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STATEMENT

Chapter 1 covers basic materials such as two-complexes, pictures over a two-complexes,
group presentations, monoid presentations, monoid pictures, (first order) Dehn functions
of groups and monoids. Most of these are standard and can be found, for example, in

[All, BoPr, ECHLPT, Jo, Ki, Mo, NaPr, Prl, Pr2, Pr3] as indicated.

Chapter 2 is my own work which had been done before the joint paper [ABBPW1]
with Alonso, Bogley, Burton and Pride and the results in this chapter were then extended

in [ABBPW1].
§3.1 is joint work with S. J. Pride, and §3.2, §3.3 are my own work.
Chapters 4, 6, 7 are my own work.

Chapter 5 is joint work with Pride which will appear in a joint paper with Alonso,

Bogley, Burton and Pride [ABBPW2] as Sections 5, 6.
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ABSTRACT

The main work of this thesis starts with Chapter 2.

Chapter 2 concerns the second homotopy module of a finitely presented group of type
F;5. We define the second higher order Dehn functions by considering the comparison
between the “volume” and the “surface area” of nullhomotopies of spherical maps into
CW complexes. We show that the second order Dehn function of groups of type F3 is an

invariant of quasi-isometry type.

In Chapter 3, we translate the concept of the second order Dehn function of finite
group presentations to F'DT monoid presentations by introducing a well-placed retraction
relation between any two two-complexes and showing some invariance results. We show
that the second order Dehn function of an F'DT monoid at a fixed element is an invariant

of isomorphism type.

In Chapters 4, we give upper bounds for asynchronously combable groups with de-
parture function.

In Chapter 5, we first give the general upper bounds for direct products. Then we
concentrate on the calculations for the optimal bounds of second order Dehn functions of
direct products of the form Gy x F' where the second order Dehn function of Gy is bounded
by a linear function and F is a free group of finite rank. Some interesting examples are
given.

In Chapters 6, we carry out calculations for the upper bounds of second order Dehn
functions of H N N-extensions, amalgamated free products, and split extensions, and
finally in Chapter 7, some nice upper bounds as well as lower bounds for the second order

Dehn functions of groups of the form Z2 x4 F' are established where F is a free group of

finite rank.
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NOTATIONS

Let G and H be groups, Z, N, and R* be the sets of all integers,
all natural numbers, and all non-negative real numbers respectively
Gx H the direct product
G+ H the free product of G and H
G x4 H  split extension of G by H with H-action ¢
G>H G is isomorphic to H

G/K the quotient group of G by a normal subgroup K
G the integral group ring

J(Gl ) the first order Dehn function of G

Jg ) the second order Dehn function of G

G’ derived group (commutator subgroup) of G

[a,b] the commutator of a and b (= aba~'b7', a, b € G)
ab the conjugate of a by bin G (= b71ab, a, b€ G)
z the free abelian group of rank n

If P =< &;r > is a presentation, and if W is a word on
F(z) the free group generated by «
G(P) the group defined by P
m1(P) the first homotopy group

m2(P) the second homotopy module
(W] the free equivalence class containing W
w the element of G(P) represented by W

L(W) the word length of W
Let IP be a picture over P, X be a set of generating set of my(P)
oP the boundary of P

A(P) the area (the disc number) of P

<P> the equivalence class containing P

Vp x(P) the volume of (P)

55;3) the first order Dehn function of P

s the second order Dehn function of P with respect to X

P.X
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IfI' = (v, €) is a graph and D = (I; Z) is a two-complex,
and X is a set of closed paths in T’

L the initial function with domain e and range v

T the terminal function with domain e and range v
-1 the inverse function with both domain and range e
DM the 1-skeleton of D

(D, v) the n-th homotopy group of D based on v, n =1, 2
[7] the free equivalence class containing the path v

Also if 4 is a path in D, and if S is a monoid

¥ the homotopy equivalence class containing

Areap(7) the area of v if v is contractible in D

Areap x () the area of v relative to X if v is contractible in pX
(D, S) the object with S-action on D on both sides compatibly
< the collection of all objects

Let P = [z ; ] be a finite monoid presentation

A

F(z) the free monoid generated by x
S(P) the monoid defined by P
D(P) the two-complex arising from P

Let P be a path in 'D('f’) (or a picture over P),
X be a trivialiser of (D(P), F(x)), and W be a word on

L(P) the path length (or the disc number) of P

<P> the equivalence class containing P

w the element of S(P) represented by W

L(W) the word length of W

S,(;D) the first order Dehn function of P

6@ the second order Dehn function of P with respect to X at W
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We adopt the usual notations in set theory
AUB the union of the sets A
A — B the set difference
ACB Aisasubset of B
a € A a belongs to A
|A| the cardinality of A
Also, if f : N — R* is a function

f the subnegative closure of f

X



Chapter 0O

Introduction

Due to the introduction of word hyperbolic [Gr] and automatic [ECHLPT] groups, the
(first order) isoperimetric properties of finitely presented groups have become a central
issue in geometric group theory. In general, to measure the algorithmic complexity of the
word problem of finitely presented groups one can consider the first order Dehn function
of these groups, which arranges comparison between “circumference” and “area” of van
Kampen diagrams into an integer-valued function that is an invariant of quasi-isometry
type. This also raises another very interesting issue, namely to classify finitely presented
groups in terms of quasi-isometries.

In [ABBPW1], we defined the Dehn functions of groups in all dimensions in terms
of topology by considering the comparison between the “volume” and the “surface area”
of nullhomotopies of spherical maps into CW-complexes. There, we proved that if D is
the finite (n + 1)-skeleton of a K(G,1)-complex, then the higher order Dehn functions
of D through dimension n are invariants of the quasi-isometry type of the group G, and
moreover, satisfy quasi-retract inequalities.

However, to apply the definition and the quasi-retract inequality as well as the quasi-
isometry invariance to particular groups in low dimensions, it is natural to ask for a
combinatorial version of the theory, namely in terms of a combination of geometry and
algebra. In fact, the (first order) Dehn function or more generally, the (first order)
isoperimetric function is originally defined combinatorially by Gromov [Gr]. See also
[All, Brc, Gel].

Aiming at this, we give a combinatorial definition of the second order Dehn function
6%), x of any finite group presentation P with respect to a given generating set X (finite
or not) of the associated second homotopy module 7,(P) in §2.1, namely, the second
order Dehn function of a finite presentation wili be defined by considering the comparison

between the “volume” and the “surface area” of spherical pictures over this presentation.



We will prove that the definition is unambiguous.

That the first order Dehn function of finitely presented groups is an invariant of quasi-
isometry type was first discovered by Alonso [All], where he proved that if the Cayley
graphs of two finitely presented groups are quasi-isometric (see Definition 2.2.8) then the
first order Dehn functions of these two groups with respect to the generating sets are
equivalent. We will show a further statement (Theorem 2.2.13) in §2.3, that if groups
G and H are finitely presented by P and Q respectively, and if G is a quasi-retract
of H with H being of type F3, then G is also of type F3 and the second order Dehn
function of P with respect to any finite generating set of w,(P) is bounded by the second
order Dehn function of Q with respect to any finite generating set of m3(Q). The quasi-
isometry invariance property then is a corollary of this result. Thus, up to equivalence,
§®) is independent of the choice of different finite presentations of G. We then use Jg ) to
denote a particular representative of the equivalence class.

We point out here that this work had been done before the paper [ABBPW1] and this
idea then was extended to all dimensions in [ABBPW1].

Besides, in order to obtain the quasi-retract inequalities, in §2.2 we establish some
general relationships between pictures over different two-complexes and mappings from

one to the other.

Pride [P13] introduced the concept of (first order) Dehn function of finitely presented
monoids. See also [MaOt1] where it is proved that the word problem of a given finitely
presented monoid is solvable if and only if its first order Dehn function is bounded by a
recursive function. In his paper [Pr4] (also see [Sq2, GuSa]), Pride developed a geometric
technique in the low-dimensional homotopy theory of monoids by associating a two-
complex D(P) with a monoid presentation P = [z ; 7] (see §1.3.3). The free monoid
F(x) on x acts on D(P) on both the left and right. The two-complex D(P) is also a
geometric (in terms of pictures) interpretation of the idea of a two-complex associated
with a string rewriting system introduced by Squier in [Sq2]. Moreover, Squier [Sq2] also
introduced the notion of a monoid of finite derivation type (F' DT). That means, one can
find a finite presentation P for the monoid, say S, and a finite set X of closed paths

A A

in D = D(P) such that the two-complex obtained from D(P) by attaching additional



2-cells with boundaries from F(z)- X - F () has trivial fundamental group (i.e. X is
a trivialiser of (D(P), F(=))). Squier then proved two interesting results. First, the
notion is independent of the choice of finite presentation of a given monoid; second, a
monoid with a finite complete presentation is F DT. By another paper [Sql], a monoid
with a finite complete presentation is of type left and right F'P;. (The popularity of a
monoid with a finite complete presentation is due to the fact that there is a syntactically
simple algorithm for solving the word problem, that is, given two words on the generators,
reduce them to irreducible words respectively, and then compare these two irreducible>
words literally. See [MaOt2] for a reference.) Squier also asked if an F' DT monoid is
left and right FP;. Cremanns and Otto [CrOt], Lafont [La] and Pride [Pr3, §3.3; Pr4,
Theorems 3.3, 4.2] independently have given this question a positive solution.

In §3.1 we first consider the definition of the delta function of a pair (D, S) where D
is a locally finite two-complex, S is a monoid acting on D on both sides compatibly, and
then show some invariance results. The concept of a well-placed retraction between two
pairs (D, S), (Do, So) plays the key role.

We then in §3.2 apply these invariance results to the two-complexes associated to
finite F' DT monoid presentations. We show (see Theorem 3.2.2) that our definition of
the second order Dehn function 8 of a given F DT monoid S for a fixed element s € S
of the monoid is independent of the choice of finite monoid presentation. We then use 3_(922
to denote a particular representative of the equivalence class. Establishing this theory
also gives an alternative proof of Squier’s result mentioned above, that being FDT is
independent of the choice of finite presentation.

But the weakness of this theory is that it does not give an upper bound for all Dehn
functions of a given F'DT monoid for different elements of the monoid. To overcome this,
in §3.3 we focus on the shortest words of each word congruence class. We then are able to
define the second order Dehn function of a finite monoid presentation (Definition 3.3.6) by
which we can give an upper bound of the second order Dehn functions of the presentation
of all words (see (3.4)). But I am unable to show this definition is independent of the
choice of presentation of a given monoid.

Since groups are monoids, it is natural to ask what are the relationships among the

lower order Dehn functions: 58 ), 68 ), Jg ) and S(Gz)l when G is of type F3. (Note that,



from [CrOt], a group is F'DT if and only if it is of type F3.) I have established some
inequalities among these functions as follows. (These results are not proved in the thesis,

but appear in [Wa).)
(i) Let G be a finite presented group. Then

58 <85 < (69)% + nély.

(ii) Let G be a group of type F5. Then
. 2
52,(n) % 5 (n) 2 Sga(n?)
for all n € N.

(Here < is a relation on number functions and f is the subnegative closure of a number
function both of which will be defined in §1.2.3.)
We mention that one can use second order Dehn functions (of groups and monoids)

to discuss certain decision problems concerning second homotopy problems.

From Chapter 4, we start the calculations of second order Dehn functions of groups.
We remark that J. Wang [Waj] has done some calculations about second order Dehn
functions of monoids.

In Chapter 4, we obtain upper bounds for second order Dehn functions of combable
groups and asynchronously combable groups with departure function. This is an account
of the analysis of Gersten’s proof of any asynchronously combable group with a departure
function being of type F3 [Ge3]. The result that any word hyperbolic group has a linear
second order Dehn function was proved by Bogley and Burton and appears in [ABBPW2].
This result is taken as a theorem (Theorem 4.2.1) of this chapter without giving a proof.

In Chapter 5, we first give general bounds for the second order Dehn function of a
direct product of groups of type F5. The results (though not the proofs) are similar to
the first order case. We show (Theorem 5.1.3) that if Go, G are of type Fj, then

max{csgo), 52?0)} < 5&’% = max{ggo), ng’o)} + n?.

We then concentrate on direct products of the form Gy x F', where F is free of finite rank
and Gy is a group of type F3 with 5&’ is bounded by a linear function. Let A : [1,00) —

R* be a strictly increasing continuous function such that

4



() the restriction of h on N is subnegative;
(it) h(z) 2 z for all z € [1,00); and
(iii) the function T+ =iy i increasing for > ng for some natural number no € Imh.

and assume (580) < h. Then (Theorem 5.2.1)

(2) n?
0GoxF = h_:l_(;)_

Furthermore, if Go has an aspherical presentation Po and there is a sequence D; (i =

1,2,---) of stable pictures over Py such that

L(0Dyp-1(y) < bih7'(n); and

can S A(D[h—l(n)]) S can
for all integers n > h(no), then (Theorem 5.2.6)

) n’
J’P,x = h=1(n)

By some interesting examples we show that there are infinitely many real numbers
% < a < 2 such that there exist groups of the form Gy x F' whose second order Dehn
functions are exactly n®, where G, has an aspherical presentation.

The calculation for an upper bound of second order Dehn functions of H N N-extensions,
amalgamated free products, and split extensions are given in Chapter 6. For example,
if G is an HN N-extension of a group Gy of type F3 with two isomorphic associated

subgroups (finitely presented) H, H, then (Theorem 6.1.3)
68 2 86,58,

and if G = H x4 K is a split extension where H and K are of type F3 then (Theorem

6.2.2) either there exists a constant @ > 1 such that
56 2T (B (@) + 8 (n) + @,

or

5 2 8 (B (n*)) + 3 (n) + 2




People may be interested in making comparison of this chapter with Brick’s work on
the first order Dehn functions of extensions in [Brc].

Finally, in Chapter 7 we focus on estimating the upper bounds and lower bounds of
the particular split extensions of the form Z?2 x4 F', where F' is a free group of finite rank.
We show that the second order Dehn function of such a group is bounded over by n? and
bounded below by nlogn. Moreover, if for some generator ¢t of F', ¢; has eigenvalues %1,
then the second order Dehn function of this group is bounded below by ng; and if ¢; has
finite order for some generator ¢ of F', then the second order Dehn function of this group

. 3
is exactly nz.



Chapter 1

Preliminaries

1.1 Two-complexes

Most concepts and results in this section can be found in [Mo, NaPr, Prl].

1.1.1 Graphs

A graph (in the sense of Serre, [Se]) I' = (v, e) consists of two disjoint sets v = v(T') (of

vertices) and e = e(I') (of edges) together with three functions:

L:e—v, T.:e-—U, l.e—e

called initial, terminal and inverse respectively with the properties that i(e) = 7(e™?),
(e7!)"! = e, and e7! # e for all e € e. (A graph is also called a one complez. See [Sta]
and [Sti].)

A non-empty path « of I' is a non-empty finite sequence of edges written in the form
a = ejez- - e, such that 7(e;) = ¢(eit1), 1 < i < m — 1. The initial vertex ((a) of a is
defined to be «(e;), the terminal vertex T(a) of a is defined to be 7(en ), and the inverse
a! of a is defined to be e;le;! - - er! which is also a path in I'. The length of a then
is m, denoted L(a) = m. If e7' # e;4; for alli = 1, ---,m — 1 then we say that « is
freely reduced. When 7(a) = ((a) we then say that a is a closed path. A closed path
is cyclically reduced if all its cyclic permutations are freely reduced. For each v € v we

introduce the empty path 1, at v which has no edges. We have L(1,) =0, and 1;! = 1,.




If o and B are two paths of I' with 7(a) = «(8) then the product a8 of o and 8 is
defined to be the path starting with a followed by .

Let 8 be any set of closed paths in I'. By symmetrical closure of 8 we mean the set of
all cyclic permutations (also paths in T') of each element of 8 and their inverses.

Let vo C v, eg C e. We say ['g = (v, €o) is a subgraph of I' if 'y is closed under ¢, T
and ~1.

A graph I' is connected if given any two vertices of I there is a path in I' joining them.
A maximal connected subgraph of I' is called a component of T'.

The star of a vertex v of a graph I is the set Star(v) = {e: e € e, t(e) = v}. A graph
I is locally finite if Star(v) is finite for all v € v.

Let I', I be any two graphs. A mapping of graphs ¢ : I' — I is a function sending
v(T) to v(I") and edges in I to paths in I so that ¢(c(e)) = «(¢(e)), #(7(e)) = T(¢(e))
and ¢(e”!) = ¢(e)~! for all e € e(I'). By this, ¢ extends to all paths of T, i.e., if
a = € €ep is a non-empty path of I' then ¢(a) = ¢(e;1) - - ¢(em), and for any empty
path 1, we require that ¢(1,) = 14(y)-

A mapping (of graphs) ¢ : ' — I" is rigid if it maps edges to edges. Suppose that
¢ is rigid, and let v € v(I'). If e € Star(v) then ¢(e) € Star(¢(v)), thus ¢(Star(v)) C
Star(é(v)). We say that a rigid mapping ¢ is locally bijective if for all v € v(T), ¢ :
Star(v) — Star(#(v)) is bijective.

Let o/ be a path in [V. A path « in ' is a lift of &' at () if ¢(¢(a)) = (') and
¢(a) = . We have the following lemma (see [Mo, Lemmas 1.1A.1, 1.1A.2]).

Lemma 1.1.1 Let ¢ : ' — I be a locally bijective mapping of graphs. Then for any
path o' € IV and any vertez v of T’ with ¢(v) = (') there ezists a unique lift of o' at v.

1.1.2 Monoids acting on graphs

Let ' = (v, e) be a graph, and let S be a monoid. We say that S acts on I on the left if

S acts on the set v U e in such a way that for any v € v, e € e and any s € S

(i) s-veEv, s-e€e;




(i) e(s-e)=s-1(e), T(s-€)=s-7(e), (s-€) ' =s-€e L.

This left action then extends to paths: if a = eje;---€, is a non-empty path with

e; €e (1 <i<m)then
(iii) sca=(s-€e)(s-€) (s €em).

By (ii), s - @ is a path of . For each v € v we require s - 1, = 1,.,. Note that for any
path a of ' and any s € S, we have s - ™! = (s-a)~! by (ii) and (iii).

Similarly, we can define a right action of S on T.

We say that a left action and a right action of S on I are compatible if for any s, s’ € S
(s:v)-8'=s-(y-5) for any y € T.

1.1.3 Two-complexes
A two-complez D is a pair
D=(I': 2Z)

where T is a graph (the 1-skeleton D) of D) and Z is a set of closed paths (called
defining paths) of D. We say D is finite if v(I'), e(I') and Z all are finite. We say D is
locally finite if T' is, and we say D is connected if T is.

Let I be a subgraph of ' and let Z’ be a subset of Z such that Z' is a set of closed
paths of ['. Then the two-complex D' = (I''; Z’) is called a subcomplez of D.

For any two-complex D = (I'; Z) there are four elementary operations on the paths

of D introduced as follows (where we suppose that (I)~! and (II)~! are applicable).

(I)  Deletion of an inverse pair ee~! of two successive edges.
(I)™! The inverse of (I).
(II)  Deletion of a subpath 3 of a path v with y = 18y, and B € ZU Z7'.

(I)~! The inverse of (II).

We point out that in the presence of the operations (I) and (I)~!, the operations (II)

and (II)~! are equivalent to the following operation.



(II') Replace a subpath 8 of a path y = 7,87, with (8)~! where either 38’ or §'8 is in
zZuz™.

Let X be another set of closed paths of I'. Then D is a subcomplex of the two-complex
DX - (T; Z, X). The operation (II') above on the paths of DX then is divided into

the following two operations.

(II}) Replace a subpath 3 of a path v = v,87, with (ﬂ')_l where either 83’ or 3/
isin ZU Z™%.

(II3) Replace a subpath a of a path ¥ = 110, with (¢/)~! where either ao’ or o’a
isin XU XL

As usual, any two paths v, p in D are said to be freely equal, denoted by v ~(1) p, if
one can be obtained from the other by a finite sequence of applications of operations (I)
and (I)~!; they are said to be homotopic (or equivalent), denoted by v ~ p, if one can be
obtained from the other by a finite sequence of applications of operations (I), (I)~! and
(I1}); and are said to be equivalent relative to X, denoted by v ~ p (rel X), if one can
be obtained from the other by a finite sequence of applications of operations (I), (I)71,
(II}), and (II}). Note that if two paths of D are equivalent relative to X then they are
homotopic in DX A closed path v of D which is homotopic to an empty path is said
to be contractible in D.

For each path v in D, we write [y] for the free equivalence class consisting of all paths
freely equal to v, and write 7 for the homotopy equivalence class consisting of all paths
homotopic to 4.

Let D = (I'; Z) and D' = (I'; Z') be any two two-complexes. A mapping of two-
compleres ¢ : D — D' is a mapping of graphs from I' to I with the property that the
image of each element of Z is a contractible path in D’. Furthermore, we say that ¢ is

locally bijective if
(i) ¢ is a locally bijective mapping of graphs; and
(ii) Z consists of all lifts of elements of Z'.

The following two lemmas are standard and can be easily proved.
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Lemma 1.1.2 Let ¢ : D — D’ be a mapping of two-complezes. Let v, p be two paths
in D with «(y) = «(p). Ify ~ p in D then $(y) ~ ¢(p) in D'.

Lemma 1.1.3 Let ¢ : D — D’ be a locally bijective mapping of two-complexes. Let
v, p' be two paths in D' with «(y') = «(p'), and let v, p respectively be lifts of v' and p'
in D at some vertez v. If ' ~ p' in D' then vy ~ p in D.

In the remainder of this section we suppose D = (I'; Z) is a two-complex with
['= (v, e), and X is a set of closed paths of D.

We now define the area function of a closed path v as follows.

Definition 1.1.4 (i) Let v be a path contractible in D. The area of v, denoted by
Areap(v) is the smallest number of operations of type (II)] used in any transfor-

mation of ¥ to an empty path.

(i) Let v be a path in D contractible in DX . The area of v with respect to X,
denoted by Areap x(7), is the smallest number of operations of type (II;) used in

any transformation of v to an empty path.
The following lemma will be used several times.

Lemma 1.1.5 Let v be any arbitrary closed path in D at some vertezx v of D. If vy is
contractible in DX with Areap x (7) = r, then v is homotopic in D to a product of

conjugates of the form
v ~ L piBiri ™, (1.1)
=1

where 3; € X U X!, p; isa path in D, 1 <i<r.

Proof. If r = 0, then v is contractible in D and hence ¥ ~ 1,. Now let r > 0. By
definition, there is a finite sequence of paths v = vy, 71, ---, ¥» = 1, such that for each
t (0 i <n—1)one of 4 and ;41 is obtained from the other by an application of
operation (I), or (II}), or (II;), and there are precisely r applications of operation (II}).
Let m be the first number for which an operation of type (II;) is applied. Thus,
AreatD,X('ymH) = r — 1. By induction hypothesis we then have yn41 ~ [T}, pjﬂjpfl
in D, where each 3; € X U X ™. Let v, = p1ap; and Ypyy = pla’_lpg where aa’ or

11



o'a € X U X', We can assume ao’ € X U X! ( the other case can be proved in the

same way). Note that v,, ~ 7. We then have

¥~ Fm = prapy ~ prad’pitpra’ ' py

= p1B1p1 mer ~ p1Bipr I piBin;?

=2

il

[LpiBipi?

i=1

where 8, = aa’ € X U X', This completes the proof. O
We will call the product of conjugates in (1.1) a defining product of « relative to X.

Remark 1.1.6 In particular, if we let Dy = ('; 0) be a two-complez where P is the empty
set, then D = 'DOZ. Thus, if v is contractible in D, then by the above lemma we have

v~ T] piipi? (1.2)
i=1

with r = Areap(y), certain paths p; of D, and some §; € Z U Z',1<i<r. Wethen
call this product of conjugates a defining product of «.

For the calculation of the area function we have the following lemma by (1.1), (1.2)

and Definition 1.1.4.
Lemma 1.1.7 (i) If two closed paths v, v' contractible in DX 4re homotopic in D,
then Areap x (v) = Areap x (7).

(ii) If v is contractible in DX and B is any path of D with 7(8) = () then
Area»D,X('y) = Area'D,X(,B'yB'l); if v is contractible in D and B is any path
of D with 7(8) = «(v) then Areap(y) = Areap(Bv671).

1.1.4 Fundamental groups of two-complexes

For any v € v we let m(D, v) be the set of all homotopy equivalence classes each of
which is of the form 7 with 4 a closed path in D at v. A multiplication can be defined on
71(D, v) by ¥,7, = 172, and this multiplication can be easily checked to be well-defined.
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By this multiplication, m1(D, v) is then a group, the fundamental group of D at v. If
u € v is in the same component of D as v then m (D, u) = m(D, v). Hence, if ' is
connected, then all fundamental groups of D are isomorphic.

Suppose that X is a set of closed paths in D such that every closed path in D is
equivalent (rel X) to the empty path. Thus, all fundamental groups of DX are trivial.
We then say that X is a trivialiser of D.

1.1.5 Monoids acting on two-complexes

Let D = (I'; Z) be a two-complex. By a left action of S on D we mean that S acts on T’
on the left and S - Z = Z. Similarly, we have the definition of a right action of S on D.
If this pair of actions of S are compatible on I' then we say they are compatible on D.
By (D, S) we mean that the monoid S acts on D on both sides compatibly. Let
(D, S), (D', S') be two such pairs. By a mapping ¢ : (D, S) — (D', S’) we mean that

(i) ¢ : D — D' is a mapping of two-complexes;
(ii) ¢ : S — S’ is a monoid homomorphism;

(i) d(s-v-8") = ¢(s) - ¢(7) - #(s') for any s,s’ € S and any v € D.

It can be checked that we then have a category € with objects all pairs of the form
(D, S) and morphisms all mappings of these objects. We will say that an object (D, S)
of € is locally finite if D is a locally finite two-complex.

Let (D, S) be an object of €. Let Dy be a subcomplex of D and let Sy be submonoid
of S. If Dy is Sp-invariant, i.e., for any v € Do we have So - v - So C Dy, then (with So
acting by restriction) (Do, Sp) is also an object of € which we call a subobject of (D, S).

Let (D, S) be an object of € where D = (I'; Z). Let X be a set of closed paths of D.
We write X5 for $- X - S. Since S also acts on the two-complex DXS = ([} Z,XS),
thus, (DXS, S) is an object of €. We say that X trivialises (D, S) (and then X is a
trivialiser of (D, S)) if X is a trivialiser of D.

Definition 1.1.8 Let (D, S) be an object of € and let (Do, Sp) be a subobject of (D, S).
A mapping ¢ : (D, 5) — (Do, o) is a retraction if p|p = id and ¢|s, = id, where id
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denotes the identity mapping. (We then say that (Do, So) is a retract of (D, S) if there
is a retraction from (D, S) to (Do, So)).

1.2 Group presentations and monoid presentations

1.2.1 Words

Let  be non-empty set and let ! to be a set in 1:1 correspondence with & (z —»

7Y z€x). The elements of # U ™! are letters, and a word W on x is an expression

€n
n

R Y.
where n > 0, z; € &, ¢; = £1, and 1 <1 < n. When n = 0 we have the empty word
denoted 1. We say W is a positive word on z if either n = 0 or n > 0 and ¢; = +1,
1 <1 < n. The inverse of W, denoted W™, is the word z7*'z;°* - - - z;*». The length of
W, denoted by L(W), is the number n of the letters involved in W. (Note that we also
use L(~) for the length of a path v in a two-complex.)

Let W, U be two words on 2. The product of W and U, denoted WU, is the juztapo-
sition of W followed by U. By this binary operation, the set F(z) of all positive words

on & then is a monoid called the free monoid on €. We now introduce the following

operation on the set of all words on @.

(t) Deletion/insertion of a pair of inverse letters z°z~¢, ¢ = £1.

Two words W, W’ on @ are freely equal, denoted W ~() W’ if one can be obtained
from the other by a number of applications of operation (t). We again denote the free
equivalence class containing W by [W]. Let F (&) be the set of all free equivalence classes
of words on . A multiplication can be defined on F(&) by [W][{U] = [WU], and one
can check that this multiplication is well-defined. By this multiplication, F'(«) is then a
group, the free group on . See [Jo, §1.2] for detail. We remark that sometimes we may
simply write W for the free equivalence class [W] for any word W on @, if it does not

cause any confusion.
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1.2.2 Group presentations

A group presentation P is a pair (z; r) where @ is a set (the generating symbols) and »
is a set of non-empty, cyclically reduced words on @ (the defining relators). We say that
P is finite, if both @ and » are finite.

Alternatively, we regard P as a two-complex where the underlying graph P consists
of a single vertez o, the set £ U ™! of edges and the set r of defining paths. We remark
that, in the sequel, without further comment we will often regard P as a two-complex.
Moreover, each word W then is a (closed) path in P, and W is the homotopy equivalence
class containing W.

