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Abstract

Between 2015 and 2018, proton-proton collisions were performed at the highest energy ever
achieved in man-made particle accelerators, with the Large Hadron Collider at CERN. This thesis
presents measurements performed with the ATLAS detector which fully exploit this energy, of
the high momentum production of the most massive fundamental particles known to exist: the
top quark and the Higgs boson. Firstly, the differential cross-section of highly boosted top quarks,

measured in the lepton+jets channel using the 3.2 fb~! of /s = 13 TeV collected in 2015, is

t.had
T

a fiducial volume and compared to a number of state-of-the-art Monte Carlo simulations. Then,

presented. Two kinematic properties of the boosted top quark, p>* and | yt’had| , are unfolded to
using 36 fb~! of data from 2015 and 2016, the search for associated production of a top quark
pair with a Higgs boson decaying to a pair of bottom quarks is discussed. Particular emphasis
is placed on the high pr boosted channel, the first time such an analysis has been published
by the ATLAS collaboration. A limit of 2.0 times the Standard Model expectation is set on
ttH, H — bb production alone, which after combining with analyses in other channels leads to
> 50 observation of both t7H production and H — bb decay. Finally, a number of optimisations
of the boosted t7H, H — bb analysis are presented, in view of a future publication of the combined
ttH, H — bb search using the full 140 fb~! of data collected by the end of 2018.
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training, fitting, validation regions, and cross-checks. Chapter 9 presents a number of studies I

performed as the lead analyst in the boosted channel for a forthcoming ¢7H publication.

XV



Chapter 1
Introduction

The story so far: In the beginning the Universe was created. This has made a lot of
people very angry and been widely regarded as a bad move.

— Douglas Adams

Often in the three and a half years in which I have been performing the work presented in this
document, I have been asked the question: why did you choose to study particle physics? Why is
it interesting? Why bother? The answer is that I like puzzles, of all sorts. And particle physics
is the grandest puzzle of all: that of the entire universe. How could you not want to study it?

The Standard Model of Particle Physics is the best solution to the puzzle that has yet been
postulated. A mind bogglingly accurate description of almost all known phenomena, it time
and again comes up with the correct answer to every question we can throw at it. The Large
Hadron Collider now smashes particles together at such high energy as to rewind 13.7 billion
years and recreate the conditions of the universe fractions of a second after it’s birth, and still the
theory predicts the results of our searches and measurements to astonishing accuracy. However,
the puzzle is not yet complete. The 2012 discovery of the Higgs boson [3, 4] filled one very
important hole, but the Standard Model still has nothing to say on gravity, dark matter, or dark
energy, while the issues of the fermion mass hierarchy, neutrino masses and the matter-antimatter
asymmetry of the observable universe are not yet satisfactorily put to bed. We venture forth with
little guidance on what it will look like; just our intuition, ingenuity, and unbridled belief that
whatever it is, it is beautiful.

One way in which to approach the puzzle of what lies beyond the Standard Model is to
make precise measurements of the fundamental parameters of the theory, such as the Yukawa
couplings [5] between the fermions and Higgs boson. The Yukawa coupling for the top quark,
Vs, is a particularly interesting parameter to measure: it is responsible for giving fermions mass,
and the top quark is the most massive fundamental particle of all. Why should the top quark
be so much more massive than the other fermions? Does it play a special role in electroweak
symmetry breaking, or in whatever new physics is out there?

The only way to measure y, directly is via associated production of top quarks and Higgs

1
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bosons. However, this is an incredibly rare process, with top quark pair plus Higgs boson (t7H)
production being just 1% of the total Higgs boson production cross-section, and single top quark
plus Higgs boson (tH) significantly smaller still [6]. The most abundant decay channel, the Higgs
decay to a pair of b quarks, is buried under a huge background of top quark pair production, the
cross-section of which is several orders of magnitude larger [7]. The problem then is two-fold:
ensuring that the top quark is well understood, such that we better understand the role it might
play in new physics, and may begin to hunt for the associated Higgs production needle amongst
the top quark hay; and then designing a sufficiently efficient strategy such that we have a chance
of finding that needle. It is these problems that this thesis seeks to solve, first via a measurement
of the kinematics of top quark production, and subsequently via searches for the 7 H process.

At the Large Hadron Collider (LHC), located on the outskirts of Geneva, Switzerland, proton-
proton collisions took place between 2015 and 2018 at an unprecedented centre-of-mass energy,
commonly denoted as /s, of 13 TeV. The ATLAS detector recorded data throughout this period,
ending the second run of the LHC with 140 fb~! of data with which to probe the Standard Model
and search for clues on what lies just out of view.

This document is structured as follows. Chapter 2 gives a brief overview of the Standard
Model of Particle Physics, paying particular attention to the aspects of the theory most relevant to
the analyses presented. Chapter 3 introduces some of the more advanced concepts utilised in the
thesis, including boosted particles, detector unfolding, profile likelihood fits, and multivariate
analysis methods. The ATLAS detector, and LHC accelerator complex, are discussed in Chapter
4, and the particle physics objects reconstructed in the detector are described in Chapter 5.
Monte-Carlo simulations, used extensively in the presented analyses, are introduced in Chapter
6. The first of the measurements presented, the differential cross-section measurement of boosted
top quarks, is detailed in Chapter 7. Chapter 8 describes the first ATLAS t7H, H — bb paper to
incorporate a boosted signal region, with Chapter 9 discussing the optimisations of the boosted
region that have been developed since the initial publication. Finally, Chapter 10 summarises
the results, and briefly looks to the future of field.



Chapter 2

The Standard Model of Particle Physics

There is a theory which states that if ever anyone discovers exactly what the Universe
is for and why it is here, it will instantly disappear and be replaced by something
even more bizarre and inexplicable. There is another theory which states that this has
already happened.

— Douglas Adams

The Standard Model of Particle Physics (SM) is an astonishing theory. Itis complex enough to
describe phenomena both over a wide range of orders of magnitude and centre-of-mass energies,
as shown in Figure 2.1. Indeed, the SM correctly predicts the electron magnetic moment to an
incredible 14 decimal places [8]. Simultaneously, it is simple enough to be written on the side
of a coffee cup, as in Figure 2.2.

The full SM Lagrangian can be written as the sum of four smaller pieces

1 _
-ESM = ZF/NFHV + iy Py + + (l,[/iyijl,ﬁj(]ﬁ + ]’L.C.) (2.1)

= -LGauge + -LFcrmi(ms + + -EYukawa’ (22)

where F,,, F'*” is the scalar product of the field strength tensor encapsulating the strong nuclear
force and the combined electroweak force. By represents the dynamics of the fermion fields
Y, with @ the covariant derivative on fermions required to maintain gauge symmetry. D, is
the covariant derivative on the boson fields, and thus D, ¢ encodes the interaction of the gauge
bosons with the Higgs field ¢. V(¢) is the potential of the Higgs field, from which spontaneous
symmetry breaking emerges. ;y;;j{;j¢ describes the interaction between the fermions v and
the Higgs field, with y;; the elements of the Yukawa matrix that encodes the strength of these
interactions. Finally, &.c. represents the Hermitian conjugate of the Yukawa terms, which are not
self-adjoint. In essence, these terms respectively encapsulate: the description of the fundamental
forces themselves; the dynamics of the fermions; the Higgs field and it’s coupling to the gauge

bosons; and the coupling between the Higgs field and the fermions.
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Standard Model Production Cross Section Measurements
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Figure 2.1: Summary plot of SM cross-section measurements, over many orders of magnitude

and at varying centre-of-mass energies, as measured by ATLAS [9].
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Figure 2.2: The SM Lagrangrian written on the side of a coffee cup, modulo one controversial
mistake [10]. Available at the CERN gift shop!
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Standard Model of Elementary Particles

three generations of matter interactions / force carriers
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Figure 2.3: The particle content of the Standard Model of Particle Physics [11].

