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Abstract

The purpose of this project is to define the modern subsurface 

tem perature field of the central North Sea, and to develop a 

phenomenological explanation based on conduction and fluid-advective 

processes. The source of subsurface information is corrected bottom-hole 

tem peratures (BHT's) from thirty wells located within the Central Graben 

and its flanking areas.

Tem perature-depth patterns reveal considerable variability (24.6 to 

44.6°C/km for the preferred method of calculation) which is further 

highlighted by 2-D contour plots of temperatures. The tem perature pattern 

consists of both a long-wavelength, positive tem perature anomaly (LWA) 

which is centred on the graben axis, and, superimposed upon it, a num ber 

of short-wavelength, high amplitude positive tem perature anomalies 

(SWA's) which are 5-15 km in half-wavelength and up to 40°C in 

m agnitude.

Com puter modelling shows that conduction may account for the 

shape of the LWA, if there is a decrease in basal heat flow (from 70 to 65 

mWm"2) across the graben from west to east. SWA's, however, rem ain un­

explained even by localised high thermal conductivity features such as salt 

domes. Models of fluid-advection consider both regional and local scale 

flows. Regional, topographically-driven fluid flow does not influence the 

tem perature regime of the graben, but it provides a significant volume of 

fluid to the base of the sedimentary pile. Regional-scale convection in the 

Permian aged strata is an alternative explanation (compared to decrease in 

heat flow) for the cooler temperatures in the eastern end of the profile 

(LWA). No regional-scale fluid flow process is capable of producing the 

SWA's. Localised fluid flow associated with faults, including convective 

fluid flows w ithin fault zones, can produce SWA's like those observed, w ith 

tem perature anomalies of up to 50°C formed at realistic sediment and fault 

permeabilities. The fluid-flow models assume norm ally-pressured 

conditions and thus are very conservative. The release of overpressure 

w ithin the Central Graben may be a more likely mechanism for causing 

such flows .

(iii)
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CHAPTER 1

INTRODUCTION

In this chapter I describe the rationale for the project undertaken 

here, and I outline some of the key contributions which set the stage for this 

research. The specific aims of this project are also outlined, and a brief plan 

of the thesis is given.

1.1 Temperature Distribution in Basins

It is extremely important to understand the subsurface tem perature 

regime of oil producing or exploration areas. Temperature affects many 

aspects of petroleum systems, including ancient source rock m aturity 

calculations (Goff, 1983; Ungerer et al., 1990), and tem perature-dependent 

diagenetic reactions (Wilkinson et al., 1992). Estimates of downhole 

tem perature are also important for estimating the effects of present-day 

tem perature gradient on the actual drilling of wells. Thus, both the present 

tem perature state, and the history of tem perature variation, are subjects of 

interest.

The research reported here avoids any palaeo-temperature 

calculation arguments by restricting its focus to the present-day. It seeks to 

identify the heat-transfer processes which are, or have recently been, active 

in the central North Sea region. Although I am cognisant of the possibility 

that similar heat-transfer mechanisms may have operated in the N orth Sea 

in the geological past, I keep my focus in the present, and leave the 

historical extrapolation of my results to others.

1.2 Previous Work
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1.2.1 Temperature Studies in the North Sea

Compilations and analyses of present-day subsurface tem peratures 

have been carried out in the North Sea by Carstens and Finstad (1981), 

Oxburgh and Andrews-Speed (1981) and Andrew-Speed et al. (1984). These 

studies indicate a significant variability in the subsurface tem perature 

distribution. Andrews-Speed et al. (1984) identify regional variations in the 

heat-flow, and they argue that topographically-driven fluid flow arising 

from the Norwegian land mass may be part of the explanation of the 

thermal state in the Central Graben. Carstens and Finstad (1981) also suggest 

the involvement of migrating fluids in controlling the distribution of 

m odem  tem peratures in the Viking Graben (in their case, the migration of 

fluids up faults). By contrast, other modelling studies conclude that the 

present-day temperature distributions can be readily explained w ithout the 

involvement of rapidly migrating fluids (Viking Graben; H erm anrud et al 

(1990), Danish Basin; Yu et al (1995)).

1.2.2 Thermal Effects o f Fluid Flow

In studies from around the world conduction has long been 

considered to be the dominant, or even the only heat transfer mechanism 

in sedimentary basins (Jessop and Majorowicz, 1994). However, a num ber of 

studies have shown that advection of heat by moving groundwaters can 

significantly modify the conductive temperature regime in sedimentary 

basins. Moving groundwaters within sedimentary basins can have effects on 

tem perature (Bethke, 1986; Garven, 1989; Person and Garven, 1989; Deming 

et al, 1992; Le Carlier et al, 1994), petroleum migration (Toth, 1980), and the 

occurrence or genesis of mineral deposits (Garven, 1985). Recent overviews
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of the development of basins involving fluid migration (Garven, 1995; 

Jessop and Majorowicz 1994) describe some of the major advances made in 

understanding fluid flow proccesses and their effects.

Among others, Garven and Freeze (1984), Burrus et al. (1992) and 

Deming (1992), have shown that groundwater flow driven by 

topography/gravity  can have significant thermal effects. For the central 

N orth Sea the Norwegian mainland may provide the drive for a similar 

fluid flow regime (Fig. 1.1). The thermal effects of convective fluid flow also 

have the potential to alter the thermal regime. Le Carlier (1994) has shown 

that in the Rhine Graben, regional convective fluid flow has a major effect 

on not only the temperature, but that it influences petroleum  migration, 

and it has implications for the m aturity of source rocks in the graben. 

Overpressure release and subsequent vertical fluid migration has been 

shown to have significant thermal effects, along with obvious effects on the 

migration of petroleum (Grauls and Baleix, 1994). The area selected for this 

study, the Central Graben (Fig. 1.1), has thick sequences of clastic sediments 

(Kent, 1975) that are, in part, highly overpressured (Gaarenstroom, 1992; 

Darby et al. 1996a and 1996b).

1.3 Research Objectives

The N orth Sea is an extensively explored basin w ith an abundance of 

high quality data. This region provides a convenient site to evaluate the 

m odern thermal budget of a late stage rift-basin. The study is intended to 

assess the relative contributions of the various heat-transfer processees, and 

to establish the physical controls on them.

The specific objectives of this research are:

3
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• Define the present day temperature field across the Central Graben 

along a representative 2-D section (Fig. 1.1).

• Evaluate the contribution of conductive heat transfer to the present- 

day temperature field.

• Determine the role of regional fluid flow in transferring heat within 

the Central Graben.

• Determine the role of localised fluid flow in creating local-scale 

tem perature anomalies.

• Discuss the implications of the present-day processes identified in this 

study for the thermal state of basins.

1.4 Plan of Thesis

The next chapter (Chapter 2) deals with the corrected bottom-hole 

measured tem perature data obtained from Robertson Research 

International Ltd. I attem pt to define as closely as possible the m odem  

tem perature field across the Central Graben along a given line of section. 

Having established tem perature profiles across the Central Graben I attem pt 

(in Chapter 3) to fit a conductive model to those profiles using finite- 

element modelling.

The conductive tem perature model does not account fully for all the 

observed local variability of the temperature profiles. Therefore, Chapters 4 

and 5 examine the hypothesis that another main heat transfer agent is

5



im portant within this sedimentary basin - fluid advection. This is 

approached in two stages.

First, in Chapter 4 ,1 assess the potential of regional fluid flow 

mechanisms to alter the temperature field of the Central Graben. Again 

using finite-element models, I evaluate the effects of topographically-driven 

(gravity-driven) and regional convective fluid flows. These regional 

mechanisms are unable to account for all of the localised tem perature 

anomalies revealed by the temperature profiles described in Chapter 2.

Chapter 5 assesses the thermal potential of localised fluid flow 

processes — namely, small-scale convection, and fluid flow within fault or 

fracture zones — in a Central Graben setting. These processes are capable of 

providing an explanation for all of the anomalous tem perature features 

observed within the Central Graben.

I discuss the mechanisms responsible for such fluid flow processes, 

and the likelihood of each process, in Chapter 6. My conclusions are 

presented in Chapter 7.
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CHAPTER 2

CENTRAL GRABEN TEMPERATURE STUDY

2.1 Introduction

2.1.1 A im s

In this chapter the aim is to define and characterise the present-day 

tem perature field in a 2-D section across the Central Graben. The area 

investigated extends from the Mid-North Sea High, crosses the Auk field 

and continues north-east across the Norwegian Sector of the Central Graben 

(Fig. 2.1). The subsurface tem perature data used in this investigation is 

derived from information supplied by Robertson Research International 

Ltd.

2.1.2 Sum m ary

Using corrected bottom-hole tem peratures (BHT's) tem perature 

gradients are calculated for characteristic settings within the Central Graben. 

On a regional basis, wells located within the platform areas (i.e. rift 

shoulders) indicate lower tem perature gradients (33.9±1.3°C) than do those 

located w ithin the terrace and deep graben areas (36.7±0.9°C, and 35.5±1.5°C, 

respectively). On a local basis, temperature gradients calculated from 

individual wells further demonstrate local variability (gradients ranging 

from 20.1 - 51.5°C/km or 24.6 - 44.6°C/km, depending on the m ethod of 

calculation). If all wells are plotted together the "average" gradient is 

36.23±0.6°C/km.
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Two methods were used to construct 2-D contour plots of the original 

BHT data. First the temperature data was hand contoured and subsequently 

gridded in a computer m apping software package (Fig. 2.6). The second 

m ethod produces an entirely computer-generated contour plot of the 

original data set (Fig. 2.7); it is similar to the hand contoured plot in overall 

geometry. Both contour plots display a long-wavelength positive 

tem perature anomaly centered on the graben, with superimposed* short- 

wavelength, high-am plitude, positive tem perature anomalies.

I interpolated tem peratures at selected depths from the individual- 

well tem perature plots; from these interpolated values I created two further 

displays (across the Central Graben). The most important of these was a 

simple line plot of the interpolated data which shows the tem perature 

variations (Fig. 2.9). The second a computer generated contour plot of the 

interpolated data (Fig. 2.10). These plots again display both long-wavelength 

and short-wavelength tem perature anomalies. The line plot of interpolated 

data is the primary reference for the thermal modelling reported in 

subsequent chapters.

2.2 Temperature Data Corrections

Downhole tem peratures are obtained from thirty wells (see Table 2.1; 

Appendix 1) distributed along or close to a SW-NE profile (see Fig. 2.1 for 

well locations). These thirty wells contain multiple data points of sufficient 

quality to construct meaningful tem perature/depth profiles, and it is this set 

of information, spanning both lateral and depth co-ordinates, that is used to 

define the present-day temperature field across the Central Graben.

The process of drilling a well disturbs the temperature field near the 

well-bore due to differences between the usually cooler drilling fluid and
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the in situ rocks. M easured bottom-hole tem peratures (BHT's) m ust, 

therefore, be adjusted so as to better approximate the true ambient 

tem perature (Hermanrud 1988; Herm anrud et al 1990). The tem perature 

data used in this study have been corrected (by Robertson Research 

International Ltd.) for this transient effect, as is normal practice, using either 

Horner plots (as described by Fertl & Wichmann 1977) or modified 

empirical graphs (Neglia 1979; Carstens & Finstad 1981). In cases where 

several tem peratures are recorded at the same depth or within 

approximately 10 m of each other in the same well, and when these data are 

poorly correlated, the temperature reading with the longest 'time since 

circulation' (i.e. the temperature reading which has had longest time to re­

equilibrate) is taken as being closest to equilibrium, and the other 

tem peratures near that depth are disregarded.

The accuracy of BHT data is a much-debated subject. Several different 

m ethods have been suggested  for calculating  the true  fo rm ation  

tem perature (Lachenbruch & Brewer 1959; Cao et al 1988; H erm anrud 1988). 

According to Carstens & Finstad (1981), in favourable situations (e.g. good 

quality control at the time of the logging run) the uncertainty involved w ith 

BHT's can be reduced to as little as ±3°C, bu t they adm it th a t in 

unfavourable cases, the errors may be as much as ±10°C or even greater. 

Friche and Schlosser (1980) suggest that uncertainties of ±5°C m ust be 

expected for BHT data, while H erm anrud et al (1990) states that logging 

derived temperatures result in a standard deviations between 8 and 10°C.

I have no independent means of determining the quality of the data 

acquisition stage for each recorded temperature. Therefore the uncertainties 

associated w ith the tem perature data used in this study may be as low as 

±3°C or may be as much as ±10°C or greater for data corrected by modified 

empirical graphs. BHT data corrected by the Horner Plot method will result 

in tem peratures with a standard deviation of ±8.3°C (Hermanrud 1990). The
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specific m ethod of tem perature correction is not known for m ost of the 

tem perature data supplied by Robertson Research International Ltd., so in 

order to be as conservative as possible I assume the larger uncertainties 

(±10°C).

2.3 Temperature-Depth Relationships

In this study, investigation of the tem perature field is carried out 

using only corrected BHT data (as described in the previous section). The 

wells used in this study (Fig. 2.1) are projected onto the 2-D profile 

perpendicular to the line of section (projection distances are shown in Table 

2.1). Initially I calculate 1-D temperature gradients on a regional average 

basis, and subsequently on a well-by-well basis. This approach reveals 

variations in temperature gradient related to structural setting.

2.3.1 Regional 1-D Temperature Gradients

A tem perature gradient approach is used in order to limit the 

interpreted errors caused by spurious temperature values. There is no way 

to guarantee the accuracy of any single data point; however, it m ay be that 

the interpretation is improved by fitting a line through several data points.

A plot of all corrected temperature data against depth for the Central Graben 

gives a best-fit temperature gradient of 36.23±0.6°C/km (Fig. 2.2). However, 

when the temperature data is separated into three geographically-defined 

sub-areas -- platform, terrace, and deep graben (Fig. 2.1) according to PESGB 

(1990) -- local differences are apparent. The three areas have calculated 

tem perature gradients of 33.9±1.3, 36.7±0.9, and 35.5±1.5°C/km respectively, 

w ith the platform area having the lowest overall temperature gradient (Fig. 

2.3). These gradients compare favourably with the 33°C/km tem perature
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gradients reported by Barnard & Bastow (1991); Thomas et al (1985) report 

generally 30-35°C/km (Viking Graben) and 37.5°C/km or greater in the axis 

of the Central graben; and Carstens & Finstad (1981) deduce an average 

gradient of 30-35°C/km for studies in the northern N orth Sea.

Having established that the temperature gradients show variability 

across structural domains in the North Sea, I now undertake a more 

detailed study of the temperature data on a well-by-well basis. This more 

detailed study is undertaken to discover any more-localised variability.

2.3.2 W ell-by-W ell Temperature Gradients

Two methods are used in calculating tem perature gradients for an 

individual well. The first is simply to find a best-fit line through only the 

available BHT data. In the second method, a surface tem perature of 10°C 

(Harper 1971) is added to the data set in each well (as a single new data point; 

surface in this case the sea-bed). A best-fit line is then calculated through the 

revised data.

The first method is prone to suggesting overly high or low 

tem perature gradients, especially where the available data within one well 

lies within a narrow depth range (see Fig. 2.4) It is still possible that the 

calculated values represent the actual temperature gradient over that 

limited depth range. The second method will reduce the problem associated 

with tem perature data lying within a narrow depth range, and provides a 

more conservative calculated tem perature gradient (individual well plots 

are shown in Appendix 2).

In this study, temperature gradients calculated on a well-by-well basis 

further demonstrate local variability. Table 2.1 shows the calculated overall 

tem perature gradients for the thirty wells used in this Central Graben study. 

For the two methods (temperatures without and with the assigned surface
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value), the range in temperature gradient is 20.1 - 51.5°C/km and 24.6 - 

44.6°C/km respectively.

Wen No. Tem perature 
Gradient 
(°C/km) without 
surface temperature

Tem perature 
Gradient 
(°C/km) with 
surface temperature

Projected
Distance
(km)

Section
Line
Distance
(km)

29/23-1 20.1 24.6 13 0
29/24-1 36.4 31.1 1 5.5
29/25-1 41.3 34.5 1 21.5
30/16-5 39.3 35.1 7 42
30/17-8 37.5 36.2 2 49
30/17-7 31.4 32.4 5 54
30/12-3 36.2 37.0 1 56.5
30/12-2 31.4 34.1 1 58
30/13-2 44.8 34.1 2 71
30/13-1 40.5 37.0 5 72
1/5-2 41.5 38.6 9 77
30/8-1 34.3 36.1 9 77.5
1/6-4 30.8 36.8 3 93
1/3-5 40.7 37.6 3 103
1/3-1 37.3 36.0 6 106.5
1/3-4 51.5 44.6 19 107
1/3-2 38.8 35.5 17 108.5
2/1-7 33.2 33.5 3 118.5
1/3-3 23.8 36.4 9 119.5
2/1-4 37.2 35.6 3 120.5
2/1-6 35.8 34.8 4 121
2/1-8 34.2 34.6 1 122
2/1-3 33.4 34.6 1 124
2/1-2 29.3 32.5 1 131
8/10-1 36.1 36.3 20 135
2/2-2 32.2 32.6 7 138
8/10-2 Insuff. Data 33.0 12 147.5
8/11-1 32.0 30.5 3 161.5
8/12-1 38.2 35.2 1 176
10/5-1 26.4 29.0 35 235
M in. 20.1 24.6 1 ---------------

Max. 51.5 44.6 35

TABLE 2.1 - Calculated temperature gradients for the thirty wells used in 
the Central graben study. (Reference point for distance [in all sections] is 
well 29/23-1 which is taken to be at the origin)
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As expected, temperature gradients calculated w ithout the assum ed 

surface temperature produce a wider range of values than do the calculated 

gradients which include an assumed surface data point. If these variations 

in tem perature gradient are plotted against distance along the 2-D section 

(Fig. 2.5), the local variability is made clear. It is concluded that the use of a 

single (or even regional) temperature gradient for the study area w ould be 

an unacceptable means to estimate temperatures at points where 

measurements are lacking.

2.3.3 Sum m ary

An overall temperature gradient for the Central Graben is calculated at 

36.23±°C/km (Fig. 2.2). This gradient cannot, however, be reliably applied 

across the Central Graben. Subdivided plots of temperature gradients 

determined for platform, terrace, and deep graben areas show regional 

variability (Fig. 2.3). On a well-to-well basis, local variability of the 

tem perature gradient is even more apparent (Fig. 2.5), w ith tem perature 

gradients (for the 10°C surface temperature set) showing a range from 24.6 

to 44.6°C/km across the graben. The higher values of tem perature gradient 

are confined to the graben area especially the edges of structural highs and 

the graben edges, with the low values of temperature gradient found mostly 

on platform areas.

2.4 2-D Temperature Distribution (BHT Data)

Although a considerable range in temperature gradients across the 

Central Graben has been shown in Section 2.3, the variability of 

tem peratures in two-dimensions is difficult to visualise from gradients
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alone. To investigate the temperature distribution, both laterally and with 

depth, tem perature contour plots of the original BHT data have been 

constructed. The reference point for distance in all sections is well 29/23-1 (0 

km).

2.4.1 Hand Contoured BHT Data

A hand contoured plot of the corrected bottom-hole tem peratures 

was constructed first. The individual contours from this plot are then 

digitised, and gridded using a computer mapping package, to produce a 

tem perature contour plot (Fig. 2.6; the use of this m apping package permits 

a direct comparison to other plots introduced later). This plot shows a broad 

positive tem perature anomaly centred over the deep graben most obvious 

at 3 to 5 km  depth. The anomaly has a half-wavelength of approxim ately 120 

km, and becomes more poorly defined towards the north-east. In 

subsequent discussion this regional variation in tem perature is referred to 

as the long-wavelength anomaly (LWA). Superimposed onto this long- 

w avelength anomaly are several, significant (up to 40°C), narrow  (<10 km 

half-wavelength), positive tem perature variations. These are subsequently 

referred to as short-wavelength anomalies (SWA's). The m ain SWA's are 

docum ented in Table 2.2. The magnitude of these tem perature anomalies 

(SWA's) range from 10 to 15°C (in well 30/12-3) to up to 40°C (in well 1/3- 

4), and their wavelengths range from 5 to 15 km.

2.4.2 Computer Contoured BHT Data

To provide an alternative interpretation, the same original corrected 

BHT data (Appendix 1) was gridded and contoured using a computer 

m apping package (Fig. 2.7). A broad, positive LWA is once again apparent
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on this plot (centred at approximately 90-100 km); it is especially obvious in 

that part of the plot between 110 and 210°C. The temperature field across the 

Central Graben also shows significant localised variability; there is a 40°C 

anomaly at approximately 110 km (Well 1/3-4); there is both a shallow (<2 

km), 40°C temperature anomaly centred on 125 km (Wells 2/1-2 and 2/1-3), 

and a 20°C anomaly at depth in the same location; several other, smaller 

(up to 20°C) temperature anomalies occur at locations between 50 and 75 

km on the section line.