The (unique) fundamental group (at o) of P is denoted by G(P) (or formally by
m(P) = m(P,0)). A group G is said to be presented (or defined) by P if G = G(P).
Let N be the normal closure of {[R]: R € r} in F(a). Then by the definition of G(P)
we have (see [Ki, Proposition 1.5.1]) a one-to-one map sending W to [W]N for each word
W on & so that G(P) = F(x)/N.

A van Kampen diagram over a presentation P = (x ; r) is a finite connected planar
graph A C R? (here R? is the real plane and the term graph is in the sense of basic graph
theory) whose edges are directed and labelled by elements of « in such a way that every
face of A (bounded component of R?\z) is a disc whose boundary label (for some starting
point and orientation) belongs to . The van Kampen Lemma (for example, see [LySc,
Proposition 9.2]) says that a word W on @ represents the identity of G(P) if and only
if there is a van Kampen diagram over P with boundary label W (for certain starting

point and orientation).

1.2.3 Equivalence and subnegativity of number functions

Given two increasing functions f,, f; : N — Rt we write f; < f; if there are constants

A, B > 0 and C > 0, where B is an integer, such that

filn) £ Afe(Bn)+Cn  (n€N),

and we say that f; is equivalent to f,, denoted f; ~ fo,if fi X fo and f; < f;.
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Following Brick [Brc] we will say that a function f : N — R* is subnegative if
f(n1) + f(n2) < f(n1 + ny) for all ny, n, € N. Given any function f: N — R* there is
a least subnegative function f greater than or equal to f called the subnegative closure

of f defined by
f(n) =max{d}_ f(ni): ni+na+--n.=n,neN(1<i<r)}
=1

Then if fi < f, we have fi < f, and so if f; ~ f, then f; ~ fa.

1.2.4 First order Dehn functions of groups

Consider a finite group presentation P = (x ; ). Let W be a word on . If W = 1 in

G(P) then by Remark 1.1.6 there exist r € N such that in P

W ~W TR U (1.3)

=1

for certain words U; on @, R, € r,and ¢; = £1 (1 <i<r).

Definition 1.2.1 The first order Dehn function of P is the integer valued function

Jf’l,)(n) = max{Areap(W): L(W)<n, W=1}, neN

By the main result of [All], up to equivalence §(!) is independent of the choice of
different finite presentations. Thus, if a group G is finitely presented, then we can write

58 ) for a typical representative of the equivalence class.

1.2.5 Cayley graphs and universal coverings

Let G be a group finitely presented by P = (x ; r). We identify G with G(P). Then G
is generated by {Z: z € z}.

The Cayley graph T'x(G) of G with respect to @ consists of the vertex set v =
v(I'z(G)) = G, and the edge set

e=e(l'z(G)={(9,2°): g€ G,z €2, e ==1}
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satisfying (g, z°) = g, 7(g, z°) = ¢z° and (g, z°)~! = (9z°, ™°). Thus, for each vertex
g of T¢(G), |Star(g)| = 2|z|. Let v be a path in 'z (G) from g to another element ¢’ of
G, say v = (g, 7')(9z}!, =3*) - - (gm, zt"). Reading off the second coordinates
of the edges of v gives a unique word W, = z$'---z%* on . We then can define the
projection map p, : I'g(G) — PM which is a locally bijective mapping of graphs given
by

po(Y) =W,, po(g9) =0, for any path v and any g € G.

Thus, for any word W = z{' ---zi* on  and for any g € G we have a unique lift of W
in PW at g

to(W) = (g, =1')(927', 23°) -+ (g2t -~ 2325, 237).
We then call t, the lift map from the set of all words on @ to the set of all paths at g of
F'z(G).

The group G acts on 'z (G) by multiplication on the left: the element g € G defines
a map ¢4, which maps a vertex ¢’ to g¢’, an edge (¢, z¢) to (g¢’, z°) (z € @, e = £1).

A (word) metric dg = d is defined by assigning a unit length to each edge of 'z (G)
and defining the distance between two vertices g1, g2 € G to be the minimum length of
paths in ['x(G) joining them denoted d(g1, g2). The paths joining ¢g; and g, with the
minimum length are called geodesics. It can be show that we then have defined a metric
space denoted by (G, d).

We also define the length of an element ¢ € G with respect to x, written |g|a or
simply |g|, to be the length of a geodesic in 'z(G) from the identity to g (i.e. the
length of a shortest word on @ representing g). Thus, for any two elements ¢;, g2 € G,
d(g1, g2) = |97"g2]- The left action of G on itself then is by isometries since d(gg1, gg2) =
(991) 7992 = 91" g2!-

Let # = {t,(R) : R € v, g € G}. We then obtain a two-complex, the universal
covering P = (g (G); #) of P, with vertex set G, edge set

{(9,2°): g€ G, z €, =21},
and set of defining paths #. Let g, ¢’ be any two elements of G. Then there exists ¢ € G

such that g = ¢'¢g". Let W = z§'--- 2™ be a word on & such that W = ¢” in G. This
then gives a path in P from g to g:
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€m—1

(g’a xil)(glﬁl ’ xcz) e (g,a':i1 T, IL‘:,T)
Thus, P is connected, and has trivial fundamental groups [LySc, Proposition 4.1].
Since p,(t,(R)) = R for any t,(R) € *, g € G, p, is a mapping of two-complexes. We
call p, the projection map from P to P and call t, the lift map from P to P with respect
to g. Note that ¢, is not a mapping of two-complexes. Since p, is locally bijective, by

Lemmas 1.1.2 and 1.1.3 we have

Lemma 1.2.2 Let W, W’ be any two paths in P.
() If W ~ W' in P then p,(W) ~ p,(W') in P, and

(i) if W ~ W' in P then t,(W) ~ t,(W') in P.

1.2.6 Monoid presentations

A monoid presentation P is a pair [2; 7] where z is a set (the generating symbols) and each
R € r (a defining relation) is an ordered pair (R4, R_;), where Ry, and R_, are distinct
positive words on . We write R, = R_; instead of (R;+1, R_;). Sometimes, we need to
list the elements of ». We write each element as Ry = R_14, -+, By1p = Bk, -

We say that P is finite, if both @ and 7 are finite.

We now introduce the following operation on positive words on @.

(1) If positive word W contains a subword R,, where ¢ = £1 and Ry, = R—; € r, then

replace it by R_..

Two positive words Wy, W, on @ are equivalent, denoted W, ~ Wy, if one of them can be
obtained from the other by a number of applications of (1). Clearly, if U, V are any two
words on & and if Wy ~ W, then UW,V ~ UW,V. We then say that this equivalence
relation ~ is a congruence relation. Let W be a positive word on . We still denote the
congruence class containing W by W. Let S (’i’) be the the set of all congruence classes.
We now have a well-defined multiplication on § (7:’) given by W, W, = W, W, and then

S(P) is a monoid (for example, see [Ki, Lemma 1.2.1] for detail). Let S be any monoid.
If S = S(P) then we say that S is presented (or defined) by P.
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1.3 Pictures over two-complexes

1.3.1 Pictures over presentations

We refer the readers to [BoPr]| and [Pr2] for the reference in this subsection.
In this subsection and the following section we let P = (z; ) be a group presentation.

A picture P over P is a geometric configuration consisting of the following.

(1) A disc D? with basepoint o on the boundary dD? of D?.

(2) Disjoint discs 2y, 2, -+, Q, in the interior of D?. Each disc §; has a basepoint o;
on the boundary 9Q; of Q;.

(3) A finite number of disjoint arcs a;, as, --+, am. Each arc lies in the closure of
D? — U, % and is either a simple closed curve having trivial intersection with
0D* U (U, ), oris a simple non-closed curve which joins two points of dD? U
(UL, 9%2%), neither point being a basepoint. Each arc has a normal orientation,
indicated by a short arrow meeting the arc transversely, and is labelled by an
element @ U #~! which is called the label of the arc and this arc is said to be an

r-arc.

(4) Reading off the labels on the arcs encountered while travelling around 9; (1 < i <
n) in the clockwise direction from o; to o; gives a word which belongs to » U r~1.

We call this word the label of 2; and say that €; is a r-disc.

We define the boundary OP of P to be dD?. The label on P, denoted by W (IPP), is the
word read off by travelling around 9P once in the clockwise direction starting from o.
When we refer to the discs we mean the discs in the interior of the ambient disc D? not
D? itself. A region of P is the closure of a component of D? — (U, ) U (U, @;)). An
inner region of P is a region that does not meet P and all other regions of P are outer
regions. We write A(PP) for the disc number in P (also called the area of PP). We say that
P is spherical if no arc meets OP. Thus, a spherical picture only has one outer region
labelled by its basepoint. We remark that sometimes we would drop off the ambient disc

D? of a spherical picture.
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Example 1.3.1 Let Q@ = (z, y, z; 7'y~ 2, y~lzz7!, y?). If P is as illustrated in Fig.
1.1, then P is a picture over Q (forgetting the three broken arcs together with their labels

71, Y2, 3 which will be introduced later) with W(P) = z~'zz"lyyyylzz~'2.

Obviously, every picture P over P uniquely corresponds to a van Kampen diagram A

over P by replacing a disc together with its incident arcs by a 2-cell with boundary label

the disc label:
e €1
=10y
€4 c3 €4 €3

We call P the dual of A and vice versa. Thus there is a pictorial version of the van

Kampen Lemma:

Lemma 1.3.2 There ezists a picture P over P with label W if and only if W =1 in
G(P).

We will say that a van Kampen diagram over P is a spherical diagram if its dualization
is an spherical picture over P.

A transverse path v in a picture P is a path in the closure of D? — J%, ©; which
intersects the arcs of P only finitely many times. Reading off the labels on the arcs

encountered while travelling along a transverse path from its initial point to its terminal
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point gives a word on & denoted W (7). Let 4 be a simple closed transverse path in P.

The picture enclosed by « is called a subpicture of P.

A spray for P is a sequence v = (11, 72, -+ *, Tn) of simple transverse paths satisfying
the following: for i = 1, 2, ---, n, v; starts at o and ends at a basepoint of some Q,;),
where x is a permutation of {1, 2, ---, n} (depending on v); for 1 <i < j < n, v; and

7; intersect only at o; travelling around o clockwise in I’ we encounter these transverse
paths in order v;, 7¥2, -* -, Yn- Let R;‘('.) be the label of Q,(;) and let W; be the label of

7i. Then associated with ¥ we have a sequence over P:

(WiB Wi, WaRG Wi, - o, WaR W),

X

We call this the sequence associated with P (relative to the given spray 7).
Example 1.3.1 (continued) The sequence associated with the spray v = (1, 72, 73)
illustrated in Fig. 1.1 is

1

(27 (y ez e, 27y 2, 2 gy N (P yy T ).

Let P be a picture over P. A floating circle of P is a closed arc which encloses no
discs or arcs of P. In the example above, the circle labelled by z in Fig. 1.1 is a floating
circle. A semifloating circle of P is an arc which starts and ends on 0P and which is such
that all other arcs and discs of PP lie on the same side of this arc as the basepoint o of P.
In Fig. 1.1, we see there is a floating semicircle labelled by x. A cancelling pair of P is a

spherical picture with exactly two discs whose basepoints lie in the same region.

We now introduce some elementary operations on spherical pictures as follows. Let P

be a picture over P.

(A) Deletion of a floating circle.

(A)~! Insertion of a floating circle.
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(B) Deletions of a cancelling pair.

(B)~! Insertion of a cancelling pair.

(C) Bridge move:

‘o
)

Two spherical pictures are equivalent if one can be obtained from the other by a finite
number of operations (A), (A)~}, (C), (C)~, (D).

Let IP be any spherical picture over P. We denote (P) the equivalence class of spherical

picturers over P containing P. We say that P is minimal if A(P) = min{A(Q) : Q € (P)}.

Bridge move

The mirror image of a picture PP over P, denoted —P, is also a picture over P. We

form the sum of any two pictures Py, P, over P in the obvious way:

and we will write P, — P; for P, + (—P;). Clearly, for any picture P over P, P — P is
equivalent to the empty picture, and if Py, P, are both spherical then P, + P, = P, + P;.
The set of all equivalence classes of spherical pictures over P forms a abelian group,

denoted 7;(P), under the following binary operation:
(P1) + (P2) = (P1 + ).

Let W be a word on «, and let P be a spherical picture over P. We then can form a

new spherical picture over P denoted P" of the form
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We now consider the G(P)-action on m3(P).

Lemma 1.3.3 The G(P)-action on my(P) given by
W (P)=(P%), W a wordonz, (P)€ m(P)
is well-defined and so my(P) is a left ZG(P)-module.

Proof. Let P be any spherical picture over P and let W;, W, be any two words on
z with W, = W, in G(P). By Lemma 1.3.2, there exists a picture Q over P with
W(Q) = W, W, L. Consider the picture PYt + (Q — Q) — P*2. By applying bridge moves
and removing of cancelling pairs, we see that this picture is equivalent to the empty

picture as shown in Fig. 1.2.

Fig. 1.2
Thus,
(B") —(P"2) = (P™)+(Q-Q) —(P"™)
= (P4 (@-Q - P
=0

and so (P"1) = (P"2) as required. O

Let v be a simple closed path in a spherical picture A over P, and let B be the
subpicture of A enclosed by 4. The complement of B in A is defined as follows. Delete
the interior of B to form an oriented annulus. Identification of A to the point o produces
an oriented disc that has boundary 4, and which supports a new picture over P. The
complement of B in A is obtained from this new picture by a planar reflection. The
complement has the same boundary label as B and its discs are those of A which are not

in B, taken with the inverse labels. See Fig. 1.3.
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o

B
A complement of B in A

Fig. 1.3

o

Lemma 1.3.4 (see [BoPr, Lemma 1.5]) Let A be a spherical picture over P. Let B be a
subpicture of A, and let B' be the complement of B in A. Suppose P is a spherical picture
over P having B as a subpicture, and suppose P’ is obtained from P by replacing B by B'.
Then

(B) ~ () = (A¥)

for some word W on x.

Proof. Let p; be a transverse path from the basepoint of A to the basepoint of B with
label W;. A sequence of bridge moves applied to the spherical picture AV yields a
picture A; containing B, and where the basepoint of B “exposed”, lying in the boundary

outer region of A;. See Fig. 1.4.

A AW
Fig. 1.4

Let p2 be a transverse path from the basepoint of IP to the basepoint of B (as a subpicture

in P) with label W>. To insert —A; into the region of PP where the basepoint of the
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subpicture B lies we apply bridge moves on P + (—A;)"2. Denote this new picture

(spherical) by PP, we then see that (see Fig. 1.5)

(Py) = (B) — (A2W7),

P+ (—A)":

Fig. 1.5

On the other hand, the oppositely oriented and adjacent copies of B in P; can be
removed by a sequence of bridge moves and deletions of cancelling pairs. The resulting

picture is then exactly P/, and so the lemma follows. O

In the situation of the above lemma, we will say that P’ is obtained from P modulo A.

1.3.2 Pictures over universal coverings

There is a general notion of pictures over two-complexes (for example, see [BoPr, BrHu,
CoHu] for reference). Here, for our use we will concentrate on the notion of pictures over
the universal covering P.

The basepoint of the picture is labelled by an element of G(P). The arcs of the picture
are labelled by edges of P. Each disc has a basepoint and the label on the disc is either
a defining path or the inverse of a defining path. Each region of the picture is assigned
an element of G(P). It is required that if we have an arc in the picture, with label (g, z)
(g € G(P), z € = U z71) say, separating two regions:

(g, ) t Region 1

I Region 2
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and if g; and g, are the elements of G(P) assigned to Region 1 and Region 2 respectively,
then g, = «(g, ) = g and g, = (g, z) = ¢T.

Example 1.3.5 Let P = (z,y, ; [z,9], [y, 2], [#, z]). The following then is a picture over

~

P.

Given a picture P over P, then for any g € G(P) we have a unique picture t,(IP) = ]lsg
over P of P at g, defined as follows. Label the basepoint of P by g and assign g to the
outer region (containing the basepoint of P). For each arc of P choose a transverse path
in P from the basepoint of P to the start of the arrow on the arc. Then relabel the arc
by (¢W, z), where W is the label of the transverse path and = € £ Uz ! is the label of
the arc, i.e.

I I
I r th’ '7")

Note that if W’ is the label of another transverse path from the basepoint of P to the
start of the arrow of the given arc, then from [Pr2, Theorem 2.4] we know that W' = W
and so (§W',z) = (gW, z). In addition, we assign the element gW of G(P) to the region
where the start of the arrow on the given arc lies, and assign the element gWz to the
region where the end of the arrow on the given arc lies. Again, from [Pr2] we see that
these assignments are independent of the choice of transverse paths. For each disc of P
labelled by R® (R € r), choose a transverse path in P from the basepoint of P to the
basepoint of this disc. Then relabel the disc by ¢ w(R*) = Re—, where W is the label

gW?
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of the transverse path (this label is once again independent of the choice of transverse
paths).

Applying p, to the labels of the arcs of P,, one recovers P. We write p,(B,) = P and
s0 poty(P) = P.

Conversely, let P be any picture over P with L(lf”) = g for some g € G. Here we write
1(PP) for the label of the basepoint of P. Then the basepoint and the region containing
this basepoint are labelled by ¢g. Consider any arc in P. Suppose that the arrow riding on
this arc is labelled by an edge (¢',z) of P with ¢’ € G, z € . Then the region containing
the start of this arrow has the label ¢’ and the region containing the end of this arrow
has the label ¢'z. Thus, each transverse path of P from the basepoint of P to any region
of P labelled by ¢” say, is also a path in P from g to ¢g". Moreover, let Q be a disc of P
and suppose that the region containing the basepoint of Q2 has the label g,. Reading off
the labels on the arcs meeting §2 clockwise gives a defining path Rgl of P or its inverse.
So, applying p, to the arcs of P gives a picture P over P denoted p,(P) = P. Now, by the
definition of ¢, we have ¢,(P) = P, namely P is the unique lift If”g of P at ¢ and

tgPO(P) =P.

Thus, the map t, on the set of all pictures over P and the restriction of p, on the set
of all pictures over P at ¢ are mutually inverse. Hence, we have proved the following

lemma.

Lemma 1.3.6 For any g € G the restriction of t, to the set of all pictures over P and
the restriction of p, to the set of all pictures at g over P defined in the above are mutually

tnverse,

The elementary operations on pictures over P are translated to elementary operations
on pictures over P. (One can check that all these operations have no affect on the
basepoint of a given picture over P.) Thus, for each g € G(P), we have the notion of
equivalent spherical pictures over P at g. Let (lf")g (or simply (f’) without causing any
confusion) denote the equivalence class containing the spherical picture P over P at g,
and let 7r2(73, g) denote the set of all equivalence classes of spherical picture over P at g.

Then, as for the situation for m,(P), m(P,g) forms a abelian group.

27



We remark that Lemma 1.3.4 also can be extended to the situation of pictures over

~

P.

1.3.3 Fox derivations

Let F = F(z), and let z € @. The Foz derivation [CrFo]

i :ZF — ZF
Oz
satisfies (here for simplicity we drop off the square brackets as we remarked in §1.2.1)
Oz Oz! -, ouv au vV 9y
Ec-_l’ Oz =-Tr , Oz _'a_x'*'UE’ 5;_0 (yexﬁy#x)'

Let 8 : ZF — ZG be induced by the natural epimorphism F — G. From now on,

whenever we have this composition of 9 :ZF — ZF and 0 : ZF — ZG we will use

G Oz
the notation 32 for (9%, ie.
W ow
=0 f .
2 (ax), orany W e F

1.3.4 Some exact sequences

Let P = (x; ») be a finite presentation and let G = G(P) = F(x)/N where N is the
normal closure of {[R]: R € v} in F(&). The relation module is the abelianization N/N'

of N regarded as a left ZG-module with G-action given by
W - [UIN'= [WUW™'IN' (W e G(P), [U] € N).

Let X = {IP,, P;, - - -} be a set of spherical pictures over P. We say that X generates
m2(P) or is a set of generating pictures for wa(P) if {(P1), (P2), - - -} generates my(P) as
a ZG-module.

Note that a set X of spherical pictures is a generating set if and only if every
spherical picture can be transformed to the empty picture by a sequence of bridge

moves, insertions/deletions of floating circles, insertions/deletions of cancelling pairs,
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insertions/deletions of elements of X and their inverses (see [Pr2, Theorem 2.5*] or [BoPr,

§1.2]).
Suppose X is a generating set for mo(P). Let

P3 = @ ZGtP, P2 = @ ZGtR, P1 = @ ZGtz, Po = ZG
PEX ReT €L

be free ZG-modules. We then have the following short exact sequence [Pr2]:
0 — m(P) 22 P, 23 N/N' — 0 (1.4)

pz: (P)— > eWitp, 0,:tp— [RIN' (P€ X, Rer),

=1

where (Wi R WY, .-+, W, RS*W!) is a sequence associated with P. The embedding p.
is called the standard embedding from m5(P) to P,.

Regard Z as a left ZG-module with trivial G-action. There is the augmentation map
€ : B — Z which sends each element of G to 1. Let ker e = IG, the augmentation ideal,
and let incl. : IG — Py be the inclusion map. Then we have a short exact sequence:

incl,

0— IG5 P -——>Z—0. (1.5)

From [BrHu, p196], we also have the following short exact sequence

0— N/N' 4% P 25 IG — 0 (1.6)

where u; and 6, are respectively defined by
°wW
Oz

pr: [WIN — ) tz, O1:tz—T—-1 (z€x)

zed
for all [W] € N and all z € .
Now, by (1.4), (1.5) and (1.6) we get an exact sequence

0— m(P) 2 P2 P 2y P57 —0 (1.7)

where 0 = incl.0,, 0; = p,0,.
We say that a group G is of type FP, (0 < n < oo) if there is a partial projective

resolution of the trivial G-module Z (see [Bro] for reference):
Qn—r — Q1 — Qo —2Z—0,
where @); (0 < ¢ < n) is a finitely generated projective ZG-module.
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Lemma 1.3.7 Let G be a group finitely presented by P = (x; r). Then G is of type
FPs if and only if mo(P) is finitely generated as a ZG-module.

Proof. Consider the exact sequence (1.7). Suppose X is a finite set of generating
pictures for m3(P). Then P3 = @pec x ZGtp is a finitely generated free ZG-module, and
the mapping tp — (P) (P € X) induces a epimorphism from P3 to m3(P). Hence, we

have a partial projective (in fact, free) resolution of Z
PR— P —P — P —Z—0.
Conversely, if G is of type F Ps, then there exists a partial resolution of Z
Qs — Q2 — Q1 — Qo —Z—0,

where Q; (1 < ¢ < 3) is finitely generated. Let A = Im(Q3 — @2). Then we have the

exact sequence

0 —A—Q:s— Q1 — Qo —Z—0.

Hence, by Lemma 8.4.4 of [Bro] we have
M(P)DQ:DPLDQuEADP, D Q10 Fo.

Since the right hand side is finitely generated, the left hand side also is finitely generated.
So my(P) is finitely generated. O

A group G is said to be of type Fj if it is finitely presented and is of type F'P;. (In
fact, a group G is of type F,, (n > 1) if there exists an Filenberg-Maclane complez K(G,1)
with finite n-skeleton.) Conditions Fi, F; are equivalent, respectively, to G being finitely
generated, finitely presented. For n > 3, G is of type F, if and only if G is finitely
presented and of type F'P,. For example, see [Al3] for reference.)

1.4 Pictures over monoid presentations

1.4.1 Pictures over monoid presentations
Consider a monoid presentation
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P=z;r]

As in [Pr3], for each R € r and any words U, V on & we can define two geometric objects

called atomic pictures E = (U, R, +1, V) and E™! = (U, R, —1, V) over P as depicted

in Fig. 1.6:
U Ry, | % U R_, | %4
- ( -t _»—-’ E—l: -1 ) —m’.—»
R_, R4y
Fig. 1.6

where each arc in the rectangles is transversely orientated from left to right and labelled
by an element of x; each disc represents the relator R : Ry; = R_;, with upper (half)
label R, and lower (half) label R_, for the edge E¢ (¢ = +1). The word UR.V we read off
by travelling along the top of the picture E° from left to right is called the upper (half)
boundary label of E¢ and the word UR_.V we read off along the bottom is called the
lower (half) boundary label of E°.

1.4.2 Associated two-complexes

Regarding those atomic pictures defined in the previous subsection as edges with initial
(E?) = UR.V and terminal 7(E*) = UR_.V as well as inverse (E°)~! = (E)~¢, € = +1,
we can associate with P the graph I'(P) = (F(z), e) where e is the set of all the atomic
pictures. A path P in F(’IA?) will also be called a monoid picture over P with upper (half)
boundary label ((P) and lower (half) boundary label 7(IP), and a closed path P in I'(P)
will also be called a spherical (monoid) picture over P. An arc of a path P consists of
a number of edge arcs which are labelled by the same element of & and geometrically
connected one by one. We see that the length L(PP) of a path P is the number of discs in
the geometric representation of P.

Note that if P is finite then I'(P) is locally finite.

We also have left and right actions of £(z) on I'(P), that is, for any word W on e,
any vertex V (also a word on &) and any edge E = (U, R, ¢, U’) (¢ = 1) in ['(P),
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W.-V=WV, V-W=VW (product in F(z))
W.E= (WU, R, e, U), E-W=(U, R, e, UW).
Obviously, these actions are compatible.

Example 1.4.1 Let P = [z, y: 23 =1, zy = yz?), and let
Ei=(1,2° =1, -1,y), E=(a% zy=ys? +1,1),
E; = (z, zy = y2*, +1, 2%), E4= (1, zy = yz?, +1, z*),
Es = (yz°, 2°=1,+1,1), Es=(y, =1, +1, 1).
Then 7(E;) = ¢((Eit1),t =1, 2, .-+, 5 and ¢(E;) = 7(E¢) = y. Thus, P=E,; ---Eg isa

A

closed path at y in ['(P), where, for example, the curve starting at the lower boundary
of the disc in E; and ending at the upper boundary of the disc in E4 labelled by z is an
arc of P. Now by a left action of y and a right action by z, we obtain another closed path

y-P-z at y?z as shown in Fig. 1.7.

Fig. 1.7

By introducing a set Z of the following defining paths we then form a locally finite
two-complex (I'(P); Z) denoted D(P) . For any two edges A, B in I'(P), the defining

A

path (closed) of D(P) defined by A and B is
A, B] = (A-«(B))(7(A) - B)(A™" - 7(B)(«(A) - B™") (1.8)

as shown in Fig. 1.8.
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Fig. 1.8

Obviously we have F(z) - Z - F(z) = Z. Thus, F(z) acts on D(P) on both sides

compatibly and so if P is finite then (D(P), F(z)) is a locally finite object of €.

Definition 1.4.2 A finite monoid presentation P = [z; r] is FDT if (D(P), F(z)) has
a finite trivialiser; and a monoid S is F DT if it has a finite presentation which is FDT.

We now extend (1.8) to get the following lemma.

Lemma 1.4.3 (Pull-down and push-up) Let A, B be any two paths in D(P). Then
(A-¢«(B))(T(A) - B) and («(A) - B)(A - 7(B) are equivalent, namely

(A-u(B))((A) - B)(A™" - T(B)((A) - B™") ~ Lyaym)-

Proof. Let A = AjA,---A,, and let B = B;B; - - - B,, with each A; and each B; are edges.
Thus,

(A-(B))(r(A)-B) = (Ar-uB)):---(Am - uB))(7(A) By)---(7(A)-B,)

= (A1 u(B))- - (Am - u(B1))(7(Am) - B1) - ((Am) - Bn).

But
(Am - «(B1))(T(Am) - By) ~ ((Am) - By) (A - 7(By)).

So,
(A1~ ¢(Br)) - (Am - ¢«(B1))(7(Am) - By) -+~ (7(Am) - Bn)
~ (Ar oBL) - (Amos - o(B2))((Am) - Br)(An - 7(B))(r(An) - Ba) -+ (r(An) - By).
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Repeating this procedure we eventually get

(Ar-¢(B1)) - (Am - «(B1))(T(Am) - By) - -+ (T(Am) - Bn)
~ (e(Ar) - By) - («(Ar) - B,)(Ar - 7(Bn)) - - - (A - 7(Bn))
~ («(A)-B)(A-7(B)).

This completes our proof. O

This lemma means that in the geometric configuration of (A - ¢(B))(7(A) - B) one can
simply pull down the part representing A and push up the part representing B without
changing the homotopy type.

