, 1987; CEPKO, 1988 and 1989; PRICE et 

al., 1991). Following transplantation of BAG infected, in vitro immortalized 

clonal cerebellar cell lines into the developing mouse cerebellum, SNYDER et 

al. (1992) could identify progeny cells of transplanted cells by expression of 

the lacZ gene product and the identity of the viral integration site between the 

donor cell and the labelled cells. They could therefore show, that multipotent 

neural cell lines, derived from the cerebellar external germinal layer (EGL), 

can engraft and participate in the development of mouse cerebellum in a cyto- 

architecturally appropriate manner.

ii) Lineage study in post-implantation mouse embryos (SANES et. al.,

1986). Clones of p-galactosidase positive cells were detected in a wide variety 

of tissues after injection of mid-gestation mouse embryos (E7 to E l l )  in utero 

with a lacZ encoding recombinant retrovirus. Injecting virus at different time 

points during embryo development and varying the expression time, resulted 

in more detailed analysis of cell lineage in visceral yolk sac, cranium and skin 

in vivo. SANES et al. (1986) showed that epidermal and peridermal cells 

originate from a common precursor, presumably located in the basal layer of 

the skin, and that hair forming precursors arise from epidermal cells by 

specialization as late as day E l l  in mouse embryo development (reviewed in 

PRICE, 1987).

So far, there have been no reports of developmental abnormalities, 

which could have been attributed to high expression levels of p-galactosidase 

in mouse, rat or Drosophila.

1.6. Introduction to Retroviruses and Retroviral Vector Systems.

In order to have an efficient means of introducing genes into cells both 

in vitro and in vivo and to ensure efficient expression of such genes extensive 

use has been made in the present study of retroviral mediated gene transfer 

using retroviral vectors. These vectors can be manipulated in vitro to readily 

allow the insertion of DNA, such as antisense ras sequences, or given genes, 

such as the bacterial lacZ gene and the mammalian transin/stromelysin gene. 

Infectious virus can subsequently be derived which can transfer these DNA 

sequences both in vitro and in vivo with a higher efficiency than most
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alternative DNA transfer methods. Sequences inserted into a retroviral vector 

are also expressed at relatively high levels. Since extensive use of retroviral 

vectors has been made in the present study, the uses and advantages of 

retroviral vectors will be reviewed in detail.

1.6.1. Retroviruses: A General Introduction.

The feature that distinguishes retroviruses from other viruses is the 

replication of a single-stranded RNA genome through a double-stranded DNA 

intermediate (VARMUS and SWANSTROM, 1985). Multiplication- 

competent retroviruses encode their virion associated proteins in three open 

reading frames (ORFs).

i) The gag ORF (group specific antigen) encodes non-glycosylated 

nucleocapsid proteins such as matrix protein (MA), found mainly between the 

nucleocapsid and the viral envelope; capsid protein (CA), the major structural 

component and dominant antigen of the viral capsid; nucleocapsid protein 

(NC), implicated in RNA packaging and dimer formation (LEIS and 

JENTOFT, 1983; MERIC and SPAHR, 1986; PRATS et al., 1988).

ii) The pol ORF (polymerase) encodes the reverse transcriptase (RT), 

containing an RNA- or DNA-directed DNA polymerase activity at its N'- 

terminal region and a C'-terminal RNaseH activity (BALTIMORE et al., 1970; 

TEMIN, 1985; JOHNSON et al., 1986, TANESE and GOFF, 1988). The 

integrase protein (IN), implicated in the integration mechanism of the viral 

DNA into the host cell genome, is encoded in the 3'-end of the pol coding 

region (DONEHOWER et al., 1984; SCHWARTZBERG et al., 1984; 

ALEXANDER et al., 1987).

iii) The env gene is translated from a spliced subgenomic mRNA and 

codes for two proteins: the highly glycosylated surface protein (SU) and the 

transmembrane protein (TM). The SU protein interacts with host cell receptors 

that mediate virus entry into the host cell. TM is thought to mediate the fusion 

of viral and host membranes during virus entry into the host cell.

iv) The position of the coding domain for the viral protease (PR), 

responsible for cleaving the primary translation products of the gag-(prt)-pol
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region (SKALKA, 1989), differs in different viruses (VAN BEVEREN et al., 

1985; YOSHINAKA et al., 1985).

All three polypeptide classes are synthesized as poly-proteins and are 

later cleaved into the final products. The template for the gag polyprotein is 

the full-length genomic RNA. The gag-pol fusion protein is the result of 

translational readthrough on the genomic template RNA, occurring in 4 to 

20% of translational events, by nonsense suppression with (RSV, MMTV) or 

without frameshift (MoMLV) (YOSHINAKA et al., 1985, JACKS and 

VARMUS, 1985; JACKS et al., 1987).

1.6.2. Retroviral Life Cycle.

A schematic representation of the retrovirus life cycle is shown in 

figure 1.3. The life cycle begins with the entry of the extracellular virus 

particles into susceptible host cells. This process requires:

i) Attachment and adsorption mediated through the surface protein and 

through host-encoded specific transmembrane receptors (DALGLEISH et al., 

1984; MADDON et al., 1986; ALBRITTON et al., 1989) which recognize 

eco- (exclusively murine), xeno- (exclusively non-murine), ampho- or 

polytropic (various species specific) strains of retroviruses (WEISS, 1982).

ii) Penetration of the enveloped particle by endocytosis involving 

fusion of the viral and cellular membranes (MIMS, 1986), resulting in a 

simpler intracytoplasmic nucleoprotein complex.

Subsequent early events in the life cycle include:

i) Synthesis of a linear double-stranded DNA copy of viral RNA 

within the viral nuclearprotein complex (FUETTERER and HOHN, 1987), 

leading to a DNA that is slightly larger than the viral RNA due to the 

generation of long terminal repeat sequences (LTR) at either end of the DNA 

(VARMUS and SWANSTROM, 1985; VARMUS and BROWN, 1989).

ii) migration of the DNA protein complex to the nucleus, where some 

of the DNA is covalently circularized and

iii) covalent integration of the viral DNA into the host chromosome, 

forming the provirus. During the integration process, 2bp are removed from 

the outer ends of each LTR and a short sequence of host DNA (4 to 6bp) is 

duplicated at the integration site to form a direct repeat that flanks the provirus
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Figure 1.3:

The retroviral life cycle.

Figure 1.3., reproduced from PRICE (1987), is a schematic diagram of 
the life cycle of a typical wild-type retrovirus. The retroviral particle is 
adsorbed on to the cell plasma membrane by the binding of its envelope 
surface glycoproteins to a specific surface receptor. Following fusion, the 
retroviral genomic RNA passes into the cytoplasm, and is reverse transcribed 
into DNA, gains entry into the nucleus and as a proviral particle integrates 
randomly into the host cell chromosomal DNA. The integrated provirus acts 
as a typical chromosomal DNA in that it is inherited with both daughter cells 
whenever the host cell divides. The provirus is also transcribed and the 
retroviral genes are translated, using the cell's normal machinery. The 
assembly of a new retroviral particle completes the life cycle. The genomic 
retroviral RNA transcript comes together with the retroviral gene products and 
buds off to form a new free retroviral particle.



(PANGANIBAN, 1985; GOFF, 1990) Retroviral integration into the host 

genome is thought to occur essentially at random. However, a number of 

strongly preferred integration sites in the cellular genome seem to exist 

numbering perhaps 500 to 1000 (SHIH et al., 1988) although as yet no 

conserved cellular sequence features are apparent (SHIMOTONO and 

TEMIN, 1980; SHOEMAKER et al., 1981).

The retroviral LTR (conserved structure U3-R-U5) is between 300 to 

lOOObp long and is derived from a combination of unique sequences present at 

the 3'end (U3), the 5'end (U5) and a repeated sequence present at both ends 

(R) of the genomic RNA molecule. The U3 region contains control elements 

for retroviral transcription. Some LTRs have GC-rich boxes, proposed 

transcription factor SP1 binding sites (DYNAM and TUAN, 1985; JONES et 

al., 1986) and enhancer elements that probably act as recognition signals for 

host-DNA-binding proteins that regulate transcriptional efficiency (GRUSS 

and KHOURY, 1983; YAMAMOTO, 1985; NABEL and BALTIMORE,

1987). Enhancer sequences have also been defined outside the U3 region in 

other parts of the retroviral genome such as the gag coding region (BROOME 

and GILBERT, 1985; ARRIGO et al., 1987; STOLZFUS et al., 1987). 

Specific sequences located at the termini of the LTRs are required in cis for 

correct integration (COLICELLI et al., 1985; PANGANIBAN, 1985; 

VARMUS and BROWN, 1989; GOFF, 1990). The integrated provirus has a 

defined structure: LTR-gag-pol-env-LTR and is a stable component of the 

host genome. The provirus generates two polyadenylated mRNAs: a full- 

length proviral transcript, initiated on the 5'-LTR and terminated on the 3'- 

LTR, containing a complete copy of the viral genome, and a spliced 

subgenomic RNA, essentially encoding env sequences (MULLIGAN, 1983). 

The full-length transcript can be used both for translation of gag and gag-pol 

products and for packaging into infectious viral particles (MULLIGAN, 1983; 

BERNSTEIN, 1985; GILBOA, 1986). Processing and translation of the viral 

RNA are followed by modification of the protein products, assembly of viral 

nucleoprotein cores and budding through the plasma membrane in places 

enriched with viral SU and TM glycoproteins to form extracellular virus 

particles (DICKSON et al., 1985; VARMUS and BROWN, 1989). 

Retroviruses rarely kill the cells they infect and the persistence of the infection
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in both the origin target cell or its progeny, results in an amplification by 

transcription of a single provirus into many copies of viral RNA resulting in 

the release of thousands of virus particles per day during the process of virus 

growth.

1.6.3. Retroviral Vector-Mediated Gene Transfer.

Several methods have been developed to deliver recombinant DNA 

into cells in culture and to stably express transfected genes. The most widely 

used approach is DNA transfection by calcium phosphate co-precipitation 

(GRAHAM and VAN DER EB, 1973), However this method has several 

drawbacks:

i) It is inefficient, since on average a maximum of one in 10^ to 10^ 

fibroblast cells retain and express the integrated transfected sequences 

(PETERSON and McBRIDE, 1980; DEBENHAM et al., 1984). Additionally, 

only a small number of cultured cells are capable of being transfected at 

detectable frequencies.

ii) The transfected cell lines often contain multiple copies of the newly 

introduced sequences per cell (up to several hundred) integrated in tandem at a 

single chromosomal site (WIGLER et al., 1979; MULLIGAN, 1983). It is 

difficult to assess how many of these copies are expressed and non-mutated 

(LEBKOWSKI et al., 1984).

iii) The precise mechanism by which cells take up and retain the DNA 

is poorly understood (PERUCHO et al., 1980; LEBKOWSKI et al., 1984).

iv) Gene expression after DNA-mediated gene transfer tends to be 

relatively inefficient and unstable. Often constant selection is required to 

maintain the transfected DNA sequences (BERNSTEIN et al., 1985).

Other methods of DNA transfer such as protoplast fusion, lipofection 

and electroporation (POTTER et al., 1984) can be used with a wider range of 

recipient cells with a greater recovery rate compared to calcium phosphate 

mediated DNA transfer (TONEGUZZO and KEATING, 1986). However, the 

transfer efficiencies for these methods are also still often less than one in 10^ 

cells, and many of the drawbacks discussed above still hold.

The first indication that retroviruses could be used as gene transfer 

vectors came from the extensive genetic and molecular studies of rapidly
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transforming retroviruses whose genome contain sequences necessary for 

malignant transformation (viral oncogenes or v-onc), but are unrelated to the 

viral gag, pol and env coding regions (BISHOP and VARMUS, 1985), thus 

suggesting that retrovirus genomes are capable of accommodating a wide 

variety of different genetic sequences.

Many of the previously described unique features of retroviruses and 

their life cycle render these viruses uniquely suited for adaptation as gene 

transfer vectors in vitro and in vivo:

i) The infectious virus integrates stably into the host genome with high 

efficiency. The integrated proviruses are not specifically lost or inactivated at 

high frequency (MULLIGAN, 1983).

ii) The viral integration results in a defined and predictable proviral 

structure: cellular DNA-LTR-"transferred gene(s) of interest"-LTR-cellular 

DNA (MULLIGAN, 1983; GILBOA, 1986; GILBOA, 1990). The integrated 

provirus is exactly colinear with the unintegrated linear precursor, except for 

the terminal 2bp from each end of the precursor lost upon integration 

(VARMUS and BROWN, 1989; GOFF, 1990).

iii) The viral integration occurs at low copy number (often only one) 

per infected host cell (MULLIGAN, 1983).

iv) The expression of retroviral genes is very efficient due to the active 

transcriptional signals provided in the LTR (WEISS et al., 1985; VARMUS 

and BROWN, 1989).

v) The extended host range of retroviruses gives the possibility of gene 

transfer into a wide variety of species and cell types in vitro and in vivo 

(WEISS, 1982; STOCKING et al., 1986; CONE and MULLIGAN, 1984; 

KWOK et al., 1986).

vi) Retroviral infection is in general not toxic to the host cell and does 

not significantly interfere with the programme of cellular gene expression 

(WEISS et al., 1985).

vii) The retroviral genome has a flexible insert capacity for gene 

transfer (2 to 13kb) (BERNSTEIN et al., 1985), although the packaging 

efficiency declines beyond approximately 9 to lOkb (GELINAS and TEMIN, 

1986). The lower limit for packageable size has not been determined,
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however, RNA molecules as small as 3.0kb in size may be readily packaged 

(VARMUS and BROWN, 1989).

viii) Retroviral vector-mediated gene transfer can be obtained with 

relatively high efficiencies, with up to 1% of the cells being infected 

(BERNSTEIN etal., 1985).

1.6.4. Retroviral Vector-Mediated Gene Transfer Systems.

This overview of retroviral vector mediated gene transfer systems is 

divided into two parts: i) vector design and construction and ii) generation of 

infectious recombinant virus.

Vector Design and Construction:

Retrovirus vectors are generated by replacing varying amounts of the 

viral gag, pol and env genes with DNA sequences of interest. Using the 

efficient viral infection process, the inserted DNA sequences are transferred 

into the target cell as part of the viral genome. The basic retrovirus vector has 

to include the following essential sequences in cis for viral DNA synthesis, 

integration and expression of the recombinant provirus, as well as packaging 

of full length recombinant RNA into virus particles:

i) Sequences that form the LTR or are necessary for its synthesis: 

terminal repeat (R) necessary for DNA strand transfer during reverse 

transcription; two long unique sequences (U) between the primer binding site 

(PBS) for the minus-strand tRNA primer and R at the 5'-end (U5) and between 

the polypurine tract (PPT), which becomes the plus-strand primer, and R at the 

3’-end (U3). U5 and U3 are duplicated during DNA synthesis to form the LTR 

(U3-R-U5) and contain signals for synthesis and processing of viral RNA.

ii) Short, usually imperfect inverted repeat sequences, so called 

attachment (att) sites, at the 3'-end of U5 and the 5'-end of U3 required for 

integration.

iii) Sequences that provide splice donor and splice acceptor sites for 

gene expression, although not strictly necessary for all types of vectors.

iv) So called "Psi" sequences OF) necessary for the packaging of viral 

genomes into virions. These sequences are still poorly mapped but are found
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adjacent to the 5'-LTR, residing in part downstream of the PBS (MANN and 

BALTIMORE, 1985; KATZ et al., 1986; BENDER et al., 1987).

A number of viraly encoded proteins, essential for the replication and 

propagation process, can be provided in trans by a replication-competent 

helper virus or by packaging-defective helper provirus present in specially 

designed packaging cell lines.

Retroviral Vector Types.

The first generation of retroviral vectors contained single selectable 

exogenous genes like thymidine kinase (tk) of Herpes Virus Simplex type I 

(SHIMOTOHNO and TEMIN, 1981) or cDNA of the human hypoxanthine 

phosphoribosyl transferase (HPRT) gene (MILLER et al., 1983) for gene 

transfer into tk- or hprt- recipient cells, respectively. The use of dominant 

selectable markers such as neo (G418 or neomycin resistance marker) or gpt 

(selection on mycophenolic acid) (COLBERE-GARAPIN et al., 1981; 

DAVIES and JIMENEZ, 1982; SOUTHERN and BERG, 1982; MULLIGAN 

and BERG, 1981) overcame the limitation of using drug resistant recipient cell 

lines. There are three basic types of retroviral vectors:

1) Double-expression vectors (DE vectors),

2) Vectors with internal promoters (VIP vectors),

3) Self-inactivating vectors (SIN vectors).

Double-Expression Vectors (DE Vectors).

DE vectors retain the identified viral splice donor and splice acceptor 

sequences, necessary to produce both full-length viral genomic transcripts and 

a spliced subgenomic RNA species required for env gene expression 

(MULLIGAN, 1983). Generally, two exogenous genes can be cloned into DE 

vectors, replacing the gag/pol and the env region. Thus the 5'-inserted 

exogenous gene is translated from the unspliced full-length transcript, and the 

3'-inserted gene from the shorter, spliced RNA species (GILBOA, 1986). The 

efficiency of gene expression using DE vectors depends on a properly 

regulated splicing process. Although it is possible to express both genes from 

the full-length mRNA, efficient expression of the second gene decreases 

(PEABODY and BERG, 1986). The distinguishing feature of the DE vector is
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that it not only provides the cis functions required for transmission of the 

exogenous genes into the target cells but also the cis functions necessary for 

their expression in the target cell.

The underlying assumption in the design of DE vectors is that the 

removal of the viral intron is regulated by sequences immediately surrounding 

the splice junctions (CEPKO et al., 1984). However, accumulating evidence 

suggests that sequences scattered throughout the viral intron play an essential 

role in modulating the frequency of RNA splicing (HWANG et al., 1984). 

Thus the absence of intron-contained sequences in DE vectors may be one 

explanation for their relatively poor performance when compared to other 

retroviral vector designs (GILBOA, 1986). More importantly, the use of DE 

vectors is limited to cells in which the viral regulatory promoter sequences are 

active. Both, host and viral factors are involved in regulating the correct 

proportion of full-length to sub-genomic RNAs. For example, in permissive 

avian cells, about 50% of the RSV RNA is spliced to form env and v-src 

mRNAs in about equal amounts. However, in mammalian cells, non- 

permissive for virus production, almost all viral RNA is spliced into v-src 

mRNA (VARMUS and SWANSTROM, 1985). One of the most widely used 

DE vectors is the pZIP NEO SV(X)1 vector designed by CEPKO et al. (1984) 

(figure 1.4a).

Vector with Internal Promoter (VIP Vector).

The VIP vector uses an internal promoter to control expression of one 

of the exogenous genes. In general, the transcription of the selectable marker 

gene is directed by the viral LTR. Gene expression in this type of vector does 

not rely on efficient splicing. A "minigene" consisting of a promoter linked to 

a cDNA of the gene of interest is inserted downstream of the selectable marker 

gene as shown in figure 1.4b (MILLER et al., 1984). The internal promoter 

can be ubiquitously active, tissue- and/or developmental specific, inducible or 

homologous to the inserted cDNA. However, internal promoter sequences 

present in the vector may negatively affect critical vector functions such as 

viral LTR activity and viral titer (EMERMAN and TEMIN, 1984a and 1984b; 

JOYNER and BERNSTEIN, 1983). The transcriptional enhancer element 

present in the viral LTR can also influence the expression of the inserted
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Figure 1.4.:

Three strategies of retroviral vector design.

Figure 1.4., derived from GELBOA (1986), illustrates the design of the 
three basic types of retroviral vector. Detailed description of the various vector 
designes is given in section 1.5.4.

The schematical drawing of a retroviral provirus is shown in figure 
1.4.A (top). The retroviral LTR (box) consists of the unique sequence present 
at the 3' end (U3), the unique sequence present at the 5' end (U5), and the 
repeated sequence present at both ends of the genomic RNA molecule (R). 
The short terminal inverted repeats (IR), enhancer (E), promoter (P), and the 
tract of polyadenylic acids [poly(A)] (A) of the 5' and 3' LTR are indicated. 
The coding domains for the virion structural proteins are indicated by gag, 
pol, and env. Normal retroviral genes are expressed from two RNA species: 
the gag and pol genes are expressed from an unspliced RNA form which is co- 
linear with the viral genome and the env gene is expressed from a spliced 
RNA form, produced by the removal of a long intron. The splice sites are 
indicated as 5'ss and 3'ss, respectively. The translation initiation codons for the 
gag/pol and the env transcripts are given as AUGga„ and AUGenv. 'P 
indicated the location of the "Psi"-sequences, necessary for the packaging of 
the viral genomes into virions.
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minigene. To allow the study of sequences involved in control of tissue 

specific or inducible gene expression, it is possible to insert the minigene in 

the orientation opposite to the transcriptional direction of the viral LTR 

(EPISKOPOU et al., 1984; MILLER et al., 1984). However, viral enhancers 

could still influence some internal promoters irrespective of the orientation of 

the insert (YEE et al., 1987). An example of a VIP vector is the vector 

pLNSAL (figure 4.2b). The most widely used VIP vector is the high titer 

generating N2 vector. The N2 vector and its derivatives proved useful for the 

transfer of genes into lymphoid cells and bone marrow progenitor cells of 

various species. (Review: GILBOA, 1986 and 1990). LNL6, a safety modified 

derivative of N2 (BENDER et al., 1987), has been used in human gene 

therapy experiments (ANDERSON, 1992).

Self-Inactivating Vectors (SIN Vectors).

The enhancer present in the viral LTR can disturb the normal 

expression pattern of cellular genes, or more importantly cellular proto­

oncogenes near which the retroviral provirus has integrated (NEEL et al., 

1981). To circumvent the problems associated with abnormal gene expression 

induced by the presence of an integrated retroviral LTR, a third vector design 

was developed in the form of the SIN vector (figure 1.4c). SIN vectors contain 

a small deletion in the U3 region of the 3'-LTR, removing either the viral 

enhancer sequences (CONE et al., 1987) or the enhancer/promoter region 

(YEE et al., 1987). The original vector plasmid contains the deletion only in 

the 3'-U3 region, as full length transcripts originating from the 5f-U3 region 

are required to generate infectious virus upon transfection of the vector 

construct into packaging cells (GILBOA, 1986). During viral replication, the 

3’-U3 deletion becomes duplicated and part of both proviral LTRs (WEISS et 

al., 1985; VARMUS and BROWN, 1989). Consequently, the integrated 

proviral DNA becomes transcriptionally inactive, but still enabling the 

expression of the exogenous minigene (GILBOA, 1986 and 1990). In addition, 

the absence of the viral enhancer will greatly reduce the possibility of 

activation of cellular oncogenes, an important condition for retroviral 

mediated gene transfer in human gene therapy (ANDERSON, 1984; 1992). 

However, SIN vectors produce infectious virus at very low titers.
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1.6.5. Retroviral Vector Packaging Systems.

Infectious recombinant retrovirus can be recovered from cells which 

contain an integrated retrovirus vector construct after DNA-mediated gene 

transfer, as the transfected construct contains all functions required in cis for 

expression and encapsidation. The deleted viral coding sequences required in 

trans for generating infectious retroviral particles can be supplied by:

i) Replication competent helper retrovirus: The helper retrovirus is 

provided by co-transfection of the helper virus DNA together with the 

retroviral vector construct during DNA-mediated gene transfer into suitable 

recipient cells, or by superinfecting cells containing the integrated replication- 

defect retroviral vector construct with the helper virus. The infectious virus 

stock generated in this way contains both replication-defective and 

replication-competent virus. The procedure is outlined in detail in figure 1.5.

ii) Packaging cell lines: Specifically designed helper- or packaging-cell 

lines allow the production of helper-free virus stock form any retroviral vector 

construct. The generation of packaging cell lines involves the transfection of 

cells, mostly established mouse 3T3 fibroblasts, with the DNA of a helper 

virus, containing sequences required in trans, but having the 'F-sequences, 

required for packaging of the retroviral RNA, deleted. Thus genomic RNA 

transcribed from the helper virus cannot be packaged into virions. Virus 

producer cell lines are established after the transfection of packaging cells 

with the retroviral vector construct following selection for expression of the 

selectable marker present within the vector itself or supplied on a separate 

plasmid by co-transfection. The most widely used selectable marker is the 

bacterial neo gene. Conditioned medium harvested from virus producer cells 

contains infectious viral particles which have only the full-length retroviral 

vector RNA packaged. The generation of infectious retroviral vector particles 

using helper cells is described schematically in figure 1.5.
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Packaging-Cell Lines.

The most commonly used packaging cell line is the line ¥ 2  generated 

by transfecting a plasmid containing a deletion mutant of Mo-MuLV virus into 

3T3 mouse fibroblasts (MANN et al., 1983). The 351 bp deletion between the 

putative 5'-splice donor site and the AUG initiation codon of the gag/pol 

coding region, removing the *F packaging sequence. Virus stock generated by 

'F2 cells is mostly helper-virus-free, as reverse transcription activity is only 

seldom detectable. However, *F2 packaging cells do have a low reversion 

frequency, most likely due to in vivo recombination (MANN et al., 1983) or 

due to the presence of a small amount of contaminating wild-typq helper virus 

plasmid at the time the *F2 packaging cells were generated (MILLER and 

BUTTIMORE, 1986) and thus can produce detectable amounts of replication 

competent helpervirus.

The problem of contaminating helper virus was overcome by 

generating the packaging cell line PA 137 with the plasmid pAM containing a 

packaging-defective hybrid virus which carries a number of additional 

deletions and which has the 3'-LTR replaced by the Simian Virus SV40 

polyadenylation signals (MILLER et al., 1986; MILLER and BUTTIMORE, 

1986). Packaging of pAM-derived genomic RNA should be severely reduced, 

through the deletion of the packaging signal, and even if packaged, provirus 

formation in infected cells should be blocked both at the level of reverse 

transcription, through the deletion at the 3'-end of the virus removing the site 

for initiation of second-strand DNA synthesis and the 3'-R region required for 

translocation of the reverse transcriptase during first-strand DNA synthesis 

(VARMUS and SWANSTROM, 1985; VARMUS and BROWN, 1989), and 

at the level of provirus integration, through the deletion of the 5'-end of the 5'- 

LTR preventing formation of a functional integration signal (GOFF, 1992). 

The pAM plasmid contains still all the information necessary for the 

expression of the viral gene products but, at the same time, contains 

significantly less homology to sequences with which a retroviral vector can 

recombine to generate replication competent, packagable helper virus RNA 

(MILLER and BUTTIMORE, 1986). Safe packaging cell lines are also 

designed by using two retroviral clones containing overlapping deletions 

(WATANABE and TEMIN, 1982; MARKOWITZ et al., 1988).
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Figure 1.5:

Generation of infectious virus from cloned retroviral vector DNA.

Figure 1.5., reproduced from BERNSTEIN et al., 1985, outlines the 
major protocols for converting cloned retroviral vector DNA into infectious 
virus; see section 1.5.5. for detailed description.



Host Range of Recombinant Retroviruses.

The host range of retroviruses is primarily determined by the virus- 

encoded envelope glycoprotein. Retrovirus particles can only enter cells which 

express on their surface receptor molecules that are specific for their particular 

env protein allowing an env protein-receptor interaction (DALGLEISH et al., 

1984; MADDON et al., 1986; ALBRITTON et al., 1989). The Mo-MuLV 

helper provirus present in ¥ 2  cells expresses a viral envelope protein which 

recognizes only receptors present on mouse and closely related rodent cells 

(WEISS et al., 1985). The two most commonly used packaging cell lines with 

an extended, amphotropic host range are Psi Amp (amp: amphotropic) (CONE 

and MULLIGAN, 1984) and PA137 cells (MILLER and BUTTIMORE,

1986).

1.7. Aims of Thesis:

The mouse skin carcinogenesis model is of particular importance in the 

elucidation of genetic and/or epigenetic events associated with carcinogenesis 

involving epithelial tissues. Molecular and cellular characterization of the 

multistage model has now shown multiple events associated with the stages of 

initiation, promotion, progression and invasion. In this thesis, I have 

investigated the roles of given genes during chemically induced 

carcinogenesis of the mouse skin by inhibition of endogenous gene expression 

and by gene transfer.

Specific alterations of genes, either by introducing a gene into a cell or 

inhibiting expression of an endogenous gene, allows one to assess the role of 

expression of this gene in the phenotype of the cell. If these approaches can be 

extended to modulation of gene expression in progenitor cells of a tumour, 

then the role of this gene in tumorigenesis can be assessed. Transgenic mice, 

either expressing an exogenous gene or a knock-out mutation of a gene by 

insertional mutagenesis, have been invaluable in assessing gene function 

during development and tumorigenesis. However, the transgenic approach to 

study tumorigenesis has been restricted by the genetic alterations which allow 

development of viable animals. Furthermore, somatic mutations, rather than 

germ-line mutations, are more frequently observed in development of
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tumours. Direct genetic alteration of somatic cells in an organism will avoid 

these problems. As will be discussed, the most efficient means of gene re- 

introduction uses infectious retroviral vectors which can infect cells both in 

vitro and in vivo.

In this thesis, I have explored the feasibility of using retroviral 

mediated gene transfer to study the roles of given genes during chemically 

induced carcinogenesis of the mouse skin. Although, several methods have 

been developed to deliver recombinant DNA into cells in culture and to stably 

express transfected genes, including DNA transfection by calcium phosphate 

co-precipitation (GRAHAM and VAN DER EB, 1973), lipofection and 

electroporation (POTTER et al., 1984), these methods have several drawbacks 

such as use in vitro only, limited range of recipient cell types and low transfer 

efficiencies. The identification and characterization of rapidly transforming 

retroviruses gave the first indication that retroviruses could be used as gene 

transfer vectors (BISHOP and VARMUS, 1985). Many of the unique features 

of retroviruses and their life cycle render these viruses uniquely suited for 

adaptation as gene transfer vectors in vitro and in vivo, including:

i) stable integration of the infectious virus as provirus into the host cell 

genome upon infection (MULLIGAN, 1983),

ii) defined and predictable structure of the provirus (MULLIGAN, 

1983; GILBOA, 1986 and 1990),

iii) low copy number of integration (MULLIGAN, 1983),

iv) high efficiency of expression of the proviral genes (WEISS et al., 

1985; VARMUS and BROWN, 1989),

v) extended host range in vitro and in vivo regarding both species and 

cell types (CONE and MULLIGAN, 1984; KWOK et al., 1986) and high 

efficiencies of gene transfer (BERNSTEIN et al., 1985),

vi) in general retroviral infection is not toxic to the host cell (WEISS et 

al., 1985),

vii) the retroviral genome has a flexible insert capacity for gene 

transfer (BERNSTEIN et al., 1985).

The design and construction of the different retrovirus vector systems 

used in retroviral mediated gene transfer as well as retroviral vector packaging 

systems have been described previously (chapter 1.6).
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In this thesis three main studies were undertaken using retroviral 

vector mediated gene transfer:

i) The initiating event in tumours derived from mice initiated with the 

carcinogen 7,12-dimethyl benz[a]anthracene (DMBA) is a codon 61-mutation 

in the Ha-ras gene. Therefore, inhibition of Ha-ras gene expression in such 

tumours may lead to reversion of the transformed phenotype of the tumour 

cells. The first aim of my thesis was to explore the use of retroviral vectors to 

express an Ha -ras antisense RNA gene and infect cells transformed with 

mutated cellular Ha-ray gene. The feasibility of using such antisense Ha -ras 

retroviral vector systems to revert the transformed phenotype of the cells was 

analysed to assess the possibilities of using retroviral vectors for gene transfer 

of Ha-ras antisense RNA genes to suppress or revert transformation in vivo.

ii) Metalloproteinases have been implied to play a role in progression 

of tumours to an invasive and metastatic phenotype. The second aim of my 

thesis was to introduce the rat transin cDNA by retroviral mediated gene 

transfer into epithelial cells, which had been treated with DMBA in vitro, to 

examine if transin expression influenced progression of these cells towards 

invasion and metastasis as assessed by a spontaneous metastasis assay 

following subcutaneous injection of transin-retroviral vector infected cells into 

athymic nude mice.

iii) Retroviral vectors can be used to introduce histochemical marker 

genes, such as the p-galactosidase encoding bacterial lacZ gene, into 

mammalian cells. Infected cells, expressing active p-galactosidase, are easily 

identifiable by histochemical staining using the p-galactosidase specific 

substrate X-gal. The third aim of my thesis was to examine the feasibility of 

histochemical tagging mouse keratinocytes in vivo and in vitro through the 

constitutive expression of the lacZ marker gene following retroviral mediated 

gene transfer. Furthermore, the aim was to infect mouse skin cells in vivo with 

a retroviral vector containing both the v-Ha-ras and the lacZ gene. Successful 

infection should make it possible to follow v-ras retrovirally initiated cells 

through mouse skin carcinogenesis.
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Chapter 2

Materials and Methods.



2. Materials and Methods.

2.1. Materials.

All chemicals used were of Analar grade and supplied by BDH 

Chemicals, Poole, Dorset unless otherwise stated.

All radioisotopes were obtained from Amersham International/ 

Amersham, Buckinghamshire.

Restriction endonucleases and enzymes employed in the manipulation 

of DNA or RNA were purchased mainly from Gibco/BRL (Europe), Paisley 

and Boehringer Mannheim, Lewes, East Sussex.

DNA and RNA size markers, were obtained from Gibco/BRL, Paisley.

Bacto-tryptone, Bacto-agar and yeast extract were obtained from 

DIFCO Laboratories, Surrey.

Serum, media and supplements for cell culture were obtained from 

Gibco/BRL, Paisley.

Guanidine thiocyanate was supplied by Fluorochem Ltd., Glossop, 

Derbyshire.

Phenol was obtained as a water-saturated liquid from Rathbum 

Chemicals Ltd., Walkerbum, Peebleshire.

Plastic-ware for cell culture was supplied by Nunc Intermed, Roskilde, 

Denmark and by Sterilin Ltd., Feltham, Middlesex.

NIH mice and nude mice were obtained from Marian Olac Ltd., 

Bicester, Oxon.
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2.2. General Methods.