W ell
N um ber

Distance
(km)

Approxim ate 
M agnitude of 
SWA (°C)

Approximate
W avelength
(km)

Com m ents

30/17-8 49 20 10 Terrace (West Central 
Graben)

30/12-3 56.5 10-15 5 Deep Graben (West 
Central Graben)

1/3-4 107 up to 40 5 Terrace (East Central 
Graben)

2/1-2
and
2/1-3

124-131 30 15 Edge of Egersund 
High. Tem peratures 
in excess of 40°C at 
500m depth.

8/10-2 147.5 15 10 Egersund High 
/  Norw egian-D anish 
Basin

TABLE 2.2 - Location, m agnitude and wavelength of significant SWA's 
observed in the tem perature contour plot (hand-contoured) across the 
Central Graben (see Fig. 2.6).

The area of greatest temperature variability lies between 

approximately 100 and 140 km along the section line (Fig. 2.7). Of the thirty 

wells used in the study, thirteen (43%) lie within this 40 km stretch of the 

section. The remaining 57% of wells account for 195 km of the sections 

length. This relationship suggests that a greater density of well data within
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the section would reveal even greater variability than is apparent from 

Figure 2.7.

2.4.3 Discussion

The two methods of contouring the original corrected BHT data are 

independent. However, both contour plots display broadly similar patterns 

of variability in temperature across the graben (compare Figs. 2.6 and 2.7).

Each contour plot shows a LWA centered on the graben. This broad 

anomaly is less well-defined in the hand-contoured plot (Fig. 2.6) than in 

the computer generated one (Fig. 2.7). The small-scale complexity of SWA's 

are also present within both contour plots, and their magnitudes range up 

to 40°C. The SWA's identified in the hand-contoured contour plot are 

compatible in location, magnitude and wavelength to those identified 

within the computer-generated plot. The identification of positive 

tem perature anomalies at the present-day on long and short wavelength 

scales is robust to different interpretations. I conclude that the variability of 

tem perature is therefore "real".

2.5 Depth-Specific Temperature Profiles (Interpolated Data)

2.5.1 Interpolation o f Data

The well-by-well temperature gradients are used to interpolate 

temperatures at selected depths across the graben. This set of interpolated- 

tem perature data is used in the construction of line and contour plots.

Two sets of tem perature gradients have previously been calculated. 

The first, w ithout an assumed surface temperature (Fig. 2.5), is prone to 

indicating overly high or low temperature gradients (and by implication,
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high or low temperatures away from the actual data points). For this reason 

I use the more conservative set of temperature gradients with a 10°C 

assum ed surface temperature (Fig. 2.5), to interpolate the tem peratures at 2, 

3, 4 and 5 km depths within each well.

The method of using the overall temperature gradient of a well to 

interpolate to desired depths will reduce the influence of anomalous data 

points (Fig. 2.8). In some wells (Figure 2.8A) the interpolated data points are 

close to the BHT data trend anyway. However the influence of anomalous 

(or unusual) data points is reduced by the use of an overall tem perature 

gradient method (Fig. 2.8 B).

2.5.2 2-D Interpolated Profiles

Using these interpolated temperatures for each location, I construct 

depth-specific temperature profiles across the Central Graben (Fig. 2.9).

These reveal the maximum and minimum interpolated tem peratures at 2, 

3, 4, and 5 km depths (Table 2.3), as well as the spatial variability in 

tem perature across the Central Graben. Again, a positive LWA is evident, 

and it has superimposed positive SWA's.

The main SWA's of these profiles are documented in Table 2.4. These 

SWA's range in magnitude from 10 to 15°C (in well 30/17-8), to between 35 

and 40°C (in well 1/3-4), and they have wavelengths ranging from <5 km to 

approxim ately 15 km. Only one of the observed tem perature anomalies 

occurs w ithin the deep graben. The majority occur in "terrace" areas, and at 

the m argins of major structural features (horst/graben edges, see Fig. 2.9).

2.5.3 Interpolated Data - Computer Contoured
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Interpolated Temperatures
Depth (km) Lowest (°C) Highest (°C) Range (°C)
2 km 70.0 86.6 16.6
3 km 98.9 131.3 32.4
4 km 126.4 175.9 49.5
5 km 150.9 220.6 69.7

TABLE 2.3 - Calculated temperature variation at 2, 3, 4 and 5 km depths for 
the interpolated tem perature data.

W ell
N um ber

Distance
(km)

Approximate 
M agnitude of 
SWA (°C)

Approximate
W avelength
(km)

Com m ents

30/17-8 49 10-15 10 Terrace (West Central 
Graben)

30/12-3 56.5 20 5 Deep Graben (West 
Central Graben)

1/3-4 107 35-40 5 Terrace (East Central 
Graben)

1/3-3 119.5 15 5 Graben Edge (East 
Central Graben 
/Egersund High)

8/10-1 135 12-20 10 Egersund High

TABLE 2.4- Location, m agnitude and wavelength of significant SWA's 
observed in the interpolated temperature profiles across the Central Graben 
(see Fig. 2.9).

The interpolated data set is gridded and contoured in the com puter 

m apping package (the identical procedure to that of Section 2.42, bu t using 

the smoothed interpolated data). The resulting plot (Fig. 2.10) shows much 

less variability than the hand or computer contoured BHT data (Figs. 2.6 & 

2.7). This is partly to be expected as Figure 2.10 constitutes the most 

conservative projected temperature field for the Central Graben. It has 

undergone smoothing through the use of a best-fit tem perature gradient as 

described above, and a further smoothing through the gridding and 

contouring process. However, Figure 2.10 still shows a positive LWA,
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although of shallower amplitude than those revealed by the other m ethods 

described previously. Wells 1/3-4 (107 km) and 8/10-1 (135 km) also show 

small SWA's, of approximately 15 and 10°C in m agnitude respectively and 

of approximately 5 km half-wavelength.

2.5.4 Sum m ary

The depth-specific line profiles of the interpolated data (Fig. 2.9), 

reveal SWA's of between 10 and 40 °C in magnitude, w ith maximum 

wavelengths of 10 km (Table 2.4). The variability of tem perature across the 

graben at 2 to 5 km depths is documented in Table 2.3 and shows variability 

of up to 69.7°C at 5 km depth.

The computer generated contour plot of the interpolated data is 

undoubtedly the most conservative of the tem perature plots, however, it 

too displays a broad LWA and two SWA's, located at 110 and 135 km, of 

30°C and 10°C, respectively.

Thus, the LWA and SWA's persist through all data smoothing 

processes and alternative contouring exercises. These anomalies are 

consequently believed to be robust and not to be artefacts of poor data.

2.6 Comparison of BHT Data Plots to Interpolated Data Plots

Of the four 2-D temperature plots (Figs. 2.6, 2.7, 2.9 & 2.10) the 

computer generated contour plot of interpolated tem perature data (Fig. 2.10) 

shows the least variability in temperature. Although it has the least overall 

variability, it still shows some of the temperature features observed in all 

other tem perature plots — namely SWA's located at wells 1/3-4 (107 km) 

and 8/10-1 (135 km), and an overall elevation of tem peratures towards the 

centre of the graben (LWA).
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The 2-D contour plots of the original corrected BHT data (Figs. 2.6 & 

2.7 -- A hand-contoured plot, and a computer-generated BHT contour plot, 

respectively) show much wider variability in tem peratures with depth and 

distance than does the computer-generated contour plot of interpolated- 

temperature data (Fig. 2.10). Comparing Figures 2.6 and 2.7, the overall 

geometries are essentially the same but the computer-generated BHT data 

plot shows more localised complexity.

The main features of both the hand contoured BHT data plot (Fig.

2.6), and the interpolated profiles (Fig. 2.9), indicate a LWA with 

superimposed SWA's. However, in the hand-contoured plot, the LWA is 

less well defined in the Norwegian sector (due to a lack of BHT data from 

depths in excess of 3 km, see Appendix 1). The tem perature ranges for the 

two profiles differ considerably for the shallow portion of the graben (Table 

2.5). At 2 km depth, the hand-contoured plot shows almost twice the 

tem perature range of the interpolated-temperature profiles. This is due to 

the shallow temperature anomaly observed in wells 2/1-2 and 2/1-3 (Fig. 2.6, 

Table 2.2) which is "smoothed" by the best-fit line m ethod adopted for the 

calculation of individual tem perature gradients. The ranges in tem perature 

at 3 and 4 km depths are in broad agreement for both profiles. At 5 km the 

lack of deep BHT measurements on the graben margins does not allow a 

meaningful estimation of the tem perature range for the hand-contoured 

profile.

The short-wavelength anomalies observed in both the interpolated 

and hand-contoured profiles are closely comparable, each set having ranges 

in magnitude, and wavelength, of approximately 10 to 40°C, and 5 to 15 km, 

respectively (compare Tables 2.2 & 2.4). For both profiles, wells 30/17-8, 

30/12-3, and 1/3-4 are located at significant SWA positions, with closely 

compatible magnitudes and wavelengths.
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Depth (km) Tem perature Range 
(°C)
Interpolated

Tem perature Range 
(°C)
Hand-contoured

2 km 16.6 30.8
3 km 32.4 40.0
4 km 49.5 47.0
5 km 69.7 Limited Data

TABLE 2.5 - Calculated maximum temperature variation at 2, 3, 4 and 5 km 
depth for interpolated and hand-contoured profiles.

The two remaining interpolated anomalies, at wells 1/3-3 and 8/10-1 

(Table 2.4), are not observed within the hand-contoured profiles. This is 

because the BHT data in each of these wells falls within a restricted depth 

range (4 to 5 km, and 2 to 3 km respectively, see Appendix 1) and therefore 

does not provide a sufficient spread in depth to show any anomaly on the 

hand contoured plot. Likewise, the tem perature anomalies observed in 

wells 8/10-2 and wells 2/1-2 and 3, within the hand-contoured profiles, are 

NOT observed in the interpolated profiles as they too occur over a narrow  

depth range (<1 km) and are "overlooked" by a best-fit line tem perature 

gradient.

The interpolated-temperature profiles will reduce the effects of poor 

quality data by the interpolation of data points from a best-fit line. They also, 

however, smooth depth-limited tem perature anomalies such as that 

observed in wells 2/1-2 and 2/1-3 (Figs. 2.6 and 2.7). Therefore, the use of 

both BHT data plots, and interpolated data plots, is essential in observing all 

the natural variability, and establishing the robust nature of the LWA and 

SW A's.

2.7 Conclusions/Observations

2.7.1 Temperature-Depth Interpretation
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Thirty wells have been used to calculate present-day tem perature 

gradients within the Central Graben. These show local variations, and 

regional differences from platform, to terrace, and graben areas (Fig. 2.3). 

When tem perature gradients are calculated on a well-by-well basis w ith an 

assigned surface temperature, the local variation is even more apparent 

(Fig. 2.5). A range in tem perature gradient occurs across the Central Graben 

from 24.6 to 44.6°C/km. The well-by-well range in tem perature gradient is 

comparable to that established by Carstens and Finstad (1981) for the 

northern North Sea: "mean geothermal gradients generally vary between 

25 and 40°C/km, higher and lower values being rare."

2.7.2 2-D Temperature Study

Several methods of constructing 2-D profiles are utilised in this study 

of tem peratures across the Central Graben. The main observations from 

these profiles follow:-

• In each case a positive low-amplitude, long-wavelength, positive 

tem perature anomaly is observed, centred on the graben axis (LWA).

• 2-D plots of the corrected BHT data (whether hand-contoured or 

computer generated) display short-wavelength, positive tem perature 

anomalies (SWA's) of up to 40°C. These SWA's are consistent for 

both methods used to construct BHT data plots.

• Interpolated data profiles (Fig. 2.9) show SWA's of up to 40°C, and 

maximum of 10 km wavelength; these are comparable to those 

observed within the BHT data contour plots.
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• A computer-generated contour plot of the interpolated tem perature 

data (the most smoothed and conservative of all the tem perature 

plots) again shows both the LWA and two SWA's of up to 30°C.

• Therefore, for all methods of 2-D temperature profiling, the thirty 

wells considered display a broad, long-wavelength, positive 

tem perature anomaly (LWA) across the Central Graben, w ith 

superimposed, localised temperature highs (SWA's) of, in cases, up to 

40°C. These anomalies are considered to be robust and not artefacts of 

data quality.

Each method of tem perature profiling results in slightly different 

geometries of LWA, and different magnitudes of the superim posed SWA's. 

However, in each case it is equally true that the subsurface tem perature field 

shows considerable spatial variability. Subsequent chapters assess the 

possible causes of this variability through both conductive tem perature 

models, and regional and localised fluid flow models. In order to proceed, 

the relatively conservative interpolated-tem perature profiles in Figure 2.9 

(the basis for Figure 2.10) have been used as the definitive present-day 

tem perature plot. In reality, as Figures 2.6 and 2.7 show, the tem perature 

field is likely to be significantly more complex.
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CHAPTER 3

CONDUCTIVE HEAT TRANSPORT

3.1 Introduction

3.1.1 Sum m ary

The present day temperature field in the Central North Sea can be 

decomposed into a long-wavelength anomaly (LWA), with short- 

wavelength anomalies (SWA's) superimposed onto it (Chapter 2, Fig. 2.9).

In this, Chapter 3, I investigate the contribution of conductive heat transport 

to the observed present-day temperature field to assess whether the 

observed temperatures are explicable purely in terms of conductive heat 

transfer. If so, what is the conductive architecture (in relation to basal heat 

flow, and thermal conductivity of sediments and basement)?

Using numerical models, I show that the LWA can be fully explained 

by conduction-only processes, i.e. lateral and vertical variation in therm al 

conductivities, and changes in basal heat flow. The observed LWA can be 

matched for a basal heat flow ranging between 65 and 70 mWm"2, a 

basement thermal conductivity of 3.5 W m "l°C 'l, and an average sediment 

thermal conductivity of approximately 2.5 W m "l°C 'l, given the geometries 

of these units as defined by geological studies. However, other models are 

possible — radically different geology (unlikely), or advection of heat by 

fluids (see Chapter 4).

The SWA's observed within the "real" tem perature profiles have 

such narrow  wavelengths that only anomalous conduction features (for 

example, salt pillars or wedges) could produce tem perature anomalies of 

similar wavelengths. However, the tem perature anomalies produced by
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such salt features are here shown to be of much smaller m agnitude than the 

observed SWA's, and so another explanation is required (see Chapter 4).

3.1.2 M ethodology

The thermal modelling of the Central Graben is accomplished 

through the use of the modelling package OILGEN (Garven, 1989) — a two- 

dimensional, steady-state/transient, finite element computer code that is 

capable of simulating both conductive heat transfer and advection of heat by 

moving groundwaters. The approach adopted in OILGEN is to define up to 

nine distinct material types from which a model is constructed.

In order to calculate the thermal models, I select a section line that 

runs from the Pennines in north-east England to southern Norway; it 

crosses the Mid-North Sea High, the Central Graben, and the Norwegian- 

Danish Basin (Fig. 1.1), and it has a total length of 800 km. A generalised 

cross-section Figure 3.1) was constructed from: an interpreted seismic 

section (line no. 17, provided by British Petroleum pic); public well data 

(from Robertson Research International Ltd.); in conjunction w ith cross- 

sections and isopach maps (Ziegler 1982). This cross-section is discretised 

into a finite element mesh of 20 rows and 39 columns of quadrilateral 

elements (Figure 3.2). The geometry of the top of the basement will remain 

constant throughout the modelling, but the sub-division of the sedimentary 

fill of the Central Graben may be changed according to the required 

complexity of a particular model (by assigning material types to each of the 

elements). However, although the material properties and the num ber of 

individual units may change, the mesh remains essentially unchanged 

throughout modelling.

The main factors affecting the conductive tem perature field in this 

section are the basement thermal conductivity, the distribution of therm al
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conductivity within the basin sediments, and lateral variations in basal heat 

flow (the sides of the model are insulated, and the top is held constant at 

10°C). Published thermal conductivity data for the central North Sea 

sediments is limited, and basal heat flow and basement thermal 

conductivity values may be estimated (Evans & Coleman 1974; Del Rey & 

Hamza 1989; Raffensberger and Garven 1995) but remain essentially 

unknown. Therefore, it is not possible to create a definitive therm al model 

of the Central Graben. Instead, using the published data, I establish a likely 

range for basement and sediment thermal conductivities, and a range for 

basal heat flow. I use these ranges to undertake sensitivity studies. In the 

following sections, each of these parameters is investigated in turn, and 

comparisons are made with the observed tem perature profiles (Fig. 2.9), in 

order to identify a best-fit model.

3.2 Long-Wavelength Anomaly: Effects of Basin Geometry

3.2.1 A im s

For a constant basal heat flow, differences in thermal conductivity 

between basement highs and the adjacent sedimentary fill, and variations in 

the thermal conductivities of sedimentary units within the basin, will result 

in changes to the predicted temperature field (Lovering 1936). I here 

quantify the magnitude of tem perature changes in the Central Graben 

associated w ith these differences and compare them to the real tem perature 

field (Fig. 2.9).

3.2.2 Basement Highs

3 8



To determine the temperature effects of basement vs sediments (e.g. 

to assess rift margins, and intra-rift highs), I first use a model in which the 

sedimentary fill of the basin (Carboniferous to Holocene) is treated as one 

uniform unit ("sediments"), with all pre-Carboniferous rock treated as a 

second uniform unit ("basement"). The geometry of this "basement high" 

model (Fig. 3.3) is simplified from the full geological interpretation (Fig. 3.1). 

The material properties for the "sediments" (thermal conductivity and 

porosity; Table 3.1) are chosen to encompass the range of measured thermal 

conductivity values for Central North Sea sediments (Andrews-Speed et al, 

1984). The range in thermal conductivity for basement (Table 3.1) is 

assumed, but is comparable to values tabulated by Raffensberger & Garven 

(1995), and Del Rey & Hamza (1989). For these models, basal heat flow is 

held constant at 70 mWm“2 (value approximated from Andrews-Speed et 

al, 1984).

Thermal Conductivity 

(m W m -2)

0 (%)

Sedim ents 1.0,2.0,2.5,3.0,3.5,4.0,5.0 5.0

Basement 2.5,3.5,4.5 0.01

Table 3.1 - Set of thermal conductivity and porosity values used in 
"Basement High" models (0 - porosity, sediment therm al conductivity 
ranges taken from Andrews-Speed et al, 1984).

For each of the estimated values of basement conductivity, I run. a 

suite of simulations using the full range of sedimentary-fill thermal 

conductivities (Table 3.1; sediment in each case treated as uniform and 

homogeneous). For each simulation, the full tem perature field is calculated 

for all elements (Fig. 3.4). In order to quantify the difference in tem perature 

(AT) between basement highs and the sediments adjacent to them, I extract

3 9



fi 
g 3

.3 
H

yd
ro

st
ra

ti
gr

ap
hy

< 0 ~ 1 f N c o  rj- m  vtp r^> 0 0  ^  £ -

SJ3J3LUOIiyj fil
l 

(b
lu

e)
. 

T
em

pe
ra

tu
re

 
ch

an
ge

s 
arc

 
m

on
ito

re
d 

at 
po

in
ts

 
A 

to 
D 

an
d 

A
’ t

o 
D

\



ON

ONin

O N

o  _ o
NO

o
<N
m

o_

o  o - o  £ 
*  o

o
NO
co

o
_ OO

cm

o_ 'd" 
<N

NO

CM

OO

oCM OCMOO
SJ3}3UI0ir>J

t;cd
<D

T3cd
.5?
co
U
<D<L)i-ioo<uTJ

o •£ * cd
1/3 _  
3 '
°  o  ■3 fc
0  £
°  o<D P
3 04
3  "l-> c/3
W £Qj >-«C wC PD C

H  ^
. a  

13 co 
T3 _ r

1 *
= U  x  -7 
.5P* 
•=  £  
c  £<uc  in
<u coc/3 .,cd II 

Xi *-*
"cd § 
u. 03

i -^  13 
•a  * 0

«  iD C/3 
V- - 3

s  £
2 £<D ^  9- c/3
£ 15
3 IT3 ^
2 ecd
3 uO C/3
15o £D 00 
w -a

0 s
£  c o* —C (U 
£  1/2 
5  ^X o r t 1 1—M-1 o
1 c

^  ’-5co ^  aj cd
3 O00
E cd



the modelled temperature from points A to D and A' to D' (see Fig. 3.3). The 

unprim ed letters refer to points a t/o n  basement highs, and the prim ed 

letters denote locations at the same depth but some 10 to 15 km away, and 

w ithin the sedimentary fill.