The full particle content of the SM is summarised in Figure 2.3. The following sections look

at each of these smaller pieces in turn.

2.1 LGauge : The Fundamental Forces of Nature

1
LGauge = Z ,quuv

The first piece of the SM Lagrangian, LGauge, concerns the fundamental forces and the

(2.3)

particles which carry them, the gauge bosons, as well as their interactions. The SM is constructed
as a quantum field theory, in which the symmetries of nature are manifest as conserved currents,

following Noether’s theorem [12]. The SM thus relies on the gauge symmetry of the group
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Gsy = SUQB)c ® SU(2), ® U(1)y, where the three conserved currents are the color C, the
left-handed weak isospin L, and the weak hypercharge Y.

SU(3)¢ represents the strong interaction, and gives rise to quantum chromodynamics (QCD)
[13, 14], the force governing the interactions of quarks and gluons. The three “colors” of quark,
rgb, interact via gluons, which are the gauge bosons resulting from the eight generators of the
group. The strength of the strong interaction is governed by the strong coupling constant aj,
which is in fact energy dependent and thus not a constant at all [15]. At LHC energies, as
is sufficiently small as to be calculable perturbatively: see Chapter 6. The gluons themselves
are color charged, electrically neutral, and massless. Being color charged means that gluons
have a self-interaction, and this leads to the principle of quark confinement, whereby colored
particles will always bind to form colorless states: at low energy, the self-interaction creates
an anti-screening effect that causes the strength of the strong interaction to increase. Thus, any
particles that have a net color charge are bound together to form color neutral states.

SU(2); x U(1)y describes quantum electrodynamics (QED), the unified theory of electrody-
namics and the weak interaction [16—18]. SU(2); and U(1)7 have three and one generator(s)!
respectively. The gauge symmetry nominally requires that the corresponding bosons are mass-
less, but observation of massive gauge bosons W* and Z° implies something is missing: this is
the third piece of the Lagrangian, , discussed in Section 2.3. The mass of these particles
causes the weak interaction to have a very short range. The fourth boson is the humble photon,
which is responsible for the electromagnetic interaction. Being massless and electrically neutral

the photon does not have a self-interaction and has an infinite range.

2.2 L germions + Quarks and Leptons

Ll*'erminns = llﬁﬂlﬁ (24)

The fundamental building blocks of everything in the universe, from stars and galaxies to
the paper or screen upon which you are reading this document, and indeed including the human
body itself, are fermions: quarks and leptons. The protons and neutrons in the atomic nucleus
are made of up and down quarks (bound together by gluons), with orbiting electrons completing
the classical picture. The second piece of the SM Lagrangian, Ly ions, describes the dynamics
of these particles. The covariant derivative & encodes the interaction between the fermions, via
the gauge fields which propagate the strong, weak, and electromagnetic forces.

In fact, there are 3 generations of fermions, as shown in Figure 2.3. The three generations
of fermions have identical properties in terms of their color, weak, and electromagnetic charges,
varying only in their mass. Quarks carry color charge, and therefore experience the strong force,

while leptons do not. All fermions interact via the weak force, and all but the electrically neutral

IThe generators of a group are the set of objects from which the full dynamics of the group emerge; in this case,
they correspond to the set of gauge bosons which propagate the field.
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neutrinos interact electrodynamically. The heavy fermions are unstable, and thus decay, with

lifetimes inversely proportional to their mass. The heaviest fermion of all is the top quark.

2.2.1 The Top Quark

The top quark was first predicted by Kobayashi and Maskawa [19] in 1973 as part of an as yet
unseen 3rd generation of fermions. Discovery of the bottom quark [20] and the 7 lepton [21]
followed in the same decade, yet the top quark remained absent. It was finally discovered in
1995 at the Tevatron based CDF [22] and DO [23] collaborations at a centre-of-mass energy
of 1.8 TeV. Due to its high mass, 172.69 GeV + 0.25 (stat) = 0.41 (syst) in the most recent
ATLAS combination [24], it could not be produced by previous colliders. This unusually high
mass leads to some interesting properties. With a lifetime of 7 ~ 1072 s [25] — shorter than the
time required for hadronisation 7 ~ 10722 s [25] — it decays before it can form bound states. The
top can thus be reconstructed and studied in experiments as a bare quark, something that is not
possible for any other quark due to the effects of QCD confinement — a unique window through
which to study the Standard Model.

At the LHC, top quark pairs are produced by the strong interaction: 90% of #¢ pairs are via
gluon fusion, with the remaining 10% via ¢4 annihilation, at v/s = 13 TeV [26]. Tops decay
almost exclusively into a W boson and a b quark [27]. The leading order Feynman diagrams for
top quark pair production in a pp collider are shown in Figure 2.4. Single top quark production
is also possible, though the cross-section is comparatively small due to being a weakly initiated
process. The b quark binds with other quarks and produces a jet, a narrow spray of detectable
hadronic particles. Since the W can decay either hadronically into a pair of quarks or leptonically
into a charged lepton+neutrino, the 77 events can be categorised into three channels based upon
the W decays: dilepton, lepton+jets, or alljets, as shown in Figure 2.5. The dilepton channel
has the smallest branching ratio of the three at about 11%, meaning much lower statistics are
available. Though the leptons, which can be identified relatively easily, mean a good selection
efficiency, the second neutrino in the final state makes the accurate reconstruction of the full event
challenging. The branching ratio of the alljets channel is much larger, at around 45%, but suffers
from a large background due to QCD multijet production. It is further harder to trigger on due
to the lack of final state lepton, and the high jet multiplicity makes it a combinatoric challenge
to correctly reconstruct the top quarks. Lepton+jets events have a branching ratio similar to the
alljets, but include the key lepton for easy triggering and lower backgrounds, as well as a smaller

combinatorics problem.
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Figure 2.4: Leading order Feynman diagrams for ¢ production at the LHC.

2.3 : Electroweak Symmetry Breaking and
the Higgs Mechanism

(2.5)

In order to generate mass terms for the gauge bosons of the weak force — without breaking
gauge symmetry — an additional scalar field is required. The Brout-Englert-Higgs mechanism,
first postulated in 1964 by Higgs [29] [30], Englert and Brout [31], and Guralnik, Hagen
and Kibble [32], does exactly this, introducing a new scalar field ¢ and potential of the form
V(g) = i*¢"¢ + A(¢p7¢)?, with > and A free parameters. If u> < 0 and A > 0, the potential
is at its minimum at V(¢) = —u*>/24 = v. This value v is known as the vacuum expectation
value of the field. There are a ring of possible ¢ values, as shown in Figure 2.6, that reach this
minimum, and when the field is displaced from zero, the (arbitrary) choice of which value in
this ring is taken leads to the description of the symmetry as being spontaneously broken. Mass
terms corresponding to the W* and Z° boson now appear, along with an additional degree of
freedom with units of mass — an excitation of the scalar field, the Higgs boson (H), with mass
my = \/T,uz The observed masses of the W*, Z, and H bosons lead to a vacuum expectation
value of v = 246 GeV. A corresponds to the strength of the Higgs boson self-coupling, which is

as yet unobserved [33].
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Figure 2.5: Breakdown of top quark final states [28]. The analyses presented in this thesis focus
mainly on the e+jets and p+jets decays, together referred to as the “lepton+jets” channel.
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Figure 2.6: Graphical representation of the Higgs potential. The motion of the ball falling into
the minima of the potential, and the resulting value in the plane orthogonal to the V(¢) axis,
represents the “spontaneous” symmetry breaking [34].

