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Abstract 

Climate change due to global warming is a matter of major global concern. Greenhouse gases 

emissions are a key culprit in this process. It is therefore important to reduce energy consump-

tion in order to protect the environment. The decarbonisation of the heating sector would have 

a significant positive impact on the environment.  

A wide range of heating technologies have been investigated and developed, such as gas boilers, 

electric restrictive heaters, heat pumps (HP), and others. In order to reduce fossil fuel consump-

tion and greenhouse gas emissions, researchers have focused on improving the performance of 

the existing technologies as well as on developing new fuel-efficient systems such as cogener-

ation and trigeneration cycles. These integrated technologies allow the production of multi-

mode energies including heating, cooling, and/or mechanical power from the same primary 

energy source. The energy source can be a fossil fuel, or renewable energy such as solar, geo-

thermal, biomass or wasted heat. Waste heat utilization (from a data centre, internal combustion 

engine, chamber exhaust stream, etc.) also has the potential of enhancing the system perfor-

mance by reducing fuel consumption.   

In this thesis, an innovative gas fuelled heating system based on a combined heat engine and its 

reverse heat pump cycle is proposed and investigated. This system consists of a gas burner, an 

organic Rankine cycle power generator, and an air source heat pump vapour compression cycle. 

For the theoretical analysis, in-house MATLAB code is developed, and the steady state results 

are compared with the results acquired from ASPEN PLUS as a benchmark. Both software 

programs use REFPROP as the database for working fluid thermophysical properties. In order 

to identify a suitable working fluid for each cycle, a comparative study on various working 

fluids was initially carried out. The selection of refrigerant was based on performance and 

environmental safety profile. The proposed cycle is designed for domestic hot water supply and 

utilizes gas burner flue gases and ambient air to enhance the system overall fuel to heat 

efficiency while maintaining the heat pump cycle in a frost free state at low ambient 

temperature. The combined cycle shows promising performance, with a fuel to heat efficiency 

of 136%. However, the results also show that ambient air temperature fluctuations can have a 

significant impact on the combined system’s performance. To tackle this, various control 

strategies are proposed and investigated. Also, a dynamic model has been built using ASPEN 

PLUS software to simulate and validate the control strategy.  
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Waste heat can offer a steadier heat source than ambient air. Chapter six proposes a combined 

system where the waste heat from the data centre is recovered to provide a cooling effect for 

the data centre, with the recovered heat used for central heating. The results show that the 

system can maintain the data center (DC) room temperature at between 18-25 oC and heat the 

returnee water from 50-80 oC. The obtained fuel to heat efficiency is 137%. In addition, various 

control strategies have been proposed to tackle the variations in the DC workload. A dynamic 

model is used to display the control strategies parameters with respect to time.  

Another intended application for the proposed system is the production of refrigeration load by 

waste heat recovery from a diesel engine exhaust stream, as presented in chapter seven. The 

results show that 47% of the wasted heat can be converted by the combined cycle into useful 

refrigeration, with an outlet air temperature of -18 oC. A control strategy (in steady and dynamic 

modes) is proposed to simulate the combined cycle under variable diesel engine speed and load.  
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Chapter 1: Introduction 

1.1 Overview 

Over the last decade, dependence on fossil fuel as an energy source has increased remarkably. 

It is estimated that overall global oil consumption in 2010 was around 86.4 million barrel/day. 

However, the daily demand for crude oil has been predicted to reach over 100 million barrel/day 

by 2019 [1]. This growth in demand leads to various environmental and economic challenges, 

as fossil fuel usage has numerous major impacts such as acid precipitation, ozone layer damage, 

resource depletion, and global warming [2]. Fossil fuel combustion contributes to around 65% 

of total global greenhouse gas emissions. Coal, oil, and natural gas produce 45%, 35% and 20% 

of these emissions respectively [3]. The depletion of fossil fuel reserves and ever-increasing 

prices are further future challenges. To overcome these challenges, two main approaches can 

be taken: to develop and enhance the use of alternative energy sources, especially renewable 

energy sources such as solar, geothermal, wind, biomass and waste heat, and to enhance the 

energy efficiency of existing technologies [4].  

1.2  Available heating technologies  

1.2.1 Electric heaters 

Electric heaters are among the most readily available heating technologies that produce heat 

from electricity by thermal resistance. Although their use is gradually declining due to more 

advanced heating technology, they are still a viable option in areas where electricity production 

is both low cost, and comes with low greenhouse gas emissions. For instance, in 

Québec/Canada, 98% of electricity produced by hydro-electric dams, so electric heaters are an 

attractive low-cost residential heating choice [5]. 

It is well known that electric heaters can convert nearly 100% of the supplied electricity into 

heat. Balke, E. et al. [6] conducted an experimental and theoretical study on various residential 

water heating technologies including solar thermal, heat pump (HP), electric resistive heaters, 

and combinations of them. Although the results showed that electric heaters achieved the lowest 

coefficient of performance (COP) of 0.95, they achieved quite steady performance over the 
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course of a year, with mild decline in performance during summer months due to the reduction 

in heat load with the higher input water temperature and without a proportional change in total 

energy consumption. In contrast, a solar thermal preheat tank supplying HP water heater 

achieved a COP of 2.87 compared to 1.9 for HP alone. 

1.2.2 Gas Boilers 

A gas boiler is a popular choice for district heating, particularly in countries where natural gas 

represents a significant energy source. For instance, in Europe, 80% of energy is provided by 

natural gas [7], while in Beijing/China, 11.6 billion cubic meters of natural gas were utilised in 

2015 for district heating in winter [8]. Conventional gas boilers have an energy efficiency of 

around 90%, with a significant amount of heat rejected in the form of flue gases [9]. The 

emission flue gas temperature ranges between 150-200 oC, which holds about 10-12% of the 

fuel’s lower caloric value [9, 10]. Recovering heat from the boiler exhaust stream (in a 

condensing boiler) therefore has the potential to improve the boiler’s efficiency and decrease 

CO2 emissions by reducing natural gas consumption. Since natural gas is a high hydrogen 

compound, its combustion will generate water vapour with a latent heat occupying 

approximately 70-80% of the overall exhaust heat [8, 10]. However, to recover heat from this 

latent heat loss, the flue gases need to be cooled down to a temperature below the dew point, 

which is around 55 oC.  

Three main heat recovery methods have been proposed in the literature: economizer, air 

preheater, and heat pump. Economizers use the boiler’s returnee water as a cold source with 

which to exchange heat with the exhaust stream. However, the boiler feed water temperature 

usually ranges between 45-60 oC, which is close to the flue gas condensation point, thus limiting 

the amount of heat recovery [8, 10]. Since most latent heat is still in the flue gas, the boiler 

efficiency improvement achieved is small, at about 2%, making overall efficiency 

approximately 93% [9, 10]. An air preheater is another method for flue gas heat recovery. It 

uses a boiler’s oxidising air to cool the flue gas. In addition to heat exchange, the flue gas 

undergoes phase change, while the air has no phase change. This leads to incompatible thermal 

capacity between the two streams, which will limit the heat recovery capacity [8, 10]. The most 

promising method for flue gas heat recovery is the use of HPs. The heat pump is used to generate 

cold water at between 20-30 oC, which is used as a cold source to exchange heat with the flue 
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gas. Thus, the flue gas temperature can be decreased to around 25-35 oC, well below the gas 

dew point. This leads to vapour condensation, with a significant amount of latent heat released 

for recovery. The use of HP as a heat recovery method has increased boiler efficiency by around 

10-12% [11, 12]. 

1.2.3 Heat pump systems 

Heat pump technology is a sufficiently simple and mature reverse heat engine that uses 

mechanical power to generate heat transfer between heat source and sink. The principle of a 

heat pump operation has been understood for decades, and the first-ever published scientific 

application of a reversed heating engine as a heat pump for building heating and cooling was 

presented by Lord Kelvin in 1852. In the early 20th century, the Scottish engineer and university 

professor James Albert Ewing included in his book The Steam Engine and Other Heating 

Engines descriptions of refrigeration and the use of a reverse heating engine in building heating 

[13, 14].  

Today, heat pump systems are widely used in different applications, such as space heating and 

cooling, refrigeration, and hot water supply on both industrial and residential scales. The 

principal function of a HP cycle is either heat rejection into the environment to cool a space, or 

heat extraction from a source to be used for heating. Various forms of thermodynamic cycles 

can be used to achieve these functions, the predominant one being the vapour compression 

cycle. In this cycle, the refrigerant gas is initially evaporated, and is then compressed and 

condensed in order to transfer heat from source to sink, as shown in Figure 1.1.  

Heat pumps represent an efficient and attractive heating and cooling technology as they can 

transfer heat from source to sink using less work than is required to convert primary energy to 

heat. i.e., the quantity of heat delivered is higher than the power required. Thus, heat pumps are 

highly energy efficient, as is represented by their COP [14, 15]. In the UK, most air sourced 

and ground sourced HP systems already in use have a COP range of between 1.2-3.6 [16]. 
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Various types of heat source are used in the HP cycle, such as air, ground source, water, and 

solar, as will be discussed in more detail later in this chapter. 

 

1.2.4 Combined heat and power systems (CHP)  

Combined heat and power (CHP) are integrated systems which simultaneously produce 

electricity and heating from a single energy source. The energy source can be from fossil fuels 

(e.g. natural gas or coal), nuclear fuel, or renewable sources (e.g. geothermal, solar, or biomass). 

Combined cooling, heating and power (CCHP) is slightly different from CHP in that it also 

produces an additional cooling effect. A CHP system can convert 60-80% of the primary energy 

source into useful thermal energy [17, 18]. Generally, there are two types of CHP: topping cycle 

and bottoming cycle. In a topping cycle, the fuel is used to mainly generate electricity, with the 

additional heat generated used for additional applications such as industrial processes if high 

grade heat is generated, or space heating and hot water supply using low grade heat. In the 

bottoming cycle, heat production is the primary application and any extra-energy not used for 

heating is converted into electricity. CHP usually consist of a prime mover such as an Organic 

Rankine cycle (ORC) or a Stirling engine (SE), etc. and a heat recovery system (usually a heat 

exchanger) [19]. The different types of prime mover used in CHP systems are discussed in 

chapter two. 

Figure 1.1: A conceptual model of a heat pump (left) and an idealized 

cycle represented on an enthalpy-pressure (right) [13]. 



Chapter 1: Introduction 

 

 

5 

 

1.3 Types of heat sources  

Various types of environmental heat source have been used in HP, ORC and CHP cycles, such 

as air, water, ground, waste heat and solar. 

Ideally, a heat source should have the following properties: 

• High and stable temperature during the various seasons 

• Widely available 

• Not corrosive or pollutant 

• Favourable thermophysical properties 

• Low investment and operation costs 

1.3.1 Air source 

Air is an attractive heat source as it is free and readily available, and when used as a heat source, 

the heat exchanger can be compact, with low thermal resistance. Thus, the system can be more 

economical in terms of capital cost. However, some challenges arise when air is used; for 

instance, air is more volatile than other heat sources, leading to fluctuations in system 

performance with ambient temperature variations. Furthermore, in a HP cycle, the moisture in 

ambient air can lead to frost formation on the evaporator, particularly when temperatures fall 

below 2-5 oC. This will require a reversal of the heat pump cycle or the use of other energy 

consuming means to defrost the exchanger, leading to degraded performance [13, 14]. In a cold 

climate, the capacity of the HP can decline dramatically with colder outdoor temperatures, 

particularly for ambient temperatures in the sub-zero region where the heating load is required 

the most. In this situation, an alternative heating source is frequently required, such as exhaust 

air. 
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1.3.2 Waste heat sources 

Waste heat is a viable heat source which can offer various temperature ranges. It is also a free 

energy source that would otherwise be wasted in the environment. Its recovery is capable not 

only of enhancing system performance, but also aiding the reduction of greenhouse gas 

emissions.  

Various forms of waste heat have been used in the literature, such as exhaust air from a 

ventilation system, flue gases from combustion process, data centre (DC) waste heat, and 

others. Hebenstreit, B. et al. [12] showed that using HP cycle for waste heat recovery from a 

biomass boiler has both environmental and economic benefits. The study showed that operation 

costs decreased by approximately 2-13 %. Likewise, waste heat recovered from a coal fired 

power plant flue gases via a condensing heat exchanger has the advantage of increasing the 

longevity of the equipment and reducing the dust (residual particles) in the flue gases, which 

can have a positive environmental impact [20]. Wei, M. et al. [10] conducted an experimental 

study on a vapour compression heat pump for waste heat recovery from a boiler’s exhaust 

stream. The use of vapour HP improved boiler efficiency by over 10%, with the flue gas 

temperature reduced to below 30 oC.  

Oró, E., et al [21] proposed the use of DC wasted heat to heat water in a nearby swimming pool. 

In this design, the heat is transferred through water to water heat exchangers and the returnee 

water temperature is used to cool the DC. The results showed that recycling wasted heat can 

reduce natural gas consumption by approximately 54%, with an associated redaction in 

operational expenses of 16%. In another study, a vapour compression heat pump system was 

proposed for DC waste heat recovery [22]. The HP cycle is used to upgrade the temperature of 

the wasted heat up to 70 oC, which could be convenient for domestic hot water and district 

heating networks. The COP achieved ranged between 3-6 for different wasted heat stages 

recovered by various heat pump configurations.  

Ebrahimi, K. et al. [23] conducted a thermodynamic and economic analysis of an ORC module 

for DC waste heat recovery for electricity production. The results show that R134a and R245fa 

as IT server coolant and ORC refrigerant respectively had the best thermal efficiency for the 

selected DC operating conditions.  
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Waste heat from diesel engine flue gasses is also a viable heat source which can offer a high 

temperature range. Diesel engine waste heat recovery via an ORC cycle is presented in chapter 

two. 

1.3.3 Ground or Geothermal source  

Ground or geothermal source, including groundwater, is another attractive heat source due to 

the relatively stable temperatures involved, with lower variations throughout the year than 

ambient air. It also has a higher thermal capacity, with temperatures closer to the intended 

indoor temperature, resulting in higher thermal efficiency due to smaller differences between 

the source and sink temperatures [13, 14, 24]. However, a system for extracting heat from the 

ground is often expensive to design and install, and requires the involvement of different types 

of expertise. In addition, leaking from the coils and pipes of the system poses a problem [14]. 

 

 

In ground source heat pump system (GSHP), heat can be extracted from the ground using pipes 

that are laid down either horizontally or vertically, depending on the area available, intended 

Figure 1.2: Ground source heat pump schematic diagram [24]. 
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system use, and cost. GSHP system can utilise a geothermal source temperature of up to 73 oC 

for district heating [25]. Generally, GSHP is composed of a primary unit (heat exchanger), a 

secondary unit (network of underfloor pipes for heat distribution), and a heat pump unit, as 

shown in Figure 1.2 [24]. GSHP can also be classified into open loop and closed loop systems 

based on the connection between the ground heat exchanger and the HP unit. In an open loop 

system, groundwater is pumped through the HP to extract heat, while in a closed loop system, 

a heat carrier fluid is used as intermediate medium between the ground and the working fluid, 

for example water, water with biocide, antifreeze, or a saline solution [24, 26]. 

Zhen, J. et al. [27] carried out field measurements on a groundwater sourced heat pump system 

designed for an airport on the Tibetan plateau, and compared the results with an existing HP in 

the same region. The results showed that GSHP can achieve a higher and more stable COP of 

around 5 compared to a COP of between 1.98-2.89 for an air sourced heat pump. Three years 

of data from a large scale GSHP for a building at De Montfort University/UK showed 

satisfactory system performance with a seasonal performance factor of between 2.49-2.97. In 

addition, the fluctuations in the ground loop average fluid temperature were relatively minimal 

compared to air temperature variations over the course of the year [28]. 

For a geothermally driven ORC cycle, the cycle configuration can be either a binary or a single 

cycle design. In a binary geothermal power plant, heat from the geothermal fluid is exchanged 

with the ORC working fluid via the evaporator. While in a single cycle, the ORC working fluid 

draw the heat directly from the geothermal heat source. Liu X. et al [29] investigate the 

performance of an ORC cycle with R245fa under difference geothermal heat source inlet 

temperature (80-180 oC). The results showed that the ORC cycle can produce a net power output 

between 0.473-17.05 kW and an overall efficiency of around 8%. The performance of an ORC 

cycle with R245fa and two stage evaporation designed for geothermal power production is 

presented by Li, T. et al [30].The results showed that two stage ORC can produce more power 

output than single stage evaporation process, particularly for the intermediate geothermal water 

temperature of 105 oC. 

 

 



Chapter 1: Introduction 

 

 

9 

 

1.3.4 Water source 

Water is another good heat source with relatively steady temperature compared to air. Various 

source of water can be used, such as surface water, groundwater (which can be considered a 

geothermal source), seawater, and wastewater. Surface water sources such as rivers and lakes 

are good heat sources in principle, but have the limitation of low temperatures in winter months 

(between 2-4 oC), with a risk of freezing and consequent frosting on the evaporator. In contrast, 

seawater can have a temperature of around 5-8 oC, with a very low risk of freezing. However, 

its use is usually limited to medium-large scale heat pump installations. Fouling is another 

drawback of seawater use, which requires the use of corrosion-resistant heat pump parts [14, 

31].  

Wastewater is another attractive source due to its relatively high and constant temperature 

performance over the course of a year. Examples of wastewater are public sewage water, 

industrial effluents, cooling water from power plants or industrial processes, etc. [32, 33]. 

Similar to seawater, wastewater can also cause fouling deposits on the heat exchangers resulting 

in reductions in performance, and it may even block the heat exchanger [32]. 

Liu, Z. et al. [34] conducted an evaluation of a river water sourced HP system used in an energy 

station in Shanghai/China. The results supported a linear relationship between river water and 

air temperature throughout the year. In winter heating mode, the COP of the HP unit alone and 

the overall COP of the system (including the river water pump power consumption) were 7.4 

and 5.2, respectively. In cooling mode, the COP values were 6.5 and 2.6, respectively. 

Similarly, Zou and Xie [35] also reported that lake water temperature has a linear relationship 

with air temperature. In their experimental study, a lake water sourced HP used in a university 

building achieved average COP values of 4.27 and 3.81 for cooling and heating modes, 

respectively. 

1.3.5 Solar source 

Solar heat source systems can have similar behaviour to air source systems in terms of 

variability of performance and low efficiency in certain circumstances. However, in contrast to 

air, which is free source, solar heat is usually costly to obtain. In addition, an additional back-

up or storage system is often required with solar source due to its dependency on daily 
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irradiation levels. It is therefore mostly used as a supporting system to an existing heating 

technology [36, 37]. 

Energy and exergy analysis has been carried out on a novel solar driven combined heat and 

power system [38]. The combined ORC- absorption HP system is totally dependent on solar as 

the primary energy source. The results showed that the cooling power increased by 48.5% by 

adopting the double effect absorption chiller. Simultaneously, in spite of a fall in net power 

production by 27%, the combined system heat and power efficiency increased by 96% as a 

result of the 20.5% rise in heating power. Also, the solar collectors had the highest exergy 

destruction rate among all system components.  

A thermal energy storage (TES) system integrated with an ORC power cycle driven by a non-

concentrated solar array collector has also been designed and examined [39]. A mathematical 

evaluation was carried out to compare and contrast the climates of Cyprus and the UK over 

specific months (January, April and July). The results showed that by using evacuated flat-plate 

collectors, the solar-CHP system achieved 4.4-6.4% solar to electricity conversion efficiency 

in the UK, and 6.3-7.3% in the Cyprus.  

A hybrid combined heating and power system was proposed by Wang and Yang [40]. The 

system consists of a biomass gasification subsystem to power an internal combustion engine 

for electricity generation. Exhaust gas from the ICE is used to drive an absorption chiller, which 

is used to produce chilled water while the wasted heat from the biomass gasification process 

and ICE assisted by the solar evacuated collector are used to supply hot water. The results 

showed that the proposed combined system achieved a primary energy ratio and exergy 

efficiency of 57.9% and 16.1%, respectively. In addition, the reduction in carbon dioxide 

emissions was 95.7%.   
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1.4 Challenges in existing heating technologies  

The main challenges encountered in existing heating technologies can be summarized as follow: 

1. Electric heaters can achieve a maximum COP of 1 with limited options of development due 

to the simplicity in design and work concept.  

2. In a gas burner, a significant amount of heat is rejected in the flue gases, which will limit 

the system thermal efficiency to around 90% for most condensed gas boilers. 

3. The main challenge faced by an air source HP system can be summarized as follow:  

• The fluctuation in system performance with ambient air variations on daily and 

seasonal bases. As ambient temperature declines, the temperature lift across the HP 

cycle will rise, leading to a reduction in the COP.  

• A low ambient temperature can result in frost formation on the HP evaporator, 

leading to further reductions in performance.  

• Furthermore, in a HP cycle used for hot water supply, the required water temperature 

is often high (usually above 65 oC to ensure the death of any legionella bacteria). 

Such a high temperature will reduce the COP of the system, as high discharge 

pressure is required.  

• An electrically driven HP system experiences energy losses during electricity 

transmission through the power grid. This will reduce the system’s overall fuel to 

heat efficiency. 

4. In a standalone ORC power plant, not all the heat produced can be converted into useful 

mechanical work because part of the heat should be rejected into the environment as wasted 

heat in order to satisfy the second law of thermodynamic.  
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5. In CHP system producing multi energy modes such as power, heating and cooling demands, 

can face challenges in balancing between these energy modes particularly during the various 

seasons of the year.  

1.5 Motivation for the present work 

The motivation behind the current study is to design and investigate a combined system that 

can overcome the challenges faced by standalone HP, ORC and gas burner as follow:  

• To overcome ambient temperature fluctuation in HP system, a mixture of ambient air and 

gas burner flue gases is used to feed the heat pump evaporator. This can also ensure that 

frost formation on the evaporator is prevented.  

• To avoid the high temperature lift in the HP system, water heating is designed to occur in 

two stages, through HP and ORC condensers respectively. This will reduce the discharge 

pressure required for the HP cycle and maintain a high COP.    

• In the combined system, all the mechanical power produced from the ORC power plant 

will be transferred by direct coupling with the HP cycle to be transformed into heat energy. 

This will eliminate both the electric generator of the ORC system and the electric motor of 

the HP, thereby avoiding electrical transmission losses.  

• By recovering all the heat rejected in the gas burner exhaust stream, the gas burner 

efficiency is expected to improve. In addition, the rejected heat from the ORC cycle is 

totally recovered. This will improve the overall fuel to heat efficiency of the combined 

system.  
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1.6 Aims of this research 

The aims of this research is to theoretically investigate a gas driven combined ORC-HP system 

as follow:  

• Comparing different working fluids for HP and ORC cycles respectively in terms of 

efficiency, safety and environmental aspects.   

• Investigating and comparing the combined system performance using different 

configurations, including combined system with and without post heater, a combined 

system with HP condenser as the first heating stage and a system with ORC condenser 

as the first heating stage.  

• Investigating the combined system for the following applications: domestic hot water 

supply, data centre cooling with simultaneous central heating, and providing 

refrigeration load from diesel engine waste heat.  

• Implementing various control strategies to achieve the maximum obtainable combined 

system thermal efficiency when working conditions varies. These working conditions 

includes variations in ambient air temperature, Data centre workload, and diesel engine 

power production.  

To achieve these, the combined cycle has been thermodynamically analysed in terms of the first 

and second laws of thermodynamics. An in-house MATALB code is developed for this purpose 

and the results are compared and validate with that obtained from ASPEN PLUS software [41]. 

In both simulation models, REFPROP database [42] is used to obtain the thermophysical 

properties of the working fluids to ensure accurate comparison of the obtained results.  

1.7 Outline of the thesis 

A brief introduction of the available heating technologies with their used heat sources and prime 

movers has been provided in this chapter. An extensive literature review of the various 

combined heat and power cycles that have been used in different applications is presented in 
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chapter two. This literature review is used as guidance with which to understand the 

thermodynamic principles and concepts behind each of these technologies, their design 

methodology and optimisation approaches, and as verification for the current research. Chapter 

three demonstrates the theoretical laws and mathematical equations adopted in this work.  

Chapter four presents a comparative assessment of various working fluids for both ORC and 

HP cycles in terms of system performance in heating and cooling modes, and their respective 

environmental impacts. Chapter five describes the design and efficiency performance of the 

proposed combined system used for domestic hot water supply. It also discusses the proposed 

control strategy to tackle the effects of ambient temperature variation on the system 

performance. The results of these strategies have been verified by a dynamic model using 

ASPEN PLUS software.  

Chapter six focuses on the use of the combined system for waste heat recovery from a small-

scale data centre to provide cooling. The recovered heat is used to produce hot water for a 

central heating application. To tackle the variations in data centre cooling load, various control 

strategies were proposed and investigated.  

Chapter seven discusses the use of the combined ORC-HP cycle as a bottoming cycle for a 

diesel engine. The heat recovered from the diesel engine flue gases is used to power the ORC 

cycle which then mechanically drive the HP cycle to provide refrigeration load. The simulation 

is conducted under the diesel engine rated condition. In addition, the effects of various diesel 

engine power and rotation speed on the combined system performance are studied.  

Finally, chapter eight presents a summary of the work presented in this thesis with a plan for 

future work.
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Chapter 2: Literature review 

2.1 Introduction 

In cold countries such as the UK, heating applications consume approximately 50% of the 

energy produced, which is heavily reliant on burning fossil fuels such as natural gas and coal.  

Such consumption accounts for nearly one third of carbon emission. In addition, the ever-

increasing demand for, and cost of, fossil fuel, along with tighter environmental regulations 

regarding CO2 gas emissions, have motivated researchers to focus on innovative fuel-efficient 

technologies. Cogeneration, trigeneration and multigeneration technologies have gained great 

attention in recent years due to their potential to provide more efficient usage of available 

energy sources. Cogeneration technology generally involves combined heat and power, 

combined cooling and power, and combined cooling and heating. Trigeneration involves the 

combination of cooling, heating and power. These integrated technologies allow the 

simultaneous production of heating, cooling and/or electrical or mechanical energy (power) 

from the same energy source. The energy source can be a non-renewable one such as oil, coal, 

or natural gas, or a renewable one such as solar, geothermal, biomass, wasted heat, or other 

types of renewable energy sources.  

The essential part of any combined heat and power system is the prime mover, which means an 

engine that provides the CHP system with its mechanical power. This can be achieved by 

converting the chemical energy contained in fossil fuels into mechanical work such as 

reciprocating internal combustion engines, steam or gas turbines. In additions to the heat 

generated from combustion, ORC and Stirling engine can be powered by renewable energy 

sources. Fuel cells can also be used as a prime mover for the CHP due to its ability to supply 

power as a form of direct current in an electrochemical process similar to batteries [19]. In the 

following section, a brief description of the main prime movers will be presented.  
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2.2 Types of prime movers for CHP systems 

2.2.1 Steam turbine  

The steam turbine (also called the Rankine cycle) is one of the oldest and most established heat 

engines. Water, as the working fluid for this cycle, is boiled and superheated using a high energy 

heat source such as fossil fuels or nuclear reaction. This high energy fluid is then expanded 

through the turbine in a single or multiple stages to generate mechanical power. The turbine 

shaft is connected to the electrical generator to transform the mechanical work into electrical 

power, while the high-temperature and low-pressure water vapour is condensed through the 

condenser by a heat sink. This latent thermal energy is used for heating applications. A high 

pressure liquid pump is used to pump the condensed water to the boiler to continue the cycle 

over [19].  

2.2.2 Gas turbine  

A gas turbine cycle works on the thermodynamic principle of the Brayton cycle. It mainly 

consists of a compressor, a turbine, a combustion chamber, and an electric generator as shown 

in Figure 2.1. The ambient air is compressed by the compressor then mixed with the fuel inside 

the combustion chamber. A combustion process takes place to generate high pressure and 

temperature gases. The combustion products are expanded through the turbine to generate 

mechanical power which is used to generate electricity via a motor generator. The high 

temperature exhaust gas stream at the turbine outlet (450-600 oC) has the potential to be 

recovered for heating applications or power production [43, 44].  
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2.2.3 Reciprocating internal combustion engines 

In a typical internal combustion engine (ICE), the pistons of the engine complete four main 

process (strokes) to convert the combustion reaction into mechanical power. Two common 

types of ICE are in service nowadays, the spark ignition engine which is fuelled by natural gas 

or gasoline, and the diesel engine where diesel fuel is ignited by the compression stroke. 

According to the second law of thermodynamics, not all the heat generated from the combustion 

process can be transferred into mechanical work. It is estimated that around 55% of the energy 

available in the fossil fuel is wasted in the ICE, of which 30-40% is contained in exhaust gases 

and 15% in jacket water [45]. It has been found that the temperature of the coolant fluid of the 

engine jacket can range between 80-90 oC, and the temperature of the combustion product 

exhaust stream can reach 400-600 oC. This wasted energy has the potential to be recovered by 

the CHP system to produce power and heating simultaneously, and even a cooling effect, as 

shown in Figure 2.2.  

Figure 2.1: Schematic of a gas turbine combined CHP cycle [43] 
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2.2.4 Stirling engines 

A Stirling engine is classified as a heat engine which operates on the Carnot cycle principle in 

which the working fluid, such as air or helium, undergoes four thermodynamic processes: 

compression, heating, expansion, and finally cooling, as shown in Figure 2.3. Stirling engines 

are approximately 30% efficient in converting heat into mechanical power. It is estimated that 

the fuel to electricity efficiency of a Stirling engine used as a micro CHP can reach 38% when 

its rejected heat is recovered [46]. However, some drawbacks related to electric power 

generation are encountered, such as low electric efficiency, difficulties in controlling the power 

system caused by the different types of heat exchangers used, and the requirement for high 

pressure working fluid.  

 

Figure 2.2: A packaged internal combustion engine CHP system [44] 
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2.2.5 Organic Rankine cycle 

An organic Rankine cycle is a heat engine similar to a steam turbine which uses organic fluid 

rather than water as a refrigerant, and offers the potential of converting low grade thermal 

energy (less than 230 oC) into useful mechanical work, because organic fluids have lower 

boiling points and higher molecular masses. In addition, in an ORC cycle, lower evaporation 

pressure and a superheated degree of working fluid at the evaporator exit are required compared 

to the Rankine cycle. Furthermore, the selected working fluid should ideally be dry fluid to 

avoid condensation of the working fluid through the expansion process [47, 48]. The main parts 

of an ORC are an evaporator, a turbine, a condenser, and a pump. The evaporator, also called a 

boiler, is a heat exchanger used to evaporate the working fluid by exchanging thermal energy 

with the heat source. The result of the evaporation process is a high pressure and temperature 

refrigerant vapour which will expand through the turbine to produce mechanical power. After 

that, the refrigerant is condensed by the condenser heat exchanger through rejecting the heat of 

vaporization to the coolant. The condensed liquid refrigerant is pumped to the evaporator by a 

liquid pump to restart the cycle. Other parts can be added to the ORC to improve the cycle 

efficiency, such as a recuperator, which is a heat exchanger used to transfer heat between the 

Figure 2.3: Configuration of the CCHP system with an SE prime mover [46] 
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refrigerant at the expander exit, and an evaporator inlet. In addition, a storage tank and 

controlling valves could be added, as shown in Figure 2.4.    

 

 

 

 

 

 

 

 

 

 

Figure: 2.4: Block diagram of the Organic Rankine cycle [48] 
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2.3 literature review on combined technologies 

Different integrated systems have been proposed and investigated in the literature. Those which 

are of particular interest to this thesis are presented below: 

2.3.1 Combined heat pump systems 

Various heat pump cycles have been integrated in the literature using different prime movers 

such as gas turbine, internal combustion engine and ORC cycle. These combined systems that 

are designed for heating and cooling applications are presented below:  

2.3.1.1 Gas turbine powered HP system 

The use of a gas turbine as a prime mover in a CHP system has been proposed by a number of 

researchers. The integration involves a gas turbine powered by natural gas being used to drive 

various heat recovery technologies, such as absorption HP system, GSHP, absorption chiller, 

or conventional heat exchanger. 

Zhao, X., et al. [49] presented a flue gas recovery system for a CHP gas turbine power plant 

driven by natural gas for a district heating application. The proposed system involves an 

absorption HP system to reduce the return water temperature for further heat recovery and hence 

enhance the overall system thermal efficiency. Furthermore, the new system layout was 

compared with a traditional gas boiler district heating system. The results showed that the new 

design configuration can secure a heating utility by area of 660 thousand m2 greater than the 

gas boiler. The new technology can reduce the flue gas temperature to 11 oC, meaning that the 

flue gas thermal capacity is greater than the old design by 69 MW. In addition, the energy 

consumption is reduced by 6% and the HP achieved a COP of 25 which can be considered a 

significant improvement over the electrical HP. Moreover, the new design configuration can 

reduce CO2 and NOx emissions by 16.2 thousand and 6 tons per year, respectively.  

Kang, S., et al. [50] proposed a combined heat and power system involving integrating a gas 

turbine with a ground source heat pump cycle to provide domestic hot water. The new proposed 

system was compared with the traditional combined CHP-GSHP system. The reference system 

consists of a gas turbine powered by natural gas to produce electrical power; the wasted heat is 
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recovered by a heat exchanger to generate the first domestic hot water steam at a temperature 

of 55 oC, while some of the electricity generated from the gas-turbine is used to power the 

GSHP compressor and liquid pump. The GSHP is used to produce a second hot water stream 

at the same temperature as the first stream. In contrast to the original combined CHP-GSHP 

system, the new proposed integrated system generates only one domestic hot water flow, but in 

two separated heating stages. The first heating stage is carried out in the GSHP condenser to 

warm the cold tap water to around 35 oC. After that, the water reaches its desired and final 

temperature (55 oC) at the outlet of the heat exchanger by recovering heat from the gas turbine 

exhaust flue gas, which has a temperature of 508 oC. The results for the new integrated approach 

showed that reducing the HP condenser pressure to generate warm water of 35 oC leads to a 

lower pressure ratio and therefore better COP. This improves the overall combined system 

efficiency. The performance comparison between the two approaches can be summarized as 

follows: for the new proposed system, the total system energy efficiency is higher by 3.9%, and 

the GSHP COP increased from 5.06 to 6.95. In addition, the net output power is greater than 

the original cycle by 669 kW. 

Cai, B., et al. [51] proposed a new novel CHP coupled with a ground source heat pump system 

for further heat recovery from the natural gas exhaust stream. The new system configuration 

was analysed thermodynamically, tested experientially and compared with a traditional 

cogeneration system. In the traditional CHP-GSHP system, the high-grade heat contained in 

the exhaust stream rejected from a gas turbine power plant is used to heat cold water. The 

remaining heat in the stream is rejected into the environment at a temperature of around 140 

oC. Some of the power generated from the gas turbine is used to drive the compressor of a 

GSHP system. This HP system is used to generate another hot water stream using a vapour 

compression HP cycle. In the proposed system, the exhaust stream that would otherwise be 

rejected into the environment is directed to a geothermal well for further heat extraction, 

reducing the exhaust stream temperature to around 50 oC. This heat can be transferred and 

stored via a polyethylene material heat exchanger. The advantages of this new system 

arrangement are that it improves the COP by reducing HP cycle condensation pressure, and 

solves the imbalance problem of heat being added and removed from and to the soil in the 

GSHP system. In addition, by adapting the polyethylene heat exchanger, the exhaust stream 

temperature will drop below the dew point. Thus, the condensed exhaust stream will accumulate 

acid and therefore minimise sulphur emissions into the environment. The analytical results 
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showed that the first and second thermodynamic laws of the new proposed cycle can be 

improved by 10.7% and 10.4% respectively compared with conventional systems. 

Lei, H., et al. [52] conducted a comparative study of different supplementary heat strategies on 

CHP comprised of a micro gas turbine coupled with an absorption chiller driven by flue gas 

energy. The function of such a small-scale system is to provide cooling, heating and power 

energy. This study addressed one of the main practical challenges of any CHP system, which 

is when the CHP system has to work in partial load conditions due to an imbalance between the 

user demand for power and thermal energy and the maximum system output. Four different 

heat supplementary strategies are proposed and analysed when the exhaust flue gases of the gas 

turbine are insufficient to drive the absorption chiller. In strategy one, the flue gas temperature 

is increased at a constant flue gas mass flow rate while in strategy two, only the exhaust mass 

flow is increased. Increased gas turbine power is the approach adopted in strategy three, and 

the fourth method involves adjusting flue gas mass flow and temperature taking into 

consideration the absorption chiller cooling capacity and the COP. The results showed that the 

first control strategy achieved better system performance than the other methods.  

2.3.1.2 Gas powered HP system (GPHP) 

Recently, scientific researchers have focused on designing and improving heating and cooling 

technologies with the advantage of waste heat recovery. Among these devices is the gas-

powered heat pump cycle (GPHP), which consists of conventional vapour compression cycle 

driven by a gas fuelled internal combustion engine. The wasted heat from the gas engine 

(exhaust gas and engine cylinder jacket) is recovered by the HP cycle to enhance system heating 

efficiency.  

An experimental and theoretical research was conducted by Yang, Z., et al. [53] to study the 

performance of the GPHP as a water heater applicant. The HP cycle in that study utilizes the 

ambient air temperature as a heat source for its evaporator. The water is separately heated and 

stored in two tanks by the heat rejected from the heat pump condenser and by utilizing the waste 

heat from the gas engine cylinder and exhaust. The recovered waste heat from the gas engine 

is proposed to solve the evaporator frosting issue when the system works at low temperatures 

and in a high humidity climate. The results illustrated that heating capacity rises with increasing 
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shaft engine rotation speed and water flow, but drops with rising water temperature. Moreover, 

three different defrost processes were proposed and analysed. Method one uses wasted heat 

only; method two reverses the HP cycle and the third approach involves a combination of both. 

The experimental test showed that although method one takes more time, it increases the water 

temperature in the storage tank through the operating time; the other two methods showed the 

opposite trend.  

Hu, B., et al. [54] carried out an experimental and theoretical study centring around a GPHP 

system for heating purposes. In this study’s system, the heat source for the HP evaporator is a 

mixture of ambient air and flue gases. The heat contained in the engine jacked coolant is used 

to superheat the working fluid at HP compressor inlet. The results showed that the combined 

system operational performance is highly dependent on ambient air temperature and gas engine 

speed. It also concluded that the gas engine speed should be set as low as possible to achieve 

the required heating capacity for optimum engine thermal efficiency.  

In order to explore the stability and reliability of a combined gas engine air to water HP system 

for domestic hot water application, Liu, F., et al. [55] built and tested an experimental prototype. 

In this system, the engine waste heat (jacket and exhaust) is recovered to heat the water. Another 

hot water stream is generated from the HP cycle by utilizing a low-grade heat source (ambient 

air temperature). The results showed that the system can produce a range of hot water at between 

40-60 oC. Moreover, in winter, it is recommended to meet the demand for high temperature 

water from the recovered wasted heat engine rather than the HP condenser to ensure that the 

gas engine speed and the HP temperature lift can operate constantly and at as low a level as 

possible to achieve the highest efficiency of performance.  

Another experimental study by Liu, F., et al. [56] was carried out on a combined system 

designed to provide hot and cold water simultaneously. The hot water is produced by utilizing 

the wasted heat from the gas engine case and exhaust, and the HP cycle is used as a water cooler 

by absorbing heat from the cold tank water and rejecting it to the environment. The results 

showed that the evaporator water inlet temperature and the engine speed are the main 

parameters affecting both the system primary energy ratio (PER) and heat pump COP. The 

ambient air temperature has a direct effect on cooling capacity and hence on total capacity. The 
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proposed system can provide hot water at between approximately 40-62 oC, and cold water 

between 6.7-19.3 oC.  

It is evident that the gas engine speed has a significant impact on engine performance. In the 

gas engine HP system, the engine speed should be adjusted to satisfy the variation in heating 

and cooling loads. Therefore, various studies have proposed hybrid powered gas engine HP 

systems (HPGHP) which feature a dual energy source to tackle this problem. This new type of 

system is based on combining the gas engine with an electric motor powered by a battery pack. 