2.2.1. Bacterial strains:

The bacterial strains used in this study were:

E.coli HB101, a hybrid of E.coli K-12 x E.coli B (BOYER and POULLAND- 

DUSSOIX, 1969);

E.coli DH5 (HANAHAN, 1985);

E.coli DH5a (FOCUS, 1986);

E.coli JM83 (VIEIRA and MESSING, 1982) and 

E.coli JM101 (MESSING et al., 1981).

Strains in current use were maintained on Luria agar plates at 4°C. For 

long term storage, frozen cultures of each strain were prepared in nutrient 

broth containing 30% v/v glycerol and stored at -70°C.

2.2.2. Media and Antibiotics:

L-broth: 1% (w/v) tryptone,

0.5% (w/v) yeast extract,

1% (w/v) sodium chloride.

Ampicillin (100 pg/ml) (when required)

Kanomycin (50 |ig/ml) (when required).

L-agar: L-broth containing 1.5% agar.

Top-agar for Blue-White Selection:

L-agar containing 

100 (ig/ml ampicillin;

250jxg/ml X-gal.

2.2.3. Preparation of Competent Bacteria:

Bacteria were streaked on an L-broth agar plate and incubated 

overnight at 37 °C. The next day a large colony was inoculated into 100ml of 

L-broth and grown at 37 °C overnight with vigorous agitation. 2ml of this 

overnight culture were used to inoculate 100ml of L-broth (in a 500ml 

Erlenmayer flask) and grown at 37°C with agitation for about 4 hours. 5ml of 

this culture were inoculated into 500ml of L-broth and grown at 37 °C with 

agitation until the desired optical density (O D ^ ^ q )  of 0.2 was obtained
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(around 1 to 1.5 hours). The bacterial culture was chilled in an ice-water bath 

for 5 min. The bacteria were transferred into cold sterile plastic bottles and 

spun down (Sorvall, 5000g, 10 min, 4°C). The medium was discarded and the 

bacterial pellet was resuspended gently, by pipetting up and down several 

times, in 100ml of ice-cold lOOmM M gC ^. The bacteria were spun down 

again (Sorvall, 4000g, 10 min, 4°C) and the pellet gently resuspended in 20ml 

of ice-cold lOOmM C aC ^. A further 180ml of ice-cold CaCl2 were added, 

the suspension was mixed gently and left on ice for 20 min. Thereafter the 

bacteria were centrifuged as above and the pellet gently resuspended in 5ml 

(i.e. l/100th of the original volume) of cold CaC^/glycerol (85% (v/v) lOmM 

CaCl2 and 15% (v/v) glycerol). The competent bacteria were then aliquoted 

into sterile cold Eppendorf tubes and quick-frozen in liquid nitrogen. The 

aliquots were stored up to several months at -70°C. The bacteria prepared in 

this way are highly competent and transformation efficiencies obtained ranged 

from 5x10^ - 4xl07 colonies/|ig plasmid DNA.

2.2.4. Transformation of Frozen Competent Bacteria:

The DNA solution of the ligation mixture (10|il volume, containing 

50pg to lOOng plasmid DNA) was pipetted into a 10ml sterile polypropylene 

tube and left on ice. An aliquot of competent bacteria was thawed in an ice- 

water bath (10 min) and the bacteria were gently resuspended. With a chilled 

sterile Gilson tip lOOpl of competent bacteria were pipetted onto the ligated 

plasmid DNA and then left for 20 to 30 min at 0°C. Then the bacteria were 

heat-shocked for 5 min at 37°C, thereafter 2ml of L-broth were added and the 

tubes were incubated at 37 °C  with agitation for 1 to 1.5 hours. Appropriate 

dilutions of the transformation mixture were plated on L-broth agar plates 

containing antibiotics and were incubated at 37 °C overnight.

2.2.5. Plasmid Mini-Preps (HOLMES and QUIGLEY, 1981):

STET Buffer:

8% sucrose,

5% Triton X-100,

50mM EDTA,

50mM Tris-HCL pH 8.0.
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TE-Buffer: lOmM Tris-HCL pH 7.5,

ImMEDTA.

Bacteria were transferred into 1.5ml Eppendorf tubes, resuspended in 

400pl STET-buffer and mixed with 32pi of lOmg/ml lysozyme, dissolved in 

STET-buffer. Immediately after adding the lysozyme and mixing the bacteria 

suspension, the tubes were placed in a boiling water bath for 50 sec. After 

boiling, the bacterial suspension was spun down for 10 min in an Eppendorf 

centrifuge (13000g, 15 min, RT). After centrifugation the supernatant was 

taken and 400|il of cold isopropanol was then added, mixed and placed at - 

70°C for 5 min and centrifuged for 5 min in an Eppendorf centrifuge (13000g, 

RT). Following washes with 70% and 100% ethanol, the pellet was air dried 

for 5 to 10 min. After drying, the pellet was then resuspended in 200|il TE for 

pUC based plasmids (VIEIRA and MESSING, 1982) and in 50|al TE for 

pBR322/ColEl based plasmids. Routinely 2 to 5|il were taken for analytical 

digests. Sub-cloning from the mini-prep DNA was carried out after isolation 

of the appropriate fragment from a low-melting agarose gel.

2.2.7. Large Scale Preparation of Plasmid DNA (HOLMES and 

QUIGELY, 1981, modified).

After growth in L-broth at 37°C, bacterial cells were harvested by 

centrifugation (Sorvall, 2500g, 5 min, 4°C). The medium was removed and 

the bacterial pellets were resuspended in 22ml STET. The bacterial suspension 

was transferred to a 100ml glass Erlenmayer flask Lysis was achieved by 

adding 2.6ml of a fresh lysozyme solution (lOmg/ml in STET) and boiling the 

suspension over a gas flame. Alternatively, the bacterial suspensions could be 

lysed using a boiling water bath. The very viscous lysate was then transferred 

into Sorvall tubes and spun at 30000g for 30 min at 4°C. The supernatant was 

recovered into 50ml Falcon tubes and extracted once with 5ml of 

phenol/chloroform (1:1) and once with 5 ml chloroform/isoamylalcohol 

(20:1). The nucleic acids in the aqueous phase were the precipitated by adding 

0.8 volume of isopropanol for one hour at -20°C. The precipitated material 

was pelleted by centrifugation. The pellet was washed with 70% and 100% 

ethanol, dried and resuspended in TE.
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For CsCl preparations the DNA from above was then dissolved in 

3.8ml TE and mixed with 4.3 g CsCl After the CsCl was dissolved, 0.5ml of 

lOmg/ml EtBr solution was added. This mixture was then transferred into 

Sorvall heat-seal centrifugation tubes which were topped up with 50% (w/w) 

CsCl, balanced, sealed and subsequently centrifuged (55000g, 48 hours, 

20°C). The DNA band was collected. The EtBr was removed by adding three 

times 2ml of CsCl and F^O-saturated isopropanol. The nucleic acid solution 

was diluted with 2 volumes TE and the DNA ethanol precipitated (0.1 volume 

3M NaAc, 2.5 volumes absolute ethanol, -20°C, 1 hour) and the precipitate 

was spun down. The pellet was washed several times with 70% ethanol in 

order to remove precipitated CsCl, thereafter freeze-dried and resuspended in 

TE.

2.2.8. DNA Manipulation: General Techniques.

Disposable gloves were worn when DNA was handled. All buffers, 

reagents, glass and plastic ware was sterilized prior to use. Many of the 

techniques used are modified versions of those described in MANIATIS et 

al.,(1989).

Phenol Extraction.

DNA solutions were mixed with an equal volume of equilibrated 

phenol. The phenol phase and the aqueous phase were separated by 

centrifugation. The upper aqueous phase containing the DNA was removed 

and re-extracted with an equal volume of phenol/chloroform (1:1), followed 

by an extraction with an equal volume of chloroform/isoamylalcohol (25:1). 

The phenol was AR grade.

Ethanol Precipitation.

DNA was precipitated from solution by the addition of 1/10 volume of 

3M sodium acetate (pH 6.5) or a 1/2 volume 7.5M ammonium acetate and 2.5 

volumes of absolute ethanol. The precipitation mixture was chilled for at least 

20 min at -20°C before the precipitated DNA was pelleted. The supernatant 

was discarded, the pellet washed in 70% ethanol and re-centrifugated. The 

DNA pellet was dried under vacuum and subsequently suspended as 

appropriate for further use. DNA in TE solution or in aqueous solutions were 

stored at -20°C.
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2.2.9. Restriction Endonuclease Digestion of DNA.

Restriction Digestion:

All the restriction endonucleases used were obtained from Boehringer 

Mannheim, BRL or Biolabs. The digests were performed in sterile 1.5ml 

Eppendorf microcentrifuge tubes in the recommended restriction buffers 

according to the specifications provided by the suppliers. If no further 

information was available, restriction conditions were used according to 

MANIATIS etal. (1982).

Restriction buffers: 

lOxlow (lOxLRB'h

lOOmM Tris-HCl pH 7.5, 

lOOmM MgCl2, 

lOmM DTT.

lOx medium (lOxMRB'):

lOOmM Tris-HCl pH 7.5, 

lOOmM MgCl2, 

lOmM DTT,

500mM NaCl.

lOxhigh (lOxHRB^:

500mM Tris-HCl pH 7.5, 

lOOmM MgCl2, 

lOmMDTT, 

lOOOmM NaCl.

lOxCore (ERL):

500mM Tris-HCl pH 8.0, 

lOOmM MgCl2, 

lOOmM NaCl.

2.2.10. Phosphatase Treatment.

To minimise recircularization of linear plasmid DNA, 5'-phosphates 

were removed from both ends of the linear DNA by phosphatase treatment 

TE Buffer: lOmM Tris-HCL pH 7.5,

ImM EDTA.
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TEN Buffer: 40mM Tris-HCL pH 7.5,

ImMEDTA,

150mM NaCl.

Calf Intestinal Alkaline Phosphatase (CIP) (ULLRICH et al., 1977).

Calf Intestinal Alkaline Phosphatase (CIP1: Molecular grade 1, Boehringer 

Mannheim.

IOxCIP buffer: 500mM Tris-HCl, pH 9,0,

lOmM MgCl2,

ImM ZnCl2, 

lOmM spermidine.

Prior to phosphatase treatment, the endonuclease digest of the vector 

DNA was checked by gel electrophoresis for completeness of the digest. The 

digested vector DNA was phenol extracted, precipitated with ethanol and 

resuspended in a minimum volume of lOmM Tris-HCl pH 8.0. All 

phosphatase reactions using CIP were carried out for 30 min at 37°C in lxCIP 

buffer with a concentration of 0.1 u CIP/pmol DNA ends. The reaction was 

stopped by phenol extraction. The phosphatase-treated DNA was recovered by 

ethanol precipitation and centrifugation. The DNA pellet was washed with 

70% ethanol, dried and resuspended in TE to achieve DNA concentrations of 

0 .1^g/^l.

Bacterial Alkaline Phosphatase (BAP).

Prior to phosphatase treatment the endonuclease digest of the vector 

DNA was checked for completeness of digestion by gel electrophoresis. The 

desired amount of cut vector DNA was taken directly from the restriction 

digest mix. lp.1 of BAP was added and the total volume adjusted to 100|il with 

TE. The reaction was carried out for 30 min at 37°C, followed by a further 30 

min at 65°C. To stop the reaction, 1/10 volume (=10jil) lOxTEN was added 

and the enzyme BAP was inactivated by two successive phenol/chloroform 

(saturated in lxTEN) extractions and a chloroform/isoamylalcohol (25:1) 

extraction. The phosphatase-treated DNA was recovered by ethanol 

precipitation, and centrifugation. The DNA pellet was washed with 70% 

ethanol, freeze dried and resuspended in TE to achieve DNA concentration of 

O.lpg/plDNA.
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2.2.11. Ligation.

T4-DNA Lipase: New England Biolabs.

lOxLigase Buffer: 660mM Tris-HCl, pH 7.5,

lOOmM MgCl2, 

lOOmM (3-mercaptoethanol,

5mM ATP.

All ligations were carried out in lxligation buffer at 15°C. Restricted 

plasmid vector DNA and inserts for ligation were mixed in a 1:3 molar 

proportion. Total DNA concentration was usually between 5 to 50|ig/ml in a 

total volume 10 to 20(0.1. Restriction fragments having over-hanging sticky- 

ends, were ligated with 5 units of ligase (Biolabs unit definition) for 3 to 24 

hours. Ligations involving cloning of flush-ended DNA fragments into a 

vector were carried out in two steps: i) overnight incubation with 250 units of 

ligase with a vector/insert ratio of approximately 1:3 respectively, and an 

overall DNA concentration of 100|ig/ml. ii) followed by further 2 hours 

ligation after diluting the ligation reaction with lxligation buffer to a DNA 

concentration of 20|ig/ml.

2.2.12. Agarose Gel Electrophoresis (MANIATIS et al., 1989).

Electrophoresis Buffers: 

lOxTris-Borat Buffer HOxTBEl:

900mM Tris-base,

889mM Boric-acid,

5mM EDTA.

50xTris-Acetate Buffer (50xTAEl:

2M Tris-base,

1M Acetic acid,

0.2M EDTA.
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General DNA Loading Buffer (for all TBE and TAE gels):

20% Ficoll,

0.25% Bromphenol blue,

0.25% Xylene cyanol FF, 

lOmM Tris-HCl pH 7.5,

ImMEDTA.

Gel Electrophoresis:

Horizontal slap agarose gels (0.5 to 1.5% w/v) were prepared using 

BRL analytical agarose in lxTAE or 0.5xTBE buffer. To allow staining of the 

DNA fragments during electrophoresis, ethidium bromide was added to the 

melted agarose to a final concentration of O.lpg/ml. All DNA samples were 

mixed with 1/10 volume general DNA loading buffer. Electrophoresis was 

carried out with the gel completely submerged in appropriate electrophoresis 

buffer at 25V to 100V, until the dye front had migrated through at least 3/4 of 

the gel. DNA was visualised by transillumination with long wave UV light 

(^260nm)- TBE gels can only separate up to 5|ig of DNA per lane. TAE gels 

were used to separate up to 70|ig of DNA per lane.

Low melting point agarose was dissolved in lxTAE buffer. 

Electrophoresis was run at 40V, 4°C. The buffer was circulated using a 

peristaltic pump.

A.-DNA restricted with Hindni endonuclease (fragment sizes: 23.6kb, 

9.46kb, 6.72kb, 4.34kb, 2.26kb, 1.98kb and 0.56kb) or with EcoRI 

endonuclease (fragment sizes: 21.7kb, 7.25kb, 5.83kb, 4.85kb and 3.48kb) 

were used as molecular weight markers.

2.2.13. Isolation of DNA Fragments from Agarose Gels.

Isolation of DNA Fragments from Low Melting Point Agarose Gels 

(MANIATIS et al., 1989).

Either Sigma type VII low gelling temperature agarose or BRL low 

melting point agarose 0.7% to 2.0% horizontal TAE gels (containing EtBr 

0.1pg/ml) were used to separate and isolate DNA fragments ranging from 

200bp to 20kb. The restriction digested DNA was loaded on an appropriate gel 

and ran in the cold-room (4°C) at l-5V/cm with circulation of the buffer until 

fragments were separated. Generally the gels were run quickly (5V/cm) since
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occasionally longer runs appeared to produce diffuse bands. DNA was then 

visualised with long-wave UV (OD^Q^^Onm ) the desired band cut out 

with a scalpel. The agarose slice was diluted with TAE buffer to an 

approximate agarose concentration of 0.2% and heated at 70°C. When the 

agarose was melted the DNA was isolated from the agarose by several 

extractions: 2x phenol(equilibrated), lx  phenol/chloroform, each time the 

mixture was vortexed and centrifuged (2,500g, 5 min). Once the interphase 

was clear, the DNA was precipitated by the addition of ethanol (0.1 vol 3M 

NaAc and 2vol ethanol, 5min in methanol/dry-ice). After centrifugation (5min 

Eppendorf centrifuge, 13000g) and washing with 70% ethanol the DNA was 

resuspended in TE. DNA extracted in this way could be: cut with restriction 

enzymes, ligated, nick-translated, kinased and cloned in a variety of vectors.

Recovery of DNA from Agarose Gels by Electroelution into Dialysis Bags 

(MANIATIS et al., 1982).

Electroelution:

Samples of restriction endonuclease digested DNA were 

electrophoresed in a 1.0% (w/v) agarose gel/0.5xTBE (containing EtBr 

0.1|ig/ml). The separated bands were visualised using a long-wave UV light 

(300 to 360nm) to minimize damage to the DNA. Gel slices containing the 

bands of interest were excised from the gel using a clean scalpel. The gel slice 

was placed inside a dialysis bag containing l-2ml of 0.5xTBE buffer and the 

bag sealed with Medicel Mediclips. The bag was placed in a horizontal 

electrophoresis apparatus parallel to the platinum electrodes, just covered with 

0.5x TBE buffer and electrophoresed for 1 to 2 hour at 100V. The current was 

reversed for 2 to 3 min at the end of the electroelution process to remove the 

DNA from the side of the dialysis tubing. The buffer containing the 

electroeluted DNA was pipetted from the bag and the gel slice and tubing 

were washed with 1 to 2ml 0.5xTBE buffer. Both the DNA sample and the 

wash were pooled and adjusted to 0.2M NaCl.

NACS Chromatography:

Buffer A: 0.2M NaCl,

lOmM Tris-HCl, pH 7.2,

ImM EDTA.
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Buffer B: 1M NaCl,

lOmM Tris-HCl, pH 7.2,

ImMEDTA.

Buffer C: 2M NaCl,

lOmM Tris-HCl, pH 7.2,

ImMEDTA.

The NACS PREPAC minicolumn (BRL) was hydrated with 3ml of 

buffer C. This was achieved by attaching the column to the barrel of a 1ml 

Gilson Pipetman, and the buffer was drawn up through the bottom of the 

column into the reservoir and then expelled by depressing the plunger. The 

resin was then equilibrated with 5ml buffer A in the same way as the column 

was hydrated. Up to 40|ig of DNA loaded on to the top of the column and 

allowed to flow through by gravity flow to maximise binding of the DNA to 

the column. Thereafter, the DNA bound to the minicolumn was washed with 

5ml buffer A. Restriction endonuclease fragments (greater than lOOObp) were 

eluated with 600pl of buffer C. Single-stranded oligonucleotides (less than 

100 bases) were eluated with 600jil buffer B. The eluated DNA was 

preciptiated by adding 1/10 volume of 3M NaAc and 2 volumes of ethanol. 

The precipitation was carried out either at -20°C overnight, or in a dry- 

ice/ethanol bath for 30 min. The DNA was recovered by centrifugation for 15 

min in an Eppendorf centrifuge, dried for 15 min and resuspended in TE. 

DNA prepared in this way was stored at -20°C.

2.2.14. Simultaneous Extraction of High Molecular Weight Genomic DNA 

and Total RNA from Cell Lines.

Handling of RNA:

An RNase-free environment was maintained for the RNA at all stages 

of its purification. The following guide-lines were observed at all times:

i) Never assume that anything in RNase free. Exception: sterile plastic 

ware, preferably individually wrapped, may be used without additional 

treatment.

ii) Dedicate laboratory glassware for use with RNA and mark it

clearly.
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iii) Autoclaving may not irreversibly inactivate RNases (RNase A and 

Tl). Other RNases, especially if fungal in origin, may resist inactivation by 

autoclaving.

iv) At least one of the following methods was used to ensure that the 

reagents are RNase free. All water used for making solutions were treated with 

diethylpyrocarbonate (DEPC).

Phenol-SDS-Buffer Lysis (KRIEG et al., 1983):

SDS-Buffer (pH 7.0):

0.3M NaAc,

0.5% SDS,

5mM EDTA.

Phenol: 1 volume of phenol equilibrated with 1/2 volume of SDS-buffer and 

0.1% Hydroxyquinolin.

Adherent cells were grown to just subconfluency the medium was 

removed and the cells washed twice in PBS. The cells were lysed in situ for 

5min under agitation with 10ml equilibrated phenol and 10ml SDS-lysis- 

buffer. The lysate was transferred into a 50ml Falcon tube and gently shaken 

for additional 5min, before 10ml chloroform/isoamylalcohol (25:1) was added 

and the lysate-chloroform mixture shaken for a further 5min. The aqueous and 

organic phases were separated by centrifugation. The upper aqueous phase 

was collected and re-extracted with 10ml chloroform/isoamylalcohol (25:1) as 

described above. After centrifugation, the nucleic acids were precipitated out 

of the aqueous phase by addition of 2 volumes of absolute ethanol at -20°C 

for at least 1 hour. The ethanol precipitated nucleic acids were pelleted by 

centrifugation. The pellet was briefly dried and then resuspended in 2ml 

autoclaved DEPC-treated destilled water. The RNA was selectively 

precipitated out by addition of an equal volume of 4M LiCl at 4°C overnight. 

The RNA precipitate was pelleted in a Sorvall centrifuge (SS34 rotor, 15000g, 

60min, 4°C). After the centrifugation, the pellet contained the precipitated 

RNA and the genomic DNA was present in the supernatant. RNA and DNA 

were from then on processed separately.

The RNA pellet was resuspended in sterile destilled DEPC-treated 

water. Any contaminating DNA was removed by DNAase I digestion, MgCl2
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was added to the RNA solution to the final concentration of 5mM, and 

20|Xg/ml RNAase-free DNAase I (Boehringer Mannheim). After 20 to 30min 

incubation at RT, the DNAase I digestion was terminated by phenol 

extraction, chloroform/isoamylalcohol extraction followed by ethanol 

precipitation. The RNA pellet was washed twice with 70% ethanol, freeze 

dried and resuspended in up to 200|il sterile destilled DEPC-treated water. 

Total RNA was stored as ethanol-precipitated 20jig-aliquots at -70°C.

The genomic DNA was present in the supernatant recovered through 

centrifugation after the LiCl-precipitation of the RNA. The genomic DNA was 

precipitated at -20°C using 2 volumes of ethanol. After centrifugation the 

DNA pellet was washed twice with 70% ethanol, dried and resuspended in 

sterile destilled water or in sterile TE and stored at 4°C.

Guanidinium Thiocyanate Lysis (BALMAIN and PRAGNELL, 1983, 

modified):

Lvsis-Buffer:

5M Guanidine thiocyanate,

50mM Tris-HCl, pH 7.0,

50mM EDTA,

5% p-mercaptoethanol,

2% N-Laurylsarcosine (sodium salt)

(added after lysis had occurred).

CsCl-Gradient:

5.7M CsCl,

50mM EDTA, pH 7.0, 

lg/ml DEPC.

CsCl-gradient upper laven Refraction index: 1.3925.

CsCl-gradient lower laver: Refraction index: 1.4025.

Nucleic Acid Extraction From Cultured Cell Lines:

Cultured adherent cells were grown to near confluency. The medium 

was removed, cells were washed twice in PBS at RT and then lysed in situ in 8 

to 10ml lysis buffer (without 2.0% N-laurylsarcosine) for at least 30min. at 

room temperature. To isolate and separate the RNA and genomic DNA from
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each other, the lysate was centrifugated through a CsCl/50mM EDTA step 

gradient. The gradient was prepared in pretreated 14ml polycarbonate Sorvall 

tubes (pretreatment: rinses in DEPC-treated destilled water followed by 

several rinses in autoclaved destilled water): 2ml CsCl/50mM EDTA (pH 7.0) 

(R.I. 1.3925) were underlaid with 2ml CsCl/50mM EDTA (pH 7.0) (R.I. 

1.4025) using a gradient needle. The cell lysate was adjusted to 2.0% (v/v) N- 

laurylsarcosine, using a 20% stock solution, and carefully placed on top of the 

CsCl step gradient. The gradient was centrifugated at 25000g, 17°C for at 

least 36 hours. During centrifugation, the RNA was pelleted to the bottom of 

the centrifugation tube and the genomic DNA retained at the CsCI/CsCl 

interphase, whereas cellular proteins were retained in the guanidinium 

thiocyanate/CsCl interphase. After centrifugation the RNA and DNA were 

harvested and purified separately: The viscous CsCl fraction containing 

genomic DNA was transferred into a universal tube, the rest of the liquid 

discarded to leave the RNA pellet in the bottom of the centrifugation tube. The 

RNA pellet was resuspended in 200|il DEPC-treated, sterile water and the 

centrifugation tube was rinsed twice with 200}il DEPC-treated, sterile water. 

The resuspended RNA and the rinses were pooled.

The genomic DNA was precipitated in 3 volumes of cold 70% ethanol 

and spooled on to the tip of a pasteur pipette. After washes in cold 70% and 

cold 100% ethanol, the DNA was dried and then resuspended in 500|il 

TE/0.5% SDS. DNA associated proteins were removed by proteinase K 

treatment for 2 hours at 37°C: The DNA solution was adjusted to 150mM 

NaCl, 10 to 50mM EDTA and 100|ig/ml proteinase K was added. The 

proteinase K stock solution had previously been predigested at 37°C for at 

least 30min. Two phenol/chloroform extractions (equal volume) and one 

chloroform/isoamylalcohol (25:1) inactivated and removed the proteinase K 

enzyme. The DNA was precipitated with 1/10 volume 3M NaAc and 3 

volumes absolute ethanol (-20°C, lhr), recovered by centrifugation, freeze- 

dried and resuspended in TE.

The RNA was precipitated with 1/10 volume 3M NaAc and 3 volumes 

absolute ethanol (-20°C, overnight), recovered by centrifugation, washed with 

70% ethanol, freeze dried and resuspended in DEPC-treated, sterile water. The 

RNA was stored as ethanol-precipitated 20|ig-aliquots at -70°C.
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Nucleic acid concentrations were measured by determining the 

adsorption at wavelength X:260nm in an spectrophotometer. The optic density 

of 1 (^260nm) *s equivalent to a double stranded DNA concentration of 

50jig/ml and equivalent to an RNA concentration of 40jig/ml, respectively 

(MANIATIS etal., 1982).

2.2.15. Northern Analysis: Blot and Hybridization (KRIEG et al., 1983). 

Agarose Gel Electrophoresis for Northern Blot Analysis.

10XFAE Buffer (pH 7.0):

0.4M MOPS,

O.IMNaAc,

0.01M EDTA.

RNA Loading Buffer:

lx FAE buffer,

50% (v/v) Formamide,

2.2M Formaldehyde.

Gel Sample buffer:

50% (w/v) Glycerol,

ImMEDTA,

0.4% (w/v) Bromophenol Blue,

0.4% (w/v) Xylene Cyanol,

2 pg/ml EtBr.

Nitrocellulose Membrane: GeneScreen (NEN, Boston).

RNA samples (10 to 15 |ig/lane) were mixed with 15pl RNA loading 

buffer and denatured at 65°C for 30 min. 5jil gel sample buffer were added to 

each RNA sample, briefly heated to 65°C prior to loading on 1.4% (w/v) 

agarose gel. The 1.4% (w/v) agarose gel was prepared by dissolving 2.8g of 

agar in 145ml of H2O in a microwave oven. When cooled to 60°C, 35.8ml of 

formaldehyde (37%) and 20ml of lOx FAE buffer were added and the gel cast 

in the fume hood. Gel electrophoresis was run at 40V overnight, at 4°C in lx  

FAE buffer (circulated). As the RNA was electrophoretic separated in the 

presence of EtBr, the RNA was made visible directly using a UV light source 

and a photograph was taken.
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Northern Blot Transfer of RNA:

Denaturation Buffer:

50mM NaOH, 

lOmM NaCl.

Neutralisation Buffer:

0.1M Tris-HCl, pH 7.5.

Phosphate Buffer (20x):

0.5M Na2HP04,

0.5M NaH2P 0 4.

The electrophoresed RNA samples were transferred on to GeneScreen 

membranes as follows: The RNA/formaldehyde gel was soaked in excess 

denaturation buffer for 30min at RT (on shaker) and the RNA subsequently 

neutralised in neutralisation buffer (30min, RT, shaker). The gel was 

equilibrated in lx phosphate buffer (3x 20min, RT, shaker). The Northern blot 

was assembled as described in MANIATIS et al. (1982). The RNA transfer 

onto the nitrocellulose membrane (GeneScreen) was performed overnight in 

lx  phosphate buffer. After the transfer was completed, the membrane was 

rinsed in lx phosphate buffer, dried on air and baked for 2 to 4 hrs at 80°C. 

The completeness of the RNA blot transfer was checked by examining the 

blotted gel under UV light for any remaining traces of RNA.

Hybridization:

Pre-Hvbridization Buffer:

50% Formamide,

5x SSC,

2x Phosphate buffer,

5x Denhardt's,

100(ig/ml salmon sperm DNA,

0.1% SDS,

10% Dextran sulphate.

Hybridization Buffer:

identical to Pre-Hybridization 

buffer but with -^P-labelled DNA 

or RNA probe added.
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Dcnhardt's Solution (lOOx):

2% (w/v) Ficoll-400,

2% (w/v) Polyvenylpyrolidone (PVP),

2% (w/v) Bovine Serum Albumin (BSA)

(Pentax fraction V).

Pre-Hybridization and Hybridization buffer were freshly prepared in a 

fumehood. Salmon Sperm DNA was denatured by boiling for 5min in water- 

bath and then leaving on ice for 5min before adding to the respective 

hybridization buffer. The SDS was always added last.

Pre-hvbridization: Nitrocellulose membranes were pre-wetted in lx 

phosphate buffer then hybridized in hybridization chambers in 20 to 25ml pre­

hybridization solution for at least 3 hrs with agitation. Prehybridization was 

performed at 57°C, when -^^P-RNA-ribo probe was used, or at 50°C when 

probing with random primed -^P-DNA probe.

Hybridization: Fresh hybridization buffer was prepared as described 

above. The pre-hybridization was stopped by exchanging pre-hybridization 

buffer. The ^P-labelled probes were pretreated as follows: i) ^P-RNA-ribo 

probe: the labelled RNA was denatured at 65°C for 5min and added straight 

into the freshly prepared hybridization buffer, ii) ^^P-random-primed DNA 

probe: lOOpl 0.1xSSC/0.1%SDS was added to the DNA probe after labelling 

by random primed reactions. The labelled DNA probe was denatured in a 

boiling water-bath for 5 min, transferred back onto ice for 5 min and then 

added to the hybridization. Hybridization was performed overnight with 

agitation in a shaking water-bath at 57°C (^P-RNA-Ribo Probe) or at 50°C 

(32p_ Random-Primed DNA Probe), respectively.

Washes:

Wash Buffer I:

2x SSC,

0.1% SDS.

Wash Buffer II:

O.lx SSC,

0.1% SDS.

After hybridization, the probed nitrocellulose membrane was rinsed 

twice in wash buffer I for 2 min at RT. Further washes took place in wash
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buffer II at 65°C (routinely 2 times 20 min). The washed filters then were 

sealed in thin polythene bags and autoradiographed by exposing to X-ray film 

at -70°C.

2.2.16. Preparation of Radioactively-Labelled DNA Fragments 

(FEINBERG and VOGELSTEIN, 1983 and 1984).

Isolation of Plasmid Insert DNA for Use in Random Priming.

Electrophoresis of plasmid endonuclease restriction digests was carried 

out in 0.6 to 1,5% Sea-Plaque agarose/0.5x TBE gels. The size separated DNA 

fragments were visualised under UV light. Gel slices containing the bands of 

interest were excised from the gel using a clean scalpel. After adjusting the 

DNA concentration to approximately 3ng/ml, the DNA inserts were ready for 

labelling using the random priming method.

^P-Random Priming Labelling Using Klenow Polymerase.

Qligo Labelling Buffer (OLB)):

50mM Tris-HCl pH 8.0,

5mMMgCl2,
lOmM p-mercaptoethanol,

4mM dATP,

4mM dGTP,

4mM dTTP,

0.2M HEPES pH 6.6,

110|ig/ml mixed hexadeoxynucleotides,

0.4mg/ml BSA.

Double stranded DNA fragments were labelled using mixed 

hexadeoxyribonucleotide primers of random sequences as described by 

FEINBERG and VOGELSTEIN (1983 and 1984). A Sea-Plaque agarose 

suspension containing approximately 50 to lOOng of insert DNA was boiled 

for 7 min to denature the DNA. Then 50jil OLB-buffer, 5jll1 [a-^P]dC TP 

(Amersham) and l |il Klenow enzyme (5 u/pl, labelling grade) were added. 

The labelling mixture was mixed gently and incubated at RT for 3 hours or 

overnight, the unincorporated nucleotides were separated from the labelled 

probe by column chromatography using Biogel-A 1.5m Nick-columns
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(Pharmacia) equilibrated with lx TE/0.1% SDS according to manufacturers 

instructions.

2.2.17. Preparation of ^^P-Labelled RNA Transcripts (GREEN et al., 

1983).

SP6/T7 RNA Transcription Kit: Boehringer, Mannheim.

T3 RNA Polymerase: Boehringer, Mannheim

The DNA template was first linearised with a restriction enzyme 

cutting downstream of the segment to be transcribed. Completeness of the 

restriction enzyme digestion was checked by gel electrophoresis on an 

overloaded agarose gel. If the digestion was deemed complete the DNA was 

extracted twice with phenol/chloroform, once with chloroform/isoamylalcohol 

(25:1) and ethanol precipitated. After centrifugation and two washes with 70% 

ethanol, the DNA was freeze-dried and resuspended in DEPC-treated H2O to 

a final DNA concentration of 250ng/pl. Up to l.Opg of linearised plasmid 

DNA were used in one transcription reaction. The transcription reaction was 

prepared as follows: 4|il DNA, 2|il lOx transcription buffer, 3pl cold 

ATP/UTP/GTP (1:1:1), ljo.1 RNAsin (20u/|il), 5|il DEPC-H20  and 32P- 

rCTP (Amersham) were pipetted together. The in vitro RNA transcription 

reaction was started by the addition of ljil of the appropriate RNA 

polymerase, SP6, T7 or T3 RNA polymerase, depending on the linearized 

DNA template, and incubated for 90min at 37°C to 40°C. The transcription 

was stopped by adding of 20^1 TNM buffer. The DNA template was removed 

by digestion with lp.1 RNase-free-DNAase I for 15min at 37°C. Then 50jil 

DEPC-treated H2O were added and the reaction mixture was 

phenolxhloroform extracted twice. Carrier tRNA was added (25|ig) and the 

RNA probe was precipitated at -70°C with 0.5 volume 7.5M NH4AC and 3 

volumes absolute ethanol. After centrifugation the RNA was resuspended in 

50|il DEPC-treated H2O and reprecipitated as above. The precipitate was 

centrifugated again, washed twice with 70% ethanol, air-dried and 

resuspended in lOOjxl DEPC-treated H2O. ^p-rC TP incorporation was 

checked by counting an aliquot in a scintillation counter. NI^Ac/ethanol 

precipitation is very stringed and nucleotides are not precipitated; therefore the 

material recovered in the pellet could be counted directly. The unincorporated
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32p-ribonucleotides were separated from the RNA probe by passing the RNA 

transcription reaction over a Nick-column (Pharmacia). The Nick column had 

previously been equilibrated with lxTE/0.5%SDS (pH 7.5) according to 

manufacturers instructions.

