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Summary

The purpose of this work is to propose a new method for representing the ship hull 

shape with mathematic surfaces so that geometric data can be generated for any point 

on the hull where required to assist the production process.

An extensive survey of previous work is presented covering both the use of parametric 

curves and surfaces to model the ship hull and also the most relevant software systems 

developed for that purpose. The main methods and algorithms available for the 

generation and edition of curves and surfaces are presented and compared taking into 

consideration the intended application. From the analysis of the formulations available 

it was concluded that the most adequate one, which however had not yet been 

extensively used to model ship hulls was the Non-Uniform Rational B-Splines 

(NURBS), due to the potential of their capability to represent exactly conic curves and 

surfaces. Therefore these surfaces were selected as the basis of the method developed 

in this thesis.

A procedure is proposed for the representation of a given hull form in a two step 

approach, creating first a wireframe model over which the surface patches are 

generated. Both curves and surfaces are based on the NURBS formulation. To create 

the wireframe model, first a set of longitudinal boundary lines is selected, dividing the 

surface into areas of similar shape. Then, these lines are fitted by curves and faired to 

some extent. Next, transverse sections are defined and split by the boundary lines. 

Surface patches are then generated over the transverse section curves within the limits 

of each patch. Finally, to obtain the traditional representation of the ship surface by 

transverse sections, buttocks and waterlines, contour lines are generated for constant 

values of x, y and z coordinates.

A computer system has been developed incorporating an interface that allows the 

visualization of the curves and surfaces being modeled. The system incorporates



several algorithms for generation and edition of curves and surfaces, in addition to the 

main contribution of this thesis which is the use of NURBS to represent the ship hull 

surface. The system also incorporates curve and surface analysis tools and some basic 

fairing algorithms so that during the several steps o f the creation of the model, the 

fairness of the curves and surfaces can be evaluated and improved to some extent.

The procedure is tested and compared with an existing commercial system through 

some application examples, of a complete hull and in more detail in the bow region, 

showing that good results can be obtained with the system presented here.
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Notation

k Order of the B-spline curve

n Number of control points

Ci, Cij Control points (vertices) of curves and surfaces

Bjj Bernstein basis functions

Ni,k B-spline basis functions

Pi Curve points matrix

Xi, Yi Knot vectors in u and v parametric directions

qt Nodes

Di Data points matrix

t Curve parameter

(3i Bias parameter

P2 Tension parameter

1, m Order of B-spline surface in u and v parametric directions

Sjj Surface points matrix

u, v Surface parameters

Wi Weight of control point (in NURBs formulations)

k Normal curvature.

K Gaussian curvature

H Mean Curvature

Knin, KW Principal curvatures

KabS Absolute curvature

kc Conic shape invariance o f conic curves
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1. Introduction

The traditional design process of a ship hull form, works mainly on a lines drawing 

on which three sets o f lines representing the intersections of the hull surface with a 

series of planes parallel to the three orthogonal projection planes are shown. The 

drawing is organised in three views: the elevation or profile, generally called the 

sheer plan, a view looking down, called the half-breadths plan and the last one, 

showing the transverse sections, called the body plan. Each of the views represents a 

reference plane on which the several lines of the hull form have been projected. 

Normally, and taking into account that almost all ships are symmetrical about the 

longitudinal centreline plane, only half of the hull is represented [1]. Other important 

lines also represented on the lines plan are the tangency lines like the flat-of-side and 

the flat-of-bottom, the knuckle lines, representing discontinuities in the hull and the 

diagonals, representing intersection lines of the hull with arbitrary transversely 

inclined longitudinal plans.

Starting with a set of sections and waterlines defined by points, the hull surface 

design method is an iterative process in which the designer fits a line to each set of 

points, using a wooden spline, correcting the initial points as necessary to obtain a 

fair shape. After fairing a set of lines, the changes obtained are transported to the 

other plans. The process is repeated until all the lines represented have an acceptable 

degree of fairness and compatibility in the three views.

Some of the disadvantages of the traditional approach are the non existence of other 

tools than the designer’s experience to assist the fairing work, and the accumulation 

of errors that the process generates. The evaluation of the fairness of the curves 

depends only of the visual inspection and the only fairing tools available are the 

wooden splines, on which the control parameter is the flexibility. The main source of 

errors are the readings on scaled drawings and the transport o f data between different 

views, made in each iteration of the process.
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The need of mathematical models for the description of ship forms was raised with 

the introduction in the 50's of numerical controlled machines in shipyard operation. 

The machines offered great improvements in efficiency but required accurate 

coordinate description of each plate shape. With the increase of computer power 

availability, in the 60's and 70's a growing offering of CAD systems and research in 

the field has occurred.

After the 80's, the major CAD systems were established, the methods of surface 

description were considered sufficient and R&D started moving to areas like solid- 

modelling applied to structure generation, piping and outfitting, engineering 

information management, data exchange with existing engineering systems, user 

interface, compatibility, portability, etc.

The rising market of personal computers in the late 80's, however, has generated a 

new wave of small systems dedicated to Naval Architecture. With the importance 

now given to the ease of use and thanks to the increasing computing power available, 

the methods of surface modelling have been re-evaluated and updated, and even 

some of the established software systems are improving the modules covering the 

creation of the hull shape, making them more interactive and porting them to more 

user friendly environments.

The earlier software systems dedicated to model the ship hull surface used the 

wireframe representation, reproducing with true 3D lines the traditional approach 

based on 2D projections o f the 3D lines on the reference planes. Although these 

systems have supported the needs of ship designers and builders for long time, they 

are limited by a main drawback - to obtain data related to any points on the surface, 

not contained on the model basic lines, new lines must be computed. This is obtained 

by an interpolation process, in which intersections must be first computed with all the 

model lines in the opposite direction, and then fitting a curve to the obtained 

intersection points. The approximations done through this process do not guarantee 

that the points finally obtained do belong to the surface.
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•

Surface representations, on the other hand, supply data for all the points required and 

guarantee that every point has a unique representation

The motivation for this work came from the recent developments in rational B-Spline 

curves and surfaces, that have been established as an industrial standard in many 

CAD systems and are already included in standard graphics libraries like PHIGS 

PLUS and OpenGL and in standards for data exchange like IGES (Initial Graphics 

Exchange Specification) and STEP (Standard for the Exchange of Product Model 

Data, ISO 10303).

Rational B-Splines are well suited for interactive work and are powerful enough to 

represent almost every kind of curves and surfaces, even those that previously 

required an algebraic representation, such as the conics. This flexibility allows the 

software systems to be more compact, as they deal with a more reduced set of 

geometric entities, and simultaneously more efficient and reliable, due to the 

generalisation and simplification of the methods and algorithms developed to operate 

on those entities.

Mathematical models of ship hull are used mainly for two purposes:

• generation of new ship forms, either from scratch, from a set of design 

parameters, from systematic series or from parent ships;

• representation of existing ship forms, defined already in a body plan, obtained 

whether in a rough form from the basic design, or well defined from an existing 

vessel.

The first situation is typical of the basic ship design stage and the second one is 

necessary when accuracy of hull surface description is required for production, either 

in ship building or repair.
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In the generation of new ship forms the amount of data available is small and the 

constraints are few allowing a range of solutions. The methods used must be more 

interactive to allow a trial-and-error approach and to provide the designer with a 

quick feedback of the operations made.

When representing existing forms, there is much more information available on a 

body plan, from which data such as boundary lines, knuckles, tangent directions, etc. 

can be obtained. However, as all this data must be fitted by the final model, it also 

represents a highly restrictive set of constraints. A system oriented for this purpose 

has less requirements of interactivity and so some steps of the process can be made 

more automatic.

The goal of this work is to compare and select mathematical algorithms of curve and 

surface design, in order to specify the methods and tools required to develop a 

process for representing the ship hull by means of parametric surface patches.

The thesis is structured as follows:

• Chapter 2 presents a review of previous work regarding the geometric description 

of the ship hull. The review covers not only the relevant methods and algorithms 

proposed but also the dedicated software systems available.

• Chapter 3 presents a review of the basic definitions and algorithms concerning 

parametric curves and surfaces. Cubic splines, Bezier, B-splines, Beta-splines, 

Coons patches and NURBS are the topics covered..

• Chapter 4 describes the present approach, including the creation of the wireframe 

model, the generation of surface patches, the tools for curve and surface analysis 

and the concepts and some preliminary fairing algorithms.

• Chapter 5 gives some examples of application of the presented algorithms to ship 

forms and compares the results with those obtained with a commercial package.

• Chapter 6 summarises the contribution of this work and the conclusions reached, 

and identifies paths for future research in this area.
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2. Representation of Ship Hull Surface

During the four basic stages of the ship design process, the requirements regarding 

the level of definition of the hull surface and the accuracy required are different [2]:

• Concept design, rough definition of main dimensions and hull form 

coefficients

• Prelim inary design, confirmation of the main dimensions and development 

of a surface definition sufficient to allow hydrostatics computations, within 

an accuracy of about 3% of the displacement

• Contract design, improvement of the surface fairing to the accuracy 

required to produce a ship model for hydrodynamic tests

• Detail design, surface definition compatible with the production 

requirements, that is, with an accuracy of about 3 mm (1/8 inch).

The mathematical representation of the ship hull shape is an important tool at every 

stage of ship design. The mathematical model can be used not only for almost all the 

types of theoretical analysis such as stability, hydrostatics, hydrodynamics, resistance 

and structural, but also to .generate information for production. The mathematical 

formulation must provide the accuracy required for the intended applications.

Previous research work can be found concerning each of the design stages, but most 

of it has been motivated mainly by three types of problems: the generation of forms 

from design parameters, the creation of new forms from a parent hull (concept and 

preliminary design) and the fairing of the hull surface for production (detail design). 

The work concerning contract design is sometimes left to the responsibility of the 

hydrodynamic tank office.

One o f the first to apply mathematical shapes systematically in ship design was the 

Swedish naval architect Chapman, who around 1760 mentioned in his book “A
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Treatise on Shipbuilding” the use of a family of parabolas for the representation o f 

waterlines and other curves on the hull surface. In the beginning o f this century 

(1915), David W. Taylor used mathematical expressions to represent hull shapes of 

his systematic series. Sections were represented by parabolas or hyperbolas, 

depending on the fullness, while fifth order polynomials were used on the waterlines 

and section area curve.

The introduction of plate cutting machines with automatic control in the early 50's 

preceded the use of computers in the Naval Architecture related fields. In Tables 2.1 

to 2.3, a brief survey of some of the systems and procedures developed until the late 

60’s is presented, based on a compilation made by Nowacki [3]. In the present work, 

the attention is focused on the work developed since then to the present time. In the 

several approaches used during this period, different types of representations, 

mathematical basis and objectives can be found, sometimes simultaneously. In this 

work, the methodology used was to divide the works into two groups, the ones 

based in wireframe models and those using single or multiple surface patches. In each 

o f these groups, the review proceeds by sub-dividing them according to the 

mathematical basis used, trying to identify the dominant trends. From this 

methodology it follows that the presentation order does not always match the 

chronological sequence and so in Tables 2.4 and 2.5 a summary of the approaches 

reviewed is presented in chronological order. Finally a brief review o f some o f the 

more recent and widely used systems running on PC computers is presented.
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Table 2.1 Survey of Hull Representation Methods

A uthor r r Institut./

Country

Year Purpose Input Procedure Function

D. Taylor US Navy 1915 Creation & 

syst. variation

Hull

parameters

Draught

function

Polynom.

Weiblum Univ.

Berlin

1934 Syst. variation Hull

parameters

Polynom.

Benson

U.K

1940 Creation of 

Lines

Hull

parameters

Polynom.

Lackenby BSRA

UK

1950 Syst. variation Parent

Hull

Affine

distortion

Thieme Univ.

Hamburg

1952 Creation Parameters Polynom.

Taggart US 1955 Creation of 

lines

Hull

parameters

Polynom.

Theilheimer & 

Starkwheather

US Navy 1957

1961

Interpolation 

and fairing

Offsets Draught

function

Discont.

cubics

Rosing & 

Berghuis

Holland 1959 Fairing Offsets Draught

function

Pien US Navy -I960 Approxim. Offsets Sectional

method

Polynom.

Kerwin MIT

US

1960 Rough

approxim.

Offsets Sectional

method

Legendre

polynom.

Martin NPL

UK

1961 Rough

approxim.

Offsets of 

S.A. curve

Chebysh.

Polynom.

Lidbro Sweden 1961 Interpolation Offsets Surface

fitting

Bergens

Norway

1961 Fairing Offsets Draught

function

Polynom.
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Table 2.2 Survey on Hull Representation Methods (cont.)

A uthor Institut./

Country

Year Purpose Inpu t Procedure Function

F. Taylor UK 1962 Interpolation Waterline

offsets

Chebysh.

polynom.

Miller & 

Kuo

Univ.

Glasgow

1963 Interpolation Offsets Draught

function

Polynom.

Berger & 

Webster

Todd

Shipyard

US

1963

1966

Fairing Offsets Surface

fitting

Discont.

cubics

Williams SSET

Sweden

1964 Creation of 

lines

Hull

parameters

Draught

function

Polynom.

Hamilton & 

Weiss

MIT

US

1964 Creation of 

lines

Hull

parameters

Surface

fitting

Surface

cubics

Bakker NSMB

Holland

1965 Fairing Offsets Sectional

method

Gospodnetie NRC

Canada

1965 Interpolation Offsets Sectional

method

Elliptic

integrals

Corin US Navy 1966 Fairing Offsets Sectional

method

Discont.

cubics

Tuck &

V. Kerkzek

US Navy 1968 Fairing Offsets Sectional

method

Conform.

mapping

Soding Germany 1966 Creation of 

lines

Offsets Section

method

Discont.

polynom.

Kantorowitz DSRI

Denmark

1967 Interpolation Offsets Surface

fitting

Orthog.

polygon.

Kaiser et al. Germany 1968 Interpolation Offsets Surface

fitting

Surface

polynom.
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Table 2.3 Survey on Hull Representation Methods (cont.)

A uthor Institut./

Country

Year Purpose Input Procedure Function

AUTOKON Norway Fairing Offsets Section

method

Spline

polynom.

Hoshino,

Kimura,

Igarashi

Mitsubishi

Japan

1966 Fairing Offsets Section

method

Discont.

cubics

Breitung Tech.Univ.

Berlin

1969 Fairing Offsets Surface

method

Discont.

cubics

Kwik Univ.

Hamburg

Germany

1969 Creation of 

lines

Hull

parameters

Section

method

Polynom.

Buczkowski

Polland

1969 Fairing & 

creation

Offsets,

parameters

Surface

method

VIKING

Sweden

Interpolation Offsets Surface

fitting

Splines & 

conics

Kuiper NSMB

Holland

1970 Creation of 

lines

Hull

parameters

Draught

function

Polynom.

2.1 Wireframe representations

The earlier approaches to the design of the ship hull geometry were an attempt to 

reproduce the traditional process, using transverse sections, waterlines and buttocks 

to create a wireframe model of the hull shape.

The purpose of many early works was the generation o f hull lines from design 

parameters, for preliminary design. Buczkowsky [4] used polynomials in his 

variational approach to the generation of ship lines. For Kuiper [5], the input consists 

on a set of required design parameters (contours, midship section, block coefficient, 

longitudinal centre of buoyancy, waterline area coefficient and half angle o f entrance 

o f the load waterline). The shape of each waterline is defined by a function o f a set of
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form parameters and of the draught, for which these functions are commonly 

designated by draught functions. The waterlines were represented by sixth degree 

polynomials and the accuracy obtained with this process is suitable to preliminary 

ship design. Kuo [6] presented a technique for generating a fair hull surface from a 

set o f design parameters (main dimensions, block and midship section coefficients, 

LCB) and control curves (sectional area curve, bow and stem profiles and aft control 

section) and a tri-dimensional shape coefficient measuring the volume distribution in 

the vertical direction. The surface is represented by a polynomial equation whose 

coefficients are computed using functions of volume and volume moments. Another 

type o f polynomial, a combination of cubic polynomials and circular arcs, was used in 

the New Lines System, a fairing program developed at the Mitsubishi Heavy 

Industries [7]. Being designed to supply information to Numerically Controlled 

(N.C.) cutting tools, the system in the final stage, converted the polynomials into 

equally spaced poly-arcs.

The US Navy developed in the early seventies, a system composed mainly o f two 

modules, HULGEN and HULDEF, for the creation and fairing of ship lines [8]. 

HULGEN, the Ship Hull Form Generation program, was an interactive system to be 

used in the concept stage of design, and used design parameters to generate an initial 

form. In this system each station is obtained from two polynomial equations, one 

from the keel to the load waterline and the other from there to the main deck edge. 

To control the surface shape the user acts on eight control curves. Five o f those 

curves represent offsets and the remaining three represent slope distributions. The 

offsets of the section area and the load waterline, are represented by polynomials of 

7th order in ships without parallel body or of 9th order otherwise. The maindeck 

edge, the flat-of-bottom and the keel profile are represented by cubics with inner 

linear segments if required. The slopes of the deck edge, load waterline and 

flat-of-bottom are also represented by cubics with linear segments in between.

HULDEF, the Ship Hull Definition program, tried to solve the difficulties with 

longitudinal interpolation o f the previous systems, oriented mainly to the definition of 

the surface by transverse frames or stations, by defining the hull shape with
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longitudinal lines. To assume that all the stations are intersected by the same set of 

lines, the longitudinal lines selected were iso-girth lines, instead of the traditional 

waterlines, buttocks and diagonals. The only tools available for surface fairness 

assessment were the line plots and the evaluation o f the first and second differences 

on equally spaced ordinates. The latter, called the Difference Method, is based on the 

assumption that for a smooth set o f data, the nth. differences of a nth. order 

polynomial is constant. The third difference is not used in this method because, due 

to the piecewise nature of the polynomials used, there is a discontinuity in the third 

derivative at each data point.

The initial models based on polynomials, due to their dependence on the coordinate 

system, had several types o f problems, such as the impossibility of including straight 

line segments in a curve or the axis orientation difficulties, which gave origin to the 

search for alternative models. Conformal mapping and parametric curves were two 

separate approaches developed.

Conformal mapping

Conformal mapping is the current designation of the one to one correspondence 

between two points on two distinct planes, expressed by a single analytical function. 

Normal utilisation consists in mapping free-form shapes into shapes whose equations 

and properties are known. In the case of ship surface, sections can be, for instance, 

conformally mapped into the unit circle on the complex plane. One of the first and 

best known applications of conformal mapping to hull geometry description, was the 

work o f Lewis [9] on converting to general ship sections the results o f studies of the 

water inertia in problems of ship motions obtained with semi-circular section models. 

The sections were completely defined by the local section area, depth and breadth. 

The capability o f describing an entire section with one equation and the freedom of 

infinite slope values were the characteristics that brought popularity to the conformal 

mapping representations over polynomial ones, mainly in the field o f hydrodynamics. 

Reed and Nowacki [10] addressed the problem of the creation o f lines using 

conformal mapping from the unit circle. Due to the difficulties o f this method to 

represent sections with flare, only the underwater part of the hull sections was 

represented. More information on earlier applications to ship design can be found in
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Hoffman and Zielenski [11]. More recently, conformal mapping functions are 

adopted by Keane [12] in a method that allows the definition of flare and rise of floor 

in the sections.

Parametric polynomial curves

Parametric polynomial curves were the choice for most of the systems. The NASD, 

NKK Advanced Ship Design system [13], was oriented to the production stage. The 

hull was divided in sub-surfaces by boundary lines. The sub-surfaces were classified 

as plane, cylindrical or curved surfaces. The fairing process was applied to the curved 

surfaces using iterative cross fairing of three offset tables. These tables contained the 

half-breadths (y) of the sections at the waterlines, the heights above top o f keel (z) of 

the intersections of the buttocks with the sections and the distances form amidships 

(x) o f the intersection of the buttocks with the waterlines. The system used a type of 

plane cubic spline curves called APT TABCYL splines. Each curve was faired 

separately. Curves were first divided in segments and then a spline was fitted to each 

segment. For the curve fairing, the differences between the coefficients o f the cubic 

terms of adjacent segments were computed. If in two consecutive segments these 

differences had opposite signs, then the point between the segments had to be 

corrected, replacing it with the value computed assuming its removal. Even recently, 

some forms of parametric polynomial curves are still used to model the hull form, as 

in the work of Tsujita and Eida [14], using a combination of sinusoids and ellipses.