The electric motor works as a generator to charge the battery, and when it is fully charged it 

can act as a prime mover for the compressor. By efficiently switching between both power 

sources modes, i.e., distributing the required compressor torque between the engine, motor or 

both, fuel consumption can be kept to a minimum. The proposed HPGHP system shows 

superior thermal, economic and environmental performance compared with traditional GPHP 

[57, 58].  

2.3.2 Combined gas burner-ORC system  

A gas burner is a primitive technology that mainly relies on burning natural gas, crude oil, and 

coal. The heat generated from the burner can be used to thermally drive a power cycle such as 

an ORC cycle. In addition, the wasted heat contained in the exhaust stream as a combustion by-

product has high thermal energy. This wasted heat has attracted the attention of many 

researchers who have suggested recovery methods using various technologies such as CHP 

systems. 

A small scale micro CHP consisting of an ORC power plant powered by natural gas-fired was 

designed and tested experientially [59]. The intended design for this system is a miscellaneous 

heating application, while the electricity generated is considered as a beneficial by-product. The 

cold tap water is heated to 65-85 oC in the gas burner, then this heat is transferred to the working 

fluid in the evaporator. The return water can be used for space heating, hot water supply, and 

domestic washing. In addition, the sink water in the condenser is also used in mixed heating 

applications. Isopentane is selected as the working fluid due to its proper thermophysical 

properties and environmentally friendly behaviour. An in-house vane expander was designed 

and manufactured specifically for the study. Thermodynamic analysis was carried out on the 
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combined CHP system in terms of the first and second laws of thermodynamics. The results 

showed that the maximum achievable expander output power is 77.4 W when the heat source 

temperature is 84 oC. In addition, the net cycle electrical efficiency is 1.66%. The combined 

system heating efficiency varied slightly at different heat source temperatures, but it is highly 

dependent on the water heating device. 

An experimental research was conducted by Zhou, N., et al. [47] to design and construct an 

ORC cycle for low temperature flue gas waste heat recovery from an industrial process. In this 

system, typical ORC cycle components including a fin-tubes evaporator, a double tube sides 

condenser, a scroll expander and a liquid pump are used. In addition, R123 is used as the 

working fluid for its merits such as non-flammability, non-toxicity, low cost and environmental 

friendliness. The heat source for the test rig is an exhaust gas stream of low temperatures 

varying between (90-250 oC), from burning liquefied petroleum gas (LPG) mixed with ambient 

air in a stove. The heat sink is cold water circulated from a storage tank to condensate the 

refrigerant in the condenser. The study investigated the relations between the main cycle design 

parameters, including evaporator pressure, heat source temperature, R123 superheat degree, 

expander output power, cycle efficiency, heat recovery efficiency, and exergy efficiency. The 

main findings showed that increasing evaporator pressure results in a rise in turbine output 

power, cycle thermal efficiency and exergy efficiency. Increasing the heat source temperature 

leads to higher expander output power, greater energy recovery, and a rise in exergy efficiency. 

Increasing the refrigerant superheat degree reduces the cycle performance. Overall, the cycle 

produced net mechanical power of 0.645 kW with a total thermal efficiency of 8.5%.  

Peris, B., et al. [60] conducted an experimental study on a regenerative ORC power cycle for 

the combined purpose of electrical power and thermal heat production. The combined cycle is 

thermally fed by a thermal oil close loop heated by a gas boiler to simulate the heat capturing 

process from low grads heat source temperatures in the range of 90-150 oC. In addition, the 

rejected heat from the cycle condenser is used to produce hot water at between 30-90 oC. 

Moreover, R245fa refrigerant is used as the working fluid and the volumetric expander is 

measured in the test bench. The results showed that increasing the thermal oil inlet temperature 

and cycle pressure ratio will result in higher thermal energy being captured by the ORC 

evaporator. This in turn increases the net power output from the expander. However, at each 

heat source temperature, the hot water outlet temperature declines as the cycle pressure ratio 
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increases, due to the decline in the ORC condenser pressure which is responsible for the final 

water temperature. Therefore, in this test, the cycle achieved a maximum thermal energy input 

of 390 kW, a thermal energy output of 350 kW, and a hot water temperature of 90 oC. In 

addition, the highest obtainable net electrical power and gross electric power were reported as 

30.91 kW and 36.58 kW, respectively. More results showed that the cycle thermal efficiency 

increases with the pressure ratio, reaching a value of 7.92% at the maximum gross electric 

power and 9.4% at the highest net electric power. At a cycle pressure ratio of between 2-3, the 

expander isentropic efficiency achieved its highest value of 70%.  

2.3.3 Diesel engine driven ORC cycle 

Various studies in the open literature have investigated the use of the ORC thermodynamic 

cycle for waste heat recovery (WHR) from diesel engines. It has been established that a typical 

diesel engine (DE) rejects around half of the total energy it consumes through the exhaust and 

coolant streams in order to produce useful mechanical work [45, 61, 62]. These thermal fluids 

(exhaust and coolant streams) have the potential to be reused as a heat source for an ORC cycle 

for power production.  

Yu, G., et al. [45] presented a simulation model to evaluate the performance of a real ORC 

cycle bottoming diesel engine for waste heat recovery from the engine jacket cylinder and 

exhaust. A schematic diagram of this system is shown in Figure 2.5. Extensive thermodynamic 

analysis was carried out on the waste heat recovered, ORC output power, system efficiency, 

exergy destruction, and efficiency. DE working conditions such as engine load and speed, and 

exhaust mass flow rate and temperature, were collected experimentally from a heavy-duty 

turbocharged six-cylinder DE used in a generator plan. 
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The results showed that when the engine load varies from high to low, high thermal energy is 

recovered from the exhaust stream (75%) compared with a lower value acquired from the 

engine cylinder (9.5%). The ORC cycle achieved 14.5 kW net output power, recovery 

efficiency of 9.2%, and exergy efficiency of 21.7% under a rated engine condition. In addition, 

combining the ORC-DE has the potential to improve the DE thermal efficiency to 6.1%, and 

the ORC thermal efficiency up to 5.8% at an evaporation pressure of 30-31 bar.  

Bombarda, P., et al. [62] conducted a comparison study between ORC/Kalina cycles via a 

bottoming diesel engine exhaust for waste heat recovery purposes. The engine used was 

designed to work as an electrical generator with a capacity of 8900 kWe. A mixture of Ammonia 

and water, and Hexamethyldisilane are used as working fluids for the Kalina and ORC cycles, 

respectively. The comparison results showed that the recovered net output power from Kalina 

and ORC cycles was 1615 and 1603 kW, respectively. However, the Kalina cycle required a 

high pressure value of approximately 100 bar to reach maximum performance, compared with 

Figure 2.5: Schematic diagram of the bottoming ORC of a diesel engine [45] 
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the ORC cycle which required only 10 bar. The Kalina cycle achieved slightly higher cycle 

performance, however this was only achievable at low logarithmic mean temperature 

differences in the heat recovery exchanger, which requires a large exchanger surface area.  In 

addition, using a high pressure Kalina cycle could add more challenges to the basic cycle 

configuration in which the cycle should work either using high turbine rotational speeds or a 

multistage configuration. Also, to avoid possible corrosion in the Kalina cycle components, 

expensive materials are required. 

Steady and transient simulations were carried out by Zhao, M., et al. [61] to evaluate the 

performance of a diesel engine combined with an ORC power cycle for WHR. The results for 

a diesel engine operating in different working conditions were experimentally tested. The 

engine performance was evaluated and compared both with and without the ORC cycle. The 

results showed that the main important performance parameters for the DE combined with ORC 

cycle improved; the net power output increased by 4.13 kW, the fuel consumption fell by 3.61 

g/ (kW h), and the thermal efficiency improved by 0.66%. The transient results also support the 

benefits of using the ORC cycle, which obtained total combined cycle output power of 168.24 

kW. 

The ORC evaporator can have a significant impact on system performance. Therefore, a number 

of studies have focused on this part. An experimental and theoretical study on combined ORC-

DE was conducted by Koppauer, H., et al. [63]. In this study, two heat exchangers (HXs) instead 

of one for an ORC evaporator were set in the test rig. One is placed after the exhaust 

aftertreatment, and the other is installed in the exhaust recirculation. Water mass flow is 

proposed to maintain the ORC condenser pressure below atmospheric pressure to maximize the 

turbine output power and hence the system recovering efficiency. In this study, steady and 

dynamic mathematical models were drawn from the literature with further development. The 

results of both models were validated with those obtained from the experimental rig. The results 

revealed that the evaporator steady state model achieved good accuracy with only a small 

fraction of error. In addition, the dynamic simulation results were in agreement with those 

acquired from the transit behaviour of the test rig. Furthermore, a control and optimization 

method has been developed which utilizes the steady state model and takes into account the 

practical design parameters, such as the decomposition temperature of Ethanol as the ORC 
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working fluid. This method can be directly used to identify the operating points in the combined 

ORC-DE cycle in order to maximize the energy recovered and the expansion power output. 

A dynamic model of a 2-phase heat exchanger for use in a DE-ORC system has also been 

developed [64]. The system is designed to recover waste heat mainly from the main exhaust 

and gas recirculation streams. Mass and energy balance equations were used to describe the 

two-phase heat exchanger model. The finite difference method and moving boundary approach 

were adopted in this model and it was compared with other dynamic models available in the 

literature. The modified model is based on simulating the phase change of the Ethanol as the 

ORC working fluid and the moving boundary approach of the multi-phase across the heat 

exchanger during the heat transfer process. The results were verified with experimental data 

from a combined DE-ORC system. The results showed that the developed model has the 

potential of predicting the working fluid and exhaust gas temperature with an average error of 

less than 4%. This can provide the confidence needed to use the modified model in the dynamic 

evaluation and control strategy of a complete waste heat recovery system.   

A thermodynamic model of a dual loop ORC system for waste heat recovery from a compressed 

natural gas engine was proposed [65]. The study conducted a comparison of the thermodynamic 

and economic performance of this system using various working fluids. In addition, the effects 

of various ORC parameters on system performance were investigated, including superheat 

degree, evaporation pressure, the condensation temperature of high- and low temperature loops 

of the ORC cycle, and the exhaust temperature. The results showed that higher evaporator 

pressure and condensation temperature in both loops have positive impacts on the 

thermodynamic performance of the system, while variations in superheat degree and exhaust 

temperature have no significant impact on the thermo-economic performance. In addition, 

R245fa in both loops achieved better ORC performance than the other working fluids examined 

in this study. The study also supported that this system can achieve a maximum net power 

output of 23.62 kW at the rated condition with a low electricity production cost. The dual loop 

ORC system also achieved thermal efficiency in the range of 8.97-10.19% in the selected 

operating conditions.  

Some researchers have studied which ORC configuration layouts could be suitable for DE 

waste heat recovery. Four different small-scale ORC power cycle layouts using R245fa as 
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working fluids were investigated on one study [66]. The difference between these is only in the 

management of the recovery mechanism from the engine coolant and exhaust streams. The aim 

is to recover wasted heat from internal combustion engine coolant and exhaust streams. The 

study was carried out on a small Yanmar diesel engine, model number TF120M. It consists of 

a one-cylinder engine with 8.8 kW rated power at 2400 RPM. The study investigated design 

and performance parameters such as refrigerant superheat degree, expander rotational speed, 

and brake specific fuel consumption for the four proposed configurations under the rated 

condition of the DE. The four configurations can be described as follows: a simple structure 

ORC (ORC-simp) where both coolant and exhaust stream are used as a heat source to evaporate 

the R245fa. In the ORCR-1 configuration, a recuperator is adapted between a liquid pump and 

a coolant heater. In this case, the recuperator acts as a preheater to recapture the heat available 

in the R245fa flow leaving the expander. In ORCR-2, recuperator is installed between the 

coolant heater and the exhaust heater as an additional heat exchanger. The last configuration is 

ORC-pre, in which the refrigerant is preheated by the coolant heat exchanger before the 

evaporation process. A thermal oil circuit is used in the exhaust heater to protect the ORC 

refrigerant from the high temperature exhaust gases.  

The results showed that increasing the degree of refrigerant superheat at the ORC evaporator 

exit will result in keeping the ORC-simp thermal efficiency nearly constant (6.4%), while 

slightly improving the other three cycles’ efficiency. In addition, the results indicated that when 

R245fa is superheated below 110 oC, this could lower ORCR-2’s efficiency compared with 

ORC-simp. This happens because the efficiency in the ORC-2 layout depends on the 

temperature of the refrigerant at the expander exit which in this case is lower than the engine 

coolant temperature. Also, the study found that the superheating degree has limited effect on 

the ORC power output, recording average values of 0.59 kW for ORC-simp and 0.5 kW for 

ORC-pre. The comparison results between the four configurations prove that the ORC-pre cycle 

has a better thermal performance but generates less power. As a result, the simple ORC 

configuration for waste heat recovery from coolant and the exhaust of the internal combustion 

engine has the potential to produce the highest power but has slight thermal efficiency. 

However, this can be reversed if the ratio between the engine coolant and exhaust is in the range 

of 0.5-0.7, because the ORC-pre is unable to recover all the heat available in the coolant stream. 

Therefore, it is recommended that the ORC-simp should be modified into ORC-pre in this ratio 

range. In addition to the higher power output, the scroll turbine rotation speed of the ORC-simp 
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(3200 RPM) is higher than that of the ORC-pre (1000 RPM) in the superheat degree range of 

80-160 oC. Moreover, the ORC-simp cycle rejects less heat to the environment via the 

condenser compared with the other proposed configurations, which means it has a valuable 

advantage in waste heat recovery technology from ICE. The analysis of the engine fuel 

consumption under the engine rated condition showed that the ORC-simp has a lower fuel 

consumption ratio by 6.1% compared with ORCR-1 and ORC-pre which increases the fuel 

savings by 7.4% and 5.2%, respectively. In addition, the overall cycle efficiency of the ORC-

simp, ORCR-1 and ORC-pre could be enhanced by 6.5%, 8.0% and 5.4%, respectively.   

The selection of working fluid for an ORC to be used as a waste heat recovery system with DE 

is also important. Many studies have supported that using alkane-based working fluids in the 

ORC cycle can achieve better performance in medium-high temperature waste heat recovery 

from a diesel engine. However, their use is also associated with difficulties in selecting and 

designing proper expanders due to their over-large expansion ratio. To overcome this problem, 

Liu, P., et al. [67] proposed a two-stage expansion with interheating for ORC working with 

alkanes to achieve multi-stage heat recovery from exhaust gas, EGR gas (Exhaust Gas 

Recirculation) and engine coolant in a truck DE. A comparison study for the system 

performance using different alkane working fluids was conducted and the proposed system was 

compared with a preheating-regenerative ORC system for DE waste heat recovery. The results 

showed that cyclic alkanes performed better than linear alkanes in terms of net power output, 

thermal efficiency, and exergy losses; however, they recover less heat from engine coolant. In 

addition, the proposed system can generate 6.7% more output power than the preheating-

regenerative ORC system as it can recover 100% of waste heat from exhaust gas and 71.8% 

from ERG gas. 

It has been found that pure hydrocarbon refrigerants have good efficiency compared with other 

working fluids; however, flammability and explosivity are the main drawbacks to their use. To 

reduce these drawbacks, Song and Gu [68] suggested mixing them with a retardant in an ORC 

system for engine WHR. Refrigerants such as R141b and R11 are proposed as retardants to 

form zeotropic mixtures with hydrocarbon fluids. In addition to suppressing flammability, the 

zeotropic mixture offers better temperature matches between the refrigerant and the heat source 

and sink, which can reduce the rate of exergy destruction in the heat exchangers. The simulation 

results showed that the zeotropic mixture (50% cyclohexane and 50% R141b) can improve the 
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ORC output expansion power by 13.3% compared with pure cyclohexane. In addition, exergy 

destruction is reduced in both the evaporator and condenser, by 30% and 14%, respectively. 

The mechanical output power of the combined ORC-DE cycle can be used in different 

applications. Salek, F., et al. [69] carried out a thermodynamic simulation to investigate the 

potential of recovering the wasted thermal energy available in the DE exhaust stream for use as 

a cooling load. In this system, the mechanical energy generated in the ORC power unit drives 

an Ammonia absorption refrigeration cycle. The three thermodynamic cycles are integrated as 

a combined cooling, heating and power technology. The results show that adopting the 

Ammonia absorption refrigeration cycle increases the bottoming ORC cycle efficiency, leading 

to a further rise in the output power of the entire system. In addition, DE efficiency improves 

by 4.65%. From the literature, DE coupled with ORC can only recover 7-8% of the thermal 

energy contained in the exhaust stream; however, this study’s proposed system can recover 2% 

more than the compared cycle. Increasing the engine load leads to further energy being rejected 

from the exhaust stream, which can lead to a higher cooling load. By adding a preheat heat 

exchanger at the thermal interface point between the ORC-HP cycle, a 5 kW increment in the 

ORC feeding power is reported, which will boost the ORC output turbine expansion power. 

The interface point is where the R24fa liquid stream exiting the pump is in thermal contact with 

the Ammonia fluid leaving the heat exchanger. The exhaust stream temperature is set to 100 oC 

to avoid possible condensation of formation of sulfuric and nitric acid. The study also found 

that maintaining the exhaust gases temperature at below the 220 oC at the HP heat exchanger 

exit can avoid degradation in the HP COP. Using two HXs between the exhaust gas flue and 

both the ORC working fluid and HP refrigerant causes 0.5% mechanical power loss; however, 

the recovered energy from integrating these cycles has the potential to cover that loss.   

Some researchers have suggested that coupling ORC-DE can have some drawbacks, including 

a rise in back pressure and ORC refrigerant decomposition. Turbocharged diesel engine type 

IVECO F1C 3.0 L combined with ORC power plan has been tested experimentally in this 

context [70]. This study discussed the following design assessment points: the effects of back 

pressure as a consequence of bottoming an ORC power unit on the engine exhaust stream, and 

the effects of increasing the mobile DE system weight due to adding the ORC unit. The 

proposed mechanical control mechanism, an Inlet Guide Vane (IGV), is used in this study to 
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ease the back-pressure problem. The recovery evaluation is carried out on an existing ORC 

cycle based on an off-design mode, and the expander is evaluated under variable engine speed.  

The results show that engine back pressure can significantly affect the thermal interface process 

between the ORC evaporator and the engine exhaust. In addition, the shell and finned tube heat 

exchangers are favoured over a plate type for this application. Despite a small impact on the 

brake specific fuel consumption (less than 1%), the back pressure can be reduced to 175 mbar 

for an exhaust stream flow rate equal to 500 kg/h, by adopting the IGV control system on the 

turbocharger. By using a plate HX for an ORC evaporator designed for a pressure drop of 

350mbar and an exhaust mass flow rate of 500 kg/h, engine boost pressure increases, causing a 

rise in the turbocharged speed at different DE speeds. Although engine fuel consumption 

unexpectedly increases by 2-5 % with the increase in the gas mass flow, the shell and finned 

tube heat exchangers can keep the fuel consumption rate below 1% at all engine speeds.  

From the off-design results, and during the steady refrigerant flow rate in the ORC evaporator, 

thermos-fluid consequences such as an incomplete evaporation process and a fluid stability 

problem can occur. These drawbacks could have consequences in relation to the performance 

parameters of the expander, in terms of its volumetric efficiency and recoverable mechanical 

power. These drawbacks in the off-design mode can be minimized by adapting the multivariable 

mechanism control system in which the ORC working fluid density and mass flow rate, turbine 

speed, and exhaust mass flow can all be varied. Extra weight of 50 kg from the ORC power 

unit is added to the original track vehicle weight (3350 kg). In addition, a larger radiator surface 

area is needed for the DE to reject heat from the ORC condenser to the environment. An 

increment of 1% of fuel consumption is required to compensate to the increase in the track 

weight. In this study, utilizing the ORC power as a recovery unit shows a gross benefit of 4-5% 

and presents the potential of the cycle improvement in terms of proper design and control 

mechanisms.   

In order to prevent the decomposition of the ORC working fluid, Shu, G., et al. [71] suggested 

adapting the thermal oil circuit as intermediate oil storage (OS) between the DE exhaust stream 

and the ORC cycle. They experimentally tested a standalone DE (without an OS system) with 

a capacity of 240 kW to investigate the variable exhaust stream properties. After that, the 

performance of a combined DE with OS/ORC cycle was also measured when exposed to a 
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variable high temperature exhaust stream. The results showed that in standalone mode, the 

temperature of the ORC working fluid can reach 202-480 oC. This could put the refrigerant at 

a high risk of decomposition. In this case, the maximum ideal thermal energy obtained from the 

engine exhaust is 142.2 kW at an engine speed and load of 2000 RPM and 100% respectively. 

In the combined DE-OS/ORC system, even when the temperature of the exhaust stream is in 

the range of 200-480 oC, the OS system maintains R123 temperature of between 81-222.5 oC 

which is safely away from the decomposition range. Thus, the maximum heat recovered by the 

OS system is reduced to 72.63 kW, leading to net output power of 9.67 kW. In addition to 

reducing the decomposition problem, adapting the oil storage approach can bring significant 

inertia to the response of the combined system when the DE operates with a fluctuating 

performance. The combined ORC/OS show a roughly steady net power output even when the 

engine is shut down. Furthermore, in this mode, evaporator and condenser pressure is found to 

be almost constant throughout variable DE working conditions, which supports system safety 

and performance.  

Since the combined ORC-DE system works under highly transient operation conditions due to 

variable DE output power demand which consequently produces transient exhaust streams in 

terms of both quantity and quality, a number of studies have focused on the dynamic modelling 

of the combined ORC-DE cycle. 

Xu, B., et al. [72] developed a dynamic model to predict the transient behaviour of the combined 

ORC-DE system for heat recovery purposes. This model implemented individually the four 

basic ORC components in addition to control valves, junctions, and a reservoir. The heat 

transfer process in the heat exchangers is modelled based on energy, mass and momentum 

equations, and correlations of heat transfer coefficient and pressure drop across the heat 

exchangers are derived. Then, the model is employed for the entire combined system. The 

combined dynamic model is validated in terms of step-changes in the engine working 

conditions (speed-torque). The results showed that the vapour refrigerant temperature and 

pressure at ORC evaporator outlet can be successfully predicted with mean errors of around 2% 

-3%, respectively.  

Huster, W., et al. [73] performed a dynamic evaluation of an ORC cycle driven by thermal 

energy rejected from the DE. The ORC targeted components are the evaporator and the 
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condenser. The adapted two-phase heat transfer method takes the moving boundary approach. 

The validation of this model is carried out with different experimental data. The results showed 

a mean temperature error for all measured temperatures of less than 4%. In addition, the mean 

relative error for the refrigerant temperature exiting the evaporator is less than 1%, and only 

increases to 5.5% at high-pressure levels.  

Table 2.1 shows a summary of the available literature on the combined DE-ORC cycle for heat 

recovery. It is clear that the single stage ORC layout is the most commonly adopted 

configuration and that various working fluids have been used, with R245fa being frequently 

used.  
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Table 2.1 Comparison of combined DE-ORC cycles at rated condition or maximum DE load as reported in the literature. 

Author/Year Cycle description ORC working fluid Exhaust stream 

mass flow, kg/s 

Exhaust stream 

temperature, oC 

ORC output 

power, kW 

ORC cycle Ef-

ficiency, % 

Evaporation 

pressure, bar 

Type of the 

study 

Bombarda, P., et al. 

2010 [62] 

Single stage ORC Hexamethyldisiloxane 35 346 1603 21.5 10 Simulation 

Yu, G., et al. 2013 

[45] 

Single stage ORC R245fa 0.2752 519 14.5 9.2 30-31 Simulation 

Song and Gu 2015 

[68] 

Single stage ORC Cyclohexane/R141b 

(0.5/0.5) 

1.983 300 88.7 17 none Simulation 

Shu, G., et al. 2016 

[71] 

Single stage ORC R123 0.388 202-480 9.67 14.15 16 Experimental 

Zhao, M., et al. 

2017 [61] 

Single stage ORC R245fa 0.199 353 4.13 none 9 Simulation 

Yang, F., et al. 

2017 [65] 

Dual loop ORC R245fa 0.05-0.28 447.6 23.62 8.97–10.19 25 Simulation 

Lu, Y., et al. 2017 

[66] 

Single stage ORC R245fa 0.0005486 fuel 

mass 

587 0.59 6.2 none Experimental 

and simulation 

Liu, P., et al. 2018 

[67] 

Two-stage expansion Cyclopentane 0.237 517.3 20.89 14-19.3 40.6 Simulation 
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2.3.4 Combined Organic Rankine Cycle-Vapour Compression Cycle 

A combined Organic Rankine Cycle-Vapour Compression Cycle (ORC-VCC) is a promising 

integrated technology. The aim of this combined system is to convert heat energy into 

mechanical shaft power via the ORC subsystem, which in turn drives the VCC-compressor. 

Since the organic working fluids in the ORC cycle have a lower boiling point than water, low 

heat sources such as solar, geothermal or waste heat can be used to run the ORC. On the other 

hand, the VCC is the reverse cycle of the ORC, which can consume low power to transfer heat 

from a low heat source to a high heat sink. Therefore, a combination of the two has the potential 

to reduce both dependence on fossil fuel and greenhouse gas emissions. 

Various ORC-VCC combined systems have been proposed in the literature. Aphornratana and 

Sriveerakul [74] presented a combined ORC-VCC refrigeration cycle, in which the two cycles 

are integrated using a free piston expander-compressor unit as a coupling device. The two 

systems share the same working fluid (either R134a or R22) and condenser, as shown  

 

in Figure 2.6. The main operating conditions include an ORC vapour generator (evaporator) 

temperature of between 60-90 oC, a condenser temperature of between 30-50 oC, and HP 

Figure 2.6: Schematic diagram of combined ORC-VCC refrigeration system [74]. 
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evaporator temperature of between -10 to 10 oC. The results showed that this combined system 

can achieve a COP value of between 0.1 to 0.6. In addition, the system with R22 as the working 

fluid shows better COP performance than R134a for all operating temperature ranges. 

Wang, H., et al. [75] proposed a combined ORC-VCC as a thermally activated cooling 

technology. The cycle can be powered by solar-thermal, geothermal or waste heat to produce a 

cooling effect and/or mechanical power if needed. These authors proposed that the cycle can 

be used solely for cooling during summer months, whereas in winter, all the heat can be 

converted to electricity. During spring and autumn, both cooling and electricity will be 

produced based on the demand. The effects of various cycle configurations on the overall 

system performance in terms of the gross coefficient of performance were studied. The results 

showed that the system can achieve an overall COP of 0.54 (basic cycle design), 0.63 (with 

sub-cooling) and 0.66 (with sub-cooling and recuperation). Thus, the advanced cycles with sub-

cooling or cooling-recuperation achieve a 22% improvement on the overall COP compared to 

the basic cycle design.  

The effects of various working fluids and their thermophysical properties on the cycle 

performance have also been studied. Kim and Perez-Blanco [76] conducted a thermodynamic 

analysis of a combined ORC-VCC system for the cogeneration of power and refrigeration using 

a low-grade sensible heat source. Various working fluids were investigated, including R143a, 

R22, R134a, R152a, Propane, Ammonia, Isobutane and Butane. The system performance was 

analysed in terms of net power production, refrigeration capacity, and thermal and exergy 

efficiencies. The results showed that for the pure refrigeration case, higher thermal efficiency 

and refrigeration per unit mass are achieved when working fluids are at high critical 

temperatures, with the exception of Ammonia. Both Butane and Isobutane show good 

refrigeration capacity at low turbine inlet pressure, but they are flammable. In contrast, R134a 

and R152a enhance refrigeration load at a higher turbine inlet pressure. In terms of 

cogeneration, increasing the turbine inlet temperature results in a significant increase in the net 

power production with a concomitant slight reduction in refrigeration duty. Thus, the exergy 

efficiency has a peak value with respect to the turbine inlet temperature and pressure. Although 

a higher exergy efficiency is favourable regarding power production, the study’s authors 

concluded that a higher refrigeration capacity can be more advantageous from the energy point 

of view, both of which are irrespective of economic considerations.  
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Another thermodynamic analysis of a combined ORC-VCC system using different low Global 

Warming Potential (GWP) working fluids was conducted [77]. In this study, the selected 

working fluids are HFO-1336mzz or HCFO-1233zd (for ORC cycle) and HFO-1234yf or HFO-

1234ze (for VCC cycle). Both the ORC-evaporation temperature and the ORC-VCC 

recuperator efficiency have a positive effect on ORC efficiency, while the VCC evaporation 

temperature and the condensation temperature have a negative effect on the ORC cycle 

efficiency. Overall, HFO-1336mzz achieves higher thermal and electrical efficiency under the 

selected operating conditions. Similarly, using HFO-1234ze in the VCC results in greater ORC 

thermal and ORC-VCC recuperator efficiencies due to the associated higher compressor 

discharge pressure. Overall, the ORC cycle achieves a thermal efficiency of between 10.6% 

and 15%, while the VCC COP ranges between 2.7 and 8. The gross combined cycle thermal 

and electrical COPs range between (0.3-1.1 thermal) and (15-110 electrical) respectively. If the 

system is used purely for electric generation with no cooling load, the annual energy saving is 

estimated to be 118,637 kWh. The expected payback time for this system is 3.3 years. 

Asim, M., et al. [78] proposed an integrated ORC-VCC in which the VCC is an air conditioner 

(AC). Both cycles share a heat exchanger which acts as a condenser in the VCC and an 

evaporator in the ORC cycle. The waste heat rejected by the air-conditioning system is 

converted into electricity by the ORC cycle. Twelve different working fluids (6 for the ORC 

cycle and 6 for the VCC) are compared under a constant VCC condensation temperature of 50 

oC. R600a-R123 pairs (as a working fluid for the AC and ORC cycles, respectively) achieve 

the best combined cycle performance. The ORC cycle can generate 1.41 kW of electricity from 

the recovering heat rejected by the VCC condenser. The thermal and exergy efficiencies of the 

ORC cycle are 3.05% and 39.3%, respectively. The overall system efficiency can be improved 

from 3.1 for a standalone AC to 3.54 for the combined system. 

Saleh [79] conducted an extensive investigation into a combined ORC-VCC systems in terms 

of energy and exergy analysis, system performance under various working fluids, and working 

parameters. The results indicated that the higher the critical temperature of the working fluid, 

the better the COP and exergy efficiency achieved. R602 had the best performance with an 

overall COP of 0.596 and exergy efficiency of 31.03%. Both COP and exergy efficiency 

increase with a rising ORC boiler temperature and drop with increases in condenser 

temperature. Increasing the HP evaporator temperature has a negative impact on exergy 
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efficiency and a positive influence on the overall COP. Similarly, increasing the turbine and 

compressor efficiencies from 60% to 90% enhances both COP and exergy efficiency by 

approximately 50%. 

Yu, H., et al. [80] investigated the integration of an ORC with an HP cycle to enhance net power 

output through waste heat recovery. The results showed that system performance is dependent 

on the ORC evaporation temperature, the working fluid latent to sensible heat ratio, and waste 

heat inlet temperature. The integration is assumed to be profitable when the following 

conditions are satisfied: the ORC working fluid critical temperature is lower than the waste heat 

inlet temperature, the latent to sensible heat ratio is small, and the COP of the HP is satisfactory. 

The resultant improvement in net power output and waste heat recovery were 9.37% and 

12.04%, respectively. 

Different designs and applications of the combined ORC-VCC system have been proposed in 

the literature. Patel, B., et al. [81, 82] presented an integrated ORC with a cascade VCC and 

vapour absorption refrigeration system, as shown in Figure 2.7. The ORC cycle is used to power 

the vapour compression refrigeration system and to provide the thermal requirements of the 

vapour absorption refrigeration system by utilising the high temperature working fluid at the 

ORC-expander outlet. The thermal efficiency achieved by the ORC subsystem and the 

combined system are 7% and 79%, respectively. The calculated COP of the vapour 

compression, vapour absorption and cascade system are 4.41, 0.75, and 0.54, respectively. The 

thermos-economic evaluation reveals that the system can achieve energy efficiency of 22.3% 

for the cooling mode and 79% for cogeneration mode (i.e., cooling and heating). The calculated 

simple payback period thus ranges between 5.26 years (for the base case) and 4.5 years (for the 

optimised case).  
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In a follow-up study, Patel, B., et al. [83] use a solar biomass as the heat source for the integrated 

ORC-cascade vapour compression-absorption system to make the system independent of both 

fossil fuels and the electric grid. The proposed hybrid system achieved an overall efficiency of 

47.1% for a 30.7 kW cooling load. In addition, CO2 emissions are reduced by 549 t/y compared 

to coal-based electricity and 233 t/y for natural gas-based electricity. 

Another cascade refrigeration system (CRS) linked to ORC cycle was proposed by Lizarte, R., 

et al. [84]. This cascade system consists of a high temperature circuit (HTC) and a low 

temperature circuit (LTC) connected thermally via a heat exchanger which acts as an evaporator 

for the HTC and a condenser for the LTC. The proposed system is designed for low-evaporation 

temperature applications (-55 to -30 oC). The selected working fluids are Toluene (for ORC 

cycle) and Ammonia/CO2 (for CRS). The simulation results showed that the overall COP and 

Figure 2.7 ORC integrated cascade vapour compression-absorption refrigeration system [81] 
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exergy efficiency are mainly affected by the evaporation temperature of the ORC cycle, the 

LTC temperature, and the condensation temperatures. The system can achieve a maximum COP 

of 0.79 (at an ORC evaporation temperature of 315 oC) and a peak exergy efficiency of 31.6% 

(at an ORC evaporation temperature of 255 oC). 

Bounefour and Ouadha [85] studied a combined system with a cascade evaporation in the ORC 

cycle, with the aim of improving power production. The new design was compared to a standard 

ORC-VCC combined system. A rang of working fluids were also compared in terms of both 

design performances. Waste heat from a marine diesel engine is used to drive the ORC cycle in 

both designs. The results showed that the addition of the cascade evaporation did improve the 

ORC cycle performance; however, the overall combined system performance was comparable 

to a standard ORC-VCC. In addition, Butane and Isobutane achieved better refrigerating effects 

than R134a.  

A similar cycle configuration was used to aid Claude liquefaction by cooling hydrogen gas 

before entering liquefaction [86]. In this study, geothermal water is used as the heat source for 

the ORC cycle. The combined system can cool hydrogen gas to -40 oC before entering the 

liquefaction process with no extra work consumption. This proposed geothermally assisted 

hydrogen liquefaction cycle can produce a reduction in hydrogen liquefaction production cost 

of approximately 34% compared to the values cited in the literature. 

An ORC-VCC cycle has also been combined with a hybrid proton exchange membrane fuel 

cell (PEMFC) and solar energy in a residential micro-CCHP system [87]. The function of this 

ORC cycle is to produce domestic hot water and mechanical power, while the VCC cycle 

produces cooling/heating capacity. The proposed system can produce up to 14.5 kW of 

heating/cooling capacity and around 8 kW of electricity based on the operating conditions. 

Collings, P., et al. [88] investigated a gas driven ORC-vapour compression HP for domestic hot 

water supply. This system has a direct coupling between the ORC-turbine and the HP-

compressor. The heat generated from natural gas combustion in the boiler is transferred to the 

ORC cycle to produce the required mechanical power for the HP cycle. Cold tap water is 

assumed to be heated from 10 to 60 oC, in three stages: HP-condenser, ORC-condenser and post 

heater heat exchanger. The waste heat contained in the flue gases is recovered by the post heater 
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heat exchanger to lift the water temperature to the designated target. R134a and Hexane are the 

working fluids selected for the HP and ORC cycles, respectively. The results showed that the 

COP and thermal efficiency of the HP and ORC cycles are approximately 5 and 20%, 

respectively. In addition, the combined system can achieve an overall fuel to heat efficiency of 

between 136%-164% for an ambient temperature range of (-5 to 15 oC). 

A similar gas driven ORC-HP integrated system has been investigated under various operating 

conditions for hot water supply [89]. The main parameters that affect the combined system 

performance were studied. Two system designs, one with a post-heater heat exchange and one 

without it, were proposed and compared. In addition, a comparison of the system performance 

under three ORC working fluids (R123, R 245fa and Hexane) was conducted. The results 

showed that ambient air temperature and ORC-condensation temperature have significant 

impacts on system performance. As ambient temperature increases from -5 to 5 oC, the heating 

capacities of the HP-condenser and post heater heat exchanger increase. In addition, the HP 

COP increases with the rise in ambient temperature, reaching a maximum value of 5.56 at an 

air temperature of 5 oC. In contrast, a higher ORC-condensation temperature leads to lower 

ORC thermal efficiency. At an ORC-condenser temperature of 61 oC, the system achieves its 

optimum performance, with an ORC thermal efficiency of 15.34% and a fuel to heat efficiency 

of 147.1%. Hexane, as an ORC working fluid, achieves better ORC thermal efficiency and 

overall fuel to heat efficiency than R123 and R245fa. The comparative results for systems with 

or without the post-heater heat exchanger showed that the role of the post-heater to the water 

heating is limited as it can only add 0.28 kW of heat to the water. Furthermore, a combined 

system without post-heater showed comparable results with a minimal effect on system 

performance and fuel to heat efficiency (134% to 147% with post heater -132% to 145% 

without post-heater).  
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2.4 Literature review on modelling of VCC and ORC cycles 

In general, HP and ORC systems modelling can vary in complexity based on the intended 

application and system design. The aim of the modelling can include; energy analysis, design 

configuration, performance with various working fluid, performance over time and control 

system design. The most commonly used modelling approaches are summarized as follow:  

1. Balanced energy method: This modelling approach could be either theoretical or empirical 

and it is mainly used for seasonal energy use and economics. In this method, the system 

performance is assumed constant and can be obtained from either the manufacturer or 

experimental or field measurement. In addition, there is no limitation on heat source 

availability. The heating demand for the HP cycle is assumed to be fully satisfied. However, 

the limitations of this modelling method is the lack of accuracy and utility [90].  

2. Steady state method: It is a theoretical evaluation used for system design and sizing. This 

approach usually begins by adopting the mass conservation principle, in which refrigerant mass 

flow across the cycle components is equal. Next, the energy conservation principle is applied 

which involved applying the first law of thermodynamic to each cycle part and on the overall 

cycle with the assumption of neglecting the kinetic and potential energies. Then a non-

conservation of entropy principle is used to identify the entropy rate balance for the system 

components. Exergy analysis usually follows with the aim of estimating the exergy destruction 

rate and exergy efficiency of individual cycle components and the overall system [91]. 

Number of simulation studies in the open literature have adopted the steady state model to 

investigate the performance of the HP and ORC cycles in terms of energy and exergy analysis. 

Mikielewicz, D. and Wajs, J. [92] have conducted a study on a single stage and cascade HP 

system employing a high heat source and condensation temperatures. Wang, G-B. and Zhang 

X-R. [93] carried out thermoeconomic evaluation of a transcritical CO2 HP system for district 

heating and cooling. Another thermoeconomic study is conducted using steady state model to 

investigate a HP cycle coupled with desalination system [94]. An energy and exergy analysis 

is also conducted on a HP cycle integrated with vapor injection system and an economizer [95].  
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For an ORC cycle, many studies have investigated the performance of an ORC cycle as a waste 

heat recovery system from an internal combustion engine. These studies were mainly conducted 

using the steady state model in terms of mass, energy and entropy conservation laws [45, 68, 

96].   

For a combined ORC-VCC system, most of the studies mentioned in the literature review 

(section 2.3.4) have adopted the steady state model to evaluate the system performance.  

3. Fitted (regression) model: It is an empirical approach for seasonal energy use and economics 

evaluation. This method is based on using equations or curve fitting if detailed performance 

data for the device is known from experimental or manufacturer source. It have the advantage 

of being easy to generate and use with high accuracy. Yet, the accuracy of the results is limited 

to the range of data available for the fitted model [97].  