2.3.1 The Higgs Boson

The mediating particle of the new scalar field, the Higgs boson, was discovered in 2012 by both
ATLAS [3] and CMS [4]. Since then, precision measurements of the particle have found it to
be consistent with the SM, with a mass myg = 125.09 + 0.24 GeV as of the latest ATLAS/CMS
combination [35]. Higgs bosons are produced in four primary production modes at the LHC:
gluon-gluon fusion (gg F), vector boson fusion (V BF’), associated production with a vector boson
(VH), and associated production with a pair of heavy quarks (tfHand bbH), Feynman diagrams
for which are shown in Figure 2.7. The cross-sections of each of these processes as a function
of centre-of-mass energy are shown in Figure 2.8.

The Higgs boson couplings to other particles are directly related to the mass of those particles.
The branching ratios of the Higgs is thus highly sensitive to the Higgs boson mass, as shown in
Figure 2.9a. At the observed value my =~ 125 GeV, shown in Figure 2.9b, the dominant decay
mode is to a pair of bottom quarks, with a total of 57% of all decays in this channel. WW and ZZ
decays are possible only if one of the two vector bosons are off shell, suppressing these channels.
Higgs decays to two gluons or photons are also possible despite these particles being massless,
due to loop diagrams (similar to the ggF production diagram in Figure 2.7a), with the largest

contribution from the top loop. Since the top quark is more massive than the Higgs boson itself,
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Figure 2.7: Representative Feynman diagrams for the main Higgs boson production modes at
the LHC, (a) gluon-gluon fusion, (b) vector boson fusion, (c) associated production with a vector
boson, (d) associated production with a pair of top or bottom quarks.



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS 13

I | T T T T T T T T T T | T T | T T | T T | T T | I%
5102 — M(H)= 125 GeV =
% : 1 (N3LO.QEE= NEel= i g
+ 3
T 10 E
o [ ]
I

S
N
|

II|

6 7 8 9 10 11 12 13 14 15
/s [TeV]

Figure 2.8: Higgs boson production cross-sections in the SM, as a function of centre-of-mass
energy [6].
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Figure 2.9: Branching ratios for the SM Higgs boson, (a) as a function of my [36], and (b) at the
observed value of my = 125 GeV [37]. The brancl_ling ratios are highly mass dependent, with
the dominant decay at my = 125 GeV being H — bb.

the Higgs boson decay to a pair of top quarks is kinematically forbidden.

24 Lyukawa : Acquiring Fermion Masses

Lyukawa = ¥iyijibjd + h.c. (2.6)

The new scalar field also introduces the terms shown in Equation 2.6, which are responsible

for the fermion masses. In the SM, the fermion masses m are proportional to v via the relation

[
myg = yf@, 2.7)

where y; is the size of the coupling between the Higgs boson and the fermion f, known as
the Yukawa coupling. The size of these couplings are not predicted by the SM, but are free
parameters of the theory. This relation demonstrates that the Higgs couples more strongly to
more massive particles, or equivalently that particles which couple more strongly to the Higgs
have a larger mass. Inserting the observed top quark mass and v into Equation 2.7 gives y, ~ 1.
This result has lead to speculation that the top quark plays a special role in electroweak symmetry
breaking and physics beyond the Standard Model, which is discussed in Section 2.5. To date, only
indirect measurements of y, have been possible; measurements of ggF production and H — yy
decays are sensitive to y; via the top quark contribution to the loop diagrams, though relies on the
assumption that there are no BSM particles entering these loops. The combined ATLAS + CMS

best fit for y; in this way is 1.40*02} times the SM expectation [38]. The CMS Collaboration
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also recently published an indirect measurement of y,, via differential distributions of top quark
kinematics [39], though this measurement is less sensitive than the ggF and H — 7y analyses
with a best fit of 1.071“8:2‘3t times the SM. A direct measurement of the top-Higgs coupling y; is
thus of extremely high interest as a test of the SM.

2.4.1 The Top-Higgs Coupling

Since the Higgs decay to two top quarks is heavily suppressed, the top Yukawa can only be
measured directly via associated production of the two particles. A representative leading order
Feynman diagram for the associated production of a Higgs boson with a pair of top quarks, t7H,
is shown in Figure 2.7d. Associated production with a single top quark, rH, is heavily suppressed
in the SM by the interference between diagrams [40], and so is not discussed in detail here.

In spite of this special interest and a huge effort, both ATLAS [41-43] and CMS [44,45] were
unable to detect any significant excess of 1#H production in Run 1, due to the low production
cross-section of such a high mass event and the irreducible background from ¢7 events. At higher
centre-of-mass energies, the SM cross-section of the t7H production processes increases faster
than the backgrounds: by a factor of 7.1, from 86 fb at 7 TeV to 611 fb at 14 TeV [46], whilst
the cross-section of the main t7+jets background increases from 172 pb at 7 TeV to 953 pb at
14 TeV [7]. This means the signal to background ratio will be improved in Run 2, with data
taking at 13 TeV. Additionally, with the higher energy available, a higher fraction of these events
will be highly energetic, motivating a search in the high pr boosted regime that is described in
Section 3.1. The boosted channel is also potentially more sensitive to deviations from the SM at
the LHC [47], due to this higher energy.

2.5 Lgsv: Beyond the Standard Model

Despite it’s success, the Standard Model is an incomplete theory, being unable to describe many
observed phenomena. The astute reader will have noted the absence of any mention of the force
of gravity from Section 2.1, and indeed the hunt for a quantum theory of gravity that could
incorporate it into the SM has so far evaded us. There is no prior reason why there should be
three generations of fermions, or why the masses of these generations are at such different scales:
why is m; >> m,? It similarly has nothing to say on the topic of dark matter or dark energy,
nor does it contain enough charge-parity violation to account for the huge matter-antimatter
asymmetry observed in the universe. The observation of neutrino oscillations implies a non-zero
mass for these particles, implying the existence of as-yet undetected right-handed neutrinos, or
some other new physics [27].

At one loop, the Higgs boson should pick up large quantum corrections to its mass, dominated

by the top quark loops. With A the energy scale at which new physics becomes apparent, this
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correction is approximately [48]
—m,2 A
v? 4n2

Thus, the larger the scale of new physics, the larger the Higgs boson mass correction is. With

Smly ~ (2.8)

Run 2 of the LHC already probing the TeV scale, no new physics observed, and the observation
of the Higgs mass at ~ 125 GeV, a large amount of fine-tuning is required to cancel out these
contributions to match observation. This is often referred to as the hierarchy problem or natural-
ness argument. Many new physics scenarios predict top-partners which lead to cancellation of
these contributions, such as those of supersymmetry [49,50] or vector-like quarks [51]. With no
sign of TeV scale new physics, and with no large energy increase on the particle physics horizon,
it is increasingly unlikely that any new particles will be observed in the near future. It is thus
incumbent on the discerning physicist to probe for further holes in the SM, which might provide
clues as to the nature of physics beyond the SM (BSM). This can be achieved by increasingly
precise measurements, which may deviate slightly from the SM predictions. As the heaviest
particle in the theory, the top quark may reasonably be expected to play an important role in
physics at high energy scales, such as through anomalous couplings in the top sector [52,53] or
higher order operator effects [54,55], and the effects of this may be visible via deviations from
the SM at LHC energies. All of these possible BSM physics scenarios motivate the measurement
of top production presented in Chapter 7, as well as the t7H analyses in Chapters 8 and 9. The
measurement of the top Yukawa via t7H is further motivated by composite Higgs models [56],
anomalous Higgs couplings [57, 58], and has implications for the stability of the electroweak

vacuum [59].