I define AT as the temperature at A minus the tem perature at A', and 

similarly at the other points (AT = Ta - TaO When I plot AT against the 

average value of conductivity of the sedimentary fill, I find that the 

tem perature anomalies over the basement highs (AT) increase w ith 

decreasing sediment thermal conductivities (Fig. 3.5). However, only w hen 

sediment thermal conductivity values are lower than 2 Wm“l°C"l does AT 

significantly exceed 10°C.

Based on published thermal conductivity values (Andrews-Speed et 

al, 1984; Fig. 3.6) it is apparent that the average thermal conductivity of the 

sedimentary fill is probably greater than 2.0 W m "l°C 'l. Of all the therm al 

conductivity measurements made on samples from the Central Graben, 

only the Tertiary and Carboniferous units record thermal conductivities as 

low as 2.0 Wm“l°C"l, with no measurements below 2.0 W m"l°C"l 

(Andrews-Speed et al 1984). Therefore, I subsequently do not give further 

consideration to sediment conductivities below 2.0 Wm"l°C"l. At the other 

extreme, for the average sediment thermal conductivity to be 5.0 Wm"l°C"

1, the bulk of the sedimentary pile would have to consist of dolomite, halite 

a n d /o r  anhydrite; such lithologies are not dom inant in the basin fill of the 

Central North Sea (Cayley 1986; Glennie 1990), and in the following 

discussion, I only consider sediment thermal conductivities of 4.0 W m“l°C ' 

1 or smaller.

Using these high and low limits (4.0 and 2.0 Wm"l°C"l), I next 

consider the effects of different basement thermal conductivities. If AT is 

plotted against basement thermal conductivity, the conductive tem perature 

anomalies over basement highs within the Central Graben range from a

4 2
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maximum of ~10°C to essentially nil, or even negative (Fig. 3.7). Based on 

these modelled results I conclude that the m agnitude of conductive 

tem perature anomalies associated with basement highs falls w ithin the 

range +11°C to -5°C.

Full-model tem perature contours for the two extreme cases are 

shown in Figure 3.8. In Case 1 (minimum thermal conductivity of 

sediments and high basement thermal conductivity) small tem perature 

peaks of 10°C or less are produced, but only at the edges of basement blocks, 

and a broad (flat topped) LWA is obtained. Case 2 (sediments at maximum 

thermal conductivity, and low basement thermal conductivity) produces a 

negative LWA and no substantial temperature peaks. Neither extreme case 

produces temperature profiles identical to those actually observed by wells 

(Fig. 2.9). However, Case 1, where the sediments have low conductivity and 

the basement conductivity is high, produces a LWA that is at least of the 

right sign. I conclude that the likely conductivity structure is one where 

basement conductivity is fairly high, and sediment conductivity is, on 

average, fairly low.

3.2.3 The Sedimentary Pile

The preceding section describes results of simple model 

configurations which constrain the range in both m agnitude and shape of 

tem perature anomalies associated with basement highs and especially their 

edges. I now focus on the temperature effects of variations in therm al 

conductivity distributions within the sedimentary pile.

In order to keep the complexity of the argum ent to a m inimum, I 

divide the lithostratigraphy of the basin (Carboniferous to Holocene) into 

four conductivity units (Table 3.2). Each unit contains stratigraphic groups 

of similar measured thermal conductivities according to data reported by
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basem ent therm al conductivity.
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Andrews-Speed et al (1984), (Fig. 3.6). From these four units a model is 

constructed with which to conduct the sensitivity studies (Fig. 3.9). This 

model shows the post-rift fill of the broad basin (Unit 1), the Upper 

Cretaceous "drape" (Unit 2), and the rift-fill (Units 3 & 4) which is restricted 

to the deep graben itself.

Unit 1 Cenozoic

Unit 2 Upper Cretaceous

Unit 3 Lower Cretaceous to Upper Triassic

Unit 4 Lower Triassic to Carboniferous

TABLE 3.2 - Conductivity units used in thermal modelling of the 
sedimentary pile, and their stratigraphic counterparts (see Fig. 3.9).

Five models are constructed to evaluate the range in therm al 

conductivities of these composite units (Table 3.3): all units at maximum 

thermal conductivity (Max); all at minimum (Min); units 1 & 3 at 

maximum, and units 2 & 4 at minimum (Mix 1); and vice versa (Mix 2); and 

units 1 to 4 at their approximate average (Avg). Each of these five models is 

used in simulations where the basement thermal conductivity is assum ed 

to be 2.5, 3.5 or 4.5 Wm"l°C"l. This results in 15 simulations at a constant 

(70 mWm"2) basal heat flow.

The temperature calculated in these simulations is extracted for a 

series of points at 4 km depth; the modelled tem peratures are then 

compared (Fig. 3.10) to the actual temperatures at 4 km depth, interpolated 

in Chapter 2 (Fig. 2.9). The results of each simulation produce a broad, long 

wavelength anomaly (LWA), but none produce a tem perature profile 

comparable to the observed temperature profile. In each case the m odelled 

profiles are higher or lower than the real temperatures and are of lower 

am plitude.
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Figure 3.10 Comparison of m odelled temperature profiles to 
observed temperature profile (Chapter 2) for 
basem ent thermal conductivities of 2.5, 3.5 and 
4.5 W m-l°C-l. All profiles from 4km depth.



UNIT

(see Table 3.2 

for stratig'ic. 

units).

Reported Range 

(W m -l’C -l)

(Andrews-Speed et al, 

1984)

Assigned Thermal Conductivities 

(W m -i’C-1)

MIN MAX MIX1 MIX 2 AVG.

1 2.0 - 2.8 2.0 3.0 2.0 3.0 2.5

2 3.2 2.5 3.5 3.5 2.5 3.0

3 2.4 - 3.6 2.0 4.0 2.0 4.0 3.0

4 2.0 - 4.7 2.0 5.0 5.0 2.0 3.5

TABLE 3.3 - Assigned thermal conductivity values for the five models. 
Units 1 - 4 as defined in Table 2. Each case is run assuming basement 
conductivity values of 2.5, 3.5, and 4.5 W m~l°C'l.

Which of these simulations is closest to reality? In Figure 3.10A 

(basement = 2.5 Wm"l°C"l), the tem perature profiles produced by each of 

the five simulations (cases in Table 3) have amplitudes that are too small to 

match the observed LWA. Figures 3.10B and IOC (basement = 3.5 and 4.5 

W m "l°C 'l respectively) produce a closer fit to the amplitude of the LWA, 

although the shape of the curves would overestimate the actual 

tem perature between 480 and 620 km. For either of these two basement 

values (3.5 and 4.5 W m 'l°C ‘l), a best-fit model to the observed LWA will 

have thermal conductivity values for each of the four sedimentary units 

somewhere between the Avg case, and the M in/M ix 1 cases.

3.2.4 Best-Fit Model

My aim is to find a best-fit model which will match (as closely as 

possible) the actual LWA at 2, 3, 4, and 5 km depths. Such a best-fit model

5 2



m ust have sedimentary thermal conductivity values which fall in the range 

between the Avg case, and M in/M ix 1 cases, for basement thermal 

conductivity of either 3.5 or 4.5 Wm"l°C"l (Figs. 3.10B & 3.10C respectively). 

The observed temperature profile is judged to be best matched by the model 

w ith a basement thermal conductivity of 3.5 W m 'l°C 'l* In order to keep the 

modelling as simple as possible, I continue the investigation using only a 

suite of simulations in which the basement thermal conductivity is 

assumed to be 3.5 Wm"l°C"l.

In order to judge the quality of the fit, the modelled tem peratures 

from 2, 3, 4 and 5 km depths, for each of the Avg, Min, and Mix 1 cases, are 

compared against the actual (interpolated) temperature profiles at 2, 3, 4, and 

5 km (Fig. 3.11). The Min and Mix 1 cases consistently over-estimate the 

tem perature at any depth. The Avg model is a close match at 2 km but 

increasingly under-estimates the tem perature w ith depth. Therefore, the 

input thermal conductivity values for each of the three cases (Table 3.4) 

define the ranges within which the best-fit model m ust lie. By trial and 

error, I find that the "Best-Fit model" (as defined in Table 3.4) closely 

matches the observed temperature field in the Central Graben (Fig. 3.12).

Although the temperatures calculated by the Best-Fit model (Fig. 3.12) 

match the LWA at 2, 3, 4, and 5 km depths within the Central Graben, the 

Best-Fit model does not produce significant SWA's. The full tem perature 

field plot for the Best-Fit model (Fig. 3.13) reveals only small (approximately 

5°C) tem perature peaks over the edges of basement highs. This Best-Fit 

model, as is also the case in the other thermal models (see Figs. 3.10 & 3.11), 

overestimates the temperature between 480 and 620 km. This may simply be 

a local decrease in sediment thermal conductivity but there is no evidence 

to suggest that this is the likely explanation. Two alternative explanations of 

this phenomenon are: lateral variation in basal heat flow (the models 

discussed thus far have constant basal heat flow), OR, as postulated by
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Andrews-Speed et al (1984), cool groundwaters, descending through the 

sedimentary pile, driven by the hydraulic head provided by the Norwegian 

high, are removing heat. These possibilities are both considered: the first in 

the next section, and the second as part of the following chapter.

Therm al Conductivity Values (Wm"l°C)

M in im um Mix 1 Average (Range) Best-Fit

Unit 1 2.0 2.0 2.5 (2.0 - 2.5) 2.3

Unit 2 2.5 3.5 3.0 (2.5 - 3.5) 2.5

Unit 3 2.0 2.0 3.0 (2.0 - 3.0) 2.5

Unit 4 2.0 5.0 3.5 (2.0 - 5.0) 2.8

TABLE 3.4 - Thermal Conductivity values for models Minimum, Mix 1, 
Average, and Best-Fit model (using geometry of Figure 9).

3.3 Long-Wavelength Anomaly: Variation in Basal Heat Flow

3.3.1 A im s

The modelling package OILGEN assumes a constant basal heat flow 

along the base of the modelled section. Previous heat flow studies of the 

N orth Sea and surrounding areas (Evans & Coleman 1974; Cermak 1979; 

Andrews-Speed et al. 1984) strongly suggest that this is not the case. I 

attem pt here to constrain the possible maximum and minimum basal heat 

flow values along the chosen section line. Over-estimation of basal heat 

flow may be responsible for the consistent over-shoot of tem perature 

between 480 and 620 km (Figs. 3.10 & 3.11) in the thermal models, and I 

therefore attem pt to quantify the local decrease in basal heat flow necessary 

to account for these observations.
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3.3.2 M axima and Minima o f Basal Heat Flow

In the thermal modelling of the sedimentary pile I have show n that I 

can match the LWA observed in the interpolated-tem perature profiles of 

Chapter 2. To do this, the thermal conductivity values for the four 

sedimentary units m ust lie w ithin the range of therm al conductivities in 

Table 3.4, with basement thermal conductivities of 2.5, 3.5 or 4.5 W m"l°C“l, 

and a basal heat flow value of 70 mW m'2 is needed. The tem perature 

profiles at 2, 3, 4, and 5 km are best matched by the Best-Fit model, which 

has a basement thermal conductivity of 3.5 Wm"l°C"l.

In the previous section, I found that the tem perature curves are most 

closely matched for a basement thermal conductivity of 3.5 W m"l°C"l and 

thermal conductivity values within the range of the Avg, Min and Mix 1 

cases. Therefore, I can model the four cases; Avg, Min, Mix 1 and Best-Fit (at 

a basement thermal conductivity of 3.5 W m "l°C 'l), for a range of basal heat 

flow values, and determine the effects of changed basal heat flow on the 

calculated tem perature profiles. If the observed tem perature profiles lie 

outw ith the Avg, Min and Mix 1 modelled temperatures, this result will 

represent an unfeasible basal heat flow value for the Central Graben.

Figure 3.14 shows the four cases plotted for basal heat flow values of 

60, 70, and 80 mWm"2 respectively. This cross-plot clearly shows that for 

basal heat flow values of 60 to 80 mWm’2 the known tem perature profile 

falls w ithin the likely range of thermal conductivity values (Avg, Min and 

Mix 1). [For heat flows of >80 mWm"2 we cannot expect to match modelled 

results to observed tem perature data.] Therefore, a value of 70 mW m‘2 for 

basal heat flow, while it may not be absolutely accurate along the entire 

length of the section, adequately serves as a broad average for modelling in 

the graben area. This average value of 70 mWm"2, obtained by comparing 

the therm al models to the actual tem perature profiles, matches well the

5 8
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Figure 3.14 Modelled tem perature profiles (for models
Minimum, Mix 1, Best-Fit and Average) at 4 km for 
basal heat flow values of 60 , 70 and 80 rnWrn’^. 
These are compared to the observed interpolated 
tem perature profile from 4km (Chapter 2, Fig. 2.9).



mean estimated heat flow value for the central North Sea proposed from 

observations by Evans and Coleman (1974) of 71 mWm"2.

3.3.3 Lateral Variation in Basal Heat Flow

The Best-Fit model shows a good match to the present day 

tem perature field across much of the Central Graben (Fig. 3.12) when the 

basal heat flow value is assumed to be 70 mWm"2. As discussed previously, 

the models consistently over-estimate the tem perature between 480 and 620 

km. One possible cause, as also suggested by Evans and Coleman (1974), is a 

decrease in basal heat flow across this portion of the section from west to 

east. However, fluid movement may also be responsible; see next chapter.

If I plot the calculated temperature profiles for the Best-Fit model, using 

basal heat flow values of 50 to 90 mWm"2, it is possible to estimate the 

change in basal heat flow necessary to account for the decrease in 

tem perature between 480 and 620 km (see Fig. 3.15). The decrease in 

tem perature between 480 and 620 km could be explained as being caused by a 

decrease in basal heat flow of approximately 5 m W m '2 in this area 

(reduction to 65 mW m'2 from 70 mW m'2). Comparisons at other depths 

(not shown) support this conclusion.

3.4 Long-Wavelength Anomaly: Assessment of Conductive Models

A combination of variation of thermal conductivity within the 

sedimentary pile, and lateral variation in basal heat flow, is sufficient to 

explain the observed LWA. The Best-Fit model closely approximates the 

LWA of the observed temperature profiles (Fig. 3.12) at 2, 3, 4, and 5 km 

depths except that it over-estimates the observed tem peratures between 480
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and 620 km. The excess temperatures may be explained by a lateral decrease 

in basal heat flow from 70 to 65 mWm"2 at the eastern end of the profile.

It m ust be emphasised, however, that the Best-Fit model is only one 

possible solution, and is not definitive. For example, small lateral variations 

in basal heat flow would result in a slightly different thermal conductivity 

architecture being necessary to match the observed tem perature profiles. 

Changes in average basement thermal conductivity would also have a 

knock-on effect on the thermal conductivity distribution within the graben 

sediments, as would spatial variation in basement thermal conductivity. 

However, the sensitivity studies undertaken illustrate that small variations 

are not significant to the main conclusions, and that such small variations 

in therm al conductivity cannot account for the tem perature spikes (SWA's) 

noted in Chapter 2. I therefore conclude that for the resolution attem pted, 

the Best-Fit model, coupled with a lateral decrease in basal heat flow, can 

adequately represent the LWA of the Central Graben.

The effects of advection of heat by moving groundwaters have not 

been considered by these conduction-only models (see next chapter). For 

example, Andrews-Speed et al (1984) suggested, from their heat flow studies 

of the Central Graben, that the depression of temperatures in the east of the 

graben may be caused by cool groundwater descending through the 

sedimentary pile off the Norwegian high. Should this be the case, there 

would be no need to invoke a lateral variation in basal heat flow between 

480 and 620 km along the line of section.

The Best-Fit model does match the LWA defined from the observed 

tem perature profiles. Thermal conductivity and basal heat flow values that 

are used are as well constrained as is possible at this scale, and the resultant 

tem perature field is a consistent match over the depth range considered (2 

to 5 km). Although the conduction models produce a good match to the 

LWA, none of the simulations produce SWA's comparable to those on the

6 2



observed temperature profiles (Fig. 2.9). Possible localised conduction-only 

solutions to this mis-match are addressed in the following section.

3.5 Short-Wavelength Anomalies

3.5.1 A  Thermal Conduction Cause?

The temperature profiles presented in Chapter 2 (Fig. 2.9) are 

composed of the LWA with superimposed short-wavelength anomalies 

(SWA's). These SWA's range up to 40°C in magnitude, and they generally 

have wavelengths of less than 10 km (when control points perm it their 

resolution). The conductive models described thus far in this chapter 

explain the shape of the LWA, but these simulations do not result in short- 

wavelength tem perature spikes comparable to those observed on the 

tem perature profiles. This section describes the final possible way in which 

conductivity variations might explain the SWA's.

In order to produce a high magnitude, short-wavelength tem perature 

anomaly in a conductive setting, a narrow "channel" of conductive material 

is necessary. To have a significant effect the channel needs to have a large 

vertical extent — to conduct heat from greater depth into the shallow region 

of the tem perature observations. Diapiric salt occurrences documented 

w ithin the Central Graben (Glennie 1990) are the most likely geological 

candidates for such conductive anomalies. A salt wedge may also have a 

thermal effect, and this geometry is also considered. The models considered 

here are relatively extreme cases.

3.5.2 Salt Models
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Two models are used to assess the effects of salt bodies within the 

Central Graben - the salt dome and salt wedge models (Figs. 3.16A & 3.16B 

respectively). A range of models is considered: varying the thermal 

conductivity of the basement and sediments, but holding the therm al 

conductivity of the salt constant at 5.5 W m 'l°C 'l. The basement therm al 

conductivity is varied from 2.5 to 4.5 Wm"l°C"l, and the value for the 

sedimentary pile (considered homogeneous) ranges from 2.0 - 5.0 W m'l°C" 

1. A comparison is made of the temperature over the top of the dome or 

wedge of salt against the temperature within the surrounding sediments at 

the same depth, but located at a distance approximately 10 km away (see Fig. 

3.16; the salt dome model is patterned after an existing salt pillar 

approximately 25 km to the east of the Auk field (Glennie 1990)). AT is as 

defined before (being AT = Ta - Ta- and so on).

3.5.3 Temperature Anom alies

For both the salt dome and salt wedge models, a temperature 

anomaly develops (Figs. 3.17A & 3.17B). In each case the tem perature above 

the salt is higher than in the adjacent sediments, and the difference (AT) is 

the local "anomaly". The tem perature anomalies increase with decreasing 

average thermal conductivity for the sediments, for any of the m odelled 

values of basement thermal conductivity. Thus, the greater the difference in 

thermal conductivity between salt and sediments, the greater the 

tem perature anomaly. The maximum  tem perature "spike", or SWA, 

formed over a salt pillar or salt wedge, is 7°C or 6°C, respectively, using the 

m inim um  value (2.0 Wm-l°C "l) of hom ogeneous sedim entary fill therm al 

conductivity.

Our Best-Fit model shows, however, that in order to match the 

known tem perature field, the average value of sediment thermal

6 4
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Figure 3.16 Sketch sections of Salt Dome and Salt Wedge 
models ([A] and [B] respectively), showing 
approximate dimensions.



AT 
ov

er
 

Sa
lt 

(*
C)

 
AT

 
ov

er
 

Sa
lt 

C
O

[A] Salt Dome M odel6 —

5 —

O AT - Bsmt. = 2.5 
— B - AT - Bsmt. = 3.5 
—  o —  AT - Bsmt. = 4.5

4 —

2 —

1 —

5.551.5 2.5 3 3.5 4
Sedim entary Fill Thermal C onductivity

4.52

(W m '1* C'1)

[B] Salt Wedge M odel5 —

4 —

— 0—  AT - Bsmt. = 2.5 
— B— AT - Bsmt. = 3.5 
—  o —  AT - Bsmt. = 4.5

3 —

2 —

1 —

5.54.5 51.5 2.5 42 3.53
Sedim entary Fill Thermal C onductivity  

(W m '1* C'1)

Figure 3.17 Tem perature anomalies formed by Salt Dome 
and Salt Wedge models. Each model sim ulated 
at 2.5, 3.5 and 4.5 W m 'l’C’l  basem ent therm al 
conductivity for a range in sedim ent therm al 
conductivity.



conductivity m ust be approximately 2.5 W m"l°C"l. From Figure 3.17, the 

tem perature anomalies associated with a salt dome or salt wedge m ust 

therefore be no larger than 5°C or 4°C, respectively. As these modelled salt 

bodies are extreme cases, the m agnitude of a tem perature anomaly 

associated with "real" salt and sediments within the Central Graben is likely 

to be less than this value.

The magnitude of the real SWA's shown in Chapter 2 (Fig. 2.9) 

ranges from 10 to 40°C. Therefore the observed SWA's can only be partly 

explained by preferential conduction of heat through anomalous salt bodies. 

Therefore, a process other than conduction of heat m ust be responsible for 

the m agnitude of SWA's observed on the tem perature profiles defined in 

Chapter 2.

