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7.1 Preface of the chapter ...................................................................................... 146

7.2 Lower b o u n d s ....................................................................................................... 147

7.2.1 Some geometric techniques.....................................................................  147

7.2.2 Lower bounds for Z2 x Z ......................................................................  150

7.2.3 Lower bounds for Z2 xi ̂  F ..................................................................... 155

7.3 Upper b o u n d s ......................................................................................................  157

7.3.1 Upper bounds for groups Z2 F .......................................................... 157



STATEM ENT

Chapter 1 covers basic materials such as two-complexes, pictures over a two-complexes, 

group presentations, monoid presentations, monoid pictures, (first order) Dehn functions 

of groups and monoids. Most of these are standard and can be found, for example, in 

[All, BoPr, ECHLPT, Jo, Ki, Mo, NaPr, P rl, Pr2, Pr3] as indicated.

Chapter 2 is my own work which had been done before the joint paper [ABBPW1] 

with Alonso, Bogley, Burton and Pride and the results in this chapter were then extended 

in [ABBPW1].

§3.1 is joint work with S. J. Pride, and §3.2, §3.3 are my own work.

Chapters 4, 6, 7 are my own work.

Chapter 5 is joint work with Pride which will appear in a joint paper with Alonso, 

Bogley, Burton and Pride [ABBPW2] as Sections 5, 6 .
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ABSTR A C T

The main work of this thesis starts with Chapter 2.

Chapter 2 concerns the second homotopy module of a finitely presented group of type 

F$. We define the second higher order Dehn functions by considering the comparison 

between the “volume” and the “surface area” of nullhomotopies of spherical maps into 

CW complexes. We show that the second order Dehn function of groups of type F3 is an 

invariant of quasi-isometry type.

In Chapter 3, we translate the concept of the second order Dehn function of finite 

group presentations to F D T  monoid presentations by introducing a well-placed retraction 

relation between any two two-complexes and showing some invariance results. We show 

that the second order Dehn function of an F D T  monoid at a fixed element is an invariant 

of isomorphism type.

In Chapters 4, we give upper bounds for asynchronously combable groups with de­

parture function.

In Chapter 5, we first give the general upper bounds for direct products. Then we 

concentrate on the calculations for the optimal bounds of second order Dehn functions of 

direct products of the form Gq x F  where the second order Dehn function of Go is bounded 

by a linear function and F  is a free group of finite rank. Some interesting examples are 

given.

In Chapters 6, we carry out calculations for the upper bounds of second order Dehn 

functions of H N ^-extensions, amalgamated free products, and split extensions, and 

finally in Chapter 7, some nice upper bounds as well as lower bounds for the second order 

Dehn functions of groups of the form Z2 x ^ F  are established where F  is a free group of 

finite rank.
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N O TA TIO N S

Let G and H  be groups, Z, N, and be the sets of all integers, 

all natural numbers, and all non-negative real numbers respectively 

G x H  the direct product

G * H  the free product of G and H

G xi ̂  H  split extension of G by H  with i/-action <j>

G =  H  G is isomorphic to H

G /K  the quotient group of G by a normal subgroup K

ZG the integral group ring

the first order Dehn function of G 

8q^ the second order Dehn function of G

G' derived group (commutator subgroup) of G

[a, 6] the commutator of a and b (= a6a - 16-1, a, b (E G)

a the conjugate of a by b in G (= b lab, a, b £ G)

Zn the free abelian group of rank n

I f P = < ; c ; r > i s a  presentation, and if W  is a word on x  

F(x)  the free group generated by x

G(P)  the group defined by P

7Ti('P) the first homotopy group

7T2(P )  the second homotopy module

[W] the free equivalence class containing W

W  the element of G(7>) represented by W

L{W) the word length of W

Let P be a picture over “P , X  be a set of generating set of tt2(P ) 

dP the boundary of P

A(P) the area (the disc number) of P

< P > the equivalence class containing P

V'p jf (P )  the volume of (P)

Sip the first order Dehn function of P

Sip the second order Dehn function of P  with respect to X



If r  =  ( r , e) is a graph and T> =  (T; Z)  is a two-complex, 

and X  is a set of closed paths in T 

i the initial function with domain e and range v

r  the terminal function with domain e and range v

-1 the inverse function with both domain and range e

P ^  the 1-skeleton of P

(© .») the n-th homotopy group of P  based on v, n = 1, 2

[7] the free equivalence class containing the path 7

Also if 7  is a path in P ,  and if S  is a monoid 

7 the homotopy equivalence class containing 7

Areajy^f)  the area of 7 if 7 is contractible in P
V-

Areajy  7) the area of 7 relative to X  if 7 is contractible in P

(P , S)  the object with 5-action on P  on both sides compatibly

£ the collection of all objects

Let P  =  [x ; r] be a finite monoid presentation

F(x)  the free monoid generated by x

5 (P )  the monoid defined by P

P ( P )  the two-complex arising from P

Let P be a path in P ( P )  (or a picture over P ) ,

X  be a trivialiser of (P (P ) ,  ^(aj)), and W  be a word on x

L( P) the

< P > the

w the

L(W) the

P
the

6(?)
V ,X ,w the



We adopt the usual notations in set theory 

A U  B  the union of the sets A

A — B  the set difference

A  C B  A is a subset of B

a 6 A a belongs to A

\A\ the cardinality of A

Also, if /  : N — > R+ is a function 

/  the subnegative closure of /



Chapter 0

Introduction

Due to the introduction of word hyperbolic [Gr] and automatic [ECHLPT] groups, the 

(first order) isoperimetric properties of finitely presented groups have become a central 

issue in geometric group theory. In general, to measure the algorithmic complexity of the 

word problem of finitely presented groups one can consider the first order Dehn function 

of these groups, which arranges comparison between “circumference” and “area” of van 

Kampen diagrams into an integer-valued function that is an invariant of quasi-isometry 

type. This also raises another very interesting issue, namely to classify finitely presented 

groups in terms of quasi-isometries.

In [ABBPW1], we defined the Dehn functions of groups in all dimensions in terms 

of topology by considering the comparison between the “volume” and the “surface area” 

of nullhomotopies of spherical maps into CkP-complexes. There, we proved that if T> is 

the finite (n +  l)-skeleton of a K(G, l)-complex, then the higher order Dehn functions 

of through dimension n are invariants of the quasi-isometry type of the group G, and 

moreover, satisfy quasi-retract inequalities.

However, to apply the definition and the quasi-retract inequality as well as the quasi- 

isometry invariance to particular groups in low dimensions, it is natural to ask for a 

combinatorial version of the theory, namely in terms of a combination of geometry and 

algebra. In fact, the (first order) Dehn function or more generally, the (first order) 

isoperimetric function is originally defined combinatorially by Gromov [Gr]. See also 

[All, Brc, Gel].

Aiming at this, we give a combinatorial definition of the second order Dehn function 

S^p £  of any finite group presentation *P with respect to a given generating set X  (finite 

or not) of the associated second homotopy module 7r2('P) in §2.1, namely, the second 

order Dehn function of a finite presentation will be defined by considering the comparison 

between the “volume” and the “surface area” of spherical pictures over this presentation.
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We will prove that the definition is unambiguous.

That the first order Dehn function of finitely presented groups is an invariant of quasi- 

isometry type was first discovered by Alonso [All], where he proved that if the Cayley 

graphs of two finitely presented groups are quasi-isometric (see Definition 2.2.8) then the 

first order Dehn functions of these two groups with respect to the generating sets are 

equivalent. We will show a further statement (Theorem 2.2.13) in §2.3, that if groups 

G and H  are finitely presented by P  and Q  respectively, and if G is a quasi-retract 

of H  with H  being of type F3, then G is also of type F3 and the second order Dehn 

function of P  with respect to any finite generating set of 7r2(‘P ) is bounded by the second 

order Dehn function of Q  with respect to any finite generating set of 7r2(Q). The quasi- 

isometry invariance property then is a corollary of this result. Thus, up to equivalence, 

is independent of the choice of different finite presentations of G. We then use 6^  to 

denote a particular representative of the equivalence class.

We point out here that this work had been done before the paper [ABBPW1] and this 

idea then was extended to all dimensions in [ABBPW1].

Besides, in order to obtain the quasi-retract inequalities, in §2.2 we establish some 

general relationships between pictures over different two-complexes and mappings from 

one to the other.

Pride [Pr3] introduced the concept of (first order) Dehn function of finitely presented 

monoids. See also [MaOtl] where it is proved that the word problem of a given finitely 

presented monoid is solvable if and only if its first order Dehn function is bounded by a 

recursive function. In his paper [Pr4] (also see [Sq2, GuSa]), Pride developed a geometric 

technique in the low-dimensional homotopy theory of monoids by associating a two- 

complex T>(P) with a monoid presentation P  = [x ; r] (see §1.3.3). The free monoid 

F(x)  on x  acts on 'P ('P) on both the left and right. The two-complex 'P ('P ) is also a 

geometric (in terms of pictures) interpretation of the idea of a two-complex associated 

with a string rewriting system introduced by Squier in [Sq2]. Moreover, Squier [Sq2] also 

introduced the notion of a monoid of finite derivation type (FDT).  That means, one can 

find a finite presentation P  for the monoid, say 5, and a finite set X  of closed paths 

in T> = 'D('P) such that the two-complex obtained from ‘P ( 'P ) by attaching additional
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2-cells with boundaries from F(x)  • X  • F (x)  has trivial fundamental group (i.e. X  is 

a trivialiser of ( ^ ( ‘P ), F(x))). Squier then proved two interesting results. First, the 

notion is independent of the choice of finite presentation of a given monoid; second, a 

monoid with a finite complete presentation is FDT.  By another paper [Sql], a monoid 

with a finite complete presentation is of type left and right FP,3. (The popularity of a 

monoid with a finite complete presentation is due to the fact that there is a syntactically 

simple algorithm for solving the word problem, that is, given two words on the generators, 

reduce them to irreducible words respectively, and then compare these two irreducible 

words literally. See [MaOt2] for a reference.) Squier also asked if an F D T  monoid is 

left and right FP3. Cremanns and Otto [CrOt], Lafont [La] and Pride [Pr3, §3.3; Pr4, 

Theorems 3.3, 4.2] independently have given this question a positive solution.

In §3.1 we first consider the definition of the delta function of a pair (2>, S) where 2? 

is a locally finite two-complex, S  is a monoid acting on T) on both sides compatibly, and 

then show some invariance results. The concept of a well-placed retraction between two 

pairs (2>, S), (Z>o,£o) plays the key role.

We then in §3.2 apply these invariance results to the two-complexes associated to 

finite F D T  monoid presentations. We show (see Theorem 3.2.2) that our definition of 

the second order Dehn function of a given F D T  monoid S  for a fixed element s 6 5  

of the monoid is independent of the choice of finite monoid presentation. We then use 

to denote a particular representative of the equivalence class. Establishing this theory 

also gives an alternative proof of Squier’s result mentioned above, that being F D T  is 

independent of the choice of finite presentation.

But the weakness of this theory is that it does not give an upper bound for all Dehn 

functions of a given F D T  monoid for different elements of the monoid. To overcome this, 

in §3.3 we focus on the shortest words of each word congruence class. We then are able to 

define the second order Dehn function of a finite monoid presentation (Definition 3.3.6) by 

which we can give an upper bound of the second order Dehn functions of the presentation 

of all words (see (3.4)). But I am unable to show this definition is independent of the 

choice of presentation of a given monoid.

Since groups are monoids, it is natural to ask what are the relationships among the 

lower order Dehn functions: < ^ , S q \  and <5̂ * when G is of type F3. (Note that,

3



from [CrOt], a group is F D T  if and only if it is of type F3.) I have established some 

inequalities among these functions as follows. (These results are not proved in the thesis, 

but appear in [Wa].)

(i) Let G be a finite presented group. Then

4 1’ 1  &l) r< a® )2 + "41’-

(ii) Let G be a group of type F3. Then

for all n E N.

(Here ^  is a relation on number functions and /  is the subnegative closure of a number 

function both of which will be defined in §1.2.3.)

We mention that one can use second order Dehn functions (of groups and monoids) 

to discuss certain decision problems concerning second homotopy problems.

From Chapter 4, we start the calculations of second order Dehn functions of groups. 

We remark that J. Wang [Waj] has done some calculations about second order Dehn 

functions of monoids.

In Chapter 4, we obtain upper bounds for second order Dehn functions of combable 

groups and asynchronously combable groups with departure function. This is an account 

of the analysis of Gersten’s proof of any asynchronously combable group with a departure 

function being of type F3 [Ge3]. The result that any word hyperbolic group has a linear 

second order Dehn function was proved by Bogley and Burton and appears in [ABBPW2]. 

This result is taken as a theorem (Theorem 4.2.1) of this chapter without giving a proof.

In Chapter 5, we first give general bounds for the second order Dehn function of a 

direct product of groups of type F3. The results (though not the proofs) are similar to 

the first order case. We show (Theorem 5.1.3) that if Go, G\ are of type F3, then

Ĝo1} ^  Ĝo’xG, ^  max{<s£?, +  n2.

We then concentrate on direct products of the form Go x F, where F  is free of finite rank 

and Go is a group of type F3 with SqJ is bounded by a linear function. Let h : [1, oo) — > 

be a strictly increasing continuous function such that

4



(i) the restriction of h o n N  is subnegative;

(ii) h(x) > x for all x £ [l,oo); and

(iii) the function x \— fr h~f ^  is increasing for x> no for some natural number no€lm /i. 

and assume ■< h. Then (Theorem 5.2.1)

Ag°*f -  h~H „y

Furthermore, if Go has an aspherical presentation Vo and there is a sequence Dt- (i =  

1, 2, • • •) of stable pictures over Vo such that

< 6i/i~1(rc); and 

cin < < c2n

for all integers n > h(no), then (Theorem 5.2.6)

*22 y- —-  h~i {n y

By some interesting examples we show that there are infinitely many real numbers 

|  < ol < 2 such that there exist groups of the form Go x F  whose second order Dehn 

functions are exactly na , where Go has an aspherical presentation.

The calculation for an upper bound of second order Dehn functions of HNN-extensions, 

amalgamated free products, and split extensions are given in Chapter 6. For example, 

if G is an H N  N-extension of a group Go of type F3 with two isomorphic associated

subgroups (finitely presented) H, H, then (Theorem 6.1.3)

and if G = H  K  is a split extension where H  and K  are of type F3 then (Theorem

6.2.2) either there exists a constant a > 1 such that

or

5



People may be interested in making comparison of this chapter with Brick’s work on 

the first order Dehn functions of extensions in [Brc].

Finally, in Chapter 7 we focus on estimating the upper bounds and lower bounds of 

the particular split extensions of the form Z2 >J ̂  F , where F  is a free group of finite rank.
3

We show that the second order Dehn function of such a group is bounded over by na and 

bounded below by nlogn. Moreover, if for some generator t of F , (f>t has eigenvalues ±1, 

then the second order Dehn function of this group is bounded below by ns; and if 4>t has 

finite order for some generator t of F , then the second order Dehn function of this group 

is exactly n*.

6



Chapter 1

Preliminaries

1.1 Two-complexes

Most concepts and results in this section can be found in [Mo, NaPr, Prl].

1.1.1 Graphs

A graph (in the sense of Serre, [Se]) T = (u, e) consists of two disjoint sets v  = t>(T) (of 

vertices) and e =  e(T) (of edges) together with three functions:

l : e — > v , r : e  — > v, -1 : e — > e

called initial, terminal and inverse respectively with the properties that t(e) =  r (e -1), 

(e-1)-1 =  e, and e~l ^  e for all e £ e. (A graph is also called a one complex. See [Sta] 

and [Sti].)

A non-empty path a  of T is a non-empty finite sequence of edges written in the form 

a  =  eie2 • ■ • em such that r(e t) =  t(e,-+i), 1 < i < m  — 1. The initial vertex t(a) of a  is 

defined to be ^(ei), the terminal vertex r(a) of a  is defined to be r(em), and the inverse 

a -1 of a  is defined to be ê nle n̂l_ 1 • • • ej"1 which is also a path in T. The length of a  then 

is m, denoted L(a) =  m. If e,-1 ^  e,+i for all i = 1, • • • ,m  — 1 then we say that a  is 

freely reduced. When r (a )  = i(a) we then say that a  is a closed path. A closed path 

is cyclically reduced if all its cyclic permutations are freely reduced. For each v £ v  we 

introduce the empty path 1„ at v which has no edges. We have L ( lv) = 0, and l ”1 =  l v.

7



If a  and /? are two paths of T with r(o:) =  i(fi) then the product ot(3 of a  and /? is 

defined to be the path starting with a  followed by /?.

Let 8 be any set of closed paths in I \ By symmetrical closure of s  we mean the set of 

all cyclic permutations (also paths in T) of each element of s  and their inverses.

Let i?o C u, eo C e. We say r 0 =  (vo, eo) is a subgraph of T if r 0 is closed under t , r  

and _1.

A graph T is connected if given any two vertices of T there is a path in T joining them. 

A maximal connected subgraph of T is called a component of I\

The star of a vertex v of a graph T is the set Star(v)  =  {e : e £ e, i(e) =  v}. A graph

T is locally finite if Star(v) is finite for all d G d .

Let T, r  be any two graphs. A mapping of graphs <j>: T — > is a function sending

u(T) to v (r ')  and edges in T to paths in T' so that <j>{i{e)) = t(<^(e)), <^»(r(e)) =  r(<^(e)) 

and =  ^>(e)-1 for all e £ e(T). By this, </> extends to all paths of T, i.e., if

a  =  e\ • • • em is a non-empty path of T then <f>(a) = <f(ei) • • • (f>{em), and for any empty 

path l v we require that <f>(lv) = l^w).

A mapping (of graphs) tj> : T — > T' is rigid if it maps edges to edges. Suppose that 

(f) is rigid, and let v £ v (r). If e £ Star(v) then 4>(e) £ Star(<j)(v)), thus (f>{Star{y)) C 

Star((f>(v)). We say that a rigid mapping (j> is locally bijective if for all v £ v(T), <f> : 

Star(v)  — y Star(<j){v)) is bijective.

Let a ' be a path in T'. A path a  in T is a lift of a ' at i{a) if </>(t(a)) =  l{cx!) and 

4>(a) = a'. We have the following lemma (see [Mo, Lemmas 1.1A.1, 1.1A.2]).

L em m a 1 .1.1 Let (f> : T — > T7 be a locally bijective mapping of graphs. Then for any 

path a ' £ T' and any vertex v of V with j>(v) =  £(c/) there exists a unique lift of a 1 at v.

1.1.2 Monoids acting on graphs

Let T =  (v, e) be a graph, and let S' be a monoid. We say that S acts on V on the left if 

S acts on the set v  U e in such a way that for any v £ v, e £ e and any s £ S

(i) s • v £ r ,  s • e £ e;

8



(ii) i(s • e) =  5 • t(e), t ( s  • e) = s • r(e), (5 • e) 1 =  s • e 1.

This left action then extends to paths: if a  =  • • • em is a non-empty path with

ei € e (1 < i <  m) then

(iii)  ̂ • a  =  (s ■ ei)(s • e2) • • • (s • em).

By (ii), 5 • a  is a path of T. For each v G v  we require s • l v =  l a.v. Note that for any 

path a  of T and any s G S, we have 5 • a -1 =  (5 • a )-1 by (ii) and (iii).

Similarly, we can define a right action of S  on T.

We say that a left action and a right action of 5  on V are compatible if for any s, s' 6 S

(s • 7) • s' =  s • (7 • s') for any 7 G T.

1.1.3 Two-complexes

A two-complex 12 is a pair
X> = ( r : Z)

where T is a graph (the 1 -skeleton T>^ of T>) and Z  is a set of closed paths (called 

defining paths) of T>. We say "D is finite if v(T), e(T) and Z  all are finite. We say "D is 

locally finite if T is, and we say 'D is connected if T is.

Let r  be a subgraph of T and let Z '  be a subset of Z  such that Z '  is a set of closed

paths of r .  Then the two-complex = (T'; Z')  is called a subcomplex of Z \

For any two-complex "D = (T; Z )  there are four elementary operations on the paths 

of introduced as follows (where we suppose that (I)-1 and (II)-1 are applicable).

(I) Deletion of an inverse pair ee_1 of two successive edges.

(I)-1 The inverse of (I).

(II) Deletion of a subpath /3 of a path 7 with 7 =  71/^72 and (3 € Z  U Z ~ 1.

(II)-1 The inverse of (II).

We point out that in the presence of the operations (I) and (I)” 1, the operations (II) 

and (II)-1 are equivalent to the following operation.
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(IF) Replace a subpath (3 of a path 7 =  71/^72 with (/3') 1 where either (3(3' or (3'(3 is in 

Z U Z - 1.

Let X  be another set of closed paths of T. Then P  is a subcomplex of the two-complex
v  x

t>a  =  ( r ; z ,  x ) .  The operation (II') above on the paths of P  then is divided into 

the following two operations.

(111) Replace a subpath (3 of a path 7 =  71/^72 with (/?')_1 where either (3(3' or (3'(3 

is in Z  U Z ~ l .

(112) Replace a subpath a  of a path 7 =  7^72  with (o;')-1 where either q q ' or a 'a  

is i n X U X " 1.

As usual, any two paths 7, p in P  are said to be freely equal, denoted by 7 ^ i 1) p5 if 

one can be obtained from the other by a finite sequence of applications of operations (I) 

and (I)-1; they are said to be homotopic (or equivalent), denoted by 7 ~  p, if one can be 

obtained from the other by a finite sequence of applications of operations (I), (I)-1 and

(III); and are said to be equivalent relative to X , denoted by 7 ~  p (rel X ), if one can 

be obtained from the other by a finite sequence of applications of operations (I), (I)-1, 

(II'i), and (II'2). Note that if two paths of P  are equivalent relative to X  then they are 

homotopic in T> . A  closed path 7 of P  which is homotopic to an empty path is said 

to be contractible in P .

For each path 7 in P ,  we write [7] for the free equivalence class consisting of all paths 

freely equal to 7, and write 7 for the homotopy equivalence class consisting of all paths 

homotopic to 7.

Let P  =  (T; Z )  and P '  =  (T'; Z')  be any two two-complexes. A mapping of two- 

complexes (f>: P  — > P ; is a mapping of graphs from T to T' with the property that the 

image of each element of Z  is a contractible path in P '.  Furthermore, we say that (f> is 

locally bijective if

(i) 4> is a locally bijective mapping of graphs; and

(ii) Z  consists of all lifts of elements of Z ' .

The following two lemmas are standard and can be easily proved.
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Lemma 1.1.2 Let <f> : 7> — > 7>'  be a mapping of two-complexes. Let 7, p be two paths 

in 7> with 7) =  t(p). I f  7 ~  p in 72 then (f>(7) ~  <f>(p) in 7>'.

Lemma 1.1.3 Let (f> : 7> — Y 7>' be a locally bijective mapping of two-complexes. Let 

7', p' be two paths in T>' with t{^') = l(p*), and let 7, p respectively be lifts of 7' and p' 

in 7)  at some vertex v. I f  7' ~  p' in 7)' then 7 ~  p in V .

In the remainder of this section we suppose 7)  =  (T; Z)  is a two-complex with 

T =  (v, e), and X  is a set of closed paths of 7>.

We now define the area function of a closed path 7 as follows.

Definition 1.1.4 (i) Let 7 be a path contractible in 7>. The area of 7, denoted by

Area'p(,y) is the smallest number of operations of type (II)i used in any transfor­

mation of 7 to an empty path.

(i) Let 7 be a path in 7> contractible in 7)  . The area of 7 with respect to X ,

denoted by Area'jy X ^ ) ’ l's sma^ esl' number of operations of type (II2) used in 

any transformation of 7 to an empty path.

The following lemma will be used several times.

Lemma 1.1.5 Let 7 be any arbitrary closed path in 7> at some vertex v of 7). I f  7 is 
Xcontractible in 7> with Areaqy ^ ( 7 )  =  r, then 7 is homotopic in 7> to a product of 

conjugates of the form

7 ~  f[piPipr 1, (1.1)
i=i

where (3i £ X  U X ~ l , pi is a path in 7>, \ < i < r.

Proof. If r =  0, then 7 is contractible in 7)  and hence 7 ~  l v. Now let r  > 0. By 

definition, there is a finite sequence of paths 7 =  70, 7i, ■ ■ •, 7n =  l v such that for each 

i (0 < i < n — 1) one of 7, and 7,+i is obtained from the other by an application of 

operation (I), or (Hi), or (II2), and there are precisely r  applications of operation (II^)- 

Let m  be the first number for which an operation of type (II2) is applied. Thus, 

Areaqy = r — 1. By induction hypothesis we then have 7m+i ~  Ilj=2 PjfljPj1

in 7), where each (3j £ X  U X ~ l . Let = p\Ctp2 and 7m+i =  P i^ ~ lP2 where q q ' or
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a 'a  £ X  I) X  1. We can assume aa' £ X  U X  1 ( the other case can be proved in the 

same way). Note that ~  7. We then have

7 ~  7rn =  P\OLp2 ~ (1) P\OLCt'Pi1 Pia'~l p2
r

=  P lP lp T ' l fm +l  ~  P l f i l P i 1 I I  P i P i P j 1
3=2

= IlpiPiPT1
i =1

where (3\ =  aa' £ X  U X -1. This completes the proof. □

We will call the product of conjugates in (1.1) a defining product of 7 relative to X .

Rem ark 1.1.6 In particular, if we let T>q =  (T; 0) be a two-complex where 0 is the empty 
Zset, then 7> =  T>0 . Thus, if 7 is contractible in T>, then by the above lemma we have

7 ~ (1) f lP iP ip T 1 (!-2)
t=i

with r = Area'jy(7), certain paths pi ofT>, and some /?,• £ Z  U Z ~ l , 1 < i <  r. We then 

call this product of conjugates a defining product of 7.

For the calculation of the area function we have the following lemma by (1.1), (1.2) 

and Definition 1.1.4.

XLemma 1.1.7 (i) I f  two closed paths 7, 7 ' contractible in T> are homotopic in T>,

then Areaqy ^ ( 7 ) =

V
(ii) I f  7 is contractible in T> and /3 is any path of Z> with r(fi) = l(7) then 

Areaqy = Areaqy (/?7/?-1); if 7 is contractible in T> and ft is any path

ofT) with t(/3) = *,(7) then Areaqy(y) — Area'jy((i')P~l).

1.1.4 Fundamental groups o f two-complexes

For any v £ v  we let v) be the set of all homotopy equivalence classes each of

which is of the form 7 with 7 a closed path in T> at v. A multiplication can be defined on 

717(Z>, v) by 7 ^ 2  =  7I72, and this multiplication can be easily checked to be well-defined.
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By this multiplication, ^i{7>, v) is then a group, the fundamental group of 17 at v. If

u £ v  is in the same component of 17 as v then 7Ti(X>, u )  =  v ) .  Hence, if T is

connected, then all fundamental groups of 7> are isomorphic.

Suppose that X  is a set of closed paths in 17 such that every closed path in 7)  is
Xequivalent (rel X ) to the empty path. Thus, all fundamental groups of T> are trivial. 

We then say that X  is a trivialiser of 17.

1.1.5 Monoids acting on two-com plexes

Let 7)  =  (T; Z )  be a two-complex. By a left action of S  on 7> we mean that S  acts on T 

on the left and S  • Z  = Z .  Similarly, we have the definition of a right action of S  on Z>. 

If this pair of actions of S  are compatible on T then we say they are compatible on 7>.

By (7>, S) we mean that the monoid S  acts on 17 on both sides compatibly. Let 

('7>, S), (7> S f) be two such pairs. By a mapping (f>: (7), S ) — Y (7) ', S') we mean that

(i) (j>:7 >— Y V '  is a mapping of two-complexes;

(ii) (f>: S  — Y S' is a monoid homomorphism;

(iii) <f>(s • 7 • s') = <f>(s) - cf>(7 ) • 4>(s') for any s, s' £ S  and any y £ 7).

It can be checked that we then have a category <£ with objects all pairs of the form

(17, S ) and morphisms all mappings of these objects. We will say that an object (17, S )

of £ is locally finite if 17 is a locally finite two-complex.

Let (17, S) be an object of £. Let 170 be a subcomplex of 17 and let So be submonoid

of S. If 7>o is So-invariant, i.e., for any 7 £ 7>q we have So • 7 • So C 170, then (with So

acting by restriction) (170, So) is also an object of £ which we call a subobject of (17, S).

Let (T>, S) be an object of £ where 17 =  (T; Z).  Let X  be a set of closed paths of T>.

We write X s for S  • X  • S'. Since S  also acts on the two-complex 7> ^ = (T; Z ,X 5), 
X sthus, (7> , S ) is an object of £. We say that X  trivialises (17, S) (and then X  is a

trivialiser of (17, S)) if X s is a trivialiser of 7).

D efinition 1 .1.8 Let (17, S) be an object of<L and let (170, So) be a subobject of (77, S). 

A mapping <f>: (17, S) — Y (170, So) is a retraction */ ^ll>0 =  id and <f>\s0 = id, where id
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denotes the identity mapping. (We then say that ('Do, So) is a retract of (D, S) if there 

is a retraction from (D, S) to (D 0, So))-

1.2 Group presentations and monoid presentations

1.2.1 Words

Let x  be non-empty set and let x~ l to be a set in 1:1 correspondence with x  (x \— > 

x~ \  x £ x ) .  The elements of x  U x~ l are letters, and a word W  on * is an expression

n . ^ 1  7 . ^ 2  . . .  7 . ® n1 2 n

where n > 0, X{ £ *, £»■ = ±1, and 1 < i < n. When n =  0 we have the empty word 

denoted 1. We say W  is a positive word on x  if either n =  0 or n > 0 and et- =  +1, 

1 < i < n. The inverse of W , denoted W ~l , is the word X*2 • " * Xn £n. The length of

W , denoted by L(W), is the number n of the letters involved in W. (Note that we also 

use L(7) for the length of a path 7 in a two-complex.)

Let W, U be two words on x. The product of W  and U, denoted W U , is the juxtapo­

sition of W  followed by U. By this binary operation, the set F(x)  of all positive words 

on x  then is a monoid called the free monoid on *. We now introduce the following 

operation on the set of all words on x.

(f) Deletion/insertion of a pair of inverse letters x£x~£, e = ±1.

Two words W, W ' on x  are freely equal, denoted W  W ', if one can be obtained 

from the other by a number of applications of operation (f). We again denote the free 

equivalence class containing W  by [W]. Let F(x)  be the set of all free equivalence classes 

of words on *. A multiplication can be defined on F(x)  by [W][£7] =  [WU], and one 

can check that this multiplication is well-defined. By this multiplication, F (x)  is then a 

group, the free group on a?. See [Jo, §1.2] for detail. We remark that sometimes we may 

simply write W  for the free equivalence class [W] for any word W  on x ,  if it does not 

cause any confusion.
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1.2.2 Group presentations

A group presentation P  is a pair («; r)  where x  is a set (the generating symbols) and r  

is a set of non-empty, cyclically reduced words on *  (the defining relators). We say that 

P  is finite, if both * and r  are finite.