1.4.3 First order Dehn functions of monoids

We still consider the monoid presentation P defined at the beginning of this section. We
can see that each path P = E,E, - -E,, of D(P) represents a derivation from «(P) to
7(P) by means of the relators. For example, suppose E; = (U;, R, €, Vi), &i = %1,
i=1, 2, ---, m. Then we have a derivation of length m from the word U; R,, 1V4 to the

word Un, R_,,, mVm of the form:

R¢1,1=R-—!l,l R¢2,2=R—¢2,2
UiBaaVi 30Uy RupaVs oy
Rcm_‘,m—l=R—zm_1,m—l R:m,m=R—¢m,m
EE— UmRem,me —— UmR—em,me

where Ui R, i+1Viq1 = UiR_,,;Vi as words on @, 1 = 1, 2, ---, m — 1. Thus, D(’f’)

consists of components such that any two vertices lie in a component of D(P) if and
only if these two vertices represent the same element of S(P). Thus, if we let A(W)
denote the component of D(P) containing the vertex W then the map: W — A(W) is
a one-to-one map from S(P) to the set of all components of D(P).

The first order Dehn function of a finite monoid presentation (see [Pr3]) is defined as
follows.

Let P =[x ; r] be a finite monoid presentation for a monoid S and let U, V be two
words on & with L(U) + L(V) = n for some integer n. If U = V then U and V lie in

~ ~

the same component of D(P). So there are paths in D(P) from U to V. Following
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Pride [Pr3] we define the derivation length Der,i,(U, V) (in [Pr3], Pride uses the notation
Areap (U, V)) of U and V' to be the length of a shortest path in D(P) from U to V.

Then the first order Dehn function of the monoid presentation P is the function

Jf;))(n) = max{Der,"D(U, V): U=V, U, Ve F(z) with L(U) + L(V) < n}.

By using Tietze transformations Pride [Pr3, Theorem] proved that up to equivalence

8™ is independent of the choice of finite monoid presentations of S. We then use 5.%1) to

denote a particular representative of the equivalence class.
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Chapter 2

The definition, the quasi-retract
inequalities and the quasi-isometry

Invariance

2.1 The definition of second order Dehn function of
groups

2.1.1 The definition

Let
P=(xz;r)

be a finite group presentation for a given group G, and let F(z) be the free group on .
Let X be a (not necessarily finite) set of generators of m3(P) as a ZG-module. Then any

¢ = (P) € m2(P) can be written as a sum
Y eigibi, (2.1)
i=1

where ¢; = 1, g; € G, § = (P;) € X fori=1, ---, m. To give a description for ¢ of

the form (2.1), we hope that the value of m is as small as possible.

Definition 2.1.1 For each £ € my(P) the volume Vip x(£) (or simply Vx (£)) of & with

respect to X is the minimal value of m over all sums of the form (2.1) equal to £. If
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(P) = £, we sometimes write Vip x (P) for Vp x(£).
We then define the second order Dehn function as follows.

Definition 2.1.2 The second order Dehn function of P with respect to a generating set
X of the second homotopy module mo(P) is the function

given by
6 x (1) = max{Vp x(€) : A(€) <n}.

We must prove this definition is valid. To do so it suffices to show

Lemma 2.1.3 The set
xn = {Vp x (&) : A(§) <n}

is finite for all n € N.

Proof. We call an element « of 73(P) connected if there is a minimal connected picture
representing k. Since P is finite there are only finitely many connected elements of 75(P)

with a fixed area. Let
X» = max{Vp x(x): A(k) < n,x connected}.

Then clearly xZ is finite. Now let £ be any element of my(P) with A({) < n, and let P
be a minimal picture representing {. Then P will have a non-empty connected spherical
subpicture D. Let P; be obtained from P by removing . Then if &, are the elements
of my(P) represented by Py, D respectively, we have, by Lemma 1.3.4

=6+ gi1ka

for some g; € G. Since A(&;) < A(€) we may repeat the argument with ¢; in place of ¢,

and so on. Eventually we get

E=agik1 + @K+ -+ gk
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where g1, g2, -+, @@ € G, and Ky, k3, -+, K are connected. Noting that [ < n and

A(k;)<nfori=1, 2, ---, I, we deduce that
Vx (§) < nx;
which implies that x, is finite. O

The following remark will be used, usually without further comment, in the sequel.

Remark 2.1.4 Let Q = (z; r) be a subpresentation of P = (, y; r, 8) where s C F(y).
The inclusion map ¢ : @ — P induces an embedding ¢. from the group H = G(Q) to
the group G = G(P). Also ¢ induces an abelian group homomorphism

¢u: m(Q) — m(P)  (P)g+— (P)p,

and we have

Gu(h-€) = du(h) - du(€) (R € H, £ € m(Q)).

Here we write (P) g if we regard it as an element of m3(Q) and write (P)p if we
regard it as an element of m(P).

Now suppose we have a finite set X of generating pictures of mo(P) containing a set Y’
of generating pictures of m3(Q). Since every expression for (IP) for any spherical picture
P over Q of form (2.1) in 72(Q) is also an expression for (P) in ma(P), it follows from

the previous paragraph that

Vx ((P)p) < Vy ((P) Q) (2.2)

2.2 Quasi-retract inequalities and quasi-isometry in-

variance

2.2.1 TUniversal covers

Le; P = (x; r) be a finite presentation and let G = G(P). We regard P as a 2-complex

with a single vertex as explained in §1.2.2, and let P be the universal covering of P. Let
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po: P — P be the projection map, and for each g € G let t, : P — P be the lift
map with respect to g defined in §1.2.5. We further have the following.

Lemma 2.2.1 (Homotopy lifting) Let P, P' be any two spherical pictures over P.
We have that

(i) if P~ P in P then p,(P) ~ p,(P") in P,
(i) if P~ P in P then t,(P) ~ t,(P') in P.

Proof. Suppose that P, P’ are any two spherical pictures over P and P ~ P’ in P. In
order to show p,(P) ~ p,(P') in P, by symmetry and induction it suffices to show that
if P’ is obtained from P by a single application of one of the operations: deletion of a
floating circle, deletion of a cancelling pair, bridge move, then so is po(ll%’) obtained from
po(P).

Now the geometric configurations of p,(P) and p,(P') are the same as those of PP and
P’ respectively. Therefore, the proof for the first two cases are trivial. For the third case,
suppose that there is a neighbourhood in P containing exactly two arc segments and the
arrows riding on these arcs have the same label, say (g%, z), with opposite directions (see

Fig. 2.1).

Fig. 2.1
Passing from P to P’ by a bridge move, this neighbourhood becomes that as shown in

Fig. 2.2.
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Fig. 2.2

We point out that P and P’ differ only by these neighbourhoods.

Moving from P to p,(P) by p,, the labels of the arrows riding on the two arcs in Fig.
2.1 become z in the corresponding neighbourhood of p,(P), and moving from P’ to p,(P)
by p,, the labels of the arrows riding on the two arcs in Fig. 2.2 become z as well in
the corresponding neighbourhood of p,(P'). Also, p,(P) and po(IP') differ only by these
neighbourhoods. Thus, picture p,(P’) can be obtained from picture p,(P) by a bridge
move. So, we have p,(P’) ~ p,(P) in P.

Let PP and P’ be any two pictures over P with P ~ P’ in P. In order to show (ii), by
symmetry and induction again it suffices to show that if P’ is obtained from P by a single
application of one of the operations: deletion of a floating circle, deletion of a cancelling
pair, bridge move, then so is t,(IP') obtained from ¢,(P). The proof for the first two cases
is also trivial since the geometry configurations of ¢,(P) and ¢,(P’) again are precisely
those of P and P’ respectively. For the third case, suppose that there is a neighbourhood
in P containing exactly two arc segments and the arrows riding on these arcs have the

same label, say z, with opposite directions as shown in Fig. 2.3.

Fig. 2.3
Passing from P to P’ by performing a bridge move, this neighbourhood becomes as shown

in Fig. 2.4.
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Fig. 2.4

Choose a transverse path in P from the basepoint to the start of the left arrow labelled
by z in the above neighbourhood of P and suppose that this path represents an element
g € G. By extending this path to the end of the same arrow and to the start of the
other arrow labelled also by z by simply crossing the left arc first and then the right arc
in the neighbourhood we obtain a transverse path from the basepoint of P to the end
of the left arrow and a transverse path from the basepoint of P to the start of the right
arrow labelled by z in this neighbourhood and these two paths represent the elements
¢'T and ¢'zz~! = ¢’ in G respectively. Let g* = g¢’. Then when we lift P to ty(P), this
neighbourhood becomes exactly that as shown in Fig. 2.1. Similarly, when we lift P’ to
t,(P') at g, the neighbourhood in P’ we mentioned in the above also becomes exactly that
as shown in Fig. 2.2.

We point out that t,(IP) and t,(I) differ by these two neighbourhoods. Thus, picture
ty(P’) can be obtained from picture t,(P) by performing a bridge move. So, we also have

t,(P') ~ t,(P). O

Corollary 2.2.2 The function
p<(P) = (po(P))

is well-defined on equivalence classes, and for any g € G the restriction

~

p«: m(P, g) — m2(P)
is an isomorphism of abelian groups.

Proof. By the above lemma, p, is well-defined on equivalence classes. Let P, P be two

spherical pictures with +(P) = ¢(P') = g. Clearly, by the definition of p, we have that

(P +P) = pO(ﬁS) + po(]f;’).
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Thus

P-((B) + (P)) = (po(B+ P')) = (po(P) + po(P')) = (po(P)) + (po(P))
= p.(B) + p.(P).

So p. is a homomorphism of abelian groups. Now by the above lemma the function

~

tge 1 m(P) —> m(P, g),  (P) — (t,(P)) (2.3)

is also well-defined and again it is easily shown to be a homomorphism of abelian groups

which by Lemma 1.3.6 is the inverse of the above restriction of p,. [

Given the universal cover P of P it will be assumed that for any pair of eements

91, 92 € G, a fixed geodesic from g, to g, is chosen denoted 7, 4,. We can suppose that

Vo291 = Vor'g, fOT any pair g, g; € G.

2.2.2 Mappings of groups

~

Now let Q = (y; 8) be another finite group presentation and let H = G(Q). Le: Q be
the universal cover of @ with projection map g,.

Let ¢ : G —> H be any function (not necessary a homomorphism). Then ¢ can be
regarded as a function sending vertices of P to vertices of Q We extend ¢ as fllows.
For e an edge of P we define

$(€) = Vo(u(e)).8(r(e)):

If a =e€1e3---€, is a path in P we define
P(a) = ¢(er)dp(e2) - - - Plexn).

Consider a defining path Ii~’g of P. Then d)(l%g) is a closed path in Q, and so q,(é( }%g))
defines the identity of H (and so ¢ is a mapping of two-complexes). Thus there is picture
over Q with boundary label g,(¢(R,)). We choose such a picture and let Dr, 4 dencte the
lift over Q at ¢(g) of this chosen picture.

Now let P be any picture over P with the basepoint labelled by some elemert ¢ of .

We convert it to a picture denoted ¢(IP) over Q as follows: given a region ¥ labeled by
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an element ¢* of G, replace the label by ¢(g*); given an arc, labelled e say, replace it by
a sequence of parallel arcs with total label ¢(e), and if ¢(e) = aja; - - a,, for some edges
ai, Gz, +++, am of Q, then the region of ¢(]f’) shared by the arcs labelled by a; and a;4,
(¢=1, -+, an) is labelled by 7(a;) = ¢(a;4+1), and in particular, the regions at the start
of the arrow labelled by a; and at the end of the arrow labelled by a,, had been labelled
by #(c(e)) = «¢(e)) = ¢(a1) and ¢(7(e)) = 7(é(e)) = T(am) respectively; given a disc
labelled by Ifg, (Rer, ¢ €G,e==l1)replace it by the picture eDp . Thus, ¢(P) is a

a ) ¢(r(e) = 7(am)

picture over Q at ¢(g).

j{ ¢(a(e)>=a(a1

€2

We then have
Lemma 2.2.3 The function ¢. given by
$.(F) = (4(P))
is well-defined on equivalence classes; in particular, for any g € G the restriction
.0 m(P,g) — m(Q,4(g))
is a homomorphism of abelian groups.

Proof. To show that ¢, is well-defined we must show that if P, P’ are any pictures over
P with P ~ P’ in P then ¢(]f’) ~ ¢(l§”) in ©. In order to do this, by the symmetry and
the induction, it suffices to show that if P is obtained from P by one application of each

operation of deletions of floating circles, deletions of cancelling pairs, and bridge moves
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then so is p,(P) obtained from p,(). Thus, in the first case, the floating circle in P is
converted to a sequence of concentric closed arcs in qS(lf”) By a sequence of applications
of deletions of floating circles these closed arcs are removed and then ¢(P) is transformed
to ¢(P'). In the second case, the cancelling pair in P is converted to a trivial spherical
subpicture of d)(lf’) which can be modified to a sequence of cancelling pairs by a succession
of bridge moves, and so by removing these cancelling pairs we obtain the picture ¢(]§”)
In the third case, the bridge move used on P to obtain P is converted to a sequence of
bridge moves on ¢(P) to get ¢(P). The proof for the restriction of ¢, on m3(P, g) being
a homomorphism of abelian groups is similar with that in the proof of Corollary 2.2.2 for

the restriction of p, on my(P, g) being a homomorphism of abelian groups. O

We will denote the composition
m(P) 2o m(P,g) 2 ma(Q,4(9) = m(Q)

by ¢,.

We now prove the following result.
Lemma 2.2.4 For any é € my(P) and h, g € G

¢o(h - &) = $(g) ™ B(gh) - ben(£)-

Proof. Let ¢ be any element of m5(P) and let P be a spherical picture over P representing

€. Then,

$o(h-€) = ¢g(h(P))

= ¢,(P") (for some word W on x representing k)
= q.é.p;" (Pw>
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by the definition of ¢,. Let W, be the unique lift of W at g and let P, be the lift of P
at gh. Thus, the lift of P¥ at g is ]‘I"’;Wh’ . Then by the definition of p;! (i.e. the function
t, defined by (2.3)) we have

Bo(h - €) = 84(h(P)) = q.6.(B}}9).
Let Wy(,) be ¢(W,) which is a path in @ from ¢(g) to ¢(gh). Then
B (B?) = ((Bon) ).
Thus,

ok - €) = ¢3(h(P)) = qu(p(B,n)Weio)).

Moreover, by the definition of q,, qo(W¢(g)) is a word on y representing the element

#(g)~'¢(gh) of H. Therefore,

¢y (h(P))
= (a($(Bon)"0))
= (qo(B(Byn))* o))
= ¢(9) 7 $(gh)(g0($(Ps1)))
'B(gh) - qudu(Bgn)
(gh) -
(gh) -

¢y(h 'f)

Il

qedup; ()

as required. OJ

Suppose now that we have another function ¢ : H —» G. For any edge e in P we
have the closed path
He = 677(3);¢¢(T(e))¢¢(e)—171161),¢¢(0(e))

in P as shown in Fig. 2.5.
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Ye(e),vd(u(e)) T(e),o(r(e))

pé(e)
Fig. 2.5

Then p,(p.) defines the identity of G. So there is a picture over P with boundary
label po(ue). We choose such a picture, and let A, denote the lift of this picture at ¢(e).
For any defining path Rg of P we then have a spherical picture Ap, over P as depicted
in Fig. 2.6:

€1

€n

Apg: M=

Fig. 2.6
where vi = Yr(e)wo(r(es)), ¢ = 1,2, .-+, n, and respectively, circles labelled A, ¢ =
1,2, ---, n and circle labelled ¥)(Dg ) represent subpictures over P.

We let Br, denote the mirror image of the complement in Ag, of the subpicture
consisting of the disc labelled Rg‘l and the adjacent arcs.

Let Z denote the set of elements of my(P) represented by the pictures p,(cAg,)
(Rer, g€ G, e==l). Weprove the following key proposition which tells the difference
between any ¢ € my(P) and the double image 14(5)@y(€) for all g € G.
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Proposition 2.2.5 (Mapping difference) Let £ € m3(P) and g€ G. Then there ezist

ho, =+, hae) € G, C1y G2y -+, Cage) € Z such that

A(8)
€ = hoty(e) b9 (€) + D_ hiCi. (2.4)
i=1

Proof. Let P be a spherical picture over P representing ¢, where P has n = A(£) discs.
Let ]I;g be the lift of P at g for some fixed ¢ € G and suppose that the discs Q;, 2, ---, 0,
of P, are labelled RS Rgfm, .-, Ren | respectively. Let If’; be the picture obtained

»g1)? n,gn?
from I@g by replacing the disc §; by the picture ¢;Bg, 4, fori =1, ,2, .-, n. We will show
below that Yy4(g).¢ * ]f’; is equivalent to ¢¢(If”g), and from this we obtain the proposition

as follows. We have

Yo@)e(§) = Putuqs ' qudupl (P)
= putbudu(B,)
= (p.vo(P,))
= (Po(Wotnrs - B3))-

Since vy¢(g),¢ is @ path in P from ¥(g) to g, by the definition of po, Po(Vys(e)e) is 2
word on x representing the element (v¢(g))~'g. Therefore,

Do)bs(€) = (Po(Tysia)s - BI))
= (po(P})Pelrwetars))

= (¥d(g))7"g- (po(B])).

But p,(P}) is obtained from P by n replacements of subpictures of elements of the set
{po(cARy): Rer, g € G, e = 1},

so by Lemma 1.3.4,

(P) = (po(Py)) = haCa + hola + - + hnln

for certain elements (; € Z, h; € G(1 =1, 2, ---, n) and then the proposition follows by

taking ho = g~ '9¢(g).
To see that vye(e), - ]f"; is equivalent to wqb(]f”g), observe that if we have an arc in ]f”g

labelled e say, then when we pass to 1¢(P,) this arc is replaced by a sequence of parallel
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arcs with total label ¥ ¢(e). We can modify this sequence of parallel arcs as shown in Fig.
2.7.

Pvo(e) Yo(e) , Tt ‘ po(e)

— A7 ; —
— -A. te A, —T—
= é —

Yele)wé(u(e))
Fig. 2.7

For simplicity we will depict the configuration on the right by the following:

Fig. 2.8

We carry out the above procedure for each arc of B,, obtaining a picture P’ equivalent

to Y(Py).
Now consider a typical disc §); of ]P’g labelled by Rfjéi = ejey- - €. When we pass

from P, to P, a neighbourhood of ; becomes modified as shown in Fig. 2.9.

pé(em)

%w?<:55’

€m

€1

€2

48




By performing bridge moves we can further modify this neighbourhood to that as depicted
in Fig. 2.10.

Fig. 2.10
Note that the picture made up of ¢;4(Dr, 4,) and —A¢,, —Ae,y, - -+, —Ae,, is €;Bg, 5, We
still call this modified picture P’
Consider a neighbourhood of a typical region ¥ of B, as shown in Fig. 2.11.

Fig. 2.11
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Here a;, as, ---, a; are edges in P, Sy, Say -+, Sk € 7, by, by, -+, by € G, and
€1, €2, -+, € = 1. Let aj = V:(a),ué(r(s;))» J = 1, 2, ---, k. Then when we pass from

P, to P, this neighbourhood becomes that as shown in Fig. 2.12.

OF ) (3)
On® 29¥(Ds, b, o o kP (Ds, b))
Q2

a2
) =
¢(az)
- '¢'¢(ak—1)
Fig. 2.12
Since ¢(ay), ¢(az), -, ¢(ax) all are the label of region ¥, oy, a3, -+ -, oy are all the

same. Note that this situation also happen to the neighbourhood of any other region
(including the outer region) of P, and their corresponding neighbourhoods in P’. Thus,
from Fig. 2.10 we can see that the pairs of discs A; and —A; joined by arcs labelled by
Yé(aj), 7 =1, 2, ---, k are cancelling pairs. By bridge moves around these cancelling
pairs we can remove these cancelling pairs and if ¥ is not the outer region of ]f”g we can

remove the sequence of concentric closed arcs with the total label a;. After we have
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finished this modification on every region of P,, the neighbourhood of P corresponding

to the typical region ¥ is then modified as shown in Fig. 2.13.

Fig. 2.13

This gives that this modified picture from P’ is precisely the picture ]f”; surrounded
by a sequence of concentric closed arcs obtained from the above modification on the
neighbourhood corresponding to the outer region of ]f”y. Since the basepoint of If”; is g
and the basepoint of P is ¥ é(g), the total label of this sequence of concentric closed arcs

is a path from ¥¢(g) to g. So, we have shown that v,4(y),¢ - ]f"; is equivalent to ¢v¢(lf°g). a

2.2.3 Quasi-retractions and Quasi-isometries

We state the definitions of quasi-retraction and quasi-isometry between metric spaces as

follows, referring to [Al3].

Definition 2.2.6 Let (X, d), (X', d') be two metric spaces where d, d’ are the metrics

in the corresponding spaces X and X' respectively. A pair of maps
f+ X—X, f: X —X

is called a quasi-retraction of X' to X if there ezist constants ¢; > 0, and c; > 0 such

that forall z, y€e X, z', y' € X'
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d'(f(z), f(y)) < ad(z, y) +cz,
d(f'(z'), f'(¥)) S ad(a, ¥') + e
d(f'f(z), ) < ca.
The metric space (X, d) is called a quasi-retract of (X', d’) if there is a quasi-retraction

of X' to X.

Definition 2.2.7 Let (X, d), (X', d') be two metric spaces where d, d' are the metrics

in the corresponding spaces X and X' respectively. A pair of maps
f: X—X, f:X —X

is called a quasi-isometry if there exist constants ¢; > 0, and c; > 0 such that for all

r,ye X, 2,y ey
d'(f(z), f(v)) < ad(z, y) + e,
d(f'(z'), f'(¥)) S ad(z, ¥') + e
d(f' f(=), =) < e
d(ff'(z'), 2') < ca.
The metric spaces (X, d) and (X', d') are called quasi-isometric if there is a quasi-isometry

between them.

By the above definitions, a metric space (X, d) is quasi-isometric to another metric
space (X', d') if and only if (X, d) is a quasi-retract of (X', d'), and vice versa.
Consider a Cayley graph of a finitely generated group as a word metric space as

described in §1.2.4. We then have the following definition.

Definition 2.2.8 Let G, H be two groups finitely generated by & and y respectively.
Let I'g(G) and T'y(H) be their corresponding Cayley graphs with word metrics d, d'
respectively. We say that G is a quasi-retract of H if the metric space (G, d) with respect
to @ is a quasi-retract of the metric space (H, d') with respect to y and we say that G

and H are quasi-isometric if (G, d) and (H, d') are quasi-isometric.
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It is trivial that quasi-retraction of groups is a geometric property, that is, if a group G
is a quasi-retract of a group H, and G, H are quasi-isometric to groups G, H; respectively,
then G, is also a quasi-retract of H,. By [Al3, Lemma6], quasi-retraction of groups is
independent of the choice of presentations. Furthermore, by [Al3, Theorem 8|, a quasi-
retract of a group H of type F, (resp. of type F'P,) again is of type F,, (resp. of type
FPF,) for any integer n > 2.

Given a finitely generated group H, we can give some examples of quasi-retracts of

H.

Example 2.2.9 By Definition 2.2.7, if a group G is quasi-isometric to H then G is a
quasi-retract of H. Thus, (see [GhHa)]) the following groups are quasi-retracts of H.

(i) All subgroups of H of finite index (in fact, all such subgroups are quasi-isometric

to H).

(ii) All groups commensurable with H. Here, we say a group G is commensurable with

H if there are subgroups Gi < G, H; < H of finite indices such that G; = H;.
Example 2.2.10 FEvery finite subgroup of H is a quasi-retract of H.

To see this is true, simply note that H and G are quasi-isometric to H and 1 respec-

tively.
Example 2.2.11 A (homomorphic) retract of H.
Here, we say a group G is a retract of H if there are homomorphisms
¢c5HHYLG

such that ¢ is the identity map of G. Following [Al3, Example (3)], G then is a quasi-
retract of H.

Let Ko, Ho be two groups together with a homomorphism ¢ : Ky — Aut(H,),
where Aut(Hp) is the automorphism group of Hy. For each k € Ky we write ¢ for
¢(k) € Aut(Ho). In particular, if Ky is a cyclic group generated by k, then we identify ¢

with ¢x. The map ¢ determines an action of K¢ on Hy given by
hk = ¢k(h)a h € HOa k€ K.
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The set of all ordered pairs (h, k), h € Ho, k € Ko forms a split ertension denoted
H = Hy x4 Ky of Hy by Ko under the binary operation defined by
(h, k)(R', k') = (hox(R'), kKk'), h, h' € Ho, k, k' € K.

Furthermore, if Ho = (; r) and Ky = (¢; 8) are presentations for Ho and Kj respectively,

then H has a presentation
H=(z,tr s a),
where a = {t~'zt);} : =z € ®, t € t} with A,; a word on & representing the element

¢71(z) of G(H,) for each pair z € «, t € t. We have two natural embeddings Hy — H
and Ko — H respectively defined by

h+— (h, ].), and kr— (1, k), h € Hy, k € K.

Identifying Hy and K, with their images respectively gives that Hy is normal subgroup
of H with complement K,. Note that Ky is a retract of H as the maps

Ko 2R g BBk e

show.

The following proposition is a standard fact.

Proposition 2.2.12 A group K is a retract of a group H if and only if H is a split

extension of a normal subgroup Hy by another subgroup Ky with Ko = K.
Proof. Suppose that K is a retract of H. Then there are homomorphisms
K% HYL K

such that ¥ ¢ is the identity map of K. Let Hy = kerv, Ko = im¢. Then for any h € H,

we have
h = h(gw(h)) " $ih(h).

Since

p(h(¢(R)™) = P(R)p((¢w(h))™")
= P(h)(pdp(h))™
= P(h)(¥(h))™! (since ¢ is the identity map of K)

= 1,
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we have h(¢y(h))~! € Hp. Thus, H = HoK, and K = K, since ¢ is injective. Moreover,
if ho € Ko N Hy, then 1(ho) = 1 and there is an element hy € H such that ho = ¢(h,).
Thus,

1 =1(ho) = p¢(h1) = hy

and hence ho = ¢(h1) = 1, that is Ho N Ko = {1}.

The converse follows from the previous discussion. O

From the above proposition we can see that if G is a finite subgroup of a group H
and if G has no normal complement in H, then G is a quasi-retract but not a retract
H. It may be very interesting to investigate the behaviour of quasi-retractivity between

groups.

2.2.4 Inequalities and invariance theorems

Let G and H be two groups finitely presented by P = (x; r) and Q = (y; ), respectively.
Let I'¢ and I'y be their corresponding Cayley graphs with word metrics d, d’ respectively.

We suppose that G is a quasi-retract of H with a quasi-retraction
QS: (G7 d)H(H$ d,)’ 7/): (Hv d,)_>(G7 d)

for a pair of constants ¢; > 0, ¢; > 0 as defined in Definition 2.2.6, where (G, d) and
(H, d') are the word metric spaces with respect to & and y respectively as defined in
81.2.5. Further supposing that H is of type F3, we do some calculations as follows.

For convenience, we replace c; + ¢; by ¢. Let ro be the maximum of the lengths of the
relators of P and Q. Also, let Y be a finite set of generators of m2(Q), and X be any

set of generators of m2(P). Let a be the maximum of the areas of elements of Y, and let
— (1) (1)
b= max{J,P(cro), 5Q(cr0)}.

Thus, each picture Dg, defined in §2.2.2 can be chosen to have at most b discs. We will
assume that such pictures have been chosen. We will also assume that analogous pictures
Dsy (S € 8, h € H) over Q with at most b discs have been chosen. We then have the

following;:
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(2.2.1) Each picture ¥(Dgry) or each picture ¢(Ds) has at most b? discs;

(2.2.2) A(44(£)) <BA(E), A(¥n(n)) SbA(n) for all £ € m2(P), n€ m(Q),
ge G, he H;

(2.2.3) Foranyn€ Y and h € H, V(¢n(n)) < Jg,X(ab).

Let n be any element of m3(Q). Then

V(n)
n=> ehin

=1
for certain elements h; € H, ;; € Y, ¢, = %1 (i =1, ,2, ---, V(n)). Then by Lemma
2.2.4

V(n)

() = Y €igitonn (mi)

i=1

for certain elements ¢; (1 =1, 2, ---, V(n)) of G. So using (2.2.3) we get:

(2.2.4) For any n € m2(Q), and h € H, V(¥u(n)) < 5&,"’,’, x (@b)V(n) .

Now each path py, = 6’71(6),¢,¢(T(e))¢¢(8)_l’nf:)’w(t(e)) (e an edge of P) has length of at
most (1 + ¢)?, so the picture A, in §2.2.2 can be chosen to have at most 5,(’1,)((c +1)2)

discs. We assume that such pictures have been chosen. Then (using (2.2.1)) we have:
(2.2.5) The area of each picture A, depicted in Fig. 2.6 is at most o where

a=1+rodp((c+1)?) +b.