2.2.18 Protein Extraction From Cell Lines.

Lvsis Buffer:

1% Triton X100,

0.5% Sodium Deoxycholate,

0.1% SDS,

0.1M NaCl,

0.05M Tris-HCl, pH 7.4,

5mM M gC^,

3mM PMSF.

A 10cm2 dish of just subconfluent cells was washed three times with 

cold PBS. The cells were lysed on ice for around 15min in 1ml lysis buffer. 

Using a disposable cell scraper, the lysed cells were scraped off the dish and 

transferred into an eppendorf tube. The protein extract was cleared of cellular 

derbies by centrifugation at low speed for 15min at 4°C. The precleared 

supernatant was removed, transferred into a new eppendorf tube and stored at 

-20°C. The protein content of the extracts was measured as described by 

BRADFORD (1976).

2.2.19. Immunoprecipitation, Western Analysis and Immunodetection of 

Proteins.

Sample Preparation:

Samples of protein extracts, containing the same amount of protein and 

adjusted with lysis buffer to the same final volume of around .5 to 1.0ml, were 

cleared prior to Western analysis by incubation at 4°C for 2 hours in the 

presence of lOOul 50% Protein A Sepharose coated with rabbit anti-rat IgG 

(IgG-PAS). IgG-PAS was removed from the protein samples by two 

successive low speed centrifugations. The cleared supernatant was transferred 

to a fresh eppendorf tube.
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Immunopreci pitation:

Western Sample Buffer:

0.1M Dithiothreitol (DTT),

2% SDS,

25mM Tris, pH 6.8,

10% glycerol,

0.001% Bromophenol Blue.

The cleared lysates were incubated overnight at 4°C with Ha-ras 

specific momoclonal antibody YA6-172. Antigen-antibody complexes were 

precipitated with IgG-PAS (2 hours, 4°C). The precipitates were washed 5 

times in 0.7ml cold lysis buffer (vortexing and spinning each time), 

resuspended in 50p,l Western Sample buffer, denatured by boiling (about 3 to 

5min), pelleted by centrifugation (5min, RT) and stored at -20°C.

Separation of Proteins by SDS-PAGE (LAEMMLI, 1970): 

SDg-Pplyactylamid& Gelil7,l% 3;
17.5ml 30% Acrylamide,

2.2ml 1% Bisacrylamide,

7.5ml 1.5M Tris, pH 8.7,

0.15ml 20% SDS,

2.5ml water,

0.1ml 10% Ammonium Persulphate, 

lOpl TEMED.

Stacking Gel (5%);

1.67ml 30% Acrylamide,

1.30ml 1% Bisacrylamide,

1.25ml 1M Tris, pH 6.8,

50|il 20% SDS,

4.4ml water,

0.1ml 10% Ammonium Persulphate,

10JJ.1 TEMED.
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5xSDS/Electrophoreses Buffer:

15.1 gTris base,

72 g glycine,

5 g SDS, 

water to 1000ml.

Mini-Protean II gel tank system (Biorad).

Denaturing protein gels (17.5%) were cast in the caster with a 50ml 

syringe until gels were 5cm high, allowing 1.5cm for the stacking gel. Each 

gel was overlaid with 100ml I^O-saturated isobutyl alcohol and were allowed 

to polymerize for around 1 hour. Isobutyl alcohol was removed and the gels 

were rinsed several times with lxTris-Cl/SDS, pH 8.8. The stacking gel 

(5.0%) was added with a 10ml syringe, the combs were inserted and the gel 

was allowed to polymerize for around 1 hour. After the comb had been 

removed, the gel was placed into the gel tank, lxSDS/electrophoreses buffer 

was added, and the protein samples loaded. The samples were electrophoresed 

at 10 to 25mA for 1 to 1.5 hours.

Electroblotting:

Anode Solution 1:

0.3M Tris,

20% methanol, 

pH 10.4.

Anode Solution 2:

25mM Tris,

20% methanol, 

pH 10.4.

Cathode Solution:

40mM 6-amino-n-hexanoic acid,

20% methanol, 

pH 7.2.

Electroblotting was performed using a millipore semi-dry 

electroblotter. Six sheets of 3MM Whatman filter paper, soaked in anode 

solution 1, and three sheets of Whatman filter paper, soaked in anode solution 

2, were placed on the anode plate. The nitrocellulose membrane, cut to size of 

protein SDS-PAGE gel and rinsed in H2O, was layer on top of the filter paper,
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followed by the protein gel itself. Next nine sheets of Whatmann filter paper, 

soaked in cathode solution were added. The transfer sandwich was covered 

with the cathode plate of the electroblotter. The transfer took place over 0.5 to 

1 hour with 0.8mA per cm^ (surface area of the gel).

Protein Detection by Chemiluminescence:

ECL chemiluminescence detection kit: Amersham.

Blotto:

5% Marvel,

0.5% NP40, 

in PBS.

IOxTBS:

116.9g NaCl,

24.22g Tris base,

6.7g EDTA,

make up to 2 litres at pH 7.6.

IBST;
lxTBS,

0.05% Tween 20.

Prior to probing, the membrane is blocked at RT for 1 to 2 hours in 

blotto. 3|il of the first antibody, pan ras NEI 704 (Dupont), was added in a 

total volume of 3ml blotto, incubation took place at RT overnight. The 

membrane was washes the following day for a total of 1.5 hours at RT in 

blotto, the blotto was changed every 15min. The second antibody, a anti­

mouse IgG Horseradish peroxidase conjugate (Sigma), was diluted 1:5000 

with blotto and incubated for 30min at RT. The membrane was washed for 1 

hour in blotto and for 1 hour in TBST, both wash buffers were changed 

several times during the washing period. The membrane was then incubated 

with a chemiluminescence substrate (ECL kit from Amersham) as per 

manufacturers instructions and exposed to radiographic film.
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2.3. Methods in Cell Culture.

2.3.1. Growth media and Buffers used in Tissue Culture:

Special Liquid Medium fSLMl: Supplemented modified Eagles medium 

(SLM, GIBCO) containing 5% or 10% Foetal Calf Serum (FCS, GIBCO) and 

2mM Glutamine.

lxDulbecco's modified Eagles Medium (DMEM. GIBCOl: Supplemented to 

5% or 10% Donor Calf Bovine Serum (GIBCO ) and 2mM Glutamine. 

2xDMEM fl00m 11:

20ml Dulbecco's MEM (lOx) (GIBCO),

2ml glutamine (200mM),

20ml Serum (FBS or DCBS), 

lml penicilline (lOOOOu/ml),

11.2ml sodium bicarbonate (7.5%),

2ml sodium pyruvate (lOOmM).

Temmin's Modified Dulbecco's Medium (TMDM1 nOOmll:

10ml Dulbecco's MEM (lOx) (GIBCO),

0 .1ml arginine/histidine (12.6% (w/v)/2.5% (w/v)),

5.6ml sodium bicarbonate (7.5%), 

lml glutamine (200mM),

10ml Foetal Bovine Serum,

0.5ml penicillin (lOOOOu/ml), 

lml sodium pyruvate (lOOmM),

0.5ml sodium hydroxide (1M) (pH adjustment).

SF12 medium (100ml):

8.8ml SF12 medium (lOx),

1.6ml essential amino acids for MEM (x50),

2ml glutamine (200mM),

2ml sodium bicarbonate (7.5%),

0.2ml penicillin (lOOOOu/ml),

10ml Foetal Bovine Serum.
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Dulbecco’s Phosphate-Buffered Saline (PBS1:

2.68mM KC1,

1.47mM KH2P 04,

0.137M NaCl,

8.06mM Na2HP04x7H20 .

Trypsin dilutant (PBS/EDTA): PBS buffer adjusted to ImM EDTA.

Trypsin: 0.15% (w/v) trypsin in PBS/EDTA.

Hepes Buffered Saline (2x) (2xHBS):

280mM NaCl,

1.5mM Na2HP04,

50mM Hepes, pH 7.4, to pH 7.12 with HCL.

HAT supplement (50x1 (GIBCO):

8.8mg/l aminopterin,

680mg/l hypoxantine,

194mg/l thymidine.

2.3.2. Maintenance of Cell Lines:

Stocks of cell lines were kept subconfluent at all times. Cells were 

passaged once to twice per week by aspirating off the old media, washing the 

cells once in PBS and trypsinising in 2.5ml 0.125% trypsin per 75cm^ flask. 

Detached cells were diluted 1:10 to 1:30 in the appropriate growth medium 

depending on rate of cell growth and replated into new TC flasks containing 

the appropriate growth medium. Cells-containing TC flasks were transfered 

into 5% C 0 2-37°C-incubators.

2.3.3 Freezing of Cells:

Freezing medium:

1 lml growth medium,

4ml DMSO,

5ml Serum (FBS or DCBS).

Cells to be frozen under liquid nitrogen were resuspended in 1/2 

volume of growth medium and 1/2 volume of freshly prepared freezing 

medium was added dropwise to the cell suspension under agitation. The cell
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suspension was aliquoted into lml NUNC cryotubes. The cryotubes were then 

transferred into polystyrol boxes and stored at -70°C for 12 hours, before 

being finally placed under liquid nitrogen.

2.3.4. Thawing cells:

A cryotube containing an aliquot of cells was taken out of the liquid 

nitrogen container and quickly thawed at 37°C. The cell suspension was 

added to 5 to 10ml of growth medium in a universal. The cells were pelleted at 

RT for 5min at 800 to lOOOg. After the supernatant had been removed, the cell 

pellet was resuspended in the appropriate growth medium and replated into a 

new TC flask containing the appropriate growth medium.

23.5. Mycoplasma Test:

Fix-solution: methanol/acetic acid (3:1).

Cell to be tested for mycoplasma contamination were grown in a 

25cm^ flask until they were semi to fully confluent. The medium was 

aspirated off and the cells were washed once with cold PBS. The fixation of 

the cells took place in 10ml fresh fixation solution for lOmin on ice. After the 

fixative was removed, the cells were stained on ice for lOmin in 20ml of cold 

PBS containing l(il Hoechst stain (bisbenzimidazolefluorochrome, Hoechst 

33258). The staining solution was taken off and the cells were rinsed under tap 

water. A piece of the size and shape of a micro-slide was cut out from the 

bottom of the 25cm^ flask. The cells on the plastic microslide were examined 

for mycoplasma DNA positive staining in the cell cytoplasma under a 

fluorescent microscope.
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2.3.6. Stable Transfection by CaP04-DNA Co-precipitation Mediated 

Genetransfer (WIGLER et. al., 1978, modified).

Recipient Cell Lines: CT3 cells and ¥ 2  cells

Growth medium: Temmin's Modified Dulbecco's Medium (TMDM).

2x HBS Buffer:

280mM NaCl, 

l,5mM Na2HP04,

50mM HEPES, pH 7.4, 

adjusted to pH 7.12 with HC1.

Glycerol solution:

15% (v/v) glycerol/ lxHBS, 

sterile filtrated.

Recipient cells were plated in 15ml TMDM at a cell density of 5x10^ 

cells/75cm^ flask one day prior to DNA transfection (day 0). On day 1, 4 

hours prior to transfection, 10ml of fresh growth medium were added to the 

recipient cells. The DNA-CaP04 co-precipitate was prepared as follows: 

100fil of 2,5M sterile CaCl2 (Refraction index: 1.401) were added to 900fil of 

sterile water containing 40|ig genomic carrier DNA and 5|ig of plasmid DNA. 

Slowly, lml of 2x HBS was added dropwise while airbubbling (blowing air 

through cotton plugged pipet into solution). A precipitate was allowed to form 

at RT for 30 min. 4ml of growth medium were added to the slightly opague 

(but not clumpy) DNA-CaP04-precipitate, mixed and pipetted onto the cells. 

Usually the precipitate was left on the cells for 12 to 18 hours at 37°C. To 

increase the efficiency of the DNA-uptake by the recipient cells, on day 2 a 

glycerol shock was performed as follows: The growth medium was aspirated 

off, the cells were washed twice with serum-free medium and shocked for 

precisely 4min at RT with 4ml of 15% glycerol/HBS solution (v/v) per 75cm2 

flask. The glycerol was removed, the cells were washed as above and 

subsequently fed with 20ml of fresh growth medium supplemented to 10% 

serum. After the glycerol shock, the transfected cells were incubated for 

further 48 hours at 37°C. On day 4 the cells were trypsinized, counted and 

replated in selective groth medium.
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Foci-Selection:

Cells were replated into growth medium containing only 5% serum. 

The medium was changed routinely every 3 days and foci were scored after an 

incubation period of 2 to 3 weeks by Giemsa staining.

Giemsa staining:

For staining, growh medium was aspirated off the cells; cells were 

washed once with PBS and fixed with 10ml 100% methanol for lOmin at RT. 

The methanol was removed and 10ml of Giemsa staining solution (Merck), 

diluted 1:10 with H2O, were pipetted onto the cells. The cells were stained for 

3min to 5min at RT. The Giemsa solution was poured off, cells were washed 

with deionised water and left to dry.

G418-SeIection:

Normal growth medium (10% FCS/TMDMEM) containing 0.8mg/ml 

G418 was usedto select CT3 or *F2 cells sucessfully transfected with DNA of 

a neo gene containing plasmid DNA. The medium was changed once a week. 

Routinely G418r-colonies were scored after 14 days incubation at 37°C in 5% 

CO2 by GIEMSA staining.

The concentration of G418 required to perform successful selection of 

transfected cells had been determined empirically for each cell line. 

Gpt-Selection:

Selection medium: lx  DMEM medium containing:

10% fetal calf serum,

150|ig/ml L-glutamine,

250|ig/ml xanthine,

15|ig/ml hypoxanthine (or 25}ig/ml adenine),

10|ig/ml thymidine,

2|ig/ml aminopterine,

5|ig/ml mycophenolic acid (sodium salt).

*F2 helper cells were continously propagated in the presence of 

25|Xg/ml mycophenolic acid. The ecotropic retroviral packaging cell line *P2 is 

derived from the line NIH 3T3 by transfection with a replication deficient 

retroviral constuct containing the bacterial gpt marker gene MANN et al., 

1983).
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2.3.7. Retroviral Mediated Gene Transfer By Retrovirus Infection 

(MULLIGAN, 1983: MAGLI et al., 1987; LAKER et al., 1987).

Infectious Retrovirus Stock:

Stocks of infectious recombinant retrovirus were harvested from virus 

producer cell lines. Enough fresh medium was added to a semi-confluent flask 

of producer cell lines to just cover the cells. 24 hours later, the conditioned 

medium was harvested. The virus containing medium was taken off the cells, 

spun down (800g, 5min, RT), passed through a 2 to 4.5pm filter to remove 

contaminating cells. Aliquoted virus stock was used immediately in infection 

experiments or placed at -70°C for long term storage.

Retrovirus Infection:

Recipient cells were seeded out at a cell density of 5x10^ to 1x10^ 

cells/25cm^ flask one day prior to infection (day 0). During infection, the 

recipient cells were exposed to 7 ml growth medium containing an aliquot of 

virus stock (usually 50pl) and 24jig/ml polybrene for 24 hours at 37°C 

(TOYOSHIMA and VOGT, 1969). Thereafter the cells were washed twice 

with PBS, fed with fresh medium and incubated for a further 48 hours at 

37°C. The cells were then trypsinised, counted in the Coulter counter and 

replated at a cell density of 5x10^ cells per 10cm^ petri dish in 10ml of 

selective medium. Most routinely G418-selection was used. A minimum of 4 

dishes were used per experiment. After incubation of 1 week, the medium was 

changed (selective and non-selective). G418r-colonies were single-cloned or 

pooled after 2 weeks of selection. The infection efficiency was calculated on 

the basis of the number of colonies obtained after selection. The replating 

efficiency of infected cells was determined by replating 200 cells into a lOcm^ 

petri dish in 10ml non-selective medium.

Titration of Infectious Retrovirus Particles per Virus Stock:

CT3 cells were routinely used as recipient cells to determine retrovirus 

titers. CT3 cells, plated out at cell density of 5x10^ cells per lOcm^ dish 24 

hours prior to infection, were infected with lOpl to lOOpl aliquots of virus 

stock in a total volume of 7ml growth medium containing 24pg/ml polybrene. 

After 48 hours expression time, the infected cells were trypsinized, counted
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and replated in selective medium at cell densities of 1x10^, 1x10^ and 1x 10^ 

cells per 10cm^ dish. Standard conditions for G418-selection and Giemsa 

staining were used. The number of G418r-colonies was adjusted for re-plating 

efficiency, the fraction of infected cells plated out and the volume of virus 

supernatant used for infection to give the infection efficiency or titer as the 

number of G418r-colony forming units per lml of infectious virus per 10^ 

viable infected cells (G418r-CFU/ml/10^ viable cell).

2.3.8. Concentrating of Virus Stocks.

Centricon Microconcentrators (Amicon) with 10s molecular weight cut off 

point.

24-hour-conditioned medium harvested from four 175cm^ flasks of 

semi-confluent virus producer cells was used for concentration of infectious 

virus particles using centricon microconcentrators from Amicon. The virus 

supernatant was harvested form each flask, pooled and cleared of 

contaminating cells and cellular depirs by centrifugation (11000, lOmin, RT). 

The clarified virus stock was passed through a 0.4jim sterile filter ansd stored 

on ice. The disposable centricon microconcentrators were assembled 

according to the manufactorer's instruction. 2ml of virus supernatant could be 

concentrated per microconcentrator per centrifugation run (Sorvall centrifuge, 

7000g, 60min, 4°C). The concentrated virus supernatant was retained in the 

upper compartment of the concentrator, wereas medium waste went through 

the filter into the lower, waste compartment. When the total of the conditioned 

medium had been passed through the microconcentrators, the concentrated 

virus supernatants retained in the upper compartment of each 

microconcentrator were pooled, aliquoted and stored for several months at - 

70°C.

2.3.9. Test for Reverse Transcriptase Activity.

The reverse transcriptase test was used to detect and to quantitate the 

release of replication competent helper virus by virus producer cell lines. 

Disrupted retrovirus particles were incubated in the presence of poly rA 

template and ^H-TTP nucleotides. When the virus stock contained replication 

competent hepler virus, synthesis of a poly ^H-TTP product, wich is
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precipitated by TCA, occurred. NIH 3T3 or CT3 cells were infected with 

recombinant virus stock harvested from producer cell lines. After two weeks 

of selection, G418-resistant colonies were pooled and propagated. Fresh 

medium was added to a sub-confluent flask of pooled retrovirus infectants. 24 

hours later, the conditioned medium was harvested, clarified (llOOOg, lOmin, 

RT) and filtered through 0.4|im sterile filter. The clarified medium was used 

directly in the reverse transcription test or could be frozen and stored at -70°C 

prior to testing for presence of replication competent helper virus.

Detection of Reverse Transcription Activity:

Reverse Transcriptase Buffers:

Disruption Buffer:

50|il 1M Tris/HCl, pH 8.0,

50|il 1M KCL,

200|il 0.1M DTT (stored at -20°C),

100^12% NP40,

600[il H20 .

Reaction Mixes:

Reaction Mix A:

12.5|ll 1M Tris/HCl, pH 8.0,

12.5|il 1M KC1,

25jil 0.02M MnCl (for FeLV or MoMuLV),

(25\l\ 0.02M MgCl2 (for HIV)),

50|il Poly rA template (5.26u/ml),

25|il 3H-TTP,

125(i.l H20.

Reaction Mix B (control reaction!:

as reaction mix A but with the following alterations:

50|il 0.01M Tris/HCl pH 8.1,

0.15M NaCl (instead of Poly rA).

Reaction Mix C (additional control!:

as reaction mix A but with the following alterations:

50pl Poly dA instead of Poly rA.
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Solutions TCA Precipitation and filtration:

10% TCA(v/v)/l% sodium-pyrophosphate(w/v)

5% TCA(v/v)/l% sodium-pyrophosphate(w/v)

5% TCA(v/v) 

absolute ethanol

Virus particles were pelleted from the clarified medium supernatant by 

centrifugation at 35krpm for 60min at 4°C. The supernatant was carefully 

discarded, the centrifugation tubes were allowed to drain on a tissue for 1 to 

2min and the neck of the tubes were wiped with a tissue to remove any traces 

of medium. 60.0|il of disruption buffer were added to the bottom of each tube 

and the virus pellet was scraped with the end of the pipette tip to resuspend the 

pellet (do not pipette up and down, as the samples will foam). For each virus 

sample to small falcon tubes (15ml) containing either reaction mix A (with 

poly rA template), reaction mix B (without template) or reaction mic C (with 

poly dA template) were prepared. 25fil of the virus samples in disruption 

buffer were added to each of the falcon tubes (change tips each time, danger of 

contamination). The virus sample and the reaction mixes were incubated for 

lhour in a 37°C waterbath.

During the incubation period the millipore filter apparatus containing 

Whatman-GTC filters was set up. The filters had been pre-wetted in 10% (v/v) 

TCA/1% (w/v) sodium-pyrophosphate. At the end of the incubation period 

20|il of yeast carrier RNA was added to each tube and the reaction was 

stopped with 10ml of ice-cold 10% (v/v) TCA/1% (w/v) sodium- 

pyrophosphate. The contence of each tube was poured onto a GFC filter and 

the solution was sucked through. Severall washes followed: once with 10ml of 

ice-cold 5% (v/v) TCA/1% (w/v) sodium-pyrophosphate, twice with 10ml of 

ice-cold 5% (v/v) TCA and once with 10ml of ice-cold absolute ethanol. The 

filters were then removed from the filter apparatus, dried on air and transfered 

into scintillation vials containing 5.0ml Ecosint scintillation fluid. To check 

wether the test had worked, the filters were counted for 1 min on tritium 

channel. The accurate incorporation of was determined by counting the 

filters twice for 10 min on a tritium channel.
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2.3.10. X-Gal Staining.

X-Gal Staining of Cultured Cells (SANES et al., 1986).

Fixative:

2% Formaldehyde,

0.2% Glutaraldehyde, 

in PBS.

X-Gal-stain:

5mM potassium ferricyanide,

5mM potassium ferrocyanide,

2mM MgC12,

1 mg/ml X-Gal (Boehringer), 

in PBS.

X-Gal stock:

40mg/ml X-Gal disolved in DMF, 

stored in the dark at +4°C.

The medium was removed from the cells by aspiration and the cells 

were rinsed twice in PBS. 5ml to 10ml of fresh fixation solution was added to 

the cells. The fixative was removed after 5min fixation at on ice. The cells 

were washed twice in ice-cold PBS and finally overlayed with 5ml to 10ml of 

X-Gal stain. The cells were routinely stained overnight at 37°C, although the 

first staining appeared after an incubation period of only 2 to 4 hours.

X-Gal Staining on Tissue Sections.

Whole Mount Staining (SANES et al., 1986).

Fixative: lxPBS,

2% Formaldehyde,

0.5% Glutaraldehyde.

X-Gal Stain: 5mM potassium ferricyanide.

5mM potassium ferrocyanide,

2mM MgCl2,

0.02% NP-40,

0.01% sodium deoxycholate, 

lmg/ml X-gal in PBS.
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To reveal P-galactosidase activity in whole mounts of BAG or 

ZipLacZSV9v-ras) infected mouse skins, the following procedure was used: 

Whole skins were fixed in fixative for lhour at 4°C. The skins were rinsed in 

PBS and incubated in the X-Gal staining mixture for 12 to 18 hours at 30°C. 

Following staining, the tissues were rinsed in 3% DMSO/PBS and the stored 

in PBS at +4°C prior to paraffin enbedding.

Frozen Tissue Sections (PRICE et al., 1987):

Fixation solution:

0.1M PIPES, pH 6.9,

2% paraformaldehyde,

2mM M gC^,

1.25mM EDTA.

30% Sucrose solution:

lxPBS,

30% Sucrose,

2mM MgC^.

Permeabilization solution:

lxPBS,

2mM MgCl2»

0.01% sodium deoxycholate,

0.02% NP-40.

X -Qal Staining solution:
lxPBS,

2mM M gC^,

0.01% sodium deoxycholate,

0.02% NP-40,

35mM potassium ferricyanide,

35mM potassium ferrocyanide,

1 mg/ml X-gal.

Skin tissues were fixed for one hour at 4°C in the fixation solution. 

Tissues were then saturated in 30% sucrose/PBS/2mM MgCl2 and quick- 

frozen on dry ice. Cryostate sections (5 to 20jim) were cut onto ploylysine- 

coated slides, refixed at 4°C in paraformaldehyde-fixative (4°C), and rinsed in
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PBS containing 2mM MgC^. Following premeabilization for 10 min at 4°C 

in permeabilization solution, the sections were stained overnight at 30°C to 

37°C in X-Gal staining solution. Slides were rinsed and mounted.

23.11. Soft Agar Cloning.

Replating in Soft Agar:

2xDMEM medium (lOOmD:

20ml Dulbecco's lOx medium (Gibco),

20ml FBS or DBS,

2ml Glutamine (200mM), 

lml Penicillin (lOOOOu/ml),

11,2ml Sodium bicarbonate (7.5%),

2ml Sodium pyruvate (lOOmM), 

adjust volume with sterile H2O.

2xAgar:

1.2% agar in sterile water (underlay).

0.6% agar in sterile water (upper layer).

Preparation of the underlay agar: 2xDMEM medium was prepared as 

described above and equilibrated to 37°C. 1.2% agar were dissolved in 100ml 

sterile water by boiling for 2min in the microwave and transferred to a 57°C 

waterbath to prevent gelling. An equal volume of 1.2% agar was added to one 

volume of 2xDMEM medium, mixed and equilibrated to 37°C for at least 

lOmin. Plastic disposable pipettes were used for all manipulations involving 

agar. 4ml of the underlay agar/DMEM mixture were used per 6cm^ bacterial 

petri dish. The underlay was allowed to gel and the so pre-prepared dishes 

could be stored overnight in sealed sterile bags at 4°C in the cold room.

Preparation of the upper laver: 0.6g agar were dissolved in 100ml 

sterile water by boiling for 2min in the microwave. The dissolved 0.6% agar 

was transferred to 57°C waterbath for at least lOmin. To one volume of 

2xDMEM medium equilibated to 37°C an equal volume of 0.6% agar was 

added, the now 0.3% agar/lxDMEM medium was placed bgack into the 37°C 

waterbath until used, but at least for lOmin.

Preparation of cells: Cells were removed from the TC flask by trypsin 

treatment (2.5ml trypsin per 75cm^ flask) for a few minutes at 37°C and
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transferred to an universal in the presence of 5ml to 10ml non-selective 

growth medium. The cell were pelleted by centrifugation (5min, 800g, RT), 

the supernatant removed and the cell pellet resuspended in 5ml to 10ml of 

non-selective growth medium. The cell number was determined by counting 

an 0.4ml aliquot in the Coulter counter. The cells were kept on ice until 

replating.

Replating in 0.3% soft agar: Pre-calculated volumes of the cell 

suspensions were added to the 0.3% soft agar/lxDMEM medium and gently 

mixed. A total of 1x10^, 2x10^, 1x10^ and 5x10^ cells were replated in 4ml 

of 0.3% soft agar onto the pre-prepared bacterial petri dishes equilibrated to 

room temperature (see preparation of underlay). Four dishes were replated per 

cell density. The upper layer soft agar containing the cells was allowed to set 

for about 30min, then the petri dishes were placed into an humid incubator 

(37°C, 5.0% C02), the incubation period was between 2 to 4 weeks.

INT-staining of Viable Soft Agar Colonies. (BOLL et ah, 1977).

INT-Stain: 2-(p-iodophenyl)-3-(p-nitriphenyl)-5-phenyl tetrazolium chloride 

hydrate (INT).

Preparation of INT-stock solution: 1 mg/ml INT was dissolved in PBS using a 

boiling water bath or on heated stirrer. Undissolved particles were removed by 

sterile filtration (Filter: 0.22pm). The stock solution was stored at 4°C in the 

dark, not longer than one month.

After 2 to 4 weeks incubation at 37°C the soft agar colonies were 

stained with 0.6ml of 1 mg/ml INT stain per 6cm^ plastic petri dish. The dishes 

were placed in a plastoc cake box with lid and the box was sealed with 

insolating tape. The dishes were gased with 100% CO2 through a hole in the 

box or in the lid (about 20min). The hole was sealed with tape and the box was 

incubated overnight at 37°C. Viable cells take INT up, the metabolised 

product results in a red stain. Colonies greater 0.2mm were scored under a 

binocular dissection microscope.
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Chapter 3

Inhibition of Cell Transformation by 

Antisense Ras RNA.



3. Inhibition of Cell Transformation by Antisense ras RNA.

3.1. Introduction.

The initiating event in skin tumours derived from mice initiated with 

DMBA is a codon 61-mutation in the c-Ha-ras gene. Therefore, inhibition of 

activated c-Ha-ras gene expression in such tumours may lead to reversion of 

the transformed phenotype of the tumour cells. Antisense RNA as a fine tuner 

of complex regulatory processes was first identified in prokaryotic systems 

(reviewed in EGUCHI et al., 1991). Artificial antisense genes have since been 

used in many eukaryotic systems facilitating the determination of function of 

genes by examining the consequences of the reduction or lack of expression of 

these genes (reviewed in TAKAYAMA and INOUYE, 1990). Antisense RNA 

targeted inhibition of gene expression has also been successfully applied to the 

study of proto-oncogene function and their participation in signal transduction 

pathways (AMINI et al., 1986; YOKOYAMA and IMAMOTO, 1987; 

KOLCH et al., 1991; NISIKURA and MURRAY, 1987; LEDWITH et 

al., 1990). The aim of this part of the present study was to explore the use of 

retroviral vectors expressing an c-Ha-ras antisense RNA gene in suppressing 

cell transformation of NIH 3T3 cells induced by a transfected codon 61- 

activated c-Ha-ras oncogene.

The first objective was to construct retroviral vectors expressing, as 

sense or antisense RNA, fragments of the 5'-region of the mouse c-Ha-ras 

gene. Three fragments spanning the whole of the genomic clone N 1 (BROWN 

et al., 1988) were chosen for cloning into the retroviral shuttle vector pZip 

Neo SV(X)1 (CEPKO et al., 1984) in sense and antisense orientation. 

Fragment FI contains 1.3kb of upstream sequences, coding exons E l and E2, 

as well as intron 1(1) and the first 112bp of intron 1(2) (figure 3.2). Fragment 

F2 is comprised of 1.3kb upstream sequences, which contain 5' flanking 

sequences, the promoter region, untranslated exon E(-l), intron 1(0), as well as 

the first 53bp of exon El (figure 3.2). Fragment F3 is made up by the 

remaining 3' 98bp of exon El, intron II, the entire exon E2 and the first 112bp - 

of intron 12 (figure 3.2). Therefore, antisense RNA derived from fragment FI 

was complementary to the 5'-untranslated region, translation initiation site and 

to parts of the coding region of the c-Ha-ras gene, whereas fragment F2
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antisense RNA was mainly complementary to the 5'-untranslated region and 

fragment F3 antisense RNA to the coding region of the c-Ha-ras gene. 

Following the generation of producer cell lines for the sense and antisense c- 

Ha-ras retroviral ZN(X)RAS vectors, the second objective was to test 

ZN(X)RAS recombinant retroviruses for their ability to infect Ha-ras- 

transformed NIH 3T3 cells and to express the appropriate antisense c-Ha-ras 

RNA upon infection. Lastly, changes in cell phenotype of Ha -ras transformed 

NIH 3T3 cells, as a consequence of constitutive c-Ha-ras antisense RNA 

expression, were assessed by reversion of the transformed phenotype and by 

soft agar colony formation.

3.2. pZip Neo SV Retroviral Vectors.

The retroviral vectors pZip Neo SV(X)1 and pZip Neo SV(B)1 were 

designed by CEPKO et al. (1984) as murine retrovirus shuttle vector systems 

to introduce exogenous genes into a wide variety of mammalian cells or whole 

animals, (further references: BELMONT et al., 1986; RUSEWIJK et al., 1986; 

CHANG et al., 1987; LEDLEY et al., 1987; YAMADA et al., 1987).

The basic vectors consist of:

i) pBR322 sequences necessary for the propagation of the vector DNA 

in E.coli,

ii) control units derived from a cloned Moloney murine leukemia 

provirus (Mo-MuLV) (HOFFMAN et al., 1982) which are required in cis for 

retroviral gene expression (viral LTRs), packaging of retroviral genomic 

RNAs (XF sequence) (MANN et al., 1983), and sequences involved in 

generating 5' and 3’ splicing signals required for the processing of the 

subgenomic env RNA. The retroviral gaglpol and env coding regions had been 

removed to allow the insertion of genes or DNA fragments of interest, using 

two single cutter cloning sites, Xhol and BamHI. A cassette containing the 

neomycin*-marker gene from transposon Tn5 (neo-gene) (COLBERE- 

GARAPIN et al., 1981; DAVIES and JIMENEZ, 1982; SOUTHERN and 

BERG, 1982) and the origins of replication of plasmid pBR322 and SV40 

virus, is inserted into either one of the single cloning sites, leaving only one 

cloning site for the insertion of the exogenous sequences: pZip Neo SV(X)1 

has the "neo-cassette" inserted in the Xhol site whereas the "neo-cassette" is
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inserted in the BamHI site in the pZip Neo SV(B)1 vector (figure 3.1). The 

sequences present in the cassette allow selection of mammalian cells 

harbouring either Zip Neo SV(X) or SV(B) provirus (neoT-marker), the rapid 

recovery of free or integrated proviral genes as bacterial clones (pBR322 

origin of replication) and the propagation of the pZip Neo constructs as 

extrachromosomal plasmids in high copy number in Cos or CV-1 cells (SV40 

origin of replication). (MELLON et al., 1981; GLUZMAN, 1981).