3.6 Summary

3.6.1 LW A

The LWA identified from my original tem perature profiles (Fig. 2.9) 

may be explained by conduction-only processes. Average thermal 

conductivities within the graben sediments, which are lower as com pared to 

basement, readily form a long-wavelength, positive, low-am plitude 

tem perature anomaly. Higher sediment thermal conductivity than 

basement leads to a negative LWA; this is unacceptable, as the observed 

tem perature profiles all illustrate positive anomalies, (see Fig. 3.8B).

I attem pt to match the observed LWA by running a suite of 

simulations encompassing the measured range of sediment therm al 

conductivities (see Table 3.3), using an estimated range of basement thermal 

conductivities, a uniform basal heat flow of 70 mW m“2, and compare the 

modelled temperature field to that observed (Fig. 3.10). For any modelled
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value of basement thermal conductivity, the observed tem perature profile 

falls between the Avg and M in/M ix 1 cases, although a basement thermal 

conductivity of 3.5 Wm-l°C"l provides the best fit (Fig. 3.10).

When the three cases are compared to the observed tem perature 

profiles at 2, 3, 4, and 5 km depth, none produce a good match over multiple 

depths (Fig. 3.11). However, the Avg and M in/M ix 1 cases define a range of 

thermal conductivity values within which a best-fit m odel m ust lie (Table 

3.4). By a process of trial and error I was therefore able to define a thermal 

model — the Best-Fit model — which provides a good match to the LWA at 

2, 3, 4, and 5 km depths (Fig. 3.12).

One unexplained feature of all the thermal models is their consistent 

over-estimation of tem perature in the eastern portion of the section. Evans 

and Coleman (1974) suggested decreasing basal heat flow from west to east 

across the central North Sea as an explanation of this phenomena. From my 

thermal models (Fig. 3.15) it is evident that a decrease in basal heat flow 

from 70 m W m '2 to 65 mWm"2 would be sufficient to explain this mis­

match between the thermal models and the actual LWA.

3.6.2 SW A

Although the LWA is well matched by the Best-Fit model, it is unable 

to account for the SWA's (Fig. 3.12 & 3.13). Two possible conductive 

solutions are considered; extreme thermal conductivity difference between 

basem ent and surrounding sediments, or vertical high-conductivity 

channels of salt.

In the case of extreme difference between basement and sediment 

therm al conductivity, I have shown that, even at the maximum m easured 

difference between basement and sediment thermal conductivity, the 

tem perature peaks formed over the edges of basement highs are smaller in
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m agnitude and greater in wavelength than some of the observed SWA's 

(compare Fig. 2.9 to Figs. 3.7 & 3.8). At these extremes of thermal 

conductivity difference, the LWA is not matched. Therefore, for the 

modelled tem peratures to match the observed LWA, the thermal 

conductivity differences between basement and sediments cannot be so 

extreme as to form major tem perature spikes (SWA's). Only the Best-Fit 

model is able to match the LWA's successfully, and it produces no SWA's 

(see Figs. 3.12 & 3.13). As the Best-Fit model defines the average thermal 

conductivities of basement (3.5 Wm“l°C"l), and sedimentary fill 

(approximately 2.5 Wm"l°C_l), I can estimate the range in m agnitude of 

tem perature peaks over basement highs for the Best-Fit model as being 

approximately 1°C to 5°C (Fig. 3.5).

Two models (Fig. 3.16), both extreme cases, are chosen to investigate 

the possible temperature effects of local conduction disturbances: salt domes 

and salt wedges (thermal conductivity of salt 5.5 Wm"l°C"l). For each 

simulation (using the range of basement and sediment thermal 

conductivities found earlier) a tem perature anomaly forms over the salt 

dome or wedge (Fig. 3.17). The m axim um  tem perature anomalies formed 

over them are 7 and 6°C, respectively.

The Best-Fit model is comparable to a model where the average 

thermal conductivity for the sedimentary pile is approximately 2.5 W m ' 

l°C 'l . Returning to Figure 3.17, the maximum tem perature anomaly 

formed over a salt dome or salt wedge in such a case will be 5 or 4°C, 

respectively — much too small in m agnitude to match the observed SWA's 

which range from 10°C to 40°C.

Within the Central Graben many salt dom es/w edges are located on 

the edge of basement highs (Figure 2 (Zeigler 1982; Cayley 1986)). Therefore, 

in some cases, the temperature effect of a salt dome or wedge may be
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combined with the preferential conduction of heat through a basement 

high. In the most extreme case (maximum possible tem perature effect of salt 

+ maximum temperature peak over a basement high), I can estimate that 

the resulting temperature anomaly would be 10°C, although the 

wavelength of the temperature anomaly would be greater than 10 km, and 

the magnitude of anomaly would still be too small to match the observed 

SW A's.

3.6.3 Implications

How then is it possible to produce the present-day tem perature field?

I have attempted to match the observed temperatures by purely conductive 

means and have been able to reproduce the LWA, but am unable to produce 

any tem perature spikes or SWA's comparable to those in the observed 

tem perature profiles. I can only conclude from this conductive therm al 

modelling that, in order to produce short-wavelength, high am plitude 

tem perature spikes (SWA's, Fig. 2.9), a process in addition to conductive 

heat transfer must operate within the Central Graben. This process may 

possibly be advection of heat by moving groundwaters. In the following 

chapter I will investigate the influence of moving groundwaters on the 

tem perature field .
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CHAPTER 4

REGIONAL FLUID FLOW AND 
ASSOCIATED THERMAL EFFECTS

4.1 Introduction

Having shown, through thermal modelling, that it is not possible to 

match the temperature field of the Central Graben by conductive heat 

transfer, it is my intention in this chapter to assess the potential for 

modification of the tem perature field within the Central Graben by regional 

fluid flow processes.

Topographically-driven fluid flow was proposed by Andrews-Speed et 

al (1984) to explain the interval heat flow values calculated across the 

Central Graben. They proposed that cool groundwater descending off the 

Norwegian high under gravity affected the tem perature gradients. 

Theoretical studies by Smith & Chapman (1983) and Garven and Freeze 

(1984), along with basin specific studies by Majorowicz & Jessop (1981), 

Garven (1989), and Willett & Chapman (1989) among others, have shown 

that regional topographically-driven fluid flow can be responsible for 

significant modification of the conductive tem perature field. Regional scale 

convection too, has the potential to significantly affect the therm al field (Le 

Carlier et al, 1994). I do not consider compaction-driven fluid flow in this 

chapter as Bethke (1985) has shown that the associated fluid velocities are 

too small to significantly effect the conductive tem perature field.

Using a range of different models I aim to establish to w hat degree 

regional fluid flow, driven by either topography or by regional convective 

flows, affects temperature within the graben. I will also consider if any of the



regional fluid flow processes are responsible for the short-wavelength 

anomalies which rem ain unaccounted for in my conductive models.

4.1.1 M ethodology

The modelling (using OILGEN) carried out in this chapter uses the 

same section line and basement geometry described within Chapter 3. In the 

following models however, fluid flow is coupled to heat flow so the 

thermal effects of any regional fluid flows can be ascertained.

I first quantify the thermal effects of fluid flow through basement on 

the thermal regime within the sedimentary pile, as the majority of the 

modelled section is composed of basement (Fig. 4.1). This is accomplished 

through a suite of simulations spanning a basement permeability range of 

10"14 to 10"! mD, at different sedimentary permeabilities. By this method it 

is possible to ascertain whether flow through basement (at realistic 

basement permeabilities) causes significant deviation of tem perature w ithin 

the Central Graben from the calculated conductive field established in 

Chapter 3. An estimate of fluid flux through basement is also m ade using 

these models.

Having established the role of basement I then consider the effects of 

the internal perm eability architecture of the sedimentary pile. This is 

achieved by the investigation of three different geometries. From the first, 

(Fig. 4.1) where the sedimentary pile is considered as of homogeneous bulk 

permeability and assigned a range of bulk permeabilities I can establish an 

approximate upper limit to vertical permeability (potentially a major factor 

affecting the potential of fluid flow to modify the tem perature field. By 

running simulations w ith the same suites of sediment permeabilities, but 

with different basem ent permeabilities, I may also confirm w hether
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basement permeability is a significant 'player' in the fluid flow regime 

within the sedimentary pile.

From this point I proceed to a more realistic four unit sedimentary 

pile permeability architecture. The four units (shown in Fig. 4.1) represent 

the Cenozoic, Cretaceous, Jurassic/Triassic, and the Palaeozoic sediments. 

This is the same stratigraphy as used for conductivity modelling in Chapter 

3. To this geometry I assign base-case values to each of Units 1 to 4 and raise 

the vertical permeability of each Unit in turn comparing the effects on fluid 

flow and temperature, and matching modelled output to measured 

tem perature data. This enables the establishment of three points;

1. A theoretical maximum vertical permeability for each Unit.

2. The likelihood of tem perature changes within the graben being 

caused through either topographically-driven or convective fluid 

flow within each Unit, by comparison of the modelled permeabilities 

to calculated and measured permeability ranges for the Central 

Graben.

3. Whether the tem perature changes caused by regional fluid flow are 

responsible for the SWA's established in Chapter 3.

4.2 Basement and the Sedimentary Pile: Bulk Permeability Models

4.2.1 Basement Permeability and Temperature

I here attem pt to quantify the effect of fluid flow through basement 

on the present day tem perature field, in and on the periphery of, the Central 

Graben. By varying basement permeability through many orders of
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m agnitude, for two suites of sediment permeabilities, it is possible to 

observe the threshold basement permeability at which modification of the 

conductive tem perature field by moving groundwaters begins. This value 

can be compared to accepted values for crystalline basement permeability. 

My aim is to observe whether realistic basement permeabilities result in 

tem perature patterns significantly different to that of the conductive models 

tested in the previous chapter.

I use the same 2-D section line, geometry and thermal conductivity 

parameters of the Best-Fit model, as described in Chapter 3 (Figs. 3.12 & 3.13), 

as the basis for modelling in this chapter, with the sedimentary pile 

rem aining divided into Units 1 to 4. However, in this basement 

permeability modelling, Units 1 to 4 are assigned two suites (two extremes) 

of porosity and permeability values (Table 4.1) in order to compare the effect 

of basement permeability at relatively low and relatively high average 

sediment permeabilities. Both suites of sediment permeabilities (LOW and 

HIGH) are modelled for a range in basement permeability of 10"14 mD to 1.0 

mD using OILGEN.

UNIT H orizontal 
Permeability - 
LOW

H orizontal 
Permeability - 
HIGH

Porosity A nisotropy

1 0.1 10 10 100
2 0.01 1 10 100
3 1 100 5 100
4 1 100 5 100

TABLE 4.1 - Permeability and porosity values used in basement permeability 
m odelling (Units 1 to 4 shown in Fig. 4.1).

The suite of basement permeabilities is chosen to encompass values 

published in Garven and Freeze (1984), Black (1987), Clauser (1992) and 

Harms et al (1993). Sediment poro-perm values are generalised, but compare
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well to data in Garven and Freeze (1984) and Sclater and Christie (1980). It is 

im portant to point out that areas of recent geopressure exist w ithin the 

Central Graben (Gaarenstroom 1992), which cannot be accounted for in 

these models. However, these models allow me to assess the scale of effects 

of fluid circulation within the graben, either during periods of low or no 

overpressure or within the normally pressured parts of the basin.

By extracting the calculated temperatures at nodes A to F and A' to F' 

(3 and 5 km depth respectively, Figure 4.1) for each of my simulations, I can 

observe at which basement permeability that a particular tem perature 

change occurs within the basin. Figure 4.2 shows the calculated 

temperatures plotted against basement permeability, for the two suites of 

sediment permeabilities (LOW and HIGH). In each of the cases, tem perature 

within the basin remains stable at basement permeabilities of less than 0.001 

mD. Significant change in the temperature field within the graben occurs at 

basement permeability of greater than 0.1 and 0.001 mD, for the sediment 

permeability suites LOW and HIGH respectively. Therefore, as one might 

expect, the lower values of average sediment permeability necessitate higher 

basement permeability to produce a change in the tem perature field within 

the basin (Central Graben).

4.2.2 Basin Fluid Recharge through Basement?

W hat then are the possible fluid velocities involved in fluid recharge 

to the Central Graben and w hat pattern do they follow? Do they influence 

petroleum  m igration directions?

I use a base-case model of the Central Graben to provide a broad 

estim ate the regional fluid flow velocities and patterns of flow. The model 

has the same geometry and thermal properties of that shown in Figure 4.1. 

The poro-perm parameters are average values (see Table 4.2) between the
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two extremes of poro-perm (LOW and HIGH) used in the basement 

modelling of the previous section. Basement is held constant at 10'4 mD.

A plot of the calculated fluid velocities for this model is show n in 

Figure 4.3. The maximum groundwater velocity is 18 cma“l, (the vectors in 

this plot are scaled between 5 cma"l and 0.5 m m a'l, with X's m arking flow 

velocities in this case of less than 0.5 mma"l, not of no flow). The figure 

shows fluid recharge through basement to the graben, from the Norwegian 

high, of the order of m m a 'l  This regional flow system (under normally- 

pressured conditions) would also be sufficient to effect petroleum  m igration 

directions (Fig. 4.4; same scale as Fig. 4.3). This model suggests that 

petroleum may be forced to migrate laterally towards basement highs (Fig.

4.4) at maximum velocities of 18 cma~l.

4.2.3 The Sedimentary Pile and Temperature

I begin with the model shown in Figure 4.1 in which the sedimentary 

pile has uniform permeability but porosity varies with depth (the assigned 

porosities are; Tertiary and Cretaceous, 10%; Jurassic to Palaeozoic, 5%). By 

varying the permeability of the sedimentary pile over a range of scales it is 

possible to determine the threshold value of vertical permeability at which 

tem perature change due to fluid flow occurs within the basin.

All units are assigned an anisotropy of 100 and permeability 

(horizontal) is varied between 0.01 mD and 1 Darcy. In order to determine 

the influence of basement permeability (if any) on this "threshold" 

sediment permeability, this range in sediment permeability is m odelled at 

basement permeabilities of 10'2,10"4 and 10"^ mD. These permeabilities are 

well w ithin the region of stable tem perature (Fig. 4.2).

For each simulation, the tem perature at three kilometres depth  is 

extracted at nodes A to F across the basin (Fig. 4.1). These tem peratures are
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plotted against sedimentary pile average permeability, for each value of 

basement permeability in Figure 4.5. The most striking feature of this figure 

is that for each value of basement permeability the calculated tem perature 

field is identical across the range of sedimentary pile permeabilities. In each 

case there is no significant change in temperature within the basin at 

vertical sediment permeabilities of 0.05 mD and less, and only at vertical 

sediment permeabilities of greater than 0.1 mD do changes in tem perature 

caused by regional fluid flow become detectable in terms of the resolution of 

our tem perature data. It should also be noted that the tem perature changes 

caused by regional fluid flow are most prominent w ithin the East Central 

Graben (Nodes D and E, Fig. 4.1). However, in each case, the tem perature 

anomaly formed is no t comparable to the SWA's identified within the 

observed tem perature profiles. For example, Figure 4.6 — the calculated 

tem perature field for a basement permeability of 10"4 mD and an average, 

vertical sediment permeability of 0.1 mD -- shows no significant (>10 °C) 

tem perature "spikes" (SWA's) of less than 20 km wavelength.

In sum m ary, topographically-driven fluid flow connected from 

basement to sediments, could cause tem perature changes w ithin the Central 

Graben at average vertical sedimentary permeabilities of greater than 0.01 

mD. So there does exist the possibility for topographically-driven fluid flow 

to be affecting tem peratures at the present-day. This tem perature change 

however, w ould only be detectable from BHT data at vertical sedim ent 

permeabilities of greater than 0.1 mD, and in each case w ould be 

independen t of basement permeability. The small potential therm al effects 

caused by regional fluid flow may modify the LWA established in Chapter 2, 

but do not compare favourably to the SWA's (Fig. 4.6).
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4.2.4 Sum m ary

The basement permeability models (Fig. 4.1) are shown to have 

different threshold permeabilities for different sedimentary fill 

permeabilities (Fig. 4.2), with lower sediment permeability necessitating 

higher basement permeabilities to induce tem perature change within the 

basin from the conductive tem perature field. Where sediment 

permeabilities are relatively low (LOW models) basement permeability 

m ust exceed 0.1 mD, to produce any temperature change. Where the 

permeabilities are larger, in the HIGH suite of models, the threshold 

basement permeability is reduced to 0.001 mD due to the greater ease of 

penetration into the sedimentary pile of fluids moving through basement.

Published, "acceptable" values for basement permeability cover a 

wide range (Black (1987) and Clauser (1992)). However, from these models it 

is apparent that at realistic values for basement permeability (10"8 to 10'4 

mD), fluid flow through basement plays no significant or detectable role in 

modifying the tem perature regime of the Central Graben. Therefore, any 

major modification of tem perature within the graben, from the purely 

conductive thermal regime, must take place within a higher permeability 

environm ent than homogeneous crystalline basement.

By modelling a sedimentary column of homogeneous permeability it 

is possible to predict at what bulk vertical permeability the resulting 

modelled tem perature field will deviate from the purely conductive 

tem perature field. Using the model shown in Figure 4.1 I can establish that 

the tem perature regime behaves the same at basement permeabilities of 10' 

8 , 10'4 and 10'2 mD (Fig. 4.5) over a range of sediment permeabilities. This 

figure also shows that at a vertical bulk permeability of 0.05 mD or less for 

the sedimentary pile no significant temperature change is experienced 

across the entire basin. As the error margin in our BHT data is up to 10°C,
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the tem perature effects of regional topographically-driven fluid flow would 

only be detectable at vertical, bulk sediment permeabilities above 0.1 mD. As 

the actual bulk permeability of the sedimentary pile most likely less than 

this value it is unlikely that the topographically-driven fluid flow affects 

tem perature to any detectable degree within the basin. The shape of any 

potential anomaly would also NOT be comparable to the so far un­

explained SWA's (Fig. 4.6).

4.3 Individual "Stratigraphic" Unit Model

Having established the vertical permeability required of the 

sedimentary pile as a whole, I now utilise the four unit geometry (Cenozoic, 

Cretaceous, Jurassic/Triassic and Palaeozoic sediments) for a more detailed 

study of sediment permeability and it's thermal effects (Fig. 4.7). I aim to 

define two parameters. Firstly, the threshold perm eability within each unit 

at which the temperature field is significantly (10°C or greater) modified by 

fluid flow. Secondly, the maximum bulk vertical perm eability possible in 

each unit (by comparing the simulated tem perature profiles to the known 

interpolated temperature profiles established in Chapter 2 (Fig. 2.9).

For this "unit by unit" fluid flow modelling I assign Units 1 to 4 (Fig 

4.7), and basement, a set of base-case poro-perm param eters (Table 4.2). 

Sediment permeabilities are approximated from: Unit 1 Garven and Freeze 

(1984); Unit 2, Brown (1987); Unit 3, Garven and Freeze (1984); Unit 4,

Trewin and Bramwell (1991). Having shown previously that basem ent 

permeability between 10“2 and 10"® mD does not significantly affect the 

tem perature field within the Central Graben, I hold basem ent perm eability 

constant throughout the rest of this chapters modelling at 10"4 mD. This 

base-case model, is essentially a coupled fluid and heat flow sim ulation of 

the best-case conductive model established in Chapter 2 w ith the therm al
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properties of both models identical and provides the "background" 

tem perature field, against which all subsequent simulations are compared. 

The tem perature field for the base-case coupled model does not significantly 

differ from the conductive model.

4.3.1 Threshold Permeabilities fo r  Temperature Change

Having established a background tem perature field (in which fluid 

flow does not significantly alter temperatures) I increase the permeability of 

each unit in turn from the base-case value, and observe the associated 

tem perature changes across the graben caused by the rising fluid velocities. 

Table 4.2 shows both the base-case permeabilities assigned to each unit and 

the range in permeability through which each unit is modelled.

For each simulation I extract the calculated tem perature from six 

nodes (A - F), evenly spaced across the graben (Fig. 4.7) at an arbitrary depth 

of 4 km. From this data a composite plot of deviation in tem perature from 

background, against Unit permeability is constructed for each of Units 1 - 4  

(Fig. 4.8). This shows the m agnitude of change in tem perature caused at 

each value of sediment permeability across the graben. If I define a 

threshold perm eability as being the maximum modelled vertical 

permeability at which temperature deviation from background remains less 

than 10°C (10°C being the maximum error in our tem perature data) then it 

is apparent that Unit 1 has the lowest threshold permeability (0.25 mD) and 

Unit 4 the highest (3.0 mD) (see Table 4.2).