Theorem 2.2.13 Let P and Q be finite presentations for groups G and H respectively.
Let X be a set of module generators for mo(P) and suppose that'Y is a finite set of module
generators for mo(Q). Suppose that G is a quasi-retract of H as defined in Definition

2.2.8. Then

5(2)

(2)
px 39

QY
and G s of type F3.
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Proof. Let £ € my(P) with A(€) < n. Using Proposition 2.2.5 we get
A(¢)
£ = hop1)#1(€) + ; hiG; (2.5)
for certain elements ho, hy, -+, hae) € G, i, (2, =+ +, Cae) € Z, where Z is the same
as defined in §2.2.2. Since P is finite, Z is also finite. Thus, we have the following
inequalities.

A(§)

V(&) < V(gemd1(€)) + D V(G)

=1

< 83 x (ab)V($1(€)) + 8P x(a)  (using (2.24) and (2.2.5))
< 5(2) x (@083 y (bn) +nép) x(a)  (using (2.2.2)).

QY
Hence
5(2) < 5(2) b 5(2) b 5(2) (
p x (1) < dp x(ab) Q,Y( n) +n QoY a),
SO
(2)

as required. From (2.5) we also see that f has a description in terms of the elements of
Z and ¥(Y). Thus, the finite set Z U(Y') is a generating set of m2(P). So G iis of type
F3 and hence the rest of the theorem follows. [J

From §2.2.3 we have the following corollaries.

Corollary 2.2.14 Let P and Q be finite presentations for groups G and H respectively.
Let X and Y be two finite sets of module generators for m3(P) and m4(Q), respectively.

Suppose that G and H are quasi-isometric as defined in Definition 2.2.8. Then 6,p X~

(2)
JQY

Corollary 2.2.15 Let G be a retract of H, and let P and Q be finite presentaitions for
G and H respectively. If Y is a finite generating set for m2(Q), then for any generating

set X of my(P), one has 5£F2’)X < 68},.

Corollary 2.2.16 Suppose that G is a group of type F3 and H is a subgroup of finite
indez in G. Let P and Q be finite presentations for G and H, and let X anid Y are
two finite generating sets for m3(Q) and mo(P), respectively. Then 6(2) (é)Y" in

particular, if P and Q are finite presentations of isomorphic groups, then 6(2) ~~ 5(3 Y
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It follows from this corollary that for any group G of type F3 we can define (Sg ) to
be the equivalence class of functions containing 5.(,2,) X for any given pair P, X (P a
finite presentation of G, and X any finite generating set of m,(P)). Then we have (by

Corollary 2.2.14)

Theorem 2.2.17 The equivalence class 6(G2) is a quasi-isometry invariant on the class of

groups of type Fs.
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Chapter 3

Second order Dehn functions of

monoids

3.1 Delta functions of two-complexes

3.1.1 Delta functions

For a locally finite object (D, S) € € with trivialiser X, let n be any positive integer and

let v be any vertex. We consider the set of paths in D
T.(v)={y: L(v) < n, (y) =71(y) = v}
Since (D, S) is locally finite, T,(v) is finite. Thus, the following concept is well-defined.

Definition 3.1.1 Let (D, S) be a locally finite object of € with trivialiser X, and let v
be any vertex of (D, S). The following function is said to be the delta function of (D, §)

with respect to X at verter v:
5D,S,X,v(n) = max{Area,D’Xs(y) : v € Ta(v)}

If there is not any confusion, we will simply use the notation dp x , for dp¢ x  in

the sequel.
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3.1.2 Invariance over vertices in a single component and invari-

ance over trivialisers

Throughout this subsection we suppose that (D, S) is a locally finite object of € with

finite trivialiser X.

Lemma 3.1.2 Suppose that u, v are any two vertices in the same component of D. Then

DX~ DX

Proof. Let a be a path from u to v of length b, say. Let n be any positive integer and
let v € T, (v) be any closed path at v of length at most n. Then aya™ € Tyia(u). By
Lemma 1.1.7, AreaD,Xs(afya'l) = AreaD'Xs('y). Thus

{Area,P‘Xs('y) v €eTa(v)}C {Area,p,Xs(,B) : B € Tnran(u)}

and so

ép x.(n) <ép x ,(n+20b).
By symmetry we also have
6'D,X,u(n) < (SD,X,v(n + 2()),

and this completes the proof. O

Lemma 3.1.3 Suppose X' is another finite trivialiser of (D, S). Then for any vertez v

in D we have

5D,X,v ~ JD,X‘,v'
Proof. Let
a = max{Areap, ys(c), Arear xs(0): @€ X, o € X'}

Then, by Lemma 1.1.5, for any closed path vy of D at vertex v there is a defining product

1

r_ Bi(si-af -8B (relative to X 9) for v with r = Areap, Xs('y), o, € X, 8,8 €8,
certain §; € D, ¢; = £1, 1 < < r. Also, for each a; (1 <1 < r) there is a defining
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product [T, pij(sij- of;* - si;)p;;* (relative to X'®) for o; with r; = Areap, X,s(a,-) < a,

of; € X', sij, si; € S, certain p;; € D, €;; = £1, 1 < j < r;. Thus,

3~ T16si-af - 7"

i=1

~ HHﬂ,(s,- (pij(si5 - ;™ - si;)%pi7t) - s1)B7

= 1] 1

= TITL BiGsi - s si)(siss S e sisi)(si - pigt - DB
t—l]..

= HH (Bi(si - pig - 81)) (sisis - 0™ - slyst) ((si - pij - s 767
i=17=1

since s; - p;' - 8§ = (s; - pij - )", Hence,
AreaD‘X,s('y) < aArea,D'Xs(fy)

and so

bp x',(n) < abp x ,(n).
Similarly, we also have

p X (1) < abp x (n)

and then the lemma follows. O

Let A be a component of D and let v be any vertex in A. The above two lemmas allow

us to write dp , as a typical representative of the equivalence class containing ép X o

3.1.3 Invariance over well-placed retractions

In this subsection we suppose that (D, S) is a locally finite object of € and (Do, Sp) is
a subobject of (D, S).

Proposition 3.1.4 Let ¢ : (D, S) — (Do, So) be a retraction. Suppose that X is
a trivialiser of (D, S). Then ¢(X) is a trivialiser of (Do, So). Moreover, if vy is any
vertex of Dy then

5’Do, s0,¢(X),uo(") < 5’D,s,X,uo(”)'
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Proof. Let n be any positive integer and let v be any closed path of length n in Dy with
() = vo. By Lemma 1.1.5, there is a defining product (relative to X*¥) in D of the form

.
v~ I Bi(si - o - s1)B7,
i=1

with r < 5‘Dquo(")’ a; € X, s;, st €S, B; € D are certain paths, ;= +1,1<: < r.

Hence, in Dy,
v = 6(1) ~ TT88)(6(s0) - S0 - 608
This means that ¢(X) is a trivialiser of (Dy, So) and
AreaDo,¢(X)S° (7)) <r
as required. [J
Let Y* = Y*(D, Dy) denote the set of paths n = e;ez--- e, in D with the following
properties:
(1) 7 is a shortest path in the homotopy equivalence class containing 1 in D;
(2) «n),7(n) € Do
(3) ¢(e2),7(e2), -, e(en) € D — Dy;
(4) if n =1 then e; € Do (if n > 1 then all e; € Dy by (3) ).
Definition 3.1.5 If
(1) every component of D contains a vertex of Do;

(ii) for every path n € Y™ there is a path i in Do such that () = «(n), () = 7(n)
(we then fiz such a ) and write Y' = {71 : n € Y*});

(iii) there is a finite subset Y CY' such that Y'=S- (YUY 1.5,

we then say that (Do, So) is Y -well-placed in (D, S).
We say that (Do, So) is well-placed in (D, S) if it is Y -well-placed for some Y .

Let Y* and Y be defined as above.
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Proposition 3.1.6 Suppose that (Do, So) is Y -well-placed in (D, S). Let X, be a
trivialiser of (Do, So). Then X = XoUY is a trivialiser of (D, S). Moreover, if v is q

vertez in D and if vg € Dy lies in the same component of D as v, then

0D s X v 20D, 50 Xowo:

Proof. Let
A= max{L(ni™'): nj~ € Y}.
SinceY'=S- (YUY ™) S, L) < Aforallpi~l € Y.

Let n be any positive integer and let p be any closed path in D of length n starting
at v. Let 3 be a path in D from v to a vertex vg of Dy (by the condition (i) of Definition
3.1.5 such a vg exists). Let b = L(f) and let v be a shortest path in the homotopy
equivalence class in D containing Sp3~'. Then L(y) < 2b+n and ¢(y) = vo = (). We

factorize v into a product of the form

Y= ,3177152772 o ',Bqnqﬁq-f—l

where n; € Y*, 1 <1< q,¢q<2b+n,and By, B2, -+, By+1 are certain paths in Dy. We
then have a path in Dy (by (ii) of Definition 3.1.5):

v = B Pamiz - - - BeTiqBa+1-

Note that we have L(v') < AL(y) < A(2b+ n), and in D
q
y ~D A T ea(midii e
i=1
for certain paths o; in D, 1 <:<q.
Since 7' lies in Dy, it is equivalent in Dy to a product of at most ép, 5 x, ., (A(26+n))
conjugates of elements of So- (XoU Xg')- So. Thus, we see that v is equivalent in D to

at most

0D, 50. X 000 (A2 + 7)) +2b+n

conjugates of elements of S-((XoUY)U(XoUY)™!)-S. Since v is equivalent to 8p3-1,
we thus have, by Lemma 1.1.7, that p is also equivalent in (D, S) to at most

0D, 50, X 000 (A(20+ 7)) +2b+n

63




conjugates of elements of S- ((XoUY)U(XoUY)™?)-S. Hence, XoUY is a trivialiser
of (D, S) and
5D,5,X »(M) S 0D, 5, X000 (M20+ 1))+ 26+

as required. OJ

To combine Propositions 3.1.4 and 3.1.6, we suppose, for some set Y of closed paths
of D, that (Dy, So) is a Y-well-placed retract of (D, S) with ¢ : (D, S) — (Do, So)
a retraction. Since each component of D contains a vertex of Dy, it suffices (by Lemma
3.1.2) to restrict attention to vertices of Dy.

Suppose X is a finite trivialiser of (Do, Sp). Then X = XoUY is a finite trivialiser
of (D, S) by Proposition 3.1.6, and so, by Proposition 3.1.4, (X ) = XoU¢(Y) is again
a finite trivialiser of (Do, Sp). By Proposition 3.1.4 we have, for any vertex vg of Do,
that

D450, X ous(Y )0 = 0D .5, Xo0Y o°
By Lemma 3.1.2,
5’Do,so,X0u¢(Y),uo ~ 5’Do,so,Xo,uo'
Thus,
0Dy.50. X oo = 0D.5. X o0Y 0"
Also, by Proposition 3.1.6,

0D .5 XouY wo =X 0D4,50, X 00"
We then have

Theorem 3.1.7 Let vy be any verter in Dy and Y be a finite set of closed paths in D. If
(Do, So) is a Y -well-placed retract of (D, S), and if X is a finite trivialiser of (Do, So),
then XoUY is a finite trivialiser of (D, S) and

5D,S,X0UY,UO ~ 6D0.501X07v0.

If (Do, So) is well-placed in (D, S) then any component A of D contains a component
Ag of Dy, and we see from the above theorem that (assuming (Do, So) is a retract and

(D, S) and (Do, So) are two locally finite objects of €)

$Dyn, ~ DA
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3.2 Application to monoids

3.2.1 Associated two-complexes

Consider a finite monoid presentation
P=z;r.

Associated with P we have a locally finite graph F(’f’) and a two-complex ’D('f’) =
(T(P); Z) as defined in §1.4.2.

Now, the left and right actions of F(z) on I'(P) satisfy F'(z)- Z - F(z) = Z. Thus,
F(x) acts on 'D('P) on both sides compatibly and so (’D('P), ﬁ’(a:)) is a locally finite
object of €.

Definition 3.2.1 Let P = [@; 7] be a finite monoid presentation which is F DT. Suppose
that X is a finite trivialiser of (D(P), F(z)). For any W € F(=) the second order

Dehn function $? of’i’ with respect to X at W then is the delta function of

o P .Ex), X .w R
(D(P), F(z)) with respect to X at vertezx W, i.e.

5@ Y S
P Ex), X w DP).k@x), X w’

or simply (if there is not any confusion)

#(2) _ .
J'P.X,w - ‘SD(’P),X W

In particular, if A(W) is the component of D(P) containing W and P is FDT then

we write

5(1‘2;,W = ppyam)

for a typical representative of the equivalence class containing 5’D(’f’),ﬁ‘(:c), Xw
Recall that the components of D(P) are one to one correspondence with the elements

of the monoid § (’P) defined by P. Thus we see that, up to equivalence we can define,

for each element W of S(P), a second order Dehn function (AYS;)W

In this section, we aim to prove the following theorem.

Theorem 3.2.2 Let P, P, be two finite monoid presentations and suppose ¢ : S(P1) —»

S(P3) is an isomorphism.
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(i) If Py is FDT then so is Ps.

(ii) For any W € S(P;) we have Sf’?’)lw ~ 3’(7‘?2@(‘&7)'

We remark that part (i) of this theorem was originally proved by Squier [Sq2].

Definition 3.2.3 Let S be an FDT monoid, and let s € S. We define ngz (up to

equivalence) to be 85;) - where P is some finite monoid presentation such that S(P) is

'

isomorphic to S under an isomorphism ¢ : S — S('f’) say, and p(s) = W.

Theorem 3.2.2 shows that this definition is valid. For suppose that S is any monoid
and 131, P, are any two finite monoid presentations for S. Then there are two monoid
isomorphisms ¢; : § — S(P;) and ¢, : S — S(P,), and hence the composition

¢ = @207 : S(Py) — S(P,) is also a monoid isomorphism.

3.2.2 Tietze transformations
We now define elementary Tietze transformations on any monoid presentation P = [z; r]

as follows.

Type I: Add to P a new relation Wy = Vj,, where Wy = V, in S('f’), to get the
presentation Q; = [z; v, Wo = Vo).
Type II: Add to P a new generator y, and a new relation y = Uy where Uj is a word

on z, to get the presentation Q= [z, y; 7, y = Uy).

In both cases, the inclusion mappings P — Q (: = 1, 2) of monoid presentations
induce monoid isomorphisms
S(P) — S(Q), i=1,2
(called the elementary isomorphisms).

Proposition 3.2.4 Let P,, P, be two finite monoid presentations such that ¢ : S(’f’l) —
S(’f’g) is an isomorphism. Then there is a finite monoid presentation T and two se-

quences of finite monoid presentations
Pro=U, Uy, - Uy =T, (3.1)
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’ﬁ2=i)0’ i)l’ Tty {)VI:'i— (32)
such that each U,y (resp. each i}j.;.l) is obtained from U; (resp. 91) by an elementary
Tietze transformation (0 <i<m—1,0< 7 <n-—1). Moreover, the following diagram

commutes:

S(T)

S )ﬁ/ '.\QS(\?)
oo N
S(Pl) = S(Uo) S(pg) = S(Vo)

A

where 0; : S(U;) — S(Uipy) and 9; : S(V;) — S(Vj41) are the corresponding

elementary isomorphisms, 0 <:<m—-1,0<37<n—1.

Proof. Let

P1=Uy = [z1, T2, -+, xx; Ry, Ry -+, R,

732 = vo-‘— [y, y2, -5 yps Thy T2y - -+, T
Suppose that V; = Vi(y1,---,y,), U; = Uj(z1,---,zk) are words on {y1, -+, yp} and
{z1, -+, =&} respectively such that

@)=V, and ¢7'(y;) =TUj,
1 <1<k, 1< 35 <p. First, for each 0 < 3 < p—1, by adding a new generator y;4,
(Type II) to U, we obtain the presentation
Ujpr = [z1, -, Tyt o, Y By, ooy Ry, yi=Uy, -+, Y1 =Uj4]

and we have the corresponding elementary isomorphism 6; : S (1:(,) — S (1:‘j+1)-

Consider a relation (1 < j <q)
TJ . T+1v]’ = T—l,j

of Py. Here T, j, T, ; are positive words Ty (Y1, ¥p)s To1.i(¥1, -+ Yp) 00 {y1, - -, yp }-
Since ¢~! is an isomorphism, we have

T41,;(Us, - Up) =T1j(Uy,y -+, Uy)



in S(P1) (and hence in S(I4,)), and so (since §; = U, 1 < I < p),

T+1.j(yla T ’yp) = T—lyj(ylv Tt al—jp)

in S(l:l,,). Thus, for each 0 < j < ¢ — 1, by adding a new relation Tj4; (Type I) to U,,;

we obtain the presentation
up+j+l = [xl, oty Ty Y1, 00ty Ypy Rh R Rla ylela Tt yp=Up7 Tl, Tty Tj+1]

and the corresponding elementary isomorphism 6,4 ;41.

Now in S(P,),

Ti=¢ ' (Vi) =0 Vi, -+, Bp)) = Vi(Uy, -+, Up)

~

and so in S(Up4q)

T;ZVi(Ul, ceey _U—p) =V,'
for all 1 < ¢ < k. Thus, for each 0 < 7 < k — 1, by adding a new relation z;4; = Vi1
(Type I) to U,,q4i We obtain the presentation

up+q+i+l = [ Tyy oy Thy Yty 27y Yps

Rh T Rla yl"_—Ula Tty yP:UP7 T17 Tty TQ’ xlz‘/la ety Tipl = 1'+1]

and the corresponding isomorphism 6,44i+1. We then let T = Z:lp+q+k.

By symmetry we also have a sequence of presentations
Pa=Vo, s Vipigp =T

such that i)j+1 is obtained from \AJJ- by an application of Type I or Type II, 0 < 5 <
k+1+4+p— 1. For each j, we let 9J; be the corresponding isomorphism. Then we have

Optatk-1--00(Ti) = ;= Vi (in S(T))
= kpirp-1° - Fo(V3)

= ipipp-1-Dop(Ti), (1 <i<k)

and so the diagram commutes as required. This completes our proof. O
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On the other hand, associated with the two types of Tietze transformations we have
two monoid homomorphisms: ¢; the identity monoid homomorphism of ¥ (x) and ¢, the

monoid homomorphism from F(z,y) to ¥ (x) defined by
$r:zr—rz (z€@), yr— U (3.3)

(In fact, each ¢; induces the isomorphism from S( Q,) to S (‘P) which is the inverse of the
corresponding elementary isomorphism from S(P) to S(Q;), 1 =1, 2.)

Consider the Type I operation. Since Wo = Vo in S(P), there is path in D(P) from
Vo to Wy, say By. Then By together with the edge Eq = (1, Wy = Vo, +1, 1) form a closed
path Ay = BoEy at .

We now extend ¢; to be a mapping: (D(Q1), F(z)) — (D(P), F(x)) as follows.

(1) For any vertex V € F(a) of D(Qy), $1(V) = V;

(2) For any edge of the form E = (W, R, e, W), R € r of D(21), ¢1(E) = E,
and for any edge of the form W - Ef' - W' = (W, W, = V,, £1, W) of ’D(Ql),
& (W -EE - W) =W . -Bf - W'

First, it is easy to check, this extension is a mapping of graphs from F(Ql) to l"('f?)
Thus, by Lemma 1.4.3, it is a mapping of two-complexes and by (1) and (2) it is a

retraction.

Now consider the Type Il operation. We extend ¢, to be a mapping: (’D(Qz), ﬁ’(:c, y)) —
(D(P), F(z)) as follows.

(3) For any vertex V € F(z,y) of D(Q3), ¢2(V) is as defined in (3.3);

(4) For any edgeE = (W, R,e, W') ofD(Qz) with R € 7, $2(E) = (¢2(W), R, €, p2(W")),
and for any edge of the form E = (W, y = Uy, ¢, W’) of D(QQ), $(E) =

1¢2(W)U0¢2(W')'

Again, it is easy to check using Lemma 1.4.3, that ¢, is a mapping of two-complexes.
Moreover, by (3) and (4), ¢; is a retraction.

We will further prove in the following subsection (§3.2.3) that (D(P), ﬁ'(z)) is well-
placed in (D(Q,), F(z)) and (D(Q:), F(z, y)). We will then use this in §3.2.4 to prove

Theorem 3.2.2.
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The above notations will remain unchanged throughout the rest of this section.

3.2.3 Invariance over presentations

Lemma 3.2.5 The object (D(P), F'(x)) is a well-placed retract of (D(Q1), F(x)) and a
well-placed retract of (D(2s), F(z,y)).

Proof. In the previous subsection we have seen that both ¢;, ¢, are retractions.

Since all vertices of D(Q;) are vertices of the subcomplex D(P), we can see that the
set Y* = Y*(D(Q1), D(P)) as defined in Definition 3.1.5 only contains single edges of
the form (W', Wo = Vo, +1, V'). Thus, if we let Y be {EoBo} then (D(P), F(z)) is
Y ;-well-placed in (D(Q,), F(z)).

Consider the set Y3 = Y*(D(Q;), D(P)) defined as in Definition 3.1.5. If B € Y} isa
non-trivial path, say B = E;E; - - - E,,, then o(E,), 7(En) € F(x), and 7(E;), -+, 7(Em_;) &
F(z). Since «(E,) € F(x), 7(E) = ¢(E;) ¢ F(z), E; must be of the form (W, y =
Us, —1, V). Furthermore, since 7(E,,) € F (x), the y-arc in E; must terminate at some
E;, 2 < j < m, namely E; must be of the form (W', y = Uy, +1, V') and hence B must

be of the form as depicted in Fig. 3.1.

E, %%

Fig. 3.1

Thus, B is not a shortest path in the homotopy equivalence classes containing B. Hence,
Y} =0, and so (D(P), F(z)) is 0-well-placed in (D(Q3), F(, y)), and this completes
the proof. O

70



3.2.4 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2: Consider (3.1) and (3.2). If ; is FDT, by Lemma 3.2.5
and Proposition 3.1.6, ¥4, is also FDT (0 < i < m — 1). Thus, if Uy = P, is FDT,
then 7 is FDT. Moreover, by Lemma 3.2.5 and Proposition 3.1.4 if ¥, is FDT then
‘A)j_l is also FDT (1 < j <n—1). Hence, we have proved (i) that if P, is FDT then so
is 132.

Let X, Y be any finite trivialisers of (D(P;), F(x)) and (D(P,), F(y)) respectively.
Let W be any element of F'(z) and let V be any element of F(y) such that V = ¢(W) in
S(’i’g). By the commutative diagram in the Proposition 3.2.4, we have 8,,_; - - - 8o(W) =
9n_1---9o(V) and so W and V (as elements of F'(z, y)) lie in the same component of
D(T).

Now by successively using Lemma 3.2.5 and Theorem 3.1.7 we have

6@ o~ 83 .,
Pur@) X w T R@yX w

for some finite trivialiser X of (T, F(=, y)) and

5 .~ 82 _
’PLF(y)vaV T'F“(z,y),Y ,V

for some finite trivialiser ¥ of (T, F(z, y)). Since W and V lie in the same component

of D(T), and X' and Y are finite, by Lemmas 3.1.2 and 3.1.3 we have

5@ L~ 5@ .,
T‘F‘(z'y)’X ’W Tvﬁ‘(mvy)sY sV
and so
69 .~ 6® )
P.E@),X w PLEw)Y vV’
namely,

5 50
?1 1_W ’PZ:‘p(W)

for any W € S (’i’l) and this completes the proof. O
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3.3 The definition concerning the shortest words

In this section, we will define a global second order Dehn function of a finite monoid
presentation. This function gives an overall upper bound for all second order Dehn
functions at shortest words in every component. However, I am unable to prove this
definition is independent of the choice of finite presentations.

Let P = [z ; r] be a finite monoid presentation. Suppose that P is a path in D(’i’)
We will say that P is a connected picture, if the corresponding geometrical configuration of
IP, regarded as a graph in the plane where the discs are vertices and the arcs are edges, is
connected. If P’ is not connected, then it consists of a number of (connected) components.
A component is non-trivial if it contains at least one disc.

Furthermore, suppose that P is a closed path in D(P). Since «(P) = 7(P) we are able
to glue the upper boundary of the geometrical configuration of P with its lower boundary
to obtain a spherical geometrical configuration. We will say that P is a connected spherical
picture over P if this spherical geometrical configuration is connected. If the spherical
picture IP is not connected, then it consists of a number of components (connected spherical
pictures). A component of a closed path (a spherical picture) is non-trivial if it contains

at least one disc.

Example 3.3.1 The picture P in the Ezample 1.4.1 is connected. But the picture y-P-z is
not connected; it has one non-trivial component (the picture P) and two trivial components

the two arcs labelled y and x respectively.
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Example 3.3.2 Let
Po=[z,y;zy=1,yz =1, 2% = 4.

Then the closed path
Py = (1, zy = 1, +1, ayzyryzy)(zyzyryzy, zy = 1, -1, 1)

with the following geometrical configuration

[/ paall F i pmalll G
1y [
______ I I {75 et A O D
a:—"’———__. G
x y——*f*
Fig. 3.2

is not a connected picture but a connected spherical picture. The closed path

P, = (z, zy =1, +1, (zy)’yz?)(z(zy)? zy = 1, —1, yz?)
(z(zy)’yz, 2y =1, =1, z)(z(zy)’y, 2* =¢°, +1, yz)

(z(zy)*y?, 2 = o*, -1, z)(2(zy)’y, yz =1, +1, ?)

with the following geometrical configuration

Fig. 3.3

is not a connected spherical picture; it consists of three trivial components and two non-

trivial components.

Example 3.3.3 Let

’i’l = [iE,y,Z; TYy =1, Yyz = 2]'
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Then the closed path
Py = (1, 2y =z, +1, y"2)(ay™, yz = 2, —1, 1)

with the following geometric configuration

.
<

T
|
|
|
|
|
|
T
|
[
|
!
!
I
|
!
|
|
|
I

@[’]

Fig. 3.4
is a connected spherical picture (but not a connected picture).
Let P = [z ; 7] be a finite presentation, and let
w={W: WeF(z), LIW) < L(U) for any Ue€ F(z) with U=W},
that is, w is the set of minimal representatives of elements of S(’i’)

Lemma 3.3.4 For anyn € N the set

T: = {P: L(P) < n,P a connected spherical picture over P at W for some W € w}
is finite.

Proof. Let P be any connected spherical picture at W over P for some W € w with
L(P) < n. We first show that P is a connected picture. Suppose P is not a connected
picture. Let P; be the first non-trivial component of P to the left. Since P is a connected
spherical picture, there are not trivial components on the left of P; (otherwise these trivial
components would be trivial connected spherical components of P). Let P, be the picture
obtained from P by removing P;. Then P, is not trivial by the same reason. Thus, either
(Py) = Wy, 7(Py) = W1 W,, or o(Py) = W W, 7(P,) = W, for some words W;, W, on =
with W; not a empty word. Without any loss we suppose it is the first case. Note that if
we glue the lower boundary of P with its upper boundary then those arcs of P; labelled
W, must be connected to the upper boundary of P;. Thus, ((P;) = WoWs, 7(P;) = Wa

for some word W3 on @« as shown in Fig. 3.5 since P is a connected spherical picture.
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Wi

W,

W1 ]P’2

W, W

Fig. 3.5

From P; we have Wy = W, W,. Thus W = W, W,;W, = W, W,. This is a contradiction
since L(W1W3) < L(W).
We now show that for any non-trivial connected picture P with L(P) < n, L(¢(P)) <

an where

a =max{L(R41), L(R-1): R€ r}.

If n =1, then «(P) = R4 or R_; for some R € r, and so L(¢(P)) < a.
Suppose that the result is true for n — 1 > 1. Let P be a connected picture with
L(P) = n, say
P=EE;---E,,

A

where E,, ---, E, are edges in D(P). Let P,_; = E,, ---, E,_;. If P,_; is connected,
then by the induction hypothesis we have

L(«(P,)) = L(t(Pp-1)) < a(n—1) < an.

If P,_, is not connected, then P,_; consists of a number of components. Suppose that
P,._; has ng trivial components which are arcs starting at the upper half boundary of P
and going all the way down to the upper half boundary of E,. Since P is connected, all
these arcs must join the upper half of the unique disc of E,. Thus, the number of these
arcs is bounded by a, namely no < a. By dropping off these arcs from P,,_;, we obtain a

picture P/,_; with L(IP,_;) = n —1 consisting of a number of non-trivial components, say

Q1, Q2, -+, Qn (see Fig. 3.6) with
L(Q,) =n-—1.
=1

1
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Q

.

7] Qr

Fig. 3.6

By induction hypothesis, we have L(:(Q;)) < aL(Q;) for all  and so

L((P) = L((Pa) <a+t i L((Q)) < a+ ia(L(Q—»
= a(l+n—-1)=an

as required.