Alternatively, we regard V  as a two-complex where the underlying graph P ^  consists 

of a single vertex o, the set x  U x~ l of edges and the set r  of defining paths. We remark 

that, in the sequel, without further comment we will often regard V  as a two-complex. 

Moreover, each word W  then is a (closed) path in P ,  and W  is the homotopy equivalence 

class containing W .

The (unique) fundamental group (at o) of P  is denoted by G (P ) (or formally by 

7Ti(P) =  7Ti(P,o)). A group G is said to be presented (or defined) by P  if G = G(7>). 

Let N  be the normal closure of {[R] : R  € r}  in F(x).  Then by the definition of G(P)  

we have (see [Ki, Proposition 1.5.1]) a one-to-one map sending W  to [W]N for each word 

W  on x  so that G (P)  =  F (x)/N .

A van Kampen diagram over a presentation P  =  (x  ; r )  is a finite connected planar 

graph A c K 2 (here R2 is the real plane and the term graph is in the sense of basic graph 

theory) whose edges are directed and labelled by elements of x  in such a way that every 

face of A (bounded component of K2\x )  is a disc whose boundary label (for some starting 

point and orientation) belongs to r.  The van Kampen Lemma (for example, see [LySc, 

Proposition 9.2]) says that a word W  on x  represents the identity of G(7>) if and only 

if there is a van Kampen diagram over P  with boundary label W  (for certain starting 

point and orientation).

1.2.3 Equivalence and subnegativity o f number functions

Given two increasing functions / i ,  : N — > R+ we write f \  •< f 2 if there are constants

A, B  > 0 and C > 0, where B  is an integer, such that

fi{n) < A f 2{Bn) +  Cn (n £ N), 

and we say that }\ is equivalent to / 2, denoted f i  /2, if f i  ^  f i  and / 2 d  /i-

15



Following Brick [Brc] we will say that a function /  : N — > is subnegative if

f { n 1) +  f ( n2) <  f (n  1 +  ^2) for all n i, n2 € N. Given any function /  : N — > R+ there is 

a least subnegative function /  greater than or equal to /  called the subnegative closure 

of /  defined by
r

f (n )  = m axjy^ /(n ,)  : n\ +  n2 +  ■ • ■ nr = n, nt- 6 N (1 <  i < r)}.
t=i

Then if /1 ^  / 2 we have f i  ■< / 2 and so if f \  ~  / 2 then f \  ~  / 2.

1.2.4 First order Dehn functions of groups

Consider a finite group presentation “P  =  (x  ; r) .  Let W  be a word on x. If W  = 1 in 

G (P ) then by Remark 1.1.6 there exist r E N such that in P

(1.3)
t=i

for certain words U{ on x, R{ € r ,  and e,- =  ±1  (1 < i < r).

Definition 1.2.1 The first order Dehn function of'P  is the integer valued function 

8ip(n) = max.{Area'p{W) : L(W) < n, W  = 1}, n € N.

By the main result of [All], up to equivalence is independent of the choice of 

different finite presentations. Thus, if a group G is finitely presented, then we can write 

for a typical representative of the equivalence class.

1.2.5 Cayley graphs and universal coverings

Let G be a group finitely presented by P  = (x ; r). We identify G with G (P ). Then G 

is generated by {x : i E ® } .

The Cayley graph Tx(G) of G with respect to x  consists of the vertex set v  =  

r ( r* (G ))  =  G, and the edge set

e = e(rjc(G)) = {(£, xe) : g € G, x € *, e = ±1}
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satisfying i(gy x£) = g , r(g , x£) =  gxe and (<7, xc)-1 =  (gxe, x -ff). Thus, for each vertex 

(7 of r« (G ), |5 tar(p)| =  2|aj|. Let 7 be a path in ra»(G) from g to another element g' of 

G, say 7 =  (<7, xef ) ( g x \ l  ̂ x^2) • • • (<7̂ 1* • • • x£„Si , x£n). Reading off the second coordinates 

of the edges of 7 gives a unique word W7 =  x*1 • • • x*n on We then can define the 

projection map pD : Ta;(G) — > P ^  which is a locally bijective mapping of graphs given

by
p0(7) =  W7, p0{g) =  o, for any path 7 and any g G G.

Thus, for any word W = xj1 • • • x*n on x  and for any g € G we have a unique lift of W  

in P ^  at g

tg(W) = (:g, <")•

We then call the lift map from the set of all words on x  to the set of all paths at g of 

Far(G).

The group G acts on Ta;(G) by multiplication on the left: the element g E G defines 

a map <j>g, which maps a vertex gt to gg', an edge (g\ xe) to (gg\ x £) (x € x , e = ± 1).

A (word) metric dx =  d is defined by assigning a unit length to each edge of Taj(G) 

and defining the distance between two vertices <71, g2 € G to be the minimum length of 

paths in r* (G ) joining them denoted d(gi, #2)- The paths joining gi and g2 with the 

minimum length are called geodesics. It can be show that we then have defined a metric 

space denoted by (G, d).

We also define the length of an element g 6 G with respect to a;, written \g\x or 

simply |<jr|, to be the length of a geodesic in Ta;(G) from the identity to g (i.e. the 

length of a shortest word on * representing g). Thus, for any two elements <71, g2 G G, 

d(gi, g2) =  \g flg2\- The left action of G on itself then is by isometries since d(<7<7i, gg2) =

\(99i)~1992\ = \9f l92l

Let r  = {tg(R ) : R  G r, g G G}. We then obtain a two-complex, the universal 

covering P  =  (Ta;(G); r )  of P ,  with vertex set G, edge set

{(0> x*) : g G G, x G *, e =  ±1},

and set of defining paths f . Let g , g' be any two elements of G. Then there exists g” G G 

such that g = g'g". Let W  =  x\l • • • x^* be a word on x  such that W  =  g" in G. This 

then gives a path in P  from g' to g:
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(s'. z'l‘ )(s'®5‘. X?) • ■ • (s'*!1 ■ • • *m-I > Xm ) -

Thus, P  is connected, and has trivial fundamental groups [LySc, Proposition 4.1].

Since p0(tg(R)) = R  for any tg(R) € G ,p 0 is a mapping of two-complexes. We

call p0 the projection map from V  to P  and call tg the lift map from P  to P  with respect 

to g. Note that tg is not a mapping of two-complexes. Since pQ is locally bijective, by 

Lemmas 1.1.2 and 1.1.3 we have

Lemma 1.2.2 Let W , W ' be any two paths in P .

(i) I f W  ~ W '  in P  then p0{W) ~  Po{W') in P ,  and

(ii) i f W ~ W ’ in P  then tg(W) ~  tg(W') in P .

1.2.6 Monoid presentations

A monoid presentation P  is a pair [*; r] where a; is a set (the generating symbols) and each 

R £ r  (a defining relation) is an ordered pair (R+1, R-i) ,  where R+i and R - 1 are distinct 

positive words on x.  We write R+\ = R -i  instead of (R+i, R - 1). Sometimes, we need to 

list the elements of r .  We write each element as R+iti = R-i,i,  • • *, R+i,k =  R-i,k,

We say that P  is finite, if both x  and r  are finite.

We now introduce the following operation on positive words on *.

(J) If positive word W  contains a subword R£, where e =  ±1 and R+1 =  R - 1 6 r , then 

replace it by R_e.

Two positive words Wi, W2 on x  are equivalent, denoted W\ ~  W2, if one of them can be 

obtained from the other by a number of applications of ( |) . Clearly, if U, V  are any two 

words on x  and if W\ ~  W2 then UW \V  ~  UW2V. We then say that this equivalence 

relation ~  is a congruence relation. Let W  be a positive word on x. We still denote the 

congruence class containing W  by W. Let S( P)  be the the set of all congruence classes. 

We now have a well-defined multiplication on S ( P)  given by W 1W 2 = W 1W2 and then 

S( P)  is a monoid (for example, see [Ki, Lemma 1.2.1] for detail). Let S  be any monoid. 

If S  = S ( P)  then we say that S is presented (or defined) by P.
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1.3 Pictures over two-complexes

1.3.1 Pictures over presentations

We refer the readers to [BoPr] and [Pr2] for the reference in this subsection.

In this subsection and the following section we let P  =  ( x ; r )  be a group presentation.

A picture P over P  is a geometric configuration consisting of the following.

(1) A disc D2 with basepoint o on the boundary dD 2 of D2.

(2) Disjoint discs Hi, • • *» Dn in the interior of D2. Each disc D; has a basepoint o, 

on the boundary dDi of fi,-.

(3) A finite number of disjoint arcs oci, « 2, * • •, <xm. Each arc lies in the closure of 

D2 — U”=1 fi; and is either a simple closed curve having trivial intersection with 

dD2 U (Ur=i ^t)» or *s a simple non-closed curve which joins two points of dD 2 U 

(U U  dfli), neither point being a basepoint. Each arc has a normal orientation, 

indicated by a short arrow meeting the arc transversely, and is labelled by an 

element a; U a:-1 which is called the label of the arc and this arc is said to be an 

x-arc.

(4) Reading off the labels on the arcs encountered while travelling around dfi, (1 < i < 

n) in the clockwise direction from o, to o, gives a word which belongs to r  U r~ l . 

We call this word the label of fi; and say that fi, is a r-disc.

We define the boundary dF of P to be dD2. The label on P, denoted by W (P), is the 

word read off by travelling around dP once in the clockwise direction starting from o. 

When we refer to the discs we mean the discs in the interior of the ambient disc D2 not 

D2 itself. A region of P is the closure of a component of D2 — ((U”=i U (UJLi a j))- An 

inner region of P is a region that does not meet dP and all other regions of P are outer 

regions. We write A(P) for the disc number in P (also called the area of P). We say that 

P is spherical if no arc meets dF. Thus, a spherical picture only has one outer region 

labelled by its basepoint. We remark that sometimes we would drop off the ambient disc 

D2 of a spherical picture.
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E xam ple  1.3.1 Let Q  =  (x, y, z; x~ly~l z , y~lzx~*, y2). If P is as illustrated in Fig. 

1.1, then P is a picture over Q  (forgetting the three broken arcs together with their labels 

7 i, 72 , 73 which will be introduced later) with W(P) =  x~lxz~ lyyyy~lxx~ lz.

Fig. 1.1

Obviously, every picture P over V  uniquely corresponds to a van Kampen diagram A 

over P  by replacing a disc together with its incident arcs by a 2-cell with boundary label 

the disc label:

We call P the dual of A and vice versa. Thus there is a pictorial version of the van 

Kampen Lemma:

L em m a 1.3.2 There exists a picture P over P  with label W  if and only if  W  = 1 in 

G (T ).

We will say that a van Kampen diagram over V  is a spherical diagram if its dualization 

is an spherical picture over P.

A transverse path 7 in a picture P is a path in the closure of D2 — (J”=1 which 

intersects the arcs of P only finitely many times. Reading off the labels on the arcs 

encountered while travelling along a transverse path from its initial point to its terminal
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point gives a word on x  denoted W{^). Let 7 be a simple closed transverse path in P. 

The picture enclosed by 7 is called a subpicture of P.

A spray for P is a sequence 7 =  (71, 72, • • • , 7n) of simple transverse paths satisfying

the following: for i = 1, 2, • • •, n, 7,• starts at o and ends at a basepoint of some

where x  is a permutation of {1, 2, • •, n} (depending on 7); for 1 < i < j  < n, 7; and

7j intersect only at o; travelling around o clockwise in P we encounter these transverse 

paths in order 71, 72, • • •, 7n- Let kkel °f ^x (0 an<̂  ^  label °f

7 Then associated with 7 we have a sequence over P:

We call this the sequence associated with P (relative to the given spray 7 ).

Exam ple 1.3.1 (continued) The sequence associated with the spray 7 =  (71, 72, 73) 

illustrated in Fig. 1.1 is

(.x~l (y~lzx~l )~lx , x~ly~lz, z~ly y ' 1 {y2)yy~lz ) .

Let P be a picture over P .  A floating circle of P is a closed arc which encloses no 

discs or arcs of P. In the example above, the circle labelled by 2 in Fig. 1.1 is a floating 

circle. A semifloating circle of P is an arc which starts and ends on dF and which is such 

that all other arcs and discs of P lie on the same side of this arc as the basepoint o of P. 

In Fig. 1.1, we see there is a floating semicircle labelled by x. A cancelling pair of P is a 

spherical picture with exactly two discs whose basepoints lie in the same region.

71 — 1

We now introduce some elementary operations on spherical pictures as follows. Let P  

be a picture over P.

(A) Deletion of a floating circle.

(A)-1 Insertion of a floating circle.
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(B) Deletions of a cancelling pair. 

(B)-1 Insertion of a cancelling pair.

(C) Bridge move:

Bridge move

Two spherical pictures are equivalent if one can be obtained from the other by a finite 

number of operations (A), (A)-1, (C), (C)-1, (D).

Let P be any spherical picture over P .  We denote (P) the equivalence class of spherical 

picturers over V  containing P. We say that P is minimal if A(P) = min{A(Q) : Q € (P)}.

The mirror image of a picture P over P ,  denoted — P, is also a picture over P .  We 

form the sum of any two pictures Pi, P2 over P  in the obvious way:

o o o

and we will write Pi — P2 for Pi -f (—P2). Clearly, for any picture P over P ,  P — P is 

equivalent to the empty picture, and if Pi, P2 are both spherical then Pi +  P2 =  P2 +  Pi. 

The set of all equivalence classes of spherical pictures over P  forms a abelian group, 

denoted 7r2(‘P ), under the following binary operation:

(P1) +  (P2) =  (P i +  P2).

Let W  be a word on *, and let P be a spherical picture over P .  We then can form a 

new spherical picture over P  denoted P ^  of the form
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We now consider the G(P)-action on 7r2('P ).

L em m a 1.3.3 The G('P)-action on 7r2(P )  given by

W- (  P) = (P^>, W  a word on x ,  (P) € tt2(P ) 

is well-defined and so ?r2(P ) is a left Z G (P )-module.

P roof. Let P be any spherical picture over P  and let Wi, W2 be any two words on 

x  with W i =  W 2 in G{P). By Lemma 1.3.2, there exists a picture Q over P  with 

VF(Q) =  W 1W2 1. Consider the picture P^ 1 +  (Q — Q) — FW2. By applying bridge moves 

and removing of cancelling pairs, we see that this picture is equivalent to the empty 

picture as shown in Fig. 1.2.

Fig. 1.2

Thus,

( p ^ i ) _ ( p ^  = (p^ i) +  (Q -  Q) -  (P ^2)

= ( F Wl -f (Q-Q) - P ^ 2)

= 0

and so (P ^ 1) =  (P^2) as required. □

Let 7 be a simple closed path in a spherical picture A over P ,  and let E be the 

subpicture of A enclosed by 7 . The complement of B in A is defined as follows. Delete 

the interior of E to form an oriented annulus. Identification of dA to the point o produces 

an oriented disc that has boundary 7 , and which supports a new picture over P .  The 

complement of E in A is obtained from this new picture by a planar reflection. The 

complement has the same boundary label as E and its discs are those of A which are not 

in B, taken with the inverse labels. See Fig. 1.3.
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o
B

,-i

o

Fig. 1.3
complement of B in A

L em m a 1.3.4 (see [BoPr, Lemma 1.5]) Let A  be a spherical picture over P .  Let B be a 

subpicture of A, and let B' be the complement of B in A. Suppose P is a spherical picture 

over 'P having B as a subpicture, and suppose P' is obtained from  P by replacing B by B'. 

Then
(p) -  (r>  =  (a w )

for some word W  on x .

P roof. Let p\ be a transverse path from the basepoint of A to the basepoint of B with 

label Wi. A sequence of bridge moves applied to the spherical picture A ^  yields a 

picture Ai containing B, and where the basepoint of B “exposed”, lying in the boundary 

outer region of Ai. See Fig. 1.4.

- i AiA

Fig. 1.4

Let p2 be a transverse path from the basepoint of P to the basepoint of B (as a subpicture 

in P) with label VF2- To insert — Ai into the region of P where the basepoint of the
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subpicture B lies we apply bridge moves on P +  (—Ai)**2. Denote this new picture 

(spherical) by Pi we then see that (see Fig. 1.5)

(Pi) =  (P) -  (A^2̂ 1"1).

F-

Fig. 1.5

On the other hand, the oppositely oriented and adjacent copies of B in Pi can be 

removed by a sequence of bridge moves and deletions of cancelling pairs. The resulting 

picture is then exactly P', and so the lemma follows. □

In the situation of the above lemma, we will say that P ' is obtained from P modulo A.

1.3.2 Pictures over universal coverings

There is a general notion of pictures over two-complexes (for example, see [BoPr, BrHu, 

CoHu] for reference). Here, for our use we will concentrate on the notion of pictures over 

the universal covering P .

The basepoint of the picture is labelled by an element of G(P). The arcs of the picture 

are labelled by edges of P .  Each disc has a basepoint and the label on the disc is either 

a defining path or the inverse of a defining path. Each region of the picture is assigned 

an element of G(P). It is required that if we have an arc in the picture, with label (g , x) 

(9 € G (P ), x € x  U « -1) say, separating two regions:

(g, x) f Region 1 

Region 2
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and if gi and g2 are the elements of G{V) assigned to Region 1 and Region 2 respectively, 

then gi = t(g, x) = g and g2 = r(g, x) = gx .

E xam ple  1.3.5 Let V  — (x , y , z ; [x,y], [y , z ], [z,x]). The following then is a picture over 

V .

x

Given a picture P over 7*, then for any g £ G(7>) we have a unique picture G(P) =  P5 

over V  of P at g , defined as follows. Label the basepoint of P by g and assign g to the 

outer region (containing the basepoint of P). For each arc of P choose a transverse path 

in P from the basepoint of P to the start of the arrow on the arc. Then relabel the arc 

by (pfF, x), where W  is the label of the transverse path and x £ x  U x ~ l is the label of 

the arc, i.e.

[gW, x)

Note that if W ' is the label of another transverse path from the basepoint of P to the 

start of the arrow of the given arc, then from [Pr2, Theorem 2.4] we know that W' =  W  

and so (g W \x )  =  (gW ,x).  In addition, we assign the element gW  of G("P) to the region

where the start of the arrow on the given arc lies, and assign the element gW x  to the 

region where the end of the arrow on the given arc lies. Again, from [Pr2] we see that 

these assignments are independent of the choice of transverse paths. For each disc of P 

labelled by R£ (R  £ r), choose a transverse path in P from the basepoint of P to the 

basepoint of this disc. Then relabel the disc by tgjy(R£) = R£gyy, where W  is the label
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of the transverse path (this label is once again independent of the choice of transverse 

paths).

Applying p0 to the labels of the arcs of P5, one recovers P. We write p0(P5) =  P and 

so p0ta(P) =  P.

Conversely, let P be any picture over P  with t(P) =  g for some g G G. Here we write 

*,(P) for the label of the basepoint of P. Then the basepoint and the region containing 

this basepoint are labelled by g. Consider any arc in P. Suppose that the arrow riding on 

this arc is labelled by an edge (g\ x) of P  with g' e  G, x e  x .  Then the region containing 

the start of this arrow has the label g’ and the region containing the end of this arrow 

has the label g'x. Thus, each transverse path of P from the basepoint of P to any region 

of P labelled by g" say, is also a path in P  from g to g". Moreover, let ft be a disc of P 

and suppose that the region containing the basepoint of ft has the label g\. Reading off 

the labels on the arcs meeting ft clockwise gives a defining path Rgi of P  or its inverse. 

So, applying pQ to the arcs of P gives a picture P over P  denoted p0(P) =  P. Now, by the 

definition of tg we have tg(P) = P, namely P is the unique lift P5 of P at g and

tgp0(F) = P.

Thus, the map tg on the set of all pictures over P  and the restriction of p0 on the set 

of all pictures over P  at g are mutually inverse. Hence, we have proved the following 

lemma.

L em m a 1.3.6 For any g G G the restriction o f tg to the set of all pictures over P  and 

the restriction ofp0 to the set of all pictures at g over P  defined in the above are mutually 

inverse.

The elementary operations on pictures over P  are translated to elementary operations 

on pictures over P . (One can check that all these operations have no affect on the 

basepoint of a given picture over P .)  Thus, for each g G G (P ), we have the notion of 

equivalent spherical pictures over P  at g. Let (P)5 (or simply (P) without causing any 

confusion) denote the equivalence class containing the spherical picture P over P  at g , 

and let 7t2(P,<7) denote the set of all equivalence classes of spherical picture over P  at g. 

Then, as for the situation for 7r2(P ), tt2(P ,# )  forms a abelian group.
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We remark that Lemma 1.3.4 also can be extended to the situation of pictures over

V .

1.3.3 Fox derivations

Let F  =  F(aj), and let x £ x.  The Fox derivation [CrFo]

: Z F  — ► Z F  
ox

satisfies (here for simplicity we drop off the square brackets as we remarked in §1.2.1)

dx 1 dx~l . dUV dU TTdV dy n ,
Tx = l ' ~ d T  = - x ~ '  - d r = t e + u t e ’ & = °  ( » € * , * # * ) .

Let 9 : Z F  — > ZG  be induced by the natural epimorphism F  — > G. From now on,
Q

whenever we have this composition of —  : Z F  — > Z F  and 0 : Z F  — > ZG  we will use
ox

• dG r n d ■ the notation —  for 9— , i.e.
Ox ox

da W D. d W . , „
—X—  = 6(— ), for any W  € F.

OX ox

1.3.4 Some exact sequences

Let V  = (* ; r) be a finite presentation and let G = G(7>) = F (x ) /N  where N  is the 

normal closure of {[R] : R  € r}  in F(x). The relation module is the abelianization N /N f 

of N  regarded as a left ZG-module with G-action given by

W -  [U]N ' = [WUW~l]N' (W  e G(V), [U] <E N).

Let X  = {Pi, P2, • • •} be a set of spherical pictures over 'P. We say that X  generates 

or is a set of generating pictures for ^ ( 'P )  if {(Pi), ^ 2), • * ■} generates as

a ZG-module.

Note that a set X  of spherical pictures is a generating set if and only if every 

spherical picture can be transformed to the empty picture by a sequence of bridge 

moves, insertions/deletions of floating circles, insertions/deletions of cancelling pairs,
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insertions/deletions of elements of X  and their inverses (see [Pr2, Theorem 2.5*] or [BoPr, 

§1-2]).

Suppose X  is a generating set for ^ ( “P). Let

P3 = ®  ZGfP, P2 = ©  ZGtR, Pi =  ®  ZGtx, Po = ZG
FeX  R£r X̂ x

be free ZG-modules. We then have the following short exact sequence [Pr2]:

0 — > jt2(T) Pi A  N/N '  — *■ 0 (1.4)

to  ■ (P> —+ E e .W 'i e2 -.tR ^  [R]N' (P e X ,  R €  r),
1 = 1

where (W ii^ 1 W f1, • • •, W n R ^W '1) is a sequence associated with P. The embedding p,2 

is called the standard embedding from 7r2(P ) to P2.

Regard Z as a left ZG-module with trivial G-action. There is the augmentation map 

e : Pq — y Z which sends each element of G to 1. Let kere =  /G , the augmentation ideal, 

and let incl. : IG  — y Po be the inclusion map. Then we have a short exact sequence:

0 — > IG  ^ 4  P0 Z  — ► 0. (1.5)

From [BrHu, p i96], we also have the following short exact sequence

0 — >• N /N ' P i - %  IG  — ► 0 (1.6)

where Hi and 0\ are respectively defined by

dGW
Hi : [W]N* i— > £  01 : tx 1—  ̂x ~  1 (x e  x )

x £ X  a X

for all [W] (E N  and all x € x.

Now, by (1.4), (1.5) and (1.6) we get an exact sequence

o — ► ^(-P ) p2 -ii+ P0 Z — > 0 (1.7)

where ^  = ind.Oi, d2 =  /ii#2-

We say that a group G is of type F P n (0 < n < oo) if there is a partial projective 

resolution of the trivial G-module Z (see [Bro] for reference):

Qn — ► • •' — ► Qi — > Qo — > Z  — y 0,

where Q, (0 <  i < n) is a finitely generated projective ZG-module.
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Lem m a 1.3.7 Let G be a group finitely presented by 7 *  =  ( x  ; r ) .  Then G is of type

FP3 if and only if  7t2(P )  is finitely generated as a ZG-module.

P roof. Consider the exact sequence (1.7). Suppose X  is a finite set of generating 

pictures for n2('P). Then P3 =  ZGtp is a finitely generated free ZG-module, and

the mapping tp — y (P) (P € X ) induces a epimorphism from P3 to Hence, we

have a partial projective (in fact, free) resolution of Z

P3 —  ̂ P2 —  ̂ Pi —  ̂ Po —  ̂Z  —  ̂0.

Conversely, if G is of type P P 3, then there exists a partial resolution of Z

Qz — > Q2 — ► Q i  — > Qo — > Z  — y 0,

where Qi (1 < * < 3) is finitely generated. Let A = Im(Q3 — y Q2). Then we have the

exact sequence

0 — y A — y Q2 — y Q\ — y Qo — y Z — y 0.

Hence, by Lemma 8.4.4 of [Bro] we have

^ (P )  ® Q2 ® Pi ® ^0 — A  ® P2 ® Qi 0 P0.

Since the right hand side is finitely generated, the left hand side also is finitely generated. 

So is finitely generated. □

A group G is said to be of type F3 if it is finitely presented and is of type FP3. (In 

fact, a group G is of type Fn (n > 1) if there exists an Eilenberg-Maclane complex X(G, 1) 

with finite n-skeleton.) Conditions Pi, F2 are equivalent, respectively, to G being finitely 

generated, finitely presented. For n > 3, G is of type Fn if and only if G is finitely 

presented and of type PP„. For example, see [A13] for reference.)

1.4 Pictures over monoid presentations

1.4.1 Pictures over monoid presentations

Consider a monoid presentation
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V  = [x; r].

As in [Pr3], for each R  £ r  and any words U, V  on x  we can define two geometric objects 

called atomic pictures E =  (U, R , +1, V) and E-1 =  ({/, R, —1, V) over *P as depicted 

in Fig. 1.6:

U R+i V  U R -1 V

E: 2
R -1

E

Fig. 1.6

- l . o
R +i

where each arc in the rectangles is transversely orientated from left to right and labelled 

by an element of x; each disc represents the relator R : R+i = R - i ,  with upper (half) 

label Re and lower (half) label R - e for the edge Eff (e =  dtl). The word UReV  we read off 

by travelling along the top of the picture E£ from left to right is called the upper (half) 

boundary label of E£ and the word U R -eV  we read off along the bottom is called the 

lower (half) boundary label of E£.

1.4.2 Associated two-complexes

Regarding those atomic pictures defined in the previous subsection as edges with initial 

^(E£) =  UReV  and terminal t(E £) =  U R -eV  as well as inverse (E£)-1 =  (E)_£, e = ± 1, 

we can associate with V  the graph Y(fP) = (P (*), e) where e is the set of all the atomic 

pictures. A path P in T('P) will also be called a monoid picture over IP with upper (half) 

boundary label t(P) and lower (half) boundary label t(P ), and a closed path P in T('P) 

will also be called a spherical (monoid) picture over *P. An arc of a path P consists of 

a number of edge arcs which are labelled by the same element of x  and geometrically 

connected one by one. We see that the length L(P) of a path P is the number of discs in 

the geometric representation of P.

Note that if V  is finite then r ( “P) is locally finite.

We also have left and right actions of F(x)  on T('P), that is, for any word W  on «, 

any vertex V  (also a word on x)  and any edge E = (U, R , e, I F )  (e =  ±1) in T('P),
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w  ■ V  =  WV, V  ■ W  = V W  (product in F(x))

W - E  = (WU, R, e, U'), E - W  = (U, R, s, U'W).

Obviously, these actions are compatible.

Exam ple 1.4.1 Let "P =  [x, y : x 3 = 1, xy  =  yx1], and let

Ei =  ( 1, x3 =  1, - 1, y ), E2 =  (x 2, xy  =  y x 2, + 1, 1),

E3 =  (x, xy  =  yx2, + 1, x2), E4 =  (1, xy =  y x 2, + 1, x4),

E5 =  (yx3, x3 =  1, + 1, 1), Ee =  ( y, x3 =  1, + 1, 1 ).

Then r(E t) =  t(E,-+i), i = 1, 2, • • •, 5 and i(Ei) =  r(Ee) =  y. Thus, P =  Ei • • • E6 is a 

closed path at y in T('P), where, for example, the curve starting at the lower boundary 

of the disc in Ei and ending at the upper boundary of the disc in E4 labelled by x is an 

arc of P. Now by a left action of y and a right action by x, we obtain another closed path 

y • P • x at y2x as shown in Fig. 1.7.

-IL
x:

_ x_

P

Fig. 1.7

By introducing a set Z  of the following defining paths we then form a locally finite 

two-complex ( r ( ‘P ); Z )  denoted 'D('P) . For any two edges A, B in r( 'P ), the defining 

path (closed) of ^ ( “P ) defined by A and B is

[A, B] = (A • t(B))(r(A) • B ^A ” 1 • r(B)(t(A) • B"1) (1.8)

as shown in Fig. 1.8.

32



-1

Fig. 1.8

Obviously we have F(x)  • Z  • F(x)  =  Z .  Thus, F (x)  acts on 'P ('P ) on both sides 

compatibly and so if 'P is finite then ('D('P), F(x))  is a locally finite object of <£.

D efinition 1.4.2 A finite monoid presentation V  =  [*; r] is F D T  if{'D('P), F(x))  has 

a finite trivialiser; and a monoid S is F D T if it has a finite presentation which is FD T.

We now extend (1.8) to get the following lemma.

Lem m a 1.4.3 (Pull-dow n and push-up) Let A , B be any two paths in Z>(‘P ). Then 

(A • ^(B))(r(A) • B) and (t(A) • B)(A • t(B) are equivalent, namely

(A • t(B))(r(A) • B)(A -‘ ■ t (B)(i (A) • B -1) ~  l l(AWB).

P roof. Let A = Ai A2 • • • Am and let B = B1B2 • • • Bn with each A,- and each Bj are edges.

Thus,

(A • i(B))(r(A) • B) =  (A1 . t(B )) ..- (A m -t(B ))(r(A ).B 1) - - - ( r (A )-B B)

= (Ai • 4(B0) • • • (Am • ^(B1))(r(A m) • Bx) • • • (r(A m) • Bn).

But

(Am • t(B i))(r(A m) • Bi) ~  (t(Am) • Bi)(Am ■ r(B i)).