From this I can deduce that the vertical permeability of the lower 

units would need to be significantly greater than the shallower units, in 

order to create the same m agnitudes of tem perature change w ithin the 

basin.
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4.3.2 Comparison to Interpolated Temperature Profiles

Up to what value of permeability (for each individual Unit) do these 

resulting tem perature profiles still compare favourably to reality? In order 

to assess this, for each Unit I plot the resultant tem perature profile for each 

simulation against the interpolated-temperature profile at 4 km depth 

established from the BHT data. These plots (Fig. 4.9) show how realistic each 

simulation is relative the present-day tem perature field. For example Fig.

4.9 (A), the plot for Unit 1, shows that vertical permeabilities of up to 0.25 

mD produce a LWA temperature profile comparable to the interpolated 

profile calculated in Chapter 2 from the BHT data. Therefore the maximum 

(realistic) vertical bulk permeability modelled for Unit 1 is 0.25 mD. A 

vertical permeability of 0.5 mD for Unit 1 clearly produces an unrealistic 

LWA tem perature profile. By this means I establish a theoretical maximum 

vertical permeability for each of Units 1 - 4 of 0.25, 0.5, 2.0, and 3.0 mD 

respectively (Fig. 4.9, Table 4.2).

These temperature changes, are NOT a result of topographically- 

driven regional fluid flow, but are caused by convection w ithin each Unit as 

the vertical permeability approaches the previously established threshold 

value. Figures 4.10 (A) and (B) show plots of both groundwater velocity (Fig. 

4.10A) and stream function (Fig. 4.10B) for Unit 3 at 200 mD horizontal 

permeability (2 mD vertical permeability). It is clear from this figure that 

although there is little temperature change due to convection at a 

horizontal permeability of 100 mD (Fig. 4.8), at 200 mD the convection cell is 

well established (with fluid velocities of up to 2.1 ma-1) and the resulting 

basin-wide temperature changes are much more significant (see Fig. 4.8). It 

should also be noted that the convection cell is almost entirely contained 

w ithin Unit 3, (flow rates in Unit 2 and 4 (above and below) rem aining 

relatively low; see Fig. 4.10A). This is true for each of the simulations i.e.
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the convection cell established is almost entirely limited to the Unit of 

raised permeability (results not shown).

Although convective fluid flow has the potential to alter the 

tem perature field within the Central Graben, the major convection 

modelled within the basin would only occur at values of perm eability at or 

above the theoretical maximum. By establishing the true perm eability of 

each Unit (potentially from borehole data), we can determine whether 

convection is likely to be affecting temperatures within the basin at the 

present day.

In geological terms, Units 1 and 2 are the least likely of the four to 

exceed the threshold permeability, induce convection and m odify the 

tem perature field. Unit 1 represents the Cenozoic sediments of which the 

majority are shales (Kent, 1975), and bulk permeability estimates are of the 

order of 1 mD or less (after Garven and Freeze, 1984). Unit 2, is dom inated 

by the Cretaceous chalk (Kent, 1975) and horizontal matrix permeabilities 

are estimated at approximately O.lmD (Brown 1987). Therefore these two 

units are not likely to be undergoing regional convection at the present-day.

However, Units 3 and 4 are more likely candidates for convective 

fluid flow and the associated transport of heat, consisting more dom inantly 

of sandstones (Kent 1975; Glennie 1990). Unit 3 though, if it was indeed 

experiencing major convection, would form a shape of anomaly 

inconsistent with the known present day temperature profile (Fig. 4.9 C), so 

again it is very unlikely that the Jurassic and Triassic units w ithin the 

Central Graben are experiencing major convection today. Unit 4 represents 

the Palaeozoic sediments, dominated by the Permian. Much of the Permian 

w ithin the Central Graben is composed of Rotliegend "red beds" (Ziegler 

1978), and in places dune sands (Kent, 1975) and is known to possess 

permeabilities of up to 1 D (Trewin and Bramwell, 1991) on the graben 

flanks (but is generally undrilled within the deep graben). Unit 4 m ay
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therefore possess a high enough vertical permeability to allow significant 

convective fluid flow.

If convective fluid flow is taking place w ithin the Central Graben, 

then would the shape of temperature anomaly formed be compatible with 

the known present day temperature field? An initial view of Figure 4.9 (D) 

suggests not, with the 400 mD model being significantly different. However, 

when an additional, more detailed range of Unit 4 permeabilities (350 to 390 

mD) is modelled, it is apparent that at 350 to 360 mD (3.5 to 3.6 mD vertical 

permeability) the resultant temperature profiles are not only compatible 

w ith the overall shape of the present-day tem perature field, but are a closer 

match to the present day temperature field than the purely conductive 

model (Fig. 4.11). The temperature anomalies formed due to this regional 

convection are in the form of temperature steps. The tem perature 

distribution across the graben, with Unit 4 = 350 mD, is displayed in Figure 

4.12.

Therefore, minor convective fluid flow may take place w ithin the 

Central Graben over Unit 1 - 3 ,  with small associated tem perature effects, 

although is most likely below the Cretaceous chalk. The error w ithin the 

m easured tem perature profiles however, leaves me unable to speculate 

further. By contrast, in the case of Unit 4, it appears that regional convective 

fluid flow may be taking place at the present-day at a magnitude detectable 

by our measured temperature data (Fig. 4.11 & 4.12).

4.3.3 Sum m ary

Using the geometry in Figure 4.7 I investigate at what bulk vertical 

permeability each of the designated four units (Cenozoic, Cretaceous,

Jurassic/Triassic, and Palaeozoic) significantly affect the tem perature field, 

and define where possible a maximum vertical permeability for each unit by
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comparison of the resultant tem perature field to the tem perature profiles 

established in Chapter 2. To achieve this I first assign base-case (realistic) 

values to each of the four Units. Then by raising the permeability of each 

unit in turn and recording the temperature changes at 4 km depth w ithin 

the basin I can observe the difference or similarities between the simulated 

tem perature profile and the observed (interpolated) profiles. A threshold 

permeability for each unit is defined as the maximum modelled vertical 

permeability at which the resultant tem perature change remains less than 

10°C. These are initially calculated as being 0.25, 0.50, 2.0, and 3.0 mD for 

Units 1 to 4 respectively (Fig. 4.7). At higher vertical permeabilities 

therefore, any tem perature effect due to fluid flow within the Unit should 

be evident on the interpolated tem perature profiles. By plotting the 

resultant (calculated) temperature profiles for each model, and comparing 

these with the interpolated tem perature profile (Fig. 4.9), the theoretical 

maximum permeability can be established i.e. at what permeability the 

calculated tem perature profile is still comparable to the "real" tem perature 

profile. The theoretical maxima for each of Units 1 to 4 are calculated as 

being 0.25, 0.50, 2.0, and 3.0 mD vertical permeability respectively (the same 

as the threshold permeabilities). Units 1, 2 and 3 are in reality, unlikely to 

exceed the threshold permeabilities. Even if thresholds were exceeded they, 

would form anomalies of incompatible shape to the present day 

tem perature field (Fig. 4.8 (A - C)). However, Unit 4, comprised of a 

significant thickness of Rotliegend "red beds" (Ziegler 1978) w ith some dune 

sand sequences (Kent 1975), would be expected to have relatively high 

permeability. More detailed modelling of Unit 4 suggests that not only is the 

resulting tem perature profile (for a vertical permeability of either 350 or 360 

mD) compatible with the interpolated profile, but it is a better fit than the 

conductive profile (Fig. 4.11). This suggests that fluid convection within the 

Permian at the present-day affects tem peratures within the Eastern Central
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Graben. Through examination of the stream function plots for these models 

it is apparent that temperature change within each Unit is the product of 

internal convection(Fig 4.10 and 4.13).

4.4 Conclusions

4.4.1 Basement Permeability Effects on Temperature and Fluid Flow

The geometry of the basement model is shown in Fig, 4.1. This 

geometry is modelled using a range in basement permeabilities of 10'^^ to 

1.0 mD at two different suites of sediment permeability (LOW and HIGH, 

see Table 4.1). Temperature within the basin remains unaffected by fluid 

flow through basement for the HIGH suite of sediment permeabilities at a 

basement permeability of less than 0.001 mD (10"3 mD). In the LOW suite of 

sediment permeabilities a basement horizontal permeability of 0.1 mD is 

required to change the temperature field within the basin from the 

conductive state (Fig. 4.2).

As realistic values for basement permeability are of the order of 10"4 mD or 

less (Black, 1987; Clauser, 1992), it is most unlikely that fluid flow through 

basement has any direct effect on temperature in and around the graben 

area. This is confirmed by the sedimentary pile bulk permeability 

modelling. Using the same geometry as the initial basement model (Fig.

4.1), a suite of sediment permeabilities are modelled at three values of 

basement permeability (10 '2 ,10"^ and 10"8 mD), to observe at w hat 

threshold bulk sediment permeability tem perature is affected w ithin the 

basin. For each of the three suites of models the results are identical (Fig.

4.5). Thus, it is sediment permeability which is dictating fluid velocities and 

tem perature change within the basin. Therefore basement, although 

possibly a conduit of meteoric fluid recharge to the graben, at realistic
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permeabilities does not directly influence the fluid flow and tem perature 

regime within the Central Graben.

4.4.2 Sediment Permeability Effects on Temperature and Fluid Flow

The sediment permeability models each use the same geometry (Fig.

4.1), with varying physical properties. In the case of a bulk sedimentary 

permeability being assigned to the basin, a threshold bulk vertical 

permeability of 0.05 mD (Fig. 4.2) is established for the sedimentary pile, 

below which there is no change in temperature across the basin due to fluid 

movement. Above 0.1 mD vertical permeability the tem perature change 

caused by fluid movement is greater than 10°C (within the detection limits 

of our BHT data). However, it is unlikely that the sedimentary pile achieves 

such high bulk vertical permeabilities, and the resulting tem perature plots 

are incompatible with the present-day tem perature profile (for example Fig.

4.6) at a vertical bulk permeability of 0.1 mD. Therefore the modelled 

topographically or gravity-driven fluid flow causes no major tem perature 

change w ithin the sedimentary pile.

The individual stratigraphic unit models are a better representation 

of reality. By assigning base-case values of poro-perm to each Unit and 

varying the permeability of each of Units 1 to 4 individually, I establish a 

maximum theoretical sediment vertical permeability of 0.25 (Cenozoic), 0.50 

(Cretaceous), 2.0 (Jurassic/Triassic) and 3.0 mD (Palaeozoic), by comparing 

the resulting modelled tem perature profile against the observed BHT 

profile (Fig. 4.9). It is apparent from these plots (Fig. 4.9) that if significant 

tem perature effects (10°C or greater, higher than the error of our 

tem perature data) were caused by fluid movement within Units 1 to 3, that 

they w ould form temperature profiles incompatible w ith the present-day 

tem perature profiles. Units 1 & 2 are also unlikely to achieve the high
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permeabilities necessary. However Unit 4, at a vertical permeability of 

approximately 3.5 - 3.6 mD (anisotropy of 100), would result in a 

tem perature profile closer in shape to the observed BHT tem perature profile 

than the conductive profile (Fig. 4.11). Therefore it is likely that fluid flow 

within the Permian is significantly modifying the tem perature field at the 

present-day. A plot of stream function for Unit 4 at 360 mD shows that this 

tem perature change is a result of convection within the Permian (Fig. 4.13). 

The tem perature anomaly associated with this regional convection is in the 

form of a tem perature step (Fig. 4.12) and is NOT comparable to the SWA's 

identified within Chapter 2 which remain unexplained thus far.

4.4.3 Implications

From this regional fluid flow modelling, it is apparent that of the 

regional fluid processes simulated, only fluid convection has the potential 

to significantly affect the temperature field. Regional 

topographically/gravity driven flow may result in minor tem perature 

changes of a few degrees but this cannot be confirmed due to the error 

associated with our BHT data (up to 10°C). However major topographic- 

driven flow regimes with associated temperature changes, as described by 

Garven (1989, 1995) do not take place within the Central Graben.

As the convection modelled in Unit 4 produces tem perature steps as 

opposed to the tem perature spikes (SWA's; Fig 4.12) observed within the 

interpolated tem perature profiles, regional fluid flow (topographically or 

convection driven) cannot be responsible for the formation of SWA's.

W hat process is then responsible for these SWA's?

It is apparent from the individual stratigraphic unit models that in 

order to induce tem perature change, a relatively high vertical permeability 

environm ent of 10's to 100’s of millidarcies is necessary, involving
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significant vertical fluid flow within a more localised setting than the 

regional flow models. Therefore, the environm ent in which these SWA's 

are formed must be permeable, small scale, and vertical or sub-vertical. It is 

possible then that fluid flow within vertical/sub-vertical fractures or faults 

is responsible for these short-wavelength tem perature anomalies. The 

potential and likelyhood of this process to form these SWA's will be 

addressed in the next Chapter.
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CHAPTER 5

LOCALISED FLUID FLOW AND 
ASSOCIATED THERMAL EFFECTS

5.1 Introduction

The previous two chapters have assessed the potential of firstly, 

thermal conduction processes (Chapter 3) and, secondly regional fluid flow 

mechanisms (Chapter 4), to explain the observed variability in the present- 

day temperature field (as established in Chapter 2). Neither of these 

processes independently, or combined, are able to provide a match for the 

SWA's established by the temperature profiles described in Chapter 2. The 

conclusion draw n was that a more localised process m ust be involved in the 

formation of these short-wavelength, high-m agnitude tem perature 

features.

Two possibilities are considered in this chapter: (a) the thermal effects 

of rapid convection of fluids within a small, isolated convection cell; and (b) 

the thermal effects of fluid flow within fault or fracture zones. Regarding 

the role of faults/fractures in fluid flow systems, Chapman (1987) states that 

"There is no true general statement of the form: 'Faults d o /d o  not act as 

conduits for fluid flow'". There is evidence, though, to show that faults may 

focus fluid flow (Knipe, 1993; Sibson 1994). Circumstantial evidence from 

the concentrations of mineralisation around faults (Fowler, 1994), to fluid 

flow associated with earthquake activity (Sibson, 1975; 1994) and the 

presence of "dry" strata between source rocks and reservoirs (Knipe, 1993) 

points to the fact that faults m ay act as the key element for fluid flow. 

Therefore they must be considered in this study for any thermal effect that 

may be associated with fluid flow along faults or fracture zones.
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5.1.1 Summary o f M ethodology

In each of the two areas of investigation (small scale convection, and 

fluid flow along faults), I first investigate the thermal effects caused by each 

process using test grids. These grids are designed to have a broad similarity 

to the geometry of the Central Graben (Fig. 3.1) along the original section 

line (Fig. 1.1), bu t they reduce the complexity of the natural system, thereby 

allowing cause/effect relationships to be more readily discerned.

In the case of the convection modelling, I use the test grid to establish 

a range in permeability values for both the sedimentary pile and the 

convection cell at which a significant disturbance occurs to the tem perature 

regime. The Central Graben model is based on the best-fit model derived 

from thermal m odelling described in Chapter 3 (Fig. 3.9 & 3.12), but with the 

addition of a high permeability unit within both the east and west Central 

Graben. Using conservative poro-perm values for the major "stratigraphic" 

units I observe the fluid velocities and tem perature changes caused by 

increasing the permeability within the convection cell, and I compare the 

resulting tem perature patterns to those observed in the tem perature profiles 

described in Chapter 2 (Fig. 2.9).

In investigating the role of focused fluid flow within the Central 

Graben, I again use a series of test grids to assess the possibility of focused 

flow within an analogous Central Graben setting, for both a homogeneous 

and heterogeneous sedimentary pile. By this means I assess the ranges in 

fault and sediment permeability that are capable of producing significant 

tem perature disturbances within the Central Graben. Again, I compare the 

resulting tem perature anomalies with those described in Chapter 2.

The final set of simulations again use a modified Central graben 

model. It differs from the thermal modelling mesh (Fig. 3.2) by the addition

107



of a Palaeocene unit above the Cretaceous chalks, and by the addition of a 

300 m wide fault zone in the east Central Graben. This model, and other 

similar models with minor variations of geometry, are used to assess the 

influence on the thermal regime of each sedimentary units perm eability, 

the fault permeability, and the nature of the fault outlet zone.

5.2 Small Scale Convection

5.2.1 Isolated High Permeability Units - Test Grids

In order to test the ability of localised convection to significantly alter 

the tem perature field within the Central Graben, I design a test grid (Fig. 5.1) 

which broadly reflects the geometry of the western half of the Central 

Graben (along the original section line described in Chapter 1, Figure 1.1). 

Modelling the fluid flow that occurs in this test grid, using OILGEN (Garven 

(1989) produces tem perature contour maps which I compare against the 

conduction-only temperatures. The basic model (Fig. 5.1) has, as the Central 

Graben has, a maximum depth of sediment fill of approximately 6 km, and 

a typical North Sea "steers head" sediment geometry. A topographic high of 

30 km w idth and a maximum height of 1 km is given to the south-western 

end of the section.

I have shown that the SWA's described in Chapter 2 are inexplicable 

in terms of either conductive heat transport, or regional fluid flow. The 

SWA's are of approximately 15 km half-wavelength or less, so if localised 

convection were responsible for the SWA's, the convection cell size 

responsible for the SWA may well be of a similar lateral width. Therefore, I 

approach the modelling of small scale localised convection by investigating 

several different thicknesses of convection cell, at 10 and 20 km widths, over 

a range of convection cell and sediment permeabilities.
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I firstly model a 20 km wide by 400 m thick cell (Fig. 5.2) surrounded 

by a homogeneous sedimentary fill (permeability 1 mD and anisotropy of 

100; Table 5.1, Model 1), over a range of convection cell permeabilities. I 

then (using the same geometry) model the effects of a sedimentary fill 

permeability of 5 mD over the same range in convection cell permeabilities 

(Table 5.1, Model 2). In each simulation I recorded the tem perature change 

from background (i.e. the conductive state) at the nodes highlighted in Fig.

5.2 above the convection cell. The m agnitude and dimensions of any 

tem perature disturbance due to convection are shown by plotting the 

recorded temperatures against distance for each value of convection cell 

permeability (Fig. 5.3A). This plot shows that at a sediment permeability of 1 

mD (Model 1), a convection cell horizontal permeability of 4 Darcies 

(anisotropy of 100) is needed to produce a significant change in tem perature 

from background. At 4 D two distinct fluid upflow zones form, giving rise to 

a tem perature step at A of up to approximately 20 °C and a tem perature 

peak of approximately 20°C at B (the temperature peak at B having a half­

wavelength of approximately 12 km). Model 2 (Fig. 5.3B), with its sediment 

permeability of 5 mD, also requires a convection cell permeability of 4 D 

before there is a significant change in temperature from background. In this 

case, however, a composite tem perature peak forms, of approximately 15 

km half-wavelength, and almost 30 °C magnitude. Note that this 

tem perature peak is depth-limited in nature (Fig. 5.4).

The next three model geometries assume a convection cell w idth  of 

10 km (this size of cell is used as the SWA's range from 5-15 km in width); 

the cells vary from 200 to 800 m in thickness (Models 3 - 5 ,  Figure 5.5) w ith 

sediment permeability held constant at 1 mD (Table 5.1) in each case. Using 

the same method of investigation as employed for Models 1 and 2, I record 

the tem perature at nodes shown in Figure 5.5 for a range of convection cell
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[A] Convection Test Grid - Model 4
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Figure 5.6 - Temperature variation over the HPU 
shown in Fig. 5.2 for a range in HPU permeabilities 
(Models 3, 4 and 5). [A] - sediment horizontal 
permeability = 1 mD, [B] - sediment horizontal 
permeability = 5 mD.



permeabilities (see Table 5.1 for convection cell poro-perm  values). The 

resulting plots of temperature against distance for each value of convection 

cell permeability show that in Models 3 and 4 (Figure 5.6A & B, 10 km by 200 

m and 10 km by 400 m respectively) significant disturbance of the 

tem perature field occurs only at a convection cell permeability of 6 Darcies. 

In both cases a positive temperature anomaly forms of approximately 10 km 

half-wavelength; it is 15°C in m agnitude for Model 3, and approximately 

20°C in m agnitude for Model 4.

Model Sedimentary Pile 

Horizontal 

Permeability 

(mD)

Sedimentary Pile 

and Convection 

Cell Anisotropy

Convection Cell 

Dimensions

Horizontal 

Permeability 

Range of 

Convection Cell 

(mD)

Model 1 1.0 100 20 km * 400 m 100 - 4000

Model 2 5.0 100 20 km * 400 m 100 - 4000

Model 3 1.0 100 10 km * 200 m 100 - 6000

M odel 4 1.0 100 10 km * 400 m 100 - 6000

M odel 5 1.0 100 10 km * 800 m 100 - 6000

Table 5.1 - Sediment permeabilities, and ranges of modelled 
convection cell permeabilities (a series of models between 100 and 4000/6000 
mD, investigate the effects of fluid flow within the convection cell), for 
Models 1 - 5, in Isolated High Permeability Units - Test Grids. Basement 
remains constant throughout modelling at 10"4 mD, w ith porosity held 
constant at 5% for both sedimentary pile and convection cell.