Since x is finite, there are only finitely many words on & with length bounded by
an for any fixed integer n € N. Thus, since r is finite, the number of paths of length
bounded by n each of which joins two words of length bounded by an then also is finite;

in particular, T, is finite. O

Lemma 3.3.5 Let X be any trivialiser of the two-complez (D(P), F()). For anyn € N
the set

B, = {Area'.p Xp-(x)(lp) . P closed at W in D(P) for some W € w with L(P) < n}

’

is finite.
Proof. Let
BY = {Area . . :QeT).
n {’”ea,P'XP(-’B)(Q) Q n}

Then B is a finite set by the previous lemma.
Consider any closed path P at W in D(P) for some W € w with L(P) < n. Suppose

that [P has h non-trivial components (as connected spherical pictures), say Py, Py, - - -, Py.
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Let L(P;) =n;,i=1,2, ---, h, where Y&, n; = n. Now P is homotopic to a closed path
P’ of the form
h
P=[]U:i PV

i=1

for some words U;, V;on z,1=1, ---, h (see Fig. 3.7).

Uy
L (C 4 =
P, {1 ‘n 4 1“
I iy s st X S O O 1 4144
U, | | i
++| P t +
IR Voo 11l
i Th I
| | I
| L ... |
| | i
! | |
I | l
I O P O S B S +i+ 44
| ! | P,
T 6 o
Fig. 3.7 Va

Since for each i, ¢(P;) is a subword of W, «(P;) € w. Thus, for each ¢, P; € By,. Let
T = Area’P Xp(;c)(lp,') for each i, then by the above lemma r; < |BY| < |By| which is
finite. Thus,y by (1.1), each U; - P; - V; is homotopic to a closed path P; of the form

1; 15

IP’Q:HIDA]D‘.
j=

Therefore, P is homotopic to a closed path P of the form

h r
HHU -y A,JD,' Vi
i=1j5=1
Hence
Area,.PXp(;c)(lP’) < hmax{r;: 1 <i <h} <h|BY| <n|B[|

and our lemma follows. OJ

From this lemma, we are able to define the second order Dehn function of a monoid

presentation as follows.
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Definition 3.3.6 The second order Dehn function of a finite monoid presentation P

with respect to a finite trivialiser X is the function

§(2) —
6’PX( n) = max{B,}, n €N

where X is a trivialiser of D(P) and B, is defined in the above lemma.

In fact,

$(2) — 3(2) .
5'PX( )—ma,x{é,PF(m)Xw( n): Wew}.

The advantage of this definition is that for any U € F(z), there is a W € w such
that W = U. Then there is a path in D(P) of length d = Der,P(W, U) from W to U.
By Lemma 3.1.2, we then have

5(2) <30 < §@ _ .
89 o) 8D 4 (0 +2d) 8D ¢ (n+2d) (3.4)

(2 £(2)
A ‘ P Xu by meakns of (S’P %
However, suppose that P is F'DT, X is finite, and @ = [y; 8] is another finite monoid

Thus, we can give an upper bound for §

presentation such that there is an isomorphism ¢ : §(Q) — S(P). Let Y be any finite
trivialiser of (D(Q), F(y)). In order to show (SE;;)X =< 8(.2) - we must find constants
A, B >0 and C > 0 such that

£(2) £(2)
6’PX( n) < AégY(Bn)—i-Cn,

namely, for each W € w and all n € N,

5(2) £(2)
6’PX (n )<A69Y(Bn)+0n

By Theorem 3.2.2, for a fixed W € w there is a U, € ﬁ’(y) such that ¢(W) = U, in

$(Q) and

£(2) (2)
6’P Xw JQ Y, vl

So, there are constants A,,, B,, >0, C,, > 0, such that for alln € N

5(2) (2)
5'PXW( n) < Awégy (Byn)+ Cp,n.
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Since P is finite, for each W € w the set of all shortest words in W is finite. Therefore,
if we let A_ = max{A, : V € wnW}, B_ = max{B, : V € wnW}, and C, =
max{C, : V € wN W} then for alln € N and all V € w N W we have

4(2) <A §@
89 (W) S AgdS o (Byn) +Cipn.

For each U], we now let W' € F(y) be a shortest word representing U’W. Then by
(3.4,

By ) S0 0410 <Gy 0420

with D, = DerQ(W', U! ). Since w U W is finite, the set {Ujy : W € w UW} is finite.
We then have a constant DW > D,,, W € wnW such that

32) < 5(2)
J’P X, V(n) < A_JQ Vo (Bzn+2DB_) + Cpn

£(2)
< A_5Q Y(Bwn +2D_B_)+C_n

foralVewnWw.

Thus, these constants Ay, Bv—v" Cy and Dy are fixed for the component of D(P)
corresponding to W. But, if D(P ) has infinitely many components then we are unable
to find constants A, B > 0, C' > 0 such that

§(2) 5(2)
J’PX (n )<A5QY(Bn)+C'n

for all W € w. Hence, we are unable to show 5( ) 68 v Nevertheless, we have seen
that if the monoid S (’F’) is finite then 'D(’P) has only finitely many components and so
we can find constants A, B, C so that the above inequality holds. Hence, by symmetry
we have

D\ ; : $(2) £(2)
Theorem 3.3.7 If S(P) is finite then 57’,X 6QY
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Chapter 4

Calculations of second order Dehn
functions of groups I:

(a)synchronously combable groups

4.1 Definitions and notations

Throughout this chapter, we let G be a group finitely presented by P = (@ ; ) and we
identify G with G(P). We let p : F(z,2') — G be the monoid homomorphism given
by ¢ — z° (z € &, € = %1).

Consider the Cayley graph I'g(G). A combingo : G — ﬁ'(:c, 1) is a section of y,
or equivalently, o is a set of chosen paths in ' (G) such that for any g € G, o(g) is a
choice of a path from the identity to g. We write o, for this chosen path and call this
path a combing line. If 0, = eje; - - - e, then for any non-negative integer time ¢t ift < m
we write o,(t) = 7(e;) and if t > m we write o,(t) = 7(en) = g.

A combing o of I'g(G) is said to have the (synchronous) K-fellow traveller property
if there exists a non-negative constant K such that the combing paths to any vertices
g1, 92 with d(g1,92) <1 in I'g(G) are within a distance K of each other at any integer
time t >0, i.e.

d(0g, (1), 05,(t)) < K

and we will say that o, and oy, are (synchronous) K-fellow travellers in L'z (G).
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We say that G is (synchronously) combable if it admits a combing having the K-fellow
traveller property. Any synchronously automatic group (for definition see [ECHLPT, §2.3)
is a synchronously combable group [ECHLPT, p84|, and any combable group is of type
F3 [Al2, Theorem 2].

Let

Q={y:N—N; (0) =0, ¥(n+1) = ¢(n) or ¥(n)+1, n € N}
where all ¢ are unbounded. Given a combing ¢ of G and for any g, h € G, we set

Eo(g,h) = min {max{d(o,(s(¢)), on(¢'(£)))}}.

¥, P'€N " teN

Then the asynchronous width of o is defined to be
®(n) = max{E,(g,h): d(1,9), d(1,h) <n, d(g,h) =1, g, h € G}

for all n € N. If ® is bounded by a constant K then we say that ¢ has the asynchronous
K-fellow traveller property.

We say that G is asynchronously combable if it admits a combing having the asyn-
chronous K-fellow traveller property. Any asynchronously automatic group (for definition
see [ECHLPT, §7.2) is asynchronously combable [ECHLPT, Theorem 7.3.6].

The length L,(n) of a given combing o is defined by:

Lo(n) = max{|L(cy)| : d(1,9) < n}.

If there is a increasing function f: N — N so that L,(n) < f(n) for all n, then we
say that the length of o is bounded by f.

Let o be a combing of G. Let D: N — N be a function. If for any integer r > 0,
g € G and for all integers s, ¢t with 0 < s,¢t < L(o,) one has that |s — ¢| > D(r) implies
d(oy(s), o4(t)) >r, we then say that D is a departure function for the combing o. Any
asynchronously combable group with a departure function is of type F3 [Ge3, Theorem
1.1].

All asynchronously automatic groups are asynchronously combable with departure
function [ECHLPT, Theorems 7.2.4, 7.2.8]. Bridson [Brdl, Theorem A’] showed that the
group Z™ x4 Z is asynchronously combable with departure function for all ¢ € GL,(Z).
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4.2 Word hyperbolic groups

In his influential paper [Gr], M. Gromov introduced the class of word hyperbolic groups
(also see [ABC]). These are the finitely presented groups with linear first order Dehn
function. It is well-known that word hyperbolic groups are all automatic groups [BGSS,
ECHLPT, Ol]. For our use in the following chapters, we state a result of Bogley and
Burton [ABBPW2, Theorem 4.1] as follows.

Theorem 4.2.1 Each word hyperbolic group has linear second order Dehn function.

Thus it happens that a finitely presented group with a linear first order Dehn function
also has a linear second order Dehn function.

We point out that the converse to Theorem 4.2.1 is false. For example, any group
with a finite aspherical presentation has linear second order Dehn function. Such groups
need not be word hyperbolic, as demonstrated by the free abelian group of rank two.
Also (see Corollary 5.2.2) if G = G x Z where Gy is word hyperbolic then 62 ) is linear.
Such a group G is word hyperbolic if and only if Gp is finite. (Note that the proof of
Corollary 5.2.2 depends on Theorem 4.2.1.)

4.3 Asynchronously combable groups with departure
functions

For the first order Dehn functions of asynchronously combable groups we have the fol-
lowing;:

(a) if G is asynchronously combable then 58) =< 2™ [Brd2, Theorem 6.1];

(b) if G admits an asynchronously bounded combing o, and if L,(n) < f(n) by a
function f for all positive integer n, then 5((3-1) =< nf(n) [BrPi, Lemma 4.1; Br3,

Proposition 5.1].

Example 4.3.1 Every automatic group [ECHLPT, Lemma 2.3.9] or every semihyper-
bolic group (see [AlBr] for definition) admits a synchronously bounded combing o with
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L,(n) linear in n and so by (b) the first order Dehn function of each such group is bounded

above by a quadratic function.

Example 4.3.2 Let Gy = B, be the Baumslag-Solita group defined by the (aspherical)
presentation Py = (y, z; zyPz~'y™?) (1 < p < q). By Theorem E1 of [BGSS] this is an
asynchronously automatic group and so by (a) 6(010) < 2". (In fact, by a result of Gersten
[Ge3, the proof of Theorem B] we know that 580) ~2".)

Example 4.3.3 Consider groups of the form Go = Z"x4Z, ¢ € GL,(Z). By the proof of
the Main Lemma of [Brd1], Proposition 5.2 and Theorem A’ of [Brd1] we know that these
groups are asynchronously combable with departure functions. Moreover, the combings
admitted by these groups have lengths bounded by polynomial functions or ezponential

: . . . a
functions according to the absolute values of the eigenvalues of ¢ being 1 or not. Thus, ég,

is bounded by a polynomial function or an exponential function [BrGe, Main Theorem].

The estimate of 6(2) for asynchronously combable groups below derives from the work
of Gersten [Ge3]. Gersten showed that any asynchronously combable group with a de-
parture function is of type F3. It was pointed out to S. Pride by S. Rosebrock that an
analysis of Gersten’s proof enables an estimate for §(2) to be given. Pride then by giving
an account of the analysis proved that if G admits a synchronously bounded combing o
with the length L, bounded by function f then (b) holds for Jg ). Here we show by de-
veloping the same technique that (b) holds for 63 ) if G admits an asynchronous combing
with departure function. We also show (a) is true for (synchronously) combable groups.

The following lemma is known, for example, see [Br3, 6.1].

Lemma 4.3.4 Suppose that G admits a combing o having the asynchronous K-fellow
traveller property. Let Py = (a; r,) where vy is the set of all words W =1z,---z, on @

such that n<2(K + 1) and T; -~ z,=1 in G. Then P, is a (finite) presentation for G.

Proof. Consider an edge e = (g,2°%) of ['x(G) (z € =, g € G, ¢ = £1). We have a pair
of monotone unbounded functions 1, and gz such that d(oy(1,(t)), ogze(Ygze(t))) < K

for all t € N. Thus, if we choose a geodesic (called space-like segments) in 'z (G) from
04(1y(t)) to o4z (theze(t)) then we have a subgraph of I'g(G) of the form as depicted in

Fig. 4.1 which consists of some triangles and/or trapezoids.
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Ogze (¢ga‘c‘(t))
i o, (1)) = 0o (ore (14 1))

1
Fig. 4.1.

We will fix such a subgraph for e denoted Q.. Let p be the boundary path of a triangle
or trapezoid in .. Then p has a length at most 2K + 2. Thus, if the projection of this
path to P; is U, i.e. p,(p) = U then L(U) < 2(K + 1), where p, is the projection map
as defined in §1.2.4.

Now, for any given word W = z,---z, on & with Z1Z;--- %, = 1 in G and for any
g € G, we lift W to a closed path t,(W) in ['g(G). We can fill t,(W) in with some Q, for
each edge e of t,(W) to obtain a planar subgraph of I'¢(G) denoted Aw,, as demonstrated
in Fig. 4.2. By projecting Aw, to P, we obtain a van Kampen diagram Aw (the images
of space-like segments in Aw, under p, will also be called the space-like words of Aw) for

Po(ty(W)) = W over P, and this completes our proof. O

€2
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We now further suppose that L, is bounded by an increasing function f and o admits
a departure function D.

For each R € 7, and each g € G, by lifting R at g in I'¢(G) we obtain the universal
covering P, of P;. Let ég = €163 - €, be a defining path of P., Rer, g € G. Since
t(e1) = g, and since m < 2(K + 2), it follows that L(o,;)) < f(|lg| + K +1). By padding
terms which are trivial paths to the ends of o,(,)’s if necessary, we may extend them to
paths o; = ejjeiz--- ein (1 < ¢ < m) with e;;’s are empty paths for j > L(o,,)) where
h = max{L(oy.)): 1 <i<m} < f(lg| + K +1).

Consider Ag, (defined in the proof of Lemma 4.3.4). For each 1 < j < h, starting at
7(e1;) on oy we trave along m space-like segments back to ¢y at some 7(e;,1;) as shown
in Fig. 4.3. Denote this path by vi. Then the length of 7} is at most mK. Obviously

we have T;_; < T; by the monotonicity of each element of Q. We note that the diagrams

Argy (R € 71, g € G) are spherical.

We have the following properties.
(i) |T; — 5l < D(Km), 0 < j < h;

(ii) If 7} and v}_, meet o; at 7(eir,) and 7(eis,) respectively (clearly t; > t;), then
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(iii) |T; — Tj-1| £ D(2Km +1), 0 < 5 < h.

Let v; be the path by adding the segment denoted (; of o1 from 7(e; 1;) to 7(e;,;) to
7;- Then L(v;) < mK + D(mK) by (i). In addition, we require that o is the empty path
at 1 and 73 is fZg. Between v;_; and v; we have a drum of ]\R,g looking like (by cutting

it along ey;)

(el,Tj)
T(el,T,'_;)
7(exg N/
€15 o If(elj)
7(e1,5-1) 7(e1,1)

Fig. 4.4

consisting of at most 2mK - D(2mK + 1) those basic triangles and trapezoids. We then
have a picture (the dualization of this drum) CS{L over P containing at most 2mK -
D(2mK + 1) discs and at most 4dmK (K + 1) - D(2mK + 1) arcs.

Since L(7y;) £ mK + D(mK), we can choose a picture AY) over P, with boundary
label po(7;) and A(AY)) < 5&,{,’1 (mK + D(mK)). We also can assume that the total
number of arcs in Ag) is at most 2(K + l)ng(mK + D(mK)).

Let Ag?g be the lift of Ag) at 7(ey;). Then Aﬁ{’g is a picture over P; with boundary
label v;. We then obtain a spherical picture lﬁg) over P at t(e1;) of the form as shown

'g
in Fig. 4.5 with
A(B)) < 25.%)1(m1&' + D(mK)) + 2mK - D(2mK +1),

# arcs of ]Eg?g <4mK(K+1) - D(2mK+1)+4(K+1)5,(;,)1(mK+D(mK)).
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Fig. 4.5

Corresponding to A, we also have a spherical picture Pg, which is of the form as

demonstrated in Fig. 4.6.

The following lemma now is true.
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Lemma 4.3.5 We have
h
~ ~ o\ \ €141 €1k
Pr,~ Y (BZ) ™.

1=1
Since the disc numbers of all spherical pictures Bg?g are bounded by 25%1,)1(mK +
D(mK)) + 2mK - D(2mK + 1) and the arc numbers of these pictures are bounded by
4mK(K +1)- D(2mK + 1)+ 4(K + 1)83) (mK + D(mK)), if we let X be the set of all

images of these pictures under the projection p, then X is finite.

Theorem 4.3.6 We have that

(i) X generates mo(P1);

(i) 62 < nf(n).

Proof. Let n be any positive integer, and let P be a minimal connected spherical picture
over Py with n discs Ay, Ag, ---, Ay, labelled R, R3?, - -+, R;*. Let the word z;; - - z; j,
(1 €17 < n) on = be the label of a minimal transverse path in P from the basepoint of
P to the basepoint of A;. Then j; < 2(K + 1)n by elementary graph theory. Let P, be
the lift of P at 1 in P. Then the discs Ay, ---, A, of P, are labelled by f?,ifgl, R éi’:gn
where g; =725, 1 <12 < n. We convert P, to a picture IE””'I by replacing each A; by
the complement of the disc labelled R,‘ 5 in €:Pr, 5. Suppose that there is an arc labelled
e; connecting A; and A;.H. Then in ]f"'l we see that all subpictures ng) (1 <q<h)as

€it1

Rivigis1 WE have the same subpictures with

shown in Fig. 4.6 will be cancelled as in P
opposite symbols since er is fixed. Thus, P’ can be transformed to the empty picture
by bridge moves and eliminations of cancelling pairs. Thus, by Lemma 1.3.4, for certain
paths \; (z =1, ---, n)
(P,) = z}&'(lp?i;,g,.f

By Lemma 4.3.5, applying the projection p, then gives an expression for (IP) involving at
most nf(2(K + 1)n + K + 1) terms of X.

Now let P be an arbitrary spherical picture P over P with n discs having nontrivial
components Py, Py, - - -, P, with ny, ny, - - -, ng discs respectively, where ny+ng+---+n, =

n. Then there are words Uy, Uy, -+, U, on & such that

q

(P) =3 Ui (P:).

=1
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Thus, using the previous paragraph we get

IN

Zq:nif(?(K +n; + K+1)
nf@K + n+ K +1)

Vp, x(P)

A

as required. OJ

If G is asynchronously automatic, then by the proof of Theorem 7.3.4 of [ECHLPT]
the function f in the above theorem then can be taken as a simple exponential one.
Furthermore, if G is automatic or semihyperbolic, then f can be taken as a linear one.

Thus, we have

Corollary 4.3.7 If G is an asynchronously automatic then Jg) < 2*; and if G s syn-

chronously automatic or semihyperbolic then Jg) =< n?,

Example 4.3.3 (continued) We see that if Go = Z™ x4 Z (¢ € GLn(Z) then 580) is
bounded by a polynomial function or an exponential function according to the absolute
values of the eigenvalues of ¢ being 1 or not. We will discuss the situation when n = 2

in Chapter 7.

4.4 General combable groups

We now consider any arbitrary combable groups (without restriction on length of combing

lines).
Theorem 4.4.1 If G is (synchronously) combable then §&) < 2~

Proof. We follow the proofs of Lemmas 4.3.4, 4.3.5 and Theorem 4.3.6.

Suppose that o is a combing of 'z (G) with (synchronously) K-fellow traveller prop-
erty. Let P; be a finite presentation as defined in Lemma 4.3.4 which obviously is a
presentation for G.

Let n be any positive integer and let P be any connected minimal spherical picture

over P, with n discs Ay, -+, A, labelled by R', ---, R:" respectively. Let the word
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Ti1- - Tij (1 £ ¢ < n)on @ be the label of a minimal transverse path in P from the
basepoint of P to the basepoint of A;. Then j; < 2(K + 1)n by elementary graph theory.
Now the discs Ay, ---, A, of P are labelled by Rifgl, e R;:‘g" where ¢; = Ti1 - i 5,
1<i1<n.

The point which we have to take extra care is about the number of drums in the
spherical diagrams AR:;, 1 =1,2, ---, n. By the proofs of Lemmas 4.3.4, 4.3.5 and
Theorem 4.3.6, it suffices to show that we can uniformly reduce these diagrams to new
ones such that the number of drums in each of the new diagrams is bounded by an
exponential function with n. Here the term uniformly means that these reductions have
no affect on the cancellations in the proof of Theorem 4.3.6.

Let P be the number of all possibilities of the event of dividing a path of integer length
not bigger than 2K (K + 1) into at most 2(K + 1) segments of integer length not bigger
than K. Then P is also a constant. Following the proof of Theorem 4.3.6, we consider

the defining paths R ,, of P, say

Ri,g.‘ = €i1€i2" " * €im,, m; < 2(1\, + 1), 1< <n.

Let
h =max{L(0o,(e,): 1<qg<m;, 1<i<n,}

and let oy, be the padded path obtained from o, ) written in h edges.

Consider the van Kampen diagrams A; = Apss. Ifh > (2P|z|* KK+ then there
are at least P"((2|z])?K(F+D)n~1 space-like words Wi;’s (W;; = p,o(vi;)) in Ay are the
same words on @, and hence there are at least P"~!((2|z|)?¥(K+1))m~1 of these words
having the same division by the images of the combing lines in A; under p, (note that all
7i;’s are synchronously paths of lengths < K(2K + 1)), say Wi, -+, Wi, for some
positive integer k; > P™1((2|z|)?¥(K+1))n=1  Gimilarly, in A;, among the space-like words
Wiy, -+, Way,, there are at least Pm=2((2|z|)*X(K+1))"=2 of them are the same words on
z and the same division by the images of the combing lines in A, say Wag,, - -, W2,
for some positive integer k, > P"2((2|x])?!¥+1))"-2 and so on. Finally, there is a

positive inte er kn > P(2|=x 2K(K+1) such that for eaCh 1<:<n
g = =t>
”i.in ”iﬂ'w ) ”i,ikn
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are the the same words on @ and have the same division by the images of the combing
lines in A;. We then can apply a surgery to cut off the drums of all A; between each pair
of these two paths and obtain n new diagrams A}, 1 < < n. We repeat this procedure if

necessary so that we can assume that h < (2P|z|*K(K+1))» This is the desired result. O

It seems difficult to use the above technique for asynchronously combable groups since
in the proof of Theorem 4.3.6, the jth space-like segments of +;, and 7i41,, may be not

the same and therefore, this will have affect on the cancellations after the above uniform

reduction.
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Chapter 5

Calculations of second order Dehn
functions of groups II: direct and

free products

5.1 General bounds for direct and free products

In this section we let Go, G be groups of type F; finitely presented by Po = (x; 7o), Py =
(t; 71) respectively, and let X; be a finite set of generating pictures for m3(P;), (: = 0, 1).
A presentation for the direct product G = G x G} is given by

'P=(2}, ta To, 71, S)

where 8 = {[z,t]: ¢ € @, t € t}. Since both Gy and G, are retracts of G, by Corollary
2.2.15 we have
83 = max{s2), 62). (5.1)
If D is a picture over Py then for each t € t we have a corresponding spherical picture
Pp: over P as in Fig. 5.1, where the top oval labelled —D is the subpicture —D, the
mirror image of D, the bottom oval is the subpicture D, and the middle discs corresponds
to the commutators. We let ép; denote the element of 72(Py) represented by Pp,;. When
D consists of a single disc labelled by some R € 7o then we write Pg; ( resp. {gr;) instead
of Pp; (resp. &p,:). In similar way, for any S € r; and z € & we have a spherical picture

Ps,, over P and a corresponding element &5, of mo(P).
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Fig. 5.1

Let W be the label on D where the discs of D are labelled RY', R3?, - -+, Ri™. Choose
a spray (1, 72, -*-, Ym) for D and let U; be the label on v;, (: = 1, 2, ---, m). By
Remark 1.1.6, W is freely equal to
-
i=1
Moreover, let p; be the standard embedding (see (1.7)). Then we have

- g W
pa(bpe) = - 1)) elUier, + D 5 el (5.2)
1=1

€I
Lemma 5.1.1 We have that
m
by =Y eUilre

=1
Proof. Consider the image of {p; under the embedding u;. Note that by the definition

of Fox derivation (§1.3.1) we have

M, UiRS U
Oz

G e rr—1 G e277—1 m—1 - GUmRemU—l

Sl U‘;; Ry ALl U"’g; Ut ] GR U e g
Jj=1

m Grr. 4] f-l :
= ZB—U;;Z&— (since U;R7U; ' =1,1<j<m—1)

1=1

™ (9%U; —3GR,5-‘ ——ﬁBGU;
- Z}( oz + Ui oz - GEG; oz )

n _9°R; e & .
= ZEiUg—ax— (since U;RIU7 =1,1<i<m).
=1
Hence,
- LA W
Habos) = (F-1) ) elier + Y, —5 €l
1=1 z€X
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i UR‘U'l

= t—l ZE,U er; + Z €[z,1]

T€d

= t—lZEU8R+EZEU e[zt]

€ i=1

m
=

= S &l ( (- 1er, + Z e[z z])

=1 z€XL

= H2 (i 6iUi§R.-,t)
i=1

and the lemma follows since y, is injective. O

Let P be a spherical picture over P and let ¢t € t. A non-trivial t-circle (outward
directed or inward directed) in P consists of a collection of s-discs Ay, -+, Ag and a

collection of t-arcs a, - - -, ax where o; joins A; and A,4; (subscripts mod k).

outward directed inward directed
t-circle t-circle
Fig. 5.2

We also allow a trivial t-circle consisting of a single closed arc labelled ¢. A t-circle C is
minimal if there is no t-circle contained in the region enclosed by C.
Let
X=X,UX,UYUY,

where Yo ={Pp;: R€ro,t€t}, Y, ={Ps,.: S€r, ez}
Proposition 5.1.2 We have
(i) X generates my(P);

(ii) suppose that 6.(;23,)‘_'X‘_(n) < f(n) for alln (z =0, 1), where f is subnegative. Let £
be an element of mo(P) with A(€) = n and let P be a minimal picture representing

€. Then
Vx (€) < f(n) + (a + 1)’
where a = max{L(R); R € r,} (take a =0 if ry is empty).
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From this and (5.1) we immediately deduce the following.

Theorem 5.1.3 We have
max{6%), 6%} < 6%, < max{3%,, '} +n?.
{68), 62} 2 88,6, < max{3g,, 8.} +n?
Proof of Proposition 5.1.2. We will concentrate on proving (ii), as (i) has already
been proved in [BHP]. In fact, our discussion below amounts to an analysis of the proof
in [BHP] to get the required estimate for 5%), X

We let P* = (z, t; ro, 8).

Let n be any positive integer and let ¢ be an element of m2(P) with A(§) < n. Let P
be a minimal picture representing £, and let ng, ny, m be the numbers of ro—, r,—, s-discs
in P respectively.

Let P() be the configuration obtained from P by removing all @-arcs. Two r;-discs
of P will be said to be in the same 1-component of P if they lie in the same component of
PO, If A, A’ are two r;-discs lying in the same 1-component then they can be connected
by a path p of t-arcs and (v, U s)-discs. In fact, if we regard P() as a graph, where the
edges are the arcs and the vertices are the discs, then p is just a path in this graph. It
will be assumed that a maximal forest ® in P() has been chosen, and that the paths
connecting r;-discs are geodesics in ®.

Consider a 1-component  of P containing r;-discs. Let Ag, Ay, -+, Ak be the r;-
discs in this 1-component and let p) (A =0, 1, ---, k) be the (geodesic) path in ¢ from

Ap to Ay. Let dy be the number of s-discs in py. We may assume that
O=d0=dl="’=djsdj+1 S..<_dk

We will show that we can modify P modulo Y ;-pictures so that all the d)’s are 0.
Suppose j < k (otherwise no modifications are necessary) and consider A;;y. Then
the discs of pj4+1 together with their incident arcs give a subpicture Q of P, which has the

form as shown in Fig. 5.3 where the disc O is an s-disc.

¥
5
A
N

T *



We then have a Y ;-picture Ps, such that Pg, (or ng) is of the form as depicted in
Fig. 5.4.

Fig. 5.4

Modulo the Y ;-picture Ps, we may move A;;; nearer Ag as indicated in Fig. 5.5.
This gives a new picture P’. A maximal forest ®' for I’ arises from the maximal forest ®
of PM as follows. Remove all @-arcs of P’ to obtain P(!). Since the above operation has
affect only on the 1-component {2 of P, P’V consists of all 1-components of P() which
are not 2 and a new l-component )’ obtained from 0 by the above operation. If T
is the chosen maximal tree of ), then by the above operation, T is transformed to a
maximal tree 77 of . Then ¢ = (® — {T'}) U {T"}. Note that this operation also does
not affect the distances from Ap to Ay (7 +1 < A < k). We then get new geodesics
pA(A=0,1,,---, k) with

dh=00<A<j), dyy=dip1—1, s =dr (j+1< A<k).