So,

(A! • t(Bi)) • • • (Am • ^(Bi))(r(Am) • Bi) • • • (r(A m) • Bn)

~  (Ai • t(Bi)) • • • (Am_i • i(Bi))(t(Am) • Bi)(Am • T(Bi))(r(Am) • B2) • • • (r(A m) • Bn).
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Repeating this procedure we eventually get

(Ai • • • • (A™ • *,(Bi))(r(Am) • Bi) • • • (r(Am) • B„)

~  (i(Ai) • Bi) • • • (t(Ai) • Bn)(Ai • r(Bn)) • • • (Am • r(Bn))

This completes our proof. □

This lemma means that in the geometric configuration of (A • t(B))(r(A) • B) one can 

simply pull down the part representing A and push up the part representing B without 

changing the homotopy type.

1.4.3 First order Dehn functions of monoids

We still consider the monoid presentation P  defined at the beginning of this section. We 

can see that each path P =  E1E2 • • • Em of 'P('P) represents a derivation from z-(P) to 

r(P) by means of the relators. For example, suppose E,- =  (£/,-, i?,, Vi), £,• =  ±1,

i = 1, 2, • • •, m. Then we have a derivation of length m from the word U\Rei,\V\ to the

word UmR-em,mVm of the form:

^*212=^ —
U x R ^ M  -------- ► U2 Re2t2V2 -------- ► . . .

^£m — 1 fm   ̂ ^ em—1 'm  ̂ ^em,m —̂ —*m »m
 ̂ LJm Rem ,m Vm y Um R —£rn Vm

where Ui+iRei+l,i+iVi+i =  UiR-£ltiVi as words on * , i — 1, 2, m — 1. Thus, T>(P)

consists of components such that any two vertices lie in a component of T>(P) if and 

only if these two vertices represent the same element of S(P ).  Thus, if we let A(W ) 

denote the component of 'D('P) containing the vertex W  then the map: W  1— y A(W ) is 

a one-to-one map from S (P )  to the set of all components of 'D('P).

The first order Dehn function of a finite monoid presentation (see [Pr3]) is defined as 

follows.

Let V  =  [x ; r] be a finite monoid presentation for a monoid S  and let U, V  be two 

words on * with L(U) +  L(V) = n for some integer n. If U =  V  then U and V  lie in 

the same component of T>('P). So there are paths in T>(P) from U to V. Following
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Pride [Pr3] we define the derivation length Der^OJ, V") (in [Pr3], Pride uses the notation 

A r e a ^ U ,  V)) of U and V  to be the length of a shortest path in from U to V.

Then the first order Dehn function of the monoid presentation 'P is the function

* £ (» ) =  max{Deryp(U, V) : U = V , U , V e  F (x)  with L(U) +  L(V) < n}.

By using Tietze transformations Pride [Pr3, Theorem] proved that up to equivalence 

is independent of the choice of finite monoid presentations of S. We then use 8 ^  to 

denote a particular representative of the equivalence class.
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Chapter 2

The definition, the quasi-retract 

inequalities and the quasi-isom etry  

invariance

2.1 The definition of second order Dehn function of 

groups

2.1.1 The definition

Let

V  = (x ; r)

be a finite group presentation for a given group G, and let F{x)  be the free group on x.  

Let X  be a (not necessarily finite) set of generators of 7r2('P) as a ZG-module. Then any 

£ =  (P) € 7T2{V) can be written as a sum
m

£  (2 J ) 
t=i

where £, =  ± 1, #,• £ G, £t- = (P,) E X  fo r  i = 1, • • •, m. To give a description for £ of 

the form (2 .1), we hope that the value of m  is as small as possible.

Definition 2.1.1 For each £ E 7t2{'P) the volume V p  x ( 0  {or simply Vj^-(£)) o/£ with 

respect to X  is the minimal value of m over all sums of the form (2.1) equal to £. I f
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(P) =  we sometimes write Vp for Vp x ( 0 -

We then define the second order Dehn function as follows.

Definition 2.1.2 The second order Dehn function o f 'P  with respect to a generating set 

X  of the second homotopy module is the function

S ^ x  : N  — ► R+

given by

ST , X = max{V̂ P ,x ( 0  : -  n }*

We must prove this definition is valid. To do so it suffices to show 

Lemma 2.1.3 The set

Xn = {V p tx ( 0  : A(0  -  n}

is finite for all n E N.

Proof. We call an element k of connected if there is a minimal connected picture

representing k . Since V  is finite there are only finitely many connected elements of 7t2('P) 

with a fixed area. Let

X* =  max{Vp : A (K) — n ’K connected}.

Then clearly Xn is finite. Now let £ be any element of with ;4(£) < n, and let P

be a minimal picture representing £. Then P will have a non-empty connected spherical 

subpicture D. Let Pi be obtained from P by removing D. Then if fi, «i are the elements 

of 7r2('?>) represented by P i,D  respectively, we have, by Lemma 1.3.4

{ =  fi +  <71̂ 1

for some g\ E G. Since A(£i) < A(£) we may repeat the argument with in place of {, 

and so on. Eventually we get

f  =  g\K\ +g2*2 + — V gi*i
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where gu g2, • ••, gi G G, and /ci, /c2, •••,  «/ are connected. Noting that I < n and 

A(k{) < n for i =  1, 2, • • •, /, we deduce that

v x ( f )  <

which implies that Xn is finite. □

The following remark will be used, usually without further comment, in the sequel.

Remark 2.1.4 Let Q = (x ; r )  be a subpresentation of P  = (x, y; r, s) where a  C F(y). 

The inclusion map </>: Q  — ► V  induces an embedding <f>m from the group H  =  G(Q)  to 

the group G =  ^ ( 'P ). Also (f> induces an abelian group homomorphism

0. : M Q )  ~ ► ira(T») (P>Q ^  (F)-p,

and we have

Mh  ■ f) = 0.(ft) • MO ( h e H , ( e  ,r2(Q)).

Here we write (IP)q if we regard it as an element of 7r2(Q) and write (P)-p if we 

regard it as an element of 7r2('P).

Now suppose we have a finite set X  of generating pictures of 7r2(P )  containing a set Y  

of generating pictures of 7r2(Q). Since every expression for (P) for any spherical picture 

P over Q  of form (2.1) in 7t2(Q) is also an expression for (P) in tt2(P ), it follows from 

the previous paragraph that

Vx ((P)7> ) < V y ( ( P ) Q ). (2.2)

2.2 Quasi-retract inequalities and quasi-isometry in­

variance

2.2.1 Universal covers

Le: V  = (x ; r)  be a finite presentation and let G = G(V).  We regard P  as a 2-complex 

whh a single vertex as explained in §1.2.2, and let P  be the universal covering of P .  Let
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Po : P  — > P  be the projection map, and for each g € G let tg : P  — > P  be the lift 

map with respect to g defined in §1.2.5. We further have the following.

L em m a 2.2.1 (H om otopy  lifting) Let P, P7 be any two spherical pictures over P .  

We have that

(i) if  P ~  P7 in P  then p0(F) ~  Po(P7) in P ,

(ii) if  P ~  P7 in V  then /5(P) ~  in P .

P roof. Suppose that P, P7 are any two spherical pictures over P  and P ~  P7 in P .  In 

order to show p0(P) ~  PolPO in P ,  by symmetry and induction it suffices to show that 

if P ' is obtained from P by a single application of one of the operations: deletion of a 

floating circle, deletion of a cancelling pair, bridge move, then so is p0(P7) obtained from

M b

Now the geometric configurations of p0(P) and p0(P/) are the same as those of P and 

P7 respectively. Therefore, the proof for the first two cases are trivial. For the third case, 

suppose that there is a neighbourhood in P containing exactly two arc segments and the 

arrows riding on these arcs have the same label, say (g*, a;), with opposite directions (see 

Fig. 2.1).

Fig. 2.1

Passing from P to P' by a bridge move, this neighbourhood becomes that as shown in 

Fig. 2.2.
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Fig. 2.2

We point out that IP and P7 differ only by these neighbourhoods.

Moving from P to p0(P) by p0, the labels of the arrows riding on the two arcs in Fig. 

2.1 become x in the corresponding neighbourhood of p0(P), and moving from P7 to p0(P/) 

by p0, the labels of the arrows riding on the two arcs in Fig. 2.2 become x as well in 

the corresponding neighbourhood of p0(P7). Also, p0(P) and po(P0 differ only by these 

neighbourhoods. Thus, picture p0(P7) can be obtained from picture p0(P) by a bridge 

move. So, we have p0(P7) ~  Po(P) in V.

Let P and P7 be any two pictures over 'P with P ~  P7 in P .  In order to show (ii), by 

symmetry and induction again it suffices to show that if P ' is obtained from P by a single 

application of one of the operations: deletion of a floating circle, deletion of a cancelling 

pair, bridge move, then so is £5(P7) obtained from £5(P). The proof for the first two cases 

is also trivial since the geometry configurations of £5(P) and £5(P7) again are precisely 

those of P and P7 respectively. For the third case, suppose that there is a neighbourhood 

in P containing exactly two arc segments and the arrows riding on these arcs have the 

same label, say x , with opposite directions as shown in Fig. 2.3.

)
Fig. 2.3

Passing from P to P' by performing a bridge move, this neighbourhood becomes as shown 

in Fig. 2.4.
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Fig. 2.4

Choose a transverse path in P from the basepoint to the start of the left arrow labelled 

by x in the above neighbourhood of P and suppose that this path represents an element 

g' E G. By extending this path to the end of the same arrow and to the start of the 

other arrow labelled also by x by simply crossing the left arc first and then the right arc 

in the neighbourhood we obtain a transverse path from the basepoint of P to the end 

of the left arrow and a transverse path from the basepoint of P to the start of the right 

arrow labelled by x in this neighbourhood and these two paths represent the elements 

g'x and g’xx~ l = g' in G respectively. Let g* = gg'. Then when we lift P  to £5(P), this 

neighbourhood becomes exactly that as shown in Fig. 2.1. Similarly, when we lift P' to 

<5(P') at g , the neighbourhood in P7 we mentioned in the above also becomes exactly that 

as shown in Fig. 2.2.

We point out that /5(P) and £S(P7) differ by these two neighbourhoods. Thus, picture 

tf5(P') can be obtained from picture f5(P) by performing a bridge move. So, we also have

t , ( r )  ~  t9(r ) .  □

C oro lla ry  2.2.2 The function

p,(  p) =  <p.(p)>

is well-defined on equivalence classes, and for any g E G the restriction

P* : g) — > *2{fP)

is an isomorphism of abelian groups.

P roof. By the above lemma, p* is well-defined on equivalence classes. Let P, P' be two 

spherical pictures with ^(P) =  t(P') = g. Clearly, by the definition of p0 we have that

P o ( P + P ' ) = p 0( P ) + p <)(lP')-
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Thus

P„«p) +  (p-)) =  (p0(p+p ' )>  =  (p0(p )+ p „(p '))  =  (po( p)> +  ( p ^ n )

=  p .(p}+p.<p ').

So p* is a homomorphism of abelian groups. Now by the above lemma the function

tg. : ir2(-P) — ► n2(P , g), (P> > (<9(P)) (2 .3)

is also well-defined and again it is easily shown to be a homomorphism of abelian groups 

which by Lemma 1.3.6 is the inverse of the above restriction of p*. □

Given the universal cover P  of P  it will be assumed that for any pair of elements 

#1? g2 € G, a fixed geodesic from gi to g2 is chosen denoted 75l)52. We can suppose that 

7<72,31 =  7^i!s2 for any Pair 91, 92 e G.

2.2.2 Mappings of groups

Now let Q  = { y \ s )  be another finite group presentation and let H  =  G (Q ). Le: Q  be 

the universal cover of Q  with projection map q0.

Let <f> : G — > H  be any function (not necessary a homomorphism). Then </> can be 

regarded as a function sending vertices of P  to vertices of Q. We extend (f> as follows. 

For e an edge of P  we define

<f)(e) =  7  <£(t(e)),<£(T(e))-

If a = e\e2 • • • en is a path in P  we define

4>(a) = 4>{ei)<f>(e2) ■ ■ - (f>(en).

Consider a defining path Rg of P.  Then 4>{Rg) is a closed path in Q, and so %{b{Rg)) 

defines the identity of H  (and so </> is a mapping of two-complexes). Thus there is picture 

over Q  with boundary label q0((f)(Rg)). We choose such a picture and let DRig denote the 

lift over Q  at (f>(g) of this chosen picture.

Now let IP be any picture over P  with the basepoint labelled by some element c of G. 

We convert it to a picture denoted 4>(F) over Q  as follows: given a region $  labelled by

42



an element g* of G, replace the label by <j>(g*)’, given an arc, labelled e say, replace it by 

a sequence of parallel arcs with total label <j>(e), and if <f>(e) = ai<Z2 ' " d m  for some edges 

• • •, o-m of Q, then the region of < (̂P) shared by the arcs labelled by a,- and a1+1 

(i =  1, • • •, am) is labelled by r(a,) =  t(at+i), and in particular, the regions at the start 

of the arrow labelled by a\ and at the end of the arrow labelled by am had been labelled 

by 4>{i{e)) =  i(<f>(e)) =  t(ai) and <f>(r(e)) = r(<f)(e)) =  r(am) respectively; given a disc 

labelled by Reg, (R  £ r ,  g' G G, £ = ±1) replace it by the picture d D T h u s ,  0(IP) is a 

picture over Q  at <t>(g).

a_i\

i  e =  t ia
r(hf) =  t(a,

»+i

/
■i)"'  U ( r ( e ) ) = T ( a m)

We then have

L em m a 2.2.3 The function <f>* given by

M r )  = ( m )

is well-defined on equivalence classes; in particular, for any g £ G the restriction

7T2 {V,g)   > 7T2 {QA{g) )

is a homomorphism of abelian groups.

Proof. To show that is well-defined we must show that if IP, IP' are any pictures over 

V  with IP ~  IP' in V  then 0(P) ~  (f>(P') in Q. In order to do this, by the symmetry and 

the induction, it suffices to show that if P' is obtained from P by one application of each 

operation of deletions of floating circles, deletions of cancelling pairs, and bridge moves
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then so is p0(P') obtained from p0(P). Thus, in the first case, the floating circle in P is 

converted to a sequence of concentric closed arcs in 0(F). By a sequence of applications 

of deletions of floating circles these closed arcs are removed and then </>(P) is transformed 

to ^>(P')- In the second case, the cancelling pair in P is converted to a trivial spherical 

subpicture of </>(P) which can be modified to a sequence of cancelling pairs by a succession 

of bridge moves, and so by removing these cancelling pairs we obtain the picture ^(P'). 

In the third case, the bridge move used on P to obtain P' is converted to a sequence of 

bridge moves on <f>(P) to get <̂ >(P'). The proof for the restriction of <f>* on 7r2(P , g) being 

a homomorphism of abelian groups is similar with that in the proof of Corollary 2.2.2 for 

the restriction of p* on 7r2(P , g) being a homomorphism of abelian groups. □

We will denote the composition

^ ( P )  ^  ^ ( P , # )  7T2(Q ,<£($)) 7r2(Q)

by <f>g.

We now prove the following result.

L em m a 2.2.4 For any f  G tt2(P ) and h, g G G

- 0  = l<Kgh) • < M 0 -

P roof. Let f  be any element of 7t2(P ) and let P be a spherical picture over P  representing 

£. Then,

</>,(!*- t)  =  ^ (M P ))

= 4>g(Fw ) (for some word W  on x  representing h)

=  q*4>*pZl ( O
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by the definition of <j>g. Let Wg be the unique lift of W  at g and let P5/i be the lift of P 

at gh. Thus, the lift of P ^  at g is P ^ 9. Then by the definition of p~l (i.e. the function 

t g defined by (2.3)) we have

*,(A • £) =  ^(A <P» =

Let W^g) be 4>(Wg) which is a path in Q  from (f>(g) to (j>{gh). Then

M r % )  = («?+)*«*)■

Thus,

M h  ■ £) =  u m )  =  q M h k f ™ ) -

Moreover, by the definition of q0, 9o(1T (̂5)) is a word on y  representing the element 

<{>{g)~l (f)(gh) of H. Therefore,

Mb- t )  = M W ) )

= M W * ) * ™ ) )

= < ^ ( i v ) ) M^ (9)))>

=  <i>{g)~l <t>(gh)((io{<i>{wgh )) )

= <t>(g)~l<i>{gh)-q*<l>*{̂ 9h)

= -q+fap*1^ )

= <t>(.g)~l<t>(gh) • M O

as required. □

Suppose now that we have another function ^  : H  — > G. For any edge e in 'P we 

have the closed path

/ie = e7T(e)ĵ ,(T(e)),0<̂ (e) 7t(e),V'</>(t(e))

in V  as shown in Fig. 2.5.
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Fig. 2.5

Then p0(pe) defines the identity of G. So there is a picture over 'P with boundary 

label p0(fie). We choose such a picture, and let Ae denote the lift of this picture at t(e). 

For any defining path Ra of P  we then have a spherical picture A r}9 over “P  as depicted 

in Fig. 2.6:

Fig. 2.6

where 7,• =  7T(e,-)l̂ (r(c,-))» * = L 2, •••, n, and respectively, circles labelled A ei, % — 

1, 2, • • •, n and circle labelled 0(Bj?)5) represent subpictures over V .

We let denote the mirror image of the complement in of the subpicture 

consisting of the disc labelled R~l and the adjacent arcs.

Let Z  denote the set of elements of 7r2('P) represented by the pictures p0(ehRig) 

(R € r, g £ G, £ = ±  1). We prove the following key proposition which tells the difference 

between any f € K2{'P) and the double image il><f>(g)<l>g{£) for all g € G.
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P ro p o sitio n  2.2.5 (M app ing  difference) Let £ Eft2(P ) and g EG.  Then there exist 

ho, • • *, hji(£) E G, Ci, C2, ' • •, Ci(0 € % such that

MO
f  =  h Qil)m <j>g { ( )  +  Y ,  h & -  ( 2 -4 )

»=i

Proof. Let P be a spherical picture over P  representing £, where P has n =  A(£) discs. 

Let P5 be the lift of P at g for some fixed g E G and suppose that the discs fb , ^ 2, • • •, fin 

of P5 are labelled # 2̂ 2, " ,  R£n,gni respectively. Let P* be the picture obtained

from P3 by replacing the disc by the picture £»B/ji)5. for i =  1, , 2, • • •, n. We will show 

below that 7 ^ (5),5 ■ is equivalent to P5), and from this we obtain the proposition 

as follows. We have

0 =

= p*0 .<^*(Pa)

=  (P o ^F g ))

~  (Po{hp<t>(g),g ' ^ 5))'

Since 7^(g)^  is a path in P  from ip(j)(g) to g , by the definition of p0, Po{7ip<j>(g),g) is a 

word on x representing the element (?/><j>{g))~lg . Therefore,

XiJ<t>(9)(t)9(0 ~  {PoiSiil>4>(g),g ’ *̂5))

= (p0(P]|)Pô *(»>-®))

=  • <Po(Pj)>-

But Po(BJ) is obtained from P by n replacements of subpictures of elements of the set

{p0(e ARtg>) : R E r ,  g EG,  e = ±1},

so by Lemma 1.3.4,

(P) — (p0(P*)) =  hiCi +  h2^2 +  • "  +  hn(n

for certain elements Q E Z , h{ E G (i = 1, 2, • • •, n) and then the proposition follows by 

taking h0 = 0“ V<A(flO-

To see that 7^ g),g • PJ is equivalent to 0</>(P5), observe that if we have an arc in P5 

labelled e say, then when we pass to ip(j)(Fg) this arc is replaced by a sequence of parallel
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arcs with total label We can modify this sequence of parallel arcs as shown in Fig.

2.7.

-A ,

Fig. 2.7

For simplicity we will depict the configuration on the right by the following:

-A ,

Fig. 2.8

We carry out the above procedure for each arc of P5, obtaining a picture P' equivalent

tO g ) .

Now consider a typical disc H, of Pa labelled by Rei,gt = eie2 • • • em. When we pass 

from P5 to P', a neighbourhood of f2, becomes modified as shown in Fig. 2.9.

7 m - 1

7m =  7o

-A ,

Fig. 2.9
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By performing bridge moves we can further modify this neighbourhood to that as depicted 

in Fig. 2.10.

m i

7*n —1

-A ,

7o

Fig. 2.10

Note that the picture made up of Siip{p>R̂ gi) and — Aei, — A e2, • • •, — A em is We

still call this modified picture P'.

Consider a neighbourhood of a typical region $  of P5 as shown in Fig. 2.11.

k —l

Fig. 2.11
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Here a\, a2, a\t are edges in V,  Si, S2, • • •, Sk € r ,  61, &2, • • •, 6* G G, and 

e2, • • •, €k =  ± 1. Let a j = 7r(ai),^(r(a>))> j  =  1» 2, •••,& . Then when we pass from 

P5 to P', this neighbourhood becomes that as shown in Fig. 2.12.

(-A

k-- A

Fig. 2.12
Since £(«i), t(a2), • • •, t{a\t) all are the label of region a i, a 2, • • •, otk are all the 

same. Note that this situation also happen to the neighbourhood of any other region 

(including the outer region) of P5 and their corresponding neighbourhoods in P'. Thus, 

from Fig. 2.10 we can see that the pairs of discs Aj and —Aj joined by arcs labelled by 

j  =  1, 2, • • •, k are cancelling pairs. By bridge moves around these cancelling 

pairs we can remove these cancelling pairs and if $  is not the outer region of P5 we can 

remove the sequence of concentric closed arcs with the total label a i. After we have
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finished this modification on every region of P5, the neighbourhood of IP7 corresponding 

to the typical region ^  is then modified as shown in Fig. 2.13.

- A (—A

k-

Fig. 2.13

This gives that this modified picture from IP7 is precisely the picture P* surrounded 

by a sequence of concentric closed arcs obtained from the above modification on the 

neighbourhood corresponding to the outer region of P5. Since the basepoint of P* is g  

and the basepoint of P' is the total label of this sequence of concentric closed arcs

is a path from ip<t>(g) to g .  So, we have shown that 7̂ </.(5))5 • PJ is equivalent to ip<f>(Fg).  □

2.2.3 Quasi-retractions and Quasi-isometries

We state the definitions of quasi-retraction and quasi-isometry between metric spaces as 

follows, referring to [A13].

D efin ition  2 .2.6  Let (X, d), d!) be two metric spaces where d, d' are the metrics

in the corresponding spaces X  and X ' respectively. A pair of maps

f  : X  — ► X \  f ' : X '  — > X

is called a quasi-retraction of X ' to X  if there exist constants c\ > 0, and C2 > 0 such 

that for all £, y 6 X , x f, y' € X '
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d'(f(x), f ( y )) < cid(x, y) +  c2,

f '(y ')) < cid'(x', y') + c2, 

d ( f ' f (x ) ,  x) < c2.

The metric space (X , d) is called a quasi-retract of (X ', d') if  there is a quasi-retraction 

of X '  to X .

D efinition 2.2.7 Let (X , d), (X *, d') be two metric spaces where d , d7 are the metrics 

in the corresponding spaces X  and X '  respectively. A pair of maps

f  : X  — ► X', f ' \  X '  — * X

is called a quasi-isometry if there exist constants c\ > 0, and c2 > 0 such that for all 

x, y E X ,  x7, y' G Y

f ( y )) < cid(ar, y) + c2,

<*(/'(*')» f ' W )) < cid'(x\ y') + c2,

d ( f f ( x ) ,  x) < c2,

d ( f f ' ( x f), x ’) < c2.

The metric spaces (X, d) and [X ’, df) are called quasi-isometric if there is a quasi-isometry 

between them.

By the above definitions, a metric space (X, d) is quasi-isometric to another metric 

space ( X \  d') if and only if (X, d) is a quasi-retract of (X 7, d7), and vice versa.

Consider a Cayley graph of a finitely generated group as a word metric space as 

described in §1.2.4. We then have the following definition.

Definition 2.2.8 Let G, H be two groups finitely generated by x  and y  respectively. 

Let Ta;(G?) and Ty(H ) be their corresponding Cayley graphs with word metrics d, d7 

respectively. We say that G is a quasi-retract of H if  the metric space (G , d) with respect 

to x  is a quasi-retract of the metric space (id, d7) with respect to y  and we say that G 

and H are quasi-isometric if (G , d) and (dd, d7) are quasi-isometric.
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It is trivial that quasi-retraction of groups is a geometric property, that is, if a group G 

is a quasi-retract of a group id, and G, dd are quasi-isometric to groups Gi, H\ respectively, 

then Gi is also a quasi-retract of H\. By [A13, Lemma6], quasi-retraction of groups is 

independent of the choice of presentations. Furthermore, by [A13, Theorem 8], a quasi- 

retract of a group dd of type Fn (resp. of type FPn) again is of type Fn (resp. of type 

FPn) for any integer n > 2.

Given a finitely generated group dd, we can give some examples of quasi-retracts of

H.

Exam ple 2.2.9 By Definition 2.2.1, if a group G is quasi-isometric to H  then G is a 

quasi-retract of H. Thus, (see [GhHaJJ the following groups are quasi-retracts of H.

(i) All subgroups of H  of finite index (in fact, all such subgroups are quasi-isometric 

to dd).

(ii) All groups commensurable with dd. Here, we say a group G is commensurable with 

H  if there are subgroups G\ < G, ddi < H  of finite indices such that G \ = H \ .

Exam ple 2.2.10 Every finite subgroup of H is a quasi-retract of H.

To see this is true, simply note that dd and G are quasi-isometric to dd and 1 respec­

tively.

Exam ple 2.2.11 A (homomorphic) retract of H .

Here, we say a group G is a retract of H  if there are homomorphisms

G H G

such that ip<j> is the identity map of G. Following [A13, Example (3)], G then is a quasi-

retract of dd.

Let ddo, ddo be two groups together with a homomorphism (f> : K q — > Aut(H0),

where Aut(Ho) is the automorphism group of ddo. For each k £ K0 we write fa  for

<f>(k) £ Aut(Ho). In particular, if Ao is a cyclic group generated by k , then we identify <j) 

with fa. The map (f> determines an action of K 0 on dd0 given by

h^ := </>k(h), h £ ddo, k £ Ao>
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The set of all ordered pairs (h, k), h € ddo, k £ K q forms a split extension denoted 

dd =  dd0 <̂f> K q of dd0 by Ko under the binary operation defined by

(h, k)(ti, k') = [h(f>k(ti), kk'), h, h' € dd0, k, kf £ K 0.

Furthermore, if PCq =  (*5 t ) and 7C0 =  (t ; s) are presentations for ddo and Kq respectively, 

then dd has a presentation

U  =  (*, t; r, s, a ) ,

where a  =  : x £ x ,  t £ t }  with Xxt a word on x  representing the element

<t>fl (x) of GlfHo) for each pair x £ x ,  t £ t .  We have two natural embeddings ddo — > dd 

and K q  — > dd respectively defined by

h i— > (/i, 1), and k i— > (1, k ), h £ ddo, k £ K q.

Identifying ddo and K 0 with their images respectively gives that ddo is normal subgroup 

of dd with complement Kq. Note that Kq  is a retract of dd as the maps

JJ (h,k)^k ^

show.

The following proposition is a standard fact.

Proposition 2.2.12 A group K  is a retract o f  a group  dd i f  and  only i f  dd is a split  

extension  o f  a n orm al subgroup dd0 by another subgroup K q with K q  = K .

Proof. Suppose that K  is a retract of dd. Then there are homomorphisms

K  H - U  K

such that ip(j> is the identity map of K .  Let dd0 = ker0, Kq  = im<£. Then for any h £ dd, 

we have

Since

fah((f>ip(h))~l ) =  ^(/i)^((«^0(/i))_1)

=

= ip(h)(ip(h))~l (since tpcf) is the identity map of K)

= 1,
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we have h(<j>tl)(h))~l € dd0. Thus, H =  HqK q and K  = K 0 since <j> is injective. Moreover,

if ho £ Ko C\ Ho, then if (ho) = 1 and there is an element hi £ H  such that ho = 4>(h\).

Thus,

1 = 'tp(ho) = ip<f>(hi) =  h x

and hence h0 =  <j)(hi) =  1, that is Ho fl Ko = {1}.

The converse follows from the previous discussion. □

From the above proposition we can see that if G is a finite subgroup of a group H  

and if G has no normal complement in dd, then G is a quasi-retract but not a retract 

H. It may be very interesting to investigate the behaviour of quasi-retractivity between 

groups.

2.2.4 Inequalities and invariance theorems

Let G and H  be two groups finitely presented by V  =  (a?; r)  and Q  =  (y ; s ), respectively. 

Let Tx and Ty be their corresponding Cayley graphs with word metrics d, d! respectively. 

We suppose that G is a quasi-retract of H  with a quasi-retraction

<f>: (G, d) — ► (dd, d7), 0  : (H, d7) — > (G, d)

for a pair of constants C\ > 0, c2 > 0 as defined in Definition 2.2.6, where (G, d) and 

(dd, d7) are the word metric spaces with respect to x  and y  respectively as defined in 

§1.2.5. Further supposing that dd is of type F3, we do some calculations as follows.

For convenience, we replace C\ + c2 by c. Let ro be the maximum of the lengths of the 

relators of 'P and Q. Also, let Y  be a finite set of generators of tt2(Q ), and X  be any 

set of generators of ^("P ). Let a be the maximum of the areas of elements of Y , and let

b -  max{<ri^(cr0), d ^ (c r0)}.

Thus, each picture defined in §2.2.2 can be chosen to have at most b discs. We will 

assume that such pictures have been chosen. We will also assume that analogous pictures 

(S £ s, h £ dd) over Q  with at most 6 discs have been chosen. We then have the 

following:
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(2.2.1) Each picture (̂D/*)5) or each picture <f>(Ps,h) has at most b2 discs;

(2.2.2) A(<t>g(t))<bA((), A(i/)h(rj))<bA(rj) for all ( <E tt2(V ),  t/G tt2(Q ), 

g e  G, h e  H\

(2.2.3) For any tj £ Y  and h e H, V(iph(g)) < Sip ^ (a b ) .

Let g be any element of 7r2(Q). Then

v(v)
rj = ^2

i=1

for certain elements hi 6 H , rji € Y , £,■ =  ±1  (i = 1, , 2, • • •, V(rj)). Then by Lemma

2.2.4
v(v)

M v )  =  e i9i^hhi(rti) 
i= 1

for certain elements gi (i =  1, 2, • • •, V(rj)) of G. So using (2.2.3) we get:

(2.2.4) For any rj e 7r2(Q), and h e H, V(iph(g)) < ^(ab)V(rj) .

Now each path ge = (e an edSe of has kngth of at

most (1 +  c)2, so the picture Ae in §2.2.2 can be chosen to have at most <rfp((c -f l ) 2) 

discs. We assume that such pictures have been chosen. Then (using (2.2.1)) we have:

(2.2.5) The area of each picture A/?i5 depicted in Fig. 2.6 is at most a  where

a = 1 T t"oSip((c +  l )2) +  62.

T h eo rem  2.2.13 Let *P and Q be finite presentations for groups G and H  respectively. 