Chapter 3
Analysis Techniques

Solutions nearly always come from the direction you least expect, which means there’s
no point trying to look in that direction because it won’t be coming from there.

— Douglas Adams

This chapter introduces a number of common analysis techniques that are used in the analyses
presented in Chapters 7, 8, and 9. First, the concept of boosted particles, which are used
throughout, is introduced in Section 3.1. Section 3.2 describes the method of unfolding, whereby
detector effects are removed from the measured data, important for the results in Chapter 7.
Profile likelihood fits, used extensively in both Chapter 8 and Chapter 9, are then described in
Section 3.3, followed in Section 3.4 by introductions to the multivariate analysis techniques used

in a number of places in the same chapters.

3.1 Boosted Particles

With the increase in centre of mass energy in Run 2 of the LHC, more particles than ever before
are produced at high transverse momentum, including high mass particles such as top quarks and
Higgs bosons. Traditionally, the decay products of these particles are reconstructed individually:
top quarks decaying t — Wb — gqb and Higgs bosons decaying H — bb would typically be
reconstructed as three or two approximately conic sprays of mostly hadronic particles, known
as jets — discussed further in Section 5.3. This is referred to as the resolved topology. At high
pr, these decay products become collimated, eventually causing the jets to overlap and become
unresolvable. An alternate topology, referred to as the boosted regime, utilises this collimation
by reconstructing high pr heavy particles as a single larger radius jet, as demonstrated in Figure
3.1. Given the rule of thumb A ~ [274;’ for the angular separation between the decay products
of a particle of mass m, a jet of radius R = 1.0 will typically fully contain a top quark with
pr > 350 GeV or a Higgs boson with pr > 250 GeV. The advantage of this technique is that
it removes the combinatoric ambiguity of which jet originated from which decay product, while

17
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Figure 3.1: Cartoon depiction of the transition between the resolved and boosted regimes, for
the case of a hadronically decaying top quark.

Jet substructure techniques (see Section 5.3.5) can be utilised to tag the jet and further reduce
background. In addition, the selection efficiency increases relative to the resolved regime as pr
increases, and thus the energy reach of measurements and searches increases. More on the jet

tagging algorithms used in this thesis can be found in Section 5.3.6 and Section 9.3.

3.2 Unfolding

In ATLAS, Monte-Carlo (MC) simulations are passed through a simulation of the ATLAS
detector, as described in Section 6.7, in order to compare data and MC at detector level. In order
for the data to be useful to someone outside the ATLAS collaboration, it is important to remove
effects due to the interaction with the detector hardware. The process of doing this is referred
to in particle physics as unfolding, though in other applications like imaging or data science is
often referred to as “deconvolution” or “unsmearing”. Without unfolding, data from different
experiments could not be compared directly to each other, and theorists would be required to
pass their latest predictions through similar complex detector simulations — making unfolding
a crucial analysis technique. However, the procedure of removing the detector effects from the
data is not straightforward. Starting with the data measurement described by the function g(d),
the truth level distribution f(¢) is desired. The unfolding procedure is described by a Fredholm
equation of the first type [60]

[)K(d, 1) f(t)dt + b(d) = g(d), (3.1)

with K(d, t) the kernel representing the detector effects, and b(d) representing background events.
The equation in this form can be thought of as representing the “folding” of the detector effects
K(d, t) into the truth distribution f(¢) to give the detector level distribution g(d), analogous to
the detector simulation step described in Section 6.7. We thus desire a methodology for inverting
this operation. In this thesis we measure binned distributions g(d) and f(d), and in this case

there are 5 basic types of convolutions to the data that can affect the measurement. These are:
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(1) Migrations: when a measurement of the quantity is slightly smeared by limited detector
resolution or similar, causing “migrating”, where the detector level quantity falls into the

wrong bin of the histogram.

(2) Efficiency: an event which passes all selection requirements at truth level, but fails one or

more of the selection requirements at detector level.

(3) Acceptance: an event which passes all selection requirements at detector level, but fails

one or more of the selection requirements at truth level.

(4) Background: the wrong type of event passing event selection, such as a W+jets event in a

tf measurement.

(5) Statistical fluctuations: unavoidable fluctuations in the number of data events.

A number of methods for performing the unfolding exist, including simple bin-by-bin cor-
rections [61], Fully Bayesian Unfolding [62], and Singular Value Decomposition [63]. In the
analysis presented in Chapter 7, an Iterative D’Agostini [64] method, as implemented in the
RooUnfold package [65], is used.

To remove effects like (4) above, the number of background events from simulations and
data driven estimates of W+jets, Z+jets, Diboson, QCD Multijet, 7+V and Single Top that pass
selection are subtracted from each bin of the data. Next, an acceptance correction is applied, as
calculated from the ¢ signal MC. This accounts for effects of type (3), where an event is selected
at detector level but not particle level. These events are not desirable, as if they fail the particle
level selection, they lie outside the fiducial phase space, and thus this factor should be < 1. This
correction factor is applied per bin, and is defined as the fraction of events which pass both the
detector and truth level selections, divided by the events that pass detector level

J
e = NdLj“h (32)
Naet
where Nget&iruth 1S the events which pass at both detector and truth level, Nge is the events which
pass detector level, and the index j represents the bin in the detector level distribution.

Similarly, type (2) effects are corrected for using an efficiency correction €, which accounts

for events that passed at particle level but not at detector level, defined as

i
i _ Ndet&truth

€ , (3.3)

truth
where Ny is the events which pass at truth level, and in this case the index i is over the bins in
the truth level distribution.
Finally, a response matrix M is built. This is a two dimensional distribution with the detector

level on one axis and the truth distribution on the other, filled only with events that pass both



CHAPTER 3. ANALYSIS TECHNIQUES 20

selections. Any events which fall off the diagonal of this distribution are thus of type (1) as
described above. A migration matrix is a representation of the response matrix, where the bin
contents are normalised along each row or column, to display the fraction of events which lie on
or off diagonal.

The final equation governing the unfolding procedure is then given by

doe' ] 1
dXi L -AX €

) Z Ml;l ) fajcc ) (Nrjé:co - Nl{kg)’ (3.4)
J

fid js the cross-section in the fiducial phase space, X is the quantity of interest, £ is

where o
the integrated luminosity of the data, and AX’ is the width of bin i. The unfolding can thus be
thought of as a matrix inversion problem!, analogous to the inverse operation of the integration
of the kernel K(d, t) that embeds the detector response in Equation 3.1. To perform this matrix

inversion, Bayes theorem can be used

P(D|T)x P(T)

PTID) = =5,

(3.5)

where D represents detector level and T represents truth level. P(D), the probability distribution
for the data, here represents the “prior”, the assumptions made on our knowledge of the problem.
The resulting spectrum P(T|D), the truth probability distribution given the data distribution, is
referred to as the “posterior”. P(T) is the probability distribution of the truth, with P(D|T) the
probability distribution of the data given the truth. In the D’Agostini method, the initial chosen
prior is the nominal MC distribution. In order to minimise the influence of this assumption, the
matrix inversion is performed iteratively, with the posterior of the previous iteration used as the
prior for the subsequent iteration. In this way, the bias of the SM assumption in the initial prior is
minimised. The number of iterations performed is then a parameter of the unfolding that must be
chosen — too many iterations will cause fluctuations caused by limited MC statistics to become
increasingly influential in the unfolding, while too few will cause the SM prior to be influential

and potentially mask new physics effects.