We point out that this operation adds less than a new s-discs to P.

®
\]J

j+1 —_—

Fig. 5.5

We repeat the above procedure as often as is necessary to decrease dj4+; to 0. Note
that this requires at most m operations. We then repeat the process successively for
Ajy2, -+, Ak, finally arriving (after at most mk operations) at a picture P;. Now in Py

there will be a simple closed transverse path o such that the subpicture of P, enclosed by
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o consists precisely of the discs Ag, Ay, --+, Ag and their incident arcs. Thus, every arc
say (3, crossing a is the start of a path consisting of non-r;-discs and t-arcs (having the
same label as () in the exterior of a, and therefore, eventually recrossing « as illustrated
in Fig. 5.6. Note that no two such paths can cross in the exterior of « since they contain
no 7;-discs. This establishes that the label on « is freely equivalent to the empty word,
and so by bridge moves we can create a spherical picture Q; over P, inside « with discs
Ao, Ay, -+, Ag. Note that passing from P to P; we create no new t-circles. Since «
encloses k r,-discs, the number of arcs which can intersect « is at most ak. Thus when
we perform bridge moves to create the spherical subpicture Q; inside a we can create at

most ak new t-circles.

We may carry out the above procedure for all the 1-components of P arriving (after

at most mn, operations) at a picture P* with the following properties:
(i) P* has spherical subpictures By, By, - - -, B, each of which is a picture over Py, and

where the total number of discs in By UB, U--- UB, is ny;

(ii) The picture P** obtained from P* by removing all By, ---, By is a picture over P~
having ng 7o-discs, at most amn; + m s-discs, and at most m + an, non-trivial
t-circles (at most m t-circles coming from the original s-discs plus at most an, new

t-circles).
Let £ = (P**). We deduce from Lemma 1.3.4 that
V() < Vo (€°) + f(m) + mm.
Now from the lemma below we get Vx (£**) < f(no) + (m + any)no. Thus

Vx(£) < flno) + (m+ ani)no + f(n1) +mny

IN

(f(no) + f(n1)) + anony + m(no + n1)
f(n) + (a + 1)n®

IN
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as required. O

Lemma 5.1.4 Let P** be a picture over P* with ng ro-discs and q non-trivial t-circles.
Then
Vx (P™) < f(no) + gno.

Proof. By induction on the total number of ¢-circles in P**.
If P** has no t-circles then P** is a picture over Pg and so Vx (P**) < f(no).

Suppose P** has a trivial ¢t-circle. Then P** has the form

where P}* and IP}* are spherical pictures over P~.
Let nf,l), n(()z) be the numbers of ro-discs and ¢;, g2 be the numbers of non-trivial

t-circles in P}* and P3*, respectively. Then (using induction and Lemma 1.3.4)

VXY, (F7) < Vv, (B + Vx,uy, (P2)
< () + f(n?) + aing? + qang”
< f(no) + gno.
Now, suppose P** has no trivial ¢-circles but has non-trivial ¢-circles. Choose a min-

imal ¢-circle, say C, as indicated in Fig. 5.7. We then can modify P** into two new

spherical pictures Py and Pp, for some word W on @ U t also as shown in Fig. 5.7.
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By Lemma 1.3.4 we then have Vx  y (P”*) < Vx y (Po)+Vx .y, (Pp:)- By Lemma
5.1.1, Vx ,v,(Pps) < A(D) < no. Note that Py contains ng 7o-discs and g — 1 t-circles.
Thus, by induction hypothesis we have
Vx oY, (B™) < (f(no) + (¢ —1)no) + no
= f(no) + gno

as required. O

We now consider the free product G = Gg * G;. A presentation for G is given by
P = (=, t; ro, 71).

Note that G and G, are retracts of G. Thus, by simplifying the proof of Proposition
5.1.2 (there are no s-discs) or a direct proof we can obtain the following theorem.

Theorem 5.1.5 Let Gy, Gy are two groups of type Fs3. Then

max{8%2), &)} < 68 5, < max {3, 32}.

5.2 Some exact calculations for direct products

Our aim in this section is to give some exact calculations for Jg) with G = Go x F where
F is free (of finite rank) and Gy is a group of type F3 with Jgo) linear.
A presentation for G is given by

P = (=, t; o, 5)

where Py = (x; 7o) is a finite presentation for Gy, t is a set with |t| =rank(F), s =
{[z,t] :z € o, t € t}. We let X, be a finite set of spherical pictures which generates
ma(Po) and let

X =XoU{Pgr: : RE ro, t € t}.

Then X generates my(P).

We also require the following notation. Let
h:[1,00) — RY
be a strictly increasing continuous function such that
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(i) the restriction of h on N is subnegative;
(i) h(z) > z for all z € [1,00); and

(iii) the function z+— Aei(m) 18 increasing for £ >ng for some natural number ny € Imh.

Note that by (iii) we have i 2 1 for £ > ng. This fact will be used in the following

subsection without a further comment.

Throughout the reminder of this section the above notations will remain fixed.

2)

5.2.1 Upper bounds for 5&0“,1 when 5&) is linear

Theorem 5.2.1 If 680) is linear and 6,(;,) (r) < bh(n) for all natural number n and some

integer constant b > 1, then

2
(2) 3en
J’P,X(n) S h=1(n)’

for all natural number n > no and some constant c.

Proof. Since 5};20) is linear we can assume that 5%) X, (n) < bn with the same constant
0y

b as above. Let ¢y be the maximum volume of all elements ¢ of my(P) with A(§) < n,
and let

¢ = max{co, b, h(no)}.
Let n > ng be any natural number and let { be an element of 7o(P) with A({) =n. Let
P be a minimal spherical picture over P representing £. By induction on n we argue that

3cn?

Vx(© < oy

Case 1. P =W - Py where Py is a picture over Py, W is a word on & U L.
n2
We then have Vx (§) <bn <cn < ,ﬁc](n).

Case 2. P is not as in Case I; P contains a trivial t-circle C for somet € t.
Let P, and P, be the subpictures of P lying just inside and outside C, respectively.

Since C is trivial, both P; and P, are spherical. Hence, P has the form:

100



OGN

Thus, if we let §; = (P;) ( = 1, 2), then by Lemma 1.3.4 we have

Vx (§) < Vx (&) + Vx (&)

Let n; = A(&), 1 = 1, 2. We distinguish three subcases.
Subcase 2.1. A(&)=n; <ng, 1 =1, 2.

Since h+2(n) > 1, we have

3cn?

h=Y(n)’

Vx (&) < Vx (&) +Vx (&) <2<

Subcase 2.2. A(&1) > no, A(€2) < ng (similarly A(&;) > no, A(&1) < no).
Then

V(6)

IN

V(&) + V()

3cn?

h=1(ny)
s (h-1<n1> ¥ 1)

IN

+c (by induction hypothesis)

IA

_ 3en? [ny N h=1(n)
 h7(n) \ n n?
3cn? h=1(n)
< 1 < <n).
S (since ny + <n;+1<n)

Subcase 2.3. A(&) > no, 1 =1, 2.

Then
Vx () < Vx(&)+Vx (&)
3en? 3en?
< 1 2 . . .
S W) T R (ng) (by induction hypothesis)
<

% ( ni(ny + ng) N na(ny + ng)
h“(nl +TL2) h'l(nl +n2)
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n1 + na n;

>
h=1(ny +ng) — h~1(n;)’

(since

i=1,2)

3cn?
h=Y(n)’
Case 3. P is not as in Case 1 and Case 2.

Then P contains nontrivial ¢-circles. we pick a minimal one, say C. Suppose C
contains ¢ discs. Let D and Q be the subpictures of P lying just inside and outside C.
Then D is a picture over Po. We then can modify P into two spherical subpictures P’ and

Pgt for some word W on @ U t as shown in Fig. 5.8, where the picture Pp; is as defined

in Fig. 5.1. We have A(P') =n —gq.

. )

Let ¢’ = (P'). Then by by Lemma 1.3.4,

£ =& +egbpy (5.3)

where g is the element of G represented by W, ¢ is +1 or —1 according as to whether C
is inward directed or outward directed.

We let m denote the number of discs in D, and we distinguish three subcases.

Subcase 3.1. (m <)n —q < ne.

Then
Vx(€) < c¢+(n—gq) (using (5.3) and Lemma 5.1.1)
< c¢c+no
< ¢(l4+ng) (sincec>1)
< ¢n
3cn?
< .
= )
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Subcase 3.2. n — q > ng, and 2bh(q) > m.
Then

3c(n — q)*
Vx(§) < m‘i—m

(using (5.3), the induction hypotheses and Lemma 5.1.1)

den(n — q) : ne n
S Thmy tm bine FeS < )
_ 3en? 9. mh~1(n) ’

h=1(n) n 3cn?

Now, if m < ng, then m < ng < h(ne) < c. Hence,

q , mh7'(n) q k7l (n)
! n+ 3en? S n+ 3n?
1 -
< 1-24 = (sinceh—-l—(ﬂSI)
n  3n n
< 1,

and so
3cn?

Vx () < =T

Suppose m > ngy. By the subnegativity of h, m < 2bh(q) < h(3bg) < h(3cq), so
h='(m) < 3cq. Hence,

-1 -1 -
1_2+Th_(nl < 1_2+M (since h_l("ls h l(’7'))
n 3cn? n 3enm n m
<1-2439
n  3en
= 1.
Thus we also have
3cn?
V < .
x (&) < hT(n)

Subcase 3.3. n — q > no, and 2bh(q) < m.

We have a picture Y over Py with at most h(q) discs and having the same boundary
label as D. Then the spherical picture B obtained by putting together a copy of D and a
copy of —I represents an element of m;(Py) containing at most m + bh(q) discs. Thus,

P can be modified into two spherical pictures P” and B for some word W on & U ¢ as

shown in Fig. 5.9.
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Fig. 5.9
Let ¢ = (P"), £€* = (B). We have
Vp x(§) < Vp x(€")+Vp, x,(€7) (by Lemma 1.3.4)
< Vp x(£") +b(m + bh(q)).

Since 2bh(q) < m and b < ¢, b(m + bh(q)) < 2cm. Thus, if n — m + bh(q) < ng, then
V’P,X(‘f”) < ¢p < ¢ and so

3cn?

A i(n)’

Vx (€) < co+ b(m + bh(q)) < 3em <

If n — m + bh(q) > no, then by induction hypothesis V»p,X(.f”) < hif%%"m—i—m% and

SO

3c(n — m + bh(q))?
h=1(n —m + bh(q)) + b(m + bh(q))
3cn?  (n—m+bh(q))/(h™}(n — m + bh(q)) (1 _ m — bh(q)
h=1(n) n/h~1(n) n
bh~'(n — m + bh(q))(m + bh(q)))
3en(n — m + bh(q)) )

IA

Vx (£)

il

+

Since h_+(x) is increasing for z > ng, we then have

(n = m + bh(9)) /A~ (n = m + bh(a)) _ |
n/h=1(n) >

Now 2bh(q) < m, thus (m + bh(q))/(m — bh(q)) < 3. Moreover, we also have h~'(n —
m + bh(q))/(n — m + bh(q)) < 1. We thus have

m — bh(g) , bh=Y(n — m + bh(q))(m + bh(q))
n 3en(n — m + bh(q))

1 —
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! bh="(n — m + bh(q))(m + bh(q))
= 1- ;("‘ )~ T = m + bh(9)) )
<1 ;(m bh(a) — b(mgfh(Q)))

1 %(m bhia) — b(m—cbh(q)))

< 1= 1(m - k(o) (1- 2)

<1 (since b < ¢ and m — bh(q) < n).

Hence, we also have
2

(E) = h- l(n)

and this completes our proof. O

From this theorem and Theorem 4.2.1, we have
Corollary 5.2.2 If Gy is word hyperbolic then Jgo)xp- is linear.

Now let H be word hyperbolic and let Go = H x F* where F* is a finitely generated
free group. Then Gy is automatic and so 6(1) =< n?. By Corollary 5.2.2, Jgo) is linear.

Thus we have

Corollary 5.2.3 If H is word hyperbolic and F*, F are finitely generated free groups,

then 5§§LF.xF < n?.

We will see below (Example 5.2.8), the upper bound in Corollary 5.2.3 is often exact.

Now let Py be an aspherical presentation. Then 5%)0, 0= 0, and so 6g 0) is linear. By
Theorem 5.2.1 we have

Corollary 5.2.4 Suppose that Gy has an aspherical presentation Pq such that 59 (n) <
o

bh(n) for all natural number n and some constant b > 1. Then Jgo)x,, < h+2(n)

5.2.2 Lower bounds for 6(33,( r Where Gy has an aspherical pre-

sentation

Lemma 5.2.5 Suppose that Py is aspherical. Then the second homotopy module mo(P)
is a free ZG-module with basis Ep (R € 7o, t € t).
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Proof. Since P, is aspherical we may take the set X of generating pictures of m;(Py)
to be empty. Thus the elements ég; (R € 7o, t € t) generates my(P). To show they are

a free basis consider the standard exact sequence (1.7) for Pg. Since my(Po) =0,

Go R
a é 5:0)

8 P ZGEY — PLGEY &) Y 5

ReTy € €L
is injective. Applying the exact functor ZG @z¢,- we then obtain (with egr = 1®ég’) (R €
7o), €z = 1 ® €9 (z € x)) an injection

o°R
GB ZGer 19% @ ZGe, er —> Z —es.

ReT, c€T sex 07
Taking a copy of this injection for each ¢ € t we obtain an injection
9°R ,

et.
or *

¢: P ZGer— P ZGe. eR— .

Remy tet rex tet ze@,tet

Since @pep, it LZGeR is a free ZG-module, and the set {ér: : R € 7o, t € t} generates

mo(P), we have an epimorphism of ZG-modules

¢: P ZGep — m(P) e — Ery

ReTotet

Let 1 be the mapping given by the composition

m(P) £ (@ ZG@R) @( ) ZGe[:x:,t]) — D ZGe,

RET cex tet e tel

where p, is the embedding as in (1.7) and the second mapping o is given by er +—

0, e €, t €x,t €t Since B cqp et LGz ) = D e ict ZGeL, 0 is an epimor-
phism of ZG-modules. Thus, % is also a homomorphism of ZG-modules. By the definition

of p; we have

R

p2(€ry) = (= 1)er + ag::c ?x—e[z,t].
Thus, '
_ 0°R 0°R
Yo(er) = opa(érs) = o((t—1)er + Z _8?e[z,t]) = Z o e, = p(ep)

zed €

and so ¢ = . Since ¢ is injective, ¢ is also injective and so ¢ is a bijection as required.

a
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If ¥ is a free abelian group with basis Y then every element 0 € ¥ has a unique
representation in the form

myr + ngy2 + - + ngY,

where ¢ > 0, y1, Y2, -+, Y, are distinct elements of Y, and n;, n,, -+, n, are non-zero
integers. We write |o| for |ny| + |na| 4+ - |ng|.

In particular, by Lemma 5.2.5 (together with the fact that ZG is free abelian on G)
we have that m3(P) is free abelian on the set {g-€r:: g € G, R € 7o, t € t}, and so we
may consider |£| for any £ € m3(P). Note then that [¢{] = Vx (§).

Suppose D is a picture over Py and t € t. We have seen in Lemma 5.1.1 that

A(D)
s = 2; €igi - Rt
for certain g; € Go, Ri € 7o, €; € {1, =1} (: =1, ---, A(D)). However, it is conceivable
that there could be cancellations in the sum on the right hand side of this expression.

We will say that D is stable if no such cancellations occur. Thus D is stable if and only if
Vx (b)) = [épe| = A(D).
More generally, for any positive integer g, let

72

=1 +T+8 +- + 7 ),

S

Then if D is stable we have

V(ES) = qAD). (5.4)

Note that {,3{3 can be represented by the spherical picture P{,ﬁ’j depicted in Fig. 5.10

below. So

A(ES)) < 2A(D) + qL(3D). (5.5)
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Fig. 5.10

Theorem 5.2.6 Assume Py is aspherical. Suppose there are positive constants by, ¢, ¢z

(with by, c; positive integers), and a sequence D; (1 = 1, 2, ---) of stable pictures over

Po such that
L(0Dpp-1(n))) < bih~'(n); and

c1n < A(Dp-1(ny)) < e2n

for all integers n > h(no) (where [| denotes the integral part). Then

52 n?
Pox = ii(n)
Proof. Let n be an integer with n > h(no), and let m = [A~'(n)]. Write
ADm) _
L(dDn)
where g is a positive integer and 0 < A < 1. Then for any ¢ € t we have
AR ) < 3ADn)+AL(OD,)  (using (5.5))
< 3cn+ Abh7H(n)  (by (5.6), (5.7))
S (3C2 + bl)n
Also
VED) = ¢ADn)  (using (5.4))
_ A(D )?
= (D, + AA(Dy,)
2

2
cin

> gy (v (66), (57).
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Thus

by ((2)
h—l('n,) S g(slp'x((:;Cg + bl)n)

which proves the theorem. O

5.2.3 Examples

In the following examples, F' always denotes a free group of finite rank. The result of
Lyndon [Ly], that a presentation with a single relator which is not a proper power is

aspherical, will be used without being further mentioned.

Example 5.2.7 Let Go = Z*. Then

(2) 3
6G0XF ~nz,

An aspherical presentation for Go is Po = (y, 2; [y, 2]). Let h(z) = z*, no = 1. Then
all of the conditions we imposed on h in the previous two subsections hold. It is well-
known (see [ECHLPT]) that there is a constant ¢; > 1 such that Jf;l,)o (n) < an? = cih(n).
Moreover, let W; = y'z'y™'27" (1 =0, 1, ---, ), and let D; to the picture with boundary
label W; as depicted in Fig. 5.11 where L(ID;) = 41, A(D;) = i®. We show that Dj is
stable. Let R = [y, z]. Since W; ~M [T{Z{ Ii-h v 2*Rz~*y~7, we have

épit = § S 77 - €Ry.
i=0k=0
Clearly, there are not any cancellations in the above sum and so D is stable.
Now, for any n > 1
L(0Dpp-1 () < 4h7"(n)

and A(Dy-1(ny) = [A71(n))* = [n2)? < n. Since n? > 1, [n7] > %n% Thus,

=
-

"2 (5n7)" = on,

Do —

[n

i.e.

-n < A(D[h—l(n)]) <n.
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Fig. 5.11

We deduce from Corollary 5.2.4 and Theorem 5.2.6 that Jg)x P n%; in particular,

62 ~ 3.

Example 5.2.8 Let Go = H x F* where H is word hyperbolic and F* is any free group
of finite rank. If the group Z is a (quast) retract of H then

2 3
(S(GO)XF ~nz,

By Corollary 5.2.3, (S}f)xF.xF < n?. A direct generalization of the result of the above
example gives that if F** is again a free group of finite rank then

(2) 3
6F">(F')<F ~nz,

If Z is a (quasi) retract of H, then Z x F* x F will be a (quasi) retract of H x F*x F, so

JgLF‘xF = 52%) ~ n% Thus, (Sglp.xp ~ n%

Example 5.2.9 Let Go = F,, x F, be the split extension of the free group Fy, (m > 2)
by another free group Fy on y, y, defined by the presentation

Po=(1, ", Tm, Y1, Y2 ;TR =T, T =TTk41 (1<k<m -1, A =1, 2)).

Then

1
5(G20)XF ~ 7’1,2— m+t,

By Theorem 3.1 of [CCH] or Theorem 6.1.4 of next chapter, Py is aspherical. Let

h(z) = z™*!, ng = 1. Then again all conditions imposed on h in the previous two
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subsections hold. Bridson [Brd3] has shown that 5(1)0 ~ h. Let Ry = z¥z;!, Repy =

Pz i, 1 <k <m—1,) =1, 2, and consider the picture D; for word
W, = yz—(i+m—2)x1i+m—2y;'+m—2y1—(i+m—2)xl—(i+m—2)y;’+m_2 (l € N)

Fig. 5.12 shows the top half of D5 for m = 3. (The bottom half is obtained by reflecting

the top half through a horizontal line and replacing all yo-arcs with y;-arcs.)

z‘{T xl—f Y2

AN AN
NAWAE M

wa 5 1

/ :

Fig. 5.12

Since each disc in the top half has positive orientation and each disc in the bottom half

has negative orientation, we have

LAD) LAD:)

{Di.t = Z g] N quj'l’t - Z g; : éRqJ ,21t
j=1 J=1

for certain g;, g; € Go, 1 < ¢; <m,1<7 < %A(ID;). Clearly, within each sum there are
not cancellations since all terms of this sum have the same symbol, and also there are
not cancellations between two sums due to the different second subsubscrips. Thus, D) is
stable. Clearly L(JD;) = 6(i + m) — 12.

Let B,(cj) denote the number of the Rj.-discs of the jth row of D; from the top,

1<k<m,1<j3<m+1—2. For convenience we let [ = m + 1 — 2. Then we have

B =1,1<5<; (5.8)
Bl(cl) = BI(CZ) == B,(ck_l) =0, 1<k<m (5.9)

and
B = BEV + BT, p2k 1<k<m. (5.10)
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Thus, for p > k, 1 < k < m, we have

B = BV 4+ BFY  (by(5.10))
e B(p—1)+B(p 2 + +B(k 1) +B(k l)

(by successively using (5.10) p — k times)

= B+ B+ + BEY  (since BV = 0 by (5.9))
p—k+1 (0=3)
= Z B}fil]’
=1
namely, we have
p—k+1 .
BP =S BPY), p>k 1<k<m. (5.11)
i=1

By (5.8), in total we have
!
Z B§P) — 12

p=1
Ry o-discs in D;. By (5.11) and (5.8), for p > 1 we have

p—1 .

ng)= Z ng"l) =l(p-1).

1=t

We now show by induction on 1 < k < m that if p > k then

!
(k—1)!

BY = (P=1)(p—2)---(p—k+1). (5.12)

In order to do this we need the following elementary fact (which can be simply proved

by induction on n):

i oy . . . 1

S +m-1)(f +m=2) (1] = —=(ntm)ntm=1) - (a+Dn  (5.13)
i'=1

for any pair of integers n > 0, m > 0.

We have

p—k+1 )
B = > B (using (5.11))

l p—k+1 )
= Goo) Y (p=i-1p-i=2)(p—j—(k=1)+1)

1=1
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by using induction hypothesis. Let 7 =p—k—35+2. Then 3’ =1when j=p—k +1
and 7 =p—k + 1 when j = 1. Thus,

p—k+1
.E_: (p—J-D(-3-2)(p-5—(k=-1)+1)
p—k+1
= ; (j'+(k_2)_1)(j'+(k—2)—2)~-(j'+(k_2)_(k_2))
1

= e—gp=D-2(p-(k=1)) (by(5.13))

and this completes the proof of (5.12).
Now, by using (5.12) and (5.13) we have

l
S BP = ,Z ~D(p-2)-(p-k+1)
p=k p=k
l I—k+41

- =T | k=D =D+ (=D =2 (4 D]

_ (k_ll)!zl(l~1)---(l——k+1)
U= 1) (= k)
lk+1

IN

< (m+i)ft
On the other hand, Since
Pl—k+1)=(—-k4+2*(1—-k+1)+ (k=221 -k+D)+2k-2)( -k +2)(—k+1)
and
I—k+2°=(1-k+2*U-k+D)+{-k+2)(I-k+1)+(-k+2),

we have
Pl-k+1)>(1I-k+2)° ifk>2,I>k—1.
So, for k > 2 and 7 > 1 we have

! SR TS
DY i i
2 K
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Also,

! 2(] _ 3
Zng)=l(1 1)21_
ovar’ 2 4
for 2 > 1. Thus, we have forall 1 <k <m
(m + i — k)F+!

l

B(P)>
2_% Fes 2
p_

Hence, by symmetry,

m m+1
AD;) = 2ZZB(p)<22 (m +1)*
k=1 p=k
— 2(m+2)2_(n:n__*:}-23__1_ < 3(m+i)m+l S 3mm+lim+1,

and for all : > 1,

AD) = 2 (glj B + Z Z B(”))
) i BE

=m

v

(m + 1 —m)mH!

m!

v

im+1

m!

But L < AD;) = 2(1 + m —2) = 2(m — 1) since m > 2. Hence, if let « = 7,
3m"‘+l, then ™! < A(D;) < B! for all i. Thus, A(Dp-1(ny) < [ ( )]
“(n

). Wi

B(h~'(n))™*! = Bn. Moreover, since A~} (n) > 1 for n > no = 1, [A™}(n)] >

then have

A(D[h-l(n)]) Z a(

Thus, for all n > h(ny),
L(m)[h—l(n)]) = L(I/V[h—l(n))]) = 6([h_1(n)] +m—2) S 6(’1_1(72) +m) S 6mh'1(n),

and

a
2m+1 (D[h l("’)]) < ﬂn

We then deduce from Corollary 5.2.4 and Theorem 5.2.6 that 58.)"‘“«2))(1, ~ 2T,
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Example 5.2.10 Let Go = B, , be the Baumslag-Solitar group defined by the (aspherical)
presentation Py = (y, z; zy*27'y™?) (1 < p < q). Then
2

@ _._n
GoxF log_n’

where a = %.

Let h(z) = o*, and let ng = 3 be the smallest natural number bigger than the number
e (base of the natural logarithm). Let f(z) = e = e Since for z > ng, the first
order derivative f'(z) = k’—gﬂlz—;i%h'—“ of f(z) is positive, f(z) is increasing for £ > no, and
all conditions we imposed on h(z) in the previous two subsections hold.

By Theorem E1 of [BGSS] B, is asynchronously automatic and hence 51(312"' < h
[Brd2, Theorem 6.1]. Following Gersten [Ge2, the proof of Theorem B], define non-
negative integers aj, b; (7 = 1, 2, - -+, ) inductively as follows: a; = p, by = 0; bj4; is the

least natural number with %a; + b;4; divisible by p, a;y1 = la; 4 bj4y. Let

1

Wi =2y g2y 2y )

then L(W;) < 2(p+2)i+2. Let D; be the picture over Po with boundary label W; obtained
by dualizing the van Kampen diagram in Figure 2 of [Ge2]. (This picture is illustrated
in Fig. 5.13 for p =1, ¢ = 2, and 7 = 4.) We then have A(D;) = %(al +az 4+ + a).
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Fig. 5.13

Let R = zy?z~1y~%. Since each disc in the top half has positive orientation and each

disc in the bottom half has negative orientation, we have
FAD;) 1ADy)
= Y. gi-tri— D, hjEre
1=1 i=1

Clearly, within each sum there are not cancellations since all terms of each sum have the
same symbol. Also, by Lemma 4.3 of [Ge2] there are not cancellations between the two
sums. Thus, D is stable.

Now inductively we have

aj = aaj_1+bj =a(aaj_y+bj—1)+b;

= o (aaj_g + b]'_z) + abj_l + bj

o tay + &by 4+ abj_y + by

< paj"l+paj_2+"-+pa+17 (Since a =p, b17 ’b] Sp)
_ al —1
N a—lp
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2

2

< o < op’.

q—7p
So

AD;) < ;(P +ap’ 4 aipt) == (p-{- apz‘j; 1) <2+ ot < daitipd,
D

A(Di)2§(1+a+--'+ai"l)= . =

Thus, if 1 > log,, 2, then 2(a’ — 1) > o', and so
A(D;) > LI
YT q-p

We thus have that for any n > max{h(no), log, 2},
L(BD[h_n(n)]) = L(W[h—l(")]) < 2(h'l(n) +p+ h1 ('n)p-i—h—l (n)+1)< 2(3+2p)h_1 (n),
and
ADp-1(ny) < 40" W52 = 4p%am.

Let [A~'(n)] = A7 (n) — A with 0 € A < 1. Then

a[h_l(n)] ah-l(n)—A n n

AW ) 2~ = T = o T aa =)

We then deduce from Corollary 5.2.4 and Theorem 5.2.6 that

(@) n?

BpoxF ™ .
P log, n

Example 5.2.11 Let A be the split extension F* x4 Z where F* is a free group of rank 3
on zy, 22, z3, and let Go = A*p« A= F* x4 B where B is a free group of rank 2 on sy, 2,

and both s; and s, act on A by the automorphism ¢. If ¢ is induced by the mapping
2y 23, 2+ 2123, 23+ 2223,
then

@ "
Gox F log, n
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It was shown in [BBMS] that the automorphism ¢ satisfies the condition that for any
g, ¢ in F*, g # 1 in F* and any positive integer m, ¢™(g) # ¢ 'gq’, and so A is word
hyperbolic and Gy is asynchronously automatic with 580) ~ 2",

By [CCH, Theorem 3.1] or Theorem 6.1.4 of the next chapter, both A and G, are

aspherical. Now, the group G, has a presentation

. o1 _ -1 _ -1 _ _
Po = (21, 22, 23, 81 82; S| 2181 = 23, 8] 2281 = 2123, S| 2381 = 2Z223, ( =1, 2)).