The pZip Neo vectors are double expression vectors (chapter 4). The 

expression of any exogenous gene, inserted into the 3'-Xho-I cloning site, 

depends on efficient splicing. Therefore, the pZip Neo SV(X)1 retroviral 

vector was chosen for in vitro gene transfer of genomic c-Ha-ras fragments 

inserted into the 5'-BamHI cloning site since its expression is then not as 

dependent on efficient splicing. Using the pZip Neo SV(X)1 vector, any neor- 

colonies isolated after retrovirus mediated gene transfer are more likely to co­

express the gene inserted into the BamHI cloning site and the neo gene. In the 

basic vectors, there is a 1:1 ratio of genomic to subgenomic message (CEPKO 

et al., 1984). However, it is possible that some inserted sequences may inhibit 

splicing and so reduce the efficiency of expression of the 3' gene. For instance, 

insertion of either c-myc or of murine granulocyte/macrophage-colony 

stimulating factor (GM-CSF) into the vectors resulted in a decrease of up to 

50% of the subgenomic message in infected cells (LANG et al., 1985; CORY 

et al., 1987).

3.3. Results.

3.3.1. Cloning of Antisense c-Ha-ras Retroviral Vectors.

Three fragments spanning the genomic clone N 1 of the mouse cellular 

Ha -ras proto-oncogene (BROWN et al., 1988) were chosen to be inserted in 

both orientations, "sense" and "antisense", into the single BamHI site of the 

pZip Neo SV(X)1 retroviral vector (CEPKO et al., 1984).

The clone N1 of the c-Ha-ras gene contains 1.3kb of upstream 

sequences, the coding exons El and E2, as well as intron 1(1) and the first 

112bp of intron 1(2). The upstream sequences are composed of 5'-flanking 

sequences, the promoter region, the untranslated exon E(-l) and intron 1(0). 3’-
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Figure 3.1.

pZip Neo SV Retroviral Shuttle Vectors.

The pZip Neo SV retroviral shuttle vectors were cloned by CEPKO et 
al. (1984). The Mo-MuLV LTRs (diagonal boxes), and other cis regulatory 
functions required for retroviral RNA packaging and splicing (5'ss and 3'ss), 
as well as rat genomic sequences flanking the LTRs were derived from the 
Mo-MuLV provirus clone pZip. The fragment containing the neo gene (filled 
box) was isolated from Transposon Tn5 (SOUTHERN and BERG, 1982). The 
origins of replication of simian virus SV40 (crossed box) and of plasmid 
pBR322 (open box) allow the propagation of the shuttle vector as 
extrachromosomal plasmids in Cos cells and the rapid recovery of free or 
integrated proviral genes as bacterial clones. Recognition sites for restriction 
enzymes Hind ID, Bam HI, Bgl II, Eco RI, Clal and PstI are indicated. The 
numbers reflect the size of various fragments in bp. Detailed description of the 
cloning strategy is given in CEPKO et al., 1984).
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sequences including coding exons E(3) and E(4) are absent from the genomic 

c-Ha-ras clone N1 (figure 3.2). The 5'-region of the mouse c-Ha-r&y gene has 

been characterized extensively by BROWN et al. (1988), PLUMB et al. 

(1991) and NEADES et al. (1991).

The three c-Ha-ras fragments used were:

i) fragment FI. the 1982bp long Pstl-PstI fragment spanning the whole 

of the genomic clone Nl,

ii) fragment F2. the Pstl-Hindlll fragment of 1384bp in length 

containing the 5'-flanking sequences, the promoter region, untranslated exon 

E(-l), intron 1(0) and the first 53bp of exon E(l),

iii) fragment F3. the Hindlll-PstI fragment, 597bp long, comprising of 

the remaining 3'-98bp of exon E(l), intron 1(1), the whole of exon E(2) and 

the first 112bp of intron 1(2).

It was necessary to subclone the c-Ha-ras fragments into the plasmid 

pIC20R (MARSH et al., 1984), generating three intermediate plasmids pIC- 

RASF1, pIC-RASF2 and pIC-RASF3, from which the genomic Ha-ras 

fragments could be re-isolated with BamHI compatible ends by BamHI-Bglll 

double restriction enzyme digest. The re-isolated fragments FT, F21 and F3\ 

now slightly larger due to the presence of additional polylinker sequences 

acquired during the subcloning into pIC20R (FT: 2.0kb, F2': 1.4kb, F3': 

0.6kb), were inserted in both orientations into the single BamHI cloning site of 

the pZip Neo SV(X)1 vector. The "sense" orientation is defined by the 

orientation of the transcriptional active 5'-Mo-MuLV-LTR of the retroviral 

vector and the direction of the transcription initiated at this LTR. The 

"antisense" retroviral constructs, pZN(X)RAS-l, -2 and -3, contain the c-Ha- 

ras inserts in the opposite orientation to the transcriptional direction defined 

by the 5'-Mo MuLV-LTR. The retroviral constructs have been named as 

follows:

pZNOORAS+l/-l: c-Ha-ras fragment FT cloned into pZip Neo

SV(X)1 vector in "sense" (+1) or "antisense" (-1) orientation.

pZNOORAS+2/-2: c-Ha-ras fragment F2' cloned into pZip Neo

SV(X)1 vector in "sense" (+2) or "antisense" (-2) orientation.

pZNOORAS+3/-3: c-Ha-ras fragment F3' cloned into pZip Neo

SV(X)1 vector in "sense" (+3) or "antisense" (-3) orientation.
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Figure 3.2.

Schematic map of the 5' c-Ha-ras region used for antisense retroviral 
vectors.

Figure 3.2. shows a schematic diagram of the genomic clone N1 
containing the 5'-region of the mouse c-Ha-ray gene. The untranslated exon 
E(-l) and the coding exons El and E2 (chequered boxes) as well as the major 
transcriptional start sites (arrow) are indicated as described in BROWN et al. 
(1988) and PLUMB et al. (1991). Genomic fragment FI (Pstl-PstI fragment, 
1982bp) encompasses the whole of clone N l, whereas fragments F2 (Pstl- 
Hindin fragment, 1384bp) and fragment F3 (Hindlll-PstI fragment, 597bp) 
are subfragments thereof. Further details, see text.



Figure 3.3 summarizes in a flow diagram the cloning steps required to 

construct the recombinant sense and antisense pZN(X)RAS retroviral vectors. 

Plasmid maps of the antisense retroviral constructs are shown in figure 3.4. 

Maps for the sense retroviral constructs are not included in this figure, as they 

differ from their antisense counterparts only in the orientation of the c-Ha-ras 

fragment inserts.

3.3.2. Generation of ZN(X)RAS Virus Producing Cell Pools and Infection 

of CT3 Fibroblasts.

Virus producing cell pools were generated by stable transfection of 

ZN(X)RAS retroviral vector DNA into ¥ 2  packaging cells (MANN et al., 

1983) using calcium phosphate co-precipitation (WIGLER et al., 1978). Table 

3.1 lists the transfection efficiencies using the different retroviral vector DNAs 

averaged over three independent transfection experiments. Significant 

variations in transfection efficiencies were observed, which could partly be 

explained by the size of the transfected retroviral plasmids. The presence of c- 

Ha-ras fragment FI' and F2' in sense orientation within the recombinant 

retroviral vector constructs had a negative effect on transfection efficiencies. It 

seemed likely for both fragments that "sense" expression reduced the 

efficiency of the neo gene expression, thus leading to fewer G418r-colonies 

and poorer transfection efficiencies. The expression of fragments FI' or F21 

inserted in antisense orientation did not have any reducing influence on neo 

gene expression and transfection efficiencies. No such orientation-dependent 

influence on transfection efficiency and neo gene expression was observed for 

the c-Ha-ras fragment F3' when inserted into pZip Neo SV(X)1 vector (table 

3.1). A virus producer pool for the pZN(X)RAS+l construct could only be 

established after repeated transfection experiments using *F2 cells 

continuously selected in mycophenolic acid for the expression of the gpt 

marker present on the packaging-defect helper virus construct used to generate 

the packaging cell line (MANN et al., 1983). LANG et al. (1985) and CORY 

et al. (1987) also observed a reduction in the ratio of the levels of subgenomic 

RNA to genomic RNA, possibly caused by inefficient splicing, after the 

insertion of a GM-CSF cDNA or a c-myc cDNA into the pZip Neo SV(X)1 

vector, respectively. Insertion of the c-myc cDNA in "antisense" orientation
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Figure 3.3.

Flow diagramm of the cloning of the sense and antisense pZN(X)RAS 
retroviral vectors.

The flow diagramm summarizes the cloning steps required in the 
construction of the sense (+) and antisense (-) pZN(X)RAS retroviral vectors.
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Antisense pZN(X)RAS retroviral vector constructs.

Antisense pZN(X)RAS retroviral vectors are derived from the pZip 
Neo SV(X)1 retroviral vector (CEPKO et al., 1984) by inserting genomic c- 
Ha-ras gene fragments FI', F2’ or F3' (figure 3.2), respectively, in the opposite 
orientation to the transcriptional direction defined by the 5' MoMuLV-LTR, 
into the Bam HI cloning site of the pZip Neo SV(X)1 vector (figure 3.1.). 
Recognition sites for several restriction enzymes are indicated and the sizes of 
the retroviral vector constructs pZN(X)RAS-l, pZN(X)RAS-2 and 
pZN(X)RAS-3 are given in kb.
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Table 3.1.

Transfection efficiencies of ¥ 2  cells transfected with ZN(X)RAS 
retroviral vector plasmid DNA.

(a): pZN(X)RAS are pZIP NEO SV(X)1-derived retroviral vectors
containing genomic c-Ha-ras sequences in sense (+) or antisense orientation (- 
)•

(b): Virus producing cell pools were generated by stable
transfection of ZN(X)RAS retroviral vector DNA into ¥ 2  packaging cells 
(MANN et al., 1983) using calcium phosphate co-precipitation (WIGLER et 
al., 1978). 5}ig of each retroviral plasmid to be transfected was added to 
sheared genomic carrier DNA (human white blood cell DNA) and precipitated 
onto ¥ 2  cells seeded out 24 hours previously at a cell density of 1x10^ cells 
per 75 cm^ flask. Medium was replaced after 18 hours. After a further 48 
hours, the transfected *F2 cells were trypsinized, counted and seeded at a 
density of 5x10^ cells per 10 cm^ plate in the presence of 800|ig/ml G418. 
After a selection period of two weeks, pools of virus producer cells were 
generated. As controls for the transfection procedure, negative (carrier DNA 
only) and positive controls (pAG60, a non-retroviral plasmid conferring 
G418-resistance; pZIP NEO SV(X)1, the parental retroviral vector) had been 
included. Transfection efficiency is the number of G418-resistant colonies 
observed per 10^ viable cells replated into G418 selection after calcium 
phosphate transfection of ¥ 2  cells with 5p.g of plasmid DNA and 20|ig carrier 
human white blood cell DNA.

(c): Due to initial difficulties in transfecting pZN(X)RAS+l plasmid 
DNA, the results shown in brackets were from a later experiment using 2 
cells continuously selected in mycophenolic acid.



Transfaction efficiencies of \y2 cells transfected with ZN(X)RAS 
retroviral vector plasaid DNA.

1 .....
|Transfected 
|retroviral vector 
|plasmid DNA ^

|Transfection Efficiency^ | 
j G418r - cfu/5M-g DNA/10® viable |
jcells |

jpAG60 ii
8.3 x 103 |

j pZip Neo SV(X)1
i
ii

1.1 x 103 |

j pZN(X) RAS + 1
i
ii 0 (1.5 x 101) (c) |

|pZN(X) RAS - 1 i
ii

1.6 x 102 j

j pZN(X) RAS + 2
i
ii

2.7 x 101 j

jpZN(X) RAS - 2
i
ii

1.8 x 102 |

jpZN(X) RAS + 3
i
ii 2.6 x 102 |

|pZN(X) RAS - 3
i
i 6.3 x 102 |



into the same retroviral vector did not alter the expression of the neo-gene 

(CORY et al., 1987).

The virus titer released from each pool was assayed by determining the 

number of G418-resistant CT3 colony forming units following infection of 

CT3 cells. The number of G418r-colonies was adjusted for re-plating 

efficiency, the fraction of infected cells plated out and the volume of virus 

supernatant used for infection to give the infection efficiency or titer as the 

number of G418r-CT3 colony forming units per ml of virus supernatant per 

10^ viable infected cells (G418r-CFU/ml/10^ viable cells). Table 3.2 shows 

the titer of 7 virus producing pools averaged over up to three separate 

infection experiments. All viruses were able to efficiently infect CT3 cells to 

give G418-resistant colonies. Infectious virus particles were released by the 

virus producer cells at titers between 3.0x10^ to 1.6x10^ G418r-cfu/ml/10^ 

viable CT3 cells (table 3.2). These titers compare favourably with values 

published by CEPKO et al. (1984). The number of infectious virus particles 

released by pools of producer cells tends to be on average lower than the viral 

titer that can be achieved by clonal lines of producer cells (data not shown).

3.3.3. Northern Analysis of Antisense ZN(X)RAS Virus Infectants.

The ZN(X)RAS producing cell pools listed in tables 5.1 and 5.2 were 

analyzed for the expression of the exogenous c-Ha -ras sequences and neo­

gene, both encoded in the ZN(X)RAS retroviral vector constructs. In Northern 

analysis of total RNA isolated from these transfectants, hybridization of an in 

vitro transcribed "antisense" neo-riboprobe (pBSneo was a gift from N. 

KEITH) detected a «£o-specific transcript in 'F2 cells transfected with the 

Aieogene-containing ZN(X)RAS retroviral constructs (figure 3.5). The 

detected messenger RNA species was consistent in size with being the spliced 

retroviral subgenomic RNA of about 4.2kb in length. A further, larger sized 

transcript was detected in each lane of RNA from ZN(X)RAS transfected ¥ 2  

cells. The larger RNAs differed in size but again the respective size was 

consistent with being the full-length retroviral genomic RNAs of the 

ZN(X)RAS proviruses present in the transfectants. The observed size 

variations corresponded with the differences in size of the c-Ha-ras fragments 

FT to F3' which were inserted into the BamHI site of the basic pZip Neo
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Efficiency of infection of CT3 and SEP14 cells by recombinant 
sense and antisense ras retroviral vectors.

1 1 
|Recombinant | 
jretroviral v e c t o r s ^  |
i i

■ _ 1
Infection efficiency | 
G418r-cfu/ml/10^ viable cells ^  |

1
1! CT3 cells SEP 14 cells j

i i 
|Zip Neo S V ( X ) 1  |i i 2.3 X 106 1.5 X

VOoH

j ZN (X)
I

R AS+ 1 |1 1 . 5 X 106 9.2 X 105 |

j ZN (X)
1

R A S - 1  |1 3.0 X 10s 2.8 X 1 0 5  1

j ZN (X)
1

R AS + 2 |
1

5.6 X 105 6.7 X IQ4 |

j ZN (X)
1

RAS- 2  |
1

1.6 X 106 2.5 X 105 |

| ZN (X)
1

RA S+ 3 |
1

4.7 X 105 1.5 X 1 0 5  1

ZN (X)
1

R A S - 3 | 7.8 X 105 1.8 X 105 |

Table 3.2.

Efficiency of infection of CT3 and SEP14 cells by recombinant sense and 
antisense ras containing retroviral vectors.

(a): ZN(X)RAS are ZIP NEO SV(X)1 -derived retriviral vectors 
containing genomic c-Ha-ras sequences in sense (+) or antisense orientation (-

(b); Virus-producing ¥ 2  pools were plated out at subconfluent cell 
density (5x10 cells per 25 cm^ TC flask) in 5ml of fresh, non-selecdve 
media. After 24 hours the media was removed and used immediately for virus 
assay. A 200jil aliquot of virus supernatant, in a total volume of 7ml 
containing 24jig/ml polybrene, was added to CT3 fibroblast cells seeded out 
24 hours previously at 5xl05 cells per F25 flask. Cells were washed with PBS 
and 5-7ml of fresh media was added 24 hours after infection. After an 
expression period of 48 hours, the CT3 cells were trypsinized, counted and 
seeded at 1x10 , 1x10 and lxlCp cells per 10cm^ plate in the presence of 
0.8mg/ml G418. The plates were incubated for two weeks, with a medium 
change after the first week, and the frequency of G418r-colony formation was 
calculated. Infection efficiency is the number of G418-resistant colonies 
observed per 106 viable cells replated into G418 selection after infection of 
CT3 or SEP 14 cells with 200|il of viral supernatant from *¥2 cells producing 
the recombinant retrovirus shown.



Figure 3.5.

Northern analysis of ¥ 2  cells transfected with pZN(X)RAS retroviral 
vectors.

10|ig of total cellular RNA, isolated from *¥2 cells transfected with 
sense (+) or antisense (-) pZN(X)RAS retroviral vector plasmid DNA, were 
electrophoresed, Northern blotted and hybridized with the antisense neo ribo- 
probe, transcribed in vitro by T3 RNA polymerase from Sstl-linearized pBS 
NEO plasmid DNA. The plasmid pBS NEO was cloned by inserting a lkb 
Bglll-Smal fragment of the neor gene from plasmid p61cl-24 into BamHI- 
HincII linearized bluescribe vector in sense orientation to the T7 promoter (N. 
KEITH Ph.D. Thesis, 1988).

Lane 1: total RNA form 'P2 cells transfected with pAG60 plasmid 
DNA. Lane 2: total RNA from 2 cells transfected with pZN(X)RAS-3 
plasmid DNA 0F2RAS-3 producer cells). Lane 3: total RNA from ¥ 2  cells 
transfected with pZN(X)RAS+3 plasmid DNA 0P2RAS+3 producer cells). 
Lane 4: total RNA from ¥ 2  cells transfected with pZN(X)RAS-2 plasmid 
DNA ('P2RAS-2 producer cells). Lane 5: total RNA from ¥ 2  cells transfected 
with pZN(X)RAS+2 plasmid DNA 0F2RAS+2 producer cells). Lane 6: total 
RNA from ¥ 2  cells transfected with pZN(X)RAS-l plasmid DNA 0P2RAS-1 
producer cells). Lane 7: total RNA from ¥ 2  cells transfected with pZip Neo 
SV(X)1 plasmid DNA 0F2SV(X)1 producer cells). Lane 8: total RNA from 
untransfected SEP14 cells. Lane 9: total RNA from untransfected ¥ 2  cells. 
Lane M: RNA size marker (Gibco/BRL) in vitro transcribed in the presence of 
■^P-rUTP. The RNA size marker indicated the migartion distance of 9.5kb, 
7.5kb, 4.4kb, 2.4kb, 1.4kb and 0.8kb RNA molecules.
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SV(X)1 retroviral vector to generate the ZN(X)RAS retoviral constructs 

(figures 5.3 and 5.4). These results confirm the expression of the ZN(X)RAS 

retroviral vector construct encoded neo-gtne via the subgenomic RNA species 

and are consistant with expression of the 5’-inserted genomic c-Ha -ras 

sequences via the full-length RNA species of the transcriptional active 

ZN(X)RAS proviral constructs after transfection into *¥2 recipient cells: a 

spliced subgenomic RNA of around 4.2kb in length and full-length genomic 

RNAs of varying sizes depending on the size of the Ha-roy fragment present 

in the ZN(X)RAS retroviral constructs (figure 3.4). The neo-gene is 

transcribed into the spliced message and the genomic c-Ha-roy fragments are 

transcribed as part of the full-length RNA species.

Non-specific effects of c-Ha-roy antisense RNA detecting riboprobes, 

hybridizing presumably to ribosomal RNA, made the analysis of antisense c- 

Ha-ray RNA expression from the ZN(X)RAS proviruses more difficult 

(Figures 5.6a and 5.6b). Nevertheless, riboprobes designed to detect antisense 

c-Ha-roy F2' and F3' expression were used successfully to demonstrate 

antisense RNA expression of ZN(X)RAS-2 and ZN(X)RAS-3 retroviral 

constructs present in the *¥2 transfectants. The riboprobe constructs 

pBS19rasF2 (F2) and pBS19rasF3 (F3) were cloned by inserting c-Ha-ray 

fragments F2 and F3 into the bluescribe vector pBS19 (Stratagene), which had 

previously been linearized in its pUC19 poly linker region by a Pstl/HindlH 

double restriction digest. The F2-riboprobe, in vitro transcribed from the 

HindlH-linearized pBS19rasF2 plasmid by T7 RNA polymerase, hybridized to 

a transcript of the expected size of about 5.5kb only in the lane which 

contained total RNA from ZN(X)RAS-2 transfectants (figure 3.6a). Similarly, 

F3-riboprobe, in vitro transcribed by the T3 RNA polymerase from the Pstl- 

linearized pBS19rasF3 plasmid, detected a transcript of around 4.7kb in RNA 

isolated from ZN(X)RAS-3 retroviral construct containing ¥ 2  transfectants, 

representing c-Ha-ray fragment F3' antisense RNA expression in ZN(X)RAS- 

3 transfectants (figure 3.6b). The F2- and F3-riboprobes did not hybridize to 

mRNA transcripts in lanes containing total RNA from ZN(X)RAS+2 and 

ZN(X)RAS+3 transfectants. No ZN(X)RAS specific retroviral gene 

expression was detected with either of the riboprobes in uninfected 2 and 

SEP14 cells (figure 3.6). Attempts were made to analyze ZN(X)RAS-1
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Figure 3.6.

Northern analysis of *F2 cells transfected with pZN(X)RAS retroviral 
vector plasmid DNA for antisense c-Ha-ras RNA expression.

15pg of total RNA isolated from sense (+) and antisense (-) ZN(X)RAS 
transfected ¥ 2  cells were electrophoresed, Northern blotted and hybridized 
with in vitro transcribed sense F2-riboprobe (figure 3.6a) or sense F3- 
riboprobe (figure 3.6b). The riboprobes have been descibed in the text

Figure 3.6a: Lane M: in vitro -^P-rUTP labelled RNA size marker (see 
legend figure 5.5). Lane 1: total RNA isolated from untransfected CT3 cells. 
Lane 2: total RNA isolated from untransfected 'P2 cells. Lane 3: total RNA
isolated from VF2SV(X)1 producer cells (figure 3.5). Lane 4: total RNA
isolated from 'F2RAS+2 producer cells (figure 3.5). Lane 5: total RNA
isolated from 'F2RAS-2 producer cells (figure 3.5). Lane 6: total RNA
isolated from untransfected SEP 14 cells.

Figure 3.6b: Lane M: in vitro ^P-rU TP labelled RNA size marker 
(see legend figure 5.5). Lane 1: total RNA isolated from untransfected ¥ 2  
cells. Lane 2: total RNA isolated from 'F2RAS+3 produced cells (figure 3.5). 
Lane 3: total RNA isolated from T^RAS-S producer cells (figure 3.5).

The sense F2-riboprobe detected a transcript of the size expected for 
full-length ZN(X)RAS-2 RNA (5.5kb) in lanes containing total RNA isolated 
from pZN(X)RAS-2 transfected ¥ 2  cells (figure 3.6a, lane 5). No signal was 
detected in pZN(X)RAS+2 transfected Y2 cells and in RNA isolated from 
untransfected ¥ 2 , CT3 or SEP14 cells (figure 3.6a). In figure 3.6b, the sense 
F3-riboprobe detected a transcript of the size expected for full-length 
(ZN(X)RAS-3 RNA (4.7kb) in lanes containing total RNA isolated from 
T ^R A S^ producer cells (lane 3), no such transcript was detected in total 
RNA from Y2RAS+3 producer cells (lane 2) or from untransfected ¥ 2  cells 
(lane 1). Hybridization to transcripts of about 4.4kb in size, detected each lane 
(figures 3.6a and b), repesented non-specific hybridization of the F2 and F3- 
riboprobes to presumably ribosomal RNA.
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retroviral vector transfectants but due to non-specific hybridization, antisense 

specific transcripts could not be clearly identified (see also later discussion on 

possible rapid turn-over of c-Ha-r&y fragment Fl'-antisense RNA.).

Northern analysis was performed on total RNA isolated from 

ZN(X)RAS infected SEP14 and CT3 cells and uninfected parental SEP14 and 

CT3 cells. The F2- and F3-riboprobes were used for hybridization, their 

specificity for detection of c-Ha-ras antisense RNA transcripts had been 

demonstrated during RNA analysis on ZN(X)RAS transfectants figure 3.6a 

and 5.6b).

Non-specific effects of both riboprobes hybridizing presumably to 

ribosomal RNA was again observed (figure 3.7a and b). However, using the 

F2-riboprobe, a transcript was detected in lanes containing RNA from 

ZN(X)RAS-2 infected SEP14 and CT3 cells. The transcript was consistent in 

size with being the full-length genomic RNA transcribed from the 

ZN(X)RAS-2 recombinant provirus. No transcript was detected in RNAs 

isolated from uninfected SEP 14 and CT3 cells nor cells infected with the 

ZN(X)RAS+2 virus (figure 3.7a). Corresponding results were obtained for 

ZN0ORAS-3 infected SEP14 and CT3 cells. The F3-riboprobe hybridized to a 

transcript of the size expected for full-length genomic ZN(X)RAS-3 retroviral 

vector RNA in lanes containing RNA from ZN(X)RAS-3 infected SEP14 and 

CT3 cells and ¥ 2  cells transfected with the ZN(X)RAS-3 retroviral construct. 

No hybridization signal was detected in lanes containing total RNA isolated 

from either ZN(X)RAS+3-infectants or the ZN(X)RAS+3 transfected ¥ 2  

cells, nor the parental ¥ 2 , SEP14 and CT3 cells (figure 3.7b).

Northern analysis on RNAs from ZN(X)RAS-1 infected SEP14 cells 

had been performed repeatedly. However, at no time was a c-Ha-ras F l'- 

antisense RNA specific transcript detected. Figure 3.8 shows that even under 

conditions where c-Ha-ras F2'-antisense RNA expression in ZN(X)RAS-2 

infectants was readily detectable, using the F2-riboprobe, the predicted larger- 

sized c-Ha-ras Fl'-antisense RNA transcript of the ZN(X)RAS-1 provirus was 

not detected. It could be speculated that the failure to detect expression of a 

6.7kb c-Ha-ras F I1 antisense RNA was due to the binding of the antisense 

transcript to its target, the cellular c-Ha -ras mRNA, resulting in an RNA:RNA 

duplex, which is rapidly degraded by double-strand specific ribonucleases like
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Figure 3.7.

Northern analysis of SEP14 and CT3 cells infected with sense and 
antisense ZN(X)RAS retroviral vectors.

15|ig of total RNA, isolated from SEP 14 and CT3 cells infected with 
sense(+) or antisense (-) ZN(X)RAS retoviral vectors, were electrophoresed, 
Northern blotted and hybridized with in vitro transcribed sense F2-riboprobe 
(figure 3.7.a) or sense F3-riboprobe (figure 3.7b).

Figure 3.7a: Lane 1: total RNA isolated from untransfected ¥ 2  cells.
Lane 2:
total RNA isolated from T2RAS+2 producer cells (figure 3.5). Lane 3: total 
RNA isolated from 'P2RAS-2 producer cells (figure 3.5). Lane 4: total RNA 
isolated from uninfected CT3 cells. Lanes 5 and 6: total RNA isolated from 
two separate pools of CT3 cells infected with ZN(X)RAS+2 retroviral vector. 
Lane 7: total RNA isolated from CT3 cells infected with ZN(X)RAS-2 
retroviral vector. Lane 8: total RNA isolated from uninfected SEP 14 cells. 
Lane 9: total RNA isolated from SEP14 cells infected with ZN(X)RAS+2 
retroviral vector. Lane 10: total RNA isolated from SEP14 cells infected with 
ZN(X)RAS-2 retroviral vector. M: - ^ P - r U T P  labelled RNA size marker.

Figure 3.7b: Lane 1: total RNA isolated from untransfected ¥ 2  cells. 
Lane 2: total RNA isolated from 'F2RAS+3 producer cells (figure 3.5). Lane 
3: total RNA isolated from T^R A S^ producer cells (figure 3.5). Lane 4: total 
RNA isolated from uninfected CT3 cells. Lane 5: total RNA isolated from 
CT3 cells infected with ZN(X)RAS+3 retroviral vector. Lane 6: total RNA 
isolated from CT3 cells infected with ZN(X)RAS-3 retroviral vector. Lane 7: 
total RNA isolated from uninfected SEP 14 cells. Lane 8: total RNA isolated 
from SEP14 cells infected with ZN(X)RAS+3 retroviral vector. Lane 9: total 
RNA isolated from SEP14 cells infected with ZN(X)RAS-3 virus. Lane M: 
32p-rUTP labelled RNA size marker.

In figure 3.7a, hybridization with the sense F2-riboprobe detected a 
transcript of the size expected for full-length ZN(X)RAS-2 RNA (5.5kb) in 
lanes containing total RNA from 'P2RAS-2 producer cells (lane 3) and from 
CT3 and SEP 14 cells infected with ZN(X)RAS-2 retroviral vector (lanes 7 
and 10).No such transcript was deteceted in lanes containing RNA from 
T^RAS+Z producer cells (lane 2), uninfected SEP 14 and CT3 cells (lanes 8 
and 4), or ZN(X)RAS+2 infected SEP 14 and CT3 cells (lanes 9, 5, and 6). In 
figure 3.7b, hybridization with the sense F3-riboprobe detected a transcript of 
the size expected for full-length ZN(X)RAS-3 RNA (4.7kb) in lanes 
containing total RNA from 'FZRAS-S producer cells (lane 3), and from CT3 
and SEP14 cells infected with ZN(X)RAS-3 retroviral vector (lanes 6 and 9). 
No such transcript was detected in lanes containing RNA from 'FZRAS+S 
producer cells (lane 2), uninfected SEP 14 and CT3 cells (lanes 7 and 4), or 
ZN(X)RAS+3 infected SEP14 or CT3 cells (lanes 8 and 5). Hybridization to 
transcripts of about 4.4 kb in size, detected in each lane, represented non­
specific hybridization of the riboprobes F2 and F3 presumably to ribosomal 
RNA.
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Figure 3.8.

Northern analysis of SEP14 cells infected with ZN(X)RAS-1 retroviral 
vector.

15|ig of total RNA isolated from SEP 14 cells infected with antisense (- 
) and sense (+) ZN(X)RAS retroviral vectors were electrophoresed, Northern 
blotted and hybridized with in vitro transcribed sense F2-riboprobe. Lane 1: 
total RNA isolated from uninfected SEP 14 cells. Lane 2: total RNA isolated 
from SEP14 cells infected with ZN(X)RAS-1 retroviral vector. Lane 3: total 
RNA isolated from SEP 14 cells infected with ZN(X)RAS+2 retroviral vector. 
Lanes 4 and 5: total RNAs isolated from two independent pools of SEP14 
cells infected with ZN(X)RAS-2 retroviral vector. M: - ^ P - r U T P  labelled 
RNA size marker.

Under conditions where c-Ha -ras F2’-antisense specific transcripts 
were readily detected by hybridization with in vitro transcribed sense F2- 
riboprobe in total RNA isolated from ZN(X)RAS-2 infected SEP14 cells 
(lanes 4 and 5), no c-Ha-ras Fl'-antisense transcript was detected in lane 2 
containing total RNA from ZN(X)RAS-1 infected SEP14 cells. Hybridization 
to transcripts of about 4.4kb, detected in each lane, represented non-specific 
hybridisation of the F2-riboprobe to presumable ribosomal RNA.
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RNaselll (chapter 5.1.4.). Figure 3.5 has shown that a larger, full-length 

genomic RNA transcript can be detected in ¥ 2  cells transfected with the 

ZN(X)RAS-1 retroviral vector construct, consistent with c-Ha-ras Fl'- 

antisense RNA being expressed from the transfected retroviral construct. As 

will be described later, it is also interesting to note, that the ZN(X)RAS-1 

virus, when infected into SEP 14 cells, has given the most significant reversals 

of transformation characteristics.

In summary, retroviral constructs were made containing genomic 

fragments of the murine c-Ha-ras gene in sense and antisense orientation. 

These retroviral vectors were able to infect cells with high efficiency in vitro 

(table 3.2). Antisense RNA expression of F2' and F3' were shown (figures 5.6, 

5.7 and 5.8). Although antisense FI' RNA appeared to be expressed as part of 

the full-length viral transcript of ZN(X)RAS-1 virus, a transcript 

corresponding to antisense FI' mRNA was not observed in steady-state level.

3.4. Inhibition of Cel! Transformation by Genomic c-Ha-nzs Antisense 

RNA.

Two cell lines, the non-transformed cell line CT3 and the highly 

transformed cell line SEP 14, were used to assay possible effects of 

constitutive expression of c-Ha-ray antisense RNA, under the control of 

MoMuLV-LTR, on the expression levels of cellular Ha-ras proto-oncogene 

and/or its oncogenic form activated by a codon 61 mutation. Changes in 

cellular phenotype and anchorage independent growth properties were 

assayed.

The cell line CT3 had been obtained from G.M. COOPER'S laboratory 

(COPELAND et al., 1979). The CT3 cell line is one of several lines derived 

from mouse NIH 3T3 fibroblasts with unlimited life-span. The cell line NIH 

3T3 was established from clones of primary NIH mouse embryo fibroblasts 

which survived crisis while being passaged frequently for a long period of 

time at low cell density (3x10^ cells replated every 3 days) (JAINCHILL et al, 

1969).