3.3 Profile Likelihood Fit

If, instead of unfolding measurements of a particular signal process in a signal dominated region,
one wishes only to infer the presence of a signal over a potentially large background, a profile
likelihood fit can be used. From each set of particle physics events x, many parameters may be
inferred. These parameters may represent a quantity to be measured, such as the cross-section of

a particular process, referred to as the parameter of interest u, or parameters, 6, the systematic

I'This though is not strictly correct in D’Agostini unfolding, as it implies a single predetermined result could be
analytically obtained. In truth, the problem is a probabilistic one: for further details, see [64]
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uncertainties on the measurement of that quantity. These systematic uncertainties, or nuisance
parameters, hinder the precision of the desired measurement. By considering N independent
events X = xi, X, ..., Xy each as a sampling from a probability density f(x; u, @), an estimate of

the values for y and @ can be built using the likelihood function

N
L(x:0) = | [ fCu.0). (3.6)

The maximum value of this function occurs at i, 9, the best estimate for the parameters p, 6.
Thus, to estimate ¢ and 6, the task is to maximise the likelihood function. In practice, it is often
easier to minimise the negative log-likelihood — In L, which effectively replaces the product with

a sum

N
~InL=- Zln f(xi 1 0). (3.7)

The minimisation of this function is not in general analytically calculable and so instead numerical
techniques are used. In the fits described in this thesis, the MINOS method of the minuit program,
as implemented in the RooF1T package, is used [66].

In the case that there is a single parameter of interest 4 and many nuisance parameters 6, the

uncertainty on f can be found using a profile likelihood ratio

Ap) = ~ (3.8)

The double hat notation in L = (y, 5) denotes the maximum likelihood estimate of @ at a given
value of y, while the single hat notation in L = (4, 8) denotes the global maximum likelihood
estimate of u and @ together. With this, the compatibility between the data and any given value

of u can be easily tested, using the test statistic t,,

ty = —21In A(p). (3.9)

The probability density function of the test statistic 7, then follows a x? distribution, and the
uncertainty on £ can be calculated using confidence intervals [67].

In practice, due to the large number of events under consideration in high energy physics,
a profile likelihood fit is usually performed on a set of binned data. This data may be from
many different orthogonal regions, defined by the set of fiducial requirements applied to the
event. Some regions, referred to as signal regions, are selected to be enriched in signal events.
Other regions, orthogonal to the signal regions and selected to target background processes,
are referred to as control regions. Control regions allow a handle on the overall background

rate and other nuisance parameters. The signal can then be measured as the amount of events
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above the background expectation in the signal regions. It is common to further fit to a binned
discriminant distribution in the signal regions that separates the background and signal processes,
in order to maximise the sensitivity to the signal. In the case that the parameter of interest is
the cross-section of a particular process, it is common to define u = o /oswm, the ratio of the
measured cross-section to the SM expectation. This acts as a normalisation factor of the signal
event rate. Similarly, nuisance parameters k are assigned to the background rates, which may

be constrained by the results of dedicated measurements of these processes or freely floated if a

suitable such measurement does not exist. The expected total number of events N, in a given
bin with n different background processes can thus be expressed as
n
NoP (e, 8) = X NGP(O) + > ki X Neb (6). (3.10)
i

The nuisance parameters may in general follow any possible distribution. However, thanks to
the central limit theorem, a Taylor expansion around the maximum point § may be assumed to
be Gaussian in the high statistics limit [68]. The data distribution is assumed to be Poissonian.
Thus, the full expression for the likelihood, divided into M bins with N,E,’lbs events in that bin, is

exp Obs
L(ﬂ, k, 9) — 1_[ tOt (/'190’; 0) Nexp(ﬂk 0) % n —e_Tl' (311)
m NP3 V2r

The choice of region definitions, discriminant distributions, and the set of nuisance parameters,
are referred to as the fit model. The fit model is usually optimised on Asimov data, in order to
not be biased by fluctuations in the real data. An Asimov dataset is an artificial one in which
the number of events in each bin in the fit is exactly equal to the expected number of events, and
as such the number of events may be non-integer [67]. This is achieved using MC estimates for

signal on top of the data-driven and MC estimates of all of the backgrounds.

3.4 Multivariate Analysis

In many cases, simple linear requirements on observables are not sufficient to obtain clear
separation between two processes — for example to isolate #H production from 77 backgrounds,
or for selecting jets initiated from b-quarks against the background of c-quark, light-quark
and gluon initiated jets. In recent years, it has become increasingly common in high energy
physics to utilise machine learning (ML) techniques. In particular, multivariate analysis (MVA)
machine learning techniques have seen very widespread use. In these cases, many different
observables may provide some small amount of separation between each case, and MVAs may
allow the automated determination of the optimal set of requirements, or exploitation of non-

linear correlations between different observables in order to identify the most likely origin of a pp



CHAPTER 3. ANALYSIS TECHNIQUES 23

event, jet source, or any other such classification problem?2. Currently, two of the most popular
of these MVA algorithms are Boosted Decision Trees (BDT) [69] and Deep Neural Networks
(DNN) [70].

3.4.1 Common Concepts

There are many concepts common to the MVA algorithms described here. In high energy physics,
itis common to use simulated events to train these algorithms, since a true class label can then be
assigned to every event. This is known as supervised learning, though some examples of weakly
supervised or unsupervised learning, where the truth labels are not known, are also becoming
relevant [71,72]. The MVA is given some set of input features, which are properties of the object
to be classified, and the output of the MVA then discriminates between the different classes used
in the training.

Any algorithm which requires training is at some risk of overtraining or overfitting, whereby
the performance on the data used to train the algorithm exceeds the performance on an indepen-
dent dataset. In this case, it is clear that the algorithm has learned features that are present in
the training set which do not generalise to other datasets. This could be due to finite training
statistics, or a non-representative sample. The former is a common problem in high energy
physics, due to the high CPU overheads on many aspects of event simulation. The latter might
also happen in the case that the simulation is not representative of the data, and thus only features
which are well modelled should be utilised, and careful checks must be carried out to ensure
performance is reliable and understood.

Evaluating the performance of any MVA should always be performed on an independent
dataset which was not used in the training, to avoid overly optimistic evaluations due to over-
training. It is usual to partition the given dataset into training and testing datasets. Since the
MC events used to train are usually required to be used in the analysis itself too, it is common to
use cross-training, whereby the data is split into two equal sized subsets and two separate MVAs
are trained with each half and tested with the other. Comparing the performance of these two
independent MVAs is then an important check of overtraining, and the real data will simply use
one of the two, chosen at random event by event.

Overtraining can often be mitigated by careful choice of hyperparameters. Hyperparameters
are parameters of the algorithms themselves, which affect the learning of the algorithm. They
must be chosen by hand, or otherwise optimised in some fashion, and what works best varies is
highly problem dependent. The nature of the hyperparameters can take a wide variety of forms,
and some common examples are discussed in detail for the case of BDTs and DNNs in Sections
3.4.2 and 3.4.3.