Cubic splines

Meshes of cubic splines curves (refer to Section 3.1) were used by Rabien [15] to 

obtain new hull shapes from parent ships. The input consisted of a group o f plane 

transverse sections and a set of arbitrary longitudinal lines. Both these types of lines 

were described by point coordinates and eventually by slopes and curvature 

conditions.

Bezier curves

The Hamburg Ship Model Basin developed a system [16] based, at first, on Bezier 

curves (refer to Section 3.2) for the fairing of ship models for tank testing. However,
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due to the difficulties found in modelling the round aft extremities o f some waterlines, 

a special type of parametric curve, Cornu's spiral, was developed and incorporated 

into the system. The main characteristics of these curves is their capability to 

represent circular arcs and straight lines exactly. Kouh and Chau [17] used rational 

Bezier curves to define the hull shape in preliminary design. First master curves, 

cross-sectional curves which are not necessarily planar, are specified, defining the 

main geometrical features. Next, longitudinal curves are fitted to the points 

corresponding to iso-parameteric values on the master curves. This mechanism is 

similar to lofting (refer to Section 4.7.1) although curves are generated instead of a 

surface. In order to avoid the global behaviour of Bezier curves, the curves used in 

this approach are composed by cubic segments with controlled boundary conditions.

B-spline curves

Also oriented for the production of ship models was the CAMELL (Computer Aided 

Milling) system described by Rogers [18]. The representation of the lines could be 

made using cubic splines, Bezier or B-spline curves (refer to Section 3.4) up to the 

6th order. The system was provided with routines for interactive editing and 

automatic curve approximation using least square methods. As the system did not 

provide any tools to evaluate the fairness of the created lines, this had to be done by 

plotting them at a large scale. Nowacki [19] discussed hull form generation from 

form parameters using cubic B-splines. B-splines were also the basis of the B-LINES 

module of the BRITDES system [20]. This module was developed to generate new 

hull forms using interactive graphics. The input was given in the form of the profile, 

flat-of-side, flat-of-bottom and knuckle lines. Curvature plots were provided to 

evaluate the fairness of the lines.

Wireframe models, due to their simplicity and limited amount of required data, are 

quite suitable for the purpose of preliminary design and basic calculations. They 

cannot, however, provide either the type of information or the accuracy for 

production purposes obtained from the surface models.
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2.2 Surface representations

With the increase of computational power, 3D surface modelling techniques became 

available in the early seventies and applications to hull representation in the late 

seventies. The most frequent approach to 3D modelling is a two step process. In the 

first step, forms are generated by plane curves under the control of a set of space 

curves, normally boundary lines and knuckles. The advantage here is the more 

intuitive control of the shape by the designer when dealing with curves, compared to 

the direct manipulation of surfaces, which leads to a quicker definition of the global 

shape. In the second step, one or several surfaces are fitted to the curve network. The 

surfaces generated contain the information required to obtain, without ambiguities, a 

better knowledge of the quality of the shape.

Coons patches

Coons patches (refer to Section 3.3) became widely used in the first surface 

approaches to hull representation. The Forward Design System (FDS) [21] uses 

bicubic patches and cubic splines to fit the boundary curves and to interpolate 

derivative and twist values at the patch comers. Munchmeyer [22] presented a model 

based on fifth degree Coons patches generated over a net of fifth degree B-spline 

curves. First a grid of curves was fitted to the sections and waterlines and then the 

intersection points were used as the comers o f the surface patches. The interesting 

concept here is that the surfaces interpolate lines instead of just points, in order to 

keep the fairness of the lines. Stroobant and Mars [23] proposed a mixed approach 

with Coons patches and third degree B-spline tensor product surfaces, generating 

control lines approximated by B-spline curves. In Reese [24] the boundary lines are 

approximated by cubic B-splines and the patches are bicubic or biquintic. Although 

assuring continuity over the patches, these models required extensive data input from 

the user, some o f which are of difficult determination, such as the cross derivative 

(twist) values on the comers of the patches. For this reason these systems had poor 

interactivity and the editing of the surface was difficult.
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Algebraic conic surfaces

The generation of hull surfaces based on single curved conical surfaces was the goal 

of several authors motivated by simplicity of production. The STEERBEAR system 

[25], was based on a model o f tiled parametric surfaces, each defined by two space 

curves (directrices) and some internal, non-intersecting curves (geratrices). These 

supporting curves were based on a concept, the designated Kock spline, which 

defined a type of curve constituted by straight segments and circular arcs, with 

controlled continuity between segments. Space curves were defined by two 

projections, i.e., by two planar curves. Lauritsen [26] described a hull form modelling 

system in which the hull surface was composed of several separate surfaces. First the 

boundary lines and boundary conditions were defined. The surfaces were then divided 

in plane, single curved and double curved surfaces. Each single curvature surface was 

created as a conical surface obtained from generator lines and two Bezier curves.

Bezier surfaces

The Unisurf system [27] was the first system based on the Bezier formulation of 

curves and surfaces (refer to Section 3.2) and, although designed for the automobile 

industry, it was also applicable to ship hull design. The main advantage over previous 

systems was the intuitive shape control obtained by the manipulation of the control 

polygon. Chaojun [28] divided the hull in 3 to 5 patches longitudinally and 2 or 3 

layers vertically, and used bicubic Bezier surfaces. A set of compatibility equations 

must be solved in order to smooth the connections between adjacent patches. For 

Pommelet [29] the Bezier patches could be of arbitrary degree. Bezier surfaces, due 

to the lack o f local control and the increase o f the degree o f the polynomials with the 

number of control points, have become less popular for use in the representation of 

ship hulls.

B-spline surfaces

B-splines curves and surfaces (refer to Section 3.4) have been widely used for the 

representation of ship hull geometry. The properties of B-splines, namely the local 

control and the possibility of introducing discontinuities by increasing multiplicity in 

control points have proved to be more suitable for this purpose than the Bezier
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formulation. Most of the approaches presented have been based on multi-surface 

models. The concept of multi-surface patch models emerges from the fact that, 

despite the great convenience of a single surface model, it is difficult to cope with the 

co-existence in the ship hull surface of areas of great simplicity and a high degree of 

complexity (e.g. the bulb area), without losing the simplicity o f modelling and 

processing that were its main advantages in the first place. Another advantage, is the 

possibility o f modelling different areas of the hull separately, which is most useful in 

practical terms, since it allows the designer to follow the sequence that is more 

convenient for production requirements. In a surface patch model, care must be taken 

in order to ensure that patch boundary lines do not cross discontinuity lines.

Fog [30] represented the entire hull by a single tensor product B-spline surface. The 

surface is o f the fourth order and the knot vectors used are non-uniform. Beyer [31] 

also used the B-spline curve on the design tool named Direct Curve Manipulation, 

DCM, developed for the interactive modelling o f hulls. The curvature distribution 

along the curve could be displayed to assist the designer who could also select the 

type of continuity between curve segments (C°, C1 or C2) The general surface 

modeller system, GENSURF [32] and its customised version for ships, HULLSURF 

[20], represent a hull surface by B-spline bi-cubic patches defined over boundaries 

approximated by B-spline curves, both using uniform knot vectors.

Jensen [33] has developed an automatic procedure for generating a single B-spline 

surface to represent a ship hull surface. The longitudinal contour o f the centre-line 

plane and any knuckle lines are interpolated by a cubic spline fitted to selected points. 

Then, for each section, a user defined number o f control points is obtained by 

least-square approximation. The grid composed by the section control points is then 

used to generate a tensor product B-spline surface. Single surface models like this are 

attractive for the simplicity obtained in having the surface described by a single 

element and by the reduced amount of data required. Furthermore, the surface is 

controlled by a external net of control points which allows a more intuitive control of 

any changes. Standersky [34] combines the interactive capabilities o f the B-spline 

tensor product surface with the variational approach to the shape generation of ship
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hulls. The methodology of this work presents three steps. First, a simple surface is 

generated from a set of basic design parameters such as the volume, centre of 

buoyancy, sectional curve areas and initial stability. The surface obtained is then 

edited manually to correct locally undesired shape features. Finally, an automatic 

distortion procedure is used to correct the volume and centre o f buyancy changed 

during the interactive work.

More recently, Bardis and Vafiadou presented a model [35] that tries to combine the 

B-spline formulation with the local control of the patch boundaries obtained by 

concepts borrowed from the Beta-spline formulation. First, longitudinal boundary 

lines are approximated by B-spline curves interpolating selected points. Then, 

transverse sections and the longitudinal parametric first derivatives are approximated 

by B-spline curves fitted to section offset points and longitudinal tangent values, 

respectively. Finally B-spline surface face patches are generated between each pair of 

consecutive curves, using first derivative values from the tangent values on the 

boundaries multiplied by bias functions fit, similar to those used in Beta-spline 

formulations.

Rational surfaces

The use o f rational surfaces to represent ship shapes is due to the necessity to model 

exactly conic areas. The first attempts made by Kouh and Soding [36] used rational 

forms of cubic spline surfaces, fitted using continuity of position and slope at the 

boundaries which are described by a network of cubic splines, defined by given 

offsets and boundary conditions. Another form of rational cubic spline, defined in 

terms of non-negative tension parameters was presented by Clemens [37] applied to 

the generation and fairing of ship lines. This spline preserves local 

concavity/convexity and guarantees the continuity of the second derivatives, but only 

if free-end conditions are applied.

2.3 Summary of reviewed approaches

Coons surfaces were the first choice of most of the early works using surfaces to 

represent ship hulls. The difficulties in computing the twist vectors at the patch 

corners and in editing were their main drawbacks. Bezier surfaces became very
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popular due to the easy and intuitive way by which the shape can be controlled, but 

they do not offer local control . B-spline surfaces, by retaining all the characteristics of 

the Bezier and adding local control, have proved to be a good tool for modelling the 

ship's hull surface, but in spite of all their advantages, they still present some 

drawbacks such as the impossibility to represent exactly conic surfaces such as the 

bilge areas of large ships. This limitation, motivated the utilisation of rational forms 

of the most used types o f parametric surfaces such as cubic spline and Bezier and, 

more recently, B-spline. The rational form of B-splines, commonly designated by 

NURBS (Non-Uniform Rational B-Splines) is the state of the art in surface modelling 

and is already being used by some systems for hull surface modelling (Ref. Section 

2.4).

In Table 2.4 the approaches to hull surface representation reviewed are summarised 

in chronological order and classified by the type of representation, mathematical basis 

and target design stage.
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Table 2.4 Summary of reviewed approaches to hull shape representation

A uthor/

System

Year Type

of

rep.

Obs. M athem .

Basis

Target

design

stage

Fairness

Eval.

Fairing

Tools

Lewis 1929 W M P N N

Buczkowsky 1969 W P C N N

Kuiper 1969 w P C N N

UNISURF 1974 w +s Be

Kuo et al 1974 w P c N N

Reed et al 1974 w CM p

Hattori et al/NKK 1977 w Cs D

Tokumaru 1977 w P D

Nowacki et al 1977 w Bs C

HULGEN 1977 w P C

HULDEF 1977 w P P

Collatz et al. 1977 w Be T

Rogers 1977 w Cs,Be,Bs T N N

Rabien 1979 w Cs P

Yuille/FDS 1979 s Cs+CP

Munchmeyer et al 1979 s Bs+CP

Rogers et al/BSSD 1980 ' s Mp Bs

Stroobant et al 1982 s CP+Bs Y

Fog 1984 s Sp Bs P

B-LINES 1985 w Bs C ,P Y N

Reese 1985 s Bs+CP

Lauritsen 1985 s Be

Chaojun 1985 s Be
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Table 2.5 Summary of reviewed approaches to hull shape representation

A uthor/

System

Year Type

of

rep.

Obs. M athem.

Basis

Target

design

stage

Fairness

Eval.

Fairing

Tools

Norskov et al 1985 S P P ,D

Pommelet 1985 S Be

HULLSURF 1985 W+S Bs

Kouh et al 1985 w +s S

Beier/DCM 1985 w Bs P Y

Keane 1987 w CM P

Jensen et al 1988 w +s Sp Bs

Standersky 1988 s Sp Bs C

Clemens 1991 w +s S

Bardis 1992 w +s Mp Bs

Kouh et al 1993 w Be P

Tsujita and Eida 1995 w P P

Type of representation: Observations:

W - Wireframe Sp - Single patch

S - Surface Mp - Multi-patch

W+S - Mixed

Target Design Stage: 

C - Conceptual 

P - Preliminary 

T - Contract 

D - Detail

Mathematical basis:

P - Polynomial functions 

M - Conformall mapping 

Cs - Cubic spline 

Be - Bezier 

Bs - B-spline 

S - other splines 

CP - Coon's patch

2.4 Commercial systems for hull surface design

Although it is not always possible to know details of the mathematical algorithms 

used in commercial systems, in Tables 2.6 and 2.7 a brief survey o f some o f the more 

common hull surface design systems available for PC computers, referring the type of 

representation and the mathematical basis used.
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Table 2.6 Survey on Hull Representation PC Software

Package

Name

Company/

Country

Version/

Year

Model

Type

M athem atical

Basis

Obs.

FastS hip Design 

Systems & 

Services, Inc. 

USA

1989

Surface B-spline Deformation 

of a single 

surface

Mac Surf Graphic 

Magic Ltd

Vs. 5.0 

1993

Surface NURBS Multiple 

patches 

(Max. 50)

MAST

System4

MAST 

Systems Ltd

1994 Stability

calculations

HullForm Blue Peter 

Marine 

Systems 

Australia

1994 Stability

calculations

PC-SHCP C. Tremblay 

& Associates 

Inc.

Canada

Vs. 4.0 Wireframe Polynomials Stability

calculations

Fast Yacht Design 

Systems & 

Services, Inc. 

USA

1993 Surface NURBS Multiple

patches

ShipHull 2000 NorthStar 

Software Inc. 

Canada

Vs. 2.0 

1993

Wireframe Stability

calculations
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Table 2.7 Survey on Hull Representation PC Software (cont.)

Package

Name

Company/

Country

Version/

Year

Model

Type

M athem atical

Basis

Obs.

ShipCAM Albacore

Research

Canada

Vs. 4.2 

1994

Surface B-spline 

4th order

FairLine

FL/2B

AeroHydro

Inc.

USA

Vs. 2.85 

1994

Surface Single

Surface

MultiSurf AeroHydro

Inc.

USA

Vs. 1.62 

1994

Surface Cubic spline/ 

B-spline

Multiple

patches

AutoShip AutoShip

Systems

Corporation

Vs. 5.1 

1994

Surface NURBS Multiple 

patches 

(Max.200)

Cadesnav ENVC

Portugal

1994 Wireframe Cubic splines Detail

design

Defcar NYSL

Spain

1994 Surface Detail

design

Blines BMT

UK

1993 Wireframe Cubic

B-splines

Basic

Design

Hull Surf BMT

UK

1993 Surface B-splines Multiple 

patches 

(Max. 5)

It can be seen that most of this systems are already using surface representations and 

that B-splines are still the preferred mathematical basis. At least three systems use 

already multiple patches o f NURBS surfaces. In general, the available systems are 

more oriented to preliminary design than to detail design.
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3. Parametric curves and surfaces

Space curves can be classified into non-parametric and parametric. Polynomials are 

the non-parametric curves more used in mathematical representation of shapes, either 

in explicit or implicit forms. Polynomials have, however, several limitations, such as 

the impossibility o f imposing tangency conditions to vertical lines and the dependency 

of axis orientation, that make their application to ship hull modelling impractical. 

Parametric curves are more suitable to represent closed curves or other shapes that 

assign multiple values to the same value of the independent variable.

As a background to the following chapters, the basic theory of parametric curves and 

surfaces will be presented in this chapter, focusing on the formulations that, due to 

particular properties, have been used by the naval architects to describe the shape of 

ship hulls.

Curves are represented by such basic information as given by a set of points in space. 

Depending on the way in which the curve fits the points, we can have two types of

problems. Given n data points P}(x,y,z), P2(x,y,z) Pn(x,y,z), if it is intended to

determine a curve that passes through all these points, that is an interpolation 

problem. If  it is intended to obtain a curve that approximates the points, although 

keeping a fair shape, that is an approximation problem.

In the following, one interpolating curve, the cubic spline, and one interpolating 

surface, the Coons patch will be described. The formulation of four approximation 

curves: Bezier, B-spline, Beta spline and rational B-spline will be presented, together 

with their respective extensions to surfaces.

The curves will be compared on the basis of the following properties:
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• L inear precision - is the capability o f the curve to reproduce straight line 

segments.

• Convex hull property - each point on the curve lies in a convex hull o f a set of 
control points. The convex hull of a set o f points is defined as the set that is 
formed by all convex combinations of a point set, that is, weighted sums o f the 

type

P  = t a p  (3 .1)
;=I

in which pj are points in a 3D space and otj are weights, defined in such a way that 

Z a ,  =  1 and a ^ a 2,. . . ,a n > 0
;=i

• Variation diminishing - is the property o f a curve that is not intersected by any 
straight line more often than the control polygon is.

The basic developments on surfaces in computer aided design were carried out by 

Coons [38], Bezier [27] and Casteljau. Bezier working at Renault and Casteljau 

working at Citroen, developed separately curves and surface concepts that although 

mathematically equivalent, became popular under the designation of Bezier because 

Calteljau’s work, was kept unpublished until 1978. Both developed surfaces 

consisting of networks of rectangular patches, but while Coons patches exactly 

interpolate the boundaries, a Bezier surface matches some data and approximates the 

rest. In Coons patches the blending functions can be chosen very freely (Refer to 

Section 3.3) while on Bezier surfaces, the blending functions are based on Bernstein 

approximation.

As for the curves, B-splines surfaces are an extension o f Bezier surfaces and Non- 

Uniform Rational B-spline (NURBS) surfaces are a generalisation o f B-spline 

surfaces.
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3.1 Cubic splines

The traditional method of drawing curved lines in naval architecture uses a long thin 

wooden or plastic strip called a spline. The spline shape is controlled through the 

positioning of lead weights, commonly referred as "ducks" (Fig. 3.1).

Figure 3.1 Wooden spline with ducks

The mathematical description of the spline curve can be obtained from the theory of 

the deflection of elastic beams. Considering the spline as a thin uniform elastic beam, 

and for small deflections, the Euler law relates the deflection o f the axis of the beam 

y(x), with the bending moment M(x) by the expression:

y " (x )  = M 2  (3.2)

in which E  is the Young’s modulus of the material and /  is the moment o f inertia of 

the beam section.

Assuming that the beam is simply supported at the weights, then the bending moment 

will vary linearly between them, i.e., M(x) = Ax+B. After replacing M(x) and 

integrating twice, we obtain deflection:
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y(x ) -  J J  ^ — —dx =  —  J J  (Ax + B)dx = A x3 + B x2 +Cx + D  
E l  El

The first conclusion that can be derived is that between each pair o f adjacent weights 

(or data points) the beam assumes the form of a cubic polynomial segment. Joining 

each pair o f adjacent segments in such a way that the slope and curvature are equal at 

their joint, a curve made of cubic segments is obtained, which is called a cubic spline. 