Highly transformed SEP 14 cells were derived from an NIH 3T3 focus 

following transfection of DNA isolated from a DMBA/TPA initiated and 

promoted mouse skin papilloma containing a codon 61-activated c-Ha-ras
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oncogene. SEP 14 cells have a highly transformed phenotype, produce large 

amounts of mutant p21 Ha-ras protein and are highly tumorigenic in NIH 3T3 

mice (tumours develop within 8 days after subcutaneous injection) 

(QUINTANILLA et al., 1986).

An additional cell line, SEP11, was included in the c-Ha -ras antisense 

RNA study. The clonal line SEP11, generated following the same protocol as 

for SEP 14, had a less transformed phenotype than SEP 14, which was reflected 

in reduced tumorigenicity in NIH mice and the lower amounts of mutant p21 

Ha-ras protein detectable. Unfortunately, for reasons not understood, SEP11 

cells had lost their transformation properties as became clear following careful 

characterization in vivo (tumorigenicity in NIH mice) and in vitro (focus 

formation). After putting the cells through renewed foci selection (5% FBS; 

confluency for 2 to 3 weeks; medium changes every 3 to 4 days), a more 

transformed appearing SEP11 sub-line could be established. However, 

tumorigenicity tests with this SEP11 subline in nude mice were negative (data 

not presented). Therefore, efforts to re-establish the transformed phenotype of 

SEP11 failed and results from SEP11 cells were left out of the data presented.

3.4.1. Effects of c-Ha-ras Antisense RNA Expression on Transformation 

Phenotype.

SEP14 cells were infected with the c-Ha-ras antisense retroviral 

vectors to assess possible effects of the expression of the antisense RNA on 

the morphology of the transformed SEP14 cells. As controls, retroviral vectors 

expressing the c-Ha-ras fragments in sense were included in the infection 

experiments. Additionally, the quality of the virus stocks was tested by 

infecting CT3 cells in parallel to allow the determination of the viral titer of 

each stock at the time of infection of SEP 14 cells. The infection efficiencies 

are summarized in table 3.3. The infection efficiency values obtained for 

SEP 14 cells were between 20% to 60% lower than those calculated for CT3 

cells, showing that SEP 14 are less readily infectable than CT3 cells.

G418r-SEP14 colonies obtained after G418 selection following 

infection of SEP14 cells with recombinant sense or antisense ZN(X)RAS 

retroviruses, displayed various degrees of transformation. Within a single 

10cm^ plate, colonies with a broad range of phenotypic morphology, from
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Ratio of morphologically untransformed to transformed colonies of 
SEP14 cells after infection with sense and antisense ras 
retroviral vectors.

1
|Recombinant
retroviral vectors (a)

jPercentage 
(viability ̂

1 ----------

| U/T
1

1
|

ratio
i

|Percentage 
jc
jU/T ratio (d)
i

| uninfected 113.3
1
j 4.8
1

(266)
1 _ -  

| 0  
1

| ZN (X) RAS-1 | 6 . 0

1
j 1.7
1

(135)
1

|-64.5
1

| ZN (X) RAS+2 IT)

OCM

1

j 3. 9
1

(107)
1

1-18.8
1

| ZN(X) RAS-2 j 15.5
1

j 4.0
1

(134)
1

|-16.7
1

j ZN (X) RAS+3 114.0
1

j 4.5
1

(171)
1

|-6.3
1

| ZN(X) RAS-3 118.0
1

j 4.3 (386)
1
1-10.4

Table 3.3.

Ratio of morphologicallly untransformed to transformed colonies of 
SEP14 cells after infection with sense and antisense ras containing 
retroviral vectors.

(a): ZN(X)RAS are ZIP NEO SV(X)1-derived retroviral vectors
containing genomic c-Ha-ras sequences in sense (+) or antisense orientation (-
).

(b): The cell viability of cells was tested by replating 200 cells per 
10cm^ plate into non-selective growth medium. The number of colonies 
observed 10 to 14 days after replating is expressed as percentage of number of 
cells replated.

(c): SEP 14 cells infected with ZN(X)RAS viruses had been 
replated into G418 selection 48 hours after infection at cell densities of 10 or 
104 cell per 10cm^ plate. Uninfected SEP 14 cells were replated into non­
selecting growth medium at cell densities of 200 to 500 cells per 10cm plate. 
The number of colonies and their morphology was scored 10 to 14 days after 
replating. The ratio of morphologically untransformed to transformed colonies 
observed after infection of SEP 14 cells with sense and antisense ras retroviral 
vectors or replating of uninfected SEP14 cells at low cell density. Numbers in 
brackets are the total number of colonies scored.

(d): Percentage change in untransformed to transformed ratio
compared to uninfected SEP 14 cells.



highly transformed to flat, almost revertant-like phenotype, were found. The 

abundance of phenotypically untransformed (U) to transformed (T) colonies 

was expressed as the U/T ratio. Uninfected SEP14 cells, plated at low cell 

density in non-selective medium, formed colonies within 10 to 14 days. These 

SEP 14 colonies were not homogeneous in their degree of transformation but 

showed also a wide spectrum of transformed phenotypes (table 3.3). Even 

recloning of phenotypically transformed SEP14 colonies did not give 

uniformly transformed colonies in subsequent colony formation experiments. 

Uninfected SEP14 colonies had a U/T ratio of 4.8 (untransformed colonies to 

every transformed colony), a value which was used as the reference against 

which any changes of the U/T ratio observed in ZN(X)RAS retrovirus infected 

SEP14 colonies were evaluated. Results are summarized in table 3.3.

No significant alterations in the U/T ratio was observed in SEP14 

colonies derived after infection with ZN(X)RAS+3 (U/T ratio: 4.5) or 

ZN(X)RAS-3 (U/T ratio: 4.3) when compared either to each other or to the 

U/T value of uninfected SEP 14 colonies (U/T ratio: 4.8) (table 3.3).

A slight difference in the distribution of flat to transformed colonies 

was observed in SEP14 cells infected with ZN(X)RAS+2 (U/T ratio: 3.9) and 

ZN(X)RAS-2 virus (U/T ratio: 4.0) in relation to uninfected SEP14 cells (U/T 

ratio: 4.8). The changes in the U/T ratios could not be attributed to the 

expression of the antisense RNA, as infection with either sense or antisense 

recombinant retrovirus resulted in the same degree of reduction of the WT 

value (table 3.3).

There was, however, a striking difference in the U/T ratio between 

SEP14 infected with ZN(X)RAS-1 virus and uninfected cells. ZN(X)RAS-1 

infected, G418r-SEP14 cells had a U/T value of 1.7, representing a 64.5% 

reduction compared to the U/T ratio of 4.8 of uninfected SEP14 cells (table

3.3). Unfortunately, cell pools producing ZN(X)RAS+1 infectious virus had 

not yet been successfully established at the time these experiments were 

performed, as it proved extremely difficult to generate a ZN(X)RAS+1 virus 

producing cell pool by transfection of *¥2 cells (table 3.1). Thus, a direct 

comparison of alterations of U/T ratios as an effect of the expression of 

genomic c-Ha-ras fragment FI as sense or antisense RNA was not possible. 

Subsequent experiments of cell transformation used soft-agar cloning of
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SEP14 cells infected with sense and antisense ZN(X)RAS1 virus. 

Nevertheless, the observed 64.5% reduction in the U/T value seemed too 

significant to be explained solely by the presence of the Zip Neo SV(X)1 

derived provirus. Furthermore, G418r-SEP14 colonies containing sense or 

antisense ZN(X)RAS2 or ZN(X)RAS3 proviruses did not show nearly the 

same extent of U/T ratio reduction. As all c-Ha-ras sense and antisense 

ZN(X)RAS proviruses share the same basic retroviral vector, it seemed 

unlikely that the Zip Neo SV(X)1 vector sequences should have caused the 

dramatic reduction in the U/T value observed in ZN(X)RAS-1 infected G418r- 

SEP14 cells. However, the scoring of phenotypically transformed or 

untransformed colonies was highly subjective. Therefore, soft agar cloning 

was used in subsequent experiments to assess possible reductions in cell 

transformation by changes in anchorage independent growth properties.

3.4.2. Effects of c-Ha-ras Antisense RNA Expression on Soft Agar Cloning 

Ability.

One of the definitions of cellular transformation is the ability of 

transformed cells to grow in an anchorage-independent manner in semi-solid 

medium. Normal fibroblasts do not proliferate when suspended in a gel or 

semi solid growth medium, such as soft agar, as fibroblastic cell division 

requires attachment to a solid surface. Fully transformed fibroblasts, however, 

grow anchorage-independently and readily form colonies under semi solid 

growth conditions (SHIH et al., 1979, 1981; COOPER et al., 1980; 

KRONTIRIS and COOPER, 1981).

Several independent pools of SEP14 and CT3 cells, generated after 

individual infections with either of the sense or antisense ZN(X)RAS 

recombinant retroviral vectors followed by G418-selection, were replated in 

semi-solid growth medium (0.3% agar). Changes in the efficiency of colony 

formation were assessed after a 4-week-incubation period and selective 

staining of viable colonies with 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5- 

phenyltetrazolium chloride (INT) (l.Omg/ml in PBS) (BOL et al., 1977). INT 

staining is specific for viable cells, as only these are able to metabolize INT 

following uptake into the cell. The metabolic intermediate of INT is a red 

stain, causing viable colonies to appear red (BOL et al., 1977). Red colonies
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were scored and used to calculate soft agar cloning efficiency of the different 

SEP 14 and CT3 cell pools. The results of three soft agar cloning experiments 

with ZN(X)RAS-infected SEP14 pools (experiments 1 to 3) and two 

experiments with ZN(X)RAS-infected CT3 pools (experiments 2 and 3) are 

listed in table 3.4. Typical values regarding virus titer and infection 

efficiencies obtained after infection and G418-selection of SEP 14 cells of the 

recombinant ZN(X)RAS virus stocks used were described earlier (table 3.2). 

ZN(X)RAS-infected SEP14 and CT3 pools were replated into semi-solid 

medium in parallel (experiments 2 and 3). Soft agar cloning efficiencies 

achieved by uninfected SEP14 or CT3 cells were used as the standard against 

which soft agar colony formation efficiencies of ZN(X)RAS-infected cell 

pools were assessed.

In experiments 1 and 2, the most prominent reduction in soft agar 

cloning efficiency was seen with G418r-pools of ZN(X)RAS-1 infected 

SEP14 cells. The observed reductions were -67.3% and -54.9%, respectively 

(table 3.4). Reductions to a lesser extent of colony formation in soft agar by - 

39.0% and -30.5% were observed in ZN(X)RAS-2 infected SEP14 cells. No 

conclusions on changes in anchorage independent growth could be drawn with 

ZN(X)RAS-3 infected SEP14 cells, as these repeatedly failed to grow in 10% 

FBS-containing growth medium in culture and thus could not be assayed in 

soft agar. The batch of FBS used was changed during the course of the study 

and the failure of ZN(X)RAS3 infected SEP14 cells to grow presumably was 

due to differences in the growth factors present in the FBS.

The dramatic reduction in colony formation of ZN(X)RAS-1-infected 

SEP14 cells in semi-solid medium, seen in experiments 1 and 2 (table 3.4), 

could only indirectly be attributed to the expression of c-Ha-ras fragment F I1 

antisense RNA. The appropriate control of ZN(X)RAS+1-infected SEP14 

cells was not available, as a ZN(X)RAS+1-producer cell line had still not been 

successfully established. Any effects of the presence of ZN(X)RAS-1 provirus 

in SEP 14 cells on colony formation in soft agar were compared to the soft 

agar cloning efficiency of uninfected SEP 14 cells. However, the reduction in 

soft agar cloning efficiencies of -67.3% and -54.9% appeared too significant to 

be attributed solely to the presence of the Zip Neo SV(X) basic retroviral 

vector. This was confirmed in experiment 3, where the ZN(X)RAS+1 control
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Table 3.4.

Soft agar cloning efficiency of SEP14 cells infected with sense or antisense 
ras containing retroviral vectors.

(a): The designated number of each experimental series (see text).
(b): The cell line infected with sense or antisense ras retroviral

vector.
(c): ZN(X)RAS are ZIP NEO SV(X)1-derived retroviral vectors 

containing genomic c-Ha-ras sequences in sense (+) or antisense orientation (-

(d): Cell viability was tested by replating 200 cells per lOcm^ plate 
into non-selective growth medium. The number of colonies observed 10 to 14 
days after plating is expressed as percentage of number of cells replated.

(e): ZN(X)RAS-infected and uninfected SEP14 cells were replated
into 0.3% soft agar at cell densities of 10^, 10^ or 5x10^ cells per 6cm^ plate. 
Soft agar plates were incubated for up to three weeks (5% CO2, 37°C, humid 
atmosphere) before viable colonies were stained with INT and scored. The 
number of viable colonies observed growing in soft agar expressed as 
percentage of number of cells replated. One standart error of the mean is 
shown. Number in brackets are the number of experiments.

(f): The percentage change in soft agar cloning efficiency
compared to uninfected SEP 14 cells.



Soft agar cloning efficiency of SE714 cells infected with sense or antisens 
ras retroviral vectors.

1
|Experimental 
j series

Cell L i n e ^
----  '
|Recombinant 
j retroviral 
j vector ̂

Percentage
viability
<d)

Percentage
soft agar
cloning
efficiency(e)

■
Percentage 
change in 
soft agar 
cloning 
efficiency 
(f)

|1. SEP 14 | none 33.8 11.26+1.29(16) 0
SEP 14 |ZN(X)RAS-1 25.8 3.68+0.94(25) -67.3
SEP14 j ZN(X)RAS+2 24.6 6.63+1.00(33) -41.1
SEP14 j ZN(X)RAS-2 16.3 6.83+1.65(33) -39.0
SEP 14 j ZN(X)RAS+3 36.0 13.82+0.60(7) +22.7

| 2 . SEP 14 | none 35.2 0.82+0.14(12) 0
CT3 62.5 0 (12)
SEP 14 |ZN(X) RAS-1 33.3 0.37+0.15(12) -54.9
CT3 30.9 0 (12)
SEP14 |ZN(X)RAS+2 23.3 0.81+0.12 (12) -1.2
CT3 36.0 0 (12)
SEP 14 |ZN(X)RAS-2 27.3 0.57+0.26(7) -30.5
CT3 30.5 0 (12)

| 3 . SEP 14 | none 13.3 0.55+0.01 (7) 0
CT3 46.3 0 (12)
SEP 14 j ZN(X)RAS+1 13.0 0.96+0.22(7) +74.5
CT3 48.3 0 (12)
SEP 14 |ZN(X)RAS-1 12.5 0.1+0.03(8) -81.8

| 1 CT3 43.3 0 (12)



was included. The soft agar cloning efficiencies of uninfected SEP14 cells 

were directly compared to the cloning efficiencies obtained for ZN(X)RAS-1 

and ZN(X)RAS+1 infected SEP 14 cells. ZN(X)RAS+1-infected SEP14 cells 

(experiment 3, table 3.4) showed an increase in colony formation of +74.5%. 

Equally, ZN(X)RAS-1-infected SEP14 cells had a reduced cloning efficiency 

in soft agar by -81,8% (experiment 3, table 3.4). The ZN(X)RAS+1 and 

ZN(X)RAS-1 proviruses differed only in the orientation of the c-Ha-ros 

fragment FI insert, which in turn determined the production of sense or 

antisense RNA. It seemed therefore plausible to conclude, that the expression 

of the c-Ha-ras fragment FI as antisense RNA resulted in the dramatic 

reduction of the growth in soft agar and consequently transformed phenotype. 

Reduced cloning efficiencies in soft agar were also observed with ZN(X)RAS- 

2-infected SEP 14 cells. The reductions in colony formation of -39.0% 

(experiment 1, table 3.4) and -30.5% (experiment 2, table 3.4) were consistent 

but not as dramatic as with ZN(X)RAS-1-infected SEP14 cells. The presence 

of sense ZN(X)RAS recombinant proviruses in infected SEP 14 cells resulted 

in increasing, rather then reducing, soft agar cloning efficiencies (table 3.4). 

CT3 cells infected in parallel to SEP14 cells with the same ZN(X)RAS 

recombinant viruses failed to grow in soft agar as did uninfected CT3 cells 

(experiments 2 and 3, table 3.4). As CT3 cells have an untransformed cellular 

phenotype, the failure of these cells to form colonies in semi-solid medium 

was expected (SHIH et al., 1979, 1981; COOPER et al., 1980; KRONTIRIS 

and COOPER, 1981).

The results of experiment 3, together with the more circumstantial 

evidence provided by experiments 1 and 2, demonstrated clearly that the 

reduction in cloning efficiency observed for ZN(X)RAS-1 and ZN(X)RAS-2- 

infected SEP 14 cells could not solely be attributed to the presence of the Zip 

Neo SV(X) backbone of the recombinant proviruses but must be an effect of 

c-Ha-ras antisense RNA expression. Antisense RNA expressed from 

ZN(X)RAS1-1 provirus was the most effective in reducing cell 

transformation, both in soft agar cloning assays and the ratio of untransformed 

and transformed colonies. The results from the cell transformation assays are 

summarised in table 3.5.
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Summary of observed changes in transformed phonotype observed on SZP14 cell 
after infection with sense and antisense ras retroviral vectors.

1 1 ■ 
|Recombinant 
jretroviral v e c t o r ^

■I-  "" " 
(Percentage change 
jin U/T ratio^
11

1
Percentage change | 
in soft agar cloning| 
efficiency ̂  |

{none
1
1 0 1 0 1

| ZN (X) RAS+1
1
| not doneI +74.5 |

| ZN (X) RAS-1
1
| -64.5i -68.0 |

j ZN (X) RAS+2 i *-* C
D

C
O -21.0 1

| ZN (X) RAS-2
1
| -16.71 -32.0 |

|ZN(X) RAS+3
1
| - 6 . 3
1

+22.7 ' |

| ZN (X) RAS-3
1
| - 1 0 . 4 not done |

Table 3.5.

Summary of observed changes in transformed phenotype observed on 
SEP14 cells after infection with sense and antisense ras containing 
retroviral vectors.

(a): ZN(X)RAS are ZIP NEO SV(X)1-derived retroviral vectors 
containing genomic c-Ha-ras sequences in sense (+) or antisense (-) 
orientation.

(b): Percentage change in untransformed to transformed ratio 
compared to uninfected SEP 14 cells.

(c): The number of viable colonies observed growing in soft agar 
expressed as percentage of number of cells replated, the values given are the 
mean of the values listed in table 3.4.



Experiments to assess changes in the RNA levels from the endogenous 

c-Ha-ras gene and/or from the transfected codon 61-activated Ha -ras 

oncogene in ZN(X)RAS-1 infected SEP14 cells were not undertaken due to 

time limitations. A correlation between the observed changes in 

transformation of ZN(X)RAS-1 infectants with a reduction in the target RNA 

could be expected. Analysis of the negative effects of the presence of 

antisense RNA on Ha-ras gene expression at the protein level are more 

important still.

3.5. Summary.

pZip Neo SV(X)1 -based retroviral vectors had been constructed which 

constitutively expressed antisense RNA from genomic c-Ha-ros sequences. 

Northern analysis of ZN(X)RAS transfected 'F2 cells clearly demonstrated the 

synthesis of a spliced, subgenomic RNA and full-length, genomic retroviral 

RNA from each ZN(X)RAS retroviral constructs upon transfection. In W2 

transfectants, the expression of antisense RNA from the genomic c-Ha-ras 

fragments F2' and F31 present in the ZN(X)RAS-2 and ZN(X)RAS-3 

constructs, respectively, had been shown by hybridization with in vitro 

transcribed "sense" riboprobes. No antisense transcripts were detected in RNA 

from parental ¥ 2  cells or those transfected with the ZN(X)RAS+2 and 

ZN(X)RAS+3 constructs. ZN(X)RAS-2 and ZN(X)RAS-3 encoded antisense 

c-Ha-ras RNA expression was also detected upon infection of SEP14 and CT3 

cells with the corresponding recombinant viruses. At no time was it possible to 

demonstrate Fl'-specific antisense RNA expression from the ZN(X)RAS-1 

provirus. The ZN(X)RAS-1 encoded antisense RNA was expected to be as 

stable as antisense RNA transcribed from ZN(X)RAS-2 and ZN(X)RAS-3 

proviruses (GEEBELHAUS et al., 1988). The failure to detect antisense RNA 

expression in ZN(X)RAS-1 infected SEP14 and CT3 cells could be due to 

rapid duplex formation between the antisense RNA and its target, the 

endogenous cellular c-Ha-ras mRNA, followed by rapid degradation of the 

RNA duplex through double-strand specific ribonucleases (CROWLEY et al., 

1985; WALDER and WALDER, 1988).
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3.6. Discussion.

3.6.1. Northern Analysis of ZN(X)RAS Antisense Virus Infected SEP14 

Cells.

The mechanisms by which antisense RNA alters expression of the 

target gene have been variously attributed to effects in transcription 

(KRYSTAL et al., 1988), nuclear processing (MUNROE, 1988), nuclear 

transport, translation (MELTON, 1985) and mRNA stability (KINLEMAN 

and KIRSCHNER, 1989) (reviewed by VAN DER KROL et al., 1988). The 

most significant reversion of cell transformation has been observed in 

ZN(X)RAS-1-infected SEP 14 cells. Repeated efforts to demonstrate Fl'- 

antisense RNA expression in SEP 14 and CT3 cells infected with ZN(X)RAS- 

1 virus failed, even under conditions where F2'-antisense RNA expression in 

ZN(X)RAS-2 infected SEP14 and CT3 cells was readily detectable. Upon 

infection, transcription of the antisense ZN(X)RAS proviruses should result in 

post-transcriptionally modified, thus stable c-Ha-ras antisense RNA. All three 

antisense RNAs are expressed as part of the full-length genomic retroviral 

RNA (chapter 4) and should therefore be post-transcriptionally modified by 5'- 

capping and 3'-polyadanylation. 5'-capping of antisense RNA has been shown 

to lead to increased RNA stability and to a greater degree of inhibition of 

target gene expression (BEVILACQUA et al., 1988; GIEBELHAUS et al., 

1988). The failure to detect Fl'-antisense RNA expression in ZN(X)RAS-1 

infected SEP 14 cells is therefore unlikely to be the result of RNA instability. It 

is possible that hybridization of the antisense RNA to endogenous c-Ha-ras 

mRNA could have lead to the rapid degradation of RNAiRNA duplexes by 

double-strand specific ribonucleases and therefore the inability to detect 

antisense transcript (COWLEY et al., 1985; WALDER and WALDER, 1988; 

SHUTTLEWORTH and COLEMAN, 1988). The ability of the ZN(X)RAS-1 

retroviral construct to direct antisense c-Ha-ras FI' RNA transcription had 

been demonstrated with ZN(X)RAS-1-transfected ¥ 2  cells. Nevertheless, the 

performance of nuclear runoff analysis would be necessary to confirm c-Ha- 

ras FT antisense RNA synthesis in SEP14 infectants.

It seems likely that c-Ha-ras Fl'-antisense RNA will be involved in 

RNA:RNA duplex formation in the nucleus. Duplex formation in the
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cytoplasm is also possible. As part of the full-length genomic retroviral RNA, 

the c-Ha-ras Fl'-antisense RNA, as other eukaryotic pre-mRNAs, will be 

processed in the nucleus and transported into the cytoplasm. Thus c-Ha-ras 

antisense RNA is expected to be able to interfere with the processing and 

transport of the target mRNA in the nucleus as well as with its translation in 

the cytoplasm (GIEBELHAUS et al., 1988). Duplex formation between 

artificial antisense RNAs and their target mRNAs, in the cytoplasm and in the 

nucleus, had been demonstrated by MELTON (1985) and KIM and WOLD 

(1985), respectively. RNA:RNA duplex formation in the nucleus inhibits gene 

expression by preventing processing of the pre-mRNA (MUNROE, 1988) and 

export of the spliced product into the cytoplasm, whereas duplex formation in 

the cytoplasm is thought to led to inhibition of gene expression by preventing 

the initiation of translation of the target mRNA (VAN DER KROL et al., 

1988). RNAiRNA duplex formation between Fl'-antisense RNA and the 

endogenous c-Ha-ras mRNA had not been analysed due to time limitations. 

However, electron microscopy and RNase protection techniques as described 

by KIM and WOLD (1985), MELTON (1985) and KRYSTAL et al. (1990) 

can be used to detect and confirm RNA:RNA duplex formation.

3.6.2. Effects of Genomic c-Ha-ras Antisense RNA Expression on 

Transformation Phenotype.

Expression of c-Ha-ras antisense RNA using ZN(X)RAS antisense 

retroviral vectors causes reversion of the transformed phenotype of NIH 3T3 

cells transformed by c-Ha-ras gene activated through codon 61 mutation 

(SEP 14).

The cell line SEP 14, although originally isolated as a highly 

transformed cell line, displays wide range of degrees of transformation. An 

unexpectedly high ratio of untransformed to transformed colonies (U/T ratio) 

was observed in SEP14 colony formation assays. Infection of SEP14 cells 

with various c-Ha-ras antisense ZN(X)RAS retroviral vectors and subsequent 

expression of the antisense RNAs as part of the full length retroviral RNA was 

hoped to lead to changes in the U/T ratio. Antisense RNA expression of 

genomic c-Ha-ras fragments F2 and F3 led to small reductions in the U/T 

ratios (-16.7% for ZN(X)RAS-2; -10.4% for ZN(X)RAS-3). However, the
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reductions could not be solely attributed to c-Ha-ras antisense RNA 

expression, as sense RNA expression of c-Ha-ras fragments F2 and F3 led to 

equivalent reductions in the U/T values (-18.8% for ZN(X)RAS+2; -6.3% for 

ZN(X)RAS+3). However, a significant U/T ratio reduction of -64.5% was 

observed in pools of ZN(X)RAS-1 infected SEP14 cells. This reduction is 

most likely due to expression of the antisense RNA of c-Ha-ras fragment FI, 

rather than the expression of Zip Neo SV(X)1 retroviral sequences per se 

(table 3.3). Generally, c-Ha-ras antisense RNA expression was hoped to lead 

to an at least partial inhibition of the expression of codon 61-activated c-Ha- 

ras oncogene and/or the normal proto-oncogene in SEP14 cells infected with 

the antisense ras retroviral vector. Thus, the number of untransformed or less 

transformed colonies would have been expected to increase resulting in a 

subsequent increase of the U/T value. However, c-Ha-ras fragment FI 

antisense RNA might also interfere with the viability of flat, morphologically 

untransformed appearing SEP 14 cells by inhibiting or reducing the expression 

of the cellular Ha-ras oncogene and/or proto-oncogene, subsequently blocking 

the signalling pathways through which Ha-ras exerts its functions. Inhibition 

of c-Ha-ras oncogene or proto-oncogene expression in turn could decrease the 

viability of untransformed cells, thus causing the unexpected but observed 

reduction in the number of untransformed G418r-colonies of ZN(X)RAS-1 

infected SEP14 cells. A low average viability of 6% had been observed for 

ZN(X)RAS-1 infected SEP14 cells, whereas the average replating viability of 

uninfected SEP14 cells (13.3%) and SEP14 cells infected with ZN(X)RAS2 or 

ZN(X)RAS3 retroviral vectors was significantly higher (ZN(X)RAS+2 

infected cells: 20.5%; ZN(X)RAS-2 infected cells: 15.5%; ZN(X)RAS+3 

infected cells: 14.0%; ZN(X)RAS-3 infected cells: 18.0%) (table 3.3).

In summary, there is some evidence suggesting that antisense RNA 

expression of c-Ha-ras fragment FI results in morphological changes of 

transformed SEP14 cells most likely due to the inhibition of c-Ha-ras 

oncogene and/or proto-oncogene expression. The use of the U/T ratio in 

assessing effects of c-Ha-ras antisense RNA expression on cellular 

morphology depended significantly on the stability of the transformed (and 

untransformed) phenotype of SEP14 cells. However, even clonal derived 

transformed SEP 14 infectant lines did not stably maintain a transformed
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phenotype. Very high incidences of phenotypic reversions from transformed 

to untransformed cellular morphology ranging between 33.0% to 62.3% were 

detected. It seemed highly unlikely that the observed reversion was caused 

through the outgrowth of contaminating untransformed cells, present at the 

time of colony cloning, as the viability of untransformed cells was generally 

greatly reduced compared to the viability of transformed cells (not shown). 

Also, untransformed CT3 cells infected with the sense and antisense 

ZN(X)RAS retroviral vectors had not been tested for changes in viability. It 

would have been interesting to know, if antisense RNA expression from the 

ZN(X)RAS-1 retroviral vector would have caused a similar reduction in 

replating viability of infected CT3 cells as seen in ZN(X)RAS-1 infected 

SEP 14 cells.

Scoring untransformed versus transformed colonies, as a criterion to 

assess any effects of c-Ha-ras antisense RNA expression, has obvious 

disadvantages:

i) Scoring of phenotypically transformed or untransformed colonies 

was highly subjective. Although in most cases there was a clear difference 

between the U and T colonies after staining with GIEMSA. Generally, 

transformed colonies stained more intensely with GIEMSA stain than 

untransformed colonies, as a colony of transformed cells, growing contact 

uninhibited in several layers, contained a larger number of cells. The less 

intense stained untransformed colonies were made up of fewer cells growing 

in a monolayer of contact inhibited cells. It had been attempted to use 

Computer aided colony analysis to solve the question of subjectivity involved 

in scoring colonies. Computer aided colony analysis allowed the definition 

and storage of parameters, like colony size and intensity of staining, resulting, 

in principle, in consistent analysis of data from single experiments or whole 

experimental series. However, it soon became clear at the time, that the 

quality of the computer hardware and software available within the institute 

was not sufficient to allow computer aided analysis to be used routinely and 

reliably.

ii) Furthermore, the instability of the transformed phenotype of SEP 14 

cells made it more difficult to evaluate any effects of c-Ha-ras antisense RNA 

expression upon reduction of transformation. It had been observed that
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transformed cell lines generated by transfection were very unstable, unless the 

expression of these transforming DNA fragments were under constant 

selection. One example being the transfectant cell line SEP11 (chapter 5.3.). 

Phenotypic reversion of human Ha-ras oncogene-transformed NIH 3T3 cells 

(SHM and WEINBERG, 1982) was also reported by SALMONS et al. (1986), 

although the phenotypic reversion was due to the loss of all human Ha-ras 

sequences.

3.6.3. Effects of Genomic c-Ha-ras Antisense RNA Expression on Soft 

Agar Cloning Ability.

SEP 14 cells infected with ZN(X)RAS-1 recombinant virus showed 

decreased colony formation in soft agar in relation to the cloning efficiency 

value obtained for uninfected SEP14 cells. However, the overall reductions in 

cloning efficiency varied from 81.8% (experiment 3, table 3.4) to 54.9% 

(experiment 2, table 3.4). Although the extent of the reduction in anchorage- 

independent growth clearly depended on the recombinant antisense 

ZN(X)RAS provirus present, variations were observed. Several factors could 

influence the degree of variations observed.

i) Cell pools were tested for changes in anchorage-independent growth: 

The cell pools tested for anchorage-independent growth were made by pooling 

individual colonies present on one petri dish after G418 selection. Within one 

cell pool, the expression levels of recombinant ZN(X)RAS proviruses were 

likely to vary from one clonal colony to another. Factors such as site of 

proviral integration, mutation frequency and methylation pattern can influence 

the expression levels of proviruses (VARMUS and BROWN, 1989.). 

Although, each cell pool contained at least 20 individual colonies, the number 

might not have been high enough to average out the differences in expression 

levels of the recombinant provirus from one cell pool to another.

ii) Expression levels of the transfected codon 61-activated c-Ha-ras 

oncogene: In addition to the variation in the levels of expression of the 

recombinant provirus encoding c-Ha-ras antisense RNAs, the expression 

levels of the transfected codon 61-activated c-Ha-ras oncogene might also 

differ between individual SEP 14 cells, probably reflected in the relative 

phenotypic instability of SEP 14 cells. A partial or complete represion of
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activated c-Ha-ras gene expression could contribute partly to the reduced 

ability of SEP 14 cells to grow in soft agar. This effect does clearly not account 

for the full extent of the reductions in soft agar cloning efficiencies observed, 

as an obvious relationship between the extent of the reductions and the 

presence of individual antisense ZN(X)RAS retroviral vectors exists (table

3.4).

iii) Experimental variability due to the quality of reagents used: 

Independently from the cell lines and the retroviral constructs, other, 

experimental factors can effect the colony formation in soft agar. An 

important factor was the quality of the agar itself. During the course of the soft 

agar cloning experiments, agar from two different manufacturers was used 

(due to delivery problems experienced by the normal supplier). Agar from 

DIFCO was used for the first soft agar cloning experiment (experiment 1, 

table 3.4) and successful colony formation was obtained. When NOBEL agar 

was used instead, cell pools previously successfully tested for colony 

formation in DIFCO agar, failed to give rise to any colonies (data not shown). 

Enough DIFCO agar was obtained within the institute to enable all soft agar 

cloning experiments to be performed with agar from the same manufacturer, 

however from two different batches. The low soft agar cloning efficiencies 

seen in experiments 2 and 3 were most likely due to the difference in the 

quality of the agar from the two batches. In experiment 1, uninfected SEP14 

control cells had a soft agar cloning efficiency of 11.26%, wereas in 

experiments 2 and 3, the cloning efficiencies had dropped dramatically to 0.82 

% and 0.55% (table 3.4). In each of the three experiments, the SEP14 cells 

used as controls were from the same frozen stock, had been kept in culture for 

the same time and undergone the same number of passages. Furthermore, no 

significant variations in the viability of the SEP 14 cells were detected at the 

time of replating into semi-solid medium. The drop in soft agar cloning 

efficiencies from 11.26% (experiment 1) to around 0.7% (experiments 2 and 

3) seemed therefore most likely due to the differences in the quality of agar 

used for the three experiments.