Let X  be a set of module generators for 7r2(7y) and suppose that Y  is a finite set of module 

generators for 7r2(Q ). Suppose that G is a quasi-retract of H as defined in Definition 

2.2.8. Then
r(2) ^  x(2)
° T ,X  -  °Q tY ’

and G is of type F3.
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P roof. Let f  6 tt2(P )  with A(£) < n. Using Proposition 2.2.5 we get

£ = Mvo)<M£)+ £  >*.<.' (2-5)
»=1

for certain elements ho? hi, • • •, h ^ )  € G, Ci? C25 ‘ ? C4(0 € -2/, where Z" is the same 

as defined in §2.2.2. Since P  is finite, Z  is also finite. Thus, we have the following 

inequalities.

>i(0
V(0 < V(i,m MO) +  E V(6)

i= l

— + nSlp j£(a)  (using (2.2.4) and (2.2.5))

< 5$p j^(o.b)S^Q y (bn) +  nS^p j£-(<*) (using (2.2.2)).

Hence

sip x ( n) -  +  ^ Q y ( a ),

so
x(2) x(2)
dP , X  -  Q ,Y

as required. From (2.5) we also see that £ has a description in terms of the elements of 

Z  and i>{Y). Thus, the finite set Z  U ip(Y) is a generating set of 7r2(P ). So G iis of type 

F3 and hence the rest of the theorem follows. □

From §2.2.3 we have the following corollaries.

C oro lla ry  2.2.14 Let 'P and Q be finite presentations for groups G and H respectively.

Let X  and Y  be two finite sets of module generators for 7r2(P ) and 7r2(Q ), respectively.

Suppose that G and H are quasi-isometric as defined in Definition 2.2.8. Then x  ~  
x(2)
Q ,Y '

C oro lla ry  2.2.15 Let G be a retract of H , and let 'P and Q  be finite presentations for  

G and H respectively. I f Y  is a finite generating set for  7r2(Q ), then for any g&nerating 

set X  of 7r2( P ), one has <rfp ^  X $ Q y -

C oro lla ry  2.2.16 Suppose that G is a group of type F$ and H is a subgroup of finite 

index in G. Let 'P and Q be finite presentations for G and H , and let X  anid Y  are 

two finite generating sets for 7r2(Q) and 7r2(P ), respectively. Then 8 ^  ^  ~  ^<Q,Y’ *n 

particular, i f P  and Q  are finite presentations of isomorphic groups, then x  ^  ^ Q , Y ’
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It follows from this corollary that for any group G of type F3 we can define to

be the equivalence class of functions containing 6fp -g for any given pair 'P, X  (P  a 

finite presentation of G , and X  any finite generating set of tt2(P)). Then we have (by 

Corollary 2.2.14)

T h eo rem  2 .2.17 The equivalence class Sq } is a quasi-isometry invariant on the class of 

groups of type F3.
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Chapter 3

Second order Dehn functions of  

monoids

3.1 D elta functions of two-complexes

3.1.1 D elta functions

For a locally finite object ('D, S) € € with trivialiser X , let n be any positive integer and 

let v be any vertex. We consider the set of paths in 'D

t n { v )  =  {7 : £(7) < n , 4(7) = T( l )  = «>}.

Since (fD, S) is locally finite, Tn(v) is finite. Thus, the following concept is well-defined.

D efin ition  3.1.1 Let (T>, S ) be a locally finite object of (t with trivialiser X ,  and let v 

be any vertex of ('D, S ). The following function is said to be the delta function o/(X>, S ) 

with respect to X  at vertex v:

SV ,s ,X ,v (n ) =  m ax{/lrea^_x -s(7 ) : 7 € T„(i>)}.

If there is not any confusion, we will simply use the notation S*p x  v f°r s X  v

the sequel.
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3.1.2 Invariance over vertices in a single com ponent and invari­

ance over trivialisers

Throughout this subsection we suppose that (P , S) is a locally finite object of (£ with 

finite trivialiser X .

L em m a 3.1.2 Suppose that u, v are any two vertices in the same component of P .  Then

SV,X,v ~  ST>,X,u-

Proof. Let a  be a path from u to v of length 6, say. Let n be any positive integer and 

let 7 £ T n(v) be any closed path at v of length at most n. Then 07a -1 £ Tn+2b('U‘). By 

Lemma 1.1.7, Area^  j^-sfcrya-1) — A r e a ^  7). Thus

{A rea .pX s{^) : 7 € T n(u)} C { A r e a ^  x s(/3) : /3 eTn+2b(u)}

and so

^P,X ,v(n) ^  ST>,X,u(n + 2b)-

By symmetry we also have

SV ,X ,u (n ) ^  5/D,X,v(n + 26)’ 

and this completes the proof. □

L em m a 3.1.3 Suppose X '  is another finite trivialiser of{T), S). Then for any vertex v 

in we have

5v , x , v  ~ s D , x ' y

Proof. Let

a = ma x{Area^y Area^y j^,s(a) : a £ X , af 6 X '}.

Then, by Lemma 1.1.5, for any closed path 7 of P  at vertex v there is a defining product 

n U  A (5i ' <*V ’ s'i)Pil (relative to X 5) for 7 with r =  Area^y ■̂ ■s( 7), a t £ X , st-, sj £ 5, 

certain /?,■ £ P ,  £; =  ±  1 ,1  < i < r. Also, for each a; (1 < * < r) there is a defining
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product n -U  pij(sij - a ' ^ 3 (relative to X , S ) for a t- with r,- =  Area^y ^ .,s (a t) < a,

a'ij G X ’ , 5tj, 5” G 5, certain p,j G P ,  tij =  ±1, 1 < j  < r,-. Thus,

7 ~  f[Pi(si-<xV -s'JPr1
t'=l

~  n  r i  A'(5*- • (p i j ( s ij • a i / ,j • ■stj)c‘^ 1) • 5!)a _i
t=i j=i

=  n n  M *  • />« • *<)(*<*>• • Qije,ei’ • • pi? ■ w r 1
*=ij—i

=  n  f i  (A(3t • p a  ■ «!•)) ((«,• ■ p a  ■ s ' r 1̂ 1) ,
i=lj=l

since $,• • p -1 • sj =  (st- • pij • s(-)_1. Hence,

A re a ^  ^ .,5(7 ) < aArea^y x s {l)

and so

SV , X ‘, v ^  -  aSV,X,v(n)-

Similarly, we also have

5V,X,v(n) ^ aST>,X',v W

and then the lemma follows. □

Let A be a component of P  and let v be any vertex in A. The above two lemmas allow 

us to write A as a typical representative of the equivalence class containing x  v•

3.1.3 Invariance over well-placed retractions

In this subsection we suppose that (P , S ) is a locally finite object of £  and ( P 0, So) is 

a subobject of (P , S).

Proposition 3.1.4 Let <j> : (P , S) — > (Po, So) b e  a retraction. Suppose that X  is 

a trivialiser of (P , S ). Then 4>(X) is a trivialiser of (Po, So). Moreover, if Vo is any 

vertex o / P 0 then

S V „ , s „ , t ( X ) , J n )  ^  S V , s , X , v „(” )•
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P roof. Let n be any positive integer and let 7 be any closed path of length n in P 0 with 

*,(7) =  vq. By Lemma 1.1.5, there is a defining product (relative to X s ) in P  of the form

»=1

with r  < s x  Uo(n )> a i € ^5  5»'j si € S, /?,■ € P  are certain paths, £,• =  ±1, 1 < i < r. 

Hence, in Po,

7 =  (/>(7 ) ~  f [  <l>(Pi)(<t>(si) • 0 ( a , ) £‘ • </>(s'))0(/?i)- 1 . 
t=i

This means that <j>(X) is a trivialiser of (Po, So) and 

as required. □

Let y* = y*(x>, x>0) denote the set of paths 77 =  eie2 • • • en in P  with the following 

properties:

(1) rj is a shortest path in the homotopy equivalence class containing 77 in P ;

(2) l{tj) , t (tj) g P 0;

(3) i(e2), r(e2), • • •, t(e„) G P  -  P 0;

(4) if n =  1 then ei ^  P 0 (if n > 1 then all et- ^  Po  by (3) ).

Definition 3.1.5 / /

(i) every component ofT> contains a vertex of'Do;

(ii) for every path rj G Y* there is a path 77 in P o  such that i(fj) = i(i}), r(fj) = r(rj) 

(we then fix such a 77 and write Y '  =  {7777-1 : 77 G Y*});

(iii) there is a finite subset Y  C Y '  such that Y '  =  S • (Y  U Y"-1 ) • S,

we then say that (Po, So) is Y-well-placed in (P ,  S).

We say that (Po, So) is well-placed in (P ,  S) if it is Y-well-placed for some Y .

Let Y*  and Y  be defined as above.
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Proposition 3.1.6 Suppose that (Vo , So) is Y-well-placed in (D, S). Let X 0 be a 

trivialiser of D0, So). Then X  =  X 0 U Y  is a trivialiser of (T>, S). Moreovert i f  v is a 

vertex in D  and if vo G "Do lies in the same component o fD  as v, then

sT>,s,X,v -  ST>a,s0, X a,v0-

Proof. Let

A = max{L(T77)_1) : 7777“1 G Y } .

Since Y'  =  S  • ( Y  U Y " 1) • S, L(r)t}"1) < A for all 7777-1 G Y ' .

Let n be any positive integer and let p be any closed path in D  of length n starting

at v. Let (d be a path in D  from v to a vertex v0 of Do (by the condition (i) of Definition

3.1.5 such a vq exists). Let b — L(fi) and let 7 be a shortest path in the homotopy 

equivalence class in D  containing (3pf3~l . Then L(7 ) < 26 +  n and l ( j )  = Vo = ^(7 ). We 

factorize 7 into a product of the form

I  = PlVlforii "  ' PqVqPq+l

where 77, G Y*, 1 < i < q, q < 26 + n, and /?i, /?2, • • •, ftq+i are certain paths in D 0. We

then have a path in X>o (by (ii) of Definition 3.1.5):

7 = P\fllP2ri2"-pqriqPq+l- 

Note that we have L(7 ') < XL(*y) < A(26 + n), and in T>

7 ~ (1) y n ^ - M r 1) ^ 1
1=1

for certain paths a, in Z>, 1 < i < q.

Since 7 ' lies in 2>0, it is equivalent in X>0 to a product of at most &po Sq Vo(^(25+n)) 

conjugates of elements of So • (X 0 U X q *) • So- Thus, we see that 7 is equivalent in D  to 

at most

SVo,So,X<,m(X(2b + n)) + 2b + n

conjugates of elements of 5 -((X o U Y )U (X o U Y )- 1)-S'. Since 7 is equivalent to 

we thus have, by Lemma 1.1.7, that p is also equivalent in (D, S) to at most

<SZ>„,So,Xo,»o(A(26 +  ” )) +  26 +  "
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conjugates of elements of S  • ((Xo UVJU (Xo U Y )  *) • S. Hence, X 0 U Y  is a trivialiser 

of (2?, S) and

SV,s,X ,v(n ) ^  <52?o,So,X„,«,(A(2f’ +  ” )) +  26 +  n

as required. □

To combine Propositions 3.1.4 and 3.1.6, we suppose, for some set Y  of closed paths 

of 2>, that (2?0, So) is a V-well-placed retract of (2>, S) with (j> : (2?, S ) — > (Do, So) 

a retraction. Since each component of D  contains a vertex of 2^o, it suffices (by Lemma 

3.1.2) to restrict attention to vertices of Do.

Suppose Xo  is a finite trivialiser of (D  o, So). Then X  =  Xo U V  is a finite trivialiser 

of (D, S)  by Proposition 3.1.6, and so, by Proposition 3.1.4, 4>(X) = X oU ^(T r) is again 

a finite trivialiser of (Do, So). By Proposition 3.1.4 we have, for any vertex v0 of D 0, 

that

6T>0,s0lXourtY),vo ~ ST>,s,X0uY,v0-

By Lemma 3.1.2,

^"D0,So,XoU<j>(Y),Vo ^ D q,Sq, X o ,Vq ’

Thus,

^Do, So, X  o ,vo  —  6V,S,XouY,vo-

Also, by Proposition 3.1.6,

SV,s,X„uY,v0 ±  sT>a,So,X

We then have

T h eo rem  3.1.7 Let vq be any vertex in Do and Y  be a finite set of closed paths in D . I f  

{-Do, So) is a Y-well-placed retract of (D , 5'), and if X o  is a finite trivialiser of (Do, So); 

then X q U Y  is a finite trivialiser of (D, S) and

SV ,s,X ouY m  ~

If (D 0, So) is well-placed in (D, S) then any component A of D  contains a component 

Ao of D 0, and we see from the above theorem that (assuming (Z>o, So) is a retract and 

('D , S) and (2?o, So) are two locally finite objects of (£)

SV 0Ao ~  &V a '
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3.2 Application to monoids

3.2.1 A ssociated two-complexes

Consider a finite monoid presentation

V  =  [a*; r].

Associated with we have a locally finite graph T(2>) and a two-complex 22(2>) =  

(r( 'P ); Z )  cis defined in §1.4.2.

Now, the left and right actions of F(x)  on 1X2*) satisfy F(x)  • Z  • F (x )  = Z .  Thus,
A   A   A A

F (x)  acts on T>(fP) on both sides compatibly and so (T>(fP), F(x))  is a locally finite 

object of <£.

D efin ition  3.2.1 Let V  =  [*; r] be a finite monoid presentation which is F D T . Suppose

that X  is a finite trivialiser of (‘P ('P ), F(x)). For any W  £ F (x)  the second order

Dehn function 8 ^  of V  with respect to X  at W  then is the delta function ofV,F{X),X,W \
('P ('P ), /^(*)) with respect to X  at vertex W , i.e.

<$(?) . =  s
/P,F(x),X,w D(P),P{x),X,wi 

or simply (if there is not any confusion)

8(2) — 8 * -V ,X ,w  ~  D (P),X ,w '

In particular, if A (W) is the component of XX'P) containing W  and *P is F D T  then 

we write

=  8
V W  V(P)MW)

for a typical representative of the equivalence class containing 8, r),F(X),sL ,W
Recall that the components of D (V )  are one to one correspondence with the elements

of the monoid 5(*P) defined by V .  Thus we see that, up to equivalence we can define,

for each element W  of S('P), a second order Dehn function .v ' V,w
In this section, we aim to prove the following theorem.

T h eo rem  3.2.2 LetT*i, V 2 be two finite monoid presentations and suppose y> : S(1P 1) — > 

SifFf) Is an isomorphism.
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(i) I f V i  is F D T  then so is 7*2-

(ii) For any W  £ SYPi) we have 8 ~  8^  _  . 
v '  v ' P i ,w P 2MW)

We remark that part (i) of this theorem was originally proved by Squier [Sq2].

D efin ition  3.2.3 Let S  be an FD T monoid, and let s £ S. We define 8^s (up to 

equivalence) to be 8 ^  , where P  is some finite monoid presentation such that S(fP) is
A

isomorphic to S  under an isomorphism <p : S  — > 3(7^) say, and (p(s) = W .

Theorem 3.2.2 shows that this definition is valid. For suppose that S  is any monoid 

and P i ,  P2 are any two finite monoid presentations for S. Then there are two monoid 

isomorphisms <pi : S  — > S (P \)  and <̂ 2 : S  — > 5 ( P 2), and hence the composition 

<p = <P2VT1 ' S (V \)  — > S ( V 2) is also a monoid isomorphism.

3.2.2 T ietze transformations

We now define elementary Tietze transformations on any monoid presentation P  =  [x \ r] 

as follows.

Type I: Add to P  a new relation Wo = Vo, where Wo = V"o in 5 (P ), to get the 

presentation Q x = [x; r ,  W0 =  Vo]-

Type II: Add to P  a new generator y, and a new relation y = Uo where Uo is a word 

on x, to get the presentation Q2 = [x, y; r ,  y = Uo].

In both cases, the inclusion mappings P  — > Qi (i = 1, 2) of monoid presentations 

induce monoid isomorphisms

S ( V ) — >S(Qi), . =  1 ,2  

(called the elementary isomorphisms).

P ro p o sitio n  3.2.4 Let "Pi, P 2 be two finite monoid presentations such thatip : ^ ( P i)  — > 

3 (7^2) Is an isomorphism. Then there is a finite monoid presentation T  and two se­

quences of finite monoid presentations

7>i=Uo, U u •, U m = T ,  (3.1)
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V i  = Vo,  V ,, • • • , V„ =  r  (3.2)

such that eachili+x (resp. each Vj+i)  is obtained from I4i (resp. V j )  by an elementary  

Tietze transformation (0 < i < m  — 1, 0 < j  < n — 1). Moreover, the following diagram 

commutes:

S ( T )
0 m ^

J f U m - l )  S ( V » - 1 ^

e o J M

s(i>1) = s(u0) ------------------------------------- ► s(p2) = s(v0)
V

where 0, : S(jL4i) — > S(Ui+1 ) and tij : S ( V j )  — > S (V j+ i )  are the corresponding 

elementary isomorphisms, 0 < i < m  — I, 0 < j  < n — 1 .

P ro o f .  Let

*P 1 il-0 [*̂ 15 *̂ 2) •) %ky R2l 5

P 2  =  V o  =  [2 /1 ,  ? /2 ,  • • • ,  y P ; Ti, T2, ■ • • ,  T J .

Suppose tha t VJ =  VJ(j/i, • • • , y p), Uj  =  U j ( x  1 , • • •, rc )̂ are words on {y i , • • •, t/p} and

{ari, • • •, Xk} respectively such that

ip fc )  = Vx- and =  Uj,

1 <  i < k,  1 <  j  <  p. F irst, for each 0 <  j  <  p — 1, by adding a new generator yj+i

(T ype II) to  14.j we obtain  the  presentation

Mj+1 [*E 15 ' ' ’ i ^ A: i 2/i i * * * 1 2/j+l j Ri  ? ’ ’ ’ ? 5 2/i Ui ? ' ‘ ? 2/j+i

and we have the corresponding elementary isom orphism  0̂  : S'(ZVj) — ► S( l4 j+i).

Consider a relation (1  <  j  < q)

Tj ’■ ^+i,i =  T-i , j

of V 2- Here T+1j ,  T ^ j  are positive words T + u (y i ,  • • •, yp), T - i tj(yu  • • •, yp) on { y y, • • •, yp}. 

Since ĉ - 1  is an isomorphism, we have

T + i j (U i ,  • • • ,U P) = T - i j ( U i ,  - • • , U P)
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in S'(‘P i)  (and hence in S(UP)), and so (since yj =  Ui, 1 < I < p),

in 5'(Zip). Thus, for each 0 < j  < q — 1, by adding a new relation Tj+i (Type I) to Up+j 

we obtain the presentation

^p+j+i — [*̂ i? * * ’ j 2/i, '*'5 Vpt - î » ’ * *» i 2/i ? ? Up ^pi -Fi ? ? ^i+i]

and the corresponding elementary isomorphism 0p+j+i.

Now in S'('Pi),

3?,- =  ^ ( F )  =  <p_1( F ( y i ,  • • •,  yp)) =  V i ( U u  • • • ,  U p)

and so in S ( l tp+q)

Xi =  V i ( U u  • • •, U p) =  F ,

for all 1 < i < k. Thus, for each 0 < i < k — 1, by adding a new relation x,+i =  K+i

(Type I) to U p+q+i we obtain the presentation

^p+g+i+i [ X\, , 27̂ , yi, • • •, yp,

, * * *, -̂ /1 2/1 Ui i , ?/p Upi T \ , , Tq, ■37j Vi, • • •, 37j-(-i F+i]

and the corresponding isomorphism 0p+g+,+i. We then let 7~ =  Wp+g+fc.

By symmetry we also have a sequence of presentations

^2  = Vo, • ■ •, Vk+i+p — T

A A________________________________________________________________ ___

such that Vj+i is obtained from Vj  by an application of Type I or Type II, 0 < j  <

k +  I -f p — 1. For each j , we let be the corresponding isomorphism. Then we have

0p+(7+A:-i • • • 0o(z;) = Xi = Vi (in S (T ))

=  flk+l+p-l ’ ’ ’ ^ o (F , )

= tik+i+P- i  • * -tiov{xi), (1 < i < k )

and so the diagram commutes as required. This completes our proof. □
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On the other hand, associated with the two types of Tietze transformations we have 

two monoid homomorphisms: <f>i the identity monoid homomorphism of F ( x ) and (f>2 the 

monoid homomorphism from F (x ,y )  to F (x)  defined by

<j>2 : X I—► X (x E *), y •— > U0. (3.3)

(In fact, each <j>{ induces the isomorphism from ^(Q ,) to S{*P) which is the inverse of the 

corresponding elementary isomorphism from Si^P) to ^ (Q ,), i =  1, 2.)

Consider the Type I operation. Since W q =  Vo in S(*P), there is path in 'P ('P ) from 

V0 to W0, say Bo- Then Bo together with the edge Eo =  (1, W0 =  Vo, +1, 1) form a closed 

path Ao =  BoEo at v0.

We now extend <f>i to be a mapping: (^P(Qi), F(x))  — >• F (x))  as follows.

(1) For any vertex V  E F(x)  of T>(Qi), 4>\{V) = V;

(2) For any edge of the form E =  (W, R, e, W'), R  E r  of 'D(Qi), ^i(E) =  E, 

and for any edge of the form W  • Eg 1 • W' =  (W, Wo = Vo, ±1, W') of 'D (Q i), 

^ ( W - E * 1 • W ’) = W -  B J1 • W'.

First, it is easy to check, this extension is a mapping of graphs from T(Q i) to T('P). 

Thus, by Lemma 1.4.3, it is a mapping of two-complexes and by (1) and (2) it is a 

retraction.

Now consider the Type II operation. We extend </>2 to be a mapping: ('D(Q2), F (x ,y ))  - 

F{x))  as follows.

(3) For any vertex V  E F (x ,y )  of X>(Q2), <j>i(V) is as defined in (3.3);

(4) For any edge E = (W, R , e, W') of X>(Q2) with R  E r ,  <£2(E) =  ((f>2(W), R,e, ^(VV')), 

and for any edge of the form E = (W, y = Uo, e, W )  of X>(Q2), </>2(E) =

1 MwWoMW)-

Again, it is easy to check using Lemma 1.4.3, that (j>2 is a mapping of two-complexes. 

Moreover, by (3) and (4), <f)2 is a retraction.

We will further prove in the following subsection (§3.2.3) that ('D('P), F ( x )) is well- 

placed in ('D(Qi), F{x)) and (T>(Q2), F(x, y)). We will then use this in §3.2.4 to prove 

Theorem 3.2.2.
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The above notations will remain unchanged throughout the rest of this section.

3.2.3 Invariance over presentations

Lem m a 3.2.5 The object (D('P), F(x)) is a well-placed retract F(x)) and a

well-placed retract of (T>(Q2), F(x,y)) .

P roof. In the previous subsection we have seen that both </>i, <j>2 are retractions.

Since all vertices of 'D(Qi) are vertices of the subcomplex 2}(P), we can see that the 

set Y \  =  r(^(Q,), V ( T ) )  as defined in Definition 3.1.5 only contains single edges of 

the form (W ', W0 = V0, ±1, V ’)- Thus, if we let Y x be {EqBo} then (£>(P), F (x))  is 

Y 1-well-placed in ( 'P (Q i), F(*))-

Consider the set Y \  =  Y*{fD{Q,2), defined as in Definition 3.1.5. If B £ Y \  is a

non-trivial path, say B =  E1E2 • • • Em, then t(Ei), r(E m) £ F(aj), and r(E i), • • •, r(E m_i) 0 

F(aj). Since t(Ei) £ F(x),  r(E i) = t(E2) 0 F ( x ), Ei must be of the form (W, y =  

C/0, —1, V). Furthermore, since r(E m) £ F(x),  the y-arc in Ei must terminate at some 

Ej, 2 < j  < m, namely Ej must be of the form {W \ y = Uo, +1, V 1) and hence B must 

be of the form as depicted in Fig. 3.1.

Ei

Ej

Thus, B is not a shortest path in the homotopy equivalence classes containing B. Hence, 

y *  = 07 and so (Z>(P), F(x))  is 0-well-placed in (X>(Q2), F(x ,  y)), and this completes 

the proof. □

~ w  r —’ V

-  y

-------- ur_ 1 H
—T

Fig. 3.1
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3.2.4 Proof o f Theorem 3.2.2

P ro o f  of T heorem  3.2.2: Consider (3.1) and (3.2). If tii  is F D T , by Lemma 3.2.5 

and Proposition 3.1.6, iVt+i is also FD T  (0 < i < m — 1). Thus, if l i 0 =  "Pi is F D T , 

then 'T  is F D T . Moreover, by Lemma 3.2.5 and Proposition 3.1.4 if V j  is F D T  then 

V j - i  is also F D T  (1 < j  < n — 1). Hence, we have proved (i) that if P i  is F D T  then so 

is P 2.

Let X , Y  be any finite trivialisers of ('D('Pi), F(x))  and (T>(P2), F(y))  respectively. 

Let W  be any element of F(x)  and let V  be any element of F (y ) such that V = ^>(W) in 

S ( P 2). By the commutative diagram in the Proposition 3.2.4, we have 0m_i • • • 0q{W) = 

i?n_i • • •i?o(Vr) and so W  and V  (as elements of F ( x , y))  lie in the same component of 

V ( T ) .

Now by successively using Lemma 3.2.5 and Theorem 3.1.7 we have

£(2) ^  £(2)
P l}F(x),X,w TT,P(xty ) ,X \w

for some finite trivialiser X  of (7~, F(®, y)) and

S{2) ~  <̂{2)
P 2,F(y)Y,v T ’,F{x,y),Y' ,v

for some finite trivialiser Y  of (T , F(x, y)). Since W  and V  lie in the same component 

of X>(7~), and X  and Y  are finite, by Lemmas 3.1.2 and 3.1.3 we have

s{2) .,  ~  i (2)
T,F(x,y),X ,w T,F(x,y),Y ,v

and so

namely,

i<2> . ~ i< 2> - ,
P,,F(x),X,w p2,F(y),Y,v

Vx,w V 2mw)

for any W  6 S (P  1) and this completes the proof. □
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3.3 The definition concerning the shortest words

In this section, we will define a global second order Dehn function of a finite monoid 

presentation. This function gives an overall upper bound for all second order Dehn 

functions at shortest words in every component. However, I am unable to prove this 

definition is independent of the choice of finite presentations.
A A

Let 'P = [x ; r] be a finite monoid presentation. Suppose that P is a path in T>(P). 

We will say that P is a connected picture, if the corresponding geometrical configuration of 

P, regarded as a graph in the plane where the discs are vertices and the arcs are edges, is 

connected. If P is not connected, then it consists of a number of (connected) components. 

A component is non-trivial if it contains at least one disc.

Furthermore, suppose that P is a closed path in 'D('P). Since t(P) =  r(P ) we are able 

to glue the upper boundary of the geometrical configuration of P with its lower boundary 

to obtain a spherical geometrical configuration. We will say that P is a connected spherical 

picture over "P if this spherical geometrical configuration is connected. If the spherical 

picture P is not connected, then it consists of a number of components (connected spherical 

pictures). A component of a closed path (a spherical picture) is non-trivial if it contains 

at least one disc.

E xam ple  3.3.1 The picture P in the Example 1.4-1 is connected. But the picture y-P-x is 

not connected; it has one non-trivial component (the picture PJ and two trivial components 

the two arcs labelled y and x respectively.

x ■"

-xi

x

P
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Exam ple 3.3.2 Let

V o =  [x,y; xy =  1, yx  =  1, x 2 =  y2].

Then the closed path

Pi =  (1, xy = 1, +1, xyxyxyxy)(xyxyxyxy , xy =  1, - 1 ,  1) 

with the following geometrical configuration

C _ )
U

x
X X

Fig. 3.2

is not a connected picture but a connected spherical picture. The closed path

P2 = (x, xy = 1, +1, (xy)2yx2)(x(xy)2, xy = 1, - 1 ,  y x 2) 

(x(xy)3yx, xy = 1, -1 ,  x)(x(xy)3y, x 2 = y2, +1, yx) 

(x(xy)3y2, z2 = y2, -1 ,  x)(x(xy)3y, yx = 1, +1, x2)

with the following geometrical configuration

Fig. 3.3

is not a connected spherical picture; it consists of three trivial components and two non­

trivial components.

Example 3.3.3 Let

V i  = [x ,y ,2; xy =  x, yz = z].
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Then the closed path

P3 =  (1, xy = x , +1, ymz)(xym, yz  =  2, - 1 ,  1) 

with the following geometric configuration

x

Fig. 3.4

is a connected spherical picture (but not a connected picture).

Let V  =  [x ; r] be a finite presentation, and let

w = { W :  W e F { x ), L(W) < L{U) for any U e  F(x)  with U = W },

that is, w is the set of minimal representatives of elements of S('P).

Lemma 3.3.4 For any n £ N the set 

T* =  {P : L(P) < n ,P  a connected spherical picture over V  at W  for some W  £ «;} 

is finite.

P roof. Let P be any connected spherical picture at W  over P  for some W  £ w  with 

m  < n. We first show that P is a connected picture. Suppose P is not a connected 

picture. Let Pi be the first non-trivial component of P to the left. Since P is a connected 

spherical picture, there are not trivial components on the left of Pi (otherwise these trivial 

components would be trivial connected spherical components of P). Let P2 be the picture 

obtained from P by removing Pi. Then P 2 is not trivial by the same reason. Thus, either 

^(Pi) =  Wi, t(P i)  = W1W2, or t(Pi) = WiW?, t(P i)  =  W\ for some words W\, W2 on x

with W2 not a empty word. Without any loss we suppose it is the first case. Note that if

we glue the lower boundary of P with its upper boundary then those arcs of Pi labelled 

W2 must be connected to the upper boundary of P2. Thus, £ ^ 2) =  W2W3 , t (P 2) =  W3 

for some word W3 on x  as shown in Fig. 3.5 since P is a connected spherical picture.
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Fig. 3.5

From Pi we have W\ = W1W2. Thus W  =  W 1W2W3 =  W 1W3 . This is a contradiction 

since L(WiW 3) < L{W).

We now show that for any non-trivial connected picture P with T(P) < 71, L(t(P)) < 

an where

a =  max{L(/2+1), L(R -i)  : R  6 r}.

If n = 1, then t(P) = R+i or i?_i for some R  G r ,  and so Zr(t(P)) < a.

Suppose that the result is true for n — 1 > 1. Let P be a connected picture with 

L(P) =  n, say

P = E!E2 •••£„,

where Ei? • • •, En are edges in /D('P). Let Pn_i =  Ei, • • •, En_i. If Pn_i is connected, 

then by the induction hypothesis we have

L(t(Pn)) = L(t(P„_i)) < a(n — 1) < an.