20ne may also consider MVA regression, though this is not performed in any of the presented analyses and so
not described here.
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Figure 3.2: Example schematic of a Decision Tree [74]. Each circle represents a node, with the
labels S and B representing signal dominated and background dominated nodes. The notation
cl, c2, ¢3, and c4 represent the set of splitting thresholds applied at each branching, with xi, xJ,
and xk the input quantities that are being selected on.

3.4.2 Boosted Decision Trees

Boosted Decision Trees are an extension of the concept of a decision tree [73]. Given a set of
input features with labelled classification, a decision tree will find the location of the optimal
threshold on one of these observables in order to separate the classes. Such a splitting is referred
to as a node, with the subsequent paths referred to as branches. Most commonly, BDTs are used
as binary classifiers, though it is also possible to have more than two possible labels. The process
may continue indefinitely, splitting the daughter nodes further until full separation is obtained, or
else complexity can be limited by terminating the splitting at some maximum depth or minimum
node size. The resulting end points are referred to as leaves. An example schematic of a decision
tree is shown in Figure 3.2.

The choice of observable and threshold applied are determined by minimising some separa-
tion index, such as Ginilndex G [75] or CrossEntropy E [76]. These are commonly defined in

terms of the purity p, defined for binary classification as

K

= — 3.12
p s+b ( )
sb

2><p><(1—p):m, (313)

E = —pxIn(p)—(-p)xIn(l - p), (3.14)
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where s and b are the number of signal and background events respectively. Consider a toy

example in which there are six events, with the following observable values:

Classification  Njet  MNiep

Signal 4 2

Signal 4 1
Signal 5 1
Background 4 1
Background 3 2
Background 3 2

The Ginilndex and CrossEntropy for the initial node are then

3

N 3.15
P =373 (3.15)
G = 2x05%x(1-05)=0.5 (3.16)
E = -0.5x1In(0.5) - (1 - 0.5) x In(I = 0.5) = 0.693. (3.17)

If a requirement is made that Ny, < 2, the Ginilndex and CrossEntropy, averaged over the

resulting nodes, becomes

1 2
= —— =0.333 =—— =0.666 3.18
=15 » P2= 5 \ (3.18)
G = ((2%0.333x (1 =0.333)) + (2 x 0.666 x (1 — 0.666))/2
= 0.444, (3.19)

E = (=0.333 x1n(0.333) — (1 — 0.333) x In(1 — 0.333) +
~0.666 x In(0.666) — (1 — 0.666) x In(1 — 0.666))/2
= 0.637. (3.20)

The separation index in both cases has thus reduced, and so this could be a candidate for the first

splitting. However, if a requirement is instead applied at Nje¢s > 4

3 0
pl_—3+1—0.75 , p2—0+2—0, (3.21)
G = 0.09375, (3.22)
E = 0.56233. (3.23)

Now, both G and E reduce much more, and so this splitting is preferred to the first one tested. A
decision tree will scan over all observables, find the optimal threshold for each, and choose the
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one which results in the lowest value of the chosen separation index.

A single decision tree by itself is an example of a weak learner. If complexity is left
unhindered, the tree will become overtrained. If complexity is limited, it it less susceptible to
overtraining, though not immune, and performance will be limited: many leaves will not be
completely pure in any particular class, and thus some events will be misclassified. Boosting
in this context is an extension of the decision tree algorithm to improve the performance, by
building an ensemble (or forest) of decision trees. In this algorithm, after the initial tree is built,
those events which are misclassified are weighted up such that they carry more importance in
a subsequent decision tree, changing the separation index score and thus building a different
tree. The results of this tree are then similarly weighted, and this continues for some chosen
number of iterations. The resulting output of the forest is the weighted performance of each
(weak learning) tree, and so by combining many of these a BDT obtains better performance and
is thus referred to as a strong learner. Examples of boosting algorithms include AdaBoost [69]
and GradientBoost [77].

BDTs are very sensitive to overtraining, due to the precise manner in which the splittings
are determined. There are two common strategies to minimise this overtraining: bagging and
pruning. In a bagged BDT, only some (randomly chosen) subset of the training data is used per
tree. By varying the exact events used per tree, the forest is less likely to be tuned precisely to the
full training data. It also reduces the likelihood of a small number of outlier events being heavily
boosted and becoming highly influential. Pruning is the process of removing the least important
leaves after the full decision tree has been built. If removing a splitting node has less than some
minimum effect on the output of the tree, it can be safely removed without a significant loss in
performance, while making the tree more robust against overtraining.

A BDT has many tuneable hyperparameters. For example, one may choose to limit the
maximum depth of the tree, the minimum size of a splittable node, or the number of trees in the
forest. There is also the choice of the bagging fraction per tree, the pruning criterion, the choice
of boosting method and associated coefficients, and the choice of separation index. There is no
universally well performing set of hyperparameters, and these must be optimised on a case by

case basis.

3.4.3 Deep Neural Networks

The term neural network, coined via loose analogy to the function of neurons in a brain, is an
umbrella term for a family of MVA algorithms. In essence, a neural network approximates the
true mapping y = f*(x) of a classification y given a set of features x with the function f(x; @),
by learning the parameters € that best describe the true mapping. This function f may be further
broken down into layers, such that y = fi(f2(f3(x; 6))), and neural networks which contain more

than one such layer are known as Deep Neural Networks. Each layer consists of many nodes: the
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Figure 3.3: Model of a Deep Neural Network containing two hidden layers [78].

input layer has one node per input feature, while the output layer can have as many outputs as
desired (just one for the case of binary classification, or one per class for multiclass output), and
each hidden layer in between can have an arbitrary number. This structure is shown in Figure
3.3. The connections between each of these nodes are the associated parameters 6, called the
weights, and if each node in a given layer is connected to each node in the subsequent layer, it is
referred to as fully connected. No prior intuition of the problem is necessary up front when to
initialise these weights: @ can be initialised randomly, and learning happens via the updating of
the weights after seeing some training data: a process known as back propagation [79].

The training of a DNN is a series of forward passes — calculating the network output for a
given event — followed by the back propagation, where the network output is compared to the true
value, and the weights are updated to better approximate the true value next time. The forward
pass consists of simple linear algebra. First, the vector of inputs x is multiplied by the weights
connecting the first hidden layer, and all of the connections to each node in the hidden layer are
summed. This sum § is then passed through the activation function, to calculate the node score.
This node score is then analogous to an input feature from the input layer, and it is subsequently
passed forward identically until reaching the output layer, where the node scores are finally the
actual network output. The term hidden layer comes from the fact that the node scores for these
layers are hidden from the user. An example of the forward pass phase of a simple network is
shown in Figure 3.4.

The activation function is simply some mathematical function used to transform the inputs.
Using non-linear functions, such as f(x) = tanh(x), allows the DNN to learn higher dimensional
correlations between the inputs, and it is this introduction of non-linearity that provides much
of the power of deep learning models. Other popular activation functions include the sigmoid
f(x) = w and rectified linear unit (ReLU) f(x) = max(0, x), which are shown along with
tanh in Figure 3.5.

Back propagation works backwards from the output layer, comparing the true label to the
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Figure 3.4: A toy example of a forward pass for a simple, fully connected network. The small
number in each node of the hidden layer is the sum of the inputs X weights, and the larger number
is the node score after passing through a sigmoid activation [80].