The presence of sense ZN(X)RAS retroviral vectors in SEP14 cells did 

overall not result in a reduction of soft agar cloning efficiency, with the 

exception of ZN(X)RAS+2-infected SEP 14 pool in experiment 1 (table 3.4).
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No significant alteration in soft agar cloning efficiency was seen with 

ZN(X)RAS+2-infected SEP14 cells in experiment 2. The discrepency between 

the changes in soft agar cloning efficiencies two independent ZN(X)RAS+2- 

infected pools of SEP 14 cells is not completely clear. However, taking the 

general tendency of sense ZN(X)RAS vectors not to reduce colony formation, 

the discrepancy seemed most likely due to experimental variations, not least 

influenced by factors such as quality of serum and agar used during the 

experiment. ZN(X)RAS+3-infected SEP14 cells (experiment 1) displayed a 

22.7% increased ability to grow in semi-solid medium. The most dramatic 

increase of soft agar colony formation by +74.5% was seen with 

ZN(X)RAS+1 infected SEP14 cells (experiment 3; table 3.4). Although, the 

presence of sense ZN(X)RAS vectors in SEP 14 cells had at best an overall 

stimulating effect, or at least no effect, on growth in soft agar, an increase in 

colony formation was not seen with pools of CT3 cells infected by the same 

recombinant sense ZN(X)RAS vectors. CT3 cells were not able to grow in soft 

agar, due to their untransformed phenotype (SHIH et al., 1979, 1981; 

COOPER et al., 1980; KRONTIRIS and COOPER, 1981). The failure of 

sense ZN(X)RAS vectors to stimulate infected CT3 cells to grow in soft agar 

is probably due to the lack of c-Ha-ras exons 3 and 4 in these retroviral 

constructs, preventing membrane association of any translated protein product 

(WILLUMSEN et al., 1984; HANCOCK et al., 1989; HANCOCK et al., 

1991). Association with the plasma membrane is a prerequisite for any 

transforming activity of p21 ras proteins (WILLUMSEN et al., 1984; DER 

and COX, 1991; HANCOCK et al., 1991).

The exact mechanism by which sense ZN(X)RAS retroviral constructs 

increase growth in soft agar of infected SEP 14 cells had not been examined. It 

seemed unlikely that protein products would be made from retroviral 

transcripts containing the genomic c-Ha-ras fragments F2 and F3, as F2 codes 

for only 4 amino acids and there is no translation initiation codon in fragments 

F3. However, any protein product translated from c-Ha-ras fragment Fl'sense 

RNA could compete for positive regulators of the GTP-ase activity of normal 

NIH 3T3 endogenous p21 Ha-ras proteins, further reducing the levels of 

regulators already deminished due to their binding to the highly expressed 

codon 61-activated p21Ha-ras protein (VOGEL et al., 1988; QUINTANILLA
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et al., 1986). Ha -ras fragment FI codes for three regions of the p21ras protein 

identified by three dimensional structure analysis as required for the 

interaction between p21ras and pl20GAP (GIDEON et al., 1992). The 

proposed competition of ZN(X)RAS+1-encoded protein with normal p21ras 

proteins for regulators, such as the ubiquitous, cytoplasmic pl20GAP, could 

depleat the levels of regulators of endogenous p21ras activity below a critical 

threshold required for the switching of active p21 to the inactive GDP-bound 

form, thus mimicking, to a small degree, an overexpression of normal p21 Ha­

ras protein. The suggested reduction in regulator levels would work in inverse 

analogy to findings published by ZHANG et al. (1990), who showed that 

overexpression of pl20GAP in NIH 3T3 cells can prevent and reverse the 

transformation induced by overexpression of normal p21ras proteins. This 

competition effect is not be sufficient, however, to induce CT3 cells to change 

to a transformed phenotype, as even 100 fold over-expression of normal c-Ha- 

ras protein is not as effective in inducing transformation as the presence of 

oncogenic activated p21 Ha-ras. It also has to be pointed out however, that 

Ha-ras proteins which have the majority of the amino acids delected which are 

implicated in GDP/GTP binding, as a protein product derived from fragment 

FI would be, are extremely unstable (C. MARSHALL, pers. communication).

It is not completely clear why fragment F I1 of genomic mouse c-Ha- 

ras clone N1 is the most effective fragment for antisense RNA induced 

reversion of cell transformation as measured by reduction in soft agar colony 

formation (table 3.5). The genomic Pstl-fragment FI encompasses the first 

and second coding exons of the mouse gene, intron II and the first 112bp of 

intron 12, together with 1.3kb of upstream sequence, including the short GC 

rich promoter region and the untranslated exon E-l. In soft agar cloning 

experiments, ZN(X)RAS-2 infected SEP 14 cells had a reduced ability to form 

colonies (-30.5% to -39.0%), however, not to the same extent as SEP14 cells 

infected with ZN(X)RAS-1 virus (up to -81.8%). Recent results of deletion 

analysis experiments (J.B. TELLIEZ, pers. communication) identify within 

intron 1(0) of the cellular mouse Ha-ras gene three elements which are 

important in regulating c-Ha-ras transcription. The regulatory elements consist 

of a transcriptional enhancer and two elements 3' to the enhancer which 

negatively and positively regulated the activity of this intron 1(0) enhancer.
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Therefore, antisense RNA complementary to intron 1(0) sequences, as 

transcribed from ZN(X)RAS-1 and ZN(X)RAS-2 retroviral vectors, might be 

expected to result in a reduction of c-Ha-ras gene expression. As observed in 

ZN(X)RAS-2 infected SEP14 cells, 5’-untranslated sequences of the mouse c- 

Ha-ras gene, while effective, is not be sufficient for extensive inhibition of c- 

Ha-ras gene expression by antisense RNA. It has previously been shown that 

antisense RNA directed against the translation initiation site is particularly 

effective in reducing expression of the target gene (INUOYE et al., 1988; 

EGUCHI et al., 1991). The translation initiation site for p21 synthesis is about 

12bp 5' to the HindlH site in exon E l of the mouse c-Ha-ras gene, therefore, 

only antisense RNA transcribed from fragment FI will have extensive regions 

of complementarity surrounding the endogenous translation initiation site of 

the c-Ha-ras gene. The 3' complementarity of antisense RNA derived from 

fragment F2 extends only over 12bp 3' the translation initiation site and duplex 

formation in the 3'-region of overlap may therefore be more unstable 

compared to Fl'-antisense RNA. Only antisense RNA transcribed from 

fragment FI' has extensive regions of complementarity to regulatory elements 

within the 5'-untranslated region and to sequences surrounding the endogenous 

translation initiation site, thus supporting that antisense RNA derived from 

ZN(X)RAS-1 retroviral vector most effective in reducing cell transformation 

of c-Ha-ras transformed NIH 3T3 cells.

Antisense RNA expression in ZN(X)RAS-3 infected SEP 14 cells 

resulted in -8.35% reversion of cell phenotype compared to -64.5% reversion 

for ZN(X)RAS-1 infected SEP14 cells. F3'-antisense RNA is not 

complementary to the translation initiation region of the c-Ha-ras gene which 

might explain the low percentage reduction in soft agar cloning ability 

observed with ZN(X)RAS-3 infected SEP14 cells. Also, flat revertants of 

SEP 14 cells containing ZN(X)RAS-3 provirus showed reduced viability in 

normal tissue culture conditions (6.3%) compared to flat revertant SEP14 cells 

containing ZN(X)RAS-1 provirus (8.5%). LINGELBACH and 

DOBBERSTEIN (1988) identified in HeLa cell extracts an RNA:RNA 

unwinding activity associated with the translating ribosome which led to the 

unrestricted ability of the ribosome to translate mRNA efficiently even when 

extensive RNA:RNA duplexes were present within the coding region of the

118



mRNA. Extensive RNArRNA duplex formation within the coding region of 

the target mRNA did not reduce the efficiency with which translation was 

initiated. Under the assumption that in the case of ZN(X)RAS-3 infected cells, 

the majority of antisense RNA:RNA duplex formation ocurres in the 

cytoplasm, the observation by LINGELBACH and DOBBERSTEIN (1988) 

could explane the reduced activity of F3' antisense RNA. Only antisense RNA 

expression derived from fragment FI, combining both 5'-untranslated 

sequences and coding sequences, leads to the dramatic changes in cell 

transformation as seen with ZN(X)RAS-1 infected SEP14 cells.

3.7. Future Prospects.

Results presented in this chapter demonstrate, that constitutive c-Ha- 

ras antisense RNA expression following retrovirus mediated gene transfer, 

can lead to reversion of cell transformation of SEP 14 cells, a transformed NIH 

3T3 cell line derived after transfection of total cellular DNA isolated from a 

DMBA/TPA induced mouse skin papilloma containing a codon 61-activated 

Ha-ras oncogene.

There are several matters arising from the study described here which 

require further investigations. First: although antisense RNA expression from 

ZN(X)RAS-2 and ZN(X)RAS-3 vectors has been demonstrated following 

infection into SEP 14 cells, however, the synthesis of antisense RNA in 

ZN(X)RAS-1 infected SEP14 cells remains to be confirmed by nuclear run-off 

experiments. Second: it is important to investigate changes in expression of 

the endogenous c-Ha-ras gene and the transfected c-Ha-ras oncogene, in order 

to correlate these with the degree of cell transformation reversion. The levels 

of RNA transcribed should be analysed by Northern blotting or cDNA-PCR; 

changes in p21 protein levels by immunoprecipitation and Western blotting. 

Based on the reductions of cell transformation observed in ZN(X)RAS-1 

infected SEP 14 cells, reduced mRNA and protein levels of both, the 

endogenous proto-oncogene and the transfected c-Ha-ras oncogene are 

expected., even though the antisense RNA is not complementary to the 

mutated codon 61. Analysis of p21 Ha-ras and activated p21 Ha-ras protein 

levels would contribute to the understanding of their roles cell viability and in 

maintaining cell transformation. Third: complete repression of both c-Ha-ras
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genes present in SEP14 cells would be required to assess any possible 

redundancy amongst the members of the ras gene family. This would require 

i) testing and subcloning of additional c-Ha-ras gene fragments for their 

suitability in antisense RNA inhibition of gene expression and ii) increasing 

the expression of antisense RNA. Using a 2.0kb Ki-ras genomic DNA 

segment carrying second and third exon together with flanking sequences for 

antisense RNA expression, MUKHOPADHYAY et al. (1991) obtained a 95% 

reduction in p21 Ki-ras protein synthesis resulting in reduced tumorigenicity 

in nu/nu mice. No increased expression of endogenous N-ras and the Ha-ras 

genes was observed in these tumours, suggesting that a functional redundancy 

amongst the mammalian p21ras proteins seems unlikely 

(MUKHOPADHYAY et al., 1991). The importance of gene dosage in 

antisense RNA inhibition had been demonstrated by IZANT and 

WEINTRAUB (1985), KIM and WOLD (1985) and ROSENBERG et al. 

(1985). Retroviral vectors containing DHFR protein coding sequences are 

available for cloning of antisense RNA genes (WILLIAMS et al., 1986). Upon 

infection the antisense RNA gene-DHFR recombinant proviruses can be 

amplified by selection of cells in progressively higher levels of methotrexate, 

leading to the over-production of DHFR message and antisense RNA. Fourth: 

The results on changes in cell transformation of SEP 14 cells induced by the 

expression of antisense c-Ha-ras RNA were clearly encouraging. Although 

analysis of endogenous c-Ha-ras mRNA and p21 protein levels had not been 

performed due to time limitations, the data presented justifies the introduction 

of the ZN(X)RAS antisense viruses into in vitro derived cell lines of 

DMBA/TPA-induced mouse skin papillomas and carcinomas. BREMNER 

and BALMAIN (1990) and BUCHMANN et al (1991) have shown that during 

progression of mouse skin tumours quantitative increases in mutant c-Ha-ras 

gene copy number relative to the normal c-Ha-ras gene occur. The results 

presented in this chapter suggest that inhibition of mutant c-Ha-ras gene 

expression could be a useful approach to examining the role of mutant c-Ha- 

ras in the maintenance of transformation and during progression. Retroviral 

vectors expressing antisense c-Ha-ras RNA could be used to infect cell lines 

representing different stages of tumour progression to examine if phenotypic 

reversal of progression is observed in vitro.
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4. Involvement of the Transin-l/Stromelysin-l Proteinase in Tumour 

Invasion and Metastasis.

4.1. Introduction.

Ras gene activation are often found as an initiating event in chemically 

induced carcinogenesis using animal model systems in vivo (reviews: 

BALMAIN and BROWN, 1988; SUKUMAR, 1989 and 1990; 

DRINKWATER, 1990) and the causal nature of the ras gene mutations in 

initiating carcinogenesis has been confirmed by introducing activated 

retroviral v-ras genes into mouse skin in vivo (BROWN et al., 1986; ROOP et 

al., 1986) or by expressing human T24/EJ mutant c-Ha-ras in transgenic 

animals (BAILLEUL et al., 1990). However, the expression of the mutated c- 

Ha-ras gene found in benign lesions of the DMBA treated mouse skin 

(BALMAIN et al., 1984) is not sufficient to induce progression towards a 

more complete tumorigenic phenotype (QUINTANILLA et al., 1991). 

Therefore, additional factors and events are likely to play an important role(s) 

in tumour progression. Members of the metalloproteinase family have been 

specifically implicated in the multistep process of metastasis formation by 

mediating invasion of transformed cells through the basement membrane. In 

particular, the expression of the transin-1/stromelysi-l gene during chemical 

carcinogenesis in mouse skin has been studied extensively. Originally 

identified by means of its highly induced mRNA in rat embryo fibroblast cell 

lines upon oncogenic transformation, the transin-1/stromelysin-l gene showed 

a strong correlation between its expression and the invasive and metastatic 

potential of chemically induced mouse skin tumours (reviewed in 

MATRISIAN and BOWDEN, 1990). This observation lead to the speculation 

that the transin-1/stromelysin-l metalloproteinase might play a causal role in 

promoting invasion through the basement membrane. The experiments 

described below are part of an effort to establish an in vivo system which 

could be used to assess the role and the effect of expression of transin- 

1/stromelysin-l gene in mediating the metastatic phenotype.

The cell lines PDV (FUSENIG et al., 1978 and 1982), C5 and AT5 

(DIAZ-GUERRA et al., 1992; QUINTANILLA et al., 1991) could be looked 

upon as representing in vitro discrete stages characterized in chemically
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induced mouse skin carcinogenesis in vivo. All three cell lines are derived 

from primary epidermal cell cultures after in vitro treatment with DMBA. 

They differ from each other by the presence or absence of an activated Ha-ras 

gene, the level at which the Ha-ras oncogene is expressed and the degree of 

tumorigenicity in nude mice (table 4.2). All three cell lines are non-metastatic 

upon subcutaneous injection into nude mice. This indicates that the expression 

of mutated Ha-ras gene, even at high levels, is by itself not sufficient to 

convert the immortalized phenotype of these cell lines to a full neoplastic 

phenotype (QUINTANILLA et al., 1991). Transferring the rat 

transin/stromelysin cDNA into these cell lines via retroviral mediated gene 

transfer was hoped to give a better insight into the role of metalloproteinases 

in cell invasiveness, the process of metastasis formation and the requirement 

for the presence of an activated Ha-ras gene and the level of its expression in 

metastatic processes. Any changes in cell behaviour due to the N2 retroviral 

vector itself will be evaluated with the help of the control retroviral construct 

pLNSal containing the human adenosine deaminase (ada) gene in place of the 

transin cDNA. Changes in tumorigenic and metastatic phenotype will be 

assessed using the spontaneous metastasis assay (MUSCHEL and LIOTTA, 

1988) in vivo. It had been reported that the calcium phosphate transfection 

procedure might in itself produce independent changes in the transfected cell 

which can contribute to alter the metastatic behaviour of some transfected 

cells (KERBEL et al., 1987). Thus retroviral mediated gene transfer was 

chosen to avoid effects of calcium phosphate and the incorporation of 

unwanted carrier DNA into the recipient cell (GREENBERG et al., 1989).

4.2. Results.

4.2.1. Retrovirus Mediated Gene Transfer of Rat Transin/Stromelysin 

cDNA into epithelial cells in vitro.

Full-length c-DNA of the rat transin/stromelysin gene was introduced 

into three different epithelial cell lines, PDV, C5 and AT5, and the mouse CT3 

fibroblast cell line through infection with the LNTR2 recombinant retroviral 

vector. The characteristics of the different cell lines are summarized in table

4.2.
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Recipient call lines for retroviral mediated gene trmnafar of the rat 
transin cDHA.

r ..|Cell line
.....
Cell type Initiation

"
Promotion

1 1 
|Ha ras gene 
j alteration

T--------  j
| Relative | 
| tumorigenicity| 
1 (e) 1

jc 5  <a) epithelial DMBA TPA
(2.Smonths)

jwild type
1 1

1 1 I
| AT5 (b) epithelial DMBA TPA

(2.5months)
|codon 12

1
I +/- 1 
1 1 i |

j PDV (c) epithelial DMBA TPA
(lmonth)

jcodon 61 1 1 
1 + 1 
1 1 1 |

1CT3 (d) fibroblasts none none jwild type
1 1

T a b le d

Recipient cell lines for retroviral mediated gene transfer of the ra t 
transin cDNA.

(a) The epithelial C5N cell line had been obtained by single cell 
cloning of epithelial MCA 3D cells (QUINTANILLA et al., 1991). The 
cell line MCA 3D is derived from mouse primary epithelial cell culture 
after initiation with DMBA in vitro and selection by calcium switch 
(KULEZ-MARTIN et al., 1983).

(b) The epithelial cell line AT5 was derived by stable transfection 
of epithelial MCA 3D cells with the plasmid pAGTl containing the 
human EJ-T24 mutant Ha-ras gene and the neo1 marker gene (DIAZ- 
GUERRA et al., 1992).

(c) The cell line PDV is a rare transformant isolated after 
treatment of epidermal cell cultures from newborn mice with DMBA. 
PDV cells have three copies of mouse chromosome 7 (FUSENIG et al., 
1983) on which the c-Ha-ras gene is located. One of these alleles has an 
A to T transversion mutation in codon 61 as seen in vivo in mouse skin 
papillomas and carcinomas initiated by DMBA treatment 
(QUINTANILLA et al., 1991).

(d) The CT3 fibroblast cell line is derived from immortalized NIH 
3T3 cells (COPELAND et al., 1979).

(e) The relative tumorigenicity indicates the incidence of tumour 
induction upon subcutaneous injection into nude mice.



G. M. COOPER's CT3 cell line is one of several clones derived from 

NIH 3T3 mouse fibroblasts (COPELAND et al., 1979; JAINCHILL et al., 

1969). CT3 cells are non-tumorigenic in nude mouse assay. The CT3 cell line 

is included in the experiments described below as a non-epithelial, non­

initiated cell control.

The PDV cell line was established as a consequence of a rare 

transformation event after in vitro DMBA treatment of primary epithelial cell 

cultures from newborn mice. PDV cells show an increased proliferation rate 

and reach higher cell densities in culture than their normal counterparts. 

(FUSENIG et al., 1978 and 1982). The cell line is tumorigenic in nude mice 

with a latency period of around 3 weeks but rarely produce tumours when 

injected into syngeneic C57B1/6 mice (DIAZ-GUERRA et al., 1992). 

Subcutaneous cell injection induces SCCs with varying degrees of 

keratinization (FUSENIG et al., 1978 and 1982). Karyotypic analysis of PDV 

cells has indicated the presence of three copies of chromosome 7 which 

harbour the mouse c-Ha-ras locus (FUSENIG et al., 1985; KOZAK et al.,

1983), however, only one of the three Ha-ras alleles has the DMBA specific 

mutation at codon 61 (QUINTANILLA et al., 1991), as found in a high 

proportion of mouse skin tumours initiated with DMBA (BALMAIN and 

PRAGNELL, 1983; BALMAIN et al., 1984; QUINTANILLA et al., 1986 and 

1991; BIZUB et al., 1986; STRICKLAND et al., 1986; FUSENIG et al., 1985; 

KOZAK et al., 1983).

The cell line MCA 3D was established from newborn Balb/C mouse 

epidermal keratinocytes following treatment with the carcinogen DMBA in 

vitro (KULESZ-MARTIN et al., 1983). C5, derived by single cell cloning 

from MCA 3D cells, express the normal p21 Ha-ras protein, are non- 

tumorigenic in nude mice and show a resistance to terminal differentiation 

induced by high Ca^+ concentration (QUINTANILLA et al., 1991). The AT5 

cell line, derived by stable transfection of the plasmid pAGT containing the 

human T24/EJ Ha-ras oncogene with the codon 12 mutation isolated from the 

human bladder carcinoma cell line T24/EJ (DER et al., 1982; 

QUINTANILLA et al., 1991). The cell line has been classified as weakly 

tumorigenic with a latency period of approximately three months (DIAZ- 

GUERRA et. al., 1992).
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4.2.2. In vitro infection of epithelial cells by recombinant retroviral vector 

LNTR2 containing the ra t transin cDNA.

The rat transin cDNA expressing retroviral vector, pLNTR2, and a 

control vector containing the cDNA of the human ada gene, pLNSal 

(PALMER et al., 1987), were a gift from R. BREATHNACH. The retroviral 

vector pLNTR2 was derived from the vector pLNSal by exchanging the StuI- 

Bglll fragment of the ada cDNA with an compatible insert containing full 

length rat transin cDNA (R. BREATHNACH, personal communication.). The 

LNTR2 and the LNSal retroviral vector are based on the N2 vector (GILBOA, 

1987). The high titer producing N2 vector retained besides the 5'- M-MuLV 

LTR, the gag AUG initiation codon and the first 418 bp of the gag coding 

region to which the coding sequences of the selectable neo-marker were fused 

out of frame (GILBOA, 1987). The neo gene was expressed from a spliced 

RNA generated by the activation of a cryptic 3'-splice site in the gag coding 

sequences upstream of the neo gene (ARMENTANO et al., 1987). In the 

constructs pLNTR2 and pLNSal, the rat transin and human ada cDNAs, 

respectively, are under transcriptional control of an internal SV40 promoter. 

Plasmid maps of the pLNTR2 and pLNSal constructs are shown in figure 4.2. 

Clonal cell lines producing ecotropic LNTR2 virus 0FLNTR3 and VFLNTR5) 

and ecotropic LNSal virus OFLNSall and xFLNSal2) had been kindly 

provided by Dr. R. BREATHNACH. The producer lines generated between 

1.2 to 1.5x 10^ infectious virus particles per ml supernatant (table 4.3). Using 

the reverse transcriptase assay, helper virus production was detected for cell 

lines VFLNTR5 and 'FLNSal2 (data not presented). The cell lines 'FLNTR3 

and 'FLNSall were assumed to also release helper virus, however, they had 

not been tested for helpervirus production.

During pilot experiments, CT3, PDV, MCA 3D and C5 cells had been 

successfully infected with ecotropic G418r-conferring Zip Neo SV(X)1 virus 

(data not shown). Virus-containing medium from producer cell lines 

'FLNTR3, 'FLNTR5 and 'PLNSal 1 was used to infect CT3, PDV, C5 and AT5 

cells. The infection efficiencies for LNTR2 and LNSal viruses, based on the 

number of G418r-colonies observed after selection, are summarized in table

4.3. Efficiency values could not be determined for retroviral vector infections
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Figure 42 .

pLNSal and pLNTR2 retroviral vectors.

Figure 4 2 a : The 8.27kb pLNSal retroviral vector has been derived 
from the N2 retroviral vector by inserting a human adenosine deaminase 
(ada) cDNA (open box) under the transcriptional control of the SV40 
early region enhancer/promoter (hatched box) downstream of the neo1 
gene (filled box). The Mo-MuLV-LTRs (diagonal boxes) and splicing 
signals (5'ss, 3'ss) are indicated. pLNSal contains around 400bp of the gag 
coding region of wild type Mo-MuLV. pBR322 sequences (line) allow 
propagation of the retroviral vector in E. coli. (PALMER et al., 1987 and 
references therein).

Figure A.2b: The 9.0kb pLNTR2 retroviral vector is derived 
ffomthe pLNSAl retroviral vector by replacing the Stul-Bglll fragment of 
the human ada cDNA (open box) with a full-length rat transin- 
1/stromelysin-l cDNA (chequered box). 370bp of the 3' end of the human 
ada cDNA remain in the construct (R> BREATHNACH, pers. 
communication).

Recognition sites for endonucleases EcoRI, SstI, Kpnl, Xhol, and 
BamHI are indicated.
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Efficiency of infection of epithelial cells by recoobinant tranein 
retroviral vector LHTR.
1
|Recombinant 
j retroviral 
(vector

i
| Infection Efficiency 
j G418v -cfu/ml/106 viable cellsi

----------------- —!

(b) |
i
| CT3
1I

I
| PDV
1i

| C5
11

i AT5 (c) i
1 1i j

|None
1
I
1 0

1
1 l.lxlO1I

1
1
1 o1

1 1
| (1 .0xl06)| 1

|LNSaL | 1.5xl061 | 4.6xl02 | | 4.0xl041 | (1.0xl06)| 1
ILNTR2 | 1.2xl06 | 2.0xl03 | 9.4xl04 | (2.2xl06)|

Table4.3.

Efficiency of infection of epithelial cells by recombinant transin 
retroviral vector LNTR2.

(a) The retroviral vectors LNSal and LNTR2 are derived from the 
N2 retroviral vector and express human adenosine deaminase (ada) cDNA 
or rat transin cDNA, respectively, under the transcriptional control of the 
internal SV40 early promoter (see figured.^.).

(b) The infection efficiency is the number of G418 resistant 
colonies observed per 10^ viable cells replated into G418 selection after 
infection of recipient cells (CT3, PDV, C5) with 200pJ of viral 
supernatant from clonal 'F2LNTR3 or 'F2LNSal2 producer cell lines.

(c) The efficiency of infection of MCA 3D AT5 cells by LNTR2 
and LNSal retroviral vectors could not be determined, as AT5 cells were 
already G418 resistant . AT5 cells were infected three
times within a 24-hour period with infectious supernatant containing 
LNTR2 and LNSal retroviral vectors.



of AT5 cells, as these cells were already G418 resistant due to the neo-marker 

gene, present on the pAGT plasmid used to establish the cell line. Therefore, 

to ensure efficient infection, AT5 cells were infected three times within 24 

hours with infectious LNTR2 or LNSal recombinant virus. In general, the 

efficiency in infecting epithelial cell lines was significantly reduced compared 

to mouse fibroblasts (table 4.3: CT3: 100%; PDV: 0.17%; C5: 7.9%). 

MORGAN et al. (1987) and FRIEDMANN (1989) reported similar findings 

upon infection of epithelial cells in vitro by retroviral vectors.

4.2.3. In Vivo Assay for Metastatic Phenotype.

G418r-pools of LNTR2 and LNSal infected cells from each cell line 

were tested for changes in their invasive or metastatic phenotype caused by 

expression of the transin gene or ada gene, respectively, upon retroviral 

mediated gene transfer. (The spontaneous metastasis assay was used to assess 

changes in tumorigenicity or metastatic behaviour of infected cells.)

The ability of tumorigenic cells to form metastases can be assayed in 

vivo. Young nude mice (<8 weeks old) are routinely used in metastasis assays 

in vivo to reduce immunological barriers (HANNA and FIDLER, 1981; 

POLLACK and FIDLER, 1982). The two assays most widely used, are the 

spontaneous metastasis assay and the experimental metastasis assay 

(MUSCHEL and LIOTTA, 1988). In the experimental metastasis assay, cells 

are injected intravenously. The resultant lung nodules indicate the extent of 

metastatic potential. This assay is based upon metastasis formation involving 

the exodus of cells from the circulation via the blood stream into distant sites 

and the formation of secondary tumours at those sites. It gives high 

reproducible numbers for quantitative comparisons. In the spontaneous 

metastasis assay, however, cells are injected subcutaneously, a tumour forms 

at the site of injection, and later the animal is autopsied and evaluated for 

metastasis on distant sites. In a variation of the assay, removal of the primary 

tumour after its formation will increase the time after which the animal can be 

evaluated. The results of both metastasis assays do correlate often, but not 

always. For a review of assays for metastasis, see NICOLSON and POSTE 

(1983). The spontaneous metastasis assay was chosen for evaluation of 

metastatic phenotype of LNTR2 and LNSal infected epidermal cells, as the
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experimental metastasis assays duplicate only the later steps involved in 

metastasis.

G418r-pools of LNTR2 or LNSal infected CT3, PDV, C5 and AT5 

cells were injected subcutaneously into 8 week old female nude mice. 

Controls of uninfected parental cells were also included. The animals were 

observed for tumour formation for several months. All tumours had reached a 

minimum size of 1 cm in diameter before the animals were sacrificed. An 

autopsy was performed at the time of sacrifice to evaluate metastasis 

formation at distant sites. The results of the spontaneous metastasis assay are 

summarized in table 4.4.

PDV cells induced tumours in nude mice at high frequency (6/8 

tumours/injection site) with a latency of 6 weeks. Similar results were 

published by DIAZ-GUERRA et al. (1992) who reported PDV cells to be 

tumorigenic in nude mice (3/3 tumours/injection site) with a latency period of 

3 weeks. No significant differences in tumorigenicity, both in frequency and 

latency periods, were detected in LNTR2 or LNSal infected PDV cells 

compared to the uninfected control cell (LNTR2: 3/4 tumours/injection site, 5 

weeks latency; LNSal: 3/4 tumours/injection site, 7 weeks latency). Clearly, 

the presence of the LNTR2 or LNSal vectors in PDV cells had no effect on the 

tumorigenic phenotype of the PDV cells. None of the PDV cells, LNTR2 or 

LNSal infected or uninfected, gave rise to metastatic tumours upon 

subcutaneous injection (table 4.4). This suggested that either the introduction 

of the transin gene into PDV cells was in itself not sufficient to induce 

progression towards a more invasive and/or metastatic phenotype and that 

additional changes were required (e.g. higher expression levels of the mutated 

c-Ha-ras gene (MUSCHEL and LIOTTA, 1988)) or that the transin gene was 

not expressed or the protein was not activated following secretion.

CT3 cells are non-transformed and should as such be non-tumorigenic 

in nude mice. However, low frequency tumour formation was detected 

following subcutaneous injection of uninfected CT3 cells into nude mice (1/8 

tumours/ injection site, 3 months latency). LNTR2 and LNSal infected CT3 

cells showed a further increase in tumour formation (LNTR2: 3/8 

tumours/injection site; LNSal: 3/8 tumours/injection site), with the same 

latency periods. CT3 cells were routinely used in 3T3 transfection assays,
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Spontaneous metastasis formation of LNTR2 infected epithelial cells.

|Cell 
|Line ^

1
| Recombinant 
j retroviral 
j vector1

i
| No of primary 
j tumours ^
1

-i
No of secondary| 
tumours ^  |

------------- -— l
Observation | 
period I

|CT3
1
| none | 1/8 0 | 78 |

|CT3 j LNSal | 3/8 0 j 80 |
|CT3 j LNTR21 | 3/8I 0 | 80 |

| PDV
1
| none

1
| 6/8 0 1 44 |

j PDV | LNSal j 3 / 4 0 1 36 |
j PDV j LNTR21 | 3 / 41 0 j 44 |

|C5
1
| none

1
| 0/8 0 | 7 8  |

j C5 j LNSal j 2/6 0 | 98  j
j C5 j LNTR2 1 j 4/16 1 0 | 98  j

j ATS
1
| none

1
j 7/8 0 | 7 1  i

j ATS | LNSal j 5 / 8 0 | 7 1  I
j AT5 | LNTR2 | 10/16 1 Lymphnode j 7 1  1
j j | tumour j |

Table 4*4.

Spontaneous metastasis formation of LNTR2 infected epithelial cells.

(a) Recipient cell line for infection with LNTR2 and LNSal 
retroviral vectors.

(b) LNSal and LNTR2 are N2-derived retroviral vectors 
containing human adenosine deaminase cDNA or rat transin cDNA, 
respectively, under the transcriptional control of the internal SV40 early 
promoter (see figure4 -2.).

(c) The number of tumours observed per number of injection sites. 
8-week old female nude mice were used for subcutaneous injection of 
infected cells. Each animal was injected twice and received between 2.5 
to 5x10^ cells per site of injection.

(d) The number of secondary tumours observed. Animals were 
sacrificed once the primary tumours had reached an average size of 10mm 
in diameter. Autopsy was performed on each animal to score for the 
formation of secondary tumours.

(e) Numbers of days between date of subcutaneous injection of 
cells and the date of sacrifice of the animal.



designed to detect transforming activities present in genomic donor DNAs 

(KRONTIRIS et al., 1981; LANE et al., 1981). However, CT3 cells, like other 

3T3 mouse fibroblast cell lines, could only be propagated for a limited number 

of passages under sub-confluent conditions, otherwise the incidence of 

transformed phenotype within the CT3 cell population increased dramatically. 

The CT3 cells used in the infection and injection experiments were of low 

passage number to ensure a non-transformed phenotype. Therefore, there is no 

obvious explanation for the tumorigenic phenotype of the parental CT3 cells. 

The observation, that both LNTR2-infected and LNSal-infected CT3 cells had 

an increased tumorigenic phenotype compared to the uninfected control, 

suggested, that the retroviral vector N2, rather than the inserted rat transin and 

human ada cDNA sequences, caused the increased tumorigenic phenotype. No 

evidence of secondary tumour formation was found in any of the CT3 pools 

tested in the spontaneous metastasis assay (table 4.4).

The cell line C5 was non-tumorigenic in nude mice throughout the 3 

month observation period (0/8 tumours/injection sites), as was the parental cell 

line MCA 3D (0/6 tumours/injection sites). G418r-LNTR-transfectants of C5 

cells were moderately tumorigenic in nude mice with a long latency period of 

3 to 4 months (4/16 tumours/injection site). LNSal infectants induced tumours 

with a higher incidence (2/6 tumours/injection site), the latency period, 

however, remained the same as by LNTR2-infected G418r-C5 cells. These 

results again implicated the N2 retroviral vector background in the tumour 

formation process rather than either the rat transin or the human ada cDNA 

inserts (table 4.4).