Underwood, C., et al. [97] have adopted the fitted model to investigate the performance of three 

scroll compressor for domestic air source HP water heater. Woodland, B., et al. [98] have 

conducted an experimental study on a small-scale organic Rankine cycle with R134a as 

working fluid. The performance curve of a compressor rotating in reverse as an expander was 

used in their mathematical model. Similarly, expander performance curve for an ORC cycle 

with R245fa refrigerant is used in another research by Declaye, S., et al. [99]. Experimental test 

was conducted on an automotive electric scroll compressor using empirical equation [100].  

4. Dynamic state method: It is theoretical method to study the variation in cycle performance 

with respect to time, particularly when independent variables and boundary conditions are not 

constant. For most thermal cycles, steady state evaluation is considered satisfactory if the 

system dependent parameters are thermally stabilised within the relevant time-step for that 

system. For instance, in a heat pump cycle, if the response to the input variable occurs within 

seconds up to a few minutes, then the steady state simulation (also called the quasi steady state) 

satisfies the performance evaluation process. However, when more detailed information about 

the system performance is required or when control strategies are investigated, then a dynamic 

model is likely to be needed [90].  

Underwood [90] has illustrated a steady state and a full dynamic model for a heat pump cycle 

used in a ground source heat pump system. The evaporator and condenser dynamic model was 
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conducted under the assumptions of no momentum conservation or pressure losses, with axial 

variation in flow direction. Another dynamic simulation of an air sourced HP system is 

conducted with the aim of keeping the evaporator frost-free. The mathematical model was 

compared with experimental results which showed good agreement [101]. 
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Table 2.2 Summary of previous simulation studies on combined ORC-VCC system 

Author/Year Heat source Working fluid Application Mechanism of ORC-VCC 

coupling  

Remarks of the study 

ORC VCC 

Aphornratana and 

Sriveerakul 2010 

[74] 

Thermal energy at 

temperatures > 80 oC 

R22,  R134a R22,  R134a Cooling load Expander-compressor unit 

consists of two free piston 

(first works as ORC 

expander and the second as 

VCC compressor.   

ORC-VCC share condenser. COPs 

(0.1 - 0.6). Evaporator capacity for 

R22 (1-1.4 kW), and for R134a (0.7 

kW).  

Wang, H., et al. 

2011 [75] 

The cycle can use renewable 

energy (solar, geothermal or 

waste heat) 

R245fa R245fa Cooling and/or 

electricity 

The mechanism of 

coupling is not described. 

ORC expander power is 

assumed to be fully 

consumed by the VCC 

compressor.  

ORC-VCC share condenser. COPs 

(0.54-0.66). Cooling load (5.3 kW). 

COPs can be improved by 22% 

when using subcooling and cooling 

recuperation.  
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Kim and Perez-

Blanco 2015 [76] 

Low grade sensible heat: 150 

oC. 

R143a, R22, 

R134a, R152a, 

propane, 

ammonia, 

isobutane and 

Butane 

R143a, R22, 

R134a, R152a, 

propane, 

ammonia, 

isobutane and 

Butane 

Refrigeration only 

when all the 

power generated 

is consumed 

within the cycle, 

or refrigeration 

and electricity 

The mechanism of 

coupling is not described. 

The net power production 

is equal to the subtraction 

of compressor and pump 

power from expander 

power.   

ORC-VCC share condenser. Pure 

refrigeration capacity: Butane or 

Isobutane (140 kW), R134a or 

R152a (170 kW). Cogeneration 

mode (Isobutane): thermal 

efficiency (50-75%), net power (25-

30 kW), refrigeration capacity (140-

160 kW).  

Molés, F., et al. 

2015 [77] 

Low temperature heat source 1336mzz 1234ze Cooling load or 

electricity when 

cooling is not 

required.  

The mechanism of 

coupling is not described. 

ORC expander power is 

assumed to be fully 

consumed by the VCC 

compressor.  

ORC efficiency 12.4%, VCC COP 

6.16. Cooling load 100 kW, 

electricity 16.23 kW. 

Asim, M., et al. 

2017 [78] 

Waste heat from AC air 

conditioner 

R123 R600a Electricity VCC  is not driven by the 

ORC.   

COPs improved from (3.1-3.54). 

ORC electric output power 1.41 kW 

and thermal efficiency 3.05%. AC 

cooling capacity 35 kW.  
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Chang, H., et al. 

2017 [87] 

Hybrid proton exchange 

membrane fuel cell (PEMFC) 

and solar energy 

Dimethylpentane R290 Domestic hot 

water, heating and 

cooling capacity 

and electricity 

The mechanism of 

coupling is not described. 

ORC expander power is 

assumed to be fully 

consumed by the VCC 

compressor. 

Electric power 8 kW, 

cooling/heating capacity 14.5 kW. 

Total system efficiency 75.4-85%.  

Patel, B., et al. 

2017 [81, 82] 

Waste heat n-pentane R410A Study a: Cooling, 

heating and 

electricity. 

Study b: Cooling 

only, or cooling 

and heating 

For both studies, ORC-

VCC coupled via electric 

generator and motor. 

COP of VCC (4.41) and VAR 

(0.75). ORC efficiency (6.99%). 

COPs (0.54). Trigeneration 

efficiency (79%). Heating load 

(77.99 kW), cooling load (30.7 kW), 

net power output in study a (0.58 

kW).  

Patel, B., et al. 

2017 [83] 

Solar-biomass n-pentane R410A Cooling and 

heating 

ORC-VCC coupled via 

electric generator and 

motor. 

Heating load 77.9 kW, cooling load 

30.7 kW, overall system efficiency 

47.1%.  
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Lizarte, R., et al. 

2017 [84] 

Renewable energy from 100-

350 oC. 

toluene NH3, CO2 Refrigeration The mechanism of 

coupling is not described. 

ORC expander runs the two 

HP compressors of the 

cascade refrigeration 

system. 

COP of the cascade system:(1.15-

1.5), ORC efficiency (9.4-12.4%), 

HP evaporator capacity (9.45 kW), 

overall system COP (0.79). 

Bounefour and 

Ouadha 2017 

[85] 

Marine DE exhaust stream propane, butane 

isobutane, 

propylene and 

R134a 

propane, 

butane, 

isobutane, 

propylene and 

R134a 

Refrigeration only The mechanism of 

coupling is not described. 

ORC expander power is 

assumed to be fully 

consumed by the VCC 

compressor. 

ORC-VCC share condenser. COP of 

HP (5.4), ORC thermal efficiency 

11.3%. butane achieved better 

refrigeration and COP than the 

others. 

Kaska, O., et al. 

2018 [86] 

Geothermal source at 200 oC. ORC1 (R141b), 

ORC2 (Isobutane) 

R23 Cooling effect to 

cool hydrogen to -

40 oC 

The mechanism of 

coupling is not described. 

ORC-VCC expander 

power is assumed to be 

fully consumed by the two 

compressors. 

Combined ORC-VCC coupled with 

another ORC. Hydrogen 

liquification cost can be reduced by 

39.7% compared to literature values.   
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Saleh 2018 [79] Low-temperature heat source 

(geothermal or waste heat) 

with a temperature of around 

110°C. 

R602 R602 Electricity or 

refrigeration  

The mechanism of 

coupling is not described. 

ORC expander power is 

assumed to be fully 

consumed by the VCC 

compressors. 

ORC-VCC share condenser. 

Refrigeration load 280-320 kW. 

Highest COPs 0.99.  

Yu, H., et al. 

2018 [80] 

Waste heat source, 150 oC R236fa n-hexane Electricity VCC  is not driven by the 

ORC. HP system is used to 

upgrade the wasted heat to 

increase ORC power 

production. 

HP COP (2.65), power consumed 

(169 kW), ORC thermal efficiency 

(10.07%), waste heat recovered (820 

kW), net power output (805 kW).  
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Table 2.3 Summary of experimental studies on standalone HP cycle  

Author/Year Type of HP cycle Pressure (P) in bar, Temper-

ature (T) in oC or pressure 

ratio (PR) 

COP Refrigerant Application 

Nenkaew, P. and C. 

Tangthien. 2015 

[102] 

Water source HP in a cascade sys-

tem 

Pcond=12.5 

Pevap=4 

5-6 R22/R134a Chilled water for cooling and hot 

water for heating 

He, Z. et al 2017 

[103] 
Combined ORC and HP  as heat 

utilization system  using low-grade 

heat source 

Pcond=12.4-19.2 

Tcond  75-95 
Pevap=4.4-6.8 

Tevap 48-52 

1.1-3.6 R142b Heating load 

Kong, X. et al 2018 

[104] 
Solar assisted  HP water heater with 

direct-expansion 

Tcond=54.4 

Tevap=7.2 

3 R134a Domestic hot water supply 

Shen, J, et al 2018 

[105] 
Air source HP with dual mode  PR=3.8 for single cycle 

PR=5.5 for cascade cycle 

Single 1.7-2.6 

Cascade 1.58-1.85 

R22/R134a Heating for drying process 

Kong, X. et al 2018 

[106] 
Solar-assisted heat pump with di-

rect expansion 

Pcond=12-22 

Pevap=3.9-6 

3.6-5.7 R134a Domestic hot water supply 

Xu, Y. et al 2019 

[107] 
Air-source heat pump with dual 

mode 

PR =5-9 for single stage, 

PR=3-5.5 for cascade 

1.69-2 R404A, R134a  Hot water supply 

Liu, T. et al 2019 

[108] 
Domestic air  conditioning/  heat 

pump system 

Pcond= 19.4 

Pevap=5 

 

COPc 2.2-2.8 
COPh 2.9-3.1 

R22 Cooling and heating load 
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Fannou, J-L. et al 

2019 [109] 
Ground source heat pump system 

with direct expansion 

Tcond=41.5 

Tevap=3 

PR=2.9 

2.6 R22 Cooling load 

Yang, L-X. et al 2019 

[110] 
CO2 transcritical air source HP Pcond=80-87 

Pevap=33-40 

3.9-5.2 CO2 Hot water supply 

Guo, X, et al 2019 

[111] 
HP system with  domestic 

drain water as a heat source 

Tcond =35 

Tevap=-10 

2.5 R22 Hot water supply 

Mota-Babiloni, A. et 

al 2019 [112] 
VCC  with 

and without internal heat exchanger 

 

Tcond =32.5 and 40 

Tevap= -5 to 15 

R134a 1.6-3.9 

R513A 1.7-4 

R134a, R513A Refrigeration load 

Li, Z. et al. 2019 

[113] 
VCC with Oil-free compressor Tcond=40-50 

Tevap= -3 to 17 

PR=2-4 

R1234yf = 1.8-4.4 

R134a = 2.3-4.8 

R1234yf, R134a Refrigeration load 

Liang, Y. et al 2019 

[114] 
VCC with Oil-free compressor Tcond=23.4 

Tevap= 2.4 

 

3.28 R134a Domestic hot water supply 
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Table 2.4 Summary of experimental studies on standalone ORC cycle  

Author/Year Type of ORC cycle Pressure (P) in bar, Temper-

ature (T) in oC or pressure 

ratio (PR) 

Refrigerant Power output, 

kW 

Thermal effi-

ciency, % 

Yun, E, et al 2015 [115] ORC with multiple expanders used in paral-

lel  

Tsource=120 

Tsink =24 

R245fa 3.5 7.5  

Lei, B. et al, 2016 [116] ORC with single 

screw expander  

Pevap=6-11 

PR= 8.5 

R123 8.35 7.98 

Pu, W. et al 2016 [117] Organic Rankine cycle for low grade ther-

mal 

energy recovery 

Pcond =1.7 

Pevap= 6 

R245fa 1.979 4 

Pang, K-C. et al 2017 [118] ORC for low grade thermal 

energy recovery 

Tcond=25 

Tevap=119 

mixture of 

R245fa:R123  2:1 

1.66 4.7-4.8 

Li, L. et al 2017 [119] Small scale ORC for low grade heat recov-

ery 

Pcond=2-3.8 

Pevap= 15-16 

PR=7.3 

R245fa 4.6-5.4 0.15-0.45 

Yang,  S.-C., et al 2017 [120] 3 kW ORC for low grade 

waste heat 

Tcond= 21.8-43.6 

Tsource=100 

R245fa 2.64  5.92 

Nematollahi, O. et al, 2018 [121] Small scale ORC with  compact metal-foam 

evaporator  

Tsource =80-120 

Tevap= 70 

R245fa 0.3-1.8 3.5-6.6 
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Kim, J-S. et al 2019 [122] ORC using radial inflow turbine Pcond= 2.1 

Tcond=35 

Pevap=3.9 

Tevap= 55 

R245fa 36 -- 

Chen, J. et al 2019 [123] ORC for power production Pcond=2.9 

Tcond=30 

Pevap=11 

Tevap= 90 

R245fa 2.42-3.55  5.2-7.3 

Zhang, H-H. et al, 2019 [124] Regenerative organic Rankine cycle Tcond= 23-30 

Tevap=80-110 

R123 0.6112 1.61-2.97 

Yamaguchi, T. et al, 2019 [125] Small scale ORC for recovering geothermal 

energy 

Tcond=35.5 

Tevap=83 

R245fa 0.0512 7.7 

Collings, P. et al 2019 [126] Small-Scale ORC Using a Positive Displace-

ment Expander with a Regenerator 

Pcond=1.4 

Pevap=5.82 

 

R245fa Net power 

0.262 

6.8 
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2.5 Summary and discussion of literatures related to ORC and VCC cycles 

Various integrated designs of the combined ORC-VCC cycle have been proposed in the 

literature. Table 2.2 summarizes the main findings related to this system. In terms of 

applications, this combined cycle was mainly designed for cooling, refrigeration and/or 

electricity generation [74-78, 80, 82, 84-86]. These is limited studies on the use of this 

combined system for heating applications particularly on for domestic hot water and central 

heating applications.  

From design prospective, the mechanism of coupling between ORC and VCC cycles is not 

described. Most researches have assumed that the power produced by the ORC expander is 

fully consumed by the VCC compressor. This have the proposed advantage of eliminating the 

conversion loses associated with use of electric generator and motor [77, 79]. Other studies 

have proposed that the ORC power is used to electrically drive the HP cycle via a generator and 

motor [81-83].  

Working fluids have a significant impact on the performance of a combined ORC-VCC system. 

Various working fluids have been selected and analysed in the literature. Kim and Perez-Blanco 

[76] and Bounefour and Ouadha [85] conducted a comparison study involving different 

working fluids used in a combined ORC-VCC cycle in which both cycles share the same 

working fluids. The results supported that different refrigerants achieved high performance in 

different applications. For example, R134a or R152a are found to be favourable for refrigeration 

uses, while Isobutane shows better performance for cogeneration applications [85].  

Various methods have been used in the literature to assess combined cycle performance, 

including individual cycle efficiency as well as combined system efficiency. Some researchers 

have defined combined system efficiency as the ratio of HP evaporator thermal energy to net 

ORC evaporator thermal energy and pump work [74-77]. This ratio has mainly been used for 

systems designed to produce cooling, refrigeration, or electricity production. The combined 

cycle efficiency is highly dependent on the type of refrigerant and the working conditions. In 

average, the combined system efficiency (COPs) ranged between 0.5-0.6 for most cooling and 

refrigeration application. While for heating application, limit researches have shown the 

combined system can achieved an overall efficiency of 0.7-0.8.  
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Table 2.3 summarizes the main outcome of a standalone VCC studied experimentally in the 

literature. For heating and cooling applications, the VCC performance varied mainly with the 

selected working fluid and evaporation and condensation pressure and temperature. Various 

pure and mixed refrigerant are used including; R22, R134a, R142b, R404a, CO2, R1234yf and 

R513a. The average coefficient of performance for most experimentally test VCC cycle is 

approximately 3 for heating application and around 2.5 for cooling and refrigeration.  

Table 2.4 listed some experimental researches conducted on standalone ORC cycle. Similar to 

the VCC, ORC performance mainly influence by the refrigerant used and pressure ratio between 

the evaporator and condenser. The main selected working fluids are R245fa and R123. On 

average, the ORC can produce an output power between 2.5-3.5 kW and have thermal 

efficiency in the range of 4-7%. 
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2.6 Justifications for the current research 

The literature review in this chapter has illustrated that cogeneration and trigeneration 

integrated systems are innovative technologies in which the primary energy source can be 

converted into multi energy mode with the potential of recovering wasted heat to enhance the 

overall system thermal performance. Therefore, these technologies have been used in a wide 

spectrum of applications. Furthermore, they have the potential of reducing fossil fuel 

consumption and greenhouse gas emissions. 

An ORC heat engine and its reverse vapour compression cycle are mature and efficient cycles 

that can be used on their own, combined with other cycles, or combined with each other. 

Combining ORC with VCC system has the advantage of eliminating some of the limitations 

encountered in a standalone HP and ORC cycles mentioned in chapter one. In addition, the 

ORC cycle is different from other prime movers in that it rejects heat in the form of latent heat 

through working fluid condensation rather than sensible heat. This means that more heat can be 

recovered making the ORC a more efficient heat recovery system. The same concept is true for 

the heat pump cycle. Based on these factors, an integrated ORC-VCC system have been 

designed and investigated in this research.   

Working fluids selection is shown to have a significant influence on thermodynamic cycle 

performance. Some studies have suggested using different working fluids in each cycle rather 

than sharing the same one. The advantage of this approach is that it can enhance system 

efficiency and avoid the complexity involved in using controls and adjustment devices such as 

expansion valves and mixing chambers. To investigate and select the most appropriate working 

fluids for the ORC and VCC cycles proposed in our research, a list of working fluids have been 

studied and compared in chapter four.  

From an applications point of view, the combined ORC-VCC has mainly been investigated in 

relation to cooling/refrigeration, electricity, or a combination of the two. Limited research is 

available on the application of the combined cycle in heating applications. Thus, the combined 

system designed in this research is investigated mainly for heating applications including 

domestic hot water supply and central heating as well as cooling applications. Furthermore, the 

use of combined ORC-VCC cycle as a waste heat recovery system from diesel engine wasted 
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heat is an interesting topic that has not been extensively investigated in the literature. This 

investigation will allow to evaluate the effectiveness of the combined ORC-VCC system in 

converting the wasted heat into useful refrigeration load.  

The definition of combined system efficiency is necessarily influenced by the cycle design and 

objective. In our study, in addition to the HP coefficient of performance and ORC thermal 

efficiency, the concept of fuel to heat efficiency is used in the evaluation of the combined cycle 

performance. The fuel to heat efficiency is defined as the total heating capacity of the system 

added to water to the heat released from burning the fuel. This parameter is useful when the 

primary energy source is the combustion of fossil fuels. 

To the best of the author’s knowledge, based on the extensive literature review, the integrated 

system investigated in this thesis has never been proposed before. In our research we therefore 

propose a novel configuration of a gas fuelled ORC-VCC system with direct coupling between 

the ORC turbine and HP compressor. The ORC output power and heat is fully utilized for heat 

application. Furthermore, heat in ambient air is utilized in the HP cycle as a free energy source. 

The system is designed to recover wasted heat from burner flue gases, diesel engine exhaust, 

or data centre IT equipment to enhance system performance. Different working fluids are used 

in each cycle based on their performance. The intended applications of this system include 

domestic hot water, data centre cooling with simultaneous central heating, and providing a 

refrigeration load.
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Chapter 3: Theory of the combined ORC-VCC cycles 

3.1 Introduction  

In this part of the thesis, the thermodynamic concept of the organic Rankine cycle and its reverse 

heat pump cycle are described thermodynamically. The mathematical algorithm for the power 

transferred between the two cycles and the thermal energy received and rejected in both cycles 

are described theoretically. A performance evaluation of the combined cycle is described based 

on first and second laws of thermodynamics. The thermal modelling of the gas burner and the 

optimization procedure using the pinch point temperature approach for the heat exchangers are 

also set out. The MATLAB code used in modelling the combined cycle is explained in detail 

using the working fluid thermophysical properties software. This chapter also describes the 

dynamic model and the PID controller used in the control strategy.  

3.2 Vapour compression heat pump cycle (VCC-HP) 

A vapour compression heat pump cycle is a reverse heat engine cycle which consumes 

mechanical power to pump heat from a low grade heat source into a high temperature heat sink. 

In addition to the working fluid, four main thermodynamic processes are essential to accomplish 

this: the compression process state (1-2), the condensation process state (2-3), the expansion 

process state (3-4), and the evaporation process state (4-1), as shown in the T-s (temperature 

entropy) diagram in Figure (3.1) [127].  

Each thermodynamic process can be mathematically analysed using the steady state flow 

energy equation and by neglecting the changes in kinetic energy  𝐶
2

2⁄ = 0 and potential energy 

𝑍𝑔 = 0 as shown in Equation 3.1.   

�̇� (ℎ1 +
𝐶1

2

2
+𝑍1𝑔) + �̇� + �̇� = �̇� (ℎ2 +

𝐶2
2

2
+𝑍2𝑔)                               (3.1) 
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3.2.1 HP evaporation process 

By neglecting the work done in Equation 3.1 and assuming isothermal heat transfer process, 

the latent heat is equal to the product of the enthalpy difference across the evaporator unit times 

the refrigerant mass flow, as given in Equation 3.2:    

𝑄𝐻𝑃−𝑒𝑣𝑎𝑝 = �̇�𝐻𝑃−𝑟𝑒𝑓. × (ℎ1 − ℎ4)                                         (3.2) 

Where: 

ℎ1 The specific enthalpy of the HP refrigerant at the evaporator exit 

ℎ4 The specific enthalpy of the HP refrigerant at the evaporator inlet 

�̇�𝐻𝑃−𝑟𝑒𝑓. The HP working fluid mass flow rate  

 

 

 

 

Figure 3.1: T-s diagram for a typical refrigeration or (heat pump) cycle [127]. 
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3.2.2 HP compression process 

By assuming an adiabatic thermodynamic process across the compressor (Q=0), the work 

consumed by the compressor is the enthalpy difference at the compressor unit inlet (ℎ1) and the 

outlet (ℎ2) multiplied by the working fluid mass flow; see Equation 3.3: 

𝑊𝐻𝑃 = �̇�𝐻𝑃−𝑟𝑒𝑓. × (ℎ2 − ℎ1)                                         (3.3)   

This mechanical work is used to increase the working fluid pressure and hence the temperature 

between the evaporator and the condenser. Therefore, the difference between the evaporation 

and condensation temperatures is called the temperature lift across the HP cycle.  

3.2.3 HP condensation process 

In making the same assumptions regarding the heat and work used in the evaporator, the 

condensation process is carried out by rejecting the latent heat to the sink source. The total 

amount of the thermal energy is equal to the difference in the specific enthalpy at the condenser 

inlet (ℎ2) and outlet (ℎ3) multiplied by the working fluid mass flow rate(�̇�𝐻𝑃−𝑟𝑒𝑓.), as 

demonstrated in Equation 3.4: 

𝑄𝐻𝑃−𝑐𝑜𝑛𝑑. = �̇�𝐻𝑃−𝑟𝑒𝑓. × (ℎ2 − ℎ3)                                      (3.4)   

3.2.4 HP expansion process 

The function of the expansion valve is to reduce the pressure of the refrigerant from the high 

discharged pressure (condenser pressure) to the low suction pressure (evaporator pressure). This 

process in the analytical evaluation is assumed to be an isenthalpic expansion process. In other 

words, the enthalpy of the refrigerant before and after the expansion valve is equal.  

ℎ3 = ℎ4                                                                (3.5) 
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3.2.5 Heat pump first law of thermodynamic 

The Carnot law for a heat pump cycle states that the maximum theoretical efficiency is equal 

to the ratio between the temperature of the hot reservoir over the temperature difference 

between the hot and cold reservoirs. Therefore, the actual heating coefficient of performance 

for a HP cycle is equal to the ratio between the total heat rejected by the condenser over the 

work consumed by the compressor, which is given in Equation 3.6: 

𝐶𝑂𝑃ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =
𝑄𝐻𝑃−𝑐𝑜𝑛𝑑.

𝑊𝐻𝑃
                                                    (3.6) 

Meanwhile for the refrigerator, it is the ratio between the thermal energy absorbed by the 

evaporator over the compressor power as shown in Equation 3.7: 

𝐶𝑂𝑃𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =
𝑄𝐻𝑃−𝑒𝑣𝑎𝑝

𝑊𝐻𝑃
                                                   (3.7) 

The coefficient of performance (COP) is used as an evaluation performance parameter for a 

heat pump cycle. The COP reported in the literature for a vapour compression heat pump cycle 

ranges between (2.5-5) however, it is dependent on the temperature lift across the HP cycle 

(heat source and sink temperatures) and the working fluid used. Correa and Cuevas [128] 

conducted a simulation study on an air-water heat pump, and their results showed that the 

annual COP varied between 2.54 and 2.6. Ju, F., et al. [129] carried out an experimental study 

on a heat pump water heater adopting an eco-friendly working fluid which was a mixture 

(12%/88% by mass) of R744/R290 instead of R22. The results showed that the HP system with 

the mixture working fluid achieved a COP of 4.731, 11% higher than that of R22. Willem, H., 

et al. [130] reported in their review study that most of the current heat pump water heat systems 

achieve a COP of between 1.8-2.5; however, some innovative new technologies have been 

implemented on a HP cycle that could enhance the COP to a range of 2.8-5.5. An example of 

these technologies is the multi-functional (combined heating and cooling) application. Liang, 

Y., et al. [89] investigated a combined ORC-HP gas fuelled water heater. The working fluid for 

the HP cycle was R134a and the optimum COP obtained in their steady state simulation results 

was around 5.  
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3.3 Organic Rankine cycle (ORC) 

An organic Rankine cycle refers to a heat engine using organic fluid instead of water to produce 

mechanical work by absorbing thermal energy from a high temperature heat source and 

rejecting part of it to the low-grade heat sink. The four-main thermodynamic processes of the 

ORC are demonstrated in the T-s diagram shown in Figure 3.2.  

The working fluid flows in a close loop around the cycle, and each process is denoted by a 

number at the beginning and the end.  

 

Each process can be analysed using the steady state flow energy Equation 3.1 and by adopting 

the same assumptions of neglecting the kinetic and potential energies.   

 

 

Figure 3.2: T-s diagram for water as a working fluid in a conventional Rankine 

cycle [127]. 
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3.3.1 ORC evaporator 

The latent thermal energy absorbed by the ORC working fluid in the evaporator (state 4-5-1 in 

Figure 3.2) [127], is the product of the enthalpy difference across the evaporator multiplied by 

the ORC refrigerant mass flow, as shown in Equation 3.8: 

𝑄𝑂𝑅𝐶−𝑒𝑣𝑎𝑝 = �̇�𝑂𝑅𝐶−𝑟𝑒𝑓. × (ℎ1 − ℎ4)                                   (3.8) 

Where: 

ℎ1 The specific enthalpy of the refrigerant at the evaporator exit 

ℎ4 The specific enthalpy of the refrigerant at the evaporator inlet 

�̇�𝑂𝑅𝐶−𝑟𝑒𝑓. The working fluid mass flow rate  

 

3.3.2 ORC expander  

The mechanical power produced by the ORC expander is equal to the enthalpy difference at the 

turbine inlet and outlet multiplied by the ORC refrigerant mass flow: 

𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑒 = �̇�𝑂𝑅𝐶−𝑟𝑒𝑓. × (ℎ2 − ℎ1)                                      (3.9) 

In modelling the combined ORC and HP cycles in this thesis, it is assumed that all the power 

produced by the ORC expander is fully transferred and consumed by the HP compressor.  

3.3.3 ORC condenser 

In the condenser, the condensation process is carried out by rejecting the latent heat to the sink 

stream. The total amount of thermal energy is equal to the difference in the enthalpy at the 

condenser inlet (ℎ2) and outlet (ℎ3) multiplied by the working fluid mass flow rate (�̇�𝑂𝑅𝐶−𝑟𝑒𝑓.)  

(state 2-3 in Figure 3.2):  

𝑄𝑂𝑅𝐶−𝑐𝑜𝑛𝑑. = �̇�𝑂𝑅𝐶−𝑟𝑒𝑓. × (ℎ3 − ℎ2)                                    (3.10) 
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3.3.4 ORC liquid pump 

After the working fluid is fully condensed, the pump is used to pump the refrigerant liquid at 

high pressure to the evaporator to complete the cycle. The power consumed by the ORC liquid 

pump is the enthalpy difference across the pump multiplied by the working fluid mass flow, as 

given in Equation 3.11:   

𝑊𝑂𝑅𝐶−𝑝𝑢𝑚𝑝 = �̇�𝑂𝑅𝐶−𝑟𝑒𝑓. × (ℎ3 − ℎ4)                                    (3.11) 

3.3.5 ORC first law of thermodynamic 

The maximum theoretical efficiency of a Carnot cycle heat engine is equal to the ratio between 

the difference in temperature between the hot and cold reservoirs over the temperature of the 

hot reservoir. Therefore, the simplest form of the ORC thermal efficiency is the useful network 

produced by the cycle divided by the thermal energy absorbed by the ORC evaporator: 

𝜂𝑂𝑅𝐶 =
𝑊𝑡𝑢𝑟𝑏𝑖𝑛𝑒−𝑊𝑂𝑅𝐶−𝑝𝑢𝑚𝑝

𝑄𝑂𝑅𝐶−𝑒𝑣𝑎𝑝
                                             (3.12) 

This equation is widely used in the steady state evaluation of the ORC. The range of values for 

the 𝜂𝑂𝑅𝐶 reported in the open literature vary between 6-13 % depending on the heat source 

temperature, the cycle configuration, the working fluid used, and the cycle application. A 

regenerator ORC cycle was experimentally examined by Li, J., et al. [131]. In their study, ranges 

of heat source of about (70, 80, 90, 100 oC) were used. R123 was the working fluid used in the 

cycle. The results showed that the cycle achieved 7.4% thermal efficiency at a heat source of 

80 oC.  An experimental investigation was conducted on a 3 kW ORC cycle using R245fa as a 

working fluid [120]. Thermal oil at temperature of 100 oC was used as a heat source. The 

maximum thermal efficiency achieved by the cycle during the test was 5.87%. Chen, J., et al. 

[123] conducted an experimental study on ORC using R245fa as a working fluid. The results 

showed that the cycle can produce output power of between 2.42-3.55 kW, and the electrical 

power consumed by the liquid pump ranged between 0.44-0.49 kW. Moreover, the overall 

thermal efficiency achieved by the cycle varied between 5.2-7.3%. Another experimental study 

conducted on a small ORC rig using R245fa refrigerant revealed that the cycle can achieve a 

total thermal efficiency of 7.7% with a total output power of 51.2 W [125].  
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3.4 Thermal balance model across the ORC-VCC heat exchangers 

One of the general assumptions adopted in modelling the heat exchanger is that no heat is lost 

between the hot and cold streams during the heat exchange process. In other words, this case 

study assumes that all the sensible heat available in the heat source stream passing through the 

evaporators will be transferred to the working fluid flow. Also, in the condenser, all the latent 

heat contained in the working fluids will transfer to the sink stream.  

As was demonstrated in chapter one, the heat sources for the HP cycle can be classified 

according to availability, such as ambient air stream, geothermal energy, waste heat from 

industrial process, flue exhaust gases from internal combustion engine, data centre rejected 

heat, solar power, and even river, lake or ocean thermal energy.  

In this thesis’s modelling, the heat source for the HP evaporator is ambient air, with or without 

exhaust flue gas from the gas burner. Therefore, Equation 3.2 is modified as follows: 

�̇�𝐻𝑃−𝑟𝑒𝑓. × (ℎ1 − ℎ4) = �̇�𝑚𝑖𝑥 × 𝐶𝑃−𝑚𝑖𝑥 × (𝑇𝑚𝑖𝑥−𝑖𝑛 − 𝑇𝑚𝑖𝑥−𝑜𝑢𝑡)              (3.13) 

Where:  

𝑇𝑚𝑖𝑥−𝑖𝑛 Temperature of the mixed stream at evaporator inlet 

𝑇𝑚𝑖𝑥−𝑜𝑢𝑡 Temperature of the mixed stream at evaporator exit 

𝐶𝑃−𝑚𝑖𝑥 Specific heat of the mixed stream 

�̇�𝑚𝑖𝑥 Mass flow of the mixed stream 

 

The heat source of the ORC cycle can be classified according to type and availability, such as 

waste heat from industrial processes, solar power, geothermal energy, ocean thermal energy, 

and biomass energy [47, 48]. Furthermore, the heat source can also be named according to its 

stream temperatures into low temperature (<230 oC), medium temperature (230-650 oC), and 

high temperature (>650 oC) [47].   
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For an ORC cycle adopting the heat source from burning natural gas, Equation 3.8 can be 

written in the following form: 

�̇�𝑂𝑅𝐶−𝑟𝑒𝑓. × (ℎ1 − ℎ4) = (�̇�𝐶𝐻4 + �̇�𝑎𝑖𝑟)  × (∑ℎ𝑃 − ∑ℎ𝑅)                            (3.14) 

Where: 

∑ℎ𝑃 Summation of the combustion products enthalpies. 

∑ℎ𝑅 Summation of the combustion reactants enthalpies. 

�̇�𝐶𝐻4 Mass flow of the natural gas. 

�̇�𝑎𝑖𝑟 Mass flow of air entering the burner. 

 

In the condenser, the sink stream could be any fluid that is used to carry the rejected 

condensation thermal energy, such as air or water. For the HP condenser (the first heating 

stage), all the thermal energy rejected by the HP working fluid is assumed to be completely 

transferred to the cold tap water. Therefore, Equation 3.4 is rewritten again:  

�̇�𝐻𝑃−𝑟𝑒𝑓. × (ℎ2 − ℎ3) = �̇�𝑤 × 𝐶𝑝𝑤 × (𝑇𝐶𝑤−𝑖𝑛−𝐻𝑃 − 𝑇𝐶𝑤−𝑜𝑢𝑡−𝐻𝑃)               (3.15) 

Where: 

𝑇𝐶𝑤−𝑖𝑛−𝐻𝑃 Temperature of the cold tap water entering the HP condenser 

𝑇𝐶𝑤−𝑜𝑢𝑡−𝐻𝑃 Temperature of the tap water leaving the HP condenser 

𝐶𝑝𝑤 Specific heat of the water 

�̇�𝑤 Mass flow rate of the tap water 

 

After that, the water enters the second heating stage (ORC condenser) with the same mass flow 

and temperature at the HP condenser outlet. Equation 3.10 might be updated as follows:  

�̇�𝑂𝑅𝐶−𝑟𝑒𝑓. × (ℎ3 − ℎ2) = �̇�𝑤 × 𝐶𝑝𝑤 × (𝑇𝐶𝑤−𝑜𝑢𝑡−𝐻𝑃 − 𝑇𝐶𝑤−𝑜𝑢𝑡−𝑂𝑅𝐶)         (3.16) 
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3.5 Pinch point temperature difference approach (PPTD) 

In the optimization procedure of modelling a heat exchanger, the pinch point temperature 

difference approach (PPTD) can be adopted. This method is based on the fact that in a heat 

exchanger, in order to secure an optimal heat transfer process between the hot and the cold 

streams, the temperature of the hot fluid should be higher than the cold stream across all the 

heat exchanger’s cross sectional area, as shown in Figure 3.3.  

The figure shows the T-Q (temperature-heat capacity) curve of a typical heat transfer process 

in a counterflow heat exchanger. It shows that the hot stream is located above the cold stream. 

It is clear that there is a variable temperature difference between the two streams across the heat 

exchanger. When the temperature difference reaches its lowest value (the smallest gap), this 

point is known as the Pinch Point. 

 

To increase the ORC and HP cycles’ Carnot efficiency, lowering the pinch point temperature 

difference in all the heat exchangers is recommended. This could be explained as follows: for 

the ORC cycle, reducing the pinch point difference in the ORC evaporator will increase the 

average temperature of thermal energy added to the cycle, and will reduce the temperature of 
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Figure 3.3: Pinch point in a counterflow heat exchanger 
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the energy rejected by the ORC condenser. Both effects will enhance cycle efficiency [132]. 

For the HP cycle, the opposite trend is expected because the VCC is the reverse cycle of the 

ORC cycle. So, lower condensation and evaporation temperatures in the HP cycle can be 

achieved by reducing the pinch point temperature difference in the HP condenser and 

evaporator to increase HP cycle efficiency. However, reducing the pinch point temperature 

difference will also increase the HX heat transfer area. Therefore, the optimum pinch point is 

selected depending on the cycle’s working parameters, such as the evaporator inlet temperature, 

the cycle’s practical application, and others.  

To give a few examples, Cao, Y., et al. [133] selected >5 K as a pinch point in the evaporator 

of an ORC cycle bottomed with a gas turbine to recover wasted heat. Andreasen, J., et al. [134] 

adopted a 10 oC pinch point for an ORC boiler powered by heat source at a temperature of 

between 120 and 90 oC, while for the condenser the pinch point was 5 oC. Dong, B., et al. [135] 

used 20 oC for the ORC evaporator and 10 oC for the ORC condenser. Some of the reported 

pinch points for the HP cycle can be summarized as follows: Ju, F., et al. [136] conducted an 

experiential and simulation study on a heat pump water heater. They used a pinch point 

temperature difference of 3 and 7 K in the counterflow condenser and evaporator respectively, 

citing several references from the literature [137, 138]. Gu, Z., et al. [139] studied a combined 

ORC and HP system theoretically and experimentally. The adopted pinch point for both cycles’ 

heat exchangers was 5 oC. Schimpf and Span [140] carried out a simulation study on a combined 

ORC-GSHP system assisted by solar energy. The pinch point was selected depending on the 

application of the combined system. For the space heating mode, and for the HP cycle,  

∆𝑇𝑝𝑖𝑛𝑐ℎ−𝑒𝑣𝑎𝑝 and ∆𝑇𝑝𝑖𝑛𝑐ℎ−𝑐𝑜𝑛𝑑 were 5 K while for domestic hot water, the pinch points were 

4.5 K for the evaporator and 4 K for the condenser. For the ORC cycle, the pinch points were 

4 and 3 K for the evaporator and the condenser, respectively.  

The optimization process of a heat exchanger model, including working fluids mass flow rate 

and temperature, have to satisfy the pinch point condition, i.e., the minimum pinch point should 

be secured.  
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3.6 Isentropic efficiency of the ORC expander and the HP compressor 

In both the ORC and HP cycles, the expander and compressor are the main part of the combined 

system. The compressor/expander performance is defined as the isentropic efficiency against 

the pressure ratio [97]. The isentropic efficiency measures the irreversibility occurring through 

the compression and expansion process [141]. In addition to the isentropic efficiency and the 

pressure ratio, the shaft rotation speed and the working fluid can also affect the expander’s 

efficiency. The performance curve of these devices is usually provided by the manufacturer or 

measured experimentally throughout tests. The typical trend of the performance curve is that 

the efficiency is increased with a linear rise in the pressure ratio reaching the maximum value 

before declining gradually. Thus, there is a peak expander efficiency at a specific pressure ratio, 

as shown in Figure (3.4).  

 

 

Figure 3.4: An example of typical expander performance [97]. 
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3.7 Modelling the gas burner  

3.7.1 Chemical combustion equation 

In the gas burner, Methane reacts chemically with the Oxygen in the air to release thermal 

energy. Since Nitrogen is already contained in the air, this gas should appear in the equation of 

combustion. It is common in combustion calculation to consider air as consisting of 21% O2 

and 79% N2. Thus, the combustion reaction equation is written as follows: 

𝐶𝐻4 + 2(𝑂2 + 3.76𝑁2) ⟹ 𝐶𝑂2 + 2𝐻2𝑂 + 7.52𝑁2 

The left-hand side of the above equation shows the chemical components entering the 

combustion chamber (gas burner), while the right side represents the products of the combustion 

which will appear in the exhaust gases. In addition, both sides of the equation involve the same 

number of atoms of each element [127]. Also, it is clear that the left-hand side has the exact 

amount of oxygen to combust all molecular of Methane; therefore, no Oxygen and/or Methane 

is left in the product-side. This air to fuel ratio (𝐴𝑖𝑟
𝐹𝑢𝑒𝑙⁄ ) is called the theoretical or 

(Stoichiometric) ratio. If the fuel and air are mixed with a ratio less than the Stoichiometric ratio 

then the mixture is called a rich mixture (it has no excess air). In contrast, it is called weak or 

lean if it has excess air [142]. In real applications it is recommended to have excess air for the 

combustion process.  