If Pn- i  is not connected, then P„_i consists of a number of components. Suppose that 

Pn_i has n0 trivial components which are arcs starting at the upper half boundary of P 

and going all the way down to the upper half boundary of En. Since P is connected, all 

these arcs must join the upper half of the unique disc of En. Thus, the number of these 

arcs is bounded by a, namely n0 < a. By dropping off these arcs from Pn_i, we obtain a 

picture P ^x  with Z ^P ^j) = n — 1 consisting of a number of non-trivial components, say 

Qi, Q2, • • •, Qm (see Fig. 3.6) with
771

Z L ( Q i ) = n -  1.
1 = 1
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Fig. 3.6

By induction hypothesis, we have L(i(Q,)) < aL(Q;) for all i and so

m m
i(t(p)) = £(t(p„_!)) <«+ E £WQ0 )  ̂° + E°(£(Q.-))

t=l t=l
= a (l +  n — 1) =  an

as required.

Since x  is finite, there are only finitely many words on x  with length bounded by 

an for any fixed integer n £ N. Thus, since r  is finite, the number of paths of length 

bounded by n each of which joins two words of length bounded by an then also is finite; 

in particular, T* is finite. □

L em m a 3.3.5 Let X  be any trivialiser of the two-complex ('D('P), F(x)). For anyn  £ N 

the set

Bn =  {Area . . / ^ ( P )  : P closed at W  in ZJf'P) for some W  £ w  with L(P) < n} 
F ,X

is finite.

P roo f. Let

Bf = {Areap  ■■ Q e Tn}-

Then is a finite set by the previous lemma.

Consider any closed path P at W  in 'DifP) for some W  £ w  with T(P) < n. Suppose 

that P has h non-trivial components (as connected spherical pictures), say Pi, P2, • • •, P&.
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Let L(Fi) = n,-, i = 1, 2, • • •, h, where J2i=i n% =  n • Now P is homotopic to a closed path 

P' of the form h
r  = n  Ui • Pi • Vi

i=l
for some words VJ on *, t = 1, • • •, h (see Fig. 3.7).

Ux _________________
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Fig. 3.7 Vh

Since for each z, ^(P,) ls a subword of W, i(Pt) € w. Thus, for each i, P,- G Bni. Let 

r, =  Area p{X)(Fi) for each z, then by the above lemma n  < <  |B j | which is

finite. Thus,’by (1.1), each Ut ■ P, • Vi is homotopic to a closed path P' of the form

p; = nD.vA.vD-1.
3 =  1

Therefore, P is homotopic to a closed path P7/ of the form

r = n n t / i .D ijA ,D - i .K ,
i=lj—1

Hence

Area . . ^(*)(P) < hm ax{rt- : 1 < z < h} < h\B„ \ < n\BJ  
,X

and our lemma follows. □

From this lemma, we are able to define the second order Dehn function of a monoid 

presentation as follows.
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D efin ition  3.3.6 The second order Dehn function of a finite monoid presentation P  

with respect to a finite trivialiser X  is the function

&p g ( n )  = ma x{Bn}, rc G N

where X  is a trivialiser o fV { P )  and Bn is defined in the above lemma.

In fact,

8 ^  - (n) = ma,x{8^ - (n) : W  G w}.
V , X K } 1 V,F(x),X ,wy '  j

The advantage of this definition is that for any U G F ( x ), there is a W  G w  such 

that W  =  U. Then there is a path in P ( P )  of length d =  D erp(W , U) from W  to U. 

By Lemma 3.1.2, we then have

sp , x , v {n) -  * r , x , w {n+ 2d) -  l r , x (n + 2 d )■ (3-4)

Thus, we can give an upper bound for 8 p  ^  by means of S p  ^ .

However, suppose that P  is FDT, X  is finite, and Q  = [y ; s] is another finite monoid 

presentation such that there is an isomorphism <p : S (Q )  — > SifP). Let Y  be any finite 

trivialiser of ('P (Q ), F(y)). In order to show 8^  ^  8^1 ^  we must find constants
r  ,a  y ,r

A, B > 0 and C > 0 such that

S ^ ^ n )  < A 6 ^ {Bn) + Cn, 

namely, for each W  G w  and all n G N,

dr , x , w ^  * A d % y ^  + C n ■

By Theorem 3.2.2, for a fixed W  G w  there is a U'w G F ( y ) such that <p(W) = Uw in 

F(Q ) and

S{2) . S{2) - .V , X , w ~  Q X v w

So, there are constants A w, B w > 0, Cw > 0, such that for all n G N

„ ( « . ” ) + 0 . ” -
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Since P  is finite, for each W  E w  the set of all shortest words in W  is finite. Therefore, 

if we let A— =  max{A v : V  E w  fl W }, B— =  max{Z?v : V  E w  D W },  and C— =  

maxjCy : V E tu fl W} then for all n E N and all V  E w  fl W  we have

8 ^  - (n ) < A—5^  - (Z?__n) +  C—rc.
V , X , v K ' ~  w  Q , Y , u ' w K w  J w

For each U' we now let W' E  F (y ) be a shortest word representing U . Then by 

(3.4),

with =  Z)er^(W ', Since w  U W  is finite, the set {U{y : W  € w  U W }  is finite. 

We then have a constant D— > Dw, W  E w  fl W  such thatY/ — W >

(«) < ( B - n  + 2 D - B - )  + C - ny> ,X ,v  w Q,,Y ,w' w w w> w

< A _ i(?>,v (B _ n  +  2Z)_B_) +  C_n-  W O y  w W W ’ w

for all V  E w  fl W.

Thus, these constants Aypr, Byy, Cyy and Dyy are fixed for the component of T){T>) 

corresponding to W. But, if 'D (P) has infinitely many components then we are unable 

to find constants A , B  > 0, C > 0 such that

* p , x ,w { n ) - A * % y {Bn) + Cn

for all W  E w. Hence, we are unable to show S^p ^  -< <5  ̂ Nevertheless, we have seen 

that if the monoid 5 (P )  is finite then 'P('P) has only finitely many components and so 

we can find constants A, B, C so that the above inequality holds. Hence, by symmetry 

we have

T heorem  3.3.7 I f  S iV )  is finite then 6 ^  ^  ~  v>*j \ ) j v  x  q Y
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Chapter 4

Calculations of second order D ehn  

functions of groups I:

(a) synchronously combable groups

4.1 Definitions and notations

Throughout this chapter, we let G be a group finitely presented by 'P =  (x  ; r) and we 

identify G with G(V). We let p : F (x ,x ~ l ) — > G be the monoid homomorphism given 

by xe i— > xe (x 6 *, £ =  ± 1).

Consider the Cayley graph r*(G ). A combing a : G — > F ( x , * -1) is a section of p, 

or equivalently, j  is a set of chosen paths in ra»(G?) such that for any g £ C, cr(^) is a 

choice of a path from the identity to g. We write ag for this chosen path and call this 

path a combing line. If crg = eie2 • • • em, then for any non-negative integer time t if t < m  

we write ag(t) =  r(et) and if t > m we write <jg{t) =  r(em) =  g.

A combing a of Tx(G)  is said to have the (synchronous) K-fellow traveller property 

if there exists a non-negative constant K  such that the combing paths to any vertices 

<7i ? 92 with d(gi,g2) <1 in Ta;(G) are within a distance K  of each other at any integer 

time t > 0, i.e.

*«(<)) ^  K

and we will say that agi and ug2 are (synchronous) K-fellow travellers in ra*(C).
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We say that G is (synchronously) combable if it admits a combing having the /Gfellow 

traveller property. Any synchronously automatic group (for definition see [ECHLPT, §2.3) 

is a synchronously combable group [ECHLPT, p84], and any combable group is of type 

F3 [A12, Theorem 2].

Let

Q, =  {ip : N — > N; ^(0) = 0, ip(n +  1) =  tl>(n) or tp(n) +  1, n G N}

where all tf) are unbounded. Given a combing a of G and for any <7, h £ G, we set

E*(g,h) =  ^mnn{iiMx{</(o-,(V>(0), <7fcW>'(t)))}}- 

Then the asynchronous width of a is defined to be

$(n) = m a x{Ea(g,h) : d(l,g), d (l,h ) < n, d(g,h) =  1, g, h £ G}

for all n £ N. If $  is bounded by a constant K  then we say that cr has the asynchronous

K-fellow traveller property.

We say that G is asynchronously combable if it admits a combing having the asyn­

chronous /f-fellow traveller property. Any asynchronously automatic group (for definition 

see [ECHLPT, §7.2) is asynchronously combable [ECHLPT, Theorem 7.3.6].

The length La(n) of a given combing a is defined by:

Ler(n) = max{|L(cr5)| : d(l,g) < n}.
g&G

If there is a increasing function / :  N — > N so that La(n) < f(n )  for all n, then we 

say that the length of a is bounded by / .

Let a be a combing of G. Let D : N — > N be a function. If for any integer r > 0, 

g £ G  and for all integers s, t with 0 < s ,t  < L(ag) one has that \s — t\ > D(r) implies 

d(crg(s), crg(t)) > r, we then say that D is a departure function for the combing <7. Any 

asynchronously combable group with a departure function is of type F3 [Ge3, Theorem

1. 1].

All asynchronously automatic groups are asynchronously combable with departure 

function [ECHLPT, Theorems 7.2.4, 7.2.8]. Bridson [Brdl, Theorem A7] showed that the 

group Zn Z is asynchronously combable with departure function for all <j> £ GLn(X).
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4.2 Word hyperbolic groups

In his influential paper [Gr], M. Gromov introduced the class of word hyperbolic groups 

(also see [ABC]). These are the finitely presented groups with linear first order Dehn 

function. It is well-known that word hyperbolic groups are all automatic groups [BGSS, 

ECHLPT, 01]. For our use in the following chapters, we state a result of Bogley and 

Burton [ABBPW2, Theorem 4.1] as follows.

T h eo rem  4.2.1 Each word hyperbolic group has linear second order Dehn function.

Thus it happens that a finitely presented group with a linear first order Dehn function 

also has a linear second order Dehn function.

We point out that the converse to Theorem 4.2.1 is false. For example, any group 

with a finite aspherical presentation has linear second order Dehn function. Such groups 

need not be word hyperbolic, as demonstrated by the free abelian group of rank two. 

Also (see Corollary 5.2.2) if G = G0 x Z where Go is word hyperbolic then is linear. 

Such a group G is word hyperbolic if and only if Go is finite. (Note that the proof of 

Corollary 5.2.2 depends on Theorem 4.2.1.)

4.3 Asynchronously combable groups with departure 

functions

For the first order Dehn functions of asynchronously combable groups we have the fol­

lowing:

(a) if G is asynchronously combable then ^  2n [Brd2, Theorem 6.1];

(b) if G admits an asynchronously bounded combing <7, and if La(n) < f(n )  by a 

function /  for all positive integer n, then -< n f(n )  [BrPi, Lemma 4.1; Br3, 

Proposition 5.1].

E xam ple 4.3.1 Every automatic group [ECHLPT, Lemma 2.3.9] or every semihyper- 

bolic group (see [AlBr] for definition) admits a synchronously bounded combing a with
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La(n) linear in n and so by (b) the first order Dehn function of each such group is bounded 

above by a quadratic function.

Exam ple 4.3.2 Let Go = Bp,q be the Baumslag-Solita group defined by the (aspherical) 

presentation P 0 — {y-, z ; zypz~ly~q) (1 < p < q). By Theorem E l of [BGSS] this is an 

asynchronously automatic group and so by (a) S ^  X 2n. (In fact, by a result of Gersten 

[Ge3, the proof of Theorem B] we know that SqJ ~  2n.)

Exam ple 4.3.3 Consider groups of the form Go = Zn xi^Z, (f> £ GLn(]L). By the proof of 

the Main Lemma of [Brdl], Proposition 5.2 and Theorem A' of [Brdl] we know that these 

groups are asynchronously combable with departure functions. Moreover, the combings 

admitted by these groups have lengths bounded by polynomial functions or exponential 

functions according to the absolute values of the eigenvalues of <j> being 1 or not. Thus, SqJ 

is bounded by a polynomial function or an exponential function [BrGe, Main Theorem].

The estimate of 6 ^  for asynchronously combable groups below derives from the work 

of Gersten [Ge3]. Gersten showed that any asynchronously combable group with a de­

parture function is of type F3 . It was pointed out to S. Pride by S. Rosebrock that an 

analysis of Gersten’s proof enables an estimate for 6 ^  to be given. Pride then by giving 

an account of the analysis proved that if G admits a synchronously bounded combing <j 

with the length La bounded by function /  then (b) holds for <££?. Here we show by de­

veloping the same technique that (b) holds for 6^  if G admits an asynchronous combing 

with departure function. We also show (a) is true for (synchronously) combable groups.

The following lemma is known, for example, see [Br3, 6.1].

Lemma 4.3.4 Suppose that G admits a combing a having the asynchronous K-fellow 

traveller property. Let P i  = (x; 1*1) where r\ is the set of all words W  =  x\ • • • x n on x  

such that n < 2 (K  -f 1) and X\ • • • xn = 1 in G. Then P \  is a (finite) presentation for G.

P roof. Consider an edge e = (g, xs) of r* (G ) (x £ x,  g £ G, e = ±1). We have a pair 

of monotone unbounded functions i[g and such that d{(7g{i/)g(t)), <7gx*(il>gx‘(t))) 5  ̂ K  

for all t £ N. Thus, if we choose a geodesic (called space-like segments) in r* (G ) from 

Ggx* {}[gxc (t )) then we have a subgraph of Ta;(G) of the form as depicted in 

Fig. 4.1 which consists of some triangles and/or trapezoids.
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gx

Fig. 4.1.

We will fix such a subgraph for e denoted Cle. Let p be the boundary path of a triangle 

or trapezoid in Qe. Then p has a length at most 2K  +  2. Thus, if the projection of this 

path to 'Pi is £/, i.e. p0{p) =  U then L(U) <  2(K  +  1), where p0 is the projection map 

as defined in §1.2.4.

Now, for any given word W  = x\ • • • xn on x  with X\X2 • • • xn = 1 in G and for any 

g e G, we lift W  to a closed path tg(W) in Fa;(6 !). We can fill tg(W) in with some Cle for 

each edge e of tg{W) to obtain a planar subgraph of raj(G') denoted Aw ,g  as demonstrated 

in Fig. 4.2. By projecting Aw,g to P i  we obtain a van Kampen diagram Aw (the images 

of space-like segments in Aw,g under p0 will also be called the space-like words of Aw) for 

p0(tg(W)) = W  over P i  and this completes our proof. □

e2

Fig. 4.2
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We now further suppose that La is bounded by an increasing function /  and a admits 

a departure function D.

For each R  6 Ti and each g £ G, by lifting R  at g in Tx{G) we obtain the universal 

covering "P\ of V \ .  Let Rg = t \e 2 • • • em be a defining path oi R  € r u g £ G. Since 

L{ei) =  9-> an<i since m < 2(K  + 2), it follows that L(<7i(e.)) < f(\g\ +  K  + 1). By padding 

terms which are trivial paths to the ends of <7t(ei)’s if necessary, we may extend them to 

paths CF{ =  e,ie,-2 • • • e,-* (1 < i < m) with e ./s  are empty paths for j  > L(<rt(e.)) where 

h =  max{L(crt(e.)) : 1 < i < m} < f(\g\ +  K  +  1).

Consider A/*i5 (defined in the proof of Lemma 4.3.4). For each 1 < j  < h, starting at 

r(e ij) on <Ji we trave along m  space-like segments back to <7i at some r(e i^ .)  as shown 

in Fig. 4.3. Denote this path by 7 .̂ Then the length of 7 ' is at most m K .  Obviously 

we have Tj_ 1 < Tj by the monotonicity of each element of Cl. We note that the diagrams 

Ar,9 (R  € f i ,  g 6 G) are spherical.

e2

Fig. 4.3

We have the following properties.

(i) |Tj -  j\ < D(Km),  0 < j  < h\

(ii) If 7' and 7j_j meet cr,• at T(et)<1) and T(et)f2) respectively (clearly t\ > t2), then 

1̂ — 2̂ ^  D (2Km  +  1);
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(iii) |Tj — T j - 1| < D(2Km  +  1), 0 < j  < h.

Let 7j be the path by adding the segment denoted Q of 0 \ from r(e iyTj ) to r (e i tj) to 

7 '. Then L(~fj) < m K  4  D(m K)  by (i). In addition, we require that 70 is the empty path 

at 1 and 7h is Rg. Between 7j - i  and 7j we have a drum of A/?)5 looking like (by cutting 

it along eij)

Fig. 4.4

consisting of at most 2m K  • D(2mK  + 1) those basic triangles and trapezoids. We then 

have a picture (the dualization of this drum) over *P containing at most 2m K  • 

D (2mK  4-1) discs and at most 4m A" 4- 1) • D(2mK  4-1) arcs.

Since £(7 ,) < m K  4  D(mK), we can choose a picture over V \  with boundary 

label po(7j) and A(A«>) < [mK  + D(mK)). We also can assume that the total 

number of arcs in is at most 2(K  4  1 )S$p (m K  4  D (m K )).

Let A ^  be the lift of A ^  at r(eij). Then A ^  is a picture over V \  with boundary 

label 7j. We then obtain a spherical picture B ^  over 'P at i(e\j) of the form as shown 

in Fig. 4.5 with

A (B ^ ) < 2 ^ ( m A  4  D(m K))  4  2m K  • D (2mK  4  1),

#  arcs of B^ 5 < 4m K (I\ +1) • f}(2m A '4l)44(A r4 l)^ !p  (m K + D (m K )).
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Fig. 4.5

Corresponding to Ar<3 we also have a spherical picture P/*i5 which is of the form as 

demonstrated in Fig. 4.6.

.-l

r~

Fig. 4.6

The following lemma now is true.
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Lemma 4.3.5 We have

j=i

Since the disc numbers of all spherical pictures are bounded by 28$p (m K  + 

D (m K )) +  2m K  • D (2mK  + 1) and the arc numbers of these pictures are bounded by 

Am K (K  +  1) • D(2mK  +  1) + 4(I\ + 1 )Sip (m K  + D (m K)),  if we let X  be the set of all 

images of these pictures under the projection p0 then X  is finite.

Theorem  4.3.6 We have that

(i) X  generates ^ ( 'P i ) ;

(ii) 4 2) ^  n f(n ) .

P roof. Let n be any positive integer, and let P be a minimal connected spherical picture 

over P i  with n discs Ai, A2, • • •, An, labelled R^ , R 2 , • • •, R\J". Let the word xn  • • • Xij{ 

(1 < i < n) on x  be the label of a minimal transverse path in P from the basepoint of 

P to the basepoint of A,-. Then j, < 2(A  ̂+ l)n  by elementary graph theory. Let Pi be 

the lift of P at 1 in P .  Then the discs Ai, • • •, An of Pi are labelled by R\\gi, • • •, Rnn3n 

where gi =  xn • • • x t<Jt, 1 < i < n. We convert Pi to a picture P  ̂ by replacing each A,- by 

the complement of the disc labelled R~g' in £;P/?l)5i. Suppose that there is an arc labelled 

ej connecting A,- and A,+i. Then in PJ we see that all subpictures (1 < q < h) as 

shown in Fig. 4.6 will be cancelled as in we have the same subpictures with

opposite symbols since £lej is fixed. Thus, P' can be transformed to the empty picture 

by bridge moves and eliminations of cancelling pairs. Thus, by Lemma 1.3.4, for certain 

paths (i = 1, • • •, n)

<Pi) = ixp iu > .
1 = 1

By Lemma 4.3.5, applying the projection p0 then gives an expression for (P) involving at 

most n f(2 (K  -f l)rc +  K  +  1) terms of X .

Now let P be an arbitrary spherical picture P over *P with n discs having nontrivial 

components Pi, P2, • • •, P9 with ni, 772, * • •, nq discs respectively, where 7ii + n2 + - • - +  =

n. Then there are words f/i, U2, • • •, Uq on x  such that

(p> = T,Vi- {p.->.
i=i
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Thus, using the previous paragraph we get

vV„x(r)  ̂ ' Z n if(2 (K  + l)n i + K + l )
t = l

< nf{2{K  +  1 )n +  K  +  1)

as required. □

If G is synchronously automatic, then by the proof of Theorem 7.3.4 of [ECHLPT] 

the function /  in the above theorem then can be taken as a simple exponential one. 

Furthermore, if G is automatic or semihyperbolic, then /  can be taken as a linear one. 

Thus, we have

Corollary 4.3.7 I f  G is an asynchronously automatic then 5 $  ■< 2n; and if  G is syn­

chronously automatic or semihyperbolic then Sq^ X n 2.

Exam ple 4.3.3 (continued) We see that if Co =  Zn Z (</> € GLn(Z) then is 

bounded by a polynomial function or an exponential function according to the absolute 

values of the eigenvalues of (f> being 1 or not. We will discuss the situation when n =  2 

in Chapter 7.

4.4 General combable groups

We now consider any arbitrary combable groups (without restriction on length of combing 

lines).

Theorem  4.4.1 I f  G is (synchronously) combable then 8q^ ^  2n.

Proof. We follow the proofs of Lemmas 4.3.4, 4.3.5 and Theorem 4.3.6.

Suppose that a is a combing of Taj(C) with (synchronously) /^-fellow traveller prop­

erty. Let P i  be a finite presentation as defined in Lemma 4.3.4 which obviously is a 

presentation for G.

Let n be any positive integer and let P be any connected minimal spherical picture 

over P i  with n discs Ai, • • •, An labelled by i ^ 1, • • •, R£* respectively. Let the word
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x n ' •' x i,ji (1 <  * < n) on * be the label of a minimal transverse path in P from the 

basepoint of P to the basepoint of A,-. Then ji < 2(K  +  l)n  by elementary graph theory. 

Now the discs Ai, • • •, An of P are labelled by PiJPl, • • •, R£n,gn where gi = xn  • • • X{jt , 

1 < i < n.

The point which we have to take extra care is about the number of drums in the 

spherical diagrams AR*i, i = 1, 2, n. By the proofs of Lemmas 4.3.4, 4.3.5 and 

Theorem 4.3.6, it suffices to show that we can uniformly reduce these diagrams to new 

ones such that the number of drums in each of the new diagrams is bounded by an 

exponential function with n. Here the term uniformly means that these reductions have 

no affect on the cancellations in the proof of Theorem 4.3.6.

Let P  be the number of all possibilities of the event of dividing a path of integer length 

not bigger than 2K (K  +  1) into at most 2(K  +  1) segments of integer length not bigger

than K. Then P  is also a constant. Following the proof of Theorem 4.3.6, we consider

the defining paths P ,)5| of P i ,  say

Ri,gi t̂l ̂ t'2 " ' " i TTli ^  2(A “I- 1)) 1 ^   ̂ ^77.

Let

h = max{Z/(crt(e(<})) : 1 < q < m 1 < i < n ,}

and let be the padded path obtained from <7t(e,,) written in h edges.

Consider the van Kampen diagrams A, =  AH*,. If h > (2P\x\2K(K+1))n, then there 

are at least P n((2 |a;|)2*dA+1))n'-1 space-like words W ifs  (Wij = in Ai are the

same words on and hence there are at least P n -1((2 |* |)2A Â:+1̂ )n-1 of these words 

having the same division by the images of the combing lines in Ai under pQ (note that all 

7,-j’s are synchronously paths of lengths < K (2 K  +  1)), say W itin • • •, W \tik for some 

positive integer k\ > P n -1((2|aj|)2A(A:+1l)n-1. Similarly, in A2, among the space-like words 

1̂ 2,1!, • • • ? B/2)ifci there are at least P n-2((2|a;|)2A-fA:+1l)n-2 of them are the same words on 

x  and the same division by the images of the combing lines in A2, say 1̂ 2,2n • • •, 1̂ 2,2fc2 

for some positive integer k2 > P n-2((2|aj|)2AfA+1l)n-2, and so on. Finally, there is a 

positive integer kn > P (2 |« |)2A(A+1) such that for each 1 < i < n

W  W   W
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are the the same words on * and have the same division by the images of the combing 

lines in A,-. We then can apply a surgery to cut off the drums of all A,- between each pair 

of these two paths and obtain n new diagrams A'-, 1 < i <  n. We repeat this procedure if 

necessary so that we can assume that h < {2P\x\2K K̂+l^)n. This is the desired result. □

It seems difficult to use the above technique for asynchronously combable groups since 

in the proof of Theorem 4.3.6, the j th  space-like segments of 7,-i9 and 7t+i,9 may be not 

the same and therefore, this will have affect on the cancellations after the above uniform 

reduction.
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Chapter 5

Calculations of second order Dehn  

functions of groups II: direct and 

free products

5.1 General bounds for direct and free products

In this section we let Go, Gi be groups of type F$ finitely presented by P 0 =  (*; ?*o), P i  = 

(£; r i)  respectively, and let X , be a finite set of generating pictures for 7r2( P t), (i =  0, 1). 

A presentation for the direct product G =  Go x G\ is given by

P  = (*, t ; r0, r u s)

where s = {[z,f] : x  £ x, t  £ £}. Since both Go and G\ are retracts of G, by Corollary 

2.2.15 we have

t {G b  m ax{420), 6 $ } .  (5.1)

If D is a picture over Po then for each t € t  we have a corresponding spherical picture 

Pd,* over 'P as in Fig- b.l, where the top oval labelled —D is the subpicture —D, the 

mirror image of D, the bottom oval is the subpicture D, and the middle discs corresponds 

to the commutators. We let <5v denote the element of 7T2(Po) represented by Pn^. When 

D consists of a single disc labelled by some R  £ r 0 then we write F rj  ( resp. instead 

of Pd,* (resp. £b,*). In similar way, for any S  £ r  i and x £ x  we have a spherical picture 

Ps,x °ver P  and a corresponding element £siX of 7r2(P ).

92



Fig. 5.1

Let W  be the label on D where the discs of D are labelled R \l , R , • ■ •, . Choose

a spray (71, 72, • • •, 7m) for D and let U{ be the label on 7 (i =  1, 2, • •, m). By 

Remark 1.1.6, W  is freely equal to

m
n  U i« ? u r l .
1=1

Moreover, let /i2 be the standard embedding (see (1.7)). Then we have

™
^ 2(6 ),t) =  (* -  l ) ^ e*'^‘e^. +  H  “ a— CM - (5-2)

»=i xea; ox

Lem m a 5.1.1 VFe have that
m

= 
i=i

P roof. Consider the image of under the embedding /i2. Note that by the definition 

of Fox derivation (§1.3.1) we have

dGY[T=,Ui^U~l
dx

- w w u r 1 , p -y,- -n '  ^
_ di + 1 1 1 +' ' + h, J j dx

m dGTIReiU~l -------------
=  E  1 (since U jR ^ U f1 =  1, 1 < J < m — 1)

dx + ' dx ’ ' * dx y
m qG d _________

=  (since U i ^ U - 1 =  1, 1 < i <  m ) .
t=l ^

Hence,

M&.t) = (t -  l ) E £<UieR> + H eM 
1=1
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and the lemma follows since fi2 Is injective. □

Let P be a spherical picture over V  and let t £ t. A non-trivial t-circle (outward 

directed or inward directed) in P consists of a collection of s-discs A i, A* and a 

collection of t-arcs c*i, • • •, a* where a, joins A, and A,+i (subscripts mod k).

outward directed inward directed
t-circle t-circle

Fig. 5.2

We also allow a trivial t-circle consisting of a single closed arc labelled t. A t-circle C is 

minimal if there is no t-circle contained in the region enclosed by C.

Let

i  = x 0u x 1uy0uFi 
where Y 0 = {P/*,* : R £ r 0, t £ t}, Y 1 =  {Ps,x : S £ r u x £ x}.

Proposition 5.1.2 We have

(i) X  generates

(ii) suppose that S^p j£ .(n ) — f ( n) f or a^  71 (z =  where f  is subnegative. Let £

be an element of ^ ( P )  with A(£) =  n and let P be a minimal picture representing 

£. Then

V x (0  < f{n) + {a + l)n 2, 

where a = max{L(R); R £ 1*1} (take a =  0 if Ti is empty).



From this and (5.1) we immediately deduce the following. 

T h eo rem  5.1.3 We have

{ C  4 2,’} ±  C .G ,  ^  m ax{3g, J® } + 

P roof of Proposition 5.1.2. We will concentrate on proving (ii), as (i) has already 

been proved in [BHP]. In fact, our discussion below amounts to an analysis of the proof 

in [BHP] to get the required estimate for Sip

We let V* =  (*, £; r o, s).

Let n be any positive integer and let £ be an element of ^ ( P )  with A(£) < n. Let P 

be a minimal picture representing £, and let n0, rij, m  be the numbers of Tq—, r \ —, s-discs 

in P respectively.

Let P^1) be the configuration obtained from P by removing all ai-arcs. Two ri-discs 

of P will be said to be in the same 1-component of P if they lie in the same component of 

P^1). If A, A' are two ri-discs lying in the same 1-component then they can be connected 

by a path p of £-arcs and (ri U s)-discs. In fact, if we regard P^1) as a graph, where the 

edges are the arcs and the vertices are the discs, then p is just a path in this graph. It 

will be assumed that a maximal forest $  in P^) has been chosen, and that the paths 

connecting ri-discs are geodesics in

Consider a 1-component H of P containing r^discs. Let Ao, A i, • • •, A* be the r i-  

discs in this 1-component and let p\ (A =  0, 1, • • •, k) be the (geodesic) path in $  from 

A0 to A*. Let d\ be the number of s-discs in p\. We may assume that

0 =  do — d \  — • • • — d j  ^  dj+i ^  • 5; d ^ .

We will show that we can modify P modulo Y i-pictures so that all the d \ s  are 0.

Suppose j  < k (otherwise no modifications are necessary) and consider AJ+1. Then

the discs of pj+i together with their incident arcs give a subpicture Q of P, which has the

form as shown in Fig. 5.3 where the disc 0  is an s-disc.

Fig. 5.3
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We then have a Y i-picture Ps)X such that Ps)X (or p s i )  is of the form as depicted in 

Fig. 5.4.

Fig. 5.4

Modulo the Y j-picture Ps(X we may move AJ+i nearer A0 as indicated in Fig. 5.5. 

This gives a new picture P7. A maximal forest 4>7 for P7 arises from the maximal forest $  

of P*1) as follows. Remove ail a?-arcs of P7 to obtain P7̂ .  Since the above operation has 

affect only on the 1-component fi of P, P7̂  consists of all 1-components of P^1) which 

are not Q and a new 1-component fi7 obtained from f2 by the above operation. If T  

is the chosen maximal tree of then by the above operation, T  is transformed to a

maximal tree T' of fl7. Then $ 7 =  ($ — {T}) U {T'}. Note that this operation also does 

not affect the distances from Ao to A a (j +  1 < A < k). We then get new geodesics 

Px (A =  °> k ) with

d'x = 0 (0 < A < j ), d7+1 = dj+i -  1, d'x = dx {j +  1 < A < k).