In comparison to the cell lines MCA 3D and C5, AT5 cells were 

highly tumorigenic in nude mice (7/8 tumours/injection site). The incidence of 

tumour formation following subcutaneous injection into nude mice was higher 

than that reported by DIAZ-GUERRA et al. (1992), who reported an incidence 

of 1/3 tumours/injection site. The latency period was also shortened from 90 

days (DIAZ-GUERRA et al., 1992) to around 70 days. Introduction of either 

LNTR2 or LNSal virus and subsequent G418-selection in vitro seemed to 

reduce the tumorigenic phenotype of AT5 cells, without affecting the latency 

period of around 70 days. The incidence of tumour induction for LNSal- 

infected AT5 cells and LNTR2-infected AT5 cells were 5/8 tumours/injection
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site and 10/16 tumours/injection sites, respectively. A lymph node tumour was 

detected in one nude mouse (table 4.5).

4.3. Discussion.

Overall there was no indication, that retroviral mediated gene transfer 

of rat transin/stromelysin cDNA into in vitro DMBA-initiated epithelial cell 

lines induced progression of phenotype of the infected cells, neither towards 

increased tumorigenicity nor to the induction of metastasis formation (table 

4.4). The retroviral vector pLNTR2 was derived from pLNSal (PALMER et 

al., 1987), an N2-based retroviral vector which contained a human ada cDNA 

and which had been used successfully to infect in vitro human skin fibroblasts 

from a patient with ADA deficiency. In the experiments described above, 

epithelial cells infected by LNSal virus had been included to control for 

retroviral vector-induced changes in tumorigenic and metastatic phenotype. 

Upon subcutaneous injection into female nude mice, CT3 cells infected by 

LNTR2 or LNSal virus were slightly more tumorigenic than uninfected CT3 

cells (table 4.4). No changes in tumorigenicity were observed for 

subcutaneously injected LNTR2- or LNSal-infected PDV cells and uninfected 

parental PDV cells (table 4.4). The non-tumorigenic cell line C5 became 

moderately tumorigenic after infection with LNTR2 or LNSal (table 4.4), 

whereas LNTR2- or LNSal-infected AT5 cells showed a reduction in 

tumorigenicity upon subcutaneous injection (table 4.4). No metastasis 

formation was observed in any of LNTR2- or LNSal-infected epithelial cells 

nor in CT3 fibroblasts with the exception of one lymph node tumour identified 

on a nude mouse injected with LNTR2-infected AT5 cells. The animal was in 

relative poor health at time of sacrifice and removal of the tumour. Each time 

an animal was sacrificed, an autopsy had been performed. With the above 

mentioned exception, no secondary tumours were found in the animals. 

However, severe liver damage was observed in many animals, this could have 

been due to infection by mouse hepatitis virus. The poor health of the animals 

could have contributed to the increased tumorigenic phenotype of AT5 cells in 

this experiment. DIAZ-GUERRA et al. (1992) reported a less tumorigenic 

phenotype for AT5 cells upon subcutaneous injection into nude mice. The 

development of tumours in nude mice upon subcutaneous injection of CT3
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cells was unexpected. CT3 cells infected with LNTR2 or LNSal recombinant 

retrovirus showed increased tumorigenicity compared to uninfected CT3 cells. 

The poor health status of the animals could have been responsible for the 

unexcepted tumour formation along side with the occurrence of spontaneous 

transformation of CT3 cell during propagation in tissue culture prior to 

injection into nude mice.

In summary, upon subcutaneous injection into nude mice, LNSal- 

infected CT3, PDV, C5 and AT5 cells showed the same altered tumorigenic 

phenotype then equivalent LNTR2-infectants. These results suggested, 

therefore, that the retrovirus vector per se, rather than the expression of either 

the ada cDNA or the transin/stromelysin cDNA, seemed to induce the few 

observed changes in the respective tumorigenic phenotypes of the infected 

cells. Since no biological effects were observed, it was suggested not to 

further pursue the role of transin/stromelysin in metastasis, although a more 

detailed analysis of transin/stromelysin expression would be required to 

demonstrate that transin/stromelysin did not confer a metastatic phenotype, 

studies by BREATHNACH and colleagues have shown that the pLNTR2 

retroviral vector does express transin/stromelysin, however, expression studies 

of transin/stromelysin activity were not straight forward.

At the same time when the above described experiments were 

performed, S. YUSPA and T. BOWDEN and their co-workers also attempted 

to induce progression towards an invasive and metastatic phenotype by 

introducing transin/stromelysin cDNA into epithelial cells in vitro. Stable 

transfection of full-length transin/stromelysin cDNA into cells of chemically 

induced mouse skin papilloma derived cell lines also failed to result in an 

invasive phenotype of the transfectants (L.MATRISIAN, personal 

communication). It seemed likely therefore, that both, experiments performed 

by YUSPA and BOWDEN and by myself were unsuccessful in inducing 

metastatic phenotypes because the protein products translated from 

transin/stromelysin cDNAs were probably enzymatically inactive. At the time 

these experiments were performed, it was not appreciated that 

metalloproteinases required proteolytic activation after secretion. There are 

many stages in the biosynthesis of transin/stromelysin and other 

metalloproteinases where regulation of expression and activity occurs in vivo
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(MATRISIAN and BOWDEN, 1990; LIOTTA and STETLER-STEVENSON, 

1990; LIOTTA et al., 1991; MATRISIAN, 1992). Furthermore, by 

introducing a constitutively active form of matrilysin or transin-3 (table 4.1) 

into human stomach and colon cancers derived cell lines, it has been shown 

that matrilysin activity is necessary but on its own not sufficient to induce of 

tumour invasiveness. An extensive correlation had been demonstrated 

previously between matrilysin gene expression and activity in human gastric 

tumours and primary prostate adenocarcinomas and their invasive phenotype 

(McDONNEL and MATRISIAN, 1990; SIADAT PAJOUH et al., 1991; 

MATRISIAN, 1992).

Recent observations made in the groups of D. STEHELIN and L. 

MATRISIAN seem to requires an adjustment of the traditional concept of 

invasion, where matrix-degrading proteinases are expressed within the tumour 

cells themselves and localized secretion of latent forms of the degrading 

proteins by the tumour cells, followed by activation of the proteins, results in 

localized digestion of the matrix immediately underlying the invasive tumour 

(reviewed in MATRISIAN and BOWDEN, 1990; LIOTTA and STETLER- 

STEVENSON, 1990; LIOTTA et al., 1991; MATRISIAN, 1992). Recent 

results by D.STEHELIN and co-workers showed a transient and localized 

induction in c-ets-l RNA expression, followed by a localized induction of 

collagenase gene expression in the endothelia during the invasive process of 

angiogenesis in developing embryos (WERNERT et al., 1992). Moreover, c- 

ets-l gene expression was also induced in endothelial cells which were in 

immediate neighbourhood to vascularizing tumours. In situ hybridization 

could detect no signs of c-ets-l or collagenase gene expression in the actual 

tumour cells themselves at any stage during tumour progression (D. 

STEHELIN, pers. communication). Similar results were obtained after in situ 

hybridization of sections through invasive human ovarian tumours which had 

been grafted onto the stroma of nude mice. Mouse c-ets-l mRNA was readily 

detected in fibrocytes of the mouse stroma immediately surrounded by the 

invasive human ovarian tumour, which itself proved negative for c-ets-l gene 

expression. In some cases, co-expression of c-ets-l and collagenase mRNA 

occurred in the mouse stroma cells. It had been suggested that the invasive 

human ovarian tumour releases factors into the remnants of the tumour-
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surrounded mouse stroma which induce c-ets-l gene expression, leading in 

turn to the induction of expression of metalloproteinase genes. Induction of 

metalloproteinase genes in the stroma cells will result in the stroma 

"dissolving" itself and thus allows the invasive tumour to grow (D. 

STEHELIN, pers. communication).

High levels of transin/stromelysin gene expression were detected in 

80% of invasive mouse skin carcinomas, induced by DMBA-TPA induction 

and promotion, and in 100% of invasive mouse skin carcinomas, induced by 

repeated MNNG treatments, but not necessarily in metastasis derived from 

these tumours (MATRISIAN et al., 1986; OSTROWSKI et al., 1988; 

MATRISIAN and BOWDEN, 1990). Recent in situ hybridization 

experiments, however, showed that transin/stromelysin mRNA is synthesized 

in the stromal cells immediately surrounding or located within the mouse skin 

lesions rather than in the papilloma or carcinoma cells themselves. Upon 

progression to undifferentiated spindle cell carcinomas, transin/stromelysin 

expression can also be detected in the undifferentiated, fibroblastic-appearing 

carcinoma cells (L. MATRISIAN, pers. communication). Considering these 

very recent results by L.MATRISIAN et al.(unpublished results), it seemed 

likely, that retroviral mediated gene transfer of the rat transin/stromelysin 

cDNA into epithelial cells representing the more benign stages of mouse skin 

carcinogenesis was the wrong choice. Introduction of the rat 

transin/stromelysin cDNA into carcinoma or spindle cell carcinoma cell lines, 

however, might have been more appropriate for the induction of invasiveness 

and metastasis formation. Interestingly, preliminary results by P. 

DAUBERSIES seemed to indicate a shift in AP-1 protein complex 

concentrations during progression of chemically induced mouse skin lesions. 

High levels of AP-1 protein complex have been found in benign papillomas, 

whereas spindle cell carcinomas seem to contain very little AP-1. A more 

detailed knowledge about the distribution and abundance of the transcription 

factors AP-1 and c-Ets-1 during tumour progression might help to understand 

the tight regulation of transin/stromelysin gene expression at the various 

stages of tumour development and metastasis.
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5. The Use of Retroviral Vectors in Cell Lineage Study in Mouse Skin and 

Mouse Skin Carcinogenesis.

5.1. Introduction.

Knowledge of the cell lineage and of the potential of stem cells or 

precursor cells is essential to further the understanding of control of cell 

proliferation. In tumorigenesis studies specifically, single cell marking techniques 

could assist in defining the role of activated oncogenes during tumour 

development under conditions as they occur in vivo. The use of microinjection of 

fluorescent cell lineage markers or enzyme tracers, although successfully used in 

other systems (KIMMEL and WARGA, 1986; WARGA and KIMMEL, 1990) 

seemed to be inappropriate in cell lineage studies in mouse skin carcinogenesis, 

as the target cells for initiation are as yet unidentified. Even the generation and 

use of transgenic animals (HANAHAN, 1986) has limitations regarding their use 

in the analysis of multistage mouse skin carcinogenesis. The initiation of 

tumorigenesis in vivo is due to somatic mutations in the c-Ha-ras gene occurring 

in a single cell surrounded by normal tissue. In transgenic mice, however, the 

oncogene product is synthesized in all cells of a tissue to which the expression of 

the gene has been targeted through the choice of the promoter directing 

expressing of the transgene. In recent years, retroviruses have been increasingly 

applied to the study of cell lineage (reviewed in PRICE, 1987). The relative ease 

with which it was possible to tag a pluripotential haematopoietic stem cell in man 

and mouse has been demonstrated by DICK et al. (1986). progeny of cells 

infected by a retroviral vector can not only be identified by the integration site of 

the retroviral provirus but also by the expression of a genetic marker gene present 

in the retroviral vector used for the genetic tagging of the original cell. The most 

widely used genetic marker whose gene product is easily detectable by 

histochemical staining procedures is the bacterial lacZ gene coding for the 0- 

galactosidase enzyme. The successful use of LacZ-encoding retroviral vectors has 

been reviewed in PRICE (1987 and 1991) and CEPKO (1988 and 1989). So far, 

no developmental abnormalities attributed to high expression of the lacZ gene 

have been reported.

The aim of this part of the study was to examine the feasibility of using 

retroviral vectors expressing p-galactosidase encoded by the bacterial lacZ gene
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to label epithelial cells in vivo in mouse skin. Initial experiments examined the 

titer of the virus and expression of p-galactosidase in murine epithelial cells in 

vitro. Conditions for detecting the expression of p-galactosidase by histochemical 

techniques were established in cells in vitro and in tissue sections. The ability of 

a p-galactosidase expressing retroviral vector, pBAG, to infect and label mouse 

skin cells in vivo was examined with the objective of attempting to identify skin 

stem cells and differentiation compartments. Retroviral vectors containing the v- 

ras gene and the p-galactosidase marker gene were also examined for their ability 

to co-express both genes. The possibility of using ras/p-gal retroviral vectors to 

initiate papilloma formation in mouse skin in vivo was also explored, with the 

hope of using such an approach to identify histochemically v-ras initiated cells in 

mouse skin in situ.

5. Results.

5.2. Cell Lineage Study in Normal Mouse Skin.

5.2.1. BAG Virus Infection of Epithelial Cells In Vitro.

The retroviral vector, pBAG, encodes two marker genes: the neo gene 

encoding the neomycin phosphotransferase for G418 selection (COLBERE- 

GARAPIN et al., 1981; DAVIES and JIMENEZ, 1982) and the E. coli P- 

galactosidase (p-gal)-encoding lacZ gene (figure 5.1). This retroviral vector 

system has been used to study cell lineages in the developing vertebrate nervous 

system, both in vivo and in vitro (PRICE, et al., 1987). The ecotropic BAG virus 

producer clone G4 12.2-Y7 was kindly supplied by J. PRICE. BAG virus from 

G4 12.2-Y7 was tested on CT3 cells for the ability of infected cells to 

simultaneously express the lacZ and neo genes. G4 12.2-Y7 released BAG virus 

at a titre of 4.3x10^ G418-resistant colony forming units per ml of viral 

supernatant per 10^ viable CT3 cells infected (G418r-cfu/ml/10^ viable CT3 

cells) or 4.0x10^ p-gal+-G418r-cfu/ml/l 0^ viable CT3 cells, respectively (table

5.1). This compares favourably with published results of 10^ G418r-cfu/ml 

(PRICE etal., 1987).

BAG virus was also tested for the ability to infect epithelial C5N cells in 

vitro (table 5.1). The C5N cell line is a subclone of the non-tumorigenic epithelial
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Figure 5.1

Retroviral Vector BAG.

The retroviral vector BAG was cloned by PRICE et al. (1987). The 
5'Mo-MuLV-LTR (open box) provided the promoter for the E.coli lacZ gene 
(3.0kb BamHI-ffagment, narrow diagonal box). The ATG translation initiation 
codon for translation of the retroviral lacZ message was supplied by modified 
Mo-MuLV gag sequences. The SV40 early promoter (hatched box) and the 
neor-gene (filled box) were isolated from plasmid pSV2neo (SOUTHERN and 
BERG, 1982); the pBR322 origin of replication (broad diagonal box) was 
derived from the pZip Neo SV(X)1 retroviral vector (CEPKO et al., 1984), 
and the remaining 3' Mo-MuLV sequences were wild-type. The polyoma early 
region (BamHI-Hindlll fragment, chequered box) was ligated into the BAG 
plasmid outside the viral LTRs (open box) and rat chromosomal sequences 
(wavy line). See PRICE et al. (1987) for detailed description of the cloning of 
the pB AG retroviral vectors and for references. Recognition sites for a number 
of restriction endonucleases are indicated in the figure.



Efficiency of infection of CT3 end CHS cells by BAG retroviral vector.
1
|Retroviral 
jvector

1
| Infection Efficiency 
| CT3i

-----------------------------------------------1
Infection Efficiency | 

C 5 N  j

| G418r(b)
1i

ltoal+/
| G418r(c)

G418r <b > j B-gal+/ |
|G418r <c> |f i

| Zip Neo SV (x)1
1
| 1.7xl05 
j (593)(d)

1

1

1 1
4.4xl04 | - | 
(30.4) <d> j | |

|BAG
1

1 4.3xl05 (6) 
| (54.4)(d)

| 4.0xl05 (6) 1.4x 105 (5) |9.0x 1 0 4 (5) | 
(30.6) <d> j j

Table 5.1

Efficiency of infection of CT3 and C5N cells by BAG retroviral vector.

(a) Description of retroviral vectors Zip Neo SV(X)1 (CEPKO et al.,
1984) and BAG (PRICE et al., 1987) see text.

(b) Infection efficiency is the number of G418-resistant colonies 
observed per 10^ viable cells replated in G418 selection after infection of CT3 
or C5N cells with 100 to 200p.l of infectious supernatant harvested from *¥2 
cells producing infectious recombinant Zip Neo SV(X)1 or BAG retroviral 
vectors. Infected CT3 and C5N cells were selected in the presence of 
0.8mg/ml or 0.2mg/ml G418, respectively.

(c) Infection efficiency is the number of p-galactosidase positive 
G418-resistant colonies observed under (b). Colonies were scored positive for 
p-galactosidase activity when stained blue within 5 to 24 hours after 
overlaying the colonies with X-Gal containing staining solution (SANES et 
al., 1986).

(d) The percentage viability of pooled colonies after infection by Zip 
Neo SV(X)1 or BAG and G418 selection.



cell line MCA 3D (KULESZ-MARTIN et al., 1983). By determining the number 

of G418 resistant colonies and the number of G418-resistant colonies that stained 

positive for p-galactosidase expression, the relative effectiveness of expression of 

the two marker genes, lacZ and neo, were assessed in epithelial C5N cell 

infectants. C5N were readily infectable by ecotropic BAG virus, however, the 

infection efficiency of C5N cells was reduced compared to CT3 cells (table 5.1). 

Although, the two mammalian promoters, SV40 early promoter and Mo-MuLV 

LTR, allowed the expression of their respective marker genes quite efficiently in 

both cell lines, the reduction in viral titre and number of G418-resistant colonies 

expressing lacZ suggests that the overall efficiency of both promoters appears to 

be reduced in C5N cells.

The possibility that lacZ gene expression could adversely effect cell 

viability, cell morphology or tumorigenicity of cells was also explored. Infection 

of CT3 cells or C5N cells by BAG or ZIP NEO SV(X)1 retroviral vector virus 

(PRICE et al., 1987; CEPKO et al., 1984) caused no reduction in viability of the 

cells (table 5.1). There were no obvious differences in cell morphology detectable 

between p-gal-expressing CT3 cells and uninfected parental cells. However, the 

intensity of the X-gal staining was heterogeneous within colonies. The 

heterogeneity of the staining might reflect a heterogeneity in lacZ gene 

expression or p-gal activity. PRICE et. al. (1987) had previously reported that 

mosaic expression of the lacZ gene could occur occasionally even in clones of 

infected fibroblasts grown in vitro.

The CarcB cell line was derived from a mouse squamous cell carcinoma 

induced by DMBA/TPA treatment (QUINTANILLA et al., 1986; DIAZ- 

GUERRA et al., 1992). After infection of CarcB cells with BAG virus, G418- 

resistant cells were injected subcutaneously into adult NIH or nude mice 

(2.5x10^ cells/injection point). Within 3 days of the injection, rapidly growing 

tumours started to develop at each site of injection. No difference in 

tumorigenicity could be detected between G418r/p-gal+ CarcB cells and the 

parental CarcB cell line. X-gal staining showed, that the tumours contained a 

large proportion of cells expressing high amounts of active P-galactosidase 

protein (D. MORGAN, personal communication).

5.2.2. BAG Virus Infection of Mouse Skin In Vivo.
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Concentrated BAG virus stock was used for in vivo infection of epithelial 

cells in normal mouse skin. Two days prior to BAG virus application, the fur 

from the back of two months old NIH female mice was removed, by shaving and 

treating with depilatory agent. The back skin of each animal was treated with a 

single dose of TPA 24 hours prior to BAG virus application (BROWN et al., 

1986). BAG virus was applied either by injection of virus into the epidermis of 

the skin or by scarification of the back skin in the presence of BAG virus. A 

control group of animals had their back skin scarified in the presence of PBS or 

remained untreated for the duration of the experiment with the exception of the 

single TPA treatment.

BAG-infected animals and PBS-control animals were sacrificed at day 6 

post virus application. Samples of the treated skin were taken together with 

control samples of untreated skin derived from the same animals. The skin 

samples were fixed (PRICE et. al., 1987), stained at 37°C overnight in X-gal 

staining solution (SANES et al., 1986), taken through a dehydration procedure 

and embedded in paraffin.

Examination of lOpm sections of skin taken from BAG infected animals 

revealed P-galactosidase-specific staining in the suprabasal layer of the epidermis 

as well as in and around hair follicles (figure 5.2a and b). Whereas in negative 

control skins, scarified in the presence of PBS, no p-galactosidase positive 

staining was seen within the hair follicles (figure 5.2c). Strong background 

staining was seen, however, over a wide range of endothelial cells (figure 5.2b 

and c). High background of p-galactosidase-positive staining had previously been 

reported by SANES et. al. (1986), who attributed the background staining to the 

presence of endogenous galactosidase enzymes. Furthermore, characteristic blue 

staining (red stain in dark field microscopy) was not always solely localized 

within the cytoplasm of P-galactosidase positive cells, but could also be found 

extensively within the extracellular spaces in the skin sections (figure 5.2b and c). 

This seemed to suggest that p-galactosidase might diffuse easily. The "leakage" 

of P-galactosidase-positive staining was probably due to insufficient fixation of 

the skin specimen prior to staining or possible rupture of p-galactosidase 

expressing cells during staining, dehydration and/or paraffin embedding.

The results of these experiments showed that it was possible to 

successfully infect epithelial cells in vivo by applying concentrated BAG virus
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Figure 5.2.

Histochemical analysis of mouse skin.

Six days post virus application, samples of mouse skin were taken 
from animals scarified in the presence of infectious BAG retroviral vector or 
phosphate buffered saline (PBS). The skin samples were fixed at 4°C  in 
paraformaldehyde fixative (PRICE et al., 1987), stained overnight at 37°C in 
X-Gal staining solution (SANES et al., 1986), dehydrated and enbedded in 
paraffin. Dark field microscopy of 10|im skin sections taken from skins of 
BAG-infected animals revealed p-galactosidase positive staining (red) in the 
suprabasal layer of the epidermis and in hair follicles (figure 5.2a and b), 
however, not in hair follicles of PBS-infected control skins (figure 5.2c). 
Strong background staining was seen in sections of both BAG-infected and 
PBS-infected skins, especially over endothelial cells (figure 5.2a. and c.).
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onto mouse skin by scarification and injection. The p-galactosidase-specific 

staining seemed to be concentrated at or near the base of hair follicles within the 

mouse skin. Several groups of cells within the epidermis have been suggested to 

represent epithelial stem cells, some of which are thought to be localized in the 

bulge area of the hair follicle (COTSRAELIS et al., 1990). As yet, no candidate 

stem cells has been histochemically identified in situ. Infection of mouse skin in 

vivo with the BAG or related recombinant retroviruses, would provide an 

excellent experimental system to identify epithelial stem cells and to analyse the 

genealogical relationship of mouse skin epithelial cells in vivo. The presence and 

expression of histochemical markers, such as the lacZ gene, would enable the 

clear identification of progenitor cells at any stage of the normal differentiation 

pathway and in mouse skin development.

5.3. Cell Lineage Study in Ha-ras Virus Initiated Mouse Skin 

Carcinogenesis.

Results by BROWN et. al. (1986) showed that activated v-ras genes were 

able to replace chemical carcinogens in the initiation of mouse skin 

carcinogenesis. Harvey and BALB murine sarcoma virus was directly applied to 

the mouse skin by scarification and subsequent treatments with the tumour 

promoter TPA induced benign papillomas, some of which progressed to invasive 

carcinomas. Therefore, upon infection of mouse skin with recombinant retroviral 

vector virus coding for the v-Ha-ros gene (DHAR et al., 1982) and the lacZ 

histochemical marker gene, it should be possible to follow virally initiated cells 

through promotion to the development of benign papillomas and perhaps 

ultimately through progression to the development of invasive carcinomas. The 

successful application of genetic cell marking with a v-Ha-ras and lacZ gene 

encoding retrovirus could provide information about the developmental capacity, 

localization and involvement of (virally) initiated cells in multistage mouse skin 

carcinogenesis.

53.1. Cloning of pZip LacZ SV(v-ras) Retroviral Vector.

The retroviral vector pZip LacZ SV(v-ras) (figure 5.3) was designed to 

contain two genes of interest, v-Ha-ras isolated from a cloned Harvey murine 

sarcoma virus (DHAR et al., 1982) and the E. coli lacZ histochemical marker
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Figure 5.3

The pZip LacZ SV(v-ras) retroviral vector.

The retroviral vector pZip LacZ SV(v-ras) was cloned by B. 
BAILLEUL (unpublished results) by replacing the neo- cassette (chapter
5.2.1) in the Xhol cloning site of the pZip Neo SV(v-ras) retroviral vector 
(DOTTO et al., 1985) with the lacZ gene encoded in the Sail fragment 
(chequered box) isolated from plasmid pGHlOl (HERMAN et al., 1986). The 
v-Ha-ras gene is represented by the striped box, retroviral Mo-MuLV-LTR 
sequences by filled boxes, and the pBR322 plasmid sequences by the dotted 
box. Recognition sites for restriction endonucleases Clal, EcoRI, BamHI and 
Hindlll are indicated.



gene ligated to an "in frame" AUG codon (HERMAN et. al., 1986). The 

retroviral vector pZip LacZ SV(v-ras) was cloned by B.BAILLEUL (unpublished 

results) by replacing the Xhol weo-cassette from the retroviral vector pZip Neo 

SV(v-ras) (DOTTO et. al., 1985) through a Sall-Sall fragment encoding the lacZ 

gene from plasmid pGHlOl (HERMAN et. al., 1986), in which the lacZ gene was 

ligated to an "in frame" AUG codon (HERMAN et. al., 1986). The expression of 

both exogenous genes, the neo and the lacZ gene, is under transcriptional control 

of the Mo-MuLV-LTR in the pZip LacZ SV(v-ras) vector (figure 5.3). The 

expression of the lacZ gene in particular is greatly dependant on the efficiency of 

splicing taking place in the cells infected by Zip LacZ SV(v-ras) virus (HWANG 

et al., 1984; MILLER and TEMIN, 1986; PEABODY and BERG, 1986; 

GILBOA, 1986). pZip LacZ SV(v-ras) encodes no drug resistance marker gene, 

that can be used to select for infectants.

5.3.2. Generation of Zip LacZ SV(v-ras) Virus Producer Cell Pools and 

Infection of CT3 Fibroblasts.

Infectious Zip LacZ SV(v-ras) virus producer cells were generated by 

stable co-transfection of pZip LacZ SV(v-ras) and pAG60 plasmid DNA into the 

ecotropic *F2 cells (MANN et al., 1983) by calcium phosphate co-precipitation 

(WIGLER et al., 1978). The plasmid pAG60 (kindly donated by J. LANG) 

contains the dominant selectable neo gene (COLBERE-GARAPIN et. al., 1981). 

Co-transfecting the pAG60 plasmid with pZip LacZ SV(v-ras) allowed G418 

selection in order to identify successfully transfected *F2 cells. Transfected *F2 

cells were either selected for G418-resistance (selecting for the neo gene) or for 

their ability to form foci on a monolayer of untransformed *F2 cells (selecting for 

the transforming v-ras gene function).

Upon calcium-phosphate mediated plasmid DNA transfection pZip LacZ 

SV(v-ras) retroviral vector DNA induced transformed foci in *F2 cells. The 

majority of pZip LacZ SV(v-ras)-transfected ¥ 2  foci were also positive for 0- 

galactosidase expression. Therefore, Zip LacZ SV(v-ras) driven v-Ha-ray and 

lacZ gene expression had been demonstrated. Controls had been included to test 

for overall transfection efficiency and to provide a positive control for G418 

selection (pAG60); plasmids pIC-TK-ras (J. LANG, unpublished results) and 

pZip Neo SV(v-ras) (DOTTO et. al., 1985), both containing v-Ha-ras gene, were
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used as positive controls in focus forming assay (SHIH et al., 1979 and 1981; 

COOPER et al., 1980; KRONTIRIS and COOPER, 1981; PERUCHO et al., 

1981) with untransfected ¥ 2  cells giving very little or no background of 

spontaneous foci; pBAG DNA (PRICE et. al., 1987) was included as the positive 

control for X-gal specific staining (data not shown).

Three pools of G418-resistant ¥ 2  cells, selected after co-transfection of 

pZip LacZ SV(v-ras) and pAG60 plasmid DNA, were tested for Zip LacZ SV(v- 

ras) virus production as described earlier (table 5.2. transfection). Zip LacZ 

SV(v-ras) virus does not encode a drug-selectable marker gene. Therefore, CT3 

cells infected by the recombinant retroviral vector virus were selected in focus 

forming assays to test for v-Ha-ray transforming activity through the loss of 

contact inhibited growth. The virus titres given were based on the number of foci 

positive for P-galactosidase expression. Although all three pools tested released 

infectious Zip LacZ SV(v-ras) virus, the actual virus titre varied from 6.0x1 (P  to 

8.5x10^ p-gal+-focus forming units per ml virus supernatant per 10^ viable cells 

(p-gal+-ffu/ml/10^ viable cells) (table 5.2. transfection). Zip LacZ SV(v-ras) 

producer pool 1, releasing the highest amount of infectious virus, was used as the 

Zip LacZ SV(v-ras) producer cell line for all subsequent experiments. Upon 

infection of CT3 cells, the incidence of p-gal+-foci to p-gal“-foci demonstrated 

high coincidence of v-Ha-ras expression and p-galactosidase activity. More than 

96% of v-Ha-ras-induced foci stained blue after incubation of the cells with the 

p-galactosidase substrate X-Gal, while monolayers of morphologically normal 

CT3 cells remained unstained. However, since the aim was to attempt to infect 

epithelial cells in vivo, it was important to explore methods to increase the titre of 

virus released by the producer cell line. The importance of virus titre in retroviral 

mediated gene transfer had previously been demonstrated by BROWN et al 

(1986) and THOMPSON et al (1989).

5.3.3. Attempts to Increase Production of Infectious Recombinant Virus.

Several experimental designs were followed up aiming to increase the 

titre of the Zip LacZ SV(v-ras) producer cells:

A) Zip LacZ SV(v-ras) Virus Rescue By Super infection With a Wild-Type 

Helper Virus.
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Table 5.2

Comparison of virus titres of v-ras/lacZ retroviral vectors from producer 
lines generated by different methods.

(a) Zip LacZ SV(v-ras) virus producer cells were generated by stable 
transfection with 20pg of pZip LacZ SV(v-ras) plasmid DNA and 5pg of 
pAG60 plasmid DNA in the presence of 40pg of human white blood cell 
carrier DNA into *F2 cells (MANN et al., 1983) by calcium phosphate co­
precipitation (WIGLER et al., 1978). Three independent producer pools were 
established by pooling G418-resistant transfected ¥ 2  colonies.

(b) CT3 cells derived from a clonal p-gal+-focus established following 
infection of CT3 cells with infectious Zip LacZ SV(v-ras) retroviral vector 
were superinfected with 100|il of wild-type Mo-MuLV helper virus. The 
technique of rescuing replication-incompetent retroviral vector, integrated into 
the host cell genome, by superinfection of host cells with replication- 
competent helper virus is outlined in figure 1.5 and is described in chapter 
1.5.6)

(c) In a variation to the shuttle technique described by MILLER et al 
(1986), amphotropic packaging cells PA 137 (MILLER et al., 1985) were 
infected with infectious ecotropic Zip LacZ SV(v-ras) retroviral vector. 48 
hours after the infection, supernatant containing infectious amphotropic 
retroviral vector was harvested and used to infect fresh ecotropic ¥ 2  cells. 
Infected 2 cells were selected for focus formation in growth medium 
supplemented with 5% serum.

(d) Two clonal packaging cell lines releasing infectious Zip ras/P-gal 
retroviral vector (THOMPSON et al., 1989) had been obtained from H. 
LAND. The Zip ras/P-gal producer cell lines had been established by stable 
co-transfection of ¥ 2  cells with pZip ras/p-gal and pSV2neo (SOUTHERN 
and BERG, 1982) plasmid DNA followed by G418 selection. The two cell 
lines 0F2 ras/p-gal 5 and ¥ 2  ras/p-gal 9) had been characterized by 
THOMPSON et al. (1989) as releasing infectious retroviral vector at high titre.

(e) The viral titre is calculated form the number of focus forming units 
(ffu) observed per ml of supernatant per 10^ cells replated into growth 
medium supplemented with 5% serum.

(f) The viral titre is calculated from the number of soft agar colony 
forming units (SA-cfu) observed per ml of supernatant per 10^ cells replated 
into semi solid growth conditions (0.3% soft agar).



Comparison of virus titres in v-ras/LacZ retroviral vectors on produce 
lines generated by different methods.

Method to generate 
producer cell line

Virus titre on CT3 cells

ffu/ml S A - c f u / m l ^

Transfection 1) 0.8-2.6xl06 1) 1.2xl05
1 2) 2.2xl04 2) not done

3) 6xl03 3) not done

Helper virus rescue not done 3.7xl05
(b)

Shuttle infection 1) 5.3xl05
2) 6.6xl05 not done
3) 5.7xl05

Transfection 1) 1.2xl05 not done
(Thompson et al,1989) 2) l.lxlO5 not done



The rescue of Zip LacZ SV(v-ras) virus from infected but non-producing 

CT3 cells by superinfection with replication-competent Mo-MuLV helper virus 

will lead to virus stock containing replication-defective Zip LacZ SV(v-ras) virus 

and helper virus. The presence of replication-competent helper virus in the 

infectious virus stock will allow horizontal spread, due to infected cells being 

able to release infectious virus. This should lead to enlarged clusters of infected 

cells, of non-clonal origin, facilitating the identification of P-gal+-cells in vivo. 

Horizontal virus spread could be advantageous in Zip LacZ SV(v-ras) initiated 

mouse skin carcinogenesis for the following reasons:

i) Virus stock containing Zip LacZ SV(v-ras) virus and replication 

competent Mo-MuMLV helper virus would be similar to the Ha-MSV virus stock 

used by BROWN et al. (1986) in viral initiation of mouse skin carcinogenesis. 

The presence of helper virus could, however, alter the clonality of any arising 

tumour.

ii) Results by THOMPSON et al. (1989) suggested that epithelial cells 

might be less infectable by Mo-MuLV derived retroviral vector virus. Using 

infectious virus stock that also contains replication-competent helper virus, would 

perhaps increase the chance of infecting epithelial cells by horizontal virus spread 

after the initial virus application.