For each segment of the cubic spline, the curve can then be defined by

P(i) = A t3 + B t2 +Cl + D (3 .3)

in which t is the parameter normalised to the interval [0,1] To obtain a piecewise 

curve, the segments must satisfy boundary conditions. The set o f boundary conditions 

established as the basis for the Hermite interpolation is:

^(0) = Po

^(1) = A 
P'{0) = T0 

P '(1) = 7|

(3 .4)

in which /?0,/?,are the first and last points of the segment and r o,7Jare the 

corresponding tangents to the curve. The derivative of P(t) is given by

P'{t) = 2 A t2 + 2Bt + C (3 .5)

Replacing (3.5) in (3.4) and computing the constant values, (3.3) can be written, in 

matrix form, as follows

in which /HJis

[ H ]  =

+ 2 - 2  + 1  + 1 

- 3  + 3  - 2  -  1
0 0 + 1 0  

+ 1 0  0 0

(3 .6)

and [G] is the geometric vector



Generalising, a spline o f order k  is a piecewise polynomial of degree k-J, with 

continuity of derivatives of order k-1 at the segment joints and is defined by [39]:

PA‘) = ' t c , t 1-' for/, < / < / 2 (3.7)
1 =  1

where t]t t2 are the values of the parameter at the beginning and the end o f the 

segment and C, are the coefficients determined by specifying k  boundary conditions 

for the spline segment.

Fr ee  ends

Clanped ends

(A)

C l a n p e d - f r e e  ends

(B)

Cyclic

(C)

Anti -cycl ic

( E)

Figure 3.2 Cubic spline with different end conditions 

Referring to Fig. 3.2, some common boundary conditions are:

• Natural spline:

P ' " ( 0  =  °  P " '( /J  = 0

• Clamped spline:

(3.8)



28

P " ( 0  = A P 'V „) = Dn
given Z),, Dn imposed derivatives

(3 .9)

Cyclic spline:

p % ) = p '{ Q  p % ) = p % ) (3 . 10)

• Anti-cyclic spline:

p % ) = - p ' { ‘«) p-(‘d = - p ' % ) (3 . 11)

The most useful splines are the cubic splines, since 3 is the lowest degree that allows

the curve to have an inflection point and also to have non-planar points, that is, to be 

a true space curve. Cubic splines have C2 continuity, that is, they are piecewise 

continuous in position, slope and curvature. They interpolate all the given data points.

The main disadvantages of the cubic splines are their impossibility to exactly represent 

conic curves and the possibility of having undesirable oscillations.

3.2 Bezier curves and surfaces

The curves generally known as Bezier curves were developed separately by Calsteljau 

and by Pierre Bezier in the early sixties.

A parametric Bezier curve is defined by [39]:

where B . are the Bernstein basis functions of degree n. The Bernstein polynomials

developed around 1912, are a constructive proof o f the theorem proved by 

Weierstrass in 1885, which stated that any continuous univariate function can be 

approximated by polynomials up to a given tolerance. The Bernstein polynomials are 

defined by:

P(t) = t C f in . i t )  for  0 < / < l (3 . 12)
i= 0
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b . = — - — (i  - t y - ‘ t ‘
n‘ i \ ( n - i ) \  ’

. (3 . 13)
TV

U
( l - r ) rt V  for i = 0, 1, n

where t is the local coordinate of the current curve segment and bQ,b ^ ...,b n are called 

the Bezier points of the segment and geometrically form the vertices of the Bezier 

polygon.

Bernstein polynomials have the following properties:
n

• partition of unity 'LBni{t) = 1
i=0

• positivity B ^ ( t )>  0 fo r  t e [0 ,l]

• recursion = (1 -  t)B n_u ( t)  +

Bezier curves became popular because their shape can be controlled in a very intuitive 

way by the manipulation of a 3D open control polygon (Fig. 3.3).

P2

P5

PI P4

Figure 3.3 Bezier curve

The curve is tangent to the first and last segments o f the polygon and interpolates the 

first and last vertices, but not the interior ones. The order is equal to the number of 

vertices of the polygon.

A Bezier curve is a smooth curve that is easy to compute and to control through the 

position of the polygon vertices. The increase o f the degree of the polynomials with



30

the increase o f data points and the global nature (if one polygon vertex is changed, all 

the curve is changed) are the main drawbacks of this family of curves.

A rational form of the Bezier curve is defined by [40]:

Y j 3 C B n(t)
n t )  = for /?, > 0 (3.14)

Z M " ( 0
/=0

in which are the called weights of the Bezier points Cf. Rational Bezier curves are 

a generalisation of the non-rational form which is obtained if all =  1. The main 

advantage o f rational curves is their capability o f representing conic shapes exactly.

A non-rational Bezier surface is defined by [39]:

S(u, v) = Z  I CtiBni(u)Bmi{v) (3.15)
»'=0 j= 0

where B ^ u )  and Bmj(w) are the Bernstein basis functions defined by:

K , = - ~ ^ — - u ' ( l - ur  (3.16)
/!( /? -/)!

3.3 Coons surface patches

Several authors have dealt with the problem of interpolating a smooth free-form 

surface through a topologically rectangular network of curves in 3D space.

The method developed by Steve Coons [38] interpolates a surface patch to fit four 

given boundary curves that form a continuous closed boundary to the patch. This 

designation o f blending function comes from the fact that they mix or blend the 

shapes of the boundary curves to produce internal curves that define the surface. The 

main difference between this approach and the previous ones is that the boundary 

curves can be of any form. Regarding the blending functions f(u ), the only 

requirements are:
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■ / ( « ) e [ 0 , l ]  

• I / M  = i
/=i

Eligible functions include:

. Polynomials 

. Step functions 

. Piecewise linear functions 

. Piecewise polynomials

In its simpler form, a bilinear blending function is used to obtain what is called a linear 

Coons surface as shown in Fig. 3.4.

s(u, 1)

Figure 3.4 Coons bilinear surface patch

If the four boundary curves are r(u,0), r(u,l), r(0,v) and r(l,v), the surface is defined 

by [39]:
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S(u ,v ) = [ l - u  u 1]
-K °.°) - r ( 0,1) K M " “l - v "
-r(l,0 ) -K w ) K i,v) V (3.17)
r(u,0) r (u>1) 0 1

in which the functions (1-u), w, (J-v) and v are the blending functions.

A bi-linearly blended Coons surface is only C°, that is, it interpolates only the 

boundaries. A bi-cubically blended Coons surface patch uses cubic splines for its 

boundary curves and cubic blending functions, and it is able to interpolate both 

position and tangent information. The bi-cubic Coons patch can be considered as the 

Boolean sum or blending of three patches, to meet given boundary conditions as 

illustrated in Fig. 3.5.

Figure 3.5 Boundary curves and cross tangents on Coons patch 

A bi-cubic Coons patch is defined by [39]:

S(u, v) = S, («, v) + S2(u, v) - S ,( u ,  v) (3.18)

where

K = [ ^ ( “) Ft (u) Fj(«) F4(h)]

£ ,(a ,v ) = [^ (v ) F2(v) Fj (v) F4(v)]

K°>v) 

•s0.v) 
^(O, v)

s(u,Q)' 

* v M )
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and

s 3(» ,v )= [/;(# )  Fi(u) Fz(u) £>(«)]

*(0,0) *(0,1) *.(0,0) *.(0,1)' ' m
*(1.0) *(1,1) *.(1,0) *.(1,1) Fz(y)
*■(0,0) *.(0,1) *-(0.0) *..(0,1) ^ (v )
*.(1,0) *.(1,1) *..(1,0) * -(U ). .^ (v )

where:

s = s(u, v)

s * i (“’ v)

5“” = ^ 5(u’v) 

and ^ (tt),iv (v ) are the Hermite functions.

As can be seen from equation (3.18), the bi-cubic surface patch is defined by four 

cubic blending functions F /u) and, at each of the four comers, the coordinates sy two 

derivative vectors, su and sv , and the twist vectors (cross derivatives) suv. These 

derivatives and cross derivatives are functions of the parameters u and v and do not 

represent physical tangents on the surface boundaries.

When trying to generate a surface patch from a rectangular grid o f points, one easy 

way of obtaining the derivatives su and sv is to fit curves (cubic spline, B-spline, or 

others) to the rows and columns of points. The problem remaining is how to obtain 

the twist values, suv at the four corners of the patch. The twist vector is not a 

geometric invariant because it is a function of the parameterisation, and its value does 

not depend on the order in which the derivatives are taken, that is,

d 2s f  ̂ (?s ( ^
s,n, = - —— s(w, v) = ^ ~ s[u, v)

du dv dv du

The simplest solution seems to be to assign zero values to the surface twists, as 

suggested in [41]. But, if each boundary curve is not obtainable from the opposite one
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by translation, the use of zero twist values will generate flat spots on the surface. 

Other ways of estimating the twist values can be found in the literature such as 

Adini ’ s method [42]:

«W - « M

4 u m  ’ v /+!)  -  . V i )  -  s ( u M »v )  +  * ( “ m  . V i  )

(«w V i Vy-')

Bessel’s twist and the Selesnick method [81].

The original Coons patch concept can be adapted to other formulations by changing 

the nature of the boundary lines dr the blending functions, using B-splines, for 

example [43].

Gordon, working for General Motors, has generalised the notion of a Coons patch to 

interpolate a full rectangular grid of lines instead of just the external boundaries [44], 

that is, many patches can be treated simultaneously, is a way similar to Bezier 

surfaces.

3.4 B-Spline curves and surfaces

Although B-spline curves were already studied in the nineteenth century by N. 

Lobatchevsky, their utilisation for data approximation and smoothing started in 1946, 

with Schoenberg, and were first introduced in CAD by J. Ferguson from Boeing Co. 

in 1963.

The first algorithms to compute the B-spline functions used divided differences. A B- 

spline of order k  was then defined as the fc-th divided difference o f gk(s;t)
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M ,* (0  = &(*,>•••>(>*;*) (3.19)

in which tt and ti+I are real numbers so that t i < tM for / =  -oo,...,+oo and

g„(s-j) = { s - t ) t '

= ( s - t )k~1 i f  s > t  (3.20)

= 0 i f  s < t

The normalised spline Nijft) is given by

This algorithm, however, is not satisfactory from the computational point o f view, 

since it involves subtraction, an operation which can lead to great lost o f accuracy if 

the difference between the two numbers is small. A detailed error analysis o f the 

divide difference method for computing B-splines can be found in [45],

A recursive algorithm was later independently developed by Cox [45] and de Boor 

[46], which provides a numerically stable way to compute the spline basis functions. 

Gordon and Riesenfeld applied these basis functions to curve definition. So, a

B-spline curve o f order k  (Fig. 3.6) is a piecewise polynomial of degree k-1 defined by

[39]:

n+1
f l ( 0  = £ C i . J M 0  (3.21)

! = l

in which Cf are the n+1 control points and Njk are the B-spline basis functions of 

order k defined by the Cox-de Boor recursive expressions:

= 1 i f  ti< t <h +1

= 0 otherwise (3.22)

N t M )  = t ~ t‘ N u - .( /)  + U*t ~t N, + i.t - i(r)
ti + k - b  b * k - h * \

defined over the knot vector:

(3 .23)



The B-spline basis functions have partition of unity and positivity properties.

P3

P2

K = 4
P5

K=5PI P4

Figure 3.6 B-Spline curves of order 2, 3 and 4

The knot vector must satisfy the two following requirements:

• it must be non-decreasing, that is, u ^  /,+i

• the knots can be repeated r times, and then they have multiplicity r, or be 

simple and have multiplicity one. The multiplicity must not be greater than 

the order of the spline.

The knot vectors can be classified as:

• uniform, if all the knots have an equal spacing, that is, 

( ti -  U-1) = const, V/, for example:

{0.0 0.5 1.0 1.5 2.0}

while if const = 1, it will be periodic, for example:

{0 1 2 3 4 5}

• non-periodic or open uniform, if it has internal knots equally spaced and 

knot values with multiplicity equal to the order o f the spline at the 

extremities, for example:
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{0 0 0 1 2 3 4 5 5  5}

• non-uniform, if the knots have multiplicity equal to the order o f the spline at 

the extremities and are not necessarily equally spaced, as in the following:

{0.0 0.0 0.0 1.0 1.4 2.0 2.3 3.0 3.0 3.0}

or if it has internal knots with multiplicity greater than one, as for example:

{0 0 0 1 2 3 4 4 4 5 6 7 7  7}

The knot vectors can be normalised’ by imposing the condition that the parameter 

values must be in the interval [0, 1], which does not have any influence on the shape 

o f the curve.

B-spline curves have the following properties:

• Linear precision

• Convex hull property, for no more than k  control points.

• Variation diminishing

• Invariant under affine transformations

If  the end knots don't have multiplicity equal to the order, the first and last control 

vertices will not be contained by the curve, and are called "phantom vertices".

When the order o f a B-spline curve is equal to the number o f control points the knot 

vector consists only of the end points both with multiplicity equal to the order of the 

spline, as for example:

{ 0 0 0 0  1 1 1 1}
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and produces a degenerated spline basis equivalent to the Bernstein basis, i.e., the 

B-spline degenerates into a Bezier curve.

A B-spline surface can be defined as the tensor product of two B-spline curves [39]: 

% v ) = H  Cuj Nijc (w) N jj  (v) (3.24)
;=1 ;= l

where C/y are the control points of the surface and A^k and Nj t are the B-spline basis 

functions given by:

Nuk{u)  =  1 i f  Ui< u < w  + ]
= 0 otherwise (3.25)

\r / \ tl — Ui Ui + k - U XTNi,k{U) = -------------------------Ni,k-\(U)-\  Ni + \,k-](U)
Ui + k - 1 ~  Ui Ui + k — Ui + 1

In Figures 3.7 to 3.9 it is possible to see the influence of the knot vector values in the 

shape of the basis functions. The uniform knot vector generates a basis function o f 

symmetrical shape (Fig. 3.7). A non-uniform vector generates an asymmetric basis 

function (Fig. 3.8). A repeated value in the knot vector implies a discontinuity in the 

corresponding basis function (Fig. 3.9). In every case, the influence o f each basis 

function extends for a number of intervals equal to the order of the curve.
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1.0
3.3

5,34,32,3

0
0 “t

Figure 3.7 Basis functions for X  = {0,0,0,1,2,3,3,3}

1.0

3,3 5,3

2,3
4,3

0
0 “t

Figure 3.8 Basis functions for X  = {0,0,0,0.5,1,3,3,3}

1,0

3,3 5,3

2,3 4,3

0
0 t

Figure 3.9 Basis functions for X  = {0,0,0,1.5,1.5,3,3,3}
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3.5 Beta-splines

One of the advantages of the B-splines is their capability of controlling the degree of 

continuity at the joints between curve segments without interfering with the order or 

the number o f control vertices.

Cubic Beta-splines were introduced by Barsky, in 1981, as a generalisation of 

B-splines and are based on the notions of geometric continuity and on the 

mathematical modelling of tension.

The requirement of second degree parametric continuity, C2, between curve 

segments in B-splines, is replaced by the requirements of the so called geometric 

continuity, G2, of the unit tangent and curvature vectors. This introduces constrained 

discontinuities in the first and second parametric derivatives, which are expressed in 

terms o f the shape parameters pj and P2, called bias and tension, respectively. A 

cubic Beta-spline curve is defined by [47]:

p,(«)=  f o r 0 < \ < l  (3.26)
r=-2

in which br are the basis functions

K(P\,Pi>u) =  A ) w *  for 0 < u <  \ and r = -  2 , -  1 ,0 , 1
g=0

(3.27)

p i= l  indicates continuity of the first parametric derivative and p i= l  with p 2=0 

indicates continuity o f the first and second parametric derivatives.

Parametric continuity reflects the smoothness of the parameterisation and not 

necessarily the smoothness of the curve, while the geometric continuity is a measure 

of the continuity that is not dependent of the type of parameterisation.
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The shape parameters provide extra degrees o f freedom, allowing the refinement of 

the shape o f the curve without changing the control points. Increasing or decreasing 

the bias parameter fiit forces the joint between two segments to move towards or 

apart from the control point, along a straight line. Increasing the parameter p2 

increases the tension in the curve segment, decreasing tendencies to oscillations and 

inflection points.

Beta-spline share with B-splines the properties of convex hull and local control.

3.6 Rational B-Spline

Rational curves were introduced in Computer Aided Geometric Design by Coons in 

1975. Rational B-Splines were first studied by Versprille, in 1975 [48].

The term "rational" means that the functions are obtained by the "ratio" o f two 

polynomial expressions. In the case of rational B-splines, they are defined by the 

expression [49]:

yCiWi.Nijc{t)
„ , A (3-28)

i-1

where C, are the defining polygon vertices, wf are the weights and Ni,k(t) are the 

B-spline basis functions.

Any point C, = [x, y y z] in 3D space can be interpreted as the projection from the 

origin to the hyperplane w=wf, of a point C "  = [ w x , h % w z , w ]  in 4D homogeneous

coordinate space. A rational B-spline curve is the projection in 3D space o f a 

polynomial (non-rational) B-spline curve defined in 4D space. If all the control points 

have w=l  then the shape of the rational B-spline curve coincides with the shape o f a 

integral (non-rational) B-spline curve (Fig. 3.10).
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c c t

W =  1

Figure 3.10 Geometric construction of a NURBS curve 

Equation (3.25) can be written in the form [49]

n+1
/>(/) = (3 .29)

1 = 1

where Rik are the rational basis functions

4 , ( 0  = J tN-lA ‘-  (3 -30)

;=i

The non-uniform version of this curve is commonly referred to as NURBS. If  all the 

weights are equal, the curve reduces to a B-spline. Generally, to ensure the non­

negativity of the basis functions, it is assumed that:

w , > 0
1 ” (3 .31)

wf > 0  /' =  1 , 2 ,  , w - l

When wM and wi+1 are fixed, for weight values of 0 < Wj < 1  the curve is pushed

away from the control point. Increasing the value of the weight Wj > 1 has the effect

o f attracting the curve to the point and for Wj = oo the curve will interpolate the point. 

In practice that can be obtained with reasonably high values of w. For w; = 0, the 

respective control point is ignored as shown in Fig. 3.11.
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P 4

P3

W 3=3.0 V 3= 0.0

V 3=1.0

Figure 3.11 Effect of changing the weight of control point 3

A rational B-Spline has all the properties that apply to the non-rational formulation as 

illustrated in Figs. 3.12 and 3.13. Furthermore, they are projective invariant, that is, a 

projective transformation (parallel or perspective) can be applied to a curve by 

applying it to its control points, and they can represent exactly conic segments, 

including circular arcs.

P9

P8
P5 P6P 4

P7

P3

P2

PI

Figure 3.12 Linear precision property of NURBS curve
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NURBs

Control polygon

Convex hull

Figure 3.13 Convex hull property in NURBS curve of order 4

The NURBS formulation also has some drawbacks, such as:

• Requires more storage to define standard curves and surfaces, like circles or 

ellipses

• Some characteristic dimensions, like the radius of an arc or a circle, are not 

explicit

• Improper alterations of the weight can lead to unpredictable alterations o f the 

shape

The derivatives o f a rational B-spline curve can be obtained by differentiation of 

equation (3.28)

p'(o=Zĉ '.*(o
where R^k are the derivatives of the rational basis functions given by:

The first derivatives of the non-rational basis functions are given by



45

(3.32)

and, in general, the 5th derivative o f N i k can be obtained from

V î+k t j  tj+k+1 A'+l'
(3.33)

As mentioned earlier, one of the advantages o f NURBS curves is the capability to 

exactly represent conical curves, which is only possible by means of approximation, 

when dealing with other formulations.

Considering a curve of degree two with 3 control points as shown in Fig. 3.14, if it 

represents a conic, then, although the weights wlf w2 and w3 can have different values, 

the ratio

called the conic shape invariance, remains constant for each type o f conic, as follows:

4kc < 1.0 => ellipse
4 kc = L0 => parabola
4kc > 1.0 => hyperbola

For circular arcs, not only the condition kc> l  must be fulfilled, but also the tnangle 

A P 1P2P3]  must be isosceles. The radius of the arc obtained is given by

R =

in which

4 k 2 -1  
b = ----------

2
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P2

H y p e r b o l a

P a r a b o l a

SP

PI

P3

SP'

Figure 3.14 Representation of conics by NURBS curves

Full circles can be obtained by patching together circular arcs [49]. Using four 90° 

arcs, the circle is defined by nine control points as shown in Fig. 3.15.