We point out that this operation adds less than a new s-discs to P.

j +1i+i]

We repeat the above procedure as often as is necessary to decrease dj+1 to 0. Note 

that this requires at most m operations. We then repeat the process successively for 

Aj+2, • • •, A*, finally arriving (after at most m k  operations) at a picture Pi. Now in Pi 

there will be a simple closed transverse path a  such that the subpicture of Pi enclosed by
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a consists precisely of the discs Ao, Ai, • • •, A* and their incident arcs. Thus, every arc 

say (3, crossing a  is the start of a path consisting of non-ri-discs and 2-arcs (having the 

same label as (3) in the exterior of a , and therefore, eventually recrossing a  as illustrated 

in Fig. 5.6. Note that no two such paths can cross in the exterior of a  since they contain 

no ivdiscs. This establishes that the label on a is freely equivalent to the empty word, 

and so by bridge moves we can create a spherical picture Qi over *P\ inside a  with discs 

Ao, A i, • • •, A*. Note that passing from P to Pi we create no new 2-circles. Since a 

encloses k ri-discs, the number of arcs which can intersect a  is at most ak. Thus when 

we perform bridge moves to create the spherical subpicture Qi inside a we can create at 

most ak new 2-circles.

Fig. 5.6

We may carry out the above procedure for all the 1-components of P arriving (after 

at most mrii operations) at a picture P* with the following properties:

(i) P* has spherical subpictures Bi, B2, • • •, B9 each of which is a picture over *PXt and 

where the total number of discs in Bi U B2 U • • • U Bg is ni;

(ii) The picture P** obtained from P* by removing all Bi, • • •, Bg is a picture over 'P* 

having n0 r Q-discs, at most amni + m s-discs, and at most m  -f an\ non-trivial 

t-circles (at most m t-circles coming from the original s-discs plus at most ani new 

t-circles).

Let £** =  (P**). We deduce from Lemma 1.3.4 that

V x ( 0  < V ^ ( f *) +  f (n  1) + m n x.

Now from the lemma below we get < / ( n 0) +  (m + an\)no. Thus

-  / ( no) + (m + ani)n0 +  f ( n x) -f m n x

< (/(^o) + /(n i) )  +  an0Wi +  m (n0 +  rii)

< /(n ) - f  (a + l)n 2
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as required. □

L em m a 5.1.4 Let P** be a picture over 'P* with no ro-discs and q non-trivial t-circles. 

Then

-  f (n° ) + Qn°-

P ro o f. By induction on the total number of t-circles in P**.

If P** has no t-circles then P** is a picture over P 0 and so Vj£-(P** ) < f ( n o). 

Suppose P** has a trivial t-circle. Then P** has the form

where PJ* and P^* are spherical pictures over P*.

Let nQl\  Uq2̂  be the numbers of ro-discs and <?i, q2 be the numbers of non-trivial 

t-circles in PJ* and P ^ , respectively. Then (using induction and Lemma 1.3.4)

vx0uY0(r *) < Vx0uy0(pr) + vXouFo(pr)
< /(^o1}) +  f ( n o2)) + Qino ] +  q2n{0 ]

< f ( n o) + Qno-

Now, suppose P** has no trivial t-circles but ha§ non-trivial t-circles. Choose a min­

imal t-circle, say C, as indicated in Fig. 5.7. We then can modify P** into two new 

spherical pictures Pq and P ^ t for some word W  on * U t  also as shown in Fig. 5.7.

- D

Fig. 5.7
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By Lemma 1.3.4 we then have VjfoUy o(P ") <  V ^ y  0(P°) +  '/X oUy  0 (Pr>,< )• By Lemma 

5-L1> VX 0u Y a(PO, *) < A(D) < no. Note that Po contains no ro-discs and q — 1 t-circles. 

Thus, by induction hypothesis we have

VA’„uy„(P") ^ (/(no) +  (« -  l)"o) +  no 

=  /(« o ) +  qn o

as required. □

We now consider the free product G =  Go * G\. A presentation for G is given by 

V  =  (*, t ; r0, n ) .

Note that Go and Gi are retracts of G. Thus, by simplifying the proof of Proposition

5.1.2 (there are no s-discs) or a direct proof we can obtain the following theorem.

T h eo rem  5.1.5 Let Go, G\ are two groups of type F3 . Then

m ax{420), 4 2,’} ^  ^Go.Gi 1  m ax{7^, 3 ^ } .

5.2 Some exact calculations for direct products

Our aim in this section is to give some exact calculations for 5q^ with G = Go x F  where 

F  is free (of finite rank) and Go is a group of type F3 with SqJ linear.

A presentation for G is given by

V  = (*, t; ro, s)

where P 0 = (*; f*o) is a finite presentation for Go, t  is a set with |£| = rank(F), s = 

{[#,£] : x £ x, t E £}. We let Xo  be a finite set of spherical pictures which generates 

^ (P o )  and let

X  = Xo  U {P.R,* • R  G 1*0, t E £}.

Then X  generates 7r2(P ).

We also require the following notation. Let

h : [1,00) — ► R +

be a strictly increasing continuous function such that

99



(i) the restriction of h on N is subnegative;

(ii) h(x) > x for all x £ [l,oo); and

(iii) the function x i— > 25 increasing for x > uq for some natural number n0 € Imh.

Note that by (iii) we have > 1 for x > no. This fact will be used in the following

subsection without a further comment.

Throughout the reminder of this section the above notations will remain fixed.

5.2.1 Upper bounds for Sq ^x F  when 6 ^  is linear

T h eo rem  5.2.1 I f  S(? is linear and 5 p  (n ) < bh(n) for all natural number n and some 

integer constant b > 1, then

for all natural number n > no and some constant c.

P roof. Since SqJ is linear we can assume that S p  (n ) < bn with the same constant 

b as above. Let Co be the maximum volume of all elements f  of 7r2(P )  with A(f) < n0, 

and let

c = max{co, b, h(n0)} .

Let n > n0 be any natural number and let (  be an element of 7 t 2 ( P )  with A(£) =  n. Let 

P be a minimal spherical picture over P  representing £. By induction on n we argue that

Case 1. P = W  • Po where Po is a picture over 'Po, W  is a word on x  U t.

We then have < b n < c n <

Case 2. P is not as in Case 1; P contains a trivial t-circle C for some t 6 t.

Let Pi and P2 be the subpictures of P lying just inside and outside C, respectively. 

Since C is trivial, both Pi and P2 are spherical. Hence, P has the form:
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Thus, if we let 6  =  (IP,-) (i =  1, 2), then by Lemma 1.3.4 we have

Let n,- =  >1(6 )> i — 1, 2. We distinguish three subcases.

Subcase 2.1. A(6) =  nt- < no, i =  1, 2.
2

Since > 1, we have

Vx(?) < Vx-(fi) + vx (h) < 2 c <

Subcase 2.2. >1(6 ) > no, ^ ( 6 )  < no (similarly >1(6 ) > ^o, >1(6 ) < no)- 

Then

v(0 < V(6) + V(fa)
3cn2< -— -T— -f- c (by induction hypothesis)

-  3c (/FTk) + 1)

-  3c(^y + 1) (since /F̂ y -

S e n 2 ( rii /i_1(n )^

/i- 1(n) \  n n2 J
. 3 cn2 . /i_1(n)

< -—tt—t (since ni H < rci +  1 < n).
n~1(n) n

Subcase 2.3. >1(6) > no, * — 1, 2.

Then

Ky (0  -  Kx(fi) + Yx(f2)
3cn? 3cn? . , . , .

< -——— - + -— — r (by induction hypothesis)
n_1(ni) h~l {n2)

< O (  ni(n! + n2) n2(ni + n2) \
~ ° \ h~ l (ni + n2) h~l (rii + n2) J



, . n l +  n2 ^  ni • , oA(since — -    > 7 —r, i — 1, 2)
/?-1( n i + n 2) h

3cn2 
h~l (n)

Case P is not as in Case 1 and Case 2.

Then P contains nontrivial t-circles. we pick a minimal one, say C. Suppose C 

contains q discs. Let D and Q be the subpictures of P lying just inside and outside C. 

Then D is a picture over TV We then can modify P into two spherical subpictures P ' and 

P ^ t for some word W  on x  U t  as shown in Fig. 5.8, where the picture Po,* is as defined 

in Fig. 5.1. We have A(P') =  n — q.

P':

- D

Fig. 5.8

(5.3)

Let =  (P'). Then by by Lemma 1.3.4,

f = £  +  £9(o,t

where g is the element of G represented by W , £ is +1 or — 1 according as to whether C 

is inward directed or outward directed.

We let m  denote the number of discs in D, and we distinguish three subcases. 

Subcase 3.1. (m <)n — q < n0.

Then

V x ( 0  — c+ (n — q) (using (5.3) and Lemma 5.1.1)

< c +  n0

< c(l + n0) (since c > 1)

< cn

< 3 cn‘
h~l (n)
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Subcase 3.2. n — q > n0, and 2bh(q) > m. 

Then

<

(using (5.3), the induction hypotheses and Lemma 5.1.1)
3cn(n - q )  n_q n \
—;——  b m (since v . < ,_u Jh - l (n) h (n_?) — h (n)

3 cn2 (  ̂ q mh~l {n)\
h- 1(n) \  n Sen2 J

Now, if m < no, then m < uq < h(n0) < c. Hence,

q m h - \ n )  < g 
n 3cn2 “  n 3 n2

^  i ^ i i ' h 1(n) i \< 1 ------ b —  (since — ^  < 1)n 3n v n -  )
_ q ■ 1 

< 1,

and so

Suppose m > n0. By the subnegativity of h, m < 2bh(q) < h{3bq) < h(3cq), so 

h~l (m) < 3cq. Hence,

l _ i  +  m ^ ( n )  ^  t _  j  +  (since ^
n 3cn2 n 3 cnm n m

q 3cq
n Sen

=  1.

Thus we also have

v x ( 0  < /i_1(n)

Subcase 3.3. n — q > no, and 2bh(q) < m.

We have a picture O' over "Po with at most h(^) discs and having the same boundary 

label as D. Then the spherical picture B obtained by putting together a copy of D and a 

copy of —0  represents an element of ^ ( P o )  containing at most m  -f bh(q) discs. Thus, 

P can be modified into two spherical pictures P" and B ^  for some word W  on x  U t  as 

shown in Fig. 5.9.
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Q

Q

F ig . 5 .9

Let £" =  (P"), f* = (B>. We have

VV , x ( 0  < V p ,x ( t " )  +  Vv 0, x 0^ )  (by Lemma i .3.4)

< vV , x t i " )  +  6(m + 6% ))*

Since 2bh(q) < m and b < c, 6(m + bh(q)) < 2cm. Thus, if n — m + 6/i(q) < no, then

v p  x ( ^ /7) — °° — c an<̂  so

Zen2
^ x ( f )  < Co + b(m + bh(q)) < 3cm < h_ { ^ >

If n — m  + > n0, then by induction hypothesis V p  x ( £ H) — h-^(n-m+bh(q)) anc^

so

. .  ^ Zc(n — m + bhiq))2 ..  . . .
V̂ (f) *  /t - H n - m  + 6% ) ) +6(m +  6/i(?))

3cn2 (n — m + bh(q)) /  (h~l (n — m  +  bh(q)) (  m — bh(q)
/i-1 (n) n /h~ l {n) \  n

bh~l (n — m  +  6/i(^))(m +  6/i(<?))\
3cn(n — m  +  bh(q)) J

Since is increasing for x > n0, we then have

(n — m + bh(q))/h~l (n — m  -f bh(q)) ^
n jh~ l {n) “  '

Now 2bh(q) < m, thus (m + bh(q))/(m — bh(q)) < 3. Moreover, we also have /i-1 (n —

m  -f bh(q))/(n — m  +  bh(q)) < 1. We thus have

 ̂ m — bh(q) bh~l {n — m  + 6/i(g))(m + bh(q))
n 3 cn(n — ra +  h/i(g)) 
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= bh(q) _ bh~ >  -  + bh^ +
n \  3c(n — m  -f bh(q)) J

< i _ l | m _ 6 % ) - 6(TO+ cfe% ) ) )

<  1 -  1 (ro -  6% )  -  t(m  ~c6 % )) )

< 1 ------ (m — bh(q)) ^1 -----)

< 1 (since b < c and m — bh{q) < n).

Hence, we also have

v x i 0  <
*  “  h - ^ n )

and this completes our proof. □

From this theorem and Theorem 4.2.1, we have

Corollary 5.2.2 I f  Go is word hyperbolic then SgJxF linear.

Now let H  be word hyperbolic and let Go = H  x F* where F* is a finitely generated 

free group. Then Go is automatic and so 6 ^  ■< n2. By Corollary 5.2.2, SqJ is linear. 

Thus we have

Corollary 5.2.3 I f  H is word hyperbolic and F*, F are finitely generated free groups, 

then di ■

We will see below (Example 5.2.8), the upper bound in Corollary 5.2.3 is often exact. 

Now let Vo be an aspherical presentation. Then 8^p 0 =  0, and so is linear. By 

Theorem 5.2.1 we have

Corollary 5.2.4 Suppose that Go has an aspherical presentation Vo such that dip (n) < 

bh(n) for all natural number n and some constant b > 1. Then 8q^xF ^  h-^(n) •

5.2.2 Lower bounds for Sq ^x F  where Go has an aspherical pre­

sentation

L em m a 5.2.5 Suppose that Vo is aspherical. Then the second homotopy module ^ ( V )  

is a free 'LG-module with basis £/?,*(/? € r 0, t £ t).
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P roof. Since P 0 is aspherical we may take the set X o  of generating pictures of 7t2('Po) 

to be empty. Thus the elements (R  E r 0, t E t) generates ^ ( P ) .  To show they are 

a free basis consider the standard exact sequence (1.7) for P 0- Since o) =  0,

a2 : 0  ZG„e<,0) -►  ©  ZG o40)
Rer0 xex xex ux

is injective. Applying the exact functor Z(7(g)ZGo- we then obtain (with eR = l<8>e{̂  (R  E  

r 0 ) ,  e*  = 1 <8> &£) (x E  s c ) )  an injection

0  Z GeR -^-4 0  Z Gex eR \— > —— <
Rer0 xex xex ax

Taking a copy of this injection for each t E t  we obtain an injection

OG D
: ©  ZGeR — ► 0  ZGe^ elR \— y ~faTex’

Rer0,tet xex ,tet xex,tet

Since ® ReTo t€$ ZGelR is a free ZG-module, and the set {£/?,* : R  E r 0, t E t]  generates 

^ ( P ) ,  we have an epimorphism of ZG-modules

4>: 0  — ► itiCP) e},— >&,<•
R£To,tet

Let ip be the mapping given by the composition

^{ 'P )  ( 0  ZGeR j 0  J 0  ZGe[Xtt] \ 0  ZGelx,
\Rer0 J \xex,tet )  xex,tet

where is the embedding as in (1.7) and the second mapping a is given by eR h-» 

0, e[Xft] e*, x E x , t E t. Since (&x€X,tet — ^ x e x , t e t ^ eU a is an epimor­

phism of ZG-modules. Thus, ip is also a homomorphism of ZG-modules. By the definition 

of /i2 we have
R

^2(£/?,<) — {t ~  l ) e / i  “b ~£)Z~e[x't]’dxxex ux
Thus,

oG D oG D
W(Cfi) =  = <r((i -  l)efl +  £  =  ¥>(««)

xex xex

and so ip(p =  p. Since p  is injective, </> is also injective and so (p is a bijection as required. 

□
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If E is a free abelian group with basis Y  then every element a  € E has a unique 

representation in the form

n m  + n2y2 + ---- I- nqyq

where q > 0, t/i, y2, • • •, yq are distinct elements of Y , and ni, 722, • • •, are non-zero

integers. We write \a\ for |ni| +  |n2| + • • • \nq\.

In particular, by Lemma 5.2.5 (together with the fact that hG  is free abelian on G)

we have that 7t2(P ) is free abelian on the set {g • (ntt • 9 € G, R  € ro, t 6 f}, and so we

may consider |f| for any f  6 7r2(P ). Note then that |f| =

Suppose D is a picture over Po and t € t. We have seen in Lemma 5.1.1 that

A( D)

= 5Z £*9i ' 6?,,*
»=1

for certain gi G Go, -R, G 1*0, £, G {1, —1} (* =  1, ■ • •, However, it is conceivable

that there could be cancellations in the sum on the right hand side of this expression. 

We will say that D is stable if no such cancellations occur. Thus D is stable if and only if

More generally, for any positive integer q, let

6cm = (i + * +  *2 h------ I-^

Then if D is stable we have

n O  = 9 A(D). (5.4)

Note that fn] can be represented by the spherical picture Pp, depicted in Fig. 5.10 

below. So

A({§>) < 2A(D) +  qL{dO). (5.5)
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T h eo rem  5.2.6 A ssume 'Po is aspherical. Suppose there are positive constants 61, Ci, C2

(with 61, C2 positive integers), and a sequence Dj (i =  1, 2, • • • ) of stable pictures over

'Po suc/i that
Z/(5D[ft-i(n)j) < &i/i- 1(n); and (5.6)

cjn < i4(B[*-i(n)]) < c2n (5.7)

/o r all integers n > h(no) (where [] denotes the integral part). Then

n
7*’X h~:(n)

Proof. Let n be an integer with n > h(no), and let m  =  [/*_1(n)]. Write

A( Dm) = _
L ( d D m ) 9

where q is a positive integer and 0 < A < 1. Then for any t £ t  we have

^  3^4(Dm) + XL(dDm) (using (5.5))

< 3c2n + Xbih~l (n) (by (5.6), (5.7))

< (3c2 + 6i)n.

Also

' / ( d w )  =  9^(Dm) (using (5.4)) 
A(Dra)2
L(9Dm)

+ AA(Dm)

c?n2
* WFTR (by (5'6)’ ( 5 - 7 ) ) -
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Thus

^ < ! ^ y ( 3c2 +  M n )

which proves the theorem. □

5.2.3 Examples

In the following examples, F  always denotes a free group of finite rank. The result of 

Lyndon [Ly], that a presentation with a single relator which is not a proper power is 

aspherical, will be used without being further mentioned.

Exam ple 5.2.7 Let Go =  Z2. Then

An aspherical presentation for Go is 'Po = (y, z ; [v,*])- Let h(x) =  x2, no = 1. Then 

all of the conditions we imposed on h in the previous two subsections hold. It is well- 

known (see [ECHLPT]) that there is a constant c\ > 1 such that Sip (n) < cin2 = c\h(n). 

Moreover, let =  yxzxy~xz~x (t = 0, 1, • • •, ), and let D, to the picture with boundary 

label W{ as depicted in Fig. 5.11 where L(5Dt) =  4i, A(D,) =  i2. We show that D,- is 

stable. Let R = [y , z\. Since W{ FIJ=o FIa:=o y^zkRz~ky~i, we have

y3*k ■ &*.*•
j=0 k=0

Clearly, there are not any cancellations in the above sum and so D, is stable.

Now, for any n > 1

//(dDfy—i(n)]) < 4fi- 1(n) 

and = [/*_1(n)]2 = [n a]2 < n. Since n? > 1, [na] > \ n i .  Thus,

i.e.

- n  < A(D[/i-i(n)]) < n.
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Fig. 5.11

We deduce from Corollary 5.2.4 and Theorem 5.2.6 that 8jj} F ~  722; in particular,

Exam ple 5.2.8 Let Go =  H  x F* where H is word hyperbolic and F* is any free group 

of finite rank. I f  the group Z is a (quasi) retract of H  then

4 2oxF ~ n "-

By Corollary 5.2.3, S$xF*xF ^  722. A direct generalization of the result of the above 

example gives that if F** is again a free group of finite rank then

4 ‘‘xF*xF ~  7Z2 .

If Z is a (quasi) retract of H , then Z x F* x F  will be a (quasi) retract of H  x F* x F, so 

^tfxF'xF — ~  72 2 . Thus, <S//xir*xF ~  n2-

Exam ple 5.2.9 Let Go =  Fm x F2 be the split extension of the free group Fm (m > 2) 

by another free group F2 on 7/1, y2 defined by the presentation

'Po = (xu ’ "  , x m, 7/ 1 , 7/2 ; x ŷ  = xm, xykx = x kx k+1 ( l < k < m -  1, A =  1, 2 ) ) .

Then

SGoxF ~  722_^ .

By Theorem 3.1 of [CCH] or Theorem 6.1.4 of next chapter, T̂ o is aspherical. Let 

h(x) = xm+1, 720 =  1. Then again all conditions imposed on h in the previous two
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subsections hold. Bridson [Brd3] has shown that S p  ~  h. Let Rm,\ — x mx rni Rk,a = 

I < k < m — 1, A =  1, 2, and consider the picture Dt for word

Wi = y 2 {i+m~2)x \+m~2yi+m~2y i {i+m~2)x i {i+m~2)y\+m~2 (i 6  N).

Fig. 5.12 shows the top half of D3 for m = 3. (The bottom half is obtained by reflecting 

the top half through a horizontal line and replacing all y2-arcs with yi-arcs.)

Fig. 5.12

Since each disc in the top half has positive orientation and each disc in the bottom half 

has negative orientation, we have

Ot) IA(D,-)
<6d>,,* = gj ' £Rqr l,t ~~ 9j ' R̂qjl2,t

j=1 j=1

for certain gj , g'■ £ Go, 1 < qj < m, 1 < j  < |j4(D,). Clearly, within each sum there are 

not cancellations since all terms of this sum have the same symbol, and also there are 

not cancellations between two sums due to the different second subsubscrips. Thus, Dt- is 

stable. Clearly L(dDi) = 6(i -f m) — 12.

Let denote the number of the Rk,2-discs of the j»th row of D>,- from the top, 

1 < k < m, 1 < j  < m  -f i — 2. For convenience we let I =  m  + i — 2. Then we have

B[i] =  /, 1 <  j  < l\ (5.8)

B [k ] =  Bl2> = ■■■ = B t 11 =  0, 1 < k < m; (5.9)

and
BlP) =  B f , 1’ + B[p~l\  p > k , l < k < m .  (5.10)
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Thus, for p > k,  1 < k  <  m, we have

+ Bl”- "  (by (5.10))

=  B t i l) + B t \ 2) +  • • • +

(by successively using (5.10) p — k  times)

=  B t ^  + [2) +  • • • +  B {kkSil) (since B {kk~1] = 0 by (5.9))
p - k + l

= E  B t 7 \
j =l

namely, we have
p - k + l

= ] £  p > k , l < k < m .  (5.11)
j=i

By (5.8), in total we have

£  B <p) =  /2
p= 1

i?1)2-discs in Dt . By (5.11) and (5.8), for p > 1 we have

b 'p) = E b <’’- j) =  / ( p - i ).
3 =  1

We now show by induction on 1 < k < m  that if p > k then

B*W = (fc^T j!(P -  1)(p -  2) • • • (p -  fc + 1). (5-12)

In order to do this we need the following elementary fact (which can be simply proved

by induction on n):

^ ( j '  + r a - l ) ( / + m - 2 )  • • • ( j '+ l ) /  = — (n +  m ) ( n + r a - 1) • • • (n +  l)n  (5.13)
m + l

for any pair of integers n > 0, m > 0.

We have

p - k + l

= E b £ »  (using (5.11))
3 =  1

 ̂ p -A :+ l

= E (b — J — !)(p — i — 2) - - - (p — j — (fc — 1) H-1)
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by using induction hypothesis. Let j '  = p — k — j  -f  2. Then j '  = 1 when j  =  p — k +  1

and j '  — p — k +  1 when j  = 1. Thus,

p - k + l

( p - j - l ) ( p +
j-1

P - k + l

= E O'' + (* - 2) - i)( i'  + (* - 2) - 2) - • - (j' 2))
j ' = i

=  jjrry (p  ~  x)(p  - 2) • • • (p -  (fc - ! ) )  (by (5-13))

and this completes the proof of (5.12).

Now, by using (5.12) and (5.13) we have

/ / /
E 5*”’ = it. !_ iv E(p ~ ^ (p  - 2) • • • (p - k + 1)
P=k \ K i b  p=k

I l - k + l
E 0" + (fc - !) - !)0‘ + (fc - 1) - 2) • • • (j + l)j

( k - l ) l k  

=  L / ( i _ i ) . . . ( / _ f c  +  i)

< /fc+1

< (m + i)*+1.

On the other hand, Since

l 2{l  - l b  +  1) =  ( / - *  +  2)2(/ -  k +  1) +  (k -  2 )2(/ -  k +  1) +  2(ifc -  2 ) ( l  -  k +  2)(/ -  lb +  1) 

and

(/ -  lb + 2)3 = (/ -  k + 2)2(/ -lb + l ) + ( / - *  + 2)(Z -  lb + 1) + (/ -  lb + 2),

we have

/2( / - f c  + l) > ( / - f c  + 2)3, if k > 2, / > l b -  1.

So, for k > 2 and z > 1 we have

i (m + i — k)k+l
, lb!p—k
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for i > 1. Thus, we have for all 1 < k < m

r>(p) \  ( m  +  * k ) * + 1

p=k

Hence, by symmetry,

m I m + 1

^(B .) =  2 £  £  B<p> < 2 £  (m -H )‘
A:=l p=k k= 2

=  2(m + i)2 7̂”  +  ~  1 <  3(ra +  i)m+1 <  3mm+1im+1,
m + z — 1

and for all i > 1,

/  l m l  '

4(0. ) = 2 £  Bip) + £  £  4 P)
\ P = 1  k=2p=k /

> 2 Z BLP>
p=m

(m + i — m )m+1>
mi

; m + l

ml

But T- < A(Di) =  2(1 -f m — 2) = 2(m — 1) since m > 2. Hence, if let a  =  ^y, (3 = 

3ram+1, then azm+1 < A(Dt) < (3im+1 for all i. Thus, ^(D ^-i^)]) < (3[h~l (n)]m+1 < 

(3(h~1(n))m+1 = (3n. Moreover, since h~l (n) > 1 for n > n0 = 1, [h- 1(n)] > | / i - 1(n). We 

then have

4(0[fc-.(„,]) > a ( ^ V +1 >  ~ n .

Thus, for all n > h(n0),

T(® [/i-i(n)]) = T(W[/i-i(n))]) = 6([/i- 1(n)] +  m —2) < 6(/i_1(n) + m) < 6m/i_1(n),

and

< A (% -.(n)1) <  /?n.

We then deduce from Corollary 5.2.4 and Theorem 5.2.6 that ~  n2_m+1.



E xam ple  5.2.10 Let Go =  BPiq be the Baumslag-Solitar group defined by the (aspherical) 

presentation Vo = (y, z ; zypz~ly~q) (1 < p < q). Then

where a =
p

Let h(x) =  a r , and let no = 3 be the smallest natural number bigger than the number 

e  (base of the natural logarithm). Let f ( x )  = =  \Q~ x . Since for x > n0l the first

order derivative f ( x )  =  logfl[̂ 1̂ ln a- of f ( x )  is positive, f ( x )  is increasing for x > n0, and 

all conditions we imposed on h(x) in the previous two subsections hold.

By Theorem El of [BGSS] BPtq is asynchronously automatic and hence ■< h 

[Brd2, Theorem 6.1]. Following Gersten [Ge2, the proof of Theorem B], define non­

negative integers Oj, bj (j = 1, 2, • • •, ) inductively as follows: a\ =  p, b\ =  0; bj+i is the 

least natural number with Jaj + 6J+i divisible by p, aj+i =  +  bj+1. Let

W i  =  [ z t y pz ~ 1y b2z ~ 1y b3 ■ • • z ~ l y b' z ~ l , y \

then L(W{) < 2(p+2)z-|-2. Let D, be the picture over Vo with boundary label obtained 

by dualizing the van Kampen diagram in Figure 2 of [Ge2]. (This picture is illustrated 

in Fig. 5.13 for p = 1, q =  2, and i = 4.) We then have A(Dt) =  ^(ai +  a2 +  • • • +  a,-).

$
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Fig. 5.13

Let R = zypz 1y q. Since each disc in the top half has positive orientation and each 

disc in the bottom half has negative orientation, we have

£>1(1*) %A(Pi)
6 d = 51 9j ’ fR,t -  ^2 hj ' fR,t •

j=1 j=1
Clearly, within each sum there are not cancellations since all terms of each sum have the

same symbol. Also, by Lemma 4.3 of [Ge2] there are not cancellations between the two

sums. Thus, D,- is stable.

Now inductively we have

a,j =  cmj_i +  bj =  a (cm^-2 +  f y - i )  +  bj  

=  a 2 ( a a j _ 3 -T 67-2) T c t b j -  1 +  bj

=  oP â. 1 oP 262 +  • • • +  ocbj-i bj

< pa3~l + pa3~2 + •••-+- pa + p (since ai = p, 61, • • •, bj < p)
a3 -  1

=   TVa — 1
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.2
< a3 — —  < a-'p2. 

q - p

So

< ~(p +  &p2 +  • • • &%p2) = ~ (p  +  &p2-------- ^ < 2 H-------- ct,+1p3 <  4a*+1p3
P P \  a — 1 J q - p

On the other hand, since a\ > 1, aj > a3-1 (j >1) ,

2 / t ,\ 2(a* — 1) 2(a* — 1)
A(D,-) > -  ( l  + a  +  • ■ • +  o ) =  - )  ry  =  - --------

p  v 7 p(a  — 1) 9 — P

Thus, if i > loga 2, then 2(a* — 1) > a ‘, and so

,4(0,.) >  — a i. 
q - p

We thus have that for any n > max{/i(n0), loga 2},

L(®>[/l-i(n)]) =  L(W[h- i(n)]) < 2(h~l(n)+p+h~l (n)p+h~1(n) + l) < 2(3 +  2p)h~l (n),

and

y4(D[/i-i(n)]) < 4 a fc (nH-!p3 _  4p3an.

Let [/i_1(n)] = h~l (n) — A with 0 < A < 1. Then

a l^ W ] a h~l(n)~x n n
4 ( % - l ( n ) ] )  >  — ------—  =  — ------ —  =  7 - ------ - 7 - T  >q - p  q - p  (q - p ) a x a ( q - p ) '

We then deduce from Corollary 5.2.4 and Theorem 5.2.6 that

<sL2)
Bm*F lo g ." '

E xam ple  5.2.11 Let A be the split extension F* x^Z  where F* is a free group of rank 3 

on z\, z2, z3, and let Go =  A*p* A = F* B where B  is a free group of rank 2 on s i, s2, 

and both Si and s2 act on A by the automorphism <f. I f  f> is induced by the mapping

Z \  1---- ► 23, 22 '-----> Z i Z 3 , Z 3 I > Z 2 Z3 ,

then

° G 0 x F log 2n
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It was shown in [BBMS] that the automorphism (f> satisfies the condition that for any 

g , g' in F*, g ^  1 in F* and any positive integer m, <f>m(g) ^  and so A  is word

hyperbolic and Go is asynchronously automatic with 6 $  ~  2n.

By [CCH, Theorem 3.1] or Theorem 6.1.4 of the next chapter, both A  and Go are 

aspherical. Now, the group Go has a presentation

Vo  =  (zi, Z 2 , 23, Si S 2 ; Sj'zxSi = 23, S j lZ2Si =  2!23, s j l Z3S1 =  Z 2 Z 3 , (I =  1, 2)).