The percentage of excess air can be calculated using the following equation: 

𝑒𝑥𝑐𝑒𝑠𝑠  𝑎𝑖𝑟% =
(𝐴𝑖𝑟

𝐹𝑢𝑒𝑙⁄ )
𝑎𝑐𝑡𝑢𝑎𝑙

−(𝐴𝑖𝑟
𝐹𝑢𝑒𝑙⁄ )

Stoichiometric 

(𝐴𝑖𝑟
𝐹𝑢𝑒𝑙⁄ )

𝑎𝑐𝑡𝑢𝑎𝑙

                           (3.17) 

 

3.7.2 First law of combustion  

The enthalpy of reaction can be estimated when the values of enthalpy of formation on the 

molar base at the reference temperature for all elements of reactants and products are known. 



Chapter 3: Theory of the combined ORC-VCC cycles 

 

 

74 

 

A simple definition of the enthalpy of formation is the rise in enthalpy when a substance is 

formed from its basic natural elements and in the standard reference state. When a change in 

enthalpy occurs due to the complete combustion of a substance at a constant pressure and 

temperature, it is known as the enthalpy of combustion. In most cases, the reference state 

temperature and pressure are 25 oC and 1bar, respectively [142].  

By neglecting the changes in kinetic and potential energy, the first law of thermodynamic of 

the combustion reaction process in a gas burner can be written as: 

𝑄 = ∑ 𝑁𝑖(ℎ̅𝑓
𝑜 + ℎ̅ − ℎ̅𝑜)

𝑖
− ∑ 𝑁𝑖(ℎ̅𝑓

𝑜 + ℎ̅ − ℎ̅𝑜)
𝑖𝑟𝑒𝑎𝑐𝑡𝑝𝑟𝑜𝑑                      (3.18) 

Where: 

𝑁𝑖 Number of moles of substance i 

ℎ̅𝑓
𝑜 Molar enthalpy of combustion 

ℎ̅ Molar enthalpy of the substance 

ℎ̅𝑜 Molar enthalpy of the substance at reference state 

 

3.8 Evaluation of the combined system performance  

The simple definition of any thermodynamic system’s efficiency is the ratio between the energy 

gained over the energy expended. By interpolating this definition to the combined ORC-HP 

system, the combined system efficiency can be defined as the ratio of energy added to the water 

to the total energy released from burning the fuel in the gas burner, known as the fuel to heat 

efficiency:  

𝐹𝑢𝑒𝑙 𝑡𝑜 ℎ𝑒𝑎𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
𝑄𝑇𝑜𝑡𝑎𝑙−𝑎𝑑𝑑𝑒𝑑− 𝑤𝑎𝑡𝑒𝑟

𝑄𝑇𝑜𝑡𝑎𝑙−𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑
) × 100                       (3.19) 

Where the total heat added to the water 𝑄𝑇𝑜𝑡𝑎𝑙−𝑎𝑑𝑑𝑒𝑑− 𝑤𝑎𝑡𝑒𝑟 also called the total system heating 

capacity, is the summation of the thermal capacities of the HP condenser, the ORC condenser 

and the post heater heat exchanger.  
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𝑄𝑇𝑜𝑡𝑎𝑙−𝑎𝑑𝑑𝑒𝑑− 𝑤𝑎𝑡𝑒𝑟 = 𝑄𝐻𝑃−𝑐𝑜𝑛𝑑. + 𝑄𝑂𝑅𝐶−𝑐𝑜𝑛𝑑. + 𝑄𝑝𝑜𝑠𝑡 ℎ𝑒𝑎𝑡𝑒𝑟              (3.20) 

While the total heat released from burning CH4 is given by: 

𝑄𝑇𝑜𝑡𝑎𝑙−𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 = �̇�𝐶𝐻4 × 𝑀𝑒𝑡ℎ𝑎𝑛𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒                    (3.21) 

At this stage, the final water temperature can be calculated as follows:  

𝑇𝑤_𝑓𝑖𝑛𝑎𝑙 =
(𝑄𝑇𝑜𝑡𝑎𝑙−𝑎𝑑𝑑𝑒𝑑− 𝑤𝑎𝑡𝑒𝑟+𝐶𝑝−𝑤𝑎𝑡𝑒𝑟×𝑇𝑤𝑖𝑛

×�̇�𝑤𝑎𝑡𝑒𝑟)

(𝐶𝑝−𝑤𝑎𝑡𝑒𝑟×�̇�𝑤𝑎𝑡𝑒𝑟)
                      (3.22) 

3.9 Heat exchanger areas 

The process of heat transfer in heat exchanger areas such as the evaporator and condenser is a 

complicated mechanism which mainly depends on the working fluid properties and flow 

characteristics as well as the heat exchanger’s geometry. It is general practise in many 

researches that the heat transfer process is usually modelled by adopting previously developed 

sim-empirical correlations. However, the validity of these correlations is limited to certain 

applications and ranges of boundary conditions. 

The most commonly used correlation is as follows: 

𝛼 = 𝑁𝑢
𝑘

𝐷
                                                       (3.23) 

 

Where:  

𝛼 Overall heat transfer coefficient of the flow 

𝑁𝑢 Nusselt number 

𝐷 Pipe diameter or distance separation of the plates in the heat exchanger 

𝑘 Flow thermal conductivity 
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𝑁𝑢 is called the Nusselt number, which is the ratio of convective to conductive heat transfer 

between the flow and the wall inside the heat exchanger. The above equation can be rewritten 

as follows: 

𝛼 = (𝑐1𝑅𝑒
𝑐2𝑃𝑟

𝑐3 (
𝜇𝑓

𝜇𝑤
)

𝑐4

) ×
𝑘

𝐷
                                           (3.24) 

Where: 

𝑅𝑒 Reynolds number 

𝑃𝑟 Prandtl number 

𝜇𝑓 Dynamic viscosity of the bulk flow 

𝜇𝑤 Dynamic viscosity of the wall 

 

The Reynolds number is the ratio of inertial to viscous forces in the fluid flow, which is written 

as: 

𝑅𝑒 =
𝜌𝑢𝐷

𝑘
                                                            (3.25)  

Where 𝜌 and 𝑢  are the density and velocity of the fluid flow respectively.  

The Prandtl number is the ratio of viscous to thermal diffusion, which is defined as: 

𝑃𝑟 =
𝐶𝑝𝜇

𝑘
                                                          (3.26) 

Where 𝐶𝑝 is the fluid specific heat.  

The overall heat transfer coefficient (U) can be calculated when the Nusselt numbers for cold 

and hot steams inside the heat exchanger are identified, using the following equation: 

1

𝑈
=

1

𝛼𝑐𝑜𝑙𝑑
+

𝑡

𝑘
+

1

𝛼ℎ𝑜𝑡
                                                 (3.27) 
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Where (t) is the wall thickness in the heat exchanger, and 𝛼𝑐𝑜𝑙𝑑 is the overall heat transfer 

coefficient of the cold flow, while 𝛼ℎ𝑜𝑡 is the overall heat transfer coefficient of the hot flow.  

The heat transfer area is calculated by the following equation: 

𝐴𝑟𝑒𝑎 =
𝑄

𝑈∆𝑇𝑚
                                                        (3.28) 

Where 𝑄 is the total thermal capacity of the heat exchanger, and ∆𝑇𝑚 is the Logarithmic means 

temperature difference (LMTD), which is given by: 

∆𝑇𝑚 =
(∆𝑇1−∆𝑇2)

ln (
∆𝑇1
∆𝑇2

)
                                                     (3.29) 

∆T1 and ∆T2 are the temperature differences between the hot and cold streams on the heat 

exchanger exit and inlet, respectively. 

Quoilin, S., et al. [143] adopted the following correlation for the single phase heat transfer 

coefficient in a corrugated plate heat exchanger with a 30o Chevron angle: 

𝑁𝑢 = 𝑐𝑅𝑒
𝑚𝑃𝑟

𝑛                                                       (3.30) 

Where, m=0.5 for laminar flow (Re<400) and m=0.7 for turbulent flow (Re>400) and n=1/3 in 

both cases. The coefficient C is identified experimentally as follows: 

Condenser Evaporator 

Turbulent vapor C=0.84 Turbulent vapor C=0.063 

Turbulent water C=0.72 Turbulent air C=0.101 

Laminar liquid C=0.4 Laminar liquid C=1.29 

 

While for a boiling heat transfer coefficient, the correlation by Hsieh and Lin [144] is adopted: 

𝛼𝑏𝑜𝑖𝑙𝑖𝑛𝑔−2𝑝ℎ = 𝐶𝛼𝑙𝐵𝑜
0.5                                                   (3.31)  
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The subscript 2𝑝ℎ refers to two phase flows, 𝛼𝑙 is the all liquid non-boiling heat transfer 

coefficient, and 𝐵𝑜 is the boiling number for the refrigerant.   

In the condenser, the heat transfer coefficient is calculated using Kuo, W., et al.’s [145] 

correlation, as follows:  

𝛼𝑐𝑜𝑛𝑑𝑒𝑠𝑛𝑎𝑡𝑖𝑜𝑛−2𝑝ℎ = 𝐶𝛼𝑙(0.25𝐶𝑜
−0.45𝐹𝑟𝑙

0.25 + 75𝐵𝑜
0.75)                         (3.32) 

𝐹𝑟𝑙 is the Froude number for the liquid phase refrigerant, and 𝐶𝑜 is the convective number.  

Deutz, K., et al. [141] used the following correlations for their single phase heat transfer 

coefficient, assuming a smooth condenser tube: 

When Re < 2300,  

Nu = 3.6568, reported in Baehr and Stephan [146]. 

When 2300 < Re < 10, 000, Gnielinski’s correlation is used [147]: 

Where:  

𝑓 =
1

(0.79𝑙𝑛(𝑅𝑒)−1.64)2                                                     (3.33)  

When Re > 10000, the Dittus-Boelter correlation is used [148] 

𝑁𝑢 = 0.023𝑅𝑒
0.8𝑃𝑟

0.4                                                   (3.34) 

For a two phase condensation process, the Shah’s correlation [149] is adopted: 

𝑁𝑢 = 0.023𝑅𝑒
0.8𝑃𝑟

0.4 ((1 − 𝑥)0.8 +
3.8(1−𝑥)0.04𝑥0.75

𝑃𝑟
0.38 )                      (3.35)  

Where (x) is the vapour quality. 
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Liang, Y., et al [89] used the following correlation for single phase heat transfer in a condenser 

plate heat exchanger for both refrigerant and water:  

1

√𝑓
=

𝐶𝑂𝑆𝛽

√0.18𝑡𝑎𝑛𝛽+0.36𝑠𝑖𝑛𝛽+
𝑓𝑜

𝐶𝑂𝑆𝛽

+
(1−𝐶𝑂𝑆𝛽)

√3.8𝑓1
                                (3.36) 

Where 𝛽 is the Chevron angle, the optimum value is 60o [150], and the coefficient 𝑓 is given 

by: 

When 𝑅𝑒<2000, 𝑓𝑜=
64

𝑅𝑒
, 𝑓1 =

579

𝑅𝑒
+ 3.85 

When 𝑅𝑒 ≥ 2000, 𝑓𝑜 = (1.8𝑙𝑜𝑔𝑅𝑒 − 1.5)−2, 𝑓1 =
39

𝑅𝑒0.289 

To calculate the heat transfer coefficient for a two-phase evaporation process, Cooper’s pool 

[151] boiling correlation is used:  

𝛼𝑒 = 1.5 × 55 × (
𝑃𝑒

𝑃𝑐𝑟
)

(0.12−0.2𝑙𝑛𝑃𝑅)

× (−𝑙𝑛 (
𝑃𝑒

𝑃𝑐𝑟
))

−0.55

× 𝑞0.67 × 𝑀−0.5       (3.37) 

Where 𝑃𝑐𝑟 is the critical pressure of the working fluid, 𝑅𝑝 is the mean asperity height which is 

taken as 0.3 𝜇𝑚 in this study, 𝑞 represents the heat flux, and M is the molar mass of the working 

fluid.  

For the condensation process, the following correlation is adopted: 

𝛼𝑐𝑜𝑛𝑑 = 𝛼𝑙(0.25𝐶𝑜
−0.45𝐹𝑟𝑙

0.25 + 75 × 𝐵𝑜
0.75)                           (3.38) 

Where the subscript ( 𝑙 ) denotes the liquid phase and (𝛼𝑙) is given by: 

𝛼𝑙 = 0.2092 × (
𝑘𝑙

𝐷
) × 𝑅𝑒𝑙

0.78𝑃𝑟𝑙
0.33 (

𝜇

𝜇𝑤
)

0.14

                               (3.39) 

𝐶𝑜 (convection number) is given by: 



Chapter 3: Theory of the combined ORC-VCC cycles 

 

 

80 

 

𝐶𝑜 = (
𝜌𝑣

𝜌𝑙
) (

1

𝑥−1
)

0.8

                                                  (3.40) 

And 𝐹𝑟𝑙 and 𝐵𝑜 (boiling number) are given by: 

𝐹𝑟𝑙 =
𝐺2

(𝜌𝑙
2𝑔𝑑𝑒)

                                                         (3.41) 

𝐵𝑜 =
𝑞

𝐺×𝑖𝑓𝑔
                                                            (3.42) 

Where G (kg/m2s) is the refrigerant mass flux, 𝑔 is the gravity acceleration (m/s2), and 𝑖𝑓𝑔 is 

the enthalpy of vaporization (kJ/kg). 

𝑅𝑒𝑙 =
𝐺×𝐷

𝜇𝑙
                                                              (3.43) 

 𝑃𝑟𝑙 =
𝐶𝑝𝑙×𝜇𝑙

𝑘𝑙
                                                           (3.44) 

 

3.10 Second law efficiency and exergy destruction 

Second law efficiency is defined as the ratio between the actual cycle efficiency compared with 

the maximum theoretical reversible cycle efficiency. Equation 3.45 shows the second law 

efficiency of a heat pump cycle: 

𝜂𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑎𝑤 =
𝐶𝑂𝑃

𝐶𝑂𝑃𝐶𝑎𝑟𝑛𝑜𝑡
                                          (3.45) 

Exergy, also called availability, is defined as the maximum theoretical (reversible work) that 

can be obtained from a system in a given state, working under constant reservoir pressure and 

temperature. However, in any real thermodynamic process, the exergy can be destroyed, unlike 

the energy, to satisfy the second law of thermodynamic. The irreversibility or (exergy 

destruction) is defined as the difference between the theoretical reversible work and the actual 

work. 
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In an actual thermodynamic system, once the irreversibilities of a component have been 

estimated, the development and improvement process is guided towards that part in order to 

reduce the exergy destruction. This has the consequence of improving the device efficiency and 

hence the overall system performance.  

In this thesis, both terms, irreversibility and second law efficiency, have been used to compare 

the performance of proposed system components against the ideal one. The evaluation is carried 

out as follows:  

Irreversibility (𝐼) across a compressor, turbine, pump, and expansion valve is given by: 

𝐼 = �̇�𝑟𝑒𝑓 × 𝑇𝑜 × (𝑠𝑜𝑢𝑡 − 𝑠𝑖𝑛)                                 (3.46) 

Where: 

𝑇𝑜 Temperature in the reference state 

𝑠 Entropy  

�̇�𝑟𝑒𝑓 Working fluid mass flow 

 

In a heat exchanger there are two streams; one is the hot flow carrying the heat, and the other 

is the cold stream which should receive the rejected heat.  

The exergy destruction in the hot stream is expressed as follows:  

𝐼𝐻𝑠 = �̇�𝐻𝑠 × (ℎ𝐻𝑆−𝑖𝑛 − ℎ𝐻𝑆−𝑜𝑢𝑡 − 𝑇𝑜 × (𝑠𝐻𝑆−𝑖𝑛 − 𝑠𝐻𝑆−𝑜𝑢𝑡))              (3.47) 

While the exergy destruction in the cold stream is:  

𝐼𝐶𝑆 = �̇�𝐶𝑆 × (ℎ 𝐶𝑆−𝑜𝑢𝑡 − ℎ 𝐶𝑆_𝑖𝑛 − 𝑇𝑜 × (𝑠 𝐶𝑆_𝑜𝑢𝑡 − 𝑠 𝐶𝑆_𝑖𝑛))                    (3.48) 

The total exergy destruction across a heat exchanger is the exergy destruction difference in both 

streams.  

 



Chapter 3: Theory of the combined ORC-VCC cycles 

 

 

82 

 

3.11 Modelling the combined ORC and HP cycles  

The majority of studies in the open literature adopted the energy and exergy equations mentioned 

above in the modelling of the ORC and HP cycles. In this thesis, a MATLAB code is developed 

for this purpose. The rule of this code is to conduct optimization process by varying one or two 

independent variables to achieve the pre-selected working conditions and design assumptions 

targeted in this study. The outcome of this optimization approach is to identify the design 

parameters for the steady state mode. This approach is called design mode which involves 

identifying the refrigerant state at the inlet and outlet of each cycle components. MATLAB code 

is also used to show the correlation between the different variables and their effect on the system 

performance.  

There are also a number of reliable software packages that were used to model various power and 

thermal cycles. Keinath and Garimella [152] used Engineering Equation Solver software in their 

study. Recently, ASPEN PLUS software in its newer version has been introduced to provide steady 

and dynamic simulations. In our study, ASPEN PLUS software package is used to validate the 

steady state results obtained from MATLB code. After obtaining the steady state results from both 

models, ASPEN PLUS software has been used in the off design mode. This mode involve setting 

the heat exchangers areas at constant values based on the steady state results in order to conducted 

control strategies. The results of these control strategies have then been verified using the dynamic 

mode.  

3.11.1 Thermophysical properties software 

To estimate the thermophysical properties of the working fluids, different software programs, 

databases and subroutines have also been used by researchers and are claimed to have good 

precision to some extent. The majority of them have used NIST REFPROP software [42] for 

its accuracy and ability to link up with other programming language software such as the 

MATLAB [97, 153-156]. Others have used different equations; for example, Saleh, B., et al. 

[132] and Lai, N., et al. [156] used the BACKONE equation of state in modelling a low 

temperature ORC cycle. Zhang, S., et al. [157] used a generalized Cubic Equation of State in 

the theoretical modelling of a water to water heat pump system.  
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In this thesis simulation work, REFPROP software has been linked with the MATLAB code to 

estimate the transport properties of the working fluid. In addition, it has been adopted as a 

property method in the ASPEN PLUS software.   

 

3.11.2 Assumptions adopted in the modelling process 

The main assumptions adopted in the modelling procedure can be summarized as follows:   

1. In chapter five, the combined system is designed to heat water at constant total thermal 

capacity. The typical total thermal capacity for a common household is 20 kW.  

2. Tap water temperature ranges between 7-10 oC, therefore a constant value of 10 oC is 

adopted.   

3. No pressure drop is assumed across the cycle components and connected pipes.  

4. In the gas burner, air has a mix ratio of 79% nitrogen and 21% oxygen by volume. The 

combustion efficiency is assumed to be 100% and the total heat released from burning the 

Methane is transferred to the ORC working fluid and the exhaust stream, with no heat lost 

to the surrounding environment.  

5. The temperature of the exhaust stream leaving the post heater (T15) is assumed to be a value 

higher than the dew point to prevent corrosion.  

6. Methane heating value in this model is taken as constant at the reference state, which is 

equal to 55.5 kJ/kg.  

7. The power produced by the ORC cycle directly drives the HP compressor, and mechanical 

losses are negligible.  

8. The pinch point temperature difference is set to 3 oC in both the HP and ORC condensers. 
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3.12 MATLAB code 

In this section, the MATLAB code used to analysis the combined cycle is described in detail 

including the programming procedures and REFPROP correlations.  

3.12.1 Steady state model 

The steady state model is used to describe the optimum performance of a thermodynamic cycle 

that has reached a thermal balance between a heat source and a heat sink. At this point, the main 

design parameters such as pressure, temperature, enthalpy, and entropy can be identified at each 

state point across the cycle. Furthermore, the obtained thermophysical properties can be used 

to estimate the heat and power transfer between the cycle components.  In addition, the HXs 

area can be calculated.  

3.12.1.1 HP cycle model  

As was mentioned above in section (3.11.2), there are no pressure drops during the 

condensation and evaporation process, so, the pressure at states 1 and 4 is equal to the HP 

evaporator pressure. In addition, P2 = P3 = HP discharged pressure, as shown in Figure 3.5 and 

3.6 a. The HP evaporator saturated pressure is estimated here using REFPROP by assuming the 

refrigerant is fully evaporated at the evaporator exit, and by assuming an evaporation 

temperature that secure the minimum pinch point temperature difference with the designed air 

temperature at the evaporator exit [97]. This assumption is satisfied in the fact that in the HX 

heat transfer process, the hot stream should be higher than the cold stream. 
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Figure 3.5: Schematic diagram of the proposed natural gas fuelled water 

heater system. 

Figure 3.6 (a): T-s diagram for HP cycle; (b) T-s diagram for ORC cycle. 
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𝑇𝐻𝑃−𝑒𝑣𝑎𝑝 = 𝑇𝑎𝑖𝑟−𝑜𝑢𝑡 − ∆𝑇𝑝𝑖𝑛𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 

𝑃𝐻𝑃−𝑒𝑣𝑎𝑝 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚( ′𝑃′ , ′𝑇′, 𝑇𝐻𝑃−𝑒𝑣𝑎𝑝, ′𝑄′, 1, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡)  

Then, the other refrigerant properties of the HP refrigerant at state (1) can be calculated using 

the following REFPROP code:  

ℎ1 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝐻′,′ 𝑃′, 𝑃𝐻𝑃−𝑒𝑣𝑎𝑝, ′𝑄′, 1, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

𝑠1 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′,′ 𝑃′, 𝑃𝐻𝑃−𝑒𝑣𝑎𝑝, ′𝐻′, ℎ1, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

Similarly, the HP condensation pressure is calculated by assuming that the refrigerant is fully 

condensed at the HP condenser outlet, and assuming an initial temperature value for the water 

leaving the HP condenser. By adapting the ∆𝑇𝑝𝑖𝑛𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 approach and maintaining the hot 

stream (refrigerant flow) at a higher temperature than the cold stream (tap water), the HP 

saturated condensation temperature can be given as follows: 

𝑇𝐻𝑃−𝑐𝑜𝑛𝑑 = 𝑇𝑤𝑎𝑡𝑒𝑟−𝑜𝑢𝑡 + ∆𝑇𝑝𝑖𝑛𝑐ℎ 𝑝𝑜𝑖𝑛𝑡 

𝑃𝐻𝑃−𝑐𝑜𝑛𝑑 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚( ′𝑃′, ′𝑇′, 𝑇𝐻𝑃−𝑐𝑜𝑛𝑑, ′𝑄′, 0, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

At state 2 (the isentropic state), the entropy is equal to that of state 1; therefore, enthalpy is 

given by: 

ℎ2,𝑖𝑠𝑜 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝐻′,′𝑃′
, 𝑃𝐻𝑃−𝑐𝑜𝑛𝑑, ′𝑠′, 𝑠1, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

Then, the actual enthalpy at state 2 can be calculated from the isentropic efficiency equation 

𝜂𝑖𝑠𝑜,𝑐𝑜𝑚𝑝 of the compressor.  

ℎ2 =
(ℎ2,𝑖𝑠𝑜 − ℎ1 + ℎ1 × 𝜂𝑖𝑠𝑜,𝑐𝑜𝑚𝑝)

𝜂𝑖𝑠𝑜,𝑐𝑜𝑚𝑝
 

After that, the entropy and the temperature at state 2 can be calculated as follows: 
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𝑠2 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′, ′𝑃′, 𝑃𝐻𝑃−𝑐𝑜𝑛𝑑, ′𝐻′, ℎ2, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

𝑇2 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑇′, ′𝐻′, ℎ2, ′𝑠′, 𝑠2, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

Hence, the enthalpy at state 3 is calculated by assuming that the refrigerant quality is equal to 

zero.  

ℎ3 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝐻′, ′𝑃′, 𝑃𝐻𝑃−𝑐𝑜𝑛𝑑, ′𝑄′, 0, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

Next, the entropy and the condensation saturated temperature can be estimated:  

𝑠3 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′, ′𝑃′, 𝑃𝐻𝑃−𝑐𝑜𝑛𝑑, ′𝐻′, ℎ3, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

𝑇3 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑇′, ′𝑃′, 𝑃𝐻𝑃−𝑐𝑜𝑛𝑑, ′𝐻′, ℎ3, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

An isenthalpic expansion process is assumed in the expansion valve.  

After that, the quality and the entropy at state 4 are calculated using the following equations: 

𝑠4 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′, ′𝑃′, 𝑃𝐻𝑃−𝑒𝑣𝑎𝑝, ′𝐻′, ℎ3, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

𝑞4 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑄′, ′𝐻′, ℎ3, ′𝑠′, 𝑠4, 𝐻𝑃𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

By adopting the thermal balance approach across the HP condenser, the refrigerant mass flow 

can be calculated using Equation 3.13 and by assuming the inlet and outlet water temperature 

and mass flow. After that, the HP cycle main design parameters can be calculated. These include 

evaporator thermal capacity, compressor work, condenser thermal capacity, and COP by 

executing Equations 3.2-3.4 and 3.6. 

3.12.1.2 ORC cycle model  

The same approach used in modelling the HP cycle is also used in relation to the ORC cycle. 

ORC evaporator pressure is set to a value close to the critical pressure to maximize ORC 
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thermal efficiency. The appropriate values for different working fluids are available in a wide 

range of textbooks and also from REFPROP.  

The ORC evaporation temperature (state 5) is chosen according to the type of the working fluid 

used. For wet and isentropic fluids no superheat degree is required, so the refrigerant is assumed 

to be fully vaporized at the evaporation saturated temperature. In contrast, for dry working 

fluids a degree of superheat is recommended to ensure that no wet fluid can damage the turbine 

plates. However, in all cases, the superheat degree should be carefully checked, particularly on 

the T-s diagram for further confirmation.  

𝑇5 = 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 + 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡 

Next, other thermophysical properties of the working fluid can be calculated as follows: 

ℎ5 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝐻′,′ 𝑇′, 𝑇5, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑒𝑣𝑎𝑝, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

𝑠5 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑒𝑣𝑎𝑝, ′𝐻′, ℎ5, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

The condensation temperature (𝑇7) is set to a value close to the final water heating temperature 

value. Therefore, the condensation pressure is calculated by assuming that the vapour fraction 

is equal to zero at the condenser exit.  

𝑃𝑂𝑅𝐶−𝑐𝑜𝑛𝑑 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑃′, ′𝑇′, 𝑇7, ′𝑄′, 0, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

The enthalpy of the isentropic state at the turbine exit is given by: 

ℎ6,𝑖𝑠𝑜 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝐻′, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑐𝑜𝑛𝑑, ′𝑠′, 𝑠5, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

Next, the enthalpy and other properties at the turbine exit (state 6) are estimated based on the 

turbine isentropic efficiency equation:  

ℎ6 = ℎ5 − ℎ5 × 𝜂𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟𝑖𝑠𝑜
+ ℎ6,𝑖𝑠𝑜 × 𝜂𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟𝑖𝑠𝑜

 

𝑠6 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑐𝑜𝑛𝑑, ′𝐻′, ℎ6, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 
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At state 7: 

ℎ7 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝐻′, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑐𝑜𝑛𝑑, ′𝑄′, 0, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

𝑠7 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑐𝑜𝑛𝑑, ′𝐻′, ℎ7, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

The isentropic state at the pump outlet state 8, is: 

ℎ8,𝑖𝑠𝑜 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝐻′, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑒𝑣𝑎𝑝, ′𝑠′, 𝑠7, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

By assuming a constant value for the liquid pump isentropic efficiency, the enthalpy at state 8 

is given by: 

And the entropy at state 8 is given by: 

𝑠8 = 𝑟𝑒𝑓𝑝𝑟𝑜𝑝𝑚(′𝑠′, ′𝑃′, 𝑃𝑂𝑅𝐶−𝑒𝑣𝑎𝑝, ′𝐻′, ℎ8, 𝑂𝑅𝐶𝑟𝑒𝑓𝑖𝑔𝑒𝑟𝑎𝑛𝑡) 

Due to the assumption of direct coupling between the ORC turbine and the HP compressor, the 

ORC mass flow is calculated using Equation 3.9 by assuming (Wcomp= Wturbine). 

At this point, ORC performance parameters such as evaporator and condenser thermal duties, 

the first and second laws of thermodynamics, and the final water temperature can be evaluated 

via Equations 3.8-3.11, 3.12, 3.16 and 3.45.  

3.12.1.3 Gas burner model 

In the gas burner code, the standard enthalpy of combustion (ℎ̅𝑓
𝑜) for pure substances such as 

O2 and N2 are equal to zero, while CH4, CO2 and H2O are set as constant values based on the 

literature [142].  

It is assumed that the term (ℎ̅ − ℎ̅𝑜) is equal to zero for the reactants based on the assumption 

that these products are entering the gas burner with the same temperature as the reference state.    
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When calculating the enthalpy (ℎ̅) of CO2 and H2O, these gases are assumed to be ideal gases, 

and thus their enthalpy values are a function of temperature only. The enthalpy values for these 

products for a wide range of temperatures (0-1000 oC) has therefore been adapted from a 

reliable source [142] and loaded into the MATLAB program as an external function code. This 

code allows the recall of the enthalpy value when the exhaust temperature is entered. It also 

provides the ability to adjust the enthalpy by an interpolation process when the exact exhaust 

temperature is not available in the source data. 

3.12.1.4 Modelling the post heater 

The post heater is a simple heat exchange. Its thermal capacity is calculated by assuming a 

constant temperature value at state 15 (T15). After that, the final water temperature is calculated 

from the thermal balance across the post heater as follows: 

�̇�𝑒𝑥ℎ × (ℎ14 − ℎ15) = �̇�𝑤 × (ℎ12 − ℎ11)                             (3.49)  

 

3.12.2 Varying one or two parameters in the combined system 

The MATLAB code has been developed to model the combined cycle when one or two 

independent parameters are optimized. A one and/or two nested loop technique has been used 

to iterate the whole combined cycle parameters. For a single nested loop, the loop boundary is: 

𝑓𝑜𝑟 𝑖 = 1: 𝑛, while for a double iteration loop the boundaries are: 𝑓𝑜𝑟 𝑖 = 1: 𝑛 for the first loop 

and 𝑓𝑜𝑟 𝑗 = 1: 𝑛 for the second loop. Where (𝑛) is the final boundary value.  

Therefore, the results could either be expressed as a one-dimensional vector as follows: 

ℎ1 = (ℎ1(𝑖), … … … ℎ1(𝑖: 𝑛)) 
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Or as a two-dimensional matrix: 

ℎ7 = [
ℎ7(𝑖, 𝑗) ⋯ ℎ7(𝑖: 𝑛, 𝑗)

⋮ ⋱ ⋮
ℎ7(𝑖, 𝑗: 𝑛) ⋯ ℎ7(𝑖: 𝑛, 𝑗: 𝑛)

] 

 

3.12.3 Pinch point temperature difference (PPTD) model  

A number of studies available in the open literature used a simplified pinch point approach by 

securing a minimum pinch point of 3-5 oC at the HX exit. However, this procedure cannot 

precisely predict the pinch point between the hot and cold streams across all the heat exchanger 

sectional areas, as shown in Figure (3.3).  Therefore, an in-depth investigation has been carried 

out in the modelling of all heat exchangers in this thesis. A developed MATLAB sub-code is 

used to calculate the temperature difference between the two streams along the entire length of 

the heat exchangers. 

The pinch point can be identified when the temperature, enthalpy, and entropy for both streams 

across the heat exchanger have been calculated. The process of pinch point calculation for the 

HP condenser is shown below. The same principle can be applied to the other heat exchangers.  

The enthalpy of the refrigerant stream across the condenser is divided into the number of 

segments between hin and hout. In MATALB, the (linspace) function can be used for this 

purpose:  

𝐻𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(ℎ2, ℎ3, 𝑛)                                       (3.50) 

Where (n) is the number of segments.  

The refrigerant entropy can be calculated using the same method as above, while the 

temperature is calculated using the REFPROP call function (refpropm) which requires two 

identified thermophysical properties, enthalpy and condenser pressure. This temperature code 
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should be iterated, using a nested loop, from (1 to n) to cover the temperature range across the 

condenser. The result is a vector of the refrigerant temperature through the HP condenser.   

For the water stream, the water temperature is calculated from the sensitive heat equation by 

dividing the condenser heating capacity into segments from 0 to n, as was explained in Equation 

3.50. The water entropy is calculated using the refpropm function. The result is water 

temperature as a vector. The minimum PPT can be estimated by subtracting the refrigerant and 

water temperature vectors, and the minimum value is the PPT.   

3.13 Dynamic modelling by ASPEN PLUS 

The dynamic model in this work is limited to the role of control strategies adopted for the 

combined system. Therefore, the mathematical model will be applied to specific parts such as 

the HP evaporator and/or condenser.  

The continuity and energy balance equations for evaporator and condenser are given as: 

𝜕

𝜕𝑡
(𝜌𝑟𝐴𝑟𝑐𝑠) +

𝜕𝑚𝑟

𝜕𝑧
= 0                                             (3.51) 

𝜕

𝜕𝑡
(𝜌𝑟𝐴𝑟𝑐𝑠) +

𝜕

𝜕𝑧
(𝑚𝑟ℎ𝑟) + 𝑈𝑟𝐿𝑟𝑝(𝑇𝑟– 𝑇𝑚) = 0                           (3.52) 

Where the following subscripts apply: r means refrigerant, Arcs denotes the cross section area, 

Ur is the thermal transmittance of the working fluid, L is the effective length, and m is the wall 

material.  

The discretised form of the above continuity and energy equations for the nth zone as explained 

in Figure (3.7) can written as: 
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(𝜌𝑟,𝑛𝐴𝑟𝑐𝑠) − (𝜌𝑟,𝑛𝐴𝑟𝑐𝑠)
−

∆𝑡
+

𝑚𝑟,𝑗 − 𝑚𝑟,𝑗−1

∆𝑧
= 0 

Or                                                                                                                                      (3.53) 

𝑉𝑟,𝑛

∆𝑡
(𝜌𝑟,𝑛 − �̅�𝑟,𝑛) + 𝑚𝑟,𝑗 − 𝑚𝑟,𝑗−1 = 0 

 

 

The superscript (-) represents the value at the previous time step.  

(𝜌𝑟,𝑛ℎ𝑟,𝑛𝐴𝑟𝑐𝑠) − (𝜌𝑟,𝑛ℎ𝑟,𝑛𝐴𝑟𝑐𝑠)
−

∆𝑡
+

𝑚𝑟,𝑗ℎ𝑟,𝑗 − 𝑚𝑟,𝑗−1ℎ𝑟,𝑗−1

∆𝑧
+ 𝑈𝑟,𝑛𝐴𝑚,𝑛(𝑇𝑟,𝑛 − 𝑇𝑚,𝑛) = 0 

Or: 

𝑉𝑟,𝑛

∆𝑡
[(𝜌𝑟,𝑛ℎ𝑟,𝑛) − (𝜌𝑟,𝑛ℎ𝑟,𝑛)

−
] + 𝑚𝑟,𝑗ℎ𝑟,𝑗 − 𝑚𝑟,𝑗−1ℎ𝑟,𝑗−1 + 𝑈𝑟,𝑛𝐴𝑚,𝑛(𝑇𝑟,𝑛 − 𝑇𝑚,𝑛) = 0 

Both of the above equations together represent Equation 3.54. 

Refrigerant 

flow direction 

Interface: j-1 j j+1 

Zone: n Zone: n+1 

Figure 3.7: Discretisation scheme for the evaporator and condenser 
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By multiplying Equation 3.53 by ℎ𝑟,𝑛 to eliminate 𝜌𝑟,𝑛, then subtracting the results from 

Equation 3.54, we arrive at Equation 3.55, below: 

𝑉𝑟,𝑛�̅�𝑟,𝑛

∆𝑡
(ℎ𝑟,𝑛 − ℎ̅𝑟,𝑛) + 𝑚𝑟,𝑗(ℎ𝑟,𝑗 − ℎ𝑟,𝑛) + 𝑚𝑟,𝑗−1(ℎ𝑟,𝑛 − ℎ𝑟,𝑗−1) + 𝑈𝑟,𝑛𝐴𝑚,𝑛(𝑇𝑟,𝑛 −

𝑇𝑚,𝑛) = 0                                                                                                                     

By eliminating the interface variables ℎ𝑟,𝑗 and ℎ𝑟,𝑗−1, Equation 3.55 will become: 

𝑉𝑟,𝑛�̅�𝑟,𝑛

∆𝑡
(ℎ𝑟,𝑛 − ℎ̅𝑟,𝑛) + ℎ𝑟,𝑛 max(𝑚𝑟,𝑗, 0) − ℎ𝑟,𝑛+1 max(−𝑚𝑟,𝑗, 0) − 𝑚𝑟,𝑗ℎ𝑟,𝑛)

+ 𝑚𝑟,𝑗−1ℎ𝑟,𝑛 − ℎ𝑟,𝑛max (𝑚𝑟,𝑗−1) + ℎ𝑟,𝑛 max(−𝑚𝑟,𝑗−1, 0)

+ 𝑈𝑟,𝑛𝐴𝑚,𝑛(𝑇𝑟,𝑛 − 𝑇𝑚,𝑛) = 0 

This equation can be simplified as follows: 

ℎ𝑟,𝑛 [
𝑉𝑟,𝑛�̅�𝑟,𝑛

∆𝑡
+ max(𝑚𝑟,𝑗, 0) + max(−𝑚𝑟,𝑗−1, 0) + 𝑚𝑟,𝑗−1 − 𝑚𝑟,𝑗]

= ℎ𝑟,𝑛+1 max(−𝑚𝑟,𝑗 , 0)

+ ℎ𝑟,𝑛−1 max(𝑚𝑟,𝑗−1, 0) +
𝑉𝑟,𝑛�̅�𝑟,𝑛ℎ̅𝑟,𝑛

∆𝑡
− 𝑈𝑟,𝑛𝐴𝑚,𝑛(𝑇𝑟,𝑛 − 𝑇𝑚,𝑛) = 0 

Both of the above equations together represent Equation 3.56. 