Model 5, however, displays very different behaviour. Due to its 

greater vertical thickness the convection cell in Model 5 is likely to begin 

convecting at lower permeabilities than will Models 1 to 4. As Figure 5.6 C 

shows, significant deviation in temperature occurs at 1 Darcy cell
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permeability. For this 800 m thick cell, significant advective heat transport 

occurs at vertical permeabilities of above 5 mD (as opposed to 60 mD for 

Models 3 & 4). At 1 to 2 D horizontal permeability, an approximately 20°C 

tem perature spike is formed due to this convection; it has a half­

wavelength of 10 km. At even higher permeabilities ( 4 - 6  D), the 

convection pattern within the cell changes, and a more asymmetrical peak 

forms instead (20°C magnitude - 10 km in width).

In each case (Models 1 - 5 )  there exists the potential to produce short 

wavelength temperature anomalies — albeit at relatively high 

permeabilities, or when thicknesses exceed 400 m.

5.2.2 Isolated High Permeability Units - Central Graben

I now simulate the effects of two deep (>3 km) high permeability 

units (HPU's) within the Central Graben (Fig. 5.7). This investigation is 

undertaken in order to assess the potential (using a more realistic model) of 

isolated convective fluid flow taking place within the Central Graben, and 

to quantify any resulting temperature effects. Each of the units measures 10 

km horizontally, and is 400 m thick. They lie within the Jurassic, 

immediately below the Cretaceous chalk (Fig. 5.7).

In the models of the Central Graben, the poro-perm param eters of the 

surrounding sediments are held constant (at the values determ ined in 

Chapter 4), while the permeabilities of the two HPU's are increased until the 

onset of convection (Table 5.2). The effects on tem perature and fluid 

velocity, caused by fluid flow and the onset of convection within these two 

HPU's, are observed over a range of HPU permeability from 100 mD to 3000 

mD. For each HPU the steady-state temperatures are extracted from six 

points evenly spaced across the w idth of the HPU at a distance of 100 m 

above the top of the high-permeability cell (Fig. 5.8), and the average linear
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fluid velocity is calculated within each cell. The tem perature profile across 

each convection cell (eastern Central Graben - ECG, and western Central 

Graben - WCG) is plotted at HPU permeabilities of 100,1000,1500, 2000, 2500, 

2750 and 3000 mD (Fig. 5.9A & B).

UNIT H orizontal

Permeability

(mD)

Anisotropy Porosity (%)

1 1.0 100 10.0

2 0.1 100 10.0

3 10.0 100 5.0

4 10.0 100 5.0

H igh Perm. Unit 100 - 3000 100 5.0

Basement 10-4 5 0.1

TABLE 5.2 - Poro-perm parameters for Units 1 to 4, Basement (as 
described in Chapter 4) and High Permeability Unit, for Isolated High 
Permeability Unit modelling (again a series of models with HPU 
permeabilities ranging from 100 to 3000 mD are used).

The western Central Graben plot (Fig. 5.9A) shows that at HPU 

permeabilities of 1500 mD or less, the thermal effects of fluid flow within 

the HPU remain undetectable by BHT accuracy standards (less than 10°C). 

Nevertheless, convective fluid flow is occuring. Temperature effects reach a 

peak at 2000 mD, producing a tem perature spike of >15°C. At permeabilities 

above 2000 mD, the tem perature anomaly formed by convection w ithin the 

HPU decays (due to different convection patterns forming at higher 

velocities, and by secondary convection within the surrounding sediments). 

At 3000 mD the tem perature deviation from background (100 mD curve) 

reaches a negative maximum of 10°C. The eastern Central Graben HPU

1 2 2



[A] Western Central Graben
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Figure 5.9 - Temperature variation over western and eastern Central 
Graben HPU's ([A] and [B] respectively), for a range in HPU permeability. 
The location of the convection cells (HPU's) is shown in Figure 5.7.



produces much smaller temperature effects over the same permeability 

range (Fig. 5.9 B). Again the temperature effects at or below 1500 mD are 

essentially undetectable by BHT data, and 2000 mD produces the maximum 

tem perature anomaly. The magnitude of tem perature change is m uch less 

for this HPU (10°C temperature step as opposed to the 15°C tem perature 

sp ike formed in the WCG).

This difference in magnitude of tem perature effect from ECG to WCG 

should be reflected in the magnitude of fluid velocities for each HPU. This 

is indeed the case, as Figure 5.10 shows. Above 100 mD the fluid velocities 

for the eastern Central Graben HPU are less than those for the western 

Central Graben HPU, although both HPU's are of equal dimensions, equal 

permeabilities and are at the same depth. At 1500 mD permeability or lower 

(the range in permeability over which there is no detectable tem perature 

change), the average fluid velocities in both HPU's remain below 1.0 m a 'l . 

Fluid velocities for the western Central Graben thereafter increase more 

sharply w ith permeability than do fluid velocities w ithin the eastern 

Central Graben, to a maximum of 6 ma"l in the WCG, and 4.2 m a 'l  ECG.

The tem perature anomalies formed by localised convection in my 

Central Graben models are in most cases step-shaped unlike the 

tem perature spikes observed within the tem perature profiles established in 

Chapter 2. However, convective fluid flow within the western Central 

Graben is shown to have the potential to produce a 10 km wavelength 15°C 

tem perature spike (see Fig. 5.9A & B).

5.2.3 Sum m ary

The test grid geometries, as illustrated in Figures 5.2 and 5.5, are used 

to investigate the horizontal permeabilities necessary for convection to 

occur within cells of 10 to 20 km width, and up to 800 m in thickness
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(anisotropy is constant at 100). Models 1 & 2 (of the same dimensions) 

although assuming different values of sediment permeability, both require 

a horizontal permeability of 4 D before the onset of major convection. 

However, the shape of the temperature anomaly formed at this 

permeability differs between these two models (Fig. 5.3), w ith a lower value 

of sediment permeability producing two distinct peaks whereas the higher 

values of sediment permeability produce a composite peak above the 

convection cell. This is due to the effect of increased fluid circulation within 

the sediments adjacent to the cell at higher sediment permeabilities.

Models 3 - 5  (Fig. 5.5, Table 5.1) have FlPU's that range in thickness 

from 200 to 800 m. Modelling the effects of different permeabilities on fluid 

flow within the cells shows that cell thicknesses of 200 and 400 m require a 

horizontal permeability of 6 D to produce tem perature anomalies of 15 - 

20°C. Model 5, at 800 m thick, produces a 20°C temperature peak at between 

1 and 2 Darcies.

Each of the test models, has the potential to produce a 10 - 20°C 

tem perature anomaly. These anomalies are of similar m agnitude and 

wavelength as the observed SWA's of Chapter 2 (Fig. 2.9), and like the 

SWA's, they are depth-limited. The permeabilities necessary to produce 

these anomalies are, especially in the cases of Models 3 & 4, unrealistically 

high.

I use a modified version of the finite-element mesh created for 

therm al modelling in Chapter 3 (Fig. 3.2) to investigate the role of 

convection within isolated cells in the Central Graben. This model (Fig. 5.7) 

has a 10 km wide by 400 m thick high permeability unit w ithin both the 

ECG and WCG. The physical properties of the HPU's and those of the 

surrounding sedimentary pile, are as shown in Table 5.2. As Figure 5.9 

shows, 2 D permeability produces the maximum tem perature disturbance in 

each case -- an approximately 15°C temperature spike in the WCG, and a
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10°C tem perature step in the ECG. The maximum tem perature disturbances 

are produced at average fluid velocities within the cell of approximately 1.0 

m a 'l . The WCG convection cell is therefore capable of producing a 

tem perature spike of 15°C (comparable to those of some SWA's) but no 

significant temperature spike is produced within the ECG cell even at 3 D 

permeability (Fig. 5.9).

A possible reason for this difference in behaviour between the two 

units may be the eastern Central Graben HPU's proximity to the Norwegian 

high (Fig. 5.7; PESGB, 1994). Higher regional flow velocities may suppress 

convective activity close to the Norwegian high, thus producing lower fluid 

velocities and lower temperature effects within the ECG cell, as compared to 

the WCG cell. In any case permeable units within the western Central 

Graben appear more prone to convection than their eastern Central Graben 

counterparts.

5.3 Fluid Flow Within Fault Zones - Test Grids

The test grids used within this section have the same "basement" 

geometry as the convection test grids, and they are again designed to be 

broadly analogous to the western Central Graben (see Fig. 5.1, [represents 

only half the graben]), having a maximum depth of sediment fill of 

approximately 6 km, and a typical North Sea "steers head" sediment 

geometry. The fault zone to be studied is in each case is 300m wide. It 

consists of three columns of elements in the finite element mesh. In order 

to increase the resolution of any tem perature anomaly produced, colum n 

spacing around the fault zone is reduced to 1 km for a distance of 5 km  (Fig. 

5.11, "zoomed" fault zone).
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5.3.1 Fault Zone Behaviour w ithin  Homogeneous Sedimentary Pile

The initial model used to investigate the potential of fluid flow 

within a fault zone consists only of basement (purple), sedimentary fill 

(homogeneous, red), and a single "fault" material (light blue; Fig. 5.12). The 

vertical fault zone spans 1.5 km depth from 3.5 km to 5km below the 

surface. Fluid energy is related to the small topographic expression at the 

western end of the section, analogous to the present-day land area of 

England.

In order to assess the effects of fault and sediment permeabilities on 

fluid flow velocities, and the resultant tem perature effect around the fault 

zone, I model a range of sediment permeabilities for several values of fault 

permeability. I aim to establish a range of sediment and fault permeabilities 

at which vertical fluid flow within a fault zone produces a significant 

tem perature effect (approx. 10°C or greater).

The poro-perm  parameters assigned to the sedimentary pile and the 

fault zone are shown in Table 5 .3 .1 proceed in modelling by assigning a 

fixed value to the fault zone of 50 mD (basement is fixed throughout the 

modelling at 10"4 mD), and simulate the effects of fluid flow on tem perature 

in and near the fault zone at a range of sediment permeabilities. 

Temperatures are recorded from points A - D (Fig 5.12) for each simulation, 

and from these, the average temperature increase across the fault zone is 

calculated [using ((A+D)/2 - (B+C)/2), see Fig. 5.12]. By this means I can 

determine the effect of sediment permeability on fluid flow within the 50 

mD fault zone. I then model the same suite of sediment permeabilities at 

fault permeabilities of 100 , 150, and 200 mD to determine the influence of 

fault permeability on fluid flow.

[It is worth noting that while I use a fault zone of 300 m w idth, the 

same results can be produced by smaller fault zone widths by increasing the

1 3 0



perm eability of the fault zone. The relationship between fault zone w idth 

and vertical permeability is broadly linear. For example, a fault zone of 300 

m w idth and 50 mD vertical permeability will produce a similar 

tem perature disturbance as a 100 m wide fault of 150 mD vertical 

permeability.]

U nit Modelled Permeability

Range

(mD)

Anisotropy Porosity

(%)

Sedim entary

Pile

1 -2 0  (Horizontal = Max.) 100 5

Fault Zone 50 - 200 (Vertical = Max.) 100 5

Table 5.3 - Poro-perm parameters and modelled ranges of fault and 
sedim ent permeabilities in simulations of Fault Zone Behaviour w ithin a 
H om ogeneous Sedimentary Pile. Basement remains constant at 10"4 mD.

From the above modelling a plot is constructed of tem perature 

increase across the fault zone, as related to sediment permeability (Fig. 5.13). 

This shows that at horizontal sediment permeabilities (anisotropy = 100) 

lower than 7 mD, the temperature increase within the fault zone is less than

5 °C (and therefore undetectable from BHT data). Above 7 mD (sediment 

permeability) there is a sharp increase in the size of the tem perature peak as 

sediment permeability increases, and by 12 mD sediment permeability, all 

faults w ith 50 mD to 200 mD permeability produce a 40°C tem perature peak 

over the fault zone. However, closer examination of the tem perature 

contour plots for each simulation reveals that at sediment permeabilities of

6 mD or less, all temperature effects within the fault zone (<5°C) are caused 

by convection w ithin  the fault zone with minor circulation of fluids in the 

surrounding sediments. Figures 5. 14 A and B show an example of this
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convective flow (fault = 100 mD, sediment permeability 5 mD); the 

groundw ater velocity plot (Fig. 5.14A) depicts an obvious circulation of 

fluids within the fault zone, producing virtually no tem perature anomaly 

(Fig 5.14B). It is also notable that, at sediment permeabilities of 

approxim ately 7 -1 5  mD, there is upflow within the fault zone combined 

w ith convection in the sedimentary pile around the fault zone (Fig 5.15A), 

producing a large tem perature anomaly (Fig. 5.15B). At permeabilities above 

15 mD all the sedimentary pile convects and any effect of localised fluid flow 

within the fault zone is swamped by the regional fluid circulation (results 

not shown). The fault zone in each instance however, localises the fluid 

upflow zone, and its presence is critical to the development of these flow 

systems.

5.3.2 Influence o f Sediment Permeability Architecture

The geometry of these models differs from the previous test-grid 

m odel by sub-division of the sedimentary pile into 4 distinct units: Tertiary, 

Palaeocene, Cretaceous and pre-Cretaceous (Fig. 5.16A). This model is 

designed to be broadly analogous to the Central Graben (thicknesses and 

edge of graben geometry are similar although all sedimentary units are in 

this case flat-lying) in architecture. The base-case poro-perm values are 

shown in Table 5.4 (comparable to those used in the regional fluid flow 

modelling, Section 4.3, Table 4.2).

The same fault zone geometry as shown in Figure 5.12 is used within 

the sub-divided sedimentary pile (the fault therefore initiates within the 

pre-Cretaceous sediments and terminates within the Palaeocene; see Fig. 

5.16B). First, I assign the fault a vertical permeability of 50 mD (anisotropy 

of 100, i.e. horiz. permeability of 0.5 mD). A base-case simulation (all 

sedimentary units at base-case values (Table 5.4) and fault at 50 mD)
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produces no significant tem perature anomaly above the fault zone (Fig. 

5.17). From this base-case scenario I simulate the thermal effects in and 

around the fault zone induced by increasing the horizontal permeability of a 

single major unit while holding the others constant (Table 5.4). By this 

means I can establish which stratigraphic units have the greatest effect on 

fluid flow (and therefore temperature effect) w ithin the fault zone. The 

same suite of models is then run for a fault zone permeability of 200 mD.

Sedim entary

U nit

Base-Case

H orizontal

Permeability

(mD)

Base-Case

Porosity

(%)

Anisotropy Range in 

H orizontal 

Permeability 

M odelled (mD)

Tertiary 1.0 10 100 5-70

Palaeocene 100 10 100 200 -1000

Cretaceous 0.1 5 100 1 -30

Pre-Cretaceous 10 5 100 1 -50

Table 5.4 - Base-case poro-perm parameters, and modelled range of 
sediment permeabilities, in simulations of Fault Zone Behaviour w ithin a 
H eterogeneous Sedimentary Pile. Basement remains constant at 10-4 mD.

I extract the tem peratures at the nodes shown in Figure 5.16B, for 

each simulation, and plot these temperatures against distance for each of the 

sedimentary units (Tertiary to pre-Cretaceous) for two fault-zone 

permeabilities. The resulting plots (Fig. 5.18) show that, for a fault 

permeability of 50 mD, a Cretaceous unit permeability of 30 mD can result in 

an approximately 7°C tem perature anomaly across the fault zone. The pre- 

Cretaceous unit shows a rise in temperature across the fault zone up  to a 

permeability of 40 mD. Above this permeability, however, the pre- 

Cretaceous units undergo major convection, and the resulting tem perature
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Figure 5.18 - Temperature across the fault zone plotted at 
a range of sedimentary unit permeabilities for the units 
described in Table 5.4. Fault zone permeability is constant 
at 50 mD. Cretaceous and Pre-Cretaceous are shown 
overleaf.
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effects are no longer attributable to the presence of a fault zone. Therefore 

these high-permeability effects are disregarded in this section.

At a fault permeability of 200 mD (Fig. 5.19), horizontal sediment 

permeabilities of 70 mD in the Tertiary and 900-1000 mD in the Palaeocene 

units results in approximately 10 - 15°C tem perature anomalies across the 

fault zone. A Cretaceous permeability of 30 mD (0.3 mD vertical) results in a 

tem perature anomaly of 40°C, with an approximately 10 km width. The pre- 

Cretaceous unit remains relatively stable up to 30 mD, with an approximate 

10°C tem perature step formed. Above this value the pre-Cretaceous unit 

again undergoes major convection, and those results are not considered 

here (see previous section).

5.3.3 Sum m ary

The test grids used to simulate the thermal effects of a permeable, 

vertical fault zone have a basement geometry broadly analogous to that of 

the Central Graben. Initially, a homogeneous sedimentary pile is assumed, 

and several values of fault zone permeability are modelled over sediment 

permeabilities ranging from 1 to 20 mD. A plot of average tem perature 

increase across the fault zone against sediment permeability (Fig. 5.13) 

shows that only above sediment permeabilities of 7 mD is the tem perature 

disturbance across the fault zone detectable in terms of the resolution of 

BHT data. Below this value (7 mD) any tem perature deviation from 

background is caused by convection within the fault zone, not simply by 

upwelling fluids (Fig. 5.14). For any value of fault permeability, a maximum 

temperature peak of 40°C is possible across the fault zone at a sediment 

horizontal permeability of approximately 12 mD. At sediment 

permeabilities above 15 mD the entire sedimentary pile undergoes 

convection, and although the fault zone localises fluid upflow, the thermal
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effects of fluid migration within the fault zone are swam ped by the regional 

fluid circulation.

This initial model (Fig. 5.12) is then modified by the sub-division of 

the sedimentary pile into four units: Tertiary, Palaeocene, Cretaceous and 

pre-Cretaceous (Fig. 5.16). Using the same fault zone geometry as the 

previous section I first assign the fault zone a permeability of 50 mD and 

simulate the tem perature effects of fluid flow within the fault zone for a 

range of sediment permeabilities (varying the permeability of each 

sedim entary unit independently). The same suite of models is then run  for 

a fault permeability of 200 mD.

In plots of tem perature against distance for each value of sediment 

permeability modelled (Figures 5.18 and 5.19), it is apparent that for the 50 

mD fault zone, only the Cretaceous unit has the potential to influence fluid 

flow within the fault zone at realistic sedimentary permeabilities, w ith the 

Tertiary, Palaeocene and pre-Cretaceous having no effect on fluid flow 

within the fault zone. Note, however, that permeability values for the pre- 

Cretaceous of greater than 30 mD result in regional convection w ithin that 

unit. At a fault permeability of 200 mD, both the Tertiary and Palaeocene 

have the potential to induce tem perature peaks of approximately 15°C at 

horizontal sediment permeabilities of 70 and approximately 1000 mD, 

respectively. Fluid flow within the fault zone is again most sensitive to 

Cretaceous permeability, with a Cretaceous permeability of 40 mD (0.4 mD 

vertical) causing a tem perature peak of 40°C and 10 km half-wavelength. 

The pre-Cretaceous unit again convects at permeabilities above 30 mD; 

below this value, the pre-Cretaceous does not significantly influence fluid 

flow within the fault zone.

The fault models in this section are capable of producing 

tem perature anomalies of comparable m agnitude and w avelength to the 

SWA's (Fig. 5.19). The SWA's are otherwise inexplicable in terms of
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conductive heat transport, or thermal disturbances caused by regional fluid 

flow. Surprisingly, the potential for the formation of such tem perature 

anomalies (SWA's) is equally dependent on sediment perm eability as on 

fault permeability, especially that of the low permeability unit which the 

modelled fault transects.

5.4 Fluid Flow W ithin Fault Zones - Central Graben

The test grids show that fluid flow within fault zones is equally 

dependent on sediment permeability and fault permeability. The 

simulations also suggest that fluid flow within fault zones (at realistic 

permeabilities) is capable of producing SWA's of m agnitude and 

wavelength similar to those noted in Chapter 2 from actual measurements 

(Fig. 2.9). It therefore seems appropriate to simulate the thermal effects of a 

sub-vertical, permeable fault zone within the setting of the Central Graben. 