Let Rij  =  s ^ z i s i z z 1, R2yi = s j l z2s\z3 l z ^ 1, and R3ii =  s j l z3siz3 12j1, I =  1, 2. 

Consider the word =  s p 23sis2 *23 Then =  1 in Go (i =  1, 2, • • •). We have a 

sequence of pictures Dt of the form shown as in Fig. 5.14 for i = 4.

Fig. 5.14

Similarly as we did in Example 5.2.9, we can show that Dt- is stable.

We have that L(5D;) =  4i + 2. Let C\^ be the number of /^i-discs in the j t h  row of 

Di from the top. Then we have

c[l) = 0, (#> = 0, ci1] =  1,

r*(j) _  n U ~ l ) /^U) _~ u 2 , L/2 — ^3 ,

= c[j- l) +
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Let a,j denote the number of discs in the j th row of the upper half of D,-. Then we 

have

aj =  C,(J) + C2W) +  Cij \  2 < j < i

and so, for j  > 3,

a j  =  C [ 3) +  C \ i] +  C i j)

= C p-1) +  c p _1) +  c p -1’ +  c p _1) +  C p*1’

=  a j_, +  c 2w_1) +  c p -11

=  a i_, +  C3°~2) +  C p '2) +  Cp~2) +  c p “2)

=  aj-i  +  Qj- 2 +  Cp *

= ai_! +  Oj-1 +  C p '3) +  C p -3) +  C p -3)

=  d j - \  +  d j - 2 +  aj - 3 -

We further show that the polynomial /(A) = A3 — A2 — A — 1 has only one real 

root, which lies in the interval between 1 and 2. First, Ai = — | ,  A2 =  1 are the roots 

of /'(A) =  3A2 — 2A — 1, where f  is the first order derivative of / .  Since / r(A) is 

positive for A < — |  or A > 1, we see that /  has its local maximum value at — |  and

has its local minimum value at 1. So, /  is strictly increasing on (—oo, — |] U [l,oo) and

strictly decreasing on [—1,1]. But / ( —5 ) < 0, so /  has no root in (—00, 1). Since 

/ ( 2) > 0, / ( l )  < 0, by the monotonicity of /  on (l,oo), /  has only one real root, say 6, 

with 1 < b < 2. We sketch the curve of /  on the real plane R2 as below.

We now show that

—bP < a; < AbP 
2 “  3 ~

for all j  £ N by induction.
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First, we have

< ax =  1 < 46, \-b2 < a2 =  2 < 462, ^ 63 < a3 = 4 < 4b3.
z z z

For j  > 3, since a,j = aj-i  +  a j_2 + aj_3, by induction hypothesis we have

aj < 467-1 +  467-2 + 467-3 =  46j-3(1 +  6 +  62) =  46J"363 = 4V

and

«i > 5V-1 + If"2 + i^-3 = \v~3(l + 6 + 62) = = \v,
as required. Thus, for all i £ N we have j4(D,) =  2(ai +  a2 +  ■•• +  <**) > 61, and

v4(D,) =  2(ai + a2 + • • • +  a*) ^  86—— 7" ^  86-— —.
6 —1 6 —1

But 63 — 62 — 6 — 1 =  0, so we have ^  ^  < 6. Hence,

A(D,-) < 86,+2.

Let h(x) = bx and let no = 3 be the smallest natural number bigger than e (base of 

the natural logarithm). Similar to Example 5.2.10 we have that, for all x > n0, •%=f^y is 

increasing and all conditions we imposed on h(x) in the previous two subsections hold. 

Therefore, for all n > h(no) we have

£(<90^-1 („)]) < 66- 1(n) and A(D[*-i(n)]) < 862n.

On the other hand, let [6_1(n)] = h~l (n) — e with 0 < e < 1. Then

A (% - ,(n)]) > 6™  = I  > Jn .

Now, by Corollary 5.2.4 and Theorem 5.2.6 we then have SgJxF ~  \̂ g2 n since ~
n2 

log2 n '

Furthermore, let D be the direct product A x  B. Then by Theorem 2 of [BBMS], Go 

can be embedded into D. Thus, Go x F  can be embedded into D x F ,  and (see Example 

5.2.8) ~ n § .

This example gives the following theorem which shows that there are pairs of groups 

G, H  of type F3 with H isomorphic to a proper subgroup of G, but 8 $  >■
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T h eo rem  5.2.12 There are groups H, G of types F3 with H < G such that

n
4 2)' ,log2n

and ~  n 2.

E xam ple 5.2.13 Let Go be defined by the (aspherical) presentation

To  =  ( * , » ;  U”V-o),

where U, V  are non-empty reduced words on x , y  respectively, and p , q are integers > 1. 

Then

G0xF

Obviously, if let h(x) =  x 2, n0 =  1, then for all x > n0, the function -^ 2  is increasing 

and all conditions we imposed on h(x) in the previous two subsections hold.

It is shown in [BMS] that rsj h. For any positive integer *, let denote the wordr 0
V(UV)tUtp(UV)~%V~1U~tp. Then we can construct a pictureDt- with boundary label W{. 

(The picture for i = 2 is shown in Fig. 5.15.) Note that, in Dt-, we have 2i +  2 rows and i 

column, and so /1(D, ) =  2(i + l)z‘. Since all discs in have positive orientation, similarly 

as we did in Example 5.2.9 we can show that D, is stable.

V p

Fig. 5.15

Letting a  = max{L(U), L(V)}  we then have that for any n > h(n0) = 1,

L(dO[h- i(n)]) < (2p + Q)ah~1(n).
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Also

A(D[A-i(n)]) =  2([/i- 1(n)] + l)[/i_1(n )l ^  2(^_1(n))2 +  2h~l (n) < An. 

On the other hand, since n > 1, h~l (n) > 1. Thus, [/i—1 (n)] > | h~l (n). Hence,

A(D|*-i(n)]) > 2(1h ~ \n )  + 1)(^/»_1(")) >  In .

Consequently, by Corollary 5.2.4 and Theorem 5.2.6 we have JgJxF ~  72
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Chapter 6

Calculations of second order Dehn  

functions of groups III:

H N N-extensions, amalgamated free 

products and split extensions

6.1 HNTV-extensions and amalgamated free products

6.1.1 Generators

Let Go be a group of type F3 finitely presented by 'Pq — (*0 5 r o)- Let H  and H  be two 

finitely presented subgroups of Co together with an isomorphism 7 : H  — > H. Choose a 

finite set a = {ay : y £ y}  of words on x 0 which represents a generating set for H.  Let 

a  =  {ay : y 6 y} be such that for each y 6 2/, ay represents 7 (ay). Let F(y)  be the free 

group on 3/, and let 8 be a finite set of words on y  whose normal closure in F(y)  is the 

kernel of the epimorphism

F(y)  — y H, [y] }—y ay, y G y.

Thus, Ti = {y\ s) is a finite presentation for H. The HNN-extension G of Go with 

associated subgroups H  and H  is then finitely presented by (see [Co] for reference)

V  =  (*o, t ; T-o, r ' d y t a - 1 (y <E y)).
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If W  — W(y)  is a word on y,  we then write W(a)  and W(a)  for the words on * 

obtained from W(y)  by replacing each y £ y  with ay and ay respectively. Since for each 

S = S(y)  € s, S(a)  = 1 in G(7>0), we then can choose two pictures over P 0, say S and 

S, with boundary labels S(a)  and S(a)  respectively.

For each y 6 2/, let ay-\ =  a~l and ay- 1 =  a~l . Then we have in G(P )

t~1ay-it  = t~la~1t = a~l = ay- 1.

If D is any picture over H  with discs A i, •••, An labelled SI1, •••, S„n (Si 6  s, 

£i = ±1, 1 < i < n) say, then let D(a) (resp. D (a)) be the picture over Po obtained by 

replacing each arc labelled by y € y  by a sequence of parallel arcs labelled by ay (resp. 

ay), and replacing each disc A,- by the picture £,S, (resp. £,■§,•). Then if W ( y ) =  y\ • • • yn 

(yi € y  U y ~ l , 1 < i < n) is the boundary label of D, W(a) = ayi • • • aVn and W(a)  =  

dVi • • • ayn are the boundary labels of D>(a) and D(a) respectively. Therefore, we can 

construct a spherical picture Po,< over P as depicted in Fig. 6.1, and we let (Pb,*) =

[—D(a

Vn

t

Vn

Fig. 6.1

In particular, if D consists of a single disc labelled S  € s,  then we write Ps,t instead of 

Po,*, and let =  (Ps.t)-

As in Chapter 5 we have the following property.

Lem m a 6 .1.1 / /D  has discs labelled S'f1, S%2, •••, S„n, and a spray with labels Ui(y), 

U2(y), Un(y), then n
6d\t =  £ j U i ( a )£sj,t'

i -1

Proof. Let Ryj = t~1ayta~l (y G y). Suppose that for each 1 < i < n, S,- has discs 

labelled S^i1, •■•,5^*,  and has a spray labelled V^i, words on x.  Thus, we

have a spray for D (a) labelled



Ui{a)Viti, U ^ V u , ,  •••, t/„(a)V„,i, •••, £/„(a)Vnj„, 

and a spray for D(a) labelled

^(fl)V itl, •••, C/n(a )K ,i, ^ n (a )K Jn.

Then as in the proof of Lemma 5.1.1 we have
n ji______________________________________ __  n     flH a,

M&m) = EE(* e,-,/* Ui (a)Vijesn- e ^ U i{a)Vi^eSiil ) + E E ^  L(a)eiiy t
«=i /=i :=i yey °y

n ji         n   o f f  c

= E £iUi(a)-ST-(a)eRy,<-
t=l /=1 1=11/62/ y

ji ___________ _  qH o.
M i s i . i )  =  E  { £iJt v ‘JeSi, -  U , iV i j e Si )  +  E — L(a)e«v

/=i j/G2/ °y
So, we have n

/*2(&,«) = ^ e i U i t s i j
t=i

as required. □

Let P be any spherical picture over P .  We introduce the t-circles (outward or inward 

directed), minimal t-circles and trivial t-circles in an obvious way as we did in §5.1.

In §6.1.2, 6.1.3 below the above notations will remain fixed.

6.1.2 Upper bounds

Suppose X 0 is a finite set of generating pictures of 7t2( P o), and let X t be the set of all 

spherical pictures P ^ ,  S  £ s. Let

b = max{A(S), j4(S); S  £ s},

and let
a  = { t^a y td y1 : y £ y}.

T h eo rem  6.1.2 The following statements hold.

(i) The set Xq  U  X t generates 7r2(P ).
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(ii) Let n > 0, m  > 0 be any two integers. I f  P is a spherical picture over P  with 

j4(P) =  n, and the number of a-discs o fF  is m. Then

v7>,X0u X S r ) ^  $P 0 +  71 ~  m ) +

From this theorem we immediately have the following.

T h eo rem  6.1.3 We have

SV , X au X ,  -  ^ o . X o ^ ) '

In particular, if P Q is aspherical, then

x(2) ^  jK1) .
dP , X 0u X t ~ dW

and if H is word hyperbolic, then

SV , X 0uX,  -  *Vo,X0-

P ro o f of T heorem  6 .1.2 :

We will concentrate on proving (ii) as Theorem 2' of [BaPr] implies (i). However, the 

following argument also implicitly gives a proof of (i).

Suppose P contains q 2-circles, say C\, C2, • • •, Cq, and each C, contains mt- a-discs. 

For each 1 < i < q, if C, is not minimal, then there are a number of 2-circles, say Cjx, Cj2, 

(1 < ji < <7, 1 < I < Qft) for some natural number a,- > 0, which lie inside Ci such 

that there are no other 2-circles in the region bounded by Ci and all Cjt (1 < I < a,-) as 

illustrated in Fig. 6.2. Note that these 2-circles Cjt may be not minimal. We denote by T,- 

the subpicture (over 'Po) between Ci and these Cjf  s. If Ci is a minimal 2-circle, then we 

also denote by T, the subpicture (over Po) enclosed by Ct, and we let a,- =  0. We denote 

the subpicture (over Po) outside all 2-circles by Tg+i. Let n,- =  A(Tt) (1 <*’ <<? + 1), 

then n = £?=i(m»' +  n») +  nq+x.
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Fig. 6.2

Consider a neighbourhood of a typical ^-circle C j of IP as illustrated in Fig. 6.3. Note 

that if C j is minimal then the subpicture T'- = T j. Let (3 ^  and (3 ^  be the closed 

transverse paths in P lying just outside and inside C j respectively. Then there is a word 

W (y )  such that the labels on (3^\ [3^  are W j(a ) , Wj ( a )  if Cj  is inward directed (resp. 

W3(a) ,  Wj ( a )  if Cj  is outward directed). Suppose, for definiteness that Cj  is outward 

directed, so that the label on f 3 is Wj ( a) .  Note that if Cj  is trivial, then both Wj ( a )  

and Wj ( a )  are the empty words. Since L( Wj ( y ) )  = m^, we can choose a picture O'- over 

3-t with boundary label Wj ( y )  such that Thus, if we let D,- =  D5(a )

and D j =  D * (a) over Po, then

rrij).

Note that Dj and Dj have boundary labels Wj ( a )  and Wj ( a )  respectively.

Fig. 6.3

We now carry out modifications on each minimal ^-circle Cj  as shown in Fig. 6.4.
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Fig. 6.4

We let Qj be the spherical picture consisting of —Dj  and T j .  Note that if C j  is inward 

directed then Q, consists of —Dj and TJ? and the spherical picture in the center is Fb-ft. 

Removing all these Q /s  and —Port’s or Poof’s from P gives a new spherical picture P7 

over 'P. Repeat the above modifications on all minimal 2-circles of P7 (if there are any). 

Now, if Ci is a minimal 2-circle of P7, then C{ is also a 2-circle of P. Since Ci is not 

minimal, we can suppose that C, is of the form as illustrated in Fig. 6.2 (and hence, the 

2-circles C j l1 C j 3i •••, C j  are minimal in P). Thus, in P7, Ci  together with its interior 

subpicture has the form as illustrated in Fig. 6.5.

J a,

Fig. 6.5

Thus, after the modification on Ci we obtain a geometric configuration similar to Fig. 6.4 

except that the spherical subpicture Qj now is the spherical subpicture Qt- of the form as 

illustrated in Fig. 6.6.
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Fig. 6.6

We may repeat the modifications and finally we arrive at a spherical picture Qg+i 

of the form as illustrated in Fig. 6.7, where we suppose that Cit , • • •, Cih are all the 

^-circles bounding Tg+i, and each Dffc (1 < k < h) is D/fc or D/fc according to whether Cik 

is outward directed or inward directed.

Fig. 6.7

Thus, we see that P is equivalent to a spherical picture P* which is a collection of

(i) q spherical subpictures of the form Q  = c*Pd- * (1 <  * < <?) where Pp.^ is as defined 

in Fig. 6.1, £/, are certain words on x 0 U {£}, and Ci = ±1;

(ii) q spherical subpictures of the form (1 < i < q) where V{ are certain words on 

*o U {£}; and

(iii) a spherical picture Q?+i consisting of Tg+i and some D ,’s or D,-’s (only one of each 

this pair) if C, bounds Tq+i, 1 < i < q.

Thus, by Lemma 1.3.4 we have

vv , x ^ x > ( r ) l/p„,A'„(l(2 i)+ ’/p 0ix „ ( ^ + i ) + E  v p ,x „ u x , ( c -)-
t=i t'=i
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Let £{ =  0 or 1 according to whether or not Ct bounds Tg+i. Then A(Qg+1) < 

n q+1 +  Yli=zi (1 — ei)b6$jj(mi). Also, for each 1 < i < q, if Ci is minimal, then A(Qt) <

n ‘ ^  Q  1S no  ̂minimal, say as depicted in Fig. 6.2, then £jt =  1 (1 < / <  a t),

and

A(Qi) < rii + bS^irrii) +  ^  ^jibS^m^).
i=i

We observe that, for all 1 < / < a,-, S^^rn^)  could not be counted elsewhere for

any another A(Q;t) with 1 < k < q and k ^  i , ji. Moreover, by Lemma 6.1.1,

vv , x 0u x S c ') =  Vv \ , X a{¥D- t] -  8u ^  ^  -?)• Now-

i=l 1 <•<<?
a,=0

+  £  {!p0 v 0(ni+M « w + E £» MIS(m»))
’ / = 1aj>0

- ^PoxS X
l<*<qa,=0

1<«<<? 1=1 
a t> 0

By the above observation, we have

Hence,

1 <1 <q /=1 1 = 1«i>0

X ^ , . x „«10 <  ^ , x . ( X ( » . ' + M > . ) ) )
t = l 1 <i <qoti=0

+8VoXS X  (n .-+ M $ (m .-))+ X * « $ (m .-)) -

Moreover,

1 <> <q t = 1
ai>0

 ̂ + X(! -  eOM$(™<))-
t = l

Thus,

VCP ,A ’0uA ’, ( 1P) S  ^-PoXJ X («;+W$(m.)))
1 <t <q  
a,= 0
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1=1 1=1 t=l

— SV 0 X 0(n — m + 2W ^|(m)) +  < ^ (ra )

as required. □

Theorem 6.1.3 can be generalized as follows. Let t  be a finite set such that, for each 

t £ t, there are a pair of finitely presented subgroups Ht and Ht of Go together with an 

isomorphism 7* : Ht — > Ht. For each t £ t, choose a finite set a y>t = {ay,t : y £ y t} of 

words on x 0 representing a generating set of Ht . Let aVtt =  {uy,t : y £ y t} be such that for 

each y £ y t, ay}t represents the image under 71 of aVit for each y £ y t . Let 'Ht =  (y^  s t) 

be a finite presentation for Ht under the map yt 1— >• ayj  (y £ y t, t £ t). The H N N -  

extension of the base group Go with stable letters t £ t  and associated subgroups Ht, Ht 

(t £ t ) has the following presentation (see [Co] for reference)

Q = (x0, t ; r 0, t~laytttd~̂ t {y £ y t, t £ t)).

For each t £ £, we let X t = {P5t,< : St £ s*} to be the set of spherical pictures over 

Q  as we defined in Fig.6.1. Since in any spherical picture P over Q, each pair of t-circles 

can not meet, thus, by an analysis of the proof of Theorem 6.1.2 (by taking account of 

^-circles instead of single 2-circles) we have

T h eo rem  6.1.4 (i) The set X  = Xo  U (Utei X t) generates 7r2(Q).

(ii) Suppose </>: N — > R+ is a subnegative function satisfying

(n ) ^  71 £ N, t £ t.

Then

C orollary  6.1.5 I f  Y  and — n@, t £ t, for some real numbers a  > 0
r  0 0  t V t

and /3 > 1, then



We can use Theorem 6.1.4 for split extensions of the form Go F , where F  is a free 

group of finite rank, i.e. Go x <f> F  is also the HNN-extension  of the base group Go with 

stable letters a free generating set t  of F  and associated subgroup Go- Thus, we have the 

following corollary.

Corollary 6.1.6 Suppose

Q = (x0, £; r 0, t~lxt~l \~ f  (t € t, x e  «o))

is a presentation for Go Xj, F, where Xxt are words on x 0 representing <j>i{x) (t £ t,

x £ x 0). I f X  is a finite set of generating pictures for 7r2(Q ), then

SQ„X -

In particular, by using the facts that 5}$ ^  n t ,  5%1 X n2 (m > 3), and 4V ^  n2 (q >

1) we have the following (for the case of the groups Z2 F  we will have particular

discussion in Chapter 7).

Corollary 6.1.7 The following inequalities are true.

0) -  n3>

(iO 4 (m > 4)-

6.1.3 Amalgamated free products

Let Gi be another group of type F3 finitely presented by "Pi = (*i; r\).  Suppose that H  

and H  are finitely presented subgroups of Go and G\ respectively such that there is an 

isomorphism 7 : H  — > H. We still use the notations y , a, ay, a, and FL as defined 

in the previous subsection except that, here a is a finite set of words on X\.

The amalgamated free product G = Go *h G\ of Go and G\ with associated subgroups 

H  and H  is then finitely presented by

V  =  (*o, * 1 ; r 0, r u a 0),

where a 0 = {aya~l : y £ y).

Consider the presentation
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P* = (*o, * 1, t; r 0, i"i, a )

where a  = {t~layta~l \ y £ y}. Then P* is a presentation for the H N N -ex tension G* 

of the free product Go * G\ (presented by P 0 * P \  =  (*o, * 1; r 0, f i ) )  with associated 

subgroups H  and H. Let X q  and X \  be two finite sets of generating pictures for n2{Po) 

and (̂'P1) respectively, and let X t — {P,4,f : A £ a} be the set of spherical pictures 

over P* obtained as in Fig. 6.1. Let X * =  X 0 U X i U X t. Then X * generates 7r2(P*). 

By Theorem 6.1.3 and Theorem 5.1.5 we have

5v ' , x '  -  ^ p , .V o.x 0uX , ( ^ p J  -  ^ V u x S ^ r ) }  ■

As remarked in [BaPr], each spherical picture P over P  can be converted to a spherical 

picture P* over P* as follows:

(a) for each arc labelled by an element x £ U x f 1 replace it by three parallel arcs 

labelled by 2_1,x ,2 respectively;

(b) if, while reading around a disc we encounter two successive arcs labelled by t and 

2-1 , then perform a bridge move to delete them;

(c) remove all floating circles.

4(a):  1-
yj

E xam ple 6 .1.8 Let Go = Z6 © Z2, G\ = Z9 © Z4 with presentations

Po = (a, 6; [a, 6], a6, 62), and P \  =  (c, d; [c, d], c9, d4)

, — 2
respectively. If H  and H  are the subgroups of Go and Gi generated by {a2, 6} and {c3, d }

respectively, then the mapping

7 : a2 i— > c3, 6 i— > d2 

induces an isomorphism from H  to H, and

P  = (a, 6, c, d; [a, 6], [c, d], a6, 62, c9, d4, a2c-3, 6d-2) 

is a presentation for Go *// Gi.
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Let

V* =  (a, b, c, d, [a, 6], [c, d], a6, 62, c9, d4, £_1a2£c~3, t~lbtd~2),

and consider the following conversion (as shown in Fig. 6 .8) of a spherical picture P over 

V  to a spherical picture P* over V*. (Since the labels in the bottom half are in {c, d}, 

the conversion is only applied on the top half.)

r

L

P:

L

U _

L
Fig. 6.8

Now we let Y t be the set obtained from X t by rubbing of all £-arcs. and consider 

a spherical picture P over 'P. Let P* be the picture over P* converted from P by the 

above operations (a), (b) and (c). Suppose P* has q ^-circles Ci, • • •, Cq say, for some 

natural number q. Then as we did in the proof of Theorem 6.1.2 P* is divided into q +  1
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subpictures, say Ti, T2, • • • , ,  Tg+i, over P 0 * P 1 plus these q 2-circles. Rubbing off all 

2-arcs of P* recovers the picture P and this has no affect on the q +  1 subpictures Ti, 

T2, • • •», Tg+i. Using broken arcs for 2-arcs of P* in P gives q circles • • •, in P 

consisting of these broken arcs and ayay-discs (y € y)  in 1 : 1 correspondence with the 

2-circles C\, • • •, Cq of P*. We call these circles the /^-circles. Also, if a 2-circle Ci say, 

of P* is inward (resp. outward) directed then we say that the corresponding 2^°l-circle 

C}0) of P is also inward (resp. outward) directed as illustrated in Fig. 6.9. In particular, 

all elements of Y t have a single (inward directed) 2 0̂l-circle.

Fig. 6.9

We now can proceed with modifications for each ^ -c irc le  as shown in Figs. 6.4- 6.7, 

where the 2-circles are replaced by the corresponding 2(°)-circles. Thus, by taking account 

of 2(°)-circles and the subpictures Ti, T2, • • •, , T9+i and following the proof of Theorem 

6.1.2 we obtain the following theorem.

T heorem  6.1.9 (i) The set X  = Xo  U X i L i y <  generates n ^ P ) .

(ii) We have

ST , X  -  m ax{ ?'Po,X0(3? h ’ ^ P „ x t (^ h )}  ■

In particular, i fP o  and P i  are both aspherical, then

x(2) ^  .dP  X  ±  dW

and i fP o  and P \  are both word hyperbolic, then

SV , X  -  max ^V x ,X x} •
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R em ark s  6 .1.10 (i) People could not obtain results similar to our Theorems 6.1.3

and 6.1.9 for the first order Dehn functions. For example, Miller [Mi] proved that 

there is a finitely presented group Go which has unsolvable word problem and can 

be obtained from a finitely generated free group by applying three successive H N  N-  

extensions, where the associated subgroups are finitely generated free groups. Thus, 

is faster than any recursive function since Go has unsolvable word problem.

(ii) As with Theorem 6.1.4, Theorem 6.1.9 can be extended to the case where there is 

a finite set t  such that for each t £ t  there are a pair of isomorphic subgroups 

Ht (finitely presented by 'Ht = (y t\ s t) say,) and Ht of Go and G\ respectively. 

The extended amalgamated free product of Go and G\ with associated subgroups 

{Ht , Ht', t G t } has the presentation

Q = (x0, Xu r 0, r u ay,ta~l ( y e y t, t e  t)).

One then can obtain

(1) The set X  = Xo  U X \  U (Ut€^Vf) generates 7r2( Q ) .

(2) Suppose (j): N — > is a subnegative function satisfying

^  (n) ^  <̂ (n )i ft € N, t € t .

Then

SQ ,X  -  max{^P 0,X'„(4’)’ ^ T u X S t ) } -

(iii) The approaches developed in this section could be further extended to arbitrary 

graphs of groups.

6.2 Split extensions

6.2.1 Upper bounds in general

Let K  and H  be groups of type F3 finitely presented by presentations PL =  (x ; r )  and 

K. = ( t ; s) respectively. Let
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<f>: K — ► Aut(H)

be a  homomorphism. For each k £ K,  we write <f>k instead of 4>(k). Consider the split 

extension G =  H  K  defined by the finite presentation

P  = (*, t  ;r, s, a ),

where for simplicity we require a  = x £ x ,  t £ t  U with Xxt a word on

;c representing the element of G('H) for each pair x £ x ,  t £ t  U t ~ l . We point out 

that the presentation P  chosen for H  >4̂, K  is not standard. The standard one is of the 

form
V  =  ( x ,  t ; r, s, a'),

where a ' = {t~lx t \~ l  : t £ £, 1 6 *}. The reason we choose P  here is for the simplicity 

of constructing the pictures D[/)X over P  as illustrated in Fig. 6.10 below.

When K  is a free group of finite rank, we already have obtained an upper bound for 

H K  in Theorem 6.1.6. Here, we will consider the general case.

Since t~1x~1t =  Ax/  in G for each pair x £ x  and t £ t  U i -1 , we let Ax-i* = A”/ .  For 

any word W  = X\X2 • ■ • x^ on x (xi £ x  U * _1, 1 < i < k) and each t £ t  U £-1 , we have 

in G that
t  W t  — AXljAx2<' 1 * X x ^f.

Moreover, for any word U = <1̂ 2 • - ' t m o n t  (tj £ t u t -1 , 1 < j  < m) and each a: G *Ua;-1, 

we inductively define a word denoted \ xu on x  such that Axjj =  U~1xU  in G as follows. 

When m = 1, then Axu = Xxtl. Suppose that we have defined word Axtl...tm_1 =  X\ • • • 

on x  (X{ £ x  U * _1, 1 < i < k) which is equal to ^L iA xt1...tm_2tm_i in G. Then we define

AxU — Axt\—tm ~  AritmAX2̂m • • • AXktm

which is equal to t ^ \ xtl...trn_l tm in G. This corresponds to a picture denoted B>t/iX over 

P  as illustrated in Fig. 6.10. We let au,x he the maximum disc number of the columns 

of D[/)X.
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Fig. 6.10

Let G* be the group defined by the subpresentation

V* = (x , t ; 7*, a )

of 'P. Let Go =  Ht = Ht = H  (t 6 t). We also have the isomorphism 7* : Ht — > Ht 

defined by fa. Then G* is the //./V./V-extension of the base group H  with stable letters 

t £ t  and associated subgroup H.

Let s 1* be the set of all cyclic permutations of s U s -1. For each 5  6  say

S  = t i t2 • • • F 1, t{ £ t U t~ l , £{ =  ±1, * =  1, 2, • • •, m.

Then faxfa2 • • • famf a X = fa, the identity of Aut(H).  Thus, for each x £ x ,  the word 

Ut~1xtU~1x~1 represents the identity of G*, where U = t \ t2 ' ' ' t m. But t~lxt  = Xxt in 

G*, so Xxt = U~lxU = Xxu in G*. Hence Xxt = Xxy  in H  (since Xxt and Xxu are words 

on * and G* is an //WiV-extension of H). So we may choose a picture over 'H 

with boundary label XxtX~y. We then have a spherical picture Q5tX over V  of the form 

depicted as in the Fig. 6.11. We then let Z  =  x G *, S  € s*1}. Clearly, Z  is finite.
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Fig. 6.11

Referring to §6.1, for each R r and each t 6 £, we have a picture Frj

over H, as shown in Fig. 6.12. We then let Y  =  {IP/*,* : R  £ r ,  t £ t}.

- R

Fig. 6.12

Let X r  be a set of generating pictures of the Z/f-module 7r2(/H), and let X k  be a 

set of generating pictures of the Z/f-module 7r2(/C). Let

x = x h \ j x k u y u z ,  x *  = x h \j y ,

and let

We then let

and let

s* = {U : U a word on t with Ut 1 £ s11 for some t 6 t  U t  1}.

b = max{,4(Pfl,0 : R  6 r ,  t e t},
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a0 =  max{A(IHIt/)X) : U € «*, x G iU ® '1}, ai =  max{>t(D[/,x) : [/€«* , xG « U i  1},

a2 =  max{fl[/)X : U 6 s*, x  € * U * -1}.

(Recall that au,x is the maximum disc number of the columns of D[/)X in Fig. 6.10.)

P ro p o sitio n  6.2.1 (i) The set X* generates the ZG*-module ir2('P*) and the set X

generates the ZG-module n2(V).

(ii) Let f  be an element of ^ ( P )  with =  n, and let P be a minimal picture over 

V  representing £. Then if a2 > 1,

VV ,X ( 0  -  ^H,XH(2b (̂/H^n + (ai ”  l )na2) + n + aonai) + 5jcfX * (n) + na2>

and if a2 = 1, then

^ p , x ( 0  -  ^h ,x H(2b^'h(n + (ai ~ 1)^2) + a°n2 + n) + ^jc ,xK(n) + 71,2•

From this proposition we then have the following theorem.

T h eo rem  6.2.2 If a2 > 1 then

and if a2 — 1 then

^T>yX (n ) -  + 4 c ,X * (n ) + n2’

/o r a// n £ N.

We remark that (i) of Proposition 6.2.1 has also been proved in [BoPr].

Proof of Proposition 6.2.1. Let n be any positive integer and let P be a minimal 

spherical picture over 'P with A(P) = n. Let n0, ni, m  be the numbers of r-, s-, a-discs 

in P respectively. We will follow the proof of Proposition 5.1.2.