By assuming that max(𝑚𝑟,𝑗, 0) − 𝑚𝑟,𝑗 = max(−𝑚𝑟,𝑗, 0) 

And max(−𝑚𝑟,𝑗−1, 0) + 𝑚𝑟,𝑗−1 = max(𝑚𝑟,𝑗−1, 0), 

The final discretised equation for the refrigerant zone for the evaporator and condenser can be 

written as: 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦: 𝑚𝑟,𝑗 = 𝑚𝑟,𝑗−1 −
𝑉𝑟,𝑛

∆𝑇
(𝜌𝑟,𝑛 − �̅�𝑟,𝑛)                         (3.57) 

𝐸𝑛𝑒𝑟𝑔𝑦: ℎ𝑟,𝑛 =
𝐴ℎ𝑟,𝑛−1+𝐵ℎ𝑟,𝑛+1−𝑈𝑟,𝑛𝐴𝑚,𝑛(𝑇𝑟,𝑛−𝑇𝑚,𝑛)+

𝑉𝑟,𝑛�̅�𝑟,𝑛ℎ̅𝑟,𝑛
∆𝑡

𝐶
                    (3.58) 
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Where: 

𝐴 = max(𝑚𝑟,𝑗−1, 0), 𝐵 = max(−𝑚𝑟,𝑗, 0), 𝐶 = 𝐴 + 𝐵 +
𝑉𝑟,𝑛�̅�𝑟,𝑛

∆𝑡
 

Xu, B., et al. [72] developed a transient dynamic model for an organic Rankine cycle bottoming 

diesel engine for waste heat recovery. In the heat exchangers model, some vital assumptions 

were adopted, such as neglecting the axial heat conduction between the working fluid and the 

heat source through the wall. In addition, the temperature was assumed to be distributed 

uniformly in the radial direction. The partial differential form of mass and energy balance 

equations for the working fluid across the heat exchanger is given by: 

𝜕�̇�

𝜕𝑧
+

𝜕𝐴𝜌

𝜕𝑡
= 0                                                        (3.59) 

𝜕(𝐴𝜌ℎ−𝐴𝑝)

𝜕𝑡
+

𝜕�̇�ℎ

𝜕𝑧
= 𝜋𝑑𝑈∆𝑇                                            (3.60) 

Where:  

ṁ Refrigerant mass flow rate 

A Cross sectional area  

ρ Working fluid density 

z Coordinate in the axial direction  

𝑝 Working fluid pressure 

𝑈 Heat transfer coefficient 

𝑑 Working fluid effective path diameter 

∆𝑇 Temperature difference between the working fluid and the wall  

 

The above mass and energy equations are simplified to Ordinary Differential Equations as 

follows:  

𝑑𝑚

𝑑𝑡
= �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡                                                    (3.61) 
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𝑑(�̇�ℎ−𝑣𝑝)

𝑑𝑡
= �̇�𝑖𝑛ℎ𝑖𝑛 − �̇�𝑜𝑢𝑡ℎ𝑜𝑢𝑡 + 𝐴𝑈∆𝑇                                (3.62) 

 

3.14 Modelling the PID controller by ASPEN PLUS 

Many control method are available to control the vapor compression cycle. These methods in 

general involve conventional, advance and intelligent controls. On/off control and refrigerant 

bypass are one of the earliest control methods. The on/off method include turning the system 

on/off to achieve the desired thermal target within a time limit. On the other hand, the bypass 

refrigerant method, as the name suggest, involve bypassing some refrigerant from the active 

refrigeration loop. The advantage of these approaches is ease of implementation however, the 

on/off control can result in significant energy lost in the start-up phase and higher energy 

consumption due to instability in the regulated temperature. While the bypass control method 

can result in lower system efficiency [158]. On the other hand, variable speed controls methods 

such as proportional integrate (PI) and proportional integrate derivative (PID) feedback loops, 

are already established to be more efficient and stable control mechanisms [159]. To implement 

feedback control, these methods involve the simultaneous use of variable speed compressor and 

opening valves. The PI controller performance can be satisfactory but limited to a region close 

to the selected working condition. While a simple PID controller is inexpensive, easy to install 

and can be used for a wide range of operating conditions [160, 161].  

The PID controller is commonly used for regulating the flow rate in a closed loop process. 

Individually, the three sections in the PID control have different actions in the control process 

[162]. The three parts are: 

Proportional part (P): 𝑢𝑃(𝑡) = 𝑘𝑐(𝑦𝑠(𝑡) − 𝑦(𝑡))                          (3.63)                          

Integral part (I): 𝑢𝐼(𝑡) =
𝑘𝑐

𝜏𝐼
∫ (𝑦𝑠(𝜏) − 𝑦(𝜏))𝑑𝜏

𝑡

0
                          (3.64) 

Derivative part (D): 𝑢𝐷(𝑡) = 𝑘𝑐𝜏𝑑
𝑑(𝑦𝑠(𝑡)−𝑦(𝑡))

𝑑𝑡
                           (3.65) 

The transfer function of the PID controller output is the sum of these three parts: 
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𝑢(𝑡) = 𝑢𝑃(𝑡) + 𝑢𝐼(𝑡) + 𝑢𝐷(𝑡)                                      (3.66) 

While controller error 𝑒(𝑡) = 𝑦𝑠(𝑡) − 𝑦(𝑡) 

Where: 

𝑦𝑠(𝑡) Set point (the desired process output) 

𝑦(𝑡) The process output 

𝑢(𝑡) The control output of the PID controller 

𝑘𝑐 Proportional gain (constant) 

𝜏𝐼 Integral time (constant) 

𝜏𝑑 Derivative time (constant) 

 

To calculate the output of the PID controller, the set point, proportional gain, integral and 

derivative time are set by the user based on the appropriate dynamic behaviour. A schematic 

diagram of a closed loop PID controller is shown in Figure (3.8).  

Set point 

𝑒(𝑡) 

CONTROLLER PROCESS 

𝑦𝑠(𝑡) 

Controller output Process output error 

𝑢(𝑡) 𝑦(𝑡) 

Figure 3.8: Block diagram of the PID controller of a closed loop 
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Chapter 4: Selection of working fluids  

4.1 Introduction 

One of the factors impacting upon the design and performance of any thermodynamic cycle is 

the selection of an appropriate working fluid. Ideally, the working fluid should satisfy modern 

design aspects such as system thermal efficacy and compatibility, system components’ size and 

lifetime, safety and maintenance cost, and environmental impact [163, 164]. In addition, the 

thermophysical properties of the chosen working fluid play a vital role in the selection process; 

these include the critical temperature, the latent heat of vaporization, and the boiling point 

[165]. Therefore, a properly studied and selected refrigerant can significantly enhance a sys-

tem’s thermal efficiency [166]. In practice, however, there is no single ideal fluid that can 

achieve optimum levels in all these design aspects. The selection process is therefore a chal-

lenging task, and a trade-off approach is usually needed to achieve the best possible results for 

a given case [167, 168].  

4.2 Classification of working fluids 

In general, organic working fluids can be categorized into three types according to the slope 

value (
𝑑𝑠

𝑑𝑡
) of the saturated vapor curve on the T-s diagram, as shown in Figure (4.1). For a 

slope of less than zero, the refrigerant is called a wet refrigerant, while if the slope is ∞ , it is 

called an isentropic refrigerant. The third type is named dry refrigerant when the slope is above 

zero [48, 169]. 

An ORC with an isentropic working fluid can achieve the highest thermal efficiency. In con-

trast, using a wet refrigerant could increase the possibility of refrigerant condensation during 

the expansion process. This can cause damage to the turbine blades and also reduce the turbine’s 

isentropic efficiency. If a wet refrigerant is to be selected, it is recommended that the refrigerant 

is superheated at the turbine inlet to overcome the potential condensation problem. However, 

excessive superheat can move the pressure ratio away from its optimum value, consequently 

reducing the cycle efficiency.  
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On the other hand, using a dry working fluid in the ORC will keep the refrigerant in a 

superheated state at the expander outlet. This will result in higher thermal energy being rejected 

by condensing rather than being usefully utilized in the expansion process. This could reduce 

thermal efficiency and increase the condenser heat exchanger area, and consequently the costs. 

Likewise, using isentropic fluid in a HP cycle can achieve high COP. Wallerand, A., et al. [167] 

revealed that among the compared fluids, propane has shown similar behaviour to an isentropic 

fluid in that it could reduce the compression work and hence increase the COP.  

The same obstacle of a two-phase flow refrigerant entering the HP compressor can occur when 

a dry fluid is used, particularly at a low saturated temperature. It is therefore recommended to 

superheat the working fluid at the compressor inlet.   

Different working fluids have been studied and compared in the literature for both HP and ORC 

cycles. Nasir and Kim [169] revealed that for the combined ORC-HP, the best candidate pair 

of working fluids are R134a and Isobutane, for ORC and HP cycles respectively. With these 

refrigerants, the cycle achieved a COP in the range of 0.219 to 0.281 when the outdoor air 

temperature is 40 oC.  

Figure 4.1: T-S diagram for wet fluids (e.g., R32), isentropic fluids (e.g., 

R125), and dry fluids (e.g., R245fa). 
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Frate, G., et al. [168] conducted a comparison study on working fluids for a vapour compression 

heat pump cycle. Although some of the investigated working fluids such as Acetone and 

Benzene have shown higher performance profiles, they are highly flammable and toxic. In 

contrast, R1233zd (E) has been shown to be a good compromise between the COP and the 

volumetric heating capacity (VHC). VHC is defined as the ratio between the condenser heating 

capacities over the refrigerant volume flow rate at the compressor inlet. The higher the VHC 

value, the smaller the compressor size and, hence, the lower the cost. 

For an ORC cycle driven by liquefied natural gas, Yu, H., et al. [170] revealed that R125, R143a 

and R1270 showed the best performance for a cycle without heat recovery. Meanwhile, for an 

ORC cycle that utilizes the waste heat from the flue gases of a natural gas power plant, R170, 

R134a and R290 are identified as being the most suitable candidates.  

Scaccabarozzi, R., et al. [171] conducted a comparison study on different working fluids for an 

ORC cycle driven by wasted heat from the exhaust stream of a large internal combustion engine. 

Their results showed that the most efficient refrigerants for lower exhaust stream temperatures 

are HCFO-1233zde, HFE-245fa2, HFO-1336mzz, HFE-347mcc, HFE-245cb2 and Novec 649. 

For high engine exhaust temperature, Cyclopentane, Ammonia, HCFO-1233zde, HFE-245fa2, 

and HFO-1366mzz were all found to have a better performance.  

In this chapter, natural, synthetic and pure refrigerants for HP and ORC cycles are selected and 

analysed. In addition, mixed working fluids have been studied for an ORC cycle. The 

comparison is based on the best possible performance for the combined cycle under the pre-set 

working conditions. In addition, Ozone depletion potential (ODP), Global warming potential 

(GWP), and Atmospheric Lifetime (ALT), for these working fluids are compared.  

 

 

 

 



Chapter 4: Selection of working fluids 

 

 

101 

 

4.3 Working fluid selection for the heat pump cycle 

To evaluate the performance of different working fluids in a conventional vapour compression 

heat pump cycle used for a heating or cooling application, two approaches have been proposed. 

In the first approach, the cycle performance for the heating application using different 

refrigerants is compared. In the second approach, the HP cycle is designed for cooling and/or 

refrigeration effects. In both approaches, the mass flow rate of the selected refrigerants is set at 

a constant value, and the compressor isentropic efficiency is assumed to be 70%.  

4.3.1 First approach to the HP cycle 

In this investigation, a list of refrigerants is selected and the T-s diagram for them is presented 

in Figure 4.2. In this approach, the HP-condensation temperature is varied between 30-90 oC, 

which is suitable for a heating application. The evaporation temperature is set constant at 2.5 

oC. 

 

 

Figure 4.2: T-s diagram for the HP cycle working fluids 
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Figure 4.3 shows the effect of the condensation temperature on the heating coefficient of 

performance of the HP cycle for different working fluids. All the selected refrigerants show 

similar behaviour; i.e., the COPh decreases with the rise in condensation temperature. Although 

these working fluids showed comparable COPh, Ammonia and R600a achieved the best 

performance for all tested condensation temperatures. As the critical temperature for R410A is 

63 oC, the evaluation for this refrigerant ended at this value, as shown in Figure 4.3. 

 

 

The performance of an HP cycle using CO2 as the working fluid was also investigated, and the 

results are shown in Figure 4.4. As the selected condensation temperature is above the critical 

temperature of CO2 (30.9 oC), CO2 will not condensate in this region, and instead becomes a 

supercritical fluid in a gas cooler. In addition, the condensation pressure for the CO2 is set above 

its critical pressure value (73.7 bar). From the results, CO2 has a lower coefficient of 

performance than the other selected working fluids. Furthermore, increasing the gas cooler exit 

temperature causes a decline in COPh at various pressures. However, for each temperature 

value, increasing the gas cooler pressure has a positive effect on the heating coefficient of 

performance. 

Figure 4.3: Effects of condensation temperature on HP-COPh for different 

working fluids 
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The behaviour of the condenser heating duty for CO2 follows the same pattern as for COPh, 

with both gas-cooler pressure and exit temperature as shown in Figure 4.5. The increase in the 

heating duty occurs because the condensation pressure is in the supercritical region, as shown 

in the T-s diagram.  

Figure 4.4: HP-COPh for CO2 under different gas-cooler pressures and exit 

temperatures 

Figure 4.5: HP-Condenser heating duty for CO2 
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Figure 4.6: HP-Condenser heating capacity for different refrigerants with conden-

sation temperature 

Figure 4.7: HP-Condenser heating capacity of ammonia with different conden-

sation temperature 
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For all the other selected working fluids except Ammonia, increasing the condensation 

temperature reduces the HP-condenser heating capacity, as shown in Figure 4.6. As the 

condensation temperature increases from 30 to 90 oC, all refrigerants approach their critical 

temperature, resulting in a reduction in the heat of condensation, as shown in the T-s diagram.  

In contrast to other working fluids, when Ammonia is used as HP refrigerant, an increasing 

condensation temperature initially increases the condenser heating duty, as illustrated in Figure 

4.7. This increment gradually slows down as the condensation temperature approaches its 

critical temperature. This can be attributed to Ammonia’s higher heat of vaporization compared 

to the other working fluid (see T-s diagram). Ammonia also shows a significantly higher heating 

capacity, which means it could have great potential in large-scale heating applications, but also 

indicates that the equipment size needed will be significantly larger and thus more expensive. 

The evaporation pressure for each working fluid when the evaporation temperature is set at 2.5 

oC is shown in Table 4.1. In addition, the corresponding condensation pressure range for each 

refrigerant is also presented.  

Table 4.1 Working conditions for HP cycle for different working fluids (first approach).  

Refrigerant Evaporator pressure (bar) Condenser pressure (bar) 

R600a 1.448 3.538 - 4.691 

R22 5.397 11.9187 - 15.335 

R134a 3.202 7.701 - 10.165 

R1234yf 3.434 7.835 - 10.183 

R410A 8.659 18.893 - 24.256 

CO2 37.21 78-120 

Ammonia 4.71 11.67-51.16 

 

Regarding evaporator cooling capacity, Ammonia has shown a significantly higher cooling 

capacity, which indicates its relatively higher ability to extract heat from the heat source than 
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the other working fluids, as shown in Figure 4.8. This is due to its higher heat of vaporization 

in the selected condensation temperature range compared with the other refrigerants. 

 

The evaporator cooling duty of CO2 increases as the exiting temperature of the gas cooler 

decreases across the pressure range. At each selected temperature, the cooling duty increases  

Figure 4.8: HP-evaporator cooling capacity of different working fluids 

Figure: 4.9 HP-evaporator cooling capacity of CO2 
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with the rise in gas cooler pressure. The highest cooling capacity is achieved at a gas cooler 

temperature of 35 oC, and pressure above 85 bar, as shown in Figure 4.9. 

4.3.2 Second approach to the HP cycle 

To investigate the performance of various working fluids in a HP cycle used for cooling 

purposes, the evaporation temperature was ranged between -18 and 2.5 oC when the 

condensation temperature was set as 30 oC. 

 

Figure 4.10 shows that the cooling coefficient of performance for all working fluids increases 

with the rise in evaporation temperature. The COPc of all the refrigerants except CO2 ranged 

between 3-6, whereas CO2 achieved the lowest value at between 1.72-3.48. Yu, H., et al. [80] 

produced comparable results, having found that the COP increases when the evaporation 

temperature increases for a group of working fluids used in a HP cycle.  

 

Figure 4.10 HP-COPc for various refrigerants under various evaporation 

temperature 
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Increasing the evaporation temperature of all the selected refrigerants has insignificant effects 

on the evaporator cooling capacity, as shown in Figure 4.11. Similar to approach one, Ammonia 

displays a much higher cooling capacity, making it a good candidate for a cooling application; 

however, it is a toxic substance and is therefore not suitable for domestic applications.  

The heating capacity of the HP-condenser declines slightly with increased evaporation 

temperature for all working fluids, as illustrated in Figure 4.12. For evaporator temperatures in 

the range of -18 to 2.5 oC, the condenser heating capacity for Ammonia varies in the range of 

73-65 kW. For R600a, the heating capacity ranges from 19.3 to18.4 kW, while for other 

working fluids it varies between 7-11 kW.  

 

 

 

 

Figure 4.11: HP-evaporator cooling capacity of various working fluids 
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Table 4.2 shows the evaporation pressure range for evaporation temperature from -18 to 2.5 oC 

for each of the selected working fluids. In addition, as the condensation temperature is set to 30 

oC, the table shows the condensation pressure for each working fluid. 

Table 4.2 Working conditions of the HP cycle for different working fluids (second approach).  

Refrigerant Evaporator pressure in bar Condenser pressure in bar 

R600a 0.644 - 1.448 3.538 

R22 2.647 - 5.397 11.918 

R134a 1.446 - 3.202 7.701 

R1234yf 1.634 - 3.434 7.835 

R410A 4.312 - 8.659 18.893 

CO2 20.938 - 37.214 72.137 

Ammonia 2.075 - 4.71 11.67 

 

 

Figure 4.12: HP-evaporator heating capacity of various refrigerants  
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4.4 Working fluid selection for the ORC cycle  

In this section, the results of the analysis of a selection of pure and mixed working fluids for an 

ORC power plant are presented, including pure refrigerants R123, Heptane, Hexane, Pentane 

and R245fa; and a mixture of Hexane (50%) and R141b (50%). Hexane is a flammable refrig-

erant with good thermal efficiency, so it is therefore recommended to mix it with a retardant 

refrigerant such as R141b or R11. This has the advantage of reducing its flammability, but with 

the small drawback of reduced efficiency [68]. A mixture of R245fa (80%) and R134a (20%) 

was also adopted Collings, P. [48].  

To evaluate the ORC cycle efficiency of these working fluids, two approaches are adopted in 

the present study. In the first approach, the ORC-evaporation temperature is set at 95 oC, and 

the effect of condensation temperature on the cycle performance for each refrigerant is studied. 

In the second approach, the condensation temperature is kept constant and the evaporation tem-

perature is varied for each working fluid. The T-s diagram for the selected working fluids in the 

ORC cycle is illustrated in Figure 4.13. It should be noted that R141b is not available in the 

REFPROP database, so R143a was used as a substitute solely to obtain the data for the T-s 

diagram.  

 

 

Figure 4.13: T-s diagram for the ORC cycle working fluids 
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4.4.1 First approach to the ORC cycle 

Figure 4.14 showed that as the condensation temperature increases from 30 to 90 oC, the ORC 

thermal efficiency declines for all the working fluids. The highest thermal efficiency is achieved 

at a condensation temperature of 30 oC, when the evaporation temperature is 95 oC.  

 

 

Figure 4.15 shows that a higher condensation temperature has a negative impact on condenser 

heating capacity regardless of the working fluid. This is due to the decline in the condensation 

heat for the working fluid as it approaches its critical temperature, as shown in the T-s diagram 

above (Figure 4.13). However, Hexane, Heptane and Pentane achieved significantly higher 

heating capacity than the other working fluids throughout the temperature range. In addition, a 

mixture of Hexane and R141b achieved a good condenser heating capacity. 

 

 

Figure 4.14: ORC-thermal efficiency for various refrigerants 
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Figure 4.15: ORC-Condenser heating capacity for various refrigerants under 

different condensation temperatures 

Figure 4.16: ORC-evaporator heating capacity for various refrigerants un-

der different condensation temperatures 
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Figure 4.16 shows the effects of condensation temperature on ORC-evaporator heating capac-

ity. For all the working fluids, evaporator capacity declines when the condensation temperature 

increases, in a pattern similar to condenser heating capacity. 

Table 4.3 summarises the evaporator and condenser pressures of the ORC system using the first 

approach for the selected working fluids. 

 

Table 4.3 Working conditions for the ORC cycle for different working fluids (first approach).  

Refrigerant Evaporator pressure in bar Condenser pressure in bar 

R123 7.014 1.095 - 6.242 

Heptane 0.916 0.0777 - 0.786 

Hexane 2.161 0.249 - 1.889 

Pentane 5.288 0.819 - 4.703 

R245fa 11.298 1.777 - 10.06 

R245fa & R134a 14.252 3.528 - 15.685 

Hexane & R141b 2.331 0.544 - 3.22 

 

 

4.4.2 Second approach to the ORC cycle 

In this approach, the condensation temperature of the ORC system is assumed to be constant at 

30 oC, and the evaporation temperature is varied from 95 oC to the critical temperature for each 

working fluid.  

In contrast to the condensation temperature effects on the ORC-thermal efficiency (Figure 

4.14), increasing the evaporation temperature results in a significant rise in thermal efficiency 

for all working fluids, as shown in Figure 4.17. In addition, mixing R141b with Hexane not 

only increases its ability to tolerate higher evaporation temperatures and pressure, but also sig-

nificantly improves its thermal efficiency. The highest thermal efficiency for Hexane alone is 

17.03 % at near-critical evaporation temperature (233.6 oC) and pressure (30 bar). In contrast, 

Hexane with R141b recorded an efficiency of 17.4 % at a temperature of 244 oC and pressure 
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of 39 bar. A similar trend in ORC cycle efficiency with various working fluids has previously 

been noted by Yu, H., et al. [80]. 

 

 

Increasing the evaporation temperature also causes a significant rise in the thermal capacity of 

the ORC-evaporator for Heptane, Hexane and Pentane, whereas the effects are insignificant for 

the other working fluids, as shown in Figure 4.18. For instance, increasing the evaporation 

temperature for Heptane from 95 to 266 oC increases the evaporator heating capacity from 47.4 

to 74.3 kW. In contrast, increasing the R123 evaporation temperature from 95 to 182.6 oC only 

slightly increases its heating capacity from 20.6 to 21.7 kW.  

 

 

 

 

Figure 4.17: ORC-thermal efficiency for various refrigerants under differ-

ent evaporation temperatures 
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Figure 4.19 shows the effect of changing the evaporator temperature on the heating duty of the 

ORC-Condenser. Similar behaviour to that of the evaporator heating capacity is seen in the 

condenser heating duty, as the evaporation temperature increases for all the working fluids. For 

Figure 4.18: ORC-evaporator heating capacity for various refrigerants un-

der different evaporation temperatures 

Figure 4.19: ORC-condenser heating capacity for various refrigerants un-

der different evaporation temperatures 
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example, for Hexane, as the evaporation temperature increases from 95 to 233.6 oC, the con-

denser heating capacity increases from 42.3 to 53.8 kW. 

Table 4.4 shows the corresponding changes in refrigerant pressure when the evaporation tem-

perature of the ORC-evaporator varies. In addition, the condensation pressure for each refrig-

erant at a condensation temperature of 30 oC is calculated using REFPROP software. 

 

Table 4.4 Working conditions for ORC cycle for different working fluids (second approach).  

Refrigerant Evaporator pressure ( bar) Condenser pressure ( bar) 

R123 7.014 - 36 1.095  

Heptane 0.916 - 27 0.0777  

Hexane 2.161 - 30 0.249  

Pentane 5.288 - 32.8 0.819  

R245fa 11.298 - 35.7 1.777  

R245fa & R134a 14.252 - 34.9 3.528  

Hexane & R141b 2.331 - 39 0.544  

 

4.5 Environmental and safety profiles of the working fluids 

In order to evaluate the environmental impact of a refrigerant, three indexes are commonly 

used: Ozone depletion potential, Global warming potential, and Atmospheric Lifetime. The 

ODP is the relative amount of degradation a chemical compound can cause to the Ozone layer. 

The GWP is the global warming effect of a given mass of gas; it is a relative scale which 

compares the amount of heat trapped by a greenhouse gas to that produced by the same mass 

of CO2. Lastly, the ALT is the amount of time gases can remain in the atmosphere before being 

neutralized by chemical reaction or deposition. Moreover, flammability, toxicity and corrosion 

are additional safety factors considered in the working fluid selection process. Some of the 

working fluids have been phased out due to their high ODP value, such as R11, R12, R113, 

R114, and R115. With the increased awareness of global warming, further refrigerants are 

expected also to be phased out due to their high GWP, such as R22, R123, R124, R141b, and 
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R142b. Table 4.5 shows the ODP, GWP and ALT of most of the working fluids used in this 

study.  

Table 4.5 Environmental indices for the working fluids [67, 172]. 

Refrigerant ODP relative to R11 GWP relative to CO2 

(100-year time horizon) 
 ALT (year) 

R-134a Tetrafluoro-

ethane 

0.000015 1430 14 

R-141b  Dichloro-1-fluo-

roethane 
0.12 713 9.3 

R-22 Chlorodifluoro-

methane 

0.05 1780 12 

R-245fa Pentafluoropro-

pane 

0   950 7.2 

R-717 Ammonia - NH3 0 0 0.25 

R-744 Carbon Dioxide - 

CO2 
0 1 120 

R-600a  Isobutane 0 20 0.019 

R-410A,  Puron, AZ-20 

(R-32/R-125 (50/50) 
0.037 2088 none 

R-601 Pentane 0 11 0.01 

R-123 0.022 76 1.3 

R-1234yf 0 4 none 

R143a 0 4400 52 

Hexane 0 Very low None 

Heptane 0 Very low None 
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From the table, it is clear that natural refrigerants such as Ammonia and CO2 have excellent 

environmental profiles; however, Ammonia is a toxic substance and therefore might not be 

suitable for domestic applications. Likewise, refrigerants such as Hexane, Heptane, Propane 

and Isobutane have good environmental indices, but they are all flammable. The other refriger-

ants selected in this chapter have comparable ODP results, while for GWP, R410A and R22 

have the highest impacts.  

 

4.6 Conclusion 

In this chapter, various working fluids have been selected and analysed for heat pump and ORC 

cycles. A comparison between the working fluids was conducted based on the efficiency of 

their performance, thermal cooling and heating capacities, and environmental and safety 

aspects. For the heat pump cycle, in terms of COPh, all the selected refrigerants have shown 

comparable results with a condensation temperature of 30 oC. However, as the condensation 

temperature increases, Ammonia, R600a, R22 and R134a have shown the highest performance. 

Both Ammonia and R600a showed significantly higher condenser thermal capacity. For the 

cooling application, increasing evaporation temperature causes a rise in COPc, with comparable 

results for all the selected refrigerants. Regarding condenser and evaporator thermal capacity, 

Ammonia has shown a significantly higher capacity, followed by R600a. For the ORC cycle, 

the selected pure refrigerant showed a comparable result in terms of thermal efficiency and heat 

exchanger capacities for the first approach. For the mixture of Hexane and R141b, the thermal 

efficiency was shown to be comparable to that of pure Hexane at a higher evaporation 

temperature. However, pure Hexane has a higher thermal capacity than the mixture. Apart from 

pure R245fa and mixed R245fa with R134a, other working fluids obtained similar ORC thermal 

efficiency. From a safety perspective, Ammonia, Hexane, Heptane, Pentane and R600a might 

not be suitable for domestic applications due to their flammability and toxicity. For the HP 

cycle, CO2 and R1234yf have lower environmental impacts, as they showed lower COP than 

R134a. Meanwhile, for the ORC cycle, R123 and R245fa have comparable environmental 

safety profiles and comparable thermal efficiency. Based on these results, R123 and R245fa 

have been selected as the working fluids for the ORC cycle in this research. For the HP cycle, 

R134a has been nominated as the working fluid based on its comparable performance to the 

other working fluids for heating and cooling modes with a safe environmental profile. 
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Chapter 5 Combining ORC-HP cycles to provide hot water for 

domestic use 

5.1 Introduction 

In this chapter, a gas fuelled heating system based on combined heat engine and heat pump 

cycles is proposed and investigated. This system consists of a gas burner, an organic Rankine 

cycle power generator, and an air source heat pump cycle. The intended application of the sys-

tem proposed in this chapter is domestic hot water supply. Comprehensive simulation assess-

ments were carried out to investigate the combined system performance in terms of final water 

temperature, total system thermal capacity, individual cycle efficiency, and overall fuel-to-heat 

efficiency. In-house MATLAB code as well as ASPEN PLUS software were used, and the 

REFPROP database was adopted for the working fluid thermophysical properties. The com-

bined cycle performance for domestic hot water supply was investigated under different work-

ing conditions, including varying evaporation and condensation pressures in both cycles. In 

addition, the pinch point temperature approach was adopted in all the heat exchangers and ap-

plicable ORC evaporation pressure was used. The aim was to maximize the wasted heat recov-

ery and improve overall system efficiency. The best design configuration for water heating is 

identified in the chapter, and steady state results are plotted. An exergy analysis and the second 

law of thermodynamic efficiency were also included. In addition, control strategies were 

adopted to tackle the effects of ambient temperature variation on system performance with the 

aim of maintaining steady system performance while keeping the HP-evaporator frost free. A 

dynamic model using ASPEN PLUS software was used to verify and validate these control 

strategies.  

5.2 The thermodynamic concept  

The thermal energy generated from natural gas combustion in the burner is used to drive an 

ORC cycle (assuming no heat is lost), and the resultant mechanical power is used to directly 

drive a vapour compression heat pump cycle (assuming no power is lost). The ambient air 

stream and the rejected thermal energy contained in the flue gases are mixed then used as a heat 

source for the heat pump cycle. The rejected latent thermal energy from both cycles’ condenser 
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as well as the sensible heat from the post heater is used to raise the water temperature to the 

desired value.  

5.3 Preliminary design of the combined cycle  

In this proposed configuration, the total heating capacity of the system is assumed at 20 kW 

and the cold tap water heating occurs in three stages, as shown in Figure 5.1. Initially, the water 

which enters at a temperature of 10 oC is heated in the HP condenser. A further increase in its 

temperature is achieved by the ORC condenser. Finally, the water reaches the desired level 

temperature of (65 oC) at the outlet of the post heater by obtaining some of the heat contained 

in the flue gases exiting the burner. After leaving the post heater, the flue gases (assumed to be 

at 70 oC) are mixed with ambient fresh air to enter the HP evaporator for further energy 

recovery. The water mass flow rate can be directly calculated from the inlet and outlet 

temperature difference and from the total system heating capacity.  

 

Figure 5.1: Schematic diagram of the proposed natural gas fuelled water 

heater system. 
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The working fluid in the ORC and HP cycles are Hexane and R134a respectively, in order to 

investigate the maximum theoretical limit of best system performance. Temperature - entropy 

(T-s) diagrams of the HP and ORC cycles are shown in Figure (5.2 a and b). The green line 

represents water, pink refers to R134a, blue stands for Hexane, red for flue gases, and a brighter 

blue for the mixture of fresh air and flue gases. As Hexane is a dry working fluid, only minimal 

superheat is required. 

 

5.3.1 Modelling HP cycle for steady state 

As was mentioned in chapter three, modelling the HP cycle involves identifying the evaporation 

and condensation temperatures and their corresponding pressures. These temperatures can be 

identified by maintaining the minimum pinch point temperature difference between the hot and 

cold streams across the evaporator inlet and the condenser exit [97].  

In this modelling stage, the temperature of the mixture of air and exhaust gases leaving the 

evaporator is set randomly to 3.5 oC (without considering the evaporator frost condition) and 

by maintaining the minimum pinch point, the temperature difference at the evaporator exit, the 

evaporating temperature (T1), and its related pressure can be directly estimated, and are equal 

a b 

Figure 5.2: Temperature-Entropy diagrams of both the ORC (Hexane) and heat 

pump cycle (R134a) 
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to 0.5 oC and 2.981 bar, respectively. Furthermore, other thermophysical properties such as 

enthalpy and entropy can be calculated at state 1.   

The same assumption is used with the water temperature upon leaving the condenser to 

recognise the condensation temperature (T3). The water temperature upon leaving the condenser 

is set to 35 oC, and because the refrigerant temperature should be higher than the sink 

temperature, a condensation temperature of around 38 oC is adopted. The corresponding 

condensation pressure is obtained from REFPROP, and is equal to 9.63 bar. Enthalpy and 

entropy at state 3 can be estimated. Furthermore, the isentropic efficiency of the compressor is 

set to 70%.  

 

5.3.2 Modelling ORC cycle for steady state  

In the ORC cycle, the evaporator pressure and temperature (state 5) are set near the critical 

values for Hexane, as the ORC can achieve higher thermal efficiency when it operates near to 

critical pressure. Although Hexane is dry refrigerant, only 5 oC of superheat degree is required 

to ensure no wet refrigerant enters the turbine as shown in T-s diagram (Figure 5.2 a). Therefore, 

the evaporation pressure and temperature are 30 bars and 234 oC respectively. The condensation 

temperature (state 7) is assumed to be around 60 oC, which is a trade-off value between the 

water temperature upon exiting the HP condenser and the final desired water temperature. 

Isentropic efficiencies of 70% and 90% for turbine and liquid pump are respectively assumed. 

The Hexane mass flow can be directly calculated by assuming that the power produced by the 

ORC turbine is fully transferred to the HP compressor. Under these working conditions, other 

ORC cycle design and performance parameters are calculated using Equations 3.8-3.12. 
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5.3.3 Steady state results of combined ORC-HP system for the preliminary design 

The steady state results of the ORC-HP cycles obtained from MATLAB code and ASPEN 

PLUS software are summarized in Tables (5.1 to 5.5). These results represent the working fluids 

states at specific points in the combined cycle as demonstrated in Figure 5.1.  

Table 5.1 HP and ORC refrigerants thermophysical properties from MATLAB and ASPEN 

PLUS. 

State 

point 

Temperature oC Pressure bar Enthalpy kJ/kg Entropy kJ/kg. K Vapour quality 

MATLAB 

code 

ASPEN  MATLAB 

code 

ASPEN  MATLAB 

code 

ASPEN  MATLAB 

code 

ASPEN  MATLAB 

code 

ASPEN  

1 0.5 0.5 2.9814 2.981 398.8950 -8807.01 1.7268 -2.4428 1 1 

2 58.7 58.71 9.6315 9.632 440.8311 -8765.066 1.7811 -2.3885 1 1 

3 38 38 9.6315 9.632 253.4333 -8952.468 1.1811 -2.9885 0 0 

4 0.5 0.5 2.9814 2.981 253.4333 -8952.468 1.1952 -2.9744 0.2662 0.2661 

5 234 234 30 30 571.6124 -1630 1.3028 -5.9454 1 1 

6 140.97 142.68 0.7901 0.79 483.3801 -1714.5 1.3961 -5.8432 1 1 

7 61 61 0.7901 0.79 -18.7902 -2220.39 -0.0555 -7.3037 0 0 

8 64.95 62.232 30 30 -13.5754 -2215.16 -0.0539 -7.3021 0 0 

 

Table 5.2 HP and ORC cycles design parameters from MATLAB and ASPEN PLUS. 

Parameters 
HP cycle ORC cycle 

MATLAB code ASPEN  MATLAB code ASPEN  

Condenser heat duty, kW 9.125 8.937 11.655 11.973 

Evaporator heat duty, kW 7.083 6.937 13.5842 13.85 

Power produced by the ORC expander, and 

consumed by HP compressor, kW 
2 2 -2 -2 

Refrigerant mass flow, kg/s 0.0487 0.04768 0.0216 0.02366 

ORC liquid pump power, kW -- -- 0.1207 0.124 
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Table 5.3 HP and ORC cycles efficiencies. 

Parameters 
Values 

MATLAB code ASPEN  

HP heating coefficient of performance COPh, % 4.4687 4.46 

ORC thermal efficiency, % 14.2 13.54 

 

5.3.4 Modelling the gas burner and post heater for steady state mode 

Methane mass flow can be directly calculated from the conservation energy equation for the 

stoichiometric combustion of Methane (Eq. 3.21), by assuming that the required heat produc-

tion from the burner is the same as the heating capacity of the ORC evaporator and a constant 

exhaust temperature value (120 oC) (state 14). To identify the optimum air to fuel ratio that 

ensures maximal thermal energy production in the burner, the air mass flow is increased grad-

ually under a constant Methane mass flow (2.8253e-04 kg/s) until lean combustion is secured; 

i.e. the full combustion of Methane with excess air at the burner exhaust. In these working 

conditions, the mass fraction of Oxygen and Methane at the burner exhaust are estimated, and 

the results are shown in Figure 5.3. As air mass flow increases gradually, the Methane mass 

fraction starts to decrease with no Oxygen fraction showing in the exhaust. When the air mass 

flow reaches 0.00544 kg/s, Oxygen starts to appear in the flue gases but with some residual 

Methane mass, indicating incomplete combustion. A further increase in air mass flow results in 

a continuous decline in the Methane mass fraction, reaching zero at an air mass of 0.00555 kg/s 

which reflects the complete burning of the fuel.  
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At this point, the thermal energy produced by the burner reaches its maximum value of around 

13.8 kW, and the air to fuel ratio is approximately 19, as shown in Figure 5.4. As the obtained 

air to fuel ratio is higher than the stoichiometric ratio for Methane (17.5), this indicates that the 

combustion is lean, and the percentage of excess air is 7.89%.  

For the post heater modelling, the flue gases temperature at the outlet (state 15) is higher than 

the acid dew-point in order to keep the exhaust stream in a vapour state and avoid corrosion 

from condensation. Other relevant design parameters for the combined system are summarized 

in Tables 5.4 and 5.5. In Table 5.4, temperature and pressure of water running across the 

combined cycle are presented by state 9-12. State 13 correspond to the fuel state entering the 

gas burner. While state 14-18 are the temperature and pressure values for ambient air and 

combustion product passing through the post heat, mixer and HP evaporator as shown in Figure 

5.1. Table 5.5 shows the combined cycle efficiency parameters and performance. It is clear that 

the results obtained from MATLAB and ASPEN PLUS are in high agreement. The small 

different noted in the fuel to heat efficiency obtained by MATLAB and ASPEN PLUS is due 

to the different in Methane mass flow rate.  

 

Figure 5.3 CH4 and O2 mass fraction in the burner exhaust under variable air 

mass flow entering the burner. 
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Table 5.4 Thermophysical properties of other working fluids in the combined cycle by 

MATLAB and ASPEN.  

State point 
Temperature oC Pressure bar 

MATLAB code ASPEN PLUS MATLAB code ASPEN PLUS 

9 10 10 1 1 

10 35 34.55 1 1 

11 66.93 67.45 1 1 

12 67.8 68.35 1 1 

13 25 25 1 1 

14 120 120 1 1 

15 70 70 1 1 

16 8 8 1 1 

17 8.1 8.276 1 1 

18 3.5 3.5 1 1 

 

 

Figure 5.4: Increasing air mass flow against burner thermal capacity and air to 

fuel ratio. 
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Table 5.5 Combined cycle efficiency parameters and performance.  

Parameters 
Values 

MATLAB code ASPEN  

Total heating capacity, kW 21.099 21.236 

Fuel to heat efficiency, % 134.55 131.46 

Post heater thermal capacity, kW 0.319 0.326 

Methane mass flow rate, kg/s 2.8253e-04 2.9105e-04 

 

5.4 Effects of evaporation temperature of HP and ORC cycles on combined 

system performance 

In the heat pump cycle, the evaporator plays an important role as it is responsible for both free 

heat extraction from ambient air and heat recovery from flue gases. In the ORC cycle, the cycle 

efficiency is highly dependent on the evaporation temperature and its corresponding pressure. 

Therefore, these two evaporators will be comprehensively investigated, including their thermo-

physical properties under different working conditions. The heat recovery by the post heater as 

a final heating stage is also evaluated.    

The evaporation temperature (T1) is varied from -10 to 20 oC at a constant condensation tem-

perature (T3). In the ORC cycle, the evaporation pressure (P5) is iterated between 10-30 bar at 

a constant condensation temperature.  

The combined effects of these variables on the system performance and thermal capacity are 

shown below.  

Figure 5.5 shows that increasing the evaporation temperature will reduce the temperature lift 

across the HP cycle, which will favourably reduce the work of the compressor, hence increasing 

the HP heating coefficient of performance (COPh).   
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Figure 5.5: Effect of changing HP evaporation temperature on compressor work 

and COPh. 
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Figure 5.6: Effect of changing HP evaporation pressure on HP heating 

capacities. 
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However, for the same working conditions, increasing the evaporation temperature and its 

corresponding pressure results in a steep drop in condenser thermal capacity between 2-3 bar, 

then a steady decline. Regarding evaporator capacity, a nearly steady increase is evident along 

all pressure increments, as shown in Figure 5.6. This happens because increasing the 

evaporation temperature will increase the enthalpy of the refrigerant at the evaporator inlet (h4), 

which will in turn increase the evaporator capacity and reduce the compressor work. According 

to the first law of thermodynamics, the summation of these two quantities represents the 

condenser heating capacity, which closely follows the compressor behaviour. 