The models used are adapted from the original Central Graben section 

described in Figure 4.1. However, I add several rows and columns; this 

allows simulations which include both the Palaeocene, and a sub-vertical 

fault zone (Figs. 5.20 and 5.21). The thermal conductivity parameters are the 

same as those for the final thermal model in Chapter 3 (Table 3.4 for 

thermal conductivity values). From a base-case model (no fault zone, see 

Table 5.5), I extract the temperatures at each of the nodes shown in Figure 

5.21 (located across the subsequent position of the fault zone). For all other 

simulations I extract temperature values from the same set of points, thus 

allowing a comparison of any temperature effects due to flow within the 

fault zone to the "background".
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5.4.1 Influence of Sediment and Fault Zone Perm eability on Temperature

Using the modified version of the Central Graben section described 

above I proceed in a similar manner to the previous section on "influence 

of sediment permeability architecture" (Section 5.3.2). After adding a 300 m 

wide sub-vertical fault zone on the western edge of the basement high 

shown in Figure 5.21 (note the nodes for tem perature extraction), I hold all 

sedimentary units at their base-case values and simulate the effects of a 

permeable fault zone. The simulations are over a range in fault zone 

permeability of 50 to 500 mD (it should be noted that all fault permeabilities 

quoted are vertical permeabilities, the horizontal permeability w ithin the 

fault zone being 100th of the vertical in each case). The resulting 

tem perature disturbance at these reference points is plotted in Figure 5.22. 

Up to a vertical permeability of 200 mD the tem perature effect of the 

permeable fault zone is negligible. At 300 mD or above, a 15°C tem perature 

anomaly of only approximately 5 km half-wavelength is formed. This is not 

the result of buoyancy-driven fluids moving upwards, from the pre- 

Cretaceous sediments into the Palaeocene as may be expected, but is a result 

of convection w ithin the fault zone (Fig. 5.23).

Having established that wider reaching regional flow cannot be 

induced by the presence of a fault zone alone, I set the fault zone at a 

conservative 100 mD. I then proceed, by simulating the effect on flow (and 

therefore temperature) within the fault zone, over a range in permeabilities 

for each "stratigraphic" unit (Tertiary, Palaeocene, Cretaceous,

Jurassic/Triassic, and pre-Triassic sediments). I note the resulting 

tem perature effects in and around the fault zone for each simulation.

The range in permeability for each sedimentary unit is shown in 

Table 5.5. The resulting plots of temperature against distance for each value 

of permeability are shown in Figure 5.24. These plots show that, for elevated

151



T
em

pe
ra

tu
re

 
(*

C
)

Fault Permeability Test
155

■■■■ Q Base-Case 
— B— 50 m D  

■o - 100 m D  
— *—  200 m D
 1-—  300 m D
— ffl—  500 m D

150 —

145 —

140 —

135
525 540520 535 545 550530 555

D istance (km)

Figure 5.22 - Temperature profile across fault zone in Central 
Graben model for fault zone permeabilities of 50 to 500 mD. 
Sedimentary unit permeabilities held constant at values listed 
in Table 5.5. NOTE - fault permeabilties are vertical 
permeabilities, with horizontal fault permeabilities being 100th 
of the vertical.
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Figure 5.24 - Temperature profile across the fault zone for each 
unit described in Table 5.5, simulated at a range of horizontal 
sediment permeabilities. Cretaceous, Jurassic/Triassic, and Pre- 
Triassic are shown overleaf. The fault zone appears most 
sensitive to Cretaceous permeability variations.
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Figure 5.24 (cont.) - Temperature profile across the fault 
zone for each unit described in Table 5.5, simulated at a 
range of horizontal sediment permeabilities. The fault zone 
appears most sensitive to Cretaceous permeability 
variations.



permeabilities within the Tertiary and Palaeocene (of 20 mD and 500 mD+ 

respectively), 10 to 15°C temperature steps are formed with half­

wavelengths of approximately 10 km. Flow velocities in fault zone are more 

sensitive to increases in permeability of the Cretaceous unit than any other 

unit; producing a 15°C temperature peak of approximately 5 km half­

w avelength at 10 mD horizontal permeability (0.1 mD vertical 

permeability). Units lying below the Cretaceous appear to have minimal 

effect on the behaviour of flow within the fault zone, w ith the 

Jurassic/Triassic and pre-Triassic sedimentary units showing only m inor 

tem perature effects at up to 200 and 400 mD respectively.

Sedim entary

U nit

Base-Case

Horizontal

Permeability

(mD)

Porosity (%) Anisotropy Range in 

H orizontal 

Permeability 

M odelled (mD)

Tertiary 1.0 10 100 2 -20

Palaeocene 100 10 100 200 -1000

Cretaceous 0.1 5 100 1-10

Jurassic/

Triassic

10 5 100 20 - 200

Perm ian 10 5 100 50 - 400

Fault Zone 5 100 50 - 500 (max. 

vertical, m in. 

horizontal)

Table 5.5 - Base-case poro-perm parameters, and modelled range of sediment 
and fault permeabilities, in simulations of Fault Zone Behaviour w ithin 
the Central Graben model (Fig. 5.20). Basement remains constant at 10'4 mD 
(anisotropy of 5). NOTE - sediment permeabilities listed are horizontal, fault 
permeabilities listed are vertical.
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5.4.2 Fault Outlet Zone Investigation

The models described up to this point, show that flow in and around 

the fault zone produces a maximum positive tem perature disturbance of 

15°C. One well within the Central Graben 2-D tem perature plots (Figs. 2.6 & 

2.9) shows a positive anomaly of 40°C. Could a positive anomaly of this 

magnitude be formed by fluid flow up a fault zone? One possibility is the 

exit of hot fluids from the top of the fault zone into a small 

(compartmentalised), more permeable unit allowing greater velocities of 

flow, and therefore a greater temperature disturbance.

To test this assumption, a suite of models is used with the same 

sediment poro-perm values as listed in Table 5.5, and the same overall 

geometry as Figure 5.20. However, the previous model is modified by the 

addition of a permeable unit at the top of the fault zone. The new 

geometries (around the fault zone) of Models 1 - 5  are shown in Figure 5.25 

(A-C) with the poro-perm values of the additional permeable unit (black, 

see Fig. 5.25) listed in Table 5.6 (the fault remains at the conservative 100 

mD vertical permeability). Models 1 & 2 are offset to the west of the fault 

zone, Model 3 is centred on the fault zone and Models 4 & 5 are offset to the 

east of the fault zone.

Models 1 and 2 share the same geometry (Fig. 5.25A) w ith the 

additional high permeability unit being approximately 2 km wide and 500 m 

thick. In the case of Model 1 the permeability of the outlet zone is isotropic, 

whereas in Model 2 it is anisotropic, with the maximum permeability being 

vertical (perhaps comparable to a highly fractured or brecciated unit or 

zone). A plot of temperature against unit permeability shows that Model 1 

produces only an approximately 15°C tem perature step (Fig. 5.26A). Model 2 

however, w ith its enhanced vertical permeability, produces a maximum
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[A] M odel 1 Perm eability Test
190 -
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o ■' Base-Case 
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-x— 100 mD
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Figure 5.26 - T em peratu re  profiles over the C entral G raben  fau lt 
zone for fau lt ou tle t zone M odels 1 and  2. The fau lt zone 
perm eab ility  is held  constan t a t 100 m D and  all sed im en ta ry  u n its  
a t th e ir base-case values show n  in Table 5.5.



tem perature peak of 40°C (Fig. 5.26B) at a vertical permeability of 100 mD 

(equal to that of the fault zone). This m agnitude of tem perature peak is 

compatible with the largest of the observed SWA's.

Model 3 (Fig. 5.25B) has a 2.3 km wide sedimentary unit centred on 

the top of the fault zone. This unit is anisotropic, again with its vertical 

permeability 100 times horizontal. This model produces only a m aximum 

10°C tem perature step (Fig. 5.27) over a range of permeabilities from 100 to 

500 mD (vertical). This step deviates only from background tem peratures by 

approxim ately 5°C.

Model M axim um  

Permeability 

Angle (°)

Anisotropy 

(relative to 

m axim um  

direction)

Permeability

Range

Modelled

(mD)

Porosity (%)

Model 1 0 (horiz.) 1 10 - 400 10

M odel 2 90 (vert.) 100 50 - 200 10

M odel 3 90 (vert.) 100 100 - 500 10

M odel 4 0 (horiz.) 1 25 -125 10

M odel 5 90 (vert.) 100 25 -150 10

Table 5.6 - Poro-perm parameters of fault outlet zone, for Models 1 to 5 (Fig. 
5.25) in Fault Zone Outlet Investigation (Section 5.4.2). All other 
sedimentary units at base-case parameters shown in Table 5.5. Fault Zone 
and Basement constant at 100 mD and 10"4 mD respectively.

In Models 4 and 5 the high permeability unit is offset to both the east 

and west of the fault zone (Fig. 5.25C) and is approximately 3 km wide by 500 

m thick. Model 4 is isotropic, with Model 5 being anisotropic (see Table 5.6). 

The isotropic model (Model 4) produces an approximately 15°C tem perature 

peak at 50 mD, with a negative tem perature anomaly (of approximately
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Model 3 Permeability Test
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Figure 5.27 - Temperature profiles over the Central Graben fault 
zone for fault outlet zone Model 3. The fault zone permeability is 
held constant at 100 mD and all sedimentary units at their base- 
case values shown in Table 5.5.



[A] Model 4 Permeability Test
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Figure 5.28 - Temperature profiles over the Central Graben fault zone 
for fault outlet zone Models 4 and 5. The fault zone permeability is 
held constant at 100 mD and all sedimentary units at their base-case 
values shown in Table 5.5.



15°C) being produced at higher permeabilities (Fig. 5.28A). Model 5 

however, behaves in much the same m anner as the other model of vertical 

maximum permeability (Model 2), and produces a m axim um  tem perature 

peak at 100 mD of approximately 50°C (Fig. 5.28B).

5.4.3 SummaryIKey Factors

The thermal properties of the preferred conductive model reported in 

Chapter 3, along with a suite of base-case poro-perm parameters comparable 

to those used in the fault test-grid models, are used to assess the effects of 

fault zone fluid flow in a Central Graben setting (Figs. 5.20 & 5.21). 

Background, base-case temperatures are established and all subsequent 

simulations are compared to them. The influence of fault zone perm eability 

is investigated first. Holding all sediment permeabilities at base-case values, 

the fault zone is modelled through vertical permeabilities ranging from 50 

to 500 mD. At a fault zone permeability greater than 300 mD, a 15°C 

tem perature anomaly is formed with a 5 km half-wavelength. This 

tem perature disturbance is due to convection within the fault zone (Fig.

5.23) — not to simple upwelling of buoyancy-driven fluids. Therefore the 

presence of a permeable fault zone alone does not induce more regional 

circulation of fluids.

I then set the fault zone at 100 mD vertical permeability for all 

subsequent simulations and vary the permeability of each sedim entary unit 

in turn (Table 5.5) noting the resulting tem perature effects. Figure 5.24 

shows that for Tertiary and Palaeocene horizontal permeabilities above 20 

and 500 mD, respectively, 10 to 15°C temperature steps form with 

wavelengths of 10 km. As expected from the results of the test grids, fluid 

flow within the fault zone is most sensitive to Cretaceous permeability. A 

Cretaceous horizontal permeability of only 10 mD results in a 15°C, 5 km
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half-wavelength tem perature peak. The pre-Cretaceous units do not appear 

to have any major effect on flow within the fault zone, showing only minor 

temperature effects at up to 200 and 400 mD respectively. As observed in the 

test grid simulations, the Cretaceous is again the most influential unit on 

the behaviour of fluids within the fault zone, with units above the 

Cretaceous having a lesser effect and those below virtually no effect.

This suite of models described in Section 5.4.1 (Figs. 5.24) considers 

only a (conservative) base-case bulk permeability for each "stratigraphic" 

unit. W hat if the fault zone intersects a high permeability unit? This could 

be either a high permeability sedimentary unit within the Palaeocene, or an 

extremely fractured unit (wider fault zone, brecciated or hydrofractured 

unit). What does the model simulate the effect on tem perature to be of a 

fault intersecting a smaller, permeable, compartmentalised unit? To 

investigate these questions I use five new geometries around the top of the 

fault zone shown in Figs. 5.25A - C (the overall geometry of the Central 

Graben model remains the same, poro-perm parameters of the additional 

unit(s) is shown in Table 5.6). Models 1 & 2 differ only in that the former is 

isotropic with the latter having its maximum permeability orientated 

vertically. The isotropic model produces a 15°C tem perature step at 

compartment permeabilities of 100 mD and above (Fig. 5.26A), whereas 

Model 2 (anisotropic, vertical permeability maximum) produces a 

maximum tem perature peak of 40°C and approximately 5 km w idth  at only 

100 mD vertical permeability (Fig. 5.26B).

Model 3 (maximum permeability vertical and centred on the fault 

zone) produces only a 5°C deviation in tem perature from background at 500 

mD vertical permeability (Fig. 5.27; 5 mD horizontal permeability); this 

geometry could not be responsible for any SWA's identified by this study. 

Models 4 & 5 ( Fig. 5.28), although of different geometry to Models 1 & 2, 

behave in much the same manner. The isotropic model produces a
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maximum tem perature peak of 15°C at 50 mD, with a negative anomaly of 

15°C occurring at higher permeabilities. Model 5 gives a maximum 

tem perature peak of 50°C at only 100 mD vertical permeability (horizontal = 

1 mD).

At the modelled permeabilities, fluid flow within fault zones is 

capable of producing temperature anomalies ranging in m agnitude of up to 

50°C. Such flow can adequately explain the SWA's observed within the 

tem perature profiles of Chapter 2. Fault permeability however, is not the 

dom inant factor, as might have been expected. Indeed at high fault 

permeabilities, convection within the fault zone dominates the flow system. 

Sediment permeability, and the permeability architecture of the unit into 

which the fault discharges, are of param ount importance in the m agnitude 

of tem perature anomaly produced.

5.5 Conclusions

5.5.1 Convection

The different geometries of convection cell I have m odelled (Figs. 5.2 

& 5.5) show that significant temperature disturbance is possible due to the 

effects of relatively small scale localised convection cells. The 800 m thick 

cell produces a 20°C temperature peak (Fig. 5.6 C) at only 1 Darcy horizontal 

permeability. However, the thinner cells (200 and 400 m thick), as expected, 

require higher horizontal permeabilities — up to 6 D (anisotropy in both 

cases = 100). Like the SWA's identified in Chapter 2, Fig. 2.9, the resulting 

tem perature anomaly is depth-limited (Fig. 5.4) and of similar m agnitude.

In a more realistic model of the Central Graben (Fig. 5.7,10 km by 400 

m thick convection cells), temperature anomalies are produced (Fig. 5.9), but 

they are of smaller m agnitude, and the maximum tem perature anomalies
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occur at 2 D horizontal permeabilities. This disturbance corresponds to an 

average fluid velocity within the convection cell of 1.0 ma"l for both the 

ECG and WCG. The ECG, however, produces only a maximum 10°C 

tem perature step compared to the >15°C temperature peak in the WCG at 2 

D horizontal permeability. The WCG is apparently more prone to 

convection than the ECG.

Both sets of convection models have the potential to produce 

approxim ately 15°C m agnitude SWA's. The permeabilities necessary for 

this effect are somewhat high compared to sediment at that depth.

However, Darcy permeabilities may be possible within some of the Permian 

dune sand units within the graben (Trewin and Bramwell, 1991). Based on 

the results reported here, horizontal permeabilities of above 1 Darcy will 

certainly result in significant and potentially detectable (>10°C) tem perature 

anom alies.

5.5.2 Flow w ithin fa u lt Zones

From both the test grids (Fig. 5.12 & 5.16), and the Central graben 

models (Fig. 5.21), it is apparent that fault or fracture zone permeability is 

not the sole/dom inant factor in determining whether or not the 

tem perature field will be significantly disturbed due to fluid flow within 

fault or fracture zones. Figure 5.13 shows that large fault zone permeabilities 

are not necessary for the formation of large thermal disturbances. A 50 mD 

vertical permeability fault zone can produce a 40°C tem perature anomaly at 

bulk sediment horizontal permeabilities of only 1 0 - 1 2  mD!

In both of these types of model, if the fault-zone permeabilities are 

high, and the faults are located within a relatively low permeability 

sedimentary pile, the tem perature disturbances that are formed are the 

result of convection within the fault zone. They are not related to simple
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buoyancy-driven flow moving up the fault zone. Such convection w ithin a 

fault or fracture zone is capable of producing a 15 to 20°C tem perature 

anomaly of 5 km w idth for a fault zone 3 km wide. When the sedimentary 

pile is sub-divided into distinct hydrostratigraphic units (Figs. 5.12 & 5.21), 

the resulting tem perature anomaly is most sensitive to the perm eability of 

the "Cretaceous" — in both the test grids, and the Central Graben models 

(compare Fig. 5.18 & 5.19 to Fig. 5.24). Underlying sedimentary units 

(beneath the Cretaceous) do not significantly affect the m agnitude of the 

tem perature anomaly formed, whereas the overlying Tertiary and 

Palaeocene units can influence the resulting tem perature anomaly, 

although to a lesser degree than the Cretaceous (again see Figs. 5.18 & 5.19 to 

Fig. 5.24). The maximum m agnitude of tem perature anomaly m odelled is 

approximately 15°C and of 5-10 km width.

To produce larger tem perature anomalies, comparable to those of the 

largest identified SWA's, a fault-outlet zone of high vertical perm eability is 

necessary (example Fig. 5.25A and 5.26B). This geometry is capable of 

producing up to 50 °C tem perature anomalies.

In the Central Graben models, the fault permeability itself has less 

influence on the m agnitude of fluid flow velocities, and the tem perature 

anomalies formed, than does the permeability of the sedimentary pile, and 

the permeability and nature of the fault outlet area. For example, a 100 mD 

fault intersecting a small highly fractured (100 mD vertical permeability) 

unit above the Cretaceous produces a much greater tem perature anomaly 

than the same fault intersecting an un-compartmentalised Palaeocene at a 

horizontal permeability of 1000 mD.
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CHAPTER 6

DISCUSSION OF MODELLING AND  
MECHANISMS

6.1 The M odem  Temperature Field and Conductive Heat 

Transfer

Understanding the temperature, and the tem perature history, w ithin 

an oil producing basin such as the North Sea, is of param ount importance, 

since the tem perature history is a major controlling factor on the m aturity 

of source rocks, and so on oil generation. A more accurate understanding of 

the m odern tem perature distribution, and of the factors influencing it, 

allows a better extrapolation into the geological past, and therefore, a better 

understanding of "kitchen" areas for oil generation w ithin the basin.

Within the Central Graben I have identified two types of tem perature 

anomaly - the LWA and the SWA. Through the use of 2-D conductive heat 

transfer models I am able to explain the LWA. These simulations allow me 

to estimate the variation in heat flow across the Central Graben. There is a 5 

m W m "l decrease from the West Central Graben (70 mW m'2) to the East 

Central Graben (65 mWm"2). A similar decrease in heat flow across the 

Central Graben is noted by Cermak (1979).

The SWA's superimposed onto the LWA are inexplicable in terms of 

conductive heat transfer. It is not possible to explain the SWA's by high 

conductivity features such as salt domes. The models I investigate —both a 

large salt dome and a salt wedge — suggest a maximum tem perature 

disturbance of less than 10°C (relative to the conductive tem perature field) 

due to the presence of the anomalous salt features. A similar study by 

Petersen and Lerche (1996) of the temperature effects over a salt dome
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within the Norwegian-Danish Basin show a maximum positive anomaly of 

10°C over a 3 km "tall" salt dome. The only salt feature within my line of 

section of similar proportions lies within the Western Central Graben and 

therefore salt could not account for all the SWA's identified -- even if the 

tem perature effects were sufficient to explain the observed SWA's.

Some tem perature studies, confronted by areas of anomalous high or 

low temperatures, invoke changes in basal heat flow to account for these 

variations (Yu et al 1995). This may be the case when dealing w ith large 

areas (10's of km), but in the case of the Central Graben, the SWA's have 

wavelengths of 5 to 15 km, and, they are depth-lim ited. It does not seem 

possible that a local increase in basal heat flow can be responsible for the 

SWA's as any additional source of heat at depth (within the basement), 

which might cause such an increase in basal heat flow, would be greatly 

defocused w ithin the basin sediments, and the resulting tem perature 

anomaly at 1 - 5 km depths, would not be depth limited, and it would be 

broad.

Based on a wide range of modelled sediment and basement thermal 

conductivities, I have defined a best-fit conductive model for the Central 

Graben. However, this model cannot account for the SWA's observed 

within the tem perature contour plots — neither high thermal conductivity 

units such as salt, or changes in basal heat flow can produce SWA's of the 

appropriate geometry. The SWA's can only be explained by other heat 

transfer processes - e.g. advection of heated porefluids.

6.2 Fluid Flow and Heat Transfer Within the Central Graben

The transport of heat by moving groundwaters m ust now operate, or 

have recently been operative, within the Central Graben. Tem perature 

studies undertaken by Carstens and Finstad (1981), and by Andrews-Speed et
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al (1984), concluded that fluid flow must significantly influence the modern- 

day tem perature field of the Central and Viking Grabens respectively. This 

study reaches similar conclusions. The fluid flow processes considered 

herein are large-scale gravity-driven fluid flow, convective fluid flow (on 

both a regional and localised scale), and fault-focused fluid flow. Fluid flow 

driven by overpressure is not explicitly considered, but I address this m atter 

by analogy with the fault-focused models. Here I consider the viability of 

major fluid flow processes, and their effects or otherwise on m odern 

temperatures, within the Central Graben. These processes and their effects 

are categorised in Table 6.1.