Let P^1) be the configuration obtained from P by removing all a;-arcs. Two s-discs of 

P will be said to be in the same 1-component of P if they lie in the same component of 

P*1). If A, A' are two s-discs lying in the same 1-component then they can be connected 

by a path p of t-arcs and (s U  a)-discs. Regard P ^  as a graph, then p is just a path in 

this graph. It will be assumed that a maximal forest $  in P^1) has been chosen, and that 

the paths connecting s-discs are geodesics in 4>.
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Consider a 1-component Q of P containing nn s-discs and mn a-discs. Let Ao, A i, • • •, 

A* be the s-discs in this 1-component and let p\ (A =  0, 1, • • •, k) be the (geodesic) path 

in $  from A0 to A*. Let dx be the number of a-discs in p\. We may assume that

0 =  do =  d \  — ’ ’ ’ — d j  ^  dj+i ^  d/c.

We will show that we can modify P modulo -pictures so that all the d \’s are 0.

Suppose j  < k (otherwise no modifications are necessary) and consider Aj+i. Then 

the discs of pj+i together with their incident arcs give a subpicture Q of IP, which has the 

form as shown in Fig. 6.13 where the disc 0  is an a-disc.

Fig. 6.13

Modulo the ^-picture (Q>5)X (where S = Ut~l € s tt) we may move Aj+i nearer Ao as 

indicated in Fig. 6.14. This gives a new picture P7. Let fV is the geometric configuration 

obtained from (1 by the above operation. A maximal forest 4>7 for P7̂  arises from the 

maximal forest 4> of P^1) as follows. Remove all ai-arcs of P' to obtain P7̂ .  Since the 

above operation has affect only on the 1-component Q, of P, thus, P7̂  =  (P^1) — fi) U ST.

Now, if T  C $  is the maximal tree of ft, then pj+i is a path in T. Let T' be the tree

obtained from T  by replacing pj+i with p '+1 as illustrated in Fig. 6.15. Obviously, T' is 

a maximal tree for fi7. We then let $ 7 =  (4> — T) U T '. (Note that this operation may 

affect the distances from A0 to A \  (j + 1 < A < k).) This operation adds at most ai 

new a-discs and at most a0 r-discs to P, and eliminates one a-disc (the disc 0 ). So, the 

number of a-discs of fY is at most mn + — 1. Moreover, there still are n\ s-discs in P7.

We then get new geodesics p'x (A = 0, 1, , • • •, k ) with

d'x = 0 (0 < A <  j ) ,  d'j+1 = dj+1 -  1, d'x < dx + a2 -  1 {j +  1 < A < k).
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Fig. 6.15

We repeat the above procedure as often as is necessary to decrease dj+i to 0. Note 

that this requires at most m n operations. At this stage, the new picture has at most 

(ai — 1 )ma + rnu a-discs and aomn + n0 r-discs, and in this new picture the geodesic 

from A0 to Aj+2 will have length at most (a2 — l)m n 4- mn =  a2m a. Inductively, if 

this process requires at most al2m n operations for Aj+/+i, then since this increases the 

distance from Ao to Aj+/+2 hy at most (a2 — l)a l2m n, the process for A j+/+2 requires at 

most (a2 — l)al2m a + al2mn =  a2+lmn operations. We repeat the process successively for 

A j+2, • • *, A*, finally arriving (after at most

m n + a 2m n -\ h a2a 1m n = mn(l + a2 - f  h a2n *)

operations) at a picture Plt Now in Pi there will be a simple closed transverse path a  

such that the subpicture of Pi enclosed by a  consists precisely of the discs Ao, A i, • • •, A* 

and their incident arcs. By the same argument as in the proof of Proposition 5.1.2, the 

label on a  is then freely equivalent to the empty word, and so by bridge moves we can 

create a spherical picture Qi over K  inside a with discs A0, A i, • • •, A*.

We may carry out the above procedure for all the 1-components of P arriving (after 

at most
^^77in(l a2 -(- • * • -f- a2n ) < m (l cl2 a2x 1) 
a

operations) at a picture P* with the following properties:



(i) P* has spherical subpictures Bi, B2, • • •, Bg each of which is a picture over 1C, and 

where the total number of discs in Bi U B2 U • • • U Bg is n\]

(ii) The picture P** obtained from P* by removing all Bi, • • •, Bg is a picture over 'P* 

having at most m  -f (a\ —l)m (l + a2 + • • • +  a21-1) ot-discs and at most no + aom(l -f 

a2 +  • • • +  a j1-1) r-discs, i.e.

A(P ) ^  m no (ao T — l)m (l -|- a2 -(- • • • -\- a2l *).

Now, if a2 > 1, then 1 + a2 +  • • • + a21-1 < cl21, and so

m + no + («o + «i — l)m(l+a2H--+a21_1) — m+no+(ao+ai — l)ma2l.

Thus, we deduce from Lemma 1.3.4 that, if a2 > 1, then

n i
vV , x ( 0  ^  vV ,x(P**) + 4 c , X k^  + m a 2 

-  VV ,X *(^**)  + ^Sc,XA'(n i) +  m a2
Hi

< S^  (26<^(ra-|- («i — 1 )ma2l ) + m +no+(ao+«i — 1 )ma2l —m — {a\ — 1 )ma2l )

+&K.X K(n ' ) +mai'

(by Corollary 6.1.6 and Theorem 6.1.2)

=  6 ^  (0l ~  l ) ™ J 1) + n o +  aoma51) + ^ -  x K{n i) + m a 2

< ^  ~  l)na2) + n + a0na2)+^C  X K(n )~^na2-

n  i

If a2 =  1, then 1 + a2 -f • • • + a2l 1 = ni, and so

m + n0 + (ao + ai — l)m(l + « 2 -f * • • + a2l *) = m + n0 + («o + «i — l)mni.
Thus, we deduce from Lemma 1.3.4 that, if a2 =  1, then

VT , X ^ )  < ' / p , x ( p " )  +  ^)C,XK(n i) + mni

< V iX .(P**) +  +  m ” l

< ^(2bS^(m-\-(ai — l)m n i)+ m + n 0 + (ao + ai — l)m ni — m — (ai — l)m ni)

+tfc,X K(«i)+m”i
(by Corollary 6.1.6 and Theorem 6.1.2)

= X (ai — l)mni) + no +  a0m n i) + ^ -  ^ -^ (n ij+m ni  

— X  + (ai — l)n2) +  n -f «oa2) + ^ *  X K(n )~*”n2-
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This completes our proof. □

We point out that, as shown in the following example, sometimes the subpicture EDf/jX 

illustrated in Fig. 6.11 could be chosen more easily and a better upper bound can be 

obtained.

E xam ple 6.2.3 Let

V  — (3 7 i ,  X2, t \ , t2j [ x  1 , 372] ,  [^1 , ^ 2]? X^X2 *^1 i X2 X2 *^1 ^ ) )

be a (standard) presentation for the split extension Z2 Z2, where bath f a  and f a  are

given by the mapping:

x\ 1— y 371X2, x2 1— ► xix2.

Since we have in G(V')  that 37f =  x f lx \  and x2* =  XixJ ((i =  1, 2)), we can

change V'  to the presentation

*P — (*£l, X 2 i t \ , t2l [*̂ 1 i X 2 ], [^1, ^2] 5 *̂ l *̂ 2 *̂ 1 i X2 X 2 *̂T ">X\ X 2 X U X 2 X 2X ^  , (z —  1, 2))

for the group Z2 Z2. Now,

s* = {Si = t lt2t i l t21, S2 = t2t f 1t21t l , S3 = t f 1t21t i t2, S4 = t21t i t2t f l 

S5 = t2tit~1t f \  S6 = t i t21t21t2, S7 = t2lt f l t2ti, S8 = t f 1t2t 1t21},

and so

s* =  {Ui = t i t2t f l , U2 = t2t i l t21, U3 = t fH 2Hu U4 = t21t it2 

U§ — t2t 12^21, Ue = t i t21t21, Uj = t21t l 1t2, U8 = t i 1t2t\}.

Let V o  = (371, 372; [371, 372]), and V \  = (£1, t2\ [^i,^])- We now can construct 

(i = 1, 2, 1 < j  < 4) as illustrated in Fig. 6.16. (By symmetry, the pictures Q5JlXi,

i = 1, 2, 5 < j  < 8 can be obtained from Q5 -_4|Xj by replacing each arc labelled t 4 with

an arc labelled t2 and vice versa.) Applying the proof of Proposition 6.2.1 to this example 

we see that a0 = 0, a\ =  7 and a2 =  3. Thus, by the asphericities of V o  and V \  we have

4 1  z, r<0 +  0 +  n3" X 3".
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Fig. 6.16
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Chapter 7

Upper and lower bounds for Z Xa F

7.1 Preface of the chapter

In this chapter we focus on estimating the upper bounds and lower bounds of the par­

ticular split extensions of the form Z 2 where F  is a free group of finite rank freely

generated by t.

Since for each I € f, </>t- 6 AutifL2), fa can be identified to be a matrix Mt € GZ/2(Z), 

the general linear group of dimension 2 over Z. We will say that fa has eigenvalues a , (3 

if Mt has. In particular, if |£| = 1 then (j> is identified with a 2  x 2  matrix over Z. From 

Theorems 6.1.3 and 6.1.9 we see that the group Z 2 x ^ F  satisfies a quadratic second order 

isoperimetric inequality. We will improve this upper bound, and will also show that the 

second order Dehn function of such a group is not linear.

T heorem  7.1.1 Let (j>: F  — ► GL2(Z). Then

n ln n  X r< n*.

Moreover, if for some t E t, fa has eigenvalues ±1, then

^ 4 2V  ^ nt

and if for some t £ t, fa has finite order, then

6™.

This Theorem, in fact, is the combination of Propositions 7.2.5 and 7.3.2 below.
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In their paper [BrGe], Bridson and Gersten classified first order Dehn functions of 

groups Z2 Z, in terms of the automorphism <j> € GL2(Z) by using Theorem 5.5 of [Sc], 

as follows.

L em m a 7.1.2 (i) //</> has finite order, then Z2 xi^Z is quasi-isometric to Z3 and so

~  n2-

(ii) I f  the eigenvalues of are ±1 and (f> has infinite order, then Z2 Z is quasi­

isometric to the three dimensional integral Heisenberg group presented by

V i  =  (x , y, t ; xy  =  y x , =  xy, t~lyt =  y)

and sa ~  n3*

(iii) I f  the eigenvalues of cf> are not ±1, then Z2 Xj, Z is quasi-isometric to the group 

presented by
r 2 = (x, y , t ; xy = yx, t~ 'x t = x 2y, t~lyt =  xy) 

and so 4 ‘^ z  ~  2n.

By (i) of this lemma and Corollary 2.2.15 we have the following result.

P ro p o sitio n  7.1.3 Suppose that <f> 6 GL2{Z) has finite order. Then

4 ’L z  ~ n l -

7.2 Lower bounds

7.2.1 Some geometric techniques

Let Vo =  (*; «) be a finite presentation for a group Go of type F3. Suppose we have a 

split extension Go >4<t> F  presented by

V  = (*, t; s, t~lxt = aXtt (x £ t 6 i)),

where (1 6 1 G t) are words on *. Let a t = {dX)* : a: £ a?}, t £ t. For each word

VF = W (x)  on x  and each t G t, we will write <f>t(W) for W (a t) obtained from W (x )  by
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replacing each x £ x  with aX)*. As in §6.1, for each S  =  S(x )  £ s  and each t £ t, choose 

a picture St over P 0 with boundary (/>t{S). Moreover, for each t £ t  and each picture D 

over Po with discs A i, • • •, An labelled 5*1, • • •, S„n (Si £ s, £,• =  ±1, 1 < i < n) say, 

let D (dt) be the picture over P 0 obtained by replacing each arc labelled by x £ x  by a 

sequence of parallel arcs labelled by aXft, and replacing each disc A,- by the picture 

(1 < * < n). Then if W (x)  = x\ • • • xn (x{ £ x  U * _1, 1 < i < n) is the boundary label of 

D, W(&t) = aXut - - • aXriit is the boundary label of D(a*) respectively. We will write </>*(D) 

for D(df). We now construct a spherical picture Pd>(* over V  as depicted in Fig. 7.1, and 

we denote (Pd,<) by In particular, if D consists of a single disc labelled S  £ s, as 

before we then write instead of Pp,*, and let ($,t =  (Ps,t)-

Fig. 7.1

Now, for any positive integer m  and each t £ t, we further construct a spherical 

picture P ^  over P  as depicted in Fig. 7.2. We let ( P ^ )  =  Zff-
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- D

Fig. 7.2

Let X q be a finite set of generating pictures of 7r2( P 0)> and let

X }  =  {Ps.t : S  € 5, t £ t).

Then by Theorem 6 .1 .4X  = X 0U X t  is & finite set of generating pictures of 7r2( P ) .  We

have the following properties.

L em m a 7.2.1 (i) / /D  has discs labelled S[l , •••,  S„n, and a spray with labels

Ui(x), U2(x), •••,  Un(x), then
n

= ^ v t  £ t .
i—1

(ii) I f  Vo is aspherical, then 7r2(P ) is free on the elements £s,t, S  € .  s, t €  t .

(iii) //" P 0 Is aspherical and if 4>\{D) is stable for each 1 < i < m and some t £ t ,  then
m —1 m —1

vp,x(&)) = E  m m  = E  Am<t>K m ,
t = 0  t = 0

where W  is the boundary label of D.
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P roof. The argument (i) is a special case of Lemma 6.1.1.

The proof for (ii) is same as the proof of Lemma 5.2.5 by using Theorem 6.1.4.

To prove (iii) we note that

+  ' • * +  t™

By (i), for each 0 < i < m  — 1,

M tim  _
j = 1

There are no cancellations in this expression since $(D ) is stable. Moreover, because of 

the different powers of t we see that there also are not cancellations between EijVU 

and eikPUikistkj with 0 < i < I < m — 1, I < j  < ^4($(D)), and 1 < k  < j4($(D)). This 

proves (iii) by (ii). □

Note that A (P j^) =  A(D)+i4(0[”(D)) L(</>\(W)). Thus, we can use the idea in

Chapter 5 to obtain a lower bound for S p  as demonstrated in the following subsection.

7.2.2 Lower bounds for Z2 x Z

From now on, we let Go = Z2 be presented by Vo =  (x, y ; [x, y]). Note that Vo  is 

aspherical (for example, by Theorem 6.1.2).

Consider the split extension G\ = Z2 Z (the Heisenberg group) presented by

V i  =  (x, y, t\ xy = y x , t~l xt = x y , t~lyt =  y),

where the automorphism <f>i = fa is given by the mapping

xi— > xy, y i— > y.

By Theorem 6.1.4 and Lemma 7.2.1 we know that if X \  = {Pi} where Pi is the 

spherical picture illustrated in the Fig. 7.3, then X \  freely generates ^ ( V i ) .
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Fig. 7.3

If D is a picture over Po, the picture </>i(D) can be obtained as follows. For each x-arc 

of D, replace it by a pair of parallel arcs with total label xy, and replace each disc

x

by the following picture.

Then the picture </>i(D) has boundary label (f)\{W) where W  is the boundary label of D. 

Moreover, we have

.4(D) =  .4(0,(D)) =  AreaVi>(M W )) .  (7.1)

Let W  = x ay(3x~ay~P for any pair of positive integers a and f3. Then W  =  1 in Go- 

Let D be the picture illustrated in Fig. 7.4.
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Fig. 7.4

Since all discs in D are positively oriented, by (i) of Lemma 7.2.1 we see that O is stable 

and .4(B) =  a(3. By the construction of <̂ >i(B) for any picture B over Po, we see that if 

all discs in B are positively oriented, then all discs in <̂ >i(B) are also positively oriented. 

Thus, for all i £ N, all discs of ^ (B )  are positively oriented, and hence, <̂ >i(B) is stable. 

By (iii) of Lemma 7.2.1 and (7.1) we then have
m m

VV u X S & )  =  E  ^ _1(*>)) =  E  ^ (D) =  m ap.  (7.2)
t = l 1 = 1

Since <f>\ l (W) = (xy1 1)ay^(xyl !) ay &, we have

L(<j>\-l (W)) = 2 a + 2(3 + 2a{i -  1) =  2ai +  2(3,

and so
m m

A ( P ^ )  = 2A(D)+J2L(<j>i[-1(W)) = 2al3+YH2ai+2/3)=2aP+20m+am(m+l). (7.3)
1 =  1 t = l

P ro p o sitio n  7.2.2 For any positive integer n we have

SV l. x S 6n'> -  8nT-

1 2  1 
P roof. Let n be any positive integer and let a = [ns], (3 = [713], m =  [n^]. Then by

(7.3) we have
4(IPp^) < 2n3n3 -f 2n*n* +  n*nz(n* + 1) < 6n.

Since if <7 > 1 then [<r] > |<j, we have

Thus, by (7.2),

1 l n 1- 2  I Ia > -n3 R > - n 3 m > - n 3.
“  2 ’ H ~  2 ’ ~ 2
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and so

5T „ x S ^  *  g ""

as required. □

We now consider the split extension G2 =  Z2 xi^2 Z presented by 

V 2 =  (a;, y, t; xy = y x , f_1x* =  x2y, t~lyt =  xy),

where the automorphism (f>2 = fa is given by the mapping

x 1— ► x2y, y 1— ► xy.

By Lemmas 6.1.6 and 7.2.1 we know that if X 2 =  {^2} where P2 is the spherical 

picture defined in the Fig. 7.5, then X 2 freely generates tt2('P2).

Fig. 7.5

If D is a picture over the picture can be obtained as follows. For each x-arc

of D, replace it by three parallel arcs with total label x2y, for each y-arc of D, replace it 

by a pair of parallel arcs with total label xy, and replace each disc

by the following picture.
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Then the picture ^ (I^) has boundary label (f>i(W) where W  is the boundary label of D. 

Moreover, we have

A( D) = A (*(D )) =  AreaVo(<f>2{W)). (7.4)

Let Wa =  xayax~ay~a. Then W a = 1 in Go- We still let D be the picture as in Fig. 

7.4 (here we let {3 = a). Since all discs in D are positively oriented, as in the previous 

situation we see that for all 0 < i, &(D) is stable. Thus, by (iii) of Lemma 7.2.1 and

(7.4) we have
m m

(€£!’) =  =  E ^4(D ) =  m a \  (7.5)
t=l :=1

Let U be any word on {x, t/}, and let LX(U), Ly(U) denote the numbers of occurrences 

of x±1 and y±l in U respectively. Then L(U) =  LX(U) -f Ly(U). By the (/^-action, we 

have Lx(<h(U)) = 2LX(U) + Ly(U), and Ly{cj>2{U)) = LX(U) +  Ly(U). So,

L (M U ))  =  L M 2{U)) + Ly(M U ))  = 3LX(U) +  2Ly(U) < 3L(U).

Inductively, we thus have L{<f>'2(U)) < VL{U). In particular, we have

L(<P2{Wa)) < 4 x 3*a  for all i <E N,

and hence
m m

= 2 /4 (D )+ E  H f i ' i W ) )  < 2a2+ E ( 4  • 3 - ‘a) =  2a2+2a(3m- l ) .  (7.6)
1 = 1  1 = 1

P ro p o sitio n  7.2.3 For any integer n > 32 we have

-  ^ n l°g3«-

P roof. Let n be any positive integer and let a = [n^], m  =  [log3n^]. Then by (7.6) we 

have
4(Pd™)) < 2(n7)2 +  2n i  =  2n + 2n =  4n.

Also, if log3n 2 > 1, i.e. if n > 32, then
1 i 1 ia  > - n 2, m > - lo g 3n2.

Thus, by (7.5), 1  ̂ 1

VV 2, X 2(f ’lIt)  > g"l°g3«* =  ^gn l°g3n

and so

SV 2, x S Zn  ̂ -  ^ n l°g3n

as required. □
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7.2.3 Lower bounds for Z2 F

We now consider the presentation

P  =  (x, y , £; [x, j/], t lxt =  a*,*, t 1yt = aVft (t £ *))

for the group Z2 F . Let X  = {P[x,y],< : t € t}. Then X  generates 7t2(P ) by Theorem

6.2.1.

P ro p o sitio n  7.2.4 Let t be any element of t, and let

T t =  (x, y, t\ [x, y], t~lxt  =  axM t~lyt = aVti)

be a presentation for Z2 Z. Then X t =  {P[x)y],t} generates 7r2( P f) and

sv ,x  -  sv,,xr

P roof. By Theorem 6.2.1 it is clear that X t =  {P[x,y],t} generates 7r2( P f).

Note that G (P) is the i/AW-extension of the base group (j(P*) with associated 

subgroup G(Vo). Therefore, there is a natural embedding ip : G(Vt)  — > G{fP) given by 

the mapping

ip : x 1— y x, y 1— >y, t 1— > t.

Since ip is injective, Theorem 1.3 of [Prl] implies that the induced homomorphism ip* : 

7T2(Pt) — ► ^ ( P )  given by the mapping

(P)-pt 1— > (P)-p (P is a spherical picture over P*)

is also an embedding. In our situation, the injectiveness of can be proved directly 

as follows. First, ip induces an embedding (also denoted ip) ip : ZG(7*t) — ► Z(7(P) of 

group rings. Let P be any spherical picture over P* such that (P) 6 kerip*. Suppose in 

7r2(P*) we have m
(P) P t = l b €iWi{P[x,y],t)'Pt ,

i=l

where £,■ = ±1, £ G (V t), 1 < i < r. Then
m r

=  o-
i=i *=1

Since 7r2(P ) is free on basis {(P[x,y],t) : t £ t}  by Lemma 7.2.1, we have
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' £ e i t l > ( W i )  =  i l > ( E e i W i )  =  0 .
t=l t=l

But ^  is injective, so E S a £{Wi = 0, and hence, (P) =  0. Thus, is injective.

Let n be any positive integer, and let Q be a spherical picture over P* with >1(Q) =  n. 

Then Q is also a picture over P . Suppose we have

(Q )p t =
t — 1

in 7r2(P t) , where t/, E G{Vt), e, = ±1, 1 < i < r, and r =  V pt x t(Q)- Then in 7r2(P )  

we have r
(Q>-p= * .((q >t> ,)=

i = 1

By Lemma 7.2.1, 7r2(P )  is a free module with basis X .  So, this expression is the unique 

one for (Q) in 7r2(P ). Hence, we have

l/p ,x (Q) =  V p ^ x ^ Q ) ,

and so

max{V^p X (Q) : Q a spherical picture over P* with -A(Q) < n}

=  max{V^p : Q a spherical picture over P* with A(Q) < n}

=  &V u X ^

as required. □

The following Proposition now is true by Lemma 7.1.2 and the above proposition. 

P ro p o sitio n  7.2.5 We have

^ n l n n -

Moreover, if for some t E t, fa has eigenvalues ±1,  then 

and if for some t E t, fa has finite order then

SV»*F t  n > .
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7.3 Upper bounds

7.3.1 Upper bounds for groups Z2 F

By Lemma 7.1.2, the upper bounds of the second order Dehn functions of groups Z 2 x^Z  

can be obtained by establishing the upper bounds of the second order Dehn functions 

of groups Z2 x^. Z (i = 1, 2) defined in §7.2.2. But, we need to consider the general 

situation for the groups G =  Z2 x^ F.

For each t £ t, we let Mt G GL2(Z) be the matrix corresponding to fa of the form

( il i* \Mt =  , i t , j t ,k u ht G Z
\  k  h t )

such that itht —j tkt =  ±1. Then the split extension Z2 x ^ F  has the standard presentation

V  = ( x , y , t ; xy = yx, t~lxt = x tlykt, t~lyt = xilyht (t G t))-

However, in general this presentation is not adequate for our purposes.

For any word W  on {x, y], we use expx(W) and expy(W) to denote the exponent 

sum of x and y in W  respectively. By Corollary N4 of [MRS, Theorem 3.9], there is 

an epimorphism from the automorphism group of the free group of rank 2 on { i, y} to 

GL2(Z), i.e., for each Mt € GL2(Z), there is an automorphism of the free group on {a;, y} 

given by

x\— >Ut, y i— >Vt

for some word Ut, Vi on {a:, y} with

/  expx(Ut) expx(Vt) \
I = M t -

\ e x p y{Ut) expyiVt))

Thus, Ut, Vt freely generate the free group on {x, y} and

V '  =  (x, y, t ; xy  = yx, t~lxt — Ut, t~lyt =  Vt (t G t))

is also a presentation for G. Now, by a theorem of Nielsen [MRS, Theorem 3.9], [Ut, Vt] 

is freely conjugate to [x, y] or [a;, y]-1 (this is called the commutator-generator property 

in [HiPr]). Thus, for each t G  t, there is a picture S* over 'Po with one [x, y]-disc and 

boundary label [Ut, Vt\. This is the key point for the approach below to establish our 

upper bound.
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Let <j>'t be the mapping : x \— > Ut, y ■— > Vt, t 6 t. For any picture D over P 0, as in 

§7.2.1, we have a picture $(D ) over Po obtained from D by replacing each [x, y]±1-disc 

with ±Sf and replacing each arc labelled x (resp. y) with a sequence of parallel arcs 

labelled Ut (resp. Vt). Thus, we can construct a spherical picture Po,t over 'P as in Fig. 

7.1 with i4(Po,t) =  2/1(0). In particular, we have the spherical picture P[x,y],< over P ' . 

By Theorem 6.1.4, the set X  = {P[X|y],t : t G t}  generates n2(P').

E xam ple  7.3.1 Let G =  Z2 F  where F  is a free group of rank 2 on t\, t2, and where

The standard presentation for G is

V  =  ( x ,y , tu t2\ xy  = yx, x h = xy 2, ytl = x y , x t2 =  x 2y, y l2 =  x3y2).

Note that xy2, xy freely generate the free group on {x, y}. So we may take Utl = xy2 

and Vti =  xy. However, since x2y, x3y2 do not satisfy the commutator-generator property 

(see Fig. 7.7 below) they do not freely generate the free group on {x , y}. Consider the 

following procedure:

x, y) — > (y, x) 

y, x) — >> (yx, x) 

y x , x) — > (x, yx) 

x , yx) — > (x y x , yx) 

xyx, yx) — y (yx, xyx)  

yx, xyx) — y (yx2yx, xyx).

Let Ut2 = xyx, Vt2 = yx2yx. Then Ut2, Vt2 freely generate the free group on {a:, y}. Since

/  expx(Ut2) expx(Vi2) \
= Mt2,

\ e x p y ( U t2) expy(Vt2) J

the modified presentation for G is

V '= (x ,  y, t u t2’, xy = yx, xu = xy2, yh = xy, x i2 = xyx, y*2 = yx2yx).

The generating pictures for ^ 2(P') are
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Fig. 7.6

Note that the generating pictures for would be

Fig. 7.7

In the second of these the number of [a:, y]-discs is too big for our purposes.

P ro p o sitio n  7.3.2 We have

1  n

Proof. Let n be any positive integer and let P be any arbitrary spherical picture over 

V  containing n discs. Since Sj^{q) di q2, we may suppose that 6$p (q) < aq2 for some 

constant a > 1 and all q € N.

We argue that
Vjyi < a n *

by induction on the number m of t-circles of P.
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If m =  0 then P is a spherical picture over 'Pq and hence equivalent to the empty
_ 3

picture as 'Po is aspherical. Thus V*pi j^-(P) =  0 < an*.

Let m > 1. Suppose P contains at least one trivial t-circle, say a 2-circle C. Then P 

consists of two spherical subpictures Pi, P2 and C :

A ------^

where the numbers of 2-circles of Pi and P2 are less that m. Let rii, n2 be the disc 

numbers of Pi and P2 respectively. Thus, by induction hypothesis and Lemma 1.3.4 we 

have

3 3

< an{ +  anl
3 3

< a(n i +  n2)a =  an  2.

Suppose P contains only non-trivial 2-circles. We take a minimal one, say C, a 2-circle 

in P for some 2 £ 2 consisting of q 2-arcs and q discs for some positive integer q. Let 

D i, 0 2 be the subpictures lying just inside and outside C with boundary label Wi and 

W2, words on {z, y}, respectively.

Suppose C is outward directed as illustrated in Fig. 7.8. Then L(W \ ) =  q. We can 

assume that Di contains Area'po(Wi) 5: a q2 discs. Otherwise, replace Di by a picture 

DJl over P 0 containing Area'p^(W\) discs and having the same boundary label W\. Then 

the consequent picture is equivalent to P by the asphericity of P 0- Now, P is equivalent 

to two spherical pictures Pi and Pj^ t for some word U on {x, y, 2} also as shown in Fig.

7.8.
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t

Fig. 7.8

By Lemma 1.3.4 we then have jĵ -(P) < jf (P i)  +  con"

struction of Pd^* and Lemma 7.2.1, V̂ p> ^(Pd,,*) < < m infag2, n — q}. Thus,

j4(Pi) — n — q and Pi contains m — 1 t-circles. Hence, by induction hypothesis we have

aq2 + o(n — q) 2 if aq2 < n — q

n — q + a(n — q)2 if aq2 > n — q (but Area'p^(W\) < n — q).

If aq2 < n — q, then

V'p' x ( p) -  '

Vp' ^ ( P )  < a(n -  q)* + aqA

= an  2 ( 1 — —

< a n U
n /  \ n

(since (n — <7)2 > <^<7)
3

< a n 2.

If aq2 > n — q, then

V p '^ -(P ) < a ( n - q ) 2 + n - q

= a n l ( ( 1 _ I ) l +  ! i z 3?'
V\ nJ a n 2 ,

3= a n 2 Cl -  - V  | 1 -  Qg ~ ( n ~ 9 ) M
\ nJ  I an  /
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3 /, ^  2< cm2 ( 1 -----
n

* /  _  q ( a - a i ) \  

I an J

(since (n — q)2 < a 2q)
3

< a n 2.

We then have

^ P ' ~ a n 2.

It remains to consider the situation that C is inward directed as illustrated in Fig.

7.9.

■;(D)v.\

V

tV . 
B,t*

Fig. 7.9

Thus, we have L(W2) = q. Let D be a picture over Po with boundary label W2 and 

A(D) =  Area(W2) < aq2. Thus, P is equivalent to the sum of three spherical pictures 

P2, P^*, and By for some word V on {x, y, t}. (This is also illustrated in Fig.7.9.) Since 

B is a spherical picture over Po, P is equivalent to the empty picture by the asphericity 

of P 0. By the Taction we have

Area(W\) = Area(W2) = y4(D) =  j4($(D)) < A(Di).

Hence, j4(P2) < n — q and P2 contains m —1 Tcircles. Thus, as we did in the first situation
3

we also have that V*p> j^-(P) < an? as required. □

We remark that there are two key points in the above approach to the estimation of 

the upper bound, i.e. the asphericity of P 0 and the commutator-generator property of 

the free group of rank 2. We then have difficulty to extend this approach to the groups 

of the form Zm x# F  for m  > 2 without these two properties.
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