Figure 5.7 shows the changes in the mass flow of the ORC working fluid against the variation 

in the evaporation pressure and temperature for both combined cycles under the assumption of 

equality in power between the HP compressor and the ORC turbine. Increasing HP evaporation 

temperature causes a gradual decline in ORC mass flow for all ORC evaporation pressure. The 

changes in the Hexane mass flow are relatively small with the increase in the ORC evaporator 

pressure for each HP evaporator temperature. This reduction in ORC mass flow is a response 

to the equivalent reduction in the power produced and consumed by the ORC turbine and the 

HP compressor respectively, as shown in Figure (5.5). 

 

Figure 5.7: Varying the Hexane mass flow as a function of varying the HP 

evaporation temperature and the ORC evaporation pressure.  
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Figure 5.8 shows the variations in the ORC condenser’s capacity due to changes in the HP 

evaporation temperature and the ORC evaporation pressure. It shows that the condenser 

capacity trend is similar to the ORC mass flow, as shown in Figure 5.7. It also shows that the 

HP evaporation temperature has a greater effect compared with that of the ORC cycle. For 

instance, for the HP evaporation temperature selected, the ORC-condenser capacity declines 

from approximately 30-5 kW, whereas for the adopted ORC evaporation pressure range, the 

changes in the ORC condenser capacity are limited to between around 40-30 kW at a lower HP 

evaporation temperature and between 8-5 kW at a higher HP evaporation temperature. The 

decline in the ORC condenser capacity due to an increase in the evaporation pressure is similar 

to the results obtained from an experimental study by Zhou, N., et al. [47]. More results from 

this study show that increasing the ORC evaporator pressure will result in higher thermal 

efficiency. This study outcome verified the results obtained in this model.  

 

 

Figure 5.8: Effect of changing the HP evaporation temperature and the ORC 

pressure on the ORC condenser’s thermal capacity.  
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Figure 5.9 demonstrates the changes in the temperature of water at final heating stage with 

changing the HP evaporation temperature and the ORC evaporation pressure. It is clear that 

water temperature declined significantly with the increase in the HP evaporation temperature 

but slightly with the reduction in the ORC evaporation pressure. This can be explained by the 

behaviour of ORC condenser heating capacity (see Figure 5.8) which is influenced by the 

variations in the ORC mass flow (Figure 5.7).  

Figure 5.10 shows that increasing the ORC evaporation pressure from 10 to 30 bar results in 

enhanced ORC thermal efficiency from 12 to 14.4%.  

Figure 5.9: Effect of changing the HP evaporation temperature and the ORC 

pressure on final water temperature.  
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Figure 5.10: ORC thermal efficiency as a function of ORC evaporation pressure.  

Figure 5.11: Variation in natural gas needed due to changes in evaporation 

temperatures and pressure of HP and ORC cycles. 
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As shown in Figure 5.11, the mass flow of natural gas drops as the HP evaporation temperature 

increases towards 20 oC for various ORC evaporation pressures. It is clear that when the HP 

evaporation temperature decreases as a result of a reduction in the heat source temperature, less 

thermal energy will be available for extraction. Thus, more natural gas is needed to compensate 

for this reduction. For a given evaporation temperature, the mass flow of the natural gas initially 

decreases in increments in line with ORC evaporation pressure, reaching a minimal value when 

pressure is 30 bar. 

 

Figure 5.12 illustrates that an increasing HP evaporation temperature will significantly increase 

the fuel to heat efficiency of the combined cycle compared with slight increments in efficiency 

when the ORC evaporation pressure increases. Also, it shows that the increments in efficiency 

due to an increase in the ORC evaporation pressure are higher at high HP evaporation temper-

atures compared with those at low temperatures.    

 

 

Figure 5.12: Fuel to heat efficiency as a function of varying HP and ORC 

evaporation temperature and pressure.  
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Figure 5.13 shows a comparison between the thermal capacity of the ORC condenser, the HP 

condenser, and the post heater under variable HP evaporation temperatures. The capacities of 

the ORC condenser and the post heater are adopted at an optimum ORC evaporation pressure 

(30 bar). As the HP evaporation temperature (T1) increases, the heat capacity of those heat 

exchangers declines. For the HP condenser, increasing HP evaporation pressure results in re-

ductions in both compressor work and condenser capacity, as explained in Figures 5.7 and 5.8. 

Due to the decline in the compressor work, the mass flow of the Hexane reduces, which will 

also significantly reduce the thermal capacity of the ORC condenser. The slight reduction in 

the post heater capacity is due to the reduction in the CH4 mass flow shown in Figure 5.11.  

Figure 5.14 shows the heat share of the three heat exchangers responsible for water heating 

under various operating conditions. It is clear that the main contributors in water heating are 

both ORC and HP condensers, whereas the post heater has a marginal impact on the system’s 

total heating capacity. The variation in HP evaporation temperature for a given ORC evapora-

tion pressure has a significant impact on the heat shared by these heat exchangers. For instance, 

when THP_evp increases to the maximum, under minimum ORC evaporation pressure, the heating 

capacities of ORC condenser and post heater decline with an opposite trend in the HP condenser 

capacity, as shown in Figures 5.14 a and b.  

Figure 5.13: Heat capacities of the three heat exchangers. 
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The reduction in the ORC condenser heating duty is significant. Therefore, the heating capacity 

of the HP condenser becomes the main contributor to the system’s total heating capacity. Sim-

ilarly, at an ORC evaporation pressure of 30 bar as shown in Figures 5.14 c and d, increasing 

HP evaporation temperature results in a greater reduction in the ORC and post heater heat share 

with a corresponding increase in the HP condenser capacity from 11.7 to 9 kW.  

Figure 5.14, a Figure 5.14, b 

Figure 5.14 Share of heat supply by the three heat exchangers under different opera-

tional conditions. 

 

Figure 5.14, c Figure 5.14, d 
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At a constant HP evaporation temperature, Figures 5.14 a and c, or b and d, increasing ORC 

evaporation pressure causes a small decline in the ORC heating capacity, with minimal rise on 

the HP condenser duty. Thus, the heat share of the ORC cycle declines, with a corresponding 

increase in the HP condenser contribution while the post heater heat share remains constant.  

Figures 5.13 and 5.14 clearly show that the impact of the HP evaporator temperature and hence 

the pressure on the heat contribution of the three HXs is greater than the effect of changing the 

ORC evaporation pressure and temperature. In addition, the overall contribution to the total 

heating capacity by the post heater is small in all working conditions. Thus, it can be removed 

from the proposed system in order to simplify the design while also having the potential of cost 

saving.  

5.5 Comparison between two layout designs 

To identify the best design for hot water supply, two proposed layouts were simulated. In the 

first approach, water is assumed to enter the heat pump cycle first, and further heating occurs 

in the ORC cycle to uplift the water temperature to the desired target. In the second approach, 

the reverse approach is adopted. Therefore, the term 𝑄𝑝𝑜𝑠𝑡 ℎ𝑒𝑎𝑡𝑒𝑟 will be removed from 

Equation 3.23. For both approaches, water is assumed to be heated from 10-65 oC by absorbing 

approximately 20 kW of thermal energy from the combined cycle. The required water mass 

flow is calculated to be 0.087kg/s. The selected refrigerants are R134a and R245fa for the HP 

and ORC cycles respectively. The selection of R245fa is based on its safety profile, wide use, 

and environmentally friendly behaviour. A prior study suggested that air temperature exiting 

the HP evaporator preferred to be maintained above 5.5 oC, especially in a cold humid 

atmosphere, to avoid frost formation on the evaporator surface [173]. Thus, the current 

simulation is conducted under a constant HP evaporation temperature of 2.5 oC, which can 

secure a minimum pinch point temperature difference of 3 oC and maintain an evaporator outlet 

temperature of around 5.5 oC. The corresponding evaporation pressure obtained from 

REFPROP is 3.2 bar. The ORC-evaporator pressure is set at 36.5 bar, which is near the critical 

pressure of R245fa, to maximise the thermal efficiency of the cycle. However, a superheat 

degree of 5 oC over the refrigerant critical temperature is added to the ORC-evaporation 

temperature to ensure that no wet flow enters the turbine.  
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5.5.1 First layout: Water heated by HP cycle first 

In this design, cold tap water enters through the heat pump cycle where the first heating stage 

occurs, then passes through the ORC cycle to exit with the final temperature shown in Figure 

5.15. To identify the design parameters for both the HP and ORC cycles, both cycle 

condensation temperatures and pressure are iterated under constant HP working fluid mass 

flow, and HP and ORC evaporation pressures and temperatures.  

 

Figure 5.16 shows the effects of increasing the condensation pressure on condenser heating 

duty and compressor work in the HP cycle. Increasing the condensation pressure causes an 

exponential decline and rise in condenser heating duty and compressor work respectively. 

Higher condensation pressure causes an increase in refrigerant enthalpy at compressor outlet 

(h2) which consequently increases the (h2-h1) across the compressor. However, higher discharge 

pressure causes a slight decline in enthalpy difference across the condenser (h2-h3) as enthalpy 

at the exit increases more than the inlet enthalpy, as explained in Figure 5.17. This is because 

enthalpy at the condenser inlet (h2) is situated in the supercritical region while the exit enthalpy 

(h3) lies on a saturated liquid curve which is skewed to the right (dry working fluid).  
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Figure 5.15: Combined cycle configuration for hot water supply.  
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Figure 5.18 shows that increased condensation pressure causes a significant decline in the 

COPh, which reaches a low value of 5.5 at a pressure of 9 bar. This behaviour is expected, as 

the HP condenser heating duty declines with an opposite increase in compressor work as 

condensation pressure increases (Figure 5.16). 

Figure 5.16 HP-condenser heating duty and condensation pressure. 

Figure 5.17: PH diagram for R134a HP cycle under variable condensa-

tion pressure. 
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As HP-condenser heating duty declines with the rise in pressure, the amount of heat delivered 

to the water and thus its exit temperature is expected to decline, as shown in Figure 5.18. This 

figure shows that the water temperature is maintained at around 31.5 oC as the condensation 

pressure increases from 7 to 9 bar. Similar behaviour was shown in results obtained from Kang, 

S., et al. [50].  

In order to identify the condensation pressure for the ORC cycle that secures the desired final 

outlet water temperature of 65 oC, this parameter was iterated under constant water mass flow 

and ORC-evaporation pressure. Also, from the results above, the water temperature entering 

the ORC condenser was assumed to be of that existing of the HP condenser.  

 

In addition, as mentioned in the assumptions section, the power produced by the ORC expander 

is directly used to drive the HP compressor. As a result, the effects of varying the HP 

condensation pressure will be transferred to the ORC cycle via the calculated ORC mass flow. 

Figure 5.18 Effects of increasing HP condensation pressure on COPh and 

water temperature leaving the cycle.  
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Figure 5.19 shows the effects of increasing the HP and ORC condensation pressure on the 

R245fa mass flow. Increasing both pressure values causes a gradual rise in the ORC mass flow. 

As illustrated in Figure 5.16 above, with increasing HP condensation pressure, the compressor 

work increases, and the turbine power also increases which will lead to an increased ORC mass 

flow. 

Figure 5.19: R245fa mass flow under variable ORC and HP conden-

sation pressure. 

Figure 5.20: ORC-Condenser heating duty under variable ORC and HP con-

densation pressure. 
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The effects of condensation pressure of ORC and HP cycles on ORC heating capacity are shown 

in Figure 5.20, which illustrates that the ORC condenser capacity exponentially increases with 

increasing ORC condenser pressure between 4-7 bar. For each ORC condenser pressure level, 

increasing the HP condensation pressure increases the condenser capacity by approximately 3.5 

kW at lower ORC condenser pressure levels. However, in the higher ORC condenser pressure 

range, the increase in the condenser capacity due to the rise in the HP discharged pressure 

doubles to around 7 kW.  

 

Figure 5.21 shows the variation in the overall ORC thermal efficiency under different ORC 

condensation pressures. It shows that the ORC thermal efficiency declines as the ORC 

condensation pressure increases at constant ORC evaporation pressure.  

Figure 5.22 shows the final water temperature upon leaving the combined system under 

different ORC and HP condensation pressure levels. The optimization results show that 

increasing both condenser pressures will boost the final water temperature, particularly at 

higher pressure values in both condensers. The final water temperature is highly influenced by 

Figure 5.21: ORC-thermal efficiency under variable ORC-condensation pressure. 



Chapter 5: Combining ORC-HP cycles to provide hot water for domestic use 

 

 

142 

 

the ORC condenser capacity (Figure 5.20) which is dependent on the R245fa mass flow rate 

(Figure 5.19).   

 

 

Figure 5.23: Combined cycle total heating capacity under variable ORC and 

HP condensation pressure. 

Figure 5.22: Water temperature at ORC exit under variable ORC and HP 

condensation pressures. 
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The total heating capacity of the combined cycle is defined by the amount of thermal energy 

added to the water by both the ORC and HP condensers. As shown in Figure 5.23, the total 

heating capacity increases in a similar pattern to the ORC condenser capacity (Figure 5.20). 

The target total combined heat capacity of 20 kW is satisfied at HP condenser pressure of 9 bar 

and ORC condenser pressure of 5.5 bar. 

 

Figure 5.24 shows the effects of increased both condensers pressure on the Methane mass flow 

of the burner. From the previous results, it is clear that increasing both pressures causes an 

increase in R245fa mass flow and in the ORC condenser thermal duty. These lead to an increase 

in the fuel mass flow in the gas burner to generate the heat the ORC evaporator requires to 

evaporate the increment in the working fluid mass flow.  

 

From Methane mass flow, the total heat released from the gas burner is calculated by assuming 

a constant Methane heating value of 55.5 kJ/kg. The overall fuel to heat efficiency is the 

percentage ratio of total heating capacity of the combined cycle to the total heat released by the 

burner. From Figure 5.25, the fuel to heat efficiency declines as ORC and HP condensation 

pressure increases.  At the optimum condensation pressures of 9 and 5.5 bars for HP and ORC 

respectively, the combined cycle can achieve a total efficiency of around 136%.  

Figure 5.24: CH4 mass flow under variable ORC and HP condensation pressure. 
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5.5.1.1 Pinch point temperature difference in the HP and ORC condensers 

As mentioned previously in section 5.3.1, the water temperature upon exiting the HP condenser 

(at the first heating stage) was assumed to be 35 oC in order to identify the condensation 

temperature by maintaining the minimum pinch point ∆𝑇𝑚𝑖𝑛.𝑝.𝑝 between the two streams at the 

condenser exit. However, this temperature might not reflect the optimal value; in addition, this 

evaluation does not consider the pinch point assessment in depth. Therefore, another 

optimization process was carried out based on varying the water temperature at the HP 

condenser exit (Tw-exit-HP) but with the condition of maintaining the ∆𝑇𝑚𝑖𝑛.𝑝.𝑝 of 3 oC across the 

HP and ORC condensers. For each conditional loop, all the unknown parameters that satisfy 

that condition will be identified; namely, condenser pressure and temperature, refrigerant mass 

flow, and cycle efficiency. Knowing that, the same assumptions in section 5.5 were adopted in 

this evaluation.  

Figure 5.25: Fuel to heat efficiency under variable ORC and HP 

condensation pressures. 
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Figure 5.26 shows the variations in the HP condensation temperature and pressure due to 

increasing the water temperature at the condenser exit. It can be noted that both parameters have 

been increased linearly with the rise in the Tw-exit-HP. These increments are essential to keep the 

refrigerant hot stream over the water cold flow throughout the condenser. It can also be seen 

that when the water temperature is 30 oC, only a condensation temperature of 30.7 oC satisfies 

the formula ∆𝑇𝑚𝑖𝑛.𝑝.𝑝 across the HP condenser. When the water temperature is 35 oC, a 

condensation temperature of 35.2 oC satisfies the minimum pinch point, which is lower than 

the value adopted in the first evaluation (38 oC).  

 

 

 

 

 

 

Figure 5.26: HP condensation temperature and pressure under 

variable Tw-exit-HP. 
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Figure 5.27 shows the variation in the HP compressor work and COPh due to changes in the 

water temperature upon leaving the first heating stage. Increasing the water temperature causes 

a rise in the condensation pressure from 7.8 bar to 8.9 bar, as shown in Figure 5.26. This 

pressure increment range causes a steady increase in the compressor work, which consequently  

Figure 5.27: HP compressor work and COPh under variable Tw-exit-HP. 

Figure 5.28: R134a and R245fa mass flow under variable Tw-exit-HP. 
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reduces the heating coefficient of performance of the HP cycle (COPh). Similar results and 

explanations are provided above in Figures 5.16 and 5.18.   

Figure 5.28 shows the variation in both cycles’ working fluids mass flow due to changes in the 

water temperature. These results show that R134a mass flow increases linearly as result of 

increasing the Tw-exit-HP and the increase in both enthalpy at the condenser inlet (h2) and outlet 

(h3), as shown in Equation 3.15. Meanwhile the R245fa mass increases exponentially as a result 

of optimizing the ORC condensation pressure to maintain the minimum pinch point across the 

ORC condenser. Also, due to the direct coupling between the HP compressor and the ORC 

expander, the optimized ORC mass flow will drive the expander to produce the same amount 

of mechanical work needed for the HP cycle.  

The effects of varying the water temperature on the ORC condenser pressure and thermal 

efficiency are shown in Figure 5.29. It can be seen that with the increase in the water 

temperature upon entering the ORC condenser, a higher level of ORC condenser pressure is 

required to maintain the minimum pinch point temperature. The increase in the ORC 

condensation pressure under constant evaporation pressure will enhance the ORC thermal 

efficiency, as has been shown in previous results. 

Figure 5.29: Effects of varying Tw-exit-HP on the ORC condenser pressure and 

thermal efficiency. 
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Figure 5.30: Total system thermal capacity and final water temperature 

under variable Tw-exit-HP. 

Figure 5.31: Fuel to heat efficiency and CH4 mass flow under variable 

Tw-exit-HP. 
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The total heat added to water (i.e., the thermal system capacity) and hence the final water 

temperature at the ORC condenser exit are expected to increase as both condenser pressure and 

mass flow for both cycles increase with the rise in the Tw-exit-HP, as shown in Figure 5.30.  

Figure 5.31 shows the variations in the fuel to heat efficiency and Methane mass flow due to 

changes in the water temperature. The fuel to heat efficiency increases exponentially, reaching 

a maximum value when the water temperature is around 32 oC, then it declines afterwards. The 

fuel to heat efficiency is the ratio of the total thermal energy added to the water by the HP and 

ORC condensers to the total heat released from burning Methane. Thus, this ratio increases 

initially as the total energy added (Figure 5.30) is greater than the energy spent. In contrast, at 

water temperatures of more than 32 oC, the increment in Methane mass flow and hence energy 

production exceed the amount of added total thermal energy to water.  

From the above results, it is clear that at a Tw-exit-HP of around 32 oC, the combined system 

achieves optimal performance in terms of total heating capacity and final water temperature (20 

kW and 65 oC respectively, as shown in Figure 5.30). In addition, at this temperature value, the 

fuel to heat efficiency reaches a remarkable value of around 136.5% (Figure 5.31).  

5.5.1.2 Comparison between MATLAB and ASPEN PLUS models 

The steady state results acquired from MATLAB code for the first approach after maintaining 

the minimum PPTD across the HP and ORC condensers were verified using ASPEN PLUS 

software (Appendix A). The results from these models are shown in Tables 5.6 to 5.8, below. 

These tables summarise the calculated temperatures, heat duties, and work transfer within the 

key components and the evaluation indicators of the proposed system. As can be seen, there is 

only a very small difference (<8.3%) between the predictions made by the two models regarding 

the calculated heat transfer at each of the heat changers. The maximum deviation between these 

two models is in relation to the ORC condensation pressure, at 8.3%. Such a difference can be 

attributed to the different control strategies and the different PPTD approaches used in calcu-

lating the heat transfer and controlling the energy balance in the system. These results there-

fore demonstrate good overall agreement in the simulation results between the MATLAB and 

ASPEN PLUS models, offering the confidence to use the present model to further analyse the 

performance and characteristics of the proposed system.  
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Table 5.6 Combined cycle parameters as per ASPEN PLUS and MATLAB code 

 HP cycle ORC cycle 

 MATLAB 

code 

ASPEN  Difference MATLAB 

code 

ASPEN  Difference 

Condenser heat duty, kW  8.2125 8.044 2.1% 11.9751 12.098 1.0% 

Water temperature leav-

ing the cycle, oC 
32.5 32 1.6% 65.3084 65.35 0.1% 

Evaporator heat duty, kW 6.8853 6.744 2.1% 13.1291 13.221 0.7% 

Condensation tempera-

ture, oC   
33 33 0 61 64.157 4.9% 

Condensation pressure, 

bar 

8.3878 8.388 0 4.7683 5.2 8.3% 

Evaporation temperature, 
oC 

2.5 2.5 0 159 159 0 

Evaporation pressure, bar 3.2 3.203 0 36.5 36.5 0 

Power produced by ORC 

expander, kW 

- -  -1.3272 -1.3 2.1% 

Power input to the HP 

compressor, kW 

1.3272 1.3 2.1% - -  

Work of the liquid pump, 

kW 

- -  0.1732 0.178 2.7% 

Cycle mass flow rate, 

kg/s 

0.0447 0.0438 2.1% 0.0609 0.0625 2.6% 

 

Table 5.7 Cycle efficiency (first layout) 

 MATLAB code ASPEN  Difference 

Heating coefficient of performance COPh 6.1877 6.1879 0 

ORC thermal efficiency, % 8.7899 8.488 3.6% 

Total heating capacity, kW 20.1876 20.1428 0.2% 

Fuel to heat efficiency, % 136.5976 134.2662 1.7% 

 

Table 5.8 Gas burner design parameters 

 MATLAB code ASPEN  Difference 

Mass flow rate of methane, kg/s 2.6629e-04 2.7031e-04 1.5% 

Exhaust outlet temperature, oC 60 60 0 
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Figure 5.32 shows the T-Q curve (acquired from ASPEN) for the HP condenser (at the first 

heating stage) after the optimization process in the HP cycle. It shows that cold tap water enters 

the condenser at 10 oC, and after absorbing 8 kW of latent heat due to the condensation of 

R134a, the water temperature increases to 32 oC at the condenser exit. The figure also shows 

that the optimization has secured the required pinch point temperature difference between the 

cold stream (water) and the heat stream (working fluid, R134a).  

 

 

 

Figure 5.33 shows the T-Q curves for the ORC condenser (obtained from MATLAB code). It 

shows that the R245fa condensation released 12 kW of latent heat to be absorbed by the water 

to raise its temperature from 32 to 65 oC. Furthermore, the optimal ORC condenser pressure 

maintained a 3 oC pinch point temperature difference between the two streams.    

Figure 5.32: T-Q curve across the HP condenser.  
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5.5.1.3 Modelling the combined cycle with practical ORC evaporation pressure 

The above approach assumes that the ORC evaporation pressure is set to a high value close to 

the critical pressure in order to achieve the maximum ORC cycle efficiency. However, such 

high-pressure can be considered not feasible, and can add additional stress to the ORC cycle 

[48]. In addition, some countries have set an upper limit of 20 bar for vapour pressure to comply 

with safety regulations [132, 157]. Therefore, a pressure of 20 bar was implemented in this 

analysis, and the results are shown in Table 5.9. This optimization was carried out by 

maintaining 3 oC PPT at the HP and ORC condensers.  

 

 

 

 

 

Figure 5.33: T-Q curve across the ORC condenser.  
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Table 5.9 Combined cycle results at ORC evaporation pressure of 20 bar. 

Main combined system parameters Results with ORC evaporation 

pressure of 36.5 bar 

Results with ORC evaporation 

pressure of 20 bar 

ORC condenser pressure, bar 4.7683 4.5174 

Expander power, kW 1.3272 1.3272 

ORC thermal efficiency, % 8.7899 8.8145 

ORC cycle pressure ratio 7.6547 4.4 

ORC expander isentropic efficiency % 61.23 72.78 

Total system heating capacity, kW 20.1876 21.152 

Final water temperature, oC 65.3084 67.95 

ORC evaporator thermal capacity kW 13.1291 14.1903 

Mass flow rate of methane, kg/s 2.6629e-04 2.8781e-04 

ORC mass flow, kg/s 0.0609 0.0552 

Fuel to heat efficiency, % 136.5976 132.4202 

 

Table 5.9 shows that reducing the evaporation pressure from 36.5 to 20 bar has a minimal effect 

on most designed parameters, such as expander power, condenser pressure, ORC thermal 

efficiency, final water temperature, and total thermal capacity. However, due to the increase in 

the ORC evaporator thermal capacity (1 kW), Methane mass flow increases and therefore, the 

fuel to heat efficiency declines by 3%.  

 

5.5.1.4 Modelling the combined cycle under PPTD of 10 oC 

In practise, the PPTD selected in designing a heat exchanger could be higher than 3 oC that is 

adopted in simulation studies. Therefore, a practical PPTD of 10 oC is selected to study the 

effect of this PPTD on the combined system performance and compare the results with that 

obtained with 3 oC PPTD. The results are shown in Tables 5.10 and 5.11. Tables 5.10 shows 

that increasing the PPTD to 10 oC results in a reduction in the condenser and evaporator heating 

duties of the HP cycle with a corresponding increase in these parameters in the ORC cycle in 

order to satisfy a total heating duty of 20 kW. To achieve the target water temperature of 65 oC, 

the condensation temperature of HP and ORC cycles increased by around 5.2 and 7 oC 

respectively.  
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Table 5.10 Comparison results of the combined cycle parameters at different PPTD. 

Combined system design parameters 

HP cycle ORC cycle 

Results at 

PPTD of 3 
oC 

Results at 

PPTD of 10 oC 
Results at 

PPTD of 3 
oC 

Results at 

PPTD of 10 oC 

Condenser heat duty, kW  8.2125 7.4825 11.9751 12.8388 

Water temperature leaving the cycle, oC 32.5 30.5 65.3084 65.6747 

Evaporator heat duty, kW 6.8853 5.9515 13.1291 14.1759 

Condensation temperature, oC   33 38.22 61 68.79 

Condensation pressure, bar 8.3878 9.6898 4.7683 5.9 

Evaporation temperature, oC 2.5 2.5 159 159 

Evaporation pressure, bar 3.2 3.2 36.5 36.5 

Power produced by ORC expander, kW - - -1.3272 -1.531 

Power input to the HP compressor, kW 1.3272 1.531 - - 

Work of the liquid pump, kW - - 0.1732 0.194 

Cycle mass flow rate, kg/s 0.0447 0.0407 0.0609 0.0693 

 

Table 5.11 Combined cycle efficiency at different PPTD. 

Combined system performance Results at PPTD of 3 oC Results at PPTD of 10 oC 

Heating coefficient of performance COPh 6.1877 4.8872 

ORC thermal efficiency, % 8.7899 9.4321 

Total heating capacity, kW 20.1876 20.3213 

Fuel to heat efficiency, % 136.5976 127.3491 

 

Increasing HP and ORC condensation temperature and pressure under constant evaporation tem-

perature have resulted in reduction in HP heating coefficient of performance by 1.3 as shown in 

Table 5.11. In additions, the fuel to heat efficiency have declined by around 9% despite the small 

increment in the ORC thermal efficiency by 0.7%.  
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5.5.1.5 Validation of theoretical results with experimental data 

To validate the steady state results obtained from ASPEN PLUS model used in this thesis, an 

experimental data from the open literature on a similar HP and ORC cycles are used. For the 

HP cycle, results from Liang, Y. et al [114] study were used for the validation as shown in 

Table 5.12.  

Table 5.12 Validation of theoretical model for the HP cycle. 

HP cycle design parameters Liang, Y. et al [114] results ASPEN results  

Condenser heat duty, kW  3.31 8.044 

Water temperature entering the cycle, oC 15 10 

Water temperature leaving the cycle, oC 25.2 32 

Water mass flow, kg/s 0.0576 0.087 

Evaporator heat duty, kW 3.26 6.744 

Condensation temperature, oC   23.4 33 

Condensation pressure, bar 7.696 8.388 

Evaporation temperature, oC 2.4 2.5 

Superheat degree, oC 3.3 0 

Power input to the HP compressor, kW 1.01 1.3 

Compressor isentropic efficiency 0.5 0.7 

R134a mass flow rate, kg/s 0.0776 0.0438 

COPh, % 3.28 6.1 

 

 

From Table 5.12, the obtained COPh from the experimental results is different from that 

obtained from the theoretical model. This can be explained by a number of factors including: 

(1) The assumption of no pressure and heat loss across the HP cycle parts. (2) The lower 

isentropic efficiency of the compressor by 20% achieved in the experimental test. (3) The 

difference in condensation pressure and hence temperature by around 0.7 bar and 9.6 oC 

respectively, despite similar evaporation temperature.    

For the ORC cycle, experimental results from Collings, P et al. [126] study were used to validate 

the simulation results as shown in Table 5.13.  
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Table 5.13 Validation of theoretical model for the ORC cycle. 

ORC cycle design parameters Collings, P et al. [126] results ASPEN results  

Condenser heat duty, kW  -- 12.098 

Evaporator heat duty, kW 3.617 13.221 

Condensation temperature, oC   -- 64.157 

Condensation pressure, bar 1.4 5.2 

Evaporation temperature, oC -- 159 

Evaporation pressure, bar 5.82 36.5 

Net power, kW 0.262 1.122 

Turbine isentropic efficiency 0.74 0.7 

ORC thermal efficiency, %  6.8 8.488 

 

 

The ORC cycle adopted in Collings, P. et al [126] is a regenerative cycle designed for power 

production where the condenser thermal energy is rejected to the environment. This can explain 

the difference in the condensation pressure by 3.8 bar from the ASPEN model. In the simulation 

model, the evaporation pressure is set near the critical pressure of the working fluid. However, this 

might not be achievable in the experimental test due to the expander design limitation. The ORC 

cycle efficiency obtained from the experimental and theoretical simulation were close, with a 

difference of approximately 1.6%. This could be due to the close value of turbine isentropic 

efficiency. 
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5.5.2 Second approach: water heated by ORC cycle first 

In this approach, the first heating stage for water is assumed to occur via the ORC-condenser 

then the HP condenser. Generally, the modelling procedure is the same as for the previous 

model in which the evaporation pressures for both cycles are kept constant, the same as in the 

first approach. The isentropic efficiency for the expander and compressor is set to 70% for 

comparison purposes. In addition, the condenser pressures for both cycles are iterated until the 

water temperature at the HP cycle exit reaches the final design value. Furthermore, the ORC 

mass flow is increased gradually until the total heating capacity of the combined cycle is equal 

to 20 kW. A summary of the simulation results for approach two is presented in Tables 5.14 

and 5.15. 

Table 5.14 Steady state results for the second approach. 

Parameters 
ORC first 

HP cycle ORC cycle 

Condenser heat duty, kW  6.109 14.173 

Water temperature leaving the cycle, oC 65.73 48.95 

Evaporator heat duty, kW 4 16.1 

Condensation temperature, oC   66.36 46.45 

Condensation pressure, bar 19.5 3 

Evaporation temperature, oC 2.5 159 

Evaporation pressure, bar 3.203 36.5 

Power produced by the expander of ORC, kW -- 2.1 

Power input to the compressor of HP, kW 2.1 -- 

Work of the liquid pump, kW -- 0.198 

 

 Table 5.15 Combined cycle performance second approach. 

Parameters ORC first 

Heating coefficient of performance COPh 2.91 

ORC thermal efficiency 11.832 

Total heating capacity, kW 20.282 

Fuel to heat efficiency, % 111.540669 

CH4 mass flow kg/s 0.00032763 

Total heat released from CH4 combustion, kW 18.183 
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From these two tables, it is clear that both approaches can secure the thermal energy of 20 kW 

which is required to heat water from 10 to 65 oC. Although both approaches have achieved 

nearly equal overall heating duties, the first approach with the heat pump as the first heating 

stage shows a higher overall fuel to heat efficiency of 136%, as compared with 111% for the 

second approach. This is because the HP heating coefficient of performance declined by 47% 

despite the 21% increase in ORC efficiency achieved by the second approach. Furthermore, 

10% more Methane mass is required in the second approach to achieve the thermal energy 

required by the ORC evaporator.  

 

5.6 Exergy destruction analysis and the second law efficiency 

Exergy is the maximum theoretical work obtainable from a system, i.e. the maximal useful 

energy. It is thus an overall system property that depends on the system’s other thermophysical 

properties (temperature, pressure and enthalpy) as well as on atmospheric temperature and 

pressure. To investigate the quality of energy produced by the combined cycle, exergy 

destruction at each component of the system is calculated. In addition, the second law of 

efficiency is estimated for the heat pump and ORC cycles. 

 

 

Figure 5.34: Exergy destruction in each component of the HP cycle.  
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In the heat pump cycle, exergy loss occurs at higher rate in the compressor and condenser, as 

shown in Figure 5.34, with both components responsible for 78.3% of exergy destruction from 

a total value of 1.1279 kW. This is because the amount of entropy generation inside these 

components is high. 

The exergy destruction ratio in each part of the ORC cycle is shown in Figure 5.35. It is clear 

that the evaporator has higher exergy losses than other cycle components. This is because there 

are high temperature and enthalpy differences between the cold and hot streams across the 

evaporator. The same results were found by Nasir and Kim [169]. 

 

 

A summary of the energy and heat production and exergy loss across each part of the combined 

system is shown in Table 5.16. 

 

Table 5.16 Heat, power and exergy loss in the combined system  

Cycle Parameters Compressor / turbine Evaporator Condenser Valve / pump 

H
P

  

Heat / power, kW 1.3272 6.8853 8.2125 -- 

Exergy loss, kW 0.4787 0.1024 0.4046 0.1422 

O
R

C
 

Heat / power, kW 1.3272 13.1291 11.9751 0.1732 

Exergy loss, kW 0.5771 2.878 0.6409 0.0158 

Figure 5.35: Exergy destruction in each component of the ORC cycle.  
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The second law of efficiency measures the usefulness of a process or a cycle by comparing 

actual output with the ideal results. Thus, in the HP cycle, the second law of efficiency is taken 

as the ratio of actual COPh to the ideal (reversible) COPh. Similarly, in the ORC cycle, it is the 

ratio between actual and ideal thermal efficiency. 

 

 

The effects of HP condensation pressure on the HP second law of efficiency is shown in Figure 

5.36. As the condensation pressure increases, the second law of efficiency increases 

exponentially to reach a maximum value of around 68% when the condenser pressure reaches 

6 bar. Thereafter, a gradual decline is noted in the efficiency to a value of 58% at the optimum 

HP condensation pressure. This is explained by the fact that the actual COPh declines with the 

rise in condensation pressure, as demonstrated in the previous results. Also, higher pressure 

causes higher temperatures in the condenser and hence lower ideal COPh when the evaporation 

temperature is constant. 

In the ORC cycle, the second law of efficiency’s correlation with the ORC condenser pressure 

is shown in Figure 5.37. With the initial rise in condenser pressure, the second law of efficiency 

maintains a nearly constant value at the maximum achievable efficiency of around 47 %. 

Figure 5.36: Second law of efficiency for the HP cycle under variable HP 

condensation pressures.  
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However, further increments in the pressure beyond 7 bar result in a sharp decline in the second 

law of efficiency, which reaches its lowest level of 12.2% at a condensation pressure of 9 bar.  

 

5.7 Control strategies in the combined system when the ambient 

temperature varies 

Over the course of the year, the ambient air temperature varies considerably. For instance, the 

average air temperature in the UK might range between 5 to 15 oC, but it can also drop to below 

zero on some winter days. The variation in ambient temperature is one of the main factors that 

affects the performance of any air-sourced heat pump system, as shown in the results above. It 

is therefore essential to propose and investigate some control strategies that can tackle such 

variation. These are discussed in the following sub-sections. 

5.7.1 First control strategy 

Generally, for air sourced heat pump systems, as the ambient temperature drops, the thermal 

energy available for extraction declines. Thus, to improve heat extraction when the air 
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Figure 5.37: Second law of efficiency for the ORC cycle under variable ORC 

condensation pressure.  
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temperature falls, the air mass flow rate is adjusted accordingly. However, this strategy alone 

is only sufficient in certain temperature ranges. 

In this approach, the air mass flow is initially iterated under variable HP evaporator areas and 

ambient air temperatures to secure the designed heating capacity. The temperature of the gas 

burner exhaust gas is assumed to be 60 oC. Other design parameters were obtained from the 

results of the combined cycle with HP as the first heating stage simulation.  

As the ambient air temperature drops, the required air mass flow and evaporator heat transfer 

area increase gradually, as shown in Figure 5.38. However, when the temperature drops below 

7 oC, a rapid increase in air mass to 11 kg/s is needed. Similarly, the evaporator area increases 

as the air temperature drops, reaching a maximum value of around 2.5 m2 when the ambient 

temperature reaches 6 oC. 

 

 

As ambient air is also used to feed the gas burner, the heat from the combustion is expected to 

decline when the ambient temperature decreases. Thus, to compensate for the reduction in the 

Figure 5.38: Effects of ambient temperature on evaporator 

design parameters. 
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burner-produced thermal energy, the Methane mass flow needs to be increased slightly, as 

shown in Figure 5.39.   

 

 

 

Figure 5.40: Effects of increasing ambient air mass on the HP evaporator and con-

denser thermal duties.  

Figure 5.39: Effects of air temperature on Methane mass flow. 
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Figure 5.40 shows the effects of varying the air mass flow on the HP evaporator and condenser 

thermal duties. With the initial increase in air mass from 0.7 to 3 kg/s, evaporator thermal duty 

declines sharply from 7.29 to around 6.9 kW. A further increase in air mass has a minimal effect 

on this parameter, which maintains a nearly constant value of around 6.8 kW. Similar results 

have been presented in the literature by Chen and Yu [174] for an air source heat pump water 

heater. The dynamic results of that study, which were compared with experimental results, 

revealed that increasing the air velocity of the evaporator unit always enhances the overall cycle 

performance. However, it should be noted that this advantage is reduced when the air velocity 

exceeds 3 kg/s. In their study, the increase in the air mass flow was carried out under constant 

ambient air temperature. Therefore, the compressor work and the evaporator capacity were 

increased by 9.79% and 39.62% respectively. 

 

In our present model, such a reduction in the evaporator capacity can be considered acceptable, 

as this process aims at maintaining the minimum pinch point temperature difference between 

the hot and cold streams across the evaporator. The heat pump condenser heating duty declines 

in a similar manner to the evaporator thermal duty, as shown in Figure 5.40. This is because the 

HP condenser heating duty is the sum of the HP evaporator thermal duty and the compressor 

Figure 5.41: Effects of increasing ambient air mass flow on compressor work and 

superheat degree.  
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power consumption, which is assumed to be constant (Figure 5.41). Likewise, the superheat 

degree of the refrigerant at the evaporator exit declines gradually as air mass flow increases.  

The pinch point temperature difference across the HP evaporator between the hot stream (a 

mixture of ambient air and burner flue gases) and the cold stream (R134a) is maintained as 

constant when the air mass varies, as shown in Figure 5.42. This temperature difference is 

maintained at 3 oC, with the temperature of the mixture at the evaporator exit set at 5.5 oC to 

avoid frost formation on the evaporator. 

 

As the heating capacity of the HP condenser decreases with a constant compressor power, the 

heat pump COP will decrease. In addition, with the decline in both HP exchanger heating 

capacities, the actual power required from the compressor will be lower than the supply. Thus, 

the excess power will lead to a slight increase in the discharge pressure, as demonstrated in 

Figure 5.43. When ambient temperature drops from 15 to 6 oC, the condenser pressure steadily 

increases from 9 to 9.4 bar, with an opposite reduction in the COPh from 5.5 to 5.2. The fuel-

to-heat efficiency will similarly decrease from 132 to 129 % due to the increased Methane mass 

flow (Figure 5.39). In addition, the outlet water temperature slightly decreases when air 

Figure 5.42: Temperature difference between hot and cold streams across the 

HP evaporator. 
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temperature drops, reaching a value of 64.7 oC when the air temperature is 6 oC, as shown in 

Figure 5.44.   