X  = {0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1.0,1.0,1.0}

w = ji.o, ,10, ,1.0, *A ,1.0, ,1.0}

p  = { ^ , Jp2, Jp3,p4,p5,p6, Jp7, Jp8,p9}

P8 P7 P6

P5

P4P3P2

Figure 3.15 Circle represented by a 9 control point NURBS curve
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This representation can be simplified by removing the repeated — and — knot values,
4 4

resulting in a circle generated with just seven control points (Fig. 3.16) defined by

X  = {0,0,0,0.25,0.5,0.5,0.75,10,1.0,1.0}

W =  {1.0,0.5,0.5,10,0.5,0.5,1.0}

P = {P x,P1,P„Pt ,P5,Pi ,P1)

P5P6

P1=P7 P4

P2 P3

Figure 3.16 Circle represented by a 7 control point NURBs curve 

Circles can also be obtained by patching three 120° arcs as shown in Fig. 3.17

x  = { 0,°,0,1 , j , j .,j ,10,1.0,1°}

W =  {1.0,05,1,0.5,1.0,0.5,1.0}

P  = {Pu P2,P1,Pa,Ps,P6}

In general the quality of the parameterisation increases with the number o f arcs used 

so, in the present work, the circle representation using 9 control points will be used, in 

order to obtain better results when using circles as support curves for the generation 

o f cylindrical surface patches.
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P6

P
2

P.

Figure 3.17 Circle represented by a 7 control point NURBs curve

The NURBS representation of a full ellipse can be obtained by applying an affine 

transformation to a circle, as the one represented by seven control points, keeping the 

weight distribution and the knot vector as shown in Fig. 3.18.

X  = {0.0,0.0,0.0,0.25,0.5,0.5,0.75,1.0,1.0,1.0}

W =  {10,0.5,0.5,1.0,0.5,0.5,1.0}

P = {P„P,,P„Pi ,Pi ,P6,P,}

R,

R ,

R .

P -

P = P r i n

P ,

Figure 3.18 Ellipse represented by NURBS curve

A rational B-spline surface in four dimensional homogeneous coordinate space is 

given by the Cartesian product defined by [50]:
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4. Hull Representation by NURBS Surface 
Patches

In the present method of mathematically modelling the ship hull surface, the first step 

is to create a wireframe model, following the traditional approach in design offices. 

The ship lines used are the sections, bow and stem profile contours, flat-of-bottom, 

flat-of-side, deck contour and knuckle lines, if any.

The description o f ship lines needs a type o f curve capable of representing free-form 

curve segments as well as straight lines, conic curves and even circular arcs (Fig. 4.1).

(T^) S t r a i g h t  line

©
©
©

Conic s e c t i o n  

F r e e - f o r m  c u r v e  

Circu lar  a r c

©

©

©

©

©

Figure 4.1 Types of curves used on ship lines [36]

For the sake of model simplicity, it is desirable to use a curve formulation that not 

only can represent accurately all the types of lines mentioned, but that may also be 

extended to surface generation.

The type o f formulation selected for the representation o f curves and surfaces selected 

in the present work is the Non-uniform Rational B-spline (NURBS).
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The potential benefits of the extra control obtained in NURBS curves and surfaces are 

still a topic of research and so, in the present work, only the capability of representing 

conics exactly will be used. However, being a superset o f Bezier and B-spline 

formulations, all the existing algorithms can, in principle, be adapted. In general, 

Bezier curves and surfaces can be converted into B-splines by knot insertion and 

B-spline algorithms can be converted by generalising point representation to four 

homogeneous coordinates (x,y,z,w) and using unit weights.

During the process of creation of the wireframe model, some specific lines o f the body 

plan will be approximated by B-spline curves. The procedure to generate the curves 

will have the following steps:

• Manual or digitised input o f points defining the selected curve

• Filtering o f input points, if digitised

• Automatic curve fitting or approximation of the data points

• Editing o f the curve for fine tuning of the shape, introduction of knuckles, etc..

The wireframe model must provide the support and boundary lines required to 

generate the surface patches. The transverse sections, the stem and stem contour will 

be used as the main support lines. The boundary lines normally defined in the body 

plans, are the flat-of bottom, the flat-of-side, the deck contour and the knuckle lines, 

if any (Fig. 4.2).

In general, the surface patches will be generated by lofting, although other techniques 

like ruling, extrusion and blending can also be used to deal with particular cases.

The algorithms and methods used to create the wireframe model, to generate and to 

interrogate the surface patches are described and discussed in the following Sections.
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Deck co n to u r

Knuckles

S t e r n  c o n to u r

F l a t - o f - s i d e

F l a t - o f - b o t t o n

S te n  c o n to u r

Figure 4.2 Boundary lines

4.1 Filtering digitised input points

The quality of digitised input points depends very much on the practice of the 

operator. Sometimes the information contained in the points is redundant, that is, too 

many points are picked and, in some cases, like straight line segments for instance, the 

probability is that the excess points are not collinear, introducing erroneous 

information. In general, the excess of information should be avoided because:

• it increases the size of the matrices to be inverted during the curve fitting and 

approximation processes (refer to Section 4.2), which can cause numerical 

problems

• it increases the size o f the control grid o f the surfaces generated, which increases 

storage requirements

• as in general the fairing of lines and surfaces is associated with the removal of 

redundant information, filtering input data will save time in the fairing processes

For the filtering of digitised input lines a simple filtering method was developed. The 

criterion used is that the new polygonal line defined by the output points should never 

be at a distance superior to a given tolerance 5 from the polygonal o f the input points. 

For each point a 3D straight line segment r(x,y,z) is defined by the points , 

with j= 1,2,.. n
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r (x , y , z )  = -------- + ^— ^ -  +

in which u,v,w are the components of the unit vector L

The distance from the point Pi+k , with k=l,2,..j to r is computed by

d  =

If d  < d  for a given tolerance S>  0, then the point Pj+i can be removed, a new line 

segment is defined by the points/J/J+2 and the process is repeated until a point is not 

removed or the last point is reached. When any of these things happen, the starting 

point is incremented, i= i+l and the process continues until all the points are tested.

Figure 4.3 Filtering of polygonal line with several tolerance values

In (Fig. 4.3) the polygonal line (A) with 31 points, was reduced to 22 points when 

filtered to S <  0.01(B), to 11 points with £< 0.05  (C) and to 7 points with 

8<  0.10(D).
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4.2 Interpolation and approximation of ship lines by B-spline 
curves

Due to their importance in several phases of the process, the curve interpolation and 

approximation algorithms used in the next Sections will be detailed and compared.

The general curve fitting problem can be described as follows: given a set o f ordered 

data points, find the control points and the knot vector that generate a B-spline curve 

o f order k  that contains (interpolates), or passes near (approximates), those points.

The relation between the curve data points [D] and the control points [5] is, in matrix 

form,

in which [A] are the spline basis functions (3.20). If  the number of data points is equal 

to the number of control points required, then the matrix [N] is square and so, the 

problem has a straightforward solution

Since the basis functions are defined over a knot vector, and computed for a defined 

set of parameter values t j , the problem of curve fitting solving (4.2) reduces to:

• define a knot vector

• define the parameter value to be assigned to each data point.

4.2.1 Parameterisation

The knot vector and so the type of parameterisation has a big influence on the shape 

o f the curve obtained. The uniform parameterisation has the disadvantage of not

having a geometric measure, i.e., it does not have any relation to the actual location of

the control points and so, if these have an uneven spacing the results obtained are very 

poor.

[D] = [# ] [£ ] (4.1)

[5] = [Arp1 [£>] for 2 < k < npts (4.2)
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The most common parameterisation is the normalised chord length between control 

points, but as they are not yet available at this stage, data points will be used as a first 

approximation.

/ , =  0

T \ P j - r »
i  = i = 2,3,...,n

(4.3)

S I  Pj - P h
j=2

The centripetal parameterisation [51], obtained by (4.4) has proven to give better 

results then the chord-length, forp=0.5.

f ,=  0

J = » .
i = 2,3 ,...,n

(4.4)

S | ^
>=2

The influence o f the parameterisation on the curve shape is much more important on 

curve fitting than when just generating curves with given control points.

Unif o r  n

Figure 4.4 Influence of type of parameterisation on curve shape

In (Fig. 4.4) several curves with the same order and same control points, but with 

different types o f parameterisation, can be seen.
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In general, all the control points computed in interpolation and approximation 

processes will have, initially, equal weight values assigned (namely 1.0), that is, the 

rational curve obtained will be, in fact, equivalent to a non-rational B-spline curve.

4.2.2 Curve interpolation

To obtain the parameter values corresponding to the control points, one method is to 

use the notion o f nodes £ t of the knot vector X j . The nodes, also called Greville

abscissas are an averaged summation of the knot values defined by [52],

Assuming the nodes as the values of the parameter corresponding to the control 

points Bi , then,

If the curve interpolates the data points D o  at the same parameter values, the 

following equation is obtained:

in which Gj; = N j k (Q  0 < i , j < n  is called the Gram matrix. The control points

are obtained by solving equation (4.7). This interpolation method will be referred in 

the following as M ethod I. In (Fig. 4.5) a set of 12 points fitted by this method is 

shown.

Instead of obtaining the parameters from the knot vector as before, another approach 

is to define first the parameters, by the chord-length or centripetal methods described 

before, and from these to generate a knot vector. The internal values can be obtained 

by an averaging process [53] as follows

1 i+fc-i
(4.5)

P { Q  = Bt i = 1,2,3 n (4.6)

[ G p ]  = [D] (4.7)

j  i+Jfc-2

the knot will then be
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The control points are obtained by solving the system (4.7). This interpolation will be 

referred to in the following as Method II. In (Fig. 4.6) the same set o f data points 

used in (Fig. 4.5) is fitted using this method.

Data points

Figure 4.5 B-spline fitted to data points using the nodes (Method I)

Data points  

Figure 4.6 B-spline fitted by the Least Square (Method II)
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Using interpolation methods, the number o f control points obtained is equal to the 

number of interpolated data points which sometimes becomes a limitation, when there 

are too many data points resulting, for example, from a digitising process. To have 

fewer control points, it is necessary to obtain a sparser knot vector or, to use an 

uniform knot vector, which does not depend on the data points or control points. One 

technique is to perform a least square approximation as described by Rogers and Fog 

[54].

The above curve fitting methods are global, i.e. they use all the data points to obtain 

the interpolating curve. Piegl [55] presented a local algorithm that builds a piecewise 

curve with cubic Bezier segments, each defined by 4 consecutive control points, and 

imposes tangent values at the joints (Fig. 4.7).

D3=C2,4

Cl,3

Cl ,2

T2

Figure 4.7 Two adjacent Bezier cubic segments 

The tangents at the joints Tt are computed according to Akima [56] and are given by

Tf =(1 - a ) v . + a v M z = 2 , . . . , w- l  

in which v, are the vectors defined by the data points

v , = A - A - ,

and a  is a parameter defined by



In the extremities where the vectors v. cannot be computed, the following are 

assumed, as suggested by Piegl [57]

v, = 2v2 -  v, 
v0 = 2v, -  v2 

v. = 2v„_, -  v„_2 

v«i = 2v„ 2 -  v„,

For each Bezier segment [«,,«,+,] the two extreme control points coincide with the 

data points

Co =  A  

Q,4 = A+l

and the two internal control points are

Q',2= Q i + y
Ci,3=CiA- y T M

with

3

To convert the Bezier segments into NURBS representation, the control points will 

be

C C C C C C C'“'1,1 ’ 1,2’ 1,3’ ^ 2 ,2 ’ v-/ n - l ,2 ’ '“'* -1 .3 ’ rt-1,4

and the knot vector

X  = {0,0,0,0, «,,!/„ . . , ^ 2» V 2."» -2 .^2 » U U }

As mentioned in chapter 3, the control of the shape of a Bezier curve is very intuitive, 

but one o f the drawbacks is that the order of the curve generated is equal to the 

number of control points. This feature implies that, for the number o f points assumed
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reasonable to describe, for instance, a ship section, the order of the curve obtained is 

so high that the curve becomes difficult to control. This algorithm, that will be 

referred in the following as Method El, manages to provide a good shape control 

keeping the order low (Fig. 4.8). Its main inconveniences are that the resulting curve 

is only C1 continuous and that the number of control points generated, 2(n-2)+3, is 

greater than the number o f data points, which increases not only the storage 

requirements but also the complexity of any surfaces generated with the curve.

Figure 4.8 B-spline fitted with piecewise cubic 

Bezier segments (Method HI)

In order to compare the efficiency of these three interpolation methods described, in 

practical conditions they were applied to a set of data points, with a shape typical o f 

the mid-ship section of a large tanker (flat bottom and side, round bilge). The 

distribution of the points is similar to the one obtained digitising a drawing - larger 

point spacing on regular or straight zones and smaller spacing on curved zones. The 

three methods were compared using the same order (3) and the same type o f 

parameterisation - centripetal - which generally leads to best results.

It is possible to see (Fig. 4.9) that Method I generates a curve that, although 

interpolating the data points, has unexpected behaviour in the transition zones 

between the straight lines and the circular arc ( P 2 - P 3  and Pt-Ps).



&■

Figure 4.9 Midship section interpolated with Method I

The curve obtained from Method II has much better behaviour although it is possible 

to detect on the curvature porcupine representation (Fig. 4.10) that the transition 

zones still have irregularities.

Figure 4.10 Midship section interpolated with Method II
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Figure 4.11 Midship section interpolated with Method III

Method I is more dependent on the distribution of the control points since the 

introduction of two more points in the transition segments ( Pv and Py ) improved 

significantly the behaviour o f the curve (Fig. 4.12).

1'
-a -

8 '

1

' \

/

Figure 4.12 Midship section with extra points P l’and P8’ 

interpolated with Method I
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4.2.3 Curve approximation

If, in order to obtain a more controllable curve, or to have a set of curves defined with 

the same number o f control points, it is required to have the number o f control points 

less than the number of data points, the matrix [N] is not square. In that case, 

knowing that the product of a matrix by its transpose is always square,

[ t f r t D M i V M * ]  (4.8)

and now the control points can be obtained, solving the equation

[ * ] = H M r > r p ]  (4 .«

The B-spline defined by these control points only approximates the given data points. 

In the example of (Fig. 4.13), twelve data points were approximated by a B-spline 

curve of order 3, with six control points. This approximation method can be used as a 

reasonable smoothing tool if the number of control points required is equal to the 

number of data points minus one (Fig. 4.14).

D a t a  p o i n t s

Figure 4.13 Data points approximated by a B-spline curve with 6 control points using the

Least Square method
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When the number of required control is equal to the number o f data points minus one 

the resulting curve is a good smooth approximation (Fig. 4.14).

□ Dat a  poi n t s

Figure 4.14 Curve smoothed by least square approximation

Being an approximation, the curve obtained does not guarantee the interpolation of all 

the data points. A drawback of this method, is that the designer cannot define which 

points should be interpolated, which should be approximated and what is the degree 

o f  approximation required for each point.

The above curve fitting and approximation procedures, are not capable o f generating 

discontinuities in the first or second derivatives, which means that the control points 

generated have multiplicity equal to one. So, to have more precise control o f the 

shape, such as introducing knuckle points or including conic segments with defined 

dimensions, manual editing of the curve will be required.

4.3 Curve shape control

Looking at the curve definition, there are three parameters through which it is 

possible to control the shape of a rational B-spline curve:
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• changing the control points

• changing the knot vector

• changing the weights

4.3.1 Moving the control points

The control of the shape of a rational B-spline curve through the shape o f the control 

polygon is very intuitive as can be seen in Fig. 4.15 which shows the successive 

shapes of the curve while the position of control point P3 moves to P3’ .

pi

P2

P3

P4

P5

Figure 4.15 Effect of moving a single control point 

4.3.2 Changing the knot vector

An improvement o f the curve approximation can be obtained by adjusting the 

parameter values [58]. The method consists of minimising, through an iteration 

process, the error function defined by

E = 8 2x + 5 ) + S \  (4.10)

in which Sx,8 y18Z are functions of the distances between the data points /) and the 

computed ones, Pd



The new parameter values are obtained by

in which

At =
( P x  -  P x ' ) ( 9  P i c l  <pt) + (P , -  P yc){< P  P y c  /  (ft) + (/>, ~ PK)(<P P „  / (pt) 

(<ppx c l<ft)2 + (<PPycl<Pt? +  (<ppz c !<ptf

(4.12)

The initial knot values are the normalised chord lengths o f the data points, scaled by 

the maximum value of the open uniform knot vector Xmax

The control points obtained by this procedures are located in a 3D space without any 

constraints. A better result can be obtained if the coordinates of the points computed 

are constrained to belong to given plane or curve and these values replaced in each 

step o f the iteration process.

Experimenting with this method, it was noted that the adjustment o f the knot vector, 

although improving the approximation to the data points, can sometimes increase the 

inflections (Fig. 4.16). In addition, the improvements obtained by methods such as this 

are apparent, because whenever the curve is edited for some reason, and they 

normally are, the knot vector is recomputed and the improvements are lost.

max (4.13)
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□riQinal f i t
Inproved knot vector

Figure 4.16 Effect of the iteration on the knot vector 

4.3.3 Changing the weights

The increase o f the weight value pushes the curve to the respective control point, 

although pulling it away from the other control points. In the limit, when the weight 

value is high enough, the curve tends to interpolate the control point. A weight of 

zero is equivalent to the deletion of the corresponding control point (Fig. 4.17).

Bi

Figure 4.17 Changing the weight on a single control point
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From the designer’s point of view, the direct manipulation of the weight value is not 

intuitive, so a geometrical measurement must be defined and quantified [59]. In the 

following, the distance d  along the line SB, will be that geometrical measurement. In 

Fig. 4.17, different positions of a point Si from curve C, corresponding to the control 

point Bj can be seen:

S  = C (t,w ,=  0)

M = C ( t,w ,= l)

S, = C (t,w :)

Using u and v as local coordinates along SB,

M  = (1 -  u)S + uB,
S i = ( l - v ) S  + vBi

the cross-ratio o f the points Bh M  and S  defines the identity

( ! - " )

— =  w.1 - v
v

If  the point is moved to a new position S] along the line SB ,, then

( l - i / )  B ,M  B ,M
•j.1 _ u SM  SM

' l - v l B,S} B,S + d
v1 ss; ss,±d

where d  = |£,. -  Sj | , the new weight can be obtained by

w.1 = w ? 1±

where the positive sign corresponds to pull the curve towards the control point and 

the negative sign to push the curve away from it.
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4.4 Basic algorithms

In the previous paragraph algorithms to change the shape o f curves were discussed. 

However, some operations applied on curves like making them compatible for surface 

generation, conversion of type, etc., require the existence o f a set of algorithms that 

change some curve attributes without changing, or at least producing minimal 

alterations to the curve shape. The most common algorithms are knot insertion, knot 

removal and degree raising. They will be described in the following for curves, but 

they can be implemented similarly for surfaces.

4.4.1 Degree raising

The purpose of the degree raising algorithm [60] is to increase the degree of the B- 

spline without changing the shape of the curve. It is used mainly to make curves 

compatible.

Considering a given NURBS curve

n+l

p ; = £ c ,'A ^ ( /)
i= l

defined over a knot vector

x  — |o , ... ,0, tS' ,..., ts, ,... ^

where the first and last knots have multiplicity k and the inner knots have multiplicity 

, the corresponding curve with degree elevated will be given by

/H-5+1

Pm  = Z C f V W O
i=l

defined over the knot vector

where the first and last knots have multiplicity (k+1) and the inner knots have 

multiplicity wi + + 1 ,- .. ,^  +1 -phe new control points C ” are obtained by
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fiw _  {yj+r Xi ̂ i .k -r  +  (* 7 + r+ l y  j+r^i-l.k-r
i,k—r+\ ~  +  ^i,k-r+r

î+r+l -*,■

where

_  ( y j + r + l  ~  X i  ) c ”k - r  +  ( * |+ r + l  ~  y j + r ) C 7 - X , k - r/TW
/ Jt-r+1

* / +r+l “ * /

In Fig. 4.18 the order of a curve initially £ = 3  was raised twice, showing the new 

distribution of control points.