I did not investigate the effects of com paction-driven fluid flow. I 

concluded that sufficient work by others has already shown that 

compaction-driven fluid flow is typically of insufficient volume or velocity 

to significantly affect the temperature field of a compacting basin (Byorlykke, 

1994; Bethke, 1985). For example, Bethke (1985) shows that compaction- 

driven flow within intracratonic basins (without the development of 

significant overpressure) is characterised by fluid flow rates of m ma"l or 

less. In the scope of this study fluid velocities of cma~l to m a 'l are shown to 

be necessary for discernible (>1-2°C) temperature changes. Where rapid 

subsidence rates are coupled with the deposition of shaly strata (Gulf Coast) 

overpressure may form due to compaction disequilibrium (Bethke 1989; 

Dewers and Ortoleva 1994). However, I regard the process of trapping 

compactional fluids, and their subsequent rapid release at high pressure, as 

not truly compaction-driven fluid flow. I deal w ith the mechanism of 

overpressure-driven fluid flow later in terms of focused fluid flow.

Basement is generally excluded from basin models when dealing 

with fluid flow (Ungerer et al 1990, North Sea; Bethke 1986, Mississippi 

Valley, USA; Person and Garven 1989, Rhine Graben). However, recent 

investigations associated w ith the KTB borehole in Bavaria suggest that
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"basement fluids are present in great quantities and are able to migrate over 

considerable distances" (Harms et al 1993). The regional fluid flow 

simulations of the Central Graben reported in this study suggest that, while 

fluid flow through basem ent is not sufficiently fast to disturb the 

tem perature regime, it provides a significant volume of fluids to the base of 

the sedimentary fill of the graben. The base-case model of the Central 

Graben used for regional fluid flow modelling indicates recharge through 

basement from the Norwegian high at flow rates of m m a 'l  Therefore it is 

not realistic to automatically exclude basement from modelling studies 

within the North Sea (or elsewhere) w ithout first conducting a regional 

overview that considers possible basement fluid flows. This additional fluid 

source to the deep graben may also have an effect on diagenetic studies 

within the sedimentary pile of the Central Graben.

Regional fluid flow in the base-case model (driven by topographic 

heads on the UK and Norwegian sides) produces a maximum fluid velocity 

of 18 cm a 'l (within the Permian). This water flow pattern, and the 

associated flow of oil, suggests that petroleum migration directions may be 

severely affected by topographically-driven fluid flow (especially in the Pre- 

Cretaceous rocks). Although this model does not address overpressure, and 

the alteration of the flow system it causes, it may be that similar (cma"l) 

fluid velocities have occurred in the past (during periods of no or low 

overpressure), and they may occur in the normally pressured portions of 

the basin at the present-day. If this is true, then petroleum  m igration 

directions, within the graben, may be partly determined by regional fluid 

flow (as opposed to only the buoyancy of oil; see Toth 1991). In the base-case 

models petroleum flow is consistently towards structural highs; this motion 

is consistent with the known occurrences of oil within the Central Graben 

(Cayley, 1986).
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Thermal effects associated with this topographically-driven flow 

system are not significant because flow rates are low. Although Andrews- 

Speed et al (1984) suggested that a regional fluid flow mechanism (cool 

groundwater descending off the Norwegian high) may be responsible for the 

patterns of heat flow they mapped. Jessop and Majorowicz (1994) believed 

there was not sufficient topographic relief to drive such a process. From the 

modelling reported here, it certainly appears that, although there exists 

some recharge to the Central Graben from the Norwegian High, it is 

insufficient to alter the conductive tem perature field (unless there are 

permeable channels not identified or considered here). Therefore a process 

other than regional topographically-driven fluid flow m ust be responsible 

for any thermal disturbances.

Convection on a regional scale, and its potential to alter the 

conductive tem perature field (see Le Carlier, 1994), is modelled by 

considering the effects associated with flows within individual stratigraphic 

units. Modern regional-scale convection within the Tertiary, Cretaceous and 

Jurassic/Triassic elements of the models can be discounted; the resultant 

temperature profiles associated with convection in these units are 

incompatible with the modern-day temperatures. Regional convection 

within the Permian of the Eastern Central Graben, however, may provide 

an alternative explanation for the shape of the modern LWA (instead of a 

decrease in basal heat flow from west to east), as this flow system produces a 

close fit to the LWA within the eastern Central Graben. However, w ithout 

more detailed permeability data for the Permian of the deep graben, this 

possible flow system can remain only a hypothesis that may subsequently 

become testable.

Small scale (localised) convection has the potential to produce short- 

wavelength tem perature anomalies of up to 20°C; such anomalies are 

comparable to some of the observed SWA's. The horizontal permeabilities
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of sediments necessary to allow these convection cells are, however, 

relatively high (several Darcies). Pre-Cretaceous clastic units are the most 

likely sites for this form of fluid flow, with the Cretaceous chalk and 

Tertiary m udrock sequences unlikely to possess sufficient permeabilities. 

Therefore, the shallow, positive temperature anomaly (Tertiary) observed 

in the contour plots of temperature, and the 40°C SWA (Fig. 2.9), are not 

likely to be a result of localised convection.

6.3 Focused Fluid Flow - The Effects, Mechanism and Evidence

Focused fluid flow along faults or fracture zones is the only process 

modelled which can fully explain any of the observed SWA's within the 

m odern tem perature field. Simulations of fluid flow within a 300 m wide 

fault zone can produce temperature anomalies comparable to any of the 

SWA's identified in Chapter 2.

Interestingly, fault zone permeability does not appear to be the major 

factor governing flow within a fault (for the flow systems considered here). 

The rate of fluid flow within a fault zone (and therefore the m agnitude of 

any tem perature disturbance) is more sensitive to the permeability 

architecture around the fault zone than to the intrinsic fault permeability 

itself, and there is a particularly critical dependence on the vertical 

perm eability of the outlet zone. The actual process of fluid flow within the 

fault zone (under the normally pressured conditions considered here) is one 

dominated by the buoyancy of fluids inducing convection within the upper 

permeable sediments at the top of the fault zone. A sketch model of my 

understanding of this fluid flow process is shown in Figure 6.1. This process 

can act at different stratigraphic levels within the basin and for different 

fault lengths given that a geometry like that shown in Figure 6.1 is present.
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What is then the evidence for vertical fluid flow within fault or 

fracture zones? Cartwright (1994) presents evidence for large-scale 

dewatering of Tertiary mudrocks along the axis of the Central Graben. The 

prim ary mechanism proposed for this process is episodic release of 

overpressure through hydrofracturing, and the resulting sub-vertical 

migration of fluids within a hydrofractured fault network (this would be a 

geologically short-lived event). I observe a large tem perature anomaly 

(SWA) within the Tertiary close to the axis of the Central Graben. This 

feature may represent physical temperature evidence for the process 

proposed by Cartwright (1994). Note however, that Cartwright infers 

episodes of flow from the Eocene to Miocene, and the tem perature anomaly 

represents a m odern phenomenon.

I propose that a similar mechanism of episodic build-up and release 

of overpressure in the deeper graben, also highly overpressured in part 

(Gaarenstroom 1992; Darby 1996a and 1996b, see Figure 6.1), may be 

responsible for the deeper SWA's within the Central Graben. The 

modelling package I have used (OILGEN) does not account for overpressure. 

However, I have shown that even within a normally pressured 

environment, at realistic fault and sediment permeabilities, SWA's may be 

formed due to buoyant fluid flow within fault zones. Therefore, the added 

fluid "drive" from an overpressured cell (due to the large pressure potential 

between the overpressured cell and normally or near-normally pressured 

strata above) would be even more likely to produce the ma"l fluid velocities
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necessary to result in the formation of SWA's. The process of episodic build­

up and release of overpressure during basin evolution associated w ith 

hydrofracturing (Dewers and Ortoleva 1994) will enhance the vertical 

permeability in the zone of fluid release - a critical factor in the formation of 

the tem perature anomalies. Furthermore, Miller (1995) shows that high 

pore pressures (overpressure) alone can cause "natural hydraulic fractures". 

Capuano (1993) also shows that under conditions of overpressure, even low 

permeability rocks such as shales may possess significant vertical fracture 

permeability, and can support flows comparable to that of sandstones.

Other studies of temperatures within sedimentary basins have shown 

the influence of fluid flow on temperature within fault zones. A study of 

the Rhine Graben by Person (1988) states that "the incorporation of high 

permeability fracture zones was found to be necessary to reproduce the 

observed geothermal conditions". More analogous to my study is the paper 

by Grauls and Baleix (1994) in which they show a positive tem perature 

anomaly over a major fault network, associated w ith overpressure release 

along that fault zone, and the transfer of hydrocarbons from depth to a 

shallow reservoir over a short period of geological time. This process is 

directly comparable to w hat I would propose for the Central Graben (Fig.

6.1). Indeed, w ithin the Central Graben, Cornford (1993) states that the bulk 

of oil migration is vertical (see also Thomas et al 1985, and Cayley 1986), and 

speculates on the likely pathways. Each pathw ay involves either faults, or 

fracture zones created by halokinesis.

My views on the processes most likely to be responsible for SWA's 

within the Central graben are summarised as:

• SWA's are explicable in terms of vertical (sub-vertical) m igration of

fluids along fault zones (at normal pressures).
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In studies by Cartwright (1994) and Grauls and Baleix (1994) 

overpressure release is the major driving force for migration of fluids 

within faults. In the case of Grauls and Baleix (1994) this process has 

also been shown to have detectable thermal effects.

• The Central Graben is known to have zones of extremely high 

overpressure (Darby 1996a, 1996b).

• Overpressure release within the North Sea may be episodic in nature

(Cartwright 1994).

• Overpressure release provides enhanced vertical permeability

through hydrofracturing (Dewers and Ortoleva 1994; Miller 1995).

• Oil migration within the Central Graben is dom inantly vertical

(Thomas et al 1985; Cayley 1986; Cornford 1993).

Therefore, I suggest that the observed (transient) SWA's that have 

formed within the Central Graben are the result of processes of episodic 

overpressure release, and the advection of heat by vertically m oving fluids. 

However the modelling shows that such tem perature anomalies m ay also 

form at normal pressures, and this may be significant in settings that lack an 

overpressure component.

6.4 Implications

A high degree of vertical fluid migration is necessary to account for 

oil migration patterns throughout the Central North Sea (Cayley 1986). 

Modelling carried out in this research shows that fluid velocities of greater
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than 1 m a"l along fractures/faults within the basin are possible at realistic 

permeabilities, and that this flow has the potential to greatly affect the 

tem perature field (LWA [partly] and SWA's). These high velocities of 

vertical fluid migration may have implications for the time taken to charge 

oil fields, although charging could take place over one or more events.

A process such as episodic fluid release from the deeper portions of 

the Central Graben will have implications for not only the rates of oil 

migration, but also for diagenesis (Knipe 1993), and potentially for 

m aturation around zones of successive overpressure release events through 

periodically raised temperatures.

This mechanism, allowing rapid vertical m igration of fluids (water 

and oil) may help explain the observed low percentage of preserved oil in 

relation to the calculated volumes generated. Cornford (1993) suggests that 

the in-situ oil discovered represents only 1.25% of the total generated. 

Perhaps the suggested process of overpressure release and its implied rapid 

vertical m igration of hydrocarbon-bearing fluids, and their subsequent loss 

accounts for part of the shortfall.

Modelling carried out in the course of this study implies a dynam ic 

hydrological regime within the subsurface of the Central Graben. My 

understanding of each of the individual fluid flow mechanisms modelled 

(topographically-driven, regional and localised convection and focused fluid 

flow along faults) and their thermal effects, which are operative, or 

potentially operative, within the Central Graben is shown in Figure 6.2.

6.5 Shortcomings and Future Work

The 2-D models simulated using OILGEN do not consider 

overpressure or salinity variations across the basin. Models not inclusive of 

these factors are still valid in gaining a broad perspective of the hydrological
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regime within the Central Graben. However, having established a general 

model of fluid processes within the Central Graben the present models 

could be refined by the use of a code which incorporated overpressure in 

calculating fluid velocities. Likewise, given enough salinity data for the line 

of section, the influences of salinity (and therefore density of fluids) on the 

fluid flow regime could also be determined. Note however, that rapid flows 

that cross "average" salinity gradients need to address fluid mixing; an issue 

involving a more complex modelling.

The horizontal top surface of the models (between the coasts of 

England and Norway) represents the sea bed (the height above sea-level of 

each land-mass is the topographic "head"). This flat top surface of the model 

provides no drive for fluids within the central portion of the models, and is 

therefore comparable to the effects of the North Sea. Such a geometry also 

provides the correct thermal datum  for the area of interest (the graben) by 

using the average temperature of the North Sea as the boundary condition.

It would consider it useful to more fully investigate the tem perature 

distributions within the North Sea basin using a 3-D visualisation tool.

Such an investigation would provide information on heat flow and 

thermal conductivity variations within the basin and identify any other 

areas of anomalous temperature. Such a study linked to the distribution of 

overpressures may shed more light on the relationships between 

overpressure and temperature. Given m odern computing power and 

software advances this seems a logical step forward compared to studies 

such as this one, Andrews-Speed (1984), or Carstens and Finstad (1984). 

Reaction-transport models could be used in modelling the diagenetic 

implications of the different proposed fluid flow mechanisms.

Geologists, when dealing with the subsurface, are faced with a lack of 

data and the problems of upscaling borehole data. Sensitivity studies of the
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thermal and fluid flow regime appear essential to the characterisation of any 

basin whether in the pursuit of oil, minerals or geothermal power.
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CHAPTER 7

CONCLUSIONS

This research was initiated to investigate the modern tem perature 

field w ithin the Central Graben, and attempt to generate models to match 

the resulting 2-D temperature profiles: first by conduction, and then 

subsequently by fluid advection. Transfer of heat within the graben by 

conduction is unable to fully explain the modern-day tem perature field. 

Modelling of both regional and localised fluid flow processes and their 

effects on tem perature is therefore undertaken, and a combination of 

conduction and localised fluid flow events are fully able to account for the 

m odern day temperature distribution. A summary of the conclusions on a 

chapter by chapter basis follows:-

7.1 Chapter 2

• The m odern temperature field of the Central Graben consists of a 

long-wavelength, positive tem perature anomaly of low am plitude 

and approximately 120 km half-wavelength (LWA), and 

superim posed short-wavelength anomalies of up to 40°C in 

m agnitude, and 5 - 1 5  km half-wavelength (SWA's).

7.2 Chapter 3

• Finite element models of conductive heat transfer in the Central 

graben are unable to entirely  match the m odern tem perature field:

- LWA can be matched by conduction - although if the
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LWA is purely conductive, my models suggest a 5 mW m'2 decrease 

in basal heat flow (70 to 65 mWm~2), across the Central Graben from 

west to east.

- SWA's remain unexplained even by high thermal conductivity 

units such as salt pillars and wedges.

7.3 Chapter 4

• Fluid flow through basement is of m m a 'l in velocity, and may 

provide significant volumes of fluid recharge to the base of the 

sedimentary pile. Recharge to the basin is mainly through basement 

to the base of the graben not, as anticipated, off the highs through the 

sedimentary pile.

• At realistic sediment and basement permeabilities topographically- 

driven fluid flow does not significantly influence the tem perature 

regime within the Central Graben.

• Regional convective fluid flow is only likely w ithin the Permian and 

may modify the LWA in the eastern Central Graben.

• Regional fluid flow models are unable to account for the SWA's.

7.4 Chapter 5

7.4.1 Convection

186



• Small scale convection cells of the order of 10 km by several 

hundreds of metres thickness will require Darcy horizontal 

permeabilities to produce SWA's comparable to those observed in the 

tem perature profiles of Chapter 2.

• The Western Central Graben is more prone to convection on a local 

scale than the Eastern Central Graben- possibly due to the lesser 

influence of gravity driven fluid flow off the Norwegian high.

7.4.2 Fluid Flow w ithin Faults/Fracture Zones

• For a 300 m wide fault zone, fault permeabilities vertically of 50 mD 

are sufficient to form temperature anomalies of up to 50°C but the 

formation of a temperature anomaly is dependant on the 

permeability architecture of the surrounding sediments.

• Surrounding sediment permeability and geometry of the fault outlet 

zone are more influential on the formation of tem perature 

anomalies than fault permeability itself. The permeability of the 

outlet zone being critical.

• High vertical permeabilities (100 mD) due to fracturing, in and 

around fault zones can result in SWA's of up to 50°C.

• Overpressure release is the most likely mechanism responsible for 

m odern tem perature anomalies (SWA's).

The modelling carried out within this project affirms the need for

computational models in the investigation and understanding of basins. I
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believe that this investigation of the thermal regime in the Central Graben, 

and the influence of fluid flow upon it, highlights the dynamic and complex 

nature of fluids within the subsurface.
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APPENDIX 1

D e p th  (m ) T em p . (°C) W ell N o.

1232.9 66.7 29/23-1
2123.0 83.9
3748.2 117.2

1338.4 47.8 29/24-1
1440.5 50.6
2325.7 83.3

1203.1 36.1 29/25-1
2245.5 74.4
3001.7 113.9
3162.6 113.3

1502.4 56.7 30/16-5
2742.6 106.1
2750.2 105.0

1822.1 68.9 30/17-8
3487.3 142.2
3970.4 152.2
4080.7 151.1
4171.5 166.1
4284.6 156.7

491.04 35.0 30/17-7
1889.2 71.7
3699.1 127.8
3952.1 147.2

1711.8 78.3 30/12-3
3764.6 143.3
4182.2 170.6
4883.0 192.8

3226.7 122.2 30/12-2
3631.7 137.2
4062.4 151.7
4270.0 155.6
4276.4 161.7
4706.8 165.0
4861.6 177.2
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3080.7 116.7 30/13-2
3636.0 117.8
3878.6 127.8
4277.0 173.9

1783.7 62.8 30/13-1
2974.6 123.3
3745.1 144.4
4170.9 160.6

1196.7 42.8 N l/5-2
3013.6 122.8
3943.9 156.1
4257.2 170.6

1987.6 87.8 30/8-1
3644.5 145.0
4419.3 167.2
4685.7 183.3

3252.3 131.7 N l/6-4
3775.0 147.8

1160.4 38.9 N l/3-5
2435.1 80.6
4103.0 146.1
4349.9 163.9
4359.9 167.8
4675.1 172.8
4769.9 189.4
4779.0 181.7
4815.0 183.3

1409.7 52.8 N l/3-1
1509.1 53.9
2966.0 102.8
3102.6 123.3
3743.3 160.6
4563.5 151.7
4841.8 186.1

748.00 29.4 N l/3-4
1570.0 55.0
2257.0 76.1
2599.0 115.0
2858.0 131.6
3173.0 153.8
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1494.1 49.4 N l/3 -2
1503.6 54.4
3185.8 107.2
3188.9 110.0
3224.2 115.0
3754.6 142.8
4270.6 161.7

717.00 36.1 N2/1-7
2452.0 95.5
3839.0 128.8
4252.0 163.3
5039.0 178.3
5160.0 183.8

4299.0 169.4 N l/3 -3
4327.0 170.5
4849.0 182.7

604.00 18.9 N2/1-4
1980.0 75.5
3772.0 131.6
4171.0 151.7
4487.0 170.0

609.90 23.3 N2/1-6
1990.9 77.2
4096.0 140.0
4557.0 172.7

596.70 33.3 N2/1-8
1966.8 79.4
3849.9 138.3
4112.9 158.3

527.60 48.9 2/1-3
1795.0 61.7
3565.0 130.6
3894.0 152.8
3910.0 151.1
4191.0 162.7
4240.0 163.8

474.00 46.1 2/1-2
2207.0 82.8
3116.0 115.5
3257.0 137.2
3527.0 126.6
3529.0 134.0



2104.4 86.7 8/10-1
3012.1 118.3
3063.9 122.2

690.08 28.9 2/2-2
1940.4 78.9
2543.0 105.0
3098.9 100.0

2779.2 107.2 8/10-2
2972.4 103.3

2755.1 92.2 8/11-1
2755.7 93.9
3771.3 125.6

1079.0 38.3 8/12-1
1846.5 73.9
1875.5 73.3
2510.4 98.3
2651.2 98.9
2839.6 106.7

473.06 25.6 10/5-1
1210.1 53.3
1818.2 60.6
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APPENDIX 2

Temperature versus depth plots of individual wells listed in 

Appendix 1. The calculated temperature gradient (with an assigned surface 

temperature of 10°C) for each well is also shown.
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