 

 

Figure 5.43: Effects of decreasing ambient air temperature on system 

design parameters. 
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5.7.2 Second control strategy 

As shown in the above results, when the air temperature drops to 6 oC, the thermal energy 

available in the ambient air is not enough even when its mass flow is increased. Thus, another 

control strategy is proposed for when the air temperature drops to 6 oC and below. In this 

strategy, the ambient air stream entering the mixture that feeds the HP evaporator is suspended, 

and the gas burner flue gases stream is used as the only heat source for the evaporator. It is clear 

that ambient air will still be needed for the combustion process in the burner. Therefore, further 

Methane mass flow will be needed as a substitute for the reduction in the thermal energy being 

produced. As a result of these changes, lower fuel-to-heat efficiency is predicted when the 

ambient temperature drops below 6 oC. 

 

Figure 5.45 shows the effects of the ambient temperature drop from 6 to -5 oC on both Methane 

mass flow and flue gas temperature. With the initial drop in air temperature to 5 oC, the Methane 

mass flow needs to be increased significantly to produce the thermal energy required. After 

that, the Methane mass flow is maintained at a nearly constant level of around 0.000355 kg/s, 

despite further falls in air temperature. A similar trend is noted in the temperature of the flue 

gases, with a rapid initial increment from 60 to 585 oC when the air temperature drops to 5 oC. 

Figure 5.45: Effects of ambient temperature below 6 oC on Methane 

mass flow. 
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Thereafter, a further fall in air temperature has a minimal impact on the flue gas temperature as 

the heat production in the burner is fixed at 13.3 kW.  

5.8 Dynamic modelling to verify the control strategies 

In order to verify and validate the control strategy mechanism and the obtained results, a dy-

namic model was developed using ASPEN PLUS dynamic software. Since the HP evaporator 

is the only section that extracts free energy from the ambient air, and hence is significantly 

affected by ambient temperature variations, the dynamic evaluation focuses on this part. The 

same working conditions as used in the steady state simulation were adopted. The evaporator 

area was set to 2.5 m2, which is the maximum value obtained from the results above in control 

strategy one.  

In order to provide a continuously controlled feedback mechanism to adjust for the variations 

in ambient air temperature, a proportional integral derivative (PID) controller is used. The 

function of this tool is to calculate the error value as the difference between a measured process 

variable (PV) and a desired set point (ST), and it applies a correction to the controller output 

(OP) based on proportional, integral, and derivative coefficients to gain an optimal response. 

5.8.1 Modelling and results of control strategy one 

Figure 5.46 shows a schematic diagram of the dynamic model for control strategy one.  A PID 

controller (B1) is used between the ambient air stream entering the mixer and the evaporator 

outlet mixed stream. The PID controller output (OP) is the ambient air mass flow in kg/s, while 

the process variable (PV) is the temperature of the mixture leaving the evaporator. The set point 

(ST) is constant at 5.5 oC to avoid frost formation on the evaporator. The tuning parameters for 

the PID controller are set at a controller gain of 1% and an integral time of 5 minutes under 

reverse control action. This setting can ensure the gradual distribution of the ambient tempera-

ture over a half day course, with the highest temperature assumed to occur at midday, as shown 

in Figure 5.47.  
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Figure 5.48 shows the PID performance when the ambient air temperature varies between 6-15 

oC. It shows that the controller maintained the evaporator outlet temperature at 5.5 oC by 

adjusting the air mass flow. As the air temperature drops over the course of the day, the 

controller increases the air mass flow to secure more heat for extraction by the heat pump 

Figure 5.46: Schematic diagram of the dynamic model for control 

strategy one. 

Figure 5.47: Variation of the ambient air temperature over the time lapse. 
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evaporator. However, when the ambient temperature approaches 6 oC, the air mass flow 

increases significantly to approximately 11 kg/s and the evaporator outlet temperature drops 

slightly below 5.5 oC. This result is consistent with that obtained in the steady state results in 

control strategy one.  

 

 

Figure 5.49 shows the changes in R134a temperature in the suction line when the ambient air 

temperature varies. As the air temperature drops towards 6 oC, the refrigerant temperature 

declines from 15 to 6 oC. At the same time, the evaporator cooling capacity decreases from 

around 7.3 to 6.9 kW, as shown in Figure 5.50. These results are in agreement with those shown 

in Figures 5.40 and 5.41.   
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Figure 5.49: Variations in suction line temperature over the time lapse. 
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5.8.2 Modelling and results of control strategy two 

As illustrated in strategy two, when the ambient air temperature drops below 6 oC, the ambient 

air stream is terminated as not enough thermal energy is available for extraction from air. Thus, 

the exhaust stream will be the evaporator’s only heat source.  In this model, the PID controller 

is set between the Methane stream and the evaporator outlet stream to maintain a constant outlet 

temperature of 5.5 oC by manipulating Methane mass flow. A schematic diagram of this model 

is shown in Figure 5.51.   

 

 

Figure 5.52 shows the PID controller performance for control strategy two. With the decline in 

ambient air temperature (Figure 5.53), the PID controller responds to these changes by 

increasing the CH4 mass flow in kg/s (OP) to maintain the evaporator outlet temperature (PV) 

at a level close to 5.5 oC (ST).  

 

 

Figure 5.51: Schematic diagram of the dynamic model for control 

strategy two. 
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The corresponding changes in exhaust temperature when the ambient temperature and methane 

mass flow change over time are shown in Figure 5.54. These results are consistent with those 

obtained in the steady state evaluation for control strategy two (Figure 5.45).  
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5.9 Conclusion 

In this chapter, a combined ORC and HP system was proposed to produce hot water for domes-

tic application. A preliminary design was proposed and investigated to explore the maximum 

theoretical limit of the cycle performance. In this design, water heating happens in three stages: 

at the HP-condenser, the ORC-Condenser, and post heater. The results reported for this ap-

proach support that the system can achieve a maximum fuel-to heat efficiency of 136%. In 

addition, the post heater could only supply a limited amount of heat to the water, thus it can be 

removed from the proposed system with a potential cost saving. The optimum design configu-

ration was investigated, and the results showed that water heating by HP cycle then ORC cycle 

achieved a more efficient performance than the reverse design. Furthermore, the final design 

configuration was optimized in terms of pinch point approach in both the HP and ORC conden-

sers. The combined system was then evaluated in terms of exergy destruction and the second 

law efficiency. Control strategies were also proposed to tackle the effects of ambient tempera-

ture variation on system performance while maintaining the HP evaporator as frost free. These 

control strategies were verified and validated by dynamic model, which showed good agree-

ment with the steady state results. The overall results showed that the combined cycle can 
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achieve a fuel to heat efficiency of around 129% for domestic hot water applications. Such 

efficiency is competitive with the currently available heating technologies, such as Combi boil-

ers, which have an efficiency of around 90%. 
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Chapter 6 Utilizing the wasted heat from a data centre to cool and 

heat applications via the combined ORC-HP system 

6.1 Introduction 

Data centres are a pivotal facility of modern life that are expected to expand in numbers over 

the coming years. However, the electricity consumption by these facilities is also expected to 

rise at a rate of 20% per annum. Currently, it is estimated that 1.2-1.5% of all electricity being 

produced is utilized by DCs worldwide [22]. Electricity is mainly used in the operation of IT 

servers and to cool equipment due to the high heat flux generated as a by-product. The cooling 

process can consume around 40% of the total electricity supplied [175]. The wasted thermal 

energy from DC rooms has the potential to be recovered using various technologies such as 

organic Rankine cycle (ORC), heat pump (HP), combined heat and power cycle (CHP), absorp-

tion refrigeration, thermosyphon, and combinations between them. The combined ORC-HP cy-

cle investigated in previous chapter showed the potential for efficient waste heat recovery from 

gas burner flue gases and the ORC condenser. However, the results also showed that the system 

performance fluctuates with ambient temperature changes. The prior literature supports that the 

rejected heat from DCs is higher than the air or ground temperatures currently used as heat 

sources for modern heat pump systems [22]. In this chapter, a combined system is designed to 

provide a cooling effect and the recovered wasted heat is utilised in hot water supply or central 

heating. 

6.2 Thermodynamic concept  

A schematic diagram of the proposed system is shown in Figure 6.1. The gas driven ORC cycle 

provides the required mechanical work to run the vapour compression heat pump cycle. The 

HP evaporator absorbs the heat from DC room to provide a cooling effect. The waste heat 

rejected by both cycle condensers is used to heat water for central heating. The working condi-

tions and design parameters of a small DC were taken from an experimental study by Zhou, F. 

et al. [175]. The maximum cooling load is 12 kW, to keep the DC indoor temperature between 

18-25 oC in compliance with the regulations applied in most countries. In this chapter, to 
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demonstrate the steady state system performance, R134a and R245fa are selected as refrigerants 

for the HP and ORC cycles, respectively. In addition, Methane is used as a fuel for the gas 

burner. Furthermore, system performance and system heating capacity under a variable DC 

cooling load are comprehensively studied, and the control strategies needed to tackle this issue 

are proposed.  

 

6.3 Modelling of the combined system  

The modelling presented in this chapter is based on utilizing the heat recovered from the DC 

for water heating to be used in a central heating application. The thermal network return water 

temperature is commonly taken as between 50-60 oC (Wang, Z., et al.) [8], while the final hot 

water temperature is set to 80 oC [176]. Therefore, the proposed heating system will heat up 

water from 50-80 oC. In-house MATLAB code linked with REFPROP software has been de-

veloped to evaluate the energy balance across the combined cycle components. In addition, the 

steady state results are verified using ASPEN PLUS software. In the heat pump cycle, the inlet 

and outlet DC air temperature are assumed to be 18 and 25 oC respectively. The evaporation 

temperature is set at a constant 15 oC to secure a 3 oC pinch point temperature difference with 

Heat pump cycle

ORC cycle

HP evaporator

HP condenser

Gas Burner

ORC evaporator

ORC condenser

Pump
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Figure 6.1: Combined cycle configuration for DC application.  
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the indoor DC air out temperature and by assuming that the refrigerant is fully vaporized at the 

evaporator exit. The corresponding evaporation pressure is calculated using REFPROP soft-

ware as equal to 4.8837 bar. Similar working conditions for the gas burner are adopted from 

the previous model in chapter five. In addition, the same assumptions regarding the expansion 

process and isentropic efficiencies are made.  

6.3.1 Heat pump cycle optimization 

To identify the optimum refrigerant mass flow and condensation temperature for an HP cycle 

that achieves a 12 kW cooling load, iterations of R134a mass flow under a range of condensa-

tion temperatures between 55-65 oC were conducted under constant evaporation temperature 

and pressure. The effects of these variables on the cycle’s performance are studied. 

 

Figure 6.2 shows the effects of variations in evaporator thermal capacity with refrigerant mass 

flow rates under different condensation temperatures for the HP cycle. For the selected range 

of condensation temperatures, the evaporator cooling duty increases with the rise in R134a mass 

flow. For each mass flow, an increased condensation temperature will reduce the thermal 

Figure 6.2 : Effects of variations in R134a mass and condensation 

temperature on HP evaporator capacity. 
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capacity. In general, the thermal capacity of a heat exchanger is a function of the refrigerant 

mass flow and enthalpy difference (Delta h) across the exchanger. For the evaporator, the 

enthalpy at the inlet will increase with a rising condensation temperature, whereas the enthalpy 

at the evaporator exit is assumed to be constant. Hence, the evaporator capacity will decrease 

as Delta h increases.  

 

Likewise, regarding the evaporator cooling capacity, the condenser heating duty increases with 

refrigerant mass flow and decreases with rising condensation temperatures, as shown in Figure 

6.3. With the rise in the condenser temperature, enthalpies at both the inlet and the exit of the 

heat pump condenser increase. However, the increment in the enthalpy at the condenser outlet 

is higher than that at the inlet, resulting in a reduction in Delta h and hence a decline in the 

condenser heating duty, as was explained in the previous chapter.  

 

 

Figure 6.3: Effects of variations in R134a mass and condensation temperature on 

HP condenser capacity. 
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The work of the HP-compressor has been shown to increase with the rise in R134a mass at 

various condensation temperatures (see Figure 6.4). Similarly, the compressor will achieve 

higher net power when the HP condensation temperature increases due to higher enthalpy at 

the compressor outlet. 

Figure 6.4: Effects of variations in R134a mass and condensation pressure 

on compressor network. 

Figure 6.5: Effects of HP discharged pressure on COPc and COPh. 
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Figure 6.5 shows that the heating and cooling coefficients of performance decrease with the 

increase in condensation temperature. This happens because an increasing condenser 

temperature results in more compressor work and a lower heating capacity for the evaporator 

and condenser, as was explained in the results above.  

6.3.2 ORC cycle optimization  

In the ORC cycle, the same working conditions and assumptions as those used in the modelling 

approach in the previous chapter are deployed, including the ORC turbine and pump 

efficiencies. To identify the optimum ORC evaporator pressure for this case study, the pressure 

was optimized as shown in Figure 6.6.  

 

Figure 6.6 shows the effects of variations in ORC evaporator pressure at a constant mass flow 

on the evaporator heating duty and thermal efficiency. The results verify that at an evaporator 

pressure of 36.5 bar, thermal efficiency reaches the maximum value of 41 kW. However, 

variable ORC refrigerant mass flow is calculated assuming full mechanical power 

transformation between the ORC expander and the HP compressor. Figure 6.7 shows the 

Figure 6.6: Effects of HP discharged pressure on COPc and COPh. 
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variations in the ORC condenser heating duty due to the increase in the R245fa mass flow under 

variable HP-condensation temperatures.  

 

As mass flow increases, the heating duty rises for all condensation temperature ranges. 

Similarly, an increasing condensation temperature in the HP cycle causes a rise in ORC-

condenser heating duty in a pattern opposite to that which was noted in the HP-condenser 

(Figure 6.3). This is because an increasing HP-condensation temperature will require more 

compressor work, which means more turbine power and mass flow, and therefore, a higher 

ORC condenser heating capacity. 

 

 

 

 

Figure 6.7: Effects of increasing R245fa mass flow and HP condensation 

temperature on ORC condenser heating duty. 
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The total heat added to water is the sum of the heat added by both cycle condensers. As the HP 

condensation temperature increases, the total heating capacity rises for all R245fa mass flow, 

as shown in Figure 6.8. This is because the increment in ORC condenser heating duty (Figure 

6.7) is higher than the reduction in HP condenser heating duty (Figure 6.3). 

Figure 6.8: Effects of increasing R245fa mass flow and HP condensation 

temperature on total heat capacity added to water. 
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Figure 6.9: Fuel to heat efficiency of the combined cycle under variable 

HP condensation temperature. 
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The overall fuel to heat efficiency achieves a significant level, ranging from 125% to 150% for 

all condensation ranges, as illustrated in Figure 6.9. The fuel to heat efficiency includes the total 

heat added to water and the heat removed from the data centre, i.e. 12 kW divided by the total 

heat released from Methane combustion, as shown in Equation 6.1. 

𝜂𝑓𝑢𝑒𝑙−𝑡𝑜−ℎ𝑒𝑎𝑡 =
∑�̇�𝑤

�̇�𝑔
=

�̇�𝐻𝑃,𝑐𝑜𝑛𝑑+�̇�𝑂𝑅𝐶,𝑐𝑜𝑛𝑑+�̇�𝐻𝑃,𝑒𝑣𝑎𝑝

�̇�𝑔
                                6.1 

 

 

In the burner, the methane mass flow increases with rises in R245fa mass flow and HP 

condensation temperature, as shown in Figure 6.10. As the R245fa mass flow increases, the 

ORC condenser and consequently the evaporator thermal capacities increase, thus more 

methane mass is required to make up for these changes. 

 

 

Figure 6.10: Methane mass flow of the combined cycle under variable ORC 

mass flow and HP condensation temperatures. 
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6.3.3 Optimization of combined cycle under minimum PPT approach 

In order to accomplish optimum performance for the combined system, the design parameters 

were optimized by maintaining a minimum PPT across all the integrated system heat 

exchangers. The optimization process involved the following conditions: R134a is iterated until 

the HP evaporator cooling load reaches its desired value (12 kW); Water mass flow and ORC 

condenser pressure are iterated until the minimum PPT value is satisfied across the HP and 

ORC condensers, respectively; the HP condenser temperature is optimized in order to satisfy 

the final water temperature. The results are summarised in the figures shown below: 

 

Figure 6.11 shows the optimization results across the HP condenser. With an increased 

condensation temperature in the HP cycle, the water mass flow is gradually reduced in order to 

maintain the minimum PPT across the HP condenser. The figure also shows that the increasing 

HP condensation temperature results in a linear rise in water temperature at the condenser 

outlet.  

Figure 6.11: Effect of HP condensation temperature on water temperature 

and mass flow rate.  
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Figure 6.12 shows the optimization of the ORC condenser pressure to secure the PPT approach 

across the ORC condenser. The ORC thermal efficiency increases exponentially to reach a 

maximum value before declining. As the condenser pressure increases, the ORC cycle pressure 

ratio is changed accordingly. Therefore, the ORC efficiency will follow the expander’s 

isentropic efficiency performance curve (see Figure 5.22). In this optimization, the final water 

temperature (80 oC) is secured at an ORC condenser pressure of 8 bar and an ORC efficiency 

of 8.5%. Although the efficiency is not at its optimal level (9.5%), the difference can be 

considered reasonable.  

 

 

 

 

 

Figure 6.12: Optimization results across the ORC condenser. 
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Figure 6.13 shows the results of the optimization procedure on the overall combined system 

performance. The figure reveals that with the increase in the ORC condensation pressure, the 

fuel to heat efficiency declines from its maximum value (149.3%). This behaviour is strongly 

related to the exponential increase in the Methane mass flow (Figure 6.13) and the ORC thermal 

efficiency (Figure 6.12). At the condensation pressure of 8 bar which secures the desired outlet 

water temperature, the fuel to heat efficiency is around 137%.  

The steady state results for the combined cycle used for DC cooling with waste heat utilization 

to provide hot water for central heating are shown in Tables 6.1 and 6.2. 

 

 

 

Figure 6.13: Effect of ORC condenser pressure on CH4 mass flow and fuel to 

heat efficiency. 
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Table 6.1 Combined cycle operating parameters 

Parameters 
MATLAB CODE ASPEN PLUSE 

HP cycle ORC cycle HP cycle ORC cycle 

Condenser heat duty, kW  16.553 41.539 16.553 41.541 

Evaporator heat duty, kW 12 45.441 12 45.439 

Condensation temperature, oC   59.79 80 59.64 80 

Condensation pressure, bar 16.678 7.9 16.679 7.9 

Evaporation temperature, oC 15 159 15 159 

Evaporation pressure, bar 4.883 36.5 4.884 36.5 

Power produced by the ORC ex-

pander, kW 

-- -4.553 -- -4.553 

Power input to the HP compressor, 

kW 

4.553 -- 4.553 -- 

Work of the liquid pump, kW -- 0.651 -- 0.655 

Cycle mass flow rate, kg/s 0.0999 0.2413 0.09988 0.24134 

 

Table 6.2 Cycle efficiency (Data center application). 

Parameters MATLAB CODE ASPEN PLUSE 

Heating coefficient of performance COPh 3.635 3.635 

Cooling coefficient of performance COPc 2.635 2.635 

ORC thermal efficiency, % 8.58 8.578 

Total heating capacity, kW 58 58.09 

Fuel to heat efficiency, % 137 136.9 

Mass flow rate of methane, kg/s 9.2164e-04 0.00092247 

Air inlet temperature, oC 25 25 

Air outlet temperature, oC 18 18 

Water temperature entering the cycle, oC 50 50 

Water temperature leaving the cycle, oC 80 80 
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6.4 Superheating the R134a at the compressor inlet 

In practice, it is recommended that the HP refrigerant is superheated before entering the 

compressor in order to prevent any damage being caused by the wet refrigerant. However, 

excessive superheat is not a favourable solution because it will increase the compressor’s work 

and consequently reduce the COP. In this case study, the refrigerant is superheated to only 4 

oC, and the temperature of the working fluid at evaporator is set to 17 oC.   

6.5 Control strategies for the combined cycle under variable DC workload  

When the DC server heat production decreases as a result of reduced data processing demand, 

the DC indoor temperature will inevitably decrease. Thus, the heat extracted by the indoor HP 

evaporator will consequently decline, as shown in Figure 6.14.   

 

 

Figure 6.14: Evaporator cooling duty under variable evaporator inlet 

temperature. 
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Figure 6.14 shows the variation in the HP evaporator cooling duty when evaporator inlet tem-

perature decline as DC’s indoor temperature changes. For instance, when the temperature falls 

from 25-20 oC, the DC cooling load production is reduced linearly from 12-6.9 kW under a 

constant air mass flow of 1.6879 kg/s. From this result, it is clear that the cooling load is highly 

dependent on the indoor temperature. Thus, a series of control procedures for the combined 

cycle are proposed to cope with these changes. A control strategy for a HP and ORC cycles can 

be achieved by optimizing the heat sink, heat source, and refrigerant mass flow [177].  

 

6.5.1 Strategy one: Using the ambient air as a supplementary heat source 

As chapter 4 demonstrated, ambient air can provide a free and reliable heat source for the 

combined system when the air temperature is above 7 oC.  To extract thermal energy from 

ambient air, an additional external evaporator is proposed for the HP cycle, as shown in Figure 

6.15. This unit is installed outside the DC room in order to keep the DC equipment free from 

dust and pollution, and to prevent any mould formation. In addition, this external evaporator 

works under different temperatures from the indoor evaporator, at 2.5 oC or above to avoid frost 

formation on the unit (as was explained in chapter Four). The R134a mass for the HP cycle 

flows into the two evaporators through a splitter valve which controls the fraction of the mass 

for each evaporator. The splitter fraction is determined by the amount of thermal energy 

extracted by each evaporator. The heat transfer area has been calculated at the maximum 

thermal capacity for each evaporator, i.e. at the evaporator inlet temperature of 25 oC for DC, 

and at 7 oC for ambient air. In addition, the constant superheat degree is set at the evaporator 

exit to meet the PPT limitation. Other working conditions and parameters are adopted based on 

Tables 6.1 and 6.2.  
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Figure 6.15: Combined cycle configuration with double HP evaporator. 

Figure 6.16: Split mass fraction for R134a through the indoor evaporator. 
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Figure 6.16 shows the percentage of R134a mass flow passing through the indoor evaporator at 

different DC room temperatures. At the target room temperature of 25 oC, 100% of the 

refrigerant mass will be directed to the indoor evaporator. However, as the room temperature 

falls, more working fluid mass will be directed by the valve splitter to the outdoor evaporator 

to compensate for the reduction in the thermal energy extracted from the DC with the heat 

absorbed from the ambient air stream.  

The thermal capacities extracted by both evaporators are shown in Figure 6.17. With the fall in 

DC temperature to below 25 oC, the thermal capacity of the outdoor evaporator increases 

gradually in an opposite trend to that extracted by the indoor evaporator. This behaviour is 

dependent on the mass fraction of the working fluid passing through the evaporator, which is 

controlled by the valve splitter based on the variations in the DC’s indoor temperature.  

 

 

 

Figure 6.17: Thermal capacities for both HP cycle evaporators. 
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The total thermal capacity for both evaporators slightly decreases with the reduction in DC 

temperature, as shown in Figure 6.18. This reduction is associated with a slight reduction in the 

total heat being added to the water. This occurred because this particular optimization was 

carried out under constant evaporator areas and a fixed superheat degree at the evaporator exit.  

 

 

 

 

 

 

 

 

 

The fuel to heat efficiency of the combined cycle in this control strategy is shown in Figure 

6.19. With a fall in the DC temperature to below 25 oC, the fuel to heat efficiency declines from 

137% to 134.8% while maintaining a final water temperature of around 80 oC. This behaviour 

is expected as the total heat added to the water by the HP cycle has reduced, as illustrated in 

Figure 6.18.  

 

 

   

Figure 6.18: Total HP evaporators capacity and total heat added to the 

water in control strategy one. 
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Figure 6.19: Fuel to heat efficiency and final water temperature in con-

trol strategy one. 

Figure 6.20: Evaporator outlet temperature to DC inlet tempera-

ture in control strategy one 
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Although this control strategy maintains the final outlet water temperature at the designated 

target with a higher overall fuel to heat efficiency, the evaporator outlet temperature at the DC 

has declined below the target value of 18 oC, as shown in Figure 6.20. Other design parameters 

obtained for the combined cycle are shown in Table 6.3. 

Table 6.3 Combined cycle design parameters for control strategy one 

Parameters Values 

Evaporation temperature (internal evaporator), oC 15 

Evaporation temperature (external evaporator), oC 2.5 

COPc 2.55 

COPh 3.55 

ORC thermal efficiency, % 7.9 

Evaporator one area, m2 1.77 

Evaporator two area, m2 1.77 

R134a temperature at internal evaporator exit, oC 17 

R134a temperature at external evaporator exit, oC 6 

 

 

6.5.2 Strategy two: Using an exhaust stream as a supplementary heat source 

In this strategy, the reduction in the DC load is proposed to be substituted by the heat available 

in the exhaust stream in order to keep the combined cycle working under conditions of constant 

heat capacity. This can be achieved by installing a small heat exchanger between the suction 

line and the compressor, as shown in Figure 6.21.   

When the indoor DC temperature falls, the heat extracted by the HP evaporator will 

consequently reduce. Therefore, the fuel mass flow is proposed to be increased to produce 

excess thermal energy in the burner exhaust stream. This extra heat will be used to superheat 

the refrigerant in the superheat heat exchanger (HX). A PID controller is used to maintain the 

refrigerant superheat degree at the compressor inlet at a constant value. In this strategy, the 

temperature of the refrigerant at the compressor inlet is set to around 17 oC, as shown in Figure 

6.22.  
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The control process is carried out when the DC inlet temperature varies from 20-25 oC. 

Therefore, the area of the small HX is calculated and fixed when the DC inlet temperature is 20 

oC, which is equal to 0.32 m2. 

Heat pump cycle
ORC cycle

HP evaporator

HP condenser

Gas Burner

ORC evaporator

ORC condenser

Pump

Turbine expander

Compressor

Valve

Water inWater out

HP1

HP2

HP3

HP4

Indoor DC air in

ORC1

ORC2

ORC3

ORC4

Indoor DC air out

Fuel in

exhaust 

Heat

Work

Air in

Superheat HX

Figure 6.21: Combined cycle configuration with superheat heat exchanger.  
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Figure 6.22: PID controller performance in control strategy two. 
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Figure 6.22 shows the PID controller performance when the DC temperature increases from 

20-25 oC. The blue line represents the (PV) R134a temperature before entering the compressor, 

and the green line shows the Methane mass flow in the gas burner. When the DC inlet 

temperature ranges from 20-20.5 oC, this leads to an increase in the refrigerant temperature 

from the set point of 17.3 to 18.6 oC, which could increase the evaporator pressure and hence 

reduce the HP efficiency. Therefore, the PID controller adjusts the Methane mass flow to reduce 

the refrigerant temperature to the set point. By adapting this procedure, the evaporator pressure 

is maintained at a constant level, and hence the HP cycle performance is stabilized.  

 

With the change in the DC inlet temperature there is a corresponding decline in the HP 

evaporator capacity, which is assumed to be substituted by the superheat HX, as shown in 

Figure 6.23. For instance, at a DC temperature of 20 oC, the evaporator capacity is around 7 

kW and the superheat HX capacity is approximately 5 kW. Thus, the total heat capacity for 

both exchangers is 12 kW, which is the design target. In contrast, when the DC temperature is 

25 oC, the target total heat capacity is almost completely provided by the HP evaporator, and 

the superheat HX contribution is consequently limited.  
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Figure 6.24: DC inlet and outlet temperature in control strategy two 

Figure 6.25: Fuel to heat efficiency in control strategy two. 
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Although the total heat capacity provided by the heat pump cycle by both heat exchangers is 

maintained at a constant of around 12 kW, the DC outlet temperature drops below the target 

value of 18 oC, as shown in Figure 6.24.  

The fuel-to-heat efficiency in this control strategy is expected to decline with the rise in 

Methane mass flow as a consequence of the fall in the DC inlet temperature, as shown in Figure 

6.25. For example, the achieved fuel to heat efficiency when the DC temperature is 20 oC is 

around 112 %. In contrast, control strategy one has been shown to have achieved significantly 

high efficiency (134.8%) at this temperature value.  

6.5.3 Strategy three: Adjusting the combined cycle heating capacity 

In this approach, the refrigerants mass flow rate for all cycle components (except air) is 

optimized to compensate for the reduction in DC workload. This optimization aims to maintain 

nearly constant overall system performance in terms of fuel to heat efficiency and of an outlet 

water temperature of 80 oC. 

 

Figure 6.26: R134a mass flow optimization in control strategy three. 
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Figure 6.26 shows the iteration of the R134a mass flow of the HP cycle when the DC’s indoor 

temperature falls from 25-20 oC. The optimization is carried out under a constant superheat 

degree of 17 oC at the evaporator exit. The results show that the mass flow rate declines linearly 

between 0.099 to 0.055 kg/s as the temperature drops from 25 to 20 oC.  

Based on Figure 6.14, the HP evaporator cooling load declines linearly with the reduction in 

the DC’s indoor temperature. Thus, the work of the compressor and the condenser capacity are 

both expected to decline.  

 

 

With the reduction in the HP refrigerant mass flow rate (Figure 6.26), the work of the 

compressor declines from 4.5 to 2.5 kW. Similarly, as the DC cooling load drops from 12 kW 

(100%) to 6.97 kW (58%), as illustrated in Figure 6.14, the HP condenser heating capacity 

decreases from 16.5 to 9.5 kW, as shown in Figure 6.27.  

Figure 6.27: HP compressor work and condenser heat capacity in control 

strategy three. 
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As the HP compressor work decreases, and due to the direct coupling of the ORC turbine to the 

HP compressor, the amount of mechanical work needed from the ORC cycle will 

correspondingly fall. Thus, the ORC cycle refrigerant mass flow will need to be optimized.  

 

 

Figure 6.28 shows the optimisation of the R245fa mass flow and the turbine power for the ORC 

cycle. When the DC workload varies, the R245fa mass flow falls from 0.24 to 0.13 kg/s with a 

corresponding reduction in turbine power production from 4.5-2.5 kW, which is equal to the 

HP compressor work consumption shown in Figure 6.27.  

To maintain a constant outlet water temperature of 80 oC, the water mass flow rate is adjusted 

to compensate for the reduction in thermal energy rejected by the HP and ORC condensers, as 

shown in Figure 6.29. 

 

Figure 6.28: Optimization of R245fa mass flow and ORC expansion power in 

control strategy three. 
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Figure 6.29 shows that the water mass is reduced from 0.46 to 0.28 kg/s with a corresponding 

reduction in total system heat capacity from 58 to 35.1 kW. Although the heating capacity is 

lower, the fuel to heat efficiency is maintained at a nearly constant 137 %. In addition, this 

approach has maintained a hot water supply of 80 oC and an evaporator outlet temperature of 

around 15-18 oC, as shown in Figure 6.30.  

 

 

 

 

 

 

Figure 6.29: Total system heating capacity and water mass in control 

strategy three. 
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When the DC temperature falls below 20 oC, the minimum pinch point temperature difference 

(3 oC) between the air inlet temperature and the refrigerant at the evaporator exit is violated. 

Therefore, the heat available in the exhaust gas burner can be deployed to superheat the working 

fluid to 17 oC using a small heat exchanger, as demonstrated in control strategy two.  

In this design, the mass flow rate of the working fluids in each cycle is set to remain constant 

at the values obtained when the inlet temperature is 20 oC. The results of this approach are 

shown in Table 6.4. 

 

 

 

 

Figure 6.30: Outlet water temperature and air temperature as per variations in 

the inlet evaporator temperature.  
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Table 6.4 Combined system results in control strategy 3 for DC temperature below 20 oC. 

Temperature 

at 

evaporator 

inlet, oC 

Superheat 

HX 

capacity, 

kW 

Evaporator 

capacity, 

kW 

CH4 mass 

flow, kg/s 

Fuel to heat 

efficiency, 

% 

Temperature 

of air outlet, 
oC 

19.5 0.4575579 6.5043218 0.000506 131.287 15.68356 

19 0.9616085 6.0002712 0.000516 126.988 15.47928 

18.5 1.4587681 5.5031116 0.000527 122.9 15.27096 

18 1.9573035 5.0045763 0.000537 118.978 15.06346 

 

From Table 6.4, it can be noted that with the decline in the inlet evaporator temperature towards 

18 oC, the evaporator capacity falls by approximately 1.5 kW. This reduction in thermal 

capacity is compensated by the heat recovered from the burner exhaust flue gas. Thus, the 

system heating capacity is maintained at a constant level. However, the fuel to heat efficiency 

has declined from approximately 131-118.9 %, due to an increase in the CH4 mass flow from 

0.0005-0.000537 kg/s to produce more heat for extraction in the flu gases. This approach has 

achieved a constant hot water supply of 80 oC with a DC outlet temperature of 15 oC.  

6.5.4 Strategy four: Optimizing indoor air mass flow. 

In this approach, the DC air mass flow is iterated to compensate for variations in the DC work-

load. The system thermal capacity is proposed to be kept constant by maintaining a steady re-

frigerant mass flow for all cycle components.   
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Figure 6.31 shows that with a falling DC temperature, the air mass flow had to be increased to 

supply the evaporator with the thermal energy required to keep the system running with the 

same heating capacity. It can be noted that despite the decrease in the DC temperature from 25-

21.5 oC, the temperature of the R134a at the evaporator exit is maintained at 17 oC by increasing 

the DC air mass flow from 1.6879 to 13 kg/s. However, when the falling DC temperature 

reaches 21 oC and below, increasing the mass flow to 26 kg/s is insufficient to superheat the 

R134a at the evaporator exit to the desired value.  

The DC outlet temperature in this strategy is in the range of 18-20.5 oC when the DC inlet 

temperature is in the range of 25-21.5 oC, as shown in Figure 6.32. This outlet temperature is 

still within the desired target.  

 

 

Figure 6.31: Effects of optimizing air mass flow on suction line 

temperature in strategy four.  
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Based on these two Figures, it is evident that when the DC inlet temperature drops below 21.5 

oC, the air mass flow needs to be increased significantly. In addition, the temperature difference 

of the air stream across the evaporator is reduced. Therefore, not enough heat is available for 

extraction and at this temperature value, superheating the refrigerant is necessary by extracting 

heat from the burner exhaust stream using the superheat heat exchanger as per strategy two. 

By using the flue gases as a heat source to superheat the refrigerant to 17 oC, the air mass flow 

is set as constant at the value obtained when the DC inlet temperature is 21.5 oC, which is 13 

kg/s.  

Similar to strategy two, the reduction in the HP evaporator capacity is proposed to be substituted 

by the capacity provided by the superheat heat exchanger.   

 

 

Figure 6.32: DC room temperatures obtained from the fourth approach. 
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Figure 6.33 shows the changes in the thermal capacities of the HP evaporator and the superheat 

heat exchanger when the DC inlet temperature drops below 25 oC. When the evaporator inlet 

temperature falls from 25-21.5 oC, the evaporator’s thermal capacity is maintained at a constant 

12 kW as a result of optimizing the air mass flow. However, when the temperature drops below 

21.5 oC, the decline in the thermal capacity is compensated by an equivalent capacity obtained 

from the superheat HX. Thus, the overall HP capacity is maintained at a constant level, set at 

the desired target. 

 

 

 

 

Figure 6.33: Evaporator and superheat heat exchanger thermal capacities 

for fourth approach.  
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Figure 6.34 shows that with the fall in DC temperature, the fuel mass flow increases from the 

steady state value to 0.000975401 kg/s to produce the required thermal energy to feed the ORC 

evaporator and superheat exchanger. As a result, the overall fuel to heat efficiency falls from 

137 to 111.8%.  

In this design, the total heating capacity of the system is maintained at a constant level, and the 

final water temperature is kept at 80 oC.  

 

 

 

 

Figure 6.34: Methane mass flow and fuel to heat efficiency for the fourth 

approach. 
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6.6 Conclusion 

In this chapter, a gas driven combined HP-ORC cycle was numerically investigated for the 

purpose of data centre (DC) cooling, with waste heat utilized to provide a central heating 

supply. A comprehensive assessment was conducted in terms of design configuration, best 

theoretical performance, and the control strategies needed to maintain optimal system 

performance despite fluctuations in DC workload.  

When the DC operates at its maximum thermal workload (12 kW), the combined system has 

provided a cooling effect by pumping wasted heat from the DC and maintaining the indoor 

temperature at between 18-25 oC. This extracted heat has been recovered to provide central 

heating by lifting returnee water from 50-80 oC. The overall fuel to heat efficiency achieved is 

137%. When the DC workload varies, four control strategies are proposed to maintain the DC 

indoor temperature within the target range. Additional heat extracted from ambient air was 

proposed as a substitute for the reduction in thermal capacity of the DC while maintaining 

steady fuel to heat efficiency. However, the potential of this strategy is limited by the 

temperature of the outdoor environment. Alternatively, the thermal energy contained in the flue 

gases can be used to compensate for the decline in HP evaporator duty. In this proposed 

strategy, Methane mass flow consequently increases, resulting in lower fuel to heat efficiency 

(112 %). In both these strategies, the total heating capacity of the combined system is 

maintained at a constant level (58 kW). However, in the third control strategy, the total capacity 

was reduced by adjusting working fluids (water, R134a and R245fa) mass flow to maintain an 

optimum level of fuel to heat efficiency. The DC indoor air mass flow can be adjusted to 

increase heat extraction when the DC indoor temperature drops below 25 oC. This mechanism 

is valid in a limited DC indoor temperature range (25- 21.5 oC). In both strategies three and 

four, when the proposed mechanism is limited, heat from flue gases can be used to overcome 

the reduction in thermal energy at the expense of the fuel to heat efficiency.
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Chapter 7 Bottoming ORC-HP cycles with DE for refrigeration 

effects 

7.1 Introduction 

In the previous chapters, the combined ORC-HP system was used to provide hot water by uti-

lizing the ambient air or wasted heat from the data centre as a heat source for the heat pump 

cycle. In addition, the wasted heat from the ORC condenser and the gas burner exhaust stream 

were recovered to further enhance the system’s overall thermal efficiency. The results showed 

that this system can achieve a high fuel to heat efficiency compared with conventional heating 

technologies. In this chapter, the proposed cycle is used to provide a refrigeration load by re-

covering the wasted heat from a diesel engine exhaust stream. A steady state thermodynamic 

evaluation under rated diesel engine working conditions is conducted for the combined system. 

In addition, the effects of variable expander power due to variable diesel engine working con-

ditions are investigated. Furthermore, a control strategy for the HP to cope with variations in 

diesel engine working conditions is also considered.   

7.2 The concept  

The rejected thermal energy from the diesel engine via the exhaust stream (DE exhaust in) is 

used to power the ORC power generator cycle to produce mechanical work. This work is uti-

lized to drive a vapour compression heat pump cycle. The heat pump cycle is used to provide 

cold air at around -18 oC for refrigeration purposes. The low-grade heat from both the ORC and 

HP cycle is rejected to the environment. A configuration of the combined cycle is shown in 

Figure 7.1.  

7.3 Modelling the combined system for diesel engine rated condition 

In practice, to adapt to a variable power demand, a diesel engine can produce variable power 

by changing the fuel mass flow and hence the crankshaft rotation speed. The consequences of 

that include variable exhaust stream thermal power (mass flow and temperature). However, 

when the DE power production meets the demand, the DE is said to work in rated condition. In 
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this section, the combined system is modelled for the DE rated condition taken from 

experimental results in the literature [45].  

 

7.3.1 Modelling the heat source 

The mass fraction of the chemical composition of the exhaust stream adapted from Yu, G. et 

al. [45] are as follows: CO2= 0.151, H2O= 0.055, N2= 0.716, O2= 0.078. Under the DE rated 

condition, the exhaust stream temperature is 519 oC and the mass flow is 0.2752 kg/s. By 

identifying the optimum temperature at the DE exhaust stream out as shown in Figure 7.1, the 

total thermal capacity of the heat source can be estimated. The optimal temperature value occurs 

when the exhaust stream is kept in the vapour state to avoid corrosion in the ORC evaporator 

caused by vapour condensation. Therefore, initial calculations have been made for this purpose.  