Figure 4.18 Changing the order of a NURBS curve

4.4.2 Knot insertion

Knot insertion algorithms allow the introduction of new values in the knot vector 

without changing the shape of the resulting curve.

Knot insertion is used in several different situations, such as:

• to make curves compatible

• to convert B-spline into Bezier representations
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• to split curves

• to refine curves and surfaces as a pre-processing step for operations like shading, 

rendering, computation of intersections, etc.

The first knot insertion algorithm was presented by Chaikin for uniform B-splines of 

order three [61]. Later this algorithm was extended by Cohen, Lyche and Riesenfeld 

to B-splines o f any order, the so called Oslo algorithm [62]. The general knot 

insertion algorithms for arbitrary order and knot vectors, appeared in 1980, from two 

different sources: one, known as the Bohem algorithm [63], inserts one single knot at 

a time and the other, the Oslo algorithm inserts a single control point.

4.4.3 Knot removal

Knot removal is the inverse operation of knot insertion and it tries to remove knots 

with a minimum change in the shape of the curve. The knot removal is an exact 

operation only when the knots removed were redundant to start with. So, and unlike 

knot insertion, knot removal is an approximation process, which means that the shape 

is actually changed to some extent, controlled by defining a tolerance value.

(A) (B)

Figure 4.19 Knot removal on a curve

Efficient algorithms for knot removal for curves and surfaces were presented by Tiller 

[64]. In (Fig. 4.19) that algorithm was applied to a curve with 12 control points
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(Fig. 4.19-A) from which 4 were successfully removed, for a tolerance value o f 0.05 

(Fig. 4.49-B).

Knot insertion is used in several applications to curve and surface modelling, such as 

converting B-spline to Bezier form and making curve segments or surface patches 

compatible for joining. After these operations are complete these extra knots should 

be removed as much as possible to reduce data complexity. Knot removal can also be 

used as a tools for obtaining simplified approximations to curves and surfaces and in 

fairing processes.

(A)

(C)

CD)

Figure 4.20 Knot removal on a surface

The same knot removal algorithm that is applied to curves can be applied to surfaces, 

considering each row or column of the control grid as a single curve. However, due to 

the rectangular nature o f the control grid, one knot can be removed in the columns or 

row directions only if it is possible to remove it in each and every column or row. In 

Fig. 4.20-A is presented a surface with a control grid of (9x23) points (Fig. 4.20-B). 

Using a tolerance of 0.05, knot removal was applied to this surface, first in the V 

parametric direction, removing successfully 2 knots (Fig. 4.20-C) and then in the U 

direction, removing 19 knots (Fig. 4.20-D).
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4.5 Curve editing techniques

From the designer’s point o f view, it is important to introduce or to change a defined 

shape characteristic. Having this in mind, and using the concepts and algorithms of 

Sections 4.3 and 4.4, a set o f editing tools can be developed to change a curve to 

obtain specific shape changes.

4.5.1 Curve refinement

Since the easiest way to control the shape of a curve is through the shape of the 

control polygon, to obtain more control over a defined segment of the curve, it is 

necessary to refine the control polygon inserting one or more control points without 

changing the shape, using the knot insertion algorithm.

Curve with refined segment

Figure 4.21 Curve refinement

In Fig. 4.21 it is possible to see the new distribution of control points resulting from 

the refinement of the original curve with one extra knot.

4.5.2 Curve splitting

When preparing curves to be used as support for surface generation, it is sometimes 

necessary to split a curve in two, in such a way that the resulting curves keep the 

shape of the original one.
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The effect of splitting a curve is obtained by inserting a knot value x  e[jc,.,x(.+1[with a 

multiplicity k-1 into the knot vector X.

The two resulting curves are defined as follows 

5 , 5,}

X„ =

In a practical application, instead of defining directly the parameter value where the 

splitting occur, the designer selects a point on the curve. The corresponding 

parameter value can be obtained using the Newton-Raphson iteration (4.14) along the 

parameter space.

f i t )
r  (4.14)
m ■ m

In which the derivative of the B-spline in rational form is given by

H+i
fV)=Zc,R;A<) (4.i5)

«=i

where R 'itk are the rational basis functions

n+i
w .N ’. / t )  wiN A t ) ^ i w,N 'iA t )

R L (‘ ) =ijc \ f  /t+1 /  , \  2

( » A id )v-i

In Fig. 4.22 it is possible to see the new control points C ,, and C2 l resulting from 

splitting the curve (A) by the line L, into the two curves shown in (B).
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Cl,3

C 1,1

C4

C3

C2
Cl

( A )  ( B )

Figure 4.22 Curve splitting

4.5.3 Curve joining

Curve joining is the operational inverse of splitting and is used to merge two adjacent 

curves, in which the last point of the first curve coincides with the first point of the 

second point, keeping the shape.

C2,4 C2'5 C7 C8

C6

C5

C4

C3

C2
Cl

Cl,3

Cl,I

( A )  ( B )

Figure 4.23 Curve joining
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In Fig. 4.23 the two contiguous curves in (A) with the knot vectors

X, = {0,0,0,1,2,2,21 
* 2 = {0,0,0,1,2,3,3,3}

are joined resulting in the curve (B) with the knot vector 

X  -  {0,0,0,1,2,3}

4.5.4 Creation of knuckles

In order to create knuckles, control points can be repeated with a multiplicity equal to 

k-1.

W=20

P3

P3

D

Figure 4.24 Creation of knuckle in point P3 

In Fig. 4.24 curve (B) was obtained creating a knuckle on the point P3 o f curve (A).

The existence o f multiple knots (and therefore multiple control points) can raise 

difficulties in subsequent curve fairing processes. One alternative solution, can be to 

split the curve by discontinuity points (refer to Section 4.5.2). The fairing algorithms 

can then be applied separately to each of the resulting segments.

The increase o f the weight of the control point, seems to force the interpolation of the 

control point, giving origin to a knuckle (Fig. 4.24-C). But in fact, as it can be seen
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from the curvature plot and looking into detail to the control point (Fig. 4.24-D) the 

result obtained is not a knuckle, but an arc in which curvature increases with the 

increase of the weight value.

Plotting the basis spline functions of the curves (Fig. 4.25) it is possible to see the 

increases o f the maximum function value due to the repetition o f the respective 

control point (Fig. 4.25-A,B), and the widening of the bell shape due to the increase 

o f the corresponding control point weight (Fig. 4.25-C).

l.q l.Q l.q

■t t

Figure 4.25 Comparison of basis functions 

4.5.5 Creation of straight segments

Straight line segments can also be induced in a curve. First the two limiting control 

points are selected and a space straight line defined. Then, the internal control points 

can be made collinear to the straight line defined (Fig. 4.26). Since to obtain a straight 

segment at least three collinear points are necessary, if the selected points are 

consecutive, a third new point must be inserted, for instance at the mean parameter 

value.
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P4P2
P6

P7

P3 P5

P8

P3P2 P6
P7

P8

Figure 4.26 Creation of straight segments 

4.5.6 Creation of conic segments

When editing a curve fitted to digitised points that contain conic segments o f known 

characteristics, such as, for instance, a transversal section with a round or elliptical 

bilge, it is useful to have the capability to edit that curve segment and to convert it 

into a true conic. This capability, that is available due to the properties of the NURBS 

curves, allows not only an increased precision but also a substantial data reduction.

To create conic segments three control points are affected. The first and last o f these 

points, are used to limit the extension of the conic segment and to define the boundary 

conditions. In the simpler case, by converting these points into knuckles, C° continuity 

is guaranteed between the conic segment and the adjacent ones. The position and 

weight o f the middle point will be changed, according to the type o f conic required 

(Fig. 4.27). Finally, the weight of the first or last points must be corrected to keep the 

conic shape invariance constant (Equation 3.34).
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Pi+l

Circular  a r c  s e g m e n t

Figure 4.27 Creation of conic segment

In the particular case o f circular arcs the procedure can be outlined as follows: after 

defined the required radius R  (Fig. 4.28), the centre of the arc can be obtained by

C = M - ( R - t \ ) v  

in which M is the chord middle point and

To obtain a circular arc the triangle A[PiP2P3] must be isosceles and so the position of 

the point P2 must be changed. The new position is obtained by

P2' = M  + h2v

The unit vector normal to the chord v can be computed by first computing the point 

N, from the projection o f P2 over the segment PXP3

N  = P{ + dproj

V •V 
dproj = —— -

v<=P1 - P i

V ^ P t - P t
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The unit vector v is then

-  P -i-Nv = — ------

The weight w2 o f the middle control point P2 is obtained by

w2 = cos(a)

in which a  is the angle given by

a  = tan -i
M C )

From the known relation between the weight W2 and the sides o f the control polygon

P A
2P,P2

the distance h2 can be obtained

k2 = i ( p ,p 2)2 - ( P A

C

Figure 4.28 Circular arc generation
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Finally, and since we are treating a segment o f a curve, the weights o f points Pi and 

P3 are not necessarily equal to 0 and 1 respectively so, to keep the conic shape 

invariance value constant the value of weight w3 is recomputed

K

When the arc is equal to or greater than 180°, it must be reduced to lower values, for 

instance, by dividing it into two arcs.

P4

A=P1

Figure 4.29 Generation of circular arc greater than 180 degrees

In Fig. 4.29 the arc Z  ABC" was divided into the arc ZAB generated by the control 

points P 1P2P3 and arc ZBC generated by the points P3P4P5. If  necessary, the two 

conic segments can be joined back together using the algorithm described in Section 

4.5.3.

4.6 Generation of the surface patches

After the definition of the support curves as described above, the surface patches can 

be generated. Several tools were developed for this purpose, taking into consideration 

the different types of constraints.
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4.6.1 Lofting

In the present work, the surface patches will be defined mainly by a process called 

lofting ox skinning. The lofting designation comes from the large halls (lofts) where 

ship hull forms were defined in the shipyards. Lofting can be defined as the generation 

o f a smooth patch by fitting two parametric boundary curves that become embedded 

on two opposite sides o f a parametric direction of the surface. The lofted surface 

S(u,v) has the form

S(u, v) = 6, (u )r , (u) + b2 (v)r  2 (v) (4.16)

where bj and b2 are the boundary curves and yi and y2 are the blending functions. 

Some authors [65], reserve the designation of skinning for the particular case in which 

the blending functions are B-spline functions. The CONSURF system [66,67,68], 

developed at the British Aircraft Corporation, was one of the first to use lofting of 

rational bi-cubic patches as a basic surface modelling tool.

In a more general description [69], lofting is the process of generating a surface that 

interpolates isoparametric points of a family of curves (cross sections or generator 

curves) in one o f the surface’s parametric directions (Fig. 4.30).

In some implementations of the lofting process, a spine curve is used to locate planar 

section curves in the 3D space. First, the section curves are translated so that the 

origin coincide with the target points along the spine curve; next, the section planes 

are rotated to a position normal to the spine curve and, finally, another rotation fixes 

the orientation o f the sections in relation to the spine.

When applied to ship transverse sections, the lofting process is simplified since the 

base line can be used as a spine curve and so the curve sections - ship transverse 

sections - are already correctly positioned and oriented.
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( A )
( B )

( C )

Figure 4.30 Surface generated by lofting of section curves

The lofting process can be divided into two main steps. First all the section curves are 

made compatible and next, isoparametric points of the curves are interpolated in the 

opposite parametric direction. To be compatible, the section curves must have the 

same order (degree), they must be defined over the same knot vector and they must 

have the same number o f control points.

Generally the order used is the same (3rd. order is a good choice for the 

representation of ship sections), but if for some reason it differs from one curve to the 

other, the degree raising algorithm [70] will be used on the lower order curves. A 

common v direction knot vector will be obtained merging all the curve knot vectors - 

additional knots will be inserted [62] until each of the curves has the same knot 

vector.

After defining the order in the u parametric direction, for each row o f the grid of 

control points, a curve will be fitted (Fig. 4.30-B) by the nodes method as described in 

Section 4.2.2, using centripetal knot vectors. The average o f the knot vectors 

obtained in the curve fittings will be used as the u knot vector o f the lofted surface 

(Fig. 4.30-C).

The quality o f a surface generated by lofting depends of several factors:
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• the existence of adjacent sections with knot vectors that have many different, 

although close, knot values - the final knot vector will have too many knots and 

will cause difficulties in the fairing process. A way of reducing this problem is to 

choose the defining points, whenever possible, over a common set o f waterlines 

from bow to stem

• the spacing o f the section curves - a very irregular spacing of the section curves

can lead to very poor and sometimes unpredictable results

• the selection of the knot vector used for the curve interpolations in the parametric

direction opposite to the curve sections

• the curve fitting algorithm.

The general lofting process described can be adapted to particular conditions, 

implementing several techniques to generate surface patches:

• Ruling

• Extrusion

• Sweeping

• Blending

4.6.2 Ruled surfaces

A ruled surface is generated by sliding a straight-line segment between two curves 

(Fig. 4.31). Mathematically it corresponds to linear interpolation between the two 

given rule curves and it can be defined by

s(u , v) = bx (v)r , (« )+ b2 (v )r2 (») 

in which the blending functions are given by

r, = 0 -« )
Y i =u

and it can be seen as the simplest form of lofting.
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Figure 4.31 Ruled surface

Like general lofting, the ruling operation requires that the two curves are made 

compatible before the surface is generated.

4.6.3 Extrusion

Extruded surfaces are obtained from a profile curve and a vector (Fig. 4.32). The 

surface is generated by sweeping the profile curve along the vector direction.

Figure 4.32 Extruded surface
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Given one curve of order k  defined by the control points B ti and the knot vector xj and 

the vector v , a second curve can be defined using the control points obtained by

B2, = f l„ + v

the same order and the same knot vector. As the two curve are already compatible, by 

construction, and the surface is obtained by lofting, with order k  in v direction and 

order 2 in u direction.

Extruded surfaces have constant shape and can be used, for instance, to model the 

ship parallel body.

4.6.4 Sweep surfaces

Sweep surfaces are obtained by sweeping a planar profile curve along a trajectory 

space curve (Fig. 4.33-A).

T r a je c t o ry
(A)

Profi  le

(C)

Figure 4.33 Sweep surface

The sweeping process can be seen as a particular case o f lofting, in which all the 

sections are similar in shape.
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The first step of the process (Fig. 4.33-B) is to generate copies o f the profile curve, 

also called cross sections, and locate them in normal planes along the trajectory curve. 

Next, the surface patch is generated by lofting the cross-sections (Fig. 4.33-C). 

Surfaces of revolution can also be obtained by sweeping, using a circle as trajectory 

curve.

These cross-sections must be aligned properly and that requires the proper definition 

o f local reference frames. One convenient and well known frame is the one due to 

Frenet, defined by the unit tangent Ty the principal normal N  and the binormal, B

The unit tangent vector is obtained from the first parametric derivative of the curve

The principal normal can be defined in the direction of the curvature, K

(Fig. 4.34).

B

B

N

Figure 4.34 Frenet frame

K  D ,  x  P 2 x  £>,

IIAI

The binormal is obtained from the cross-product
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B = T x N

Although easy to compute analytically, the Frenet frame dependence on the curvature 

brings some inconvenience: it is undefined at points where the curvature is infinite, 

that is, in straight line segments, and changes suddenly in direction at inflection points 

(Fig. 4.34). This last problem is o f particular importance when dealing with the 

generation o f cross-sections in a surface sweeping process. One alternative approach 

[71] is to use the Frenet frame only to generate the first cross-section. The next 

frames can be obtained by computing 7) at each new location P }. The new Nj and Bj 

vectors can be obtained by a rotation of the previous frame (T0 - No - B0). The 

rotation axis A is obtained by

If  the increment o f the position vector is small enough, the orientation o f the sections 

will be the same (Fig. 4.35) and the twist effect will be reduced,

A = T0 x 7;

and the rotation, £is

(4.17)

B

B

N

Figure 4.35 Reference frames for sweeping surface

To obtain the copies of the profile curve along the trajectory curve, the problem 

reduces now to a rotation about an arbitrary axis A  defined by the direction cosines
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(cx,c y ,c 2) passing through a trajectory curve point (x0, y 0, z0) . This transformation 

can be obtained by the following sequence of transformations:

• Translation from the current point to the point (x0, y 0, z0)

• Rotate first around the X  axis and then around the Y axis in order to make the Z

axis coincide with the arbitrary axis A

•  Rotate around the Z axis by an angle of 5

• Inverse rotation

• Inverse translation

The complete transformation can then be represented by the composed transformation 

defined by

where [7] is the translation matrix defined by

'  1 0 0 0"

0 1 0  0
0 0 1 0

_-*o - y 0 ~zo i.

[/?*] is the rotation about the X  axis

"1 0 0 0"
r , 0 cos a  sin a  0
* 1  =

0 - s in  a  cos a  0
O O  0 1_

the angle o f rotation a  about the X  axis (Fig. 4.36) is obtained from

cos a  

sin a

m =



in which d  = + c)

[/?J is the rotation about the Y  axis

0 
0 
0 

1

f r l =

cos(-/?) 0 -s in (-/?)
0 0 1

-s in /?  0 cos (-/?) 
0 0 0

z

/ /

v Cz

Cx

X

Y

Figure 4.36 Rotation about the X axis

the angle of rotation /? about th e^  axis (Fig. 4.37) is obtained from

cos p ~ d  
sin p - c x

and [/?£] is the rotation about the A axis

[**]=

cos 8  s in£  0 0
- s i n j  cos£  0 0

0 0 1 0
0 0 0 1

in which £is the angle obtained from (4.17).



92

z

X

Y

Figure 4.37 Rotation about the Y axis

Surfaces o f revolution can be seen as a particular case o f sweeping in which the 

trajectory is a circle (Fig. 4.38).

Figure 4.38 Surface of revolution obtained by sweeping
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4.6.5 Blending surface

Surface patches interpolating four boundary curves are known as blending surfaces. 

This type o f surface has been the object o f the work o f Coons and Gordon, hence they 

are also known as Coons-Gordon surfaces.

In order to keep the usage of the surface algorithms general, a common representation 

must be used for all the types of surfaces. The problem is then to represent a Coons- 

Gordon type o f surface as a tensor-product NURBS surface.

Based on previous work [72] the surface can be obtained as a Boolean-sum

S(u, v) = S , («, v) + S2 («, v) -  S3 (a, v)

1=1 j - \  1 = 1 j =1
n m

;=i ;=1 

n m

i= l 7=1

where the net control points are obtained by

C — C, +C2 — C3ii.j ii.j

4.7 Representation of conical surface elements

To obtain a complete representation of the ship hull, there is the need to compute the 

intersection between the hull surface and other elements. These elements can be 

cylindrical or conical, like the hawse pipes and the side thrusters for example, but can 

also be other hull components, like the bulb.

Taking this into consideration, two ways o f dealing with the problem can be foreseen: 

to develop specialised algorithms for the possible intersection cases, (cylinder/surface, 

cone/surface, etc.), or to develop one general purpose algorithm for surface/surface
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intersection (SSI) that may deal with any kind o f surfaces. In the present approach, 

NURBS surfaces are used to model the hull. Using also NURBS to model the cylinder 

and conical elements, a single SSI algorithm can be used to compute all the 

intersections required.

Hawse pipes and side-thruster tunnels can be made of a single cylindrical element or, 

more generally, composed by two elements, one cylindrical and one conical. The 

conical surfaces will be generated by a lofting method similar to the one used to 

generate the hull, but in this case circles will be used as section curves.

The problem of representing generic conic surfaces with NURBS can then be reduced 

to the lofting of conic curves as described in Section 4.7.1.