(a) Sigmoid (b) Tanh (c) ReLU
LOF o s ) Ry T e ar i 1
: [ o . : | & : !
0.5} o {05} 2 jresssead
- * I ¥
£ uu Dc- — 0
-0.5} ' § L S ———4 | -2l | ]
: - | :
- i . L i :
-1.0} | : 1.0 [reriurasaans ; _al H ]
1 1 i 1 1 1 1 1 1 1 1 1 1
-4 =2 0 2 4 -4 -2 0 2 4 -4 =2 0 2 4

Figure 3.5: Examples of common non-linear activation functions [81].
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prediction of the network output via the loss function. Common loss functions include the mean

squared error Eysg [82] and Cross-Entropy Ecg [76], given by

1
E(ytrue - yout)z, (3.24)
Ece = —(Ytrue 10g(Your) + (1 = Yirue) 10g(1 = your), (3.25)

EMsg

with yqe the true classification and y,, the network output. The network objective — to act as
the best approximation to the true mapping between the inputs and true label — can be easily
re-expressed as being to minimise the loss function for all output nodes. Thus, it is natural to
think in terms of gradients, and calculate derivatives of the error E of the output o with respect

to the weight 6 used

0E OE o do o oS
90 9o 4SS~ 90
where we have taken advantage of the chain rule, with S the sum of the inputs prior to activation.

(3.26)

If the loss function chosen is differentiable, g—f is easily calculable. Similarly, if the activation

g—g can be calculated. The final piece, %, is the simple derivative

of the vector multiplication and summing. To make this clear, consider the concrete example of

function is differentiable, then

mean squared error and sigmoid activation with a single output node. Then

1

E = 5(true —0)? (3.27)

OE
= — = (true —o), (3.28)

0o

1 es
= = 3.29
¢ l+exp™d 1+ (3:29)
00 es

— = ——— =0(1-0), 3.30
= 95 T Ueep o179 (3-30)
S = 0-0 (3.31)

oS
— = 0. 3.32
= 35 (3.32)

Here, O is the node output from the previous layer. Thus, by continuing this use of the chain rule
all the way back to the original inputs, the dependence of the output error on each weight can
be calculated. To decrease the error, the weights are updated by subtracting this gradient, thus
moving towards the minimum of the loss function. This process is known as gradient descent. In
practice, the value subtracted is multiplied by an additional factor called the learning rate, which
is usually << 1. In this way, the weights change by a smaller amount at each step, which may
prevent them from oscillating around a minimum. Of course, too small a learning rate may get

stuck in a local minima, and/or drastically slow the convergence — and so this is a hyperparameter
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of the network that must be chosen. Since calculating these gradients takes time, it is common
to forward propagate a number of events together, calculate the error of these, and then update
the weights using this error. The hyperparameter for the number of events per update is the
batch size. When all of the data has been passed through the network, this is an epoch, and
the number of these is another hyperparameter. Similar to a BDT, a DNN can be sensitive to
overtraining, and good choices of these and other hyperparameters is important. Other strategies
such as dropout, where connections between nodes are randomly dropped for each batch, can
also help to prevent overfitting. The architecture of the network can itself be considered as a
set of hyperparameters, with the number of layers, the number of nodes in each of those layers,
the amount of dropout, and the choice of activation/loss functions all important choices with no
a-priori favoured values.

A subtle consideration when using neural networks is data preprocessing. Unlike a BDT,
which performs linear selections on each input, the absolute scale of the input variables is
important, as made clear by substituting Equation 3.32 into Equation 3.26. Thus, inputting two
variables of widely varied scales — for example, the p7 of a jet in MeV might be O(10°), while
the 7 of a jet is O(1) — would give vastly different relative importance to the larger variable. To
get around this, the data should be normalised such that all inputs are similar in magnitude and
variance, ensuring robust behaviour in the gradient descent. For example, a simple method to
do this would be to rescale all of the inputs to be centred at 0, and to normalise by the mean of
the distribution to have unit variance.

In addition, there are many other deep learning architectures useful in particle physics beyond
fully connected layers, including (but not limited to) convolutional nets [83], LSTMs [84], or
generative adversarial networks [85], which have not been used in the analyses presented and so
are not discussed here. An example application of a fully connected DNN, used in the boosted

ttH, H — bb analysis for jet tagging, is presented in Section 9.3.



Chapter 4

ATLAS and the LHC

We are stuck with technology when what we really want is just stuff that works.

— Douglas Adams

Lying at an average depth of 100 m below the surface of the French and Swiss countryside,
the Large Hadron Collider (LHC) [86] is the worlds largest piece of scientific apparatus built
to date. It is designed to collide protons (and heavy ions) at energies of up to 14 TeV, to study
the particles and forces of nature in conditions equivalent to those less than 1 billionth of a
second after the Big Bang. Superconducting magnets operating at 7.7 T bend bunches of protons
around the 27 km ring, with RF cavities accelerating them to 99.999999% of the speed of light.
The two beams are brought together once every 25 ns at one of 4 locations around the ring,
where the ATLAS [87], CMS [88], LHCDb [89], and ALICE [90] experiments are each housed.
LHCb and ALICE are designed specifically to study heavy flavor physics in pp collisions and
quark-gluon plasma physics in heavy ion collisions respectively, while ATLAS and CMS are
general purpose particle detectors built to study the physics of the Standard Model as well as
search for new physics beyond the Standard Model. The studies presented in this document have
all been performed using data collected with the ATLAS detector, which is described in detail
in Section 4.2.

4.1 The Large Hadron Collider

The LHC is housed in the same tunnel that was previously home to the Large Electron-Positron
Collider (LEP) [91]. The tunnel was originally dug between 1983 and 1988, with the two ends
eventually meeting with an error of just 1 cm. At its deepest point, the tunnel is 175 m below
the surface, owing to its location at the foot of the Jura mountains, and is built at a gradient of
1.4% in order to minimise excavation costs as well as line up with the other tunnels in the CERN
accelerator complex. Protons are fed to the LHC via this network, depicted in Figure 4.1, from

a humble beginning in a small bottle of hydrogen gas. The hydrogen is subsequently ionised

31



CHAPTER 4. ATLAS AND THE LHC 32

and accelerated to 50 MeV using a linear accelerator known as LINAC2!, which has been in
operation since 1978. The protons subsequently enter the BOOSTER, in use since 1972, where
they are accelerated up to 1.4 GeV before being passed to the Proton Synchotron (PS), which first
accelerated particles in 1959. When they leave the PS, the protons have reached 25 GeV, and
are then fed to the Super Proton Synchotron (SPS). The SPS, itself 7 km in circumference, dates
back to 1976 and was the location for the discovery of the W* [92,93] and Z [94, 95] bosons,
which earned Carlo Rubbia and Simon van der Meer the 1984 Nobel Prize for Physics. When the
protons leave the SPS and enter the LHC, they have reached an energy of 450 GeV and traversed
more than half a century of history and technology. While the rest of the accelerator complex
uses traditional magnet technology, in order to reach energies in the TeV range the LHC relies
on superconducting magnets. Each of the 1232 15 m long dipole magnets, weighing 35 tonnes
each, must be cooled to just 1.9K to achieve resistance free electrical conduction. Quadropole
magnets are used to squeeze the beams at each interaction point, narrowing the effective size of

the beams to maximise number of colliding particles.