The technique of superinfection is outlined in figure 1.5. After infection 

with Zip LacZ SV(v-ras) virus, CT3 cells cloned from a p-gal+-focus were 

superinfected with Moloney Murine Leukemia virus (Mo-MuLV). The results of 

infection of CT3 cells with helper rescued Zip LacZ SV(v-ras) virus stock are 

shown in table 5.2 (helper virus rescue). The overall virus titre was 4.1x10^ soft 

agar-colony forming units per ml infectious supernatant (SA-cfu/ml). Soft agar 

cloning was used to assess transformation of infected CT3 cells by v-Ha-ras to 

avoid horizontal virus spread. The vast majority of soft agar colonies (90%) were 

also positive for P-galactosidase activity, resulting in a Mo-MuLV rescued Zip 

LacZ SV(v-ras) virus titre of 3.7x10^ SA-cfu/ml. Only 10% of the soft agar 

colonies (0.4x10^ SA-cfu/ml) did not express the p-galactosidase enzyme in its 

active form, as they failed to convert the X-Gal substrate.

The titre of the Mo-MuLV-rescued Zip LacZ SV(v-ras) virus stock was 

less than 4 fold higher than helper-free virus stock. Nevertheless, the Zip LacZ
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SV(v-ras) producer cell line 2, generated through rescue with Mo-MuLV helper 

virus, was also used in subsequent experiments infecting mouse skin.

B) Shuttle of Retroviral Vectors using Packaging Cell Lines with Different 

Host Ranges.

The shuttle technique for creation of cell lines secreting helper free- 

retroviral vectors was first described by MILLER et. al. (1986). This technique 

involved the direct infection of retrovirus packaging cells of one (e.g. ecotropic) 

host range with the viral vector generated by another packaging cell line 

displaying a different host range (e.g. amphotropic). MILLER et. al. (1986) 

suggested that the titre of recombinant virus produced from infected packaging 

cell lines would be on average higher than the recombinant virus titre produced 

when the provirus had been introduced into the packaging cell lines by 

transfection with the plasmid DNA.

In a variation to the shuttle protocol described by MILLER et. al. (1986), 

amphotropic packaging cells PA137 (MILLER et. al., 1985) were transiently 

infected with ecotropic Zip LacZ SV(v-ras) virus released from Zip LacZ SV(v- 

ras) producer line 1. Virus secreted from infected PA 137 cells was harvested and 

used to infect fresh cells of the ecotropic packaging cell line ¥ 2  (MANN et. al., 

1983). ¥ 2  cells infected with amphotropic Zip LacZ SV(v-ras) virus were 

selected for focus formation. A total of 11 individual foci were established as 

clonal cell lines. Only three out of the 11 cell lines examined were clearly 

strongly positive for p-galactosidase activity. Each of the three focus derived cell 

lines were tested for Zip LacZ SV(v-ras) virus production by infecting CT3 cells 

followed by selection for focus formation (table 5.2. shuttle infection). The 

percentage of p-gal+-ffu were between 96% to 90% of the total number of ffu. 

However, upon passage of the "shuttled" producer cell lines, the ability to form 

colonies in soft agar and the percentage of colonies staining positive for p- 

galactosidase activity declined. None of the three producer lines obtained after 

shuttling of recombinant Zip LacZ SV(v-ras) virus showed a significantly 

increased virus titre compared to the Zip lacZ SV(v-ras) producer line 1 

generated by transfection of ¥ 2  cells. However, it can be seen that there was less 

clonal variation in the titre of virus released. Therefore, the "shuttle technique" 

did not help to establish producer cell lines releasing recombinant Zip LacZ
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SV(v-ras)-retrovirus vector at high titre. More important still, "shuttled" producer 

lines did not seem to display a stable (3-gal+/v-Ha-ras+-phenotype. Neither of the 

three "shuttled" producer cell lines were used in any further experiments.

C) Virus Titre of Zip ras/-gal Producer Cell Lines.

Two clonal packaging cell lines releasing recombinant Zip ras/p-gal virus 

(THOMPSON et. al., 1989) had been obtained from H. LAND. The retrovirus 

vector Zip ras/P-gal, cloned by THOMPSON et. al. (1989), was identical to the 

Zip LacZ SV(v-ras) vector, both recombinant retroviral vectors transduced the 

activated viral Ha-ras gene and the E.coli lacZ gene. Producer cell lines *F2 

ras/p-gal 5 and 9 were tested for virus production at the same time as Zip LacZ 

SV(v-ras) producer lines. Table 5.2 gives the result of the direct virus titre 

comparison of the different Zip LacZ SV(v-ras) virus and Zip ras/p-gal virus 

producer cell lines, respectively. The results show that neither of the two Zip v- 

ras/p-gal producer lines obtained from H.LAND produced the recombinant v-Ha- 

ras and lacZ gene expressing retroviral vector with higher titre than eitherthe 

producer lines for Zip LacZ SV(v-ras) or Zip LacZ SV(v-ras)/Mo-MuLV (1.1 to 

1.2x10^ p-gal+-ffu/ml; table 5.2. transfection by THOMPSON et al., 1989). On 

the contrary, the viral titre determined for Zip LacZ SV(v-ras) producer cell line 

1 was slightly higher than the titre of the other v-Ha-ras/P-gal expressing viruses. 

The incidence with which both genes were expressed simultaneously in the same 

infected cell were broadly similar: 85% of the Zip LacZ SV(v-ras) induced CT3 

foci were also p-gal positive, Zip ras/p-gal-CT3 foci were p-gal positive in 73% 

0F2 ras/p-gal 9) and 96% 0F2 ras/p-gal 5) of the cases.

D) Concentration of Viral Supernatants.

As it had so far not been possible to clone a Zip LacZ SV(X)1-virus 

producer line releasing the recombinant virus at a higher viral titre, freshly 

harvested viral supernatants were concentrated by centrifugation through Amicon 

micro-concentraters prior to use or short-term storage at -70°C. All concentrated 

virus stocks were titred on CT3 cells. On average, concentration of viral 

supernatant led to a 5 to 15 fold increase in virus titre (data not shown).

In summary, none of the experiments described above have been 

successful in generating a new Zip LacZ SV(v-ras) producer cell line with a
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higher virus titre. The superinfection of Zip LacZ SV(v-ras) infected CT3 cells 

with replication-competent Mo-MuLV helper virus was successful in rescuing 

the retroviral vector. However, a direct comparison of Zip LacZ SV(v-ras) viral 

titres, determined on the basis of P-gal+-CT3 foci formation, revealed that 

producer cell lines 1 and 2 released recombinant Zip LacZ SV(v-ras) virus with a 

similar titre (table 5.2. helper virus rescue). Clonal Zip LacZ SV(v-ras) producer 

cell lines generated by the shuttle technique described by MILLER et al. (1986) 

also failed to release recombinant virus at higher titres (table 5.2. shuttle 

infection). Therefore, no further attempts were undertaken to generate producer 

cell lines which would release recombinant Zip LacZ SV(v-ras) virus at a higher 

titre. Clonal Zip ras/P-gal producer cell lines (THOMPSON et al., 1989), did not 

have a higher titre than the Zip LacZ SV(v-ras) producer line 1 (table 5.2. 

transfection by THOMPSON et al., 1989). The concentration of viral particles in 

supernatants harvested from virus producer lines through Amicon micro- 

concentrators led to an average 5 to 15 fold increase in virus titre. Subsequently, 

concentrated stocks of the ras/p-gal retroviral vectors were used when infecting 

mouse skin in vivo.
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5.4. LacZ SV(v-ras) Retroviral Vector Mediated Gene Transfer In Vivo.

5.4.1. Nude Mice Tumorigenicity Test.

It had been demonstrated that the activated v-Ha-ras gene, cloned from 

the Harvey murine sarcoma virus (DHAR et. al., 1982), inserted into the 

recombinant Zip LacZ SV(v-ras) retroviral vector was capable of inducing 

transformation in CT3 fibroblasts in vitro (table 5.2). Zip LacZ SV(v-ras) 

infected CT3 cells also efficiently induced tumours in nude mice after 

subcutaneous injection of cells (10/10 possible tumours in Zip LacZ SV(v-ras) 

infected CT3 cells, 0/10 from uninfected CT3 cells). Frozen sections through 

these tumour samples were tested for the presence of p-galactosidase activity, 

using a modified histochemical staining protocol (J. PRICE, personal 

communication). The treated sections showed intensive blue staining in all 

tumour cells, whereas no traces of staining could be detected in the adjacent skin 

tissue (figure 5.4). These results confirmed, that the viral Ha-ras gene and the 

bacterial lacZ gene encoded in the recombinant Zip LacZ SV(v-ras) vector, were 

functionally expressed in vivo. Tumorigenicity tests were also carried out on 

packaging cell lines producing either one of the ras/p-gal recombinant retrovirus 

stocks, Zip LacZ SV(v-ras), Zip LacZ SV(v-ras)/Mo-MuLV and Zip ras/P-gal 

(THOMPSON et. al., 1989). The presence of the Mo-MuLV helper-virus in Zip 

LacZ SV(v-ras) virus stock (producer cell line 2) resulted in a 100% incidence of 

tumour induction in nude mice when injected subcutaneously. In comparison, 

tumour formation upon subcutaneous injection of helper virus-free Zip LacZ 

SV(v-ras) producer cells also occurred at every injection point, but was delayed 

by two days. The rate of tumour formation induced by subcutaneous injection of 

Zip ras/p-gal producer cells (THOMPSON et. al., 1989) was reduced further, 

regarding both tumour incidence and latency period. The altered tumorigenic 

behaviour of the Zip ras/p-gal producer cells OF2 ras/p-gal 9) could perhaps be 

explained by a less stable p-gal+/v-Ha-ras+ phenotype. The periodical screening 

for the expression of the activated viral Ha -ras gene (focus formation and/or soft 

agar colony formation assay) and the bacterial lacZ gene (testing for p- 

galactosidase activity by staining with the substrate X-gal) did not indicate any 

loss of expression of either of the two genes.
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Figure 5.5.

Immunoprecipitatio of p21 Ha-ras protein of ras/(3-gal infected C5N cells.

Following a single TPA treatment (table 5.4. legend), protein lysates of 
uninfected C5N cells (lanel), C5N cells infected with Zip Neo SV(X)1 (lane
2), BAG (lane 3), or Zip LacZ SV(v-ras) retroviral vector in the absence or 
presence of Mo-MuLV helper virus (lanes 4 and 5, respectively), or with wild 
type BALB-MSV (lane6) were immuniprecipitated with YA6-172 monoclonal 
antibody. Antigen-antibody complexes were precipitated with protein A- 
sepharose coated with rabbit anti-rat IgG and run on a denaturing 
polyacrylamide gel (17.5%) as described in QUINTANILLA et al., 1986. The 
gel was electroblotted and p21 Ha-ras proteins were detected by 
chemiluminescence using an ECL Chemiluminescence detection kit 
(Amersham).

A p21 v-Ha-ras protein specific band was detected only in lane 6 
containing protein from BALB-MSV infected C5N cells. A signal 
corresponding to cellular p21 c-Ha-ras protein was detected in all lanes.



The Zip LacZ SV(v-ras) producer cell lines 1 and 2, as well as *F2 ras/p- 

gal 9 (THOMPSON et al., 1989) released principally the same infectious 

recombinant retroviral vector. Any differences in the ability to initiate viral 

multistage carcinogenesis in mouse skin would be most likely due to the titres 

with which the recombinant viruses were generated by their respective producer 

cells (BROWN et al., 1986). A higher titre would lead to a higher chance of 

infecting epithelial cells in vivo. If the time delay observed of tumour induction 

by subcutaneously injected Zip ras/p-gal producer cells Q¥2 ras/p-gal 9) was 

reflected in a reduced titre for the released Zip ras/P-gal virus, then a reduced 

frequency of viral initiation of multistage mouse skin carcinogenesis would be 

expected. The Zip SV(v-ras)/Mo-MuLV virus stock was anticipated to be the one 

most likely to succeed in initiating virally induced multistage carcinogenesis 

processes in mouse skin. The presence of the replication competent wild-type 

Mo-MuLV helper-virus would make horizontal spread of the Zip lacZ SV(v-ras) 

virus possible, thus increasing the chances of infecting epithelial stem cells 

within the mouse skin (BROWN et al., 1986).

5.4.2. Virus Initiated Mouse Skin Carcinogenesis.

Female NIH mice aged between 8 to 12 weeks were used in virus 

initiation experiments in vivo. The mice had been obtained from the breeding 

colony within the Beatson Institute or from a commercial supplier. The mice 

were shaved at least two days prior to virus application. All mice were treated 

with depilatory agent and with a single dose of TP A (200|il of 1 0 TP A in 

acetone) 24 hours prior to virus application, although pretreatment with TPA was 

not essential for tumour formation (BROWN et al., 1986). Approximately lOOjil 

of viral supernatant containing 80 |ig/ml polybrene were applied to the back skin 

of fully anaesthetised mice by scarification. TPA treatment was started 7 days 

after virus application and thereafter given twice weekly over a period of 17 

weeks. Control groups were treated twice weekly with 200jil acetone alone.

Table 5.3 lists the experimental groups as defined by initiating virus used 

and TPA treatment and summarizes the respective number of tumours observed. 

In experimental groups 1 and 3, virally initiated mice treated with acetone alone 

did not develop skin tumours throughout the observation period of 18 weeks. The 

lack of tumour development in Zip LacZ SV(v-ras) or Zip LacZ SV(v-ras)/Mo-

144



Infaction of mouse skin with recombinant v-ru/^gil retroviral rectors.

1
|Experimental 
{group

.

Number
of
mice

Retroviral
construct

Virus titre 
P-gal*-ffu/ 
ml/106 viable 
cells

I
|Promoter
jtreatment| (c)
1i

Total.No. | 
papillomas| 
Total No. | 
of mice j

|1 9 ZipLacZ SV(v-ras) 2.6xl05
1

0/0 |
j 2 9 BAG 3.7xl05 j - 0/0 |
j 3 9 ZipLacZ SViv-ras) 3.5xl05 J - 0/0 {
14 33 ZipLacZ SV(v-ras) 2.6x10s j TPA 0/33 |
|5 18 BAG 3.7x10s j TPA 0/18 j
j 6 33 ZipLacZ SV(v-ras) 3.5x10s j TPA 1/33 <d) {
I7 12 Zipras/|3-gal 2.1x10s | TPA 1/12 (e) |
8

6 BALB-MSV >8.6xl06 | TPA 18/6 (f) |

Table 5.3

Infection of mouse skin with recombinant v-ras/p-gal retroviral vectors in 
vivo,

(a) Experimental groups: see text.
(b) The viral titre is the number of (3-gal+-focus forming units 

observed per ml of supernatant per 10^ viable cells replated into growth 
medium supplemented with 5% serum. P-galactosidase activity in foci was 
demonstrated by X-Gal staining (SANES et al., 1986).

(c) Dash indicated treatment twice weekly with 200(il acetone for 17 
weeks (experimental groups 1 to 3). TPA treatment was given by applying 
twice weekly 200|il 10'4M TP A/acetone onto the back of mice for 17 weeks. 
Promoter treatment was stopped after 17 weeks. However, mice were 
maintained for further 4 weeks without any treatment.

(d) A small papilloma (<2mm in diameter) developed by week 15 of 
promoter treatment. This papilloma persisted after TPA treatment had been 
stopped, but showed no p-galactosidase activity in frozen sections after X-Gal 
staining.

(e) A small, promoter-dependent papilloma (<2mm in diameter) 
developed by week 15 of TPA treatment, but regressed as soon as promoter 
treatment was stopped.

(f) Several BALB MSV-initiated papillomas had developed after 4 to 6 
weeks of TPA treatment. By 11 weeks of promoter treatment, the average size 
of the papillomas was between 5 and 10mm in diameter.



MLV initiated mice was in agreement with results published by BROWN et. al. 

(1986) who had previously demonstrated, that initiation of epithelial cells in vivo 

by application of Ha-MSV or BALB-MSV retrovirus without subsequent tumour 

promotion was not sufficient to complete the carcinogenesis process.

No skin tumours were observed on 9 animals, infected with the BAG 

virus and promoted with acetone for 17 weeks during an observation period of up 

to 17.5 months (table 5.3. experimental group 2). Initiation with BAG virus and 

promotion through twice weekly TPA treatments over a period of 17 weeks also 

failed to induce any tumour development (table 5.3. experimental group 5). 

BAG-viral initiation followed by TPA promotion was not expected to give rise to 

tumour formation, as the initiating BAG virus did not contain an activated v-Ha- 

ras gene. TPA treatment alone, without previous viral or chemical initiation, did 

not lead to papilloma formation, as had been shown previously (BROWN et al., 

1986). Mice initiated with the Balb-MSV virus (Balb-MSV virus titre: >8.6x10** 

ffu/ml/viable cells) and followed by twice-weekly TPA treatment over a period 

of 11 weeks, developed papillomas by 4 to 6 weeks (table 5.3. experimental 

group 8). A total of 18 papillomas were counted on the 6 BALB-MSV-initiated 

NIH mice. The majority of these papillomas reached a size of 5 to 10 mm in 

diameter (table 5.3). No carcinomas had been observed. The observation period 

of 11 weeks had been too short to expect any malignant conversion of BALB- 

MSV-initiated papillomas to carcinomas. The expected latency period for 

malignant conversion of HaMSV-initiated papillomas had been determined as 3 

to 5 months (BROWN et al. (1986).

Initiation of mice with the helper-free Zip LacZ SV(v-ras) virus stock in 

combination with twice weekly TPA treatments over 17 weeks, did not give rise 

to any papillomas on any of the 33 mice (table 5.3. experimental group 4). The 

virus titre of the Zip LacZ SV(v-ras) virus stocks used was between 2.6x10^ and 

1.0x10** P-gal+-ffu/ml/viable cells and was thus comparable to the viral titres of 

the recombinant retroviral vectors Zip LacZ SV(v-ras)/Mo-MLV (viral titre: 

3.5x10** P-gal+-ffu/ml/viable cells) and the Zip ras/p-gal (viral titre: 2.1x10^ p- 

gal+-ffu/ml/viable cells).

In total 33 mice were initiated with Zip LacZ SV(v-ras)/Mo-MuLV helper 

virus stock (Zip LacZ SV(v-ras)/Mo-MuLV virus titre: 3.5x10** P-gal+- 

ffu/ml/viable cells) and TPA treated twice weekly for 17 weeks. Only one of the
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33 animals developed one small papilloma by week 15. The papilloma remained 

small, only 2mm in diameter by week 20, but did persist for 4 weeks after TPA 

treatment had been stopped at week 17 (table 5.3. experimental group 6). 

However, histochemical staining of frozen sections derived from this papilloma 

failed to detect expression of the p-galactosidase gene (data not shown).

One animal developed one small papilloma (2mm in diameter) by week 

15 from experimental group 7, initiated by Zip ras/p-gal virus (Zip ras/P-gal virus 

titre: 2.1x10^ P-gal+-ffu/ml/viable cells) and promoted by twice weekly TPA 

applications over a period of 17 weeks (table 5.3). The papilloma proved to be 

tumour promoter dependent, as it started to regress as soon as TPA treatment had 

been stopped. By week 22 the papilloma was no longer detectable. BROWN et 

al. (1986) also reported regression of HaMS V-initiated papillomas after about 12 

weeks of promoter treatment although these papillomas had previously reached a 

considerably larger size.

In total 78 mice had been initiated with recombinant ras/p-gal retroviral 

vectors and promoted with TPA. But only 2 of these mice went on to develop one 

papilloma each after a relatively long latency period of 15 weeks. One of the two 

papillomas proved to be TPA dependent, as it regressed completely after the 

promoter treatment had been stopped (table 5.3), whereas the other failed to 

express the active form of p-galactosidase as shown by histochemical staining. 

The total number of tumours observed in the experimental groups described 

above compared poorly with findings by BROWN et al. (1986) who counted 12 

papillomas on 4 papilloma-bearing mice out of a group of 9 NIH mice initiated 

with Balb-MSV virus (virus titre: 0.2 to 5x10^ ffu/ml/viable cells). The viral 

titres of the three different recombinant ras/P-gal virus stocks used in the in vivo 

initiation were between 2.1x10^ to 3.5x10^ P-gal+-ffu/ml/viable cells, thus being 

similar to the virus titre of the Balb-MSV virus stock used by BROWN et al. 

(1986). It seemed unlikely, therefore, that the low tumour incidence was solely 

due to lack of successful initiation as a possible consequence of applying too few 

infectious virus particles. A different explanation, based on the relative sensitivity 

of NIH mice to virus-initiated papilloma formation, would suggest that NIH mice 

breeding strains could develop differences with regards to sensitivity to virus- 

initiated papilloma formation over a period of 4 years. This hypothesis was 

dismissed, however, by the result of papilloma formation observed with Balb-
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MSV virus-initiated NIH mice (table 5.3). Therefore, the most likely explanation 

for the low tumour incidence had to lie within the identical recombinant 

retroviral vectors Zip LacZ SV(v-ras) virus and Zip ras/p-gal virus themselves. 

The transforming activity of the v-Ha-ras gene present in both retroviral 

constructs in epithelial cells was re-examined in more detail in vitro, as the lack 

of reduced transforming activity of the retroviral vector encoded v-Ha-ras gene 

in epithelial cells would be the most probable explanation for the failure of the 

recombinant v-Ha-ras/p-gal retroviral vectors to induce papilloma formation in 

mouse skin in vivo.

5.5. Transforming Activity of Recombinant v-Ha-ras/p-gal Vectors In  Vitro,

Previous experiments demonstrated clearly that the promoter region 

within the Mo-MuLV LTR functioned efficiently in directing the expression of 

the we</-marker gene and the bacterial lacZ gene in epithelial C5N cells (table

5.1). Recombinant v-Ha-ras/P-gal retroviral vectors had also been shown to 

induce transformation in infected CT3 cells, as demonstrated through focus- 

forming assay (table 5.2), soft agar cloning assay (table 5.2) and tumorigenicity 

assay in nude mice. However, transformation of C5N cells induced by the 

expression of the v-Ha-ras gene under the transcriptional control of the Mo- 

MuLV LTR promoter had not been previously examined. As the in vivo 

experiments described above demonstrated a failure of the recombinant v-Ha- 

ras/P-gal vectors to induce papillomas in mouse skin, the question had to be 

addressed whether the recombinant vectors Zip LacZ SV(v-ras) and/or Zip ras/P- 

gal (THOMPSON et al., 1989) could induce transformation in epithelial C5N 

cells in vitro.

Two approaches were used to assess transformation of C5N cells in vitro. 

C5N cells infected with either of the recombinant v-Ha-ras/p-gal retroviral 

vectors were analysed with respect to their serum requirement for growth and 

response to TPA treatment.

A) The requirement of serum for cell growth of C5N cells infected with 

Zip LacZ SV(v-ras) or Zip ras/p-gal (THOMPSON et. al., 1989) was tested in 

different serum concentrations (5% and 2%). Untransformed C5N cells had been 

reported to be extremely serum-dependent (A. STOLER, personal 

communication). However, attempts to show differential growth in low serum
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conditions of v-Ha-ras transformed C5N cells failed. No significant differences 

were detected regarding the ability to grow in SF12 medium containing 5% or 

2% serum. Neither of the infecting recombinant v-Ha-ras/p-gal viruses induced 

any changes regarding serum requirements for growth. Furthermore, C5N cells 

infected by control viruses such as Zip Neo SV(X)1 or BAG, neither of which 

contained a transforming v-Ha-ra? gene, or by the transforming BALB-MSV 

sarcoma virus (H9) showed near identical growth characteristics to C5N cells 

infected with either of the three recombinant Ha-ras/p-gal virus stocks (data not 

shown).

B) The second approach used to assess v-Ha-ras/p-gal retroviral vector 

induced transformation of C5N cells in vitro was based on work by 

PARKINSON et al. (1983), KULESZ-MARTRIN et al. (1980), YUSPA and 

MORGAN (1981), and YUSPA et al. (1982).

PARKINSON et al. (1983) described a subpopulation of normal cultured 

human keratinocytes which was insensitive to TPA-induced loss of cloning 

efficiency and suggested that the resistant cells were not sufficiently committed 

to terminal differentiation. They reported further, that the number of cells 

resistant to TPA-induced terminal differentiation were greater in transformed 

lines, as these possessed a reduced competence to trigger terminal differentiation 

in vitro. YUSPA and colleagues suggested that mouse epidermal cells which had 

been initiated in vivo (YUSPA and MORGAN, 1981) or in vitro (KULESZ- 

MARTIN et al., 1980) showed a reduced capacity to terminally differentiate in 

culture and would further, as a response to repeated treatments with the tumour 

promoters like TPA, expand at the expense of the normal cells. Similarly, 

neoplastic mouse keratinocytes had been shown to be much less sensitive to 

growth inhibition by phorbol esters than their normal counterparts maintained in 

the same culture conditions (FUSENIG et al., 1979).

Due to time limitations, only the response of Zip LacZ SV(v-ras) or Zip 

ras/Pgal-infected C5N cells to a single treatment with the tumour promoter TPA 

in vitro was analysed. Colony-formation was taken as the parameter to assess the 

commitment to terminal differentiation to a single TPA treatment (Table 5.4). 

The response of C5N cells to the single TPA treatment was expressed as the 

percentage change in colony-formation of infected and parental C5N cells after 

TPA treatment compared to their non-treated counterparts (table 5.4). C5N cells
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Transformation of C5H colls following infection with ZipLacZ SV(v-ras) 
retroviral vectors.
1------------------
|Retroviral | 
Jvector j

TPA (a)
i| Percentage colony 
j formation
1i

i _ 1
| Percentage change | 
| in colony formation 1
1 (c) 1
1 J

j ZipNeo SV(x)l j -
i
| 29 (3)

1 1 
I o |

+ 1 151 (4) 1 * 4 8  |i
jZipLacZ SV(v-ras) j -

1
| 23 (3)

1 1 
1 o |

■ -t- 1 15 1 (4) 1 -34 | 1
jZipLacZ SV(v-ras) j -

1
1 12 (2)

1 1 
1 o |

|+Mo-MuLV | +
1 9

(4) 1 *25 1

Table 5.4

Transformation of C5N cells following infection with Zip LacZ SV(v-ras) 
retroviral vector.

Following a single TPA treatment, Zip LacZ SV(v-ras)-infected C5N 
cells were assessed for their commitment to terminal differentiation by colony 
formation assay. Loss of terminal differentiation can be regarded as a 
parameter of transformation in epithelial cells (PARKINSON et al., 1983). 48 
hours after infection C5N cells had been split into two groups, one group was 
subsequently treated with TPA (O.lng/ml in SF12 growth medium) for 24 
hours, whereas the second group of infected C5N cells was replated into 
normal SF12 growth medium. TPA-treated and untreated C5N cells were then 
replated at a cell density of 1(P cells per 10 cm^ plate to test for colony- 
formation. The response of C5N cells to the single TPA treatment was 
expressed as the percentage change in colony formation of infected and 
parental C5N cells after TPA treatment compared to their non-treated 
counterparts.

(a) C5N cells were treated for 24 hours with O.lng/ml TPA in growth 
medium (+) or remained untreated (-).

(b) Percentage of colony formation is the percentage number of 
colonies observed after replating 103 cells in normal growth medium, the 
numbers in brackets is the number of experiments.

(c) The percentage change in colony formation is the percentage of 
changes seen in colony formation between C5N cells.



infected with the parental Zip Neo SV(X)1 virus showed a 48% reduction in 

colony formation after TPA treatment. Following TPA treatment, a 35% reduced 

colony formation was observed with Zip LacZ SV(v-ras)-infected C5N cells and 

a 25% reduction with Zip LacZ SV(v-ras)/Mo-MuLV virus-infected C5N cells 

compared to their counterparts which had not been treated with TPA. In C5N 

cells infected with wild type BALB-MSV sarcoma virus, TPA treatment resulted 

in colony-formation which was reduced by 22% compared to non-treated cells. 

PARKINSON et al. (1983) suggested that more transformed epithelial cells 

would be more resistant to TPA induced terminal differentiation, on this basis, 

the present results would suggest that C5N cells infected with BALB-MSV virus 

are more transformed than C5N cells infected with Zip LacZ SV(v-ras)/Mo- 

MuLV, which in turn are more transformed than Zip LacZ SV(v-ras) infected 

C5N cells and the least transformed are C5N cells infected with Zip Neo SV(X)1 

which does not contain a v-Ha-ras gene. These results correlate with the in vivo 

initiation experiments described in the previous section (table 5.3). It has be to 

pointed out, however, that these observations are based on small numbers. A 

more extensive analysis would be required to allow more definite conclusions.

It had not been possible to select C5N cells successfully infected by either 

the Zip LacZ SV(v-ras) virus or the wild type BALB-MSV virus prior to TPA 

treatment, as neither of the viruses used encoded a positive selection marker. 

Selection prior to TPA treatment would allow a more direct comparison of the 

viability data based on the same number of infected cells used in each experiment 

and would thus help in assessing the response of transformed cells to TPA 

treatment.

C5N cells had not been previously characterized regarding the response to 

a single or repeated treatments of TPA nor had the concentration of TPA been 

optimized for C5N cells. A comparison of the infection efficiencies achieved by 

Zip Neo SV(X)1 and BAG virus in C5N cells, which had been treated with TPA 

48 hours after infection and in untreated cells allowed an assessment of the extent 

of cell differentiation and cell death induced by the single treatment with TPA. 

C5N cells infected with Zip Neo SV(X)1 virus followed by TPA treatment 

showed a dramatic 75%-reduction of infection efficiency (3.9x10^ G418r- 

cfu/ml/10^ viable cells) compared to Zip Neo SV(X)1-infected, nontreated C5N 

cells (1.6x10^ G418r-cfu/ml/10^ viable cells). A 92%-reduction of infection
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efficiency was seen by BAG-infected, TPA-treated C5N cells (1.1x10^ [3- 

gal+/G418r-cfu/ml/10^ viable cells) compared to BAG-infected, nontreated C5N 

cells (1.3x10^ p-gal+/G418r-cfu/ml/10^ viable cells). However, at the time no 

alternative in vitro epithelial cell system had been characterized regarding 

response to TPA treatment to be used as a test system for v-Ha-ray induced 

transformation of epithelial cells upon infection with recombinant Zip LacZ (v- 

ras) retroviral vectors in vitro.

A further explanation why v-Ha-ras/p-gal recombinant retroviruses failed 

to initiate papillomas upon TPA treatment of the infected mouse skin could be 

that the v-Ha-ras p21 protein was not produced to a high enough level to allow 

transformation in vivo to occur. It was therefore important to measure the levels 

of v-Ha-ras p21 protein in C5N cells infected with either the recombinant v-Ha- 

ras/p-gal retrovirus vectors or the wild type Balb-MSV virus. The p21 Ha-ras 

specific monoclonal antibody YA6-172 was used to immunoprecipitate the 

cellular normal and the viral Ha-ras p21 proteins (QUINTANILLA et al., 1986). 

The normal and the viral form of the p21 Ha-ras proteins can be easily 

distinguished from each other through changes in migration properties on 

polyacrylamide gels. The viral Ha-ras gene of BALB-MSV virus differs from its 

cellular counterpart in that it has mutations at codons 12 and 59 that lead to 

amino acid changes in the p21 protein product (DHAR et al., 1982), resulting in a 

slower mobility in polyacrylamide gels than the cellular p21 Ha-ras protein 

(ULSH and SHIH, 1984). Following SDS-polyacrylamide gel electrophoresis and 

western analysis of the immunoprecipitates of parental C5N cells and of cells 

infected by either recombinant v-Ha-ros/P-gal retroviral vectors or by wild type 

Balb-MSV virus, a p21 v-Ha-ras specific protein band was only detected in 

BALB-MSV infected C5N cells. No viral specific band were detected in 

immunoprecipitates of C5N cells infected by ZIP NEO SV(X), BAG, or Zip 

LacZ SV(v-ras) in the presence or absence of Mo-MuLV helper virus. Whereas a 

protein band corresponding to cellular p21 Ha-ras was detected in all 

immunoprecipitates (figure 5.5).

5.6. Conclusions.

The recombinant Zip LacZ SV(v-ras) retroviral vector on its own or with 

the presence of Mo-MuLV helper virus was able to transform CT3 fibroblast
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Figure 5.4.

Histochemical staining of nude mouse tumours induced by subcutaneous 
injection of Zip LacZ SV(v-ras) infected CT3 cells.

Tumours developed within 8 to 10 days after subcutaneous injection of 
Zip LacZ SV(v-ras) infected CT3 cells into nude mice (2.5x10^ cells per 
injection site). Tumours were fixed for 1 hour at 4oC in paraformaldehyde 
fixative, saturated in 30% sucrose/PBS/2mM M gCl9 and quick frozen on dry 
ice/ethanol. 10pm sections were taken, refixed at 4°C  in paraformaldehyde 
fixative, rinsed in PBS/2mM M gC b at 4°C, permeabilized for 10 min at 4°C  
and stained overnight at 30°C in X-Gal staining solution.

Intensive blue staining, indicative of P-galactosidase activity, was seen 
in cells of the tumour mass but not in the adjacent skin.



cells following infection in vitro. The transformed phenotype of Zip LacZ SV(v- 

ras) infected CT3 cells was confirmed by focus formation, growth in soft agar 

and by induction of tumour formation in nude mice following subcutaneous 

injection. However, the Zip LacZ SV(v-ras) retroviral vector was not able to 

initiate mouse skin papilloma formation in vivo. Infection of epithelial C5N cells 

by the same recombinant retroviral vectors did not show any evidence for 

transformation in vitro. In addition, western analysis of C5N cells infected by Zip 

LacZ SV(v-ras) vector showed no expression of p21 v-Ha-ras protein. While wild 

type BALB-MSV virus was able to express p21 v-Ha-ras protein in infected C5N 

cells in vitro and initiate mouse skin papilloma formation in vivo. This suggests 

that the failure of Zip LacZ SV(v-ras) retroviral vector to initiate papilloma 

formation in vivo may be due to the lack of v-Ha-ras expression in epithelial 

cells.
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