Figure 4.39 Cylindrical surface generated from two circular sections

In Fig. 4.39 the cylindrical surface was generated from two circular sections, with 

order 2 in the u parametric direction. If one of the bases of the cylinder degenerates to 

a circular section o f zero radius, a conical surface is obtained (Fig. 4.40).



Figure 4.40 Conical surface generated from two circular sections, one of zero radius

Although the generation of conic surfaces can be seen just like a general application of 

lofting, the existence of repeated knots in the knot vectors o f the conic section curves 

implies that the obtained surface is only C1 in that parametric direction.

Ruling a surface between an inner and an outer co-planar circle, a circular ring can be 

generated (Fig. 4.41).

Figure 4.41 Circular ring surface

I f  the inner circle degenerates to a point by defining a radius of zero, a circular disk is 

obtained (Fig. 4.42).



Figure 4.42 Circular surface

4.8 Curve and surface analysis

In this Section the main tools available for curve and surface analysis will be 

described. Surface models allow the use of much more sophisticated tools to evaluate 

the quality o f the shape than the curvature plots normally used in the line models.

4.8.1 Zero order interrogation tools

The wireframe representation is obtained by displaying the boundary lines and a mesh 

o f isoparametric curves in both parametric directions. This representation provides 

only a rough idea of the fairness of the surface.

When displaying a surface, it is more convenient to show it represented by contour 

maps. In the case of a ship hull, particular types of contour are obtained from the 

intersection with families of parallel planes at constant values of x, y, and z, which 

provide the traditional curves (sections, buttocks and waterlines) represented in the 

lines plan.

4.8.2 First order interrogation tools

Shading, isophotes and reflection lines are first order interrogation tools more 

commonly used in computer aided design.
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• Shading gives a more realistic visualisation of the surface, by introducing a sense 

o f volume. The shading commonly used in computer aided design results from a 

single source light, to avoid lengthy calculations.

• Isophotes are lines of constant light intensity on a surface, created by a parallel 

light source with a given direction, L. For a surface, an isophote is a line along 

which the quantity

n • L  = cos a

is constant, n being the normal unit vector and a  is the angle of incidence, so that 

0 < a  < 90. If the surface is Cr continuous, then the isophotes are Cr_1 

continuous curves. Isophotes can be used to check the surface continuity across 

the boundaries of the patches. In the particular case of «• L = 0, the 

corresponding isophotes are called silhouettes. In (Fig. 4.43) a light direction o f 

[1.0,1.0,1.0] generates on surface (A) the isophotes (B) and the silhouette (C).

(A)

CB)

(C)

Figure 4.43 Contours of isophotes

• Reflection lines can be defined as the reflected image of a straight line light, as 

seen from a given point o f view.
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Reflection lines are used in many CAD systems as a general purpose tool for 

studying surface fairing. The method has its roots in the early automobile 

industry, when the irregularities in the surface of car hoods were detected by 

moving a car model into a dark room, provided with parallel light sources and 

analysing the irregularities of the reflection lines.

4.8.3 Second order interrogation tools

C urvature  display is an efficient way to evaluate the fairness of both curves and 

surfaces.

The curvature /cof a space curve is positive by definition and is defined by [73]:

K̂ f) ~  I ----13 (4 1 8 )
M o l

In the particular case of a planar curve, and in order to be able to detect inflection 

points, a signed curvature may be defined by [73]:

( 4 1 9 )

[(*(o)2+ 0 h o ) :

To ease the interpretation o f the analysis results, it is normal practice to use graphical 

representations either by plotting the values o f curvature or using the so called 

“porcupine” representation (Fig. 4.44).

In the curvature plot, the curvature values can be plotted against the parameter value, 

but as these values depend on the type of parameterisation, a better practice is to plot 

them against the curve length.

On the porcupine representation, the curvature vectors, with modulus proportional to 

the curvature values, normal to the curve at each point and by convention, oriented to 

the side opposite to the centre of curvature are plotted directly over the 

corresponding points on the curve.



Kno* ■ *1.441**000 

Krwi •  >4.]0V *000

Figure 4.44 Line curvature displayed by a porcupine representation and by the curvature plot

The methods of evaluating the fairness of curves can also be used on surfaces, by 

studying the curvature of the iso-parametric lines of the grid.

A surface r(u,v) can be determined from two intrinsic quantities called the first and 

second fundamental forms. The first fundamental form , gives the infinitesimal arc 

length ds between two points (u,v) and (u+du, v+dv), measured in the tangent plane 

o f the surface at (u,v) and is defined by

ds2 -  dr. dr

The vector dr/d t at a point P of a surface is given by

(4.20)
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replacing in (4.20)

ds2 = r • r d u 2 + 2r • rdudv + r • r,dv2
(4.21)

= Edu2 + IFdudv  + Gdv2

where

E  = ru.ru F  = ru.rv G = rv.rv (4.22)

The second fundamental form , gives twice the component of the displacement dh 

between (u,v) and (u+du, v+dv) perpendicular to the tangent plane at (u,v):

dh = Ldu2 +2M du.dv + N dv2 (4.23)

where

L  = n.ru M  = n.ruv N  = n.rw (4.24)

and n is the surface unit normal at (u,v)

n = when \r x  r \  *  0 (4.25)
r* xrA

For surfaces several curvatures can be defined. The normal curvature o f a surface S  in 

a point P  and in a given direction t, is the curvature of the normal section curve, i.e., 

the curvature of the intersection of the surface with a plane N  in that direction 

containing the normal to the.surface at the point (Fig. 4.45) and is defined [74] by

_ _ L(du)2 + 2Mdudv + N(dv)2 
K ~ ~  E{du)2 + 2Fdudv + G(dv)2

The sign convention used in equation (4.26) gives a positive curvature when the 

centre o f curvature and the surface normal lie on opposite sides of the surface.
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Figure 4.45 Normal curvature

The normal curvature has extreme values when 3 k ! ddu = 0 and 3 k I 3dv =  0, i.e., 

when

(L  +  KE)du +  ( M  + kF )3 v =  0 

( M + xF )du  + ( N  +  nG )dv  =  0
(4.27)

In order to have a solution to equations (4.27), a: must satisfy the condition

i3  + 2 H k + K  = 0 (4.28)

in which H  is the mean curvature and K  is the Gaussian curvature defined by

2 F M -(E N  + GL)

(4.29)
H  = 

K  =

2 ( E G - F 2) 

L N - M 2
E G - F 2

In situations (Fig. 4.46) where the rectangular patch (A) collapses to a triangular 

patch (B), that is, one of the edges reduces to a vertex of the patch, the surface patch 

is called degenerate. On degenerate surfaces EG -  F 2 = 0 and so the curvatures can 

not be computed by (4.29).
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( A ) ( B )
Figure 4.46 Rectangular patch and degenerate patch

In [75] the collapsed rectangular patched is mapped over a triangular domain to allow 

the computations of the curvatures in every surface point. The curvature of 

degenerate surface patches is beyond the scope of the present work and so in these 

cases, and only to guarantee the functionality of the curvature representation 

algorithms, it will be assumed that H  = K  = O'.

The solutions of (4.28) are called the principal curvatures and they represent the 

minimum and maximum values of the curvature at that point

When at a certain point H 2 = K , /Cmin = k w  and so k  at this point is constant in all 

directions. Such points are called umbilic points. If at a umbilic point fc=0, then at 

that point the surface is approximately plane. If  fc^O, then the surface is approximately 

spherical.

The Gaussian (K), the mean (H) and also the absolute (fCabS) curvatures can be 

expressed in terms of the principal curvatures

If  the Gaussian curvature K  = 0, that means that one of the principal curvatures Kmm 

or is zero. In this case, the surface is developable, i.e., can be unrolled into a

(4.30)
k _ = H  + J H * - Kmax

(4.31)
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plane along the principal direction, without stretching or distortion. If K  > 0 the 

principal curvatures have the same sign, whether positive, (the surface is convex at the 

point) or negative (the surface is concave). If  K  < 0, the principal curvature have 

opposite signs in the principal directions, which corresponds to a surface with a saddle 

shape.

The curvature lines are the curves on a surface whose tangent at every point is 

aligned with the principal direction. The principal directions o f a certain point are 

those for which the normal curvature takes minimum or maximum values and are 

orthogonal, unless the point is an umbilic. The principal directions can be obtained 

from (4.27) solving the equations

d u - B  (AZ + k F )
, \  (4.32)

dv  =  - p  (L + k E)

in which {3 is an arbitrary factor P *  0 obtained from (4.33) and k  e  .

p  = ±fE ( M  + k F ) 2 -  2 F ( M  + K F \ L  + k  E)  + G(L + k E ) 2 

The sign of P  determines the direction in which the solution proceeds.

- 1 /2

(4.33)

The normal curvature k (4.26) can be decomposed into its normal and geodesic 

components

K=K„+Kl  (4.34)

The curves resulting from setting Kg — 0 are called geodesic curves. Along these 

curves K - K n , and so on every point of the geodesic the normal to the curve 

coincides with the normal to the surface. This curves represent arcs of the minimum 

distance between two given points on the surface. Remembering the first fundamental 

quadratic form of a surface (4.21), the distance between two point on the surface is 

given by

h _________________
s = J  V  Eu2 + 2  Fuv + Gv2 dt

h
(4.35)
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The geodesics are the curves that satisfy the equations

w + T ln ii2 + 2Tl2iiv + T^v2 = 0 

v + r 2w2+2r2wv + r 2v2 =0

where Pn are the called Christoffel symbols o f  the second kind

, _ n.(rm x /•„) _  GE„ -  2FFU +FEV 
" |r„ x rv| 2 ( E G - F 2)

r i _ n K  x O _ e g  - f e

12 |r„xr„| 2 ( E G - F 2)

r , ”-(r„ x r „ ) _ 2GFv - G G , - F G v
2 ( E G - F 2)22

x  rv

2 _ »■(/• x/-m) _ GE u - 2 F F „ + f£ „  
" \ru x r„| 2 ( £ G - F J)

r  2 _  ” (r» x O  _  EGU -F £ „
12 |r„ x rv| 2 ( £ G - F 2)

r - 2  "■ (ru x p . G E . - 2FFu + FE„
2 ( E G - F Z)22

x  rv

(4.36)

(4.37)

and n is the surface unit normal at (u,v)

n = -r"-X when \ru x r| ^  0 (4.38)
Yu*rv I

4.8.4 Third order interrogation tools

Torsion is a measure o f the deviation of a of space curve away from its osculating 

plane. The torsion of a parametric curve r(t) is defined by

(ri x r « ) ' r*

h x r . r

Curves o f order < 3 have zero torsion because rtt is zero.
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4.8.5 Graphic representation of surface characteristics

Given the tensor product form of the surfaces generated, for the computations 

described in the previous Section, the surface properties are computed over the 

vertices o f a parametric grid, producing fields o f scalar values, that are more 

understandable if represented in graphical form. The generation of contours of iso­

lines and the display of coloured mappings are two of the most common forms of 

graphical representation of scalar fields.

The contours can be generated from a triangulation o f the surface patch. Due to the 

rectangular nature of the tensor product patches, the triangulation of the surfaces can 

be obtained very easily, just by dividing by the diagonal each elementary rectangle into 

two triangles (Fig. 4.47).

Figure 4.47 Triangulation of tensor product patch

In the present work, the contouring algorithm presented in [76], originally developed 

for 2D data points, was adapted to 3D and used with good results. This algorithm is 

applied over a triangulation of the surface and is based on the assumption that the 

value to contour has a linear variation inside each triangle.
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Coloured mappings can be obtained assigning to the entire area o f each rectangular 

element the average of the property values computed at the comers. The range of 

property values obtained for a surface patch is divided into a set of classes, to each a 

colour code is assigned. The number o f colours depends on the accuracy required and 

on the type of display available. The colour codes are normally defined in a range 

going from the blue, for the lower negative values to the magenta, for the upper 

positive values.

When displaying Gauss curvature of samples of hull surfaces, it was noted that the 

range o f values obtained can be very small and very close to zero and so it was more 

useful to divide the surface into just three classes allowing a qualitative division of the 

surface in developable areas (k=0), concave and convex areas (k>0) and saddle 

shaped areas (k<0).

4.9 Curve and surface fairing

Fairing is the process of eliminating undesirable shape features, such as local bumps 

and hollows, in order to obtain a smoother shape. The fairness of lines is a concept 

that has several definitions but is nevertheless still difficult to evaluate.

Atkins et al [77], presented six conditions as the requirements for a fair ship curve: 

continuity of the curve and its first and second derivatives, absence o f extraneous 

inflection points, minimal deviation from the scaled offsets and good outlook to the 

eye.

For Nowacki [3], smoothness and fairness are two different concepts, being the 

former the absence of local bumps, in which a bump consists of two closely spaced 

inflection points, and the latter, the existence of continuous first and second 

derivatives.

Farin [73] defined a fair curve as that one whose curvature plot consists o f  relatively 

few monotone pieces.
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So, the concept of a fair line or surface has both a mathematical and an aesthetic 

components. The aesthetic part is difficult to define and depends o f the type of 

application in mind. Therefore, a fairing system must provide both an automated 

procedure based on a mathematical formulation of fairness and means to allow the 

designer to evaluate the results and to complete the process.

In general, the idea of unfairness of curves and surfaces is associated with excess of 

information and so many fairing methods try to remove it by removing knots or 

reducing the degree. Some authors, however, considering that unfair curves 

or surfaces are a result o f over constrain, go in the opposite direction and try to relax 

the excess constraints by adding flexibility (degrees o f freedom), for instance, by 

raising the degree, in spite of the problems normally associated with that.

4.9.1 Curve fairing

Kjellander [78], proposed a method for fairing cubic splines removing the offending 

knot and replacing it with a new one. The new knot is obtained by cubic Hermite 

interpolation using the position and derivative data at the two adjacent knots. The 

interpolated value is then used for a global cubic spline interpolation to all the position 

data. Due to this last interpolation, this is a global process. This method was later 

extended to parametric bicubic surfaces [79]. Farin [80] applied a similar method to 

cubic B-spline curves. First, the offending knot is removed and the control polygon is 

redefined. This algorithm is known as knot removal. Next, by knot insertion, a new 

knot is inserted in a way that the curve remains unchanged. Farin simplified this 

procedure so that if a curve is assumed to be incorrect at a knot value th associated 

with the control point C„ the new corrected control point is given directly by

c  ( ' , .2 - Q A  + (‘,

in which L{ and R. are two auxiliary points obtained from
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7  _  (^ i+l ^ - 3 ) Q - 1  +  ( ? i + \  t i ) C j - 2

' = ^
D (^+3 ~  A-l X 'i+ l ^  — ^i-l )Q + 2

*  ^ ----------------

Due to the nature o f B-spline basis functions, this is a local method. In Fig. 4.48, an 

example o f the results o f this method is shown. An initial curve (Fig. 4.48-A) is faired 

twice, and the corresponding curvature plots are represented. The improvement from 

curve (B) to curve (C) is only visible on the curvature plot.

(A)

(B)

CC)

Knin = - 3 .004e-001

Figure 4.48 Fairing of cubic B-spline curve

A simple but sometimes useful fairing algorithm can be implemented using piecewise 

circular arcs. For every set o f four control points, a circular arc is defined by the first, 

second and fourth points (Fig. 4.49). Then, the third point is moved from the initial 

position to the corresponding position on the arc (Fig. 4.50) and another set o f four 

points is considered.
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Figure 4.49 Fairing using piecewise circular arcs

Figure 4.50 Fairing using piecewise circular arcs

To apply the above methods, the determination o f the curve segment to be faired 

relies on qualitative interrogation tools such as those described in Section 4.8. An 

algorithm developed by Sapidis identifies automatically the offending knot, based on 

fairness indicators [81]. For each knot, a local indicator of fairness Z{is defined

Z, =!*'(',• i = 3,...,n (4.39)

where K'(x)=dK/ds is the derivative o f the curvature with respect to the arc length.

As an approximation to the derivative with respect to the arc length, the derivative 

with respect to the parameter will be used:

d K  _ d  
d t  d t

fs

\
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_d_
d K  d t

3
- 3 k ,  x r tt \rt

2

d t 6
\r,

in which

A global measure o f the fairness of the entire curve is given the indicator £ defined by

(4.40)

This method, due to the B-spline basis is a local method.

4.9.2 Surface fairing

Huanzong [82] proposed an algorithm based on the minimisation o f the elastic strain 

energy o f surfaces modelled as a non-rectangular mesh of elastic beams attached by 

elastic springs.

Optimisation techniques have been used successfully for surface fairing. The main 

issues are the definition of the objective function and of the constraints.

Ferguson [83] introduced the use of optimisation techniques for shape control in 

parametric curve and surface fitting problems. In the work of Andersson et al [84] is 

tackled the problem of creating convex surfaces with prescribed smoothness and 

distance to a set of given points less than a prescribed tolerance. This non-linear 

problem is solved by linearisation, e.g., by reducing it to a sequence o f linear 

programming (LP) problems. Since, the matrices generated are of difficult solution by 

the standard LP method, the simplex method, a less explored method, the Karmarkar 

algorithm [85], is proposed.

In a method presented by Lott and Pullin [86] the control points of a B-spline surface 

are automatically corrected by a non-linear constrained optimisation algorithm. The 

objective function used as a measure o f the fairness of the surface was derived in



Il l

analogy to the strain energy of a rectangular elastic plate and is a function o f the 

principal curvatures k*, and k2

Q = ^{k ]+ ic22)du(dv) (4.41)
L

The constraint used limits each point to be moved only a distance s along the normal 

to the surface at the node values corresponding to the control point and is given by

£  = J[(*  -  * o )2 +  O' -  ? o )2 +  (z -  Z o) 2 <  s  ( 4 -4 2 )

Liu [87] took a similar approach but the objective is a quadratic function o f both 

position and curvature.

<j= Z  wA c (tl) -  a ) 2+ d t  (4 43)

The control points are also constrained to move along straight lines, but now these 

lines can be selected by the user according to the circumstances. If  necessary some 

control points can be fixed.

As the development of a surface fairing method such as these was not in the purpose 

o f the present work, only a few very rough methods were implemented, using the 

curve fairing methods presented in the previous Section to fair separately the curves 

that form the rows and columns of the surface’s control grid.

4.10 Surface/surface intersection

The intersection of two parametric surfaces, s(u,v) and r(w ,r), is the locus of the 

points of both surfaces that satisfy the equation

j ( m , v )  = r(w,t) (4.44)

Assuming that a point on the intersection is known, the intersection curve can be 

traced. Knowing that on the intersection curve the normal tangent must be the same 

on both surfaces
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d s . d s ,  d r ,  d r .  /A . . .— du-\ dv = — dw h dt (4.45)
dw du dw dt

The points on the intersection curve can be traced from the previous point and from 

the tangent values obtained by solving the following simultaneous differential 

equations

as

<̂  = -<px{u,v,w ,t)gl 
as

^r = -<P2 (u,v,w,t)f2as

= -<p2{u,v,w ,t)g2
as

in which

<px{u,v,w ,t) = ±[e J 2 -  2FJxgx + Gxg l] 

p 2(«,v,w,/) = ± [ E J 2 -  2F Jjg , + G2g \\

and

/ .  = l Si =

- 1/2

- 1/2

d v ' V du

(4.46)

(4.47)

(4.48)

The above method is time consuming and to obtain quick results in two very common 

types o f intersections used during hull modelling, simplified methods can be 

developed.

4.10.1 Simplified intersections of free surface with sets of orthogonal 
planes

During the modelling process it is necessary to obtain the intersections o f the hull with 

sets o f planes parallel to the orthogonal reference planes to obtain the transverse 

sections, waterlines and buttocks, that are the lines traditionally used to represent the 

shape o f the hull through drawings.
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A very quick way to obtain the intersections with families of orthogonal planes is to 

use the contouring techniques described in Section 4.8.5. First a set of surface points 

is computed over a rectangular parametric grid. Then, a scalar field is created 

associating each point P(u,v) with one o f the respective coordinates (x,y,z) and the 

corresponding iso-line contours can be obtained. With this method, although only the 

vertices o f each triangle are guaranteed to belong to the surface, it is easy to increase 

the accuracy, just by increasing the grid density. In Fig. 4.51 are represented the real 

surface intersection segment PXP2 and the corresponding contour segment P̂ P2 

obtained by this method, which is, in fact, the projection o f PXP2 in the plane defined 

by the triangle ABC.