Let Ry, = s,'lzls;z{{l, Ry = 31_1223125121'1, and R3; = s,‘lzaslz;lzz_l, =1, 2.

Consider the word W; = s7*23s55%25 ss. Then W; =1in G (i = 1, 2, --+). We have a

sequence of pictures D; of the form shown as in Fig. 5.14 for ¢ = 4.

ot
S1j ,

2Z3
3
324_ 2

Z3

z

Fig. 5.14

Similarly as we did in Example 5.2.9, we can show that D; is stable.
We have that L(9D;) = 4: + 2. Let C’,(j) be the number of R;;-discs in the jth row of
D; from the top. Then we have
c®W=0,cV =0, cM =1,
cO = Y, o) — D),
CY) = 06D 4 U 4 oD,
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Let a; denote the number of discs in the jth row of the upper half of D;. Then we
have
gj=CP+cP+CY, 2<j5<i

and so, for 7 > 3,

o = C9 40P 1ol
G By Gl B o B o B )
e
= a1 +C8 P+l ofY 4 of
= @j-1+aj_2+ C3(j_2)
= aj-1+a;-2+ ij—s) + Cg(j_s) + Céj‘3)
= aj-1+aj-2+ a;-3.

We further show that the polynomial f(A) = A3 — A2 — XA — 1 has only one real
root, which lies in the interval between 1 and 2. First, A\; = —%, A2 = 1 are the roots
of f/(A) = 3A% — 2) — 1, where f' is the first order derivative of f. Since f'(}) is
positive for A < —% or A > 1, we see that f has its local maximum value at —3 and
has its local minimum value at 1. So, f is strictly increasing on (—oo, —%] U [1,00) and
strictly decreasing on [—%,1]. But f(—%) < 0, so f has no root in (—o0,1). Since
f(2) >0, f(1) < 0, by the monotonicity of f on (1,00), f has only one real root, say b,
with 1 < b < 2. We sketch the curve of f on the real plane R? as below.

f)

=
—@
1

We now show that

for all € N by induction.
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First, we have
1 12 2 1.3 3
§b<a1=1<4b, 56 <(12:2<4b, §b <a3=4<4b.
For 7 > 3, since a; = aj_; + aj—2 + a;_3, by induction hypothesis we have
a; SAVTV 4 AT LAY = 4T3 (14 b+ bP) = 40 30% = 4b

and
Lyi-1 + Ly 2+ b" lbj’3(1 +b4b%) = Ly-ape = Ly
423 2 2 =9 =7

as required. Thus, for all : € N we have A(D;) =2(a; + a2+ - +a;) > b, and

b —1 b
A(D,) 2((11+(12+ +a,) < 8bb—1 < 8bb—1

But 3 — b —b—1 =0, so we haveb—l—— 57 < b. Hence,

A(D;) < 862

Let h(z) = b® and let ng = 3 be the smallest natural number bigger than e (base of
the natural logarithm). Similar to Example 5.2.10 we have that, for all £ > n, z:—f(T) is
increasing and all conditions we imposed on h(z) in the previous two subsections hold.

Therefore, for all n > h(ng) we have
L(8Dp-1(ny)) < 687" (n) and A(Dp-1(ny) < 8b°n.

On the other hand, let [A™!(n)] = h~!(n) — ¢ with 0 < ¢ < 1. Then

c-lr—‘

A(Dpp-1(nyy) > b7 0] = b2 =

Now, by Corollary 5.2.4 and Theorem 5.2.6 we then have 5(G20)><F logzn since 7 an

n?

logy, n”

Furthermore, let D be the direct product A x B. Then by Theorem 2 of [BBMS], G,

can be embedded into D. Thus, Gy x F' can be embedded into D x F, and (see Example
5.2.8) 62 . ~n3.
This example gives the following theorem which shows that there are pairs of groups

G, H of type F3 with H isomorphic to a proper subgroup of G, but 5&? > Jg)
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Theorem 5.2.12 There are groups H, G of types F5 with H < G such that

,n2

log, n

5g)~ and Jg)fvn%.

Example 5.2.13 Let Gy be defined by the (aspherical) presentation
Po = (23, Y Upv-—q>’

where U, V' are non-empty reduced words on x, y respectively, and p, q are integers > 1.

Then

(2 3
6G0XF ~ N2,

Obviously, if let h(z) = 2, no = 1, then for all £ > no, the function —f5 is increasing
and all conditions we imposed on h(z) in the previous two subsections hold.

It is shown in [BMS] that 5,(;,)0 ~ h. For any positive integer 7, let W; denote the word
V(UV)UP(UV)~*V-U~"?. Then we can construct a picture D; with boundary label W;.
(The picture for ¢ = 2 is shown in Fig. 5.15.) Note that, in D;, we have 2i + 2 rows and ¢

column, and so A(D;) = 2(¢+1)i. Since all discs in D; have positive orientation, similarly

as we did in Example 5.2.9 we can show that D is stable.

Letting o = max{L(U), L(V)} we then have that for any n > h(ng) =1,

L(0Dp-1(ny) < (2p + 6)ah™!(n).
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Also
ADpos ) = 25 (m)] + DA™ ()] < 2057 () + 257 (m) < 4n.
On the other hand, since n > 1, A=}(r) > 1. Thus, [A~}(n)] > 1A~!(n). Hence,

ADpos ) 2 2557 () +1)(A7 (m)) 2 o

Consequently, by Corollary 5.2.4 and Theorem 5.2.6 we have Jgo)x P~ ns.
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Chapter 6

Calculations of second order Dehn
functions of groups III:
HN N-extensions, amalgamated free

products and split extensions

6.1 HN N-extensions and amalgamated free products

6.1.1 Generators

Let Go be a group of type Fj finitely presented by Pg = (o ; 7o). Let H and H be two
finitely presented subgroups of Go together with an isomorphism v : H — H. Choose a
finite set @ = {a, : y € y} of words on @, which represents a generating set for H. Let
a ={a, : y € y} be such that for each y € y, d, represents y(a,). Let F(y) be the free
group on Yy, and let 8 be a finite set of words on y whose normal closure in F(y) is the

kernel of the epimorphism

F(y)_)Ha [y]}_)ayv yey

Thus, H = (y; 8) is a finite presentation for H. The HN N-eztension G of Gy with
associated subgroups H and H is then finitely presented by (see [Co] for reference)

P = (mOa t; To, t_laytd;l (y € y))
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If W = W(y) is a word on y, we then write W(a) and W(a) for the words on «
obtained from W (y) by replacing each y € y with a, and &, respectively. Since for each
S = S(y) € s, S(a) =1 in G(Py), we then can choose two pictures over Py, say S and
S, with boundary labels S(a) and S(a&) respectively.

For each y € y, let a,-1 = a;! and d,-1 = a;'. Then we have in G(P)

-1 =1 =1, 2-1 _
T ay1t=t a, t—ay = y-1.

If D is any picture over ‘H with discs Ay, ---, A, labelled S§*, ---, S~ (S; € s,
g; = £1,1 <1 < n) say, then let D(a) (resp. D(@)) be the picture over Py obtained by
replacing each arc labelled by y € y by a sequence of parallel arcs labelled by a, (resp.
d,), and replacing each disc A; by the picture €;S; (resp. €;S;). Then if W(y) =y, -+ y»
(y: € yUy™!, 1 <1 < n)is the boundary label of D, W(a) = a,, :--a,, and W(a) =
are the boundary labels of D(a) and D(a) respectively. Therefore, we can

Gy, * "~ Gy

n

construct a spherical picture Pp,; over P as depicted in Fig. 6.1, and we let (Pp;) = &p ;.

Fig. 6.1

In particular, if D consists of a single disc labelled S € s, then we write Pg; instead of
Pp,, and let &5 = (Psy).
As in Chapter 5 we have the following property.

Lemma 6.1.1 IfD has discs labelled Si', S5, .-+, Si*, and a spray with labels U,(y),

Ux(y), -+, Un(y), then n
by =Y eUi(a)s, .

i=1
Proof. Let R,;: = t‘laytdy‘l (y € y). Suppose that for each 1 < i < n, S; has discs
labelled Sffl”, ---,Sffj’-f‘, and has a spray labelled V;,, ---,V,;,, words on . Thus, we
have a spray for D(a) labelled
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Ul(a')vl.l’ B Ul(a)vlyjn Tt Un(a)Vn,l, B Un(a)vﬂ,jm

and a spray for D(a) labelled
- U@V, o5 Un(@)Van, - -5 Un(@) V-

Ul(d)‘/l,l’ :
Then as in the proof of Lemma 5.1.1 we have
noJi HS‘
pa(bpe) = Y, (&6:1 i(@)Vies,, —€i€i Ui(a)V; zes,,)+z Y&l 8 (a)er,,
=1 =1 i=1 yelY y
noJi aHS
= E (G;E;IU ( )tV. 1€s; , —Ei€i, 1U a)V,,es )—I—Z Z E, 6 (a)eRy,
i=1 I=1 i=1yeyY Yy
But i
— 3HS
pa(€s; ) E (ﬁe,th;‘,zes = €V zes.,) + Y 5 (a)er,,-
=1 yey y
So, we have "
p2(épy) = ZE;U.'Q’S,-,:

as required. OJ
Let P be any spherical picture over P. We introduce the t-circles (outward or inward
directed), minimal t-circles and trivial t-circles in an obvious way as we did in §5.1

In §6.1.2, 6.1.3 below the above notations will remain fixed.

6.1.2 Upper bounds
Suppose X is a finite set of generating pictures of m3(Py), and let X be the set of all

spherical pictures Pg;, S € 8. Let
b = max{A(S), A(S); S € s},

and let
a={t"eta;': yeuyl)

Theorem 6.1.2 The following statements hold.

(i) The set XoU X, generates my(P).

125



(i1) Let n > 0, m > 0 be any two integers. If P is a spherical picture over P with
A(P) = n, and the number of a-discs of P is m. Then

2 1 1
Vp xuX.(P) S 5P x.(2689)(m) +n —m) +83)(m).
From this theorem we immediately have the following.

Theorem 6.1.3 We have

(2) <32 (1)
6? XoUX: 6P01X0 (5 )

In particular, if Py is aspherical, then

)

52
P,XoUXg

and if H is word hyperbolic, then

<3

58 XX, = 5Py X

Proof of Theorem 6.1.2:
We will concentrate on proving (ii) as Theorem 2’ of [BaPr] implies (i). However, the
following argument also implicitly gives a proof of (i).
Suppose P contains q t-circles, say Ci, C, ---, Cy, and each C; contains m; a-discs.
For each 1 < i < g, if C; is not minimal, then there are a number of t-circles, say Cj,, C;,,
4 Cia; (1 £51 < g, 1 <1 < ;) for some natural number ; > 0, which lie inside C; such
that there are no other t-circles in the region bounded by C; and all C;, (1 <! < ;) as
illustrated in Fig. 6.2. Note that these t-circles C;, may be not minimal. We denote by T;
the subpicture (over Pg) between C; and these C},’s. If C; is a minimal ¢-circle, then we
also denote by T; the subpicture (over Py) enclosed by C;, and we let a; = 0. We denote
the subpicture (over Py) outside all t-circles by Tyqq. Let n; = A(T;) (1 <1< g+ 1),

then n = 7, (m; + n;) + ng41.
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Fig. 6.2

Consider a neighbourhood of a typical ¢-circle C; of P as illustrated in Fig. 6.3. Note
that if C; is minimal then the subpicture T = T;. Let ﬂ](l) and ﬂJ(-z) be the closed
transverse paths in P lying just outside and inside C; respectively. Then there is a word
W (y) such that the labels on 8", 81 are W;(a), W;(a) if C; is inward directed (resp.
W;(a), Wj(a) if C; is outward directed). Suppose, for definiteness that C; is outward
directed, so that the label on ﬂ]@) is W;(a). Note that if C; is trivial, then both W;(a)
and Wj(a) are the empty words. Since L(W;(y)) = m;, we can choose a picture D} over
H with boundary label W;(y) such that A(D}) < 83)(m;). Thus, if we let D; = Dj(a)
and D; = Dj}(a) over Py, then

A(D;), A(D;) < b6G)(m;).

Note that D; and D; have boundary labels W;(a) and W;(a) respectively.

Fig. 6.3

We now carry out modifications on each minimal t-circle C; as shown in Fig. 6.4.
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Fig. 6.4

We let Q; be the spherical picture consisting of —D; and T;. Note that if C; is inward
directed then Q; consists of —Dj and T;, and the spherical picture in the center is Pp, ;.
Removing all these Q;’s and —Pp,+’s or Pp,+’s from P gives a new spherical picture P
over P. Repeat the above modifications on all minimal ¢-circles of P’ (if there are any).
Now, if C; is a minimal t-circle of P, then C; is also a t-circle of P. Since C; is not
minimal, we can suppose that C; is of the form as illustrated in Fig. 6.2 (and hence, the

t-circles C;,, Cj,, -+, Cj, are minimal in P). Thus, in P, C; together with its interior

ay,

subpicture has the form as illustrated in Fig. 6.5.

T/

Thus, after the modification on C; we obtain a geometric configuration similar to Fig. 6.4
except that the spherical subpicture Q; now is the spherical subpicture Q; of the form as

illustrated in Fig. 6.6.

128



We may repeat the modifications and finally we arrive at a spherical picture Qg4
of the form as illustrated in Fig. 6.7, where we suppose that Cj,, ---, C), are all the
t-circles bounding T,4;, and each Dy, (1 < k < k) is Dy, or D), according to whether Cj,

is outward directed or inward directed.

Thus, we see that P is equivalent to a spherical picture P* which is a collection of

(i) ¢ spherical subpictures of the form C; = c;IP’gf,t (1 £ ¢ < q) where Pp, ; is as defined

in Fig. 6.1, U; are certain words on zo U {t}, and ¢ = %1,

(ii) q spherical subpictures of the form Q}* (1 < i < ¢) where V; are certain words on

zo U {t}; and

(iil) a spherical picture Q,4; consisting of T,4; and some D;’s or D:’s (only one of each

this pair) if C; bounds Ty41,1 <7< q.
Thus, by Lemma 1.3.4 we have

9 g
VP XX (B)S D VP, X, (Q)+Vp, x,(Q+1)+ 2 VP x0x, (C)-
i=1 =1
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Let €; = 0 or 1 according to whether or not C; bounds Tyy;. Then A(Q,4y) <
Ng+1 + Yogeq (1 — 6;)b5g2(m,) Also, for each 1 < ¢ < ¢, if C; is minimal, then A(Q;) <

n; + b5%(m,-); if C; is not minimal, say as depicted in Fig. 6.2, thene;, =1 (1 <1 < o),

and

A(Q) < n; + b8 (mi) + Ze,,bsm (m;,).

We observe that, for all 1 < | < o, 64 )(m],) could not be counted elsewhere for
any another A(Qx) with 1 < k£ < ¢ and k& # 4, 5i. Moreover, by Lemma 6.1.1,
Vp XX, (C) = V) x (Pp.s) < 84)(m:) (1 <i < q). Now,

Z PoX,(Q) < 359 5 (ni+b65)(mi))

1<i<q

a; =0
+ 3 63 x (nitb8G)(mi) + 3 €;b85)(ms)
&% =
2
< 3p, x,( 2 (nitbs)(m2))
1S5
+5p, x,( 3 (ni+b85)(ms) + 35,6050 (my,)).
1<i<q =1
ai>0

By the above observation, we have

D ZEJlbéfiz mj,) < Ze M’H m;).

SSql 1
oy

Hence,
9
=(2)
E;V'PO,XO(Q.‘) < 6 °’X°(l§q(ni+bd(ﬁ(m')))
;=0
3P, x,( X (ni+bs(my)) +Zs b4)(m.))-
RS
Moreover,
V(2 0. X0 (Qg41) < 6 X, (g1 + Z(l — & béf;_i(m,))
Thus,
7(2)
1<i<q
a;=0
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+3P. x,( 3 (ni+bsg)(m;) )+Ze. b63) (m:))

1<i<q
a; >0

q q
+0B, x, (navs + (1 = b8 (m)) + 3 8 omo)
: i=1
q

< x an+2b<§ (3 my)) ) + 333 m:)
i=1 1=1
ga%wx(n-nr+%ﬁ”())+*”()

as required. O

Theorem 6.1.3 can be generalized as follows. Let ¢ be a finite set such that, for each
t € t, there are a pair of finitely presented subgroups H; and H; of Gy together with an
isomorphism +; : H; — H,. For each t € t, choose a finite set a,; = {a,.:: y € y,} of
words on &g representing a generating set of H;. Let a,; = {d,. : y € y,} be such that for
each y € y,, G, represents the image under +; of a,, for each y € y,. Let H; = (y,; 8:)
be a finite presentation for H, under the map y; — a,;: (y € y,, t € t). The HNN-
extension of the base group Go with stable letters t € t and associated subgroups H;, H,

(t € t) has the following presentation (see [Co] for reference)
Q = (xo, t; 7o, t laysta,, (y €y, t €L)).

For each t € t, we let X; = {Ps,,: S; € 8:} to be the set of spherical pictures over
Q as we defined in Fig.6.1. Since in any spherical picture P over Q, each pair of t-circles
can not meet, thus, by an analysis of the proof of Theorem 6.1.2 (by taking account of

t-circles instead of single ¢-circles) we have

Theorem 6.1.4 (i) The set X = XU (Ut X:) generates my(Q).

(ii) Suppose ¢ : N — R* is a subnegative function satisfying

65) (n) < 4(n), neN, tet.

Then »
o) 2)
fo.x 2P, x,()
Corollary 6.1.5 If 6%2’0,)(0 < n® and (5%1 < nf, t € t, for some real numbers a > 0
and 3 > 1, then

(2) no8
JQ X .
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We can use Theorem 6.1.4 for split extensions of the form Go x4 F', where F is a free
group of finite rank, i.e. Gp %4 F' is also the H N N-extension of the base group Gp with
stable letters a free generating set t of F' and associated subgroup Gy. Thus, we have the

following corollary.

Corollary 6.1.6 Suppose

Q= ($0, t; ro, t_l.’rt_lx\;tl (t et,zc 230))

is a presentation for Go X4 F, where )\, are words on x, representing ¢i(Z) (t € t,

T € o). If X is a finite set of generating pictures for mo(Q), then

2) +(2) <(1)
JQ,X =2 JPOyXO (6130)

In particular, by using the facts that JSZZ;) < n3, 6&2,,), =< n? (m > 3), and 5(214) <n?(¢g>
1) we have the following (for the case of the groups Z? x4 F' we will have particular

discussion in Chapter 7).

Corollary 6.1.7 The following inequalities are true.

. 2
(i) 85,5 X 7%

(ii) 650, ,F X0t (m>4).

6.1.3 Amalgamated free products

Let Gy be another group of type Fj finitely presented by P, = (@,; r1). Suppose that H
and H are finitely presented subgroups of Gy and G respectively such that there is an
isomorphism v : H — H. We still use the notations v, a, ay, @, a,, and H as defined
in the previous subsection except that, here a is a finite set of words on ;.

The amalgamated free product G = Gy *g G, of Gy and G; with associated subgroups
H and H is then finitely presented by

P = (330, &1; To, T1, ao),

where oo = {a,d;' : y € y}.

Consider the presentation
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P = (o0, 21, 70, 71, )

where a = {t!a,ta;"; y € y}. Then P~ is a presentation for the H N N-extension G*
of the free product Go * G (presented by Pg * Py = (@o, €1; 7o, 71)) With associated
subgroups H and H. Let X, and X be two finite sets of generating pictures for m;(P;)
and my(P;) respectively, and let X; = {P4; : A € a} be the set of spherical pictures
over P* obtained as in Fig. 6.1. Let X* = XoU X; U X;. Then X" generates my(P").

By Theorem 6.1.3 and Theorem 5.1.5 we have
(2) —(1) 7(2) (1)
58 x+ 23P,.p, X.ux,(®p,) < max {37> X.(0p): 0P, x (J'P,)}'

As remarked in [BaPr], each spherical picture PP over P can be converted to a spherical

picture IP* over P* as follows:

(a) for each arc labelled by an element z € #; U ;" replace it by three parallel arcs

labelled by ¢!, z, ¢ respectively;

(b) if, while reading around a disc we encounter two successive arcs labelled by ¢ and

t~1, then perform a bridge move to delete them;

(c) remove all floating circles.
ty
@ — — H— o) —
= ¢

Example 6.1.8 Let Gy = Zg D Zy, G, = Zg @ Z4 with presentations
Po = (a, b; [a, b], a®, b?), and P, =(c, d; [c, d], ¢, d*)

respectively. If H and H are the subgroups of Gy and G; generated by {@?, b} and {22, 32}
respectively, then the mapping

yiat— A, b— &8
induces an isomorphism from H to H, and
P =(a, b, ¢, d; [a, b], [c, d], a®, 8%, °, d*, a’c™3, bd™?)
is a presentation for Go xy G,.
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Let
P*=(a, b, ¢, d, t; [a, b], [c, d], a®, %, &, d*, t7'a’tc™3, t™1btd™?),
and consider the following conversion (as shown in Fig. 6.8) of a spherical picture P over

P to a spherical picture P* over P*. (Since the labels in the bottom half are in {¢c, d},

the conversion is only applied on the top half.)

Now we let Y; be the set obtained from X, by rubbing of all t-arcs. and consider
a spherical picture P over P. Let P* be the picture over P* converted from P by the
above operations (a), (b) and (c). Suppose P* has g t-circles Cy, ---, C, say, for some

natural number ¢q. Then as we did in the proof of Theorem 6.1.2 P* is divided into g + 1
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subpictures, say Ty, Tz, - -+, , Tg4+1, over Pq * P, plus these ¢ t-circles. Rubbing off all
t-arcs of P* recovers the picture P and this has no affect on the ¢ + 1 subpictures T,
Ts, -++,, T¢41. Using broken arcs for t-arcs of P* in IP gives ¢ circles C{O), sy C}O) inP
consisting of these broken arcs and a,d,-discs (y € y) in 1 : 1 correspondence with the
t-circles Cy, -+, C, of P*. We call these circles the t(©_circles. Also, if a t-circle C; say,
of P* is inward (resp. outward) directed then we say that the corresponding ¢(®-circle
C}O) of P is also inward (resp. outward) directed as illustrated in Fig. 6.9. In particular,

all elements of Y, have a single (inward directed) t(%)-circle.

Fig. 6.9

We now can proceed with modifications for each t(®-circle C,-(o) as shown in Figs. 6.4- 6.7,
where the t-circles are replaced by the corresponding ¢(®-circles. Thus, by taking account
of t(®)circles and the subpictures Ty, Ty, - -, , T,+1 and following the proof of Theorem

6.1.2 we obtain the following theorem.

Theorem 6.1.9 (i) The set X = XoU X, UY, generates my(P).
(ii)) We have
(2) =(2) (1) =(2) (1)

62 5 = max {5'P0,X0(5 ) 6P11X1(5%)} .

In particular, if Po and P, are both aspherical, then

@ <.
Sp x 29

and if Py and P, are both word hyperbolic, then

(2) 7(2) =(2)
5P,X j maXx {JPO,XO’ 6P1.X1 } .
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Remarks 6.1.10 (i) People could not obtain results similar to our Theorems 6.1.3
and 6.1.9 for the first order Dehn functions. For example, Miller [Mi] proved that
there is a finitely presented group Go which has unsolvable word problem and can
be obtained from a finitely generated free group by applying three successive HN N -
extensions, where the associated subgroups are finitely generated free groups. Thus,

J(Glo) is faster than any recursive function since Go has unsolvable word problem.

(ii) As with Theorem 6.1.4, Theorem 6.1.9 can be extended to the case where there is
a finite set t such that for each t € t there are a pair of isomorphic subgroups
H, (finitely presented by H, = (y,; 8:) say,) and H, of Go and Gy respectively.
The extended amalgamated free product of Gy and G, with associated subgroups

{H,, H,; t € t} has the presentation
Q = (xg, 1; To, T1, ay,td;: (y €€y, tet)).
One then can obtain
(1) The set X = XoU X1 U (U, YY) generates mo(Q).
(2) Suppose ¢ : N — R* is a subnegative function satisfying

5%(71) <¢(n), neN, tet.

Then
2 2
(58,X = max{g('P)o,Xo(d))’ 3(73)"X1(¢)}

(iii) The approaches developed in this section could be further extended to arbitrary

graphs of groups.

6.2 Split extensions

6.2.1 Upper bounds in general

Let K and H be groups of type Fj finitely presented by presentations H = (& ;r) and
K = (t; s) respectively. Let
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¢: K — Aut(H)

be a homomorphism. For each k € K, we write ¢y instead of ¢(k). Consider the split
extension G = H %, K defined by the finite presentation

P=(zt;r, s a,

where for simplicity we require o = {t‘la:t/\;}; r€x,tety t‘l} with A;; a word on
x representing the element ¢3(z) of G(H) for each pair z € @, t € tUt~!. We point out
that the presentation P chosen for H x4 K is not standard. The standard one is of the
form

P =(z, t;r s a),
where o’ = {t~'zt)A;}! : t € t, x € }. The reason we choose P here is for the simplicity
of constructing the pictures Dy, over P as illustrated in Fig. 6.10 below.

When K is a free group of finite rank, we already have obtained an upper bound for
H x4 K in Theorem 6.1.6. Here, we will consider the general case.

Since t~'z~'t = A7} in G for each pairz € z and t € tUt™?, we let A1, = A7}, For
any word W = zyj2,---zr on z (z; Ex Uz~ !, 1 <i < k) and each t € tUL™?, we have
in G that

tTIWE = ApyiAayt o Ayt
Moreover, for any word U = t;t;---t,ont (t; € tUt™', 1 < j < m)andeachz € zUz™!,
we inductively define a word denoted A,y on @ such that A,y = U~'zU in G as follows.
When m =1, then A,y = Az, Suppose that we have defined word Az ..t,,_, = 1+ 2k

onz (z; ExUx™?, 1 < i< k) which is equal to t-1  Asty ot tm—1 in G. Then we define

/\IU = /\Itln-tm = /\:Clthl‘gtm e Al‘ktm

which is equal to ¢;')A,..t,,_,tm in G. This corresponds to a picture denoted Dy, over

P as illustrated in Fig. 6.10. We let ay, be the maximum disc number of the columns

of Dy.
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Fig. 6.10 tm

Let G* be the group defined by the subpresentation

P =(z,t; r, a)

of P. Let Go = H, = H, = H (t € t). We also have the isomorphism «; : H; — H,
defined by ¢;. Then G* is the HN N-extension of the base group H with stable letters
t € t and associated subgroup H.

Let s! be the set of all cyclic permutations of 8 U s~!. For each S € s!, say

S=tity -ttt 7L tietUt™ g =41,:i=1,2, -, m.

Then ¢z, ¢, - -'¢{m¢t—_l = ¢y, the identity of Aut(H). Thus, for each z € @, the word
Ut~'ztU~1z7! represents the identity of G*, where U = t;ty--t,. But t7lzt = A\ in
G*, 50 Ayt = U™'zU = Ay in G*. Hence A\;; = ;v in H (since Ay and A,y are words
on  and G* is an HN N-extension of H). So we may choose a picture Hy, over ‘H
with boundary label /\It/\;(}. We then have a spherical picture Qgs, over P of the form
depicted as in the Fig. 6.11. We then let Z = {Qs,,,; zrex, Se su}. Clearly, Z is finite.
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Referring to §6.1, for each R = (' ---z* € » and each t € ¢, we have a picture Pgr,

over ‘H as shown in Fig. 6.12. We then let Y = {Pr,: R€ r, t € t}.

Let Xy be a set of generating pictures of the ZH-module m3(H), and let X g be a
set of generating pictures of the ZK-module my(KC). Let

X=XpUXxUYUZ, X'=XyxUY,

and let
8" ={U: U a word on t with Ut~! € s for some t € t Ut 1}.
We then let
b=max{A(Pg;): Rer,te€t},
and let
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ao=max{A(Hy,): U € 8*, z€zUz'}, a=max{ADy,): Ues*, zexzUz'},

a =max{ay,: U€E 8", z€xU z7'}.
(Recall that ay, is the maximum disc number of the columns of Dy, in Fig. 6.10.)

Proposition 6.2.1 (i) The set X* generates the ZG*-module mo(P*) and the set X
generates the ZG-module my(P).

(i1) Let € be an element of mo(P) with A() = n, and let P be a minimal picture over
P representing £. Then if a; > 1,

Vp x(6) <35) x, (2683)(n + (a1 — 1)na}) +n + aona}) + 3y x () + na,

and if az = 1, then

2

Vp x () < 89) x, (2633)(n+ (a1 — 1)n?) + aon® +n) + 8% x, (n) + 1.
From this proposition we then have the following theorem.

Theorem 6.2.2 Ifa; > 1 then

63 x(n) 283 x, (B31(@3) + T x  (0) + a3,
and if a; = 1 then

58 x () 235) x , (B(n)) + 3% x . (n) + 12,
for alln € N.