4.1.1 Operation

The first operational run of the LHC (Run I) took place between 2009 and 2013, with proton
collisions at centre of mass energies lower than the design energy of /s = 14 TeV, at /s =
900 GeV, /s = 7 TeV, and /s = 8 TeV. After a two year shutdown for maintenance and
upgrade work, the second operational run (Run 2), began in 2015 and continued until the end of
2018. This time, collisions took place at v/s = 13 TeV, chosen as a compromise between energy
reach, accelerator operational stability, and the time required for magnet preparation. Protons
are circulated around the machine in bunches, with a fixed number of protons per bunch and a
set spacing between them. The instantaneous luminosity £ of the machine is a measure of the
number of interactions taking place at any given moment in the machine, and is dependent only
on beam parameters such as these, as well as the transverse size of the beam. Assuming two
identical beams, the equation for luminosity is

L= k—Nz, 4.1)

drsapa,

where s is the bunch spacing in units of time, k is the number of bunches per beam, N is the
number of protons per bunch in the two beams, and aj, and a, are the effective beam sizes in the
horizontal and vertical directions [97]. The total dataset size is then the integrated luminosity
over the data taking period, L = / Ldt, often measured in units of inverse femtobarns (fb),

where 1 fb = 1073cm?.

ILINAC2 will be decommissioned during the second long shut down of the LHC, with the new LINAC4
accelerator, designed to reach higher luminosity, replacing it as the first step in the proton accelerator chain for
Run 3.
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Figure 4.1: Diagram showing the CERN accelerator complex [96]. The LHC itself is shown in
dark blue.



CHAPTER 4. ATLAS AND THE LHC 34

- T T — ]
£ I ATLAS Online Luminosity ~ {s=13Tev - € 50 ATLAS Online Luminosity  s=13Tev 7
% 5 |:| LHC Delivered - ‘% C |:| LHC Delivered ]
2 F (] ATLAS Recorded ] 2 40 [CJATLASRecorded ]
1S — £ L
3 4: Total Delivered: 4.2 fo™* 5 3 [ Total Delivered: 38.5 fb™ ]
- F  Total Recorded: 3.9 fb™* 1 T ggf Total Recorded: 35.6 fo! ]
0} r u 5] r ]
g % E g f ]
2 C ] 2 L ]
E o - £ 2 g
s C ] s F :&
e E E P10 e
C:H\ H‘\H‘\H‘: o Y S I HIRI I BRI
23/05 20/06 18/07 15/08 12/09 10/10 07/11 18/04 16/05 13/06 11/07 08/08 05/09 03/10 31/10
Day in 2015 Day in 2016
(a) (b)
— 0T — T
£ E ATLAS Online Luminosity ~ {s=13Tev 3 £ gob ATLASOnline Luminosity — {s=13Tev 3
2 60 [ Hc pelivered 4 £ E [ LHC Delivered E
2 sof [_JATLAS Recorded 1 2 70? [JATLAS Recorded E
1S F £ = —
3 [ Total Delivered: 50.2 fb™ B 3 60; Total Delivered: 63.3 fb™ 3
5 4QF-  Total Recorded: 46.9 fo™ 3 T 50 - Total Recorded: 60.6 fb™* =
© F E IS E 3
s F 1 5 40 =
g 30 B 5y = E
= B 1 E 30fF =
= 20— = < F ER
° = 15 © 20 —z
= F 8 E J8
10~ Bl 10F =E
Ckw Znflnnnllnnnflnnnllnnnllnnns E F S SR NP NI B B
09/05 08/06 08/07 07/08 06/09 06/10 05/11 05/12 13/04 12/05 10/06 09/07 07/08 05/09 04/10 02/11
Day in 2017 Day in 2018
(©) (d)

Figure 4.2: The luminosity delivered by the LHC and recorded by ATLAS through each year
of Run 2 data taking, for (a) 2015 (b) 2016 (c) 2017 (d) 2018 [99]. The green area is the
total integrated luminosity delivered by the LHC, beginning from the moment stable beams are
declared until they are lost. The yellow area represents the data recorded by ATLAS, with the
inefficiency relative to the green primarily due to data acquisition inefficiency and the time taken
for ATLAS to ramp up after stable beams are declared.

The analyses performed here utilise data collected by the ATLAS detector during Run 2
of the LHC, at a centre of mass energy of y/s = 13 TeV. The amount of data collected each
year is shown in Figure 4.2. In total, 156 tb~!'was delivered by the LHC, of which 147fb~!was
recorded by ATLAS. Of this, 139 fb~! was collected with all subsystems of the ATLAS detector
operational. This information is summarised in Figure 4.3. Full details of the LHC performance
during Run 2 is summarised in [98].

When bunches cross in the centre of ATLAS, there is almost always more than one visible
pp collision per crossing?. This is known as pileup (). With higher instantaneous luminosity
comes larger p, making it more difficult to reconstruct the hard interactions of interest in the

midst of many other concurrent pp collisions. Originally the LHC was designed to reach a peak

2With the exception of some special, low-u runs performed in 2017 and 2018, demonstrated by the small peak
at u = 1 in Figure 4.4.
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Figure 4.3: The total luminosity delivered and recorded over the whole of Run 2 by the ATLAS
detector [99]. The yellow and green areas are the same as those in Figure 4.2. The blue area,

labelled “Good for Physics”, represents the data collected with all ATLAS subsystems fully
operational.
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Figure 4.4: The average number of visible pp interactions per bunch crossing in ATLAS, per
year and total [99].

luminosity of 10°* cm=2s~!, though this was exceeded already by 2016, with a record high of
2.1x10%* cm™2s~! achieved in 2018. This has meant an average pile up (i) = 33.7 over the whole
of Run 2, as shown in Figure 4.4. In the latter half of 2016, a pile up of (u) = 60 was common,
after the LHC fill scheme had to be changed to account for “the gruffalo” — persistent problems
in a particular sector of the accelerator that caused regular beam dumps. The original design
value was (u) = 19. Higher pileup means more activity in the detector, making reconstruction
of physics objects trickier, and identification of which objects originate from the hard process
more difficult. Efficiently handling high pileup is increasingly important, in particular for Run 4
and beyond, when the LHC enters the High Luminosity LHC (HL-LHC) phase [100].

4.2 ATLAS

A Toiroidal LHC ApparatuS may be a tenuous acronym at best, but the ATLAS detector [87]
is also the largest general purpose particle detector ever built, at 25 m in diameter and 44 m in
length, as shown in Figure 4.5. Built in the shape of a barrel around the beam pipe at Point 1

of the LHC tunnel, ATLAS combines a multitude of detector technologies to effectively identify
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Figure 4.5: The ATLAS Detector. The scale of the machine is demonstrated by the two small
figures standing between the muon wheels.

almost all of the particles in the Standard Model, with the exception of the neutrinos, which
escape without interaction. The barrel structure allows for these technologies to be combined in
a layered manner, with each stage being useful for the detection of different types of particles,
as shown in Figure 4.6. Much like the particles themselves, the following sections will travel
through each layer in turn, beginning at the centre of the detector and moving steadily outwards.

This thesis will use a right-handed coordinate system, with z the beam direction, ¢ the
azimuthal angle and 6 the polar angle. Generally 6 is replaced in analyses in favour of the

quantity rapidity, y = 0.51In (gfﬁ - ), or pseudorapidity n = —Intan(6/2), where E is the particle

energy and p, is the momentum in the beam direction. The quantities y and n are often used

interchangeably.

4.2.1 Inner Detector

The detector sub-system closest to the beam pipe is the Inner Detector (ID) [102]. The ID
is used to construct high resolution tracks of charged particles, which can be used to measure
particle momentum (in combination with the magnet system) as well as primary and secondary
vertices associated with particle decays. To do this, three distinct technologies are used — the
Pixel detector, the Semiconductor Tracker, and the Transition Radiation Tracker — in a layered

structure, depicted in Figure 4.7.
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Figure 4.6: Cartoon demonstrating how different types of particle interact with each layer of the
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