C

PI/

P 2

A

Figure 4.51 Contour segment in triangular element

The regular nature of the triangulation and the good results obtained did not seem to 

justify the extra computing time required by the modification presented in [88]. To 

compute the intersection of a contour with a triangle edge, the modified algorithm 

obtains the parameters (u,v) of the intersection point by linear interpolation over the 

parameter values on the vertices, computing then the corresponding surface point, 

instead of using linear interpolation directly between the coordinates o f the two 

vertices.
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( A ) ( B )

Figure 4.52 Transverse sections of a surface obtained by contouring

In Fig. 4.52 a set of transverse sections (Fig. 4.52-B) has been generated from a 

surface patch (Fig. 4.52-A) by contouring.

4.10.2 Simplified intersection of a free surface with a conic surface

During the modelling of a ship hull, several cases o f a particular surface intersection 

case, the intersection o f a general free surface with a conic, occur. Considering the 

possible simplifications a quicker algorithm can be developed.

Assuming that the conic surface is of order 2 in the other parametric direction, which 

is most common with hawse pipes, thruster tunnels, etc., that means that the 

generatrices are straight lines. The surface/surface intersection reduces in this case to 

a line/surface intersection. As in the present approach the hull surface is always 

generated as a Cartesian tensor product, it has an intrinsic rectangular structure that 

can be easily approximated by a triangular mesh. With this second simplification, the 

intersection problem reduces to the intersection of a straight line with a flat triangular 

surface (Fig. 4.53).
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P I

c

Q 2

P 2

Figure 4.53 Line/Triangle intersection

For each triangular element [QiQ2Q3], the vectors a,b,  c , d  and e can be defined as 

follows

a = Qz-Qx  

b = Q>-Qx
a x b

c =
a x b

(4.49)

d  = p2 - p t 

& ~ Q i ~  P\

The equation of the plane defined by the points QXQ2QZ is given by

c - r  = c - Q l 

where r[X) = (x , y , z ).

The parametric equation o f the line P 1P2 is given by

r ( X ) =P l +X.d  

Replacing in (4.51)

(4.50)

(4.51)
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To assure that there is an intersection between the line segment PiP2 and the triangle 

^Q\QiQz the following condition must verify

0 < A<1

If  that is verified, the parameter r is fixed and s is obtained by

The line PiP2 intersects the triangle AQiQ2Q3 if the following conditions are satisfied

a >  0 
/?>0
a  + P  < 1.0

The parameters corresponding to the intersection point I  are

The intersection point R can be obtained replacing X in the line equation

R  = PL +X.d

t = a. /, + p. t2 + (l -  a  -  0 ) t2 

u -  a .u x+ fi.u2 + ( \ -  a  -  J3)u2
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Intersection curve

Figure 4.54 Surface/Cylinder intersection

The results of the presented simplification (Fig. 4.54) seem to have enough accuracy 

for the required application.

4.11 Area of a surface patch

The area o f a rectangular element of a surface defined by four isolines (Fig. 4.55) can 

be computed by

dA = U £ ||/fD |sina
, (4-52)

= | AB *AD\

simplifying, it can be assumed that

AB  = rvdv 

AD  = rudu
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B ( u , v + d v )

D ( u + d u , vu v

Figure 4.55 Area of rectangular surface element 

replacing in (4.52) and from the first fundamental form constants (4.22)

dA -  \ru x rv\dudv 

= ' jE G -  F 1 dudv

The area o f a surface patch can finally be obtained by integrating

A = f"2 f V E G - F 2dudv (4.53)JuI Jv l

The computation of the area of a surface patch can be obtained very quickly by an 

approximation method avoiding the integration. Generating a triangulation over the 

surface, as described in Section 4.9.4, with a resolution corresponding to the accuracy 

required, the area can be approximated by the accumulation o f the area o f the 

triangular elements.

~ 2 ATi
i

The area o f each triangular element (Fig. 4.56) can be computed by

At = ^abs(n-(v , x v 2)) 

on which v, and v2 are the vectors defined by the triangle vertices



and n is the normal unit vector of the plane defined by the triangle

n = —5-----*■
|v, X v2

p,

Figure 4.56 Area of triangular element

In order to check the degree of accuracy obtained with this approximation, the area o f 

a cylindrical surface with a radius o f 2.0 and a length o f 6.0 was computed for several 

resolution values. In Table 4.1, the computed values are compared to the exact area 

value (75.398).

Table 4.1 Evaluation of error in area computation

Grid Resolution 

U direction

Grid Resolution 

V direction

Area Error

[%]

10 10 73.872 2.02

15 15 74.764 0.84

20 20 75.053 0.46

30 30 75.250 0.20
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5. Application examples

The algorithms described in Chapter 4 were implemented as a modular system 

developed on a PC micro-computer. The system was developed over a commercial 

CAD system [89,90], whose graphics engine provides the elementary graphic 

primitives (points, lines, polylines, text, etc.), as well as the basic editing (delete, 

move, etc.) and viewing (pan, zoom, view points, etc.) capabilities. The modules are 

accessible from a hierarchical menu structure. The code was written in ANSI C.

The system was designed to create and edit NURBS curves and surfaces of arbitrary 

order. The parameterisation can be uniform, chord-length or centripetal, selected by 

the user. Cubic splines with selected boundary conditions and bi-linear or bi-cubic 

Coons surfaces can also be generated. For both curves and surfaces interactive editors 

were implemented by joining the basic algorithms under a common user interface, 

which allows the user to modify the shape and see the results in real time, while 

optionally checking the curvature distribution.

To be able to manage the input data and the resulting curves and surfaces necessary to 

model the hull, a simple database was implemented. The entities considered are:

• lines

• curves

• surfaces

The line entities, are the input data and consist on sets of ordered points defined by 

their 3D coordinates, with or without tangent vector information. The curve entities, 

store the NURBS curves generated from the data points, and are defined by the order, 

number of control points, the array of 4D control points, the number of knot values 

and the knot vector. The surface entities, store the NURBS surfaces created and are 

defined by the order, number of knots, number of control points and knot vectors for
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each of the two parametric directions and an array storing the definition of the whole 

grid of 4D control points. The number of curves and surfaces is unlimited.

Input data (digitised or not) and generated curves are graphically represented by 

points connected by straight lines. Surface patches are represented by a grid of 

iso-parametric lines. The number of line segments and the resolution of the grid of 

iso-parametric lines used to display curves and surfaces respectively, are selected by 

the user.

In the following sections, the software system developed and some practical examples 

o f the utilisation of the tools developed to model ship forms are presented. Finally, a 

comparison is made with a commercial package, AutoShip, that in its latest releases 

has also adopted the use of NURBS curves and surfaces to model the ship hull.

In general, only half the hull of the ship used was digitised and no special criterion 

were defined for that task, regarding the quantity and distribution of the input points.

5.1 Description of the system

The system was developed as a set of modules organised as software layers, so that 

each layer only uses the functions contained in the layers underneath.

In the figure 5.1 is presented the layer structure of the system. The contents of the 

layers are as follows:

M emory m anag. Management of dynamic allocation of memory for single and

multi-dimensional arrays.

G eneral tools Set of general purpose tools, including manipulation of

strings.
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Functions dealing with the required operations on matrices, 

such as matrix multiplication, identity matrix, matrix 

inversion, matrix inversion of diagonal banded matrices.

C u r v e s

M e m o r y  m a n a g

B a s i c  G e o m e t r y

V e c t o r s  A l g e b r a

n t e r s e c t i o n s

D a t a b a s e  m a n a g .

G r a p h i c s  I n t e r f a c e

S u r f a c e s

C o n t o u r i n g

Ma t r i x  A l g e b r a

Figure 5.1 Layer structure of the software system developed

Linked lists Management of linked lists, to deal with the dynamic storage

of entities of unknown number o f elements.
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Vectors algebra

Basic geometry

Contouring

Curves

Surfaces

Fairing

Intersections

Graphics interface

Operation with vectors such as dot products, external 

products, addition o f a vector to a point, modulus of a vector, 

normalisation of a vector, and so on.

Functions providing capability to manipulate arrays o f 2D or 

3D points, transformation of coordinates, geometric 

transformations such as rotations about a specific or generic 

axis, translations and symmetries, and so on.

Functions to compute contours of iso-values of selected 

properties or coordinates, over a triangulated domain.

Functions implementing the basic algorithms related to the 

computation of points, first and second derivatives of cubic 

spline, B-spline and NURBS curves. Computation o f curve 

curvature. Basic algorithms for B-spline curves such as degree 

raising, knot insertion and knot removal.

Functions implementing the basic algorithms related to the 

computation of points, first and second derivatives o f Coons 

patches, B-spline and NURBS surfaces. Computation of 

several types of surface curvatures. Computation of isophotes. 

Basic algorithms for B-spline surfaces such as degree raising, 

knot insertion and knot removal.

Functions for the fairing o f curves and surfaces.

Intersection of free form surfaces with conic surfaces.

Functions providing the capability to display graphical entities 

such as points, lines, polylines, and surface meshes. Interactive 

edition of curves and surfaces. Representation o f the surface
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curvatures distribution by means of coloured maps or 

contours.

D atabase m anag. Tools for the management of a database to store the different

types of entities describing the hull geometry o f a ship.

User interface Functions providing the user interface, dealing with menus,

dialogue boxes, validation of user input and so on.

5.2 Modelling of a tanker of about 80,000 TDW

The first approach to the utilisation of the system was influenced by the traditional 

approach and so sequences of points on transverse sections and longitudinal contours 

fore and aft, over a common set of waterlines were used as the initial input.

The preliminary bodyplan of a crude oil tanker was digitised, with a total o f 24 lines, 

divided in 20 transverse sections, two knuckle lines, forward, and the bow and stem 

profile contours (Fig. 5.2). No special criteria was defined for the digitising task, so 

that the limitations of the fitting and approximation algorithms could be detected.

Figure 5.2 Digitised lines
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The ship has the following main dimensions:

Length, overall 248.00 m

Length, between perpendiculars 240.00 m

Breadth, moulded 42.00 m

Depth, moulded 19.20 m

Draft, design 13.25 m

Taking into consideration the characteristics o f the hull, it was decided, for modelling 

purposes, to divide it into five main zones, bow, forebody, midship, aftbody and stem, 

which were considered separately.

5.2.1 Bow

The bow zone was modelled from a set o f 5 sections, a knuckle line and the bow 

profile (Fig. 5.3). First, the lines were approximated by B-spline curves of order three 

using the algorithm described in Section 4.3.3. The approximating and fitting 

algorithms are not capable o f dealing directly with knuckles, and so, the profile and 

sections were edited individually in order to insert the knuckle points, using the 

knuckle line as guidance.

■Q -B-

Figure 5.3 Input half-sections, knuckle and profile

In a first approach, a single surface path of order three was generated by lofting over 

the edited transverse sections and bow profile curves. As it can be seen from the
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resulting surface (Fig. 5.4), not only was the knuckle line not well defined but also the 

shape o f the surface near the bow profile was not “round” as expected.

Figure 5.4 Bow represented by single surface patch

The generation o f patches by lofting has a limitation which is the impossibility of 

imposing boundary conditions in the parametric direction opposite to the section 

curves. So, in an attempt to obtain a rounder shape in the bulb zone, the half section 

curves were mirrored in relation to the longitudinal symmetry plan, in order to obtain 

the full sections, portside and starboard (Fig. 5.5).

Another remark that can be made, is that the obtained surface is very complex, 

because it has a large number of rows of control points, which is a consequence of the 

compatibilisation process applied to the input curves. Therefore, it can be concluded 

that to keep the resulting surfaces simpler, the number of control points o f each curve 

should be kept to a minimum and their position should also be kept on corresponding 

contour positions.
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Figure 5.5 B-spline curves fitted to input data

Lofting the 10 transverse sections and the bow contour the resulting surface patch 

seems to model better the bulb area, but the longitudinal knuckle is still not well 

defined (Fig. 5.6).

\
\

Figure 5.6 Bow represented with single surface

As an alternative, the knuckle line was used to split the transverse sections 

(ref. Section 4.6.2), lofting separately the lower and upper bow areas (Fig. 5.7).
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Figure 5.7 Bow represented by 4 surface patches

The resulting lower area forward, is still very rough, mainly due to the poorly defined 

shape o f the bulb (Fig. 5.8).

Figure 5.8 Exploded view o f bow patches
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5.2.2 Forebody

The transition zone between the bow and the midship zone, which has a regular 

change o f section shape was modelled by a single surface patch lofted over 5 

transverse sections (Fig. 5.9).

[]
$n

Figure 5.9 Lines defining the forebody

The resulting surface presents a good behaviour easily seen by the regular distribution 

o f the isoparametric lines (Fig. 5.10).

Figure 5.10 Forebody surface patch
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5.2.3 Midships

The midship zone of the hull was defined by 6 transverse sections (Fig. 5.11).

Figure 5.11 Lines defining the midship

Some of the oscillations obtained in the resulting surface patch (Fig. 5.12) are due to 

the very different number o f input points in the after and forward sections. It is also 

visible that the distribution of the bottom isoparametric lines is irregular and the 

bottom is not flat all over as it should be. Checking the input lines, the cause can be 

traced to the insufficient number o f points in the bottom, on two of the intermediate 

sections.

Figure 5.12 Midships surface patch
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5.2.4 Aftbody

The aft body was defined by 6 transverse sections (Fig. 5.13). The curves fitted are 

shown if Fig. 5.14 and the resulting surface in Fig. 5.14.

Figure 5.13 Lines defining the aftbody

Figure 5.14 Curves defining the aftbody
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Figure 5.15 Aftbody surface patch

5.2.5 Stern

The stem of the hull has a more complex shape and the description o f the knuckle 

lines was not available. The input data used was the stem contour and 5 transverse 

sections (Fig. 5.16).

Figure 5.16 Input stem lines
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As the stem knuckle lines are not clearly defined, each of the fitted curves was edited 

separately and two knuckles were defined so that the resulting curves matched 

reasonably the input lines. Then the curves were split by the knuckle points into 3 

segments (Fig. 5.17).

Figure 5.17 Stem curves

Lofting separately the curve segments, 3 surface patches were generated. The stem 

panel was defined by the stem contour and the aft transverse section (Fig 5.18).

Figure 5.18 Stem surface patches
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The complete stem was modelled by the 4 surface patches shown separately in 

Fig. 5.19.

Figure 5.19 Exploded view of stem patches

To represent the complete ship the surface patches were joined and mirrored to obtain 

a full model (Fig. 5.20).

5.2.6 Conclusions

In general, the quality of the surfaces obtained is very poor and some reasons found 

are as follows:

• A procedure for generating the hull surface must not use too much information to 

start with. Surfaces generated from lofting too many curves are not closer to the 

desired shape, on the contrary, they start to present undesired shape 

characteristics. The same principle also applies to curves, which should not be 

generated from an excessive number of points.

• It is difficult with the tools developed so far, to obtain good results with an 

exclusively automatic procedure, i.e, avoiding the manual editing of the supporting 

curves.

It also seems a logical conclusion that an efficient surface fairing algorithm is a 

fundamental complement of a hull surface modeller.
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5.3 Modelling of the bow of a tanker of about 160,000 TDW

The first test was based on a preliminary body plan from which the lines used as input 

were selected, using almost all the points available from the grid of sections and 

waterlines. To check if the roughness of some areas o f the final model were only due 

to the poor quality o f the input, another test is was made, trying to model the bow of 

a 160,000 TDW tanker, provided with knuckle lines and a bulb, using the information 

from a fully developed body plan. The ship has the following main dimensions:

Length, overall 270.00 m

Length, between perpendiculars 260.00 m

Breadth, moulded 48.25 m

Depth, moulded 24.10 m

Draft, design 16.25 m

The bodyplan used, corresponding to a more advanced stage of the ship design, not 

only has more lines represented (transverse sections on every building frame) but also 

the shape quality o f each line is better. However, and learning from the first example, 

on which the volume of information used did not correspond to an equivalent quality 

o f the results, in this example, each curve was edited after the curve fitting to remove 

as many points as possible without losing the shape characteristics.

5.3.1 Boundary and knuckle curves

The boundary lines selected for input, were the longitudinal stem contour and three 

knuckle lines forward (Fig. 5.21).



Figure 5.21 Boundary and knuckle curves, forward

5.3.2 Transverse sections

A set o f 30 transverse sections were digitised in the forebody, including extra sections 

added with a smaller spacing in the bulb area, as shown on Fig. 5.22.

Figure 5.22 Digitised transverse sections (forward)
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5.3.3 Surface patch generation

The bow zone, which has a complex shape due to the existence o f the two knuckle 

lines and the bulb was divided into several patches.

Figure 5.23 Initial curves used to model the forebody surface

In general, knuckle lines should not cross patch boundaries and so the first step was 

to create a new section coinciding with the beginning of the knuckle line. To obtain 

this section, a preliminary surface was generated by lofting to the first section forward 

o f the knuckle line beginning (Fig. 5.24).

Figure 5.24 Auxiliary surface
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With this auxiliary surface generated, a routine using the surface intersection method 

described in Section 4.11.1 was used to compute a new section coinciding with the 

beginning o f the knuckle line (Fig.5.25). The curve fitted to this section was then used 

as the boundary between the aft and forward patches.

Figure 5.25 New section obtained by surface intersection

The bulb surface was lofted from a set of 4 section curves, the last o f which was a 

dummy section curve, with the shape of a circular arc of 180° with zero radius, used 

to define the closing tangent point. An arc of 180° is represented by a curve o f third 

order, with five control points as shown on the Fig. 5.26 and a knot vector 

{0,0,0,0.5,0.5,1,1,1} and the weights {1,0.707,1,0.707,1}. In this particular case of 

zero radius, all the five control points will coincide with the centre point o f the arc.

P5  P4

P3

PI P2

Figure 5.26 Arc o f 180 deg. represented by NURBS curve
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The resulting surface was then submitted to knot removal which eliminated 10 knots, 

i.e., 10 rows o f the control points grid. Finally, the surface was faired by the least 

square method presented in Section 4.10.2. and the result, mirrored to show the full 

bulb, is shown in Fig. 5.27.

Figure 5.27 Bulb surface mirrored about centreline

The connection between the bulb and the adjacent upper patch presents a gap that the 

methods developed could not cope with (Fig. 5.28). A better approach would be to 

generate both surfaces beyond the connection line. The surfaces would then be 

intersected and the redundant areas removed. This would require the implementation 

o f a surface/surface intersection method and also a data definition capable o f 

describing trimmed surfaces (Refer to Chapter 6).
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5.3.4 Hawse pipe generation and intersection with the hull

For testing the cylinder generation and intersection with the hull, a hawse pipe of 

500 mm radius at one end and 900 mm radius at the other diameter was generated and 

the result with the hidden lines removed is presented in Fig. 5.29.

Figure 5.29 Intersection of cylinder with hull

5.3.5 Conclusions

The reduction o f the input data and the manual editing and fairing of each supporting 

curve seemed to improve the quality of the obtained surfaces. Even so, the manual 

editing of the surface itself is inevitable most of the times, not only to introduce local 

characteristics which the generating process by itself cannot produce but also to 

improve the smoothness, whenever the surface analysis detects undesired shape 

characteristics. As the interactive editing of a surface, even with a reduced control 

mesh, is difficult to implement and to use, a semi-automatic post-processing fairing 

procedure would be a better solution.
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5.4 Comparison with a commercial package

Due to the difficulties found in representing an existing hull with the developed tools, 

it was considered interesting to execute the same task with an existing commercial 

package, fully developed and tested, to evaluate how the available tools and the 

implemented algorithms perform in similar conditions.