We remark that (i) of Proposition 6.2.1 has also been proved in [BoPr].
Proof of Proposition 6.2.1. Let n be any positive integer and let P be a minimal
spherical picture over P with A(P) = n. Let nq, n;, m be the numbers of r-, s-, a-discs
in P respectively. We will follow the proof of Proposition 5.1.2.

Let P() be the configuration obtained from P by removing all -arcs. Two s-discs of
P will be said to be in the same I-component of P if they lie in the same component of
PO, If A, A’ are two s-discs lying in the same 1-component then they can be connected
by a path p of t-arcs and (s U a)-discs. Regard P() as a graph, then p is just a path in
this graph. It will be assumed that a maximal forest ® in P(!) has been chosen, and that

the paths connecting s-discs are geodesics in ®.
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Consider a 1-component 2 of P containing n,, s-discs and m, a-discs. Let Ag, Ay, -+,
Ak be the s-discs in this 1-component and let py (A =0, 1, - - -, k) be the (geodesic) path

in ® from Ag to Ay. Let d) be the number of a-discs in p). We may assume that
0=d0=d1="‘=dj5dj+1 < - Ldye

We will show that we can modify P modulo Z-pictures so that all the dy’s are 0.
Suppose j < k (otherwise no modifications are necessary) and consider Ajy;. Then
the discs of pj4+1 together with their incident arcs give a subpicture Q of P, which has the

form as shown in Fig. 6.13 where the disc © is an a-disc.

xt

Fig. 6.13

Modulo the Z-picture Qs, (where S = Ut~! € s') we may move Aj;; nearer Aq as
indicated in Fig. 6.14. This gives a new picture P’. Let )’ is the geometric configuration
obtained from () by the above operation. A maximal forest ®' for ') arises from the
maximal forest ® of P(!) as follows. Remove all z-arcs of P’ to obtain '), Since the
above operation has affect only on the 1-component £ of P, thus, PV = (P — Q) u Q.
Now, if T' C & is the maximal tree of §2, then p;;; is a path in T. Let T be the tree
obtained from T by replacing p;;; with p’,; as illustrated in Fig. 6.15. Obviously, 7" is
a maximal tree for 2. We then let &' = (® — T) UT'. (Note that this operation may
affect the distances from Ag to Ay (j +1 < A < k).) This operation adds at most a,
new a-discs and at most ag r-discs to P, and eliminates one a-disc (the disc ). So, the
number of a-discs of £’ is at most m,, + a; — 1. Moreover, there still are n; s-discs in P’

We then get new geodesics py (A =0, 1, ,---, k) with

I)‘=0(0S/\§j), _Ij+1= i+ — 1, df\Sd,\+az—1(j+1</\Sk)-
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Fig. 6.15

We repeat the above procedure as often as is necessary to decrease d;4; to 0. Note
that this requires at most m_, operations. At this stage, the new picture has at most
(a1 — 1)m, + m_ a-discs and agm,, + no r-discs, and in this new picture the geodesic
from Ao to Aj4, will have length at most (a; — 1)m, + m, = asm,. Inductively, if
this process requires at most a’2mﬂ operations for Aj;;41, then since this increases the
distance from Ag to Aj442 by at most (az — 1)aim,,, the process for Aj4;42 requires at
most (az — 1)abm, + aim_ = ab*'m_ operations. We repeat the process successively for

Ajtz, -+, Ay, finally arriving (after at most
1

)

mn+a2mn+---+a;"_lmn=mn(1+a2+---+agn_

operations) at a picture P;. Now in P, there will be a simple closed transverse path o
such that the subpicture of P, enclosed by a consists precisely of the discs Ag, Ay, -+, Ag
and their incident arcs. By the same argument as in the proof of Proposition 5.1.2, the
label on « is then freely equivalent to the empty word, and so by bridge moves we can
create a spherical picture Q; over X inside o with discs Ay, Ay, -+, Ak.
We may carry out the above procedure for all the 1-components of P arriving (after

at most

Yoma(l4as+-+a2 ) <m(l+as+---+a)

Q

operations) at a picture P* with the following properties:
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(i) P* has spherical subpictures By, B,, ---, B, each of which is a picture over K, and
where the total number of discs in By UB, U --- UBy is ny;

(ii) The picture P** obtained from P* by removing all By, ---, B, is a picture over P*
having at most m + (a; —1)m(1 +az+---+a3' ') a-discs and at most no+ agm (1 +
ag+---+ a’z”"l) r-discs, i.e.

A(]P’*xu) <m+ng+ (ao +a; — l)m(l +ay+---+ a;h-—l).

Now, if a; > 1, then 14+ a3 +--- + a3'™! < a}', and so

m + ng + (ao + a1 — )m(1+az+--- +a3' ™) < m+no+(ao+a; —1)maj’.

Thus, we deduce from Lemma 1.3.4 that, if a; > 1, then
Vp x(£) < Vp x (P™) + 3 x, (n1) + maj!
< Vipr x+(P™) + 3% x  (m1) + ma}!
< S(Q'XH(ngg;(m+(al~1)ma§”)+m+no+(ao+a1—l)ma;“—m—(al—l)ma;”)
+3(72XK(n1)+ma;“
(by Corollary 6.1.6 and Theorem 6.1.2)
= #ﬂ’XH(ngg{)(m + (a; — 1)ma3!)+no + aoma;“)—i—g%’xx(nl)-kmag‘
< 85 x, (2659)(n + (a1 — 1)nag) +n + aona}) +8% x, (n)+naj.

Ifa; =1, then 14 az+ --- + a}'™! = n,, and so

m+no+(a0+a1 - l)m(l +a2+-~+a'2”_1) = m+n0+(a0+a1 — 1)mn1
Thus, we deduce from Lemma 1.3.4 that, if a; = 1, then

Vp x(6) < Vp x (B™)+ 8¢ x_(m) +mn,
< Vpe x+(F) + 3¢ x (m1) + mny
< 3% x , (263%)(m+ (a1~ 1)mny) +m+ng+(ao+a;—1)mn; —m—(ay —1)mny)
+3(IZC),XK("1)+’””1
(by Corollary 6.1.6 and Theorem 6.1.2)

X%,XH(Qb‘T(’;{)(m + (a1 — L)mn;)4no + aomn1)+3%,xx(m)+mm

IA

530,X , (683 (n + (a1 = Dn?)+n + aon?) 4352 x (n)+n?.
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This completes our proof. O
We point out that, as shown in the following example, sometimes the subpicture Dy ,
illustrated in Fig. 6.11 could be chosen more easily and a better upper bound can be

obtained.

Example 6.2.3 Let

P’ = (21, 2, 1, ta; [z1, 2], [t1, b2, 2iz32e7?, aizy eyt (1 =1, 2))

be a (standard) presentation for the split extension Z? x4 Z?, where bath ¢z and ¢z, are
given by the mapping:
Ty — xlzg, To — T1T3.

-1 -1
Since we have in G(P’) that ;7 = z7'22 and 2y = z125! ((i = 1, 2)), we can

change P’ to the presentation

2 1 -1,_-1

_o _ . 7l 1! - .
’p=<x17x2’t17t2; [x17x2]7[t1,t2]’xi‘$2 T, 7‘7:;'3:2 Ty 7x1' x22xh$2' 172:511, (2=172))

for the group Z? x4 Z*%. Now,

g = {Si=titat7M;, Sy=tat7 ity t, Sa=t7"t; tits, Sa=1; titaty!

Ss=tat 13147, Se=t1t5't5 2, Se=t7"t] a1, Se=t7'tat1t;"},
and so

s* = {Ur=titat]!, Up=tat7't5", Us=t7't5 ', Us=t5"tt,
Us=tt:2t;", Us=t:1t;'t5", Ur=t;"t7"2, Us =17 tat1}.
Let Po = (21, x9; [z1,22]), and Py = (t1, t3; [t1,12]). We now can construct Qs; o,
(t=1,2,1<j < 4) as illustrated in Fig. 6.16. (By symmetry, the pictures Qs; -,
i =1,2,5 < j <8 can be obtained from Qs,_, -, by replacing each arc labelled ¢, with

an arc labelled ¢; and vice versa.) Applying the proof of Proposition 6.2.1 to this example
we see that ap = 0, a; = 7 and a; = 3. Thus, by the asphericities of Po and P; we have

8522 X040 4n3" X3,
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Chapter 7

Upper and lower bounds for Z?2 x o b

7.1 Preface of the chapter

In this chapter we focus on estimating the upper bounds and lower bounds of the par-
ticular split extensions of the form Z? x4 F', where F is a free group of finite rank freely

generated by £.
Since for each t € t, ¢; € Aut(Z?), ¢; can be identified to be a matrix M, € GL2(Z),

the general linear group of dimension 2 over Z. We will say that ¢; has eigenvalues a,
if M, has. In particular, if |£{ = 1 then ¢ is identified with a 2 x 2 matrix over Z. From
Theorems 6.1.3 and 6.1.9 we see that the group Z? x4 F satisfies a quadratic second order
isoperimetric inequality. We will improve this upper bound, and will also show that the

second order Dehn function of such a group is not linear.
Theorem 7.1.1 Let ¢ : F —> GLo(Z). Then

3

2 .

nlnn < 6éi)x¢F <n

Moreover, if for some t € t, ¢; has eigenvalues 1, then

This Theorem, in fact, is the combination of Propositions 7.2.5 and 7.3.2 below.
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In their paper [BrGe], Bridson and Gersten classified first order Dehn functions of
groups Z% x4 Z, in terms of the automorphism ¢ € GL;(Z) by using Theorem 5.5 of [Sc],

as follows.

Lemma 7.1.2 (i) If ¢ has finite order, then Z* x4 Z is quasi-isometric to Z* and so

(ii) If the eigenvalues of ¢ are £1 and ¢ has infinite order, then Z? x4 Z is quasi-

isometric to the three dimensional integral Heisenberg group presented by
Py = (z,y,t; oy = yz, t 'xt = zy, t 'yt = y)

(1) 3
and so 522x¢z ~ nJ,

iii) If the eigenvalues of ¢ are not £1, then Z? x4 Z is quasi-isometric to the grou
¢ q P

presented by
Po=(z,y,t; zy = yz, t 'zt = 2y, 7'yt = zy)

and so 5%)”4‘2 ~ 2",
By (i) of this lemma and Corollary 2.2.15 we have the following result.
Proposition 7.1.3 Suppose that ¢ € GLy(Z) has finite order. Then

2 3
5é2)x¢z ~nz.

7.2 Lower bounds

7.2.1 Some geometric techniques

Let Po = (x; 8) be a finite presentation for a group Gy of type F3. Suppose we have a

split extension Gy X4 F' presented by

P={(x,t;s t 'zt =a,, (z €=, t €L)),

where G, ; (z € z, t € t) are words on x. Let a; = {G,;: = € ¢}, t € t. For each word

W = W(z) on « and each t € t, we will write ¢;(W) for W(a,) obtained from W(x) by
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replacing each z € ¢ with G;;. Asin §6.1, for each S = S(&) € s and each t € t, choose
a picture S, over P, with boundary ¢(S). Moreover, for each ¢t € ¢ and each picture D
over Pq with discs Ay, ---, A, labelled ST*, ---, Sg» (S; € 8, ¢; = £1, 1 <1 < n) say,
let D(a;) be the picture over Py obtained by replacing each arc labelled by =z € « by a
sequence of parallel arcs labelled by a@,., and replacing each disc A; by the picture E,S,',t
(1<i<n). Thenif W(z) =1z, -z, (z; € zUx~, 1 <17 < n) is the boundary label of
D, W(a;) = Gz, - - - 4z, is the boundary label of D(a;) respectively. We will write ¢;(D)
for D(a;). We now construct a spherical picture Pp; over P as depicted in Fig. 7.1, and
we denote (Pp:) by &p:. In particular, if D consists of a single disc labelled S € s, as

before we then write Pg, instead of Pp;, and let £s: = (Pg,).

Fig. 7.1

Now, for any positive integer m and each t € t, we further construct a spherical

picture Py over P as depicted in Fig. 7.2. We let (BSY) = &57).
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Let X, be a finite set of generating pictures of my(Py), and let
Xt ={Ps,: S€s, tet}

Then by Theorem 6.1.4 X = X,U X is a finite set of generating pictures of m2(P). We

have the following properties.

Lemma 7.2.1 (i) If D has discs labelled S7', S32, ---, Sir, and a spray with labels
Ul(a:), (/72(23), Ty, Un(:c), then

fD,t = ZEiUf{S.‘,ia tet.
=1
(ii) If Po is aspherical, then mo(P) is free on the elements s, S € 8, t € L.
(iii) If Po is aspherical and if $'(D) is stable for each 1 <i < m and some t € t, then
m—1 m—1 .
Vp x (&) = 2 A(giD) = 3 Area((W),
1=0

1=0

where W is the boundary label of D.

149



Proof. The argument (i) is a special case of Lemma 6.1.1.
The proof for (ii) is same as the proof of Lemma 5.2.5 by using Theorem 6.1.4.

To prove (iii) we note that

I(J::) = &D’.t + {£¢¢(D),t +--+ t—m_lf,t.m—l(D)’t.

By (i), foreach 0 <: <m — 1,
AGD)
Cime = D, €iiUiils,
i=1

There are no cancellations in this expression since ¢}(D) is stable. Moreover, because of

the different powers of £ we see that there also are not cancellations between ¢;;#'U;;¢s, it
and ept'Upés,: with0 <i<l<m—-1,1<j < A(${D)), and 1 < k < A(¢(D)). This
proves (iii) by (ii). O

Note that A(P]g;)) = A(D)+A(¢(D)) +275" L(¢:(W)). Thus, we can use the idea in

Chapter 5 to obtain a lower bound for 5%) x as demonstrated in the following subsection.

7.2.2 Lower bounds for Z2x Z

From now on, we let Gy & Z? be presented by Py = (z, y; [z, y]). Note that Py is
aspherical (for example, by Theorem 6.1.2).
Consider the split extension Gy = Z? x4, Z (the Heisenberg group) presented by

Pr=(z,y, t; sy = yz, t 'at = 2y, t 'yt = y),

where the automorphism ¢, = ¢5 is given by the mapping

By Theorem 6.1.4 and Lemma 7.2.1 we know that if X; = {P;} where P, is the
spherical picture illustrated in the Fig. 7.3, then X, freely generates m,(P;).
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Fig. 7.3

If D is a picture over Py, the picture ¢ (D) can be obtained as follows. For each z-arc

of D, replace it by a pair of parallel arcs with total label zy, and replace each disc

by the following picture.

Then the picture ¢;(D) has boundary label ¢;(W) where W is the boundary label of D.

Moreover, we have
AD) = A($:1(D)) = Areap (¢:1(W)). (7.1)

Let W = z°yPz~*y~# for any pair of positive integers o and 3. Then W =1 in G,.
Let D be the picture illustrated in Fig. 7.4.
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Fig. 7.4

Since all discs in D are positively oriented, by (i) of Lemma 7.2.1 we see that D is stable
and A(D) = af3. By the construction of ¢;(B) for any picture B over Py, we see that if
all discs in B are positively oriented, then all discs in ¢;(B) are also positively oriented.
Thus, for all 7 € N, all discs of ¢! (D) are positively oriented, and hence, ¢} (D) is stable.
By (iii) of Lemma 7.2.1 and (7.1) we then have

Vp, x (&) ZA (¢i"Y(D)) = i_n;A(ID)) = maf. (7.2)

Since ¢} (W) = (zy'~1)*yP(zy"!) "y, we have

L($ 7Y (W) = 2a + 26 + 2a(i — 1) = 2ai + 20,

and so

A(ng;>)=2A(D)+f: L(¢;‘~1(W))=2aﬂ+fj(2ai_+2ﬂ)=2aﬁ+2ﬁm+am(m+1). (7.3)

Proposition 7.2.2 For any positive integer n we have

w|-:-

1

Proof. Let n be any positive integer and let a = [r3], 8 = [n}], m = [n3]. Then by

(7.3) we have

Since if o > 1 then [0] > 10, we have

a2

Thus, by (7.2),



and so

as required. O

We now consider the split extension G, = Z? x4, Z presented by

P2 =(z, y, t; zy = yz, t~lot = 3323/, t_lyt = my)a

where the automorphism ¢; = ¢; is given by the mapping

T +— 2y, yr— zy.

By Lemmas 6.1.6 and 7.2.1 we know that if X, = {P;} where P, is the spherical
picture defined in the Fig. 7.5, then X, freely generates m(P3).

st
|

Fig. 7.5

If D is a picture over Py, the picture ¢,(D) can be obtained as follows. For each z-arc
of D, replace it by three parallel arcs with total label z2y, for each y-arc of D, réplace it

by a pair of parallel arcs with total label zy, and replace each disc

by the following picture.




Then the picture ¢;(D) has boundary label ¢,(W) where W is the boundary label of D.
Moreover, we have

A(D) = A(¢2(D)) = Areap (¢2(W)). (7.4)

Let W, = zoyz~*y~*. Then W, =1 in Go. We still let D be the picture as in Fig.

7.4 (here we let 8 = ). Since all discs in D are positively oriented, as in the previous

situation we see that for all 0 < i, ¢4(D) is stable. Thus, by (iii) of Lemma 7.2.1 and
(7.4) we have
Vp, x,(&57) ZA (¢5'(D ZA(]D) (7.5)

Let U be any word on {z, y}, and let L.(U), L,(U ) denote the numbers of occurrences
of z*! and y*! in U respectively. Then L(U) = L.(U) + L,(U). By the ¢;-action, we
have L,(¢2(U)) = 2L, (U) + L,(U), and L,(¢2(U)) = L(U) + L,(U). So,

L(¢2(U)) = Lz(62(U)) + Ly(¢2(U)) = 3L (U) + 2Ly (U) < 3L(U).
Inductively, we thus have L(¢(U)) < 3'L(U). In particular, we have
L(¢(Wa)) < 4 x Fa  for all i € N,

and hence
m

ABSY) = 24D)+ Y L(5H (W) < 202 +Z(4 37la) = 20*+2a(3™—1).  (7.6)

1=1 =1

Proposition 7.2.3 For any integer n > 3% we have

52 X2(3n) > 1nlog3

Proof. Let n be any positive integer and let a = [n?], m = [logsn?]. Then by (7.6) we

have
A(PSY) < 2(n)? + 20t (3'%"*) — 9n 4 2n = 4n.

Also, if logsnz > 1, i.e. if n > 32, then

Thus, by (7.5),
and so

as required. O
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7.2.3 Lower bounds for Z? x4 F

We now consider the presentation
P=(z,y, t [z, y], t7 'xt = 4z, t 'yt = @y, (t € L))

for the group Z? x4 F'. Let X = {P[;4j:: t € t}. Then X generates m3(P) by Theorem
6.2.1.

Proposition 7.2.4 Let t be any element of t, and let
Pe=(z,y, t; [2, y], t7'0t = Gog, 17yt = Gy)

be a presentation for Z* x4, Z. Then Xy = {P|, 4.} generates my(P;) and

@ 2)
op x = 9p, x,-

Proof. By Theorem 6.2.1 it is clear that X; = {IP[; ).} generates my(P;).

Note that G(P) is the HN N-extension of the base group G(P;) with associated
subgroup G(Py). Therefore, there is a natural embedding ¥ : G(P;) — G(P) given by
the mapping

Yrzr—z, yr—y, tr—t.

Since 1 is injective, Theorem 1.3 of [Prl] implies that the induced homomorphism , :

m2(P:) — m2(P) given by the mapping

(P)p, > (P)p (P is a spherical picture over P;)
is also an embedding. In our situation, the injectiveness of 1. can be proved directly
as follows. First, 1 induces an embedding (also denoted %) 9 : ZG(P;) — ZG(P) of

group rings. Let P be any spherical picture over P; such that (P) € ker.. Suppose in

m2(P:) we have
P)p, = Ze, i(Ploat) P

where ¢; = £1, W; € G(P;), 1 <i < r. Then
vu(P)p, = 25 $(Wi)o.((Pie1) p,) ZE $(W)(Pse)p = 0.

Since m3(P) is free on basis {(P(;,,.) : t € t} by Lemma 7.2.1, we have
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3T = $(E ) = 0.

But ¢ is injective, so 27, ¢;W; = 0, and hence, (P) = 0. Thus, . is injective.
Let n be any positive integer, and let Q be a spherical picture over P; with A(Q) = n.

Then Q is also a picture over P. Suppose we have
Z 6' P[z,y] t/P.

in m3(P:), where U; € G(P:), s =+1,1<i<r,and r = V’P,,X.(Q)' Then in m3(P)

we have

(Qp = ¥({ 261/) )(Pz,g.0)p-

By Lemma 7.2.1, m3(P) is a free module with basis X. So, this expression is the unique

one for (Q) in m2(7P). Hence, we have
Vp x(Q) =Vp, x,(Q),

and so

‘5'(;27)}((”) 2 maX{V'p'X(Q) : Q a spherical picture over P; with A(Q) < n}
= max{Vp x (Q): Qaspherical picture over P, with A(Q) <n}

= &5 x,()

as required. O

The following Proposition now is true by Lemma 7.1.2 and the above proposition.

Proposition 7.2.5 We have

5‘2221‘ p = nlnn.

Moreover, if for some t € t, ¢; has eigenvalues x1, then

5(2)

4
Zen,F = %5

and if for some t € t, ¢; has finite order then

(2) 3
6Z2x¢F = nz,
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7.3 Upper bounds

7.3.1 Upper bounds for groups Z? x  F

By Lemma 7.1.2, the upper bounds of the second order Dehn functions of groups Z? x4 Z
can be obtained by establishing the upper bounds of the second order Dehn functions
of groups Z? x4, Z (1 = 1, 2) defined in §7.2.2. But, we need to consider the general
situation for the groups G = Z? x, F.
For each t € t, we let M; € GL3(Z) be the matrix corresponding to ¢; of the form
e g\ .
M, = » Uty Jty ke, he € Z
ki h:

such that i;h;— jik; = +1. Then the split extension Z2 x4 F' has the standard presentation

P = (z,y,t; zy = yz, t 'zt = yh, tTlyt = 2y (t € t)).
However, in general this presentation is not adequate for our purposes.

For any word W on {z, y}, we use exp,(W) and exp,(W) to denote the exponent
sum of z and y in W respectively. By Corollary N4 of [MKS, Theorem 3.9], there is
an epimorphism from the automorphism group of the free group of rank 2 on {z, y} to
GLy(Z),1.e., for each M; € GLy(Z), there is an automorphism of the free group on {z, y}
given by

z— U, y—V

for some word Uy, V; on {z, y} with

(expr(Ut) ewpz(Vt))
exp,(U:) expy(Vi)
Thus, U, V; freely generate the free group on {z, y} and

= i-

P = (z,y,t;zy=yz, tat=U, t7 'yt =V, (t € t))

is also a presentation for G. Now, by a theorem of Nielsen [MKS, Theorem 3.9], [U:, Vi]
is freely conjugate to [z, y] or [z, y]™! (this is called the commutator-generator property
in [HiPr]). Thus, for each ¢ € ¢, there is a picture S, over Py with one [z, y]-disc and
boundary label [U,, V;|. This is the key point for the approach below to establish our
upper bound.
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Let ¢} be the mapping : z — Uy, y — V;, t € t. For any picture D over Py, as in
§7.2.1, we have a picture ¢}(D) over P, obtained from D by replacing each [z, y]*!-disc
with +S, and replacing each arc labelled z (resp. y) with a sequence of parallel arcs
labelled U; (resp. V;). Thus, we can construct a spherical picture Pp; over P as in Fig.
7.1 with A(Pp;) = 2A(D). In particular, we have the spherical picture P, over P’.
By Theorem 6.1.4, the set X = {Pj, ) : t € t} generates m3(P’).

Example 7.3.1 Let G = Z% x4 F where F is a free group of rank 2 on t;, t5, and where

11 2 3
Mgl - Mt2 = .
2 1 1 2

The standard presentation for G is

P = (z,y, t, ts; Ty = yz, & = zy?, ¥ = 7y, 2 = 2%y, Yy = 2%°).

Note that zy?, zy freely generate the free group on {z, y}. So we may take U;, = zy?
and V;, = ry. However, since z%y, z%y? do not satisfy the commutator-generator property
(see Fig. 7.7 below) they do not freely generate the free group on {z, y}. Consider the

following procedure:
(z, y) — (y, @)
(y, &) — (yz, 2)
(yz, ) — (2, y)
(z, yz) — (eyz, yz)
(zyz, yz) — (yz, zyz)
(yz, zyz) — (yz’yz, zyz).

Let U;, = zyz, Vi, = yz’yz. Then Uy, V,, freely generate the free group on {z, y}. Since

( expz‘(Uiz) esz(Vtz) )
= Mtz L]
C.pr(Utz) empy(vtz)

the modified presentation for G is

P'= (.’E, Y, 1, to; TYy=yz, g = Iy2’ ytl =Ty, g = TYzT, th =yx2yx)
The generating pictures for mo(P’) are

158



P [zl t2*

Fig. 7.6

Note that the generating pictures for m,(P) would be

f1

Fig. 7.7
In the second of these the number of [z, y]-discs is too big for our purposes.

Proposition 7.3.2 We have

(2) 3
522%1, < n2,

Proof. Let n be any positive integer and let P be any arbitrary spherical picture over
P’ containing n discs. Since 55212)(q) < ¢%, we may suppose that 5,(;1,)0 (q) < aq?® for some
constant @ > 1 and all ¢ € N.

We argue that
3
2

V'P',X(P) <an

by induction on the number m of t-circles of P.
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If m = 0 then P is a spherical picture over Py and hence equivalent to the empty
picture as Py is aspherical. Thus Vp' x(P) =0 < an?,
Let m > 1. Suppose P contains at least one trivial ¢-circle, say a t-circle C. Then P

consists of two spherical subpictures P;, P, and C:

t

where the numbers of t-circles of P; and P, are less that m. Let n;, n, be the disc
numbers of P; and P, respectively. Thus, by induction hypothesis and Lemma 1.3.4 we

have

IN

V.PI'X(P) V’P’,X (]P]_) + V’P’,X(Pz)

3 g
< ani +anj

< aln + ng)% — ans.

Suppose P contains only non-trivial t-circles. We take a minimal one, say C, a t-circle
in P for some ¢ € t consisting of ¢ t-arcs and ¢ discs for some positive integer ¢q. Let
Dy, D, be the subpictures lying just inside and outside C' with boundary label W, and
W,, words on {z, y}, respectively.

Suppose C is outward directed as illustrated in Fig. 7.8. Then L(W;) = q. We can
assume that D contains Areap (W) < aq? discs. Otherwise, replace D; by a picture
D} over Py containing Areap (W) discs and having the same boundary label W;. Then
the consequent picture is equivalent to P by the asphericity of Po. Now, P is equivalent
to two spherical pictures P; and P , for some word U on {z, y,t} also as shown in Fig.

7.8.
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Fig. 7.8

By Lemma 1.3.4 we then have Vp/ x(P) < Vipr x(P1) + Vpr x(Pp, +). By the con-

struction of Pp, : and Lemma 7.2.1, Vp' x(Pp,:) < A(Dy) < min{eq?, n — ¢}. Thus,

A(P,) = n — ¢ and PPy contains m — 1 t-circles. Hence, by induction hypothesis we have

Vp x(P) < {
If ag? < n — g, then

Vp x(P)

If ag? > n—gq, then

Vp' x (P)

ag® +a(n - )}

n—g+an-q)

IA

AN

IN

ifag? <n-—gq

i

if ag® > n — ¢ (but Areap (W1) <n —q).

Q
S
Njw
e
(S
|
3 |
N—

(since (n — q)% > a%q)
3
anz.
3
a(n—gq)2+n—gq




(since (n — q)? a%q)
< an%.
We then have
VP’,X(P) S an?,

It remains to consider the situation that C is inward directed as illustrated in Fig.

7.9.

Fig. 7.9

Thus, we have L(W,;) = q. Let D be a picture over Py with boundary label W; and
A(D) = Area(W:) < ag®. Thus, P is equivalent to the sum of three spherical pictures
P,, P§,, and BY for some word V on {z, y, t}. (This is also illustrated in Fig.7.9.) Since
B is a spherical picture over Py, B is equivalent to the empty picture by the asphericity
of Py. By the t-action we have

Area(W)) = Area(W;) = A(]D) = A(¢y(D)) < A(Dy).

Hence, A(IP;) < n—gq and P, contains m —1 t-circles. Thus, as we did in the first situation

we also have that V’P',X(P) < an? as required. O

We remark that there are two key points in the above approach to the estimation of
the upper bound, i.e. the asphericity of Py and the commutator-generator property of
the free group of rank 2. We then have difficulty to extend this approach to the groups

of the form Z™ x4 F for m > 2 without these two properties.
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