Figure 7.2 shows the changes in the vapour fraction of DE exhaust out and the ORC evaporator 

thermal capacity due to a reduced exhaust stream temperature. The figure shows that when the 

stream temperature falls from 200 oC, the exhaust stream is kept in a vapour state. In addition, 

Figure 7.1: Combined system configuration for recovering heat from the diesel engine 

exhaust stream.  
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the ORC evaporator capacity is significantly increased. However, at a stream temperature below 

50 oC, the exhaust stream starts to change into a two phase flow due to the condensation effect. 

Therefore, the DE exhaust out temperature is set to 50 oC for further evaluation.   

 

7.3.2 Optimizing the combined system under variable ORC mass flow 

In this evaluation, the ORC mass flow is optimized under the assumption of constant heat source 

thermal capacity in order to study its effects on the combined system performance. The adapted 

refrigerant for the ORC cycle is R245fa, and the evaporation pressure is set at 36.5 bar. For the 

HP cycle, an evaporation temperature of -21 oC is adopted to produce air at a temperature of -

18 oC, as recommended for the refrigeration application. For both cycles, the condensation 

temperature is assumed to be as low as possible to improve both cycle efficiencies. By assuming 

the sink stream is a sea or cold tap water, the adapted condensation temperature is 25 oC. 

Constant isentropic efficiencies of 70% for the compressor and expander and 90% for the liquid 

pump are adopted.  

Figure 7.2: Relation between vapour fraction and ORC evaporator capacity 

under variable temperatures of the DE exhaust stream out.  
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Figure 7.3 shows the changes in ORC turbine power and thermal efficiency when the ORC 

mass flow increases. It shows that an increasing mass flow under constant heat source thermal 

capacity causes an exponential increase then a decrease in both designed parameters. This 

indicates that at each parameter’s maximum values, no more heat is available in the heat source  
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Figure 7.3: Relation between ORC expander power and thermal efficiency 

under variable ORC mass flow.  

Figure 7.4: Relation between ORC turbine temperature and condenser thermal 

capacity under variable ORC mass flow.  
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to evaporate the extra mass flow. Turbine power reaches its maximum value at a different ORC 

mass flow than that needed for thermal efficiency.  

Figure 7.4 demonstrates the behaviour of refrigerant temperature at the expander inlet and the 

ORC condenser capacity when the R245fa mass flow is increased. The figure shows that the 

refrigerant temperature declines with a rise in mass flow due to the constant heat source 

capacity. Similarly, the condenser capacity initially falls to its lowest value at a specific mass 

value then increases again after that. Minimizing the condenser capacity supports the cycle 

efficiency, as shown in Figure 7.3.  

 

Figure 7.5 shows the changes in the HP condenser capacity and the HP working fluid mass flow 

as a function of varying the ORC mass flow. Both increase exponentially, with a linear increase 

in the ORC mass flow up to maximum values of around 0.45 kg/s. The rise in the condenser 

capacity is in response to the increase in the HP refrigerant mass flow. Both parameters reach 

optimum performance when the turbine achieves its maximum value, as shown in Figure 7.3.  

Figure 7.6 shows the variations in HP evaporator capacity and the conversion ratio when the 

ORC mass flow increases. The conversion ratio is the ratio between the thermal capacities of 

the ORC and HP evaporators. The results show that both parameters increase in a similar 

Figure 7.5: Relation between HP condenser thermal capacity and R134a mass 

flow under variable ORC mass flow. 
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manner to the R134a mass flow in Figure 7.5. The R245fa mass flow of 0.45 kg/s secures the 

maximum HP condenser capacity, R134a mass flow, and HP evaporator capacity, as well as 

the maximum energy conversion ratio.  

 

7.3.3 The effects of superheating the refrigerant at the ORC evaporator exit 

It has been widely cited in the literature that adding more heat to the ORC cycle by superheating 

the refrigerant at the turbine inlet has many advantages. These can include keeping the 

refrigerant in a vapour state at the turbine inlet and outlet (especially with wet refrigerants) and 

recovering more heat from the heat source, which consequently produces more mechanical 

power. In this section, a degree of superheat temperature will be added to the refrigerant to 

study the effects of this action on the combined system performance. The optimization process 

is conducted under a constant pinch point temperature (30 oC) at the evaporator inlet and by 

assuming constant condensation pressure. In this approach, the range of superheat degree is 

initiated from the refrigerant critical temperature value to the maximum applicable temperature 

adopted from REFPROP.    

Figure 7.7 shows the effects of increasing the degree of refrigerant superheat at the turbine inlet 

on the expander power and cycle mass flow. The figure shows that increasing the working fluid 
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temperature causes a slight and gradual rise in expander power from 22.1-22.65 kW due to the 

rise in the enthalpy difference across the turbine. In the pinch point temperature optimization 

process of the ORC evaporator, the mass flow of the heat source stream is commonly optimized. 

However, in this model, the mass flow of the ORC is optimized instead, as heat source quantity 

and quality are assumed to be constant in the rated condition of the DE. The optimized working 

fluid values fall from 0.59 kg/s to 0.52 kg/s as shown in Figure 7.7.  

 

Figure 7.8 illustrates the changes in the ORC condenser thermal duty and the cycle efficiency 

due to changes in the refrigerant superheat degree at the turbine inlet. Superheating the 

refrigerant leads to a slight increase in cycle thermal efficiency, from 13.9 to 14.4%. This result 

is explained by the behaviour of the turbine power noted in Figure 7.7. A minimal reduction 

was observed in the condenser thermal capacity. The trend of the condenser capacity strongly 

follows that of the mass flow shown in Figure 7.7.  

 

Figure 7.7: Effects of superheating ORC refrigerant at expander inlet on 

turbine power and ORC mass flow.  
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Figure 7.8: Effects of superheating the ORC refrigerant at the expander inlet on 

turbine power and ORC mass flow.  

Figure 7.9: Effects of superheating the ORC refrigerant at the expander inlet on 

HP condenser thermal capacity and working fluid mass flow.  
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The effects of superheating the ORC refrigerant on the HP cycle parameters are shown in Figure 

7.9. Doing so causes an exponential rise in both HP condenser capacity and R134a mass flow 

due to the rise in the expander power that consequently leads to a similar increment in HP 

compressor work due to the direct coupling between them. These increments in compressor 

power increase the condenser capacity. Meanwhile, the R134a mass flow increases because the 

temperature of the R245fa has increased, which will raise the inlet enthalpy for the turbine (ℎ𝑖𝑛), 

as explained in the following equation: 

�̇�𝐻𝑃 =
�̇�𝑂𝑅𝐶×(ℎ𝑖𝑛−ℎ𝑜𝑢𝑡)𝑡𝑢𝑟𝑏𝑖𝑛𝑒

(ℎ𝑜𝑢𝑡−ℎ𝑖𝑛)𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
                                              (5.1) 

 

 

The effects of superheating the ORC working fluid on the HP evaporator thermal capacity and 

the heat to refrigeration conversion ratio are shown in Figure 7.10. The HP thermal capacity 

has increased from approximately 68.4 kW to 70.1 kW when using the superheat approach. In 

addition, the heat to refrigeration conversion ratio improves from 46.5 to 47.7% when the ORC 

refrigerant is superheated by 11 oC.  

Figure 7.10: Effects of superheating the ORC refrigerant at the expander 

inlet on HP evaporator thermal capacity and the heat to refrigeration 

conversion ratio.  
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7.4 Combining DE, ORC and HP cycles in the steady state working condition 

The steady state results for the combined ORC-HP system using R245fa as an ORC working 

fluid under the DE rated working condition are summarised in Tables 7.1 and 7.2. 

Table 7.1 Steady state results for the combined system bottoming DE.  

Parameters 

MATLAB code ASPEN PLUSE  

Heat pump 

cycle 

ORC cycle Heat pump 

cycle 

ORC cycle 

Condenser heat duty, kW  92.8 125.735 87.528 118.56 

Evaporator heat duty, kW 70.1379 146.912 66.133 138.554 

Condensation temperature, oC   25 25 25 25 

Condensation pressure, bar 6.6538 1.4825 6.654 1.483 

Evaporation temperature, oC -21 154 -21.03 154 

Evaporation pressure, bar 1.2710 36.5 1.269 36 

Degree of superheat, oC None 11 - 11 

Mass flow rate, kg/s 0.4633 0.5225 - - 

Power produced by the ORC expander, 

kW 

- -22.6693 - -21.395 

Power input to the HP compressor, kW 22.6693 - 21.395 - 

Cooling coefficient of performance COPc 3 - 3 - 

Work of liquid pump, kW - 1.4928 - 1.4 

ORC thermal efficiency, % - 14.4144 - 14.43 

Compressor and turbine isentropic effi-

ciency, % 

0.7 

Minimum PPT at ORC evaporator, oC 30 30 

Percentage of thermal heat recovered to 

refrigeration effect, % 

47.7415 47.73 
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Table 7.2 Diesel engine working conditions 

Exhaust temperature, oC 519 

Exhaust mass flow, kg/s 0.2752 

Temperature of the exhaust leaving ORC evaporator, oC 56.394 

 

7.5 Modelling the ORC cycle with different working fluids 

As can be concluded from the above results, the higher the refrigerant temperature at the turbine 

inlet, the greater the heat recovery obtained from the DE exhaust stream. Therefore, a 

comparison assessment has been made using the same modelling procedure as has previously 

been outlined and the same assumptions on other ORC working fluids. The aim of doing so was 

to investigate the performance of the combined cycle with different ORC refrigerants at higher 

temperatures for the turbine inlet. In this assessment, the temperature of each refrigerant has 

been increased from the critical temperature to the highest applicable temperature. For all the 

compared working fluids, the evaporation pressure was set near the critical pressure value, and 

the condensation pressure was iterated until the condensation temperature reached 25 oC, as 

shown in Table 7.3.  

Table 7.3 Different ORC working fluids at different evaporation and condensation pressures.  

ORC Refrigerant Evaporation pressure, bar Condensation pressure, bar 

R123 36.6 0.9136 

R22 49.9 10.439 

R134a 40.59 6.6538 

R245fa 36 1.4825 

Butane 37.96 2.4329 

 

Figure 7.11 shows the changes in the ORC turbine power when the refrigerant temperature at 

the turbine inlet increased for the selected working fluids.   



Chapter 7: Bottoming ORC-HP cycles with DE for refrigeration effects 

 

 

221 

 

 

The previous figure shows that for most working fluids, the expander power increases with a 

rise in the refrigerant temperature, then declines again. For each refrigerant, there is an optimum 

temperature value that achieves the highest expander power. For example, for R22 and R123, 

a refrigerant temperature of around 240 oC could be the optimum value. For other working 

fluids, a temperature of 165 oC achieves the highest expander power. The figure also reveals 

that R123 achieves the highest expander power, of around 26.5 kW, among all the working 

fluid options.  

The results regarding ORC thermal efficiency in relation to different working fluids are shown 

in Figure 7.12, which shows a similar trend to that of turbine power. Furthermore, at the 

optimum temperature value of each working fluid, each cycle achieves the highest thermal 

efficiency for that working fluid. The best thermal efficiency is achieved by R123, at around 

17%.  

 

 

Figure 7.11: Comparison results of expander power for different ORC working 

fluids when the temperature at the turbine inlet is increased.   
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Figure 7.13 shows the variations in mass flow for the selected working fluids due to an increased 

refrigerant temperature at the turbine inlet. The working fluid mass flow could indicate the 

sizing of the evaporator and hence have a cost impact. The results reveal that R123 shows a 

Figure 7.12: Comparison results of thermal efficiency for different ORC 

working fluids when temperature at turbine inlet is increased.   

Figure 7.13: Comparison results of mass flow for different ORC working 

fluids when temperature at turbine inlet is increased.   



Chapter 7: Bottoming ORC-HP cycles with DE for refrigeration effects 

 

 

223 

 

slightly higher mass flow than R22 at their optimum temperature (240 oC), which is better than 

the other refrigerants.  

 

From Figure 7.14, it is clear that working fluid R123 achieves the highest heat to refrigeration 

conversion ratio, at approximately 56% at the optimum refrigerant temperature. Butane and 

R245fa recover around 48% from the rejected heat in the exhaust stream into useful 

refrigeration load.  

For the next evaluation process, the refrigerant R123 will be adopted with its optimum 

temperature value at the turbine inlet.  

 

 

 

Figure 7.14: Comparison results of percentage of thermal heat recovered to 

refrigeration effect for different ORC working fluids when temperature at the 

turbine inlet is increased.   
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7.6 Modelling the combined cycle for variable diesel engine speed and loads 

7.6.1 Modelling a diesel engine exhaust stream with an ORC cycle 

To provide variable mechanical power and load, DE can work under variable engine rotation 

speeds. This will affect the quantity and quality of the thermal energy contained in the exhaust 

stream. This situation will consequently mean that the ORC cycle will produce variable output 

expansion power. To investigate the combined cycle under variable diesel engine working con-

ditions, experimental results for a heavy duty diesel engine working as a stationary electrical 

power plant generator have been taken from a prior study by Guopeng, Y. [178] see appendix 

B. These results include eight different engine crank shaft rotation speeds and engine output 

powers, as well as engine exhaust stream mass flow rates and temperatures, as shown in Figures 

7.15 and 7.16.  

 

From both figures, it is evident that with a rising diesel engine load, both the exhaust stream 

temperature and the mass flow increase. These increments will affect the combined cycle 

performance in terms of the amount of heat recovered from the exhaust stream, the ORC turbine 

output power, and the percentage of heat converted to the refrigeration load.  

Figure 7.15: Variable DE exhaust stream temperature under variable 

engine load percentages.   
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The optimization process for the combined system working under variable DE working 

conditions has been carried out with the following assumptions. The selected working fluid for 

the ORC is R123 and the optimum evaporator pressure and condensation temperature are taken 

from the calculations conducted in the previous section. Furthermore, instead of assuming a 30 

oC temperature difference at the evaporator exit between the exhaust and refrigerant streams, 

multi temperature difference values have been iterated in order to investigate the PPT 

temperature difference across the evaporator.  

Figure 7.17 shows the temperature profile of R123 and the exhaust stream across the evaporator 

under various temperature differences at the evaporator exit. The selected temperature 

difference values were 60 oC, 80 oC, and 100 oC. It is clear that all these temperature values 

produce the same temperature difference at the evaporator inlet. However, in depth 

investigation revealed that the pinch point inside the heat exchanger is reduced in line with the 

decrease in the selected temperature difference at the evaporator exit. Therefore, a constant 

temperature difference value of 100 oC between the hot and cold streams is adopted. This 

approach secured a minimum temperature difference of around 20 oC across the evaporator.  

Figure 7.16: Variable DE exhaust stream mass flow under variable 

engine load percentages.   
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Moreover, as can be seen in Figure 7.15, the lowest heat source temperature is around 215 oC 

at the DE percentage load of 20%. For the sake of the optimization process which aims to 

investigate all DE working conditions, the refrigerant temperature at the turbine inlet is set to 

185 oC to maintain 30 oC as the minimum heat source temperature. 

Figures 7.18 and 7.19 show how the ORC turbine output power and the R123 mass flow respond 

to changes in the diesel engine load and rotation speed. In Figure 7.18, when the percentage of 

engine load increases from 20-70 %, a steady increase in net power can be observed. As the 

engine approaches full load, the expansion power produced by the ORC cycle markedly 

increases. Likewise, the mass flow of the ORC cycle increases in a similar pattern to the turbine 

power, as shown in Figure 7.19.  

Figure 7.17: TQ curve for the ORC evaporator for variable exhaust 

stream outlet temperatures.  
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Figure 7.18: Variations in ORC turbine net-power under variable 

diesel engine load and rotation speed.  

Figure 7.19: Variations in ORC R123 mass flow under variable diesel 

engine load and rotation speed.  
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This behaviour can be explained by the fact that greater mass flow is needed to recover the extra 

heat produced when the diesel engine load increases. The obtained mechanical power from the 

ORC cycle varies from approximately 3.1 kW at the lowest diesel engine speed and load, to 

25.6 kW at the highest diesel engine working condition.  

7.6.2 Utilizing the output expansion net-power in a vapour compression refrigeration cycle 

Most conventional vapor compression refrigeration systems work on steady cooling duty and 

compressor consumption power which uses a switch on/off mode when the cooling load is 

satisfied [127]. However, for this particular design, in order to transform the variable thermal 

energy contained in the DE exhaust stream into a useful refrigeration load, a variable HP 

refrigerant mass flow approach is adopted. In the following results, the R134a mass flow rate 

is optimized in response to the changes in the HP compressor work which is directly coupled 

with the ORC turbine.  

Figure 7.20 shows the variations in the R134a mass flow which occur in response to fluctuations 

in the diesel engine speed and power output. It can be noted that HP mass flow rate gradually 

increases with the rise in the diesel engine output power. Also, the Figure shows only a minimal 

impact of the engine shaft rotation speed on the HP mass flow.  
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Figure 7.20: Variations in the R134a mass flow rate due to variable 

diesel engine power and rotation speeds.  

Figure 7.21: HP evaporator cooling capacity via variable diesel engine 

load and speeds.  
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Figure 7.21 shows the variations in the HP evaporator cooling duty due to variable diesel engine 

performance. Increasing the DE load from 20-100% causes a rise in the evaporator cooling duty 

of between approximately 9.9 – 79.4 kW, while increasing the engine speed from 1800- 2200 

rpm results in a further increase in evaporator capacity when approaching the full engine load. 

This happens because a higher evaporator cooling load occurs as a response to the increase in 

the refrigerant mass flow, as demonstrated in figure 7.20.  

7.6.3 Varying the mass flow rate in the heat pump system 

The mechanism of changing the refrigerant mass flow in the heat pump cycle can be practically 

achieved by varying the compressor frequency (rotation speed), or by using an expansion valve 

that can optimize the required mass for a certain cooling load [127].   

An expansion valve such as thermostatic expansion valve (TXV) can optimize the refrigerant 

mass flow passing through the evaporator by maintaining a constant degree of superheat at the 

evaporator exit. The sensor bulb of the TXV valve is charged and sealed with the same HP 

working fluid in a vapour state at a set temperature and pressure. This sensor is set up on the 

evaporator exit pipe to measure the temperature of the passing vapour refrigerant. When the 

cooling load increases (i.e. the temperature in the cooling chamber increases), the temperature 

of the refrigerant leaving the evaporator also increases, leading to a rise in the temperature and 

pressure of the refrigerant inside the TXV sensor bubble. Then, the pressure of the working 

fluid in the connecting pipe of the TXV valve increases, leading to an adjustment in the valve 

gate to allow more refrigerant to enter the evaporator in order to absorb the extra heat load.  

7.6.4 Superheating the refrigerant at the evaporator exit 

Superheating the working fluid at the evaporator exit ensures that no wet refrigerant enters the 

compressor, and secures constant evaporation pressure and temperatures, which can contribute 

to maintaining constant cycle performance. Usually, a constant superheat degree of 10 oC is 

recommended at the evaporator exit. However, for this case study, a constant superheat degree 

of 5 oC of R134a is assumed to allow a higher temperature and cooling load to be involved in 

the evaporation process.  
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7.7 Optimizing the evaporator cooling load 

As was stated earlier in this chapter, the HP evaporator is designed to produce a constant 

refrigeration temperature of around -18 oC. According to the sensitive heat equation, the 

evaporator cooling capacity can be optimized by adapting one or both of the approaches 

outlined in the following sub-sections. 

7.7.1 Optimizing the HP evaporator cooling load by varying the air temperature at the 

evaporator inlet  

Under the assumptions of constant air mass and outlet air temperature, the evaporator cooling 

capacity can be optimized by varying the inlet air temperature. The lowest value of this air 

temperature is restricted by the value of the refrigerant temperature at the evaporator exit (-16 

oC). Figure 7.22 shows the variations in the evaporator inlet air temperature when the diesel 

engine load and rotation speed vary. It can be noted that an increased DE load is associated with 

a gradual increment in the air temperature at the evaporator inlet. When the DE load is between 

20-30%, the air temperature is below approximately -16 oC, a temperature which could violate 

the PPT limitation at the evaporator exit. This produces the conclusion that the lower the 

superheat degree, the higher cooling load absorbed by the evaporator. Therefore, diesel  

Figure 7.22: HP evaporator inlet air temperature via variable diesel engine 

loads and speeds.  
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engine percentage loads of below 40 % lack the potential to produce a useful refrigeration load. 

The figure also shows that at a constant DE load, increasing the engine speed results in a slight 

increase in the evaporator air inlet temperature. This effect is greater at higher DE load 

percentages.  

7.7.2 Optimizing the evaporator cooling load by varying the air mass under a constant 

evaporator inlet air temperature 

By assuming a constant inlet air temperature (-10 oC), and an outlet designed evaporator air 

temperature (-18 oC), the evaporator cooling capacities produced from fluctuations in the DE 

loads and rotation speeds can be optimized based on varying the air mass flow.  

 

Figure 7.23 shows the effects of increasing the diesel engine load and crankshaft rotation speed 

on the air mass flow entering the HP evaporator. The figure reveals that the air mass flow 

increases significantly with the rise in the engine load from 20% to 100%, recording the lowest 

value of 0.89 kg/s at an engine speed of 1500 rpm and the highest value of 7 kg/s at an engine 

speed of 2200 rpm.  However, the engine speed showed less of an effect on the air mass at low 

engine loads. At higher engine loads (80-100%), the engine speed increments result in higher 

Figure 7.23 HP evaporator air mass flow via variable DE loads.  
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air mass flow. The behaviour of the air mass flow is influenced by the behaviour of the HP 

evaporator cooling capacity, as shown in Figure 7.21. 

7.8 The percentage of cooling load obtained from the DE rejected thermal 

energy  

As can be concluded from the results presented above, diesel engine loads below 40% have no 

ability to convert the thermal energy available in the exhaust stream of the diesel engine into a 

refrigeration effect. Therefore, the results of the diesel engine below the 40% load are excluded 

from the following analysis.   

 

Figure 7.24 shows the variations in the heat to refrigeration conversion ratio against fluctuations 

in diesel engine load and rotation speed. The variation in conversion ratio shows three different 

behaviours. For DE speeds of 1500 and 2000 rpm, the conversion ratio rises in increments in 

DE load to reach a maximum value at 60-80% engine load, then declines. At engine speeds of 

1600 rpm, 1800 rpm and 2200 rpm, the conversion energy ratio increases with the rise in the 

Figure 7.24: The effect of DE load on the percentage of thermal energy 

converted into cooling load. 
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DE load to reach an optimum value, then stabilizes. With the last group of engine speeds (1700, 

1900, and 2100 rpm), the conversion ratio declines with the rise in engine load then increases. 

These results can be attributed to the performance of the DE exhaust stream temperature, as 

shown in Figure 7.15. In general, the results show that increasing the engine load has no 

significant impact on the heat conversion ratio for most engine speeds.  

7.9 Dynamic behaviour and control strategy for the HP employing a TXV 

valve  

A dynamic evaluation is used to validate the concept of using the TXV as a mass flow optimizer 

for a variable heat pump cooling load, as shown in Figure 7.25. The thermophysical properties 

of the R134a acquired from the steady state evaluation are used as boundary conditions for the 

dynamic model, including pressure, temperature, mass flow rate, and vapour fraction. In addi-

tion, the dynamic evaluation requires fixed equipment sizes in aspects such as area or volume 

flow rate. Therefore, the HP evaporator area is calculated at the maximum engine speed and 

load using Equation 3.32, which works out at equal to approximately 15 m2.  

 

Figure 7.25: Configuration of the control strategy for a variable 

HP load. 
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The PID controller in the ASPEN dynamic model is set as follows: the set point is -16 oC which 

represents the temperature of the vapour refrigerant at the evaporator exit. The time integral is 

set to 5 minutes and the gain is set to 1%. The PID controller will optimize R134a mass flow 

in response to changes in the evaporator cooling load when the inlet air temperature decreases 

from -10 oC to -15.5 oC.   

 

Figure 7.26 shows the PID controller performance across the entire optimization process. The 

blue straight line represents the set point of the PID controller. For each time step, the PID 

controller optimises the R134a mass flow (the green curve) in order to maintain the refrigerant 

temperature at the evaporator exit at the set point (the red curve).  

Figure 7.26: PID controller performance. 
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As the inlet air temperature decreases, the evaporator cooling duty also decreases. Figure 7.27 

shows a gradual decline in evaporator cooling duty from approximately 79.2 to 24.4 kW.  These 

results verify those obtained in the steady state evaluation shown in Figure 7.21.  

 

 

Figure 7.28 shows the temperature of the air entering and leaving the evaporator. It shows the 

time steps of decreasing inlet air temperature (blue curve) from -10 to -15.5 when the PID 

Figure 7.27: Variable evaporator cooling loads in dynamic mode. 
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Figure 7.28: Air temperature at evaporator inlet and exit in dynamic evaluation. 
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controller stops its execution due to the pinch point temperature difference conflicting with the 

temperature of the refrigerant at the evaporator exit. In addition, it proves that the temperature 

obtained from the evaporator is kept constant at around the designed value (-18 oC) in the green 

curve.  

7.10 Utilizing the oil thermal circuit 

One common problem which occurs in the ORC cycle is the decomposition of the working fluid 

due to the high temperature of the combustion flame or heat source. This can cause a rise in 

working fluid temperature to a value higher than its applicable temperature. One of the proposed 

solutions is to prevent any direct contact between the heat source and the ORC working fluids 

by using an intermediate fluid able to tolerate high temperatures which also has good thermal 

conductivity. Thermal oil can be used in a close loop circuit to address this issue [179], as 

shown in Figure 7.29.  

 

Figure 7.29: Combined system configuration for recovering heat from the 

diesel engine exhaust stream with a thermal oil circuit. 
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7.10.1 Modelling the combined cycle with a thermal oil circuit 

The combined cycle is modelled in design mode in order to reach the optimum cycle 

performance. The mass flow of the thermal oil is increased gradually under the assumptions of 

maintaining a 30 oC difference between the hot stream (thermal oil) and the cold flow (R123) 

at the ORC evaporator exit (ORC1). In addition, the pinch point across the evaporator is also 

monitored.  

 

Figure 7.30 shows the variations in the ORC evaporator capacity and the turbine output power 

when the thermal oil mass flow is increased. Increasing the oil mass flow to 0.2755 kg/s satisfies 

the optimization process in terms of the ORC turbine power output, which reaches the steady 

state values mentioned in Figure 7.18. However, at this mass flow value, the PPT between the 

refrigerant and the thermal oil has fallen to an unacceptable value, as shown in Figure 7.31. 

Therefore, a refrigerant mass of around 0.4 kg/s is selected to satisfy the optimization process. 

At this stage, the area of the thermal oil HX can be calculated. The optimization results of the 

combined cycle employing a thermal oil circuit are shown in Table 7.4.  

Figure 7.30: ORC evaporator thermal capacity and turbine power under 

variable thermal oil mass flow. 
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Figure 7.31: TQ curve for the thermal oil HX under variable thermal oil 

mass flows. 
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Table 7.4 Steady state for the combined cycle utilizing the thermal oil HX circuit.  

Parameters Heat pump cycle ORC cycle 

Condenser heat duty, kW  107.545 121 

Evaporator heat duty, kW 81.286 146.021 

Condensation temperature, oC   25 25 

Condensation pressure, bar 6.654 0.915 

Evaporation temperature, oC -21 240 

Evaporation pressure, bar 1.269 36.5 

Degree of superheat, oC 5 - 

Evaporator heat transfer area, m2 15.519 3 

Mass flow rate, kg/s 0.523 0.473 

Power produced by the ORC expander, kW - 26.259 

Power input to the HP compressor, kW 26.259 - 

Cooling coefficient of performance COPc 3 - 

Work of the liquid pump, kW - 1.243 

ORC thermal efficiency, % - 17.131 

Oil temperature at thermal oil HX inlet 126.4 

Oil temperature at thermal oil HX outlet 270 

Thermal oil mass flow, kg/s 0.407 

Thermal oil heat exchanger area, m2 3.722 

Minimum PPT at ORC evaporator, oC 30 

Percentage of thermal heat recovered to refrigeration effect, % 55.66 
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7.11 Conclusion  

The potential offered through using a combined ORC-HP system as a heat recovery machine 

has been investigated in this chapter. The heat source for the ORC cycle is the rejected thermal 

energy contained in the diesel engine’s exhaust stream. An integrated system has been proposed 

here to convert this wasted heat into a useful refrigeration load with cold air of around -18 oC. 

A steady state evaluation of the combined cycle powered by a constant DE working condition 

was performed. The results showed that for the combined system using R245fa and R134a as 

working fluids for ORC and HP respectively, about 47% of the wasted heat can be converted 

into a useful refrigeration load. Furthermore, a comparison evaluation of ORC cycle working 

fluids was carried out and the R123 refrigerant showed the greatest potential in terms of higher 

ORC turbine power and cycle thermal efficiency.  

Further, a control strategy for the combined system working with variable DE loads and speeds 

has been proposed. This strategy is based on varying the ORC and HP working fluids mass flow 

to cope with the variations in the quantity and quality of the heat source. The results show that 

not all the power recovered from the ORC cycle can be converted into a useful refrigeration 

effect. More specifically, the thermal energy contained in the exhaust stream when the DE load 

is below 40% might not have the potential to be transferred into a refrigeration load due to the 

decline in temperature difference (pinch point) between the inlet evaporator air temperatures 

and the superheated vapour refrigerant at the HP evaporator exit. However, when the DE works 

at over the 40% percentage load, around 55% of the wasted heat available in the exhaust stream 

is recovered by the ORC and transformed into useful refrigeration effects by the HP cycle. 

Moreover, the mechanism of optimizing the refrigerant mass flow in the HP cycle was 

investigated by adopting the TVX valve concept. In addition, a dynamic model using ASPEN 

PLUS was employed to validate the concept of the TXV, and to verify the results obtained from 

the steady state simulation. 
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Chapter 8 Conclusion and future work 

In this chapter, the findings presented in the thesis are summarised, and a plan for future work 

is presented. 

8.1 Summary 

This thesis has theoretically examined a new integrated heating and cooling system consisting 

of an Organic Rankine cycle directly driving a vapour compression heat pump cycle. The pri-

mary heat sources are burning fossil fuel via a gas burner or using diesel engine exhaust gas. 

Supplemental heat sources have also been utilised, including ambient air, waste heat from gas 

burner flue gases, and wasted heat from data centre IT equipment. 

In chapter four, a comparative study of the performance of various working fluids for HP and 

ORC cycles was presented. The selected refrigerants for the HP cycle were: Ammonia, R600a, 

R22, R134a, R1234yf, R410a and CO2. The ORC cycle working fluids were: R123, Heptane, 

Hexane, Pentane, and R245fa as pure refrigerants, R245fa+R134a, and Hexane+R141b as ze-

otropic mixtures. The analysis was based on the performance of these working fluids in terms 

of cycle efficiency, heating and cooling capacities, as well as environmental and safety con-

cerns. 

For the HP cycle in heating mode, at low condensation temperature (30 oC), all refrigerants 

apart from CO2 showed comparable heating COP. In contrast, at a high condensation tempera-

ture, ammonia, R600a, R22 and R134a achieved higher COPh. For the HP cycle in cooling 

mode, all the refrigerants showed similar COPc behaviour as evaporation temperature increased 

at constant condensation pressure.  

In the ORC cycle, all the selected refrigerants showed reductions in thermal efficiency with a 

rising condensation temperature. Also, pure refrigerants showed better thermal efficiency than 

zeotropic mixtures.  

Natural refrigerants such as ammonia and CO2 have minimal environmental impacts, with no 

global warming potential or risk of damage to the ozone layer. Similarly, Pentane, Hexane, 

Heptane, and Isobutane (R600a) have low GWP and ODP profiles. However, from a safety 

point of view, these refrigerants as well as ammonia, might be not suitable for domestic appli-

cation due to their flammability or toxicity. R134a as a HP cycle working fluid has shown good 

thermal performance and is widely used with a good safety profile and environmentally friendly 
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behaviours. Similarly, R123 and R245fa as ORC working fluids have achieved comparable 

thermal efficiency with good safety and environmental profiles. These working fluids were 

therefore selected for the combined cycle studied in this thesis. 

Chapter five investigated the use of the combined cycle powered by a gas burner for domestic 

hot water application. A preliminary design was proposed and analysed in order to explore the 

highest achievable cycle performance. The results suggested that the system can achieve an 

overall fuel to heat efficiency of around 136%. In addition, the contribution of the post heater 

to water heating is minimal.  

Based on these results, a combined system without a post heater was proposed and investigated 

further in terms of the sequence of water heating in the HP and ORC condensers. In the first 

approach, the fuel to heat efficiency decreases with the rise in both condensers’ pressure. The 

second approach examined a system with a reversed water heating process in which the ORC 

condenser is the first heating stage. The overall results showed that the first approach achieved 

higher system efficiency than the reverse design.  

To tackle the effects of ambient temperature variation on the HP cycle while maintaining the 

HP evaporator in a frost free state, various control strategies were proposed and investigated. 

The results were verified and validated via a dynamic model, which showed good agreement 

with the steady state results.  

Chapter six examined the potential use of the combined system for data centre cooling, with 

the wasted heat recovered from the DC room used to heat returnee water for central heating 

application. The HP cycle achieves heating and cooling COP of around 3.6 and 2.6, respec-

tively. The ORC thermal efficiency is approximately 8.5% and the overall system fuel to heat 

efficiency is 137%.  

To tackle the effects of various DC workloads on the system performance, four control strate-

gies were proposed and analysed with the aim of maintain the DC room temperature within the 

target range. In the first strategy, DC room temperature is maintained below 25 oC, with returnee 

water of 80 oC and a fuel to heat efficiency of over 134%.  

In the second strategy the resulting fuel to heat efficiency is around 112%, which is lower than 

for strategy one. In both these strategies, the total heating capacity of the combined system is 

maintained at a constant 58 kW.  
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In the third strategy, the total heating capacity of the system is reduced while maintaining con-

stant fuel to heat efficiency (137%). The final water temperature is maintained at 80 oC, but the 

mass flow of water is reduced from 0.46 to 0.28 kg/s with a corresponding reduction in total 

system heat capacity from 58 to 35.1 kW. 

Strategy four is only valid for a limited range of indoor temperatures (25- 21.5 oC), after which 

the increasing indoor air mass flow to 26 kg/s becomes insufficient to superheat the refrigerant 

at the evaporator exit to the desired value. In both strategies three and four, the fuel to heat 

efficiency declines to around 111%.       

 

In chapter seven, a combined ORC-HP system was used to produce a refrigeration load by 

utilising diesel engine exhaust wasted heat as a primary energy source. The target cold air tem-

perature was -18 oC and R245fa and R134a were the initial selected working fluids for ORC 

and HP respectively. The achieved HP cooling COP is 3, the ORC thermal efficiency is 14.4%, 

and the heat to refrigeration conversion ratio is 47.7%.  

Modelling of the combined system under various diesel engine loads and speeds was also con-

ducted. In addition, a control strategy was proposed to adapt to these variations. A reduction in 

diesel engine load from 100% to 20% causes a decline in the HP evaporator cooling capacity 

from 79.4 to 9.9 kW. In addition, the air temperature at the evaporator inlet falls to -16 oC at 

diesel engine loads below 40%. 

 

8.2 Suggested future work 

Overall, the work conducted in this thesis supports the proposed system as an efficient heating 

and cooling technology. Some other potentially beneficial areas of research that could be car-

ried out in the future on this system can be summarised as follows: 

8.2.1 Theoretical work 

• It is well documented in the literature that an air source HP cycle performance varies with 

fluctuations in ambient temperature. In this thesis, ambient air has been used as the heat 

source for the HP evaporator, and the system performance was shown to be significantly 

affected by falling ambient temperatures. The potential of using more steady heat sources 
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such as geothermal, solar, surface water, or other waste heat sources instead of air could 

therefore be theoretically explored. 

• Various experimental and theoretical researches have examined the potential of enhancing 

the performance of the standalone ORC and HP cycles using various methods including the 

use of cascade configuration, an ejector as an expansion device instead of an expansion 

valve, and others. The potential of employing these technologies in the combined system 

proposed in this thesis could be explored and compared to the performance results reported 

in the present work. 

• A wider range of working fluids for the combined system could be selected and compared.  

• The definition of fuel to heat efficiency conducted in this research can be used as a 

comparison tool by applying it to other combined ORC-VCC cycles published in the 

literature.  

• The potential for using the combined system for large scale industrial heating and cooling 

application purposes could be investigated. In addition, other sources of waste heat, such as 

sewage water and industrial waste heat, could be used to further investigate the potential of 

the combined system as a waste heat recovery technology. 

• Investigating other power and heat recovery systems used for similar applications and 

comparing the results with the combined system studied in this thesis.  

8.2.2 Experimental work 

• Building a lab rig of the combined system with the intended application of domestic hot 

water supply would provide new insights. The results obtained in this thesis can be used as 

a guide in selecting the thermodynamic specifications of each of the cycle components. The 

design parameters could include the refrigerant type, evaporation and condensation pressure, 

and compressor and turbine power capacity. Ambient air source could initially be used as a 

heat source for the HP evaporator, either on its own or mixed with the gas burner flue gases.  
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• Alternative heat sources could be used to simulate the waste heat from a data centre or a 

diesel engine exhaust. For instance, a hot air blower with variable mass flow and temperature 

could be used for this purpose. The rig could be modified to simulate the combined cycle 

proposed in chapters six and seven.  
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Appendix A: Combined Gas burner-ORC-HP cycles by ASPEN PLUS 
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Appendix B: Diesel engine experimental results [178]. 

Engine 

Load 

Engine 

speed(r/min) 

Engine 

Power(kW) 

Temperature of 

exhaust gas (℃) 

Mass flow rate of 

exhaust gas (kg/s) 

Pressure of ex-

haust gas (bar) 

20% 

1500 

39.980 246.640 0.144 1.422439995 

40% 80.180 327.560 0.174 1.625960007 

60% 120.540 370.660 0.211 1.896199997 

80% 160.767 401.050 0.249 2.239800003 

100% 200.325 452.775 0.280 2.490800026 

20% 

1600 

42.660 247.940 0.158 1.476199997 

40% 85.660 318.700 0.194 1.730600006 

60% 128.660 358.460 0.235 2.048360001 

80% 171.420 390.800 0.274 2.390360046 

100% 213.833 456.550 0.302 2.673199992 

20% 

1700 

45.600 237.280 0.176 1.556360008 

40% 91.420 309.280 0.215 1.851080002 

60% 137.040 347.380 0.260 2.236280014 

80% 183.100 390.620 0.300 2.604440002 

100% 228.400 480.440 0.267 2.831720001 

20% 

1800 

48.040 237.620 0.190 1.646839996 

40% 96.240 298.840 0.236 1.987159988 

60% 144.500 339.380 0.284 2.390839966 

80% 192.960 389.700 0.320 2.725160004 

100% 240.200 496.560 0.343 2.935640015 

20% 

1900 

48.580 229.500 0.207 1.747399994 

40% 97.200 286.540 0.257 2.106440002 

60% 145.980 327.700 0.305 2.55523999 

80% 194.800 381.700 0.339 2.874799978 

100% 243.200 486.240 0.355 3.002600006 

20% 

2000 

48.400 225.520 0.224 1.832599991 

40% 97.020 275.060 0.276 2.245160004 

60% 145.500 316.000 0.326 2.699 

80% 194.420 386.100 0.354 2.959159973 

100% 242.000 473.320 0.370 3.10123999 

20% 

2100 

48.163 217.063 0.242 1.951249979 

40% 96.880 268.160 0.294 2.393960022 

60% 145.440 314.240 0.343 2.847320038 

80% 193.540 375.340 0.370 3.104600006 

100% 241.600 464.620 0.385 3.273800018 

20% 

2200 

48.1600 216.3600 0.2624 2.0913 

40% 96.7400 258.5400 0.3156 2.5488 

60% 145.0200 309.6600 0.3631 3.0175 

80% 193.6211 377.4892 0.3857 3.2798 

100% 240.6000 462.2400 0.4023 3.4334 
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