During the development of the present work, the new release 5.3 of AutoShip, a 

commercial software package designed for the surface modelling of ships, became 

available.

AutoShip, runs on PC computers, and has been recently updated from a mixed cubic 

spline/B-spline curves model to a full NURBS surface ship hull representation. Since 

the algorithms used are not described in the package documentation, the comparison 

will be made in terms of the results of curve fitting and of the tools for surface 

generation and analysis.

5.4.1 Curves

Although more oriented to basic hull design, the package includes a module, 

AutoMatch, whose purpose is the automatic generation of curves and surfaces to 

match an existing hull described by an offset table.

The input to AutoMatch is composed by a set o f transverse sections, sorted from fore 

to aft. Each section is defined by a set of points described by its 3D coordinates 

(x,y,z) and an attribute code (ch), equal to 1 if the point is a chine, or equal to 0, if 

not. The procedure automatically fits B-spline curves to each input section. The order 

and the number o f control points generated for each curve is selected by the user and 

applied to all the curves. The order must be in the range 2-3 and the maximum 

number o f control points generated is 9. This last limitation has been shown to be a 

problem when trying to use as an input lines digitised from a body-plan drawing.
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Curves can be created by defining the coordinates o f the control points. Regarding 

conics, the system allows the creation of circles and circular and elliptical arcs, but is 

limited to planes parallel to the projecting planes.

For editing the curves, a set of tools including refinement, splitting, joining, mirroring 

and reversing is available. Segments defined by the extreme points can be made 

straight. Knuckles can be generated/eliminated on selected points by automatically 

inserting/deleting repeated control points. The weight of individual control points can 

be changed manually, although in the documentation the user is not encouraged to use 

this feature.

The fairness o f the curves generated can be evaluated by the inspection of the 

curvature, either in the porcupine form or by curvature plot display.

There are no automatic curve fairing or curve/curve intersections developed.

5.4.2 Surfaces

Surfaces can be generated in AutoShip by lofting or sweeping existing curves or from 

the offset o f an existing surface. The maximum order allowed in both parametric 

directions is five. The type of sweeping implemented is different from the one 

described on Section 4.8.4,.using one profile curve supported on both extremities by 

two trajectory curves, which provide an automatic scaling of the profile curve.

The package presents two different types of lofting. One, is not a true lofting because 

the curves used to generate the surface are not the ones selected but only a user 

defined number o f points obtained by interpolation The second type o f lofting is a 

real one, but with the limitation that the input curves must have the same number of 

control points, although accepting different orders.

The tools for surface analysis are the rendering and the representation o f Gaussian and 

mean curvatures, by colour mapping on the surface, using a three colour palette.
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There are no tools implemented for the automatic fairing of surfaces and for that 

reason the correction of the surfaces obtained is only possible by manual editing. The 

only editing operation available is to move points. As for the curves, these points can 

be either the control points or the corresponding nodes on the surface.

Contours can be generated automatically for constant values o f x, y  or z, but the 

curves generated are not available to be used further in the modelling work.

The package also offers routines for surface/surface intersection, although some 

implementation problems originate unpredictable results in some situations. The 

definitions o f the generated curves and surfaces are not available to the user and 

therefore they cannot be used for post-processing by other applications.

5.4.3 Application examples

The same ship hull used in the application example o f Section 5.2 was modelled with 

AutoShip and the results are presented.

In a first approach, and in order to allow a more direct comparison, the hull was 

divided in a similar way and the same surface generation technique, lofting, were used 

in both cases. As it can be seen (Figs. 5.29-5.31), the surfaces obtained directly from 

the curves are also very rough and they would require a lot o f manual editing work to 

be considered acceptable. The problem with this approach is that the result from the 

lofting process applied to a set of curves, each defined by approximately 8 to 9 points, 

generates surfaces with control grids too dense. These grids imply surfaces too 

constrained, and even if they interpolate the hull shape at the sections, they present an 

unfair behaviour inbetween. As the system does not provide any surface fairing tools, 

the only alternative for improving the shape would be the manual editing, but the size 

o f the control grid makes that task veiy difficult and time consuming. More practical 

alternatives could be the simplification of the grid within a defined tolerance using 

knot removal, which the system also does not present at the moment, or simply to 

avoid the generation of complex surfaces to start with.
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Figure 5.30 Forebody of tanker

Figure 5.31 Aftbody of tanker

In order to explore this second alternative, a new attempt was made to model the hull. 

This time, and following the same guidelines used in the example of Section 4.3, the 

number o f surfaces was reduced to a minimum - one for the forebody and two for the 

aftbody. Each o f the surfaces was lofted from a minimum of curves, three or four, to 

avoid having too many rows on the control grid. As the resulting surfaces are 

necessarily very different from the intended, extra columns are generated and moved 

longitudinally to the exact location of known section curves. These column curves are 

then edited to match the shape o f the corresponding section curves. The resulting 

surfaces (Fig. 5.33) are simpler and closer to the desired hull shape.
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Figure 5.33 Forebody of tanker modelled with a single surface

Figure 5.34 Aftbody and stem panel o f tanker modelled with two surfaces
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As concluded before, this approach produces simpler and fairer surfaces. As a single 

surface was used to model complex areas some care has to be taken to represent 

zones with different continuity characteristics. To generate planar bottom and side 

areas, two rows of the control grid are made to coincide with the corresponding 

tangency lines and then converted into knuckles.

To model the aftbody one surface patch was used to represent the stem panel and 

another to represent the rest of the hull. The procedure described above for the 

forebody was not so efficient here since the contour of the stem and the shape o f the 

propeller boss are more difficult to represent with a simplified grid, as it can be seen in 

Fig. 5.34.

5.5 General remarks about modelling procedures

From the previous sections of this chapter some remarks can be made about the 

utilisation of software systems oriented for the representation of ship hulls using 

surfaces.

With the tools described in the present work, which are similar to the ones available in 

other surface modellers reviewed, it is not yet possible to have an automatic 

procedure to create directly surfaces from offset data, or to convert offset directly 

into curves and curves directly to surfaces.

Is not enough to have the mathematical tools available to perform good work. The 

procedure applied must be carefully selected to each case. A good approach will be to 

start with fewer curves, defined by the minimum number of points, to generate 

relatively simple surfaces. New sections can be obtained by intersection with vertical 

planes and edited to match known sections of the hull. Whenever obtained surfaces 

are not satisfactory, it is sometimes easier to delete them and return to the generating 

curves, instead of wasting to much time interactively editing a surface, which is a non 

trivial task.
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6. Conclusions

6.1 Overall conclusions

The initial purpose of this work was to develop a procedure that could generate the 

surface hull surface from a set of transverse sections and boundary curves described 

by offsets in an almost automatic fashion. However, it soon became clear that the 

manual editing could not be avoided and so, instead of defining a precise sequence of 

operations, it was decided, by implementing several user interfaces to the basic 

algorithms, to create a wide set of curve and surface modelling tools. These tools 

allow the user to select in each case the methods and the sequences to use.

The work presented is a method of representation of the shape of ship hulls by a set of 

mathematical surface patches. For this purpose, the available formulations were 

studied and compared, taking into account the required characteristics o f the surfaces.

From the parametric curves and surfaces reviewed, NURBS were identified as being 

the most suitable to represent ship hulls, because being a generalisation o f Bezier and 

B-splines, they keep all their basic properties while adding extra degrees of freedom 

for shape control. Therefore, the NURBS formulation was selected as the basis for 

the system developed.

The method proposed is a two step approach. In the first step a wireframe model is 

created and in the second one, the surface patches are generated and faired.

The generation of surface patches requires different methods, depending on the 

constraints and geometric information available on each particular area of the hull. 

Taking this into account, it was decided to develop several different methods of 

generating surfaces, although keeping a unified definition, the Cartesian tensor
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product, in order to simplify storage and further processing for curvature analysis, 

fairing, computation of intersections, and so on.

After experimenting with the various methods, a general procedure for approaching 

the representation of the hull shape was sketched as follows. First, NURBS curves are 

fitted to a set of transverse sections defined by points from an offset table or digitised 

on a lines plan drawing. Next, the same procedure is applied to generate curves for 

the stem and stem profiles and knuckles, if any. All curves are then edited, analysed 

and faired until a reasonable accurate wireframe model is obtained. The existing 

boundary lines which define in the hull regions of similar geometric characteristics, are 

used to split the internal wireframe lines. Finally, the resulting split sections are used 

as support for the generation of the surface patches.

For ships of simpler forms, capable of being represented by a single surface, an 

alternative approach proved to be efficient. A midship section was defined with a 

minimum of points, generally less than ten. Next a surface was generated by extrusion 

along the full length of the ship. The first and last columns of the control grid were 

then edited dynamically to approximate the stem and stem longitudinal contours. 

Finally the locations of the internal columns of the control grid were changed where 

necessary to coincide with known sections of the ship and then edited to approximate 

them. During this process, the surface may be refined by generating extra columns or 

rows of the control grid, if necessary.

Regarding the application of the several surface generation techniques used, in general 

ruled or extruded surfaces can be used in some extent of the parallel middle body, if 

any, lofted surfaces can be used in the fore and after bodies, blended surfaces can be 

used in some transitions areas between the bulb and the stem and on stem panels, and 

sweep surfaces can be used to generate decks, bulwarks, etc.

The methods of surface interrogation developed to analyse the quality of the patches 

were curvature analysis (Gaussian, mean and principal), isophotes for testing 

geometric continuity across patch boundaries and reflection lines, to evaluate the 

aesthetic quality. From the experience of the application examples, the most used tool
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was the Gaussian curvature. However, the quantitative analysis of the curvature 

distribution displayed by a wide range of colours or iso-contours proved to be of 

limited usefulness to the user. So, in alternative, a qualitative display identifying the 

areas of positive, negative or null curvature was developed and used with more 

efficiency.

A preliminary fairing method was developed, by applying to rows and columns of the 

surface control grid the fairing algorithms developed to curves.

Some procedures to obtain information from the model were developed, such as the 

computation of the intersection of the hull with simple conic surfaces and with sets of 

planes parallel to the three orthogonal projection planes. An approximated method to 

compute the areas of the patches was also developed.

Finally, the procedure was applied to practical examples and it was concluded it is not 

yet possible to have a fully automatic procedure to create directly surfaces from offset 

data, or even to convert offsets directly into curves.

Although the system developed during this thesis can only be considered a prototype 

for demonstration of the algorithms and methods presented, the comparison with a 

commercial system showed that:

• The system contains already all the functionalities for the creation, edition and 

curvature analysis of curves and surfaces found in the commercial package.

• The system has tools for the simplification o f the input data (filtering) and of the 

curves and surfaces (knot removal) not covered in the commercial package.

• The system performs already some simple curve and surface fairing capabilities not 

found in the commercial system

• The commercial system provides capabilities of surface/surface intersection and 

some derived capabilities such as the trim of surfaces not implemented in the 

prototype system.
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It was also concluded that to have good results, the model should be kept as simple as 

possible, i.e, with a reduced volume of data. Curves should be defined by a minimum 

of points and surfaces should be generated from a minimum of curves in order to be 

fairer and easy to work with.

6.2 Specific conclusions

For the development of the wireframe model, it has been necessary to study the 

algorithms and procedures for the creation and editing of curves. From the 

comparative analysis of the algorithms for curve fitting it was concluded that 

sometimes, in particular when dealing with digitised input points, the efficiency of the 

curve fitting works against the designer since it attempts to reproduce all the shape 

characteristics, including some undesirable oscillations, that are not a characteristic of 

the shape, but only a product of the data input process. It was also noted that the 

excess o f input points generally creates problems of numeric instability in the results 

of curve fitting and finally, that there are some shape characteristics such as knuckles, 

straight and conic segments, among others, that the fitting procedure cannot 

reproduce automatically.

To keep the model simple, measures were taken at the three levels o f entities that 

constitute the hull model. For lines, a method was developed to filter data points to 

some extent, reducing errors and redundancy in input information. For curves and 

surfaces the simplification is first obtained by knot removal to a defined tolerance and 

next by interactively editing and fairing locally.

Filtering digitised input lines with the simple method presented was an efficient way to 

reduce the volume of input data to a minimum, removing redundant points. The user 

defined tolerance distance between the initial and the final line, should depend on the 

main dimensions of the ship and on the scale of the drawing being digitised.

The curve editing techniques developed allow the designer to exploit NURBS 

capabilities o f representing conics like straight lines, circular and elliptical arcs of 

defined dimensions and they also provide tools to cut and join curve segments,
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operations also required to prepare the curves to be used as support for surface 

generation.

The curve fitting and approximation methods are sensitive to the parameterisation 

selected by the user. From those parameterisations presented, the centripetal one 

showed better results. The developed curve fitting and approximation methods proved 

to be particularly sensitive to the distribution of the data points. In general, the 

methods based on knot averaging showed better results.

The accuracy of the curves automatically obtained from data points proved to be not 

so important for the global procedure as expected. Due to the implementation of an 

efficient interactive curve editing tool, provided with a large set of options (to move, 

delete, insert, align control points, to create conic curve segments with imposed 

geometric characteristics, change weights) all made in real time and with the 

possibility of simultaneously viewing the curvature displayed in the form of a 

porcupine.

The methods for surface generation considered were extrusion, ruling, lofting, 

sweeping and blending, that seemed to cover most of the situations found while 

modelling a ship hull surface. All the above methods could be reduced to particular 

applications of surface lofting. The implementation of surface lofting requires that all 

the supporting curves are made compatible, meaning that they must be raised to the 

same order and share a common knot vector, without changing their shape. The 

procedure to obtain curve compatibility relies entirely on two basic algorithms, degree 

raising and knot insertion, that can also be generalised to surfaces.

The basic surface algorithms were also implemented with a common user interface as 

a dynamic surface editor. However, due to the difficulty in interactively editing a 

surface in 3D space, this should be reduced only to minor local corrections. From the 

application examples it was concluded to be more efficient to delete a surface with 

unwanted shape characteristics, to edit the supporting curves and to generate the 

surface again.
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In general, the procedure developed guarantees only C° continuity across the 

boundary lines between patches and so, they must be carefully chosen (boundary lines 

with known tangent values, knuckles, etc.). However, boundary conditions in the 

parametric direction of the support curves can be imposed by fitting curves with 

imposed end tangent values, for example, and these are naturally inherited by the 

surface. This procedure allows to obtain G 1 continuity across the patches boundaries.

In general NURBS proved to be a reliable basis for the representation of curves and 

surfaces used to model a ship’s hull. The set of generation and editing techniques 

developed from the basic algorithms available proved to be a good foundation for a 

system dedicated to ship surface modelling. The extra degree of freedom provided by 

the weights, has potential capabilities which extend beyond the implemented 

representation of conics.

6.3 Future developments

The possible future developments of the present approach to ship surface modelling 

can be grouped as follows:

• further development of the mathematical algorithms and data structures

• development o f features specific to ship shape in order to speed-up the most 

common modelling tasks

6.3.1 Mathematical algorithms

The quality of the curve fitting algorithms is very important not only for the creation 

o f the wireframe model but also for the generation of the surface patches. The 

efficiency of the curve fitting algorithms depends of the type of parameterisation, and 

to be more effective, the parameterisation must have a close relationship with the 

geometry o f the data polygon. The parameterisations used in this work are the chord 

length and the centripetal, that do not take into account, for instance, the changes o f 

direction of the data polygon.
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Parameterisation for interpolation and approximation is still a matter of research and 

some alternatives have been suggested. The variable speed parameterisation [91] tries 

to incorporate curvature information into the parameterisation. In [92] an affine 

invariant angle knot spacing parameterisation that takes into consideration the angles 

or corners implicit in the data is presented. The parameter is a function of both chord- 

length and the external angles between polygon segments (Fig. 6.1).

In [93] the parameter tt is a function of the chord-length s, and of the area 8 i o f a 

triangle defined by the data points Pm, Pi and Q i, the intersection of the straight lines 

defined by and (Fig- 2).

Figure 6.1 Affine invariant angle knot spacing

Q

P

Figure 6.2 Triangle area for parameterisation
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Although some of these parameterisations are applicable only to plane curves, they 

represent some of the directions that should be studied as an attempt to improve the 

quality of curve fitting.

As mentioned in Section 6.2 the accuracy of the curve fitting algorithms proved to be 

not as important as expected, but the development of new more efficient 

approximation algorithms would be welcome to produce simpler curves (less control 

points) reducing the manual editing time.

Several modelling tools depend on the correct determination of the curve/surface 

parameters corresponding to a given point (x,y,z), i.e, to find u and v so that

( x , y , z ) - * r { u )
or

( x , y , z ) - * s ( u ,  v)

The numerical method presented, based on the Newton-Raphson and the bisection 

algorithms should be replaced by a foolproof algorithm capable of providing accurate 

results even when the curve/surface have more complex shapes.

The basic editing methods (straightening, splitting, joining) presented in Section 4.5 

for curves, should be generalised to surfaces. A new basic algorithm, degree reduction 

[94,95], should be implemented both for curves and surfaces.

As mentioned in Section 6.2, the present approach is only capable of producing C° 

continuity between surface patches. G1 continuity, i.e., the existence of a common 

tangent direction along the boundary line between patches is a good target for 

practical purposes. Automatic surface editing capabilities can be developed to obtain 

G; continuity across contiguous patches, by inserting extra internal supporting curves 

on each patch and changing their position so that they become contained in a single 

tangent plane.

The simplified intersections o f surfaces with planes parallel to the projection planes 

based on contouring techniques cannot deal with inclined planes or other generic
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surfaces. The implementation of algorithms for intersection of arbitrary surfaces is one 

o f the contributions required to allow several modelling operations like, for instance, 

the trimming of the deck surface by the hull surface.

I t S f f f H H I

Figure 6.3 Surface filleting

An efficient algorithm for surface intersection allows also the development o f other 

modelling tools like filleting (Fig. 6.3) and chamfering (Fig. 6.4) between two 

surfaces.

Figure 6.4 Surface chamfering
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Both these techniques require first the intersection of the auxiliary cylindrical (in 

filleting) or plane (in chamfering) surfaces with each of the work surfaces and then the 

removal (trimming) of the areas in excess.

The generation of curves on a given surface is a topic that should be studied. Several 

operations such as surface intersections or projection of lines, generate series of 

points on a surface that normally must be treated afterwards as curves. If  a general 

curve fitting procedure is used, the curve obtained is not necessarily entirely contained 

in the surface. A new type of curve fitting taking into account the surface parameter 

values of each data point is one possible direction of research.

The representation of surface patches trimmed or with openings requires an alteration 

of the data structure in order to accommodate the description o f on or more closed 

curves on the surface, obtaining what is currently designated by trimmed surfaces 

(Fig. 6.5).

Figure 6.5 Trimmed surface

The developed preliminary methods of surface fairing working on rows and columns 

of the control grid, are not enough to obtain a surface of production quality. A global 

surface fairing method, by reducing user editing would improve speed and final 

quality. In terms of fairing, larger changes should be taken care using non-linear 

constrained optimisation procedures building on the work of Ferguson [83]. For fine 

tuning, particular interest should be given to methods that explore the potential o f the 

extra degree of freedom provided by the weights, like in the recent work of 

Hohenberger and Reuding [96].
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A procedure for the determination of the geodesic on surface patches will be quite 

useful as a basis for plate development algorithms.

6.3.2 Features specific to ship modelling

The present approach does not take into account the information on tangency points 

and directions provided by the flat-of-bottom and flat-of-side curves, when available, 

which could greatly improve the quality of the transverse section curves generated 

and therefore the corresponding surface patches.

The shape of some of the ship main curves defined during the basic design, like the 

midship section or the stem contour depend of the values of a set o f design variables. 

Instead of trying to fit B-Spline curves to this lines, semi-automatic methods of 

generating the curve directly from known design shape parameters can be developed.

Based in the time consumed on the experiments of modelling specific surfaces like a 

deck with both camber and sheer, a special purpose method should be developed to 

reduce the time consumed for the generation of this particular type o f surfaces where 

some dimensions and shapes can be parameterised.
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